
On the Cyclic Regularities of Strings

Oluwole Ajala1(B), Miznah Alshammary1(B), Mai Alzamel1(B), Jia Gao1(B),
Costas Iliopoulos1(B), Jakub Radoszewski2(B), Wojciech Rytter2(B),

and Bruce Watson3(B)

1 Faculty of Natural and Mathematical Sciences, King’s College London,
London, UK

{oluwole.ajala,miznah.alshammary,mai.alzamel,jia.gao,
c.ilioupoulos}@kcl.ac.uk

2 Faculty of Mathematics, Informatics and Mechanics, University of Warsaw,
Warsaw, Poland

{jrad,rytter}@mimuw.edu.pl
3 Faculty of Informatics Science, Stellenbosch University,

Stellenbosch, South Africa
bwwatson@sun.ac.za

Abstract. Regularities in strings are often related to periods and covers,
which have extensively been studied, and algorithms for their efficient
computation have broad application. In this paper we concentrate on
computing cyclic regularities of strings, in particular, we propose several
efficient algorithms for computing: (i) cyclic periodicity; (ii) all cyclic
periodicity; (iii) maximal local cyclic periodicity; (iv) cyclic covers.

Keywords: Cyclic regularities · Periods · Covers

1 Introduction and Related Work

A fundamental concept of repeating patterns or regularities is that of periods
(also known as powers). A period of order k is defined by a concatenation of k
identical blocks of symbols. The study of periods can be traced to as far back
as the early 1900s with the work of [9], who researched a set of strings that
do not contain any substrings that are periods. Periods in diverse forms gained
prominence, when they became key structures in computational biology, where
they are associated with various regulatory mechanisms and play an important
role in genomic fingerprinting [6].

In regularities in strings, one of the most general notions is related to period
or power, for instance, given a string x of length n, a period k of a string x is
a sub string of x, if it can be decomposed into equal-length blocks of symbols,
such that x = uku′, where u′ is a prefix of u. However, for simplicity we will
discard u′ and only consider uk.

So far, regularities in strings related with periods and powers, which have
been extensively studied, [3–5,8] and algorithms for their efficient computation
c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
J. MacIntyre et al. (Eds.): AIAI 2019 Workshops, IFIP AICT 560, pp. 219–224, 2019.
https://doi.org/10.1007/978-3-030-19909-8_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19909-8_19&domain=pdf
https://doi.org/10.1007/978-3-030-19909-8_19

220 O. Ajala et al.

have broad applications. In this paper, we study cyclic factors of strings. The
motivation of cyclic factors comes from viruses. The viruses are circular strings,
for example Escherichia coli (E.coli) has 154 bases and it is circular [12] (Fig. 1).
Formally, the viruses break up at any point of the circle, for example, that can
appear in the DNA sequence as xδ . . . xnx1 . . . xδ−1 breaking up at position δ
(Fig. 2). Now, we propose several efficient algorithms for computing: (i) cyclic
periodicity; (ii) all cyclic periodicity; (iii) maximal local cyclic periodicity; (iv)
cyclic covers.

Fig. 1. The E. coli K-12 MG1655 chromosome (outer black ring) was used as a reference
map to visualise the locus position of 30 chromosome-borne CU fimbrial types. Types
highlighted in blue are present in E. coli K-12 MG1655, types in red are absent in this
strain. Fimbrial types associated with PAIs are indicated by an asterisk. A number of
PAI associated fimbrial gene clusters occupy different locus positions relative to the
MG1655 genome. tRNA sites that flank CU-containing PAIs are indicated on the inner
blue ring [12]. (Color figure online)

Fig. 2. Circular pattern.

On the Cyclic Regularities of Strings 221

2 Preliminaries

A string x of length |x| = n over an alphabet Σ of size σ can be denoted as
x[1 . . n] = x[1]x[2] . . . x[i] . . . x[n], where 1 ≤ i ≤ n and the i-th letter of x is
denoted by x[i] ∈ Σ. The empty string ε is the string of length 0. The string xR

is the reverse of string x. And x[i . . j], 1 ≤ i ≤ j ≤ n, denotes the contiguous
substring (or factor) of letters, such as x[i]x[i + 1]x[i + 2] . . . x[j]. A substring
x[i . . j] is a suffix of x, if j = n and a substring x[i . . j] is a prefix of x, if i = 1.
Given a cyclic factor u of length k, 1 ≤ k ≤ n, we denote by c(u), for instance,
u = ababc, c(u) is one of the following rotations: ababc, babca, abcab, bcaba,
cabab. Moreover, we say u = u1u2 . . . un, cδ(u) = uδ . . . unu1 . . . uδ−1.

In this paper, suffix trees are used extensively as computation tools. For a
general introduction to suffix trees, see [2,7,10,11].

K-Cyclic Period
Input: Given a string x of length n, and an integer k < n, compute k-cyclic-
period � of x, where x = u1u2 . . . u�, ui = c(uj), |ui| = |uj | = k, ∀ i, j,
1 ≤ i ≤ �, 1 ≤ j ≤ �, and k × � = n.
Output: k-cyclic-period � of x

Example 1. Consider a string x = aaabaabaabaabaaa =: u1u2u3u4, where u1 =
aaab, u2 = aaba, u3 = abaa, u4 = baaa and k = 4, � = 4. Therefore x has a
period of length �.

Definition 1. A cyclic periodic array A of a string x of length n is defined to
be as follows: A[i] := �, 1 ≤ i ≤ n, if and only if x[1 . . i] has cyclic periodicity �
by a string u and there no u′, with |u′| ≤ |u| that is a cyclic period of x[1 . . i].

Example 2. Consider a string x = aababa of length 6, a cyclic periodic array A
as follows:

x[1] = a =⇒ A[1] := 1 x[1 . . 4] = aaba =⇒ A[4] := 1
x[1 . . 2] = a a =⇒ A[2] := 2 x[1 . . 5] = aabab =⇒ A[5] := 1
x[1 . . 3] = aab =⇒ A[3] := 1 x[1 . . 6] = aab aba =⇒ A[6] := 2

Definition 2. We define maximal local k-cyclic periodicity of a string x, if a
substring y is cyclic periodic and y is not a substring of another cyclic periodic
strings.

Example 3. Consider a string x = aaaababaaab, Σ = {a, b}, and a substring
y = aabababaa is 3-cyclic periodic and substring yα = aabababaaa, α ∈ Σ, is not
cyclic periodic, and substring βy = aaabababaa, β ∈ Σ is not cyclic periodic.
Therefore, the substring y = aabababaa is maximal local 3-cyclic periodic in
string x = aaaabababaaa.

Definition 3. We say that a string x of length n is cyclic-coverable by a string
u of length k′, if and only if, for every position i of x, the following condition
holds x[β . . γ] = c(u), 1 ≤ β ≤ i ≤ γ ≤ n.

222 O. Ajala et al.

Example 4. Consider a string x = aababaa = u1u2, u1 = aaba, u2 = abaa,
k′ = 4, γ = 2, is cyclic coverable by a string u, for every position i of x,
x[1 . . 4] = x[4 . . 7] = c(u).

Definition 4. Compute all cyclic covers of a given string x, that is for all pos-
sible length cyclic covers.

Example 5. Consider a string x = ababbaba, then ab, abab, ababb, ababbab are
cyclic covers of x.

3 Computing k-cyclic Periodicity

Theorem 1. Given a string x of length n and an integer k, 1 ≤ k ≤ n, test
whether it is k-cyclic periodic; this can be determined in O(n/k) time and O(n)
space.

Proof. We construct the suffix tree of x (see [7,10,11]). We let u = x[1 . . . k], then
let �m denote the depth of the lowest common ancestor of x[1 . . n] (see [1]), and
x[im . . n]. We compute the LCA �m of x[1 . . n] and x[im . . n] for im = 2k, 3k, . . . ,
and �k = n−k, if �m = 1 for some m, then x is not k-cyclic periodic string. Now
consider Crignt

m = (u�m+1 . . . uk)R, compute the �
′
m the LCA of uR and Cright

m .
If �

′
m ≥ �m for all m, then x is k-cyclic periodic. ��

4 Computing All Cyclic Periodicities

Theorem 2. Given a string x of length n, test whether it is k-cyclic periodicity
for all 1 ≤ k ≤ n, this can be determined in O(n log n) time and O(n) space.

Proof. We apply the algorithm of Theorem 1 for k = 1, 2, . . . , n and we test all
cyclic periods of length k. The construction of the suffix tree of string x and xR

is done once costing O(n). The total cost is

O(n) + O(
n∑

k=1

n/k) = O(n log n)

��

Lemma 1. Compute the cyclic period of x.

Proof. The smallest cyclic-period of x is the cyclic-period of x. ��

On the Cyclic Regularities of Strings 223

5 Computing Maximal Local k-cyclic Periodicity

Theorem 3. We can compute all k-cyclic periodicity of x in O(n log n) time.

Proof. We apply the algorithm for k = 1, 2, . . . , n and in this case, extend it to
cyclic periods of length k + 1, where |y| = m is cyclic periodic and yα = m + 1
is not cyclic periodic. Next, we perform this algorithm on string xR as T (xR),
where |y| = m, again is cyclic periodic and βy = m + 1 is not cyclic periodic.

The construction of the suffix tree of string x is done once. The total cost is

O(
n∑

k=1

n/k) = O(n log n)

��

Lemma 2. Compute maximal local k-cyclic periodicity of x.

Proof. We compute and merge the arrays for yα and βy of x. That is the maximal
local k-cyclic periodicity of x. ��

6 Computing k′-cyclic Coverability

Theorem 4. Given a string x of length n and an integer k′, 1 ≤ k′ ≤ n, test
whether it is k′-cyclic coverable, this can be determined in O(n) time and O(n)
space.

Proof. We compute the suffix tree of string x as T (x), and also we compute the
suffix tree of string xR as T (xR).

Then we check x[1, k′] with each one of x[n − k′ + 1, n], x[n − k′, n − 1],
x[n − k′ − 1, n − 2] . . .x[2, k′ + 1], together with the reverse pairs in T (xR). This
way we build a collection of cyclic covers if there is one.

The construction of the suffix tree costs O(n); checking of equality costs O(1)
and there are n factors. The total time is O(n). ��

7 Computing All Cyclic Coverability

Theorem 5. Given a string x of length n, test whether it is k′-cyclic coverable
for 1 ≤ k′ ≤ n, this can be determined in O(n2) time and O(n) space.

Proof. We apply the algorithm for k′ = 1, 2, . . . , n and we compare all cyclic
coverable of length k′. The construction of the suffix tree of string x is done
once. The total cost is

O(
n∑

k′=1

n) = O(n2)

��

Lemma 3. Compute the cyclic coverability of x.

Proof. The smallest cyclic coverable of x is the all the cyclic coverable of x. ��

224 O. Ajala et al.

8 Conclusions and Open Problems

In this paper, we defined k-cyclic periodicity, we presented several efficient algo-
rithms for computing: (i) cyclic periodicity; (ii) all cyclic periodicity; (iii) maxi-
mal local cyclic periodicity; (iv) cyclic covers.

Future work will be focused on computing the cyclic-periodic array, that
is the cyclic periodicity of every prefix of string x and computing the cyclic-
coverability array, that is testing each prefix of x, for cyclic-coverability. Finally,
we will extend the cyclic periodicity to cover the case u1u2u2 . . . uku1, where
ui=c(uj) ∀ i, j and u1 is a substring of some ui.

References

1. Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Gonnet, G.H.,
Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg
(2000). https://doi.org/10.1007/10719839 9

2. Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on Strings. Cambridge Uni-
versity Press, New York (2007)

3. Defant, C.: Anti-power prefixes of the Thue-Morse word. arXiv preprint
arXiv:1607.05825 (2016)

4. Erdős, P., et al.: Anti-ramsey theorems (1973)
5. Fujita, S., Magnant, C., Ozeki, K.: Rainbow generalizations of ramsey theory: a

survey. Graphs Comb. 26(1), 1–30 (2010)
6. Kolpakov, R., Bana, G., Kucherov, G.: mreps: efficient and flexible detection of

tandem repeats in DNA. Nucleic Acids Res. 31(13), 3672–3678 (2003)
7. McCreight, E.M.: A space-economical suffix tree construction algorithm. J. ACM

(JACM) 23(2), 262–272 (1976)
8. Narayanan, S.: Functions on antipower prefix lengths of the Thue-Morse word.

arXiv preprint arXiv:1705.06310 (2017)
9. Thue, A.: Uber unendliche zeichenreihen. Norske Vid Selsk. Skr. I Mat-Nat Kl.

(Christiana) 7, 1–22 (1906)
10. Ukkonen, E.: Constructing suffix trees on-line in linear time. In: Proceedings of

the IFIP 12th World Computer Congress on Algorithms, Software, Architecture-
Information Processing 1992, Volume 1-Volume I, pp. 484–492. North-Holland
Publishing Co. (1992)

11. Weiner, P.: Linear pattern matching algorithms. In: 14th Annual Symposium on
Switching and Automata Theory, SWAT 1973, pp. 1–11. IEEE (1973)

12. Wurpel, D.J., Beatson, S.A., Totsika, M., Petty, N.K., Schembri, M.A.: Chaperone-
usher fimbriae of Escherichia coli. PloS one 8(1), e52835 (2013)

https://doi.org/10.1007/10719839_9
http://arxiv.org/abs/1607.05825
http://arxiv.org/abs/1705.06310

	On the Cyclic Regularities of Strings
	1 Introduction and Related Work
	2 Preliminaries
	3 Computing k-cyclic Periodicity
	4 Computing All Cyclic Periodicities
	5 Computing Maximal Local k-cyclic Periodicity
	6 Computing k'-cyclic Coverability
	7 Computing All Cyclic Coverability
	8 Conclusions and Open Problems
	References

