
Chapter 32
Block Element with a Circular
Boundary

Evgeniya Kirillova and Pavel Syromyatnikov

Abstract The block element method (Babeshko in Ecol Bull Res Centers Black
Sea Econ Coop (BSEC) 2:13, 2014, [1]), which was elaborated by V. A. Babeshko
and developed by his disciples, makes it possible to solve boundary-value problems
stated for arbitrary convex domains and described in terms of arbitrary linear
systems of differential equations in finite-order partial derivatives. The
boundary-value problems are assumed to be properly stated. The domains can be
bounded, semi-bounded and unbounded. Moreover, the method can be applied to
the finite aggregate of domains, which interact over shared boundaries. According
to the block element method, the boundary-value problem is set in the topological
space and reduced to the system of functional equations using external analysis
tools. From the pseudo-differential equations obtained due to differential factor-
ization and automorphism, integral equations are extracted, which correspond to
certain boundary conditions. A large number of variations of the block element
method have been developed so far for the three-dimensional setting of
boundary-value problems for various mathematical physics equations. The method
is highly versatile, however, it requires the knowledge of topology, differential
geometry, multidimensional complex analysis, external analysis, i.e. the disciplines,
which are normally not included in the standard mathematics curricular at the
university level. To increase the comprehension of the method, it is necessary for
scientific and methodological purposes to study in detail how comparatively simple
problems are solved by this method. The research provides a detailed algorithm of
the block element for the model boundary-value problem, which is described by the
Bessel equation for the circular domain.
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32.1 Statement and Analytical Solution
of the Boundary-Value Problem

Let us consider for the circular domain X with the radius r0 [ 0, the equation:

@2u

@x21
þ @2u

@x22
� k2u ¼ 0; x1; x2ð Þ 2 X: ð32:1Þ

Hereinafter, we will consider the boundary-value solutions:

ujr¼r0¼ f1;
@u
@r

����
r¼r0

¼ f2; ð32:2Þ

which depend only on the radius r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

p
. Equation (32.1) for the function,

which depends only on the radius r, can be written as follows:

@2u
@r2

þ 1
r
@u
@r

� k2u ¼ 0: ð32:3Þ

The general solution of the problem (32.3), (32.2) is written in terms of modified
Bessel functions I0;K0 [2] as

uðrÞ ¼ C1I0ðkrÞþC2K0ðkrÞ: ð32:4Þ

Considering the known properties of functions I0;K0 [2]:

I 00ðzÞ ¼ I1ðzÞ; I0ðzÞ ¼ J0ðizÞ; I1ðzÞ ¼ �iJ1ðizÞ;
K 0
0ðzÞ ¼ �K1ðzÞ;K0ðzÞ ¼ ip

2
Hð1Þ

0 ðizÞ;K1ðzÞ ¼ �p
2

Hð1Þ
1 ðizÞ;

with respect to C1;C2, we obtain the equation system:

C1I0ðkr0ÞþC2K0ðkr0Þ ¼ f1;C1kI1ðkr0Þ � C2kK1ðkr0Þ ¼ f2;

whence it follows that

C1 ¼ �f1kK1ðkr0Þþ f2K0ðkr0Þ
D

; C2 ¼ �f1kI1ðkr0Þþ f2I0ðkr0Þ
D

;

D ¼ Dðk; r0Þ ¼ �kðI0ðkr0ÞK1ðkr0ÞþK0ðkr0ÞI1ðkr0ÞÞ:

430 E. Kirillova and P. Syromyatnikov



It is easily to show that

D ¼ k
p
2

� �
J0ðikr0ÞHð1Þ

1 ðikr0Þ � J1ðikr0ÞHð1Þ
1 ðikr0Þ

� �
� � 1

r0
:

In this case, we obtain:

C1 ¼ r0
ip
2

� �
f1ikH

ð1Þ
1 ðikr0Þþ f2H

ð1Þ
0 ðikr0Þ

� �
;C2 ¼ r0 �f1ikJ1ðikr0Þ � f2J0ðikr0Þð Þ:

The general representation of solving a boundary-value problem (32.3), (32.2)
takes the form:

uðrÞ ¼ J0ðikrÞ ipr0
2

� �
f1ikH

ð1Þ
1 ðikr0Þþ f2H

ð1Þ
0 ðikr0Þ

� �

þHð1Þ
0 ðikrÞ ipr0

2

� �
�f1ikJ1ðikr0Þ � f2J0ðikr0Þð Þ:

ð32:5Þ

Solution (32.5) consists of two summands:

uðrÞ ¼ uð1ÞðrÞþuð2ÞðrÞ:

Solution uð1Þ is bounded by

uð1ÞðrÞ ¼ C1J0ðikrÞ ¼ J0ðikrÞ ipr0
2

� �
f1ikH

ð1Þ
1 ðikr0Þþ f2H

ð1Þ
0 ðikr0Þ

� �
: ð32:6Þ

Solution uð2Þ is not bounded, because it has a singularity at zero due to prop-
erties of Hankel function:

uð2ÞðrÞ ¼ C2H
ð1Þ
0 ðikrÞ ¼ Hð1Þ

0 ðikrÞ ipr0
2

� �
�f1ikJ1ðikr0Þ � f2J0ðikr0Þð Þ: ð32:7Þ

Expression (32.5) provides a general representation of the solution for an
internal problem with boundary conditions (32.2), as well as for the corresponding
external problem at r� r0, which is stated below.

Let us additionally restrict the solution of the boundary-value problem (32.3),
(32.2). For the internal problem, this restriction leads to uð2ÞðrÞ � 0 $ C2 � 0,
which is equal to the condition

f1
f2
¼ i

k
J0ðikr0Þ
J1ðikr0Þ : ð32:8Þ
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Whereas limkr0!1
J0ðikr0Þ
J1ðikr0Þ ¼ �i, then, at k > > 1

f1
f2
� 1

k
; 0� r� r0; ð32:9Þ

which is equivalent to the boundary conditions:

ujr¼r0¼ f ;
@u
@r

����
r¼r0

¼ kf ; f ¼ const 6¼ 0: ð32:10Þ

Similarly, in order to restrict the external problem, the condition uð1ÞðrÞ � 0 $
C1 � 0 should be satisfied, then:

f1
f2
¼ i

k
Hð1Þ

0 ðikr0Þ
Hð1Þ

1 ðikr0Þ
: ð32:11Þ

Taking into account that

lim
kr0!1

Hð1Þ
0 ðikr0Þ

Hð1Þ
1 ðikr0Þ

¼ i; ð32:12Þ

then, at k >> 1

f1
f2
� � 1

k
; 0\r0 � r; ð32:13Þ

Therefore, at k >> 1, it is possible to use the expressions (32.10) as approximated
boundary conditions for the internal problem, and relations:

ujr¼r0¼ f ;
@u
@r

����
r¼R0

¼ �kf ; 0\r0 � r; ð32:14Þ

for the external problem. The restriction requirement results in the fact that the
values f1; f2 cannot be arbitrary and must satisfy (32.8) or (32.11). At large k, exact
terms (32.8) and (32.11) can be replaced by approximated conditions (32.10) and
(32.14), respectively.
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32.2 Block Element with a Circular Boundary

According to the general algorithm of the block element method [1] in the case of a
two-dimensional domain X, we introduce the double forward and inverse Fourier
transforms:

Uða1; a2Þ ¼
ZZ
X

u x1; x2ð Þ exp i a1x1 þ a2x2ð Þð Þdx1dx2

u x1; x2ð Þ ¼ 1
4p2

Zþ1

�1

Zþ1

�1
Uða1; a2Þexp �i a1x1 þ a2x2ð Þð Þdx1dx2

ð32:15Þ

Let us apply the forward transform (32.15) to the (32.1) and the Stokes formula
[3] to the surface integral, and obtain the functional equation:

� a21 þ a22 þ k2
� 	

UðaÞ ¼
ZZ
X

dx ¼
Z
@X

x; x1; x2f g 2 @X: ð32:16Þ

Here @X is the boundary of the domain X, x is the external differential form. As
a result, we obtain:

a21 þ a22 þ k2
� 	

U a1; a2ð Þ ¼
Z
@X

@u
@x2

� ia2u


 �
e ia1x1 þ ia2x2ð Þdx1 þ @u

@x1
� ia1u


 �
e ia1x1 þ ia2x2ð Þdx2

� 
:

ð32:17Þ

Let us introduce the following coordinates:

n1 ¼ r0 cosw; n2 ¼ r0 sinw; r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 þ n22

q
; w ¼ arctg n2=n1ð Þ;

x1 ¼ r cos h; x2 ¼ r sin h; r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

q
; h ¼ arctg x2=x1ð Þ;

a1 ¼ u cos c; a2 ¼ u sin c; u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 þ a22

q
; c ¼ arctg a2=a1ð Þ:

ð32:18Þ

After some uncomplicated transformations, we obtain

u2 þ k2
� 	

U u; cð Þ ¼
Z
@X

expðiur0 cosðw� cÞÞ�

� @u
@r

r0dw� 1
r0

@u
@w

dr � iur0 cosðc� wÞudwþ iu sinðc� wÞudr
� �

:

ð32:19Þ
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Integrals over dr in (32.19) are equal to zero, while when the circle dr ¼ 0, only
integrals remain over dw. As a result, we obtain:

u2 þ k2
� 	

U u; cð Þ

¼
Z
@X

expðir0u cosðc� wÞÞ r0
@uðr0;wÞ

@r
� iur0 cosðc� wÞuðr0;wÞ


 �
dw:

ð32:20Þ

Let us write the formula (32.20) as follows:

Uða1;a2Þ¼
Z
@X

expðiða1n1þa2n2ÞÞ
ða21þa22þk2Þ r0

@uðr0;wÞ
@r

� iur0 cosðc�wÞuðr0;wÞ

 �

dn1dn2:

ð32:21Þ

Next, let us apply the inverse Fourier transform (32.15) to the expression (32.21)
and obtain

uðr; hÞ ¼ 1
4p2

Z1

�1

Z1

�1

Z
@X

x
ðu2 þ k2Þexpð�iða1x1 þ a2x2ÞÞdn1dn2da1da2

¼ 1
4p2

Z1

�1

Z1

�1

Z
@X

expð�iða1ðx1 � n1Þþ a2ðx2 � n2ÞÞÞ
ðu2 þ k2Þ

� r0
@uðr0;wÞ

@r
� iur0 cosðc� wÞuðr0;wÞ


 �
dn1dn2da1da2:

ð32:22Þ

The transformations of the integral (32.22), which are described below in
Appendix, result in

uðrÞ ¼ r0

Z1

0

J0ðurÞu
ðu2 þ k2Þ J0ður0Þf2 þ J1ður0Þuf1ð Þdu: ð32:23Þ

The expression (32.23) is an integral representation of the restricted solution of
the problem (32.3), (32.2), which can be used for calculations, when fj are known.
Using the contour unfolding operation [4], we can calculate this integral accurately
applying the residues theory. Let us write the integral (32.23) as follows:
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uðrÞ ¼
Z1

0

ðJ0ður0ÞF0ðuÞþ J1ður0ÞF1ðuÞÞudu

¼
Z1

0

J0ður0ÞuF0ðuÞduþ
Z1

0

J1ður0ÞuF1ðuÞdu;

where F0ðuÞ ¼ f2
J0ðurÞr0
ðu2 þ k2Þ ;F1ðuÞ ¼ f1

J1ðurÞur0
ðu2 þ k2Þ. Functions F0;F1 have the property:

Fnð�uÞ ¼ ð�1ÞnFnðuÞ; n ¼ 0; 1. When we put down the Bessel functions

J0ðzÞ; J1ðzÞ as a sum of the Hankel functions JnðzÞ ¼ 1
2 Hð1Þ

n ðzÞþHð2Þ
n ðzÞ

� �
and

apply the contour unfolding operation, we obtain:

uðrÞ ¼ 1
2

Z1

�1

Hð1Þ
0 ður0Þ
u2 þ k2ð Þ uJ0ðurÞf2r0duþ

1
2

Z1

�1

Hð1Þ
1 ður0Þ
u2 þ k2ð Þ uJ0ðurÞuf1r0du: ð32:24Þ

The exponential decrease of the Hankel functions Hð1Þ
j makes it possible to close

the contour of integration upwards in the upper half-plane and obtain the integral
value (32.24) through the residue in the pole u ¼ ik as

uðrÞ ¼ J0ðikRÞ ipr0
2

� �
f1ikH

ð1Þ
1 ðikr0Þþ f2H

ð1Þ
0 ðikr0Þ

� �
¼ uð1ÞðrÞ; 0� r� r0

ð32:25Þ

It is obvious that the latter expression agrees closely with the bounded solution
of the inner problem (32.6). Let us show that at 0\r0\r, the integral (32.23) is
equal to zero. In fact, it is possible to put down the function J0ðurÞ as a sum of the
Hankel functions and turn the contour as shown above. By closing the contour at
0\r0\r in the upper half-plane and by calculating the integral through residue in
the pole u ¼ ik, we obtain:

uðrÞ ¼ r0
2

Zþ1

�1

Hð1Þ
0 ðurÞu

ðu2 þ k2Þ J0ður0Þf2 þ J1ður0Þuf1ð Þdu ¼

¼ Hð1Þ
0 ðikrÞ ipr0

2

� �
�f1ikJ1ðikr0Þ � f2J0ðikr0Þ
� 	

:

ð32:26Þ

The factor at the function Hð1Þ
0 in (32.26) is equal to zero according to the

condition (32.8). In the case of an approximate solution (32.9), the right-hand side

of (32.26) will be also equal to zero, approximately. Since Hð1Þ
0 ðikrÞ decreases

exponentially with the growth of r, then u rð Þ � exp �k r � r0ð Þð Þ at large
r. Moreover, it is obvious that integral (32.26) describes the restricted solution
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(32.7) of the corresponding external problem, where f1; f2 and k are bounded by the
relations (32.11) or (32.13). The estimations for the internal problem, which are
shown below, are identical with the estimations for the external problem, therefore,
we do not consider them separately.

The integrals (32.23), (32.24) represent the block element for the
boundary-value problem (32.3), (32.2). After the values f1; f2 are found accurately
or approximately, the integral (32.23) can be calculated numerically with a high
accuracy, e.g. by means of the integrating algorithms of strongly oscillating func-
tions [5]. In this case, the integral (32.23) using the contour unfolding procedure,
which is described above, can be calculated accurately using the theory of residues.

32.3 Approximate Solutions

In the case under consideration, we obtain boundary values f1; f2 by applying an
analytical solution (32.8), which is not, understandably, always possible. When the
second value is given, the block-element method makes is possible to find (accu-

rately or approximately) one of the boundary values u or @u
@r

� �
from the solutions

of corresponding equations, which are described further.
Let us decompose the unity and introduce local coordinate systems al; xl [6]. As

a result, the integrals over dx2 will retreat, and only integrals over dx1 will remain in
the integral (32.17). We then obtain

Z
@X

@u
@x2

� ia2u


 �
e ia1x1 þ ia2x2ð Þdx1 ¼

X
l

el
@ul

@xl2
� ial2ul


 �
exp ial1x

l
1 þ ial2x

l
2

� 	
Dxl1

The characteristic equation in Fourier terms takes the form ða21 þ a22 þ k2Þ ¼ 0.

In any new coordinates, we obtain al1
� 	2 þ al2

� 	2 þ k2 ¼ 0. Let us indicate the roots
of the characteristic polynomial al2�, where «+» stands for the upper half-plane
and «−» stands for the lower one. Then

al2þ ¼ þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
al1
� 	2 þ k2

q
; al2� ¼ �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
al1
� 	2 þ k2

q
:

The integral equation set to determine the unknown quantities
@ul

@xl2
;ul, which are

constant in any coordinate system, can be written as follows:

Ze

�e

@ul

@xl2
� ial2�ul

� �
exp ial1x

l
1

� 	
dxl1 ¼ 0
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When ul ¼ f , the degenerate solution of the integral equation can be written as

@ul

@xl2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
al1
� 	2 þ k2

q
	 f ¼ 0; al1 ¼ 0:

It follows that

@ul

@xl2
¼ f

ffiffiffiffiffi
k2

p
¼ f 	 k: ð32:27Þ

Thus, we obtain approximate solutions of the function ul ¼ f and the derivative
@ul

@xl2
¼ kf . It is possible to obtain a more accurate solution of the integral equation by

using the Fourier transform, i.e.

Ze

�e

@ul

@xl2
exp ial1x

l
1

� 	
dxl1 ¼ ial2� 	 f 	 e

ial1e � e�ial1e

ial1
:

We therefore obtain approximately:

@ul

@xl2
¼ 1

2p

Zþ1

�1
ial2� 	 f 	 e

ial1e � e�ial1e

ial1
exp �ial1x

l
1

� 	
dal1 : ð32:28Þ

In Table 32.1, the solutions of (32.8) f ð1Þ2 , approximated solution of the integral

equation (32.28) f ð2Þ2 , and the degenerate solution (32.27) f ð3Þ2 are compared
depending on 1� k� 10 at r0 ¼ 1; f1 ¼ 1. It should be noted that solutions of
(32.27) and (32.28) are obtained without using analytical solution.

Table 32.1 Values f ðjÞ2 kð Þ at 1� k� 10

k Solution of (32.8) f ð1Þ2 Solution of (32.28) f ð2Þ2 Solution of`(32.27) f ð3Þ2

1 0.4463900 0.7176216 1.0

2 1.395549 1.689416 2.0

3 2.429956 2.686028 3.0

4 3.454090 3.685591 4.0

5 4.466916 4.685533 5.0

6 5.474156 5.685527 6.0

7 6.478725 6.685524 7.0

8 7.481884 7.685526 8.0

9 8.484209 8.685524 9.0

10 9.485998 9.685521 10.0
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Figure 32.1a shows an example of the bounded solution of the internal
boundary-value problem (32.3), (32.2): uð1Þ r; kð Þ depending on r and k,
f1 ¼ 1; r0 ¼ 1ð Þ. The difference between the exact solution (32.6) and the numerical
calculation of the integral (32.23) are unobservable within the scale of the picture.

Let us show that the integral representation (32.23) is numerically stable. Let f1
be set exactly, while f2 is set approximately and ~f2 ¼ f2 � e2, where e2 is the
absolute error of the solution f2. Then, the absolute error is as follows:

e r; kð Þ ¼ uðrÞ � ~uðrÞ ¼
Z1

0

J0 urð Þu
u2 þ k2ð Þe2J0ður0Þdu ¼ e2J0 ikrð Þ ipr0

2

� �
Hð1Þ

0 ikr0ð Þ:

At large k >> 1

e r; kð Þ � e2exp½�k r0�rð Þ
; 0\r\r0: ð32:29Þ

The relative error d

d kð Þ ¼ 1� ~uðrÞ
uðrÞ

� �
¼ Hð1Þ

0 ikr0ð Þe2
f1ikH

ð1Þ
1 ikr0ð Þþ f2H

ð1Þ
0 ikr0ð Þ

� � ¼ e2

f1ik
Hð1Þ

1 ikr0ð Þ
Hð1Þ

0 ikr0ð Þ þ f2
:

Since the properties of (32.27), (32.12) we obtain at k >> 1:

d kð Þ � e2
f1kþ f1k

� e2
2fk

: ð32:30Þ

The obtained estimations of the absolute and relative errors (32.29), (32.30)
mean the stability of the solution (32.23) at non-zero errors of derivative f2, which
was obtained by formula (32.28) or (32.27). These estimations are obtained by
assuming that the integral (32.23) can be calculated accurately. In practice, when
we calculate the integral (32.23) numerically, the mean absolute and relative errors
will be unavoidably higher, since any computing algorithm leads to additional
errors. Let us introduce relative errors dðnÞ as

dðnÞ kð Þ ¼ 1
r0

Zr0
0

1� un r; kð Þ=u r; kð Þj jdr: ð32:31Þ

Here, u1 corresponds to the accurate solution (32.6) with a mean absolute error

eð1Þ2 � 10�6;u2 corresponds to the approximate solution of the integral equation

(32.28) with eð2Þ2 � 0:23;u3 corresponds to the degenerate solution of the integral

equation (32.27) with eð3Þ2 � 0:54.
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In Fig. 32.1b, the values dðnÞ are shown on the logarithmical scale in comparison
with the value 1=k. As is obvious, at small k� 10 the average relative errors (32.31)
decrease with the growth of k even more rapidly than the asymptotic estimation
(32.30).

32.4 Conclusion

The work describes the algorithm for solving a model boundary-value problem,
which corresponds to the Bessel equation for the circular domain, using the block
element method. The boundary-value problem has a simple analytical solution,
which makes it possible to compare the accurate and approximate solution, which is
obtained using the block element method. The solution is represented as an
improper integral of the Bessel functions, which can be easily calculated in
quadratures and can be calculated exactly using the residues theory. The unknown
coefficients of the exterior form can be found by solving the integral equation. The
results of the numerical solution of the integral equation are demonstrated in the
work, as well as practical and theoretical estimations of absolute and ratio solution
errors obtained using the block element method and their solution stability.
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Appendix

In the appendix, transformations of a multidimensional integral:

uðr; hÞ ¼ 1
4p2

Z1

�1

Z1

�1

Z
@X

expð�iða1ðx1 � n1Þþ a2ðx2 � n2ÞÞÞ
ðu2 þ k2Þ

� r0
@uðr0;wÞ

@r
� iur0 cosðc� wÞuðr0;wÞ


 �
dn1dn2da1da2;

ð32:32Þ

into the integral of a single variable are present. Despite the awkwardness of the
stated expressions, the transformations are in principle simple. The relations:
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expð�iz cos sÞ ¼
Xþ1

k¼�1
exp �ik �s� p

2

� �� �
J�kð�zÞ

¼
Xþ1

k¼�1
exp ik �s� p

2

� �� �
JkðzÞ ¼

Xþ1

k¼�1
exp ik s� p

2

� �� �
JkðzÞ;

ð32:33Þ

are used further. When we transform the exponent in formula 32.32), we obtain a
product of series, which can be written down as a two-fold series:

exp �i a1ðx1 � n1Þþ a2ðx2 � n2Þ½ 
ð Þ ¼ expð�iur cosðc� hÞÞ expðiur0 cosðc� wÞÞ

¼
Xþ1

m¼�1
expðimðh� c� p

2
ÞÞJmðurÞ

Xþ1

n¼�1
expðinðw� cþ p

2
ÞÞJnður0Þ

¼
Xþ1

m¼�1

Xþ1

n¼�1
expðimðh� c� p

2
ÞÞJmðurÞ expðinðw� cþ p

2
ÞÞJnður0Þ:

ð32:34Þ

Then

uðr; hÞ ¼ 1
4p2

R1
0

R2p
0

R2p
0

Pþ1

m¼�1

Pþ1

n¼�1
ðu2 þ k2Þ expðimðh� c� p

2ÞÞJmðurÞ expðinðw� cþ p
2ÞÞJnður0Þ

� r0
@uðr0;wÞ

@r � iur0
2 exp iðc� wÞþ expð�iðc� wÞÞð Þuðr0;wÞ

h i
udwdcdu:

ð32:35Þ

We further assume that:

uðr0;wÞ ¼ uðr0Þ expðikwÞ: ð32:36Þ

We obtain:

uðr; hÞ ¼ 1
4p2

R1
0

R2p
0

R2p
0

Pþ1

m¼�1

Pþ1

n¼�1
ðu2 þ k2Þ exp im h� c� p

2

� 	� 	
JmðurÞ expðiwðnþ kÞÞ exp in �cþ p

2

� 	� 	

�Jnður0Þ r0
@uðr0Þ
@r � iur0

2 expð�iwÞ expðicÞþ expðiwÞ expð�icÞð Þuðr0Þ
h i

udwdcdu:

ð32:37Þ

Let us write down this integral as a sum of three integrals:
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uðr; hÞ ¼ 1
4p2

Z1

0

Z2p

0

Z2p

0

Xþ1

m¼�1
Fm

Xþ1

n¼�1
expðiwðnþ kÞÞ

� exp in �cþ p
2

� �� �
Jnður0Þ R0

@uðr0Þ
@r


 �
udwdcdu

þ 1
4p2

Z1

0

Z2p

0

Z2p

0

Xþ1

m¼�1
Fm

Xþ1

n¼�1
expðiwðnþ k� 1ÞÞ

� exp in �cþ p
2

� �� �
Jnður0Þ � iur0

2
expðicÞuðr0Þ


 �
udwdcdu

þ 1
4p2

Z1

0

Z2p

0

Z2p

0

Xþ1

m¼�1
Fm

Xþ1

n¼�1
expðiwðnþ kþ 1ÞÞ

� exp in �cþ p
2

� �� �
Jnður0Þ � iur0

2
expð�icÞuðr0Þ


 �
udwdcdu:

ð32:38Þ

The coefficients at w in exponents can be set to zero, since the final solution
should not depend on w. Thus, we obtain for the first integral n ¼ �k, for the
second integral n ¼ �kþ 1, and for the third one n ¼ �k� 1. As a result, the
integral 32.38) can be written as:

uðr; hÞ ¼ 1
4p2

Z1

0

Z2p

0

Z2p

0

Xþ1

m¼�1
Fm exp ið�kÞ �cþ p

2

� �� �

� J�kður0Þ r0
@uðr0Þ
@r


 �
udwdcdu

þ 1
4p2

Z1

0

Z2p

0

Z2p

0

Xþ1

m¼�1
Fm exp ið�kþ 1Þ �cþ p

2

� �� �

� J�kþ 1ður0Þ � iur0
2

expðicÞuðr0Þ

 �

udwdcdu

þ 1
4p2

Z1

0

Z2p

0

Z2p

0

Xþ1

m¼�1
Fm exp ið�k� 1Þ �cþ p

2

� �� �

� J�k�1ður0Þ � iur0
2

expð�icÞuðr0Þ

 �

udwdcdu:

ð32:39Þ
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While developing type Fm in integrals and summing up the terms in exponents,
we obtain:

uðr; hÞ ¼ 1
4p2

Z1

0

Z2p

0

Z2p

0

Pþ1
m¼�1 JmðurÞ
ðu2 þ k2Þ exp icðk� mÞþ im h� p

2

� �
þ ið�kÞp

2

� �

� J�kður0Þ r0
@uðr0Þ
@r


 �
udwdcdu

þ 1
4p2

Z1

0

Z2p

0

Z2p

0

Pþ1
m¼�1 JmðurÞ
ðu2 þ k2Þ exp icðk� mÞþ im h� p

2

� �
þ ið�kþ 1Þ p

2

� �

� J�kþ 1ður0Þ � iur0
2

uðr0Þ

 �

udwdcdu

þ 1
4p2

Z1

0

Z2p

0

Z2p

0

Pþ1
m¼�1 JmðurÞ
ðu2 þ k2Þ exp icðk� mÞþ im h� p

2

� �
þ ið�k� 1Þp

2

� �

� J�k�1ður0Þ � iur0
2

uðr0Þ

 �

udwdcdu:

ð32:40Þ

Since the Fourier term U u; cð Þ is axially symmetric, we set the coefficients at c to
zero and obtain m ¼ k. Then:

uðr; hÞ ¼ 1
4p2

Z1

0

Z2p

0

Z2p

0

JkðurÞ
ðu2 þ k2Þ exp ik h� p

2

� �
þ ið�kÞ p

2

� �

� J�kður0Þ �r0
@uðr0Þ
@r


 �
udwdcdu

þ 1
4p2

Z1

0

Z2p

0

Z2p

0

JkðurÞ
ðu2 þ k2Þ exp ik h� p

2

� �
þ ið�kþ 1Þ p

2

� �

� J�kþ 1ður0Þ � iur0
2

uðr0Þ

 �

udwdcdu

þ 1
4p2

Z1

0

Z2p

0

Z2p

0

JkðurÞ
ðu2 þ k2Þ exp ik h� p

2

� �
þ ið�k� 1Þ p

2

� �

� J�k�1ður0Þ � iur0
2

uðr0Þ

 �

udwdcdu:

ð32:41Þ
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Let us now set k in the expression (32.36) equal to zero k ¼ 0. Then

uðrÞ ¼ 1
4p2

Z1

0

Z2p

0

Z2p

0

J0ðurÞ
ðu2 þ k2ÞJ0ður0Þ r0

@uðr0Þ
@r


 �
udwdcdu

þ 1
4p2

Z1

0

Z2p

0

Z2p

0

J0ðurÞ
ðu2 þ k2ÞJ1ður0Þ

ur0
2

uðr0Þ
h i

udwdcdu

þ 1
4p2

Z1

0

Z2p

0

Z2p

0

J0ðurÞ
ðu2 þ k2ÞJ�1ður0Þ � ur0

2
uðr0Þ

h i
udwdcdu:

ð32:42Þ

Let us simplify:

uðrÞ ¼ 1
4p2

Z1

0

Z2p

0

Z2p

0

J0ðurÞu
ðu2 þ k2Þ J0ður0Þ r0

@uðr0Þ
@r


 ��

þ J1ður0Þ � J�1ður0Þð Þ ur0
2

uðr0Þ
h io

dwdcdu:

ð32:43Þ

Let us integrate over w; c:

uðrÞ ¼
Z1

0

J0ðurÞu
ðu2 þ k2Þ J0ður0Þ r0

@uðr0Þ
@r


 �
þ J1ður0Þ � J�1ður0Þð Þ ur0

2
uðr0Þ

h i� 
du:

ð32:44Þ

Taking into consideration that:

J�1ðuÞ ¼ ð�1Þ1J1ðuÞ ¼ �J1ðuÞ; ð32:45Þ

we finally obtain:

uðrÞ ¼ r0

Z1

0

J0ðurÞu
ðu2 þ k2Þ J0ður0Þf2 þ J1ður0Þuf1ð Þdu: ð32:46Þ
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