
Chapter 29
Thermoelastic Instability in Coupled
Thermoelastic Sliding Wear Problem

Vladimir B. Zelentsov, Boris I. Mitrin, Igor A. Lubyagin
and Sergei M. Aizikovich

Abstract Thermoelastic instability is considered in the case of the rigid
semi-infinite body sliding over the coating surface, exposing it to abrasive wear and
frictional heating. The solution of the formulated quasi-static coupled thermoelas-
ticity problem is represented in the form of integrals of the inverse Laplace trans-
form, which are found to be dependent on four dimensionless parameters. Analysis
of the integrand poles with respect to these parameters reveals four types of stability
and instability regions. Expressions for temperature, contact stresses and wear of
the coating are obtained in form of series over integrands poles. Numerical analysis
of the solution is carried out with respect to the dimensionless and dimensional
parameters of the problem. Particular attention is paid to the effect of the ther-
moelastic coupling parameter.

29.1 Introduction

Interaction of deformation and temperature fields was started from [1, 2] as a
coupled thermoelasticity theory. These basic results were generalized in [3–5]. To
solve coupled thermoelastic problems, different methods was developed since then,
both analytical [4, 5] and numerical [6]. In [6], a finite element scheme was
developed to solve a coupled thermoelasticity problem. Further investigations on
coupled elasticity also heavily used the finite element method, for example [7–11].
Analytical methods for these problems have not gained such wide development as
numerical. Intermediate results on analytical methods was summarized in [12].

Starting from [13–18], uncoupled thermoelasticity problems were considered
accounting for friction, frictional heating and abrasive wear of the coating. Due to
large number of parameters in the sliding thermoelastic contact problems [15–19],
one-dimensional quasi-static problems were mostly considered. Solutions of

V. B. Zelentsov � B. I. Mitrin (&) � I. A. Lubyagin � S. M. Aizikovich
Research and Education Center “Materials”, Don State Technical University,
Rostov-on-Don, Russia
e-mail: bmitrin@dstu.edu.ru

© Springer Nature Switzerland AG 2019
I. A. Parinov et al. (eds.), Advanced Materials, Springer Proceedings
in Physics 224, https://doi.org/10.1007/978-3-030-19894-7_29

379

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19894-7_29&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19894-7_29&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19894-7_29&amp;domain=pdf
mailto:bmitrin@dstu.edu.ru
https://doi.org/10.1007/978-3-030-19894-7_29


uncoupled problems in [15–19] were constructed by the Laplace integral transform
in the form of functional series over poles of integrands of contour integrals of the
inverse Laplace transform. This method of the uncoupled thermoelastic problems
solutions allowed one to obtain parametric boundaries of sliding contact ther-
moelastic instability and to investigate properties of the obtained solutions. In [20–
22] a new directions were developed for the model of sliding of two elastic bodies
against each other accounting for friction, frictional heating and wear, based on the
virtual energy principle and main laws of thermodynamics. To solve problems
based on this model, the finite element method is adopted [22].

The present works addresses effect of the dimensionless parameter of thermal
and elastic fields coupling on the main parameters of sliding contact and on the
thermoelastic instability occurrence.

29.2 Statement of the Coupled Problem of Wear

To investigate the effect of thermoelastic coupling on the occurrence of thermoe-
lastic instability in sliding contact problems, the contact problem of coupled ther-
moelasticity on sliding with a constant velocity V of a rigid heat-insulated
half-plane I h� x\1ð Þ over the upper ðx ¼ hÞ surface of an elastic
thermal-conducting coating of thickness h 0� x� hð Þ, is considered. The lower
surface of the coating is rigidly coupled to a non-deformable non-heat-conducting
substrate in the form of a half-plane II 1\x\0ð Þ. Sliding of the half-plane I along
the surface of the elastic coating takes into account Coulomb friction and abrasive
wear of the coating surface [15–19]. The heat flux generated at the contact due to
friction is directed into the coating. From the initial time moment, the half-plane
I moving along the axis y deforms the surface ðx ¼ hÞ of the elastic coating, moving
in the direction opposite to the x-axis, according to the law DðtÞ. Until the initial
moment, the coating was at rest, and its temperature was equal to T0.

The formulation of the problem assumes that the distributions of temperature,
stresses and displacements in the coating do not depend on the choice of the
horizontal coordinate along the y-axis parallel to the direction of the half-plane
I sliding, and are functions of only the coordinate x and time t [15–19]. The
displacements and temperature in the coating are governed by quasi-static coupled
thermoelasticity equations [23]:
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0� x� h; t[ 0 ð29:2Þ

where Tðx; tÞ is the temperature distribution in the coating, uðx; tÞ, wðx; tÞ are the
vertical and horizontal displacements in the coating, a is a coefficient of linear
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expansion of coating material, j is a coefficient of thermal diffusivity, k, l are Lamé
coefficients, K is a coefficient of thermal conductivity, T0 is the initial temperature
in the coating.

The boundary conditions of the problem for the differential equations (29.1) and
(29.2) are:

mechanical ðt[ 0Þ

x ¼ h uðh; tÞ ¼ �DðtÞþ uwðtÞ ð29:3Þ

rxyðh; tÞ ¼ �frxxðh; tÞ ð29:4Þ

x ¼ 0 uð0; tÞ ¼ 0 ð29:5Þ

wð0; tÞ ¼ 0 ð29:6Þ

temperature ðt[ 0Þ

x ¼ h K
@Tðh; tÞ

@x
¼ QðtÞ ð29:7Þ

x ¼ 0 K
@Tð0; tÞ

@x
¼ k Tð0; tÞ � T0ð Þ ð29:8Þ

where f is a coefficient of friction, k is a coefficient of heat transfer, uwðtÞ is the
half-plane I displacement due to the wear of the coating, QðtÞ ¼ fVð�rxxðh; tÞÞ is
the heat generated by friction at the contact interface [24]; rxx ¼ rxxðx; tÞ, rxy ¼
rxyðx; tÞ are the normal and tangential stresses in the coating, defined by a form of
the Hooke’s law:

rxx ¼ kþ 2lð Þ @u
@x

� 3kþ 2lð Þa T � T0ð Þ; rxy ¼ l
@w
@x

ð29:9Þ

Further, the abrasive wear model [25] is used, according to which the amount of
wear is

uwðtÞ ¼ �fVK�
Z t

0

rxxðh; sÞds t[ 0 ð29:10Þ

where K� is a coefficient of proportionality between the work of friction al forces
and the amount of material removed from the contact. In addition, according to
(29.7), it is assumed that all the heat at the contact is formed due to friction.
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The initial conditions for displacement in the coating are zero:

uðx; 0Þ ¼ wðx; 0Þ ¼ 0 ð29:11Þ

while initial temperature is set to T0:

Tðx; 0Þ ¼ T0 ð29:12Þ

Thus, the solution of the formulated problem is reduced to solution the system of
differential equations (29.1) and (29.2) with the boundary (29.3)–(29.8) and initial
conditions (29.11) and (29.12). It should be noted that the vertical displacements
uðx; tÞ, normal stresses rxxðx; tÞ and temperature T(x, t) in the coating are deter-
mined independently from the horizontal displacements w(x, t), while latter are
determined from (29.1), (29.4) and (29.6) through rxxðx; tÞ.

29.3 Exact Solution of the Problem

The solution of the coupled contact thermoelasticity problem given in Sect. 29.2 is
constructed using the Laplace integral transformation [27]:

uLðx; pÞ ¼
Z1
0

uðx; tÞe�ptdt; uðx; tÞ ¼ 1
2p i

Zi1þ c

�i1þ c

uLðx; pÞeptdp;

Re p\c; c[ 0

ð29:13Þ

The index L in (29.13) denotes the transform of the Laplace transformation.
The Laplace transformation (29.13) is applied to the differential equations (29.1)

and (29.2) taking into account the initial conditions (29.11) and (29.12) and the
existence conditions for the Laplace integrals (29.13) [27]. As a result, a system of
ordinary differential equations is obtained with respect to the transforms uLðx; pÞ
and TLðx; pÞ:

d2uL

dx2
¼ 1þ v

1� v
a
dTL

dx
; 0� x� h ð29:14Þ

d2TL

dx2
� p
j
TL � 1

j
T0 ¼ 2lð1þ vÞ

1� 2v
a
K
T0p

duL

dx
; 0� x� h ð29:15Þ
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Differentiating (29.15) and substituting the second derivative of uLðx; pÞ from
(29.14) into the resulting relation, the following differential equation is obtained
with respect to TLðx; pÞ:

d
dx

d2TL

dx2
� b2

j
pTL

� �
¼ 0 0� x� h ð29:16Þ

b2 ¼ 1þ T̂; T̂ ¼ 2lð1þ vÞ2
ð1� vÞð1� 2vÞ

ja2

K
T0

The general solution of the differential equation (29.16) has the form:

TLðx; pÞ ¼ A1 þA2 sh

ffiffiffi
p
j

r
b x

� �
þA3 ch

ffiffiffi
p
j

r
b x

� �
ð29:17Þ

in which A1, A2, A3 are arbitrary constants.
Substituting TLðx; pÞ from (29.17) into (29.14), an inhomogeneous differential

equation with respect to uLðx; pÞ is obtained. Its double integration gives the general
solution:

uLðx; pÞ ¼ 1þ v
1� v

a
1ffiffip
j

p
b

A2 ch

ffiffiffi
p
j

r
b x

� �
þA3 sh

ffiffiffi
p
j

r
b x

� �� �
þA4xþA5

ð29:18Þ

where A2, A3 are from (29.17), A4, A5 are new unknown values depending on p.
Substituting (29.17) and (29.18) into (29.15), a dependence between A1 and A4

is found:

A1 ¼ T0
p
� 1� v

1þ v
T̂
a
A4 ð29:19Þ

Replacing A1 by A4 in (29.17) according to (29.19), the general solution for
TLðx; pÞ from (29.14), (29.15) is obtained as

TLðx; pÞ ¼ T0
p

þA2 sh

ffiffiffi
p
j

r
b x

� �
þA3 ch

ffiffiffi
p
j

r
b x

� �
� 1� v

1þ v
T̂
a
A4 ð29:20Þ

Thus, uLðx; pÞ from (29.18) and TLðx; pÞ from (29.20) with constants A2–A5 are
general solutions of the system (29.14) and (29.15), and the constants A2–A5 are
found from the boundary conditions (29.3), (29.5), (29.7) and (29.8), after applying
the integral Laplace transform to them:
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mechanical

x ¼ h uLðh; pÞ ¼ �DLðpÞþ uLwðpÞ ð29:21Þ

x ¼ 0 uLðx; pÞ ¼ 0 ð29:22Þ

temperature

x ¼ h K
dTLðh; pÞ

dx
¼ �fVrL

xxðh; pÞ ð29:23Þ

x ¼ 0 K
dTLð0; pÞ

dx
¼ k TLð0; pÞ � T0

p

� �
ð29:24Þ

in which uLwðpÞ ¼ �fVK� rL
xxðh;pÞ
p

rL
xxðx; pÞ ¼

2lð1� vÞ
1� 2v

duLðx; pÞ
dx

� 2lð1þ vÞ
1� 2v

a TLðx; pÞ � T0
p

� �
ð29:25Þ

Substituting (29.18) and (29.20) into the boundary conditions (29.22) and
(29.24) gives relations for A4 and A5 which, after being itself substituted to (29.18)
and (29.20), allow us to obtain uLðx; pÞ and TLðx; pÞ in the new form, depending
only on A2 and A3:

uLðx; pÞ ¼ 1þ v
1� v

a hffiffip
j

p
b h

A2 ch

ffiffiffi
p
j

r
b x� 1

� �
þA3 sh

ffiffiffi
p
j

r
b x

� �

� 1þ v
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a

T̂Bi

ffiffiffi
p
j

r
b hA2 � BiA3

� �
x

ð29:26Þ

TLðx; pÞ ¼ A2
1
Bi

ffiffiffi
p
j

r
b hþBi sh

ffiffiffi
p
j

r
b x

� �
þA3 ch

ffiffiffi
p
j

r
b x� 1

� �
þ T0

p
ð29:27Þ

The constants A2 and A3 are determined by substituting (29.26) and (29.27) into
the boundary conditions (29.21) and (29.23), after which a system of linear alge-
braic equations is formed with respect to A2 and A3:

X2
j¼1

aijAjþ 1 ¼ bi i ¼ 1; 2 ð29:28Þ
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where bi, aij i; j ¼ 1; 2 are calculated from the formulas:

a11 ¼
ffiffi
z

p
T̂Bi ch

ffiffi
z

p � 1ð Þ � z� V̂kwb
2� �
; a12 ¼ Bi T̂h

ffiffi
z

p
sh

ffiffi
z

p þ zþ V̂kwb
2� �

a21 ¼
ffiffi
z

p
T̂Bi ch

ffiffi
z

p � V̂b2
� �

; a22 ¼ Bi T̂
ffiffi
z

p
ch

ffiffi
z

p þ V̂b2
� �

b1 ¼ � 1� v
1þ v

T̂Bi
a h

zDLðpÞ; b2 ¼ 0

z ¼ p
j
b2h2; V̂ ¼ fVa

K
2lð1þ vÞh
1� 2v

; kw ¼ 1� v
1þ v

KK�

aj
b2; Bi ¼ kh

K
ð29:29Þ

By solving the equation system (29.28) with respect to the constants A2, A3, and
substituting them into (29.25)–(29.27), the Laplace images of temperature, dis-
placements and stresses are obtained (not given here).

After inversion of the resulting images: TLðx; pÞ, uLðx; pÞ, rL
xxðx; pÞ, with the

help of the inverse Laplace transform (29.13), it is convenient to write down the
considered problem solution Tðx; tÞ, uðx; tÞ, rxxðx; tÞ in the form of convolutions:

Tðx; tÞ � T0 ¼ 1� v
1þ v

1
a h

Z t

0

DðsÞf 0T ðx; t � sÞds; 0� x� h; t[ 0 ð29:30Þ

f 0T ðx; tÞ ¼
1
2p i

Z
C

N0
Tðx; zÞ
tjRðzÞ ez~tdz; ~t ¼ t

tj
; tj ¼ h2

j
ð29:31Þ

N0
Tðx; zÞ ¼ V̂b2

ffiffi
z

p
Bi sh

ffiffi
z

p x
h
þ ffiffi

z
p

ch
ffiffi
z

p x
h

� �
þ T̂z rðzÞ � Bi ch

ffiffi
z

p h� x
h

� �
ð29:31Þ

RðzÞ ¼ zrðzÞ � V̂b2 1� kwð ÞrðzÞ � Bið Þþ T̂Bi
ffiffi
z

p
sh

ffiffi
z

p ð29:32Þ

rðzÞ ¼ Bi ch
ffiffi
z

p þ ffiffi
z

p
sh

ffiffi
z

p

uðx; tÞ ¼ �
Z t

0

DðsÞf 0u ðx; t � sÞds; 0� x� h; t[ 0 ð29:33Þ

f 0u ðx; tÞ ¼
1
2p i

Z
C

N0
uðx; zÞ
tjRðzÞ ez~tdz; ~t ¼ t

tj
ð29:34Þ
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N0
uðx; zÞ ¼ zrðzÞ x

h
� V̂b2 Bi ch

ffiffi
z

p x
h
þ ffiffi

z
p

sh
ffiffi
z

p x
h
� Bi

� �
� T̂Bi

ffiffi
z

p
sh

ffiffi
z

p h� x
h

� sh
ffiffi
z

p� � ð29:35Þ

rxxðx; tÞ ¼ � 2lð1� vÞ
ð1� 2vÞh

Z t

0

DðsÞf 0rðx; t � sÞds; 0� x� h; t[ 0 ð29:36Þ

f 0rðx; tÞ ¼
1
2p i

Z
C

N0
rðx; zÞ
tjRðzÞ ez~tdz; ~t ¼ t

tj
ð29:37Þ

N0
rðx; zÞ ¼ ð1þ T̂ÞzrðzÞ; ð29:38Þ

where the integration contour C ¼ z : �i1þ dtj; þ i1þ dtjf g represents a
straight line in the complex plane of the variable of integration z parallel to the
imaginary axis and spaced from it by an amount dtj that is selected so that the
integration contour passes to the right of all isolated singular points of the
integrands.

The wear uwðtÞ calculation formula can be obtained from (29.3):

uwðtÞ ¼ kwV̂b
2
Z t

0

DðsÞf 0wðx; t � sÞds; t[ 0 ð29:39Þ

f 0wðx; tÞ ¼
1
2p i

Z
C

N0
wðx; zÞ
tjRðzÞ ez~tdz; ~t ¼ t

tj
ð29:40Þ

where N0
wðzÞ ¼ rðzÞ, and rðzÞ is from (29.32).

The obtained formulas for Tðx; tÞ, uðx; tÞ, rxxðx; tÞ, uwðtÞ contain contour
quadratures (29.30), (29.34), (29.37) and (29.40). In the complex plane of the
integration variable z, the integrands of the contour quadratures (29.30), (29.34),
(29.37) and (29.40) are meromorphic functions that contain a countable set of poles.
Along the axis of integration, when jzj ! 1 and arg z ¼ p=2, the integrands in
(29.30), (29.34), (29.37) and (29.40) behave as follows:

N0
Tðx; zÞR�1ðzÞ ¼ T̂ þO z�1=2

� �
; 0\x\h

N0
uðx; zÞR�1ðzÞ ¼ x

h
þO z�1=2

� �
; 0\x\h ð29:41Þ
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N0
rðx; zÞR�1ðzÞ ¼ 1þ T̂ þO z�1=2

� �
; 0\x\h

N0
wðzÞR�1ðzÞ ¼ O z�1� �

:

The asymptotics (29.41) show that the quadratures (29.30), (29.34) and (29.37)
do not exist in the common sense, but are understood as generalized [26]. To
calculate the quadratures in (29.30), (29.34) and (29.37), regularization of the
integrands at infinity (when jzj ! 1) is performed with the estimates (29.41) taken
into account. As a result, the quadratures are represented as a superposition of the
regular part of the generalized component and the quadrature existing in the
common sense:

Tðx; tÞ � T0 ¼ 1� v
1þ v

1
a h

T̂DðtÞþ
Z t

0

DðsÞfTðx; t � sÞds
0
@

1
A; 0� x� h; t[ 0

ð29:42Þ

fTðx; tÞ ¼ 1
2p i

Z
C

NTðx; zÞ
tjRðzÞ ez~tdz; NTðx; zÞ ¼ N0

Tðx; zÞ � T̂RðzÞ ð29:43Þ

uðx; tÞ ¼ �DðtÞ x
h
�
Z t

0

DðsÞfuðx; t � sÞds; 0� x� h; t[ 0 ð29:44Þ

fuðx; tÞ ¼ 1
2p i

Z
C

Nuðx; zÞ
tjRðzÞ ez~tdz; Nuðx; zÞ ¼ N0

uðx; zÞ �
x
h
RðzÞ ð29:45Þ

rxxðx; tÞ ¼ � 2lð1� vÞ
ð1� 2vÞh ð1þ T̂ÞDðtÞ �

Z t

0

DðsÞfrðx; t � sÞds
0
@

1
A;

0� x� h; t[ 0

ð29:46Þ

frðx; tÞ ¼ 1
2p i

Z
C

Nrðx; zÞ
tjRðzÞ ez~tdz; Nrðx; zÞ ¼ N0

rðx; zÞ � ð1þ T̂ÞRðzÞ ð29:47Þ

where N0
Tðx; zÞ, N0

uðx; zÞ, N0
rðx; zÞ, RðzÞ are from the formulas (29.31), (29.35),

(29.38) and (29.32).
To calculate the integrals in (29.43), (29.45) and (29.47), in which the integrand

functions are meromorphic and decreasing at infinity along the axis of integration,
according to estimates:
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Naðx; zÞR�1ðzÞ ¼ O z�1=2
� �

jzj ! 1; 0� x� h; a ¼ T ; u;r ð29:48Þ

the methods of the theory of functions of a complex variable [28] can be used.
When implementing these methods, it becomes necessary to determine the poles of
the integrands in (29.43), (29.45) and (29.47) in the complex plane of the inte-
gration variable.

29.4 Poles of Integrands

The poles of the integrands in (29.43), (29.45) and (29.47) coincide with the zeros
RðzÞ of (29.32) except for those zeros that are removable singular points of the
integrands. To determine the zeros RðzÞ in the complex plane z ¼ nþ ig, the
equation is solved:

RðzÞ ¼ zrðzÞ � V̂b2 1� kwð ÞrðzÞ � Bið Þþ T̂Bi
ffiffi
z

p
sh

ffiffi
z

p ¼ 0 ð29:49Þ

where b2, Bi, T̂ , V̂ , kw are from (29.29), rðzÞ is from (29.32).
In (29.49), the zeros RðzÞ depend on four dimensionless parameters of the

problem V̂ , kw, T̂ ,Bi, since the fifth parameter b2 is expressed in terms of T̂ in
(29.29). Using the approach of [19, 29, 30], we will investigate the behavior of the
zeros from (29.49) for fixed kw, T̂ , Bi and variable parameter V̂ , which varies from
0 to 1. Assuming V̂ ¼ 0 and Bi ¼ 0 in (29.49), we obtain a simplified equation to
determine the zero approximations f0k ¼ fkð0Þ, k ¼ 0; 1; 2; . . . of the roots fk V̂

� �
k ¼ 0; 1; 2; . . . of (29.49). It was found that all zero approximations of zeros RðzÞ
from (29.49) are located on the negative part of the real axis or at zero.
Nevertheless, when changing V̂ from 0 to 1 for fixed kw, Bi, T̂ , the first two poles
f0 and f1 can be located: I—on the negative part of the real axis (at 0\V̂\V̂I); II—
in the left half-plane ðV̂II\V̂\V̂IIIÞ; III—in the right half-plane ðV̂II\V̂\V̂IIIÞ; IV
—on the positive part of the real axis ðV̂III\V̂\1Þ. Figure 29.1 shows the tra-
jectories of the poles f0 V̂

� �
and f1 V̂

� �
with change of V̂ from 0 to 1. The closed

points indicate the location of the poles f0 V̂
� �

and f1 V̂
� �

at V̂ ¼ 0, while open ones

correspond to V̂ ! 1. The crossed-out square marks the point of the trajectory,
with the passage of which with the increasing of V̂ the real poles f0 V̂

� �
and f1 V̂

� �
become a pair of complex conjugate poles, and vice versa.

It should be noted that even a small change in the coefficient kw, containing the
ratio of the dimensional parameters K� and a, regulating respectively the wear and
thermal expansion of the strip, leads to significant changes in the trajectories of
f0 V̂
� �

and f1 V̂
� �

and, to a lesser extent, of the others fk V̂
� �

k ¼ 2; 3; 4; . . .. When
wear prevails (Fig. 29.1, curves 5, 6), then f0, f1 and even more fk k ¼ 2; 3; 4; . . . at
kw [ 1 are in regions I, II. The prevalence of the expansion of the strip from the
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incoming heat over wear 0\kw\1 (curves 1–4) leads to the fact that f0 and f1 go
to the right half-plane to the regions III, IV (Fig. 29.1).

Note than when a neighboring pair of poles is located in the complex plane, they
are complex conjugant, i.e. f1 ¼ f0 and f0 ¼ f1 in regions II, III.

It is important that, in contrast to quasi-static problems with friction and heat
generation from friction, but without wear, when the poles f0 and f1 at V̂ 2 0;1½ Þ
always remained on the real axis and did not come out into the complex plane [31],
in the corresponding problems, which take into account wear, friction and heat
release from friction, the poles f0 and f1 move into the complex plane at
V̂ 2 V̂I; V̂II

� �
.

29.5 Formulas for the Exact Solution of the Problem

Let the poles of the integrands fk k ¼ 0; 1; 2; . . . in (29.43), (29.45) and (29.47) are
known. The calculation of the quadratures in (29.43), (29.45) and (29.47) in this
case is reduced to calculating the sum of the residues at the poles of the integrands.
Assuming that the poles fk, k ¼ 0; 1; 2; . . . are simple, we obtain the following
formulas for calculating the quadratures (29.43), (29.45) and (29.47):

Fig. 29.1 Location of R(z) (29.49) zeros f0, f1 in the upper part of the complex plane z and their
movement when V̂ increases from 0 to ∞ (lower part is symmetrical), when Bi ¼ 1 is fixed for
three values of T̂ ¼ 0 (solid lines); 0.01 (dashed lines); 0.02 (dash-dotted lines) and different
kw ¼ 0:5 (set of curves 1), 0.9 (2), 1.0 (3), 1.35 (4), 5.0 (5)
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1
2p i

Z
C

Naðx; zÞ
tjRðzÞ ez~tdz ¼

X1
k¼0

Ba x; fkð Þefk~t; ~t ¼ t
tj

ð29:50Þ

Baðx; zÞ ¼ Naðx; zÞ
tjR0ðzÞ ð29:51Þ

where R0ðzÞ is derivative of RðzÞ. Replacing index a in (29.50) and (29.51) with T,
u, r gives the formula for computing integral in (29.43), (29.45) and (29.47),
respectively. If fk and fkþ 1, k ¼ 0; 1; 2; . . . represent a complex conjugate pair
fkþ 1 ¼ fk , k ¼ 0; 1; 2; . . ., then

Baðx; zÞez~t ¼ 2Re
Naðx; zÞ
tjR0ðzÞ e

z~t ð29:52Þ

and the summation in (29.50) can be carried out over even numbers k ¼ 2n, n ¼
0; 1; 2; . . . for complex conjugates fk , k ¼ 0; 1; 2; . . .. Taking into account (29.42)–
(29.47) and (29.51), integration formula is obtained as

faðx; tÞ ¼ 1
2p i

Z
C

Naðx; zÞ
tjRðzÞ ez~tdz ¼

X1
k¼0

Ba x; fkð Þefk~t; a ¼ T ; u;r ð29:53Þ

The solutions of the problem are written in the following series:

Tðx; tÞ � T0 ¼ 1� v
1þ v

1
a h

T̂DðtÞþ
X1
k¼0

BT x; fkð ÞD fk; tð Þ
 !

; 0� x� h; t[ 0

ð29:54Þ

uðx; tÞ ¼ � x
h
DðtÞþ

X1
k¼0

Bu x; fkð ÞD fk; tð Þ; 0� x� h; t[ 0 ð29:55Þ

rxxðx; tÞ ¼ � 2lð1� vÞ
ð1� 2vÞh ð1þ T̂ÞDðtÞ �

X1
k¼0

Br x; fkð ÞD fk; tð Þ
 !

; 0� x� h;

t[ 0

ð29:56Þ

where Baðx; zÞ are calculated according formulas (29.51) or (29.52), Dðz; tÞ uses the
formula:

Dðz; tÞ ¼
Z t

0

DðsÞ exp zðt � sÞ=tjð Þds t[ 0 ð29:57Þ
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After calculation of f 0wðtÞ in (29.40) by using the formula:

f 0wðx; tÞ ¼
1
2p i

Z
C

NwðzÞ
tjRðzÞ e

z~tdz ¼
X1
k¼0

Bw fkð Þefk~t; Bw ¼ NwðzÞ
tjR0ðzÞ ð29:58Þ

and substituting it in (29.39), the expression is obtained for calculating the wear
uwðtÞ of the coating material on the contact:

uwðtÞ ¼
X1
k¼0

Bw fkð ÞDðfk; tÞ; t[ 0 ð29:59Þ

The horizontal displacements wðx; tÞ are determined from (29.1), (29.4) and
(29.6) and after integration in (29.1), the following formula is obtained:

wðx; tÞ ¼ �fl�1rxxðh; tÞx; 0� x� h; t[ 0 ð29:60Þ

29.6 Analysis of the Problem Solution: Domains of Stable
and Unstable Solutions

Investigation of the solutions of the problem Tðx; tÞ, uðx; tÞ, rxxðx; tÞ, represented
by formulas (29.54)–(29.56), shows that if Re fkð Þ\0 k ¼ 0; 1; 2; . . . the solutions
of the problem are stable and tend to a stationary state with increasing time t. If at
least one fk, k ¼ 0; 1; 2; . . . has Re fkð Þ[ 0, then the amplitude of the solution
increases indefinitely at t ! 1 and is oscillating with frequency Im fkð Þ 6¼ 0, which
indicates the instability of the solution of the problem. If we assume that the law of
penetration DðtÞ is a bounded function:

m\DðtÞ\M m;M[ 0; 0\t\1

then for the integral (29.57), the following estimate takes place:

D fk; tð Þj j �m
1� efk~t

fk

				
				; when Re fkð Þ[ 0; k ¼ 0; 1; 2; . . .; t ¼ t

tj

In the complex z-plane, the pole trajectories fk V̂
� �

, k ¼ 0; 1; 2; . . ., V̂ 2 0;1½ Þ
in the left half-plane represent stable solutions Re fkð Þ\0ð Þ, and the regions I and II
themselves are called the regions of stable solutions. Regions III and IV in the right
half-plane Re fkð Þ[ 0 k ¼ 0; 1ð Þ are regions of unstable solutions of the problem,
since in region III the limits lim

t!1Tðh; tÞ and lim
t!1rxxðh; tÞ do not exist because of

Im fkð Þ 6¼ 0 k ¼ 0; 1, and in region IV lim
t!1 Tðh; tÞ ¼ lim

t!1rðh; tÞ ¼ 1, since

Im fkð Þ ¼ 0 k ¼ 0; 1.
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Parametric boundaries of stable and unstable solutions of the problem in the
space of dimensionless parameters V̂ , kw, Bi, T̂ present theoretical and practical
interest. Figure 29.2 shows the domains of stable I, II and unstable III, IV solutions
on the ðV̂ ; kwÞ plane for different values of Bi and T̂ . The analysis of the graphs in
Fig. 29.2 shows the significant influence of the parameters V̂ , kw, Bi on the change
in the boundaries of regions I–IV. When kw ! 0 for Bi = 1 and Bi = 100, the
boundaries of regions I–IV converge on the axis V̂ to a point V̂ ¼ 2Bi= 2þBið Þ that
does not depend on T̂ . This means that thermomechanical coupling in heat equation
have no effect on stability in the considered case but without wear.

It is worth to note that dimensionless thermomechanical coupling coefficient T̂
does not significantly affect the stable (II) and unstable (III) solutions domains
boundary, except narrow range of dimensionless wear rates kw 2 1; 1:14½ � (at
Bi = 100). At kw ¼ 1:120, change of T̂ from 0 to 0.5 leads to 1.5 times change in
critical dimensionless speed V̂� (from 33.532 to 51.143); at kw ¼ 1:222 to 1.7 times
change (from 35.164 to 60.065). At kw ¼ 1:124 and T̂ ¼ 0 there is critical value of
V̂� ¼ 37:051, whereas for all kw � 1:124 at T̂ ¼ 0:05 there are no unstable solution
domain, and thermoelastic stability is kept in all dimensionless speed range.

29.7 Asymptotic and Numerical Analysis of the Obtained
Solutions

It is necessary to determine the effect of dimensionless coupling parameter T̂ and
other parameters on behavior of obtained solutions. For this purpose, the asymptotic
analysis of the solutions Tðx; tÞ, uðx; tÞ, rxxðx; tÞ, uwðtÞ for small values of t was
performed. The separated principal terms Tðx; tÞ � T0 in (29.42), uðx; tÞ in (29.44),
rxxðx; tÞ in (29.46), taking into account the convolution integral formula, allow us
to obtain following asymptotic relations:

Fig. 29.2 Boundaries of stable (I, II) and unstable (III, IV) solution domains at a Bi = 1,
b Bi = 10, c Bi = 100 ðBi ! 1Þ; different values of T̂ are represented by solid lines ðT̂ ¼ 0Þ,
dotted lines ðT̂ ¼ 0:1Þ, and dash-dotted lines ðT̂ ¼ 0:5Þ; unstable solution domains are shaded
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Tðx; tÞ � T0 ¼ 1� m
1þ m

T̂
a
� DðtÞ

h
þO t3=2DðtÞ

� �
; t ! 0 ð29:61Þ

uðx; tÞ ¼ �x
DðtÞ
h

þO t3=2DðtÞ
� �

; t ! 0 ð29:62Þ

rxxðx; tÞ ¼ � 2lð1� mÞ
1� 2m

ð1þ T̂ÞDðtÞ
h

þO t3=2DðtÞ
� �

; t ! 0 ð29:63Þ

Note that at differentiation of uðx; tÞ in (29.62) according to x and t, rate of
deformation on the contact (when x ¼ h) is written as

_exx ¼ @2u
@x@t

¼ �
_DðtÞ
h

þO t3=2DðtÞ
� �

; t ! 0 ð29:64Þ

Differentiation of the relations (29.61) and (29.63) on t shows that the rate of
temperature _Tðx; tÞ and contact stresses _pðtÞ ¼ � _rxxðx; tÞ at small values of t is
proportional to the rate of deformation _exx, and coefficients:

� 1� m
1þ m

T̂
a h

and � 2lð1� mÞ
ð1� 2mÞh 1þ T̂

� �

indicate decreasing of temperature and contact stresses, respectively, with
increasing of coupling parameter. These relations also show effect of the other
parameters of the problem contained in them. Rate of wear _uwðtÞ on the contact is
deduced from (29.39) and (29.40) by separating principal term in (29.40) and
subsequent differentiating the result, and its final form is given by

_uwðtÞ ¼ kwV̂b
2 j
h
�
_DðtÞ
h

þO tDðtÞð Þ t ! 0 ð29:65Þ

where ratio between _uwðtÞ and _exx depends on T̂ and other parameters of the
problem.

Numerical analysis of the solutions of the considered coating wear problem is
carried out by the formulas (29.54), (29.56) and (29.59). Suppose that the maximum
level of penetration of the rigid half-plane I into an elastic coating is given by D0,
and its penetration law DðtÞ, consisting of the active and the passive penetration
phase, is described by the formulas:

DðtÞ ¼ D0
�1þ ee t

1



0\t\te
te\t\1 ð29:66Þ

where te ¼ e�1 ln 2 is the active penetration duration, e is the penetration law
parameter.
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The nature of the loss of stability of solutions Tðh; tÞ, uwðtÞ, rxxðh; tÞ of the
uncoupled problem of sliding contact thermoelasticity depending on the parameters
of the problem V̂ , kw, Bi was described in detail in [15, 19, 29, 30]. Here we study
the effect of the parameters V (m/s), K� (m2/N), T0 (K) of the considered coupled
thermoelastic sliding friction al wear contact problem on the main contact param-
eters: temperature Tðh; tÞ from (29.54), contact stresses pðtÞ ¼ �rxxðh; tÞ from
(29.56) that arise and develop in time on the contact interface between the rigid
half-plane I and the coating, wear of the coating uwðtÞ from (29.59), and wear rate
of the coating _uwðtÞ from (29.59). The material of the coating is aluminum alloy
with the following thermomechanical characteristics: l = 24.8 GPa, m = 0.34,
j = 88.1 � 10−6 m2/s, a = 22.9 � 10−6 1/К, K = 209.3 W/(m K), f = 0.47,
h = 25 mm, D0 ¼ 0:01h ¼ 0:25mm. Wear of the coating surface ends at t = tw,
when the contact stresses turn to zero: pðtwÞ ¼ �rxxðh; twÞ ¼ 0. The time tw is
called the coating wear time.

The effect of the wear coefficient K� and the initial temperature T0 on the
solutions of the problem under consideration is illustrated in Figs. 29.3, 29.4, 29.5
and 29.6, which show the graphs T�ðh; tÞ ¼ Tðh; tÞ � T0, pðtÞ, uwðtÞ, _uwðtÞ,
respectively for the following task parameters: V = 3.22 mm/s ðV̂ ¼ 0:86085Þ,
Bi ¼ 11:9446. V = 3.22 mm/s ðV̂ ¼ 0:86085Þ, Bi ¼ 11:9446. The graphs denoted
by 1 are constructed at K� ¼ 7:5 � 10�12m2=N (kw = 0.3833); those denoted by 2
are constructed at K� ¼ 1:5 � 10�11m2=N (kw = 0.7665); those denoted by 3 cor-
respond to K� ¼ 2:25 � 10�11m2=N (kw = 1.1498). The solid lines in Figs. 29.3,
29.4, 29.5 and 29.6 represent the graphs of the solution of the present coupled
thermoelastic problem at T0 = 0 К ðT̂ ¼ 0Þ, which coincide with the graphs for the
solution of the corresponding uncoupled problem; the dashed line shows the
solution graphs at T0 = 300 К ðT̂ ¼ 0:0279Þ, the dash-dotted line shows the
solution graphs at T0 = 525 К ðT̂ ¼ 0:0489Þ.

Fig. 29.3 Temperature
Tðh; tÞ at the contact interface
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Fig. 29.4 Contact pressure
pðtÞ ¼ �rxxðh; tÞ

Fig. 29.5 Wear amount
uwðtÞ

Fig. 29.6 Wear rate _uwðtÞ
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From Figs. 29.3, 29.4 and 29.5, it follows that the values of pðtÞ and T�ðh; tÞ
decrease with increasing of wear coefficient K� and initial temperature T0 (curves 3),
while wear is accelerating.

29.8 Conclusion

An analysis of the exact solution of the coupled quasi-static thermoelasticity
problem of wear by a rigid body of an elastic coating on a sliding thermofriction al
contact makes it possible to draw the following conclusions:

(i) the boundary between the region of stable (I, II) and unstable (III, IV)
solutions of the problem remains unchanged for any values of the thermo-
mechanical coupling parameter;

(ii) the eigenvalues of the problem essentially depend on the thermomechanical
coupling parameter of the problem;

(iii) an increase in the thermomechanical coupling parameter of the problem, as
well as an increase in the wear coefficient, leads to a decrease in both the
temperature and the stresses at the contact.

The obtained solutions of the coupled quasi-static problem of wear allow one to
solve inverse problems. These problems are devoted to control the parameters of a
sliding contact due to a special selection of the law of penetration of a rigid body
into an elastic coating, as well as monitoring problems of sliding contact parameters
using buried sensors. The sensor readings then can be recalculated to contact
parameter values using the obtained formulas.
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