
An Overview of Big Data Issues
in Privacy-Preserving Record Linkage

Dinusha Vatsalan1, Dimitrios Karapiperis2(B), and Aris Gkoulalas-Divanis3

1 Data61, CSIRO, Sydney, Australia
dinusha.vatsalan@data61.csiro.au

2 School of Science and Technology, Hellenic Open University, Patras, Greece
dkarapiperis@eap.gr

3 IBM Watson Health, Cambridge, MA, USA
gkoulala@us.ibm.com

Abstract. Nearly 90% of today’s data have been produced only in the
last two years! These data come from a multitude of human activities,
including social networking sites, mobile phone applications, electronic
medical records systems, e-commerce sites, etc. Integrating and analyzing
this wealth and volume of data offers remarkable opportunities in sec-
tors that are of high interest to businesses, governments, and academia.
Given that the majority of the data are proprietary and may contain per-
sonal or business sensitive information, Privacy-Preserving Record Link-
age (PPRL) techniques are essential to perform data integration. In this
paper, we review existing work in PPRL, focusing on the computational
aspect of the proposed algorithms, which is crucial when dealing with
Big data. We propose an analysis tool for the computational aspects of
PPRL, and characterize existing PPRL techniques along five dimensions.
Based on our analysis, we identify research gaps in current literature and
promising directions for future work.
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1 Introduction

In the era of information explosion, massive amounts of data, coming from var-
ious sources, need to be integrated to facilitate data analysis for businesses,
governments, and academia. Record linkage, also known as entity resolution or
data matching, is the process of resolving whether two records that belong to
disparate data sets, refer to the same real-world entity. Record linkage is a two-
step process. The goal of the first step, known as blocking, is to formulate as
many as possible matching pairs and, simultaneously, maintain the number of
non-matching pairs as small as possible. In the second step, termed as matching,
the distances between the pairs formed during the blocking step are calculated.
Privacy-Preserving Record Linkage (PPRL) investigates how to perform the
steps described above in a secure manner, by respecting the privacy of the indi-
viduals who are represented in the data. For this reason, input records undergo
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a data masking process that embeds them into a space, where the underlying
data is kept private (Fig. 1).

In this paper, we adapt the taxonomy proposed for PPRL in [69] and –
inspired from analysis tools that are commonly used in business – such as SWOT
and PEST [23,54], we develop an analysis tool that focuses on the computational
aspects of PPRL techniques. We describe the proposed analysis tool for the com-
putational aspects of PPRL in Sect. 2. In Sect. 3, we use this tool to characterize,
analyze, review and compare existing PPRL techniques with respect to their
computational aspects. Last, in Sect. 4, we discuss a number of gaps that we
identified in current literature, along with some promising directions for future
research.
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Fig. 1. An analysis tool consisting of five dimensions used to analyze and characterize
computational aspects of PPRL techniques.

2 Analysis Tool

In this section, we present our proposed analysis tool for the computational
aspects of PPRL techniques. It consists of five dimensions, each of which includes
several topics. These dimensions are: (1) protocols and applications, (2) privacy
techniques, (3) computational methods, (4) theoretical analysis, and (5) evalua-
tion. In what follows, we describe each of these dimensions in detail.

2.1 Protocols and Applications

This dimension includes the protocol settings and application areas of PPRL
techniques. The PPRL protocol is determined by the number of databases to be
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linked, the parties involved, and the considered adversarial model. The applica-
tion areas of PPRL specify the different computation aspects, such as volume,
flow, real-time vs batch processing, dynamic nature, and sensitivity of errors and
variations in the data.

Number of databases. The computational aspect of PPRL is associated with
the number of databases that have to be linked using the PPRL protocol. The
näıve comparison space required for PPRL has an exponential growth with
the number of databases. Existing techniques for PPRL can be categorized
into two databases linking and multiple databases linking, where the latter
received a lot of attention recently, due to the increasing demand of support-
ing Big Data applications [74,76]. The computational challenges and privacy
risk in terms of collusion between parties, with the aim to learn another
party’s data, increase with the number of databases to be linked. Further,
the variations and different schemas used in different databases, result in the
linkage quality challenge, which requires advanced techniques.

Parties involved. Different PPRL protocols use different types of parties for the
linkage. The database owners typically participate in the protocol with the use
of an external linkage unit for facilitating the linkage. The linkage unit con-
ducts linkage of the encoded records from the database owners. Some PPRL
protocols use more than one linkage unit, which leads to additional privacy
risks. Linkage unit-based approaches are computationally more efficient that
other PPRL approaches, especially for linking multiple large databases, since
the protocols without linkage unit need more complex techniques to make
sure that the database owners cannot infer any information from the data
that is exchanged among them [69]. In addition, a global authority might be
used in some protocols for managing or providing encoding keys and protocol
parameters to the parties of the protocol. Finally, a researcher or an external
party may be involved in the protocol to obtain access to some attributes of
the records that are identified as matching by the protocol, for conducting
further analysis.

Adversary model. PPRL protocols generally assume either the honest-but-
curious model (HBC), or the malicious model [21,22,46]. In the HBC model,
parties are curious in that they try to find out as much as they can about the
other party’s inputs, through inference attacks or collusions, while following
the protocol [22,46]. Inference attacks can be performed on encoded records
based on some background information, such as frequency distribution, to
re-identify the records. Collusion is a privacy risk of some parties colluding
among them to learn other parties’ sensitive information [46]. The protocol
is secure in the HBC perspective if and only if all parties involved obtain
no new knowledge at the end of the protocol, above what they would have
learned from the output. In contrast to HBC parties, in the malicious model
the parties behave arbitrarily in terms of refusing to participate in a protocol,
not following the protocol, choosing arbitrary values for their data inputs, or
aborting the protocol at any time [45]. PPRL techniques under the mali-
cious model are computationally expensive and privacy evaluation of PPRL
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techniques under this model is difficult compared to the HBC model, due to
many potentially unpredictable ways of malicious parties to deviate from the
specified steps of the protocol [9,21,46]. Since PPRL techniques for HBC mod-
els are not realistic for real-world applications and PPRL for malicious mod-
els are computationally expensive, more advanced models have been recently
proposed in cryptography [46]. Two of them are the accountable computing
and the covert model, where the former allows honest parties to detect the
misbehavior of an adversary with high probability [2], and the latter provides
accountability for privacy compromises without the excessive complexity and
cost of the malicious model [27].

Applications. PPRL is increasingly being required in several application areas,
including in healthcare, national security, crime and fraud detection, busi-
ness, governments, social sciences and population informatics. For example,
data from several sources including different hospitals, pharmacies, and travel
data, need to be linked for outbreak detection or clinical trials in healthcare
applications [8,48], while linking the social security databases, law enforce-
ment agencies databases, the police databases, and Internet service providers
databases allows identifying crimes and frauds in national security and crime
and fraud detection applications [28,55,78]. The computational requirements
of PPRL techniques depend on the application area they are developed for,
including the type and size of data, required output, and other application-
specific constraints.

2.2 Privacy Techniques

The privacy techniques used for encoding data, processing data, and comparing
and classifying data in PPRL can be categorized as follows:

Cryptographic-based techniques. These employ computationally expensive
secure multi-party computation (SMC) techniques, such as homomorphic
encryptions, Yao-based protocols, secret sharing, secure scalar product, and
secure vector operations [46]. Although these techniques are provably secure
and highly accurate, they are not efficient and scalable enough to be used for
linking large databases.

Perturbation-based techniques. These are computationally efficient meth-
ods, allowing PPRL to scale to large databases. Increasing the privacy of
perturbation-based techniques, however, results in accuracy loss, and vice
versa. Some of the widely used perturbation techniques include generaliza-
tion (such as k-anonymity, value generalization hierarchies, and binning),
noise addition techniques (such as random and differential privacy), embed-
ding techniques, and probabilistic data structure-based approaches (such as
Bloom filters and count-min sketches). Perturbation-based techniques, espe-
cially Bloom filters, have increasingly been used in several real PPRL appli-
cations in recent times [60].
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Hybrid PPRL approaches. These use perturbation-based techniques to effi-
ciently remove highly non-matching records from the comparison space and
then apply cryptographic-based techniques on the resulting records to achieve
high quality linkage results without excessive computation [26].

2.3 Computational Methods

Several computational methods have been proposed in the literature aiming to
reduce the exponential comparison (or search) space required by näıve PPRL
and to speedup the linkage process. These methods of optimization are largely
orthogonal, so that they can be combined to achieve maximal efficiency.

Blocking approaches. Blocking is defined on selected attributes to partition
the records in a database into several blocks, such that comparison can be
restricted to the records of the same block. Numerous blocking techniques
have been used for record linkage [11] and for PPRL, with the additional
challenge in the case of PPRL of preserving privacy in the blocking step [69].
Blocking improves the runtime of linkage, but it still involves unnecessary
comparisons that limit its performance. Block processing is the approach of
restructuring a collection of generated blocks to be compared and classified
in the next step, so that unnecessary comparisons are pruned [32,59].

Filtering approaches. Filtering is an optimization for a particular comparison
function which optimizes the evaluation of a specific similarity measure for
a predefined similarity threshold to be met by matching records. It utilizes
filtering or indexing techniques to eliminate sets of records that cannot meet
the similarity threshold for the selected similarity measures [10,16].

Parallel processing approaches. Parallel linkage aims at improving the exe-
cution time proportionally to the number of processors [15,40,41]. This can
be achieved by partitioning the entire set of record pairs to be compared, and
conducting the comparison of the different partitions in parallel on different
processors. A special case would be to utilize a blocking approach to compare
the records in different blocks in parallel. Two approaches have been used so
far for parallel linkage: (1) utilizing graphics processing units (GPUs) [19,63],
and (2) using Hadoop and its MapReduce framework [37,42,77].

Communication patterns. Different communication patterns have different
computation and communication complexities. With the increasing number
of databases, the comparison space remains very large, even when a block-
ing or indexing technique is used [56,72,74]. Improved communication pat-
terns can reduce the exponential growth (for larger number of databases to
be linked) down to a smaller value. Such improved communication patterns
include sequential, ring-by-ring, tree-based, and hierarchical patterns. Some of
these patterns have been recently used for PPRL on multiple databases [74].

2.4 Theoretical Analysis

The dimension of theoretical analysis of PPRL techniques includes analysis of
complexity, quality, and privacy vulnerabilities to allow for comparison and
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assessment of their expected scalability to large databases, quality of linkage
results, and privacy guarantees.

Computation and communication complexity. The overall computational
efforts and cost of communication required in the PPRL process are generally
measured using the big O-notation [53]. For example, given that n is the
number of records in a database, O(n) represents linear complexity, O(n2)
quadratic complexity, and O(cn) exponential complexity, where c > 1.

Quality of linkage. The quality of linkage is theoretically analyzed in terms of
fault-tolerance of the linkage technique to data errors and variations, whether
the matching records are identified across all databases or it allows identifying
matching records across subsets of databases, trade-offs with privacy and
complexity, step-wise quality (i.e., preprocessing quality, blocking quality, and
matching quality), and final linkage quality.

Privacy vulnerabilities. The privacy vulnerabilities that a PPRL technique
is susceptible to, provide a theoretical estimate of the privacy guarantees of
the technique. These include frequency attacks, where the list of encoded val-
ues is matched with the frequency distribution of a list of unencoded values,
dictionary attacks, where a list of unencoded values are matched with the list
of encoded values by applying different encoding functions on the unencoded
values, and encoding-specific attacks, such as cryptanalysis attacks specific
to Bloom filter encoding, where – depending upon the parameter setting –
iterative mapping of individual encoded values back to their original values
is possible using a constrained satisfaction solver. Another vulnerability asso-
ciated with linkage unit-based approaches and/or multiple-databases linking
is collusion between parties, where parties involved in a PPRL protocol may
work together to find out another party’s data.

2.5 Evaluation

The linkage outcomes need to be evaluated in terms of scalability, linkage qual-
ity, and privacy. This dimension includes evaluation measures, datasets, and
implementation settings.

Evaluation measures. The scalability and linkage quality can be evaluated
using standard evaluation measures, such as runtime, memory consumption,
communication size, speedup, reduction ratio, pairs completeness, pairs qual-
ity, precision, recall, and the F-measure [10,69,73]. However, linkage qual-
ity evaluation requires access to truth data, which can be rarely accom-
modated in PPRL applications. Consequently, sample evaluation or eval-
uation on synthetic/perturbed datasets is typically used to assess linkage
quality. Various measures have been used to quantify the privacy protec-
tion of PPRL techniques, including information theory-based entropy and
information gain measures [17,31,64], as well as disclosure risk-based mea-
sures [18,25,65,70,73]. However, no standard measures for privacy evaluation
have been used in the literature.
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Datasets. Experimental evaluation of PPRL techniques on several datasets is
important to gain reliable evidence of the techniques’ performance. Due to
the difficulties of obtaining real-world data that contain personal information,
synthetically generated or perturbed databases are typically used. Several
tools are available to generate or corrupt data [13,24,66]. However, to evaluate
PPRL techniques with regard to their expected performance in real-world
applications, evaluations should ideally be done on databases that exhibit
real-world properties and error characteristics.

Implementation. The implementation techniques that have been used to proto-
type a PPRL technique and the settings used for conducting its experimental
evaluation, determine the complexity and scalability results. Further, some
scalability measures, such as runtime, memory size, and communication size,
are platform dependent. Comparing different techniques requires conducting
experimental evaluation in the same platform and settings.

3 Literature Review

In this section, we review existing literature and categorize PPRL techniques
along the dimensions of computational methods, which include: (1) block-
ing/indexing techniques, (2) block processing techniques, (3) filtering techniques,
(4) parallel processing, and (5) improved communication patterns.

3.1 Blocking Techniques

Numerous blocking strategies [10] have been developed for record linkage and
PPRL. Standard blocking groups records according to blocking criteria (known
as blocking key), to partition all records into disjoint blocks. The blocking key
values (BKVs) are the values of a selected attribute (e.g., zipcode), or the result
of a function on one or several attribute values (e.g., the concatenation of the
first two letters of last name and year of birth). Other blocking approaches
include sorted neighborhood that sorts records according to a sorting key and
only compares neighboring records within a certain window, and canopy clus-
tering that results in overlapping clusters [10]. Multi-pass blocking is utilized to
improve recall, where records are blocked according to different blocking keys, at
the cost of a larger number of comparisons. In the following, we review blocking
approaches for PPRL along the dimensions of the proposed tool.

Al-Lawati et al. [1] proposed a secure blocking protocol for linking two
databases with the use of a linkage unit that assumed a HBC adversary model.
Token-based blocking was used to improve computation efficiency. The linkage
unit matches the records based on the computed TF-IDF distances of the hash
signatures, using the Jaccard coefficient. The proposed blocking approach con-
sists of three methods: simple blocking, record-aware blocking, and frugal third
party blocking [1]. Simple blocking arranges hash signatures in overlapping blocks
where the similarity of a pair may be computed more than once if they are in
more than one common block. Record-aware blocking solves this issue by using
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an identifier with every hash signature to indicate the record it belongs to. Frugal
third party blocking, uses a secure set intersection (SSI) protocol to reduce the
cost of transferring the whole databases to the third party, by first identifying
the hash signatures that occur in both databases.

Inan et al. [26] proposed a hybrid approach for PPRL of two databases under
the HBC adversary model, by combining efficient generalization and expensive
cryptographic privacy techniques. A blocking approach based on value general-
ization hierarchies is used, and the record pairs that need more detailed compar-
ison to determine the match status are compared in a computationally expensive
SMC computation step, using cryptographic techniques. The cost is reduced in
the blocking step by reducing the number of candidate record pairs that need to
be compared using SMC techniques.

A secure blocking based on phonetic encoding algorithms was presented by
Karakasidis et al. [29]. A three-party (two database owners and a linkage unit)
setting in a HBC model is assumed. The basic idea is to encode the values of
a BKV (e.g. last name) with a phonetic function, such as Soundex or Meta-
phone [10]. All records with the same phonetic code are assigned to the same
block. This approach uses a secure version of edit distance on Bloom filters.
The experimental study, conducted on a synthetic dataset (generated using
Febrl [12]), showed that the approach outperforms the original edit distance
algorithm in terms of complexity (due to the secure blocking component), while
preserving privacy, and also offers almost the same matching performance.

Karakasidis et al. [31] proposed three noise addition techniques for improving
the privacy of [29]. In the first method, fake values are added to the datasets,
such that both the attribute values and the Soundex values exhibit uniform
distributions. This increases the complexity due to excessively oversized datasets.
The second method overcomes this drawback by modifying the frequency of
attribute values, such that all Soundex values occur equally frequent. However,
some attribute values are removed where the corresponding Soundex values have
more than the average number of attribute values, and therefore true matches
might be missed in the linkage process. The third method adds fake values, where
each Soundex value reflects at least k attribute values. Parameter k is tunable
to adjust the number of fake records added in order to balance the trade-off
between complexity and privacy. This work was experimentally evaluated using
a real Australian telephone database, and the results indicated that in terms of
information gain, using a phonetic-based fake injection blocking approach can
offer adequate privacy for PPRL.

A generalization-based k-anonymous private blocking approach using a ref-
erence table was proposed in [30] for linking two databases using a linkage unit.
Initially, clusters of size k are generated for the set of reference values that are
shared by the database owners, using the k-nearest neighbor clustering algorithm
with the Dice coefficient metric. Then, each database owner assigns their set of
BKVs to the respective clusters. The resulting clusters are sent to the linkage
unit that identifies and merges the corresponding clusters to generate candi-
date record pairs. Clusters contain at least k reference values, making inference
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attacks using the reference values difficult. Experiments conducted using a real
Australian telephone book as the reference table and synthetic data generated
using Febrl [12], as datasets to be linked, validate that this approach provides
k-anonymity guarantees, while reducing the number of candidate record pairs.

Vatsalan and Christen in [71] proposed an approach that utilizes local sorted
neighborhood clustering for improved performance in the blocking phase, to
generate k-anonymous clusters based on reference values. Each database owner
sorts a shared set of reference values and then inserts their records into the
sorted list according to their sorting keys. Initial Sorted Neighborhood Clusters
are determined such that each cluster contains one reference value and a set
of database records. To offer k-anonymity, the initial clusters are merged into
larger blocks containing at least k database records based on similarity or size
constraints. These clusters are then sent to a linkage unit to identify and merge
similar clusters across the databases, based on the reference values in the clusters.
Experiments conducted on real Australian telephone and North Carolina voters
databases, show the improved performance of the approach compared to [30],
in terms of runtime and blocking quality. A variant of [71], involving a two-
party setting without a linkage unit, was presented in [75]. In this approach,
the two database owners generate their reference values independently. Each
database owner sorts its reference values, inserts its records into the sorted list,
builds initial clusters (with one reference value and its associated records), and
merges these clusters to guarantee k-anonymity. Afterwards the database owners
exchange their reference values, which are then merged together and sorted. In
order to find candidate pairs between the sources, a sorted neighborhood method
with a sliding window w is applied on the reference values. The window size w
determines the number of reference values originating from each data source in a
window. The clusters of the reference values that fall into the same window are
determined as candidate blocks, which need to be compared in the next step.
An evaluation study, conducted in [73] using real and synthetic datasets, showed
that this approach outperforms several existing blocking approaches in terms of
runtime and privacy, with no loss in blocking quality.

Durham investigated the use of Locality-Sensitive Hashing (LSH) [20] for
private blocking of records encoded as Bloom filters [17]. She proposed the use of
a family of hash functions (Minhash for Jaccard, or Hamming LSH for Hamming
distances) to generate keys that are used to partition the records in a database, so
that similar records are grouped into the same block [39]. A Minhash function
permutes the bits in a Bloom filter and selects the first index position in the
permuted Bloom filter that is set to 1. By applying φ Minhash functions, φ index
positions are obtained, which are concatenated to generate the final Minhash key
for the Bloom filter. The HLSH hash functions select the bit value of a Bloom
filter at a random position. In the same way as Minhash, φ HLSH functions
are applied on a record’s Bloom filter and the values of the φ selected bits are
concatenated to obtain the final hash key. LSH provides guaranteed accuracy
while being efficient. However, it requires data dependent parameters to be tuned
effectively and it can be applied only to specific encodings, such as Bloom filters.
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Karapiperis et al. proposed a private blocking approach for linking multiple
databases based on LSH [34–36]. This approach uses L independent hash tables,
each consisting of key-bucket pairs, where keys represent the blocking keys and
buckets host a linked list aimed at grouping similar records. Each hash table
is assigned a set of K hash functions, generated by a linkage unit and sent
to all the database owners to populate their set of blocks. This approach was
later extended by proposing a frequent pairs scheme (FPS) [38] for reducing the
number of comparisons, while maintaining a high level of recall. FPS achieves
high blocking quality by identifying similar record pairs that exhibit many LSH
collisions, and then performs distance calculations only for those pairs. Empirical
results showed significant improvement in running time due to a drastic reduction
of candidate pairs by FPS, while achieving high blocking quality [35]. Based on
these methods, the authors have developed LSHDB [33], which uses LSH to
efficiently block the masked records, and store the produced blocking structures
on disk for further use. LSHDB achieves very fast response times, which makes
it ideal for online settings, thanks to the utilization of efficient algorithms and
the employment of flexible and robust noSQL systems for storing the data.

Ranbaduge et al. [56] proposed a private blocking approach for multiple
databases without a linkage unit, based on a single-bit tree data structure. The
single-bit tree is iteratively constructed by all database owners to store records’
Bloom filters, such that similar records are placed into the same tree leaf. At
each iteration, the set of Bloom filters in a tree node is recursively split based on
selected bit positions, which are agreed upon by all parties. This requires a com-
munication step among all parties in each iteration of the algorithm. Another
drawback of this approach is that it might miss true matches due to the recursive
splitting of Bloom filters. This limitation was addressed in [57], using a multi-bit
tree [43] data structure combined with canopy clustering. Multi-bit trees were
used to split the database records (encoded into Bloom filters) individually by
the database owners into small mini-blocks, which are then merged into larger
blocks according to privacy and computational requirements, using a canopy
clustering technique [14].

A communication-efficient private blocking approach for multiple databases
using a linkage unit, was proposed in [58]. In this approach, local blocks are gen-
erated individually by each database owner, using a private blocking technique.
A block representative, in the form of a min-hash signature [7], is then generated
for each block and sent to the linkage unit. The linkage unit applies global block-
ing using LSH to identify the candidate block sets from all databases, based on
the similarity between block representatives. Local blocking enables the database
owners to generate their blocks with more flexibility and control, without any
iterative communication among them. This approach outperforms existing pri-
vate blocking approaches for multiple databases in terms of scalability, privacy,
and blocking quality [58].
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3.2 Block Processing Techniques

Several block processing methods have been used for record linkage and PPRL,
in order to process the generated blocks in an efficient and effective way to reduce
the number of required comparisons, while improving blocking quality [51,52,59].
In this section we review these block processing techniques.

Wang et al. [79] introduced an iterative block processing technique for de-
duplicating a single database. The comparison results of blocks are propagated
to subsequent blocks to avoid repeated comparisons. This approach was later
extended in [39] for record linkage using LSH.

Two categories of block processing methods were used by Papadakis et al. [51]
for deduplication. The first category includes block purging and block scheduling
methods, which operate at the coarse level of processing individual blocks. The
second category of comparison-refinement methods, such as comparison propa-
gation, duplicate propagation, comparison pruning, and comparison scheduling,
operate at a finer level of individual comparisons within blocks.

The concept of meta-blocking was introduced by Papakadis et al. in [52]
for record linkage, to restructure a collection of blocks to reduce the number
of comparisons. In their approach, a block collection is provided as input to a
supervised classifier to identify promising comparisons based on block-feature
vectors. The drawback of this approach is the selection of suitable features and
requirement of training data to achieve accurate pruning of record comparisons.

Meta-blocking has been recently studied for the PPRL of two databases using
a linkage unit [32]. A sorted neighborhood blocking based on reference values is
used along with multi-sampling transitive closure as a processing technique to
prune records based on redundant assignments to blocks. Experimental results
show the efficacy of the approach in terms of recall and computational cost.

Recently, a general meta-blocking technique for PPRL on multiple databases
was proposed by Ranbaduge et al. [59]. Their approach uses a graph structure
to schedule the comparison of blocks with the aim of minimizing the number
of repeated and superfluous comparisons between records, where the former is
comparison of duplicate record pairs and latter is comparison of records with
non-matching record pairs. The experimental results of their approach on real
datasets, show that up to five orders of magnitude reduction in the number of
record comparisons can be achieved compared to existing approaches.

3.3 Filtering Techniques

Several filtering approaches have been proposed in record linkage and PPRL
literature to speed up the linkage process. The proposed optimizations, include
the use of different filters, such as length and prefix filters, and dynamic inverted
indexes [5]. Several filtering approaches also utilize the characteristics of similar-
ity measures for metric spaces to reduce the search space, such as the triangle
inequality [80]. For PPRL, filtering approaches need to be adapted to the com-
parison of encoded records, such as Bloom filters. In what follows, we describe
several filtering approaches that have been proposed for PPRL.
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Token-based similarity functions, such as the Jaccard and Dice coefficients,
allow the application of a simple length filter to reduce the comparison space.
This is because the minimal similarity can only be achieved if the lengths (for
example, the number of bits set to 1 in Bloom filters) of the two records
do not deviate too much. Formally, for records ri, rj , with |ri| ≤ |rj |, it
holds that: Jacc sim(ri, rj) ≥ st ⇒ |ri| ≥ �st · |rj |� and Dice sim(ri, rj) ≥
2min(|ri|,|rj |)·(1−st)

st
.

For example, two records cannot satisfy a Jaccard similarity threshold st =
0.8 if their lengths differ by more than 20%, and a Dice similarity threshold
st = 0.8 if the length difference is at least 50% of the length of the smaller
record. Hence for a similarity threshold of 0.8, the length filter would prune
record pairs that do not meet the length condition without comparing in detail.

Vatsalan and Christen used such a length filter for Dice coefficient similarity
for Bloom filter-based PPRL in a two-party setting without using a linkage
unit [67]. In their approach, certain bit positions (depending on privacy criteria)
from the Bloom filters are iteratively exchanged between the two database owners
to classify the pairs as matches, non-matches, and possible matches. For the
possible matches in an iteration, more bits are revealed in the next iteration
until the maximum number of bits are revealed, or all pairs are classified as
matches or non-matches. A length filtering phase is used in addition to phonetic
blocking to filter record pairs that are potentially non-matches, without revealing
any bit positions for these records’ Bloom filters.

The privacy-preserving version of PPJoin (called P4Join), proposed by Sehili
et al. [63], utilizes three filters to reduce the Bloom filter-based comparison space:
the length filter, a prefix filter, and a position filter. The prefix filter excludes
Bloom filter pairs that have an insufficient overlap in the bit positions set to 1,
in order to satisfy a predefined threshold, and this overlap test can be limited to
only the prefix bit positions of the Bloom filters. The position filter of P4Join can
avoid the comparison of two records even if their prefixes overlap, depending on
the prefix positions where the overlap occurs. However, these filtering approaches
achieve only a small improvement for PPRL, since the filter tests incur significant
cost. Moreover, Bloom filter encoding for PPRL should ideally have 50% of their
bits set to 1, in order to make them less vulnerable to frequency attacks [49],
thereby constituting filtering less effective.

The use of multi-bit trees was proposed for fast similarity search in large
databases of chemical fingerprints (encoded into Bloom filters) [3,43]. A multi-
bit tree is a binary tree used to iteratively assign fingerprints to its nodes based on
match bits. A match bit refers to a specific position of the bit vector, and can be 1
or 0: it indicates that all fingerprints in the associated subtree share the specified
match bit. When building up the multi-bit tree, one match bit, or multiple such
bits, are selected in each step, so that the number of unassigned fingerprints
can be roughly split in half. The split is continued as long as the number of
fingerprints per node does not fall under a limit. The match bits can then be
used for a query fingerprint, to determine the maximal possible similarity for
subtrees when traversing the tree and can thereby eliminate many fingerprints to
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compare. The multi-bit tree-based approach was extended by Bachteler et al. [3]
to partition the fingerprints according to their lengths, such that all fingerprints
with the same length belong to the same partition. To apply the length filter,
the search for similar fingerprints using a Jaccard similarity measure is restricted
to the partitions meeting the length criterion of Jacc sim(ri, rj) ≥ st. Query
efficiency is further improved by organizing all fingerprints of a partition within a
multi-bit tree. Experimental evaluations showed that the multi-bit tree approach
is very effective and performs equally or superior to blocking approaches, such
as canopy clustering and sorted neighborhood [3,62].

Several metric space-based PPRL approaches have been proposed in the lit-
erature. One of the main properties that a metric or distance function for metric
spaces has to satisfy is the triangle inequality. Distance functions for metric
spaces satisfying this property include the Euclidean distance, edit distance,
Hamming distance and Jaccard coefficient (but not Dice coefficient) [80]. The
triangle inequality has been used for private comparison and classification in
PPRL, using reference values [50,68], as well as a filtering technique to reduce
the comparison space for similarity search and record linkage [4,6]. The triangle
inequality allows to eliminate the computation of distance between two objects,
based on their distances to a reference object or pivot.

3.4 Parallel Processing

The utilization of GPUs that provide thousands of cores within a single machine
to speed-up similarity computations is a relatively new approach for parallel
processing [19]. At the same time, Hadoop provides programming frameworks,
such as MapReduce, Spark, and Flink, that allow developing programs to be
automatically executed in parallel on Hadoop clusters [42,77]. In the following,
we review two existing parallel PPRL techniques based on these two approaches.

A GPU-based parallel PPRL approach using the P4Join filtering is described
in [63]. The approach sorts the records encoded into Bloom filters according to
the number of bits set to 1, and partitions the set of Bloom filters into equi-
sized blocks, such that multiple of such blocks fit into the GPU memory. Pairs
of blocks are then continuously loaded into the GPU for parallel comparison.
Length filtering and prefix filtering are applied to remove pairs of blocks that
do not meet the filtering criterion, to reduce the the number of comparisons.
Experimental evaluation results show that the approach improved runtime by a
factor of 20, even with a low-profile graphics card (Nvidia GeForce GT 540M).

Several record linkage approaches have utilized the Hadoop-based MapRe-
duce framework for parallel processing [42,77]. The Map tasks read the input
data and assign each record to a block according to its blocking key value. Then,
the records are redistributed among the Reduce tasks, such that all records with
the same blocking key value are sent to the same Reduce task. Comparison is
then performed in parallel by the Reduce tasks. The load balancing problem
with highly skewed block sizes for parallel processing, is addressed in [42].

Karapiperis and Verykios proposed a parallel PPRL approach for linking
two databases with a linkage unit using MapReduce [37]. The approach uses a
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LSH-based blocking in the Map phase and determines the Minhash signature for
each record encoded into a Bloom filter. These signatures are fragmented into
several pieces and the Bloom filters are redistributed such that all Bloom filters
with the same Minhash fragment value are assigned to the same Reduce task
for comparison. The approach thus leads to a replicated redistribution of Bloom
filters according to the number of fragments and a Bloom filter may have to
be compared at several Reduce tasks. To overcome this problem, an alternative
approach of chaining two MapReduce jobs was proposed, where the first job
outputs the pairs of records’ identifiers in the Reduce phase. In the second job,
duplicate record pairs are grouped at the same Reducer to be compared only
once. The evaluation of this approach in [37] shows the efficiency of parallel
processing. However, the study was limited to a few nodes and only 300K records.

3.5 Improved Communication Patterns

Most PPRL techniques use the näıve all-to-one communication, where all
database owners send their encoded records to a linkage unit to conduct the
linkage. A few PPRL techniques for linking multiple databases use a ring com-
munication, where encoded records are sent from one database owner to another,
following a ring pattern [69]. Another communication pattern is all-to-all commu-
nication, where each database owner sends encoded records to all other database
owners [44]. Last, some PPRL techniques require communication in several steps,
or iteratively in many rounds [56], making them impractical for real applications.

Several query tree representations have been used for optimizing multi-way
join queries [47,61], and can be adapted for efficient processing of multi-party
PPRL. Schneider and DeWitt [61] studied query processing plans with different
types of structures: left-deep, right-deep, and bushy. Left-deep and right-deep
trees use a base table as the inner and outer operand, respectively, of each
join in the plan, while in bushy trees both inputs to a join may themselves
result from joins. For PPRL, the concepts used in deep trees can be adapted to
improve efficiency. However, only one recent study investigated such improved
communication patterns for linking multiple databases in PPRL.

Recent work by Vatsalan et al. [74] proposed two improved communication
patterns for reducing the number of comparisons for PPRL on multiple databases
using counting Bloom filters (CBFs). In [74], the parties are grouped into rings
and a secure summation protocol is used to generate a CBF for each set of parties’
records encoded into Bloom filters. The comparison of records is conducted: (1)
sequentially by a LU , such that only the matches of a ring are compared with
the candidate record sets of the next ring, or (2) symmetrically, without a LU ,
where matches are identified for each individual ring in the first phase and then,
using the matches from individual rings, the matches from all rings are identified
in the second phase. The computational complexity of MP-PPRL techniques is
exponential in the number of records per database (np, assuming n records in
each of the p databases). These improved communication patterns reduce this
exponential growth with p down to the ring size r (with r < p).
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4 Conclusions

Computational aspects of Privacy-preserving record linkage (PPRL) are crucial
for making PPRL viable for linking large collections of disparate data sources,
especially for Big data applications. In this paper we proposed an analysis tool
for analyzing, reviewing, and comparing existing computational methods for
PPRL and then conducted an extensive survey using the proposed tool. Such
an analysis tool allows identifying research gaps in the current literature and
promising directions for future work in PPRL.
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