
On-Line Big-Data Processing for Visual
Analytics with Argus-Panoptes

Panayiotis I. Vlantis(B) and Alex Delis(B)

University of Athens, 15703 Athens, Greece
{panosv,ad}@di.uoa.gr

Abstract. Analyses with data mining and knowledge discovery tech-
niques are not always successful as they occasionally yield no actionable
results. This is especially true in the Big-Data context where we routinely
deal with complex, heterogeneous, diverse and rapidly changing data. In
this context, visual analytics play a key role in helping both experts and
users to readily comprehend and better manage analyses carried on data
stored in Infrastructure as a Service (IaaS) cloud services. To this end,
humans should play a critical role in continually ascertaining the value
of the processed information and are invariably deemed to be the insti-
gators of actionable tasks. The latter is facilitated with the assistance
of sophisticated tools that let humans interface with the data through
vision and interaction. When working with Big-Data problems, both
scale and nature of data undoubtedly present a barrier in implementing
responsive applications. In this paper, we propose a software architec-
ture that seeks to empower Big-Data analysts with visual analytics tools
atop large-scale data stored in and processed by IaaS. Our key goal is to
not only yield on-line analytic processing but also provide the facilities
for the users to effectively interact with the underlying IaaS machinery.
Although we focus on hierarchical and spatiotemporal datasets here, our
proposed architecture is general and can be used to a wide number of
application domains. The core design principles of our approach are: (a)
On-line processing on cloud with Apache Spark. (b) Integration of inter-
active programming following the notebook paradigm through Apache
Zeppelin. (c) Offering robust operation when data and/or schema change
on the fly. Through experimentation with a prototype of our suggested
architecture, we demonstrate not only the viability of our approach but
also we show its value in a use-case involving publicly available crime
data from United Kingdom.

Keywords: Visual analytics · Interactive programming ·
Big-Data processing · Apache Spark · IaaS Infrastructures

1 Introduction

Datasets used by Big-Data systems and applications are characterized by their
complexity, heterogeneity, instant growth, and frequently, noise. These charac-
teristics do affect the quality of automatic analyses performed in a negative way
c© Springer Nature Switzerland AG 2019
Y. Disser and V. S. Verykios (Eds.): ALGOCLOUD 2018, LNCS 11409, pp. 102–117, 2019.
https://doi.org/10.1007/978-3-030-19759-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19759-9_7&domain=pdf
https://doi.org/10.1007/978-3-030-19759-9_7


On-Line Big-Data Processing for Visual Analytics with Argus-Panoptes 103

and occasionally, render analyses results to be of either limited or no value at
all [11]. By providing appropriate tools, visual analytics can help users manu-
ally interact with datasets, proceed in an highly exploratory manner and shift
the focus of the analyses as the occasion calls along the way [8,16,19]. How-
ever, the traditional use of visualization techniques on large scale datasets does
become prohibitive as the volume of the underlying data grows [3]. To address
this challenge, we have to adopt contemporary cloud-based computing environ-
ments that can accommodate voluminous data by incrementally enlarging the
computing cluster (i.e., horizontal scaling).

Apache Spark of the Hadoop ecosystem offers a plausible choice as it can scale
up when it comes to non-transactional data [21]. However, the use of Spark as the
underlying processing engine of applications calling for high responsiveness is not
an obvious choice. Spark introduces inherent latencies that cannot be avoided,
only mitigated. Clearly, a number of compensating mechanisms have to be intro-
duced to address this issue. Moreover, to further enhance the user experience, we
advocate the integration of interactive programming in such Big-Data environ-
ments. This choice may greatly assist the work of scientist(s) as it offers versa-
tility in handling data and timely decision making during the early exploratory
phase that accompanies working with unfamiliar datasets. It is worth mentioning
however that, in our case, by introducing the interactive programming paradigm
in this Big-Data context, we cannot exploit pre-computation techniques; there
are no guaranties as far as the stability of the data is concerned and the data
schema remains highly volatile.

In this paper, we propose a software architecture that helps users effectively
interact with underlying IaaS stored data, manipulate information using Spark
and last but not least, enable on-line analytic processing via interactive pro-
gramming. We mitigate Spark-emanating overheads through the introduction of
(1) visualization-chunks, variable-size granules containing elements shipped over
the network and ultimately rendered and presented to users, (2) schema conver-
gence techniques enabling the seamless transition among different data schemas
used across multiple iterations in run-time, and (3) deployment and intensive use
of caching at all levels of our software architecture. The aforementioned features
can work in tandem and take advantage of hierarchical datasets that we have
worked with [9].

Figure 1 depicts the salient features of our proposed architecture. It is decou-
pled in two key parts: a cloud-based IaaS as well as a client-side component.
At the server side, Apache Spark is used as the Big-Data processing engine
accepting requests from Zeppelin and Visual Analytics Server (VA-Server). The
Spark-server(s) undertake the actual computation and/or management of the
stored datasets. Zeppelin is the interactive programming “notebook platform”
essentially offering a Web-interface accessible to users through a browser. This
notebook-style facility allows users to execute task in a way reminiscent to that
of shell scripting and is the prime tool for direct interaction with the Spark engine
and subsequently, for manipulating its IaaS-stored data. The Visual Analytics



104 P. I. Vlantis and A. Delis

Server undertakes the central role of coordinating operations among all cloud
components and maintains bi-directional WebSocket channels with the client side.

Fig. 1. Argus-Panoptes architecture for on-line Big-Data visual analytics.

The client-side is a JavaScript Web application that runs on the user’s
browser and carries out the functionality of the Visual Analytics Client. The lat-
ter renders all server-emanating visualization chunks and accepts user-instigated
requests through mouse interaction. All parts of the JavaScript application are
React components. Subsequently, they have to be adapted on a per-case basis
however, the use of React places strong emphasis on the reusability of com-
ponents already developed. The Apache Zeppelin interface window found in the
client-side, allows for the on-line interactive execution of explicit user requests as
well as the display of execution outcome which took place in its Zeppelin-server
counterpart.

In realizing our proposed architecture, our core design principles have been:
(a) our visual analytics application to carry out its processing on-line on a Spark-
cluster; hence, our application is independent of the volume of data utilized. (b)
dataset filtering, joining with others, and transformations are carried out through
interactive programming and independently occur from all VA aspects. In this
regard, users can simultaneously manipulate data through an Apache Zeppelin
browser-window while at the same time the VA Client interface remains fully
operational. We argue that this two-pronged approach can effectively overcome
the challenges of pursuing visual analytics on Big-Data while at the same time,
it yields the basis for overcoming the occasional sluggish response times. Our
approach seeks to empower the work of domain experts working along with Big-
Data analysts to gain insights and a better understanding through visualization
in sophisticated hierarchical datasets.

We have produced a fully-functional prototype, Argus-Panoptes1, that has
served as the means to explore a number of Big-Data use-cases We have published

1 Argus-Panoptes is a figure from Greek mythology, it was an “all-seeing” giant having
a watchman role.



On-Line Big-Data Processing for Visual Analytics with Argus-Panoptes 105

the source code repository2 to allow further testing with other datasets and
comparisons with similar tools. In this paper, we discuss the effectiveness of
our prototype using a real-world Big-Data dataset pertinent to crime incidents
curated and published from UK Home Office [9]. The dataset in question main-
tains spatiotemporal records of incidents since late 2015. The rest of the paper
is organized as follows: Sect. 2 discusses related work and Sect. 3 presents the
rationale for the design of our architecture. Section 4 outlines the architectural
components and their interaction. Section 5 briefly discusses our use-case and
Sect. 6 provides concluding remarks.

2 Related Work

There has been a flurry of research activity recently in the areas of visual-
ization for Big-Data, visual analytics, and visualization recommendation sys-
tems [2,4,12,15,18,20]. Apache Zeppelin [1], Cloudera Hue [2] and Jupyter [10]
are open-source initiatives that offer built-in visualization functionalities, com-
monly used in Big-Data exploration. All three systems allow their users to “send
in” either high-level source code such as Python and Scala modules or dispatch
SQL-queries for execution to Spark. Visualization of pertinent results is realized
with the help of built-in visualization libraries [13]. The main difference between
our platform and the aforementioned projects is that we strive to offer user a
more immersive experience in visual exploration without calling for continual
editing of source code or SQL statements in order to bring about changes in
rendered visualizations. In contrast, we let users directly interact with the visu-
alizations produced and the respective interface (i.e., VA Client). Moreover, we
do not strip the ability to directly manipulate data through high-level source
code as our platform does also integrate Zeppelin in its components.

In the area of visual analysis of high-dimensional datasets, Visualization Rec-
ommendation (VisRec) systems offer a novel approach as they suggest feasible
visualizations without major user involvement. These systems, automatically
designate and interactively suggest visualization choices for specific tasks at
hand. In this regard, such recommendations are particularly useful during the
initial phase(s) of exploratory analyses through the creation of a series of alter-
native visualizations. VisRec systems operate by performing pre-computations
to analyze the dataset during the off-line phase and examine the large space of
possible visualization combinations during the on-line phase [18]. While these
systems are primed for high-dimensional datasets, their computational intensive
on-line phase may make them unsuitable for large scale data without extensive
use of sampling.

The use of an RNN neural-network is advocated in [4] as the means to help
novice users start with visualization. The RNN network “examines” a corpus
of human-created visualization configurations known so far and along with the
schema of the used data it automatically generates a json-based visualization
2 Source code repository is available at: https://github.com/panayiotis/visual

analytics.

https://github.com/panayiotis/visual_analytics
https://github.com/panayiotis/visual_analytics


106 P. I. Vlantis and A. Delis

configuration. The latter is ultimately consumed by JavaScript libraries to dis-
play the expected output. In [15], the ZQL-language is proposed as the vehicle
to help users designate visual patterns. Such patterns have been extracted from
diverse disciplines including biology, engineering, meteorology and commerce.
Although this is certainly a novel approach, the number of ZQL-produced pos-
sible visualizations remains very high, yielding a somewhat questionable route
when it comes to dealing with Big-Data. Evidently, the overall ZQL process
presents overheads that would be hard to overcome when on-line processing is
sought.

The imMens project seeks to provide interactive visualization for Big-Data
in real-time [12]. Similarly to our approach, data binning plays an important role
as it is the key technique to attain dimensionality reduction. However, imMens
overall operations are founded on the concept of pre-computation of all data-
tiles. This pre-computation occurs in an off-line phase and the respective results
are made available at runtime to help user fulfill her/his visual analytics tasks. In
contrast, our approach performs the respective data tiling by incrementally and
dynamically producing json chunks that can be created on-the-fly empowering
so the on-line mode of operation.

3 Argus-Panoptes Design Principles

We intend on furnishing a software architecture that best serves the merged oper-
ations of visual analytics and Big-Data analysis. In doing so, Argus-Panoptes
should not be restricted by the scale of data while at the same time, the archi-
tecture should incorporate core visual analytics principles and should display
satisfactory responsiveness. Our design leans towards accommodating the expe-
rienced user-base as we would like to create a highly-versatile and efficient
architecture. In this context, Argus-Panoptes maintains an open aggregation
and exposes internal components/subsystems to the user. Our design addresses
the misgivings of contemporary systems that offer visual analytics on Big-Data
today. We aspire to address the following 6 design principles while designing
Argus-Panoptes:
• On-Line Big-Data Processing: weaving a platform such as Spark for data
processing along with the visual analytics application atop is not a straight-
forward effort. This is due to the fact that it might take several seconds for
the Spark-cluster to respond to even a quick look-up query. In contrast, typi-
cal responses in a visual interface are expected to be within the 200 ms range.
Should we be able to bridge the above performance gap, we are to successfully
address the design principle in question. Instead of downsizing data through sam-
pling, we advocate elasticity of Spark-workers requested by the Argus-Panoptes
user. We take advantage of the fact that larger datasets call for horizontal
scaling of the cluster as applicable operations (i.e., filtering, aggregations etc.)
are highly-parallelizable. By delegating all data operations to the Spark-cluster,
Argus-Panoptes reaps the following benefits: (1 ) the VA application (both client
and server components) becomes yet another component in the Hadoop ecosys-
tem. Consequently, a large number of tools can be readily integrated into our



On-Line Big-Data Processing for Visual Analytics with Argus-Panoptes 107

processing pipeline. (2 ) users do not have to code in order to export datasets to
specific formats required by the VA application. The VA application has direct
access to DataFrames in memory as it functions along with Spark. Hence, data
pre-processing, cleaning, and VA transformations can all be instigated through
the Spark programming API using Scala, R, Python, or Java.

• Interactive Programming: for the user to enjoy the maximum benefit while
interacting with our architecture, we introduce interactive notebook systems.
Such systems include Zeppelin [1], Jupyter [10] and the proprietary Databricks.
In general, they all offer a Web-interface in which a user may write code split into
paragraphs or blocks each pertaining to a specific job or set of jobs. Paragraphs
can be executed either sequentially or individually. Individual execution means
that if the notebook crashes in the kth paragraph for example, after it has
performed some expensive computations, the user can edit the code on the kth

paragraph and continue execution from that point on. This paradigm of code
writing and execution is very much desired in our architecture for it facilitates
the work of the analyst.

• Robust Data/Schema Manipulations: to attain flexibility, the VA appli-
cation has to operate under uncertainty as far as the current data and its schema
is concerned. Robustness of this type is particularly desired as Argus-Panoptes
deploys interactive programming. In a normal operational work-flow, a user sim-
ply manipulates a dataset by either adding or removing features (columns). In
erroneous circumstances, issues that may ensue include: (1) The VA Client does
not show any data for a user has simply committed a mistake; here, the respective
piece of code has to be revised and the query cycle to be repeated. (2) The VA
Client becomes unable to cope with a voluminous visualization chunk consisting
in the order of more than 1M rows; the user has to reload the browser tab and
start over. In all above cases, we should stress that the VA Client functionality
is desired to remain strictly stateless.

• Eliminate Unnecessary Re-computations via Caching: It often takes
Spark several seconds to compute a visualization chunk. This overhead can be
reduced but can not be avoided if identical chucks are requested time and again.
Thus, Spark re-computations should and are avoided in our architecture through
the adoption of 3 levels of caching: (1) Apache Spark: when a task is dispatched by
the VA Server, Spark can avoid execution should it maintain a pool of executed
so far jobs. If a json file is identified as existing in this pool, its re-computation
is bypassed. (2) the VA Server tracks with the help of an SQLite database all
chunks produced so far and in this manner, contact with Spark is successfully
prevented. This caching layer is possible to return stale data due to this reason, a
cache invalidation has to be provisioned. (3) the VA Client maintains in-memory
a limited number of chunks3 thus requests for fetching locally existing chunks
from VA Server are eliminated.

3 Around 200 MB in total.



108 P. I. Vlantis and A. Delis

• Expose System Internals to User: As Argus-Panoptes operation is
intended for the experienced user, the system should make available both inter-
nal control mechanisms and system information. Such control mechanism is the
invalidation of caches at either Spark or VA Server components. By adopting
such a design choice, we avoid error-prone implementation issues that bear lit-
tle if any significance to the visual analytics domain. Moreover, we argue that
making available Spark/VA server real-time status information is helpful to the
experienced user.

• Promote Visualization Component Reusability with React: Creating
a new VA application calls for a substantial amount of work most of which is
geared towards the development of visualization elements of the interface. This
is due to the fact that the effectiveness of a VA platform highly depends on
tailor-made visualization components. The React-framework [7] promotes and
provides reuse of JavaScript-components in order to built interfaces across
multiple VA applications. As we strive for Argus-Panoptes to not be a one-size-
fits-all solution, we resort to the accumulated set of React reusable components
to rapidly create and/or adapt VA customized interfaces.

4 The Argus-Panoptes System

Argus-Panoptes follows the interactive work-flow of operations that filter, aggre-
gate, summarize and help visually explore diverse aspects of datasets under
examination. Figure 2 depicts the interface that the VA Client of the system
realizes. The UI panel consists of two portions: the first is the Zeppelin browser
window that serves as the means to interact with Argus-Panoptes when it
comes to launching of work-flow tasks. On the right side of Fig. 2, the VA Client
browser window displays chart-based outcomes and generated map-related ele-
ments. The latter depicts generated graphs that help demonstrate trends and
assist users gain insight with regards to investigated datasets.The functionality
of Argus-Panoptes is built around these three concepts which make the archi-
tecture feasible: Schema Convergence, Data Binning and Visualization Chunks.
In particular:

– Schema Convergence allows the architecture to be fault-tolerant when the
schema of the examined dataset is being actively manipulated. This mecha-
nism is always utilized when the VA Server ships code to Spark for execution.
When Spark engine receives a VA Client request, it compares the schema
embedded in the request with the current schema of the dataset. Should dis-
crepancies be identified, Spark deals with convergence so that every element
on the stack of the system “perceives” a consistent view. In this process, Spark
imposes no restrictions on the user requests as those are often consistent with
a state of the data at an earlier point in time. The data requests instigated
from the VA Client are predominantly based on what the user has seen last.
For instance, if there are new columns in the dataset, they will be included in
the converged schema; the same is true when certain columns get dropped.



On-Line Big-Data Processing for Visual Analytics with Argus-Panoptes 109

Fig. 2. VA client UI.

This schema convergence mechanism disengages the architecture from having
to deal with state information in the request-response cycle. Evidently, the
user can replace the entire dataset through the UI and the virtual analyt-
ics platform will continue to operate trouble-free. Such event is an excellent
example of a case where users should explicitly initiate a cache invalidation
procedure from the VA Client to avoid data inconsistencies.

– Data Binning is heavily used in work-flow processing carried out by our
platform. It is a critical mechanism to attain graceful dimensionality reduction
for discretizing continuous features; oftentimes, data gets summed before sent
for visualization to the VA Client. Moreover, binning significantly affects the
formation of information hierarchies (or datasets organized in tree-like fash-
ion) that may influence the user’s analytical and reasoning process. Although
spatiotemporal data are by and large inherently hierarchical datasets, this is
not the case for many others. Binning can effectively assist in the generation
(or re-regeneration) of datasets initially featuring no explicit or simply flat
structure. We should point out that in our case (re-)generating hierarchies
from flat datasets is as vital as feature-engineering is in machine learning [5].

– Visualization Chunks are used as the internal unit of information
exchanged between the different Argus-Panoptes components. A chunk is a
json file containing the aggregated data for a given dataset hierarchy and the
respective dataset schema. Over time, the schema may apparently change. To
this end, the VA Client receives a visualization chunk once a request has been
launched. The outcome of the Spark processing is a chunk and its main char-
acteristics may either help improve or adversely impair system performance.
Visualization chunks are tracked by the VA Server and in this respect, their
invalidation, if needed, has to be an explicit user action.



110 P. I. Vlantis and A. Delis

We should point out that the process of (re-)generating features hierarchies
in datasets is linearly correlated to both number and size of the produced
visualization chunks. In this respect, we have established that in our experi-
mentation discussed in this paper, the size of the largest size chunk generated
is 142 MB and features 670K of data-rows. This chunk maintains the highest
possible resolution and visualizes all features of the dataset.

4.1 The Architecture

Figure 3 outlines the architecture of our IaaS–based system: the server side is
hosted on virtual computing systems as the left half of the figure shows, while
the VA Client functionalities are shown to the right hand side. At the core of the
server layout, the Spark-engine is referenced as a single entity although it may
consist of a whole cloud cluster. It may also involve auxiliary services from the
Hadoop ecosystem. In a minimal configuration, the computing cloud consists of
an Apache Spark Master service deployed in standalone mode. A more common
configuration would involve a Spark Master node, a number of Spark workers
and a compatible distributed file system for storing and retrieving data such
as HDFS. This example configuration could be extended with the addition of
Apache Zookeeper for attaining high-availability as well as YARN or Mesos for
cluster resource management.

Fig. 3. Argus-Panoptes architecture layout

As Spark is not designed to offer a REST API, its connectivity with both Zep-
pelin and VA Server presents a point mismatched interface. Natively, Spark may



On-Line Big-Data Processing for Visual Analytics with Argus-Panoptes 111

only receive .jar, .py or .r jobs for Big-Data processing over the network. Here,
our main concern is to maintain a single SparkSession at all times so that mul-
tiple clients dispatching jobs to the same visibility scope can be accommodated.
Thus, continuity and on-line fashion processing for the client can be warranted.
Apache Livy addresses the above issue as it can both provide a SparkSession
and receive network-requests on behalf on the engine via its REST API. In this
way, code submitted to Livy can be executed in the same visibility scope. For
instance, if a user launches the code val a="hello" with the help of a Zeppelin
server connected to a Livy session, she can subsequently perform an HTTP POST
request to Livy via the curl command-line tool and obtain the value of variable
a. In our architecture, both VA Server and Apache Zeppelin are connected to
Livy accessing the same SparkSession.

The Apache Zeppelin helps us realize the notion of interactive programming
in the context of Argus-Panoptes. It is a platform that through its paragraphs
allows for channelling tasks. On the left side of Fig. 2, we show the paragraphs
as well as the controls of Zeppelin. This dialog-based portion of the Zeppelin-UI
panel is the main interface facility for users to access the system.

Found in front of Livy, the VA Server carries a number of tasks and plays a
central role for the coordinated operation of Argus-Panoptes. More specifically,
the VA Server : (1) serves the VA Client with the JavaScript Web application.
(2) dispatches code-segments for execution to Apache Spark. (3) receives visual-
ization chunks from the Apache Spark. The latter are the outcome of Big-Data
jobs executed at the engine. (4) maintains two-way communication channels
with the VA Client with the help of WebSockets. (5) monitors the status of
the IaaS computing resources and sends pertinent information update snippets
to VA Client over time. (6) tracks visualization chunks produced so far and if
requested explicitly by the user, it does carry out cache invalidation. (7) manages
chunk-related information and offers an interface for profiling purposes. Devel-
oped with Ruby on Rails, the VA Server remains at all times “agnostic” in
terms of specific characteristics of datasets under examination.

NginX is a reverse-proxy placed between our cloud-based components and
VA Client (Fig. 3). The proxy is an additional layer for control and abstraction
of resources/services and warrants smoother traffic flow between the intercon-
nected servers and clients. In this manner, NginX has an invisible but crucial
role as it effectively minimizes network traffic and consequently, enhances the
perceived responsiveness of our platform. The main role of NginX is to forward
VA Client chunk-requests to our server and let the client receive correspond-
ing json files through HTTP. NginX transparently intercepts all outgoing json
files and dispatches their gzip–ped versions. This leads to a non obvious perfor-
mance improvement: The decompression of json files is handled automatically
by a browser thread separate from the one that the JavaScript application
is running thus the UI responsiveness is not halted during the decompression
process.



112 P. I. Vlantis and A. Delis

4.2 The VA Client Functionality

Our VA Client is a JavaScript Web application that produces the entire visual-
ization output interface. In this context, the React/Redux frameworks have been
heavily used as they both promote component reusability and failure resistance.
Figure 4 shows the output window of the UI after two operations have been
requested: a drill-down for displaying crime in the London region and enhance-
ment of the date dimension from quarterly to monthly.

Fig. 4. VA client UI after a drill-down operation.

The VA Client uses the Redux framework as a mechanism of managing the
local application state. Redux helps the application become independent from
prior states. Similarly to the functional programming paradigm, the application
interface generated at any point in time given a specific state, is always the
same. As the schema of the data to be visualized next cannot be predicted,
the interface cannot be constructed using information from the current state.
We predominantly use the React framework for componentization. In a visual
analytics application that caters for sophisticated users, the UI is an essential
part of the architecture and invariably calls for much customization so that a
application is both useful and timely. Hence, the one-fits-all solution approach
is infeasible here. By offering components that can be readily reconfigured and



On-Line Big-Data Processing for Visual Analytics with Argus-Panoptes 113

reused, React plays a vital role in helping us put together effective UIs. In Fig. 4,
every depicted visual element is a React component. Among others, there are
components that deal with server connectivity, initiate cache invalidation, and
refresh visualizations. There are also React Bar/Row chart components that help
synthesize complex chart dashboards. The portion of UI to the right of Fig. 4
depicts map-based information and is constructed using a third-party ReactMap
component [17].

5 Assessment with a Government ASB Dataset

Salient Argus-Panoptes features evolved during the prototype development.
Experimentation with different real-world datasets from various disciplines also
contributed to the realization of the system. In general, dataset features entail:
(1) sized textual data, (2) raw tuple-based data for each incident that has
received no aggregation, (3) geo-spatial features, (4) temporal features, and (5)
other continuous or discrete features. In this section, we briefly present our expe-
rience with a publicly available dataset about crime. We use Argus-Panoptes
as a spatial decision support analysis tool. Below, we discuss the pre-processing,
the (re-)generation of feature hierarchies and our profiling of Argus-Panoptes.

The utilized dataset is curated and published by UK Home Office [9]. It
maintains individual crime and anti-social behavior (ASB) incidents including
street-level location information and is published in CSV format. All features in
the dataset, are textual with longitude and latitude being numeric. Table 1 shows
all features among with the number of distinct and null values for each feature.

Table 1. UK AST dataset key characteristics

Name Distinct Null Description

crime id 12665725 5510538 Incident identifier string

longitude 737765 301155 Longitude

latitude 731070 301155 Latitude

location 280694 0 Human-readable approximate
location

lsoa code 35921 778773 UK-designated area code

lsoa name 35065 778773 UK-designated area name

reported by 46 0 Reporting department

falls within 46 0 Department with jurisdiction

month 35 0 Date string formatted as %Y-%m

last outcome category 26 5806479 Last outcome category

crime type 14 0 Category of crime

context 0 18268085 Deprecated field



114 P. I. Vlantis and A. Delis

In our pre-processing phase, we transform and store the dataset in a format
suitable for our analyses. In particular, both Spark Master and Spark Worker
nodes should be able to import the format in question correctly. For the dataset
of Table 1, we carry out the following preprocessing steps: (1) transform date
found in the month field to Date datatype, (2) drop the deprecated field context
as well as the crime id. (3) drop fields lsoa code, lsoa name and location deemed
as redundant information, (4) save the DataFrame in an efficient columnar data
representation, namely Apache Parquet.

We also transform the UK dataset by joining it with the NUTS classification
scheme of Eurostat [6]. This enhancement offers varying granularity in regional
information that has the following 4 levels: country (NUTS 0), major socio-
economic region (NUTS 1), basic region (NUTS 2), and small region (NUTS 3).
We use the Magellan [14] Spark library to perform the geo-join between the
coordinates of each point and the area polygon of each region of the NUTS
scheme. The geo-join helps us obtain the NUTS dimension which has only 178
distinct values, whereas the distinct values of the prior coordinate features were
760K (Fig. 6). This geo-join operation is CPU-intensive but it occurs only once
and so, we make the data persistent for further processing.

0M 2M 4M 6M 8M 10M 12M 14M 16M 18M 20M

total
distinct

coordinates

18.3
14.3

0.76

Fig. 5. Dataset has 18.3M rows: 14.3M distinct rows and 760K distinct coordinates.

We also tinker with two more dimensions: crime type and date. Through
binning, we create 3 distinct types of crime: theft-related, anti-social behavior,
and others. Then, we map the original 14 crime types to populate the 3 new
bins. Similarly, we bin the time attribute of the dataset to populate quarterly
and yearly levels. Figure 6 reveals distinct counts for all features of the dataset
after introducing hierarchies. In contrast to the geo-joining, binning is an inex-
pensive operation and can be carried out on-line without affecting the system
responsiveness. The latter is highly desirable as it affords the user to instantly
experiment with the introduced hierarchies on-line and if needed, realign them
on the spot.

The aforementioned generation of hierarchical dimensions results to a max-
imum of 24 distinct chunks. Figure 7 shows the computation time required for
each of these chunks in conjunction with the number of visualization tuples each
one contains. It takes anywhere between 7.10 and 16.80 s for chunks to be com-
puted. The above range represents an acceptable delay as the computation of
each chunk occurs only once. Through caching, subsequent accesses to already
computed chunks is only dependent to the volume of the data ultimately trans-
ported over the network to the client.



On-Line Big-Data Processing for Visual Analytics with Argus-Panoptes 115

0 20 40 60 80 100 120 140 160 180

nuts 0
nuts 1

date quarter

crime type level 2

nuts 3

last outcome category

crime type level 1
date month

date year

nuts 2

falls within
reported by

1
12

13

14

178

27

3
34

4

41

46
46

Fig. 6. Distinct counts for every feature resulting from geo-joining and data binning.

0K 100K 200K 300K 400K 500K 600K 700K

7s
8s
9s

10s
11s
12s
13s
14s
15s
16s
17s

(670K)

number of rows

co
m
pu

ta
ti
on

ti
m
e
(s
ec
)

Fig. 7. Visualization chunk computation times in relation to the row count of the
aggregated data. Big-Data aggregation operations are taking several seconds to com-
plete and are independent of amount of data returned.

Figure 8 depicts the json and the corresponding compressed file sizes for
all 24 different types of chunks. If json files were transported uncompressed,
their size would range from 1.56 MBytes up to 140.90 MBytes. In actuality, all
such files are transfered gzip-ped and their sizes ranges between 0.08 MBytes
and 8.70 MBytes with average chunk size being less than 2.00 MBytes. Such
sizes facilitate both the sought on-line type of operation and accomplish respon-
siveness for our prototype. Last but not least, we should indicate that a large
number of visual interface interactions can be immediately served by already
cached content in VA Client.



116 P. I. Vlantis and A. Delis

0K 100K 200K 300K 400K 500K 600K 700K

0
20
40
60
80

100
120
140
160 142MB

8.7MB

number of rows

fil
e
si
ze

(M
B
)

uncompressed compressed

Fig. 8. Chunk file sizes in relation to the row count of the data they contain. The
gzip-ped json files are those that are transfered from the cloud to the browser.

6 Concluding Remarks

In this paper, we propose Argus-Panoptes, a visual analytics system that incor-
porates cloud-based Big-Data processing in its core. Our key objective has been
to combine Big-Data processing with visual analytics so as to further empower
both domain experts and Big-Data analysts. Our proposed architecture offers
a number of novel mechanisms that entail interactive programming for direct
manipulation of both datasets and operations, on-line processing through the
use of Spark-clusters, robust operations through dataset schema convergence
and use of highly reconfigurable UI components. Our system design involves
both home-grown virtual analytics server and client components as well as state-
of-the-art systems such as Zeppelin, Livy, Spark and NginX. We have evaluated
Argus-Panoptes using an enhanced spatiotemporal crime dataset from the U.K.
Home Office and have ascertained the effectiveness of our prototype through pro-
filing of its operations.

References

1. Apache Zeppelin: Zeppelin: web-based notebook (2009). https://zeppelin.apache.
org. Accessed 30 June 2018

2. Cloudera: Hue is an open source analytics workbench for self service BI. (2009).
http://gethue.com. Accessed 30 June 2018

3. Daniel, K., Kohlhammer, J., Ellis, G., Mansman, F. (eds.): Mastering the Infor-
mation Age Solving Problems with Visual Analytics. Eurographics Association
(2010)

4. Dibia, V., Demiralp, Ç.: Data2Vis: automatic generation of data visual-
izations using sequence to sequence recurrent neural networks, April 2018.
arxiv.org/abs/1804.03126

5. Domingos, P.: A few useful things to know about machine learning. Commun.
ACM 55(10), 78–87 (2012)

https://zeppelin.apache.org
https://zeppelin.apache.org
http://gethue.com
http://arxiv.org/abs/org/abs/1804.03126


On-Line Big-Data Processing for Visual Analytics with Argus-Panoptes 117

6. EUROSTAT: NUTS - nomenclature of territorial units for statistics (2016). http://
ec.europa.eu/eurostat/web/nuts/background. Accessed 30 June 2018

7. Facebook Inc.: React: a JavaScript library for building user interfaces (2009).
https://reactjs.org. Accessed 30 June 2018

8. Fekete, J.D.: Visual analytics infrastructures: from data management to explo-
ration. Computer 46(7), 22–29 (2013)

9. Home Office, UK: ASB incidents, crime and outcomes (2015). https://data.police.
uk/about/. Accessed 30 June 2018

10. Jupyter Team: Jupyter project (2009). https://jupyter.org. Accessed 30 June 2018
11. Keim, D.A.: Visual exploration of large data sets. Commun. ACM 44(8), 38–44

(2001)
12. Liu, Z., Jiang, B., Heer, J.: ImMens: real-time visual querying of Big Data. Comput.

Graph. Forum 32(3), 421–430 (2013)
13. Novus Partners: NVD3: reusable charts for d3.js (2014). http://nvd3.org. Accessed

30 June 2018
14. Sriharsha, R.: Magellan: geospatial analytics using spark (2015). https://github.

com/harsha2010/magellan. Accessed 30 June 2018
15. Siddiqui, T., Kim, A., Lee, J., Karahalios, K., Parameswaran, A.: Effortless data

exploration with zenvisage: an expressive and interactive visual analytics system.
Proc. VLDB Endow. 10(4), 457–468 (2016)

16. Thomas, J.J., Cook, K.A.: Illuminating the path: the research and development
agenda for visual analytics. IEEE Computer Society (2005). http://vis.pnnl.gov/
pdf/RD Agenda VisualAnalytics.pdf

17. Uber: Deck.gl large-scale WebGL-powered data visualization. https://uber.github.
io/deck.gl

18. Vartak, M., Huang, S., Siddiqui, T., Madden, S., Parameswaran, A.: Towards visu-
alization recommendation systems. ACM SIGMOD Rec. 45(4), 34–39 (2017)

19. Wong, P.C., Shen, H.W., Johnson, C.R., Chen, C., Ross, R.B.: The top 10 chal-
lenges in extreme-scale visual analytics. IEEE Comput. Graphics Appl. 32(4),
63–67 (2012)

20. Wongsuphasawat, K., et al.: Voyager 2. In: Proceedings of 2017 CHI Conference on
Human Factors in Computing Systems (CHI 2017), Denver, pp. 2648–2659, May
2017)

21. Zaharia, M., et al.: Resilient distributed datasets: a fault-tolerant abstraction for
in-memory cluster computing. In: Proceedings of 9th USENIX Conference on Net-
worked Systems Design and Implementation (NSDI 2012), San Jose (2012)

http://ec.europa.eu/eurostat/web/nuts/background
http://ec.europa.eu/eurostat/web/nuts/background
https://reactjs.org
https://data.police.uk/about/
https://data.police.uk/about/
https://jupyter.org
http://nvd3.org
https://github.com/harsha2010/magellan
https://github.com/harsha2010/magellan
http://vis.pnnl.gov/pdf/RD_Agenda_VisualAnalytics.pdf
http://vis.pnnl.gov/pdf/RD_Agenda_VisualAnalytics.pdf
https://uber.github.io/deck.gl
https://uber.github.io/deck.gl

	On-Line Big-Data Processing for Visual Analytics with Argus-Panoptes
	1 Introduction
	2 Related Work
	3 Argus-Panoptes Design Principles
	4 The Argus-Panoptes System
	4.1 The Architecture
	4.2 The VA Client Functionality

	5 Assessment with a Government ASB Dataset
	6 Concluding Remarks
	References




