
A Peer-to-Peer Based Cloud Storage
Supporting Orthogonal Range Queries

of Arbitrary Dimension

Markus Benter1(B), Till Knollmann2(B), Friedhelm Meyer auf der Heide2(B),
Alexander Setzer3(B), and Jannik Sundermeier2(B)

1 Jobware GmbH, Technologiepark 32, 33100 Paderborn, Germany
m.benter@jobware.de

2 Computer Science Department and Heinz Nixdorf Institute,
Paderborn University, Fürstenallee 11, 33102 Paderborn, Germany

{tillk,fmadh,janniksu}@mail.uni-paderborn.de
3 Computer Science Department, Paderborn University, Paderborn, Germany

asetzer@mail.uni-paderborn.de

https://www.hni.uni-paderborn.de/alg/, https://cs.uni-paderborn.de/ti/

Abstract. We present a peer-to-peer network that supports the effi-

cient processing of orthogonal range queries R = ×d

i=1[ai, bi] in a
d-dimensional point space. The network is the same for each dimension,
namely a distance halving network like the one introduced by Naor and
Wieder (ACM TALG’07). We show how to execute such range queries

using O
(
2d′

d logm + d |R|
)

hops (and the same number of messages)

in total. Here [m]d is the ground set, |R| is the size and d′ the dimension
of the queried range. Furthermore, if the peers form a distributed net-

work, the query can be answered in O
(
d logm + d

∑d
i=1(bi − ai + 1)

)

communication rounds. Our algorithms are based on a mapping of the
Hilbert Curve through [m]d to the peers.

Keywords: Distributed storage · Multi-dimensional range queries ·
Peer-to-Peer · Hilbert Curve

1 Introduction

Consider a scenario in which the content of a music sharing platform is dis-
tributed among the participants of a peer-to-peer network (P2P network). Clas-
sical P2P networks only consider search queries for a specific attribute of the
data contained in the network. For a music sharing platform, however, a cru-
cial requirement is to allow more complex search queries. Users typically want

This work was partially supported by the German Research Foundation (DFG) within
the Collaborative Research Center ‘On-The-Fly Computing’ (SFB 901).

c© Springer Nature Switzerland AG 2019
Y. Disser and V. S. Verykios (Eds.): ALGOCLOUD 2018, LNCS 11409, pp. 46–58, 2019.
https://doi.org/10.1007/978-3-030-19759-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19759-9_4&domain=pdf
https://doi.org/10.1007/978-3-030-19759-9_4

Supporting Orthogonal Range Queries of Arbitrary Dimension 47

to filter the data by different attributes and, most important, filter by multiple
attributes. A typical request would be to find all jazz, funk & soul songs pub-
lished in the last two years. Further queries could involve the language, the audio
quality of the tracks or the duration. In the last years, several publications inves-
tigate the design of P2P networks allowing for multi-dimensional range queries.
For more details, we refer the reader to Sect. 1.1. Most of these solutions, how-
ever, involve very complex network designs and the design depends heavily on
the dimensionality of the data stored in the network. In this work, we aim at
a more lightweight solution which uses the same network structure independent
of the dimensionality of the data. Additionally, we are interested in an analysis
of the message complexity and the delay for answering multi-dimensional range
queries. More formally, the topic of this work can be described as follows:

Consider a distributed system storing a set of data items associated with
keys. The keys are given by multiple attributes of the data items such that they
can be seen as points in a d-dimensional mesh. We consider the d-dimensional
Range Query Problem defined as follows.

Definition 1 (d-dimensional Range Query Problem) Let M(m, d) be a
d-dimensional mesh with side-length m where m = 2k for a k ∈ N. Let R =
×d

i=1[ai, bi] be an orthogonal range (or range for short) in M(m, d). The d-
dimensional Range Query Problem is the task of reporting all points in R. The
dimension of a range, d′, is the number of all dimensions i with ai �= bi.

Our goal is to distribute the md points of M(m, d) over md peers of a P2P
network such that range queries can be answered using few hops and few com-
munication rounds. In a communication round, each peer can receive and send
a set of messages. Messages sent in communication round i are all received in
round i + 1. The solution can be scaled to fewer peers in a simple way, as men-
tioned in the final section. The main focus of this work is to realize range queries
of arbitrary dimension on one fixed network, rather than using a specific one for
each dimension. In addition, we aim at a topology with constant degree.

Let |R| =
∏d

i=1(bi−ai+1) be the size of a range R in our mesh. A trivial topol-
ogy for the d-dimensional Range Query Problem would be the d-dimensional
grid. This topology allows to answer a query for R in O (c + |R|) hops where c
is the distance from the entry peer to the closest point in R. However, the grid
topology depends on the dimension of the keys. Another trivial solution when
assuming a constant degree network would be to query each point in R sepa-
rately. While the network is independent of the mesh, the total number of hops
can only be bounded to O (|R| · d · log m) due to each constant degree network
with md nodes having a diameter of Ω(d · log m). The main question we deal
with in this paper is how close we can come to the bound of O (c + |R|) while
still having a constant degree network topology.

The solution we present in this work uses a Hilbert Curve that maps the
md points of M(m, d) to a one-dimensional line. We assume a very dense set of
keys, i.e., all points in M(m, d) refer to existing keys stored in the system. As we
consider md points, we assume a bijective mapping from [m]d to the peers such

48 M. Benter et al.

that the Hilbert Curve defines an ordering of the peers. In Sect. 2, we present the
topology of our P2P network, namely the Distance Halving Graph, the mapping
of the nodes of M(m, d) on it, and properties of this mapping. We present an
algorithm for answering a range query R in Sect. 3 and prove that the total
number of hops needed to answer a range query R is O

(
2d

′
d log m + d |R|

)
.

Moreover, we show that the algorithm can be parallelized and then answers a
range query in O

(
d log m + d

∑d
i=1(bi − ai + 1)

)
communication rounds.

1.1 Related Work

Recently, the design of P2P networks for the purpose of answering multi-dimen-
sional range queries has attracted much attention in the research community.
For one-dimensional range queries, CAN, P-Grid, Baton, Armada, Saturn, and
PHT have been proposed [3,6,9,11,14,15]. Throughout this section, let n be the
number of peers in the network. Among these, Baton and Armada can answer
one-dimensional range queries in time O (log n + |R|), where |R| denotes the
number of data items in the range R. This is asymptotically optimal [11]. Baton,
however, has a logarithmic degree at each node, whereas Armada requires only
a constant degree.

For multi-dimensional ranges, there is no approach known which comes close
to the optimal bound while having only a constant degree. In the literature,
most work focuses on an experimental evaluation of P2P networks allowing for
multi-dimensional range queries. In this work, we aim at a rigorous analysis of
the message complexity and the communication rounds needed for answering a
range.

P2P networks designed for multi-dimensional range queries can be subdivided
into classes based on their approaches of mapping the data space and connect
the peers to each other. MURK uses a k-d tree to partition the data space such
that each node of the network is responsible for exactly one hypercuboid of the
data space [7]. Moreover, MURK supports efficient routing by adding random
links or a space-filling Skip Graph. Both approaches, however, require O (log n)
references stored at each node such that the resulting degree of the network is
O (log n).

Other approaches using Skip Graphs, are SkipIndex [20], ZNet [18] and
SCRAP [7]. The difference in these approaches is the way of partitioning the
data (for instance a space-filling Z-curve in Znet) and the way of choosing addi-
tional overlay edges for efficient routing. As all these approaches are based on
Skip Graphs, the degree of each network is O (log n).

MatchTree [10] uses an interesting approach which builds an individual tree
for each query. The underlying P2P network is a variant of Kleinberg’s small
world network [12]. In these networks, each node has O(log n) shortcut neighbors
chosen randomly. Since the tree for each query is built at the time of processing
the query, each node has to store a lot of structural information. In addition,
lots of nodes are involved in answering a query.

Supporting Orthogonal Range Queries of Arbitrary Dimension 49

Another approach working with trees is DRAGON [5]. In DRAGON, the
identifiers of peers are distributed in [0, 1) and an aggregation tree is built upon
the interval [0, 1). The structure of the aggregation tree depends on the space
filling Z-curve such that each node is responsible for a certain region of the curve.
To ensure efficient query processing, each node stores a reference to each level
of the aggregation tree in its local routing table which also results in a degree of
O(log n).

SWORD [2] and MAAN [4] are architectures which use multiple hash func-
tions, one for each dimension of the data, and map each of these hash functions
onto the same network. MAAN uses a locality preserving hash function for each
of the d dimensions per resource. A triple of <dimension, value, resource-info>
is stored at each node that stores a dimension of a resource due to a hash func-
tion. The authors present two routing algorithms for resolving ranges. The first
one does a range query for each dimension and returns the cut of all results.
While the cost for routing to the peer at the beginning of each range is in a
total of O (d log n) hops, the cost for gathering all values in a range concerning
only one dimension results in O(md−1

∑d
i=1(bi − ai + 1)) hops in our scenario.

Further, due to the splitting of the dimension set of each resource, an additional
total memory of O (

dmd
)

is needed. The second routing algorithm improves
the routing time at the cost of memory requirement. Each resource is stored d
times in total. The routing then only processes a range query along one spe-
cific dimension and removes all false-positives. This induces a routing time in
O (log n + mini{(bi − ai + 1}) while the memory demand increases by a factor
of d. In contrast to MAAN, we focus on querying exactly those points which
are in the range, i.e., we do not have an (intermediate) over-approximation of
the results. Further, our solution does not increase the memory requirement for
storing keys.

LORM [17] also uses a distributed hash table. In LORM, the peers are orga-
nized in clusters and each cluster of peers is responsible for a single dimension.
To answer queries, the original query is split into subqueries for each dimension
which are then answered by the affected clusters. The worst case bounds for
identifying nodes which are involved in a range query of LORM are similar to
the bound mentioned for MAAN. To achieve the bounds, LORM also relies on
a logarithmic network degree.

The approach closest to ours, called Squid, combines the Chord-architecture
[19] with the space-filling Hilbert Curve [16]. The multi-dimensional space is
mapped onto the one-dimensional space by using a Hilbert Curve. Queries are
answered by recursively refining a query and map subqueries to peers of the
network. Although the authors prove that only a small number of nodes is con-
tacted while query processing, it is not clear how many messages are sent in the
process and which delay is caused by answering a query.

2 Notations

The ground set of elements to be queried in the d-dimensional range query
problem is the node set [m]d of the d-dimensional mesh M(m, d) with

50 M. Benter et al.

side-length m. For ease of description, we assume m = 2k for k ∈ N0. Fix
some i, 0 ≤ i ≤ k, and let m′ = m

2i . M(m, d) can be divided into 2di meshes
with side-lengths m′. These meshes are denoted as canonical submeshes with
side-lengths m′ (c.f. Fig. 1).

M(m,d)

canonical submesh

Fig. 1. The subdivision of a 3-dimensional mesh into 23 = 8 canonical submeshes with
side-lengths m′ = m

2
.

2.1 Embedding a Hilbert Curve in a Mesh

The M(m,d)-Hilbert Curve is a curve that connects all points of M(m, d). It is a
discrete version of the space-filling Hilbert Curve [8]. The M(2, 2)-Hilbert Curve
is defined as in the left picture of Fig. 2. The M(m, 2)-Hilbert Curve can be
subdivided into four rotated M(m2 , 2)-Hilbert Curves. The upper left and upper
right M(m2 , 2)-Hilbert Curves are not rotated. The lower left one is rotated by
90◦ clockwise and the lower right one is rotated by 90◦ counterclockwise.

The M(m, d)-Hilbert Curve is an extension of the M(m, 2)-Hilbert Curve.
For d dimensions, a M(m, d)-Hilbert Curve can be subdivided into 2d M(m2 , d)-
Hilbert Curves. For the formal definition, we refer the reader to [1]. The definition
of the M(m, d)-Hilbert Curve ensures that all points of a canonical submesh are
connected by a Hilbert Curve of smaller size. Further, we define an ordering of all
points in M(m, d) by the order in which they are visited via the M(m, d)-Hilbert
Curve starting at the origin. Then the Hilbert Coordinate p(v) of v ∈ M(m, d)
is the position of v in this ordering.

2.2 Network Properties

The P2P network we consider is the Distance Halving Graph as defined in [13].
We use the version with perfect smoothness. In this case, we can simply
assume that the ids of the n peers {w0, . . . , wn−1} are {0, . . . , n − 1} instead
of { 0

n , . . . , n−1
n }. The peer wi has undirected edges to its direct neighbors wi−1

and wi+1 (for i > 0 and i > n−1, resp.). In addition, it is connected to the peers
with ids � i

2� and � i
2� + �n

2 � (if � i
2� + �n

2 � ≤ n − 1). We consider each edge to
be undirected. It has been shown in [13] that the Distance Halving Graph with
perfect smoothness has a constant degree. Lemma 1 is a direct consequence of
the above construction.

Supporting Orthogonal Range Queries of Arbitrary Dimension 51

Fig. 2. M(m,d)-Hilbert Curve of dimension d = 2 and m = 2, 4 and 8.

Lemma 1. The Distance Halving Graph supports a routing between wi and wj

using at most 3 · log(|j − i| + 1) hops.

Proof. Due to the definition of the Distance Halving Graph, wi and wj have
edges to nodes wi′ and wj′ such that |i′ − j′| ≤ � i

2� − � j
2� ≤ 1

2 |i − j| + 1.
Applying an appropriate move of wi to a direct neighbor reduces the distance to
at most ≤ 1

2 |i − j|. Iterating these three hops �log(|i − j| + 1)� times yields the
lemma. (Note: We have only used one kind of the edges to non-direct neighbors.
Combining both kinds of hops can be used to reduce the congestion of the
routing, see [13].) ��

Now assume that n, the size of the P2P network, equals md, the size of our
ground set. We define the one-to-one mapping from M(m, d) to the peers by the
ordering induced by the Hilbert Curve: Node v from M(m, d) is mapped to the
peer with id p(v). As the nodes in a canonical submesh of M(m, d) are ordered
consecutively in the ordering induced by the Hilbert Curve, by Lemma 1 we can
conclude:

Observation 1. In a canonical submesh with side-length m′, routing between
any two points costs at most O (d · log(m′) + 1) hops.

3 Answering Range Queries

Whenever we talk about a range, we mean an orthogonal range defined as follows.
An orthogonal range is given by R = ×d

i=1[ai, bi]. We call the set of dimensions
i in which ai < bi the extensions of R, denoted by D. The number of extensions
is the dimension of R denoted by |D| = d′.

A point x = (x1, . . . , xd) is a corner point of R if, for each i, xi = ai or xi = bi
holds. Clearly, a range R with dimension d′ has 2d

′
corner points. Especially, a

one-dimensional range, a line L, has two corner points. We say a line L crosses
a range R if L only consists of points in R and has maximal length.

Let R be a d′-dimensional range. R is contained in a d′-dimensional Mesh MR

whose points are all points (x1, . . . , xd) of M(m, d) with xi = ai for all i /∈ D.

52 M. Benter et al.

We define canonical submeshes of MR as intersections of canonical submeshes
of M(m, d) with MR. From now on, we always consider MR, i.e., if not stated
otherwise, a canonical submesh is of MR and dimensions which are not mentioned
are assumed to match MR. We further assume that dimensions 1 to d′ are the
dimensions in D.

Consider a line L with extension i such that ai < bi and the smallest canonical
submesh S = ×j∈D[xj , yj] surrounding L. We call L touching, if either a = xi

or b = yi is a point at the border of S in dimension i. Note that, for a touching
line L, the smallest enclosing canonical submesh has side-length at most 2 |L|.
Consider a range R and its set of extensions D. R is touching, if every line L
with an extension i ∈ D that crosses R is touching (Figs. 3 and 4).

Fig. 3. A touching line query. L
touches the canonical submesh S in
dimension i.

Fig. 4. A touching range query R in
the canonical submesh S. The exten-
sion set of R is D = {1, 2}.

A major problem we have to deal with when answering range queries is the
following: There are small ranges, whose smallest enclosing canonical submesh
is large, may even be the entire mesh M(m, d). An extreme range consists of
the two nodes (0, ..., 0, m

2 − 1) and (0, ..., 0, m
2). See Fig. 5 for example. If we try

to report such ranges following the Hilbert Curve, we have to follow many long
routing paths between elements from the range, resulting in a large hop count.
To deal with this problem, we will partition a range in subranges, each of which
can be reported using only short such paths.

This partition is defined as follows. The canonical box around R is:

C(R) = ×
i∈D

Ci, with Ci = [ci 2j , (ci + 1) 2j − 1]

where ci ∈ N0 and j ≥ 0 minimal such that ci 2j ≤ ai ≤ bi ≤ (ci + 1) 2j − 1.
The center z of C(R) is

z = (z1, . . . , z′
d) with zi =

ci 2j + (ci + 1) 2j − 1
2

.

Supporting Orthogonal Range Queries of Arbitrary Dimension 53

Fig. 5. Example of a small range R having a large smallest enclosing canonical submesh.
The points of R are direct neighbors in M(m, d) but far away from each other on the
Hilbert Curve.

Consider the 2d
′
orthants O1, . . . , O2d′ on MR centered around z. For exam-

ple, one of them is given by the points {x ∈ MR |xi > zi ∀ i ∈ D}. Now consider
the subranges Ri = R∩Oi. The following observation is crucial for our algorithm:

Observation 2. Every subrange Ri is touching.

Now consider the set Z(R) of points of MR centered around z:

Z(R) = {p | pi = zi ± (1/2) for i ∈ D}

Fig. 6. The figure illustrates a range R together with its canonical box C(R). The four
points in the center of C(R) are Z(R). The midpoint between these points is z, the
center of the canonical box C(R).

54 M. Benter et al.

Every Ri contains exactly one point of Z(R). The points in Z(R) are corner
points of the subranges Ri. See Fig. 6 for a visualization of R, C(R), Z(R) and z.

To show that we can answer the subranges efficiently, we need another
property. Fix a value q ∈ [m] and a dimension i ∈ D. Let H(q, i) = {x ∈
M(m, d) |xi = q}. The following observation is crucial for the core of our
algorithm:

Observation 3. Let R be touching. Then H(q, i)∩R is also touching. Its exten-
sion set is D \ {i}.

3.1 The Algorithm

Our algorithm for answering a range works in two main steps. The first step
splits the range into the 2d

′
subranges as defined above. Then each subrange is

answered separately by a recursive algorithm. The base case of this recursion
answers queries for touching lines L using O(d · |L|) hops. In our description
and the analysis, we only consider the processing until all points of R have been
visited by our algorithm. For answering the range, these points must be sent
back to the querying peer. However, this can easily be achieved by reversing the
steps our algorithm does implying only a constant factor of two on our bounds.

To answer a range query, Algorithm 1 is called. Initially, D, C(R), Z(R)
and the 2d

′
subranges of R are determined. Then, the algorithm routes towards

the points of Z(R) and answers the touching subranges independently of each
other. Consider such a subrange. Algorithm 2 requires a touching range R with
extension set D and a corner point s = (s1, . . . , sd) as input. Given this input, an
arbitrary dimension i ∈ D is selected. The algorithm queries a touching line L
with extension i that crosses R. The reporting of the points on L is interrupted
after the visit of each point q = (q1, . . . , qd′) of L. Now a recursive call for the
H(qi, i) ∩ R with extension set D \ {i} (c.f. Observation 3) and corner point
q is triggered. The recursion stops when the extension set D is empty, i.e., all
dimensions have been completed.

Algorithm 1. Algorithm for answering an orthogonal range query R

1: procedure AnswerQuery(R)
* R is an orthogonal range query with extension set D. C(R) and Z(R)

are as defined above. *
2: Route towards the 2d

′
points in Z(R)

3: for each subrange R′ of R with corner point p ∈ Z(R) do
* Observation 2 ensures that R′ is touching *

4: ProcessRange(R′, p)

Supporting Orthogonal Range Queries of Arbitrary Dimension 55

Algorithm 2. Algorithm for answering a touching R beginning at a corner s

1: procedure ProcessRange(R, s = (s1, . . . , sd))
* Let D be the extension set of R *

2: if D �= ∅ then
3: i ← arbitrary dimension in D
4: L ← line with extension i and endpoint s that crosses R
5: Visit each point of L consecutively
6: for each visited point q = (q1, . . . , qd′) on L do

* Due to Observation 3, H(qi, i)) ∩ R is touching *
7: ProcessRange(H(qi, i) ∩ R, q)

3.2 Analysis

For the analysis, we are interested in the total number of hops as well as the
number of communication rounds. The total number of hops reflects the message
complexity of our solution. Our main result is stated in Theorem 1.

Theorem 1. Algorithm 1 answers a range query R in O
(
2d

′
d log m + d |R|

)

hops within O
(
d log m + d

∑d
i=1(bi − ai + 1)

)
communication rounds.

We already discussed that |Z(R)| = 2d
′
. For the points in Z(R), our

algorithm has to do large routing steps that cost O (d log m) hops each by
Observation 1. Therefore, the first part of our algorithm requires O(2d

′
d log m)

hops in total. The subranges can be answered in parallel such that the first part
needs O (d log m) communication rounds leading to the correctness of Lemma 2.

Lemma 2. Algorithm 1 needs O
(
2d

′
d log m

)
hops and O (d log m) communi-

cation rounds to route to all points in Z(R).

It is left to analyze the performance of Algorithm 2 for a touching subrange
R′ with extension set D, and the corner point c ∈ Z(R) of R′. The recursive
formulation reduces the problem of answering R′ to the problem of answering
touching lines crossing R′. Due to Observations 2 and 3, we know that all queried
lines are touching. Thus, we show Lemma 3. Extending the result of Lemma 3
to the behavior of Algorithm 2 allows to show Lemma 4.

Lemma 3. Let L be a touching line query. L can be answered in O (d |L|) hops
if the routing starts at an endpoint of L.

Proof. We observe that due to the touching property of L, the smallest sur-
rounding canonical submesh S has a side-length t with |L| ≤ t ≤ 2|L|. The
number of hops for visiting L is at most the number of hops for visiting L′ which
is L extended to cross S. L′ has length t. Observe that L′ lies completely in two
canonical submeshes S′ and S′′, each of edge-length t/2. To analyze the number
of hops F (t) for visiting L′, we consider the parts of L′ in S′ and S′′ separately.

56 M. Benter et al.

Then, F (t) is composed of 2F (t/2) for answering the two parts of L′, plus the
number of hops for jumping from the endpoint of the line in S′ to a neighboring
endpoint of the line in S′′. Since L′ is completely contained in S, Observation 1
implies that the number of hops for the jump is in O (d · log t + 1). This yields
the following recursion:

F (t) ≤ 2 · F

(
t

2

)

+ c · d · log(t) + 1 for t > 1

F (1) = 0 else

The solution for this recursion is F (t) = (t − 1) (2 c d + 1) − c d log(t). As t =
|L′| ≥ |L| this results in a number of hops of 2 c d |L| ∈ O(d · |L|) for answering
the line query L. ��
Lemma 4. Let R′ be a subrange of R with extensions D. Algorithm 2 answers
R′ in O (d |R′|) hops and O

(
d

∑d
i=1(bi − ai + 1)

)
communication rounds when

starting at a corner point of R′.

Proof. Let p be the corner point of R′ at which the routing starts. Due to
Observation 2, we know that any line that crosses R′ is touching and can be
answered efficiently as captured in Lemma 3. Our algorithm consecutively fixes
the dimensions in D. For each fixed dimension, a touching line L is answered.
Each such line L can be answered due to Lemma 3 in O (d log |L|) hops.

Let (1, . . . , d′) be the sequence of dimensions of D which are fixed one by one
by Algorithm 2. Let ri = bi − ai + 1 be the side-length of R′ along dimension i.
Then |R′| =

∏d′

i=1 ri. The number of hops T (ri, . . . , rd′) needed to report the
(touching) range R′ is bounded by the following recursion:

T (r1, . . . , rd′) ≤ c d r1 + r1 T (r2, . . . , rd′) for d′ > 1
T (r1) ≤ c d r1 for d′ = 1

for a sufficiently large constant c. Thus, T (r1, . . . , rd′) ≤ c d (r1 +r1 r2 + · · ·+r1 ·
r2 · . . . · rd′) ≤ 2 c d r1 r2 . . . rd′ = 2 c d |R′|. Therefore, all points can be visited
in O (d |R′|) hops.

Note that the recursive steps for every point of a line can be processed in
parallel. Therefore, the algorithm needs O

(
d

∑d
i=1(bi − ai + 1)

)
communica-

tion rounds. ��
Combining Lemmas 2 and 4, we obtain the bounds of Theorem 1.

4 Concluding Remarks

It is easy to scale down our construction to smaller P2P networks: for some
m′ < m let each peer take care of a whole canonical submesh with edge length
m′. Then only

(
m
m′

)d peers are used.

Supporting Orthogonal Range Queries of Arbitrary Dimension 57

A more interesting question is how to deal with sparse data sets: If only a few
of the md points of M(m, d) hold data records, we would like to achieve a hop
count close to the number of records contained in the queried range. For this, it
is interesting to investigate whether our combination of the Hilbert Curve and
the Distance Halving Network can be extended to incorporate advantages of, for
example, k-d trees.

References

1. Alber, J., Niedermeier, R.: On multidimensional curves with hilbert property. The-
ory Comput. Syst. 33(4), 295–312 (2000). https://doi.org/10.1007/s002240010003

2. Albrecht, J., Oppenheimer, D., Vahdat, A., Patterson, D.A.: Design and implemen-
tation trade-offs for wide-area resource discovery. ACM Trans. Internet Technol.
8(4), 18:1–18:44 (2008). https://doi.org/10.1145/1391949.1391952

3. Andrzejak, A., Xu, Z.: Scalable, efficient range queries for grid information services.
In: P2P 2002 Proceedings of the Second International Conference on Peer-to-Peer
Computing, pp. 33–40 (2002). https://doi.org/10.1109/PTP.2002.1046310

4. Cai, M., Frank, M., Chen, J., Szekely, P.: MAAN: a multi-attribute addressable
network for grid information services. J. Grid Comput. 2(1), 3–14 (2003). https://
doi.org/10.1007/s10723-004-1184-y

5. Carlini, E., Lulli, A., Ricci, L.: DRAGON: multidimensional range queries
on distributed aggregation trees. Future Gener. Comput. Syst. 55, 101–115
(2016). https://doi.org/10.1016/j.future.2015.07.020, http://www.sciencedirect.
com/science/article/pii/S0167739X15002526

6. Datta, A., Hauswirth, M., John, R., Schmidt, R., Aberer, K.: Range queries in
trie-structured overlays. In: P2P 2005 Proceedings of the Fifth IEEE International
Conference on Peer-to-Peer Computing, pp. 57–66. IEEE (2005)

7. Ganesan, P., Yang, B., Garcia-Molina, H.: One torus to rule them all: multi-
dimensional queries in P2P systems. In: WebDB 2004 Proceedings of the 7th
International Workshop on the Web and Databases: Colocated with ACM SIG-
MOD/PODS 2004 WebDB 2004, pp. 19–24. ACM, New York (2004). https://doi.
org/10.1145/1017074.1017081

8. Hilbert, D.: Über die stetige Abbildung einer Linie auf ein Flächenstück, pp. 1–2.
Springer, Heidelberg (1935). https://doi.org/10.1007/978-3-662-38452-7-1

9. Jagadish, H.V., Ooi, B.C., Vu, Q.H.: Baton: a balanced tree structure for peer-to-
peer networks. In: Proceedings of the 31st International Conference on Very Large
Data Bases VLDB Endowment, pp. 661–672 (2005)

10. Lee, K., Choi, T., Boykin, P.O., Figueiredo, R.J.: MatchTree: flexible, scalable,
and fault-tolerant wide-area resource discovery with distributed matchmaking and
aggregation. Future Gener. Comput. Syst. 29(6), 1596–1610 (2013). https://doi.
org/10.1016/j.future.2012.08.009, http://www.sciencedirect.com/science/article/
pii/S0167739X12001653. including Special sections: High Performance Computing
in the Cloud & Resource Discovery Mechanisms for P2P Systems

11. Li, D., Cao, J., Lu, X., Chen, K.C.C.: Efficient range query processing in peer-
to-peer systems. IEEE Trans. Knowl. Data Eng. 21(1), 78–91 (2009). https://doi.
org/10.1109/TKDE.2008.99

12. Kleinberg, J.M.: Navigation in a small world. Nature 406, 845 (2000)
13. Naor, M., Wieder, U.: Novel architectures for P2P applications: the continuous-

discrete approach. ACM Trans. Algorithms 3(3), 34 (2007). https://doi.org/10.
1145/1273340.1273350

https://doi.org/10.1007/s002240010003
https://doi.org/10.1145/1391949.1391952
https://doi.org/10.1109/PTP.2002.1046310
https://doi.org/10.1007/s10723-004-1184-y
https://doi.org/10.1007/s10723-004-1184-y
https://doi.org/10.1016/j.future.2015.07.020
http://www.sciencedirect.com/science/article/pii/S0167739X15002526
http://www.sciencedirect.com/science/article/pii/S0167739X15002526
https://doi.org/10.1145/1017074.1017081
https://doi.org/10.1145/1017074.1017081
https://doi.org/10.1007/978-3-662-38452-7-1
https://doi.org/10.1016/j.future.2012.08.009
https://doi.org/10.1016/j.future.2012.08.009
http://www.sciencedirect.com/science/article/pii/S0167739X12001653
http://www.sciencedirect.com/science/article/pii/S0167739X12001653
https://doi.org/10.1109/TKDE.2008.99
https://doi.org/10.1109/TKDE.2008.99
https://doi.org/10.1145/1273340.1273350
https://doi.org/10.1145/1273340.1273350

58 M. Benter et al.

14. Pitoura, T., Ntarmos, N., Triantafillou, P.: Saturn: range queries, load balancing
and fault tolerance in DHT data systems. IEEE Trans. Knowl. Data Eng. 24(7),
1313–1327 (2012). https://doi.org/10.1109/TKDE.2010.266

15. Ramabhadran, S., Ratnasamy, S., Hellerstein, J.M., Shenker, S.: Prefix hash tree:
an indexing data structure over distributed hash tables. In: Proceedings of the 23rd
ACM Symposium on Principles of Distributed Computing, January 2004

16. Schmidt, C., Parashar, M.: Squid: enabling search in DHT-based systems. J. Par-
allel Distrib. Comput. 68, 962–975 (2008)

17. Shen, H., Xu, C.Z.: Leveraging a compound graph-based DHT for multi-attribute
range queries with performance analysis. IEEE Trans. Comput. 61(4), 433–447
(2012). https://doi.org/10.1109/TC.2011.30

18. Shu, Y., Ooi, B.C., Tan, K.L., Zhou, A.: Supporting multi-dimensional range
queries in peer-to-peer systems. In: P2P 2005 Proceedings of the Fifth IEEE
International Conference on Peer-to-Peer Computing, pp. 173–180, August 2005.
https://doi.org/10.1109/P2P.2005.35

19. Stoica, I., et al.: Chord: a scalable peer-to-peer lookup protocol for internet appli-
cations. IEEE/ACM Trans. Network. 11(1), 17–32 (2003)

20. Zhang, C., Krishnamurthy, A., Wang, R.Y.: Skipindex: Towards a scalable peer-
to-peer index service for high dimensional data. Technical report, Princeton Uni-
versity, May 2004

https://doi.org/10.1109/TKDE.2010.266
https://doi.org/10.1109/TC.2011.30
https://doi.org/10.1109/P2P.2005.35

	A Peer-to-Peer Based Cloud Storage Supporting Orthogonal Range Queries of Arbitrary Dimension
	1 Introduction
	1.1 Related Work

	2 Notations
	2.1 Embedding a Hilbert Curve in a Mesh
	2.2 Network Properties

	3 Answering Range Queries
	3.1 The Algorithm
	3.2 Analysis

	4 Concluding Remarks
	References

