
Colocation, Colocation, Colocation:
Optimizing Placement in the Hybrid

Cloud

Srinivas Aiyar1, Karan Gupta1, Rajmohan Rajaraman2, Bochao Shen2,
Zhifeng Sun2, and Ravi Sundaram2(B)

1 Nutanix, Inc., San Jose, CA, USA
{sriniva.aiyar,karan.gupta}@nutanix.com
2 Northeastern University, Boston, MA, USA
{rraj,ordinary,austin,koods}@ccs.neu.edu

Abstract. Today’s enterprise customer has to decide how to distribute
her services among multiple clouds - between on-premise private clouds
and public clouds - so as to optimize different objectives, e.g., minimiz-
ing bottleneck resource usage, maintenance downtime, bandwidth usage
or privacy leakage. These use cases motivate a general formulation, the
uncapacitated (A defining feature of clouds is their elasticity or ability to
scale with load) multidimensional load assignment problem - VITA(F)
(Vectors-In-Total Assignment): the input consists of n, d-dimensional
load vectors V̄ = {V̄i|1 ≤ i ≤ n}, m cloud buckets B = {Bj |1 ≤ j ≤ m}
with associated weights wj and assignment constraints represented by
a bipartite graph G = (V̄ ∪ B, E ⊆ V̄ × B) restricting load V̄i to be
assigned only to buckets Bj with which it shares an edge (In a slight
abuse of notation, we let Bj also denote the subset of vectors assigned
to bucket Bj). F can be any operator mapping a vector to a scalar,
e.g., max, min, etc. The objective is to partition the vectors among the
buckets, respecting assignment constraints, so as to achieve

min[
∑

j

wj ∗ F (
∑

V̄i∈Bj

V̄i)]

We characterize the complexity of VITA(min), VITA(max), VITA(max −
min) and VITA(2nd max) by providing hardness results and approxima-
tion algorithms, LP-Approx involving clever rounding of carefully crafted
linear programs. Employing real-world traces from Nutanix, a leading
hybrid cloud provider, we perform a comprehensive comparative evalu-
ation versus three natural heuristics - Conservative, Greedy and Local-
Search. Our main finding is that on real-world workloads too, LP-Approx
outperforms the heuristics, in terms of quality, in all but one case.

1 Introduction

The launch of EC2 in 2006 by AWS [1] heralded the explosive growth in cloud
computing. Cloud computing is an umbrella term for computing as an utility.
c© Springer Nature Switzerland AG 2019
Y. Disser and V. S. Verykios (Eds.): ALGOCLOUD 2018, LNCS 11409, pp. 25–45, 2019.
https://doi.org/10.1007/978-3-030-19759-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19759-9_3&domain=pdf
https://doi.org/10.1007/978-3-030-19759-9_3

26 S. Aiyar et al.

It enables 24 × 7 Internet-based access to shared pools of configurable system
resources and real-time provision-able higher-level services. Public clouds enable
organizations to focus on their core businesses instead of spending time and
money on IT infrastructure and maintenance. One of the major benefits of clouds
is that they are elastic1 (which we model in this paper as uncapacitated). This
allows enterprises to get their applications2 up and running quicker, and rapidly
adjust resources to meet fluctuating and unpredictable business demand.

Today, in addition to AWS, Microsoft’s Azure [5] and the Google Cloud [3] are
the other major public cloud platforms. But the advent of multiple clouds means
that enterprises are faced with several new questions, of which the following
are some examples: How much of their load should they keep on-premise and
how much should they colocate (or place) in public clouds? How should they
mix and match the various options to save money without sacrificing customer
satisfaction? A number of enterprise software companies such as HPE [4] and
startups such as Turbonomic [7], Datadog [2] and RightScale [6] are beginning
to provide software and service solutions to these problems.

At the same time this is also a fertile area for new problems with the potential
for clever theoretical solutions to have practical impact. In this paper we provide
a framework - VITA: Vectors-In-Total Assignment - that captures a variety of
interesting problems in the area of hybrid clouds with interesting theoretical
challenges. In the subsection that follows we list a few typical use cases captured
by the VITA framework.

1.1 Motivation and Model

Scenario 1. Minimizing Peak Pricing: Consider an enterprise customer that
has a choice of several different cloud providers at which to host their VMs
(virtual machines). The requirements of each VM can be characterized along
several different resource dimensions such as compute (CPU), network (latency,
bandwidth), storage (memory, disk) and energy. When different virtual machines
are placed in the same elastic resource pool (cloud), their load across each
dimension is accrued additively (though, of course the different dimensions can
be scaled suitably to make them comparable). A typical pricing contract will
charge based on the most bottle-necked dimension since peak provisioning is the
biggest and most expensive challenge for the resource provider. And different
providers may have different rates based on differing infrastructure and their
cost for installation and maintenance. The natural question then arises - what is
the optimal way for the enterprise customer to distribute the load amongst the
different cloud providers so as to minimize total cost?

1 Elastic usually means that clouds can be considered to have infinite capacity for the
operating range of their customers. In this paper we ignore fine-grained time-based
definitions such as in [20].

2 In the scope of this paper application refers to a collection of VMs and containers
working in concert.

Colocation, Colocation, Colocation 27

Scenario 2. Minimizing Maintenance Downtime:Hosts and services, (and
occasionally even data centers) need to be powered down every so often for main-
tenance purposes, e.g. upgrading the software version (or installing a new HVAC
system in a data center). Given this reality, how should the application (collection
of virtual machines and/or containers collectively performing a task or service),
be allocated to the different hosts so as to minimize the aggregate disruption? This
scenario also applies to industrial machines where different factories (or floors of
a factory) need to be shut down for periodical maintenance work.

Scenario 3. Preserving Privacy: Consider a set of end-users each with its
own (hourly) traffic profile accessing an application. We wish to partition the
application components across a set of clouds such that by observing the (hourly
volume of) traffic flow of any single cloud it is not possible to infer which compo-
nents are colocated there. This leads to the following question - how should we
distribute load across clouds in order to minimize the maximum hourly variation
in aggregate traffic? As an analogy, the situation here is similar to the problem
of grouping households such that the variation of energy usage of a group is
minimized making it difficult for thieves to infer who has gone on vacation.

Scenario 4. Burstable Billing: Most Tier 1 Internet Service Providers (ISPs)
use burstable billing for measuring bandwidth based on peak usage. The typical
practice is to measure bandwidth usage at regular intervals (say 5 min) and then
use the 95th percentile as a measure of the sustained flow for which to charge.
The 95th percentile method more closely reflects the needed capacity of the link
in question than tracking by other methods such as mean or maximum rate.
The bytes that make up the packets themselves do not actually cost money,
but the link and the infrastructure on either end of the link cost money to
set up and support. The top 5% of samples are ignored as they are considered
to represent transient bursts. Burstable billing is commonly used in peering
arrangements between corporate networks. What is the optimal way to distribute
load among a collection of clouds, public and private, so as to minimize the
aggregate bandwidth bill?

The above scenarios constitute representative situations captured by the
uncapacitated multidimensional load assignment problem framework - VITA.
A host of related problems from a variety of contexts can be abstracted
and modeled as VITA(F): the input consists of n, d-dimensional load vectors
V̄ = {V̄i|1 ≤ i ≤ n} and m cloud buckets B = {Bj |1 ≤ j ≤ m} with asso-
ciated weights wj and assignment constraints represented by a bipartite graph
G = (V̄ ∪ B,E ⊆ V̄ × B) that restricts load V̄i to be assigned only to those
buckets Bj with which it shares an edge. Here, F can be any operator map-
ping a vector to a scalar, such as projection operators, max, min, etc. Then the
goal is to partition the vectors among the buckets, respecting the assignment
constraints, so as to minimize

∑

j

wj ∗ F (
∑

V̄i∈Bj

V̄i)

28 S. Aiyar et al.

where, in a slight abuse of notation, we let Bj also denote the subset of vectors
assigned to bucket Bj . VITA stands for Vectors-In-Total Assignment capturing
the problem essence - vectors assigned to each bucket are totaled. Unless other-
wise specified we use i to index the load vectors, j to index the cloud buckets
and k to index the dimension. We let V̄i(k) denote the value in the k’th position
of the vector V̄i.

We now explain how VITA(F) captures the aforementioned scenarios. In
general, dimensions will either represent categorical entities such as resources
(e.g., CPU, I/O, storage, etc.,) or time periods (e.g., hours of the day or
5-min intervals, etc.,). We gently remind the reader to note that in each of the
scenarios the elasticity of the clouds is a critical ingredient so that contention
between vectors is not the issue. The set of scenarios we present are but a small
sample to showcase the versatility and wide applicability of the VITA framework.

Scenario 1 is captured by having a vector for each VM, with each dimension
representing its resource requirement3; constraints representing placement or
affinity requirements [21], weights wj representing the rates at different cloud
providers. Then minimizing the sum of prices paid for peak resource usage at
each cloud is just the problem VITA(max).

In Scenario 2 each dimension represents the resource (say, CPU utilization)
consumed by the application in a given time period, e.g. the vector for an appli-
cation could have 24 dimensions one for each hour in the day. Once the applica-
tion is assigned to a data center (or cloud or cluster) it is clear that disruption
is minimized if the maintenance downtime is scheduled in that hour where total
resource utilization is minimum. Then minimizing the aggregate disruption is
captured by the problem VITA(min).

The dimensions in Scenario 3 are the hours of the day and the resource in
question is the traffic. To prevent leakage of privacy through traffic analysis
the goal is to distribute the application components across clouds so that the
range between the peak and trough of traffic minimized. This problem is exactly
represented as VITA(max −min).

In Scenario 4, we have vectors for each application with 20 dimensions one for
each 5th percentile [28,29] or ventile of the billing period4. Then minimizing the
aggregate bandwidth bill under the burstable, or 95th percentile, billing method
is VITA(2nd max).

1.2 Our Results

All the problems we consider are in NP [18]. For VITA(min) and VITA(max)
we present our results as a lattice - see Figs. 1 and 2. For any given F, VITA(F)
can be partitioned into a lattice of 4 different problem spaces based on the
following 2 criteria: 1. constraints, and 2. dimensionality. The 4 different prob-
lem spaces arise from the Cartesian product: {unconstrained, constrained} X

3 For time-varying requirements the problem can be modeled by #resources x #time-
periods dimensions.

4 This is a modeling approximation and does not exactly capture 5 min samples.

Colocation, Colocation, Colocation 29

{bounded, unbounded}. Unconstrained refers to the situation where there is no
bipartite graph representing constraints, i.e. any load vector may be placed in
any bucket. And, Bounded refers to the situation where each load vector has a
fixed dimension (independent of n). It should be clear that the simplest of the
4 spaces is unconstrained, bounded VITA(F) and the most general is the con-
strained, unbounded version of VITA(F). We present our results, algorithms and
hardness, for the different F, in the form of a lattice. In each of the figures, the
algorithmic results are displayed only at the highest possible node in the lattice,
since it automatically applies to all nodes in the downward-closure; similarly,
hardness results are presented at the lowest possible node since they apply to
all nodes in the upward-closure. Further, our hardness results use only uniform
weights whereas our algorithmic results work for general weights.

Our theory results are as follows:

– VITA(F) for F linear. We show that when F is linear then the problem is
solvable exactly in polynomial-time. In particular VITA(avg) is in P.

– VITA(min). Our results are summarized in Fig. 1. We show that VITA(min) is
inapproximable when the dimensions are unbounded, i.e. it cannot be approx-
imated to any finite factor. Since it is inapproximable we counter-balance this
result by providing an O(log n, log n)-bicriteria approximation algorithm [25].
Our bicriteria algorithm produces an assignment of cost within O(log n) of
the optimal while using no more than O(log n) copies of each bucket. The
bicriteria result, which is based on rounding an LP (linear program) [27] can
be considered the theoretical center-piece and contains the main ideas used
in the other LP-based results in this paper.

– VITA(max). Our results are summarized in Fig. 2. Our results for VITA(max)
also apply to VITA(max −min). We remind the reader that the unconstrained
bounded box is empty because the algorithmic result for the harder uncon-
strained unbounded case (further up the lattice) applies.

– VITA(2nd max). 2nd max turns out to be a particularly difficult problem from
the standpoint of characterizing its computational complexity. We consider
the unweighted (or uniform weights) unconstrained case and the requirement
that the number of buckets exceeds the number of dimensions. With these
restrictions we are able to demonstrate an LP-based approximation algo-
rithm that achieves a logarithmic factor of approximation. We also show that
unconstrained, bounded VITA(2nd max) is weakly NP-hard [18].

This paper got its start in practical considerations at Nutanix - a leading
hybrid cloud provider. Faced with a seeming plethora of different cloud colocation
use-cases we wondered whether they could be tackled using a common approach.
The VITA framework answers this question by providing a unified method for
comparing against natural heuristics and a common basis for making pragmatic
infrastructure decisions. We used real-world industrial traces from Nutanix,
to conduct a detailed comparative analysis of the approximation algorithms,
collectively dubbed LP-Approx, against 3 natural heuristics - Conservative,
Greedy and Local-Search. Conservative treats each vector and its associated
objective value in isolation. Greedy assigns vectors sequentially so as to minimize

30 S. Aiyar et al.

the increment in objective value. Working with a given assignment Local-Search
swaps vectors when doing so improves the objective value. Our main finding is
that from a practical standpoint too LP-Approx is the best in terms of solution-
quality in all but one of the four cases (Greedy beats LP-Approx in the case of
VITA(min)). Our work can serve as a valuable reminder of how principled and
sophisticated techniques can often achieve superior quality on practical work-
loads, while also providing theoretical guarantees.

Fig. 1. VITA(min). The simplest
unbounded case is inapproximable,
and we give a bicriteria guarantee for
the hardest case.

Fig. 2. VITA(max) and VITA(max −
min). The unconstrained, cases are
exactly solvable and we have tight log-
arithmic guarantees for the constrained
unbounded case.

1.3 Related Work

There is extensive theory literature on multidimensional versions of schedul-
ing and packing problems. [11] is an informative survey that provides a variety
of new results for multidimensional generalizations of three classical packing
problems: multiprocessor scheduling, bin packing, and the knapsack problem.
The vector scheduling problem seeks to schedule n d-dimensional tasks on m
machines such that the maximum load over all dimensions and all machines is
minimized. [11] provide a PTAS for the bounded dimensionality case and poly-
logarithmic approximations for the unbounded case, improving upon [22]. For
the vector bin packing problem (which seeks to minimize the number of bins
needed to schedule all n tasks such that the maximum load on any dimension
across all bins is bounded by a fixed quantity, say 1), they provide a logarithmic
guarantee for the bounded dimensionality case, improving upon [32]. This result
was subsequently further improved by [9]. A PTAS was provided for the multi-
dimensional knapsack problem in the bounded dimension case by [17]. The key
distinction between the vector scheduling problem of [11] and our framework is
that they seek to minimize the maximum over the buckets and the dimensions
whereas (in VITA(max)) we seek to maximize the weighted sum over buckets
of the maximum dimension in each bucket. The multidimensional bin packing
knapsack problems are capacitated whereas this paper deals with uncapacitated

Colocation, Colocation, Colocation 31

versions. There has also been a lot of work on geometric multidimensional pack-
ing where each vector is taken to represent a cuboid [10,13]. To the best of our
knowledge our VITA formulation is novel - surprising given its simplicity.

There is much recent literature (in conferences such as Euro-Par, ICDCS,
SIGCOMM, CCGRID, IPDPS etc.,) substantiating the motivating scenarios we
provide in the introduction (Sect. 1.1) to this paper. We do not attempt to sur-
vey it in any meaningful way here. Peak provisioning and minimizing bottleneck
usage is an area of active research in the systems community [12,30]. Fairness
in provisioning multi-dimensional resources is studied in [19]. The use of CSP
(Constraint Satisfaction Programming) in placement has been investigated [21].
Energy considerations in placement have also been explored [14–16,28,29]. Build-
ing scalable systems that provide some guarantee against traffic analysis is an
area of ongoing active research [23,24,26]. Relative to the specialized literature
for each use-case our treatment is less nuanced (e.g., in reality, storage is less
movable than compute, services are designed for (or to give the illusion of) con-
tinuous uptime, privacy is more subtle than just defeating traffic monitoring,
etc.). However, the generality of our approach enables us to abstract the essence
of the different situations and apply sophisticated techniques from the theory of
mathematical programming.

We present our results in the sections that follow. Section 2 presents results
for linear F. Section 3 presents our results for VITA(min) while Sect. 4 contains
our results for VITA(max) and VITA(max −min). VITA(2nd max) results are
presented in Sect. 5. Due to space constraints, all proofs are provided in the
Appendix.

2 VITA(F) for Linear F

By linear F we mean one of the following two situations:

– F is a vector and F (V̄) = F̄ · V̄ (where we abuse notation slightly and use F
as a function and a vector).

– F is a matrix and the weights are vectors with ∗ representing an inner-product
so that wj ∗ F is a scalar.

Lemma 1. VITA(F) can be solved exactly in polynomial time for linear F.

Proof. Using the linearity of F the value of the objective function can be sim-
plified thus ∑

j

wj ∗ F (
∑

V̄i∈Bj

V̄i) =
∑

j

∑

V̄i∈Bj

wj ∗ F (V̄i)

Hence minimizing the value of the objective function is simply a matter of finding
the j that minimizes wj ∗ F (V̄i) for each feasible V̄i.

Corollary 1. VITA(avg) can be computed exactly in polynomial time.

Proof. Set F̄ = [1d , 1
d , . . . , 1

d] where d is the dimension. It is straightforward to
see that F̄ · V̄ =

∑
i Vi

d .

32 S. Aiyar et al.

Note that many real-world pricing situations are captured by linear F, such
as charging separately for the usage of each resource (dimension).

3 VITA(min)

3.1 Unconstrained, Bounded - Exact

First, we prove two lemmas about the optimal solution which will help us con-
strain the search space for our exact algorithm.

Without loss of generality assume that the bucket index j is sorted in order
of increasing weight wj .

Lemma 2. There exists an optimal solution which uses only the first b buckets,
for b ≤ d. Further, let min(j) be the dimension with the minimum value in bucket
j; then, the set {min(j)|1 ≤ j ≤ b} has all distinct elements.

Proof. It is clear that if in a solution two buckets have the same dimension
with the minimum value then the bucket with the larger weight can be emptied
into the smaller without increasing the value of the objective function. Thus the
set of dimensions with the minimum value must be distinct across buckets and
therefore the optimal solution need have at most d buckets. It is also clear that if
the optimal solution does not involve a bucket j but does involve a bucket j′ > j
then all the items in bucket j′ can be moved to bucket j without increasing the
value of the objective function. Thus the optimal solution may consist only of
the first b buckets, for b ≤ d.

We remind the reader that V̄i(k) denotes the value in the k’th position of the
vector V̄i.

Lemma 3. There exists an optimal solution in which item i is placed in that
bucket j for which wj ∗ Vi(min(j)) is minimized, amongst the first d buckets.

Proof. Suppose not. Let item i be placed in bucket j′. Now if we move it to bucket
j then the value of the objective function is changed by −wj′ ∗Vi(min(j′))+wj ∗
Vi(min(j)) which by definition is non-positive. Contradiction, and hence proved.

The above two lemmas give rise to a straightforward search, Algorithm 1.

Algorithm 1. Exact Algorithm for Unconstrained Bounded VITA(min)
1: for each permutation Π of the first d buckets do
2: for each load vector V̄i do
3: Place load vector V̄i in that bucket j which minimizes wΠ(j) ∗ Vi(min(Π(j)))
4: Compute the value of the objective function for this permutation
5: Output the best value over all permutations and the corresponding assignment

Colocation, Colocation, Colocation 33

Theorem 1. Unconstrained, Bounded VITA(min) can be computed exactly in
time O(m ∗ n ∗ d!).

Proof. The correctness of Algorithm 1 follows from the prior two lemmas. The
running time follows from the fact that the algorithm searches over d! permuta-
tions and for each permutation it takes O(m) time to assign each of the n load
vectors.

3.2 Constrained, Bounded - Strongly NP-Hard

Theorem 2. Constrained, Bounded VITA(min) is strongly NP-hard.

Proof. The proof is by reduction from Bin Packing [18] which is strongly NP-
hard. In an instance of Bin Packing we are given m bins of the same (constant)
size S and a collection of n items ai such that

∑
i ai = m ∗ S and we need to

decide if these n items can be packed into the m bins.
Given the instance of Bin Packing we create m buckets and m+n load vectors

of dimension 2. m of the load vectors are of the form [S, 0] and the vectors are
matched up with the buckets so that each such vector is necessarily assigned to
its corresponding bucket. Then for each item ai there is a load vector [0, ai] and
these vectors are unconstrained and can be assigned to any bucket. All weights
are set to 1. Now, it is easy to see that the given instance of Bin Packing is
feasible if and only if the value of the objective function of VITA(min) is m ∗ S.

3.3 Unconstrained, Unbounded - Inapproximable

Theorem 3. Unconstrained, Unbounded VITA(min) is inapproximable unless
P = NP .

Proof. The proof is by reduction from Set Cover [18].
In Set Cover we are given a collection of m sets over a universe of n elements

and a number C and we need to decide whether there exists a subcollection of
size C that covers all the elements.

We reduce the given instance of Set Cover to Unconstrained, Unbounded
VITA(min) as follows: we let m be the dimension size as well as the number of
buckets, one for each set. And, for each element i, we have an m-dimensional
load vector:

V̄i(j) =
{

1 if element i ∈ set j
∞ otherwise

We set the weights of C of the buckets to be 1 and the weights of the remaining
buckets to be ∞.

It is easy to see that the value of the objective function for Unconstrained,
Unbounded VITA(min) is C if and only if there exist C sets covering all the ele-
ments, otherwise the value of the objective function is ∞. Thus, Unconstrained,
Unbounded VITA(min) cannot be approximated to any factor.

34 S. Aiyar et al.

3.4 Constrained, Unbounded - O(log n, logn) Bicriteria

Given that the problem is inapproximable (unless P = NP) we relax our expecta-
tions and settle for the next best kind of approximation - a bicriteria approxima-
tion, [25] where we relax not just the objective function but also the constraints.
In this particular situation we will find a solution that uses at most O(log n)
copies of each bucket while obtaining an assignment whose value is no worse
than an O(log n) factor worse than the optimal solution which uses at most 1
copy of each bucket.

Consider the following LP (Linear Program). Let yjk denote the fraction
bucket j gives to dimension k, and xijk denote the weight vector i gives to
dimension k of bucket j.

min
∑

j

wj

∑

i

∑

k

xijkvik min-LP

s.t.
∑

k

yjk = 1 ∀j

∑

j

yjk = 1 ∀k

xijk ≤ yjk ∀i, j, k
∑

j

∑

k

xijk ≥ 1 ∀i

xijk ≥ 0 ∀i, j, k

yjk ≥ 0 ∀j, k

Lemma 4. The above LP is a valid relaxation of Constrained, Unbounded
VITA(min).

Proof. First we need to verify that this LP is a valid relaxation of the original
problem. In other words, every solution of the original problem can be translated
to the integer solution of this LP. And every integer solution of this LP is a valid
solution of the original problem.

Suppose we have a solution of the original problem. Let min(j) be the mini-
mum dimension of bucket j, and σ(i) be the bucket assigned for load vector i. The
value of the objective function for this solution is

∑
j wj

∑
i:σ(i)=j V̄i(min(j)).

Now construct the integer solution of the LP. Let

yjk =
{

1 if k = m(j)
0 otherwise

and

xijk =
{

1 if j = σ(i), k = m(j)
0 otherwise

Because each bucket only has one minimum dimension, the first constraint
is satisfied. And each vector is assigned to one bucket, so the second and third

Colocation, Colocation, Colocation 35

constraints are satisfied also. On the other hand, if we have the integer solution,
we can assign min(j) = k and σ(i) = j to have a valid solution of the original
problem. So there is a one to one relation between the integer solutions of the LP
and the solutions of the original problem. Furthermore, the objective function
of the LP is the same as the objective function of the original problem. So the
optimal integer LP solution must map to the optimal solution of the original
problem, and vice versa.

Let x∗
ijk and y∗

jk be the optimal solution of the LP. The algorithm is as
follows.

Algorithm 2. Bicriteria Approximation for Constrained Bounded VITA(min)
1:
2: for Each vector do
3: Order its bucket-dimension pair by y∗

jk values. And maximize the corresponding
x∗

ijk values in order. So there will be only one x∗
ijk value that is neither equal to

y∗
jk nor 0.

4: if This x∗
ijk value is greater or equal to 1

2
y∗

jk, then
5: round it to y∗

jk

6: else
7: round it to 0, and double all the previous non-zero x∗

ijk values.
8: for ln n

ε
times do

9: for Each dimension k in each bucket j do
10: With probability y∗

jk make a copy of bucket j in dimension k. And assign all
the vectors with x∗

ijk = y∗
jk to this bucket.

Theorem 4. Algorithm 2 is an O(log n, log n) bicriteria approximation algo-
rithm for Constrained Bounded VITA(min).

Proof. Notice that, in our algorithm we assume that x∗
ijk = y∗

jk or 0. This is
not hard to achieve. For each item, it will order its favorite bin-dimension pair
by y∗

jk values. And maximize the corresponding x∗
ijk values in order. So there is

only one x∗
ijk value that is not equal to y∗

jk value or 0. If this x∗
ijk value is greater

or equal to 1
2y∗

jk, we can round it to y∗
jk. Our new objective value is within twice

the LP value. If not, we could round it to 0, and double all the previous non-zero
x∗

ijk values. Then our value is still within twice the LP value. Even if we don’t
double the previous x∗

ijk values, we still have
∑

j,k x∗
ijk ≥ 1/2, which we could

use to bound the value output by our algorithm.
The expected value of the solution obtained by the (above randomized)

Algorithm 2 is exactly the same as the optimum value of the LP. The expected
number of copies of each bucket we make is

∑
k yjk = 1. And the probability

that vector i is not assigned to one of the buckets is: (where s = m ∗ d),

Πj,k(1 − x∗
ijk) ≤

(
1 −

∑
j,k x∗

ijk

s

)s

=
(

1 − 1
s

)s

≤ e−1

36 S. Aiyar et al.

So, if we repeat for t = ln n
ε times, then

Pr[some vector is not assigned]

≤
∑

i

Pr[vector i is not assigned] =
n

et
= ε

The expected value of the solution is OPTLP · ln n
ε . The expected number of

copies of a bucket is ln n
ε . Thus Algorithm 2 gives a (log n, log n)-approximation

to Constrained Bounded VITA(min).

4 VITA(max)

Max - Min and Max are very similar, in that for the lower bound we can use the
same log-hardness result since min is 0 and for the upper bound we can set the
y variable to be greater than the difference of two dimensions for every pair of
dimensions.

4.1 Unconstrained, Unbounded - Exact

For example, unconstrained, bounded VITA(max) (see Fig. 2) has an exact
(polynomial-time) algorithm because a node above, namely unconstrained,
unbounded VITA(max) does; further, this result is obviously tight and hence
the square has a dotted background. Squares that do not have a dotted back-
ground represent open gaps that present opportunities for further research.

Theorem 5. Unconstrained, Unbounded VITA(max) can be computed exactly
in time O(m + n) time by placing all items into the bucket with the smallest
weight.

Proof. We first show that the bucket with the smallest weight will always be
used in the optimal solution. If the bucket with smallest weight is not used in
the optimal solution, we can always move all the items in one bucket with non-
smallest weight to the bucket with the smallest weight to improve the solution.

Now, we show that if we move all the items in the buckets with non-smallest
weight to the bucket with smallest weight, the objective value of this new solution
will not increase.

To see this, let the bucket B0 with the smallest weight w0. Let the aggregated
vector in B0 be V̄0. Let the bucket Bi with a non-smallest weight wi in the
solution, the aggregated vector in Bi be V̄i.

It is easy to see that w0 · max(V̄0 + V̄i) ≤ w0 · (max(V̄0) + max(V̄1)) ≤
w0 · max(V̄0) + wi · max(V̄i).

Thus, moving all items from Bi to B0 will not increase the objective value
of the current solution.

Moving all items to the smallest weighted buckets is optimal.

Colocation, Colocation, Colocation 37

4.2 Constrained, Bounded - Strongly NP-Hard

Theorem 6. Constrained, Bounded VITA(max) is strongly NP-complete even
when the number of dimension equals 2.

Proof. We prove by making reduction from bin packing. For k bins with capacity
c, we correspondingly assign k buckets. As part of input vectors, we will have k
2-dimensional vectors (c, 0). Each of them are strictly constrained to each bucket.
Then for each item i with size si in the problem of bin packing, we create a
2-dimensional vector (0, si) which can be put into any bucket. We further let
each bucket have uniform weight of 1. Then there exists k bins that can hold all
the items in the bin packing problem if and only if the objective value of this
VITA(max) that equals kc is reachable.

4.3 Constrained, Unbounded - Θ(log n)

Lemma 5. Constrained, Unbounded VITA(max) is strongly NP-complete, and
can not be approximated within O(log n).

Proof. We prove by making reduction from set cover. First we let the number of
dimensions of input vector in VITA(max) be the number of elements in the set
cover problem. For each element si(i = 1 ∼ n), we correspondingly let vector V̄i

has value one on dimension i, has value zero on all the other dimensions. Thus,
there are no two element vectors has one value on the same dimension.

Each subset Sj maps to a bucket Bj . If element si ∈ Sj , then V̄i can be
placed at bucket Bj .

Thus, there exists k subsets that cover all the elements if and only if the
objective value of this VITA(max) that equals k is reachable.

Lemma 6. Constrained, Unbounded VITA(max) is O(log n) approximable.

Proof (Proof of Lemma 6). Consider the following LP. Let xij be the fraction of
item i assigned to bucket j.

min
m∑

j=1

wj ∗ yj max-LP

s.t. yj ≥
n∑

i=1

xij · vik ∀j, k

m∑

j=1

xij ≥ 1 ∀i

It is easy to see that this max-LP is a valid relaxation of constrained,
unbounded VITA(max). Then we need to repeat rounding {xij} O(log n) times
to make sure that all items are placed to some buckets with high probability.
The proof is similar to the part in min-LP.

Directly from Lemmas 5 and 6, we get the following.

Corollary 2. Constrained, Unbounded VITA(max) is Θ(log n) approximable.

38 S. Aiyar et al.

5 VITA(2nd max)

We found VITA(2nd max) to be a qualitatively harder problem and thus were
forced to consider the restricted version where the weights are uniform and the
number of buckets exceeds the (bounded) number of dimensions.

5.1 Unweighted, Bounded, Unconstrained - Weakly NP-Hard

Theorem 7. Bounded, Unconstrained VITA(2nd max) is weakly NP-hard.

Proof. The proof is by reduction from Partition [18]. In an instance of Partition
we are given an array of numbers a1, a2, . . . , an such that

∑n
i=1 ai = 2B, and we

are required to decide whether there exist a partition of these numbers into two
subsets such that the sum of numbers in each subset is B.

Given an instance of Partition we reduce it to an instance of Bounded, Con-
strained VITA(2nd max) as follows: our reduction will use 3 dimensions. For each
number ai we construct the load vector [0, 0, ai]. We add another two vectors,
[L,B, 0] and [B,L, 0], where L >> B, to the collection of vectors. And, there
are two (3-dimensional) buckets with uniform weights which we take to be 1. In
an optimal assignment vectors [L,B, 0] and [B,L, 0] will be assigned to different
buckets because L >> B. Thus, the contribution of each bucket is at least B
and the value of the objective function is always at least 2B. Now, from our con-
struction, it is easy to see that if the given instance of Partition has a partition
into two subsets with equal sums then the value of the objective function (of the
instance) of VITA(2nd max) (to which it is reduced) is 2B. And if there is no
equal sum partition into two subsets, then one of the buckets necessarily has a
2nd max dimension value greater than B, which means that the objective value
has to be larger than 2B.

5.2 Unweighted, Constrained, with Number of Buckets Exceeding
Number of Dimensions - O(log n) Approximation

Consider the following LP. Let xij be the fraction of vector i assigned to
bucket j.

min
m∑

j=1

yj 2ndmax-LP

s.t. yj ≥
n∑

i=1

xij · vik ∀j, k (j �= k)

m∑

j=1

xij ≥ 1 ∀i

Colocation, Colocation, Colocation 39

Lemma 7. The above LP 2nd max-LP is a valid relaxation of constrained
VITA(2nd max) where the number of buckets exceeds the number of dimensions.

Proof. First we need to verify that yj really represents the 2nd-maximum dimen-
sion in the LP solution. From the first LP constraint, we know yj is either the
maximum dimension or the 2nd-maximum dimension. The following proof shows
that based on the current LP optimum we could come up with a new LP opti-
mum solution in which yj is the 2nd-maximum dimension of bin j. For each bin
j with yj as maximum dimension, there are only 2 cases, as follows.

Case 1: the item, with yj’s corresponding dimension as “free” dimension, has its
“free” dimension as maximum. In bin j the “free” dimension is jth dimension.
Assume yj represents the value in dimension dj of bin j, then we can find the
bin in which dimension dj is the maximum (“free” dimension). Merge these two
bins together and set dj as the “free” dimension of this bin. In the new solution,
the cost won’t be more than the previous optimal solution, which means this is
also an optimal solution.

Case 2: the item, with yj’s corresponding dimension as “free” dimension, doesn’t
have its “free” dimension as maximum. Let bin j have “free” dimension j. yj

represents the value of dimension dj of bin j and it is the maximum dimension.
Bin k has dj as “free” dimension. And yk is the maximum dimension of bin k.
Then swap these two bins. The cost of new bin k is less than yj and the cost of
new bin j is at most equal to yk. So the cost of new solution is better than the
original optimal solution. This is a contradiction, which means this case couldn’t
happen.

To sum up, given an optimal solution of the LP, we can come up a new opti-
mal solution in which each yj represents the 2nd-maximum dimension of bin j.

Lemma 8. Unweighted, Constrained, VITA(2nd max) with number of buckets
exceeding number of dimensions can be approximated to factor O(log n).

Proof. As with the algorithm and proof for min-LP, we need to repeat rounding
{xij} O(log n) times to make sure that all vectors are placed in some bucket
with high probability.

6 Experiments

We implemented LP-Approx and the three heuristics in Python, using Python
2.7.5. We use SageMath [31] and GLPK [8] as our Linear Programming Solver.
We conducted our experiments on a single core of a 4-core Intel i7-3770 clocked
at 3.4 GHz (0.25 MB L2 cache per core, and 2 MB L3 cache per core), with
16 GiB of DDR3-1600 RAM.

40 S. Aiyar et al.

Nutanix is a vendor of hyper-converged infrastructure appliances. For this
paper we used a dataset obtained from an in-house cluster they maintain for
testing and validation purposes. The cluster runs real customer workloads. The
data was logged using the Prism system of Nutanix and then filtered, anonymized
and aggregated before being handed to us. The dataset we received comprised
of measurements logged every 5 min of CPU, memory and storage used by 643
different services running continuously for the entire calendar month of August
2017. The data consisted of 643×8928 rows of 6 columns - timestamp, serviceID,
CPU-usage, memory-usage, storage-utilization and bandwidth-usage.

0 100 200 300 400 500 600 700 800 900 1000 1100
of VCPU

0

20

40

60

80

100

120

140

160

180

of

 r
eq

ue
st

s

(a) # of VCPUs

0 100 200 300 400 500 600
Memory (GB)

0

500

1000

1500

2000

2500

of

 r
eq

ue
st

s

(b) Memory size

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Storage size (GB)

0

500

1000

1500

2000

2500

3000

3500

of

 r
eq

ue
st

s

(c) Storage

Fig. 3. Histograms of requested resources

Algorithm 3. Heuristic 1 - Conservative
1: for each vector do
2: Assign the vector Vi to that bucket j which minimizes w · F (Vi).

The goal of our experiments was to compare the LP-based approxima-
tion algorithms to 3 natural polynomial-time heuristics - Conservative, Greedy
and Local-Search - on each of the 4 problems - VITA(max), VITA(min),
VITA(max −min) and VITA(2nd max). We briefly describe the 3 heuristics:

– Conservative This heuristic assigns each vector in isolation, i.e. it assigns each
vector V̄i to that bucket j which minimizes wj · F̃ (V̄i).

– Greedy The heuristic detailed in Algorithm 4 selects the vectors one by one
in a random order and assigns to the bucket that minimizes the increase in
the objective value.

– Local-Search Local search based vector placement in Algorithm 5 starts from a
random feasible placement and repeatedly swaps vectors between two buckets
to decrease the objective value. Since the size of the potential search space is
exponential in n, the number of vectors, we restrict the heuristic to run the
swapping step for a linear number of times.

Colocation, Colocation, Colocation 41

It is easy to see that all the 3 heuristics can be arbitrarily bad (Ω(n)) in
terms of quality of approximation. However, we are interested in comparing their
behavior on practical workloads vis a vis each other as well as the corresponding
LP-based approximation algorithm. We run each of the 4 schemes (3 heuristics
and 1 approximation algorithm) on samples of n vectors drawn from the dataset.
Each sample is drawn uniformly from the entire dataset n runs from 10 to 100
in steps of 10. Given a sample we simulate each scheme on the sample to obtain
a measure of the solution-quality and run-time5. For a given n we run as many
samples as are needed to minimize the sample variance of the statistic (solution-
quality or run-time) to below 1% of the sample mean. For VITA(max) we utilize
the 3 dimensions - CPU, memory and storage - after a suitable normalization,
and averaged over the entire month, i.e. we sample from 643 rows. For VITA(min)
we aggregate CPU usage on an hourly basis (from the 5 min measurements which
reduces the dataset from 8928 to 744 rows per service). For VITA(max −min) we
aggregate bandwidth usage on an hourly basis per service. For VITA(2nd max)
we use the bandwidth usage on a 5 min basis for each service. Based on our
experiments we collected measurements on the two main considerations - (1)
solution quality and, (2) running time, for each of VITA(max), VITA(min),
VITA(max −min) and VITA(2nd max). In Figs. 2, 3, 4 and 5 we use VITA(f) in
place LP-Approx to emphasize the specific function f under consideration.

Algorithm 4. Heuristic 2 - Greedy
1: Shuffle the order of vectors;
2: for each vector do
3: Assign the vector to that bucket such that the current objective value is raised

the least;

Algorithm 5. Heuristic 3 - Local-Search
1: for each vector do
2: Randomly assign it to a feasible bucket by affinity constraint;
3: for 1 to poly(n) steps do
4: for every two buckets do
5: Swap any pair of two vectors if the swap will reduce the objective value;

6.1 Solution Quality

From Fig. 4a, c and d, it can be seen that the linear programming based
approximation outperforms the heuristics for VITA(max), VITA(max −min)
and VITA(2nd max) by a factor of about 1.5. Unfortunately, the out-performance

5 We do not implement these schemes in the Nutanix system and then measure their
performance as that would be expensive in terms of development time and would
produce little additional clarity over the simulation based approach.

42 S. Aiyar et al.

10 20 30 40 50 60 70 80 90 100
of vectors

0

5000

10000

15000
A

ve
ra

ge
 o

bj
ec

tiv
e

vl
au

e

VITA(max)
Conservative
Greedy
Local search

(a) VITA(max)

10 20 30 40 50 60 70 80 90 100
of vectors

500

1000

1500

2000

2500

3000

3500

4000

4500

A
ve

ra
ge

 o
bj

ec
tiv

e
va

lu
e

VITA(min)
Conservative
Greedy
Local search

(b) VITA(min)

10 20 30 40 50 60 70 80 90 100
of vectors

0

2000

4000

6000

8000

10000

12000

A
ve

ra
ge

 o
bj

ec
tiv

e
va

lu
e

VITA(max-min)
Conservative
Greedy
Local search

(c) VITA(max-min)

10 20 30 40 50 60 70 80 90 100
of vectors

0

2000

4000

6000

8000

10000

12000

14000

A
ve

ra
ge

 o
bj

ec
tiv

e
va

lu
e

VITA(2ndMax)
Conservative
Greedy
Local search

(d) VITA(2ndMax)

Fig. 4. Quality of approximation of VITA(max, min, max-min, 2ndMax) vs {Greedy,
Conservative, Local-Search}

does not stand out visually because of the compression in the scale of the graph
caused by the very poor performance of Local-Search. Local-Search performs
particularly poorly in these 3 cases due to its dependence on the starting con-
figuration.

For minimizing the maintenance down time in Fig. 4b, VITA(min) performs
better than any of Greedy, Local-Search and Conservative. This is because
VITA(min)’s bicriteria approximation scheme allows for the use of additional
buckets, see Fig. 6. However, when the same number of extra buckets are given
to all heuristics, we see that Greedy performs best.

6.2 Running Time

Here we focus only on VITA and Greedy for two reasons: (1) Previous experiment
results on solution quality show that VITA and Greedy are the two approaches
of interest (2) Local-Search has much higher run time complexity than others.
Fig. 5a–d show that Greedy, basically linear-time, is superior to the LP based
approximation algorithms (Fig. 7).

Colocation, Colocation, Colocation 43

10 20 30 40 50 60 70 80 90 100
of vectors

0

0.02

0.04

0.06

0.08

0.1

A
ve

ra
ge

 r
un

ni
ng

 ti
m

e
(s

ec
s)

VITA(max)
Greedy

(a) VITA(max)

10 20 30 40 50 60 70 80 90 100
of vectors

0

2

4

6

8

10

12

14

16

A
ve

ra
ge

 r
un

ni
ng

 ti
m

e
(s

ec
s)

VITA(min)
Greedy

(b) VITA(min)

10 20 30 40 50 60 70 80 90 100
of vectors

0

0.02

0.04

0.06

0.08

0.1

0.12

A
ve

ra
ge

 r
un

ni
ng

 ti
m

e
(s

ec
s)

VITA(max-min)
Greedy

(c) VITA(max-min)

10 20 30 40 50 60 70 80 90 100
of vectors

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

A
ve

ra
ge

 r
un

ni
ng

 ti
m

e
(s

ec
s)

VITA(2ndMax)
Greedy

(d) VITA(2ndMax)

Fig. 5. Running time of VITA(max, min, max-min, 2ndMax) vs Greedy

2 4 6 8 10 12 14 16 18 20
of given buckets

0

5

10

15

20

25

30

35

40

45

of

 u
se

d
bu

ck
et

s

VITA(min)

Fig. 6. # of used buckets vs # of given
buckets for VITA(min)

10 20 30 40 50 60 70 80 90 100
of vectors

0

500

1000

1500

2000

2500

3000

3500

4000

4500

A
ve

ra
ge

 o
bj

ec
tiv

e
va

lu
e

VITA(min)
Conservative
Greedy
Local search

Fig. 7. Solution quality with same
number of additional buckets given to
heuristics

7 Conclusion and Future Work

We have proposed a new and general framework VITA that captures several
naturally occurring problems in the context of hybrid clouds. We presented
novel hardness results and approximation algorithms (using clever LP rounding).
We conducted a detailed experimental evaluation comparing our approximation
algorithm to several natural heuristics.

On the experimental side it would be interesting to characterize natural work-
loads and develop heuristics with provable (average-case) guarantees. Our the-

44 S. Aiyar et al.

oretical work has left some obvious open gaps including constrained bounded
VITA(min) and VITA(max) and removing the restrictions from our results for
VITA(2nd max). Another important direction for future investigation is devising
distributed and online algorithms.

Acknowledgements. Rajmohan Rajaraman, Zhifeng Sun, Bochao Shen and Ravi
Sundaram gratefully acknowledge the support of the National Science Foundation
under award number #1535929. Bochao Shen and Ravi Sundaram gratefully acknowl-
edge the support of the National Science Foundation under award number #1718286.

References

1. Amazon web services - cloud computing services. https://aws.amazon.com/
2. Datadog - modern monitoring and analytics. https://www.datadoghq.com/
3. Google cloud platform. https://cloud.google.com/
4. Hewlett packard enterprise - hybrid it with cloud. https://www.hpe.com/us/en/

home.html
5. Microsoft azure cloud computing platform and services. https://azure.microsoft.

com/en-us/
6. Rightscale. https://www.rightscale.com/
7. Turbonomic. https://turbonomic.com/
8. GLPK (GNU linear programming kit) (2006). http://www.gnu.org/software/glpk
9. Bansal, N., Caprara, A., Sviridenko, M.: A new approximation method for set

covering problems, with applications to multidimensional bin packing. SIAM J.
Comput. 39(4), 1256–1278 (2009)

10. Bansal, N., Khan, A.: Improved approximation algorithm for two-dimensional bin
packing. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2014, Portland, Oregon, USA, 5–7 January 2014, pp.
13–25 (2014)

11. Chekuri, C., Khanna, S.: On multi-dimensional packing problems. In:
SODA: ACM-SIAM Symposium on Discrete Algorithms (A Conference
on Theoretical and Experimental Analysis of Discrete Algorithms) (1999).
citeseer.ist.psu.edu/chekuri99multidimensional.html

12. Chen, G., et al.: Energy-aware server provisioning and load dispatching for
connection-intensive internet services. In: Proceedings of the 5th USENIX Sympo-
sium on Networked Systems Design and Implementation, NSDI 2008, pp. 337–350
(2008)

13. Christensen, H.I., Khan, A., Pokutta, S., Tetali, P.: Multidimensional bin pack-
ing and other related problems: a survey. https://people.math.gatech.edu/∼tetali/
PUBLIS/CKPT.pdf

14. Dimitropoulos, X., Hurley, P., Kind, A., Stoecklin, M.P.: On the 95-percentile
billing method. In: Moon, S.B., Teixeira, R., Uhlig, S. (eds.) PAM 2009. LNCS,
vol. 5448, pp. 207–216. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-00975-4 21

15. Dupont, C., Hermenier, F., Schulze, T., Basmadjian, R., Somov, A., Giuliani, G.:
Plug4Green: a flexible energy-aware VM manager to fit data centre particularities.
Ad Hoc Netw. 25, 505–519 (2015)

16. Dupont, C., Schulze, T., Giuliani, G., Somov, A., Hermenier, F.: An energy aware
framework for virtual machine placement in cloud federated data centres. In:
e-Energy, p. 4. ACM (2012)

https://aws.amazon.com/
https://www.datadoghq.com/
https://cloud.google.com/
https://www.hpe.com/us/en/home.html
https://www.hpe.com/us/en/home.html
https://azure.microsoft.com/en-us/
https://azure.microsoft.com/en-us/
https://www.rightscale.com/
https://turbonomic.com/
http://www.gnu.org/software/glpk
http://citeseer.ist.psu.edu/chekuri99multidimensional.html
https://people.math.gatech.edu/~tetali/PUBLIS/CKPT.pdf
https://people.math.gatech.edu/~tetali/PUBLIS/CKPT.pdf
https://doi.org/10.1007/978-3-642-00975-4_21
https://doi.org/10.1007/978-3-642-00975-4_21

Colocation, Colocation, Colocation 45

17. Frieze, A., Clarke, M.: Approximation algorithms for the m-dimensional 0-1 knap-
sack problem: worst-case and probabilistic analyses. Eur. J. Oper. Res. 15(1),
100–109 (1984)

18. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

19. Ghodsi, A., Zaharia, M., Hindman, B., Konwinski, A., Shenker, S., Stoica, I.: Dom-
inant resource fairness: fair allocation of multiple resource types. In: Proceedings of
the 8th USENIX Symposium on Networked Systems Design and Implementation,
NSDI 2011, Boston, MA, USA, 30 March–1 April 2011 (2011)

20. Herbst, N.R., Kounev, S., Reussner, R.: Elasticity in cloud computing: what it is,
and what it is not. In: Proceedings of the 10th International Conference on Auto-
nomic Computing (ICAC 2013), pp. 23–27. USENIX, San Jose (2013). https://
www.usenix.org/conference/icac13/technical-sessions/presentation/herbst

21. Hermenier, F., Lawall, J.L., Muller, G.: BtrPlace: a flexible consolidation manager
for highly available applications. IEEE Trans. Dependable Sec. Comput. 10(5),
273–286 (2013)

22. Hochbaum, D., Shmoys, D.: Using dual approximation algorithms for schedul-
ing problems: theoretical and practical results. J. ACM 34, 144–162 (1987).
citeseer.ist.psu.edu/470961.html

23. van den Hooff, J., Lazar, D., Zaharia, M., Zeldovich, N.: Vuvuzela: scalable private
messaging resistant to traffic analysis. In: Proceedings of the 25th Symposium on
Operating Systems Principles, SOSP 2015, Monterey, CA, USA, 4–7 October 2015,
pp. 137–152 (2015)

24. Jansen, R., Bauer, K.S., Hopper, N., Dingledine, R.: Methodically modeling the tor
network. In: 5th Workshop on Cyber Security Experimentation and Test, CSET
2012, Bellevue, WA, USA, 6 August 2012 (2012)

25. Marathe, M.V., Ravi, R., Sundaram, R., Ravi, S.S., Rosenkrantz, D.J., Hunt III,
H.B.: Bicriteria network design problems. J. Algorithms 28(1), 142–171 (1998)

26. Mathewson, N., Dingledine, R.: Practical traffic analysis: extending and resisting
statistical disclosure. In: Martin, D., Serjantov, A. (eds.) PET 2004. LNCS, vol.
3424, pp. 17–34. Springer, Heidelberg (2005). https://doi.org/10.1007/11423409 2

27. Raghavan, P., Thompson, C.D.: Randomized rounding: a technique for provably
good algorithms and algorithmic proofs. Combinatorica 7(4), 365–374 (1987).
https://doi.org/10.1007/BF02579324

28. Reddyvari Raja, V., Dhamdhere, A., Scicchitano, A., Shakkottai, S., Claffy, Kc.,
Leinen, S.: Volume-based transit pricing: is 95 the right percentile? In: Faloutsos,
M., Kuzmanovic, A. (eds.) PAM 2014. LNCS, vol. 8362, pp. 77–87. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-04918-2 8

29. Raja, V.R., Shakkottai, S., Dhamdhere, A., Claffy, Kc.: Fair, flexible and feasible
ISP billing. SIGMETRICS Perform. Eval. Rev. 42(3), 25–28 (2014)

30. Stillwell, M., Vivien, F., Casanova, H.: Virtual machine resource allocation for
service hosting on heterogeneous distributed platforms. In: 26th IEEE International
Parallel and Distributed Processing Symposium, IPDPS 2012, Shanghai, China,
21–25 May 2012, pp. 786–797 (2012)

31. The Sage Developers: SageMath, the Sage Mathematics Software System (Version
8.1) (2017). http://www.sagemath.org

32. de la Vega, W.F., Lueker, G.S.: Bin packing can be solved within 1+ε in linear
time. Combinatorica 1, 349–355 (1981)

https://www.usenix.org/conference/icac13/technical-sessions/presentation/herbst
https://www.usenix.org/conference/icac13/technical-sessions/presentation/herbst
http://citeseer.ist.psu.edu/470961.html
https://doi.org/10.1007/11423409_2
https://doi.org/10.1007/BF02579324
https://doi.org/10.1007/978-3-319-04918-2_8
http://www.sagemath.org

	Colocation, Colocation, Colocation: Optimizing Placement in the Hybrid Cloud
	1 Introduction
	1.1 Motivation and Model
	1.2 Our Results
	1.3 Related Work

	2 VITA(F) for Linear F
	3 VITA(min)
	3.1 Unconstrained, Bounded - Exact
	3.2 Constrained, Bounded - Strongly NP-Hard
	3.3 Unconstrained, Unbounded - Inapproximable
	3.4 Constrained, Unbounded - O(logn, logn) Bicriteria

	4 VITA(max)
	4.1 Unconstrained, Unbounded - Exact
	4.2 Constrained, Bounded - Strongly NP-Hard
	4.3 Constrained, Unbounded - (logn)

	5 VITA(2ndmax)
	5.1 Unweighted, Bounded, Unconstrained - Weakly NP-Hard
	5.2 Unweighted, Constrained, with Number of Buckets Exceeding Number of Dimensions - O(logn) Approximation

	6 Experiments
	6.1 Solution Quality
	6.2 Running Time

	7 Conclusion and Future Work
	References

