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Abstract. Most social networks of today are populated with several
millions of active users, while the most popular of them accommo-
date way more than one billion. Analyzing such huge complex networks
has become particularly demanding in computational terms. A task of
paramount importance for understanding the structure of social networks
as well as of many other real-world systems is to identify communities,
that is, sets of nodes that are more densely connected to each other than
to other nodes of the network. In this paper we propose two algorithms
for community detection in networks, by employing the neighborhood
overlap metric and appropriate spanning tree computations.

Keywords: Community detection · Neighborhood overlap ·
Hierarchical clustering · Edge betweenness · Modularity ·
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1 Introduction

Over the last few decades, advances in technology and the rise of the Internet
have led to numerous online social networks, like Facebook, Twitter, LinkedIn,
and Instagram, where people interact and exchange information at an unprece-
dented rate forming a plethora of virtual groups, communities and societies.
Apart from its own interest, the study and analysis of social networks finds appli-
cations on complex networks that appear in various other scientific fields. Scien-
tists working on different disciplines like sociology, computer science, anthropol-
ogy, psychology, biology, and physics are interested in the discovery of various
structural and statistical properties that characterize complex networks [2]. One
of the most important problems in analyzing such networks is the detection of
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communities based on observable connections and interaction among users or
components of the network. Prediction of human emotions, influence propaga-
tion, sentiment analysis, opinion dynamics, protein interaction are some of the
ever-expanding fields for which community detection is highly relevant.

In this work we are proposing two new algorithms for community detection
in networks that can be represented by unweighted graphs, that is, networks in
which only information regarding connections between parts of the network is
available. Our algorithms are hierarchical clustering methods, that make novel
use of the Neighborhood overlap (nover) metric and spanning tree computations.
We compare our algorithms with two related well-known algorithms Louvain and
Girvan-Newmann (GN) by performing experiments on random graphs as well as
on real-world networks. The contribution of this work is twofold: first, we manage
to obtain a fast parallelizable algorithm based on spanning tree computations
and second we reveal cases where the use of the nover similarity measure can
enhance community detection.

1.1 Community Detection

A community in a network is a collection of nodes that are more densely con-
nected to each other than to nodes outside the community. Detecting communi-
ties thus helps us identify nodes with common preferences, properties or behavi-
or, unveil interactions and evaluate relationships among them and often discover
hidden information.

Currently, there are quite a few methods and techniques that deal with find-
ing communities. As an example, a lot of techniques identify edges that link dif-
ferent communities. In order to find such edges, various centrality measures, such
as node or edge betweenness, are used. Popular approaches attempt to discover
a hierarchical structure in a network, and create communities that maximize
or minimize some evaluation function. Well-known community detection algo-
rithms are the Girvan-Newman algorithm, which is based on the edge betweenness
metric [8], the Louvain algorithm [4], and the Label propagation algorithm [14],
to name only a few.

Often, edges within the same communities tend to have lower traffic, in case
of information or other flow among nodes, a fact that is reflected to smaller edge
betweenness (see below) compared to that of edges belonging to different com-
munities. Thus removing edges with high edge betweenness seems a reasonable
approach in order to partition the network into communities. While doing so,
it is usual to keep track of the quality of the formed partitions using a metric
called modularity, which is a well established community quality measure. A
third measure of interest in this work is the neighborhood overlap which reveals
the strength of bonds between a pair of nodes in terms of the fraction of neigh-
bors that are common to both. These three measures are described in more detail
below.
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1.2 Terminology

For a graph G(V,E), which models a network, where V is the set of nodes (users),
and E is the set of edges (connections between nodes), we define the following
notions and measures.

Edge Betweenness. Edge betweenness (eb) of an edge e ∈ E defines how
important that edge is with respect to shortest paths that connect each pair of
nodes in G. More specifically, eb(e) is defined as the sum, over all pairs of nodes
i, j, of the ratio of the number of shortest paths between i and j passing through
edge e over the total number of shortest paths between i and j. It is based on
the assumption that if much of the traffic of a network passes through an edge
(assuming that traffic is routed through shortest paths) then that edge is likely
to connect different communities.

Neighborhood Overlap. The neighborhood overlap (nover) of an edge
e = (u, v) is a measure of embeddedness of e defined as the ratio of the number of
common neighbors of u and v to the number of nodes that are neighbors of either
u or v:

nover(u, v) =
|Nu ∩ Nv|
|Nu ∪ Nv| , (1)

where Nu denotes the set of neighbors of node u.
When an edge e is a local bridge, then nover(e) = 0, and edges with very

small nover value can be seen as almost local bridges. An edge with low nover
score is considered a weak tie and an edge with high nover score is a strong tie.
Note that nover(u, v) is in fact the Jaccard index of the two neighborhood sets
Nu, Nv and measures the nodes similarity.

Modularity. One way to measure the quality of the formed community struc-
ture is the modularity [13]. Modularity Q is a scalar value, −1 ≤ Q ≤ 1, and it
measures the density of the nodes within the same community compared to a
random assignment of edges. The larger the modularity score, the better the par-
titioning of the nodes into communities. It is used to compare the communities
obtained by different methods. It is calculated as,

Q =
1

2m
·
∑

i,j

[
Aij − kikj

2m

]
· δ(ci, cj) (2)

where m is the number of edges, Aij is the weight of an edge between nodes i
and j, ki is the degree of node i, ci is the community to which node i belongs to,
and δ is a function such that δ(c, c′) = 1 if c = c′ else 0. A modularity value close
to 0 or negative indicates low community structure, while a value well above 0
indicates high community structure.
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1.3 Related Work

Various approaches have been proposed in recent years to solve the community
detection problem. Most popular among these are: (a) optimization methods,
which aim to maximize or minimize an objective function, and (b) hierarchical
methods that are either divisive or agglomerative.

In the seminal paper of Girvan and Newman [8] they define the eb centrality
measure and propose the GN algorithm that uses this measure. GN iteratively
removes edges of higher eb centrality, thus forming connected components that
correspond to communities. The main disadvantage of this algorithm is that it is
computationally expensive (since it recomputes the eb values for all edges in each
step) and thus not scalable. The running time in the worst case is O(|E|2|V |).

A two phase algorithm for weighted graphs was proposed in [4], known as
the Louvain algorithm, that runs in O(|E|) time. In the first phase, for each
node it iteratively calculates the modularity obtained by including the node
to the community of each of its neighbors, and then places this node into the
community that gives the highest modularity. In the second phase, it creates a
meta-graph in which communities are represented as meta-nodes and self-loops
represent edges internal to the communities. The two phases are repeated on
the meta-graph. This algorithm has a tendency to overlook small communities.
In general, methods that use the modularity metric to optimize the community
detection are known to suffer from the resolution limit effect [7], which refers to
the fact that communities smaller than some threshold may not be discovered.
Furthermore, the Louvain algorithm cannot efficiently explore the hierarchical
structure of the network (if such a structure is present).

The main idea in [12] is to use the nover score to differentiate weak from
strong ties. The nover scores are stored in a minimum heap and all edges with a
score smaller than a threshold value are considered weak ties and are removed.
The problem with this approach is correctly deciding the threshold value. Larger
values of the threshold value could disintegrate the communities and smaller
values could make two different communities merge.

Regarding other successful methods for community detection in the setting
where overlapping communities are also sought, BigClam [16] should be men-
tioned, a method that uses matrix factorization in order to discover overlapping
and non overlapping communities in large scale networks, and another approach
by Ahn, Bagrow and Lehmann [2] that also discovers overlapping communi-
ties by partitioning edges instead of nodes. Both these approaches work on the
global structure of the network. In a different direction, a hierarchical scalable
edge clustering algorithm presented in [9] aims at discovering overlapping local
communities of a seed node; a similar approach when the graph is given as a
stream is described in [10]. The latter manages to maintain minimal information
about the whole graph and the formed communities, thus using space sublinear
in the number of edges.
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1.4 Our Contribution

In order to propose scalable and parallelizable algorithms that build on the
importance of the nover score we introduce two approaches. Our first approach
modifies Louvain algorithm by assigning weights equal to their nover score; recall
that Louvain is designed to work on weighted graphs. We run several experiments
in order to estimate the importance of this modification. The obtained results
in most cases show that the modified algorithm performs better, therefore nover
values seem worth taking into account.

Our second approach uses the eb centrality in conjunction with the nover
metric in order to remove edges and form connected components (communities).
The eb metric is also used by the GN algorithm; however, in contrast to the
GN approach, we start by computing a maximum spanning tree using the nover
weights, thus considerably reducing the eb computations which take place on
the tree only. This yields a faster and parallelizable approach. It turns out that
the use of a spanning tree together with nover scores helps sparsify a graph
without substantial loss of information. In particular, the experimental results
show that while the time gain of our ST algorithm compared to GN is important,
the modularity values are of the same order of magnitude and in some cases even
exceed those of the GN algorithm. Moreover, the high time requirements of the
GN algorithm render it inapplicable to larger networks, while ST does not seem
to suffer from similar limitations.

2 Neighborhood Overlap-Based Approaches

We consider unweighted, undirected graphs. In both our algorithms, we use the
nover score of edges Eq. (1) in order to assign weights to them. Intuitively, we
want to differentiate weak from strong ties. We consider strong ties as more
probable to connect nodes within the same community. Let us assume G(V,E)
is an input graph. The first step of both our algorithms is to calculate the nover
score for every edge e ∈ E. Thus, we get a weighted graph.

In Algorithm 1 (nover-Louvain), this preprocessing is the only modification
with respect to the original Louvain algorithm. Note that this increases by at most
an O(Δ) factor the time complexity of the algorithm, where Δ is the maximum
degree of the network. This is because we need O(|E|Δ) time for computing the
nover of all edges, since computing the common neighbors of an edge can be done
in O(Δ) time. Combining with the O(|E|) complexity of the original Louvain we
get a total time complexity of O(|E|Δ).

In Algorithm 2 (ST), in the first phase we make use of the nover edge weights
in order to perform the maximum spanning tree computation. In the second
phase, we calculate the eb score of each edge, taken over the constructed spanning
tree. We then repeatedly remove one edge at a time, in non-increasing order of
their eb score; thus, in each repetition we increase the number of communities
by one. Since the optimal number of communities is not known beforehand we
keep repeating until all edges are removed; the output is the set of communities
C that yields the highest modularity.
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Algorithm 1. Modified Louvain community detection by neighborhood overlap
(nover-Louvain).
Input: G(V, E)
Output: Set of communities C of maximum modularity Q

for each edge e = (u, v) ∈ E do
nover(e) = |Nu ∩ Nv| / |Nu ∪ Nv|
w(e) ← nover(e)

end for
C ← Louvain(G, w)
return C

The time complexity of Algorithm 2 is analyzed as follows:

– O(|E|Δ), for computing the nover of all edges of the graph, as explained above
– O(|E| + |V | log |V |), for computing the maximum spanning tree using Prim’s

algorithm
– O(|V |), for computing the eb values for all edges in the spanning tree
– O(|V | log |V |) for sorting the eb values of the tree edges
– O(|E||V |), for the while loop since O(|E|) suffices in order to compute the

communities and modularity in each iteration.

Therefore, an upper bound on the total running time is O(|E||V |). Note that
this may be slightly improved by a more tight analysis of the while loop, but
such an analysis would not improve the worst case bound.

3 Experimental Results

We evaluate our methods using experiments on various datasets and compare
them against the most established algorithms, namely the Louvain1 algorithm [4]
and the Girvan-Newman (GN) algorithm [8]. These two algorithms were already
implemented in the python igraph library so we have chosen to implement our
new algorithms nover-Louvain and ST using the same library. We focus on two
criteria for the comparison of the algorithms, namely the modularity and the
number of communities found.

We have experimented with two types of networks and corresponding
datasets: synthetic and real-world data. Regarding synthetic datasets we
employed two different random graph models, namely the Barabási-Albert
model and the Erdős-Rényi model; as for real-world datasets we considered the
Zachary’s karate club network, and the Facebook network. Our results are sum-
marized in Tables 1, 2, 3 and are discussed below.

1 Note that the plain Louvain algorithm, can be applied on unweighted graphs by
setting all edge weights equal to 1.
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Algorithm 2. Community detection by neighborhood overlap and maximum
spanning tree (ST).
Input: G(V, E)
Output: Set of communities C with maximum modularity Q

for each edge e = (u, v) ∈ E do
nover(e) = |Nu ∩ Nv| / |Nu ∪ Nv|
w(e) ← nover(e)

end for
G′(V, E′) ← calculate Maximum Spanning Tree(G, w)
for each e ∈ E′ do

eb(e) ← calculate Edge Betweenness on e
end for
Initialize C ← {V }, Q ← modularity of C in G(V, E) � one community
Sort all edges in E′ in non-increasing order of eb(e)
while E′ is nonempty do

Remove the edge e of highest eb(e) from E′ � next edge in sorted list of edges
C′ ← community structure implied by E′ � set of components, partitioning V
Q′ ← modularity of C′ in G(V, E) � modularity is wrt the original graph
if Q′ > Q then

Q ← Q′

C ← C′

end if
end while
return C

3.1 Synthetic Network Models

Barabási-Albert Graphs. We use the Barabási-Albert [3] synthetic random
graph model, which is a well known model for generating random networks.
These networks have a power-law distribution property. A power-law distribution
property implies that only few nodes in a network have a high degree, a property
that is common in social networks and the Internet.

We use different values on parameters for our experiments in order to find
out in which cases our new algorithms behave better than the existing ones and
when the results are getting worse. The number of nodes varies from 40 to 1000,
while the number of edges vary from 114 to 1997. The dataset generator actually
does not permit to determine the number of edges but only the minimum degree.
The minimum degree value in our experiments is either 2 or 3. Since the graphs
resulting from the given parameters are random, the obtained results sometimes
vary considerably (see Table 1). We have chosen to present two experiments
for each parameter setting, the most extreme ones with respect to the best
modularity observed among experiments of the same setting.

A remarkable case is that of graphs with 150 nodes, 297 edges and minimum
node degree 2, in which the Louvain algorithm achieves modularity 0.139 for
a certain graph and 0.457 for another one, both graphs having been obtained
by using the same parameters. The nover-Louvain algorithm achieves, in both
graphs, better results; the difference in modularity in the same graphs is again
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remarkable (0.189 and 0.459, respectively). For the GN algorithm this differ-
ence is even larger compared to the other algorithms. Our ST algorithm on the
contrary produces results close to those of Louvain and nover-Louvain; in fact it
outperforms Louvain for the first of the two graphs.

In the case of networks consisting of 400 nodes, 1194 edges and minimum
degree 2, the results of our new algorithms are encouraging. In almost all cases,
nover-Louvain outperforms all other algorithms and the results of ST are compa-
rable to the GN results, which is quite interesting if we take into consideration
the much better running time of ST compared to GN.

Table 1. Results for Barabási-Albert graphs (mod. = modularity, #cl. = number of
clusters).

#nodes deg #edges Louvain [4] nover-Louvain GN [8] ST

mod. #cl. mod. #cl. mod. #cl. mod. #cl.

40 3 114 0.245 6 0.254 5 0.133 9 0.198 3

40 3 114 0.25 6 0.249 5 0.088 7 0.218 7

80 3 234 0.282 8 0.269 6 0.167 32 0.255 7

80 3 234 0.289 7 0.327 7 0.224 21 0.263 4

100 2 197 0.43 9 0.448 9 0.42 10 0.41 7

100 2 197 0.41 7 0.446 9 0.373 15 0.375 8

150 2 297 0.448 8 0.457 9 0.42 11 0.401 9

150 2 297 0.453 8 0.456 9 0.44 11 0.413 10

150 3 444 0.139 9 0.189 6 0.026 10 0.147 4

150 3 444 0.457 9 0.459 9 0.43 13 0.409 9

200 3 594 0.339 9 0.333 9 0.254 41 0.267 6

200 3 594 0.334 8 0.334 8 0.257 40 0.281 8

400 2 1194 0.476 14 0.486 16 0.446 23 0.427 11

400 2 1194 0.487 12 0.489 13 0.441 27 0.409 6

400 3 1194 0.358 12 0.36 13 0.297 44 0.284 7

400 3 1194 0.353 12 0.364 12 0.287 57 0.296 9

1000 2 1997 0.511 19 0.51 20 0.467 51 0.404 7

1000 2 1997 0.511 19 0.513 20 0.479 50 0.43 9

We observe that the modified nover-Louvain gives slightly better results com-
pared to Louvain in almost all cases. This leads us to conclude that the nover
similarity is an important measure which should be further taken into consider-
ation for community detection purposes.

Erdős-Rényi Graphs. In this random graph model [6], a random graph G(n, p)
is constructed by connecting n nodes randomly. Each edge exists in G with
probability p, independent from every other edge. The average degree is np.
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Table 2. Results for Erdős-Rényi graphs (mod. = modularity, #cl. = number of clus-
ters).

#nodes prob Louvain [4] nover-Louvain GN [8] ST

mod. #cl. mod. #cl. mod. #cl. mod. #cl.

40 0.1 0.363 6 0.378 5 0.358 8 0.327 6

40 0.1 0.363 6 0.415 6 0.298 11 0.323 7

80 0.1 0.273 6 0.277 7 0.199 25 0.24 5

80 0.1 0.249 8 0.271 6 0.172 26 0.217 5

120 0.1 0.23 8 0.233 8 0.123 54 0.171 11

120 0.1 0.233 8 0.234 6 0.098 67 0.196 8

200 0.1 0.172 9 0.175 8 0.05 105 0.122 7

200 0.1 0.185 7 0.178 8 0.054 109 0.133 11

The graphs we created have 40 to 200 nodes and the probability of the
existence of an edge is 0.1. The Erdős-Rényi graphs follow the Poisson degree
distribution and can be used for evaluating community detection algorithms [15].

In our experiments in Table 2, one can see that as the number of nodes
increases, keeping the same edge probability, the modularity (columns labeled
‘mod.’) tends to decrease steadily and the number of clusters (columns labeled
‘#cl.’) tends to increase with the same pace for all algorithms, except for GN. For
GN the modularity decreases faster and the number of communities increments a
lot, and one can assume that a lot of smaller communities are formed. A possible
explanation is that as the average degree increments, the GN algorithm will have
to remove more edges, evenly distributed through the network, in order to get the
partitions. On the other hand, Louvain and nover-Louvain tend to create larger
communities since nodes exhibit the preferential attachment behavior. The ST
algorithm also creates larger communities by providing a more robust initial
structure through the nover scores and the spanning tree computation.

3.2 Real-World Networks

Synthetic datasets allow us to work with randomly generated graphs in which
the structure is determined by certain parameters. On the other hand, it makes
sense to evaluate our algorithms’ performance in real datasets where we know in
advance the community structure in some cases. We have thus chosen to exper-
iment with the Zachary’s karate club network and one large network, namely
Facebook.

Zachary’s Karate Club. This is a famous network model, due to Zachary’s
observations, explained in his study [18]. Over the course of two years, he mon-
itored members of a karate club and relationship among those members. Over
time, dispute arose between team’s instructor and administrator which resulted
in club splitting in two separate clubs. Half of the original club members joined



22 K. Kulkarni et al.

the new club [8]. Zachary built a network model based on his observations, which
included 34 nodes and 78 links.

For Zachary’s dataset we get some interesting results. When we compare the
algorithms in respect to the modularity value as shown in Table 3, our algorithms
do not perform as good as Louvain or GN. However, when we compare them
regarding the number of clusters, ST performs much better. It correctly found the
2 communities (Fig. 1a) as in the paper and a small one containing just two nodes
(node 8 and 30 in Zachary’s paper [18]). This is very close to the split of nodes
that actually took place in the Karate Club network. This example provides
evidence that modularity, although a generally accepted measure for evaluating a
proposed community partition, may fail to correctly reflect the actual community
structure. On the other hand, GN finds 5 communities (Fig. 1b), while both nover-
Louvain and Louvain find 4 communities (Figs. 1c, d).

Facebook Friendship Network. This is a friendship network between Face-
book users [1,11]. In this network a node represents a user and an edge indicates

(a) ST structure (b) GN structure

(c) nover-Louvain structure (d) Louvain structure

Fig. 1. Zachary’s Karate club: community structure as obtained by ST, GN, nover-
Louvain, and Louvain algorithms.
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friendship between the corresponding users. This is an unweighted directed net-
work with 2888 nodes and 2981 edges. For the purpose of this study we have
ignored the edge directions. It is clear that this network is sparse, hence some of
the nodes are too far from each other.

For larger graphs it makes sense to focus on parallelizable algorithms, appro-
priate for distributed implementation. We thus experimented with the Facebook
network using GN and ST algorithms, since the Louvain algorithm in its original
form seems to be inherently sequential. Our results show that ST yields a mod-
ularity very close to the one obtained by GN (see Table 3); since ST is a much
faster, parallelizable algorithm it provides a possibly useful alternative when-
ever time gains and parallelization are more important than a slight modularity
decrease.

Table 3. Results for real-world datasets.

Dataset #nodes #edges GN [8] ST

modularity #clusters modularity #clusters

Zachary’s karate
club

34 78 0.401 5 0.372 3

Facebook 2888 2981 0.807 8 0.804 7

4 Conclusions

The volume of available data and the size of networks of today in various fields,
such as social and biological networks, call for efficient distributed methods to
identify communities in large scale networks.

Towards this goal we first introduced the ST algorithm, that uses the nover
score to assign weights on edges in order to compute a spanning tree and then
uses the eb centrality to split the tree into a forest. Each tree in the forest yields a
community. The main advantage of the ST algorithm, is that by using nover and
the spanning tree it renders computations less time consuming (without losing
much on the quality of the results) compared to the GN algorithm. Note also
that the ST algorithm is parallelizable and thus is appropriate for distributed
implementation.

We next explored the idea that the nover score, being a measure of the
similarity of two neighbor nodes, may improve existing algorithms if used in
a preprocessing phase. We thus obtained a second algorithm by adding such a
preprocessing to the Louvain algorithm. The new algorithm nover-Louvain indeed
performed better in several cases.

As future work, we plan to compare these algorithms using different objective
criteria to evaluate the communities formed. As mentioned earlier, modularity
is a measure of the quality of the communities that may have some drawbacks,
as indicated by the Zachary’s karate club example. Thus we intend to explore
additional measures, such as the Normalized Mutual Information (NMI) score
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[5] and the conductance [17] in order to compare the different approaches. Fur-
thermore, we also plan to experiment with alternative graph metrics to obtain
edge weights for the preprocessing phase, in order to see if they can lead to
further improvement of the proposed algorithms nover-Louvain and ST.
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