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Abstract. Advances in data collection and storage technologies have
given way to the establishment of transactional databases among com-
panies and organizations, as they allow enormous amounts of data to be
stored efficiently. Useful knowledge can be mined from these data, which
can be used in several ways depending on the nature of the data. Quite
often companies and organizations are willing to share data for the sake
of mutual benefit. However, the sharing of such data comes with risks,
as problems with privacy may arise. Sensitive data, along with sensitive
knowledge inferred from this data, must be protected from unintentional
exposure to unauthorized parties. One form of the inferred knowledge
is frequent patterns mined in the form of frequent itemsets from trans-
actional databases. The problem of protecting such patterns from being
discovered, is known as the frequent itemset hiding problem. In this paper
we present a toolbox, which provides several implementations of frequent
itemset hiding algorithms. Firstly, we summarize the most important
aspects of each algorithm. We then introduce the architecture of the
toolbox and its novel features. Finally, we provide experimental results
on real world datasets, demonstrating the capabilities of the toolbox and
the convenience it offers in comparing different algorithms.

Keywords: Privacy preserving data mining · Knowledge hiding ·
Frequent itemset hiding · Sensitive knowledge

1 Introduction

Nowadays, transactional databases are being used more and more by organiza-
tions, as they support efficient storage of large volumes of data. By using data
mining techniques on such data, modern companies can extract useful informa-
tion that can help these companies understand the behavior of their customers,
support decision making, plan their business strategy, etc.

Companies and organizations are willing to share data for the sake of mutual
benefit. The benefits derived from the sharing of such data are considerable
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and they cannot be ignored. A typical example is a supermarket, which collects
market basket data of its customers’ purchases on a regular basis. These organi-
zations might be willing to share their collected information with other parties,
such as advisory organizations, for mutual benefit. For example. two stores, say
A and B, cooperate in order to discover their customers’ purchase behaviors.

Unfortunately, the sharing of such data does not come without risks, as
problems with privacy may arise. Therefore, it must be done in such a way,
that no sensitive information will be exposed to unauthorized parties. In our
previous example, there might be some sensitive information that could reflect
the business strategies and secrets of the participating companies that should
not be revealed to their adversary competitors. For example, if data analysts of
store A found out that its customers tend to purchase products x and y at the
same time, they should regard this knowledge as sensitive information, and not
disclose it to store B. With this knowledge, store B could offer sales with a lower
price for customers who buy x and y together. Then, store A could possibly
face the danger of losing some of its customers. Verykios et al. [33], Oliveira
and Zäıane [25], and Evfimievski et al. [15] discuss other examples of situations
where the sharing of operational databases could have serious adverse effects.

Privacy preserving data mining (PPDM) [3,22] is the research area that
investigates techniques to preserve the privacy of data and patterns. Knowledge
hiding [19], which is a subfield of PPDM, has as its goal to prevent the exposure of
sensitive patterns included in the data to be published. Knowledge hiding can be
achieved in several ways. The most commonly used is through the sanitization [4]
of a number of transactions in the database, so that the sensitive information
can no longer be extracted. Therefore, a hiding technique must be applied before
making a database available for sharing. Many data mining tasks rely on frequent
itemsets to be identified as a first step in their process. Thus, concealing the
frequent patterns associated with the sensitive information would guarantee the
preservation of the privacy of the sensitive relationships between patterns of the
itemsets that may be discovered through any of these data mining tasks.

In this paper, we present the software architecture and implementation of
a frequent itemset hiding (FIH) toolbox, which can be used to apply a suite
of hiding techniques on real world datasets. The toolbox comes with a built-
in library containing several implementations of FIH algorithms and a suite of
performance metrics. Lastly, we present experimental results, to demonstrate
the efficiency of the toolbox and the convenience it offers to data owners in
comparing different frequent itemset hiding algorithms.

The rest of this paper is organized as follows. Section 2 provides an overview of
the related work. In Sect. 3 we present the necessary background information and
define the FIH problem. Section 4 describes the software architecture of the FIH
toolbox and Sect. 5 presents its features. Section 6 summarizes the evaluation
process and presents the experimental results. Finally, Sect. 7 concludes this
work.
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2 Related Work

Clifton et al. [12,13] are among the first to deal with privacy preservation in
the field of data mining and propose data-obscuring techniques in order to avoid
discovery of sensitive patterns. Atallah et al. [5] prove that optimally solving the
frequent itemset hiding problem is NP-hard. The authors also present a greedy
algorithm that turns ones into zeros in the database in order to hide sensitive
frequent patterns. Various extensions of this work have been proposed over the
years, including those by Verykios et al. [33] and Dasseni et al. [14].

Saygin et al. [30] and Verykios et al. [34] present another approach, according
to which items may be added or removed from transactions, recording the pos-
sible participation of certain items to transactions with “?” (question marks), so
that the hiding is achieved not by falsifying, but by fuzzifying the data. Oliveira
and Zäıane [26,27] propose a technique for hiding multiple association rules
simultaneously that requires only one pass over the whole database, regardless
the size of the database. Pontikakis et al. [28,29] perform an exhaustive evalu-
ation of distortion and blocking (using question marks for hiding) techniques.
Bertino et al. [8] propose an evaluation framework that aims at measuring the
performance of frequent itemset and association rule hiding techniques.

Menon et al. [23] were the first to introduce an integer linear program (ILP)
formulation of the frequent itemset hiding problem. The solution of their ILP
points out which transactions need to be sanitized in order to conceal the sensi-
tive patterns. The sanitization process is addressed as a separate phase, indepen-
dently of the linear programming solution, in a heuristic yet suboptimal way. Sun
and Yu [32] introduce a greedy border-based approach for hiding sensitive fre-
quent itemsets. They propose an algorithm that takes advantage of the interplay
between preserving maximally non-sensitive and downsizing minimally sensitive
frequent itemsets, and gives an accurate and efficient hiding solution.

In [20], Kagklis et al. formulate the FIH problem as an ILP and present a
heuristic approach to calculate the coefficients of the objective function of the
ILP, while at the same time minimizing the side effects introduced by the hiding
process. They also propose a sanitization algorithm for the hiding process.

Stavropoulos et al. [31] relied on the enumeration on the minimal transver-
sals of a hypergraph in order to induce the ideal border between frequent and
sensitive itemsets. The ideal border is then utilized to formulate an ILP, the
solution of which identifies the set of transactions that need to be sanitized so
that the hiding can be achieved with maximum accuracy.

A large number of different approaches towards solving the frequent itemset
hiding problem have been proposed. Additionally, several performance evalua-
tion metrics or frameworks have been developed, so as to compare the quality
of these techniques. Nevertheless, to our knowledge, there is yet no publicly
available tool that offers implementations of such techniques and/or evaluation
metrics, along with a common ground for performing experimental evaluation.
The work proposed in this paper presents such a toolbox, which can be easily
extended to host other hiding techniques, as well as additional evaluation metrics
and visualization capabilities.
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3 Problem Formulation

3.1 Definitions

Let I = {i1, i2, ..., in} be a set of items. Any non empty subset of I, X ⊆ I, is
called an itemset. An itemset consisting of k elements is called a k-itemset. A
transaction T is a pair T = (tid , Z), where Z ⊆ I is the itemset and tid is a
unique identifier, used to distinguish among transactions that correspond to the
same itemset. Let also D be a set of transactions. A transaction T supports an
itemset X, if and only if X ⊆ T . Given a set of items I, we will denote as P (I)
the powerset of I, that is all possible combinations of items from I.

The support of an itemset X in a database D, denoted as σD(X), is the
number of transactions containing X. Support can also be expressed as the
percentage of transactions in D. An itemset X is frequent in D, if and only if
its support in D is at least equal to a support threshold σmin . The set of all
frequent itemsets, denoted as F , is given by F = {X ⊆ I| σD(X) ≥ σmin}.

Let S be the set of sensitive (frequent) itemsets that need to be hidden. We
will denote as IS the set of different items contained in S. Moreover, let all
sensitive itemsets and their supersets in F be denoted as SS , where SS = {X ∈
F | ∀Y ∈ S, X ⊇ Y } and S ⊆ SS ⊆ F . The revised set of frequent itemsets,
denoted as ˜F , is given by ˜F = F − SS .

By its definition, the revised set of frequent itemsets ˜F is the ideal set of item-
sets that would still remain frequent after hiding the sensitive itemsets. The ideal
case is when only the sensitive itemsets and their supersets are concealed. Sen-
sitive itemsets is desirable to get concealed, while their supersets are inevitably
concealed, due to the antimonotonicity property of support, that is ∀X,Y ⊆ I:
X ⊆ Y ⇒ σD(X) ≥ σD(Y ).

3.2 Problem Description

We are given a transactional database D, a support threshold σmin and a set
of sensitive frequent itemsets S. The frequent itemset hiding (FIH) problem
involves sanitizing selected transactions in database D, so that itemsets in S
cannot be mined from the sanitized database D′ using a support threshold equal
or above σmin . A database is said to be sanitized, if it is altered in such a way
that it no longer supports any sensitive itemset in it. Sanitizing a database
involves the sanitization of one or more transactions. A transaction is said to
be sanitized, if it is altered so that it no longer supports any sensitive itemset.
In the best case scenario, the sensitive itemsets should be hidden with minimal
damage to the database. In other words, we want to conceal the itemsets in S,
whilst having the minimum impact on the utility of the database.

4 The Architecture of the FIH Toolbox

From an abstract point of view, the toolbox is divided into four layers (see Fig. 1).
The top layer is the “Presentation Layer”, which implements the Graphical User
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Interface (GUI) of the toolbox and provides visualizations of the results received
from the next layer below. Users interact with the toolbox through the presen-
tation layer, depending on the options they make. The GUI is implemented in
Python, using the Tkinter and ttk modules.

Fig. 1. The architecture of the FIH toolbox.

The next layer is the “Logic Layer”. In this layer, the performance analysis
phase is implemented and the calculation of the metrics take place. Such metrics
are the number of changes made in the raw data, the number of side effects, the
execution time and the information loss incurred. A detailed description of the
performance metrics is presented in Sect. 6. This layer is also responsible for
moving and processing data between its two surrounding layers.

The third layer is the “Core Layer”, which consists of two sublayers: the
“Algorithmic Sublayer” and the “Infrastructure Sublayer”. The “Algorithmic
Sublayer” is basically the built-in library with the implemented FIH algorithms,
described in Sect. 5.1, along with the implementation of some basic data mining
methods. Currently, the only data mining method offered is the Apriori algorithm
[3]. The “Infrastructure Sublayer” consists of all the tools used for the develop-
ment of the toolbox. Most of the code is implemented in Python. The hiding
algorithms are implemented in Cython [7]. The Apriori algorithm [3] is part of
the PyFIM extension module. This module is a C extension for Python [10] to
efficiently mine the set of frequent itemsets. The IBM ILOG CPLEX 12.6 [2] is
used for solving any linear program.
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Finally, the last layer is the “Data Layer”, which is related to the datasets
that can be used and their corresponding supported formats. The toolbox sup-
ports both space-separated value (.ssv) and comma-separated value (.csv) for-
matted files. The delimiter is declared by the extension of the file. Therefore, a
space-separated file must have the extension “.ssv”, while a comma-separated
file must have the extension “.csv”. If the input file has a different extension,
then by default the space delimiter is used.

Fig. 2. The GUI of the FIH toolbox.

In Fig. 2, the GUI of the toolbox is presented. For the time being, there
is a beta version of the toolbox available [1]. Linear programming techniques
require a license for CPLEX, which can be obtained for free through IBM’s
Academic Initiative program. The user can apply a hiding technique on a dataset
by following a few easy steps, which are summarized in Fig. 3.

Firstly, a data mining algorithm from field 1 must be selected. Then, a
dataset must be supplied by the user, by using field 2. Respectively, the file
with the sensitive itemsets must be given by using field 3. In field 4, the sup-
port threshold must be specified. Field 5 is a group of checkboxes. By checking a
checkbox, the user selects the corresponding algorithm to be executed. Field 6 is
a text editor, where the sanitized dataset and the calculated metrics are printed.
The user can save these results by using the “Save” button below the text editor.
Finally, field 7 is a canvas that displays visualizations of the metrics. Below the
canvas, there is drop-down list with options related to the axes of the figures.
The “Plot” button should be used after an option from the drop-down list is
selected, so as to plot the corresponding figure. Buttons “Save” and “Clear” can
be used to save and clear the current figure respectively.
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Fig. 3. “How-to-use” flow chart for the FIH toolbox.

5 Special Features of the FIH Toolbox

5.1 Built-In Library

The toolbox comes with a built-in library that consists of the following FIH
algorithm implementations as independent modules: Max-Min Algorithms [24],
Weight-Based Approach [32], Max-Accuracy Algorithm [23], Coefficient-Based
Max-Accuracy Algorithm [21], Heuristic Coefficient Based Approach [20], and
Inline Algorithm [16]. The Max-Min algorithms (Max-Min 1, Max-Min 2) and
the Weight-Based Approach (WBA) use the border revision theory [32]. The
Max-Accuracy algorithm, the Coefficient-Based Max-Accuracy algorithm and
the Heuristic Coefficient Based Approach formulate the problem as an ILP. A
heuristic algorithm for the sanitization is also used. The Inline algorithm com-
bines border revision theory and linear programming. Future versions of the
tool will include algorithms in [17,18], as well as methods for hiding sensitive
association rules [5,14,25,26,28–30,33,34].

5.2 Extensibility

The toolbox comes with a built-in library, which contains some implemented
FIH algorithms. However, a non-extensible library would limit the utility of the
Toolbox. An important feature of the toolbox is that it can be extended by its
users. Users can implement and import new algorithms, and compare them with
the existing algorithms in the built-in library.

User-implemented algorithms must be compatible with the toolbox. There-
fore, any implementation must comply to the restrictions and guidelines, as
described in the manual that can be found in [1]. Users can easily implement
compatible source files by following the instructions given in the manual. After
the implementation is completed, it can be used right away; create a folder with
the name “Extensions” (without the quotes) in the same directory with the
Toolbox and copy the source file in it.
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5.3 Automatic Option Loading

In Sect. 4, we described how the user can manually load data and apply a hiding
algorithm. The use of the toolbox can become even more convenient by defin-
ing option scenarios before using them. Instead of making the options manually,
the Toolbox gives the capability to load automatically predefined option sce-
narios. Assume that we want to load the dataset “myDataset.dat” and the file
of sensitive itemsets “HS1.dat”, and use a threshold equal to “0.05”. Firstly,
we create a folder named “Datasets” in the same directory that the Toolbox is
located. Then, we simply create the tree hierarchy of files and folders as shown
in Fig. 4 (left). If we run the Toolbox, we can load the option scenario by clicking
on Datasets → myDataset → 0.05 → HS1.dat, as shown in Fig. 4 (right). An
option scenario can be also imported during runtime by following the same steps
and by clicking Datasets → Update Datasets.

Fig. 4. Automatic loading predefined option scenario.

6 Experimental Evaluation

We evaluated some of the implemented algorithms on real datasets, by using
different parameters such as the number of sensitive itemsets to be hidden and
the support count threshold. In this section, we also present the datasets used
with their special characteristics, the selected parameters and the experimen-
tal results. All experiments were conducted on a PC running Windows 7 with
an Intel Core i5, 3.20 GHz processor. For the linear programming techniques,
CPLEX [2] was used for solving the formulated linear programs.

6.1 Datasets

All datasets used for evaluation are publicly available in the FIMI repository
(http://fimi.ua.ac.be/data/). These datasets have different characteristics in
terms of transactions and items, and the average transaction length. The char-
acteristics of the datasets used are presented in Table 1. The mushroom dataset
was prepared by Roberto Bayardo (University of California, Irvine) [6]. The
retail dataset is a market basket dataset from an anonymous Belgian store [11].
The kosarak dataset was provided by Ferenc Bodon [9] and contains anonymized
click-stream data of a Hungarian online news portal.

http://fimi.ua.ac.be/data/


A Frequent Itemset Hiding Toolbox 177

Table 1. Characteristics of the datasets.

Dataset
name

Number of
transactions

Number of
items

Avg. trans.
length

σmin used

Mushroom 8,124 119 23.00 1,625

Retail 88,162 16,470 10.30 22; 44; 66; 88

Kosarak 990,002 41,270 8.10 4,950

6.2 Evaluation Metrics and Framework

For the evaluation of the algorithms, we implemented and used several metrics
along with the framework proposed by Bertino et al. [8]. The framework is based
on several evaluation dimensions. We used the following metrics.

Efficiency. It is the ability of a PPDM algorithm to execute with good perfor-
mance, in terms of all the resources consumed by the algorithm. Simply put,
the efficiency of an algorithm quantifies how good is the relationship between
its performance and the overall resources it uses. As in most cases, we assess
efficiency in terms of time and space. In other words, efficiency is evaluated in
terms of CPU time and the amount of memory that an algorithm requires.

Scalability. It is used to evaluate the behavior of the efficiency of a PPDM
algorithm for a growing amount of input data, from which relevant information
is mined while ensuring privacy. We conducted experiments with datasets of dif-
ferent size and density, so as to test the scalability of the algorithms implemented
in the toolbox.

Data Quality. It refers to the quality of data after the hiding process. As men-
tioned earlier, attempting to hide sensitive information might have an impact
on non-sensitive information as well. If data quality is too degraded, then the
released database is useless for the purpose of knowledge extraction. According
to Bertino et al. [8], the information loss can be measured in terms of the dis-
similarity between the original dataset D and the sanitized D′. The information
loss is defined as the ratio between the sum of the absolute errors made in com-
puting the frequencies of items in the sanitized database and the sum of all the
frequencies of items in the original database.

We also use two additional measures: (a) the number of raw changes that
occurred in data, and (b) the number of side effects. The raw data changes
is the total number of items that have been removed in order to sanitize the
database. The number of side effects (SE) introduced by the application of the
sanitization process can be measured by SE ( ˜F , F ′) = | ˜F | − |F ′| ≥ 0, where | ˜F |
is the number of itemsets in the revised set of frequent itemsets ˜F , whilst |F ′|
is the number of itemsets in the set of frequent itemsets F ′ mined from D′.
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(a) # of changes in dataset. (b) Side effects.

(c) CPU time (sec). (d) Frequency Information Loss.

Fig. 5. Results for the mushroom dataset.

6.3 Experimental Results

Figure 5 presents the results we obtained for the mushroom dataset. Figure 5(a)
displays how many changes (item removals) each algorithm made in the origi-
nal database. Figure 5(b) displays the number of side effects that occurred as a
result of the concealing process. Figure 5(c) presents the times needed by each
algorithm. Lastly, Fig. 5(d) presents the frequency information loss. For the eval-
uation with this dataset, we used 4 different hiding scenarios; hiding 10, 20, 50
and 100 sensitive itemsets of different, random length. The support threshold
used is σmin = 1625. We selected randomly the sensitive itemsets.

The mushroom dataset is a small, yet dense dataset. Thus, the number of
frequent itemsets increases dramatically as we decrease the support thresh-
old. Linear programming techniques (Max-Accuracy and Coefficient-Based
Max-Accuracy) achieve better results than their heuristic-based counterparts
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(Max-Min 1, Max-Min 2 and WBA). Concerning the time complexity, we notice
that the simpler the algorithm, the less time is needed to run, as expected.

(a) # of changes in dataset. (b) Side effects.

(c) CPU time (sec). (d) Frequency Information Loss.

Fig. 6. Results for the retail dataset.

Figures 6(a)–(d) present the results for the retail dataset. We used a single
hiding scenario of 100 sensitive itemsets. The set of sensitive itemsets consists of
randomly selected itemsets. We performed experiments with this hiding scenario
for different support thresholds, σmin = {22, 44, 66, 88}.

The lower the mining threshold is, the larger the values of all metrics are.
Notice that for this dataset, which is not as dense as the mushroom dataset,
WBA achieves the best results, as far as side effects and information loss are
concerned, with a fairly good time complexity. Although the results are printed
in the text editor of the toolbox, the figures drawn in the canvas give a direct
sense of which algorithm prevails.
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(a) # of changes in dataset. (b) Side effects.

(c) CPU time (sec). (d) Frequency Information Loss.

Fig. 7. Results for the kosarak dataset.

Finally, Figs. 7(a)–(d) present the results for the kosarak dataset. We used 4
different hiding scenarios for the evaluation with this dataset; hiding 10, 20, 50
and 100 sensitive itemsets of different, random length. The support threshold
used is σmin = 4950. The sensitive itemsets were picked randomly. Again WBA
has the best results in terms of the number of side effects and the information
loss. The time complexity is quite low for most of the algorithms and increases
linearly with respect to the number of sensitive itemsets.

From the aforementioned experimental results, it is clear that the execu-
tion times of most of the techniques increase linearly as the number of sensitive
itemsets increases, the size of the dataset increases, and the support thresh-
old decreases. The density of the dataset has a great impact on the results.
Linear programming techniques have good scalability. Then, the border-based
techniques, such as Max-Min 1 and WBA, follow. Max-Min 2 appears to have a
poor scalability compared to the rest of the heuristic algorithms.
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7 Conclusions and Future Work

In this paper, we presented a FIH toolbox which can be used to apply a suite
of hiding techniques on real world datasets. The toolbox comes with a built-
in library containing several implementations of FIH algorithms and a suite of
performance metrics. Currently the toolbox is in beta version and many improve-
ments can be made, concerning both the GUI and the overall performance. Sev-
eral features are currently under development, including a feature to recommend
the appropriate FIH algorithm that, based on the characteristics of the input
dataset, is expected to give the best results.
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