
Minimization of Testing Costs
in Capacity-Constrained Database

Migration

K. Subramani1(B), Bugra Caskurlu2, and Alvaro Velasquez3

1 LCSEE, West Virginia University, Morgantown, WV, USA
k.subramani@mail.wvu.edu

2 CE, TOBB University of Economics and Technology, Ankara, Turkey
caskurlu@gmail.com

3 RISC, Air Force Research Laboratory, Rome, NY, USA
alvaro.velasquez@us.af.mil

Abstract. Database migration is an ubiquitous need faced by enter-
prises that generate and use vast amount of data. This is due to database
software updates, or from changes to hardware, project standards, and
other business factors [1]. Migrating a large collection of databases is a
way more challenging task than migrating a single database, due to the
presence of additional constraints. These constraints include capacities
of shifts, sizes of databases, and timing relationships. In this paper, we
present a comprehensive framework that can be used to model database
migration problems of different enterprises with customized constraints,
by appropriately instantiating the parameters of the framework. We
establish the computational complexities of a number of instantiations
of this framework. We present fixed-parameter intractability results for
various relevant parameters of the database migration problem. Finally,
we discuss a randomized approximation algorithm for an interesting
instantiation.

1 Introduction

The database migration problem entails the movement of data between different
databases. Such migration is often necessary due to database software updates,
or from changes to hardware or project standards, and other business factors
[1]. As per established rules of software reliability, when a database is migrated,
every application that is dependent upon it must be tested (i.e., run through
regression suites [2]). It is known that testing an application is an expensive
aspect of maintaining the application [3]. Consequently, the principal goal in
the migration process is to minimize the application testing cost [4]. This is a

K. Subramani—This research was supported in part by the Air Force Research Lab-
oratory Information Directorate, through the Air Force Office of Scientific Research
Summer Faculty Fellowship Program and the Information Institute�, contract num-
bers FA8750-16-3-6003 and FA9550-15-F-0001.

c© Springer Nature Switzerland AG 2019
Y. Disser and V. S. Verykios (Eds.): ALGOCLOUD 2018, LNCS 11409, pp. 1–12, 2019.
https://doi.org/10.1007/978-3-030-19759-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19759-9_1&domain=pdf
https://doi.org/10.1007/978-3-030-19759-9_1

2 K. Subramani et al.

pervasive issue in cloud computing clusters, where a pay-per-use infrastructure
and unpredictable workloads necessitate frequent allocation and movement of
data [5]. Thus, there is a pressing need for efficient procedures to minimize
the resource overhead involved in data migration. Interest in this area has also
been fueled in recent years by the massive generation of data in what is now
being called the Big Data age [6]. Consequently, there has been a proliferation of
resource-intensive data centers and the adoption of cloud computing and storage
as a service in order to manage said data [7].

While the ubiquity of computational and storage capabilities of cloud com-
puting are undeniable, there remain open challenges with regards to resource
allocation and data management [8]. In fact, the migration of data in data cen-
ters remains a significant problem, due to the massive throughput of data and the
limited bandwidth of communication channels [9]. This problem is further exac-
erbated by the overhead incurred from retesting applications after data migration
and by Quality-of-Service (QoS) requirements, which demand minimal interrup-
tions to end-user applications [10]. As such, minimizing the cost associated with
bandwidth-constrained database migration is of great interest. Patil et al. [11]
introduced the first systematic study on the database migration problem, and
proved that the problem is NP-hard for some special cases. They provided an
integer programming formulation, which can only be used for small instances,
and a greedy heuristic that can be used for the large instances of the problem.
In this paper, we define a very general framework that subsumes the model in
[11]. Our framework accommodates the modelling of database migration needs
of various enterprises with customized constraints. We present hardness results
for all the models in our framework, as well as fixed-parameter intractability
for various relevant parameters. We also present a randomized approximation
algorithm for a simple but interesting special case of the problem.

The rest of the paper is organized as follows:

– In Sect. 2, we formally define the capacity-constrained database migration
(CCDM) problem and introduce the notation used in the paper.

– In Sect. 3, we study the computational complexity of the (CCDM) problem
and prove that the problem is NP-hard for all the models of the problem
defined in Sect. 2.

– In Sect. 4, we study fixed parameter tractability of the CCDM problem with
respect to the four most relevant parameters of the problem.

– In Sect. 5, we present a randomized (32 + ε)-approximation algorithm for a
special case of the CCDM problem.

– In Sect. 6, we summarize our contributions and point out avenues for future
research.

2 Notations and Problem Formulation

In this section, we provide a formal definition of the framework for the capacity
constrained database migration problem (CCDM) and introduce the terminology
used in this paper.

Minimization of Testing Costs in Capacity-Constrained Database Migration 3

Assume we have a collection of m applications A = {A1, A2, . . . , Am} and
n databases B = {B1, B2, . . . , Bn}, with each application calling one or more
databases. The call relationship is stored in the n × m matrix D = [dij], where

dij =
{

1, if application Ai calls database Bj

0, otherwise.

The matrix D = [dij], which represents a bipartite graph as shown in Fig. 1,
is part of the input. Associated with the set of applications A, is a cost-vector
c = [c1, c2, . . . , cn]T , where ci represents the cost of testing application Ai once.
For each application Ai, we let xi be an integer variable that denotes the number
of times Ai will have to be tested in the migration schedule. The size-vector
w = [w1, w2, . . . , wm]T represents the size of databases, with wi representing the
size of database Bi.

B1

B2

B3

B4

A1

A2

A3

A4

A5

A6

A7

Fig. 1. The bipartite graph shows the relationship between the databases and the
applications. The nodes in the left partition, represent the databases in the system,
while the nodes in the right partition, represent the applications. An edge (b, a) exists
in the graph if application a calls database b. This means application a must be tested
immediately after database b migrates. We note that each database is associated with
a nonempty set of applications, and each application is associated with a nonempty set
of databases.

In the CCDM problem, the set of databases B is to be clustered into disjoint
subsets which we call shifts. The databases in each shift are migrated at the
same time. When a shift of databases migrates, each application that calls at
least one database in that shift needs to be tested immediately. For example, if
the set of databases called by an application Ai are scheduled to 5 distinct shifts,
then application Ai is to be tested 5 times throughout the migration process,
i.e., xi = 5. The cumulative size of the databases migrated in shift i (i.e., the
size of shift i) is denoted by li. The shift size-vector l = [l1, l2, . . . , lm]T is also

4 K. Subramani et al.

part of the input. In the worst case, when the size of each shift is smaller than
the sum of the sizes of any two databases, we may have to assign each database
to a separate shift.

Thus, the input to the CCDM problem must contain the 4-tuple 〈c,w,D, l〉.
For instance, consider the following 4-tuple:

〈
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1
2
2
3
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎝

5
7
10
12

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1 0 1 0 1 0 1
0 1 0 1 0 1 0
1 1 0 0 1 0 0
0 0 1 0 0 0 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎜⎜⎝

10
15
12
7
28
34

⎞
⎟⎟⎟⎟⎟⎟⎠

〉

In this example, we have seven applications and four databases, since the
matrix D has seven columns and four rows. We label the applications as
A1, A2, . . . , A7, and the databases as B1, B2, B3, B4. Matrix D indicates which
applications call which databases. We observe that database B1 is called by appli-
cations A1, A3, A5, and A7. The database B2 is called by applications A2, A4,
and A6. The database B3 is called by applications A1, A2, and A5, and database
B4 is called by applications A3, and A7. The sizes of the databases B1, B2, B3,
and B4 are given as 5, 7, 10, and 12, respectively, in w. The database migration
operation in this example is to be completed in at most 6 shifts since |l| = 6
in the input. The cumulative size of the databases that migrate in each shift is
constrained by 10, 15, 12, 7, 28, and 34, respectively, in l.

There are several parameters associated with the CCDM problem:

(i) Application Testing cost (α) - The testing cost of an application depends
primarily on two factors, viz., the time it takes to test the application, and
the skills required to test a given application. We consider the following
three cost models associated with testing an application in order to take
these factors into account:
(a) Constant (const) - In this model, the cost of testing each application

is the same and is equal to some known fixed constant C. Note that
this model captures the scenario in which each application requires the
same level of skills and takes roughly the same time to test.

(b) Proportional (prop) - In this model, the cost of testing an application
after migrating a corresponding database is proportional to the sizes
of the migrated databases it calls. Note that this model captures the
situation where each application in the system requires the same level
of skills, but the testing time may vary from application to application.

(c) Arbitrary (arb) - In this model, there is no relation among the costs of
testing different applications. This model captures the problem of com-
panies that use application software from several different companies
such that each application requires personnel with different skill sets.

(ii) Size of Databases (β) - The size of a database is a factor in the amount
of time required for its migration. This is because the database migration

Minimization of Testing Costs in Capacity-Constrained Database Migration 5

operation must read the database at the original location, write it at the
new location, and then delete the original database. Consider a bank that
maintains data for credit card accounts, savings accounts, and checking
accounts in different databases. Typically, a bank will have more customers
with a checking account than a savings account. Similarly, the number of
credit card customers will be significantly more than the number of savings
account customers, since a typical customer has one savings account but
several credit cards. This means we need two size models associated with
the databases:
(a) Constant (const) - In this model, all databases have the same size

and are equal to some fixed constant W . This allows us to model the
database migration operation for companies whose databases have more
or less the same size.

(b) Arbitrary (arb) - In this model, the sizes of the databases are arbitrary.
This lets us model the database migration operation for companies
whose databases may significantly vary in size.

(iii) Shift size (γ) - During the database migration operation, some parts of
the database will be inaccessible. For some companies, there is no ideal
time to make a database unavailable. For instance, Facebook and Youtube
have users all over the world which means that the database access rate
is roughly uniform. In this case, regardless of when a database becomes
inaccessible, there will be a subset of users who cannot access the database
until the migration is complete. It is critical for these companies to perform
the database migration operation in small shifts to minimize user dissat-
isfaction. For companies (e.g., banks) that operate during regular business
hours, it is preferable for the databases to be unavailable when the com-
panies are closed rather than when they are open. In order to model the
needs of several different companies, we use two size models associated with
shifts.
(a) Uniform (unif) - In this model, the total size of the databases migrated

in the same shift is the same and is equal to a constant L, for all shifts
(i.e., l = 〈L,L, . . . , L〉). We note that this model is better suited for the
database migration needs of companies that have uniform database
access rates.

(b) Non-uniform (non-unif) - In this model, the total size of the databases
migrated in each shift is arbitrary. We note that this model is better
suited for the database migration needs of companies that have non-
uniform database access rates.

Thus, a model of the capacity-constrained database migration problem has
three parameters, and it is specified as a triple 〈α | β | γ〉. For instance,
〈arb | const | unif〉 refers to the capacity-constrained database migration prob-
lem in which the application testing costs are arbitrary, all databases have the
same size, and the shift sizes are uniform. For notational convenience we use ∗ as
an entry of the triple when we present a statement that is true for all the models
for that entry. For instance, the notation 〈arb | ∗ | ∗〉 refers to all 4 models

6 K. Subramani et al.

of the CCDM problem in which the application testing costs are arbitrary. The
following is formal definition of the CCDM problem:

CCDM: Given a 4-tuple 〈c,w,D, l〉, cluster the databases into shifts so that
the total application testing cost is minimized, while respecting the shift size
constraints.

Given that we have 3 different models for application testing costs, 2 differ-
ent models for sizes of databases, 2 different models for shift sizes; the CCDM
problem formulation gives us a framework with a total of 12 different models
each of which is suitable for the database migration needs of different companies.

3 Computational Complexity of the CCDM Problem

The formulation given for the database migration problem in [11] corresponds
to our CCDM problem under the model 〈arb | arb | unif〉. In [11], it is proven
that the CCDM problem is NP-hard under the model 〈arb | ∗ | ∗〉. In this
section, we strengthen the result in [11] via Theorem 1, which states that the
CCDM problem is NP-hard for all the models in our framework, even under
the restriction that there are only 2 shifts and each application calls at most 2
databases.

Theorem 1. The CCDM problem in models 〈∗ | ∗ | ∗〉 is NP-hard even under
the restrictions that there are only two shifts, and each application calls at most
two databases.

Proof. Since the set of instances of the capacity-constrained database migration
problem under the model 〈const | const | unif〉 is a subset of the instances of any
model captured by the notation 〈∗ | ∗ | ∗〉, all we need to do is to prove that the
CCDM problem is NP-hard under the model 〈const | const | unif〉, when there
are only two shifts, and each application calls at most two databases. We will do
this via a polynomial time reduction from the classical MINIMUM-BISECTION
problem [12], whose definition is given below.

Definition 1 (MINIMUM-BISECTION). Given an undirected graph G =
(V,E), partition V into two subsets V1 and V2 of equal size such that the number
of edges with one endpoint in V1 and one endpoint in V2 are minimized. It is
assumed |V | is even.

For a given instance G = (V,E) of the MINIMUM-BISECTION problem, we
construct the corresponding CCDM instance in model 〈const | const | unif〉 as
follows:

– For every vertex i of the graph of the MINIMUM-BISECTION instance, the
CCDM instance has a corresponding database Bi with unit size, i.e., wi = 1,

– For every edge e = (i, j) of the graph of the MINIMUM-BISECTION
instance, the CCDM instance has a corresponding application Ae with unit
application testing cost(ce = 1) that calls databases Bi and Bj ,

Minimization of Testing Costs in Capacity-Constrained Database Migration 7

– The CCDM instance has only two shifts and the size of each shift is |V |
2 .

Notice that the constructed CCDM instance has |V | databases and |E| appli-
cations such that each application calls exactly two databases. In any feasible
solution to the CCDM instance exactly k = |V |

2 databases are assigned to the
first shift and the remaining k databases are assigned to the second shift. If both
of the databases called by an application Ai are assigned to the same shift then
application Ai needs to be tested only once (xi = 1) in the database migration
process, and it needs to be tested twice (xi = 2) otherwise. Let d denote the
number of applications that calls one database from each shift, and thus needs to
be tested twice. Then, the total application testing cost of the CCDM instance
is |V |+d, since d of the |E| applications are to be tested twice whereas all other
applications are to be tested only once. Since |V | is fixed, the optimal solution
to the CCDM instance is the one that minimizes d.

Given a solution to constructed CCDM instance, consider the following solu-
tion to the given MINIMUM-BISECTION instance:

– If database Bi of the constructed CCDM instance is assigned to the first shift,
then assign vertex i of the MINIMUM-BISECTION instance to V1,

– If database Bi of the constructed CCDM instance is assigned to the second
shift, then assign vertex i of the MINIMUM-BISECTION instance to V2.

Notice that an edge e = (i, j) of the given MINIMUM-BISECTION instance
has one endpoint in V1 and one endpoint in V2 if and only if the databases
Bi and Bj of the CCDM instance are assigned to different shifts and thus the
application Ae is to be tested twice. Therefore, the number of edges with one
endpoint in V1 and one endpoint in V2 of the given MINIMUM-BISECTION
instance is equal to the number of applications that needs to be tested twice in
the constructed CCDM instance, which is denoted by d. ��

4 Fixed Parameter Intractability of the CCDM Problem

In this section, we study the fixed parameter tractability of the CCDM prob-
lem for various parameters of the problem such as the number of applications,
the number of shifts, the maximum number of databases that is called by an
application, and the maximum number of applications that calls a database.

Notice that Theorem 1 establishes fixed parameter intractability for all 12
models of the CCDM problem, where the parameter is the number of shifts, or
the maximum number of databases that is called by an application. In the rest
of the section, we prove intractability results for the remaining parameters.

Theorem 2 establishes fixed parameter intractability for all 6 models of the
CCDM problem captured by the notation 〈∗ | arb | ∗〉, when the parameter is
the number of applications. Theorem 3 establishes fixed parameter intractability
for all 6 models of the CCDM problem captured by the notation 〈∗ | ∗ | non −
unif〉, when the parameter is the maximum number of applications that calls a
database.

8 K. Subramani et al.

Theorem 2. The CCDM problem is NP-hard under the 6 models captured by
the notation 〈∗ | arb | ∗〉, even when the number of applications |A| is 2.

Proof. Since the set of instances of the database migration problem under the
model 〈const | arb | unif〉 is a subset of the instances of any model captured by
the notation 〈∗ | arb | ∗〉, all we need to do is to prove that the CCDM problem
is NP-hard under the model 〈const | arb | unif〉, when |A| is 2. We will do that
via a polynomial reduction from the classical PARTITION problem [12], whose
definition is given below.

Definition 2 (PARTITION). Given a multiset S of positive integers, can S
be partitioned into two subsets S1 and S2 such that the sum of the numbers in
S1 equals the sum of the numbers in S2?

Given a PARTITION instance S = {s1, s2, . . . , sn}, we construct a corre-
sponding CCDM instance under the model 〈const | arb | unif〉 with 2 applica-
tions as follows:

– For every integer si in the multiset S of the PARTITION instance, the CCDM
instance has a corresponding database Bi with size si, i.e., wi = si,

– The CCDM instance has two applications A1 and A2 with unit testing costs,
each of which calls all of the n databases,

– The CCDM instance has sufficiently many shifts and the size of each shift is∑n
i=1 si

2 .

Since both of the applications of the CCDM instance calls all the databases,
the total application testing cost is two times the number of shifts with at least
one database assigned. Thus, the CCDM instance has a solution with total appli-
cation testing cost of 4 if the databases can be clustered into two shifts. The
theorem holds since the databases can be clustered into two shifts if and only if
the answer to the PARTITION instance is yes. ��
Theorem 3. CCDM is strongly NP-hard for the 6 models captured by the nota-
tion 〈∗ | ∗ | non − unif〉, even if each database is called by two applications.

Proof. Since the set of instances of the capacity-constrained database migra-
tion problem under the model 〈const | const | non − unif〉 is a subset of the
instances of any model captured by the notation 〈∗ | ∗ | non − unif〉, all we
need to do is to prove that the CCDM problem is NP-hard under the model
〈const | const | non − unif〉, when each database is called by at most two appli-
cations. We will do that via a polynomial reduction from the classical CLIQUE
problem, whose definition is given below.

Definition 3 (CLIQUE). Given a graph G = (V,E) and an integer k, is there
a fully connected subgraph G′ ⊆ G consisting of k vertices?

Given a CLIQUE instance 〈G = (V,E), k〉, we construct a corresponding
CCDM instance under the model 〈const | const | non − unif〉 as follows:

Minimization of Testing Costs in Capacity-Constrained Database Migration 9

– For every vertex vi of the CLIQUE instance, the CCDM instance has a cor-
responding application Ai with unit application testing cost, i.e., ci = 1.

– For every edge e of the CLIQUE instance, the CCDM instance has a corre-
sponding database Be with unit size, i.e., wi = 1,

– For every edge e = (vi, vj) of the CLIQUE instance, the applications Ai and
Aj of the CCDM instance calls database Be. Notice that each database is
called by exactly 2 applications.

– The CCDM instance has |E|− k(k − 1)/2+1 shifts. The size of the first shift
is k(k − 1)/2, and the size of each of the remaining |E| − k(k − 1)/2 shifts
is 1.

We next show that there is a k-clique in G if and only if our CCDM instance
yields a solution with a total application testing cost of 2|E| − k2 + 2k.

Let c∗ denote the cost of the minimum-cost solution for our CCDM instance.
Since each database is connected to 2 applications, we have c∗ > 2(|E| − k(k −
1)/2) = 2|E|−k2+k. This follows from the fact that each database placed in one
of the |E| − k(k − 1)/2 shifts with capacity of 1 must have both of its connected
applications tested, leading to a test cost of 2(|E| − k(k − 1)/2) = 2|E| − k2 + k.
For the shift with capacity k(k−1)/2, we have a total application test cost of k if
and only if the vertices in G corresponding to the databases in this shift induce
a clique of size k. This follows trivially from the fact that the number of edges in
a k-clique is k(k −1)/2. Thus, c∗ ≥ 2|E|−k2 +2k and c∗ = 2|E|−k2 +2k if and
only if G has a clique of size k. Since all values in the reduction are polynomially
bounded, it follows that this problem is NP-hard in the strong sense. ��

5 Approximation Algorithm for a Special Case
of the CCDM Problem

In this section, we present Algorithm 5.1 for the CCDM problem under the model
〈const | const | unif〉, when there are only two shifts and each application calls
at most two databases. Algorithm 5.1 is a randomized (32 + ε)−approximation
algorithm for any given ε > 0 by Theorem 4.

FunctionMin-Test-Cost(〈c,w,D, l〉, ε)

1: if n < 1 + 1
2ε

then
2: Find optimal solution by brute force
3: else
4: Select half of the databases by simple random sampling without replacement
5: Assign the selected databases to the first shift
6: Assign the remaining databases to the second shift
7: end if

Algorithm 5.1. Randomized (32+ε)−approximation algorithm for CCDM prob-
lem under the model 〈const | const | unif〉, when there are only two shifts and
each application calls at most two databases.

10 K. Subramani et al.

Theorem 4. For any given ε > 0, Algorithm 5.1 returns a solution whose total
application testing cost is at most (32 + ε) times that of the optimum, for the
CCDM problem under the model 〈const | const | unif〉, when there are only two
shifts and each application calls at most two databases.

Proof. Since Algorithm 5.1 finds the optimal solution in polynomial time by
brute force if n < 1 + 1

2ε , in the rest of the proof, we will assume the contrary,
i.e., ε ≥ 1

2n−2 .
Since there are only two shifts, each application Ai is to be tested only once

or twice. If both of the databases that are called by Ai are assigned to the same
shift or if it calls only one database it will be tested once, otherwise it will be
tested twice. Let C denote the application testing cost of any application. Then
the total application testing cost is C times the total number of application
tests. Note that m · C is a lower bound for the cost of the optimal solution to
this CCDM instance, since each application is to be tested at least once. (Recall
that m is the number of applications and n is the number of databases.)

Let Xi be a random variable denoting the number of times application Ai is
to be tested with respect to the migration schedule generated by Algorithm 5.1.
The total cost of the migration schedule generated by Algorithm 5.1 is then
C · ∑m

i=1 Xi. To complete the proof, all that we need to do is to show that
E(

∑m
i=1 Xi) ≤ (

3
2 + ε

) · m. Since E(
∑m

i=1 Xi) =
∑m

i=1 E(Xi) due to linearity of
expectations, it suffices to show that E(Xi) ≤ (

3
2 + ε

)
for any i. If Ai calls only

one database then this inequality is trivially satisfied since E(Xi) = 1. So, we
focus on applications that calls exactly two databases.

Let Ai be an application that calls databases Bj and Bk. Let Ej and Ek

denote the events that databases Bj and Bk are assigned to the first shift respec-
tively. Accordingly, Ej and Ek are the events that the databases Bi and Bj are
assigned to shift 2.

It follows that

E(Xi) = 1 · Pr((Ej ∩ Ek) ∪ (Ej ∩ Ek)) + 2 · Pr((Ej ∩ Ek) ∪ (Ej ∩ Ek))

= Pr(Ej ∩ Ek) + Pr(Ej ∩ Ek) + 2 · Pr(Ej ∩ Ek) + 2 · Pr(Ej ∩ Ek)

= Pr(Ej)Pr(Ek|Ej) + Pr(Ej)Pr(Ek|Ej)

= 2
(
Pr(Ej)Pr(Ek|Ej) + Pr(Ej)Pr(Ek|Ej)

)

=
1
2

·
n
2 − 1
n − 1

+
1
2

·
n
2 − 1
n − 1

+ 2
(

1
2

·
n
2

n − 1
+

1
2

·
n
2

n − 1

)

=
3
2

+
1

2n − 2

≤ 3
2

+ ε, as desired.

Minimization of Testing Costs in Capacity-Constrained Database Migration 11

6 Conclusion and Future Research Directions

This paper presented a general framework that is suitable for modelling the
database migration requirements of a variety of enterprises. We showed that the
CCDM problem is NP-hard for all the models considered, even under the very
restricted scenario, where there are only 2 shifts and each application calls at
most 2 databases. We also studied the parameterized complexity of the CCDM
problem for four relevant parameters and presented fixed parameter intractabil-
ity results for all of them. Finally, we presented a (32 + ε)-approximation algo-
rithm for an interesting but a quite restricted special case of the CCDM problem.
Every model of the CCDM problem is an interesting combinatorial optimization
problem by itself, and it would be interesting to know for which models of the
CCDM problem there are low factor approximation algorithms, and for which
models there are not. From our perspective, the following avenues of research
are interesting:

1. Derandomizing the randomized approximation algorithm.
2. Designing approximation algorithms and/or obtaining inapproximability

results for all the models of the CCDM problem.

References

1. Ravikumar, Y.V., Krishnakumar, K.M., Basha, N.: Oracle database migration.
Oracle Database Upgrade and Migration Methods, pp. 213–277. Apress, Berkeley
(2017). https://doi.org/10.1007/978-1-4842-2328-4 5

2. Harrold, M.J., et al.: Regression test selection for java software. In: ACM SIGPLAN
Notices, vol. 36, pp. 312–326. ACM (2001)

3. Vergilio, S.R., Maldonado, J.C., Jino, M., Soares, I.W.: Constraint based structural
testing criteria. J. Syst. Softw. 79(6), 756–771 (2006)

4. Eric Wong, W., Horgan, J.R., Mathur, A.P., Pasquini, A.: Test set size minimiza-
tion and fault detection effectiveness: a case study in a space application. J. Syst.
Softw. 48(2), 79–89 (1999)

5. Elmore, A.J., Das, S., Agrawal, D., El Abbadi, A.: Zephyr: live migration in shared
nothing databases for elastic cloud platforms. In: Proceedings of the 2011 ACM
SIGMOD International Conference on Management of data, pp. 301–312. ACM
(2011)

6. Lohr, Steve: The age of big data. New York Times 11, 2012 (2012)
7. Bahrami, M., Singhal, M.: The role of cloud computing architecture in big data.

In: Pedrycz, W., Chen, S.-M. (eds.) Information Granularity, Big Data, and Com-
putational Intelligence. SBD, vol. 8, pp. 275–295. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-08254-7 13

8. Nascimento, D.C., Pires, C.E., Mestre, D.: Data quality monitoring of cloud
databases based on data quality SLAs. In: Trovati, M., Hill, R., Anjum, A., Zhu,
S.Y., Liu, L. (eds.) Big-Data Analytics and Cloud Computing, pp. 3–20. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-25313-8 1

9. Ping, L., Zhang, L., Liu, X., Yao, J., Zhu, Z.: Highly efficient data migration and
backup for big data applications in elastic optical inter-data-center networks. IEEE
Network 29(5), 36–42 (2015)

https://doi.org/10.1007/978-1-4842-2328-4_5
https://doi.org/10.1007/978-3-319-08254-7_13
https://doi.org/10.1007/978-3-319-08254-7_13
https://doi.org/10.1007/978-3-319-25313-8_1

12 K. Subramani et al.

10. Xiaonian, W., Deng, M., Zhang, R., Zeng, B., Zhou, S.: A task scheduling algorithm
based on qos-driven in cloud computing. Procedia Comput. Sci. 17, 1162–1169
(2013)

11. Patil, S., et al.: Minimizing testing overheads in database migration lifecycle. In:
COMAD, p. 191 (2010)

12. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, New York
(1994)

	Minimization of Testing Costs in Capacity-Constrained Database Migration
	1 Introduction
	2 Notations and Problem Formulation
	3 Computational Complexity of the CCDM Problem
	4 Fixed Parameter Intractability of the CCDM Problem
	5 Approximation Algorithm for a Special Case of the CCDM Problem
	6 Conclusion and Future Research Directions
	References

