
Yann Disser
Vassilios S. Verykios (Eds.)

 123

LN
CS

 1
14

09

4th International Symposium, ALGOCLOUD 2018
Helsinki, Finland, August 20–21, 2018
Revised Selected Papers

Algorithmic Aspects
of Cloud Computing

Lecture Notes in Computer Science 11409

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board Members

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Yann Disser • Vassilios S. Verykios (Eds.)

Algorithmic Aspects
of Cloud Computing
4th International Symposium, ALGOCLOUD 2018
Helsinki, Finland, August 20–21, 2018
Revised Selected Papers

123

Editors
Yann Disser
Technical University of Darmstadt
Darmstadt, Germany

Vassilios S. Verykios
Hellenic Open University
Patras, Greece

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-19758-2 ISBN 978-3-030-19759-9 (eBook)
https://doi.org/10.1007/978-3-030-19759-9

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-2085-0454
https://doi.org/10.1007/978-3-030-19759-9

Preface

The International Symposium on Algorithmic Aspects of Cloud Computing
(ALGOCLOUD) is an annual event aiming to tackle the diverse new topics in the
emerging area of algorithmic aspects of computing and data management in the cloud.

The aim of the symposium is to bring together international researchers, students,
and practitioners to present research activities and results on topics related to algo-
rithmic, design, and development aspects of modern cloud-based systems.

As in previous years, paper submissions were solicited through an open call for
papers. ALGOCLOUD welcomes submissions on all theoretical, design, and
implementation aspects of modern cloud-based systems. We are particularly interested
in novel algorithms in the context of cloud computing, cloud architectures, as well as
experimental work that evaluates contemporary cloud approaches and pertinent
applications. We also welcome demonstration manuscripts, which discuss successful
elastic system developments, as well as experience/use-case articles. Contributions may
span a wide range of algorithms for modeling, practices for constructing, and
techniques for evaluating operations and services in a variety of systems, including but
not limited to, virtualized infrastructures, cloud platforms, datacenters, cloud-storage
options, cloud data management, non-traditional key-value stores on the cloud, HPC
architectures, etc.

Topics of interest addressed by this workshop include, but are not limited to:

• Distributed algorithms and mechanisms
• Algorithms, data structures, and computation
• Data science and machine learning
• Big data analytics and deep learning
• Networking, routing, and protocols
• Caching and load balancing
• Resource management and elasticity
• Search&retrieval and graph exploration
• Privacy and anonymization approaches
• Privacy-preserving record linkage
• Scale-up and -out for NoSQL and columnar databases
• Analysis of containerized applications
• Cloud deployment tools and their analysis
• Query languages and novel programming models
• Data structures and algorithms for eventually-consistent stores
• Scalable access structures and indexing for cloud data-stores
• NoSQL and schema-less data modeling and integration
• Consistency, replication, and partitioning CAP
• Transactional models and algorithms for cloud data-stores

ALGOCLOUD 2018 took place during August 20–21, 2018, in Helsinki, Finland.
It collocated and was part of ALGO 2018 (August 20–24, 2018), the major annual
congress that combines the premier algorithmic conference “European Symposium on
Algorithms” (ESA) and a number of other specialized symposiums and workshops and
a summer school, all related to algorithms and their applications, making ALGO the
major European event for researchers, students, and practitioners in algorithms.

The Program Committee (PC) of ALGOCLOUD 2018 was delighted by the positive
response to the call for papers. The diverse nature of papers submitted demonstrated the
vitality of the algorithmic aspects of cloud computing. All submissions underwent the
standard peer-review process and were reviewed by at least four PC members. The PC
decided to accept 11 original research papers on a wide variety of topics that were
presented at the workshop. We would like to thank the PC members for their significant
contribution in reviewing process.

The program of ALGOCLOUD 2018 was complemented with a highly interesting
keynote, entitled “Algorithms For and Against the Cloud,” which was delivered by
Roger Wattenhofer (ETH Zurich, Switzerland). We wish to express our sincere grat-
itude to this distinguished professor for the excellent keynote he provided.

We would like to thank all authors who submitted their research work in
ALGOCLOUD. We also thank the Steering Committee for volunteering their time.

We hope that these proceedings will help researchers, students, and practitioners to
understand and be aware of state-of-the-art algorithmic aspects of cloud computing,
and that they will stimulate further research in the domain of algorithmic approaches in
cloud computing in general.

August 2018 Yann Disser
Vassilios S. Verykios

vi Preface

Organization

Steering Committee

Spyros Sioutas Ionian University, Greece
Peter Triantafillou University of Glasgow, UK
Christos D. Zaroliagis University of Patras, Greece

Symposium Chairs

Yann Disser TU Darmstadt, Germany
Vassilios S. Verykios Hellenic Open University, Greece

Program Committee

Alex Delis University of Athens, Greece
Katerina Doka National Technical University of Athens, Greece
Ahmed Eldawy University of California Riverside, USA
Klaus-Tycho Foerster University of Vienna, Austria
Aris Gkoulalas-Divanis IBM Watson Health, USA
Dimitrios Karapiperis Hellenic Open University, Greece
Eleftheria Katsiri Democritus University of Thrace, Greece
Ulrich Meyer Goethe University Frankfurt, Germany
Taneli Mielikainen University of Helsinki, Finland
Paolo Missier Newcastle University, UK
Nikolaos Nodarakis University of Patras, Greece
Mourad Ouzzani Qatar Computing Research Institute, HBKU, Qatar
Guido Proietti University of L’Aquila, Italy
Juha Röning University of Oulu, Finland
Yücel Saygin Sabanci University, Turkey
Junho Shim Sookmyung Women’s University, South Korea
Elias C. Stavropoulos Hellenic Open University, Greece
Przemysław Uznański ETH Zurich, Switzerland
Dinusha Vatsalan Data61 CSIRO, Australia

Additional Reviewers

Panagiotis Kanellopoulos
Christina Karousatou
Panagiotis Liakos
Christos Makris
Evangelos Sakkopoulos

Algorithms For and Against the Cloud
(Keynote Talk)

Roger Wattenhofer

ETH Zurich, Switzerland
wattenhofer@ethz.ch

http://www.disco.ethz.ch

Abstract. Algorithms interact in two main ways with the cloud. There exist
algorithms which are tailored for the cloud, for which the cloud is the perfect
environment. Moreover, the cloud may also benefit from optimization algo-
rithms, algorithms that make the cloud more efficient. The AlgoCloud program
features papers which roughly fit one of the two, and there will be a few
examples in the first part of the presentation.
The first example [2] studies how to solve a large computational problem,

represented by a graph, by partitioning it into two or more smaller parts. Each
part is solved on a single processor, in parallel. The vertices of a component are
simulated on a single processor whereas edges between two vertices in different
components are handled by the two processors responsible for the two com-
ponents by exchanging messages. A natural objective of designing such a
partition is to reduce the inter-processor communication as it is the expensive
part in terms of runtime. We argue that an input graph should be partitioned by
means of a balanced vertex separator (and not a balanced edge cut), since vertex
separators are often more efficient. We sketch how to find a small balanced
vertex separator (if one exists) in almost linear time.
Next we show some examples well suited for the cloud. In particular we

discuss GPS coarse time navigation [1] and GPS spoofing, as well as online
matching [3]. The online matching problem is an example of an online problem
which only becomes feasible if we allow for delaying decisions. So the cost
of the algorithm two-fold: (i) the cost of the quality of the matching, and (ii) the
waiting time until something is matched. To the best of our knowledge, [3] was
the first online all pairs matching.
So far for algorithms for the cloud. The second part of the presentation is

about algorithms against the cloud. Recently, blockchains [4] are hyped to be a
cloud competitor, sometimes even a cloud killer. First we quickly discuss some
of the basics of blockchains, with eMoney and eVoting as examples. Then we
want to know whether there is some truth to whether blockchains are going to
threaten the successful cloud paradigm. We discuss several cloud vs. blockchain
angles: Should one trust a large (usually trusted) corporation, or rather thousands
(of usually untrusted) individuals? What about energy consumption? And what
should we think if a corporation offers to run a blockchain in their cloud?

References

1. Bissig, P., Eichelberger, M., Wattenhofer, R.: Fast and robust GPS fix using one millisecond
of data. In: 16th ACM/IEEE International Conference on Information Processing in Sensor
Networks (IPSN), Pittsburgh, Pennsylvania, USA, April 2017

2. Brandt, S., Wattenhofer, R.: Approximating small balanced vertex separators in almost linear
time. In: Ellen, F., Kolokolova, A., Sack, J.R. (eds.) WADS 2017. LNCS, vol. 10389,
pp. 229–240. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62127-2_20

3. Emek, Y., Kutten, S., Wattenhofer, R.: Online matching: haste makes waste! In: 48th Annual
Symposium on the Theory of Computing (STOC), Cambridge, Massachusetts, USA, June
2016

4. Wattenhofer, R.: Blockchain Science: Distributed Ledger Technology. Inverted Forest
Publishing (2016–2019)

x R. Wattenhofer

https://doi.org/10.1007/978-3-319-62127-2_20

Contents

Minimization of Testing Costs in Capacity-Constrained
Database Migration . 1

K. Subramani, Bugra Caskurlu, and Alvaro Velasquez

Community Detection via Neighborhood Overlap and Spanning Tree
Computations . 13

Ketki Kulkarni, Aris Pagourtzis, Katerina Potika, Petros Potikas,
and Dora Souliou

Colocation, Colocation, Colocation: Optimizing Placement
in the Hybrid Cloud . 25

Srinivas Aiyar, Karan Gupta, Rajmohan Rajaraman, Bochao Shen,
Zhifeng Sun, and Ravi Sundaram

A Peer-to-Peer Based Cloud Storage Supporting Orthogonal Range Queries
of Arbitrary Dimension . 46

Markus Benter, Till Knollmann, Friedhelm Meyer auf der Heide,
Alexander Setzer, and Jannik Sundermeier

A Fully Polynomial Time Approximation Scheme for Packing
While Traveling . 59

Frank Neumann, Sergey Polyakovskiy, Martin Skutella, Leen Stougie,
and Junhua Wu

Multi-commodity Flow with In-Network Processing 73
Moses Charikar, Yonatan Naamad, Jenifer Rexford, and X. Kelvin Zou

On-Line Big-Data Processing for Visual Analytics
with Argus-Panoptes . 102

Panayiotis I. Vlantis and Alex Delis

An Overview of Big Data Issues in Privacy-Preserving Record Linkage. 118
Dinusha Vatsalan, Dimitrios Karapiperis, and Aris Gkoulalas-Divanis

Web Frameworks Metrics and Benchmarks for Data Handling
and Visualization . 137

Alexandros Gazis and Eleftheria Katsiri

Algorithms for Cloud-Based Smart Mobility. 152
Kalliopi Giannakopoulou

A Frequent Itemset Hiding Toolbox . 169
Aris Gkoulalas-Divanis, Vasileios Kagklis, and Elias C. Stavropoulos

Author Index . 183

xii Contents

Minimization of Testing Costs
in Capacity-Constrained Database

Migration

K. Subramani1(B), Bugra Caskurlu2, and Alvaro Velasquez3

1 LCSEE, West Virginia University, Morgantown, WV, USA
k.subramani@mail.wvu.edu

2 CE, TOBB University of Economics and Technology, Ankara, Turkey
caskurlu@gmail.com

3 RISC, Air Force Research Laboratory, Rome, NY, USA
alvaro.velasquez@us.af.mil

Abstract. Database migration is an ubiquitous need faced by enter-
prises that generate and use vast amount of data. This is due to database
software updates, or from changes to hardware, project standards, and
other business factors [1]. Migrating a large collection of databases is a
way more challenging task than migrating a single database, due to the
presence of additional constraints. These constraints include capacities
of shifts, sizes of databases, and timing relationships. In this paper, we
present a comprehensive framework that can be used to model database
migration problems of different enterprises with customized constraints,
by appropriately instantiating the parameters of the framework. We
establish the computational complexities of a number of instantiations
of this framework. We present fixed-parameter intractability results for
various relevant parameters of the database migration problem. Finally,
we discuss a randomized approximation algorithm for an interesting
instantiation.

1 Introduction

The database migration problem entails the movement of data between different
databases. Such migration is often necessary due to database software updates,
or from changes to hardware or project standards, and other business factors
[1]. As per established rules of software reliability, when a database is migrated,
every application that is dependent upon it must be tested (i.e., run through
regression suites [2]). It is known that testing an application is an expensive
aspect of maintaining the application [3]. Consequently, the principal goal in
the migration process is to minimize the application testing cost [4]. This is a

K. Subramani—This research was supported in part by the Air Force Research Lab-
oratory Information Directorate, through the Air Force Office of Scientific Research
Summer Faculty Fellowship Program and the Information Institute�, contract num-
bers FA8750-16-3-6003 and FA9550-15-F-0001.

c© Springer Nature Switzerland AG 2019
Y. Disser and V. S. Verykios (Eds.): ALGOCLOUD 2018, LNCS 11409, pp. 1–12, 2019.
https://doi.org/10.1007/978-3-030-19759-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19759-9_1&domain=pdf
https://doi.org/10.1007/978-3-030-19759-9_1

2 K. Subramani et al.

pervasive issue in cloud computing clusters, where a pay-per-use infrastructure
and unpredictable workloads necessitate frequent allocation and movement of
data [5]. Thus, there is a pressing need for efficient procedures to minimize
the resource overhead involved in data migration. Interest in this area has also
been fueled in recent years by the massive generation of data in what is now
being called the Big Data age [6]. Consequently, there has been a proliferation of
resource-intensive data centers and the adoption of cloud computing and storage
as a service in order to manage said data [7].

While the ubiquity of computational and storage capabilities of cloud com-
puting are undeniable, there remain open challenges with regards to resource
allocation and data management [8]. In fact, the migration of data in data cen-
ters remains a significant problem, due to the massive throughput of data and the
limited bandwidth of communication channels [9]. This problem is further exac-
erbated by the overhead incurred from retesting applications after data migration
and by Quality-of-Service (QoS) requirements, which demand minimal interrup-
tions to end-user applications [10]. As such, minimizing the cost associated with
bandwidth-constrained database migration is of great interest. Patil et al. [11]
introduced the first systematic study on the database migration problem, and
proved that the problem is NP-hard for some special cases. They provided an
integer programming formulation, which can only be used for small instances,
and a greedy heuristic that can be used for the large instances of the problem.
In this paper, we define a very general framework that subsumes the model in
[11]. Our framework accommodates the modelling of database migration needs
of various enterprises with customized constraints. We present hardness results
for all the models in our framework, as well as fixed-parameter intractability
for various relevant parameters. We also present a randomized approximation
algorithm for a simple but interesting special case of the problem.

The rest of the paper is organized as follows:

– In Sect. 2, we formally define the capacity-constrained database migration
(CCDM) problem and introduce the notation used in the paper.

– In Sect. 3, we study the computational complexity of the (CCDM) problem
and prove that the problem is NP-hard for all the models of the problem
defined in Sect. 2.

– In Sect. 4, we study fixed parameter tractability of the CCDM problem with
respect to the four most relevant parameters of the problem.

– In Sect. 5, we present a randomized (32 + ε)-approximation algorithm for a
special case of the CCDM problem.

– In Sect. 6, we summarize our contributions and point out avenues for future
research.

2 Notations and Problem Formulation

In this section, we provide a formal definition of the framework for the capacity
constrained database migration problem (CCDM) and introduce the terminology
used in this paper.

Minimization of Testing Costs in Capacity-Constrained Database Migration 3

Assume we have a collection of m applications A = {A1, A2, . . . , Am} and
n databases B = {B1, B2, . . . , Bn}, with each application calling one or more
databases. The call relationship is stored in the n × m matrix D = [dij], where

dij =
{

1, if application Ai calls database Bj

0, otherwise.

The matrix D = [dij], which represents a bipartite graph as shown in Fig. 1,
is part of the input. Associated with the set of applications A, is a cost-vector
c = [c1, c2, . . . , cn]T , where ci represents the cost of testing application Ai once.
For each application Ai, we let xi be an integer variable that denotes the number
of times Ai will have to be tested in the migration schedule. The size-vector
w = [w1, w2, . . . , wm]T represents the size of databases, with wi representing the
size of database Bi.

B1

B2

B3

B4

A1

A2

A3

A4

A5

A6

A7

Fig. 1. The bipartite graph shows the relationship between the databases and the
applications. The nodes in the left partition, represent the databases in the system,
while the nodes in the right partition, represent the applications. An edge (b, a) exists
in the graph if application a calls database b. This means application a must be tested
immediately after database b migrates. We note that each database is associated with
a nonempty set of applications, and each application is associated with a nonempty set
of databases.

In the CCDM problem, the set of databases B is to be clustered into disjoint
subsets which we call shifts. The databases in each shift are migrated at the
same time. When a shift of databases migrates, each application that calls at
least one database in that shift needs to be tested immediately. For example, if
the set of databases called by an application Ai are scheduled to 5 distinct shifts,
then application Ai is to be tested 5 times throughout the migration process,
i.e., xi = 5. The cumulative size of the databases migrated in shift i (i.e., the
size of shift i) is denoted by li. The shift size-vector l = [l1, l2, . . . , lm]T is also

4 K. Subramani et al.

part of the input. In the worst case, when the size of each shift is smaller than
the sum of the sizes of any two databases, we may have to assign each database
to a separate shift.

Thus, the input to the CCDM problem must contain the 4-tuple 〈c,w,D, l〉.
For instance, consider the following 4-tuple:

〈
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1
2
2
3
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎝

5
7
10
12

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1 0 1 0 1 0 1
0 1 0 1 0 1 0
1 1 0 0 1 0 0
0 0 1 0 0 0 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎜⎜⎝

10
15
12
7
28
34

⎞
⎟⎟⎟⎟⎟⎟⎠

〉

In this example, we have seven applications and four databases, since the
matrix D has seven columns and four rows. We label the applications as
A1, A2, . . . , A7, and the databases as B1, B2, B3, B4. Matrix D indicates which
applications call which databases. We observe that database B1 is called by appli-
cations A1, A3, A5, and A7. The database B2 is called by applications A2, A4,
and A6. The database B3 is called by applications A1, A2, and A5, and database
B4 is called by applications A3, and A7. The sizes of the databases B1, B2, B3,
and B4 are given as 5, 7, 10, and 12, respectively, in w. The database migration
operation in this example is to be completed in at most 6 shifts since |l| = 6
in the input. The cumulative size of the databases that migrate in each shift is
constrained by 10, 15, 12, 7, 28, and 34, respectively, in l.

There are several parameters associated with the CCDM problem:

(i) Application Testing cost (α) - The testing cost of an application depends
primarily on two factors, viz., the time it takes to test the application, and
the skills required to test a given application. We consider the following
three cost models associated with testing an application in order to take
these factors into account:
(a) Constant (const) - In this model, the cost of testing each application

is the same and is equal to some known fixed constant C. Note that
this model captures the scenario in which each application requires the
same level of skills and takes roughly the same time to test.

(b) Proportional (prop) - In this model, the cost of testing an application
after migrating a corresponding database is proportional to the sizes
of the migrated databases it calls. Note that this model captures the
situation where each application in the system requires the same level
of skills, but the testing time may vary from application to application.

(c) Arbitrary (arb) - In this model, there is no relation among the costs of
testing different applications. This model captures the problem of com-
panies that use application software from several different companies
such that each application requires personnel with different skill sets.

(ii) Size of Databases (β) - The size of a database is a factor in the amount
of time required for its migration. This is because the database migration

Minimization of Testing Costs in Capacity-Constrained Database Migration 5

operation must read the database at the original location, write it at the
new location, and then delete the original database. Consider a bank that
maintains data for credit card accounts, savings accounts, and checking
accounts in different databases. Typically, a bank will have more customers
with a checking account than a savings account. Similarly, the number of
credit card customers will be significantly more than the number of savings
account customers, since a typical customer has one savings account but
several credit cards. This means we need two size models associated with
the databases:
(a) Constant (const) - In this model, all databases have the same size

and are equal to some fixed constant W . This allows us to model the
database migration operation for companies whose databases have more
or less the same size.

(b) Arbitrary (arb) - In this model, the sizes of the databases are arbitrary.
This lets us model the database migration operation for companies
whose databases may significantly vary in size.

(iii) Shift size (γ) - During the database migration operation, some parts of
the database will be inaccessible. For some companies, there is no ideal
time to make a database unavailable. For instance, Facebook and Youtube
have users all over the world which means that the database access rate
is roughly uniform. In this case, regardless of when a database becomes
inaccessible, there will be a subset of users who cannot access the database
until the migration is complete. It is critical for these companies to perform
the database migration operation in small shifts to minimize user dissat-
isfaction. For companies (e.g., banks) that operate during regular business
hours, it is preferable for the databases to be unavailable when the com-
panies are closed rather than when they are open. In order to model the
needs of several different companies, we use two size models associated with
shifts.
(a) Uniform (unif) - In this model, the total size of the databases migrated

in the same shift is the same and is equal to a constant L, for all shifts
(i.e., l = 〈L,L, . . . , L〉). We note that this model is better suited for the
database migration needs of companies that have uniform database
access rates.

(b) Non-uniform (non-unif) - In this model, the total size of the databases
migrated in each shift is arbitrary. We note that this model is better
suited for the database migration needs of companies that have non-
uniform database access rates.

Thus, a model of the capacity-constrained database migration problem has
three parameters, and it is specified as a triple 〈α | β | γ〉. For instance,
〈arb | const | unif〉 refers to the capacity-constrained database migration prob-
lem in which the application testing costs are arbitrary, all databases have the
same size, and the shift sizes are uniform. For notational convenience we use ∗ as
an entry of the triple when we present a statement that is true for all the models
for that entry. For instance, the notation 〈arb | ∗ | ∗〉 refers to all 4 models

6 K. Subramani et al.

of the CCDM problem in which the application testing costs are arbitrary. The
following is formal definition of the CCDM problem:

CCDM: Given a 4-tuple 〈c,w,D, l〉, cluster the databases into shifts so that
the total application testing cost is minimized, while respecting the shift size
constraints.

Given that we have 3 different models for application testing costs, 2 differ-
ent models for sizes of databases, 2 different models for shift sizes; the CCDM
problem formulation gives us a framework with a total of 12 different models
each of which is suitable for the database migration needs of different companies.

3 Computational Complexity of the CCDM Problem

The formulation given for the database migration problem in [11] corresponds
to our CCDM problem under the model 〈arb | arb | unif〉. In [11], it is proven
that the CCDM problem is NP-hard under the model 〈arb | ∗ | ∗〉. In this
section, we strengthen the result in [11] via Theorem 1, which states that the
CCDM problem is NP-hard for all the models in our framework, even under
the restriction that there are only 2 shifts and each application calls at most 2
databases.

Theorem 1. The CCDM problem in models 〈∗ | ∗ | ∗〉 is NP-hard even under
the restrictions that there are only two shifts, and each application calls at most
two databases.

Proof. Since the set of instances of the capacity-constrained database migration
problem under the model 〈const | const | unif〉 is a subset of the instances of any
model captured by the notation 〈∗ | ∗ | ∗〉, all we need to do is to prove that the
CCDM problem is NP-hard under the model 〈const | const | unif〉, when there
are only two shifts, and each application calls at most two databases. We will do
this via a polynomial time reduction from the classical MINIMUM-BISECTION
problem [12], whose definition is given below.

Definition 1 (MINIMUM-BISECTION). Given an undirected graph G =
(V,E), partition V into two subsets V1 and V2 of equal size such that the number
of edges with one endpoint in V1 and one endpoint in V2 are minimized. It is
assumed |V | is even.

For a given instance G = (V,E) of the MINIMUM-BISECTION problem, we
construct the corresponding CCDM instance in model 〈const | const | unif〉 as
follows:

– For every vertex i of the graph of the MINIMUM-BISECTION instance, the
CCDM instance has a corresponding database Bi with unit size, i.e., wi = 1,

– For every edge e = (i, j) of the graph of the MINIMUM-BISECTION
instance, the CCDM instance has a corresponding application Ae with unit
application testing cost(ce = 1) that calls databases Bi and Bj ,

Minimization of Testing Costs in Capacity-Constrained Database Migration 7

– The CCDM instance has only two shifts and the size of each shift is |V |
2 .

Notice that the constructed CCDM instance has |V | databases and |E| appli-
cations such that each application calls exactly two databases. In any feasible
solution to the CCDM instance exactly k = |V |

2 databases are assigned to the
first shift and the remaining k databases are assigned to the second shift. If both
of the databases called by an application Ai are assigned to the same shift then
application Ai needs to be tested only once (xi = 1) in the database migration
process, and it needs to be tested twice (xi = 2) otherwise. Let d denote the
number of applications that calls one database from each shift, and thus needs to
be tested twice. Then, the total application testing cost of the CCDM instance
is |V |+d, since d of the |E| applications are to be tested twice whereas all other
applications are to be tested only once. Since |V | is fixed, the optimal solution
to the CCDM instance is the one that minimizes d.

Given a solution to constructed CCDM instance, consider the following solu-
tion to the given MINIMUM-BISECTION instance:

– If database Bi of the constructed CCDM instance is assigned to the first shift,
then assign vertex i of the MINIMUM-BISECTION instance to V1,

– If database Bi of the constructed CCDM instance is assigned to the second
shift, then assign vertex i of the MINIMUM-BISECTION instance to V2.

Notice that an edge e = (i, j) of the given MINIMUM-BISECTION instance
has one endpoint in V1 and one endpoint in V2 if and only if the databases
Bi and Bj of the CCDM instance are assigned to different shifts and thus the
application Ae is to be tested twice. Therefore, the number of edges with one
endpoint in V1 and one endpoint in V2 of the given MINIMUM-BISECTION
instance is equal to the number of applications that needs to be tested twice in
the constructed CCDM instance, which is denoted by d. ��

4 Fixed Parameter Intractability of the CCDM Problem

In this section, we study the fixed parameter tractability of the CCDM prob-
lem for various parameters of the problem such as the number of applications,
the number of shifts, the maximum number of databases that is called by an
application, and the maximum number of applications that calls a database.

Notice that Theorem 1 establishes fixed parameter intractability for all 12
models of the CCDM problem, where the parameter is the number of shifts, or
the maximum number of databases that is called by an application. In the rest
of the section, we prove intractability results for the remaining parameters.

Theorem 2 establishes fixed parameter intractability for all 6 models of the
CCDM problem captured by the notation 〈∗ | arb | ∗〉, when the parameter is
the number of applications. Theorem 3 establishes fixed parameter intractability
for all 6 models of the CCDM problem captured by the notation 〈∗ | ∗ | non −
unif〉, when the parameter is the maximum number of applications that calls a
database.

8 K. Subramani et al.

Theorem 2. The CCDM problem is NP-hard under the 6 models captured by
the notation 〈∗ | arb | ∗〉, even when the number of applications |A| is 2.

Proof. Since the set of instances of the database migration problem under the
model 〈const | arb | unif〉 is a subset of the instances of any model captured by
the notation 〈∗ | arb | ∗〉, all we need to do is to prove that the CCDM problem
is NP-hard under the model 〈const | arb | unif〉, when |A| is 2. We will do that
via a polynomial reduction from the classical PARTITION problem [12], whose
definition is given below.

Definition 2 (PARTITION). Given a multiset S of positive integers, can S
be partitioned into two subsets S1 and S2 such that the sum of the numbers in
S1 equals the sum of the numbers in S2?

Given a PARTITION instance S = {s1, s2, . . . , sn}, we construct a corre-
sponding CCDM instance under the model 〈const | arb | unif〉 with 2 applica-
tions as follows:

– For every integer si in the multiset S of the PARTITION instance, the CCDM
instance has a corresponding database Bi with size si, i.e., wi = si,

– The CCDM instance has two applications A1 and A2 with unit testing costs,
each of which calls all of the n databases,

– The CCDM instance has sufficiently many shifts and the size of each shift is∑n
i=1 si

2 .

Since both of the applications of the CCDM instance calls all the databases,
the total application testing cost is two times the number of shifts with at least
one database assigned. Thus, the CCDM instance has a solution with total appli-
cation testing cost of 4 if the databases can be clustered into two shifts. The
theorem holds since the databases can be clustered into two shifts if and only if
the answer to the PARTITION instance is yes. ��
Theorem 3. CCDM is strongly NP-hard for the 6 models captured by the nota-
tion 〈∗ | ∗ | non − unif〉, even if each database is called by two applications.

Proof. Since the set of instances of the capacity-constrained database migra-
tion problem under the model 〈const | const | non − unif〉 is a subset of the
instances of any model captured by the notation 〈∗ | ∗ | non − unif〉, all we
need to do is to prove that the CCDM problem is NP-hard under the model
〈const | const | non − unif〉, when each database is called by at most two appli-
cations. We will do that via a polynomial reduction from the classical CLIQUE
problem, whose definition is given below.

Definition 3 (CLIQUE). Given a graph G = (V,E) and an integer k, is there
a fully connected subgraph G′ ⊆ G consisting of k vertices?

Given a CLIQUE instance 〈G = (V,E), k〉, we construct a corresponding
CCDM instance under the model 〈const | const | non − unif〉 as follows:

Minimization of Testing Costs in Capacity-Constrained Database Migration 9

– For every vertex vi of the CLIQUE instance, the CCDM instance has a cor-
responding application Ai with unit application testing cost, i.e., ci = 1.

– For every edge e of the CLIQUE instance, the CCDM instance has a corre-
sponding database Be with unit size, i.e., wi = 1,

– For every edge e = (vi, vj) of the CLIQUE instance, the applications Ai and
Aj of the CCDM instance calls database Be. Notice that each database is
called by exactly 2 applications.

– The CCDM instance has |E|− k(k − 1)/2+1 shifts. The size of the first shift
is k(k − 1)/2, and the size of each of the remaining |E| − k(k − 1)/2 shifts
is 1.

We next show that there is a k-clique in G if and only if our CCDM instance
yields a solution with a total application testing cost of 2|E| − k2 + 2k.

Let c∗ denote the cost of the minimum-cost solution for our CCDM instance.
Since each database is connected to 2 applications, we have c∗ > 2(|E| − k(k −
1)/2) = 2|E|−k2+k. This follows from the fact that each database placed in one
of the |E| − k(k − 1)/2 shifts with capacity of 1 must have both of its connected
applications tested, leading to a test cost of 2(|E| − k(k − 1)/2) = 2|E| − k2 + k.
For the shift with capacity k(k−1)/2, we have a total application test cost of k if
and only if the vertices in G corresponding to the databases in this shift induce
a clique of size k. This follows trivially from the fact that the number of edges in
a k-clique is k(k −1)/2. Thus, c∗ ≥ 2|E|−k2 +2k and c∗ = 2|E|−k2 +2k if and
only if G has a clique of size k. Since all values in the reduction are polynomially
bounded, it follows that this problem is NP-hard in the strong sense. ��

5 Approximation Algorithm for a Special Case
of the CCDM Problem

In this section, we present Algorithm 5.1 for the CCDM problem under the model
〈const | const | unif〉, when there are only two shifts and each application calls
at most two databases. Algorithm 5.1 is a randomized (32 + ε)−approximation
algorithm for any given ε > 0 by Theorem 4.

FunctionMin-Test-Cost(〈c,w,D, l〉, ε)

1: if n < 1 + 1
2ε

then
2: Find optimal solution by brute force
3: else
4: Select half of the databases by simple random sampling without replacement
5: Assign the selected databases to the first shift
6: Assign the remaining databases to the second shift
7: end if

Algorithm 5.1. Randomized (32+ε)−approximation algorithm for CCDM prob-
lem under the model 〈const | const | unif〉, when there are only two shifts and
each application calls at most two databases.

10 K. Subramani et al.

Theorem 4. For any given ε > 0, Algorithm 5.1 returns a solution whose total
application testing cost is at most (32 + ε) times that of the optimum, for the
CCDM problem under the model 〈const | const | unif〉, when there are only two
shifts and each application calls at most two databases.

Proof. Since Algorithm 5.1 finds the optimal solution in polynomial time by
brute force if n < 1 + 1

2ε , in the rest of the proof, we will assume the contrary,
i.e., ε ≥ 1

2n−2 .
Since there are only two shifts, each application Ai is to be tested only once

or twice. If both of the databases that are called by Ai are assigned to the same
shift or if it calls only one database it will be tested once, otherwise it will be
tested twice. Let C denote the application testing cost of any application. Then
the total application testing cost is C times the total number of application
tests. Note that m · C is a lower bound for the cost of the optimal solution to
this CCDM instance, since each application is to be tested at least once. (Recall
that m is the number of applications and n is the number of databases.)

Let Xi be a random variable denoting the number of times application Ai is
to be tested with respect to the migration schedule generated by Algorithm 5.1.
The total cost of the migration schedule generated by Algorithm 5.1 is then
C · ∑m

i=1 Xi. To complete the proof, all that we need to do is to show that
E(

∑m
i=1 Xi) ≤ (

3
2 + ε

) · m. Since E(
∑m

i=1 Xi) =
∑m

i=1 E(Xi) due to linearity of
expectations, it suffices to show that E(Xi) ≤ (

3
2 + ε

)
for any i. If Ai calls only

one database then this inequality is trivially satisfied since E(Xi) = 1. So, we
focus on applications that calls exactly two databases.

Let Ai be an application that calls databases Bj and Bk. Let Ej and Ek

denote the events that databases Bj and Bk are assigned to the first shift respec-
tively. Accordingly, Ej and Ek are the events that the databases Bi and Bj are
assigned to shift 2.

It follows that

E(Xi) = 1 · Pr((Ej ∩ Ek) ∪ (Ej ∩ Ek)) + 2 · Pr((Ej ∩ Ek) ∪ (Ej ∩ Ek))

= Pr(Ej ∩ Ek) + Pr(Ej ∩ Ek) + 2 · Pr(Ej ∩ Ek) + 2 · Pr(Ej ∩ Ek)

= Pr(Ej)Pr(Ek|Ej) + Pr(Ej)Pr(Ek|Ej)

= 2
(
Pr(Ej)Pr(Ek|Ej) + Pr(Ej)Pr(Ek|Ej)

)

=
1
2

·
n
2 − 1
n − 1

+
1
2

·
n
2 − 1
n − 1

+ 2
(

1
2

·
n
2

n − 1
+

1
2

·
n
2

n − 1

)

=
3
2

+
1

2n − 2

≤ 3
2

+ ε, as desired.

Minimization of Testing Costs in Capacity-Constrained Database Migration 11

6 Conclusion and Future Research Directions

This paper presented a general framework that is suitable for modelling the
database migration requirements of a variety of enterprises. We showed that the
CCDM problem is NP-hard for all the models considered, even under the very
restricted scenario, where there are only 2 shifts and each application calls at
most 2 databases. We also studied the parameterized complexity of the CCDM
problem for four relevant parameters and presented fixed parameter intractabil-
ity results for all of them. Finally, we presented a (32 + ε)-approximation algo-
rithm for an interesting but a quite restricted special case of the CCDM problem.
Every model of the CCDM problem is an interesting combinatorial optimization
problem by itself, and it would be interesting to know for which models of the
CCDM problem there are low factor approximation algorithms, and for which
models there are not. From our perspective, the following avenues of research
are interesting:

1. Derandomizing the randomized approximation algorithm.
2. Designing approximation algorithms and/or obtaining inapproximability

results for all the models of the CCDM problem.

References

1. Ravikumar, Y.V., Krishnakumar, K.M., Basha, N.: Oracle database migration.
Oracle Database Upgrade and Migration Methods, pp. 213–277. Apress, Berkeley
(2017). https://doi.org/10.1007/978-1-4842-2328-4 5

2. Harrold, M.J., et al.: Regression test selection for java software. In: ACM SIGPLAN
Notices, vol. 36, pp. 312–326. ACM (2001)

3. Vergilio, S.R., Maldonado, J.C., Jino, M., Soares, I.W.: Constraint based structural
testing criteria. J. Syst. Softw. 79(6), 756–771 (2006)

4. Eric Wong, W., Horgan, J.R., Mathur, A.P., Pasquini, A.: Test set size minimiza-
tion and fault detection effectiveness: a case study in a space application. J. Syst.
Softw. 48(2), 79–89 (1999)

5. Elmore, A.J., Das, S., Agrawal, D., El Abbadi, A.: Zephyr: live migration in shared
nothing databases for elastic cloud platforms. In: Proceedings of the 2011 ACM
SIGMOD International Conference on Management of data, pp. 301–312. ACM
(2011)

6. Lohr, Steve: The age of big data. New York Times 11, 2012 (2012)
7. Bahrami, M., Singhal, M.: The role of cloud computing architecture in big data.

In: Pedrycz, W., Chen, S.-M. (eds.) Information Granularity, Big Data, and Com-
putational Intelligence. SBD, vol. 8, pp. 275–295. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-08254-7 13

8. Nascimento, D.C., Pires, C.E., Mestre, D.: Data quality monitoring of cloud
databases based on data quality SLAs. In: Trovati, M., Hill, R., Anjum, A., Zhu,
S.Y., Liu, L. (eds.) Big-Data Analytics and Cloud Computing, pp. 3–20. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-25313-8 1

9. Ping, L., Zhang, L., Liu, X., Yao, J., Zhu, Z.: Highly efficient data migration and
backup for big data applications in elastic optical inter-data-center networks. IEEE
Network 29(5), 36–42 (2015)

https://doi.org/10.1007/978-1-4842-2328-4_5
https://doi.org/10.1007/978-3-319-08254-7_13
https://doi.org/10.1007/978-3-319-08254-7_13
https://doi.org/10.1007/978-3-319-25313-8_1

12 K. Subramani et al.

10. Xiaonian, W., Deng, M., Zhang, R., Zeng, B., Zhou, S.: A task scheduling algorithm
based on qos-driven in cloud computing. Procedia Comput. Sci. 17, 1162–1169
(2013)

11. Patil, S., et al.: Minimizing testing overheads in database migration lifecycle. In:
COMAD, p. 191 (2010)

12. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, New York
(1994)

Community Detection via Neighborhood
Overlap and Spanning Tree Computations

Ketki Kulkarni1, Aris Pagourtzis2(B), Katerina Potika1, Petros Potikas2,
and Dora Souliou2

1 San Jose State University,
One Washington Square, San Jose, CA 95192, USA

{ketki.kulkarni,katerina.potika}@sjsu.edu
2 School of Electrical and Computer Engineering,

National Technical University of Athens, 15780 Zografou, Greece
{pagour,ppotik}@cs.ntua.gr, dsouliou@gmail.com

Abstract. Most social networks of today are populated with several
millions of active users, while the most popular of them accommo-
date way more than one billion. Analyzing such huge complex networks
has become particularly demanding in computational terms. A task of
paramount importance for understanding the structure of social networks
as well as of many other real-world systems is to identify communities,
that is, sets of nodes that are more densely connected to each other than
to other nodes of the network. In this paper we propose two algorithms
for community detection in networks, by employing the neighborhood
overlap metric and appropriate spanning tree computations.

Keywords: Community detection · Neighborhood overlap ·
Hierarchical clustering · Edge betweenness · Modularity ·
Social networks · Spanning trees

1 Introduction

Over the last few decades, advances in technology and the rise of the Internet
have led to numerous online social networks, like Facebook, Twitter, LinkedIn,
and Instagram, where people interact and exchange information at an unprece-
dented rate forming a plethora of virtual groups, communities and societies.
Apart from its own interest, the study and analysis of social networks finds appli-
cations on complex networks that appear in various other scientific fields. Scien-
tists working on different disciplines like sociology, computer science, anthropol-
ogy, psychology, biology, and physics are interested in the discovery of various
structural and statistical properties that characterize complex networks [2]. One
of the most important problems in analyzing such networks is the detection of

The order of authors is alphabetical; each author had an equal contribution to this
work.

c© Springer Nature Switzerland AG 2019
Y. Disser and V. S. Verykios (Eds.): ALGOCLOUD 2018, LNCS 11409, pp. 13–24, 2019.
https://doi.org/10.1007/978-3-030-19759-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19759-9_2&domain=pdf
https://doi.org/10.1007/978-3-030-19759-9_2

14 K. Kulkarni et al.

communities based on observable connections and interaction among users or
components of the network. Prediction of human emotions, influence propaga-
tion, sentiment analysis, opinion dynamics, protein interaction are some of the
ever-expanding fields for which community detection is highly relevant.

In this work we are proposing two new algorithms for community detection
in networks that can be represented by unweighted graphs, that is, networks in
which only information regarding connections between parts of the network is
available. Our algorithms are hierarchical clustering methods, that make novel
use of the Neighborhood overlap (nover) metric and spanning tree computations.
We compare our algorithms with two related well-known algorithms Louvain and
Girvan-Newmann (GN) by performing experiments on random graphs as well as
on real-world networks. The contribution of this work is twofold: first, we manage
to obtain a fast parallelizable algorithm based on spanning tree computations
and second we reveal cases where the use of the nover similarity measure can
enhance community detection.

1.1 Community Detection

A community in a network is a collection of nodes that are more densely con-
nected to each other than to nodes outside the community. Detecting communi-
ties thus helps us identify nodes with common preferences, properties or behavi-
or, unveil interactions and evaluate relationships among them and often discover
hidden information.

Currently, there are quite a few methods and techniques that deal with find-
ing communities. As an example, a lot of techniques identify edges that link dif-
ferent communities. In order to find such edges, various centrality measures, such
as node or edge betweenness, are used. Popular approaches attempt to discover
a hierarchical structure in a network, and create communities that maximize
or minimize some evaluation function. Well-known community detection algo-
rithms are the Girvan-Newman algorithm, which is based on the edge betweenness
metric [8], the Louvain algorithm [4], and the Label propagation algorithm [14],
to name only a few.

Often, edges within the same communities tend to have lower traffic, in case
of information or other flow among nodes, a fact that is reflected to smaller edge
betweenness (see below) compared to that of edges belonging to different com-
munities. Thus removing edges with high edge betweenness seems a reasonable
approach in order to partition the network into communities. While doing so,
it is usual to keep track of the quality of the formed partitions using a metric
called modularity, which is a well established community quality measure. A
third measure of interest in this work is the neighborhood overlap which reveals
the strength of bonds between a pair of nodes in terms of the fraction of neigh-
bors that are common to both. These three measures are described in more detail
below.

Community Detection via Neighborhood Overlap and Spanning Trees 15

1.2 Terminology

For a graph G(V,E), which models a network, where V is the set of nodes (users),
and E is the set of edges (connections between nodes), we define the following
notions and measures.

Edge Betweenness. Edge betweenness (eb) of an edge e ∈ E defines how
important that edge is with respect to shortest paths that connect each pair of
nodes in G. More specifically, eb(e) is defined as the sum, over all pairs of nodes
i, j, of the ratio of the number of shortest paths between i and j passing through
edge e over the total number of shortest paths between i and j. It is based on
the assumption that if much of the traffic of a network passes through an edge
(assuming that traffic is routed through shortest paths) then that edge is likely
to connect different communities.

Neighborhood Overlap. The neighborhood overlap (nover) of an edge
e = (u, v) is a measure of embeddedness of e defined as the ratio of the number of
common neighbors of u and v to the number of nodes that are neighbors of either
u or v:

nover(u, v) =
|Nu ∩ Nv|
|Nu ∪ Nv| , (1)

where Nu denotes the set of neighbors of node u.
When an edge e is a local bridge, then nover(e) = 0, and edges with very

small nover value can be seen as almost local bridges. An edge with low nover
score is considered a weak tie and an edge with high nover score is a strong tie.
Note that nover(u, v) is in fact the Jaccard index of the two neighborhood sets
Nu, Nv and measures the nodes similarity.

Modularity. One way to measure the quality of the formed community struc-
ture is the modularity [13]. Modularity Q is a scalar value, −1 ≤ Q ≤ 1, and it
measures the density of the nodes within the same community compared to a
random assignment of edges. The larger the modularity score, the better the par-
titioning of the nodes into communities. It is used to compare the communities
obtained by different methods. It is calculated as,

Q =
1

2m
·
∑

i,j

[
Aij − kikj

2m

]
· δ(ci, cj) (2)

where m is the number of edges, Aij is the weight of an edge between nodes i
and j, ki is the degree of node i, ci is the community to which node i belongs to,
and δ is a function such that δ(c, c′) = 1 if c = c′ else 0. A modularity value close
to 0 or negative indicates low community structure, while a value well above 0
indicates high community structure.

16 K. Kulkarni et al.

1.3 Related Work

Various approaches have been proposed in recent years to solve the community
detection problem. Most popular among these are: (a) optimization methods,
which aim to maximize or minimize an objective function, and (b) hierarchical
methods that are either divisive or agglomerative.

In the seminal paper of Girvan and Newman [8] they define the eb centrality
measure and propose the GN algorithm that uses this measure. GN iteratively
removes edges of higher eb centrality, thus forming connected components that
correspond to communities. The main disadvantage of this algorithm is that it is
computationally expensive (since it recomputes the eb values for all edges in each
step) and thus not scalable. The running time in the worst case is O(|E|2|V |).

A two phase algorithm for weighted graphs was proposed in [4], known as
the Louvain algorithm, that runs in O(|E|) time. In the first phase, for each
node it iteratively calculates the modularity obtained by including the node
to the community of each of its neighbors, and then places this node into the
community that gives the highest modularity. In the second phase, it creates a
meta-graph in which communities are represented as meta-nodes and self-loops
represent edges internal to the communities. The two phases are repeated on
the meta-graph. This algorithm has a tendency to overlook small communities.
In general, methods that use the modularity metric to optimize the community
detection are known to suffer from the resolution limit effect [7], which refers to
the fact that communities smaller than some threshold may not be discovered.
Furthermore, the Louvain algorithm cannot efficiently explore the hierarchical
structure of the network (if such a structure is present).

The main idea in [12] is to use the nover score to differentiate weak from
strong ties. The nover scores are stored in a minimum heap and all edges with a
score smaller than a threshold value are considered weak ties and are removed.
The problem with this approach is correctly deciding the threshold value. Larger
values of the threshold value could disintegrate the communities and smaller
values could make two different communities merge.

Regarding other successful methods for community detection in the setting
where overlapping communities are also sought, BigClam [16] should be men-
tioned, a method that uses matrix factorization in order to discover overlapping
and non overlapping communities in large scale networks, and another approach
by Ahn, Bagrow and Lehmann [2] that also discovers overlapping communi-
ties by partitioning edges instead of nodes. Both these approaches work on the
global structure of the network. In a different direction, a hierarchical scalable
edge clustering algorithm presented in [9] aims at discovering overlapping local
communities of a seed node; a similar approach when the graph is given as a
stream is described in [10]. The latter manages to maintain minimal information
about the whole graph and the formed communities, thus using space sublinear
in the number of edges.

Community Detection via Neighborhood Overlap and Spanning Trees 17

1.4 Our Contribution

In order to propose scalable and parallelizable algorithms that build on the
importance of the nover score we introduce two approaches. Our first approach
modifies Louvain algorithm by assigning weights equal to their nover score; recall
that Louvain is designed to work on weighted graphs. We run several experiments
in order to estimate the importance of this modification. The obtained results
in most cases show that the modified algorithm performs better, therefore nover
values seem worth taking into account.

Our second approach uses the eb centrality in conjunction with the nover
metric in order to remove edges and form connected components (communities).
The eb metric is also used by the GN algorithm; however, in contrast to the
GN approach, we start by computing a maximum spanning tree using the nover
weights, thus considerably reducing the eb computations which take place on
the tree only. This yields a faster and parallelizable approach. It turns out that
the use of a spanning tree together with nover scores helps sparsify a graph
without substantial loss of information. In particular, the experimental results
show that while the time gain of our ST algorithm compared to GN is important,
the modularity values are of the same order of magnitude and in some cases even
exceed those of the GN algorithm. Moreover, the high time requirements of the
GN algorithm render it inapplicable to larger networks, while ST does not seem
to suffer from similar limitations.

2 Neighborhood Overlap-Based Approaches

We consider unweighted, undirected graphs. In both our algorithms, we use the
nover score of edges Eq. (1) in order to assign weights to them. Intuitively, we
want to differentiate weak from strong ties. We consider strong ties as more
probable to connect nodes within the same community. Let us assume G(V,E)
is an input graph. The first step of both our algorithms is to calculate the nover
score for every edge e ∈ E. Thus, we get a weighted graph.

In Algorithm 1 (nover-Louvain), this preprocessing is the only modification
with respect to the original Louvain algorithm. Note that this increases by at most
an O(Δ) factor the time complexity of the algorithm, where Δ is the maximum
degree of the network. This is because we need O(|E|Δ) time for computing the
nover of all edges, since computing the common neighbors of an edge can be done
in O(Δ) time. Combining with the O(|E|) complexity of the original Louvain we
get a total time complexity of O(|E|Δ).

In Algorithm 2 (ST), in the first phase we make use of the nover edge weights
in order to perform the maximum spanning tree computation. In the second
phase, we calculate the eb score of each edge, taken over the constructed spanning
tree. We then repeatedly remove one edge at a time, in non-increasing order of
their eb score; thus, in each repetition we increase the number of communities
by one. Since the optimal number of communities is not known beforehand we
keep repeating until all edges are removed; the output is the set of communities
C that yields the highest modularity.

18 K. Kulkarni et al.

Algorithm 1. Modified Louvain community detection by neighborhood overlap
(nover-Louvain).
Input: G(V, E)
Output: Set of communities C of maximum modularity Q

for each edge e = (u, v) ∈ E do
nover(e) = |Nu ∩ Nv| / |Nu ∪ Nv|
w(e) ← nover(e)

end for
C ← Louvain(G, w)
return C

The time complexity of Algorithm 2 is analyzed as follows:

– O(|E|Δ), for computing the nover of all edges of the graph, as explained above
– O(|E| + |V | log |V |), for computing the maximum spanning tree using Prim’s

algorithm
– O(|V |), for computing the eb values for all edges in the spanning tree
– O(|V | log |V |) for sorting the eb values of the tree edges
– O(|E||V |), for the while loop since O(|E|) suffices in order to compute the

communities and modularity in each iteration.

Therefore, an upper bound on the total running time is O(|E||V |). Note that
this may be slightly improved by a more tight analysis of the while loop, but
such an analysis would not improve the worst case bound.

3 Experimental Results

We evaluate our methods using experiments on various datasets and compare
them against the most established algorithms, namely the Louvain1 algorithm [4]
and the Girvan-Newman (GN) algorithm [8]. These two algorithms were already
implemented in the python igraph library so we have chosen to implement our
new algorithms nover-Louvain and ST using the same library. We focus on two
criteria for the comparison of the algorithms, namely the modularity and the
number of communities found.

We have experimented with two types of networks and corresponding
datasets: synthetic and real-world data. Regarding synthetic datasets we
employed two different random graph models, namely the Barabási-Albert
model and the Erdős-Rényi model; as for real-world datasets we considered the
Zachary’s karate club network, and the Facebook network. Our results are sum-
marized in Tables 1, 2, 3 and are discussed below.

1 Note that the plain Louvain algorithm, can be applied on unweighted graphs by
setting all edge weights equal to 1.

Community Detection via Neighborhood Overlap and Spanning Trees 19

Algorithm 2. Community detection by neighborhood overlap and maximum
spanning tree (ST).
Input: G(V, E)
Output: Set of communities C with maximum modularity Q

for each edge e = (u, v) ∈ E do
nover(e) = |Nu ∩ Nv| / |Nu ∪ Nv|
w(e) ← nover(e)

end for
G′(V, E′) ← calculate Maximum Spanning Tree(G, w)
for each e ∈ E′ do

eb(e) ← calculate Edge Betweenness on e
end for
Initialize C ← {V }, Q ← modularity of C in G(V, E) � one community
Sort all edges in E′ in non-increasing order of eb(e)
while E′ is nonempty do

Remove the edge e of highest eb(e) from E′ � next edge in sorted list of edges
C′ ← community structure implied by E′ � set of components, partitioning V
Q′ ← modularity of C′ in G(V, E) � modularity is wrt the original graph
if Q′ > Q then

Q ← Q′

C ← C′

end if
end while
return C

3.1 Synthetic Network Models

Barabási-Albert Graphs. We use the Barabási-Albert [3] synthetic random
graph model, which is a well known model for generating random networks.
These networks have a power-law distribution property. A power-law distribution
property implies that only few nodes in a network have a high degree, a property
that is common in social networks and the Internet.

We use different values on parameters for our experiments in order to find
out in which cases our new algorithms behave better than the existing ones and
when the results are getting worse. The number of nodes varies from 40 to 1000,
while the number of edges vary from 114 to 1997. The dataset generator actually
does not permit to determine the number of edges but only the minimum degree.
The minimum degree value in our experiments is either 2 or 3. Since the graphs
resulting from the given parameters are random, the obtained results sometimes
vary considerably (see Table 1). We have chosen to present two experiments
for each parameter setting, the most extreme ones with respect to the best
modularity observed among experiments of the same setting.

A remarkable case is that of graphs with 150 nodes, 297 edges and minimum
node degree 2, in which the Louvain algorithm achieves modularity 0.139 for
a certain graph and 0.457 for another one, both graphs having been obtained
by using the same parameters. The nover-Louvain algorithm achieves, in both
graphs, better results; the difference in modularity in the same graphs is again

20 K. Kulkarni et al.

remarkable (0.189 and 0.459, respectively). For the GN algorithm this differ-
ence is even larger compared to the other algorithms. Our ST algorithm on the
contrary produces results close to those of Louvain and nover-Louvain; in fact it
outperforms Louvain for the first of the two graphs.

In the case of networks consisting of 400 nodes, 1194 edges and minimum
degree 2, the results of our new algorithms are encouraging. In almost all cases,
nover-Louvain outperforms all other algorithms and the results of ST are compa-
rable to the GN results, which is quite interesting if we take into consideration
the much better running time of ST compared to GN.

Table 1. Results for Barabási-Albert graphs (mod. = modularity, #cl. = number of
clusters).

#nodes deg #edges Louvain [4] nover-Louvain GN [8] ST

mod. #cl. mod. #cl. mod. #cl. mod. #cl.

40 3 114 0.245 6 0.254 5 0.133 9 0.198 3

40 3 114 0.25 6 0.249 5 0.088 7 0.218 7

80 3 234 0.282 8 0.269 6 0.167 32 0.255 7

80 3 234 0.289 7 0.327 7 0.224 21 0.263 4

100 2 197 0.43 9 0.448 9 0.42 10 0.41 7

100 2 197 0.41 7 0.446 9 0.373 15 0.375 8

150 2 297 0.448 8 0.457 9 0.42 11 0.401 9

150 2 297 0.453 8 0.456 9 0.44 11 0.413 10

150 3 444 0.139 9 0.189 6 0.026 10 0.147 4

150 3 444 0.457 9 0.459 9 0.43 13 0.409 9

200 3 594 0.339 9 0.333 9 0.254 41 0.267 6

200 3 594 0.334 8 0.334 8 0.257 40 0.281 8

400 2 1194 0.476 14 0.486 16 0.446 23 0.427 11

400 2 1194 0.487 12 0.489 13 0.441 27 0.409 6

400 3 1194 0.358 12 0.36 13 0.297 44 0.284 7

400 3 1194 0.353 12 0.364 12 0.287 57 0.296 9

1000 2 1997 0.511 19 0.51 20 0.467 51 0.404 7

1000 2 1997 0.511 19 0.513 20 0.479 50 0.43 9

We observe that the modified nover-Louvain gives slightly better results com-
pared to Louvain in almost all cases. This leads us to conclude that the nover
similarity is an important measure which should be further taken into consider-
ation for community detection purposes.

Erdős-Rényi Graphs. In this random graph model [6], a random graph G(n, p)
is constructed by connecting n nodes randomly. Each edge exists in G with
probability p, independent from every other edge. The average degree is np.

Community Detection via Neighborhood Overlap and Spanning Trees 21

Table 2. Results for Erdős-Rényi graphs (mod. = modularity, #cl. = number of clus-
ters).

#nodes prob Louvain [4] nover-Louvain GN [8] ST

mod. #cl. mod. #cl. mod. #cl. mod. #cl.

40 0.1 0.363 6 0.378 5 0.358 8 0.327 6

40 0.1 0.363 6 0.415 6 0.298 11 0.323 7

80 0.1 0.273 6 0.277 7 0.199 25 0.24 5

80 0.1 0.249 8 0.271 6 0.172 26 0.217 5

120 0.1 0.23 8 0.233 8 0.123 54 0.171 11

120 0.1 0.233 8 0.234 6 0.098 67 0.196 8

200 0.1 0.172 9 0.175 8 0.05 105 0.122 7

200 0.1 0.185 7 0.178 8 0.054 109 0.133 11

The graphs we created have 40 to 200 nodes and the probability of the
existence of an edge is 0.1. The Erdős-Rényi graphs follow the Poisson degree
distribution and can be used for evaluating community detection algorithms [15].

In our experiments in Table 2, one can see that as the number of nodes
increases, keeping the same edge probability, the modularity (columns labeled
‘mod.’) tends to decrease steadily and the number of clusters (columns labeled
‘#cl.’) tends to increase with the same pace for all algorithms, except for GN. For
GN the modularity decreases faster and the number of communities increments a
lot, and one can assume that a lot of smaller communities are formed. A possible
explanation is that as the average degree increments, the GN algorithm will have
to remove more edges, evenly distributed through the network, in order to get the
partitions. On the other hand, Louvain and nover-Louvain tend to create larger
communities since nodes exhibit the preferential attachment behavior. The ST
algorithm also creates larger communities by providing a more robust initial
structure through the nover scores and the spanning tree computation.

3.2 Real-World Networks

Synthetic datasets allow us to work with randomly generated graphs in which
the structure is determined by certain parameters. On the other hand, it makes
sense to evaluate our algorithms’ performance in real datasets where we know in
advance the community structure in some cases. We have thus chosen to exper-
iment with the Zachary’s karate club network and one large network, namely
Facebook.

Zachary’s Karate Club. This is a famous network model, due to Zachary’s
observations, explained in his study [18]. Over the course of two years, he mon-
itored members of a karate club and relationship among those members. Over
time, dispute arose between team’s instructor and administrator which resulted
in club splitting in two separate clubs. Half of the original club members joined

22 K. Kulkarni et al.

the new club [8]. Zachary built a network model based on his observations, which
included 34 nodes and 78 links.

For Zachary’s dataset we get some interesting results. When we compare the
algorithms in respect to the modularity value as shown in Table 3, our algorithms
do not perform as good as Louvain or GN. However, when we compare them
regarding the number of clusters, ST performs much better. It correctly found the
2 communities (Fig. 1a) as in the paper and a small one containing just two nodes
(node 8 and 30 in Zachary’s paper [18]). This is very close to the split of nodes
that actually took place in the Karate Club network. This example provides
evidence that modularity, although a generally accepted measure for evaluating a
proposed community partition, may fail to correctly reflect the actual community
structure. On the other hand, GN finds 5 communities (Fig. 1b), while both nover-
Louvain and Louvain find 4 communities (Figs. 1c, d).

Facebook Friendship Network. This is a friendship network between Face-
book users [1,11]. In this network a node represents a user and an edge indicates

(a) ST structure (b) GN structure

(c) nover-Louvain structure (d) Louvain structure

Fig. 1. Zachary’s Karate club: community structure as obtained by ST, GN, nover-
Louvain, and Louvain algorithms.

Community Detection via Neighborhood Overlap and Spanning Trees 23

friendship between the corresponding users. This is an unweighted directed net-
work with 2888 nodes and 2981 edges. For the purpose of this study we have
ignored the edge directions. It is clear that this network is sparse, hence some of
the nodes are too far from each other.

For larger graphs it makes sense to focus on parallelizable algorithms, appro-
priate for distributed implementation. We thus experimented with the Facebook
network using GN and ST algorithms, since the Louvain algorithm in its original
form seems to be inherently sequential. Our results show that ST yields a mod-
ularity very close to the one obtained by GN (see Table 3); since ST is a much
faster, parallelizable algorithm it provides a possibly useful alternative when-
ever time gains and parallelization are more important than a slight modularity
decrease.

Table 3. Results for real-world datasets.

Dataset #nodes #edges GN [8] ST

modularity #clusters modularity #clusters

Zachary’s karate
club

34 78 0.401 5 0.372 3

Facebook 2888 2981 0.807 8 0.804 7

4 Conclusions

The volume of available data and the size of networks of today in various fields,
such as social and biological networks, call for efficient distributed methods to
identify communities in large scale networks.

Towards this goal we first introduced the ST algorithm, that uses the nover
score to assign weights on edges in order to compute a spanning tree and then
uses the eb centrality to split the tree into a forest. Each tree in the forest yields a
community. The main advantage of the ST algorithm, is that by using nover and
the spanning tree it renders computations less time consuming (without losing
much on the quality of the results) compared to the GN algorithm. Note also
that the ST algorithm is parallelizable and thus is appropriate for distributed
implementation.

We next explored the idea that the nover score, being a measure of the
similarity of two neighbor nodes, may improve existing algorithms if used in
a preprocessing phase. We thus obtained a second algorithm by adding such a
preprocessing to the Louvain algorithm. The new algorithm nover-Louvain indeed
performed better in several cases.

As future work, we plan to compare these algorithms using different objective
criteria to evaluate the communities formed. As mentioned earlier, modularity
is a measure of the quality of the communities that may have some drawbacks,
as indicated by the Zachary’s karate club example. Thus we intend to explore
additional measures, such as the Normalized Mutual Information (NMI) score

24 K. Kulkarni et al.

[5] and the conductance [17] in order to compare the different approaches. Fur-
thermore, we also plan to experiment with alternative graph metrics to obtain
edge weights for the preprocessing phase, in order to see if they can lead to
further improvement of the proposed algorithms nover-Louvain and ST.

References

1. Facebook (nips) network dataset - KONECT, April 2017. http://konect.uni-
koblenz.de/networks/ego-facebook

2. Ahn, Y.Y., Bagrow, J.P., Lehmann, S.: Link communities reveal multiscale com-
plexity in networks. Nature 466(9), 761–764 (2010)

3. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science
286(5439), 509–512 (1999)

4. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of
communities in large networks. J. Stat. Mech. Theory Exp. 2008(10), P10008
(2008)

5. Danon, L., Dı́az-Guilera, A., Duch, J., Arenas, A.: Comparing community structure
identification. J. Stat. Mech. Theory Exp. 2005(09), 09008 (2005)

6. Erdös, P., Rényi, A.: On random graphs I. Publicationes Mathematicae Debrecen
6, 290 (1959)

7. Fortunato, S., Barthelemy, M.: Resolution limit in community detection. Proc.
Nat. Acad. Sci. 104(1), 36–41 (2007)

8. Girvan, M., Newman, M.E.: Community structure in social and biological networks.
Proc. Nat. Acad. Sci. 99(12), 7821–7826 (2002)

9. Liakos, P., Ntoulas, A., Delis, A.: Scalable link community detection: a local
dispersion-aware approach. In: IEEE International Conference on Big Data, pp.
716–725 (2016)

10. Liakos, P., Ntoulas, A., Delis, A.: COEUS: community detection via seed-set expan-
sion on graph streams. In: IEEE International Conference on Big Data, pp. 676–685
(2017)

11. McAuley, J., Leskovec, J.: Learning to discover social circles in ego networks. In:
Advances in Neural Information Processing Systems, pp. 548–556 (2012)

12. Meghanathan, N.: A greedy algorithm for neighborhood overlap-based community
detection. Algorithms 9(1), 8 (2016)

13. Newman, M.E., Girvan, M.: Finding and evaluating community structure in net-
works. Phys. Rev. E 69(2), 026113 (2004)

14. Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect
community structures in large-scale networks. Phys. Rev. E 76(3), 036106 (2007)

15. Reichardt, J., Bornholdt, S.: Statistical mechanics of community detection. Phys.
Rev. E 74, 016110 (2006)

16. Yang, J., Leskovec, J.: Overlapping community detection at scale: a nonnegative
matrix factorization approach. In: 6th ACM WSDM 2013, pp. 587–596 (2013)

17. Yin, H., Benson, A.R., Leskovec, J., Gleich, D.F.: Local higher-order graph clus-
tering. In: Proceedings of the 23rd ACM SIGKDD, pp. 555–564 (2017)

18. Zachary, W.W.: An information flow model for conflict and fission in small groups.
J. Anthropol. Res. 33(4), 452–473 (1977)

http://konect.uni-koblenz.de/networks/ego-facebook
http://konect.uni-koblenz.de/networks/ego-facebook

Colocation, Colocation, Colocation:
Optimizing Placement in the Hybrid

Cloud

Srinivas Aiyar1, Karan Gupta1, Rajmohan Rajaraman2, Bochao Shen2,
Zhifeng Sun2, and Ravi Sundaram2(B)

1 Nutanix, Inc., San Jose, CA, USA
{sriniva.aiyar,karan.gupta}@nutanix.com
2 Northeastern University, Boston, MA, USA
{rraj,ordinary,austin,koods}@ccs.neu.edu

Abstract. Today’s enterprise customer has to decide how to distribute
her services among multiple clouds - between on-premise private clouds
and public clouds - so as to optimize different objectives, e.g., minimiz-
ing bottleneck resource usage, maintenance downtime, bandwidth usage
or privacy leakage. These use cases motivate a general formulation, the
uncapacitated (A defining feature of clouds is their elasticity or ability to
scale with load) multidimensional load assignment problem - VITA(F)
(Vectors-In-Total Assignment): the input consists of n, d-dimensional
load vectors V̄ = {V̄i|1 ≤ i ≤ n}, m cloud buckets B = {Bj |1 ≤ j ≤ m}
with associated weights wj and assignment constraints represented by
a bipartite graph G = (V̄ ∪ B, E ⊆ V̄ × B) restricting load V̄i to be
assigned only to buckets Bj with which it shares an edge (In a slight
abuse of notation, we let Bj also denote the subset of vectors assigned
to bucket Bj). F can be any operator mapping a vector to a scalar,
e.g., max, min, etc. The objective is to partition the vectors among the
buckets, respecting assignment constraints, so as to achieve

min[
∑

j

wj ∗ F (
∑

V̄i∈Bj

V̄i)]

We characterize the complexity of VITA(min), VITA(max), VITA(max −
min) and VITA(2nd max) by providing hardness results and approxima-
tion algorithms, LP-Approx involving clever rounding of carefully crafted
linear programs. Employing real-world traces from Nutanix, a leading
hybrid cloud provider, we perform a comprehensive comparative evalu-
ation versus three natural heuristics - Conservative, Greedy and Local-
Search. Our main finding is that on real-world workloads too, LP-Approx
outperforms the heuristics, in terms of quality, in all but one case.

1 Introduction

The launch of EC2 in 2006 by AWS [1] heralded the explosive growth in cloud
computing. Cloud computing is an umbrella term for computing as an utility.
c© Springer Nature Switzerland AG 2019
Y. Disser and V. S. Verykios (Eds.): ALGOCLOUD 2018, LNCS 11409, pp. 25–45, 2019.
https://doi.org/10.1007/978-3-030-19759-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19759-9_3&domain=pdf
https://doi.org/10.1007/978-3-030-19759-9_3

26 S. Aiyar et al.

It enables 24 × 7 Internet-based access to shared pools of configurable system
resources and real-time provision-able higher-level services. Public clouds enable
organizations to focus on their core businesses instead of spending time and
money on IT infrastructure and maintenance. One of the major benefits of clouds
is that they are elastic1 (which we model in this paper as uncapacitated). This
allows enterprises to get their applications2 up and running quicker, and rapidly
adjust resources to meet fluctuating and unpredictable business demand.

Today, in addition to AWS, Microsoft’s Azure [5] and the Google Cloud [3] are
the other major public cloud platforms. But the advent of multiple clouds means
that enterprises are faced with several new questions, of which the following
are some examples: How much of their load should they keep on-premise and
how much should they colocate (or place) in public clouds? How should they
mix and match the various options to save money without sacrificing customer
satisfaction? A number of enterprise software companies such as HPE [4] and
startups such as Turbonomic [7], Datadog [2] and RightScale [6] are beginning
to provide software and service solutions to these problems.

At the same time this is also a fertile area for new problems with the potential
for clever theoretical solutions to have practical impact. In this paper we provide
a framework - VITA: Vectors-In-Total Assignment - that captures a variety of
interesting problems in the area of hybrid clouds with interesting theoretical
challenges. In the subsection that follows we list a few typical use cases captured
by the VITA framework.

1.1 Motivation and Model

Scenario 1. Minimizing Peak Pricing: Consider an enterprise customer that
has a choice of several different cloud providers at which to host their VMs
(virtual machines). The requirements of each VM can be characterized along
several different resource dimensions such as compute (CPU), network (latency,
bandwidth), storage (memory, disk) and energy. When different virtual machines
are placed in the same elastic resource pool (cloud), their load across each
dimension is accrued additively (though, of course the different dimensions can
be scaled suitably to make them comparable). A typical pricing contract will
charge based on the most bottle-necked dimension since peak provisioning is the
biggest and most expensive challenge for the resource provider. And different
providers may have different rates based on differing infrastructure and their
cost for installation and maintenance. The natural question then arises - what is
the optimal way for the enterprise customer to distribute the load amongst the
different cloud providers so as to minimize total cost?

1 Elastic usually means that clouds can be considered to have infinite capacity for the
operating range of their customers. In this paper we ignore fine-grained time-based
definitions such as in [20].

2 In the scope of this paper application refers to a collection of VMs and containers
working in concert.

Colocation, Colocation, Colocation 27

Scenario 2. Minimizing Maintenance Downtime:Hosts and services, (and
occasionally even data centers) need to be powered down every so often for main-
tenance purposes, e.g. upgrading the software version (or installing a new HVAC
system in a data center). Given this reality, how should the application (collection
of virtual machines and/or containers collectively performing a task or service),
be allocated to the different hosts so as to minimize the aggregate disruption? This
scenario also applies to industrial machines where different factories (or floors of
a factory) need to be shut down for periodical maintenance work.

Scenario 3. Preserving Privacy: Consider a set of end-users each with its
own (hourly) traffic profile accessing an application. We wish to partition the
application components across a set of clouds such that by observing the (hourly
volume of) traffic flow of any single cloud it is not possible to infer which compo-
nents are colocated there. This leads to the following question - how should we
distribute load across clouds in order to minimize the maximum hourly variation
in aggregate traffic? As an analogy, the situation here is similar to the problem
of grouping households such that the variation of energy usage of a group is
minimized making it difficult for thieves to infer who has gone on vacation.

Scenario 4. Burstable Billing: Most Tier 1 Internet Service Providers (ISPs)
use burstable billing for measuring bandwidth based on peak usage. The typical
practice is to measure bandwidth usage at regular intervals (say 5 min) and then
use the 95th percentile as a measure of the sustained flow for which to charge.
The 95th percentile method more closely reflects the needed capacity of the link
in question than tracking by other methods such as mean or maximum rate.
The bytes that make up the packets themselves do not actually cost money,
but the link and the infrastructure on either end of the link cost money to
set up and support. The top 5% of samples are ignored as they are considered
to represent transient bursts. Burstable billing is commonly used in peering
arrangements between corporate networks. What is the optimal way to distribute
load among a collection of clouds, public and private, so as to minimize the
aggregate bandwidth bill?

The above scenarios constitute representative situations captured by the
uncapacitated multidimensional load assignment problem framework - VITA.
A host of related problems from a variety of contexts can be abstracted
and modeled as VITA(F): the input consists of n, d-dimensional load vectors
V̄ = {V̄i|1 ≤ i ≤ n} and m cloud buckets B = {Bj |1 ≤ j ≤ m} with asso-
ciated weights wj and assignment constraints represented by a bipartite graph
G = (V̄ ∪ B,E ⊆ V̄ × B) that restricts load V̄i to be assigned only to those
buckets Bj with which it shares an edge. Here, F can be any operator map-
ping a vector to a scalar, such as projection operators, max, min, etc. Then the
goal is to partition the vectors among the buckets, respecting the assignment
constraints, so as to minimize

∑

j

wj ∗ F (
∑

V̄i∈Bj

V̄i)

28 S. Aiyar et al.

where, in a slight abuse of notation, we let Bj also denote the subset of vectors
assigned to bucket Bj . VITA stands for Vectors-In-Total Assignment capturing
the problem essence - vectors assigned to each bucket are totaled. Unless other-
wise specified we use i to index the load vectors, j to index the cloud buckets
and k to index the dimension. We let V̄i(k) denote the value in the k’th position
of the vector V̄i.

We now explain how VITA(F) captures the aforementioned scenarios. In
general, dimensions will either represent categorical entities such as resources
(e.g., CPU, I/O, storage, etc.,) or time periods (e.g., hours of the day or
5-min intervals, etc.,). We gently remind the reader to note that in each of the
scenarios the elasticity of the clouds is a critical ingredient so that contention
between vectors is not the issue. The set of scenarios we present are but a small
sample to showcase the versatility and wide applicability of the VITA framework.

Scenario 1 is captured by having a vector for each VM, with each dimension
representing its resource requirement3; constraints representing placement or
affinity requirements [21], weights wj representing the rates at different cloud
providers. Then minimizing the sum of prices paid for peak resource usage at
each cloud is just the problem VITA(max).

In Scenario 2 each dimension represents the resource (say, CPU utilization)
consumed by the application in a given time period, e.g. the vector for an appli-
cation could have 24 dimensions one for each hour in the day. Once the applica-
tion is assigned to a data center (or cloud or cluster) it is clear that disruption
is minimized if the maintenance downtime is scheduled in that hour where total
resource utilization is minimum. Then minimizing the aggregate disruption is
captured by the problem VITA(min).

The dimensions in Scenario 3 are the hours of the day and the resource in
question is the traffic. To prevent leakage of privacy through traffic analysis
the goal is to distribute the application components across clouds so that the
range between the peak and trough of traffic minimized. This problem is exactly
represented as VITA(max −min).

In Scenario 4, we have vectors for each application with 20 dimensions one for
each 5th percentile [28,29] or ventile of the billing period4. Then minimizing the
aggregate bandwidth bill under the burstable, or 95th percentile, billing method
is VITA(2nd max).

1.2 Our Results

All the problems we consider are in NP [18]. For VITA(min) and VITA(max)
we present our results as a lattice - see Figs. 1 and 2. For any given F, VITA(F)
can be partitioned into a lattice of 4 different problem spaces based on the
following 2 criteria: 1. constraints, and 2. dimensionality. The 4 different prob-
lem spaces arise from the Cartesian product: {unconstrained, constrained} X

3 For time-varying requirements the problem can be modeled by #resources x #time-
periods dimensions.

4 This is a modeling approximation and does not exactly capture 5 min samples.

Colocation, Colocation, Colocation 29

{bounded, unbounded}. Unconstrained refers to the situation where there is no
bipartite graph representing constraints, i.e. any load vector may be placed in
any bucket. And, Bounded refers to the situation where each load vector has a
fixed dimension (independent of n). It should be clear that the simplest of the
4 spaces is unconstrained, bounded VITA(F) and the most general is the con-
strained, unbounded version of VITA(F). We present our results, algorithms and
hardness, for the different F, in the form of a lattice. In each of the figures, the
algorithmic results are displayed only at the highest possible node in the lattice,
since it automatically applies to all nodes in the downward-closure; similarly,
hardness results are presented at the lowest possible node since they apply to
all nodes in the upward-closure. Further, our hardness results use only uniform
weights whereas our algorithmic results work for general weights.

Our theory results are as follows:

– VITA(F) for F linear. We show that when F is linear then the problem is
solvable exactly in polynomial-time. In particular VITA(avg) is in P.

– VITA(min). Our results are summarized in Fig. 1. We show that VITA(min) is
inapproximable when the dimensions are unbounded, i.e. it cannot be approx-
imated to any finite factor. Since it is inapproximable we counter-balance this
result by providing an O(log n, log n)-bicriteria approximation algorithm [25].
Our bicriteria algorithm produces an assignment of cost within O(log n) of
the optimal while using no more than O(log n) copies of each bucket. The
bicriteria result, which is based on rounding an LP (linear program) [27] can
be considered the theoretical center-piece and contains the main ideas used
in the other LP-based results in this paper.

– VITA(max). Our results are summarized in Fig. 2. Our results for VITA(max)
also apply to VITA(max −min). We remind the reader that the unconstrained
bounded box is empty because the algorithmic result for the harder uncon-
strained unbounded case (further up the lattice) applies.

– VITA(2nd max). 2nd max turns out to be a particularly difficult problem from
the standpoint of characterizing its computational complexity. We consider
the unweighted (or uniform weights) unconstrained case and the requirement
that the number of buckets exceeds the number of dimensions. With these
restrictions we are able to demonstrate an LP-based approximation algo-
rithm that achieves a logarithmic factor of approximation. We also show that
unconstrained, bounded VITA(2nd max) is weakly NP-hard [18].

This paper got its start in practical considerations at Nutanix - a leading
hybrid cloud provider. Faced with a seeming plethora of different cloud colocation
use-cases we wondered whether they could be tackled using a common approach.
The VITA framework answers this question by providing a unified method for
comparing against natural heuristics and a common basis for making pragmatic
infrastructure decisions. We used real-world industrial traces from Nutanix,
to conduct a detailed comparative analysis of the approximation algorithms,
collectively dubbed LP-Approx, against 3 natural heuristics - Conservative,
Greedy and Local-Search. Conservative treats each vector and its associated
objective value in isolation. Greedy assigns vectors sequentially so as to minimize

30 S. Aiyar et al.

the increment in objective value. Working with a given assignment Local-Search
swaps vectors when doing so improves the objective value. Our main finding is
that from a practical standpoint too LP-Approx is the best in terms of solution-
quality in all but one of the four cases (Greedy beats LP-Approx in the case of
VITA(min)). Our work can serve as a valuable reminder of how principled and
sophisticated techniques can often achieve superior quality on practical work-
loads, while also providing theoretical guarantees.

Fig. 1. VITA(min). The simplest
unbounded case is inapproximable,
and we give a bicriteria guarantee for
the hardest case.

Fig. 2. VITA(max) and VITA(max −
min). The unconstrained, cases are
exactly solvable and we have tight log-
arithmic guarantees for the constrained
unbounded case.

1.3 Related Work

There is extensive theory literature on multidimensional versions of schedul-
ing and packing problems. [11] is an informative survey that provides a variety
of new results for multidimensional generalizations of three classical packing
problems: multiprocessor scheduling, bin packing, and the knapsack problem.
The vector scheduling problem seeks to schedule n d-dimensional tasks on m
machines such that the maximum load over all dimensions and all machines is
minimized. [11] provide a PTAS for the bounded dimensionality case and poly-
logarithmic approximations for the unbounded case, improving upon [22]. For
the vector bin packing problem (which seeks to minimize the number of bins
needed to schedule all n tasks such that the maximum load on any dimension
across all bins is bounded by a fixed quantity, say 1), they provide a logarithmic
guarantee for the bounded dimensionality case, improving upon [32]. This result
was subsequently further improved by [9]. A PTAS was provided for the multi-
dimensional knapsack problem in the bounded dimension case by [17]. The key
distinction between the vector scheduling problem of [11] and our framework is
that they seek to minimize the maximum over the buckets and the dimensions
whereas (in VITA(max)) we seek to maximize the weighted sum over buckets
of the maximum dimension in each bucket. The multidimensional bin packing
knapsack problems are capacitated whereas this paper deals with uncapacitated

Colocation, Colocation, Colocation 31

versions. There has also been a lot of work on geometric multidimensional pack-
ing where each vector is taken to represent a cuboid [10,13]. To the best of our
knowledge our VITA formulation is novel - surprising given its simplicity.

There is much recent literature (in conferences such as Euro-Par, ICDCS,
SIGCOMM, CCGRID, IPDPS etc.,) substantiating the motivating scenarios we
provide in the introduction (Sect. 1.1) to this paper. We do not attempt to sur-
vey it in any meaningful way here. Peak provisioning and minimizing bottleneck
usage is an area of active research in the systems community [12,30]. Fairness
in provisioning multi-dimensional resources is studied in [19]. The use of CSP
(Constraint Satisfaction Programming) in placement has been investigated [21].
Energy considerations in placement have also been explored [14–16,28,29]. Build-
ing scalable systems that provide some guarantee against traffic analysis is an
area of ongoing active research [23,24,26]. Relative to the specialized literature
for each use-case our treatment is less nuanced (e.g., in reality, storage is less
movable than compute, services are designed for (or to give the illusion of) con-
tinuous uptime, privacy is more subtle than just defeating traffic monitoring,
etc.). However, the generality of our approach enables us to abstract the essence
of the different situations and apply sophisticated techniques from the theory of
mathematical programming.

We present our results in the sections that follow. Section 2 presents results
for linear F. Section 3 presents our results for VITA(min) while Sect. 4 contains
our results for VITA(max) and VITA(max −min). VITA(2nd max) results are
presented in Sect. 5. Due to space constraints, all proofs are provided in the
Appendix.

2 VITA(F) for Linear F

By linear F we mean one of the following two situations:

– F is a vector and F (V̄) = F̄ · V̄ (where we abuse notation slightly and use F
as a function and a vector).

– F is a matrix and the weights are vectors with ∗ representing an inner-product
so that wj ∗ F is a scalar.

Lemma 1. VITA(F) can be solved exactly in polynomial time for linear F.

Proof. Using the linearity of F the value of the objective function can be sim-
plified thus ∑

j

wj ∗ F (
∑

V̄i∈Bj

V̄i) =
∑

j

∑

V̄i∈Bj

wj ∗ F (V̄i)

Hence minimizing the value of the objective function is simply a matter of finding
the j that minimizes wj ∗ F (V̄i) for each feasible V̄i.

Corollary 1. VITA(avg) can be computed exactly in polynomial time.

Proof. Set F̄ = [1d , 1
d , . . . , 1

d] where d is the dimension. It is straightforward to
see that F̄ · V̄ =

∑
i Vi

d .

32 S. Aiyar et al.

Note that many real-world pricing situations are captured by linear F, such
as charging separately for the usage of each resource (dimension).

3 VITA(min)

3.1 Unconstrained, Bounded - Exact

First, we prove two lemmas about the optimal solution which will help us con-
strain the search space for our exact algorithm.

Without loss of generality assume that the bucket index j is sorted in order
of increasing weight wj .

Lemma 2. There exists an optimal solution which uses only the first b buckets,
for b ≤ d. Further, let min(j) be the dimension with the minimum value in bucket
j; then, the set {min(j)|1 ≤ j ≤ b} has all distinct elements.

Proof. It is clear that if in a solution two buckets have the same dimension
with the minimum value then the bucket with the larger weight can be emptied
into the smaller without increasing the value of the objective function. Thus the
set of dimensions with the minimum value must be distinct across buckets and
therefore the optimal solution need have at most d buckets. It is also clear that if
the optimal solution does not involve a bucket j but does involve a bucket j′ > j
then all the items in bucket j′ can be moved to bucket j without increasing the
value of the objective function. Thus the optimal solution may consist only of
the first b buckets, for b ≤ d.

We remind the reader that V̄i(k) denotes the value in the k’th position of the
vector V̄i.

Lemma 3. There exists an optimal solution in which item i is placed in that
bucket j for which wj ∗ Vi(min(j)) is minimized, amongst the first d buckets.

Proof. Suppose not. Let item i be placed in bucket j′. Now if we move it to bucket
j then the value of the objective function is changed by −wj′ ∗Vi(min(j′))+wj ∗
Vi(min(j)) which by definition is non-positive. Contradiction, and hence proved.

The above two lemmas give rise to a straightforward search, Algorithm 1.

Algorithm 1. Exact Algorithm for Unconstrained Bounded VITA(min)
1: for each permutation Π of the first d buckets do
2: for each load vector V̄i do
3: Place load vector V̄i in that bucket j which minimizes wΠ(j) ∗ Vi(min(Π(j)))
4: Compute the value of the objective function for this permutation
5: Output the best value over all permutations and the corresponding assignment

Colocation, Colocation, Colocation 33

Theorem 1. Unconstrained, Bounded VITA(min) can be computed exactly in
time O(m ∗ n ∗ d!).

Proof. The correctness of Algorithm 1 follows from the prior two lemmas. The
running time follows from the fact that the algorithm searches over d! permuta-
tions and for each permutation it takes O(m) time to assign each of the n load
vectors.

3.2 Constrained, Bounded - Strongly NP-Hard

Theorem 2. Constrained, Bounded VITA(min) is strongly NP-hard.

Proof. The proof is by reduction from Bin Packing [18] which is strongly NP-
hard. In an instance of Bin Packing we are given m bins of the same (constant)
size S and a collection of n items ai such that

∑
i ai = m ∗ S and we need to

decide if these n items can be packed into the m bins.
Given the instance of Bin Packing we create m buckets and m+n load vectors

of dimension 2. m of the load vectors are of the form [S, 0] and the vectors are
matched up with the buckets so that each such vector is necessarily assigned to
its corresponding bucket. Then for each item ai there is a load vector [0, ai] and
these vectors are unconstrained and can be assigned to any bucket. All weights
are set to 1. Now, it is easy to see that the given instance of Bin Packing is
feasible if and only if the value of the objective function of VITA(min) is m ∗ S.

3.3 Unconstrained, Unbounded - Inapproximable

Theorem 3. Unconstrained, Unbounded VITA(min) is inapproximable unless
P = NP .

Proof. The proof is by reduction from Set Cover [18].
In Set Cover we are given a collection of m sets over a universe of n elements

and a number C and we need to decide whether there exists a subcollection of
size C that covers all the elements.

We reduce the given instance of Set Cover to Unconstrained, Unbounded
VITA(min) as follows: we let m be the dimension size as well as the number of
buckets, one for each set. And, for each element i, we have an m-dimensional
load vector:

V̄i(j) =
{

1 if element i ∈ set j
∞ otherwise

We set the weights of C of the buckets to be 1 and the weights of the remaining
buckets to be ∞.

It is easy to see that the value of the objective function for Unconstrained,
Unbounded VITA(min) is C if and only if there exist C sets covering all the ele-
ments, otherwise the value of the objective function is ∞. Thus, Unconstrained,
Unbounded VITA(min) cannot be approximated to any factor.

34 S. Aiyar et al.

3.4 Constrained, Unbounded - O(log n, logn) Bicriteria

Given that the problem is inapproximable (unless P = NP) we relax our expecta-
tions and settle for the next best kind of approximation - a bicriteria approxima-
tion, [25] where we relax not just the objective function but also the constraints.
In this particular situation we will find a solution that uses at most O(log n)
copies of each bucket while obtaining an assignment whose value is no worse
than an O(log n) factor worse than the optimal solution which uses at most 1
copy of each bucket.

Consider the following LP (Linear Program). Let yjk denote the fraction
bucket j gives to dimension k, and xijk denote the weight vector i gives to
dimension k of bucket j.

min
∑

j

wj

∑

i

∑

k

xijkvik min-LP

s.t.
∑

k

yjk = 1 ∀j

∑

j

yjk = 1 ∀k

xijk ≤ yjk ∀i, j, k
∑

j

∑

k

xijk ≥ 1 ∀i

xijk ≥ 0 ∀i, j, k

yjk ≥ 0 ∀j, k

Lemma 4. The above LP is a valid relaxation of Constrained, Unbounded
VITA(min).

Proof. First we need to verify that this LP is a valid relaxation of the original
problem. In other words, every solution of the original problem can be translated
to the integer solution of this LP. And every integer solution of this LP is a valid
solution of the original problem.

Suppose we have a solution of the original problem. Let min(j) be the mini-
mum dimension of bucket j, and σ(i) be the bucket assigned for load vector i. The
value of the objective function for this solution is

∑
j wj

∑
i:σ(i)=j V̄i(min(j)).

Now construct the integer solution of the LP. Let

yjk =
{

1 if k = m(j)
0 otherwise

and

xijk =
{

1 if j = σ(i), k = m(j)
0 otherwise

Because each bucket only has one minimum dimension, the first constraint
is satisfied. And each vector is assigned to one bucket, so the second and third

Colocation, Colocation, Colocation 35

constraints are satisfied also. On the other hand, if we have the integer solution,
we can assign min(j) = k and σ(i) = j to have a valid solution of the original
problem. So there is a one to one relation between the integer solutions of the LP
and the solutions of the original problem. Furthermore, the objective function
of the LP is the same as the objective function of the original problem. So the
optimal integer LP solution must map to the optimal solution of the original
problem, and vice versa.

Let x∗
ijk and y∗

jk be the optimal solution of the LP. The algorithm is as
follows.

Algorithm 2. Bicriteria Approximation for Constrained Bounded VITA(min)
1:
2: for Each vector do
3: Order its bucket-dimension pair by y∗

jk values. And maximize the corresponding
x∗

ijk values in order. So there will be only one x∗
ijk value that is neither equal to

y∗
jk nor 0.

4: if This x∗
ijk value is greater or equal to 1

2
y∗

jk, then
5: round it to y∗

jk

6: else
7: round it to 0, and double all the previous non-zero x∗

ijk values.
8: for ln n

ε
times do

9: for Each dimension k in each bucket j do
10: With probability y∗

jk make a copy of bucket j in dimension k. And assign all
the vectors with x∗

ijk = y∗
jk to this bucket.

Theorem 4. Algorithm 2 is an O(log n, log n) bicriteria approximation algo-
rithm for Constrained Bounded VITA(min).

Proof. Notice that, in our algorithm we assume that x∗
ijk = y∗

jk or 0. This is
not hard to achieve. For each item, it will order its favorite bin-dimension pair
by y∗

jk values. And maximize the corresponding x∗
ijk values in order. So there is

only one x∗
ijk value that is not equal to y∗

jk value or 0. If this x∗
ijk value is greater

or equal to 1
2y∗

jk, we can round it to y∗
jk. Our new objective value is within twice

the LP value. If not, we could round it to 0, and double all the previous non-zero
x∗

ijk values. Then our value is still within twice the LP value. Even if we don’t
double the previous x∗

ijk values, we still have
∑

j,k x∗
ijk ≥ 1/2, which we could

use to bound the value output by our algorithm.
The expected value of the solution obtained by the (above randomized)

Algorithm 2 is exactly the same as the optimum value of the LP. The expected
number of copies of each bucket we make is

∑
k yjk = 1. And the probability

that vector i is not assigned to one of the buckets is: (where s = m ∗ d),

Πj,k(1 − x∗
ijk) ≤

(
1 −

∑
j,k x∗

ijk

s

)s

=
(

1 − 1
s

)s

≤ e−1

36 S. Aiyar et al.

So, if we repeat for t = ln n
ε times, then

Pr[some vector is not assigned]

≤
∑

i

Pr[vector i is not assigned] =
n

et
= ε

The expected value of the solution is OPTLP · ln n
ε . The expected number of

copies of a bucket is ln n
ε . Thus Algorithm 2 gives a (log n, log n)-approximation

to Constrained Bounded VITA(min).

4 VITA(max)

Max - Min and Max are very similar, in that for the lower bound we can use the
same log-hardness result since min is 0 and for the upper bound we can set the
y variable to be greater than the difference of two dimensions for every pair of
dimensions.

4.1 Unconstrained, Unbounded - Exact

For example, unconstrained, bounded VITA(max) (see Fig. 2) has an exact
(polynomial-time) algorithm because a node above, namely unconstrained,
unbounded VITA(max) does; further, this result is obviously tight and hence
the square has a dotted background. Squares that do not have a dotted back-
ground represent open gaps that present opportunities for further research.

Theorem 5. Unconstrained, Unbounded VITA(max) can be computed exactly
in time O(m + n) time by placing all items into the bucket with the smallest
weight.

Proof. We first show that the bucket with the smallest weight will always be
used in the optimal solution. If the bucket with smallest weight is not used in
the optimal solution, we can always move all the items in one bucket with non-
smallest weight to the bucket with the smallest weight to improve the solution.

Now, we show that if we move all the items in the buckets with non-smallest
weight to the bucket with smallest weight, the objective value of this new solution
will not increase.

To see this, let the bucket B0 with the smallest weight w0. Let the aggregated
vector in B0 be V̄0. Let the bucket Bi with a non-smallest weight wi in the
solution, the aggregated vector in Bi be V̄i.

It is easy to see that w0 · max(V̄0 + V̄i) ≤ w0 · (max(V̄0) + max(V̄1)) ≤
w0 · max(V̄0) + wi · max(V̄i).

Thus, moving all items from Bi to B0 will not increase the objective value
of the current solution.

Moving all items to the smallest weighted buckets is optimal.

Colocation, Colocation, Colocation 37

4.2 Constrained, Bounded - Strongly NP-Hard

Theorem 6. Constrained, Bounded VITA(max) is strongly NP-complete even
when the number of dimension equals 2.

Proof. We prove by making reduction from bin packing. For k bins with capacity
c, we correspondingly assign k buckets. As part of input vectors, we will have k
2-dimensional vectors (c, 0). Each of them are strictly constrained to each bucket.
Then for each item i with size si in the problem of bin packing, we create a
2-dimensional vector (0, si) which can be put into any bucket. We further let
each bucket have uniform weight of 1. Then there exists k bins that can hold all
the items in the bin packing problem if and only if the objective value of this
VITA(max) that equals kc is reachable.

4.3 Constrained, Unbounded - Θ(log n)

Lemma 5. Constrained, Unbounded VITA(max) is strongly NP-complete, and
can not be approximated within O(log n).

Proof. We prove by making reduction from set cover. First we let the number of
dimensions of input vector in VITA(max) be the number of elements in the set
cover problem. For each element si(i = 1 ∼ n), we correspondingly let vector V̄i

has value one on dimension i, has value zero on all the other dimensions. Thus,
there are no two element vectors has one value on the same dimension.

Each subset Sj maps to a bucket Bj . If element si ∈ Sj , then V̄i can be
placed at bucket Bj .

Thus, there exists k subsets that cover all the elements if and only if the
objective value of this VITA(max) that equals k is reachable.

Lemma 6. Constrained, Unbounded VITA(max) is O(log n) approximable.

Proof (Proof of Lemma 6). Consider the following LP. Let xij be the fraction of
item i assigned to bucket j.

min
m∑

j=1

wj ∗ yj max-LP

s.t. yj ≥
n∑

i=1

xij · vik ∀j, k

m∑

j=1

xij ≥ 1 ∀i

It is easy to see that this max-LP is a valid relaxation of constrained,
unbounded VITA(max). Then we need to repeat rounding {xij} O(log n) times
to make sure that all items are placed to some buckets with high probability.
The proof is similar to the part in min-LP.

Directly from Lemmas 5 and 6, we get the following.

Corollary 2. Constrained, Unbounded VITA(max) is Θ(log n) approximable.

38 S. Aiyar et al.

5 VITA(2nd max)

We found VITA(2nd max) to be a qualitatively harder problem and thus were
forced to consider the restricted version where the weights are uniform and the
number of buckets exceeds the (bounded) number of dimensions.

5.1 Unweighted, Bounded, Unconstrained - Weakly NP-Hard

Theorem 7. Bounded, Unconstrained VITA(2nd max) is weakly NP-hard.

Proof. The proof is by reduction from Partition [18]. In an instance of Partition
we are given an array of numbers a1, a2, . . . , an such that

∑n
i=1 ai = 2B, and we

are required to decide whether there exist a partition of these numbers into two
subsets such that the sum of numbers in each subset is B.

Given an instance of Partition we reduce it to an instance of Bounded, Con-
strained VITA(2nd max) as follows: our reduction will use 3 dimensions. For each
number ai we construct the load vector [0, 0, ai]. We add another two vectors,
[L,B, 0] and [B,L, 0], where L >> B, to the collection of vectors. And, there
are two (3-dimensional) buckets with uniform weights which we take to be 1. In
an optimal assignment vectors [L,B, 0] and [B,L, 0] will be assigned to different
buckets because L >> B. Thus, the contribution of each bucket is at least B
and the value of the objective function is always at least 2B. Now, from our con-
struction, it is easy to see that if the given instance of Partition has a partition
into two subsets with equal sums then the value of the objective function (of the
instance) of VITA(2nd max) (to which it is reduced) is 2B. And if there is no
equal sum partition into two subsets, then one of the buckets necessarily has a
2nd max dimension value greater than B, which means that the objective value
has to be larger than 2B.

5.2 Unweighted, Constrained, with Number of Buckets Exceeding
Number of Dimensions - O(log n) Approximation

Consider the following LP. Let xij be the fraction of vector i assigned to
bucket j.

min
m∑

j=1

yj 2ndmax-LP

s.t. yj ≥
n∑

i=1

xij · vik ∀j, k (j �= k)

m∑

j=1

xij ≥ 1 ∀i

Colocation, Colocation, Colocation 39

Lemma 7. The above LP 2nd max-LP is a valid relaxation of constrained
VITA(2nd max) where the number of buckets exceeds the number of dimensions.

Proof. First we need to verify that yj really represents the 2nd-maximum dimen-
sion in the LP solution. From the first LP constraint, we know yj is either the
maximum dimension or the 2nd-maximum dimension. The following proof shows
that based on the current LP optimum we could come up with a new LP opti-
mum solution in which yj is the 2nd-maximum dimension of bin j. For each bin
j with yj as maximum dimension, there are only 2 cases, as follows.

Case 1: the item, with yj’s corresponding dimension as “free” dimension, has its
“free” dimension as maximum. In bin j the “free” dimension is jth dimension.
Assume yj represents the value in dimension dj of bin j, then we can find the
bin in which dimension dj is the maximum (“free” dimension). Merge these two
bins together and set dj as the “free” dimension of this bin. In the new solution,
the cost won’t be more than the previous optimal solution, which means this is
also an optimal solution.

Case 2: the item, with yj’s corresponding dimension as “free” dimension, doesn’t
have its “free” dimension as maximum. Let bin j have “free” dimension j. yj

represents the value of dimension dj of bin j and it is the maximum dimension.
Bin k has dj as “free” dimension. And yk is the maximum dimension of bin k.
Then swap these two bins. The cost of new bin k is less than yj and the cost of
new bin j is at most equal to yk. So the cost of new solution is better than the
original optimal solution. This is a contradiction, which means this case couldn’t
happen.

To sum up, given an optimal solution of the LP, we can come up a new opti-
mal solution in which each yj represents the 2nd-maximum dimension of bin j.

Lemma 8. Unweighted, Constrained, VITA(2nd max) with number of buckets
exceeding number of dimensions can be approximated to factor O(log n).

Proof. As with the algorithm and proof for min-LP, we need to repeat rounding
{xij} O(log n) times to make sure that all vectors are placed in some bucket
with high probability.

6 Experiments

We implemented LP-Approx and the three heuristics in Python, using Python
2.7.5. We use SageMath [31] and GLPK [8] as our Linear Programming Solver.
We conducted our experiments on a single core of a 4-core Intel i7-3770 clocked
at 3.4 GHz (0.25 MB L2 cache per core, and 2 MB L3 cache per core), with
16 GiB of DDR3-1600 RAM.

40 S. Aiyar et al.

Nutanix is a vendor of hyper-converged infrastructure appliances. For this
paper we used a dataset obtained from an in-house cluster they maintain for
testing and validation purposes. The cluster runs real customer workloads. The
data was logged using the Prism system of Nutanix and then filtered, anonymized
and aggregated before being handed to us. The dataset we received comprised
of measurements logged every 5 min of CPU, memory and storage used by 643
different services running continuously for the entire calendar month of August
2017. The data consisted of 643×8928 rows of 6 columns - timestamp, serviceID,
CPU-usage, memory-usage, storage-utilization and bandwidth-usage.

0 100 200 300 400 500 600 700 800 900 1000 1100
of VCPU

0

20

40

60

80

100

120

140

160

180

of

 r
eq

ue
st

s

(a) # of VCPUs

0 100 200 300 400 500 600
Memory (GB)

0

500

1000

1500

2000

2500

of

 r
eq

ue
st

s

(b) Memory size

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Storage size (GB)

0

500

1000

1500

2000

2500

3000

3500

of

 r
eq

ue
st

s

(c) Storage

Fig. 3. Histograms of requested resources

Algorithm 3. Heuristic 1 - Conservative
1: for each vector do
2: Assign the vector Vi to that bucket j which minimizes w · F (Vi).

The goal of our experiments was to compare the LP-based approxima-
tion algorithms to 3 natural polynomial-time heuristics - Conservative, Greedy
and Local-Search - on each of the 4 problems - VITA(max), VITA(min),
VITA(max −min) and VITA(2nd max). We briefly describe the 3 heuristics:

– Conservative This heuristic assigns each vector in isolation, i.e. it assigns each
vector V̄i to that bucket j which minimizes wj · F̃ (V̄i).

– Greedy The heuristic detailed in Algorithm 4 selects the vectors one by one
in a random order and assigns to the bucket that minimizes the increase in
the objective value.

– Local-Search Local search based vector placement in Algorithm 5 starts from a
random feasible placement and repeatedly swaps vectors between two buckets
to decrease the objective value. Since the size of the potential search space is
exponential in n, the number of vectors, we restrict the heuristic to run the
swapping step for a linear number of times.

Colocation, Colocation, Colocation 41

It is easy to see that all the 3 heuristics can be arbitrarily bad (Ω(n)) in
terms of quality of approximation. However, we are interested in comparing their
behavior on practical workloads vis a vis each other as well as the corresponding
LP-based approximation algorithm. We run each of the 4 schemes (3 heuristics
and 1 approximation algorithm) on samples of n vectors drawn from the dataset.
Each sample is drawn uniformly from the entire dataset n runs from 10 to 100
in steps of 10. Given a sample we simulate each scheme on the sample to obtain
a measure of the solution-quality and run-time5. For a given n we run as many
samples as are needed to minimize the sample variance of the statistic (solution-
quality or run-time) to below 1% of the sample mean. For VITA(max) we utilize
the 3 dimensions - CPU, memory and storage - after a suitable normalization,
and averaged over the entire month, i.e. we sample from 643 rows. For VITA(min)
we aggregate CPU usage on an hourly basis (from the 5 min measurements which
reduces the dataset from 8928 to 744 rows per service). For VITA(max −min) we
aggregate bandwidth usage on an hourly basis per service. For VITA(2nd max)
we use the bandwidth usage on a 5 min basis for each service. Based on our
experiments we collected measurements on the two main considerations - (1)
solution quality and, (2) running time, for each of VITA(max), VITA(min),
VITA(max −min) and VITA(2nd max). In Figs. 2, 3, 4 and 5 we use VITA(f) in
place LP-Approx to emphasize the specific function f under consideration.

Algorithm 4. Heuristic 2 - Greedy
1: Shuffle the order of vectors;
2: for each vector do
3: Assign the vector to that bucket such that the current objective value is raised

the least;

Algorithm 5. Heuristic 3 - Local-Search
1: for each vector do
2: Randomly assign it to a feasible bucket by affinity constraint;
3: for 1 to poly(n) steps do
4: for every two buckets do
5: Swap any pair of two vectors if the swap will reduce the objective value;

6.1 Solution Quality

From Fig. 4a, c and d, it can be seen that the linear programming based
approximation outperforms the heuristics for VITA(max), VITA(max −min)
and VITA(2nd max) by a factor of about 1.5. Unfortunately, the out-performance

5 We do not implement these schemes in the Nutanix system and then measure their
performance as that would be expensive in terms of development time and would
produce little additional clarity over the simulation based approach.

42 S. Aiyar et al.

10 20 30 40 50 60 70 80 90 100
of vectors

0

5000

10000

15000
A

ve
ra

ge
 o

bj
ec

tiv
e

vl
au

e

VITA(max)
Conservative
Greedy
Local search

(a) VITA(max)

10 20 30 40 50 60 70 80 90 100
of vectors

500

1000

1500

2000

2500

3000

3500

4000

4500

A
ve

ra
ge

 o
bj

ec
tiv

e
va

lu
e

VITA(min)
Conservative
Greedy
Local search

(b) VITA(min)

10 20 30 40 50 60 70 80 90 100
of vectors

0

2000

4000

6000

8000

10000

12000

A
ve

ra
ge

 o
bj

ec
tiv

e
va

lu
e

VITA(max-min)
Conservative
Greedy
Local search

(c) VITA(max-min)

10 20 30 40 50 60 70 80 90 100
of vectors

0

2000

4000

6000

8000

10000

12000

14000

A
ve

ra
ge

 o
bj

ec
tiv

e
va

lu
e

VITA(2ndMax)
Conservative
Greedy
Local search

(d) VITA(2ndMax)

Fig. 4. Quality of approximation of VITA(max, min, max-min, 2ndMax) vs {Greedy,
Conservative, Local-Search}

does not stand out visually because of the compression in the scale of the graph
caused by the very poor performance of Local-Search. Local-Search performs
particularly poorly in these 3 cases due to its dependence on the starting con-
figuration.

For minimizing the maintenance down time in Fig. 4b, VITA(min) performs
better than any of Greedy, Local-Search and Conservative. This is because
VITA(min)’s bicriteria approximation scheme allows for the use of additional
buckets, see Fig. 6. However, when the same number of extra buckets are given
to all heuristics, we see that Greedy performs best.

6.2 Running Time

Here we focus only on VITA and Greedy for two reasons: (1) Previous experiment
results on solution quality show that VITA and Greedy are the two approaches
of interest (2) Local-Search has much higher run time complexity than others.
Fig. 5a–d show that Greedy, basically linear-time, is superior to the LP based
approximation algorithms (Fig. 7).

Colocation, Colocation, Colocation 43

10 20 30 40 50 60 70 80 90 100
of vectors

0

0.02

0.04

0.06

0.08

0.1

A
ve

ra
ge

 r
un

ni
ng

 ti
m

e
(s

ec
s)

VITA(max)
Greedy

(a) VITA(max)

10 20 30 40 50 60 70 80 90 100
of vectors

0

2

4

6

8

10

12

14

16

A
ve

ra
ge

 r
un

ni
ng

 ti
m

e
(s

ec
s)

VITA(min)
Greedy

(b) VITA(min)

10 20 30 40 50 60 70 80 90 100
of vectors

0

0.02

0.04

0.06

0.08

0.1

0.12

A
ve

ra
ge

 r
un

ni
ng

 ti
m

e
(s

ec
s)

VITA(max-min)
Greedy

(c) VITA(max-min)

10 20 30 40 50 60 70 80 90 100
of vectors

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

A
ve

ra
ge

 r
un

ni
ng

 ti
m

e
(s

ec
s)

VITA(2ndMax)
Greedy

(d) VITA(2ndMax)

Fig. 5. Running time of VITA(max, min, max-min, 2ndMax) vs Greedy

2 4 6 8 10 12 14 16 18 20
of given buckets

0

5

10

15

20

25

30

35

40

45

of

 u
se

d
bu

ck
et

s

VITA(min)

Fig. 6. # of used buckets vs # of given
buckets for VITA(min)

10 20 30 40 50 60 70 80 90 100
of vectors

0

500

1000

1500

2000

2500

3000

3500

4000

4500

A
ve

ra
ge

 o
bj

ec
tiv

e
va

lu
e

VITA(min)
Conservative
Greedy
Local search

Fig. 7. Solution quality with same
number of additional buckets given to
heuristics

7 Conclusion and Future Work

We have proposed a new and general framework VITA that captures several
naturally occurring problems in the context of hybrid clouds. We presented
novel hardness results and approximation algorithms (using clever LP rounding).
We conducted a detailed experimental evaluation comparing our approximation
algorithm to several natural heuristics.

On the experimental side it would be interesting to characterize natural work-
loads and develop heuristics with provable (average-case) guarantees. Our the-

44 S. Aiyar et al.

oretical work has left some obvious open gaps including constrained bounded
VITA(min) and VITA(max) and removing the restrictions from our results for
VITA(2nd max). Another important direction for future investigation is devising
distributed and online algorithms.

Acknowledgements. Rajmohan Rajaraman, Zhifeng Sun, Bochao Shen and Ravi
Sundaram gratefully acknowledge the support of the National Science Foundation
under award number #1535929. Bochao Shen and Ravi Sundaram gratefully acknowl-
edge the support of the National Science Foundation under award number #1718286.

References

1. Amazon web services - cloud computing services. https://aws.amazon.com/
2. Datadog - modern monitoring and analytics. https://www.datadoghq.com/
3. Google cloud platform. https://cloud.google.com/
4. Hewlett packard enterprise - hybrid it with cloud. https://www.hpe.com/us/en/

home.html
5. Microsoft azure cloud computing platform and services. https://azure.microsoft.

com/en-us/
6. Rightscale. https://www.rightscale.com/
7. Turbonomic. https://turbonomic.com/
8. GLPK (GNU linear programming kit) (2006). http://www.gnu.org/software/glpk
9. Bansal, N., Caprara, A., Sviridenko, M.: A new approximation method for set

covering problems, with applications to multidimensional bin packing. SIAM J.
Comput. 39(4), 1256–1278 (2009)

10. Bansal, N., Khan, A.: Improved approximation algorithm for two-dimensional bin
packing. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2014, Portland, Oregon, USA, 5–7 January 2014, pp.
13–25 (2014)

11. Chekuri, C., Khanna, S.: On multi-dimensional packing problems. In:
SODA: ACM-SIAM Symposium on Discrete Algorithms (A Conference
on Theoretical and Experimental Analysis of Discrete Algorithms) (1999).
citeseer.ist.psu.edu/chekuri99multidimensional.html

12. Chen, G., et al.: Energy-aware server provisioning and load dispatching for
connection-intensive internet services. In: Proceedings of the 5th USENIX Sympo-
sium on Networked Systems Design and Implementation, NSDI 2008, pp. 337–350
(2008)

13. Christensen, H.I., Khan, A., Pokutta, S., Tetali, P.: Multidimensional bin pack-
ing and other related problems: a survey. https://people.math.gatech.edu/∼tetali/
PUBLIS/CKPT.pdf

14. Dimitropoulos, X., Hurley, P., Kind, A., Stoecklin, M.P.: On the 95-percentile
billing method. In: Moon, S.B., Teixeira, R., Uhlig, S. (eds.) PAM 2009. LNCS,
vol. 5448, pp. 207–216. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-00975-4 21

15. Dupont, C., Hermenier, F., Schulze, T., Basmadjian, R., Somov, A., Giuliani, G.:
Plug4Green: a flexible energy-aware VM manager to fit data centre particularities.
Ad Hoc Netw. 25, 505–519 (2015)

16. Dupont, C., Schulze, T., Giuliani, G., Somov, A., Hermenier, F.: An energy aware
framework for virtual machine placement in cloud federated data centres. In:
e-Energy, p. 4. ACM (2012)

https://aws.amazon.com/
https://www.datadoghq.com/
https://cloud.google.com/
https://www.hpe.com/us/en/home.html
https://www.hpe.com/us/en/home.html
https://azure.microsoft.com/en-us/
https://azure.microsoft.com/en-us/
https://www.rightscale.com/
https://turbonomic.com/
http://www.gnu.org/software/glpk
http://citeseer.ist.psu.edu/chekuri99multidimensional.html
https://people.math.gatech.edu/~tetali/PUBLIS/CKPT.pdf
https://people.math.gatech.edu/~tetali/PUBLIS/CKPT.pdf
https://doi.org/10.1007/978-3-642-00975-4_21
https://doi.org/10.1007/978-3-642-00975-4_21

Colocation, Colocation, Colocation 45

17. Frieze, A., Clarke, M.: Approximation algorithms for the m-dimensional 0-1 knap-
sack problem: worst-case and probabilistic analyses. Eur. J. Oper. Res. 15(1),
100–109 (1984)

18. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

19. Ghodsi, A., Zaharia, M., Hindman, B., Konwinski, A., Shenker, S., Stoica, I.: Dom-
inant resource fairness: fair allocation of multiple resource types. In: Proceedings of
the 8th USENIX Symposium on Networked Systems Design and Implementation,
NSDI 2011, Boston, MA, USA, 30 March–1 April 2011 (2011)

20. Herbst, N.R., Kounev, S., Reussner, R.: Elasticity in cloud computing: what it is,
and what it is not. In: Proceedings of the 10th International Conference on Auto-
nomic Computing (ICAC 2013), pp. 23–27. USENIX, San Jose (2013). https://
www.usenix.org/conference/icac13/technical-sessions/presentation/herbst

21. Hermenier, F., Lawall, J.L., Muller, G.: BtrPlace: a flexible consolidation manager
for highly available applications. IEEE Trans. Dependable Sec. Comput. 10(5),
273–286 (2013)

22. Hochbaum, D., Shmoys, D.: Using dual approximation algorithms for schedul-
ing problems: theoretical and practical results. J. ACM 34, 144–162 (1987).
citeseer.ist.psu.edu/470961.html

23. van den Hooff, J., Lazar, D., Zaharia, M., Zeldovich, N.: Vuvuzela: scalable private
messaging resistant to traffic analysis. In: Proceedings of the 25th Symposium on
Operating Systems Principles, SOSP 2015, Monterey, CA, USA, 4–7 October 2015,
pp. 137–152 (2015)

24. Jansen, R., Bauer, K.S., Hopper, N., Dingledine, R.: Methodically modeling the tor
network. In: 5th Workshop on Cyber Security Experimentation and Test, CSET
2012, Bellevue, WA, USA, 6 August 2012 (2012)

25. Marathe, M.V., Ravi, R., Sundaram, R., Ravi, S.S., Rosenkrantz, D.J., Hunt III,
H.B.: Bicriteria network design problems. J. Algorithms 28(1), 142–171 (1998)

26. Mathewson, N., Dingledine, R.: Practical traffic analysis: extending and resisting
statistical disclosure. In: Martin, D., Serjantov, A. (eds.) PET 2004. LNCS, vol.
3424, pp. 17–34. Springer, Heidelberg (2005). https://doi.org/10.1007/11423409 2

27. Raghavan, P., Thompson, C.D.: Randomized rounding: a technique for provably
good algorithms and algorithmic proofs. Combinatorica 7(4), 365–374 (1987).
https://doi.org/10.1007/BF02579324

28. Reddyvari Raja, V., Dhamdhere, A., Scicchitano, A., Shakkottai, S., Claffy, Kc.,
Leinen, S.: Volume-based transit pricing: is 95 the right percentile? In: Faloutsos,
M., Kuzmanovic, A. (eds.) PAM 2014. LNCS, vol. 8362, pp. 77–87. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-04918-2 8

29. Raja, V.R., Shakkottai, S., Dhamdhere, A., Claffy, Kc.: Fair, flexible and feasible
ISP billing. SIGMETRICS Perform. Eval. Rev. 42(3), 25–28 (2014)

30. Stillwell, M., Vivien, F., Casanova, H.: Virtual machine resource allocation for
service hosting on heterogeneous distributed platforms. In: 26th IEEE International
Parallel and Distributed Processing Symposium, IPDPS 2012, Shanghai, China,
21–25 May 2012, pp. 786–797 (2012)

31. The Sage Developers: SageMath, the Sage Mathematics Software System (Version
8.1) (2017). http://www.sagemath.org

32. de la Vega, W.F., Lueker, G.S.: Bin packing can be solved within 1+ε in linear
time. Combinatorica 1, 349–355 (1981)

https://www.usenix.org/conference/icac13/technical-sessions/presentation/herbst
https://www.usenix.org/conference/icac13/technical-sessions/presentation/herbst
http://citeseer.ist.psu.edu/470961.html
https://doi.org/10.1007/11423409_2
https://doi.org/10.1007/BF02579324
https://doi.org/10.1007/978-3-319-04918-2_8
http://www.sagemath.org

A Peer-to-Peer Based Cloud Storage
Supporting Orthogonal Range Queries

of Arbitrary Dimension

Markus Benter1(B), Till Knollmann2(B), Friedhelm Meyer auf der Heide2(B),
Alexander Setzer3(B), and Jannik Sundermeier2(B)

1 Jobware GmbH, Technologiepark 32, 33100 Paderborn, Germany
m.benter@jobware.de

2 Computer Science Department and Heinz Nixdorf Institute,
Paderborn University, Fürstenallee 11, 33102 Paderborn, Germany

{tillk,fmadh,janniksu}@mail.uni-paderborn.de
3 Computer Science Department, Paderborn University, Paderborn, Germany

asetzer@mail.uni-paderborn.de

https://www.hni.uni-paderborn.de/alg/, https://cs.uni-paderborn.de/ti/

Abstract. We present a peer-to-peer network that supports the effi-

cient processing of orthogonal range queries R = ×d

i=1[ai, bi] in a
d-dimensional point space. The network is the same for each dimension,
namely a distance halving network like the one introduced by Naor and
Wieder (ACM TALG’07). We show how to execute such range queries

using O
(
2d′

d logm + d |R|
)

hops (and the same number of messages)

in total. Here [m]d is the ground set, |R| is the size and d′ the dimension
of the queried range. Furthermore, if the peers form a distributed net-

work, the query can be answered in O
(
d logm + d

∑d
i=1(bi − ai + 1)

)

communication rounds. Our algorithms are based on a mapping of the
Hilbert Curve through [m]d to the peers.

Keywords: Distributed storage · Multi-dimensional range queries ·
Peer-to-Peer · Hilbert Curve

1 Introduction

Consider a scenario in which the content of a music sharing platform is dis-
tributed among the participants of a peer-to-peer network (P2P network). Clas-
sical P2P networks only consider search queries for a specific attribute of the
data contained in the network. For a music sharing platform, however, a cru-
cial requirement is to allow more complex search queries. Users typically want

This work was partially supported by the German Research Foundation (DFG) within
the Collaborative Research Center ‘On-The-Fly Computing’ (SFB 901).

c© Springer Nature Switzerland AG 2019
Y. Disser and V. S. Verykios (Eds.): ALGOCLOUD 2018, LNCS 11409, pp. 46–58, 2019.
https://doi.org/10.1007/978-3-030-19759-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19759-9_4&domain=pdf
https://doi.org/10.1007/978-3-030-19759-9_4

Supporting Orthogonal Range Queries of Arbitrary Dimension 47

to filter the data by different attributes and, most important, filter by multiple
attributes. A typical request would be to find all jazz, funk & soul songs pub-
lished in the last two years. Further queries could involve the language, the audio
quality of the tracks or the duration. In the last years, several publications inves-
tigate the design of P2P networks allowing for multi-dimensional range queries.
For more details, we refer the reader to Sect. 1.1. Most of these solutions, how-
ever, involve very complex network designs and the design depends heavily on
the dimensionality of the data stored in the network. In this work, we aim at
a more lightweight solution which uses the same network structure independent
of the dimensionality of the data. Additionally, we are interested in an analysis
of the message complexity and the delay for answering multi-dimensional range
queries. More formally, the topic of this work can be described as follows:

Consider a distributed system storing a set of data items associated with
keys. The keys are given by multiple attributes of the data items such that they
can be seen as points in a d-dimensional mesh. We consider the d-dimensional
Range Query Problem defined as follows.

Definition 1 (d-dimensional Range Query Problem) Let M(m, d) be a
d-dimensional mesh with side-length m where m = 2k for a k ∈ N. Let R =
×d

i=1[ai, bi] be an orthogonal range (or range for short) in M(m, d). The d-
dimensional Range Query Problem is the task of reporting all points in R. The
dimension of a range, d′, is the number of all dimensions i with ai �= bi.

Our goal is to distribute the md points of M(m, d) over md peers of a P2P
network such that range queries can be answered using few hops and few com-
munication rounds. In a communication round, each peer can receive and send
a set of messages. Messages sent in communication round i are all received in
round i + 1. The solution can be scaled to fewer peers in a simple way, as men-
tioned in the final section. The main focus of this work is to realize range queries
of arbitrary dimension on one fixed network, rather than using a specific one for
each dimension. In addition, we aim at a topology with constant degree.

Let |R| =
∏d

i=1(bi−ai+1) be the size of a range R in our mesh. A trivial topol-
ogy for the d-dimensional Range Query Problem would be the d-dimensional
grid. This topology allows to answer a query for R in O (c + |R|) hops where c
is the distance from the entry peer to the closest point in R. However, the grid
topology depends on the dimension of the keys. Another trivial solution when
assuming a constant degree network would be to query each point in R sepa-
rately. While the network is independent of the mesh, the total number of hops
can only be bounded to O (|R| · d · log m) due to each constant degree network
with md nodes having a diameter of Ω(d · log m). The main question we deal
with in this paper is how close we can come to the bound of O (c + |R|) while
still having a constant degree network topology.

The solution we present in this work uses a Hilbert Curve that maps the
md points of M(m, d) to a one-dimensional line. We assume a very dense set of
keys, i.e., all points in M(m, d) refer to existing keys stored in the system. As we
consider md points, we assume a bijective mapping from [m]d to the peers such

48 M. Benter et al.

that the Hilbert Curve defines an ordering of the peers. In Sect. 2, we present the
topology of our P2P network, namely the Distance Halving Graph, the mapping
of the nodes of M(m, d) on it, and properties of this mapping. We present an
algorithm for answering a range query R in Sect. 3 and prove that the total
number of hops needed to answer a range query R is O

(
2d

′
d log m + d |R|

)
.

Moreover, we show that the algorithm can be parallelized and then answers a
range query in O

(
d log m + d

∑d
i=1(bi − ai + 1)

)
communication rounds.

1.1 Related Work

Recently, the design of P2P networks for the purpose of answering multi-dimen-
sional range queries has attracted much attention in the research community.
For one-dimensional range queries, CAN, P-Grid, Baton, Armada, Saturn, and
PHT have been proposed [3,6,9,11,14,15]. Throughout this section, let n be the
number of peers in the network. Among these, Baton and Armada can answer
one-dimensional range queries in time O (log n + |R|), where |R| denotes the
number of data items in the range R. This is asymptotically optimal [11]. Baton,
however, has a logarithmic degree at each node, whereas Armada requires only
a constant degree.

For multi-dimensional ranges, there is no approach known which comes close
to the optimal bound while having only a constant degree. In the literature,
most work focuses on an experimental evaluation of P2P networks allowing for
multi-dimensional range queries. In this work, we aim at a rigorous analysis of
the message complexity and the communication rounds needed for answering a
range.

P2P networks designed for multi-dimensional range queries can be subdivided
into classes based on their approaches of mapping the data space and connect
the peers to each other. MURK uses a k-d tree to partition the data space such
that each node of the network is responsible for exactly one hypercuboid of the
data space [7]. Moreover, MURK supports efficient routing by adding random
links or a space-filling Skip Graph. Both approaches, however, require O (log n)
references stored at each node such that the resulting degree of the network is
O (log n).

Other approaches using Skip Graphs, are SkipIndex [20], ZNet [18] and
SCRAP [7]. The difference in these approaches is the way of partitioning the
data (for instance a space-filling Z-curve in Znet) and the way of choosing addi-
tional overlay edges for efficient routing. As all these approaches are based on
Skip Graphs, the degree of each network is O (log n).

MatchTree [10] uses an interesting approach which builds an individual tree
for each query. The underlying P2P network is a variant of Kleinberg’s small
world network [12]. In these networks, each node has O(log n) shortcut neighbors
chosen randomly. Since the tree for each query is built at the time of processing
the query, each node has to store a lot of structural information. In addition,
lots of nodes are involved in answering a query.

Supporting Orthogonal Range Queries of Arbitrary Dimension 49

Another approach working with trees is DRAGON [5]. In DRAGON, the
identifiers of peers are distributed in [0, 1) and an aggregation tree is built upon
the interval [0, 1). The structure of the aggregation tree depends on the space
filling Z-curve such that each node is responsible for a certain region of the curve.
To ensure efficient query processing, each node stores a reference to each level
of the aggregation tree in its local routing table which also results in a degree of
O(log n).

SWORD [2] and MAAN [4] are architectures which use multiple hash func-
tions, one for each dimension of the data, and map each of these hash functions
onto the same network. MAAN uses a locality preserving hash function for each
of the d dimensions per resource. A triple of <dimension, value, resource-info>
is stored at each node that stores a dimension of a resource due to a hash func-
tion. The authors present two routing algorithms for resolving ranges. The first
one does a range query for each dimension and returns the cut of all results.
While the cost for routing to the peer at the beginning of each range is in a
total of O (d log n) hops, the cost for gathering all values in a range concerning
only one dimension results in O(md−1

∑d
i=1(bi − ai + 1)) hops in our scenario.

Further, due to the splitting of the dimension set of each resource, an additional
total memory of O (

dmd
)

is needed. The second routing algorithm improves
the routing time at the cost of memory requirement. Each resource is stored d
times in total. The routing then only processes a range query along one spe-
cific dimension and removes all false-positives. This induces a routing time in
O (log n + mini{(bi − ai + 1}) while the memory demand increases by a factor
of d. In contrast to MAAN, we focus on querying exactly those points which
are in the range, i.e., we do not have an (intermediate) over-approximation of
the results. Further, our solution does not increase the memory requirement for
storing keys.

LORM [17] also uses a distributed hash table. In LORM, the peers are orga-
nized in clusters and each cluster of peers is responsible for a single dimension.
To answer queries, the original query is split into subqueries for each dimension
which are then answered by the affected clusters. The worst case bounds for
identifying nodes which are involved in a range query of LORM are similar to
the bound mentioned for MAAN. To achieve the bounds, LORM also relies on
a logarithmic network degree.

The approach closest to ours, called Squid, combines the Chord-architecture
[19] with the space-filling Hilbert Curve [16]. The multi-dimensional space is
mapped onto the one-dimensional space by using a Hilbert Curve. Queries are
answered by recursively refining a query and map subqueries to peers of the
network. Although the authors prove that only a small number of nodes is con-
tacted while query processing, it is not clear how many messages are sent in the
process and which delay is caused by answering a query.

2 Notations

The ground set of elements to be queried in the d-dimensional range query
problem is the node set [m]d of the d-dimensional mesh M(m, d) with

50 M. Benter et al.

side-length m. For ease of description, we assume m = 2k for k ∈ N0. Fix
some i, 0 ≤ i ≤ k, and let m′ = m

2i . M(m, d) can be divided into 2di meshes
with side-lengths m′. These meshes are denoted as canonical submeshes with
side-lengths m′ (c.f. Fig. 1).

M(m,d)

canonical submesh

Fig. 1. The subdivision of a 3-dimensional mesh into 23 = 8 canonical submeshes with
side-lengths m′ = m

2
.

2.1 Embedding a Hilbert Curve in a Mesh

The M(m,d)-Hilbert Curve is a curve that connects all points of M(m, d). It is a
discrete version of the space-filling Hilbert Curve [8]. The M(2, 2)-Hilbert Curve
is defined as in the left picture of Fig. 2. The M(m, 2)-Hilbert Curve can be
subdivided into four rotated M(m2 , 2)-Hilbert Curves. The upper left and upper
right M(m2 , 2)-Hilbert Curves are not rotated. The lower left one is rotated by
90◦ clockwise and the lower right one is rotated by 90◦ counterclockwise.

The M(m, d)-Hilbert Curve is an extension of the M(m, 2)-Hilbert Curve.
For d dimensions, a M(m, d)-Hilbert Curve can be subdivided into 2d M(m2 , d)-
Hilbert Curves. For the formal definition, we refer the reader to [1]. The definition
of the M(m, d)-Hilbert Curve ensures that all points of a canonical submesh are
connected by a Hilbert Curve of smaller size. Further, we define an ordering of all
points in M(m, d) by the order in which they are visited via the M(m, d)-Hilbert
Curve starting at the origin. Then the Hilbert Coordinate p(v) of v ∈ M(m, d)
is the position of v in this ordering.

2.2 Network Properties

The P2P network we consider is the Distance Halving Graph as defined in [13].
We use the version with perfect smoothness. In this case, we can simply
assume that the ids of the n peers {w0, . . . , wn−1} are {0, . . . , n − 1} instead
of { 0

n , . . . , n−1
n }. The peer wi has undirected edges to its direct neighbors wi−1

and wi+1 (for i > 0 and i > n−1, resp.). In addition, it is connected to the peers
with ids � i

2� and � i
2� + �n

2 � (if � i
2� + �n

2 � ≤ n − 1). We consider each edge to
be undirected. It has been shown in [13] that the Distance Halving Graph with
perfect smoothness has a constant degree. Lemma 1 is a direct consequence of
the above construction.

Supporting Orthogonal Range Queries of Arbitrary Dimension 51

Fig. 2. M(m,d)-Hilbert Curve of dimension d = 2 and m = 2, 4 and 8.

Lemma 1. The Distance Halving Graph supports a routing between wi and wj

using at most 3 · log(|j − i| + 1) hops.

Proof. Due to the definition of the Distance Halving Graph, wi and wj have
edges to nodes wi′ and wj′ such that |i′ − j′| ≤ � i

2� − � j
2� ≤ 1

2 |i − j| + 1.
Applying an appropriate move of wi to a direct neighbor reduces the distance to
at most ≤ 1

2 |i − j|. Iterating these three hops �log(|i − j| + 1)� times yields the
lemma. (Note: We have only used one kind of the edges to non-direct neighbors.
Combining both kinds of hops can be used to reduce the congestion of the
routing, see [13].) ��

Now assume that n, the size of the P2P network, equals md, the size of our
ground set. We define the one-to-one mapping from M(m, d) to the peers by the
ordering induced by the Hilbert Curve: Node v from M(m, d) is mapped to the
peer with id p(v). As the nodes in a canonical submesh of M(m, d) are ordered
consecutively in the ordering induced by the Hilbert Curve, by Lemma 1 we can
conclude:

Observation 1. In a canonical submesh with side-length m′, routing between
any two points costs at most O (d · log(m′) + 1) hops.

3 Answering Range Queries

Whenever we talk about a range, we mean an orthogonal range defined as follows.
An orthogonal range is given by R = ×d

i=1[ai, bi]. We call the set of dimensions
i in which ai < bi the extensions of R, denoted by D. The number of extensions
is the dimension of R denoted by |D| = d′.

A point x = (x1, . . . , xd) is a corner point of R if, for each i, xi = ai or xi = bi
holds. Clearly, a range R with dimension d′ has 2d

′
corner points. Especially, a

one-dimensional range, a line L, has two corner points. We say a line L crosses
a range R if L only consists of points in R and has maximal length.

Let R be a d′-dimensional range. R is contained in a d′-dimensional Mesh MR

whose points are all points (x1, . . . , xd) of M(m, d) with xi = ai for all i /∈ D.

52 M. Benter et al.

We define canonical submeshes of MR as intersections of canonical submeshes
of M(m, d) with MR. From now on, we always consider MR, i.e., if not stated
otherwise, a canonical submesh is of MR and dimensions which are not mentioned
are assumed to match MR. We further assume that dimensions 1 to d′ are the
dimensions in D.

Consider a line L with extension i such that ai < bi and the smallest canonical
submesh S = ×j∈D[xj , yj] surrounding L. We call L touching, if either a = xi

or b = yi is a point at the border of S in dimension i. Note that, for a touching
line L, the smallest enclosing canonical submesh has side-length at most 2 |L|.
Consider a range R and its set of extensions D. R is touching, if every line L
with an extension i ∈ D that crosses R is touching (Figs. 3 and 4).

Fig. 3. A touching line query. L
touches the canonical submesh S in
dimension i.

Fig. 4. A touching range query R in
the canonical submesh S. The exten-
sion set of R is D = {1, 2}.

A major problem we have to deal with when answering range queries is the
following: There are small ranges, whose smallest enclosing canonical submesh
is large, may even be the entire mesh M(m, d). An extreme range consists of
the two nodes (0, ..., 0, m

2 − 1) and (0, ..., 0, m
2). See Fig. 5 for example. If we try

to report such ranges following the Hilbert Curve, we have to follow many long
routing paths between elements from the range, resulting in a large hop count.
To deal with this problem, we will partition a range in subranges, each of which
can be reported using only short such paths.

This partition is defined as follows. The canonical box around R is:

C(R) = ×
i∈D

Ci, with Ci = [ci 2j , (ci + 1) 2j − 1]

where ci ∈ N0 and j ≥ 0 minimal such that ci 2j ≤ ai ≤ bi ≤ (ci + 1) 2j − 1.
The center z of C(R) is

z = (z1, . . . , z′
d) with zi =

ci 2j + (ci + 1) 2j − 1
2

.

Supporting Orthogonal Range Queries of Arbitrary Dimension 53

Fig. 5. Example of a small range R having a large smallest enclosing canonical submesh.
The points of R are direct neighbors in M(m, d) but far away from each other on the
Hilbert Curve.

Consider the 2d
′
orthants O1, . . . , O2d′ on MR centered around z. For exam-

ple, one of them is given by the points {x ∈ MR |xi > zi ∀ i ∈ D}. Now consider
the subranges Ri = R∩Oi. The following observation is crucial for our algorithm:

Observation 2. Every subrange Ri is touching.

Now consider the set Z(R) of points of MR centered around z:

Z(R) = {p | pi = zi ± (1/2) for i ∈ D}

Fig. 6. The figure illustrates a range R together with its canonical box C(R). The four
points in the center of C(R) are Z(R). The midpoint between these points is z, the
center of the canonical box C(R).

54 M. Benter et al.

Every Ri contains exactly one point of Z(R). The points in Z(R) are corner
points of the subranges Ri. See Fig. 6 for a visualization of R, C(R), Z(R) and z.

To show that we can answer the subranges efficiently, we need another
property. Fix a value q ∈ [m] and a dimension i ∈ D. Let H(q, i) = {x ∈
M(m, d) |xi = q}. The following observation is crucial for the core of our
algorithm:

Observation 3. Let R be touching. Then H(q, i)∩R is also touching. Its exten-
sion set is D \ {i}.

3.1 The Algorithm

Our algorithm for answering a range works in two main steps. The first step
splits the range into the 2d

′
subranges as defined above. Then each subrange is

answered separately by a recursive algorithm. The base case of this recursion
answers queries for touching lines L using O(d · |L|) hops. In our description
and the analysis, we only consider the processing until all points of R have been
visited by our algorithm. For answering the range, these points must be sent
back to the querying peer. However, this can easily be achieved by reversing the
steps our algorithm does implying only a constant factor of two on our bounds.

To answer a range query, Algorithm 1 is called. Initially, D, C(R), Z(R)
and the 2d

′
subranges of R are determined. Then, the algorithm routes towards

the points of Z(R) and answers the touching subranges independently of each
other. Consider such a subrange. Algorithm 2 requires a touching range R with
extension set D and a corner point s = (s1, . . . , sd) as input. Given this input, an
arbitrary dimension i ∈ D is selected. The algorithm queries a touching line L
with extension i that crosses R. The reporting of the points on L is interrupted
after the visit of each point q = (q1, . . . , qd′) of L. Now a recursive call for the
H(qi, i) ∩ R with extension set D \ {i} (c.f. Observation 3) and corner point
q is triggered. The recursion stops when the extension set D is empty, i.e., all
dimensions have been completed.

Algorithm 1. Algorithm for answering an orthogonal range query R

1: procedure AnswerQuery(R)
* R is an orthogonal range query with extension set D. C(R) and Z(R)

are as defined above. *
2: Route towards the 2d

′
points in Z(R)

3: for each subrange R′ of R with corner point p ∈ Z(R) do
* Observation 2 ensures that R′ is touching *

4: ProcessRange(R′, p)

Supporting Orthogonal Range Queries of Arbitrary Dimension 55

Algorithm 2. Algorithm for answering a touching R beginning at a corner s

1: procedure ProcessRange(R, s = (s1, . . . , sd))
* Let D be the extension set of R *

2: if D �= ∅ then
3: i ← arbitrary dimension in D
4: L ← line with extension i and endpoint s that crosses R
5: Visit each point of L consecutively
6: for each visited point q = (q1, . . . , qd′) on L do

* Due to Observation 3, H(qi, i)) ∩ R is touching *
7: ProcessRange(H(qi, i) ∩ R, q)

3.2 Analysis

For the analysis, we are interested in the total number of hops as well as the
number of communication rounds. The total number of hops reflects the message
complexity of our solution. Our main result is stated in Theorem 1.

Theorem 1. Algorithm 1 answers a range query R in O
(
2d

′
d log m + d |R|

)

hops within O
(
d log m + d

∑d
i=1(bi − ai + 1)

)
communication rounds.

We already discussed that |Z(R)| = 2d
′
. For the points in Z(R), our

algorithm has to do large routing steps that cost O (d log m) hops each by
Observation 1. Therefore, the first part of our algorithm requires O(2d

′
d log m)

hops in total. The subranges can be answered in parallel such that the first part
needs O (d log m) communication rounds leading to the correctness of Lemma 2.

Lemma 2. Algorithm 1 needs O
(
2d

′
d log m

)
hops and O (d log m) communi-

cation rounds to route to all points in Z(R).

It is left to analyze the performance of Algorithm 2 for a touching subrange
R′ with extension set D, and the corner point c ∈ Z(R) of R′. The recursive
formulation reduces the problem of answering R′ to the problem of answering
touching lines crossing R′. Due to Observations 2 and 3, we know that all queried
lines are touching. Thus, we show Lemma 3. Extending the result of Lemma 3
to the behavior of Algorithm 2 allows to show Lemma 4.

Lemma 3. Let L be a touching line query. L can be answered in O (d |L|) hops
if the routing starts at an endpoint of L.

Proof. We observe that due to the touching property of L, the smallest sur-
rounding canonical submesh S has a side-length t with |L| ≤ t ≤ 2|L|. The
number of hops for visiting L is at most the number of hops for visiting L′ which
is L extended to cross S. L′ has length t. Observe that L′ lies completely in two
canonical submeshes S′ and S′′, each of edge-length t/2. To analyze the number
of hops F (t) for visiting L′, we consider the parts of L′ in S′ and S′′ separately.

56 M. Benter et al.

Then, F (t) is composed of 2F (t/2) for answering the two parts of L′, plus the
number of hops for jumping from the endpoint of the line in S′ to a neighboring
endpoint of the line in S′′. Since L′ is completely contained in S, Observation 1
implies that the number of hops for the jump is in O (d · log t + 1). This yields
the following recursion:

F (t) ≤ 2 · F

(
t

2

)

+ c · d · log(t) + 1 for t > 1

F (1) = 0 else

The solution for this recursion is F (t) = (t − 1) (2 c d + 1) − c d log(t). As t =
|L′| ≥ |L| this results in a number of hops of 2 c d |L| ∈ O(d · |L|) for answering
the line query L. ��
Lemma 4. Let R′ be a subrange of R with extensions D. Algorithm 2 answers
R′ in O (d |R′|) hops and O

(
d

∑d
i=1(bi − ai + 1)

)
communication rounds when

starting at a corner point of R′.

Proof. Let p be the corner point of R′ at which the routing starts. Due to
Observation 2, we know that any line that crosses R′ is touching and can be
answered efficiently as captured in Lemma 3. Our algorithm consecutively fixes
the dimensions in D. For each fixed dimension, a touching line L is answered.
Each such line L can be answered due to Lemma 3 in O (d log |L|) hops.

Let (1, . . . , d′) be the sequence of dimensions of D which are fixed one by one
by Algorithm 2. Let ri = bi − ai + 1 be the side-length of R′ along dimension i.
Then |R′| =

∏d′

i=1 ri. The number of hops T (ri, . . . , rd′) needed to report the
(touching) range R′ is bounded by the following recursion:

T (r1, . . . , rd′) ≤ c d r1 + r1 T (r2, . . . , rd′) for d′ > 1
T (r1) ≤ c d r1 for d′ = 1

for a sufficiently large constant c. Thus, T (r1, . . . , rd′) ≤ c d (r1 +r1 r2 + · · ·+r1 ·
r2 · . . . · rd′) ≤ 2 c d r1 r2 . . . rd′ = 2 c d |R′|. Therefore, all points can be visited
in O (d |R′|) hops.

Note that the recursive steps for every point of a line can be processed in
parallel. Therefore, the algorithm needs O

(
d

∑d
i=1(bi − ai + 1)

)
communica-

tion rounds. ��
Combining Lemmas 2 and 4, we obtain the bounds of Theorem 1.

4 Concluding Remarks

It is easy to scale down our construction to smaller P2P networks: for some
m′ < m let each peer take care of a whole canonical submesh with edge length
m′. Then only

(
m
m′

)d peers are used.

Supporting Orthogonal Range Queries of Arbitrary Dimension 57

A more interesting question is how to deal with sparse data sets: If only a few
of the md points of M(m, d) hold data records, we would like to achieve a hop
count close to the number of records contained in the queried range. For this, it
is interesting to investigate whether our combination of the Hilbert Curve and
the Distance Halving Network can be extended to incorporate advantages of, for
example, k-d trees.

References

1. Alber, J., Niedermeier, R.: On multidimensional curves with hilbert property. The-
ory Comput. Syst. 33(4), 295–312 (2000). https://doi.org/10.1007/s002240010003

2. Albrecht, J., Oppenheimer, D., Vahdat, A., Patterson, D.A.: Design and implemen-
tation trade-offs for wide-area resource discovery. ACM Trans. Internet Technol.
8(4), 18:1–18:44 (2008). https://doi.org/10.1145/1391949.1391952

3. Andrzejak, A., Xu, Z.: Scalable, efficient range queries for grid information services.
In: P2P 2002 Proceedings of the Second International Conference on Peer-to-Peer
Computing, pp. 33–40 (2002). https://doi.org/10.1109/PTP.2002.1046310

4. Cai, M., Frank, M., Chen, J., Szekely, P.: MAAN: a multi-attribute addressable
network for grid information services. J. Grid Comput. 2(1), 3–14 (2003). https://
doi.org/10.1007/s10723-004-1184-y

5. Carlini, E., Lulli, A., Ricci, L.: DRAGON: multidimensional range queries
on distributed aggregation trees. Future Gener. Comput. Syst. 55, 101–115
(2016). https://doi.org/10.1016/j.future.2015.07.020, http://www.sciencedirect.
com/science/article/pii/S0167739X15002526

6. Datta, A., Hauswirth, M., John, R., Schmidt, R., Aberer, K.: Range queries in
trie-structured overlays. In: P2P 2005 Proceedings of the Fifth IEEE International
Conference on Peer-to-Peer Computing, pp. 57–66. IEEE (2005)

7. Ganesan, P., Yang, B., Garcia-Molina, H.: One torus to rule them all: multi-
dimensional queries in P2P systems. In: WebDB 2004 Proceedings of the 7th
International Workshop on the Web and Databases: Colocated with ACM SIG-
MOD/PODS 2004 WebDB 2004, pp. 19–24. ACM, New York (2004). https://doi.
org/10.1145/1017074.1017081

8. Hilbert, D.: Über die stetige Abbildung einer Linie auf ein Flächenstück, pp. 1–2.
Springer, Heidelberg (1935). https://doi.org/10.1007/978-3-662-38452-7-1

9. Jagadish, H.V., Ooi, B.C., Vu, Q.H.: Baton: a balanced tree structure for peer-to-
peer networks. In: Proceedings of the 31st International Conference on Very Large
Data Bases VLDB Endowment, pp. 661–672 (2005)

10. Lee, K., Choi, T., Boykin, P.O., Figueiredo, R.J.: MatchTree: flexible, scalable,
and fault-tolerant wide-area resource discovery with distributed matchmaking and
aggregation. Future Gener. Comput. Syst. 29(6), 1596–1610 (2013). https://doi.
org/10.1016/j.future.2012.08.009, http://www.sciencedirect.com/science/article/
pii/S0167739X12001653. including Special sections: High Performance Computing
in the Cloud & Resource Discovery Mechanisms for P2P Systems

11. Li, D., Cao, J., Lu, X., Chen, K.C.C.: Efficient range query processing in peer-
to-peer systems. IEEE Trans. Knowl. Data Eng. 21(1), 78–91 (2009). https://doi.
org/10.1109/TKDE.2008.99

12. Kleinberg, J.M.: Navigation in a small world. Nature 406, 845 (2000)
13. Naor, M., Wieder, U.: Novel architectures for P2P applications: the continuous-

discrete approach. ACM Trans. Algorithms 3(3), 34 (2007). https://doi.org/10.
1145/1273340.1273350

https://doi.org/10.1007/s002240010003
https://doi.org/10.1145/1391949.1391952
https://doi.org/10.1109/PTP.2002.1046310
https://doi.org/10.1007/s10723-004-1184-y
https://doi.org/10.1007/s10723-004-1184-y
https://doi.org/10.1016/j.future.2015.07.020
http://www.sciencedirect.com/science/article/pii/S0167739X15002526
http://www.sciencedirect.com/science/article/pii/S0167739X15002526
https://doi.org/10.1145/1017074.1017081
https://doi.org/10.1145/1017074.1017081
https://doi.org/10.1007/978-3-662-38452-7-1
https://doi.org/10.1016/j.future.2012.08.009
https://doi.org/10.1016/j.future.2012.08.009
http://www.sciencedirect.com/science/article/pii/S0167739X12001653
http://www.sciencedirect.com/science/article/pii/S0167739X12001653
https://doi.org/10.1109/TKDE.2008.99
https://doi.org/10.1109/TKDE.2008.99
https://doi.org/10.1145/1273340.1273350
https://doi.org/10.1145/1273340.1273350

58 M. Benter et al.

14. Pitoura, T., Ntarmos, N., Triantafillou, P.: Saturn: range queries, load balancing
and fault tolerance in DHT data systems. IEEE Trans. Knowl. Data Eng. 24(7),
1313–1327 (2012). https://doi.org/10.1109/TKDE.2010.266

15. Ramabhadran, S., Ratnasamy, S., Hellerstein, J.M., Shenker, S.: Prefix hash tree:
an indexing data structure over distributed hash tables. In: Proceedings of the 23rd
ACM Symposium on Principles of Distributed Computing, January 2004

16. Schmidt, C., Parashar, M.: Squid: enabling search in DHT-based systems. J. Par-
allel Distrib. Comput. 68, 962–975 (2008)

17. Shen, H., Xu, C.Z.: Leveraging a compound graph-based DHT for multi-attribute
range queries with performance analysis. IEEE Trans. Comput. 61(4), 433–447
(2012). https://doi.org/10.1109/TC.2011.30

18. Shu, Y., Ooi, B.C., Tan, K.L., Zhou, A.: Supporting multi-dimensional range
queries in peer-to-peer systems. In: P2P 2005 Proceedings of the Fifth IEEE
International Conference on Peer-to-Peer Computing, pp. 173–180, August 2005.
https://doi.org/10.1109/P2P.2005.35

19. Stoica, I., et al.: Chord: a scalable peer-to-peer lookup protocol for internet appli-
cations. IEEE/ACM Trans. Network. 11(1), 17–32 (2003)

20. Zhang, C., Krishnamurthy, A., Wang, R.Y.: Skipindex: Towards a scalable peer-
to-peer index service for high dimensional data. Technical report, Princeton Uni-
versity, May 2004

https://doi.org/10.1109/TKDE.2010.266
https://doi.org/10.1109/TC.2011.30
https://doi.org/10.1109/P2P.2005.35

A Fully Polynomial Time Approximation
Scheme for Packing While Traveling

Frank Neumann1(B), Sergey Polyakovskiy2, Martin Skutella3, Leen Stougie4,
and Junhua Wu1

1 Optimization and Logistics, School of Computer Science,
The University of Adelaide, Adelaide, Australia

Frank.neumann@adelaide.edu.au
2 School of Information Technology, Deakin University, Geelong, Australia
3 Institut für Mathematik, Technische Universität Berlin, Berlin, Germany

4 CWI, INRIA-Erable and Department of Econometrics and Operations Research,

Vrije Universiteit, Amsterdam, The Netherlands

Abstract. Understanding the interaction between different combinato-
rial optimization problems is a challenging task of high relevance for
numerous real-world applications including modern computer and mem-
ory architectures as well as high performance computing. Recently, the
Traveling Thief Problem (TTP), as a combination of the classical travel-
ing salesperson problem and the knapsack problem, has been introduced
to study these interactions in a systematic way. We investigate the under-
lying non-linear Packing While Traveling Problem (PWTP) of the TTP
where items have to be selected along a fixed route. We give an exact
dynamic programming approach for this problem and a fully polynomial
time approximation scheme (FPTAS) when maximizing the benefit that
can be gained over the baseline travel cost. Our experimental investiga-
tions show that our new approaches outperform current state-of-the-art
approaches on a wide range of benchmark instances.

1 Introduction

Combinatorial optimization problems play a crucial role in diverse application
areas such as planning, scheduling, and routing, as well as for the efficient use of
modern cloud-based computer architectures as well as high performance comput-
ing. Many combinatorial optimization problems have been studied extensively
in the literature. Two of the most prominent ones are the traveling salesper-
son problem (TSP) and the knapsack problem (KP). Numerous high performing
algorithms have been designed for these two problems.

Looking at combinatorial optimization problems arising in real-world applica-
tions, one can observe that real-world problems often are composed of different
types of combinatorial problems. For example, delivery problems usually con-
sists of a routing part for the vehicle(s) and a packing part of the goods onto the
vehicle(s). Recently, the Traveling Thief Problem (TTP) [1] has been introduced

c© Springer Nature Switzerland AG 2019
Y. Disser and V. S. Verykios (Eds.): ALGOCLOUD 2018, LNCS 11409, pp. 59–72, 2019.
https://doi.org/10.1007/978-3-030-19759-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19759-9_5&domain=pdf
https://doi.org/10.1007/978-3-030-19759-9_5

60 F. Neumann et al.

to study the interactions of different combinatorial optimization problems in a
systematic way and to gain better insights into the design of multi-component
problems. The TTP combines the TSP and KP by making the speed that a
vehicle travels along a TSP tour dependent on the weight of the already selected
items. Furthermore, the overall objective is given by the sum of the profits of the
collected items minus the weight dependent travel cost along the chosen route. A
wide range of heuristic search algorithms [2,3,8] and a large benchmark set [12]
have been introduced for the TTP in recent years. However, up to now there
are no high performing exact approaches to deal with the TTP. On the other
hand, the study of non-linear planning problems is an important topic and the
design of efficient approximation algorithms has gained increasing interest in
recent years [6,15].

The non-linear Packing While Traveling Problem (PWTP) has been intro-
duced in [13] to push forward systematic studies on multi-component problems
and deals with the packing part combined with the non-linear travel cost func-
tion of the TTP. The PWTP can be seen as the TTP when the route is fixed
but the cost still depends on the weight of the items on the vehicle.

Problem Definition. The PWTP is formally defined as follows. Given are n
cities 1, . . . , n, distances di ≥ 0, 1 ≤ i ≤ n − 1, from city i to city i + 1, together
with n items, one at each city. The item at city i has a non-negative integer
profit pi and weight wi. A vehicle of capacity W travels through the cities in
the given order 1, . . . , n, and can collect any subset of items S ⊆ {1, . . . , n} of
total weight w(S) :=

∑
i∈S wi ≤ W . When traveling from city i to city i + 1,

the speed v of the vehicle depends on the total weight of so far collected
items Si := S ∩ {1, . . . , i}. More precisely, its speed is an affine linear function
of the weight k = w(Si) given by

v(k) := vmax +
k

W
(vmin − vmax), (1)

where vmax is the given maximum possible speed (for the unloaded vehicle)
and vmin the given minimum speed (for the fully loaded vehicle). The time ti(Si)
to travel from city i to city i + 1 is thus equal to the distance di divided by the
speed vi

(
w(Si)

)
. The objective is to choose a subset of items S ⊆ {1, . . . , n} that

maximizes the total benefit b(S) := p(S) − t(S), where p(S) =
∑

i∈S pi is the
total profit of selected items and t(S) :=

∑n−1
i=1 ti(Si) is the total travel time.

In a slightly more general version of the PWTP, there may be several items
or no item at any city i. Notice, however, that this can be easily reduced to the
special case introduced above. A city with k > 1 items can be split into a subse-
quence of k cities with distances 0 between them. Moreover, at a city with no item
we may place a dummy item of profit and weight zero.1 Further generalizations
and interesting variants of the PWTP include other models of weight-dependent
travel times occurring in a variety of different application contexts discussed
below that can also be handled by the algorithmic techniques introduced in this
paper.
1 Alternatively, an intermediate city with no item might be deleted from the sequence.

FPTAS for Packing While Traveling 61

The PWTP is NP -hard even without the capacity constraint usually imposed
on the knapsack. Furthermore, exact and approximate mixed integer program-
ming approaches as well as a branch-infer-and-bound approach [11] have been
developed for this problem.

Applications. The Packing While Traveling Problem is originally motivated
by gaining advanced precision when minimizing transportation costs that may
have non-linear nature, for example, in applications where weight impacts the
fuel costs [4,7]. From this point of view, the problem is a baseline problem in
various vehicle routing problems with non-linear costs. Some specific applications
of the PWTP may deal with a single truck collecting goods in large remote areas
without alternative routes, that is, there may exist a single main route that a
vehicle has to follow while any deviations from it in order to visit particular
cities are negligible [11].

Applications in the area of modern computing systems include the collec-
tion and processing of data by streaming algorithms [16]. Here the sequence of
cities/items 1, . . . , n corresponds to a data stream and the capacity W models
a bound on the available memory. For multi-level memory architectures, the
PWTP’s weight-dependent ‘travel times’ can be interpreted as data processing
and computing times that increase with higher memory load; see, e.g., [9]. Fur-
ther applications in this context include the efficient processing of large amounts
of data in social networks and related contexts.

Our Contribution. We introduce a dynamic programming approach for
the PWTP. The key idea is to consider the items in the order 1, . . . , n they
appear along the route that needs to be traveled and apply dynamic program-
ming similar as for the classical knapsack problem [14]. When considering an
item, the decision has to be made on whether or not to pack the item. The
dynamic programming approach computes for the first i items, 1 ≤ i ≤ n, and
possible subsets of weight w̄ the maximal objective value that can be obtained.
As the programming table that is used depends on the number of different pos-
sible weights, the algorithm runs in pseudo-polynomial time.

After having obtained the exact approach based on dynamic programming,
we consider the design of a fully polynomial approximation scheme (FPTAS) [5].
First, we show that it is NP -hard to decide whether a given instance of the
PWTP has a non-negative objective value. This rules out any polynomial time
algorithm with finite approximation ratio, unless P = NP . Due to this, we design
an FPTAS for the amount that can be gained over the travel cost when the
vehicle travels empty (which is the minimal possible travel cost). Our FPTAS is
based on the observation that the item with the largest benefit leads to an objec-
tive value of at least OPT/n and uses appropriate rounding in the previously
designed dynamic programming approach. An interesting and distinguishing fea-
ture of our FPTAS is the fact that, in contrast to the standard approach in the
area of approximation schemes, we do not explicitly round values to arrive at
a polynomial-size state space of the dynamic program. Instead, an approximate
domination criterion is used to restrict to a polynomial number of intermediate
states.

62 F. Neumann et al.

We evaluate our two approaches on a wide range of instances from the
TTP benchmark set [12], and compare them to the exact and approximative
approaches given in [11]. Our results show that the large majority of the instances
that can be handled by exact methods, are solved much faster by dynamic
programming than the previously developed mixed integer programming and
branch-infer-and-bound approaches. Considering instances with a larger profit
and weight range, we show that the choice of the approximation guarantee sig-
nificantly impacts the runtime behavior.

Outline. The paper is structured as follows. In Sect. 2 we present the exact
dynamic programming approach, and design an FPTAS in Sect. 3. Our experi-
mental results are discussed in Sect. 4. Finally, we finish with some conclusions.

2 Dynamic Programming

We introduce a dynamic programming approach for solving the PWTP. Dynamic
programming is one of the traditional approaches for the classical knapsack
problem [14]. The dynamic programming table β consists of n rows, indexed by
i = 1, . . . , n, and W + 1 columns, indexed by k = 0, . . . ,W . Items are processed
in the order i = 1, . . . , n they appear along the tour. The entry β(i, k) shall
denote the maximal benefit that can be obtained by considering all subsets of
the first i items {1, . . . , i} of total weight exactly k, for k = 0, . . . ,W . We denote
by β(i, ·) the row containing the entries βi,k. In the case that a subset of total
weight k does not exist, we set β(i, k) := −∞.

Let di,n :=
∑n−1

j=i dj be the distance from city i to the last city n. We denote
by b(∅) := −d1,n/vmax the benefit of the empty set, that is, the travel cost when
the vehicle travels empty. Furthermore, the benefit when only item i is chosen is

b({i}) := b(∅) + pi − di,n
v(wi)

+
di,n
vmax

,

as the vehicle will now only travel at speed v(wi) from city i on. The entries in
the first row can be easily computed as

β(1, k) :=

⎧
⎪⎨

⎪⎩

b(∅) if k = 0 �= w1,

b({1}) if k = w1,

−∞ otherwise.
(2)

For i = 2, . . . , n, based on the row β(i−1, ·) we can compute the next row β(i, ·).
To keep notation simple, we let β(i − 1, q) := −∞ for q < 0. Then,

β(i, k) := max
{

β(i − 1, k), β(i − 1, k − wi) + pi − di,n
v(k)

+
di,n

v(k − wi)

}

. (3)

The correctness of this recursive formula is discussed in the proof of the next
theorem.

FPTAS for Packing While Traveling 63

Theorem 1. For each i and k, the entry β(i, k) stores the maximal possible
benefit b(S) over all subsets S of {1, . . . , i} having weight exactly k. In particu-
lar, maxk β(n, k) is the value of an optimal solution, which can be obtained via
backtracking.

Proof. We use induction on i. The statement is true for i = 1 as there are
only the two options of choosing or not choosing the first item, which are both
considered in (2). Now assume that β(i − 1, k) stores the maximal benefit for
each weight k when considering all subsets of {1, . . . , i − 1}. Notice that for a
subset S′ ⊆ {1, . . . , i−1} of weight at most W −wi, the benefit of S′ ∪{i} equals

b(S′ ∪ {i}) = b(S′) + pi −
(

di,n

v
(
w(S′) + wi

) − di,n

v
(
w(S′)

)

)

, (4)

since adding item i to subset S′ leads to the reduced speed v
(
w(S′)+wi

)
of the

vehicle, instead of v
(
w(S′)

)
, from city i on. Consider now a subset S ⊆ {1, . . . , i}

with w(S) = k of maximum benefit b(S). If i �∈ S, then S must obviously be
a maximum benefit subset of {1, . . . , i − 1} of weight k as well. In particular,
b(S) = β(i − 1, k); see the first term on the right-hand side of (3). Otherwise,
if i ∈ S, then S = S′ ∪ {i} for a maximum benefit subset S′ ⊆ {1, . . . , i − 1} of
weight k − wi, that is, b(S′) = β(i − 1, k − wi). Notice that the second term on
the right-hand side of (3) thus coincides with (4). This concludes the proof.

Finally, we investigate the runtime for this dynamic program. If di,n has
been computed for each i, which takes O(n) time in total, then each entry of
the dynamic programming table β can be computed in constant time. Thus, the
running time of the dynamic program is in O(nW). To empirically speed up
the computation of the dynamic program, it is sufficient to only store an entry
for β(i, k) if it is not dominated by any other entry in β(i, ·), that is, if there is
no k′ < k with β(i, k′) ≥ β(i, k). This is justified by the following lemma.

Lemma 1. The increase in travel cost due to a new item i given by the term
in brackets on the right-hand side of (4) is an increasing function of the
weight w(S′) of so far collected items.

Proof. For v(k) as defined in (1), let t(k) := 1/v(k) denote the travel time per
unit distance when the vehicle has collected items of total weight k. Notice that
the thereby defined function t : [0,W] → R≥0 is convex and increasing.

3 Approximation Algorithms

We now turn our attention to approximation algorithms. The NP-hardness proof
for the PWTP given in [11] does not rule out polynomial time approximation
algorithms. In this section, we first show that polynomial time approximation
algorithms with a finite approximation ratio do not exist, unless P = NP . This
results motivates the design of an FPTAS for the shifted objective function
given by the amount that can be gained over the baseline cost when the vehicle
is traveling empty.

64 F. Neumann et al.

3.1 Inapproximability of the Packing While Traveling Problem

The objective function for PWTP can take on positive and negative values.
We show that deciding whether a given PWTP instance has a solution that is
non-negative is already NP-complete.

Theorem 2. Given a PWTP instance, the problem to decide whether there is
a solution S ⊆ {1, . . . , n} with b(S) ≥ 0 is NP-complete.

Proof. The problem is obviously in NP as one can verify in polynomial time for
a given solution S whether b(S) ≥ 0 holds by evaluating the objective function.
It remains to show that the problem is NP-hard.

We reduce the NP -complete Subset Sum Problem (SSP) to our problem.
An instance of SSP is given by n positive integers {s1, . . . , sn} and a positive
integer Q. The question is whether there exists a subset S ⊆ {1, . . . , n} such
that

∑
i∈S si = Q. Given an instance of SSP, we construct an instance of PWTP

consisting of n cities and items of profit and weight pi = wi = si, for i =
1, . . . , n. The distances di between cities are all equal to zero except for the
last distance dn−1 := Q2. Finally, the vehicle has capacity W := Q and its
minimum and maximum speed are vmin := vmax := Q, that is, the speed does
not depend on the weight of collected items. It is easy to see that the benefit
of any solution S ⊆ {1, . . . , n} is equal to b(S) = p(S) − Q =

∑
i∈S si − Q. In

particular, as p(S) = w(S) ≤ W = Q, it holds that b(S) ≥ 0 if and only if S is
a solution to the underlying instance of the SSP.

We can even prove the following slightly stronger complexity result.

Proposition 1. The decision version of the PWTP stated in Theorem 2 is even
NP-hard if the vehicle capacity is large enough to fit all items, that is, if W ≥
w({1, . . . , n}).

Proof. We modify the reduction given in the proof of Theorem 2 as follows. First
of all we restrict to instances of the SSP with

∑n
i=1 si = 2Q (in other words, we

give a reduction from the NP-complete Partition Problem). The vehicle capacity
is then set to W := 2Q, the maximum speed to vmax := 2Q, and the minimum
speed to vmin := 0. Then, the benefit of a subset of items S ⊆ {1, . . . , n} is

b(S) = p(S) − Q2

2Q − w(S)
= w(S) − Q2

2Q − w(S)
.

We consider the right-hand side term as a function of w(S). It is easy to check
that this function attains its unique maximum of value 0 for w(S) = Q.

As a corollary of Theorem 2, we obtain the following non-approximability
result.

Corollary 1. There is no polynomial time approximation algorithm for PWTP
with a finite approximation ratio, unless P = NP .

FPTAS for Packing While Traveling 65

3.2 An FPTAS for Amount over Baseline Travel Cost

In view of Corollary 1, we shift the objective function value and consider the
amount that can be gained over the cost when the vehicle travels empty as the
new objective. More precisely, for a subset of items S ⊆ {1, . . . , n} the new
objective is

b′(S) := b(S) − b(∅).

This is motivated by the scenario where the vehicle has to travel along the given
route anyway, and the goal is to maximize the gain over this (negative) baseline
cost b(∅). Notice that an optimal solution for this objective is also an optimal
solution for the original PWTP objective. Approximation results, however, do
not carry over as the objective value is shifted by b(∅).

As in the proof of Lemma 1, let t(k) be the travel time per unit distance
when the vehicle has collected items of total weight k. It follows from the proof
of Lemma 1 that, for each item i and 0 ≤ k ≤ W − wi, we get

t(k + wi) − t(k) ≥ t(wi) − t(0).

This means that the marginal cost (with respect to the travel time) of adding
an item is lowest if there are no other items chosen. As a consequence, we get
for each subset S ⊆ {1, . . . , n} with w(S) ≤ W that

b′(S) ≤
∑

i∈S

b′({i}).

In particular, when choosing an optimal subset S maximizing b′(S) =: OPT,
there is an i ∈ S with b′(i) ≥ OPT/|S| ≥ OPT/n. Thus, L := max1≤i≤n b′({i})
provides an efficiently computable lower bound on the value of an optimal solu-
tion satisfying OPT/n ≤ L ≤ OPT.

In order to obtain a fully polynomial time approximation scheme (FPTAS)
for the problem of maximizing b′(S) over all feasible subsets S ⊆ {1, . . . , n},
we start by carefully modifying the dynamic programming scheme from Sect. 2
given by Eqs. (2) and (3) as follows. Let

β′(1, k) :=

⎧
⎪⎨

⎪⎩

b′(∅) if k = 0 �= w1,

b′({1}) if k = w1,

−∞ otherwise.

Then, for i = 2, . . . , n, let

β′(i, k) := max
{

β′(i − 1, k), β′(i − 1, k − wi) + pi − di,n
v(k)

+
di,n

v(k − wi)

}

.

As discussed at the end of Sect. 2, we can speed up the dynamic program by
setting β′(i, k) := −∞ in case there is a k′ < k with β′(i, k′) ≥ β′(i, k).

The idea of the FPTAS described in Algorithm 1 is to further speed up the
dynamic program by ignoring entries β′(i, k) such that there is a k′ < k with

66 F. Neumann et al.

Algorithm 1. FPTAS for maximizing b′(S)
1. set L := max1≤i≤n b′({i}), r := εL/n, and di,n :=

∑n−1
j=i dj for 1 ≤ i ≤ n;

2. initially, all values β(i, k) are assumed to be −∞;
3. set β′(1, 0) := b′(∅) and β′(1, w1) := b′({1});
4. for i = 1, . . . , n − 1 do:
5. for each k with �β′(i, k)/r� > max{�β′(i, k′)/r�, −∞} for all k′ < k do:
6. set β′(i + 1, k) := max{β′(i, k), β′(i + 1, k)};
7. if k+ := k + wi+1 ≤ W , set

β′(i + 1, k+) := max{β′(i, k) + pi+1 − di+1,n
v(k+)

+
di+1,n

v(k)
, β′(i + 1, k+)}

8. determine maxk β′(n, k) and corresponding solution S by backtracking;

�β′(i, k)/r > �β′(i, k′)/r for r := εL/n. Due to this, in terms of the objective
function we lose at most r in every row of the dynamic programming table. The
overall loss is thus bounded by nr = εL ≤ εOPT.

Theorem 3. Algorithm 1 is an FPTAS for the problem to maximize b′(S) over
all subsets of items S ⊆ {1, . . . , n} with w(S) ≤ W .

Proof. As argued above, the value of the computed solution is at least (1 −
ε)OPT. It remains to argue that the running time of Algorithm 1 is bounded by
a polynomial in the input size and 1/ε. This can be seen as follows:

Claim. For the dynamic programming table β′ computed by Algorithm 1, there
are at most O(n2/ε) entries of finite value in row β′(i, ·), for i = 1, . . . , n.
Proof of the Claim: We use induction on i. The case i = 1 is clear by Step 3 of
Algorithm 1. Moreover, the for-loop in Step 5 considers at most 1 + OPT/r =
1 + nOPT/(εL) ≤ 1 + n2/ε different values of k. For each such k, at most two
entries in the next row i+1 are modified. This concludes the proof of the claim.
The overall running time is thus polynomial in the input size and 1/ε.

We conclude this section with the following generalizing remark.

Remark 1. The construction of the FPTAS only used the fact that the travel
time per unit distance is monotonically increasing and convex. Hence, the
FPTAS holds for any PWTP problem where the travel time per unit distance
has this property.

4 Experiments and Results

In this section, we investigate the effectiveness of the proposed DP and FPTAS
approaches based on our implementations in Java. We mainly focus on two issues:
(1) studying how the DP and FPTAS perform compared to the state-of-the-art
approaches; (2) investigating how the performance and accuracy of the FPTAS
change when the parameter ε is altered.

FPTAS for Packing While Traveling 67

In order to be comparable to the mixed integer programming (MIP) and
the branch-infer-and-bound (BIB) approaches presented in [11], we conduct our
experiments on the same families of test instances. Our experiments are carried
out on a computer with 4 GB RAM and a 3.06 GHz Intel Dual Core processor,
which is also the same as the machine used in the paper mentioned above.

We compare the DP to the exact MIP (eMIP) and the branch-infer-and-
bound approaches as well as the FPTAS to the approximate MIP (aMIP), as
the former three are all exact approaches and the latter two are all approxi-
mations. Table 1 demonstrates the results for a route of 101 cities and various
types of packing instances. For this particular family, we consider three types
of instances: uncorrelated (uncorr), uncorrelated with similar weights (uncorr-s-
w) and bounded strongly correlated (b-s-corr), which are further distinguished
by the different correlations between profits and weights. In combination with
three different numbers of items and three settings of the capacity, we have 27
instances in total, as shown in the column called “Instance”. Similarly to the
settings in [11], every instance with “ 01” postfix has a relatively small capacity.
We expect such instances to be potentially easy to solve by DP and FPTAS
due to the nature of the algorithms. The OPT column shows the optimum of
each instance and the RT(s) columns illustrate the running time for each of
the approaches in the time unit of a second. To demonstrate the quality of an
approximate approach applied to the instances, we use the ratio between the
objective value obtained by the algorithm and the optimum obtained for an
instance as the approximation rate AR(%) = 100 × OBJ

OPT .
In the comparison of exact approaches, our results show that the DP is much

quicker than the exact MIP and BIB in solving the majority of the instances.
The exact MIP is slower than the DP in every case and this dominance is mostly
significant. For example, it spends around 35 min to solve the instance uncorr-s-
w 10 with 1, 000 items, where the DP needs around 15 s only. On the other hand,
the BIB slightly beats the DP on three instances, but the DP is superior for the
rest 24 instances. An extreme case is b-s-corr 01 with 1, 000 items where the BIB
spends above 1.5 h while the DP solves it in 11 s only. Concerning the running
time of the DP, it significantly increases only for the instances having large
amount of items with strongly correlated weights and profits, such as b-s-corr 06
and b-s-corr 10 with 1, 000 items. However, b-s-corr 01 seems exceptional due
to the limited capacity assigned to the instance.

Our comparison between the approximation approaches shows that the
FPTAS has significant advantages as well. The approximation ratios remain
100% when ε equals 0.0001 and 0.01. Only when ε is set to 0.25, the FPTAS
starts to output the results having similar accuracies as the ones of aMIP. With
regard to the performance, the FPTAS takes less running time than aMIP on
the majority of the instances despite the setting of ε. As an extreme case, aMIP
requires hours to solve the uncorr-s-w 01 instance with 1, 000 items, but the
FPTAS takes less than a second. However, the aMIP performs much better on
b-s-corr 06 and b-s-corr 10 with 1, 000 items. This somehow indicates that the
underlying factors that make instances hard to solve by approximate MIP and

68 F. Neumann et al.
T
a
b
le

1
.
R

es
u
lt

s
o
n

sm
a
ll

ra
n
g
e

in
st

a
n
ce

s

In
st
a
n
c
e

m
O
P
T

E
x
a
c
t
sp

p
ro

a
c
h
e
s

A
p
p
ro

x
im

a
ti
o
n

a
p
p
ro

a
c
h
e
s

e
M

IP
B
IB

D
P

a
M

IP
F
P
T
A
S

ε
=

0
.0
0
0
1

ε
=

0
.0
1

ε
=

0
.1

ε
=

0
.2
5

ε
=

0
.7
5

R
T
(s
)

R
T
(s
)

R
T
(s
)

A
R
(%

)
R
T
(s
)

A
R
(%

)
R
T
(s
)

A
R
(%

)
R
T
(s
)

A
R
(%

)
R
T
(s
)

A
R
(%

)
R
T
(s
)

A
R
(%

)
R
T
(s
)

In
st
a
n
c
e
fa
m

il
y

e
i
l
1
0
1

u
n
c
o
rr

0
1

1
0
0

1
6
5
1
.6
9
7

1
.2
1
7

5
.6
9
4

0
.0
2
7

1
0
0

3
.8
3
8

1
0
0

0
.0
0
1

1
0
0

0
.0
0
1

1
0
0

0
.0
0
1

1
0
0

0
.0
0
1

1
0
0

0
.0
2
5

u
n
c
o
rr

0
6

1
0
0

1
0
1
5
5
.4
9
4
2

1
2
.6
0
5

3
.6
9
8

0
.0
6
5

1
0
0

4
.9
6
1

1
0
0

0
.0
1
2

1
0
0

0
.0
1
1

1
0
0

0
.0
1
1

1
0
0

0
.0
1
1

9
9
.9
9
2
8

0
.0
6
3

u
n
c
o
rr

1
0

1
0
0

1
0
2
9
7
.7
1
3
4

3
.5
2
5

0
.7
9
5

0
.0
3
6

1
0
0

0
.6
2
4

1
0
0

0
.0
1
7

1
0
0

0
.0
1
7

9
9
.9
9
3
9

0
.0
1
6

9
9
.9
9
3
9

0
.0
1
6

9
9
.9
6
5
3

0
.0
3
7

u
n
c
o
rr
-s
-w

0
1

1
0
0

2
1
5
2
.6
1
8
8

0
.3
2
8

7
.5
6
6

0
.0
0
1

1
0
0

3
.9
7
8

1
0
0

0
1
0
0

0
1
0
0

0
1
0
0

0
1
0
0

0
.0
0
3

u
n
c
o
rr
-s
-w

0
6

1
0
0

4
3
3
3
.8
5
1
2

1
2
.5
9

2
.2
1
5

0
.0
1
2

1
0
0

2
.6
9
9

1
0
0

0
.0
0
8

1
0
0

0
.0
0
7

1
0
0

0
.0
0
7

9
9
.9
5
6
9

0
.0
0
8

9
9
.9
5
6
9

0
.0
1
7

u
n
c
o
rr
-s
-w

1
0

1
0
0

9
0
4
8
.4
9
0
8

3
7
.1
4
4

1
.1
0
7

0
.0
2
2

1
0
0

1
.7
6
3

1
0
0

0
.0
1
2

1
0
0

0
.0
1
2

1
0
0

0
.0
1
2

1
0
0

0
.0
1
3

9
9
.9
3
5
5

0
.0
2

b
-s
-c
o
rr

0
1

1
0
0

4
4
4
1
.9
8
5
2

1
.4
2

1
2
5
.9
5
4

0
.0
1
4

1
0
0

5
.3
6
6

1
0
0

0
.0
1

1
0
0

0
.0
0
9

1
0
0

0
.0
0
9

1
0
0

0
.0
0
8

1
0
0

0
.0
1
3

b
-s
-c
o
rr

0
6

1
0
0

1
0
2
6
0
.9
7
6
7

4
.5
0
9

2
2
.5
4
1

0
.1
0
1

1
0
0

2
.7
6
1

1
0
0

0
.0
5
8

1
0
0

0
.0
5
7

1
0
0

0
.0
4
8

1
0
0

0
.0
4
3

1
0
0

0
.0
8
7

b
-s
-c
o
rr

1
0

1
0
0

1
3
6
3
0
.6
1
5
3

1
1
.0
1
3

2
7
.0
8
1

0
.1
8
7

9
9
.9
9
7
1

3
.7
1
3

1
0
0

0
.1
0
3

1
0
0

0
.1
0
1

9
9
.9
9
7
1

0
.0
8
1

9
9
.9
6
0
6

0
.0
6
5

9
9
.8
1
4
3

0
.1
1
3

u
n
c
o
rr

0
1

5
0
0

1
7
6
0
8
.5
7
8
1

1
9
.5
9
4

2
7
.5
8
1

0
.2
4
7

1
0
0

5
.7
5
7

1
0
0

0
.1
7
1

1
0
0

0
.1
6
1

1
0
0

0
.1
5
3

1
0
0

0
.1
6
3

1
0
0

0
.3
7
7

u
n
c
o
rr

0
6

5
0
0

5
6
2
9
4
.5
2
3
9

3
8
4
.2
1
3

1
3
.3
5
4

2
.8
2
9

1
0
0

7
.8

1
0
0

2
.3
7

1
0
0

2
.3
4
4

1
0
0

2
.3

1
0
0

2
.2
1
2

1
0
0

2
.3
4

u
n
c
o
rr

1
0

5
0
0

6
6
1
4
1
.4
8
4

2
1
1
.3
0
2

2
.3
2
5

4
.0
1

1
0
0

0
.7
1
8

1
0
0

3
.7
2

1
0
0

3
.6
4
5

1
0
0

3
.4
4
6

1
0
0

3
.5
3
1

1
0
0

3
.6
3
2

u
n
c
o
rr
-s
-w

0
1

5
0
0

1
3
4
1
8
.8
4
0
6

4
.3
3
7

3
4
.8
6
6

0
.0
9

1
0
0

5
0
.3
1

1
0
0

0
.0
8
5

1
0
0

0
.0
9

1
0
0

0
.0
8
4

1
0
0

0
.0
8
7

9
9
.9
9
1

0
.0
8
5

u
n
c
o
rr
-s
-w

0
6

5
0
0

3
4
2
8
0
.4
7
3

3
4
6
.4
3

7
.2
8
5

1
.0
4

1
0
0

9
.6
0
9

1
0
0

0
.9
6
4

1
0
0

0
.9
3
3

1
0
0

0
.9
0
5

1
0
0

0
.9
3
6

1
0
0

0
.9
2

u
n
c
o
rr
-s
-w

1
0

5
0
0

5
0
8
3
6
.6
5
8
8

5
1
9
.9
0
2

3
.3
3
8

2
.0
2
2

1
0
0

3
.3
5
4

1
0
0

2
.0
0
5

1
0
0

1
.7
8
3

1
0
0

1
.7
5
3

1
0
0

1
.7
8
4

1
0
0

2
.1
4
7

b
-s
-c
o
rr

0
1

5
0
0

2
1
3
0
6
.9
1
5
8

4
0
.4
8
2

6
2
4
.2
0
4

1
.5
3
4

1
0
0

1
3
.3
3
8

1
0
0

1
.3
7
3

1
0
0

1
.2
7
9

1
0
0

1
.1
1
6

1
0
0

0
.9
4
9

1
0
0

0
.7
1
6

b
-s
-c
o
rr

0
6

5
0
0

6
9
3
7
0
.2
3
6
7

2
3
6
.3
8
7

9
7
.3
1
3

1
4
.6
1
6

9
9
.9
9
9
6

7
.8
4
7

1
0
0

1
3
.3
9
3

1
0
0

1
2
.9
7
5

1
0
0

1
1
.6
4
2

9
9
.9
9
9
6

9
.7
4
1

9
9
.9
9
9
6

6
.0
1
8

b
-s
-c
o
rr

1
0

5
0
0

8
2
0
3
3
.9
4
5
2

3
7
6
.5
6
9

2
1
8
.7
2
8

2
2
.0
1
1

1
0
0

2
.3
0
9

1
0
0

2
1
.3
7
2

1
0
0

2
0
.8
2
9

1
0
0

1
8
.5
7
3

1
0
0

1
5
.3
1
3

9
9
.9
9
4
3

8
.8
4

u
n
c
o
rr

0
1

1
0
0
0

3
6
1
7
0
.9
1
0
9

2
1
8
.3
0
6

1
1
4
.5
6
7

1
.8
7
2

9
9
.9
9
9
3

1
1
.9
1
8

1
0
0

1
.8
9
1

1
0
0

1
.8
7
5

1
0
0

1
.8
3
2

1
0
0

1
.8
4
5

1
0
0

1
.7
6
4

u
n
c
o
rr

0
6

1
0
0
0

9
3
9
4
9
.1
9
8
1

1
2
6
1
.9
4
9

3
6
.8
4
7

2
0
.9
4
4

1
0
0

1
7
.9
7
1

1
0
0

1
7
.0
2
4

1
0
0

1
6
.6
1
5

1
0
0

1
6
.5
4
5

1
0
0

1
6
.3
7
8

1
0
0

1
5
.7
1
3

u
n
c
o
rr

1
0

1
0
0
0

1
2
2
9
6
3
.6
6
1
7

6
2
0
.8
9
6

4
.8
2
1

3
0
.1
1
6

1
0
0

2
.1
8
4

1
0
0

2
7
.3
0
5

1
0
0

2
6
.7
8
3

1
0
0

2
6
.5
4
1

1
0
0

2
6
.0
5
1

1
0
0

2
3
.9
0
5

u
n
c
o
rr
-s
-w

0
1

1
0
0
0

2
7
8
0
0
.9
6
1
4

2
4
1
.9
5
7

3
9
9
.1
5
8

0
.8
0
2

1
0
0

4
9
8
5
.5
6
6

1
0
0

0
.7
3

1
0
0

0
.6
9

1
0
0

0
.6
8
8

1
0
0

0
.7
2
4

1
0
0

0
.6
8
7

u
n
c
o
rr
-s
-w

0
6

1
0
0
0

6
1
7
6
4
.4
5
9
9

1
1
5
2
.6
2
4

1
2
.7
9
2

9
.8
7
2

1
0
0

1
9
.0
6
3

1
0
0

8
.6
8
6

1
0
0

8
.8
1
2

1
0
0

8
.5
6

1
0
0

8
.7
4

1
0
0

8
.3
9
6

u
n
c
o
rr
-s
-w

1
0

1
0
0
0

1
0
3
5
7
2
.4
0
7
4

2
1
4
6
.4
0
8

7
.6
4
4

1
5
.0
4
7

1
0
0

9
.6
8
8

1
0
0

1
4
.0
3

1
0
0

1
3
.9
1
2

1
0
0

1
3
.7
9
7

1
0
0

1
3
.9
8
2

1
0
0

1
3
.4
9
2

b
-s
-c
o
rr

0
1

1
0
0
0

4
6
8
8
6
.1
0
9
4

3
7
8
.5
5
1

6
1
2
9
.5
3
1

1
1
.7
8
3

9
9
.9
9
8
8

4
6
.3
9
4

1
0
0

1
1
.7
1
4

1
0
0

1
1
.3
5
8

1
0
0

1
0
.7
9
3

1
0
0

9
.5
9
2

1
0
0

6
.5
3
6

b
-s
-c
o
rr

0
6

1
0
0
0

1
2
5
8
3
0
.6
8
8
7

6
4
3
.5
3
3

9
1
9
.2
0
1

9
4
.5
2
3

9
9
.9
9
9
9

1
0
.3
1
1

1
0
0

9
2
.4
1
1

1
0
0

9
1
.0
3
9

1
0
0

8
3
.0
0
2

9
9
.9
9
9
9

7
1
.0
7
8

1
0
0

4
5
.4
3
3

b
-s
-c
o
rr

1
0

1
0
0
0

1
6
1
9
9
0
.5
0
1
5

8
6
2
.5
7
2

1
6
4
6
.5
2

1
5
1
.6
0
1

1
0
0

7
.1
6

1
0
0

1
5
0
.2
7
9

1
0
0

1
4
9
.7
2
2

1
0
0

1
3
4
.7
6
4

1
0
0

1
1
3
.0
4
9

9
9
.9
9
8
1

7
0
.1
3
5

FPTAS for Packing While Traveling 69

T
a
b
le

2
.
R

es
u
lt

s
o
f
D

P
a
n
d

F
P

T
A

S
o
n

la
rg

e
ra

n
g
e

in
st

a
n
ce

s

In
st
a
n
c
e

m
D
P

F
P
T
A
S

ε
=

0
.0
0
0
1

ε
=

0
.0
0
1

ε
=

0
.0
1

ε
=

0
.1

ε
=

0
.2
5

ε
=

0
.5

ε
=

0
.7
5

O
P
T

R
T
(s
)

A
R
(%

)
R
T
(s
)

A
R
(%

)
R
T
(s
)

A
R
(%

)
R
T
(s
)

A
R
(%

)
R
T
(s
)

A
R
(%

)
R
T
(s
)

A
R
(%

)
R
T
(s
)

A
R
(%

)
R
T
(s
)

In
st
a
n
c
e
fa
m

il
y

e
i
l
1
0
1
l
a
r
g
e
-
r
a
n
g
e

u
n
c
o
rr

0
1

1
0
0

6
9
8
0
2
8
0
2
.2
8
0
1

0
.0
3

1
0
0

0
.0
0
2

1
0
0

0
.0
0
2

1
0
0

0
.0
0
2

1
0
0

0
.0
0
2

1
0
0

0
.0
0
2

1
0
0

0
.0
0
2

1
0
0

0
.0
2
9

u
n
c
o
rr

0
6

1
0
0

2
0
4
8
1
3
7
6
5
.6
9
3
3

0
.0
5
3

1
0
0

0
.0
1
9

1
0
0

0
.0
2

1
0
0

0
.0
1
9

1
0
0

0
.0
1
9

1
0
0

0
.0
1
9

1
0
0

0
.0
1
9

1
0
0

0
.0
4
9

u
n
c
o
rr

1
0

1
0
0

1
7
2
1
7
6
1
8
2
.1
2
4
9

0
.0
4
1

1
0
0

0
.0
2
8

1
0
0

0
.0
2
8

1
0
0

0
.0
2
8

1
0
0

0
.0
2
8

1
0
0

0
.0
2
7

1
0
0

0
.0
2
6

9
9
.9
6
2
8

0
.0
3
7

u
n
c
o
rr
-s
-w

0
1

1
0
0

3
6
4
2
0
5
3
0
.5
7
5
3

0
.0
0
6

1
0
0

0
.0
0
3

1
0
0

0
.0
0
3

1
0
0

0
.0
0
3

1
0
0

0
.0
0
3

1
0
0

0
.0
0
3

1
0
0

0
.0
0
2

1
0
0

0
.0
0
4

u
n
c
o
rr
-s
-w

0
6

1
0
0

1
4
8
0
5
8
9
2
8
.2
9
5
2

0
.0
9
8

1
0
0

0
.0
7
2

1
0
0

0
.5
0
2

1
0
0

0
.0
7
2

1
0
0

0
.0
6
9

1
0
0

0
.0
6
5

1
0
0

0
.0
5
9

1
0
0

0
.0
7

u
n
c
o
rr
-s
-w

1
0

1
0
0

1
4
2
5
3
8
5
1
6
.4
6
0
2

0
.1
3
6

1
0
0

0
.1
0
1

1
0
0

0
.1
0
4

1
0
0

0
.1
0
3

9
9
.9
9
7
8

0
.0
9
6

9
9
.9
9
7
8

0
.0
8
6

9
9
.9
9
7
8

0
.0
7
3

9
9
.9
9
7
8

0
.0
8
9

m
-s
-c
o
rr

0
1

1
0
0

1
9
5
4
9
6
0
2
.2
6
7
1

0
.0
0
3

1
0
0

0
.0
0
2

1
0
0

0
.0
0
2

1
0
0

0
.0
0
2

1
0
0

0
.0
0
2

1
0
0

0
.0
0
2

1
0
0

0
.0
0
1

1
0
0

0
.0
0
2

m
-s
-c
o
rr

0
6

1
0
0

1
3
7
2
0
3
1
7
5
.1
9
2
1

0
.1
4
7

1
0
0

0
.1
1
5

1
0
0

0
.1
1
8

1
0
0

0
.1
1
3

1
0
0

0
.0
8
9

1
0
0

0
.0
6
3

1
0
0

0
.0
4

1
0
0

0
.0
4
3

m
-s
-c
o
rr

1
0

1
0
0

2
2
5
5
8
4
2
7
8
.6
0
0
4

0
.4
2
4

1
0
0

0
.3
2
6

1
0
0

0
.3
2
9

1
0
0

0
.3
1
2

1
0
0

0
.2

1
0
0

0
.1
7
9

1
0
0

0
.0
8
6

1
0
0

0
.0
7
3

u
n
c
o
rr

0
1

5
0
0

3
8
5
6
9
2
6
6
2
.0
9
3
0

0
.4
7

1
0
0

0
.4
5
1

1
0
0

0
.4
5
4

1
0
0

0
.6
1
9

1
0
0

0
.5
0
8

1
0
0

0
.4
4
5

1
0
0

0
.4
3

1
0
0

0
.5
1
7

u
n
c
o
rr

0
6

5
0
0

9
5
8
0
1
3
9
3
4
.6
1
7
2

3
.5
3
9

1
0
0

3
.7
4
9

1
0
0

7
.4
3
1

1
0
0

3
.9
4
7

1
0
0

3
.6
9

9
9
.9
9
9
6

3
.6
7
7

9
9
.9
9
9
6

3
.4
8
6

9
9
.9
9
9
3

3
.0
2
1

u
n
c
o
rr

1
0

5
0
0

8
4
4
9
4
9
8
3
8
.4
3
8
9

4
.8
7

1
0
0

5
.3
9
3

1
0
0

5
.7
1
6

1
0
0

5
.4
8
3

1
0
0

5
.1
3
5

1
0
0

4
.8
5
1

9
9
.9
9
9
2

4
.6
0
9

9
9
.9
9
9
2

4
.2
9
5

u
n
c
o
rr
-s
-w

0
1

5
0
0

1
8
2
4
1
8
8
8
8
.9
3
6
4

1
.1
5
7

1
0
0

1
.1
5
7

1
0
0

1
.1
9
9

1
0
0

1
.1
4
5

9
9
.9
9
9
5

1
.1
1
2

9
9
.9
9
9
5

1
.0
6
3

9
9
.9
9
9
5

0
.9
7
7

9
9
.9
9
0
4

0
.9
2
9

u
n
c
o
rr
-s
-w

0
6

5
0
0

7
8
0
4
3
2
2
5
3
.0
1
8
7

2
2
.3
9

1
0
0

2
5
.0
4

1
0
0

2
6
.2
7
6

1
0
0

2
4
.0
2
4

1
0
0

2
3
.2
8
2

9
9
.9
9
9
7

2
1
.7
5
6

9
9
.9
9
9
7

1
8
.2
9
3

9
9
.9
9
9
7

1
8
.4
1
1

u
n
c
o
rr
-s
-w

1
0

5
0
0

7
1
4
4
3
3
3
5
3
.7
9
5
7

3
0
.9
5
9

1
0
0

3
4
.4
5
8

1
0
0

3
9
.0
0
4

1
0
0

3
4
.3
0
8

1
0
0

3
2
.3
0
8

9
9
.9
9
9
6

2
8
.7
9
2

9
9
.9
9
9

2
6
.3
9
2

9
9
.9
9
9

2
5
.9
7
1

m
-s
-c
o
rr

0
1

5
0
0

9
6
4
6
3
9
4
1
.1
2
7
5

2
.3
3
5

1
0
0

2
.4
7
8

1
0
0

2
.7
8
2

1
0
0

2
.6
9
5

1
0
0

1
.5
0
9

1
0
0

0
.9
6
3

1
0
0

0
.5
4
6

1
0
0

0
.4
0
8

m
-s
-c
o
rr

0
6

5
0
0

6
6
6
7
0
1
0
0
0
.1
4
8
8

1
0
8
.7
0
5

1
0
0

1
2
6
.8
3
3

1
0
0

1
3
9
.6
3

1
0
0

1
2
2
.7
5

1
0
0

6
2
.4
7
9

1
0
0

3
3
.5
4
7

1
0
0

1
7
.9
5
9

1
0
0

1
0
.6
4
2

m
-s
-c
o
rr

1
0

5
0
0

1
0
8
2
0
0
9
8
8
0
.5
8
8
6

2
6
2
.9
9
9

1
0
0

2
9
9
.8
6
2

1
0
0

3
1
7
.3
5
2

1
0
0

2
7
4
.2
8
4

1
0
0

1
4
5
.0
8
7

1
0
0

7
8
.4
7

9
9
.9
9
9
4

4
1
.8
1
6

9
9
.9
9
9
4

2
5
.9
2
4

u
n
c
o
rr

0
1

1
0
0
0

7
7
7
3
8
6
3
3
6
.9
6
6
0

4
.2
2
2

1
0
0

4
.3
9
7

1
0
0

4
.3
4
7

1
0
0

4
.3
0
9

1
0
0

4
.3
4
1

1
0
0

4
.3
7
7

1
0
0

4
.2
8

1
0
0

4
.2
4

u
n
c
o
rr

0
6

1
0
0
0

1
9
3
3
3
1
9
2
9
7
.4
2
4
8

4
6
.0
4
3

1
0
0

5
1
.3
8
3

1
0
0

5
3
.0
8
7

1
0
0

4
8
.8
6
1

1
0
0

5
2
.9
5
7

9
9
.9
9
9
9

5
2
.0
6
2

9
9
.9
9
9
7

5
0
.2
8
6

9
9
.9
9
9
6

5
1
.4
8
8

u
n
c
o
rr

1
0

1
0
0
0

1
6
9
3
7
9
7
4
9
0
.1
7
0
4

6
4
.4
8
5

1
0
0

7
6
.7
4
4

1
0
0

7
8
.8
4
7

1
0
0

7
4
.1
2
8

1
0
0

8
2
.7
5
4

1
0
0

7
7
.0
5
7

1
0
0

7
2
.2
8
3

1
0
0

7
2
.5
6
7

u
n
c
o
rr
-s
-w

0
1

1
0
0
0

3
6
1
9
9
1
3
1
1
.8
3
3
6

1
4
.2
5
4

1
0
0

1
5
.0
7
2

1
0
0

1
5
.6
7

1
0
0

1
4
.5
2
3

1
0
0

1
4
.1
1

1
0
0

1
4
.0
3
9

1
0
0

1
2
.0
8
8

1
0
0

1
1
.1
2
9

u
n
c
o
rr
-s
-w

0
6

1
0
0
0

1
5
7
4
4
6
9
4
5
9
.3
1
6
3

2
8
6
.8
4
3

1
0
0

3
1
8
.0
9
6

1
0
0

3
3
0
.5
0
8

1
0
0

3
3
7
.2
8
9

1
0
0

3
3
4
.3
1
8

1
0
0

3
0
7
.5
8
8

9
9
.9
9
9
8

2
7
0
.0
1
3

9
9
.9
9
9
6

2
4
5
.9
2
7

u
n
c
o
rr
-s
-w

1
0

1
0
0
0

1
4
3
9
4
1
0
6
9
6
.3
6
9
5

3
9
3
.7
9
3

1
0
0

4
3
8
.7
7
5

1
0
0

4
5
5
.8
3

1
0
0

4
6
4
.5
2
7

1
0
0

4
4
1
.9
5
5

1
0
0

4
3
3
.6
7
2

9
9
.9
9
9
4

3
7
8
.9
1
7

9
9
.9
9
9
4

3
4
0
.8
1
3

m
-s
-c
o
rr

0
1

1
0
0
0

1
9
1
1
7
0
3
0
9
.5
6
8
4

4
6
.8
5
8

1
0
0

5
8
.0
3
1

1
0
0

5
9
.9
8
7

1
0
0

5
8
.1
0
1

1
0
0

3
1
.7
0
3

1
0
0

1
8
.7
7
1

1
0
0

1
0
.7
2
8

1
0
0

6
.8
3
1

m
-s
-c
o
rr

0
6

1
0
0
0

1
3
1
5
7
0
8
1
6
1
.7
7
2
0

2
3
9
3
.2
0
5

1
0
0

2
5
1
2
.2
8
1

1
0
0

2
6
0
6
.4
1
2

1
0
0

1
9
2
1
.5
7
3

1
0
0

6
6
6
.7
4
9

1
0
0

3
6
4
.4
5
2

1
0
0

2
0
8
.9
6
9

1
0
0

1
5
0
.0
6

m
-s
-c
o
rr

1
0

1
0
0
0

2
1
6
3
7
1
3
0
5
5
.3
7
5
9

6
7
6
1
.4
9

1
0
0

6
6
6
8
.5
3
5

1
0
0

6
4
4
1
.9
0
6

1
0
0

4
5
2
6
.6
5
3

1
0
0

1
3
3
4
.8
8
2

1
0
0

7
0
3
.2
5
8

1
0
0

3
9
7
.5
2
7

1
0
0

2
8
2
.2
1
1

70 F. Neumann et al.

FPTAS have different nature. Understanding these factors more and using them
wisely should help to build a more powerful algorithm with mixed features of
MIP and FPTAS.

In our second experiment, we use test instances which are slightly different
to those in the benchmark used in [11]. This is motivated by our findings that
relaxing ε from 0.0001 to 0.75 improves the runtime performance of FPTAS
by around 50% for the b-s-corr instances, while does not degrade the accu-
racy noticeably. At the same time, there is no significant improvement for other
instances. It’s surprising as shows that the performance improvement can be
easily achieved on complex instances. Therefore, we study how the FPTAS per-
forms if the instances are more complicated. The idea is to use instances with
large weights, which are known to be difficult regarding dynamic programming
based approaches for the classical knapsack problem. We follow the same way to
create TTP instances as proposed in [12] and generate the knapsack component
of the problem as discussed in [10]. Specifically, we extend the range to generate
potential profits and weights from [1, 103] to [1, 107] and focus on uncorrelated
(uncorr), uncorrelated with similar weights (uncorr-s-w), and multiple strongly
correlated (m-s-corr) types of instances. Additionally, in the stage of assigning
the items of a knapsack instance to particular cities of a given TSP tour, we
sort the items in descending order of their profits and the second city obtains
k, k ∈ {1, 5, 10}, items of the largest profits, the third city then has the next k
items, and so on. We expect that such assignment should force the algorithms to
select items in the first cities of a route making the instances more challenging
for the DP and FPTAS. In reality, these instances indeed are harder than the
ones in the first experiment, which forces us to switch to the 128 GB RAM and
8 × (2.8 GHz AMD 6 core processors) cluster machine to carry out the second
experiment.

Table 2 illustrates the results of running the DP and FPTAS on the instances
with the large range of profits and weights. Generally speaking, we can observe
that the instances are significantly harder to solve than those ones from the first
experiment, that is they take comparably more time. Similarly, the instances
with large number of items, larger capacity, and strong correlation between prof-
its and weights are now hard for the DP as well. Oppositely to the results of
the previous experiment, the FPTAS performs much better when dealing with
such instances in the case when ε is relaxed. For example, its performance is
improved by 95% for the instance m-s-corr 10 with 1, 000 items when ε is raised
from 0.0001 to 0.75 while the approximation rate remains at 100%.

5 Conclusion

Multi-component combinatorial optimization problems play an important role in
many real-world applications. We have examined the non-linear Packing While
Traveling Problem which results from the interactions in the Traveling Thief
Problem. We designed a dynamic programming algorithm that solves the prob-
lem in pseudo-polynomial time. Furthermore, we have shown that the original

FPTAS for Packing While Traveling 71

objective of the problem is hard to approximate and have given an FPTAS for
optimizing the amount that can be gained over the smallest possible travel cost.
It should be noted that the FPTAS applies to a wider range of problems as
our proof only assumed that the travel cost per unit distance in dependence
of the weight is increasing and convex. Our experimental results on different
types of knapsack instances show the advantage of the dynamic program over
the previous approaches based on mixed integer programming and branch-infer-
and-bound concepts. Furthermore, we have demonstrated the effectiveness of the
FPTAS on instances with a large weight and profit range.

Acknowledgements. The first, second, and fifth author were supported by Aus-
tralian Research Council grants DP130104395 and DP140103400. The third author is
supported by the Einstein Foundation Berlin in the framework of Matheon.

References

1. Bonyadi, M., Michalewicz, Z., Barone, L.: The travelling thief problem: the first
step in the transition from theoretical problems to realistic problems. In: 2013
IEEE Congress on Evolutionary Computation (CEC), pp. 1037–1044, June 2013.
https://doi.org/10.1109/CEC.2013.6557681

2. El Yafrani, M., Ahiod, B.: Population-based vs. single-solution heuristics for the
travelling thief problem. In: Proceedings of the Genetic and Evolutionary Com-
putation Conference 2016 GECCO 2016, pp. 317–324. ACM, New York (2016).
https://doi.org/10.1145/2908812.2908847

3. Faulkner, H., Polyakovskiy, S., Schultz, T., Wagner, M.: Approximate approaches
to the traveling thief problem. In: Proceedings of the 2015 Annual Conference on
Genetic and Evolutionary Computation GECCO 2015, pp. 385–392. ACM, New
York (2015).https://doi.org/10.1145/2739480.2754716

4. GOODYEAR: Factors Affecting Truck Fuel Economy (2008).
http://www.goodyeartrucktires.com/pdf/resources/publications/
FactorsAffectingTruckFuelEconomy.pdf

5. Hochbaum, D.: Appromixation Algorithms for NP-hard Problems. PWS Publish-
ing Company (1997)

6. Hoy, D., Nikolova, E.: Approximately optimal risk-averse routing policies via adap-
tive discretization. In: Bonet, B., Koenig, S. (eds.) Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence, pp. 3533–3539. AAAI Press, Austin,
25–30 January 2015

7. Lin, C., Choy, K., Ho, G., Chung, S., Lam, H.: Survey of green vehicle routing
problem: past and future trends. Expert Syst. Appl. 41(4, Part 1), 1118–1138
(2014). https://doi.org/10.1016/j.eswa.2013.07.107

8. Mei, Y., Li, X., Yao, X.: On investigation of interdependence between subproblems
of the travelling thief problem. Soft Comput. 20, 157–172 (2016). https://doi.org/
10.1007/s00500-014-1487-2

9. Meyer, U., Sanders, P., Sibeyn, J. (eds.): Algorithms for Memory Hierarchies.
LNCS, vol. 2625. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-
36574-5

10. Pisinger, D.: Where are the hard knapsack problems? Comput. Oper. Res. 32,
2271–2284 (2005). https://doi.org/10.1016/j.cor.2004.03.002

https://doi.org/10.1109/CEC.2013.6557681
https://doi.org/10.1145/2908812.2908847
https://doi.org/10.1145/2739480.2754716
http://www.goodyeartrucktires.com/pdf/resources/publications/Factors Affecting Truck Fuel Economy.pdf
http://www.goodyeartrucktires.com/pdf/resources/publications/Factors Affecting Truck Fuel Economy.pdf
https://doi.org/10.1016/j.eswa.2013.07.107
https://doi.org/10.1007/s00500-014-1487-2
https://doi.org/10.1007/s00500-014-1487-2
https://doi.org/10.1007/3-540-36574-5
https://doi.org/10.1007/3-540-36574-5
https://doi.org/10.1016/j.cor.2004.03.002

72 F. Neumann et al.

11. Polyakovskiy, S., Neumann, F.: The packing while traveling problem. Eur. J. Oper.
Res. 258, 424–439 (2017)

12. Polyakovskiy, S., Bonyadi, M.R., Wagner, M., Michalewicz, Z., Neumann, F.: A
comprehensive benchmark set and heuristics for the traveling thief problem. In:
Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Com-
putation GECCO 2014, pp. 477–484. ACM, New York (2014). https://doi.org/10.
1145/2576768.2598249

13. Polyakovskiy, S., Neumann, F.: Packing while traveling: mixed integer program-
ming for a class of nonlinear knapsack problems. In: Michel, L. (ed.) CPAIOR
2015. LNCS, vol. 9075, pp. 332–346. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-18008-3 23

14. Toth, P.: Dynamic programming algorithms for the zero-one knapsack problem.
Computing 25, 29–45 (1980). https://doi.org/10.1007/BF02243880

15. Yang, G., Nikolova, E.: Approximation algorithms for route planning with non-
linear objectives. In: Schuurmans, D., Wellman, M.P. (eds.) Proceedings of the
Thirtieth AAAI Conference on Artificial Intelligence, pp. 3209–3217. AAAI Press,
Phoenix, 12–17 February 2016

16. Zhang, J.: A survey on streaming algorithms for massive graphs. In: Aggarwal,
C., Wang, H. (eds.) Managing and Mining Graph Data. Advances in Database
Systems, vol. 40, pp. 393–420. Springer, Boston (2010). https://doi.org/10.1007/
978-1-4419-6045-0 13

https://doi.org/10.1145/2576768.2598249
https://doi.org/10.1145/2576768.2598249
https://doi.org/10.1007/978-3-319-18008-3_23
https://doi.org/10.1007/978-3-319-18008-3_23
https://doi.org/10.1007/BF02243880
https://doi.org/10.1007/978-1-4419-6045-0_13
https://doi.org/10.1007/978-1-4419-6045-0_13

Multi-commodity Flow with In-Network
Processing

Moses Charikar1, Yonatan Naamad2(B), Jenifer Rexford3, and X. Kelvin Zou4

1 Stanford University, Stanford, CA, USA
moses@cs.stanford.edu

2 Amazon.com, East Palo Alto, CA, USA
ynaamad@amazon.com

3 Princeton University, Princeton, NJ, USA
jrex@cs.princeton.edu

4 ByteDance, Seattle, WA, USA
xuanzou1991@gmail.com

Abstract. Modern networks run “middleboxes” that offer services rang-
ing from network address translation and server load balancing to fire-
walls, encryption, and compression. In an industry trend known as Net-
work Functions Virtualization (NFV), these middleboxes run as virtual
machines on any commodity server, and the switches steer traffic through
the relevant chain of services. Network administrators must decide how
many middleboxes to run, where to place them, and how to direct traf-
fic through them, based on the traffic load and the server and network
capacity. Rather than placing specific kinds of middleboxes on each pro-
cessing node, we argue that server virtualization allows each server node
to host all middlebox functions, and simply vary the fraction of resources
devoted to each one. This extra flexibility fundamentally changes the
optimization problem the network administrators must solve to a new
kind of multi-commodity flow problem, where the traffic flows consume
bandwidth on the links as well as processing resources on the nodes.
We show that allocating resources to maximize the processed flow can
be optimized exactly via a linear programming formulation, and to arbi-
trary accuracy via an efficient combinatorial algorithm. Our experiments
with real traffic and topologies show that a joint optimization of node
and link resources leads to an efficient use of bandwidth and processing
capacity. We also study a class of design problems that decide where to
provide node capacity to best process and route a given set of demands,
and demonstrate both approximation algorithms and hardness results
for these problems.

Keywords: Multi-commodity flow · Middleboxes ·
Network Function Virtualization · Approximation algorithms ·
Hardness of approximation

Y. Naamad—This work was done while the author was at the Department of Computer
Science, Princeton University.

c© Springer Nature Switzerland AG 2019
Y. Disser and V. S. Verykios (Eds.): ALGOCLOUD 2018, LNCS 11409, pp. 73–101, 2019.
https://doi.org/10.1007/978-3-030-19759-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19759-9_6&domain=pdf
https://doi.org/10.1007/978-3-030-19759-9_6

74 M. Charikar et al.

1 Introduction

In addition to delivering data efficiently, modern networks often perform ser-
vices on the traffic in flight to enhance security, privacy, or performance, or pro-
vide new features. Network administrators often install “middleboxes” such as
firewalls, network address translators, server load balancers, Web caches, video
transcoders, and devices that compress or encrypt the traffic. In fact, many net-
works have as many middleboxes as underlying routers or switches [29]. Often a
single connection must traverse multiple middleboxes, and different connections
may go through different sequences of middleboxes. For example, while Web
traffic may go through a firewall followed by a server load balancer, video traffic
may simply go through a transcoder. To keep up with the traffic demands, an
organization may run multiple instances of the same middlebox. Deciding how
many middleboxes to run, where to place them, and how to direct traffic through
them, is a major challenge facing network administrators.

Until recently, each middlebox was a dedicated appliance, consisting of both
software and hardware. Administrators typically installed these appliances at
critical locations that naturally see most of the traffic, such as the gateway con-
necting a campus or company to the rest of the Internet. A network could easily
have a long chain of these appliances at one location, forcing all connections
to traverse every appliance—whether they need all of the services or not. In
addition, placing middleboxes only at the gateway does not serve the organiza-
tion’s many internal connections, unless the internal traffic is routed circuitously
through the gateway.

Over the last few years, middleboxes have become increasingly virtualized,
with the software service separate from the physical hardware—an industry trend
called Network Functions Virtualization (NFV) [5,22]. The network can “spin
up” (or down) virtual machines on any physical server, as needed. This has
led to a growing interest in good algorithms for optimizing the (i) allocation
of middleboxes over a pool of server resources, (ii) steering of traffic through a
suitable sequence of middleboxes based on a high-level policy, and (iii) routing
of the traffic between the servers over efficient network paths [1,16,17,19,24].

Rather than solving these three optimization problems separately, we
introduce—and solve—a joint optimization problem. Since server resources are
fungible, we argue that each processing node could subdivide its resources arbi-
trarily across any of the middlebox functions, as needed. That is, the allocation
problem is more naturally a question of what fraction of each node’s computa-
tional (or memory) resources to allocate to each middlebox function. Similarly,
each connection can have its middlebox processing performed on any node, or
set of nodes, that have sufficient resources. That is, the steering problem is
more naturally a question of deciding which nodes should devote a share of their
processing resources to a particular portion of the traffic. Hence, the joint opti-
mization problem devolves to a new kind of routing problem, where we compute
paths based on both the bandwidth and processing requirements of the traffic
between each source-sink pair. That is, each flow from a source to a sink must

Multi-commodity Flow with In-Network Processing 75

be allocated both (i) a certain amount of bandwidth on every link in its path
and (ii) a total amount of computational across all of the nodes on its path.

In our flow with in-network processing problem, we have a flow demand with
multiple sources and multiple sinks, and each flow requires a certain amount of
processing. The required processing is proportional to the flow size and, without
loss of generality, we assume one unit of flow requires one unit of processing. Each
flow from a source to a sink is an aggregate flow of many connections, so the
routing and processing for a flow are both divisible. In this model there are two
types of constraints: edge capacity constraints and vertex capacity constraints,
which represent link bandwidth and node processing capacity, respectively. A
feasible flow pattern satisfies three conditions: (i) for each edge, the sum over
all flows on that edge is bounded by that edge’s capacity, (ii) for each node, the
sum over all flows of in-network processing done at that node is bounded by the
vertex capacity, and (iii) each flow must be allocated a total amount of node
processing power equal to its size.

Although ignoring vertex capacity constraints reduces our class of problems
to those of the standard multi-commodity flow variety, the introduction of these
constraints yields a new class of problems that has not been studied before. This
paper provides a systematic approach to this new class of network problems,
applicable to both directed and undirected graphs.

In Sect. 2, we introduce the processed flow routing class of problems,
in which we discuss how to optimize processed flow routed in a fixed network.
Next, we present two linear programming-based algorithms to find a maximum
feasible multi-commodity flow with the additional processing constraints. We
show that, like standard multi-commodity flow, the program can be written in
two different equivalent ways: either with an exponentially-sized walk-based LP
or with a polynomially-sized edge-based LP. The proof of equivalence of these
two LPs requires a more careful argument than that for standard MCF. As an
aside, we argue that this pair of LPs can also be adapted to optimize several other
objective functions, such as those minimizing congestion. In Sect. 4, we briefly
describe an experimental evaluation of this linear programming approach.

In Sect. 5, we design an efficient multiplicative weight update (MWU) algo-
rithm that finds approximately optimal solutions to our walk-based linear pro-
gram far more quickly than one could with the edge-based program paired with
an off-the-shelf LP-solver.

In Sect. 6, we consider the middlebox node purchase class of problems, in
which the goal is to optimally purchase processing power at various middleboxes.
Prices for placing processing at the various nodes is given as part of the input,
and may differ substantially from one location to the next. This class of problems
comes has two natural variants:

1. Min Middlebox Node Purchase: given a set of flow demands, mini-
mize cost while purchasing enough middlebox processing capacity so that
all flow demands are simultaneously satisfiable (that is, jointly routable and
steerable).

76 M. Charikar et al.

2. Budgeted Middlebox Node Purchase: given a set of flow demands and
a budget of k dollars, spend at most $k on purchasing middlebox processing
capacity while maximizing the fraction of the given demand that is simulta-
neously satisfiable.

Linear programs for both of these problems can be found in Sects. 6.2 and
6.4. For Min Middlebox Node Purchase, we show an O(log(n)/δ2) approx-
imation for node costs and an associated multi-commodity flow that satisfies
(1 − δ) fraction of the demands and satisfies all edge capacities, where n is the
number of nodes. We show that in the directed case, the problem is hard to
approximate better than a logarithmic factor, even if the demand requirements
are relaxed. Additionally, we show that the undirected case is at least as hard
to approximate as Vertex Cover.

We also prove approximation and hardness results for Budgeted Middle-
box Node Purchase. Although it’s tempting to conjecture that the problem
is an instance of Budgeted Submodular Maximization, one can construct
instances on both directed and undirected graphs where the amount of routable
processed flow is not submodular in the set of purchased nodes, so black-box sub-
modular maximization techniques cannot be used here. We show an Ω(1/ log(n))
approximation for both problems, as well as a constant factor approximation
algorithm for undirected instances with a single source-sink pair. For the directed
case, we show approximation hardness of 1 − 1/e, and constant factor hardness
for the undirected problem. Our results are summarized in the following Table 1

Table 1. Network design results

Directed Undirected

Budgeted Approximation hardness Ω(1/ log n) .078b

1 − 1/e .999

Minimization Approximation hardness O(log n)a O(log n)a

O(log n) 2 − ε
aAll demands are satisfied only up to an (1 − ε) fraction.
bAssuming 1 source-sink pair. For multiple pairs, we adapt the
Ω(1/ log n)-approximation digraph algorithm.

2 Flow Routing with In-Network Processing

2.1 Processed Flow Routing Problem

Network Function Virtualization (NFV) allows each node to function as a
general-purpose server that can run any in-network processing task, such as
transcoding, compression, and encryption. Such servers can reside anywhere in
the network, from the leaf nodes (as in the case of traditional servers) to inter-
mediary nodes (such as top-of-rack and spine switches).

Therefore, in our model, we treat all in-network processing as homogeneous,
meaning that every node with a sufficient quantity of available computational

Multi-commodity Flow with In-Network Processing 77

s

2

0

2

0 T

2

5 5

5

55

5

5 5

Fig. 1. The edge capacity is 10 for all edges and the node capacities are denoted in
each node. Here, we can send maximum flow size 5, by routing it along the red arcs,
have it processed at the nodes at the top, and then sent to T along the blue arcs. The
capacity of the bottom middle edge forms the bottleneck here, as all flow must pass
through it twice before reaching T . (Color figure online)

resources can be adapted to accomplish any processing task. In practice, this can
be accomplished simply by spinning up a new virtual machine for that specific
task as needed. We assume that all flows are both aggregate and sufficiently
large that they can be treated as continuous quantities (and thus can be arbi-
trarily subdivided), and that the processing capacity of a given node can also be
fractionally divided among a number of different flows.

Each flow is initially generated at a source fully unprocessed. By the time
it reaches its destination, it needs to go through and get processed by one or
more intermediate processing nodes with available computational resources. We
assume that each unit of flow requires one unit of processing, meaning that for
any given flow f , the total processing workload done on f by vertices along f ’s
flow path should equal the size f .

This problem can be modeled mathematically as follows. We are given an
(un)directed graph G = (V,E) along with edge capacities B : E → R

+, vertex
capacities C : V → [0,∞), and a collection of flows of varying commodities
D = {(s1, t1, k1), (s2, t2, k2), · · · } ⊆ V × V × R

+. While the edge capacities
are used in the same way as in a standard multi-commodity flow problem, we
also require that each unit of flow undergo a total of one unit of processing at
intermediate vertices. In particular, while edge capacities limit the total amount
of flow that may pass through an edge, vertex capacities only bottleneck the
amount of processing that may be done at a given vertex, regardless of the total
amount of flow that uses the vertex as an intermediate node. The goal is then
either to route as much flow as possible, or to satisfy all flow demand subject
to a congestion-minimization objective function. For concreteness, this paper
focuses on maximizing the total amount of flow we can send between the source-
destination pairs while satisfying edge and node capacity constraints. In practice
we can also extend our results to other objective functions such as minimizing the
weighted sum of congestion at edges and nodes. For ease of exposition, we focus
our attention almost entirely on directed instances. The results for undirected
graphs follow analogously (Table 2).

78 M. Charikar et al.

Table 2. Variables in the optimization solutions

Variable Description

V Set of nodes in a graph

E Set of edges in a graph

B(e) Edge capacity for edge e

C(v) Node capacity for node v

D The set of flow demands

δ+(v) The edges leaving vertex v

δ−(v) The edges entering vertex v

P The set of 2-walks from sources to destinations

pv
i,π 2-walk-based; the amount of flow i from si to ti exactly using

2-walk π and processed at v

fi(e) Edge-based; the amount of flow i that traverses e on its way
from si to ti

wi(e) Edge-based; the amount of unprocessed flow i that traverses e
on its way from si to ti

pi(v) Edge-based; the amount of processing done at node v for the
ith flow

2.2 A 2-Walk-Based Solution

We now describe a 2-walk-based formulation of the problem. A 2-walk from s to
t is a route between s and t that visits each vertex (and thus each edge) at most
twice.

The approach we take is analogous to path-based solutions for the traditional
multicommodity flow (MCF) problem, with the key difference that, unlike paths,
our 2-walks may visit vertices and edges more than once. Additionally, a 2-walk
may traverse the same undirected edge in both directions.

To express the 2-walk-based linear program, we introduce one variable pv
i,π

for each {2-Walk}–vertex–demand triplet, representing the total amount of flow
from si, ti exactly utilizing walk π and processed at v. Note here the set P of
2-walks is an enumeration of all possible 2-walks in the graph, which can be
exponential in size. The LP is then formulated as follows:

maximize Σ
|D|
i=1

∑
π∈P

∑
v∈π pv

i,π

subject to

pi,π =
∑

v∈π pv
i,π ∀i ∈ [|D|],∀π ∈ P

∑|D|
i=1

∑
π∈P
π�e

pi,π ≤ B(e) ∀e ∈ E

∑|D|
i=1

∑

π∈P

pv
i,π ≤ C(v) ∀v ∈ V

Multi-commodity Flow with In-Network Processing 79

∑
π∈P

∑

v∈π
pv

i,π ≤ ki ∀i ∈ [|D|]

pv
i,π ≥ 0 ∀i ∈ [|D|],∀π ∈ P,∀v ∈ V

While the first constraint enforces that all flows are fully processed, the sec-
ond and third constraints ensure that no edge or vertex is over-saturated.

3 An Edge-Based Polynomially-Sized LP

Although the 2-walk-based solution exactly solves our MCF with in-network
processing problem, the LP may be exponentially sized and thus even writing
it down (let alone solving it) leaves us with an exponential worst-case running
time. In Sect. 3.1, we present a polynomially-sized (and thus polytime-solvable)
edge-based linear program for this problem. We then follow this up by a proof
of correctness in Sect. 3.2.

3.1 The Edge-Based Solution

A standard technique for solving the traditional MCF problem relies on con-
structing a polynomially-sized edge-based LP whose set of feasible solutions
equals that of an exponentially-sized path-based LP. Analogously, we estab-
lish a polynomial-sized edge-based LP corresponding to the 2-walk-based LP
introduced previously.

maximize

|D|∑

i=1

∑

e∈δ+(si)

fi(e) (2a)

Subject to (2b)
∑

e∈δ−(v)

fi(e) =
∑

e∈δ+(v)

fi(e) ∀i ∈ [|D|],∀v ∈ V \ {si, ti} (2c)

pi(v) =
∑

e∈δ−(v)

wi(e) −
∑

e∈δ+(v)

wi(e) ∀i ∈ [|D|],∀v ∈ V \ {si} (2d)

[D]∑

i=1

fi(e) ≤ B(e) ∀e ∈ E (2e)

|D|∑

i=1

pi(v) ≤ C(v) ∀v ∈ V (2f)

∑

e∈δ+(si)

fi(e) ≤ ki ∀i ∈ [D] (2g)

wi(e) ≤ fi(e) ∀i ∈ [D],∀e ∈ E (2h)

wi(e) = fi(e) ∀i ∈ [D],∀e ∈ δ+(si) (2i)

wi(e) = 0 ∀i ∈ [D],∀e ∈ δ−(ti) (2j)
wi(e), pi(v) ≥ 0 ∀i ∈ [D],∀e ∈ E (2k)

80 M. Charikar et al.

The LP constraints can be interpreted as follows. Constraint (2c) is a flow
conservation constraint: at any non-terminal node of flow i, the amount of flow
i that enters the node equals the amount that leaves it. Constraint (2d) is a
processing conservation constraint, ensuring that the total amount of flow (pro-
cessed or unprocessed) going through a node remains unchanged, although the
quantity of each might change if the node processes any of the flow. Constraints
(2e) and (2f) ensure that we don’t exceed edge and node capacities. Constraint
(2g) ensures that we don’t route more flow than is requested between any demand
pair. Constraint (2h) ensures that the amount of work yet to be done on a flow
does not exceed the size of the flow itself, while (2i) and (2j) ensure that all flows
leave the sources unprocessed and arrive to the destinations fully processed.

3.2 Proof of Equivalence to the 2-Walk-Based LP

While the construction of the edge-based LP is not particularly difficult, it is not
obvious that the edge-based solution actually solves the problem in question. We
need to prove the correctness of the edge-based LP. A priori, solutions to the
edge-based LP here may not be decomposable to a valid routing pattern at all.
We provide an efficient algorithm converting feasible solutions to the edge-based
LP into corresponding solutions to the 2-walk-based program, proving both that
the edge-based LP is correct and that the actual flow paths can be recovered in
polynomial time as well. We summarize this result in the following theorem.

Theorem 1. The edge-based formulation provides a polynomial-sized linear pro-
gram solving the Maximum Processed Flow problem. Further, the full routing pat-
tern can be extracted from the LP solution by decomposing it into its composing
si, ti 2-walks in O(|V | · |E| · |D| · log |V |) time.

Notably, as the reduction maps the set of feasible solutions to the edge-based
LP to equivalent feasible solutions of the 2-walk-based LP, the same technique
can also be used to show the equivalence of the two corresponding programs
when the objective function is changed to optimize some other linear quantity,
such as the amount of congestion.

We now describe the algorithm in more detail and prove its correctness. The
first part of the proof involves showing how to construct a solution to the flow-
based LP when there is exactly one si, ti pair. Extracting the corresponding flow
paths and iterating this procedure for each demand pair eventually extracts all
si, ti flows, giving us a solution to the multicommodity problem.

The flow extraction argument proceeds in two steps. First, we simplify the
solution by removing extraneous loops that do not affect the optimal solution.
Next, we show that the existence of any residual flow in the graph (i.e., the exis-
tence of some strictly positive fi(e)) implies that there exists at least one valid
2-walk we can efficiently extract while maintaining feasibility of all constraints
for the updated residual graph. As we show, a linear number of extractions suf-
fices to remove all flow from the solution. We provide a complete algorithm in
Algorithm 1.

Multi-commodity Flow with In-Network Processing 81

Algorithm 1. 2-Walk Decomposition
Data: G′(V, E), w(e), f(e) for ∀e ∈ E and p(v) for ∀v ∈ V
Result: f(π), p(π, v) with v ∈ π
Algorithm TwoWalkConstruction(s, t, v)

//Construct 2-walk from s → v and v → t
From v, run a backward traversal, each time picking an incoming edge e
maximizing ρ(e) = w(e)/f(e)
From v, run a forward traversal, each time picking an outgoing edge minimizing
ρ(e) = w(e)/f(e).
return π

Algorithm FlowPlacement(s, t)

while there exists a v with p(v) > 0 do
π ← TwoWalkConstruction(s, t, v)
f ′ ← mine∈π,e precedes v f1(e)
f ′′ ← mine∈π,e succeeds v f2(e)
pv

π ← min{f ′, f ′′, p(v)}
for u ∈ π and u �= v do

pu
π = 0

end
C(v) ← C(v) − pv

π

p(v) ← p(v) − pv
π

for e ∈ π do
f(e) ← f(e) − pv

π

B(e) ← B(e) − pv
π

end

end

Removing Extraneous Loops. Suppose we are given a nonempty solution
to the edge-based LP for an instance with graph G(V,E). We focus on some
(arbitrarily chosen) commodity i with positive flow in this solution, and drop
subscripts to let f(e), w(e), and p(v) denote fi(e), wi(e), and pi(v), respectively.
To assist with our exposition, we restrict our attention to the subgraph G′ which
excludes all edges for which f(e) = 0. For each edge e in this subgraph, we also
associate two new variables, f1(e) and f2(e) denoting the amount of unprocessed
and processed flow passing through this edge, respectively. Thus, by definition,
f1(e) = w(e) and f2(e) = f(e) − w(e).

As in solutions to the edge-based linear program for the standard multicom-
modity flow problem, solutions to our edge-based LP may introduce closed loops
(that is, directed cycles along which a positive amount of flow is routed). In tra-
ditional MCF, such loops are easily shown to be non-essential, and can be easily
removed from a feasible solution without affecting its correctness. As illustrated
in Fig. 1, such loops may actually be critical in solutions to our variant, and
handling such cases takes additional care. Thus, instead of arguing that cycles
can be removed (so that the flows form a set of paths), we show how to ensure
that no vertex may be visited more than twice (and thus the flows form a set of

82 M. Charikar et al.

2-walks). In particular, we show how to cancel out all cycles along which each
edge contains f1 flow, as well as all cycles along which each edge carries f2 flow.

Lemma 1. Any closed loop for which every edge contains f1 (resp. f2) flow can
be removed without affecting the total (s, t) flow.

Proof. This argument proceeds similarly to the flow cancellation arguments in
the traditional MCF setting. For any loop l containing a positive amount of f1
flow, reducing both f(e) and w(e) on the constituent edges by mine′∈l f

1(e′)
ensures that all constraints in the LP remain satisfied. For loops containing a
positive amount of f2 flow, similarly reducing just f(e) suffices.

Extracting 2-Walks. Suppose extraneous loops have been removed using the
process described in Lemma 1. Define ρe = w(e)

f(e) = f1(e)
f1(e)+f2(e) . By Lemma 1,

every cycle with a positive f(e) on each edge contains at least one edge with ρ = 1
and another with ρ = 0. We now repeat the following until all flow is removed
from the graph. Select a vertex v that is allocated processing (i.e., p(v) > 0),
and run a backwards traversal from v, at each step selecting the incoming edge
with the largest fraction of unprocessed flow (i.e., maximizing ρ(e)) until we
reach s. Similarly, run a forward traversal from v to t along edges minimizing
ρ. This route will be our “flow-2-walk”. The amount of flow routable along
this flow-2-walk is the minimum of three quantities: (1) the smallest amount of
unprocessed flow sent on each edge of the s � v path, (2) the smallest amount
of processed flow sent along each edge of the v � t path, and (3) the amount of
processing still to be done at v (i.e., p(v)). We then extract this flow-2-walk from
the solution by decreasing each LP variable accordingly. Complete pseudo-code
for this algorithm is given in Algorithm1.

Lemma 2 (2-Walk Extraction). Algorithm1 can always generate a 2-walk
with non-zero flow from source to sink if there exists any v where p(v) > 0.
Further, the number of iterations needed of Algorithm 1 is bounded by O(|E|),
each of which can be made to take O(|V | log |V |) time. Thus, the total running
time is O(|E| · |V | log |V |).
Proof. The removal of extraneous cycles guarantees that no 2-walk can visit the
same vertex more than twice. Now suppose that a vertex v has p(v) > 0. By
constraint (2d), the f1 flow on some incoming edge and the f2 flow on some
outgoing edge must both be positive. By a combination of constraints (2c), (2d),
and (2j), the reverse traversal from v to s must succeed: it cannot get “stuck” at
a vertex u with no in-edge with positive f1 flow. Similarly, the forward traversal
from v to t must find a path with positive f2 on each edge. Subtracting the
minimum of all of the reverse path’s observed f1 values, all of the forward
path’s observed f2 values, and p(v) from each of those variables ensures that
all variables remain nonnegative. Further, as this operation is monotone and it
decreases one of the variables to 0, repeating this must remove all flow from
the graph in at most |V | + 2|E| = O(|E|) iterations. By initially constructing

Multi-commodity Flow with In-Network Processing 83

a priority queue for each vertex on the f1, f2, and ρ values of its neighboring
edges and updating them accordingly, the forward and backward traversals can
be found in |V | log |V | time, each.

We can generalize the above approach to the multicommodity problem by
treating each of the commodities independently. Namely, sequentially applying
the above algorithm to remove flow 2-walks for each of the |D| demand pair gives
us a solution to the multicommodity problem without violating any of the LP
constraints. Thus, we get the O(|V | · |E| · |D| · log |V |) running time promised in
the statement of Theorem 1.

4 Evaluations

We ran several experiments to address (i) how well the LP fares against “naive”
algorithms, and (ii) the in-practice running time for an edge-based LP solution.

Throughput Improvement. To determine how well the LP fares against sim-
ple approaches, we compare it to a “naive” algorithm that first routes flow with-
out vertex capacities in mind, and then processes as much flow as possible on
the flow paths it initially routed. This is a variant of the path-selection approach
used in [15]. While there are simple examples where the naive algorithm performs
extremely poorly in theory, we seek to study the performance in practice.

0 200 400 600 800 1000
0

1000

2000

3000

4000

Per-node Processing Capacity (Mbps)

A
ve

ra
g

e
R

o
u

te
d

 F
lo

w
 (

M
b

p
s)

Naive (All)

LP (All)

Naive (Half)

LP (Half)

(a) Amount of flow that the two algo-
rithms could process given various node
processing capacities.

0 200 400 600 800 1000
0.5

0.6

0.7

0.8

0.9

1

Per-node Processing Capacity (Mbps)

N
ai

ve
-t

o
-O

P
T

 R
o

u
ti

n
g

 R
at

io

All Process

Half Process

(b) The ratio of the demanded flow pro-
cessable by the naive algorithm to that
processable by the LP, plotted at various
processing capacities.

Fig. 2. Experimental results showing how much of the demand both the naive and the
(optimal) LP-based algorithm could successfully route and process given the Abilene
traffic matrices.

We ran both algorithms on 150 randomly sampled traffic matrices provided
by the TOTEM project [31] for the Abilene network in 2004. As these datasets

84 M. Charikar et al.

don’t include vertex processing capacities, we compared the two algorithms on
a wide range of values, with processing capacities assigned according to one of
two distributions: either they all have the same capacity (the all case) or exactly
half of them have the prescribed capacity and the other half have zero (the half
case). The results are diagrammed in Fig. 2.

Experimental analysis shows that while the LP and the “naive” algorithm
fare similarly when the network is low on processing capacity and thus node-
throttled, or, in the all case, high on node capacity and thus bottlenecked by the
link capacities and the demand itself, the LP has a distinct advantage in between
the two extremes when either resource could become the bottleneck when the
flows are not routed efficiently. Additionally, the experiments show that the naive
algorithm suffers when processing is not uniformly distributed among the nodes
even in the high-capacity case, as many of the initial flow paths might go entirely
through nodes without any processing capacity and thus fail to get processed.
Our experiments show that using the exact algorithm gives an improvement of
up to 30% over the naive approach if processing power is available at all nodes,
and up to 80% if the processing power is only placed at half of the nodes.

Runtime Analysis. Although the edge-based LP provides a polynomial
running-time guarantee, it may still be too slow in practice on large graphs.
To study the empirical performance of linear programming, we also run the LP
solver over a number of topologies acquired from SNDLib [23]. For each of the
topologies in Table 3, enough processing capacity was evenly distributed among
a random sample of half of all nodes so that the total processing capacity equals
half of the total demand. Although the implementation, hardware, and choice of
solver were not optimized for running time, the table below indicates that the
time to solve the LP grows quickly with the input size.

Table 3. Time to solve the edge based LP for various topologies. All values are averaged
over 15 runs of CoinLP [13] on a 3.3 GHz Intel i5 2500k processor.

Network |V | |E| Time (sec)

abilene 12 15 1.91

dfn-bwin 10 45 3.08

atlanta 15 22 5.28

dfn-gwin 11 47 13.91

geant 22 36 23.69

france 25 45 44.38

india35 35 57 105.89

The cost of solving this LP even on small topologies justifies the use of
the faster multiplicative weight algorithm instead. The MWU algorithm has a

Multi-commodity Flow with In-Network Processing 85

running time of roughly Õ(|D|∗|E|2/ε2), which on sparse graphs is roughly equal
to just the number of variables in the edge-based LP (as opposed to the time
needed to actually solve it). While the algorithm is only approximately optimal,
choosing an appropriate value of ε (say, ε = 0.1) can grant a better running time
while still significantly outperforming the naive algorithm.

5 Multiplicative Weights Based Approximation
Algorithm

We first briefly overview the MWU method in Sect. 5.1. Next, we describe how to
apply the MWU method to our model including processing vertices. The proof
of correctness is given in Sect. 5.3;

5.1 Multiplicative Weight Update for Traditional MCF

In the traditional multiplicative weights algorithm for multicommodity flow,
there an “expert” is assigned to each edge, each of which is initially assigned a
sufficiently small weight. The algorithm then iteratively finds si, ti walks mini-
mizing the sum of weighted utilization of their edges and adds together scaled
down versions of these paths to eventually construct a solution. When a path
is chosen, all experts corresponding to edges along the path have their weight
increased by a multiplicative factor, making it less likely that we repeat our
selection of the edges. This process is repeated until some expert’s weight sur-
passes the value 1, corresponding to a fully utilized edge. When this happens,
all paths are scaled down by the weight of the largest expert to ensure that no
capacities are exceeded. One then shows that the final result is within a (1 − ε)
factor of the maximum multicommodity flow.

5.2 Formulation and Analysis

Although we derive the same (1 − ε) approximation factor for our problem, the
analysis of our multiplicative weights algorithm is quite different from that of
traditional multicommodity flow. Intuitively, this is because vertex capacities
are inherently very different from edge capacities: while a flow 2-walk reduces
the remaining capacity on all edges it traverses, it only reduces the capacity for
one of its vertices. Thus, we set up a different update condition, as well as a
different method for picking the best flow 2-walks for each round.

Setup. For each edge e, we have a constraint
∑

π pπ ≤ B(e), where pπ is the
amount of flow sent on 2-walk π. For each vertex, the corresponding constraint
is

∑
π pv

π ≤ C(v), where pv
π is the amount of flow on 2-walk π that is processed

at v. For each of these two sets of constraints, we associate one expert, (which
we call ê and v̂), whose weights are denoted by wê and qv̂, respectively.

Consider a feasible solution to the 2-walk-based LP. The feasible solution
consists of variables of the form pπ and pv

π. In this section, we abuse notation

86 M. Charikar et al.

and let the variable p denote a feasible solution to the LP, at which point pπ

and pv
π become bound variables for each π and v (that is, p can be thought of

as a dictionary containing the aforementioned set of variables). Further, define
A(p) as the objective function value of p, i.e. A(p) =

∑
v∈V

∑
π∈P pv

π.
For an expert ê and feasible solution p, define the gain M(ê, p) by M(ê, p) =

1
B(e)

∑
π�e pπ. This can be thought of as the fraction of e’s capacity actually

utilized by the feasible solution. For each expert v̂, we define the gain M(v̂, p)
by M(v̂, p) = 1

C(v)

∑
π�v pv

π, which corresponds to the fractional utilization of
v’s processing capacity.

Let D be the probability distribution over experts in which the probability of
choosing a given expert is proportional to its weight. For a fixed p, the expected
gain of a random variable sampled from D is

M(D, p) =
∑

e wêM(ê, p) +
∑

v qv̂M(v̂, p)
∑

e wê +
∑

v qv̂

We first make two observations:

Observation 1: For any feasible solution p, 0 ≤ M(D, p) ≤ 1. This is because
M(ê, p) ≤ 1 and M(v̂, p) ≤ 1 for all e and v.

Observation 2: For any feasible solution p and weights w, q, if π∗ =
argminπ

(∑
e∈π wê/B(e) + minv̂∈π qv̂/C(v)

)
, then

M(D, p) ≥ A(p)
(∑

ê∈π∗ wê/B(e) + minv̂∈π∗ qv̂/C(v)
)

∑
e wê +

∑
v qv̂

This is due to the fact that:

M(D, p) =
∑

e wêM(ê, p) +
∑

v qv̂M(v̂, p)
∑

e wê +
∑

v qv̂

=
∑

π

(
pπ(

∑
e wê/B(e)) +

∑
v∈π pv

πqv̂/C(v)
)

∑
e wê +

∑
v qv̂

≥
∑

π (pπ(
∑

e wê/B(e) + minv∈π qv̂/C(v))
∑

e wê +
∑

v qv̂

≥
∑

π pπ minπ(
∑

e∈π wê/B(e) + minv∈π qv̂/C(v))
∑

e wê +
∑

v qv̂

≥ A(p)(
∑

e∈π∗ wê/B(e) + minv∈π∗ qv̂/C(v))
∑

e wê +
∑

v qv̂

Where π∗ is the path minimizing the argmin in the statement of the obser-
vation. Thus, in each round, we aim to find the π∗ minimizing this value. Con-
ditioned on us being able to do so, the rest of the MWU algorithm proceeds as
follows:

1. We initialize all expert weights {wê} and {qv̂} to 1/δ, where δ = (1 + ε)((1 +
ε) · |E|)−1/ε. This choice of δ will be justified in the analysis of Sect. 5.3.

Multi-commodity Flow with In-Network Processing 87

2. At each step t, given weights wt
e and qt

v on the experts, we pick the flow-2-walk
pt minimizing the quantity

∑
e∈π

wê

B(e) + minv∈π
qv̂

C(v) . An efficient algorithm
for finding such a 2-walk is given in Sect. 5.2.

3. Given the 2-walk pt chosen in the previous step, we treat this as a feasible
solution to the instance, giving expert ĵ a gain of M(ĵ, pt). Consequently, the
weight wê or qv̂ of each expert j is increased by a multiplicative factor of
M(ĵ, pt).

4. The algorithm stops when one of the weights wê or qv̂ is larger than 1. Once
the algorithm terminates, we scale down the flow pt computed at each round
by a factor of log1+ε

1+ε
δ = 1− ln δ

ln 1+ε , and return the set of all flow-2-walks pt.

Computing the Optimal Path. To compute the 2-walk πt with minimum
cost, we use a dynamic programming algorithm reminiscent of Dijkstra’s shortest
path algorithm. Given a graph G(V,E), with weights w(e) on edges, weights
n(v) on nodes, and some source-sink pair s, t, we are interested in computing
the following quantity

opt(s, t) := argmin
π=(s,··· ,t),v∈π

cost(π, v) (3)

where cost(π, v) is defined as

cost(π, v) :=

(
∑

e∈π

w(e) + n(v)

)

We compute opt(s, t) in two stages. First, for every v, we upper bound the
value of opt(s, v) by n(v) plus the shortest distance from s to v. Afterwards,
we use dynamic programming to iteratively decrease these upper bounds. Full
details are given in Algorithm2.

Algorithm 2. Optimal 2-Walk Algorithm
Require: Graph G = (V, E) with edge weights w(e), node weights n(v), and a desig-

nated source s.
return r(v) = opt(s, v) for every v ∈ V .
Use Dijsktra’s algorithm to compute the shortest path d(v) between s and v.
Initialize r(v) ← d(v) + n(v) for all v ∈ V . S ← {s}.
while S �= V do

Let u∗ = argminv∈V \S r(v). Add u∗ to S.
For all neighbors z of u∗ that are not already in S, let r(z) ← min{r(u∗) +
w(u, z), r(z)}

end while

88 M. Charikar et al.

Update. Suppose now that the 2-walk π with smallest cost has been computed.
One of two things may bottleneck the amount of processed flow that can be sent
along π: either the edge capacity of some edge e, or the processing capacity of
some vertex v. We consider the two cases separately

If the bottleneck is edge-based, i.e.
∑

v∈πt C(v) ≥ mine∈πt B(e), then let
et = argmine∈πt B(e), and let the chosen flow 2-walk pt be the one satisfying

pt,v
π =

{
C(v)∑

v∈πt C(v) · Bet if π = πt, v ∈ πt

0 otherwise

On the other hand, if
∑

v∈πt C(v) < mine∈πt B(e), select pt to satisfy

pt,v
π =

{
C(v) if π = πt, v ∈ πt

0 otherwise

5.3 Proof of the (1 − ε) Approximation

Let T be the number of rounds taken until we hit the stopping criterion, and
let p̄ =

∑T
t=1 pt be the total amount of flow selected after T rounds. By the

guarantee of the multiplicative update method (Theorem 2.5 in [2]), we have
that for any e and any v

T∑

t=1

M(Dt, pt) ≥ ln(1 + ε)
ε

M(ê, p̄) − ln m

ε

T∑

t=1

M(Dt, pt) ≥ ln(1 + ε)
ε

M(v̂, p̄) − ln m

ε

Since at time T , wT
ê = w0

ê(1 + ε)M(ê,p̄), and qT
v̂ = w0

v(1 + ε)M(v̂,p̄), and the
stopping rule ensures that at there exists e or v such that wT

ê ≥ 1 or qT
v̂ ≥ 1, we

have that either there exists an e such that M(ê, p̄) ≥ ln 1/δ
ln(1+ε) or there exists v

such that M(v̂, p̄) ≥ ln 1/δ
ln(1+ε) . Therefore, by the guarantee of the MWU method,

we have that
T∑

t=1

M(Dt, pt) ≥ ln 1/δ

ε
− ln m

ε

We now attempt to bound the left-hand-side of the preceding inequality. Note
that

M(Dt, pt) =
∑

e wt
êM(êt, pt) +

∑
v qt

v̂M(v̂t, pt)
∑

e wt
ê +

∑
v qt

v̂

=
A(pt) · (

∑
e∈πt wt

ê/B(e) + minv∈πt qt
v̂/C(v))

∑
e wt

ê +
∑

v qt
v̂

Multi-commodity Flow with In-Network Processing 89

By the definition of πt and Observation 2, we have

M(Dt, pt) =
A(pt)(

∑
e∈πt wt

ê/B(e) + minv∈πt qt
v̂/C(v))

∑
e wt

ê +
∑

v qt
v̂

≤ A(pt)/A(popt)

Combining these inequalities, we get that

A(p̄)/A(popt) ≥
T∑

t=1

M(Dt, pt) ≥ ln 1/(|E| · δ)
ε

Fixing any edge e, its expert’s initial weight is 1/δ and its expert’s final
weight is at most 1+ε. Thus, p̄ passes at most B(e) log1+ε((1+ε)/δ) flow through
it. Similarly, for each v, at most C(v) log1+ε((1 + ε)/δ) units of processing are
assigned to it. In other words, scaling down all pt flows by log1+ε(1 + ε)/δ will
result in a feasible flow. Letting p′ = p̄/ log1+ε

1+ε
δ , we get

A(p′)/A(popt) ≥ A(p̄)/
(

A(popt) log1+ε

1 + ε

δ

)

≥ ln(1/(|E| · δ))
ε

/ log1+ε

1 + ε

δ

Taking δ = (1 + ε)((1 + ε)m)−1/ε, we have that

A(p′)
A(popt)

≥ (1 − ε),

giving the promised approximation factor.
Note that in each iteration, we either increase the weight of one wê by a

factor of (1 + ε), or increase all of the qv̂’s on a path πt by a factor of (1 +
ε). Since each wê and each qv̂ can only be increased by such a factor at most
ln 1/(|E|·δ)

ε times before its weight exceeds 1, the total running time T is bounded
by (|V | + |E|) ln 1/(|E|·δ)

ε · Tsp = O(|E| log |V |/ε2 · Tsp), where Tsp is the time it
takes Algorithm 2 to compute the optimal path for each the |D| flows. As a single
flow takes time O(|E| + |V | log V) using Fibonacci heaps, we can compute the
2-walk for each of the flows in time O(|D| · (|E| + |V | log |V |)). Thus, the total
running time is O(|D| · |E| · (|E| + |V | log |V |) · log2 |V |/ε2).

6 Middlebox Node Purchase Optimization

We now discuss the network design problems mentioned in the introduction.
Although such problems can be modeled in multiple ways, we limit our discussion
to the case where each vertex v has a potential processing capacity C, which can
only be utilized if v is “purchased”. Flow processed elsewhere can be routed
through v regardless of whether or not v is purchased. We give results for both
directed and undirected variants of two versions of the network design problem:

90 M. Charikar et al.

1. The minimization version (Min Middlebox Node Purchase), where the
goal is to pick the smallest set of vertices such that all flow is routable.

2. The maximization version (Budgeted Middlebox Node Purchase), in
which we try to maximize the amount of routable flow while subject to a
budget constraint of k.

Formally, the input to Min Middlebox Node Purchase is a (di)graph
G = (V,E) with nonnegative costs qv on its vertices, a potential processing
capacity C : V → [0,∞), and a collection of (si, ti) pairs with demands Ri.
The goal is to select a set T ⊆ V of vertices such that all demands are satisfied.
Budgeted Middlebox Node Purchase is given the same collection of inputs
along with a budget integer k, and the goal is to route as much of the demand
as possible.

All four problems (maximization or minimization, directed or undirected),
are NP-hard.

6.1 Approximation Hardness for Directed Min Middlebox Node
Purchase

We now prove that directed Min Middlebox Node Purchase is NP-hard to
approximate to a factor better than (1 − ε) ln n by showing an approximation-
preserving reduction from Set Cover, a problem already known to have the
aforementioned (1 − ε) ln n hardness [8].

Given a Set Cover instance with set system S = {S1, S2, · · · } and universe
of elements U , we create one vertex vS for each S ∈ S and one vertex wu for
each u ∈ U . Further, we create one source vertex s and one sink vertex t, where
t demands |U| units of processed flow from s. We add one capacity-n arc from s
to each vS , and one capacity-1 arc from each wu to t. We then add a capacity-1
arc from each vS to wu whenever S
 u. Finally, we give each vS vertex n units
of processing capacity at a cost of 1 each.

In order for t to get |U| units of flow, each wu must get at least one unit of
processed flow itself. Thus, at least one of its incoming vS neighbors must be
able to process flow. Therefore, this instance of directed Min Middlebox Node
Purchase can be seen as the problem of purchasing as few of the vS vertices
so that each uW vertex has one (or more) incoming vS vertex. This provides
a direct one-to-one mapping between solutions to our constructed instance and
the initial Set Cover instance, and the values of the solutions are conserved by
the mapping. Therefore, we have an approximation-preserving reduction between
the two problems, and directed Min Middlebox Node Purchase acquires the
known (1−ε) ln n inapproximability of Set Cover, summarized in the following
result:

Theorem 2. For every ε > 0, it is NP-hard to approximate directed Min Mid-
dlebox Node Purchase to within a factor of (1 − ε) ln n.

Note that this construction provides the same hardness even when all
demands are only to be satisfied up to a (1−δ) fraction, showing the asymptotic
tightness of the approximation factor in Theorem3.

Multi-commodity Flow with In-Network Processing 91

s

v1

v2

v3

w1

w2

w3

t

Fig. 3. Approximation-preserving reduction from Set Cover and Max k-Coverage
to directed Min Middlebox Node Purchase and directed Budgeted Middlebox
Node Purchase. Solid edges have infinite capacity, dashed edges have capacity 1. vi

vertices have infinite processing potential, at a cost of 1 each.

6.2 Bicriterion Approximation Algorithm for Directed
and Undirected Min Middlebox Node Purchase

We first describe an algorithm for directed Min Middlebox Node Purchase
that satisfies all flow requirements up to a factor of 1 − δ fraction with expected
cost bounded by O(log n/δ2) times the optimum.

We begin our approximation algorithm for directed Min Middlebox Node
Purchase by modifying the 2-walk-based LP formulation with additional vari-
ables xv corresponding to whether or not processing capacity at vertex v has
been purchased. We further give a polynomial sized edge-based LP formulation
with flow variables f1,v

i (e) and f2,v
i (e) for each commodity i, each vertex v ∈ V

and each edge e ∈ E. The variables f1,v
i (e) correspond to the (processed) com-

modity i flow that has been processed by vertex v: these variables describe a flow
from v to ti. The variables f2,v

i (e) correspond to the (unprocessed) commodity
i flow that will be processed by vertex v: these variables describe a flow from si

to v. See Fig. 4 for the full linear program.
Given an optimal solution to this LP, we pick vertices to install processing

capacity on by randomized rounding: pick vertex v with probability xv. if xv

is picked, then all flows processed by v are rounded up in the following way:
F̂ j,v

i (e) = f j,v
i (e)/xv for all i ∈ [|D|], j ∈ {1, 2}, e ∈ E. If v is not picked, then

all flows processed by v are set to zero, i.e. F̂ j,v
i (e) = 0.

By design, E[F̂ j,v
i (e)] = f j,v

i (e). In the solution produced by the rounding

algorithm, the total flow through edge e is
∑

v∈V

|D|∑

i=1

((F̂ 1,v
i (e) + F̂ 2,v

i (e)). This

is a random variable whose expectation is at most B(e), and is the sum of
independent random variables, one for each vertex v. The constraints of the
LP ensure that if v is selected, then the total processing done by vertex v is
at most C(v). Further, the total contribution of vertex v to the flow on edge

e does not exceed the capacity B(e), i.e.
|D|∑

i=1

(F̂ 1,v
i (e) + F̂ 2,v

i (e)) ≤ B(e). Also,

92 M. Charikar et al.

2-Walk-based formulation:

minimize ∑
v∈V qvxv

subject to

xv ≤ 1 ∀v∈V

pi,π=
∑

v∈π pv
i,π ∀i∈[|D|],π∈P

∑
π∈P pi,π≥Ri ∀i∈[|D|]

∑|D|
i=1

∑
π∈P
π�e

pi,π≤B(e) ∀e∈E

∑|D|
i=1

∑
π∈P pv

i,π≤C(v)xv ∀v∈V

∑|D|
i=1

∑
π∈P
π�e

pv
i,π≤B(e)xv ∀e∈E,v∈V

∑
π∈P pv

i,π≤Rixv ∀i∈[|D|],v∈V,

pv
i,π≥0 ∀i∈[|D|],π∈P,v∈π

xv≥0 ∀v∈V

Edge-based formulation:

minimize ∑
v∈V qvxv

Subject to

xv≤1 ∀v∈V

∑
e∈δ−(u) f

j,v
i (e)=

∑
e∈δ+(u) f

j,v
i (e)

∀i∈[|D|],j∈{1,2},v∈V,∀u∈V \{si,ti,v}
∑

e∈δ−(v) f
2,v
i (e)=

∑
e∈δ+(v) f

1,v
i (e) ∀i∈[|D|],v∈V

∑
v∈V

∑
e∈δ+(si)

f
2,v
i (e)≥Ri ∀i∈[|D|]

∑|D|
i=1

∑
v∈V (f

1,v
i (e)+f

2,v
i (e))≤B(e) ∀e∈E

∑|D|
i=1

∑
e∈δ−(v) f

2,v
i (e)≤C(v)xv ∀v∈V

∑|D|
i=1(f

1,v
i (e)+f

2,v
i (e))≤B(e)xv ∀e∈E,v∈V

∑
e∈δ+(si)

f
2,v
i (e)≤Rixv ∀i∈[|D|],v∈V

f
2,v
i (e)=0 ∀i∈[|D|],v∈V,e∈δ−(si)

f
1,v
i (e)=0 ∀i∈[|D|],v∈V,e∈δ+(ti)

p
1,v
i (e),p

2,v
i (e),xv≥0 ∀i∈[|D|],v∈V,e∈E

Fig. 4. Linear programs from Sect. 3 adapted to middlebox placement problems.

the total contribution of vertex v to the commodity i flow is at most Ri, i.e.∑

e∈δ+(si)

F̂ 2,v
i (e) ≤ Ri.

We repeat this randomized rounding process t = O(log(n)/ε2) times. Let
gk(e) denote the total flow along edge e, and hk

i denote the total amount of
commodity i flow in the solution produced by the kth round of the random-
ized rounding process. The following lemma follows easily by Chernoff-Hoeffding
bounds:

Lemma 3

Pr

[
t∑

k=1

gk(e) ≥ (1 + ε)t · B(e)

]

≤ e−tε2/3 ∀e ∈ E (4)

Pr

[
t∑

k=1

hk
i ≤ (1 − ε)t · Ri

]

≤ e−tε2/2 ∀i ∈ [|D|] (5)

We set t = O(log(n)/ε2) so that the above probabilities are at most 1/n3

for each edge e ∈ E and each commodity i. With high probability, none of the
associated events occurs. The final solution is constructed as follows: A vertex
is purchased if it is selected in any of the t rounds of randomized rounding.
Thus the expected cost of the solution is at most t = O(log(n)/ε2) times the LP
optimum. We consider the superposition of all flows produced by the t solutions
and scale down the sum by t(1 + ε). This ensures that the capacity constraints
are satisfied. Note that the vertex processing constraints are also satisfied by

Multi-commodity Flow with In-Network Processing 93

the scaled solution. The total amount of commodity i flow is at least 1−ε
1+εRi ≥

(1 − 2ε)Ri. Hence we get the following result:

Theorem 3. For directed Min Middlebox Node Purchase, there is a poly-
nomial time randomized algorithm that satisfies all flow requirements up to fac-
tor 1 − δ and produces a solution that respects all capacities, with expected cost
bounded by O(log(n)/δ2) times the optimal cost.

We can modify the LP to simulate the inclusion of an undirected edge with
capacity B(e) by adding the constraints for two arcs between its endpoints with
capacity B(e) each, as well as an additional constraint requiring that the sum of
flows over these two arcs is bounded by B(e). The analysis done above carries
through line-by-line, giving the following result.

Theorem 4. For undirected Min Middlebox Node Purchase, there is a
polynomial time randomized algorithm that satisfies all flow requirements up to
factor 1 − δ and produces a solution that respects all capacities, with expected
cost bounded by O(log(n)/δ2) times the optimal cost.

6.3 Approximation Hardness for Undirected Min Middlebox Node
Purchase

We now show an approximation preserving reduction from Min Vertex Cover
to undirected Min Middlebox Node Purchase, proving that the latter prob-
lem is UGC-hard to approximate within a factor of 2− ε for any ε > 0 [18], and
NP-hard to approximate within a factor of 1.36 [7].

The construction is simple. Given a Vertex Cover instance with graph
G = (V,E), we create an identical graph with each vertex v demanding one
unit of processed flow from each of its neighbors, and each edge’s capacity is 2.
Further, each vertex has n units of processing potential, at a cost of 1. Because
the total demand equals the sum of all edge capacities, each unit of flow sent
must use exactly one unit of edge capacity, i.e. all flow paths have length exactly
one. Thus, the set of solutions exactly corresponds to vertex covers, with one unit
of flow going each way across each edge, from source to sink and either to or from
its point of processing. The unit costs ensure that the objective value equals the
number of vertices picked, and thus that the optimal solution to this undirected
Min Middlebox Node Purchase instance equals that of the original Min
Vertex Cover. The conclusion, summarized below, follows.

Theorem 5. Approximating undirected Min Middlebox Node Purchase is
at least as hard as approximating Min Vertex Cover. In particular, it is
NP-hard to approximate within a factor of 1.36 and UGC-hard to approximate
within a factor of 2 − ε, for any ε > 0.

94 M. Charikar et al.

6.4 Approximation Algorithm for Directed Budgeted Middlebox
Node Purchase

The algorithm here proceeds similarly to that in Sect. 6.2. The LPs we use are
the natural maximization variant of those used for the minimization problem,
with the added restriction that we only use a 1/2 fraction of the budget. It is
easy to see that this additional restriction does not reduce the objective value of
the optimal LP solution by more than an 1/2-fraction. We also assume (without
loss of generality) that no vertex has cost greater than the budget. The LPs are
formulated as follows:

2-Walk-based formulation:

maximize
∑|D|

i=1
∑

π∈P pi,π

subject to
∑

v∈V cvxv≤k/2

xv≤1 ∀v∈V

pi,π=
∑

v∈π pv
i,π ∀i∈[|D|],π∈P

∑
π∈P pi,π≥Ri ∀i∈[|D|]

∑|D|
i=1

∑
π∈P
π�e

pi,π≤B(e) ∀e∈E

∑|D|
i=1

∑
π∈P pv

i,π≤C(v)xv ∀v∈V

∑|D|
i=1

∑
π∈P
π�e

pv
i,π≤B(e)xv ∀e∈E,v∈V

∑
π∈P pv

i,π≤Rixv ∀i∈[|D|],v∈V,

pv
i,π≥0 ∀i∈[|D|],π∈P,v∈π

0 ≤ xv ≤ 1 ∀v∈V

Edge-based formulation:

maximize
∑

v∈V
∑|D|

i=1
∑

e∈δ−(v)
f
2,v
i

(e)

Subject to
∑

v∈V cvxv≤k/2

∑

e∈δ−(u)
f

j,v
i

(e)=
∑

e∈δ+(u)
f

j,v
i

(e)

∀i∈[|D|],j∈{1,2},v∈V,∀u∈V \{si,ti,v}
∑

e∈δ−(v)
f
2,v
i

(e)=
∑

e∈δ+(v)
f
1,v
i

(e) ∀i∈[|D|],v∈V,

∑
v∈V

∑

e∈δ+(si)
f
2,v
i

(e)≥Ri ∀i∈[|D|]

∑|D|
i=1

∑
v∈V (f

1,v
i

(e)+f
2,v
i

(e))≤B(e) ∀e∈E

∑|D|
i=1

∑

e∈δ−(v)
f
2,v
i

(e)≤C(v)xv ∀v∈V

∑|D|
i=1(f

1,v
i

(e)+f
2,v
i

(e))≤B(e)xv ∀e∈E,v∈V

∑

e∈δ+(si)
f
2,v
i

(e)≤Rixv ∀i∈[|D|],v∈V

f
2,v
i (e) = 0 ∀i∈[|D|],v∈V,e∈δ−(si)

f
1,v
i (e) = 0 ∀i∈[|D|],v∈V,e∈δ+(ti)

p
1,v
i (e), p

2,v
i (e), xv ≥ 0 ∀i∈[|D|],v∈V,e∈E

0 ≤ xv ≤ 1 ∀v∈V

If purchasing a single vertex allows us to route a 1/(2 ln n) fraction of the
objective value of the above LP, we purchase only this vertex. Otherwise, we can
remove the potential for processing at each vertex v with cv ≥ k/ ln n and re-
solve the LP to get a solution with objective value at least half as large as before.
Thus, from now on we can assume that no cv exceeds k/ ln n and therefore that
the optimal LP solution puts support on at least a 1/ ln n fraction of the xvs (at
a cost of 2 in our approximation factor). We will call the objective value of this
modified linear program OPTLP′ .

Again, we pick the vertices on which to install processing capacity on by
randomized rounding: each vertex v is picked with probability xv. If xv is picked,
then all flows processed by v are rounded so that F̂ j,v

i (e) = f j,v
i (e)/(4xv ln n)

for all i ∈ [|D|], j ∈ {1, 2}, e ∈ E. If v is not picked, then all flows processed by
v are set to zero, i.e. F̂ j,v

i (e) = 0.

Multi-commodity Flow with In-Network Processing 95

By design, E[F̂ j,v
i (e)] = f j,v

i (e)/(4 ln n) and thus the total amount of flow

processed, P , satisfies E[P] = E

[
∑

v∈V

|D|∑

i=1

∑

e∈δ−(v)

F̂ 2,v
i (e)

]

= OPTLP′/(4 ln n). In

the solution produced by the rounding algorithm, the total flow through edge e is
∑

v∈V

|D|∑

i=1

((F̂ 1,v
i (e)+F̂ 2,v

i (e)). This sum of random variables is B̂(e) = B(e)/(4 ln n)

in expectation. Letting g(e) denote the flow along edge e, standard bounds give

Lemma 4

Pr
[
g(e) ≥ (4 lg n) · B̂(e)

]
≤ e−4 lnn = n−4 ∀e ∈ E (8)

Pr [P ≤ (1/4) · (1/(4 lg n) · OPTLP′)] ≤ e−4 lnn = n−4 ∀e ∈ E (9)

so by the union bound, with probability higher than 1 − 1/n every edge is
assigned ≤ B(e) total flow and the amount of flow processed and routed is
within a 1/16 ln n factor of OPTLP′ .

Finally, by Markov’s inequality, the original budget constraint is satisfied
with probability at least 1/2. Combining this with Lemma4, the algorithm fails
with probability at most 1/2+1/n. Repeating the algorithm O(log n) times and
taking the best feasible solution therefore provides an Ω(1/ log n) approximation
with probability at least 1−1/poly(n). This can be summarized in the following
result:

Theorem 6. For directed Budgeted Middlebox Node Purchase, there is a
polynomial-time randomized algorithm producing an Ω(1/ log(n)) approximation.

We can also apply this algorithm to undirected instances by adding additional
constraints the as we did in Sect. 6.2, with the analysis carrying through as
before. Thus, we attain the following:

Theorem 7. For undirected Budgeted Middlebox Node Purchase,
there is a polynomial-time randomized algorithm producing an Ω(1/ log(n))
approximation.

6.5 Approximation Algorithm for Undirected Budgeted Middlebox
Node Purchase

We now show that the undirected Budgeted Middlebox Node Purchase
admits a constant-factor approximation algorithm when restricted to a single
source s. Let OPT(G, k) denote the value of the optimal solution to an instance
with graph G and budget k. Our algorithm works by splitting the problem into
both a processing step and a routing step. The algorithm begins by reserving a

96 M. Charikar et al.

1/2 fraction of each edge for use in the processing step and the remaining 1/2
fraction for use in the routing step. Calling the reserved-capacity graphs Gproc

and Groute, respectively, the algorithm proceeds as follows:

Processing Step. A well known fact in capacitated network design is that the max-
imum amount of flow routable (sans processing) from a set S ⊆ V of source ver-
tices to a single sink forms a monotone, submodular function in S [4]. Although
this problem is usually defined in the context of sources that can produce an
arbitrary amount of flow (should the network support it), we can bottleneck
each source si into producing at most some ci units of flow by replacing it with
a pair of vertices connected by a capacity ci edge, without changing the sub-
modularity of the routable flow function, fG(S). For the purpose of this lemma,
redefining s as our “sink” and the set P of processing nodes as our source set S,
we immediately attain that the function fG(P) is submodular, where P ⊂ V is
the set of nodes purchased for processing.

Let H be a copy of Gproc with all edge capacities halved. Because fH is a
submodular function, the problem of using our budget to purchase a set P ⊆ V
of processing nodes so to maximize fH(P) is simply an instance of a monotone,
submodular maximization subject to knapsack constraints. Such problems are
known to admit simple (1 − 1/e)-approximation algorithms [30]. Let P (H, k)
be the optimal solution to this processable flow problem on H with budget
k and ALG1(H,K) denote the value of the solution found by our algorithm.
Because P (H, k) is an upper bound on OPT(H, k) (indeed, the former is simply
an instance of the former without the need to account for post-processing rout-
ing), the (1 − 1/e) approximation we get has value at least equal to (1 − 1/e)
times the value of OPT(H, k). In particular

ALG1(H, k) ≥ (1 − 1/e)P (H, k)
≥ (1 − 1/e)OPT(H, k)
≥ (1 − 1/e)(1/2)OPT(Gproc, k)
≥ (1 − 1/e)(1/2)(1/2)OPT(G, k)
= (1 − 1/e)/4 · OPT(G, k)

Further, because our solution only uses at most half of the capacity of any
edge in Gproc, we can use the remaining, unused half of the capacities to route
all flow we managed to process back to s.

Routing Step. All flow residing in s after the end of the processing step is already
processed, all of it can be routed directly to the sinks using the 1/2 fraction
of edge capacities we reserved for Groute. Because multiplying all edge capac-
ities by 1/2 reduces the amount of routable flow by the same (multiplicative)
amount, we can route at least (1/2)min(ALG1(H, k),MaxFlowG(s, t)) units of
the processed flow from s to t. As MaxFlowG(s, t) is a (trivial) upper bound on
OPT(G, k), this means we can route at least (1/2)(1−1/e)/4OPT(G, k) units of
the processed flow from s to the sinks, giving a (1−1/e)/8 > .078 approximation
algorithm.

Multi-commodity Flow with In-Network Processing 97

Thus, we get the following theorem:

Theorem 8. For undirected Budgeted Middlebox Node Purchase with a
single source, there is a deterministic polynomial time algorithm that produces
a solution that can route at least (1 − 1/e)/8 ≈ .078 times the optimal objective
solution.

6.6 Approximation Hardness for Directed Budgeted Middlebox
Node Purchase

We now prove that directed Budgeted Middlebox Node Purchase is NP-
hard to approximate to a factor of 1 − 1/e + ε. To show this, we reduce from
Max k-Cover, which is known to have the same hardness result [12].

Given a Max k-Cover instance with set system S and universe of elements
U , we create one vertex vS for each S ∈ S and one vertex wu for each u ∈ U .
Further, we create one source vertex s and one sink vertex t, where t demands
|U| units of processed flow from s. We add one capacity-n arc from s to each
vS , and one capacity-1 arc from each wu to t. We then add a capacity-1 arc
from each vS to wu whenever S
 u. Finally, we give each vS vertex n units of
processing capacity at a cost of 1 each. The budget for the instance is k – the
same as the budget for the Max-k-Cover instance. A diagram of the reduction
is given in Fig. 3.

When flow is routed maximally, each wu contributes 1 unit of flow to the
total s − t flow if and only if it has a neighbor vS that was chosen to be active.
Otherwise, this vertex does not help contribute towards the s − t flow. Thus,
this instance of directed Budgeted Middlebox Node Purchase can be seen
as the problem of buying k different vS vertices so to maximize the number
of distinct wu vertices to which they are adjacent. Thus, there is a direct one-
to-one mapping between solutions to our constructed instance and the initial
Max k-Cover instance, and the values of the solutions are conserved by the
mapping. Therefore, we have an approximation-preserving reduction between the
two problems, and directed Budgeted Middlebox Node Purchase acquires
the known (1 − 1/e + ε) inapproximability of Max k-Cover. The result can be
summarized as follows

Theorem 9. For every ε > 0, it is NP-hard to approximate directed Bud-
geted Middlebox Node Purchase to within a factor of 1 − 1/e + ε.

6.7 Approximation Hardness for Undirected Budgeted Middlebox
Node Purchase

We show that for some fixed ε0 > 0, the undirected version of Budgeted
Middlebox Node Purchase is NP-hard to approximate within a factor of
1 − ε, implying that the problem does not admit a PTAS unless P = NP. We
make no attempt to maximize the value ε0.

98 M. Charikar et al.

We show this hardness by reducing from Max Bisection on degree-3 graphs,
shown to be hard to approximate within a factor of .997 in [3]1. Let G = (V,E) be
the input to the degree-3 Max Bisection instance. For each vi ∈ V , create two
vertices, ui and wi, joined by an edge with capacity 3. We also add a capacity-1
edge between ui and uj whenever vi and vj are adjacent in G. Each wi vertex
demands 3 units of flow from every uj (including when i = j). Further, every ui

vertex can be given 3|V | units of processing capacity (or, equivalently, ∞ units)
at a cost of 1, and the instance’s budget is set to |V |/2.

The intuition behind the construction is as follows. With a budget of |V |/2,
we can purchase exactly half of the ui vertices (and all budget is used up with-
out loss of generality); our bisection will be between the purchased uis and the
unpurchased ones. Let b be the number of edges in any such bisection. Each wi

adjacent to a purchased ui can have 3 units of its demand satisfied by flow orig-
inating from and processed by ui, and the only edge connecting wi to the rest
of the graph ensures wi can never receive more than 3 units of flow regardless.
Thus, such wis are maximally satisfied, and contribute 3|V |/2 units to our objec-
tive value. The remaining wis must have their processed flow routed to them via
edge via the b capacity-1 edges in the bisection (and, indeed, every edge in the
bisection will carry 1 unit of flow when routed optimally, as witnessed by the
solution where each unprocessed ui receives flow on each cut-edge and routes
it directly to wi), so the total amount of demand satisfied by the wi adjacent
to unpurchased vertices is exactly b, so the objective value of a solution with b
edges in the bisection is exactly 3|V |/2 + b.

Let bOPT denote the number of edges cut by the optimal bisection. It is a
well-known fact that bOPT ≥ |E|/2 = 3|V |/4. By the theorem of [3] it is NP-
hard to distinguish instances with 3|V |/2+bOPT units of satisfiable demand from
those with only 3|V |/2 + (1 − .003)bOPT, giving an inapproximability ratio of

3|V |/2 + (1 − .003)bOPT

3|V |/2 + bOPT
= 1 − .003bOPT

3|V |/2 + bOPT

= 1 − .003
3|V |/(2bOPT) + 1

≤ 1 − .003
3|V |/(2 · 3|V |/4) + 1

= 1 − .003
2 + 1

= .999

This calculation is summarized in the following result:

Theorem 10. It is NP-hard to approximate undirected Budgeted Middle-
box Node Purchase to within a factor better than .999.
1 To be precise, this paper shows the aforementioned hardness for Max Cut. A sim-

ple approximation preserving reduction from Max Cut to Max Bisection can be
derived by looking at maximum cuts of the graph formed by 2 disjoint copies of the
Max Cut instance graph.

Multi-commodity Flow with In-Network Processing 99

7 Related Work

Network Function Optimization. In software-defined networking, SIMPLE [24]
and FlowTags [11] take advantage of switches with fine-grained rule support.
Both approaches focus on how to use the constrained TCAM size, a hardware
limitation to support fine-grained policy. Neither approach attempts to solve
the joint optimization of the capacity constraints for both servers and switches.
Slick [1] offers a high-level control program that specifies custom processing on
precise subset of flows. It also assumes the server processing power is heteroge-
neous, and uses heuristic approaches for the underlying placement, routing, and
steering.

Network Function Consolidation. CoMB [28] and Click [21] both consolidate net-
work functions into applications or a VM images, and consider server machines
that can each run multiple instances of different network functions. Both focus on
improving the performance on single nodes, and treat network functions homo-
geneously. Neither covers a network-wide optimization.

Network Function Migration and Reroute. OpenNF [14] and Split-Merge [25]
leverage the SDN controller to manage the network function’s state migration
and the network function’s flow migration. Both focus on reallocating resources
and rerouting flows when either a node or a link is over-utilized. While their
solution focuses on fixing congestion when it occurs, ours focuses on figuring out
how to avoid congestion in the first place.

Network Function Online Request Model. Recently, Even, Medina, and Patt-
Shamir [9] studied an online request admission problem in the same multi-
commodity flow with processing setting that we study. In their work, requests
arrive online and specify a processing pipeline for flow between a source and sink;
intermediate nodes in the pipeline may be any subset of nodes in the underlying
graph. The goal is to accept as many such flow requests as possible while ensuring
that accepted requests are assigned flow paths that satisfy capacity constraints.
In this setting, the authors show an O(k log(kn))-competitive online algorithm
for instances with length-k pipelines.

Routing and Middlebox optimization. A couple of recent papers consider approx-
imation algorithms for path computation and service placement [10] and Service
Chain and Virtual Network Embeddings [26,27]. Both papers use randomized
rounding of a linear programming relaxation of the problem. Both of these works
differ from our paper in that packets between demand pairs are not splittable,
and thus must be sent along paths rather than flows. Other recent papers provide
approximation algorithms for variants of Min Middlebox Node Purchase
with no hard edge constraints [6,20]. In [20], the authors independently derive
the same Set Cover-based hardness construction for their problem variant.

100 M. Charikar et al.

References

1. Anwer, B., Benson, T., Feamster, N., Levin, D.: Programming Slick network func-
tions. In: Proceedings of Symposium on SDN Research, June 2015

2. Arora, S., Hazan, E., Kale, S.: The multiplicative weights update method: a meta-
algorithm and applications. Theor. Comput. 8(1), 121–164 (2012)

3. Berman, P., Karpinski, M.: On some tighter inapproximability results (extended
abstract). In: Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999.
LNCS, vol. 1644, pp. 200–209. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-48523-6 17

4. Chakrabarty, D., Krishnaswamy, R., Li, S., Narayanan, S.: Capacitated network
design on undirected graphs. In: Raghavendra, P., Raskhodnikova, S., Jansen,
K., Rolim, J.D.P. (eds.) APPROX/RANDOM -2013. LNCS, vol. 8096, pp. 71–
80. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40328-6 6

5. Chiosi, M., et al.: Network functions virtualisation: introductory white paper. In:
SDN and OpenFlow World Congress, October 2012

6. Cohen, R., Lewin-Eytan, L., Naor, J.S., Raz, D.: Near optimal placement of virtual
network functions. In: IEEE Conference on Computer Communications (INFO-
COM), pp. 1346–1354. IEEE (2015)

7. Dinur, I., Safra, S.: On the hardness of approximating minimum vertex cover. Ann.
Math. 162, 439–485 (2005)

8. Dinur, I., Steurer, D.: Analytical approach to parallel repetition. In: Proceedings
of the Annual ACM Symposium on Theory of Computing, pp. 624–633. ACM,
New York (2014). https://doi.org/10.1145/2591796.2591884. http://doi.acm.org/
10.1145/2591796.2591884

9. Even, G., Medina, M., Patt-Shamir, B.: Competitive path computation and func-
tion placement in SDNs. arXiv preprint arXiv:1602.06169 (2016)

10. Even, G., Rost, M., Schmid, S.: An approximation algorithm for path computation
and function placement in SDNs. In: Suomela, J. (ed.) SIROCCO 2016. LNCS,
vol. 9988, pp. 374–390. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
48314-6 24

11. Fayazbakhsh, S.K., Chiang, L., Sekar, V., Yu, M., Mogul, J.C.: Enforcing network-
wide policies in the presence of dynamic middlebox actions using flowtags. In: 11th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
2014), pp. 543–546. USENIX Association, Seattle, April 2014. https://www.usenix.
org/conference/nsdi14/technical-sessions/presentation/fayazbakhsh

12. Feige, U.: A threshold of ln n for approximating set cover. J. ACM (JACM) 45(4),
634–652 (1998)

13. Forrest, J.: Clp: Coin-or linear program solver. In: DIMACS Workshop on COIN-
OR, pp. 17–20, July 2006

14. Gember-Jacobson, A., et al.: OpenNF: enabling innovation in network func-
tion control. In: Proceedings of the ACM Conference on SIGCOMM, pp. 163–
174. ACM (2014). https://doi.org/10.1145/2619239.2626313. http://doi.acm.org/
10.1145/2619239.2626313

15. Heorhiadi, V., Reiter, M.K., Sekar, V.: Accelerating the development of
software-defined network optimization applications using SOL. arXiv preprint
arXiv:1504.07704 (2015)

16. Heorhiadi, V., Reiter, M.K., Sekar, V.: Simplifying software-defined network
optimization using sol. In: 13th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 2016), pp. 223–237. USENIX Association,

https://doi.org/10.1007/3-540-48523-6_17
https://doi.org/10.1007/3-540-48523-6_17
https://doi.org/10.1007/978-3-642-40328-6_6
https://doi.org/10.1145/2591796.2591884
http://doi.acm.org/10.1145/2591796.2591884
http://doi.acm.org/10.1145/2591796.2591884
http://arxiv.org/abs/1602.06169
https://doi.org/10.1007/978-3-319-48314-6_24
https://doi.org/10.1007/978-3-319-48314-6_24
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/fayazbakhsh
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/fayazbakhsh
https://doi.org/10.1145/2619239.2626313
http://doi.acm.org/10.1145/2619239.2626313
http://doi.acm.org/10.1145/2619239.2626313
http://arxiv.org/abs/1504.07704

Multi-commodity Flow with In-Network Processing 101

Santa Clara, March 2016. https://www.usenix.org/conference/nsdi16/technical-
sessions/presentation/heorhiadi

17. Jin, Y., Wen, Y., Westphal, C.: Towards joint resource allocation and routing to
optimize video distribution over future internet. In: IFIP Networking Conference
(IFIP Networking) 2015, 1–9 May 2015. https://doi.org/10.1109/IFIPNetworking.
2015.7145311

18. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2-ε. J.
Comput. Syst. Sci. 74(3), 335–349 (2008)

19. Li, X., Qian, C.: A survey of network function placement. In: 13th IEEE Annual
Consumer Communications Networking Conference (CCNC), pp. 948–953, Jan-
uary 2016. https://doi.org/10.1109/CCNC.2016.7444915

20. Lukovszki, T., Rost, M., Schmid, S.: Approximate and incremental network func-
tion placement. J. Parallel Distrib. Comput. 120, 159–169 (2018)

21. Martins, J., et al.: Clickos and the art of network function virtualization. In: 11th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
2014), pp. 459–473. USENIX Association, April 2014. https://www.usenix.org/
conference/nsdi14/technical-sessions/presentation/martins

22. OPNFV: OPNFV: an open platform to accelerate NFV, Linux Foundation.
https://www.opnfv.org/

23. Orlowski, S., Wessäly, R., Pióro, M., Tomaszewski, A.: Sndlib 1.0—survivable net-
work design library. Networks 55(3), 276–286 (2010)

24. Qazi, Z.A., Tu, C.C., Chiang, L., Miao, R., Sekar, V., Yu, M.: SIMPLE-fying mid-
dlebox policy enforcement using SDN. In: Proceedings of ACM SIGCOMM, pp. 27–
38. ACM (2013). https://doi.org/10.1145/2486001.2486022. http://doi.acm.org/
10.1145/2486001.2486022

25. Rajagopalan, S., Williams, D., Jamjoom, H., Warfield, A.: Split/merge: system
support for elastic execution in virtual middleboxes. In: Presented as Part of
the 10th USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 2013), pp. 227–240. USENIX, Lombard (2013). https://www.usenix.
org/conference/nsdi13/technical-sessions/presentation/rajagopalan

26. Rost, M., Schmid, S.: Charting the complexity landscape of virtual network embed-
dings. In: IFIP Networking, May 2018. http://eprints.cs.univie.ac.at/5580/

27. Rost, M., Schmid, S.: Virtual network embedding approximations: leveraging ran-
domized rounding. In: IFIP Networking, May 2018. http://eprints.cs.univie.ac.at/
5579/

28. Sekar, V., Egi, N., Ratnasamy, S., Reiter, M.K., Shi, G.: Design and implementa-
tion of a consolidated middlebox architecture. In: Proceedings of the 9th USENIX
Conference on Networked Systems Design and Implementation, NSDI 2012, p. 24.
USENIX Association (2012). http://dl.acm.org/citation.cfm?id=2228298.2228331

29. Sherry, J., Hasan, S., Scott, C., Krishnamurthy, A., Ratnasamy, S., Sekar, V.:
Making middleboxes someone else’s problem: network processing as a cloud ser-
vice. In: Proceedings of the ACM SIGCOMM 2012 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communication, SIG-
COMM 2012, pp. 13–24. ACM (2012). https://doi.org/10.1145/2342356.2342359.
http://doi.acm.org/10.1145/2342356.2342359

30. Sviridenko, M.: A note on maximizing a submodular set function subject to a
knapsack constraint. Oper. Res. Lett. 32(1), 41–43 (2004)

31. Uhlig, S., Quoitin, B., Lepropre, J., Balon, S.: Providing public intradomain traffic
matrices to the research community. ACM SIGCOMM Comput. Commun. Rev.
36(1), 83–86 (2006)

https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/heorhiadi
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/heorhiadi
https://doi.org/10.1109/IFIPNetworking.2015.7145311
https://doi.org/10.1109/IFIPNetworking.2015.7145311
https://doi.org/10.1109/CCNC.2016.7444915
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/martins
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/martins
https://www.opnfv.org/
https://doi.org/10.1145/2486001.2486022
http://doi.acm.org/10.1145/2486001.2486022
http://doi.acm.org/10.1145/2486001.2486022
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/rajagopalan
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/rajagopalan
http://eprints.cs.univie.ac.at/5580/
http://eprints.cs.univie.ac.at/5579/
http://eprints.cs.univie.ac.at/5579/
http://dl.acm.org/citation.cfm?id=2228298.2228331
https://doi.org/10.1145/2342356.2342359
http://doi.acm.org/10.1145/2342356.2342359

On-Line Big-Data Processing for Visual
Analytics with Argus-Panoptes

Panayiotis I. Vlantis(B) and Alex Delis(B)

University of Athens, 15703 Athens, Greece
{panosv,ad}@di.uoa.gr

Abstract. Analyses with data mining and knowledge discovery tech-
niques are not always successful as they occasionally yield no actionable
results. This is especially true in the Big-Data context where we routinely
deal with complex, heterogeneous, diverse and rapidly changing data. In
this context, visual analytics play a key role in helping both experts and
users to readily comprehend and better manage analyses carried on data
stored in Infrastructure as a Service (IaaS) cloud services. To this end,
humans should play a critical role in continually ascertaining the value
of the processed information and are invariably deemed to be the insti-
gators of actionable tasks. The latter is facilitated with the assistance
of sophisticated tools that let humans interface with the data through
vision and interaction. When working with Big-Data problems, both
scale and nature of data undoubtedly present a barrier in implementing
responsive applications. In this paper, we propose a software architec-
ture that seeks to empower Big-Data analysts with visual analytics tools
atop large-scale data stored in and processed by IaaS. Our key goal is to
not only yield on-line analytic processing but also provide the facilities
for the users to effectively interact with the underlying IaaS machinery.
Although we focus on hierarchical and spatiotemporal datasets here, our
proposed architecture is general and can be used to a wide number of
application domains. The core design principles of our approach are: (a)
On-line processing on cloud with Apache Spark. (b) Integration of inter-
active programming following the notebook paradigm through Apache
Zeppelin. (c) Offering robust operation when data and/or schema change
on the fly. Through experimentation with a prototype of our suggested
architecture, we demonstrate not only the viability of our approach but
also we show its value in a use-case involving publicly available crime
data from United Kingdom.

Keywords: Visual analytics · Interactive programming ·
Big-Data processing · Apache Spark · IaaS Infrastructures

1 Introduction

Datasets used by Big-Data systems and applications are characterized by their
complexity, heterogeneity, instant growth, and frequently, noise. These charac-
teristics do affect the quality of automatic analyses performed in a negative way
c© Springer Nature Switzerland AG 2019
Y. Disser and V. S. Verykios (Eds.): ALGOCLOUD 2018, LNCS 11409, pp. 102–117, 2019.
https://doi.org/10.1007/978-3-030-19759-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19759-9_7&domain=pdf
https://doi.org/10.1007/978-3-030-19759-9_7

On-Line Big-Data Processing for Visual Analytics with Argus-Panoptes 103

and occasionally, render analyses results to be of either limited or no value at
all [11]. By providing appropriate tools, visual analytics can help users manu-
ally interact with datasets, proceed in an highly exploratory manner and shift
the focus of the analyses as the occasion calls along the way [8,16,19]. How-
ever, the traditional use of visualization techniques on large scale datasets does
become prohibitive as the volume of the underlying data grows [3]. To address
this challenge, we have to adopt contemporary cloud-based computing environ-
ments that can accommodate voluminous data by incrementally enlarging the
computing cluster (i.e., horizontal scaling).

Apache Spark of the Hadoop ecosystem offers a plausible choice as it can scale
up when it comes to non-transactional data [21]. However, the use of Spark as the
underlying processing engine of applications calling for high responsiveness is not
an obvious choice. Spark introduces inherent latencies that cannot be avoided,
only mitigated. Clearly, a number of compensating mechanisms have to be intro-
duced to address this issue. Moreover, to further enhance the user experience, we
advocate the integration of interactive programming in such Big-Data environ-
ments. This choice may greatly assist the work of scientist(s) as it offers versa-
tility in handling data and timely decision making during the early exploratory
phase that accompanies working with unfamiliar datasets. It is worth mentioning
however that, in our case, by introducing the interactive programming paradigm
in this Big-Data context, we cannot exploit pre-computation techniques; there
are no guaranties as far as the stability of the data is concerned and the data
schema remains highly volatile.

In this paper, we propose a software architecture that helps users effectively
interact with underlying IaaS stored data, manipulate information using Spark
and last but not least, enable on-line analytic processing via interactive pro-
gramming. We mitigate Spark-emanating overheads through the introduction of
(1) visualization-chunks, variable-size granules containing elements shipped over
the network and ultimately rendered and presented to users, (2) schema conver-
gence techniques enabling the seamless transition among different data schemas
used across multiple iterations in run-time, and (3) deployment and intensive use
of caching at all levels of our software architecture. The aforementioned features
can work in tandem and take advantage of hierarchical datasets that we have
worked with [9].

Figure 1 depicts the salient features of our proposed architecture. It is decou-
pled in two key parts: a cloud-based IaaS as well as a client-side component.
At the server side, Apache Spark is used as the Big-Data processing engine
accepting requests from Zeppelin and Visual Analytics Server (VA-Server). The
Spark-server(s) undertake the actual computation and/or management of the
stored datasets. Zeppelin is the interactive programming “notebook platform”
essentially offering a Web-interface accessible to users through a browser. This
notebook-style facility allows users to execute task in a way reminiscent to that
of shell scripting and is the prime tool for direct interaction with the Spark engine
and subsequently, for manipulating its IaaS-stored data. The Visual Analytics

104 P. I. Vlantis and A. Delis

Server undertakes the central role of coordinating operations among all cloud
components and maintains bi-directional WebSocket channels with the client side.

Fig. 1. Argus-Panoptes architecture for on-line Big-Data visual analytics.

The client-side is a JavaScript Web application that runs on the user’s
browser and carries out the functionality of the Visual Analytics Client. The lat-
ter renders all server-emanating visualization chunks and accepts user-instigated
requests through mouse interaction. All parts of the JavaScript application are
React components. Subsequently, they have to be adapted on a per-case basis
however, the use of React places strong emphasis on the reusability of com-
ponents already developed. The Apache Zeppelin interface window found in the
client-side, allows for the on-line interactive execution of explicit user requests as
well as the display of execution outcome which took place in its Zeppelin-server
counterpart.

In realizing our proposed architecture, our core design principles have been:
(a) our visual analytics application to carry out its processing on-line on a Spark-
cluster; hence, our application is independent of the volume of data utilized. (b)
dataset filtering, joining with others, and transformations are carried out through
interactive programming and independently occur from all VA aspects. In this
regard, users can simultaneously manipulate data through an Apache Zeppelin
browser-window while at the same time the VA Client interface remains fully
operational. We argue that this two-pronged approach can effectively overcome
the challenges of pursuing visual analytics on Big-Data while at the same time,
it yields the basis for overcoming the occasional sluggish response times. Our
approach seeks to empower the work of domain experts working along with Big-
Data analysts to gain insights and a better understanding through visualization
in sophisticated hierarchical datasets.

We have produced a fully-functional prototype, Argus-Panoptes1, that has
served as the means to explore a number of Big-Data use-cases We have published

1 Argus-Panoptes is a figure from Greek mythology, it was an “all-seeing” giant having
a watchman role.

On-Line Big-Data Processing for Visual Analytics with Argus-Panoptes 105

the source code repository2 to allow further testing with other datasets and
comparisons with similar tools. In this paper, we discuss the effectiveness of
our prototype using a real-world Big-Data dataset pertinent to crime incidents
curated and published from UK Home Office [9]. The dataset in question main-
tains spatiotemporal records of incidents since late 2015. The rest of the paper
is organized as follows: Sect. 2 discusses related work and Sect. 3 presents the
rationale for the design of our architecture. Section 4 outlines the architectural
components and their interaction. Section 5 briefly discusses our use-case and
Sect. 6 provides concluding remarks.

2 Related Work

There has been a flurry of research activity recently in the areas of visual-
ization for Big-Data, visual analytics, and visualization recommendation sys-
tems [2,4,12,15,18,20]. Apache Zeppelin [1], Cloudera Hue [2] and Jupyter [10]
are open-source initiatives that offer built-in visualization functionalities, com-
monly used in Big-Data exploration. All three systems allow their users to “send
in” either high-level source code such as Python and Scala modules or dispatch
SQL-queries for execution to Spark. Visualization of pertinent results is realized
with the help of built-in visualization libraries [13]. The main difference between
our platform and the aforementioned projects is that we strive to offer user a
more immersive experience in visual exploration without calling for continual
editing of source code or SQL statements in order to bring about changes in
rendered visualizations. In contrast, we let users directly interact with the visu-
alizations produced and the respective interface (i.e., VA Client). Moreover, we
do not strip the ability to directly manipulate data through high-level source
code as our platform does also integrate Zeppelin in its components.

In the area of visual analysis of high-dimensional datasets, Visualization Rec-
ommendation (VisRec) systems offer a novel approach as they suggest feasible
visualizations without major user involvement. These systems, automatically
designate and interactively suggest visualization choices for specific tasks at
hand. In this regard, such recommendations are particularly useful during the
initial phase(s) of exploratory analyses through the creation of a series of alter-
native visualizations. VisRec systems operate by performing pre-computations
to analyze the dataset during the off-line phase and examine the large space of
possible visualization combinations during the on-line phase [18]. While these
systems are primed for high-dimensional datasets, their computational intensive
on-line phase may make them unsuitable for large scale data without extensive
use of sampling.

The use of an RNN neural-network is advocated in [4] as the means to help
novice users start with visualization. The RNN network “examines” a corpus
of human-created visualization configurations known so far and along with the
schema of the used data it automatically generates a json-based visualization
2 Source code repository is available at: https://github.com/panayiotis/visual

analytics.

https://github.com/panayiotis/visual_analytics
https://github.com/panayiotis/visual_analytics

106 P. I. Vlantis and A. Delis

configuration. The latter is ultimately consumed by JavaScript libraries to dis-
play the expected output. In [15], the ZQL-language is proposed as the vehicle
to help users designate visual patterns. Such patterns have been extracted from
diverse disciplines including biology, engineering, meteorology and commerce.
Although this is certainly a novel approach, the number of ZQL-produced pos-
sible visualizations remains very high, yielding a somewhat questionable route
when it comes to dealing with Big-Data. Evidently, the overall ZQL process
presents overheads that would be hard to overcome when on-line processing is
sought.

The imMens project seeks to provide interactive visualization for Big-Data
in real-time [12]. Similarly to our approach, data binning plays an important role
as it is the key technique to attain dimensionality reduction. However, imMens
overall operations are founded on the concept of pre-computation of all data-
tiles. This pre-computation occurs in an off-line phase and the respective results
are made available at runtime to help user fulfill her/his visual analytics tasks. In
contrast, our approach performs the respective data tiling by incrementally and
dynamically producing json chunks that can be created on-the-fly empowering
so the on-line mode of operation.

3 Argus-Panoptes Design Principles

We intend on furnishing a software architecture that best serves the merged oper-
ations of visual analytics and Big-Data analysis. In doing so, Argus-Panoptes
should not be restricted by the scale of data while at the same time, the archi-
tecture should incorporate core visual analytics principles and should display
satisfactory responsiveness. Our design leans towards accommodating the expe-
rienced user-base as we would like to create a highly-versatile and efficient
architecture. In this context, Argus-Panoptes maintains an open aggregation
and exposes internal components/subsystems to the user. Our design addresses
the misgivings of contemporary systems that offer visual analytics on Big-Data
today. We aspire to address the following 6 design principles while designing
Argus-Panoptes:
• On-Line Big-Data Processing: weaving a platform such as Spark for data
processing along with the visual analytics application atop is not a straight-
forward effort. This is due to the fact that it might take several seconds for
the Spark-cluster to respond to even a quick look-up query. In contrast, typi-
cal responses in a visual interface are expected to be within the 200 ms range.
Should we be able to bridge the above performance gap, we are to successfully
address the design principle in question. Instead of downsizing data through sam-
pling, we advocate elasticity of Spark-workers requested by the Argus-Panoptes
user. We take advantage of the fact that larger datasets call for horizontal
scaling of the cluster as applicable operations (i.e., filtering, aggregations etc.)
are highly-parallelizable. By delegating all data operations to the Spark-cluster,
Argus-Panoptes reaps the following benefits: (1) the VA application (both client
and server components) becomes yet another component in the Hadoop ecosys-
tem. Consequently, a large number of tools can be readily integrated into our

On-Line Big-Data Processing for Visual Analytics with Argus-Panoptes 107

processing pipeline. (2) users do not have to code in order to export datasets to
specific formats required by the VA application. The VA application has direct
access to DataFrames in memory as it functions along with Spark. Hence, data
pre-processing, cleaning, and VA transformations can all be instigated through
the Spark programming API using Scala, R, Python, or Java.

• Interactive Programming: for the user to enjoy the maximum benefit while
interacting with our architecture, we introduce interactive notebook systems.
Such systems include Zeppelin [1], Jupyter [10] and the proprietary Databricks.
In general, they all offer a Web-interface in which a user may write code split into
paragraphs or blocks each pertaining to a specific job or set of jobs. Paragraphs
can be executed either sequentially or individually. Individual execution means
that if the notebook crashes in the kth paragraph for example, after it has
performed some expensive computations, the user can edit the code on the kth

paragraph and continue execution from that point on. This paradigm of code
writing and execution is very much desired in our architecture for it facilitates
the work of the analyst.

• Robust Data/Schema Manipulations: to attain flexibility, the VA appli-
cation has to operate under uncertainty as far as the current data and its schema
is concerned. Robustness of this type is particularly desired as Argus-Panoptes
deploys interactive programming. In a normal operational work-flow, a user sim-
ply manipulates a dataset by either adding or removing features (columns). In
erroneous circumstances, issues that may ensue include: (1) The VA Client does
not show any data for a user has simply committed a mistake; here, the respective
piece of code has to be revised and the query cycle to be repeated. (2) The VA
Client becomes unable to cope with a voluminous visualization chunk consisting
in the order of more than 1M rows; the user has to reload the browser tab and
start over. In all above cases, we should stress that the VA Client functionality
is desired to remain strictly stateless.

• Eliminate Unnecessary Re-computations via Caching: It often takes
Spark several seconds to compute a visualization chunk. This overhead can be
reduced but can not be avoided if identical chucks are requested time and again.
Thus, Spark re-computations should and are avoided in our architecture through
the adoption of 3 levels of caching: (1) Apache Spark: when a task is dispatched by
the VA Server, Spark can avoid execution should it maintain a pool of executed
so far jobs. If a json file is identified as existing in this pool, its re-computation
is bypassed. (2) the VA Server tracks with the help of an SQLite database all
chunks produced so far and in this manner, contact with Spark is successfully
prevented. This caching layer is possible to return stale data due to this reason, a
cache invalidation has to be provisioned. (3) the VA Client maintains in-memory
a limited number of chunks3 thus requests for fetching locally existing chunks
from VA Server are eliminated.

3 Around 200 MB in total.

108 P. I. Vlantis and A. Delis

• Expose System Internals to User: As Argus-Panoptes operation is
intended for the experienced user, the system should make available both inter-
nal control mechanisms and system information. Such control mechanism is the
invalidation of caches at either Spark or VA Server components. By adopting
such a design choice, we avoid error-prone implementation issues that bear lit-
tle if any significance to the visual analytics domain. Moreover, we argue that
making available Spark/VA server real-time status information is helpful to the
experienced user.

• Promote Visualization Component Reusability with React: Creating
a new VA application calls for a substantial amount of work most of which is
geared towards the development of visualization elements of the interface. This
is due to the fact that the effectiveness of a VA platform highly depends on
tailor-made visualization components. The React-framework [7] promotes and
provides reuse of JavaScript-components in order to built interfaces across
multiple VA applications. As we strive for Argus-Panoptes to not be a one-size-
fits-all solution, we resort to the accumulated set of React reusable components
to rapidly create and/or adapt VA customized interfaces.

4 The Argus-Panoptes System

Argus-Panoptes follows the interactive work-flow of operations that filter, aggre-
gate, summarize and help visually explore diverse aspects of datasets under
examination. Figure 2 depicts the interface that the VA Client of the system
realizes. The UI panel consists of two portions: the first is the Zeppelin browser
window that serves as the means to interact with Argus-Panoptes when it
comes to launching of work-flow tasks. On the right side of Fig. 2, the VA Client
browser window displays chart-based outcomes and generated map-related ele-
ments. The latter depicts generated graphs that help demonstrate trends and
assist users gain insight with regards to investigated datasets.The functionality
of Argus-Panoptes is built around these three concepts which make the archi-
tecture feasible: Schema Convergence, Data Binning and Visualization Chunks.
In particular:

– Schema Convergence allows the architecture to be fault-tolerant when the
schema of the examined dataset is being actively manipulated. This mecha-
nism is always utilized when the VA Server ships code to Spark for execution.
When Spark engine receives a VA Client request, it compares the schema
embedded in the request with the current schema of the dataset. Should dis-
crepancies be identified, Spark deals with convergence so that every element
on the stack of the system “perceives” a consistent view. In this process, Spark
imposes no restrictions on the user requests as those are often consistent with
a state of the data at an earlier point in time. The data requests instigated
from the VA Client are predominantly based on what the user has seen last.
For instance, if there are new columns in the dataset, they will be included in
the converged schema; the same is true when certain columns get dropped.

On-Line Big-Data Processing for Visual Analytics with Argus-Panoptes 109

Fig. 2. VA client UI.

This schema convergence mechanism disengages the architecture from having
to deal with state information in the request-response cycle. Evidently, the
user can replace the entire dataset through the UI and the virtual analyt-
ics platform will continue to operate trouble-free. Such event is an excellent
example of a case where users should explicitly initiate a cache invalidation
procedure from the VA Client to avoid data inconsistencies.

– Data Binning is heavily used in work-flow processing carried out by our
platform. It is a critical mechanism to attain graceful dimensionality reduction
for discretizing continuous features; oftentimes, data gets summed before sent
for visualization to the VA Client. Moreover, binning significantly affects the
formation of information hierarchies (or datasets organized in tree-like fash-
ion) that may influence the user’s analytical and reasoning process. Although
spatiotemporal data are by and large inherently hierarchical datasets, this is
not the case for many others. Binning can effectively assist in the generation
(or re-regeneration) of datasets initially featuring no explicit or simply flat
structure. We should point out that in our case (re-)generating hierarchies
from flat datasets is as vital as feature-engineering is in machine learning [5].

– Visualization Chunks are used as the internal unit of information
exchanged between the different Argus-Panoptes components. A chunk is a
json file containing the aggregated data for a given dataset hierarchy and the
respective dataset schema. Over time, the schema may apparently change. To
this end, the VA Client receives a visualization chunk once a request has been
launched. The outcome of the Spark processing is a chunk and its main char-
acteristics may either help improve or adversely impair system performance.
Visualization chunks are tracked by the VA Server and in this respect, their
invalidation, if needed, has to be an explicit user action.

110 P. I. Vlantis and A. Delis

We should point out that the process of (re-)generating features hierarchies
in datasets is linearly correlated to both number and size of the produced
visualization chunks. In this respect, we have established that in our experi-
mentation discussed in this paper, the size of the largest size chunk generated
is 142 MB and features 670K of data-rows. This chunk maintains the highest
possible resolution and visualizes all features of the dataset.

4.1 The Architecture

Figure 3 outlines the architecture of our IaaS–based system: the server side is
hosted on virtual computing systems as the left half of the figure shows, while
the VA Client functionalities are shown to the right hand side. At the core of the
server layout, the Spark-engine is referenced as a single entity although it may
consist of a whole cloud cluster. It may also involve auxiliary services from the
Hadoop ecosystem. In a minimal configuration, the computing cloud consists of
an Apache Spark Master service deployed in standalone mode. A more common
configuration would involve a Spark Master node, a number of Spark workers
and a compatible distributed file system for storing and retrieving data such
as HDFS. This example configuration could be extended with the addition of
Apache Zookeeper for attaining high-availability as well as YARN or Mesos for
cluster resource management.

Fig. 3. Argus-Panoptes architecture layout

As Spark is not designed to offer a REST API, its connectivity with both Zep-
pelin and VA Server presents a point mismatched interface. Natively, Spark may

On-Line Big-Data Processing for Visual Analytics with Argus-Panoptes 111

only receive .jar, .py or .r jobs for Big-Data processing over the network. Here,
our main concern is to maintain a single SparkSession at all times so that mul-
tiple clients dispatching jobs to the same visibility scope can be accommodated.
Thus, continuity and on-line fashion processing for the client can be warranted.
Apache Livy addresses the above issue as it can both provide a SparkSession
and receive network-requests on behalf on the engine via its REST API. In this
way, code submitted to Livy can be executed in the same visibility scope. For
instance, if a user launches the code val a="hello" with the help of a Zeppelin
server connected to a Livy session, she can subsequently perform an HTTP POST
request to Livy via the curl command-line tool and obtain the value of variable
a. In our architecture, both VA Server and Apache Zeppelin are connected to
Livy accessing the same SparkSession.

The Apache Zeppelin helps us realize the notion of interactive programming
in the context of Argus-Panoptes. It is a platform that through its paragraphs
allows for channelling tasks. On the left side of Fig. 2, we show the paragraphs
as well as the controls of Zeppelin. This dialog-based portion of the Zeppelin-UI
panel is the main interface facility for users to access the system.

Found in front of Livy, the VA Server carries a number of tasks and plays a
central role for the coordinated operation of Argus-Panoptes. More specifically,
the VA Server : (1) serves the VA Client with the JavaScript Web application.
(2) dispatches code-segments for execution to Apache Spark. (3) receives visual-
ization chunks from the Apache Spark. The latter are the outcome of Big-Data
jobs executed at the engine. (4) maintains two-way communication channels
with the VA Client with the help of WebSockets. (5) monitors the status of
the IaaS computing resources and sends pertinent information update snippets
to VA Client over time. (6) tracks visualization chunks produced so far and if
requested explicitly by the user, it does carry out cache invalidation. (7) manages
chunk-related information and offers an interface for profiling purposes. Devel-
oped with Ruby on Rails, the VA Server remains at all times “agnostic” in
terms of specific characteristics of datasets under examination.

NginX is a reverse-proxy placed between our cloud-based components and
VA Client (Fig. 3). The proxy is an additional layer for control and abstraction
of resources/services and warrants smoother traffic flow between the intercon-
nected servers and clients. In this manner, NginX has an invisible but crucial
role as it effectively minimizes network traffic and consequently, enhances the
perceived responsiveness of our platform. The main role of NginX is to forward
VA Client chunk-requests to our server and let the client receive correspond-
ing json files through HTTP. NginX transparently intercepts all outgoing json
files and dispatches their gzip–ped versions. This leads to a non obvious perfor-
mance improvement: The decompression of json files is handled automatically
by a browser thread separate from the one that the JavaScript application
is running thus the UI responsiveness is not halted during the decompression
process.

112 P. I. Vlantis and A. Delis

4.2 The VA Client Functionality

Our VA Client is a JavaScript Web application that produces the entire visual-
ization output interface. In this context, the React/Redux frameworks have been
heavily used as they both promote component reusability and failure resistance.
Figure 4 shows the output window of the UI after two operations have been
requested: a drill-down for displaying crime in the London region and enhance-
ment of the date dimension from quarterly to monthly.

Fig. 4. VA client UI after a drill-down operation.

The VA Client uses the Redux framework as a mechanism of managing the
local application state. Redux helps the application become independent from
prior states. Similarly to the functional programming paradigm, the application
interface generated at any point in time given a specific state, is always the
same. As the schema of the data to be visualized next cannot be predicted,
the interface cannot be constructed using information from the current state.
We predominantly use the React framework for componentization. In a visual
analytics application that caters for sophisticated users, the UI is an essential
part of the architecture and invariably calls for much customization so that a
application is both useful and timely. Hence, the one-fits-all solution approach
is infeasible here. By offering components that can be readily reconfigured and

On-Line Big-Data Processing for Visual Analytics with Argus-Panoptes 113

reused, React plays a vital role in helping us put together effective UIs. In Fig. 4,
every depicted visual element is a React component. Among others, there are
components that deal with server connectivity, initiate cache invalidation, and
refresh visualizations. There are also React Bar/Row chart components that help
synthesize complex chart dashboards. The portion of UI to the right of Fig. 4
depicts map-based information and is constructed using a third-party ReactMap
component [17].

5 Assessment with a Government ASB Dataset

Salient Argus-Panoptes features evolved during the prototype development.
Experimentation with different real-world datasets from various disciplines also
contributed to the realization of the system. In general, dataset features entail:
(1) sized textual data, (2) raw tuple-based data for each incident that has
received no aggregation, (3) geo-spatial features, (4) temporal features, and (5)
other continuous or discrete features. In this section, we briefly present our expe-
rience with a publicly available dataset about crime. We use Argus-Panoptes
as a spatial decision support analysis tool. Below, we discuss the pre-processing,
the (re-)generation of feature hierarchies and our profiling of Argus-Panoptes.

The utilized dataset is curated and published by UK Home Office [9]. It
maintains individual crime and anti-social behavior (ASB) incidents including
street-level location information and is published in CSV format. All features in
the dataset, are textual with longitude and latitude being numeric. Table 1 shows
all features among with the number of distinct and null values for each feature.

Table 1. UK AST dataset key characteristics

Name Distinct Null Description

crime id 12665725 5510538 Incident identifier string

longitude 737765 301155 Longitude

latitude 731070 301155 Latitude

location 280694 0 Human-readable approximate
location

lsoa code 35921 778773 UK-designated area code

lsoa name 35065 778773 UK-designated area name

reported by 46 0 Reporting department

falls within 46 0 Department with jurisdiction

month 35 0 Date string formatted as %Y-%m

last outcome category 26 5806479 Last outcome category

crime type 14 0 Category of crime

context 0 18268085 Deprecated field

114 P. I. Vlantis and A. Delis

In our pre-processing phase, we transform and store the dataset in a format
suitable for our analyses. In particular, both Spark Master and Spark Worker
nodes should be able to import the format in question correctly. For the dataset
of Table 1, we carry out the following preprocessing steps: (1) transform date
found in the month field to Date datatype, (2) drop the deprecated field context
as well as the crime id. (3) drop fields lsoa code, lsoa name and location deemed
as redundant information, (4) save the DataFrame in an efficient columnar data
representation, namely Apache Parquet.

We also transform the UK dataset by joining it with the NUTS classification
scheme of Eurostat [6]. This enhancement offers varying granularity in regional
information that has the following 4 levels: country (NUTS 0), major socio-
economic region (NUTS 1), basic region (NUTS 2), and small region (NUTS 3).
We use the Magellan [14] Spark library to perform the geo-join between the
coordinates of each point and the area polygon of each region of the NUTS
scheme. The geo-join helps us obtain the NUTS dimension which has only 178
distinct values, whereas the distinct values of the prior coordinate features were
760K (Fig. 6). This geo-join operation is CPU-intensive but it occurs only once
and so, we make the data persistent for further processing.

0M 2M 4M 6M 8M 10M 12M 14M 16M 18M 20M

total
distinct

coordinates

18.3
14.3

0.76

Fig. 5. Dataset has 18.3M rows: 14.3M distinct rows and 760K distinct coordinates.

We also tinker with two more dimensions: crime type and date. Through
binning, we create 3 distinct types of crime: theft-related, anti-social behavior,
and others. Then, we map the original 14 crime types to populate the 3 new
bins. Similarly, we bin the time attribute of the dataset to populate quarterly
and yearly levels. Figure 6 reveals distinct counts for all features of the dataset
after introducing hierarchies. In contrast to the geo-joining, binning is an inex-
pensive operation and can be carried out on-line without affecting the system
responsiveness. The latter is highly desirable as it affords the user to instantly
experiment with the introduced hierarchies on-line and if needed, realign them
on the spot.

The aforementioned generation of hierarchical dimensions results to a max-
imum of 24 distinct chunks. Figure 7 shows the computation time required for
each of these chunks in conjunction with the number of visualization tuples each
one contains. It takes anywhere between 7.10 and 16.80 s for chunks to be com-
puted. The above range represents an acceptable delay as the computation of
each chunk occurs only once. Through caching, subsequent accesses to already
computed chunks is only dependent to the volume of the data ultimately trans-
ported over the network to the client.

On-Line Big-Data Processing for Visual Analytics with Argus-Panoptes 115

0 20 40 60 80 100 120 140 160 180

nuts 0
nuts 1

date quarter

crime type level 2

nuts 3

last outcome category

crime type level 1
date month

date year

nuts 2

falls within
reported by

1
12

13

14

178

27

3
34

4

41

46
46

Fig. 6. Distinct counts for every feature resulting from geo-joining and data binning.

0K 100K 200K 300K 400K 500K 600K 700K

7s
8s
9s

10s
11s
12s
13s
14s
15s
16s
17s

(670K)

number of rows

co
m
pu

ta
ti
on

ti
m
e
(s
ec
)

Fig. 7. Visualization chunk computation times in relation to the row count of the
aggregated data. Big-Data aggregation operations are taking several seconds to com-
plete and are independent of amount of data returned.

Figure 8 depicts the json and the corresponding compressed file sizes for
all 24 different types of chunks. If json files were transported uncompressed,
their size would range from 1.56 MBytes up to 140.90 MBytes. In actuality, all
such files are transfered gzip-ped and their sizes ranges between 0.08 MBytes
and 8.70 MBytes with average chunk size being less than 2.00 MBytes. Such
sizes facilitate both the sought on-line type of operation and accomplish respon-
siveness for our prototype. Last but not least, we should indicate that a large
number of visual interface interactions can be immediately served by already
cached content in VA Client.

116 P. I. Vlantis and A. Delis

0K 100K 200K 300K 400K 500K 600K 700K

0
20
40
60
80

100
120
140
160 142MB

8.7MB

number of rows

fil
e
si
ze

(M
B
)

uncompressed compressed

Fig. 8. Chunk file sizes in relation to the row count of the data they contain. The
gzip-ped json files are those that are transfered from the cloud to the browser.

6 Concluding Remarks

In this paper, we propose Argus-Panoptes, a visual analytics system that incor-
porates cloud-based Big-Data processing in its core. Our key objective has been
to combine Big-Data processing with visual analytics so as to further empower
both domain experts and Big-Data analysts. Our proposed architecture offers
a number of novel mechanisms that entail interactive programming for direct
manipulation of both datasets and operations, on-line processing through the
use of Spark-clusters, robust operations through dataset schema convergence
and use of highly reconfigurable UI components. Our system design involves
both home-grown virtual analytics server and client components as well as state-
of-the-art systems such as Zeppelin, Livy, Spark and NginX. We have evaluated
Argus-Panoptes using an enhanced spatiotemporal crime dataset from the U.K.
Home Office and have ascertained the effectiveness of our prototype through pro-
filing of its operations.

References

1. Apache Zeppelin: Zeppelin: web-based notebook (2009). https://zeppelin.apache.
org. Accessed 30 June 2018

2. Cloudera: Hue is an open source analytics workbench for self service BI. (2009).
http://gethue.com. Accessed 30 June 2018

3. Daniel, K., Kohlhammer, J., Ellis, G., Mansman, F. (eds.): Mastering the Infor-
mation Age Solving Problems with Visual Analytics. Eurographics Association
(2010)

4. Dibia, V., Demiralp, Ç.: Data2Vis: automatic generation of data visual-
izations using sequence to sequence recurrent neural networks, April 2018.
arxiv.org/abs/1804.03126

5. Domingos, P.: A few useful things to know about machine learning. Commun.
ACM 55(10), 78–87 (2012)

https://zeppelin.apache.org
https://zeppelin.apache.org
http://gethue.com
http://arxiv.org/abs/org/abs/1804.03126

On-Line Big-Data Processing for Visual Analytics with Argus-Panoptes 117

6. EUROSTAT: NUTS - nomenclature of territorial units for statistics (2016). http://
ec.europa.eu/eurostat/web/nuts/background. Accessed 30 June 2018

7. Facebook Inc.: React: a JavaScript library for building user interfaces (2009).
https://reactjs.org. Accessed 30 June 2018

8. Fekete, J.D.: Visual analytics infrastructures: from data management to explo-
ration. Computer 46(7), 22–29 (2013)

9. Home Office, UK: ASB incidents, crime and outcomes (2015). https://data.police.
uk/about/. Accessed 30 June 2018

10. Jupyter Team: Jupyter project (2009). https://jupyter.org. Accessed 30 June 2018
11. Keim, D.A.: Visual exploration of large data sets. Commun. ACM 44(8), 38–44

(2001)
12. Liu, Z., Jiang, B., Heer, J.: ImMens: real-time visual querying of Big Data. Comput.

Graph. Forum 32(3), 421–430 (2013)
13. Novus Partners: NVD3: reusable charts for d3.js (2014). http://nvd3.org. Accessed

30 June 2018
14. Sriharsha, R.: Magellan: geospatial analytics using spark (2015). https://github.

com/harsha2010/magellan. Accessed 30 June 2018
15. Siddiqui, T., Kim, A., Lee, J., Karahalios, K., Parameswaran, A.: Effortless data

exploration with zenvisage: an expressive and interactive visual analytics system.
Proc. VLDB Endow. 10(4), 457–468 (2016)

16. Thomas, J.J., Cook, K.A.: Illuminating the path: the research and development
agenda for visual analytics. IEEE Computer Society (2005). http://vis.pnnl.gov/
pdf/RD Agenda VisualAnalytics.pdf

17. Uber: Deck.gl large-scale WebGL-powered data visualization. https://uber.github.
io/deck.gl

18. Vartak, M., Huang, S., Siddiqui, T., Madden, S., Parameswaran, A.: Towards visu-
alization recommendation systems. ACM SIGMOD Rec. 45(4), 34–39 (2017)

19. Wong, P.C., Shen, H.W., Johnson, C.R., Chen, C., Ross, R.B.: The top 10 chal-
lenges in extreme-scale visual analytics. IEEE Comput. Graphics Appl. 32(4),
63–67 (2012)

20. Wongsuphasawat, K., et al.: Voyager 2. In: Proceedings of 2017 CHI Conference on
Human Factors in Computing Systems (CHI 2017), Denver, pp. 2648–2659, May
2017)

21. Zaharia, M., et al.: Resilient distributed datasets: a fault-tolerant abstraction for
in-memory cluster computing. In: Proceedings of 9th USENIX Conference on Net-
worked Systems Design and Implementation (NSDI 2012), San Jose (2012)

http://ec.europa.eu/eurostat/web/nuts/background
http://ec.europa.eu/eurostat/web/nuts/background
https://reactjs.org
https://data.police.uk/about/
https://data.police.uk/about/
https://jupyter.org
http://nvd3.org
https://github.com/harsha2010/magellan
https://github.com/harsha2010/magellan
http://vis.pnnl.gov/pdf/RD_Agenda_VisualAnalytics.pdf
http://vis.pnnl.gov/pdf/RD_Agenda_VisualAnalytics.pdf
https://uber.github.io/deck.gl
https://uber.github.io/deck.gl

An Overview of Big Data Issues
in Privacy-Preserving Record Linkage

Dinusha Vatsalan1, Dimitrios Karapiperis2(B), and Aris Gkoulalas-Divanis3

1 Data61, CSIRO, Sydney, Australia
dinusha.vatsalan@data61.csiro.au

2 School of Science and Technology, Hellenic Open University, Patras, Greece
dkarapiperis@eap.gr

3 IBM Watson Health, Cambridge, MA, USA
gkoulala@us.ibm.com

Abstract. Nearly 90% of today’s data have been produced only in the
last two years! These data come from a multitude of human activities,
including social networking sites, mobile phone applications, electronic
medical records systems, e-commerce sites, etc. Integrating and analyzing
this wealth and volume of data offers remarkable opportunities in sec-
tors that are of high interest to businesses, governments, and academia.
Given that the majority of the data are proprietary and may contain per-
sonal or business sensitive information, Privacy-Preserving Record Link-
age (PPRL) techniques are essential to perform data integration. In this
paper, we review existing work in PPRL, focusing on the computational
aspect of the proposed algorithms, which is crucial when dealing with
Big data. We propose an analysis tool for the computational aspects of
PPRL, and characterize existing PPRL techniques along five dimensions.
Based on our analysis, we identify research gaps in current literature and
promising directions for future work.

Keywords: Privacy-Preserving Record Linkage · Entity resolution

1 Introduction

In the era of information explosion, massive amounts of data, coming from var-
ious sources, need to be integrated to facilitate data analysis for businesses,
governments, and academia. Record linkage, also known as entity resolution or
data matching, is the process of resolving whether two records that belong to
disparate data sets, refer to the same real-world entity. Record linkage is a two-
step process. The goal of the first step, known as blocking, is to formulate as
many as possible matching pairs and, simultaneously, maintain the number of
non-matching pairs as small as possible. In the second step, termed as matching,
the distances between the pairs formed during the blocking step are calculated.
Privacy-Preserving Record Linkage (PPRL) investigates how to perform the
steps described above in a secure manner, by respecting the privacy of the indi-
viduals who are represented in the data. For this reason, input records undergo
c© Springer Nature Switzerland AG 2019
Y. Disser and V. S. Verykios (Eds.): ALGOCLOUD 2018, LNCS 11409, pp. 118–136, 2019.
https://doi.org/10.1007/978-3-030-19759-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19759-9_8&domain=pdf
https://doi.org/10.1007/978-3-030-19759-9_8

An Overview of Big Data Issues in Privacy-Preserving Record Linkage 119

a data masking process that embeds them into a space, where the underlying
data is kept private (Fig. 1).

In this paper, we adapt the taxonomy proposed for PPRL in [69] and –
inspired from analysis tools that are commonly used in business – such as SWOT
and PEST [23,54], we develop an analysis tool that focuses on the computational
aspects of PPRL techniques. We describe the proposed analysis tool for the com-
putational aspects of PPRL in Sect. 2. In Sect. 3, we use this tool to characterize,
analyze, review and compare existing PPRL techniques with respect to their
computational aspects. Last, in Sect. 4, we discuss a number of gaps that we
identified in current literature, along with some promising directions for future
research.

− Cryptography−based
− Perturbation−based
− Hybrid

Privacy techniques:

Protocols and applications:
− Number of databases
− Parties involved
− Adversary model
− Applications

− Evaluation measures
− Datasets used
− Implementation settings

Evaluation:

− Computation complexity
− Communication
− Quality
− Privacy vulnerabilities

Theoretical analysis:

− Communication patterns
− Parallel processing
− Filtering
− Blocking/indexing

Computational methods:

Computational
aspects of PPRL

Fig. 1. An analysis tool consisting of five dimensions used to analyze and characterize
computational aspects of PPRL techniques.

2 Analysis Tool

In this section, we present our proposed analysis tool for the computational
aspects of PPRL techniques. It consists of five dimensions, each of which includes
several topics. These dimensions are: (1) protocols and applications, (2) privacy
techniques, (3) computational methods, (4) theoretical analysis, and (5) evalua-
tion. In what follows, we describe each of these dimensions in detail.

2.1 Protocols and Applications

This dimension includes the protocol settings and application areas of PPRL
techniques. The PPRL protocol is determined by the number of databases to be

120 D. Vatsalan et al.

linked, the parties involved, and the considered adversarial model. The applica-
tion areas of PPRL specify the different computation aspects, such as volume,
flow, real-time vs batch processing, dynamic nature, and sensitivity of errors and
variations in the data.

Number of databases. The computational aspect of PPRL is associated with
the number of databases that have to be linked using the PPRL protocol. The
näıve comparison space required for PPRL has an exponential growth with
the number of databases. Existing techniques for PPRL can be categorized
into two databases linking and multiple databases linking, where the latter
received a lot of attention recently, due to the increasing demand of support-
ing Big Data applications [74,76]. The computational challenges and privacy
risk in terms of collusion between parties, with the aim to learn another
party’s data, increase with the number of databases to be linked. Further,
the variations and different schemas used in different databases, result in the
linkage quality challenge, which requires advanced techniques.

Parties involved. Different PPRL protocols use different types of parties for the
linkage. The database owners typically participate in the protocol with the use
of an external linkage unit for facilitating the linkage. The linkage unit con-
ducts linkage of the encoded records from the database owners. Some PPRL
protocols use more than one linkage unit, which leads to additional privacy
risks. Linkage unit-based approaches are computationally more efficient that
other PPRL approaches, especially for linking multiple large databases, since
the protocols without linkage unit need more complex techniques to make
sure that the database owners cannot infer any information from the data
that is exchanged among them [69]. In addition, a global authority might be
used in some protocols for managing or providing encoding keys and protocol
parameters to the parties of the protocol. Finally, a researcher or an external
party may be involved in the protocol to obtain access to some attributes of
the records that are identified as matching by the protocol, for conducting
further analysis.

Adversary model. PPRL protocols generally assume either the honest-but-
curious model (HBC), or the malicious model [21,22,46]. In the HBC model,
parties are curious in that they try to find out as much as they can about the
other party’s inputs, through inference attacks or collusions, while following
the protocol [22,46]. Inference attacks can be performed on encoded records
based on some background information, such as frequency distribution, to
re-identify the records. Collusion is a privacy risk of some parties colluding
among them to learn other parties’ sensitive information [46]. The protocol
is secure in the HBC perspective if and only if all parties involved obtain
no new knowledge at the end of the protocol, above what they would have
learned from the output. In contrast to HBC parties, in the malicious model
the parties behave arbitrarily in terms of refusing to participate in a protocol,
not following the protocol, choosing arbitrary values for their data inputs, or
aborting the protocol at any time [45]. PPRL techniques under the mali-
cious model are computationally expensive and privacy evaluation of PPRL

An Overview of Big Data Issues in Privacy-Preserving Record Linkage 121

techniques under this model is difficult compared to the HBC model, due to
many potentially unpredictable ways of malicious parties to deviate from the
specified steps of the protocol [9,21,46]. Since PPRL techniques for HBC mod-
els are not realistic for real-world applications and PPRL for malicious mod-
els are computationally expensive, more advanced models have been recently
proposed in cryptography [46]. Two of them are the accountable computing
and the covert model, where the former allows honest parties to detect the
misbehavior of an adversary with high probability [2], and the latter provides
accountability for privacy compromises without the excessive complexity and
cost of the malicious model [27].

Applications. PPRL is increasingly being required in several application areas,
including in healthcare, national security, crime and fraud detection, busi-
ness, governments, social sciences and population informatics. For example,
data from several sources including different hospitals, pharmacies, and travel
data, need to be linked for outbreak detection or clinical trials in healthcare
applications [8,48], while linking the social security databases, law enforce-
ment agencies databases, the police databases, and Internet service providers
databases allows identifying crimes and frauds in national security and crime
and fraud detection applications [28,55,78]. The computational requirements
of PPRL techniques depend on the application area they are developed for,
including the type and size of data, required output, and other application-
specific constraints.

2.2 Privacy Techniques

The privacy techniques used for encoding data, processing data, and comparing
and classifying data in PPRL can be categorized as follows:

Cryptographic-based techniques. These employ computationally expensive
secure multi-party computation (SMC) techniques, such as homomorphic
encryptions, Yao-based protocols, secret sharing, secure scalar product, and
secure vector operations [46]. Although these techniques are provably secure
and highly accurate, they are not efficient and scalable enough to be used for
linking large databases.

Perturbation-based techniques. These are computationally efficient meth-
ods, allowing PPRL to scale to large databases. Increasing the privacy of
perturbation-based techniques, however, results in accuracy loss, and vice
versa. Some of the widely used perturbation techniques include generaliza-
tion (such as k-anonymity, value generalization hierarchies, and binning),
noise addition techniques (such as random and differential privacy), embed-
ding techniques, and probabilistic data structure-based approaches (such as
Bloom filters and count-min sketches). Perturbation-based techniques, espe-
cially Bloom filters, have increasingly been used in several real PPRL appli-
cations in recent times [60].

122 D. Vatsalan et al.

Hybrid PPRL approaches. These use perturbation-based techniques to effi-
ciently remove highly non-matching records from the comparison space and
then apply cryptographic-based techniques on the resulting records to achieve
high quality linkage results without excessive computation [26].

2.3 Computational Methods

Several computational methods have been proposed in the literature aiming to
reduce the exponential comparison (or search) space required by näıve PPRL
and to speedup the linkage process. These methods of optimization are largely
orthogonal, so that they can be combined to achieve maximal efficiency.

Blocking approaches. Blocking is defined on selected attributes to partition
the records in a database into several blocks, such that comparison can be
restricted to the records of the same block. Numerous blocking techniques
have been used for record linkage [11] and for PPRL, with the additional
challenge in the case of PPRL of preserving privacy in the blocking step [69].
Blocking improves the runtime of linkage, but it still involves unnecessary
comparisons that limit its performance. Block processing is the approach of
restructuring a collection of generated blocks to be compared and classified
in the next step, so that unnecessary comparisons are pruned [32,59].

Filtering approaches. Filtering is an optimization for a particular comparison
function which optimizes the evaluation of a specific similarity measure for
a predefined similarity threshold to be met by matching records. It utilizes
filtering or indexing techniques to eliminate sets of records that cannot meet
the similarity threshold for the selected similarity measures [10,16].

Parallel processing approaches. Parallel linkage aims at improving the exe-
cution time proportionally to the number of processors [15,40,41]. This can
be achieved by partitioning the entire set of record pairs to be compared, and
conducting the comparison of the different partitions in parallel on different
processors. A special case would be to utilize a blocking approach to compare
the records in different blocks in parallel. Two approaches have been used so
far for parallel linkage: (1) utilizing graphics processing units (GPUs) [19,63],
and (2) using Hadoop and its MapReduce framework [37,42,77].

Communication patterns. Different communication patterns have different
computation and communication complexities. With the increasing number
of databases, the comparison space remains very large, even when a block-
ing or indexing technique is used [56,72,74]. Improved communication pat-
terns can reduce the exponential growth (for larger number of databases to
be linked) down to a smaller value. Such improved communication patterns
include sequential, ring-by-ring, tree-based, and hierarchical patterns. Some of
these patterns have been recently used for PPRL on multiple databases [74].

2.4 Theoretical Analysis

The dimension of theoretical analysis of PPRL techniques includes analysis of
complexity, quality, and privacy vulnerabilities to allow for comparison and

An Overview of Big Data Issues in Privacy-Preserving Record Linkage 123

assessment of their expected scalability to large databases, quality of linkage
results, and privacy guarantees.

Computation and communication complexity. The overall computational
efforts and cost of communication required in the PPRL process are generally
measured using the big O-notation [53]. For example, given that n is the
number of records in a database, O(n) represents linear complexity, O(n2)
quadratic complexity, and O(cn) exponential complexity, where c > 1.

Quality of linkage. The quality of linkage is theoretically analyzed in terms of
fault-tolerance of the linkage technique to data errors and variations, whether
the matching records are identified across all databases or it allows identifying
matching records across subsets of databases, trade-offs with privacy and
complexity, step-wise quality (i.e., preprocessing quality, blocking quality, and
matching quality), and final linkage quality.

Privacy vulnerabilities. The privacy vulnerabilities that a PPRL technique
is susceptible to, provide a theoretical estimate of the privacy guarantees of
the technique. These include frequency attacks, where the list of encoded val-
ues is matched with the frequency distribution of a list of unencoded values,
dictionary attacks, where a list of unencoded values are matched with the list
of encoded values by applying different encoding functions on the unencoded
values, and encoding-specific attacks, such as cryptanalysis attacks specific
to Bloom filter encoding, where – depending upon the parameter setting –
iterative mapping of individual encoded values back to their original values
is possible using a constrained satisfaction solver. Another vulnerability asso-
ciated with linkage unit-based approaches and/or multiple-databases linking
is collusion between parties, where parties involved in a PPRL protocol may
work together to find out another party’s data.

2.5 Evaluation

The linkage outcomes need to be evaluated in terms of scalability, linkage qual-
ity, and privacy. This dimension includes evaluation measures, datasets, and
implementation settings.

Evaluation measures. The scalability and linkage quality can be evaluated
using standard evaluation measures, such as runtime, memory consumption,
communication size, speedup, reduction ratio, pairs completeness, pairs qual-
ity, precision, recall, and the F-measure [10,69,73]. However, linkage qual-
ity evaluation requires access to truth data, which can be rarely accom-
modated in PPRL applications. Consequently, sample evaluation or eval-
uation on synthetic/perturbed datasets is typically used to assess linkage
quality. Various measures have been used to quantify the privacy protec-
tion of PPRL techniques, including information theory-based entropy and
information gain measures [17,31,64], as well as disclosure risk-based mea-
sures [18,25,65,70,73]. However, no standard measures for privacy evaluation
have been used in the literature.

124 D. Vatsalan et al.

Datasets. Experimental evaluation of PPRL techniques on several datasets is
important to gain reliable evidence of the techniques’ performance. Due to
the difficulties of obtaining real-world data that contain personal information,
synthetically generated or perturbed databases are typically used. Several
tools are available to generate or corrupt data [13,24,66]. However, to evaluate
PPRL techniques with regard to their expected performance in real-world
applications, evaluations should ideally be done on databases that exhibit
real-world properties and error characteristics.

Implementation. The implementation techniques that have been used to proto-
type a PPRL technique and the settings used for conducting its experimental
evaluation, determine the complexity and scalability results. Further, some
scalability measures, such as runtime, memory size, and communication size,
are platform dependent. Comparing different techniques requires conducting
experimental evaluation in the same platform and settings.

3 Literature Review

In this section, we review existing literature and categorize PPRL techniques
along the dimensions of computational methods, which include: (1) block-
ing/indexing techniques, (2) block processing techniques, (3) filtering techniques,
(4) parallel processing, and (5) improved communication patterns.

3.1 Blocking Techniques

Numerous blocking strategies [10] have been developed for record linkage and
PPRL. Standard blocking groups records according to blocking criteria (known
as blocking key), to partition all records into disjoint blocks. The blocking key
values (BKVs) are the values of a selected attribute (e.g., zipcode), or the result
of a function on one or several attribute values (e.g., the concatenation of the
first two letters of last name and year of birth). Other blocking approaches
include sorted neighborhood that sorts records according to a sorting key and
only compares neighboring records within a certain window, and canopy clus-
tering that results in overlapping clusters [10]. Multi-pass blocking is utilized to
improve recall, where records are blocked according to different blocking keys, at
the cost of a larger number of comparisons. In the following, we review blocking
approaches for PPRL along the dimensions of the proposed tool.

Al-Lawati et al. [1] proposed a secure blocking protocol for linking two
databases with the use of a linkage unit that assumed a HBC adversary model.
Token-based blocking was used to improve computation efficiency. The linkage
unit matches the records based on the computed TF-IDF distances of the hash
signatures, using the Jaccard coefficient. The proposed blocking approach con-
sists of three methods: simple blocking, record-aware blocking, and frugal third
party blocking [1]. Simple blocking arranges hash signatures in overlapping blocks
where the similarity of a pair may be computed more than once if they are in
more than one common block. Record-aware blocking solves this issue by using

An Overview of Big Data Issues in Privacy-Preserving Record Linkage 125

an identifier with every hash signature to indicate the record it belongs to. Frugal
third party blocking, uses a secure set intersection (SSI) protocol to reduce the
cost of transferring the whole databases to the third party, by first identifying
the hash signatures that occur in both databases.

Inan et al. [26] proposed a hybrid approach for PPRL of two databases under
the HBC adversary model, by combining efficient generalization and expensive
cryptographic privacy techniques. A blocking approach based on value general-
ization hierarchies is used, and the record pairs that need more detailed compar-
ison to determine the match status are compared in a computationally expensive
SMC computation step, using cryptographic techniques. The cost is reduced in
the blocking step by reducing the number of candidate record pairs that need to
be compared using SMC techniques.

A secure blocking based on phonetic encoding algorithms was presented by
Karakasidis et al. [29]. A three-party (two database owners and a linkage unit)
setting in a HBC model is assumed. The basic idea is to encode the values of
a BKV (e.g. last name) with a phonetic function, such as Soundex or Meta-
phone [10]. All records with the same phonetic code are assigned to the same
block. This approach uses a secure version of edit distance on Bloom filters.
The experimental study, conducted on a synthetic dataset (generated using
Febrl [12]), showed that the approach outperforms the original edit distance
algorithm in terms of complexity (due to the secure blocking component), while
preserving privacy, and also offers almost the same matching performance.

Karakasidis et al. [31] proposed three noise addition techniques for improving
the privacy of [29]. In the first method, fake values are added to the datasets,
such that both the attribute values and the Soundex values exhibit uniform
distributions. This increases the complexity due to excessively oversized datasets.
The second method overcomes this drawback by modifying the frequency of
attribute values, such that all Soundex values occur equally frequent. However,
some attribute values are removed where the corresponding Soundex values have
more than the average number of attribute values, and therefore true matches
might be missed in the linkage process. The third method adds fake values, where
each Soundex value reflects at least k attribute values. Parameter k is tunable
to adjust the number of fake records added in order to balance the trade-off
between complexity and privacy. This work was experimentally evaluated using
a real Australian telephone database, and the results indicated that in terms of
information gain, using a phonetic-based fake injection blocking approach can
offer adequate privacy for PPRL.

A generalization-based k-anonymous private blocking approach using a ref-
erence table was proposed in [30] for linking two databases using a linkage unit.
Initially, clusters of size k are generated for the set of reference values that are
shared by the database owners, using the k-nearest neighbor clustering algorithm
with the Dice coefficient metric. Then, each database owner assigns their set of
BKVs to the respective clusters. The resulting clusters are sent to the linkage
unit that identifies and merges the corresponding clusters to generate candi-
date record pairs. Clusters contain at least k reference values, making inference

126 D. Vatsalan et al.

attacks using the reference values difficult. Experiments conducted using a real
Australian telephone book as the reference table and synthetic data generated
using Febrl [12], as datasets to be linked, validate that this approach provides
k-anonymity guarantees, while reducing the number of candidate record pairs.

Vatsalan and Christen in [71] proposed an approach that utilizes local sorted
neighborhood clustering for improved performance in the blocking phase, to
generate k-anonymous clusters based on reference values. Each database owner
sorts a shared set of reference values and then inserts their records into the
sorted list according to their sorting keys. Initial Sorted Neighborhood Clusters
are determined such that each cluster contains one reference value and a set
of database records. To offer k-anonymity, the initial clusters are merged into
larger blocks containing at least k database records based on similarity or size
constraints. These clusters are then sent to a linkage unit to identify and merge
similar clusters across the databases, based on the reference values in the clusters.
Experiments conducted on real Australian telephone and North Carolina voters
databases, show the improved performance of the approach compared to [30],
in terms of runtime and blocking quality. A variant of [71], involving a two-
party setting without a linkage unit, was presented in [75]. In this approach,
the two database owners generate their reference values independently. Each
database owner sorts its reference values, inserts its records into the sorted list,
builds initial clusters (with one reference value and its associated records), and
merges these clusters to guarantee k-anonymity. Afterwards the database owners
exchange their reference values, which are then merged together and sorted. In
order to find candidate pairs between the sources, a sorted neighborhood method
with a sliding window w is applied on the reference values. The window size w
determines the number of reference values originating from each data source in a
window. The clusters of the reference values that fall into the same window are
determined as candidate blocks, which need to be compared in the next step.
An evaluation study, conducted in [73] using real and synthetic datasets, showed
that this approach outperforms several existing blocking approaches in terms of
runtime and privacy, with no loss in blocking quality.

Durham investigated the use of Locality-Sensitive Hashing (LSH) [20] for
private blocking of records encoded as Bloom filters [17]. She proposed the use of
a family of hash functions (Minhash for Jaccard, or Hamming LSH for Hamming
distances) to generate keys that are used to partition the records in a database, so
that similar records are grouped into the same block [39]. A Minhash function
permutes the bits in a Bloom filter and selects the first index position in the
permuted Bloom filter that is set to 1. By applying φ Minhash functions, φ index
positions are obtained, which are concatenated to generate the final Minhash key
for the Bloom filter. The HLSH hash functions select the bit value of a Bloom
filter at a random position. In the same way as Minhash, φ HLSH functions
are applied on a record’s Bloom filter and the values of the φ selected bits are
concatenated to obtain the final hash key. LSH provides guaranteed accuracy
while being efficient. However, it requires data dependent parameters to be tuned
effectively and it can be applied only to specific encodings, such as Bloom filters.

An Overview of Big Data Issues in Privacy-Preserving Record Linkage 127

Karapiperis et al. proposed a private blocking approach for linking multiple
databases based on LSH [34–36]. This approach uses L independent hash tables,
each consisting of key-bucket pairs, where keys represent the blocking keys and
buckets host a linked list aimed at grouping similar records. Each hash table
is assigned a set of K hash functions, generated by a linkage unit and sent
to all the database owners to populate their set of blocks. This approach was
later extended by proposing a frequent pairs scheme (FPS) [38] for reducing the
number of comparisons, while maintaining a high level of recall. FPS achieves
high blocking quality by identifying similar record pairs that exhibit many LSH
collisions, and then performs distance calculations only for those pairs. Empirical
results showed significant improvement in running time due to a drastic reduction
of candidate pairs by FPS, while achieving high blocking quality [35]. Based on
these methods, the authors have developed LSHDB [33], which uses LSH to
efficiently block the masked records, and store the produced blocking structures
on disk for further use. LSHDB achieves very fast response times, which makes
it ideal for online settings, thanks to the utilization of efficient algorithms and
the employment of flexible and robust noSQL systems for storing the data.

Ranbaduge et al. [56] proposed a private blocking approach for multiple
databases without a linkage unit, based on a single-bit tree data structure. The
single-bit tree is iteratively constructed by all database owners to store records’
Bloom filters, such that similar records are placed into the same tree leaf. At
each iteration, the set of Bloom filters in a tree node is recursively split based on
selected bit positions, which are agreed upon by all parties. This requires a com-
munication step among all parties in each iteration of the algorithm. Another
drawback of this approach is that it might miss true matches due to the recursive
splitting of Bloom filters. This limitation was addressed in [57], using a multi-bit
tree [43] data structure combined with canopy clustering. Multi-bit trees were
used to split the database records (encoded into Bloom filters) individually by
the database owners into small mini-blocks, which are then merged into larger
blocks according to privacy and computational requirements, using a canopy
clustering technique [14].

A communication-efficient private blocking approach for multiple databases
using a linkage unit, was proposed in [58]. In this approach, local blocks are gen-
erated individually by each database owner, using a private blocking technique.
A block representative, in the form of a min-hash signature [7], is then generated
for each block and sent to the linkage unit. The linkage unit applies global block-
ing using LSH to identify the candidate block sets from all databases, based on
the similarity between block representatives. Local blocking enables the database
owners to generate their blocks with more flexibility and control, without any
iterative communication among them. This approach outperforms existing pri-
vate blocking approaches for multiple databases in terms of scalability, privacy,
and blocking quality [58].

128 D. Vatsalan et al.

3.2 Block Processing Techniques

Several block processing methods have been used for record linkage and PPRL,
in order to process the generated blocks in an efficient and effective way to reduce
the number of required comparisons, while improving blocking quality [51,52,59].
In this section we review these block processing techniques.

Wang et al. [79] introduced an iterative block processing technique for de-
duplicating a single database. The comparison results of blocks are propagated
to subsequent blocks to avoid repeated comparisons. This approach was later
extended in [39] for record linkage using LSH.

Two categories of block processing methods were used by Papadakis et al. [51]
for deduplication. The first category includes block purging and block scheduling
methods, which operate at the coarse level of processing individual blocks. The
second category of comparison-refinement methods, such as comparison propa-
gation, duplicate propagation, comparison pruning, and comparison scheduling,
operate at a finer level of individual comparisons within blocks.

The concept of meta-blocking was introduced by Papakadis et al. in [52]
for record linkage, to restructure a collection of blocks to reduce the number
of comparisons. In their approach, a block collection is provided as input to a
supervised classifier to identify promising comparisons based on block-feature
vectors. The drawback of this approach is the selection of suitable features and
requirement of training data to achieve accurate pruning of record comparisons.

Meta-blocking has been recently studied for the PPRL of two databases using
a linkage unit [32]. A sorted neighborhood blocking based on reference values is
used along with multi-sampling transitive closure as a processing technique to
prune records based on redundant assignments to blocks. Experimental results
show the efficacy of the approach in terms of recall and computational cost.

Recently, a general meta-blocking technique for PPRL on multiple databases
was proposed by Ranbaduge et al. [59]. Their approach uses a graph structure
to schedule the comparison of blocks with the aim of minimizing the number
of repeated and superfluous comparisons between records, where the former is
comparison of duplicate record pairs and latter is comparison of records with
non-matching record pairs. The experimental results of their approach on real
datasets, show that up to five orders of magnitude reduction in the number of
record comparisons can be achieved compared to existing approaches.

3.3 Filtering Techniques

Several filtering approaches have been proposed in record linkage and PPRL
literature to speed up the linkage process. The proposed optimizations, include
the use of different filters, such as length and prefix filters, and dynamic inverted
indexes [5]. Several filtering approaches also utilize the characteristics of similar-
ity measures for metric spaces to reduce the search space, such as the triangle
inequality [80]. For PPRL, filtering approaches need to be adapted to the com-
parison of encoded records, such as Bloom filters. In what follows, we describe
several filtering approaches that have been proposed for PPRL.

An Overview of Big Data Issues in Privacy-Preserving Record Linkage 129

Token-based similarity functions, such as the Jaccard and Dice coefficients,
allow the application of a simple length filter to reduce the comparison space.
This is because the minimal similarity can only be achieved if the lengths (for
example, the number of bits set to 1 in Bloom filters) of the two records
do not deviate too much. Formally, for records ri, rj , with |ri| ≤ |rj |, it
holds that: Jacc sim(ri, rj) ≥ st ⇒ |ri| ≥ �st · |rj |� and Dice sim(ri, rj) ≥
2min(|ri|,|rj |)·(1−st)

st
.

For example, two records cannot satisfy a Jaccard similarity threshold st =
0.8 if their lengths differ by more than 20%, and a Dice similarity threshold
st = 0.8 if the length difference is at least 50% of the length of the smaller
record. Hence for a similarity threshold of 0.8, the length filter would prune
record pairs that do not meet the length condition without comparing in detail.

Vatsalan and Christen used such a length filter for Dice coefficient similarity
for Bloom filter-based PPRL in a two-party setting without using a linkage
unit [67]. In their approach, certain bit positions (depending on privacy criteria)
from the Bloom filters are iteratively exchanged between the two database owners
to classify the pairs as matches, non-matches, and possible matches. For the
possible matches in an iteration, more bits are revealed in the next iteration
until the maximum number of bits are revealed, or all pairs are classified as
matches or non-matches. A length filtering phase is used in addition to phonetic
blocking to filter record pairs that are potentially non-matches, without revealing
any bit positions for these records’ Bloom filters.

The privacy-preserving version of PPJoin (called P4Join), proposed by Sehili
et al. [63], utilizes three filters to reduce the Bloom filter-based comparison space:
the length filter, a prefix filter, and a position filter. The prefix filter excludes
Bloom filter pairs that have an insufficient overlap in the bit positions set to 1,
in order to satisfy a predefined threshold, and this overlap test can be limited to
only the prefix bit positions of the Bloom filters. The position filter of P4Join can
avoid the comparison of two records even if their prefixes overlap, depending on
the prefix positions where the overlap occurs. However, these filtering approaches
achieve only a small improvement for PPRL, since the filter tests incur significant
cost. Moreover, Bloom filter encoding for PPRL should ideally have 50% of their
bits set to 1, in order to make them less vulnerable to frequency attacks [49],
thereby constituting filtering less effective.

The use of multi-bit trees was proposed for fast similarity search in large
databases of chemical fingerprints (encoded into Bloom filters) [3,43]. A multi-
bit tree is a binary tree used to iteratively assign fingerprints to its nodes based on
match bits. A match bit refers to a specific position of the bit vector, and can be 1
or 0: it indicates that all fingerprints in the associated subtree share the specified
match bit. When building up the multi-bit tree, one match bit, or multiple such
bits, are selected in each step, so that the number of unassigned fingerprints
can be roughly split in half. The split is continued as long as the number of
fingerprints per node does not fall under a limit. The match bits can then be
used for a query fingerprint, to determine the maximal possible similarity for
subtrees when traversing the tree and can thereby eliminate many fingerprints to

130 D. Vatsalan et al.

compare. The multi-bit tree-based approach was extended by Bachteler et al. [3]
to partition the fingerprints according to their lengths, such that all fingerprints
with the same length belong to the same partition. To apply the length filter,
the search for similar fingerprints using a Jaccard similarity measure is restricted
to the partitions meeting the length criterion of Jacc sim(ri, rj) ≥ st. Query
efficiency is further improved by organizing all fingerprints of a partition within a
multi-bit tree. Experimental evaluations showed that the multi-bit tree approach
is very effective and performs equally or superior to blocking approaches, such
as canopy clustering and sorted neighborhood [3,62].

Several metric space-based PPRL approaches have been proposed in the lit-
erature. One of the main properties that a metric or distance function for metric
spaces has to satisfy is the triangle inequality. Distance functions for metric
spaces satisfying this property include the Euclidean distance, edit distance,
Hamming distance and Jaccard coefficient (but not Dice coefficient) [80]. The
triangle inequality has been used for private comparison and classification in
PPRL, using reference values [50,68], as well as a filtering technique to reduce
the comparison space for similarity search and record linkage [4,6]. The triangle
inequality allows to eliminate the computation of distance between two objects,
based on their distances to a reference object or pivot.

3.4 Parallel Processing

The utilization of GPUs that provide thousands of cores within a single machine
to speed-up similarity computations is a relatively new approach for parallel
processing [19]. At the same time, Hadoop provides programming frameworks,
such as MapReduce, Spark, and Flink, that allow developing programs to be
automatically executed in parallel on Hadoop clusters [42,77]. In the following,
we review two existing parallel PPRL techniques based on these two approaches.

A GPU-based parallel PPRL approach using the P4Join filtering is described
in [63]. The approach sorts the records encoded into Bloom filters according to
the number of bits set to 1, and partitions the set of Bloom filters into equi-
sized blocks, such that multiple of such blocks fit into the GPU memory. Pairs
of blocks are then continuously loaded into the GPU for parallel comparison.
Length filtering and prefix filtering are applied to remove pairs of blocks that
do not meet the filtering criterion, to reduce the the number of comparisons.
Experimental evaluation results show that the approach improved runtime by a
factor of 20, even with a low-profile graphics card (Nvidia GeForce GT 540M).

Several record linkage approaches have utilized the Hadoop-based MapRe-
duce framework for parallel processing [42,77]. The Map tasks read the input
data and assign each record to a block according to its blocking key value. Then,
the records are redistributed among the Reduce tasks, such that all records with
the same blocking key value are sent to the same Reduce task. Comparison is
then performed in parallel by the Reduce tasks. The load balancing problem
with highly skewed block sizes for parallel processing, is addressed in [42].

Karapiperis and Verykios proposed a parallel PPRL approach for linking
two databases with a linkage unit using MapReduce [37]. The approach uses a

An Overview of Big Data Issues in Privacy-Preserving Record Linkage 131

LSH-based blocking in the Map phase and determines the Minhash signature for
each record encoded into a Bloom filter. These signatures are fragmented into
several pieces and the Bloom filters are redistributed such that all Bloom filters
with the same Minhash fragment value are assigned to the same Reduce task
for comparison. The approach thus leads to a replicated redistribution of Bloom
filters according to the number of fragments and a Bloom filter may have to
be compared at several Reduce tasks. To overcome this problem, an alternative
approach of chaining two MapReduce jobs was proposed, where the first job
outputs the pairs of records’ identifiers in the Reduce phase. In the second job,
duplicate record pairs are grouped at the same Reducer to be compared only
once. The evaluation of this approach in [37] shows the efficiency of parallel
processing. However, the study was limited to a few nodes and only 300K records.

3.5 Improved Communication Patterns

Most PPRL techniques use the näıve all-to-one communication, where all
database owners send their encoded records to a linkage unit to conduct the
linkage. A few PPRL techniques for linking multiple databases use a ring com-
munication, where encoded records are sent from one database owner to another,
following a ring pattern [69]. Another communication pattern is all-to-all commu-
nication, where each database owner sends encoded records to all other database
owners [44]. Last, some PPRL techniques require communication in several steps,
or iteratively in many rounds [56], making them impractical for real applications.

Several query tree representations have been used for optimizing multi-way
join queries [47,61], and can be adapted for efficient processing of multi-party
PPRL. Schneider and DeWitt [61] studied query processing plans with different
types of structures: left-deep, right-deep, and bushy. Left-deep and right-deep
trees use a base table as the inner and outer operand, respectively, of each
join in the plan, while in bushy trees both inputs to a join may themselves
result from joins. For PPRL, the concepts used in deep trees can be adapted to
improve efficiency. However, only one recent study investigated such improved
communication patterns for linking multiple databases in PPRL.

Recent work by Vatsalan et al. [74] proposed two improved communication
patterns for reducing the number of comparisons for PPRL on multiple databases
using counting Bloom filters (CBFs). In [74], the parties are grouped into rings
and a secure summation protocol is used to generate a CBF for each set of parties’
records encoded into Bloom filters. The comparison of records is conducted: (1)
sequentially by a LU , such that only the matches of a ring are compared with
the candidate record sets of the next ring, or (2) symmetrically, without a LU ,
where matches are identified for each individual ring in the first phase and then,
using the matches from individual rings, the matches from all rings are identified
in the second phase. The computational complexity of MP-PPRL techniques is
exponential in the number of records per database (np, assuming n records in
each of the p databases). These improved communication patterns reduce this
exponential growth with p down to the ring size r (with r < p).

132 D. Vatsalan et al.

4 Conclusions

Computational aspects of Privacy-preserving record linkage (PPRL) are crucial
for making PPRL viable for linking large collections of disparate data sources,
especially for Big data applications. In this paper we proposed an analysis tool
for analyzing, reviewing, and comparing existing computational methods for
PPRL and then conducted an extensive survey using the proposed tool. Such
an analysis tool allows identifying research gaps in the current literature and
promising directions for future work in PPRL.

References

1. Al-Lawati, A., Lee, D., McDaniel, P.: Blocking-aware private record linkage. In:
IQIS, pp. 59–68 (2005)

2. Aumann, Y., Lindell, Y.: Security against covert adversaries: efficient protocols for
realistic adversaries. J. Cryptology 23(2), 281–343 (2010)

3. Bachteler, T., Reiher, J., Schnell, R.: Similarity Filtering with Multibit Trees for
Record Linkage. Tech. Rep. WP-GRLC-2013-01, German Record Linkage Center
(2013)

4. Barros, J.E., French, J.C., Martin, W.N., Kelly, P.M., Cannon, T.M.: Using the
triangle inequality to reduce the number of comparisons required for similarity-
based retrieval. In: Electronic Imaging: Science & Technology, pp. 392–403 (1996)

5. Bayardo, R.J., Ma, Y., Srikant, R.: Scaling up all pairs similarity search. In: WWW,
Canada, pp. 131–140 (2007)

6. Berman, A., Shapiro, L.G.: Selecting good keys for triangle-inequality-based prun-
ing algorithms. In: IEEE Workshop on Content-Based Access of Image and Video
Database, pp. 12–19 (1998)

7. Broder, A.Z.: On the resemblance and containment of documents. In: Compression
and Complexity of Sequences, pp. 21–29. IEEE (1997)

8. Brook, E., Rosman, D., Holman, C.: Public good through data linkage: measuring
research outputs from the western Australian data linkage system. Aust NZ J.
Public Health 32, 19–23 (2008)

9. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptol. 13(1), 143–202 (2000)

10. Christen, P.: Data Matching - Concepts and Techniques for Record Linkage,
Entity Resolution, and Duplicate Detection. Data-Centric Systems and Applica-
tion. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31164-2

11. Christen, P.: A survey of indexing techniques for scalable record linkage and dedu-
plication. IEEE TKDE 24(9), 1537–1555 (2012)

12. Christen, P., Gayler, R., Hawking, D.: Similarity-aware indexing for real-time entity
resolution. In: ACM CIKM, Hong Kong, pp. 1565–1568 (2009)

13. Christen, P., Pudjijono, A.: Accurate synthetic generation of realistic personal
information. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.)
PAKDD 2009. LNCS (LNAI), vol. 5476, pp. 507–514. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-01307-2 47

14. Cohen, W.W., Richman, J.: Learning to match and cluster large high-dimensional
data sets for data integration. In: ACM SIGKDD, Edmonton, pp. 475–480 (2002)

https://doi.org/10.1007/978-3-642-31164-2
https://doi.org/10.1007/978-3-642-01307-2_47

An Overview of Big Data Issues in Privacy-Preserving Record Linkage 133

15. Dal Bianco, G., Galante, R., Heuser, C.A.: A fast approach for parallel dedupli-
cation on multicore processors. In: ACM Symposium on Applied Computing, pp.
1027–1032 (2011)

16. Dey, D., Mookerjee, V., Liu, D.: Efficient techniques for online record linkage. IEEE
Trans. Knowl. Data Engin. 23(3), 373–387 (2010)

17. Durham, E.: A framework for accurate, efficient private record linkage. Ph.D. the-
sis, Faculty of the Graduate School of Vanderbilt University, Nashville, TN (2012)

18. Elliot, M., Hundepool, A., Nordholt, E., Tambay, J., Wende, T.: Glossary on sta-
tistical disclosure control. In: Joint UNECE/Eurostat Work Session on Statistical
Data Confidentiality (2005)

19. Forchhammer, B., Papenbrock, T., Stening, T., Viehmeier, S., Draisbach, U.,
Naumann, F.: Duplicate Detection on GPUs. In: Database Systems for Business,
Technology, and Web, pp. 165–184 (2013)

20. Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hash-
ing. In: VLDB, pp. 518–529 (1999)

21. Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge
University Press, Cambridge (2004)

22. Hall, R., Fienberg, S.: Privacy-preserving record linkage. In: PSD, Corfu, Greece,
pp. 269–283 (2010)

23. Hill, T., Westbrook, R.: Swot analysis: it’s time for a product recall. Long Range
Plann. 30(1), 46–52 (1997)

24. Hoag, J., Thompson, C.: A parallel general-purpose synthetic data generator. ACM
SIGMOD 36, 19–24 (2007)

25. Hundepool, A., et al.: Handbook on statistical disclosure control. A Network of
Excellence in the European Statistical System in the field of Statistical Disclosure
Control (2010)

26. Inan, A., Kantarcioglu, M., Bertino, E., Scannapieco, M.: A hybrid approach to
private record linkage. In: IEEE ICDE, Cancun, Mexico, pp. 496–505 (2008)

27. Jiang, W., Clifton, C., Kantarcıoğlu, M.: Transforming semi-honest protocols to
ensure accountability. Data Knowl. Eng. 65(1), 57–74 (2008)

28. Jonas, J., Harper, J.: Effective counterterrorism and the limited role of predictive
data mining. Policy Anal. 584 (2006)

29. Karakasidis, A., Verykios, V.S.: Secure blocking+secure matching = secure record
linkage. JCSE 5, 223–235 (2011)

30. Karakasidis, A., Verykios, V.S.: Reference table based k-anonymous private block-
ing. In: ACM SAC, Riva del Garda, pp. 859–864 (2012)

31. Karakasidis, A., Verykios, V.S., Christen, P.: Fakling. In: Garcia-Alfaro, J.,
Navarro-Arribas, G., Cuppens-Boulahia, N., de Capitani di Vimercati, S. (eds.)
DPM/SETOP -2011. LNCS, vol. 7122, pp. 9–24. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-28879-1 2

32. Karakasidis, A., Koloniari, G., Verykios, V.S.: Scalable blocking for privacy pre-
serving record linkage. In: Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 527–536. ACM (2015)

33. Karapiperis, D., Gkoulalas-Divanis, A., Verykios, V.: LSHDB: a parallel and dis-
tributed engine for record linkage and similarity search. In: ICDM Demo, pp. 1–4
(2016)

34. Karapiperis, D., Gkoulalas-Divanis, A., Verykios, V.: Distance-aware encoding of
numerical values for privacy-preserving record linkage. In: ICDE, pp. 135–138
(2017)

https://doi.org/10.1007/978-3-642-28879-1_2

134 D. Vatsalan et al.

35. Karapiperis, D., Verykios, V.: An LSH-based blocking approach with a homo-
morphic matching technique for privacy-preserving record linkage. TKDE 27(4),
909–921 (2015)

36. Karapiperis, D., Verykios, V.: FEDERAL: a framework for distance-aware privacy-
preserving record linkage. TKDE 30(2), 292–304 (2018)

37. Karapiperis, D., Verykios, V.S.: A distributed framework for scaling up lsh-based
computations in privacy preserving record linkage. In: ACM BCI, pp. 102–109
(2013)

38. Karapiperis, D., Verykios, V.S.: A fast and efficient hamming LSH-based scheme
for accurate linkage. KAIS 49(3), 1–24 (2016)

39. Kim, H., Lee, D.: Harra: fast iterative hashed record linkage for large-scale data
collections. In: EDBT, Lausanne, Switzerland, pp. 525–536 (2010)

40. Kim, H., Lee, D.: Parallel linkage. In: ACM CIKM, pp. 283–292 (2007)
41. Kirsten, T., Kolb, L., Hartung, M., Groß, A., Köpcke, H., Rahm, E.: Data parti-

tioning for parallel entity matching. VLDB 3(2) (2010)
42. Kolb, L., Thor, A., Rahm, E.: Dedoop: efficient deduplication with hadoop. VLDB

5(12), 1878–1881 (2012)
43. Kristensen, T.G., Nielsen, J., Pedersen, C.N.: A tree-based method for the rapid

screening of chemical fingerprints. Algorithms Mol. Biol. 5(1), 9 (2010)
44. Lai, P., Yiu, S., Chow, K., Chong, C., Hui, L.: An efficient Bloom filter based

solution for multiparty private matching. In: International Conference on Security
and Management, p. 7 (2006)

45. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation
in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-72540-4 4

46. Lindell, Y., Pinkas, B.: Secure multiparty computation for privacy-preserving data
mining. JPC 1(1) (2009)

47. Lu, H., Shan, M.C., Tan, K.L.: Optimization of multi-way join queries for parallel
execution. In: VLDB, pp. 549–560 (1991)

48. Malin, B.A., El Emam, K., O’Keefe, C.M.: Biomedical data privacy: problems,
perspectives, and recent advances. JAMIA 20(1), 2–6 (2013)

49. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press, Cambridge (2005)

50. Pang, C., Gu, L., Hansen, D., Maeder, A.: Privacy-preserving fuzzy matching using
a public reference table. In: McClean, S., Millard, P., El-Darzi, E., Nugent, C. (eds.)
Intelligent Patient Management. Studies in Computational Intelligence, vol. 189,
pp. 71–89. Springer, Heidelberg (2009).https://doi.org/10.1007/978-3-642-00179-
6 5

51. Papadakis, G., Ioannou, E., Palpanas, T., Niederee, C., Nejdl, W.: A blocking
framework for entity resolution in highly heterogeneous information spaces. IEEE
Trans. Knowl. Data Eng. 25(12), 2665–2682 (2013)

52. Papadakis, G., Papastefanatos, G., Koutrika, G.: Supervised meta-blocking. Proc.
VLDB Endowment 7(14), 1929–1940 (2014)

53. Papadimitriou, C.: Computational Complexity. Wiley, Hoboken (2003)
54. Peng, G.C.A., Nunes, M.B.: Using pest analysis as a tool for refining and focusing

contexts for information systems research. In: Research Methodology for Business
and Management Studies, Lisbon, Portugal, pp. 229–236 (2007)

55. Phua, C., Smith-Miles, K., Lee, V., Gayler, R.: Resilient identity crime detection.
IEEE TKDE 24(3), 533–546 (2012)

https://doi.org/10.1007/978-3-540-72540-4_4
https://doi.org/10.1007/978-3-540-72540-4_4
https://doi.org/10.1007/978-3-642-00179-6_5
https://doi.org/10.1007/978-3-642-00179-6_5

An Overview of Big Data Issues in Privacy-Preserving Record Linkage 135

56. Ranbaduge, T., Christen, P., Vatsalan, D.: Tree based scalable indexing for multi-
party privacy-preserving record linkage. In: AusDM (2014)

57. Ranbaduge, T., Vatsalan, D., Christen, P.: Clustering-based scalable indexing for
multi-party privacy-preserving record linkage. In: Cao, T., Lim, E.-P., Zhou, Z.-H.,
Ho, T.-B., Cheung, D., Motoda, H. (eds.) PAKDD 2015. LNCS (LNAI), vol. 9078,
pp. 549–561. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18032-
8 43

58. Ranbaduge, T., Vatsalan, D., Christen, P., Verykios, V.: Hashing-based distributed
multi-party blocking for privacy-preserving record linkage. In: Bailey, J., Khan,
L., Washio, T., Dobbie, G., Huang, J.Z., Wang, R. (eds.) PAKDD 2016. LNCS
(LNAI), vol. 9652, pp. 415–427. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-31750-2 33

59. Ranbaduge, T., Vatsalan, D., Christen, P.: Scalable block scheduling for efficient
multi-database record linkage. In: ICDM. Barcelona (2016)

60. Randall, S.M., Ferrante, A.M., Boyd, J.H., Semmens, J.B.: Privacy-preserving
record linkage on large real world datasets. JBI 50, 205–212 (2014)

61. Schneider, D.A., DeWitt, D.J.: Tradeoffs in processing complex join queries via
hashing in multiprocessor database machines. In: VLDB, pp. 469–480 (1990)

62. Schnell, R.: An efficient privacy-preserving record linkage technique for adminis-
trative data and censuses. Stat. J. IAOS 30(3), 263–270 (2014)

63. Sehili, Z., Kolb, L., Borgs, C., Schnell, R., Rahm, E.: Privacy preserving record
linkage with PPJoin. In: BTW Conference, Hamburg (2015)

64. Shannon, C., Weaver, W.: The Mathematical Theory of Communication, vol. 19.
University of Illinois Press, Urbana (1962)

65. Sweeney, L.: Computational disclosure control: A Primer on Data Privacy Protec-
tion. Ph.D. thesis, Massachusetts Institute of Technology, Department of Electrical
Engineering and Computer Science (2001)

66. Tran, K.N., Vatsalan, D., Christen, P.: GeCo: an online personal data generator
and corruptor. In: ACM CIKM, San Francisco, pp. 2473–2476 (2013)

67. Vatsalan, D., Christen, P.: An iterative two-party protocol for scalable privacy-
preserving record linkage. In: AusDM, CRPIT, vol. 134, Sydney (2012)

68. Vatsalan, D., Christen, P., Verykios, V.S.: An efficient two-party protocol for
approximate matching in private record linkage. In: AusDM, Ballarat (2011)

69. Vatsalan, D., Christen, P., Verykios, V.S.: A taxonomy of privacy-preserving record
linkage techniques. JIS 38(6), 946–969 (2013)

70. Vatsalan, D.: Scalable and approximate privacy-preserving record linkage. Ph.D.
thesis, Research School of Computer Science, The Australian National University
(2014)

71. Vatsalan, D., Christen, P.: Sorted nearest neighborhood clustering for efficient pri-
vate blocking. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds.) PAKDD
2013. LNCS (LNAI), vol. 7819, pp. 341–352. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-37456-2 29

72. Vatsalan, D., Christen, P.: Scalable privacy-preserving record linkage for multiple
databases. In: ACM CIKM, Shanghai (2014)

73. Vatsalan, D., Christen, P., O’Keefe, C.M., Verykios, V.S.: An evaluation framework
for privacy-preserving record linkage. JPC (2014)

74. Vatsalan, D., Christen, P., Rahm, E.: Scalable privacy-preserving linking of mul-
tiple databases using counting bloom filters. In: IEEE ICDMW, Barcelona, Spain
(2016)

https://doi.org/10.1007/978-3-319-18032-8_43
https://doi.org/10.1007/978-3-319-18032-8_43
https://doi.org/10.1007/978-3-319-31750-2_33
https://doi.org/10.1007/978-3-319-31750-2_33
https://doi.org/10.1007/978-3-642-37456-2_29
https://doi.org/10.1007/978-3-642-37456-2_29

136 D. Vatsalan et al.

75. Vatsalan, D., Christen, P., Verykios, V.S.: Efficient two-party private blocking
based on sorted nearest neighborhood clustering. In: ACM CIKM, San Francisco,
pp. 1949–1958 (2013)

76. Vatsalan, D., Sehili, Z., Christen, P., Rahm, E.: Privacy-preserving record linkage
for big data: current approaches and research challenges. In: Zomaya, A.Y., Sakr,
S. (eds.) Handbook of Big Data Technologies, pp. 851–895. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-49340-4 25

77. Vernica, R., Carey, M.J., Li, C.: Efficient parallel set-similarity joins using MapRe-
duce. In: Proceedings of ACM SIGMOD, pp. 495–506 (2010)

78. Wang, G., Chen, H., Atabakhsh, H.: Automatically detecting deceptive criminal
identities. Commun. ACM 47(3), 70–76 (2004)

79. Whang, S.E., Menestrina, D., Koutrika, G., Theobald, M., Garcia-Molina, H.:
Entity resolution with iterative blocking. In: ACM SIGMOD, Providence, Rhode
Island, pp. 219–232 (2009)

80. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric
Space Approach, vol. 32. Springer, New York (2006). https://doi.org/10.1007/0-
387-29151-2

https://doi.org/10.1007/978-3-319-49340-4_25
https://doi.org/10.1007/0-387-29151-2
https://doi.org/10.1007/0-387-29151-2

Web Frameworks Metrics
and Benchmarks for Data Handling

and Visualization

Alexandros Gazis(B) and Eleftheria Katsiri

Department of Electrical and Computer Engineering, 67100 Xanthi, Greece
{agazis,ekatsiri}@ee.duth.gr

Abstract. This paper presents benchmarks regarding a web applica-
tion that aims at displaying and visualizing a dataset for air quality
monitoring, experimenting using two different programming languages.
Specifically, an application is developed via the use of PHP and Python
frameworks in order to study the impact of the CPU, the hard disk
architecture and the operating system between each system. Detailed
tests have been conducted regarding the necessary computing resources
as well as the use of the network (delay, CPU usage etc.) for different
operating systems and hardware specifications.

Keywords: Cloud computing · Wireless network · Django · Flask ·
PHP-FPM · Lamp · Unix · Linux · Web frameworks · Middleware ·
Network performance modeling · Network simulations ·
Data visualization time · CPU time · User time · Wall time ·
Max resident · Server hardware · Benchmarks

1 Introduction

In the era of the Internet of Things, a wide range of programming language
frameworks have surfaced for developing applications in several platforms. While
there is a wide range of different languages and tools based on the application’s
specific and the offered services, the main programming language for most web-
sites is PHP (back-end). PHP offers a well-tested and documented path to create
a web site from scratch right of the box. Although several new languages have
been released over the last decade (e.g. Ruby), PHP use steadily remains in top
ranks, powering more than 50% of the Web. According to the TIOBE index [1],
there is a new trend regarding the use of Python for various applications, one of
which is web development [2].

In order to assess the status quo, a Web application was developed with a
similar presentation layer (front-end interface), using different available tech-
nologies. This application may display a dump of a database and a visualiza-
tion of a day’s measurements. The developed site was kept to bare minimum
Html, CSS and JavaScript (mainly for producing the necessary graphs) as the

c© Springer Nature Switzerland AG 2019
Y. Disser and V. S. Verykios (Eds.): ALGOCLOUD 2018, LNCS 11409, pp. 137–151, 2019.
https://doi.org/10.1007/978-3-030-19759-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19759-9_9&domain=pdf
https://doi.org/10.1007/978-3-030-19759-9_9

138 A. Gazis and E. Katsiri

tests emphasized on the features of the server and thus future cloud service.
Although the developed application used data regarding Air Quality Monitoring,
the results presented in this paper can be expanded to various small or medium
sized web applications, such as lists of appointments, logs, catalogs and to-do
lists. Other real-life examples include online market places (e.g. a food delivery
site consisting of order id, quantity, food list, after tax price), office appoint-
ments (timestamp, customer name, further description), parking ticket systems
(timestamp, client id, ticket duration) and local libraries (isbn, title, authors,
user comments). All these examples are consisted of a relation (table) of several
tuples (rows), which have less than five attributes (columns) per tuple.

Our objective was to measure the time response while loading and visualizing
data that is big in volume and sparse in Tuples. The used dataset includes
several measurements (temperature, humidity) and was intentionally stored as
an SQL database and as a Comma Separated Values (CSV) file. The two formats
aimed at a better understanding and a detailed comparison of the interactions
of each developed method. In recent computer systems, the goal is set forward
by creating native applications which are depended on the cloud, so as to offer
the desired level of user experience. As a result, the main factors that impact
the quality and robustness in this assessment were mainly associated with the
system’s performance and response.

2 Literary Review

The recent developments regarding the use of Internet of things as well as the
introduction of new methods and techniques have resulted in various Web frame-
works and implementations in order to produce a Web application [3]. Moreover,
as mentioned in [4,5] the new era of Industry 4.0 generates a high demand to test
and categorize the best practices and methods regarding their cost and user expe-
rience [6]. Nowadays, the design and implementation of a web application is more
complex, due the size of the available data (“Big Data”) [7,8]. In most cases, the
developed web applications may not handle the provided information. Taking
this into account we studied several papers presenting ways of measuring data
handling, data visualization and time measurements with regard to the operat-
ing system and CPU utilization for the server [9]. In order to give an overview of
the web programming languages, already utilized frameworks and architectures
[10] were taken into consideration as well as a published paper regarding Net-
work and Server Performance Evaluation [11]. Lastly, we conducted an extensive
study to develop an application regarding Python’s and PHP’s implementations,
which greatly impacted the attributes we analyzed (see, such as: [12]).

Web Frameworks Metrics and Benchmarks for Data Handling 139

3 Aims and Objectives

The proposed method regarding the conducted experiments presents the results
in a two folded stage:

1. Utilization and Duration Time in terms of CPU - Hard Disk Architecture.
2. Hardware benchmarks and Duration Time in terms of Operating system -

available System Resources.

The first stage of experiments, except for CPU utilization, emphasizes the fol-
lowing time attributes:

1. User time: how long the CPU is outside the kernel but within a process.
2. System time: how long the CPU is inside the kernel, but within a process.
3. CPU time (total): sum of User and System time, counting the total duration

of time for the CPU process.
4. Wall time: duration of real time, from the start of the call till the end

(a program’s execution within the CPU -high utilization- results for Wall
and CPU time to have the same values).

5. Max resident: real size (not swapped) of available RAM resources, strictly
committed to the process.

The second stage of experiments focuses on the following time attributes, regard-
ing the launch of the web application from the browser:

1. Recovery & presentation time, of all data in text format.
2. Recovery & Visualization time, required to create a graphic of the selected

records (e.g. a day’s measurements).

These are based on the comparison between different disk architectures (solid
state and hard disk drive) for processing a data set of 42.702 records, from a
relational database management system (MySQL [13]) and a CSV file. These files
are both stored locally on the “/var” directory for Linux experiments, as well
as on “C:/test” directory, regarding Windows Operating System experiments.
A flow chart representing the sequence of events for the 2 stages of experiments
is shown in Fig. 2.

More specifically, the properties of the examined system are the following:
Kernel 4.13.0-38, architecture x86-64 bit, Ubuntu 16.04 LTS, Intel(R) Core(TM)
i7-7700HQ CPU @ 2.80 GHz, RAM 8 GB, HDD ST1000LM035-1RK1 1 TB
5400 rpm, SSD Samsung Electronics Disk 256 GB. Moreover, PHP is executed
with the following specifications: nginx version: nginx/1.10.3 (Ubuntu), PHP
7.0.28-0ubuntu0.16.04.1 (fpm-fcgi) [14]. Respectively, Python’s main packages
used are the following: configparser (3.5.0), Django (2.0.4) [15], Flask (0.12.2)
[16], httplib2 (0.9.1), itsdangerous (0.24), Jinja2 (2.10), louis (2.6.4), lxml (3.5.0),
Mako (1.0.3), MarkupSafe (0.23), mysqlclient (1.3.12), Pillow (3.1.2), pip (9.0.3),
setuptools (39.0.1), virtualenv (15.0.1), Werkzeug (0.14.1).

140 A. Gazis and E. Katsiri

4 First Stage of Tests

4.1 Proposed Method

The first stage of tests was set in Linux Mint and aimed at comparing differ-
ent hard disk architectures, while interacting with a web site. The experiment
involved developing a simple website, which displayed all measurements, for a
time span of certain weeks. In particular, three types of data were available;
timestamp, temperature and humidity attributes. This site was executed locally,
in our computer network, on a local host and summed up 6 different scenarios
of web framework implementations, which collected the records from MySQL or
a CSV file.

As for the architecture of the web app, our main focus was to test the most
widely used frameworks in the field. Generally, there is a vast variety concern-
ing Python Frameworks and the most used ones is Django and Flask. The first
is undoubtedly one of the highest-level frameworks as it uses the Model-View-
Template architecture. This framework enables rapid development of secure and
maintainable websites due to its abstraction layer, availability of third-party
libraries and proposed design pattern (Model-View-Control). In contrast, the
second is mainly used as a tool for fast prototyping and doesn’t offer pre-built
functions and methods out of the box but requires from the user to import them.
In other words, it provides a simple but extensible solution which doesn’t rec-
ommend or force the user to develop a web application in a certain pattern of
design (e.g. usually all the web server is stored in one .py file). Finally, as for
PHP’s framework we selected LAMP stack which is a group of open source soft-
ware tools. More specifically, the acronym stands for Linux (operating system),
Apache (web server), MySQL (database) and PHP (procession of dynamic con-
tent) and when these technologies are combined they enable the user to develop
a server to host web sites and applications.

The cases tested were the following: Python Django fetch from MySQL,
Python Django fetch from CSV file, Python Flask fetch from MySQL, Python
Flask fetch from CSV file, PHP[php-fpm] fetch from MySQL, PHP fetch from
CSV file. When database’s records are displayed, a web page, approximately 2.6
(MB), is generated. In order to achieve these, the curl and time commands were
executed in the Linux terminal (bash shell). The first set of commands served
as a tool which incorporated the necessary -network- protocols to transfer data
from or to a server. In our case study the command was used in order to send
multiple HTML requests, thus acting as if users were browsing through our page.
The second set was responsible for providing the following attributes: User time,
System time, CPU time (total), Wall time and Max resident.

It is noted that due to the complexity of moving the location of the database
for each test, in HDD tests, only the location of the CSV file and the executed
scripts which provide the measurements should be altered. The produced results
are generated from the execution of a script which initiates 10 requests each time
(in a serial manner) and stores the values in a txt file. This number of requests
was selected as the optimal value, after several tests to filter out any possible

Web Frameworks Metrics and Benchmarks for Data Handling 141

outliers. Although, this number should be as high as possible in theory (e.g. 1000)
it is not significant in our case because any possible outlier will be detected during
the first seconds of the test. Additionally, it is noted that a short value of time
such as 1 (ms) or less won’t affect the process of locating the outliers, due to the
fact that more time is needed for the script to be executed inside the terminal.
Each script is executed several times in order to minimize potential errors, while
simultaneously executing the stress command and measuring the outcome of
each iteration, via the top command. When several users are connected to the
site the command siege [17] is used, which allows the simulation of a scenario,
where multiple user requests are made enabling us to test the capabilities of the
server (i.e. the number of handled requests per second).

Moreover, no tests were conducted regarding x86-32 bit architectures, due
to recent developments in technology, since even embedded systems like Rasp-
berry Pi [18] rely on x64-64 bit. Accordingly, the RAM’s size does not affect
the footprint of our cases because it is of small size and it does not affect the
overall system. It should be noted that the available RAM resources are notice-
able, only when a transfer occurs from RAM to swap. During our tests in that
scenario, the computer system supporting the server decreases its response time
to unacceptable levels.

Lastly, the operating system slightly affects the measurements, due to the
use of CPU scaling. Several times, the CPU is not executed in maximum speed
and the frequency of the cores is adjusted, depending on the load. Finally, it
should be noted that this attribute is not connected with CPU time (total)
measurement, in any way.

4.2 Model of Study

The values that are of outmost importance is Max resident and Wall time. These
values can be generated to calculate the overall cost for developing, maintaining
and scaling out our application in the server, thus improving the use of the host’s
cloud service. The first attribute is connected to the capabilities of our system to
serve the user’s request (without using swap), while the second is linked to the
instruction cycles. In other words, these values are an indicator of the necessary
capital and computer power to operate online.

The results regarding measurements of time, via executing the curl com-
mand in SSD-HDD, for 6 proposed cases, are presented in Tables 1, 2 and 3, 4
respectively.

Table 1 presents the time (calculated in seconds) regarding 10 iterations
where an extremely high CPU usage occurs. From this table, we notice that
methods using Python are optimal and less resource consuming than PHP. The
explanation lies in the use of nginx as a web server by PHP [19]. As for the
CPU util attribute which exceeds 100%, this value is not false, it is referring
to an implementation where more than one core is needed for the execution
(Hyper-threading technology).

Table 2 shows similar values with the previous table in the CPU util value. In
this case, additional time is required in order to start and load the needed com-
pilers, interpreters and libraries. The optimal choice in this scenario is Python

142 A. Gazis and E. Katsiri

implementations. Even though, PHP requires less memory in order to achieve
the same results as Flask, the wall time difference is significant since it stops the
execution of the web application, if it is in high values. As a result, the applica-
tion needs to wait idly for the computer system to end up processing in order to
continue its course of action.

Table 3 notes that there is not a substantial difference between the values of
time even for the CSV file, which is unusual. This is because the Operating Sys-
tem’s functionality and more specifically the caching phenomenon that occurred
in Hardware level. As for the database there is no difference in the expected
values due to the fact that the location where the records are stored has not
altered during the test.

Table 4 indicates that, unexpectedly, Python’s frameworks don’t present an
optimal solution for the proposed web application. As a result, these measure-
ments are connected with the Input-Output of each operation in the compiler of
PHP language and thus are extended to the execution of MySQL fetching.

Lastly, the first stage of tests was concluded with the use of a script that
run the siege command for 10 s and 20 parallel connections (benchmark mode).
In order to evaluate the extracted quantities, “news247” [20] i.e. one of the
largest Greek news site, as well as “Twitter” [21] i.e an online news and social
networking service, was used as a reference point. The results are presented
in Table 5 and provide a unique insight, presenting a detailed overview of the
system’s properties. More specifically [17]:

1. Concurrency: average simultaneous connections (value increases as server per-
formance decreases);

2. Data transferred: sum of transferred data for every simulated user (header
information included);

3. Transactions: server hits (redirections & authentication challenges count as
two hits);

4. Response time: average server time to respond to each simulated user’s
requests.

Specifically, the implementations of PHP programming language that make
use of nginx cannot be compared with Python’s, in case of multiple parallel
simultaneous user requests. As evident from our results, PHP may handle 5
additional requests per second, in this case study. The explanation lies in the
fact that Python is single-thread and even thought Django can be executed
using multiple threads this implementation requires many configurations, which
are not worth setting up for simple projects, such as the minimum size web page.
As a result, this table shows the measurements for one connection per user of
the page and thus loses its attribute of comparison due to lack of the parallel
connections. The conclusion reached from the set of tests is that Python web
frameworks are faster in cases of one connection. More importantly, the needed
resources range in the same levels.

4.3 Results

To sum up, when fetching data from a CSV file - Database, a significant difference
does not occur. It should be noted that the use of MySQL offers optimal results

Web Frameworks Metrics and Benchmarks for Data Handling 143

out of the box, when we alter data type accordingly. In addition, MySQL offers
far more options to search records, whereas in a txt file, the same process is
extremely slow and sluggish thus, the use of MySQL reduces the overall volume
of data to be transmitted over the network.

Moreover, another important factor to take under consideration is the com-
plexity of the installation. This fact extends to the language, as well as the
needed tools in order to set up a server (locally) to host our website. In particu-
lar, Flask is easier to install, up to the point of running our full-stack application,
especially in comparison to Django framework. The reason for this is that Flask
simply encapsulates the whole application, visualization and site options in a
single file (.py). In addition, Django framework offers far more features when it
is set up but this is accurate only if we follow the conventions for development,
as mentioned in the official documentation [22]. The recommended methods and
patterns require a great deal of work and familiarity in order to rapidly create the
necessary folders, sub-folder, etc. in compliance to each site’s function. On the
contrary, PHP is simple to install and implications only occur to the properties
of nginx, where technical knowledge is necessary. Subsequently, it is proposed to
use nginx, due to the fact that both Django and nginx are characterized by a
better performance for static data (images, JavaScript files etc.).

Finally, a single programming language and by extension a framework can-
not be proposed, in order to produce the optimal web application. The above-
mentioned results show that each case scenario need to be thoroughly examined,
in order to select the best tool. In general terms, when there is a need to develop
a web application for a simple model of study (e.g. to present some measure-
ments, sensor values etc.) Python Programming Language should be selected
over PHP. Moreover, if front-end presentation of the site is not a priority, the
use of Flask framework is proposed, as it is quick to set up and deployed. In
addition, if there is a demand for developing a project on which several differ-
ent versions and software engineers will collaborate, then Django would be the
optimal choice. This lies in the fact that seemingly time spending procedures
(i.e. creation and storage of files in specific locations, general rules for naming
files and functions) are part of the overall philosophy around the Model-View-
Template architecture. These patterns are used in order to develop, maintain and
scale up an application. They also facilitate the team of engineers to understand
and elaborate in a cost-efficient manner. As for the format of the file where our
data is stored, if there is a need to perform a search or sorting of our records,
then a database is by far considered a better solution than a CSV file.

5 Second Stage of Tests

5.1 Proposed Method

The second stage of tests was set in a virtual machine where several different
operating systems and computer architectures were thoroughly examined. In
this stage, the aim was to compare and assess the Duration of Time, in terms of
Operating systems and available System Resources. The hardware benchmarks

144 A. Gazis and E. Katsiri

were provided via the use of the same data set, in CSV format and SQLite
[23], instead of MySQL. The change in SQLite, an embedded type of database,
from the “traditional” choice of the previous stage of test, was implemented in
order to further shrink the overall system size. This database is used vastly in
measurements regarding the Internet of Things, because it is: easily extended for
all types of electronic devices and capable of rapidly importing and exporting
raw data to and from CSV files. In addition, it provides fast and reliable data
services to applications of low or medium traffic websites, which have fewer than
100 K hits per day [24]. In this stage, we created a virtual machine for each test
with specific hardware specifications and we made a clean installation of each
language and the packages/frameworks, then we executed a full database dump,
as well as a day’s measurement visualization. The aim was to develop a sandbox
environment for each scenario and to extract measurements for each process,
regarding the attribute of time. The measurements presented in the following
sections were extracted and validated with two different tools, for each tested
operated system (for Linux, via the use of system monitor & Glances [25] and
for Windows via task manager & Process Explorer [26]).

5.2 Model of Study

This stage of experiments was consisted of 3 attributes from a database. The
aim was to dump all the available records in a website, display a day’s records
(approximately 200 measurements) and visualize all the above. We selected the
visualization of a day’s records because there is no practical use of visualizing all
the available data in a dataset of this size. This time, all tests were executed from
a SSD, in order to obtain maximum read and write speeds for the performed
tests. The visualization was consisted of a day’s data as shown in Fig. 1.

5.3 Results

Firstly, using the process-time() function for Django Framework version 2.0.5
and Python 3.6.5, we acquire the necessary measurements from Google Chrome
66.0.3359.139 [27]. Secondly, through the same tests, we extracted results, regard-
ing Flask Framework version 1.0.2 and Python 3.6.5. As for the PHP implemen-
tation, lamp software bundle was used which is a model of several web service
stacks. The ones used were: PHP 7.2.5/7.1.17/7.0.30/5.6.36. In addition, through
these tests, we did not note measurements for the boot time of each framework,
because apache2 is executed as a service in the Operating System. Results from a
day’s measurements are presented in Table 6, as well as an indicative case study
in Fig. 3, regarding the Retrieval and Display time for a mini PC of 2 Cores and
2/4 [GB] of RAM.

5.4 Results

A thorough analysis was made regarding a real, low budget system, which could
be used locally as a server to host our web application. Several tests were made

Web Frameworks Metrics and Benchmarks for Data Handling 145

requiring that system which run Linux, which were consisted of different software
architectures and computer systems. The above tables are important, so as to
compare PHP and Python, as well as to assess and calculate the necessary budget
for power and equipment, depending on our needs, in order to host an application
online. As far as the boot time for Windows 10 is concerned, regardless of the
architecture, Python Frameworks implementation is preferable, i.e. the ratio of
speed performance is approximately 3 to 1. Moreover, the test case of multiple
cores is interesting, because the above ratio for Python remains in a value range
of similar levels, as for PHP. In addition, the PHP tests for Unix operating
systems show that except for boot time, there is not a great dependency of the
overall performance over the number of available CPU cores in the system.

As for the tests conducted regarding the visualization process for a day’s
records in Windows 10, while Python frameworks time measurements range
between similar values, in PHP implementation, if more resources are provided
-specifically increasing RAM size-, a decrease in the time is noted, so as to
retrieve and visualize the available information. This, is very important, as it
decreases the waiting time for each page request, thus leading to a smoother
user experience. In the last tests, where we increased the provided RAM size,
while the RAM’s size increases, the PHP and Python frameworks tend to acquire
the same system performance. Based on the above tables, for a system with 2
cores minimum and 4 GB of RAM, the framework does not affect the mea-
surements regarding the time attributes, as there is no fluctuations between its
values. Accordingly, Unix time measurements are generally similar to Windows,
except for the Flask framework, where there is a small improvement in the user’s
response time (for a small amount of RAM, with max availability: 1 GB).

Moreover, regarding the CPU utilization, for various RAM sizes, similar
results are drawn from all of our tests. Likewise, a change in RAM’s size is
not observed, if there is an alternation in the available CPU cores, which was an
expected behavior. As for the tests of CPU utilization in Windows, there is a big
difference between the 3 examined frameworks. Python is preferable regarding
all CPU % consumption, regardless of the RAM’s size availability, whereas PHP
frameworks are less effective and far more power demanding. Thus, we can state
that the use of a system like Raspberry Pi, which was the original system host-
ing our website is a relatively optimal choice, in order to achieve good results,
as the 1 GB of RAM and the overall CPU % consumption is low, apart from
PHP. The benchmarks, regarding the use of Raspberry Pi as a server, running
a Debian-based operating system, Raspbian [29], are presented in Table 7. This
is very important in order to select and calculate the future pricing of a cloud
service, i.e. the costs of future scale up.

6 Future Work

A simple web application was developed and tested, in order to examine the
impact of two programming languages and its mainstream used Frameworks.
As for future recommendations, more tests for asynchronous requests could be

146 A. Gazis and E. Katsiri

added. Emphasis should be given on frameworks that strictly focus on the use
of Model View Control (similar to Model-View-Template of Django) Architec-
ture over PHP’s Laravel [28] and Python’s Django frameworks. By the same
token, more micro frameworks, like Flask, can be put under the microscope,
such as PHP’s Silex [30] or Ruby’s Sinatra [31] or Java’s Spark [32]. In addi-
tion, it would be interesting to enhance our tests, via using more languages and
frameworks, such as de facto enterprises’ language Java and Spring [33], Ruby
and by extension Ruby on Rails [34], as well as contemporary technologies, i.e.
JavaScript Node.js [35] and Angular.js [36]. In addition, we could study multi-
threading cases, which are necessary for implementations associated with data
visualization and provide a tool or a web extension that could instantly execute
the above-mentioned test stages [37].

Fig. 1. Data visualization regarding a day’s measurement of approximately 200 records

Fig. 2. Flow chart representing the sequence of events for the 2 stages of experiments

Web Frameworks Metrics and Benchmarks for Data Handling 147

Fig. 3. PHP (LAMP) - Flask - Django Retrieval and Display measurements for the
whole dataset regarding the case study of 2 cores and 2/4 GB of RAM (e.g. mini PC)

Table 1. SSD time duration measurements via executing curl command

Django Flask PHP

MySQL CSV MySQL CSV MySQL CSV

User time 0.02 0.04 0.02 0.03 0.04 0.03

System time 0.02 0.01 0.02 0.02 0.05 0.06

CPU time (total) 0.04 0.05 0.04 0.05 0.09 0.09

Wall time 0.05 0.05 0.04 0.05 0.7 0.67

Max resident [MB] 7.6 7.6 7.6 7.6 7.6 7.6

CPU util 98% 101% 102% 91% 13% 15%

Table 2. SSD time duration measurements via executing direct requests

Flask PHP

MySQL CSV MySQL CSV

User time 2.56 2.27 1,09 1.25

System time 0.24 0.28 4.9 4.66

CPU time (total) 2.8 2.55 5.99 5.91

Wall time 2.82 2.56 6.08 5.98

Max resident [MB] 54.6 54.6 47.1 47.0

CPU util 99% 99% 98% 98%

Moreover, during the first stage of experiments, regarding attributes of com-
puter networks, we noticed strange results explained by the use of nginx over
the PHP implementation. It would be interesting to re-run all the above and
use nginx or extract measurements regarding WSGI and uWSGi with Nginx in
Flask's and Django's framework. Similar tests can be expanded to bigger data
sets that would use Apache Hadoop [38], Apache Spark [39], High-Performance
Computing Cluster and Google BigQuery [40]. In addition, an extensive study
can be conducted, regarding the enhancement of users’ experience operating on
small computer systems, such as Raspberry Pi. For example, simple tasks, as the

148 A. Gazis and E. Katsiri

provision of a database dump, proved resource-intensive and provided unsatis-
fying results, since the system had free (idle) CPU cycles. An interesting task
would be the development of a networked computer grid, e.g. several Raspber-
ries, which extract measurements (slaves) and are connected to one (master) that
solely analyzes data and hosts the server [41], so as to implement techniques for
CPU scavenging, as mentioned in: [42,43].

Finally, all these results could be modeled in a Neural Network that would
predict and monitor the optimal hardware for each problem, the possible selec-
tions regarding data provided by the user, the cost to scale up an application in
the cloud (mainly for the CPU % consumption) if it exceeds the capabilities of
our server and more importantly the ratio, regarding the cost of hardware and
high cloud service standards [44,45].

Table 3. HDD time duration measurements via executing curl command

Django Flask PHP

MySQL CSV MySQL CSV MySQL CSV

User time 0.01 0.02 0.03 0.03 0.03 0.07

System time 0.03 0.02 0.01 0.02 0.08 0.04

CPU time (total) 0.04 0.04 0.04 0.05 0.11 0.11

Wall time 0.05 0.05 0.04 0.37 0.59 0.59

Max resident [MB] 7.6 7.6 7.6 7.6 7.6 7.6

CPU util 104% 104% 104% 17% 16% 19%

Table 4. HDD time duration measurements via executing direct requests

Flask PHP

MySQL CSV MySQL CSV

User time 2.36 2.33 3.4 3.24

System time 0.24 0.28 27.84 27.5

CPU time (total) 2.6 2.61 31.23 30.74

Wall time 2.73 2.75 95.58 94.11

Max resident [MB] 54.6 54.6 47.1 47.0

CPU util 99% 99% 32% 32%

Table 5. Required resources by the computer system during siege execution

Flask Django PHP - SSD PHP - HDD news247.gr twitter.

com

MySQL CSV MySQL CSV MySQL CSV MySQL CSV

Concurrency 17.19 17.34 17.19 17.24 19.49 19.50 19.46 19.58 18.51 19.06

Data transferred [MB] 182.19 138.57 182.19 138.57 987.97 1098.32 952.04 1159.91 21.71 6.25

Transactions [hits] 73 53 71 54 385 428 371 452 184 240

Response time [sec] 2.25 3.19 2.25 3.19 0.51 0.46 0.52 0.43 1.01 0.79

Web Frameworks Metrics and Benchmarks for Data Handling 149

Table 6. Django-Flask-PHP web stack(lamp) frameworks Retrieval and Visualization
(regarding Fig. 1) time measurements for a day’s records

Test Results for 1,2,4 [GB] of RAM
Django Flask PHP

1 Core 2 Cores 4 Cores 1 Core 2 Cores 4 Cores 1 Core 2 Cores 4 Cores
Windows 10 x32 (Build 15063) 3.44 2.99 2.94 3.20 3.01 2.90 2.43 2.23 2.17 3.28 2.86 2.82 3.03 3.00 2.73 2.43 2.23 2.14 3.89 2.99 2.93 3.48 3.47 3.44 2.84 2.80 2.76

Windows 10 x64 (Build 15063) - 3.14 2.99 - 2.78 2.56 - 2.45 2.20 - 3.10 2.87 - 2.61 2.38 - 2.44 2.14 - 3.71 3.53 - 3.06 2.85 - 2.77 2.71

Ubuntu x32
16.04.4

3.33 3.01 3.0 3.23 3.20 3.18 3.23 3.21 3.20 3.22 3.17 3.15 3.15 3.06 3.02 3.29 2.89 2.84 3.83 3.60 3.30 3.73 3.53 3.26 3.32 3.26 2.94

Ubuntu x64
16.04.4 - 3.04 3.0 - 2.45 2.43 - 2.39 2.14 - 3.00 2.88 - 2.88 2.25 - 2.38 2.08 - 3.61 3.01 - 2.73 2.72 - 2.71 2.65

Debian x32
9.4.0 3.27 3.20 3.20 3.20 3.19 3.19 3.19 3.19 3.17 3.18 3.13 3.14 3.23 3.08 3.04 3.03 3.16 3.01 3.79 3.26 3.25 3.73 3.71 3.36 3.79 3.26 3.25

Debian x64
9.4.0 - 2.99 2.93 - 2.44 2.37 - 2.30 2.24 - 2.95 2.81 - 2.27 2.19 - 2.29 2.18 - 3.56 2.94 - 2.66 2.72 - 2.75 2.63

Table 7. Raspberry Pi’s benchmarks, regarding daily and overall measurements

DjangoFlaskPHP

Boot time [sec] 4.93 4.53 5.26

Ram required (without background processes) [MB] 27.9 22.1 49.5

CPU usage at server launch 27% 19% 32%

Retrieval time for 200 measurements (a day) [sec] 1.08 0.89 1.13

Retrieval time for the whole dataset [sec] 25.21 24 27

Visualization time for 200 measurements (a day) [sec] 4.17 3.77 4.77

Visualization time for the whole dataset [sec] 57.08 56.05 59

Maximum RAM required for 200 measurements (a day) [MB] 37 29 56

Maximum RAM required for the whole dataset [MB] 53.2 53 61

Maximum CPU usage for 200 measurements (a day) 7.02% 4% 11.83%

Maximum CPU usage for the whole dataset 24% 27% 34%

References

1. Tiobe index (2018). https://www.tiobe.com/tiobe-index/
2. Titchkosky, L., Arlitt, M., Williamson, C.: A performance comparison of dynamic

web technologies. SIGMETRICS Perform. Eval. Rev. 31, 2–11 (2003)
3. Shenker, S.: Fundamental design issues for the future internet. IEEE J. Sel. Areas

Commun. 13, 1176–1188 (1995)
4. Drath, R., Horch, A.: Industrie 4.0: hit or hype? [industry forum]. IEEE Ind.

Electron. Mag. 8, 56–58 (2014)
5. Hermann, M., Pentek, T., Otto, B.: Design principles for industrie 4.0 scenarios. In:

49th Hawaii International Conference on System Sciences (HICSS), pp. 3928–3937,
January 2016

6. Wan, J., Tang, S., Shu, Z., Li, D., Wang, S., Imran, M., Vasilakos, A.V.: Software-
defined industrial internet of things in the context of industry 4.0. IEEE Sens. J.
16, 7373–7380 (2016)

7. Vigo, M., Brajnik, G.: Automatic web accessibility metrics: where we are and where
we can go. Interact. Comput. 23, 137–155 (2011)

https://www.tiobe.com/tiobe-index/

150 A. Gazis and E. Katsiri

8. Matias, Y.: On big data algorithmics. In: Epstein, L., Ferragina, P. (eds.) ESA
2012. LNCS, vol. 7501, p. 1. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-33090-2 1

9. Dhyani, D., Ng, W.K., Bhowmick, S.S.: A survey of web metrics. ACM Comput.
Surv. 34(4), 469–503 (2002)

10. Jailia, M., Kumar, A., Agarwal, M., Sinha, I.: Behavior of MVC (model view
controller) based web application developed in PHP and .NET framework. In:
International Conference on ICT in Business Industry Government (ICTBIG), pp.
1–5, November 2016

11. Barford, P., Crovella, M.: Generating representative web workloads for network
and server performance evaluation (1997)

12. Walker, D., Orooji, A.: Metrics for web programming frameworks. In: International
Conference on Semantic Web and Web Services (2011)

13. Mysql (2018). https://www.mysql.com/
14. Php-fpm (2018). https://www.php-fpm.org
15. The web framework for perfectionists with deadlines (2018). https://www.

djangoproject.com
16. Welcome—flask (a python microframework) (2018). http://www.flask.pocoo.org
17. Siege(1): HTTP/HTTPS stress tester - Linux man page (2018). https://linux.die.

net/man/1/siege
18. Raspberry pi-teach, learn and make with raspberry pi (2018). https://www.

raspberrypi.org
19. Nginx—high performance load balancer, web server, reverse (2018). https://www.

nginx.com
20. News247 (2018). https://www.news247.gr
21. Twitter. It’s what’s happening (2018). https://twitter.com
22. Django documentation (2018). https://docs.djangoproject.com/en/2.0/
23. Sqlite home page (2018). https://www.sqlite.org/
24. Appropriate uses for sqlite (2018). https://www.sqlite.org/whentouse.html
25. Glances - an eye on your system (2018). https://nicolargo.github.io/glances/
26. Process explorer — windows sysinternals — microsoft docs (2018). https://docs.

microsoft.com/en372us/sysinternals/downloads/process-explorer
27. Chrome web browser - Google (2018). https://www.google.com/chrome/
28. Laravel-the php framework for web artisans (2018). https://www.laravel.com
29. Raspbian (2018). https://www.raspbian.org
30. Silex - the php micro-framework based on the symfony (2018). https://silex.

symfony.com
31. Sinatra: Classy web-development dressed in a dsl (2018). https://github.com/

sinatra/sinatra
32. Spark Framework: An expressive web framework for Kotlin and Java (2018).

http://sparkjava.com
33. Spring (2018). https://spring.io
34. Ruby on rails — a web-application framework that includes everything (2018).

https://rubyonrails.org
35. Http — node.js v10.6.0 documentation (2018). https://nodejs.org/api/http.html
36. Angular (2018). https://angular.io
37. Gutwin, C.A., Lippold, M., Graham, T.C.N.: Real-time groupware in the browser:

testing the performance of web-based networking. In: Proceedings of the ACM
Conference on Computer Supported Cooperative Work - CSCW, pp. 167–176.
ACM, New York (2011)

https://doi.org/10.1007/978-3-642-33090-2_1
https://doi.org/10.1007/978-3-642-33090-2_1
https://www.mysql.com/
https://www.php-fpm.org
https://www.djangoproject.com
https://www.djangoproject.com
http://www.flask.pocoo.org
https://linux.die.net/man/1/siege
https://linux.die.net/man/1/siege
https://www.raspberrypi.org
https://www.raspberrypi.org
https://www.nginx.com
https://www.nginx.com
https://www.news247.gr
https://twitter.com
https://docs.djangoproject.com/en/2.0/
https://www.sqlite.org/
https://www.sqlite.org/whentouse.html
https://nicolargo.github.io/glances/
https://docs.microsoft.com/en372us/sysinternals/downloads/process-explorer
https://docs.microsoft.com/en372us/sysinternals/downloads/process-explorer
https://www.google.com/chrome/
https://www.laravel.com
https://www.raspbian.org
https://silex.symfony.com
https://silex.symfony.com
https://github.com/sinatra/sinatra
https://github.com/sinatra/sinatra
http://sparkjava.com
https://spring.io
https://rubyonrails.org
https://nodejs.org/api/http.html
https://angular.io

Web Frameworks Metrics and Benchmarks for Data Handling 151

38. Apache Hadoop (2018). https://hadoop.apache.org/
39. Apache Spark - Unified Analytics Engine for Big Data (2018). https://spark.

apache.org/
40. BigQuery - Analytics Data Warehouse — BigQuery — Google Cloud (2018).

https://cloud.google.com/bigquery/
41. Gazis, A., Stamatis, K., Katsiri, E.: A method for counting, tracking and moni-

toring of visitors with RFID sensors model of study: M. Hatzidakis residence. In:
Proceedings of 10th Panhellenic Electrical and Computer Engineering Students
Conference (ECESCON), pp. 199–204, March 2018

42. Calvo, I., Gil-Garćıa, J.M., Recio, I., López, A., Quesada, J.: Building IoT appli-
cations with raspberry Pi and low power IQRF communication modules. Electron.
Raspberry Pi Technol. 5, 54 (2016)

43. Martinez, B., Vilajosana, X., Chraim, F., Vilajosana, I., Pister, K.S.J.: When
scavengers meet industrial wireless. IEEE Trans. Ind. Electron. 62(5), 2994–3003
(2015)

44. Pal, S.K., Talwar, V., Mitra, P.: Web mining in soft computing framework: rele-
vance, state of the art and future directions. IEEE Trans. Neural Netw. 13, 1163–
1177 (2002)

45. Elhadik, S., Desoky, A.: Cognitive performance application. In: 2017 IEEE Inter-
national Symposium on Signal Processing and Information Technology (ISSPIT),
pp. 317–324, December 2017

https://hadoop.apache.org/
https://spark.apache.org/
https://spark.apache.org/
https://cloud.google.com/bigquery/

Algorithms for Cloud-Based Smart
Mobility

Kalliopi Giannakopoulou1,2(B)

1 Department of Computer Engineering and Informatics, University of Patras,
26504 Patras, Greece

2 Computer Technology Institute and Press “Diophantus”, 26504 Patras, Greece
gianakok@ceid.upatras.gr

Abstract. Innovative algorithm technology plays an important role in
smart city applications. In this work, we review some recent innovative
algorithmic approaches that contributed decisively in the development
of efficient and effective cloud-based systems for smart mobility in urban
environments.

1 Introduction

Developing personalized mobility services in urban environments that combine
public transportation modalities (metro, bus, tram, light rail, etc.) along with the
emergence of modern transportation models like bicycles, electro-mobility, and
car sharing are considered vital in creating efficient renewable mobility chains
for travelers. Such a development is characterized by a host of grand challenges
that concern route planning in urban traffic networks as well as provision of
innovative features of urban mobility.

Modern urban mobility requirements call for the development of integrated
applications that will offer an urban traveler several innovative features. Some
of the most prominent features include:

– Renewable mobility on demand : an end-user with a variety of requests, requir-
ing a multitude of eco-friendly services, should be offered a host of intermodal
mobility opportunities, including electric vehicle (EV) transportation options.
EVs supplement public transportation systems, providing mobility for the
first and last part of a trip, which means that an ideal deployment would be
in urban car sharing fleets located near public transport hubs.

– Integrated personal mobility : support and provide intermodal mobility oppor-
tunities for individuals (with emphasis on environmentally friendly means of
transportation, such as bicycles and electric transportation media), which give
the traveler the possibility to combine various means of transportation in an
efficient mobility-chain. This is in line with the next generation bike-sharing
systems that are built in major European cities.

– Information Updating : the characteristics of real-world transport networks,
apart from demonstrating a predetermined behavior, also have to cope with

c© Springer Nature Switzerland AG 2019
Y. Disser and V. S. Verykios (Eds.): ALGOCLOUD 2018, LNCS 11409, pp. 152–168, 2019.
https://doi.org/10.1007/978-3-030-19759-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19759-9_10&domain=pdf
https://doi.org/10.1007/978-3-030-19759-9_10

Algorithms for Cloud-Based Smart Mobility 153

unpredicted incidents (e.g., temporal blockages of road segments due to con-
struction works, accidents, delays of trains or buses, etc.), which are typically
reported by several sources of information (e.g., municipality, police, travelers
themselves). This live-traffic information has to efficiently update the historic
traffic information, so that the routing service provides actual routes to the
travelers (updating, if necessary, their initial plan).

The efficient and effective support of these features entails the development
of sophisticated route planning applications, whose core components have to lie
on a cloud architecture, in order to guarantee data persistence, interoperability
with other traffic-related information sources, and transparent accessibility by
the travelers. In such applications, the route planning queries are sent, from the
mobile device of a traveler, to a routing engine residing at some cloud infras-
tructure, which in turn sends back the answers to the mobile device. Apart from
communication latency, service efficiency heavily depends on the response time
of the routing engine. This is a highly non-trivial challenge when route planning
concerns large-scale transportation networks. Consequently, the efficient devel-
opment of cloud-based routing services depends on the one hand on the overall
architectural setting, and on the other hand on the algorithmic efficiency of the
routing engine.

In this work, we survey recent innovative algorithmic technology embedded in
core routing engines of cloud-based mobility applications in urban environments
that played a critical role in the efficient development of such services and their
effective applicability in practice. A prime example concerns the applications
developed in the frame of [11,20]. In particular, we review algorithms for routing
in road networks and for computing itineraries in multimodal public transit
networks.

2 Algorithms for Smart Mobility in Road Networks

An important characteristic of road networks is that their travel time metric
is time-dependent. Hence, any routing engine that wishes to provide accurate
arrival travel time estimations at a desired destination, when a traveler starts
at a certain origin at a particular departing time, should take time-dependent
travel times into account.

All algorithmic approaches for time-dependent route planning in road net-
works first pre-process the input network so that subsequently queries for any
origin-destination pair is answered instantaneously. In this setting, two main
approaches were appeared: (i) heuristic techniques that speedup query time
responses, while providing empirical evidence of the quality of the returned solu-
tion; and (ii) succinct data structures (oracles) that answer queries fast, while
delivering a provable guarantee on the quality of the returned solution.

Along this framework, we shall review in this section two leading algorithmic
techniques. In particular, the technique in [2] that falls within the heuristic
approach, and the techniques in [12,17–19] that fall within the oracle approach.
We shall elaborate more on the latter due to its special feature of providing a

154 K. Giannakopoulou

quality guarantee in the returned solution. All algorithmic techniques constituted
the core routing engines of many modules in an integrated cloud-based mobility
application [11,20].

2.1 Time-Dependent Heuristics

The work in [2] is an empirical approach (speedup technique) based on an exten-
sion of the Customizable Route Planning (CRP) technique [6]. CRP offloads
most preprocessing effort to a metric-independent, separator-based phase. Pre-
processed data is then customized to a given routing (time-independent) metric
for the whole network within seconds or below. This also enables robust integra-
tion of user preferences.

The approach in [2], called time-dependent CRP (TDCRP), carefully extends
CRP to time-dependent functions. As such, TDCRP evaluates partition-based
overlays on a challenging non-scalar metric by integrating profile search into
CRP’s customization phase and by computing time-dependent overlays. Unlike
CRP, a naive extension fails, since shortcuts on higher-level overlays are too
expensive to be kept in memory (and too expensive to evaluate during queries).
To reduce functional complexity, TDCRP approximates overlay arcs. In fact,
approximation subject to a very small error suffices to make the approach prac-
tical. The resulting algorithmic framework enables interactive queries with low
average and maximum error in a very realistic scenario consisting of live traf-
fic, short-term traffic predictions, and historic traffic patterns. Moreover, it sup-
ports user preferences such as lower maximum driving speeds or the avoidance of
highways. In an extensive experimental setup, it is demonstrated that TDCRP
enables integration of custom updates much faster than previous approaches,
while allowing fast queries that enable interactive applications. It is also robust
to changes in the metric that turn out to be much harder for previous techniques.

2.2 Time-Dependent Oracles

The work in [18,19] are the first approaches that provide provable approxima-
tion guarantees to time-dependent travel time estimations, as they is based on
new theoretical methods. In particular, in [18,19] new structures (oracles) are
provided which allow efficient preprocessing of the input network (provably sub-
quadratic on its size) so that subsequently queries can be answered efficiently
estimating the arrival time at destination with a provable approximation guar-
antee.

The main idea is to select a proper subset of network nodes (landmarks)
from which travel time summaries to all destinations are pre-computed. Then,
the query algorithms exploit these summaries to provide approximate arrival
travel-time estimates of a provably very small error.

The cloud-based structure of the time-dependent routing (TDR) oracles in
[18,19] is described in [12]. The particular TDR engine provides fast and accurate
shortest-path responses, exploiting a set of traffic-related data of three main
types:

Algorithms for Cloud-Based Smart Mobility 155

– Periodically updated raw traffic data (arc travel-time functions).
– Traffic metadata periodically produced in a preprocessing phase (landmark

travel-time summaries provided by the time-dependent oracle).
– Live-traffic reports, that is, emergency alerts produced in an ad-hoc fashion

by crowdsourcing and traffic-prediction mechanisms. Additionally, periodi-
cally updated snapshots of the traffic-related data are disseminated to the
travelers’ smartphone devices, in support of elementary routing services (as
a contingency plan in case of connectivity loss with the cloud).

The TDR service supports three approximate query algorithms, which pro-
vide significantly fast and accurate min-cost route plan responses to arbitrary
shortest-path queries, by exploiting the historical and temporal traffic-related
information kept in the cloud-server. The TDR-daemon continuously runs
and accepts incoming origin/destination/departure-time shortest-path queries
(o, d, to). For each one of them, a selected query algorithm is called that returns
either the exact travel-time value corresponding to the exact o-d path, or an
approximate travel-time value via an appropriate landmark-node �, which cor-
responds to an approximate o-�-d path. The query algorithms are as follows.

– FCA: it grows a Time-Dependent-Dijkstra (TDD) ball1 from (o, to) until
either d or the closest landmark �o is settled. It then returns either the exact
solution, or an (1 + ε + ψ)-approximate value via lo, where ε is a small con-
stant imposed by the preprocessing phase, and ψ is another small constant
depending on the characteristics of the travel-time functions but not on the
size of the network.

– FCA+(N): it is the default query algorithm provided by TDR. It is a variant
of FCA which keeps growing a TDD ball from (o, to) until either d or a given
number N of landmarks is settled. FCA+ then returns the exact travel-time
value or the smallest via-landmark approximate travel-time value, among all
N settled landmarks. Theoretically, the approximation guarantee is the same
as that of FCA, but the practical performance of FCA+ is impressive.

– RQA: it exploits a number r (called the recursion budget) of recursive accesses
to the landmark-based preprocessed information, each of which produces (via
calls to FCA) additional candidate o-d paths. In that way, RQA improves the
approximation guarantee provided by FCA. The idea of RQA is that as long as
d has not yet been discovered within the explored area around the origin, and
there is still some remaining recursion budget, it “guesses” (by exhaustively
searching for it) the next node of the boundary set of touched nodes (i.e., still
in the priority queue) along the unknown o-d path. At the end, it returns the
best among all paths found.

An extensive experimental study of the TDR oracles in [18,19] has been
carried out in [16], demonstrating their practicality on real-world road networks.
The experimental study has also shown that in the vast majority of the queries
the exact solution is discovered by all three algorithms.
1 It runs TDD [10], a straightforward time-dependent variant of Dijkstra’s algorithm,

whose growing of search space (set of settled nodes) resembles the growing of a ball.

156 K. Giannakopoulou

In the above oracle framework, a new time-dependent distance oracle
(CFLAT) was presented in [17], which is the first oracle that preprocesses com-
binatorial structures (collections of time-stamped min-travel-time-path trees)
rather than travel-time functions, and which exhibits an impressive practical
performance.

CFLAT works as follows. In a preprocessing phase, it constructs and com-
pactly stores min-cost-path trees at carefully sampled departure-times, rooted at
each landmark �. This is achieved through a new approximation method, called
CTRAP, whose novelty relies in exploiting the fact that there are significantly
fewer changes in the combinatorial structure, than in the functional descrip-
tion of the optimal solution. Moreover, multiple copies of the same preprocessed
information are avoided, by organizing the destinations from a landmark into
groups of (roughly) equidistant vertices, for which the common departure-times
sequence is stored only once.

A query (o, d, to) is answered by algorithm CFCA(N), which starts by grow-
ing a TDD ball from o at time to, until either d or the N closest landmarks
are settled. In the latter case, starting from d, a suitably small subgraph is
constructed (consisting of certain paths going from d back to o, using the set-
tled landmarks as “attractors”), until a settled vertex of the initial TDD ball is
reached. Then, a continuation of growing the initial TDD ball on the resulted
small subgraph returns an od path that turns out to approximate very well
the optimal od path. Note that CFCA computes the actual connecting path
that preserves the theoretical approximation guarantees. To make it practical
and tackle the main burden of landmark-based oracles (the large preprocessing
requirements), CFLAT is extensively engineered.

The practical performance of CFLAT was assessed on two real-world bench-
mark instances, the urban area of Berlin and the national road network of Ger-
many. In particular, for Berlin, using 16K landmarks (N = 1), a query time of
0.064 msec with a relative error of 0.0021 is achieved. For Germany, using 4K
landmarks (N = 1), a query time of 0.057 msec with a relative error of 0.0078 is
achieved. This query-time performance is competitive to state-of-the-art speedup
heuristics for time-dependent road networks, whose query-times in most cases
do not account for path construction.

3 Algorithms for Smart Mobility in Public Transit
Networks

In this section, we review the algorithmic technology required to tackle effi-
ciently the multimodal routing or journey planning problem in public transport
networks. We consider multimodal schedule-based public transport (e.g., train,
bus, tram) along with unrestricted w.r.t. departing time traveling (walking and
electric vehicles – EVs).

The two most common optimization problems in multimodal journey plan-
ning are: (i) the earliest arrival-time problem (EAP), in which one is interested in
finding the best (or optimal) journey that minimizes the traveling time required

Algorithms for Cloud-Based Smart Mobility 157

to complete it; (ii) the minimum number of transfers problem (MNTP), in which
one is interested in computing a best journey that minimizes the number of times
a passenger needs to change vehicle during the journey; (iii) the multicriteria
version of these two (EA and MNT) optimization criteria.

For solving the aforementioned problems, we consider two prime approaches,
both of which preprocess the input (multimodal) transport network so that sub-
sequently queries are answered fast. The first one [5,8] is an array-based approach
that puts more emphasis in providing fast answers to multimodal and multicrite-
ria queries. The second one [3,4] is a graph-based approach that deals efficiently
both wrt to fast query answering as well as with extremely fast updating of
multimodal routing (itinerary) information in case of delays. For this reason
(extremely efficient update routine in case of delays), we shall elaborate more
on the second approach.

3.1 Array-Based Approaches

We start our exposition with the classical Multi-Label-Correcting (MLC)
algorithm [22]. The MLC algorithm is a multicriteria shortest-path algorithm
that finds full Pareto sets for arbitrary criteria that can be modeled as arc costs.
MLC extends Dijkstra’s algorithm by operating on labels that have multiple
values, one per criterion. Each vertex v maintains a bag B(v) of non-dominated
labels. In each iteration, MLC extracts from a priority queue the minimum (in
lexicographic order) unprocessed label L(u). For each arc (u, v) out of the asso-
ciated vertex u, MLC creates a new label L(v) (by extending L(u) in the natural
way) and inserts it into B(v). New dominated labels (possibly including L(v)
itself) are discarded, and the priority queue is updated if needed. MLC can be
sped up with target pruning and by avoiding unnecessary domination checks.

The RAPTOR (Round bAsed Public Transit Optimized Router) algorithm
[8] was introduced as a faster alternative to MLC for public transportation net-
works. The simplest version of the algorithm optimizes two criteria: arrival time
and number of transfers. Unlike MLC, which searches a graph, RAPTOR uses
dynamic programming to operate directly on the timetable. It works in rounds,
with round i processing all relevant journeys with exactly i − 1 transfers. It
maintains one label per round i and stop p representing the best known arrival
time at p for up to i trips. During round i, the algorithm processes each route
once. It reads arrival times from round i − 1 to determine relevant trips (on
the route) and updates the labels of round i at every stop along the way. Once
all routes are processed, the algorithm considers potential transfers to nearby
(predefined) stops in a second phase. Simpler data structures and better locality
make RAPTOR an order of magnitude faster than MLC. In [8] McRAPTOR
was also proposed, which extends RAPTOR to handle more criteria (besides
arrival times and number of transfers). It maintains a bag (set) of labels with
each stop and round.

The aforementioned round-based paradigm (RAPTOR) has been adapted to
the multimodal scenario in [5,9], where the MCR (multimodal multicriteria RAP-
TOR) was proposed that extends McRAPTOR to handle multimodal queries.

158 K. Giannakopoulou

As in McRAPTOR, each round has two phases: the first processes trips in the pub-
lic transportation network, while the second considers arbitrary paths in the unre-
stricted networks. They use a standard McRAPTOR round for the first phase (on
the timetable network) and MLC for the second (on the walking network). Labels
generated by one phase are naturally used as input to the other. During the second
phase, MLC extends bags instead of individual labels. To ensure that each label
is processed at most once, one keeps track of which labels (in a bag) have already
been extended. The initialization routine (before the first round) runs Dijkstra’s
algorithm on the walking network from the source s to determine the fastest walk-
ing path to each stop in the public transportation network (and to destination t),
thus creating the initial labels used by MCR. During round i, the McRAPTOR
subroutine reads labels from round i − 1 and writes to round i. In contrast, the
MLC subroutine may read and write labels of the same round if walking is not
regarded as a trip. In [5] a bike rental scheme is also considered, which can be seen
as a hybrid network: it does not have a fixed schedule (and is thus unrestricted),
but bikes can only be picked up and dropped off at designated bike stations. Pick-
ing a bike from its station counts as a trip. To handle bikes within MCR, they
are considered during the first stage of each round (together with RAPTOR and
before walking). Because bikes have no schedule, they are processed independently
(from RAPTOR) by running MLC on the bike network. MLC is initialized with
labels from round i − 1 for all relevant bike stations and, during the algorithm,
labels of (the current) round i are updated.

3.2 Graph-Based Approaches

The representation of graph-based information systems for scheduled-based
transportation is described by timetables that determine the (scheduled) depar-
ture and arrival times of public vehicles.

A timetable is considered as a set tuple T = (Z,B, C), where B is the set of
stops (or stations) in which the passengers may embark/disembark on/from a
vehicle, Z is the set of vehicles (train, bus, metro, and any other means of trans-
port that performs scheduled routes), and C is the set of elementary connections
c = (z, Sd, Sa, td, ta), which represents the travel of a vehicle z ∈ Z, leaving
from stop Sd ∈ B at time td and arriving at the immediately next stop Sa ∈ B
at time ta. Elementary connections of scheduled-based transport are restricted
w.r.t. (the scheduled) departure of the vehicles.

One of the most common models for representing a timetable is the realistic
time-expanded model (TE-real) [24]. This model encodes a timetable T into a
directed graph G = (V,E) with appropriate arc weights. In TE-real, nodes rep-
resent time events (arrival or departure times of a vehicle at a stop), while arcs
represent either elementary connections (travel of a vehicle between consecutive
stops), or transfer between different vehicles at the same stop, or waiting time
between two time events (at the same stop). The arc weight is the time differ-
ence between the time events associated with the endpoints of the arc. Transfer
times introduce realistic transfer restrictions between vehicles, and represent the

Algorithms for Cloud-Based Smart Mobility 159

required minimum time transfer(S) that a passenger needs to be transferred
between different vehicles within the same stop S.

A reduced version of the model (TE-red), eliminating nodes representing
transfer events (without losing correctness) was also presented in [3,4,24].

In the rest of this section, we present the most recent graph-based approach
for multimodal smart mobility in transist networks [14]. We follow the exposition
in that paper and present first the dynamic timetable model (DTM), upon which
the multimodal dynamic timetable model [14] is based.

The Dynamic Timetable Model. The dynamic timetable model (DTM) [3,4]
aims at efficiently updating the timetable after a delay of a vehicle. Given a
timetable T = (Z,B, C), a directed graph G = (V,E) representing DTM, is
defined as follows: (1) for each stop S in B, a switch node σS is added to V ,
representing an arrival or start time event of a traveler at stop S; (2) for each
elementary connection c = (Z, Sd, Sa, td, ta) ∈ C a departure node dc is added to
V , and a connection arc (dc, σSa

), connecting dc to the switch node σSa
of (the

immediately next stop) Sa, is added to E; (3) for each elementary connection
c = (Z, Sd, Sa, td, ta) ∈ C, a switch arc arc (σSd

, dc), connecting the switch node
sSd

of the departure stop Sd to the departure node dc of c at Sd, is added to E;
(4) for each vehicle Z ∈ Z which travels through the itinerary (c1, c2, . . . , ck),
an arc (vehicle arc), connecting the departure node dci of ci with the departure
node dci+1 of ci+1, is added to E, for each i = 1, 2, . . . , k − 1.

Fig. 1. A DTM graph. Switch nodes are drawn in blue. Departure nodes (yellow) are
associated with the departure time of their corresponding elementary connection, and
are ordered by arrival time at the (arrival) station. Switch arcs are drawn in brown,
while vehicle arcs are drawn in green. (Color figure online)

The timetable routes are periodic, with period Tp (typically Tp = 1440). Any
transfer and travel time is assumed to last less than Tp. Given two time instances

160 K. Giannakopoulou

t1 and t2, such that t1 ≤ t2, Δ(t1, t2) = t2 − t1(mod Tp) denotes the (cyclic)
time difference between them. The time point t(v) ∈ [0, Tp) of a departure node
v ∈ V is fixed and it denotes the scheduled departure time of the associated
public transportation vehicle. The time point t(v) ∈ [0, Tp) of a switch node
v ∈ V of stop S ∈ B, varies and represents any possible start or arrival time
at the stop S. The weight w(e) of each non-switch (i.e., connection and vehicle)
arc e = (u, v) ∈ E is fixed and is set to w(e) = Δ(t(u), t(v)). The weight of the
switch arcs e ∈ E varies and its default value is infinity.

For each connection c = (Z, Sd, Sa, td, ta), let ta(dc) or ta(c) denote the arrival
time td +w(dc, σSa

) at stop Sa, departing from Sd via the departure node dc, at
time t(dc) = td. For each stop, the departure nodes are ordered by their ta(dc)
values (arrival times at their arrival stop Sa). For each switch node σS , its associ-
ated stop S is stored, while for each departure node dc, both the departure time
reference td(c) and the vehicle Z(c) of connection c, with which dc is associated,
are maintained. Figure 1 shows a DTM graph. Departures of station A labeled
20 and 35 concern train connections, while the rest concern bus connections.

The Multimodal Dynamic Timetable Model. A multimodal transport net-
work consists of schedule-based public transport along with road and pedestrian
path networks, for supporting traveling with both unrestricted departure (e.g.,
for walking, cycling, and driving) and restricted departure (for embarking on
public transport vehicles that follow scheduled timetables). In contrast to a
restricted-departure timetable elementary connection, an unrestricted-departure
connection (σSA

, σSB
) is defined as an arc representing a time-independent trav-

eling path from stop SA to stop SB .
A multimodal itinerary is a sequence of trip-paths consisting of unrestricted

and restricted-departure connections P = (c1, c2, . . . , ck) such that, for each
i = 2, 3, . . . , k, Sa(ci−1) = Sd(ci) and

Δ(ta(ci−1), td(ci)) ≥
{

0 if Z(ci−1) = Z(ci)
transfer(Sa(ci−1)) otherwise.

A multimodal journey query is defined by a tuple (S, T, to,M) where S ∈ B
is a departure stop, T ∈ B is an arrival stop, to is a minimum departure time
from S, and M represents the desired transport mode(s). Recall that there are
two natural optimization criteria used to answer a timetable query, giving rise
to the following problems: (a) the Earliest Arrival Problem (EAP), which asks
for computing a multimodal itinerary from S to T starting at a time after to and
arriving at stop T as early as possible; (b) the Minimum Number of Transfers
Problem (MNTP),which asks for computing a multimodal itinerary from S to T
starting at a time after to and having as few transfers from one vehicle to another
as possible; and (c) the multicriteria version of EAP and MNTP (multicriteria
multimodal journey query).

Given a timetable T , a delay occurring on a connection c is modelled as
an increase of δ minutes on the arrival time: t′a(c) = ta(c) + δ(mod Tp). The
timetable is then updated according to some specific policy which depends on

Algorithms for Cloud-Based Smart Mobility 161

the network infrastructure. The new disposition timetable T ′, differs from T oin
the arrival and departure times of the vehicles that depend on Z(c) in T . In [14]
the simplest delay handling policy was considered. In particular, when a delay
occurs on a connection c, the only time references which are updated are those
regarding the departure times of Z(c). Moreover, the policy does not take into
account any possible slack times and hence the time references are updated by
adding δ(mod Tp).

The multimodal dynamic timetable model (MDTM) [14] is an extension of
DTM, aiming at modeling traveling in multimodal transport networks. The key
difference consists in the new ordering of the departure nodes within a stop.

Given a timetable T = (Z,B, C), the directed graph G = (V,E) representing
MDTM is defined similarly to DTM, but with the following additional features:

– For each stop S ∈ B, its associated departure nodes are grouped in a specific
ordering: (i) a first grouping Γ1 is created, where two departure nodes belong
to the same group if the head switch node of their outgoing arcs is identi-
cal; (ii) within each group of Γ1, a second grouping Γ2 is created, where two
departure nodes belong to the same group if the transport mode they rep-
resent is identical; and (iii) the departure nodes within each group of Γ2 are
ordered by increasing arrival time at the head switch nodes of their outgoing
arcs.

– For each unrestricted-departure connection from stop SA to stop SB , a switch-
switch arc (σSA

, σSB
) is added to G.

Let DSd
(Sa,M) denote a group of departure nodes resulted from the afore-

mentioned grouping, having departure stop Sd, arrival stop Sa, and transport
mode M . Figure 2 shows the MDTM graph corresponding to the DTM graph of
Fig. 1. Then, DSA

(SB , bus) includes departure nodes 5 and 15 of stop SA that
correspond to bus connections departing from SA and arriving at SB.

Fig. 2. The MDTM graph corresponding to the DTM graph of Fig. 1. Departure nodes
grouping: light blue (brown) are train (bus) connections. The switch-switch arc (dotted
black) introduces an unrestricted-departure connection between the stops. (Color figure
online)

162 K. Giannakopoulou

The algorithm for answering an EAP query (S, T, ts,Mchoices) resembles the
execution of Dijkstra’s algorithm on an MDTM graph G, starting from the switch
node σS of stop S. In particular, the query algorithm MDTM-QH maintains a
set of earliest arrival index tables for each switch node of a stop. These tables
contribute to the effective searching of the departure nodes that have both valid
departure times from some stop Sd and earliest arrival times to an adjacent
arrival stop Sa. Such an earliest arrival index table ISd

(Sa,M), consisting of
departure nodes with departure stop Sd, arrival stop Sa and transport mode
M , is constructed as follows: Let d1, d2, .., dk ∈ DSd

(Sa,M) be the sequence of
the departure nodes, ordered by arrival time at Sa, for a trip departing from
stop Sd and arriving to stop Sa with transport mode M . Initially, ISd

(Sa,M)
is empty. Node d1 is inserted in ISd

(Sa,M) and tmax = t(d1) is the current
departure time. Then, for i = 2, ..., k, if tmax < t(di), then tmax = t(di) and di
is inserted at the end of ISd

(Sa,M) table; otherwise, di is skipped. If the table
contains the departure nodes v1, ..., vl, l ≤ k, then, if t(σSd

) ∈ [t(vi), t(vi+1))
then vi is the first departure node to start the search of the earliest arrival time
at Sa. This means that the earliest arrival index allows us to bypass all of the
departure nodes with departure time less than t(vi). Also for the endpoints, if
t(σSd

) ≥ t(vl) (t(σSd
) ≤ t(v1)) then vl (v1) is the first departure node to get the

earliest arrival time at Sa.
To reduce the size and the operations in the priority queue of the query

algorithm, only the switch nodes are inserted in it, and the arc relaxation is
modified as described below (iteration step).

Overall, the MDTM-QH algorithm works as follows.

– Initialization. The switch node σSo
of the origin stop So is inserted in the

priority queue, with distance dist[σSo
] = ts and time t(σSo

) = ts. During the
algorithm execution, provided that the traveller is already at So at time ts
the minimum transfer time of So is set to transfer(So) = 0.

– Iteration. At each step, a switch node σSx
is extracted from the priority

queue. The node σSx
is settled having got the earliest arrival time for the

optimal journey departing from So at time ts and arriving to σSx
at time

dist[σSx
]. Then the algorithm relaxes the outgoing arcs of σSx

following a node
filtering and blocking process: (i) using the existing grouping of departure
nodes (Γ1 and Γ2), the departure node groups corresponding to non-selected
transportation modes are skipped; (ii) using the earliest arrival index tables,
the algorithm can skip the departure nodes of stop Sx that have an earlier
than dist[σSx

] departure time or they provide non-optimal arrival times to
the next adjacent stops. In particular, after σSx

is extracted, then for each
adjacent arrival stop Sa of stop Sx and for each enabled transport mode
M ∈ Mchoices: (1) a binary search is performed on the index table ISx

(Sa,M)
for getting the first contented departure node dr with t(dr) > t(σSx

) that
provide the earliest arrival time at stop Sa; and (2) an arc relaxation step is
performed based on those departure nodes.

– Termination. The algorithm terminates when the switch node σSd
of the

destination stop Sd is settled (extracted from the priority queue).

Algorithms for Cloud-Based Smart Mobility 163

Let the sequence of the outgoing switch arcs of σSx
be e1, e2, ..., er−1, er, ..., ek,

which corresponds to a travel using the transport mode M and arriving at the
stop Sa. Let ei = (σSx

, di), i = 1, ...k, and let the node dr be the departure
node that is returned by the ISx

(Sa,M). Within the current time period Tp, arcs
e1, e2, ..., er can be safely skipped, because they provide earlier departures or non-
optimal arrival paths from Sx to Sa. The first arc that is relaxed is er. Provided
that the next switch arcs and their departure node heads are ordered by arrival
time, the algorithm relaxes the arcs er, ..., ek, e1, ..., er−1 and it stops as soon as
falls over a departure node di with (a) Δ(t(σSx

), td(di)) > transfer(Sx) and (b)
Δ(td(di), t(σSx

) + w(di, σSa
) > dist[σSa

] + transfer(σSa
). The first condition

ensures the minimum transfer time for the traveller on using a different vehicle
to continue its travel. The second condition checks when the next departure
nodes with different vehicles cannot provide better arrival times.

At each case, if the departure node head di of the switch arc ei is vis-
ited for the first time or it has from a previous step a greater distance, then
dist[di] = dist[σSx

]+Δ(t(σSx
, td(di)) and w(σSx

, di) = dist[di]−dist[σSx
]. When

the distance is updated, the algorithm relaxes also the outgoing arcs of the depar-
ture node di. For its outgoing arc (di, σSa

), if the σSa
is first time visited or has

from a previous step a greater distance, then dist[σSa
] = dist[di] + w(di, σSa

).
Also if there is a vehicle (departure-departure) arc (di, dj), then for the associ-
ated vehicle the outgoing arcs of the departure nodes dj , ..., dlast are also relaxed
at the next stops at which the vehicle passes, for the same route. This process
stops if it falls over a departure which has an outgoing arc to a switch node
which is not yet visited or has not yet been extracted from the priority queue.

The performance of the MDTM-QH algorithm can be enhanced by combining it
with the ALT heuristic [15], resulting in algorithm MDTM-QH-ALT. Since the choice
of good landmarks is crucial when using ALT, the approach in [14] follows those
in [3,4,7] and selects as landmarks the switch nodes. Algorithm MDTM-QH-ALT
reduces considerably the search space and boosts query performance.

Answering multimodal multicriteria queries on the EA and MNT criteria,
results in computing an exponential in size set of Pareto-optimal journeys. For
this reason, the focus in [14] is on finding a solution that minimizes MNT, while
retaining the EA below a given threshold P (a variant also considered in [24]),
resulting on the multicriteria algorithms McMDTM-QH and McMDTM-QH-ALT (com-
bination with ALT).

McMDTM-QH works as follows. Let (S, T, ts,Mchoices) be a multicriteria (EA,
MNT) query, starting from the switch node σS of stop S. The number of transfers
is taken into account by setting the weight of all switch-departure arcs to 1
(representing a transfer between vehicles) and the weight of the rest of the arcs
to 0. Due to the modeling, every single switch node in MDTM can have at
least as many Pareto-optimal solutions as its incoming arcs. Initially, the cost
minimization is on EA. Therefore, when the target switch node is settled, the
first (EA, MNT) Pareto optimal journey has been found with the minimum
arrival time Amin. Then Dijkstra’s algorithm continues and whenever the target
switch node is explored again with a smaller number of transfers than in any

164 K. Giannakopoulou

of the already found Pareto-optimal solutions, a new Pareto-optimal journey is
found. The algorithm stops when all journey solutions, with arrival time to the
target stop less or equal than P · Amin, have been found.

For updating the timetable when a delay occurs, algorithm MDTM-U is called
to update the corresponding MDTM graph. Given a timetable T , assume that
a delay δ occurs first in a connection c0 of T , and it is propagated to the
(affected) connections c0, c1, ..., ck, which are performed by the same vehicle.
Also let d0, d1, ..., dk be the departure nodes corresponding to the affected con-
nections. If T is represented as an MDTM graph G, then MDTM computes the
MDTM graph G′, corresponding to the disposition timetable T ′, as follows.

– Edge weight increase: Starting with c0 = (Z, Sd, Sa, td, ta), the weight of arc
(dtd , σSa

) is increased by δ.
– Node reordering: For each of the other connections ci, i = 1, .., k, its associated

departure node di has its departure time td(di) increased by δ. Due to that
increase, the arrival time ordering of the departure nodes on the affected stops
may be invalidated. Hence, along with the new arrival times, the departure
node di might need to be moved to its correct position within its group, i.e.,
before a departure node with arrival time greater than ta(di).

3.3 Practical Performance

The aforementioned multimodal journey planning algorithmic approaches of
RAPTOR, McRAPTOR, and DTM constituted the core algorithmic routing
engines of a cloud-based mobility platform developed in the frame of [20] that
delivers personalized mobility services in smart cities [11]. These services have
been evaluated during a pilot study carried out in real-world conditions in the
city of Vitoria-Gasteiz. Moreover, the mobile client application of the cloud-
based journey planner based on DTM has been enhanced with an additional user
assessment feature that allows users to assess the suggested itineraries offered
by the application [13].

In this section, we further report on the practical performance of the afore-
mentioned approaches also in comparison with the MDTM model on real-world
data sets carried out in [14].

The data sets consisted of the metropolitan public transit networks of Berlin
and London, taken from [26] and [27], respectively, and which were integrated
with their corresponding road and pedestrian networks taken from [23]. The
packed-memory graph structure [21] was used for representing the input graph
instances.

The metropolitan public transit network of Berlin resulted in an MDTM
graph of about 4.3 Million nodes and 12.7 Million arcs, with average transfer
time 0.7 min, average degree of adjacent stops/stations 2.7, and distribution of
transportation means 76% bus, 15% train and 9% tram.

The metropolitan public transit network of London resulted in an MDTM
graph of about 14 Million nodes and 41.8 Million arcs, with average transfer

Algorithms for Cloud-Based Smart Mobility 165

time 0.8 min, average degree of adjacent stops/stations 1.2, and distribution of
transportation means 98% bus, and 2% train.

For assessing the practical performance of MDTM, non-restricted departure
traveling paths were additionally added in [14], using two approaches:

– Limited walking and driving travel time paths on transitively closed pedes-
trian and road networks. Via the pedestrian networks, single foot-paths for
enabling walking between nearby stops were added having a shortest travel
time of at most 10mins, with walking speed 1 m/sec. Also, via the road
networks, free flow speed driving-paths were added for enabling the driv-
ing between stops with EVs, considering for this scenario 10 EV-stations
providing public communal EVs with shortest travel time of at most 1 h.
Driving-paths connect only EV-stations. In the Berlin instance, the switch-
switch arcs representing foot-paths are 2381 and the driving-paths are 39. In
the London instance, the switch-switch arcs representing foot-paths are 37226
and the driving-paths are 60.

– Unlimited walking travel time paths on the full pedestrian network. For this
purpose, each switch node in the public transit network was connected with
the nearest node in the pedestrian network by an access edge (an approach
inspired by that in [28]). In the Berlin instance, the embedded pedestrian
network had 932108 nodes and 1059556 edges. In the London instance, the
embedded pedestrian network had 1520056 nodes and 1653052 edges.

The practical assessment in [14] on the aforementioned data sets concerned
the generation, for each instance, of 10K random queries consisting of source and
target stop pairs, along with a departure time at each source stop. In the evalu-
ation, the following EA query algorithms were included: TE-QH-ALT for TE-red
[4], DTM-QH-ALT for DTM [4], and MDTM-QH-ALT for MDTM [14]. For the latter,
the multicriteria (EA, MNT) query algorithm McMDTM-QH-ALT with threshold P
on EA 100% and 120% (denoted with extension 1.0 and 1.2, respectively) were
also included. The results of the algorithms for answering multimodal queries
are reported in Table 1.

We added in Table 1 the query times of the best previous (RAPTOR based)
approaches MCR-ht and MR-∞-t102 in [5,9]. Note that the former computes
multicriteria (on arrival time, number of transfers, and walking duration) multi-
modal journeys, while the latter computes multicriteria (on arrival time and
number of transfers) multimodal journeys. The times are scaled versions of
those reported in [5,9] using the benchmark for scaling factors in [25]. Since
MCR-ht, MR-∞-t10, McMDTM-QH-ALT-1.0 and McMDTM-QH-ALT-1.2 report multi-
criteria multimodal queries, it is natural that they take more time than regular
multimodal EAP (unicriterion) query algorithms. This is also true for the case
of unlimited walking, due to the much larger search space explored by the algo-
rithms. Nevertheless, McMDTM-QH-ALT-1.0 and McMDTM-QH-ALT-1.2 are compet-
itive to MCR-ht and MR-∞-t10.

2 MCR-ht weakens the domination rules by trading off walking and arrival time. In
MR-∞-t10 the walking duration is not used as criterion and it is limited to 10 min.

166 K. Giannakopoulou

Table 1. Comparison between query algorithms. L-Walk (U-Walk) denotes a query
algorithm with limited (unlimited) walking. Bullets (•) indicate the options taken into
account. MC denotes a multicriteria journey on arrival time and number of transfers
(and walking duration for MCR-ht).

Algorithm MC Travel modes Query [ms]

Bus Train Walk EV/Car Cycle L-Walk U-Walk

Berlin TE-QH-ALT [4] • • 6.88

DTM-QH-ALT [4] • • 12.17

MDTM-QH-ALT [14] • • 6.12

MDTM-QH-ALT [14] • • • • 8.49 105.12

London TE-QH-ALT [4] • • 5.14

DTM-QH-ALT [4] • • 10.25

MDTM-QH-ALT [14] • • 4.17

MDTM-QH-ALT • • • • 6.10 114.88

McMDTM-QH-ALT-1.0 [14] • • • • • 6.29 216.36

McMDTM-QH-ALT-1.2 [14] • • • • • 15.44 360.94

MCR-ht [5,9] • • • • • 361.23

MR-∞-t10 [5,9] • • • • • 21.47

For evaluating updates (occurring after a delay), 1000 elementary connec-
tions were randomly selected, for each input instance, and for each elementary
connection a delay was randomly generated, affecting the corresponding train or
bus, chosen with uniform probability distribution between 1 and 360 min.

Table 2. Comparison among update algorithms.

Instance Algorithm Travel modes Update [µs]

Bus Train

Berlin TE-UH [4] • • 238.5

DTM-U [4] • • 80.2

MDTM-U [14] • • 84.4

London TE-UH [4] • • 477.2

DTM-U [4] • • 122.8

MDTM-U [14] • • 137.5

In the experimental evaluation we have included the update algorithms TE-UH
for TE-red [4], DTM-U for DTM [4], and MDTM-U for MDTM [14]. The experimental
results of the update algorithms are reported in Table 2. The updates times
measure the average computational times for updating the graphs when a delay
in a transportation vehicle itinerary has to be absorbed.

Algorithms for Cloud-Based Smart Mobility 167

4 Conclusions

We provided recent innovative algorithmic technology required by core routing
engines of cloud-based applications for mobility in urban environments. Most of
the aforementioned algorithmic technology has been embedded in the integrated
mobility application for smart cities developed in the frame of [20], whose back-
end services, their interrelation and rationale can be found in [11].

References

1. Bast, H., et al.: Route planning in transportation networks. In: Kliemann, L.,
Sanders, P. (eds.) Algorithm Engineering. LNCS, vol. 9220, pp. 19–80. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-49487-6 2

2. Baum, M., Dibbelt, J., Pajor, T., Wagner, D.: Dynamic time-dependent route
planning in road networks with user preferences. In: Goldberg, A.V., Kulikov, A.S.
(eds.) SEA 2016. LNCS, vol. 9685, pp. 33–49. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-38851-9 3

3. Cionini, A., et al.: Engineering graph-based models for dynamic timetable infor-
mation systems. In: 14th Workshop on Algorithmic Approaches for Transportation
Modelling, Optimization, and Systems (ATMOS2014). OASICS, vol. 42, pp. 46–61.
Schloss Dagstuhl (2014)

4. Cionini, A., et al.: Engineering graph-based models for dynamic timetable infor-
mation systems. J. Discret. Algorithms 46–47, 40–58 (2017)

5. Delling, D., Dibbelt, J., Pajor, T., Wagner, D., Werneck, R.F.: Com-
puting multimodal journeys in practice. In: Bonifaci, V., Demetrescu, C.,
Marchetti-Spaccamela, A. (eds.) SEA 2013. LNCS, vol. 7933, pp. 260–271.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38527-8 24

6. Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Customizable route planning
in road networks. Transp. Sci. 51(2), 566–591 (2015)

7. Delling, D., Pajor, T., Wagner, D.: Engineering time-expanded graphs for faster
timetable information. In: Ahuja, R.K., Möhring, R.H., Zaroliagis, C.D. (eds.)
Robust and Online Large-Scale Optimization. LNCS, vol. 5868, pp. 182–206.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05465-5 7

8. Delling, D., Pajor, T., Werneck, R.F.: Round-based public transit routing. Transp.
Sci. 49(3), 591–604 (2015)

9. Dibbelt, J.: Engineering algorithms for route planning in multimodal transporta-
tion networks. Ph.D. thesis, Karlsruhe Institute of Technology, February 2016

10. Dreyfus, S.E.: An appraisal of some shortest-path algorithms. Oper. Res. 17(3),
395–412 (1969)

11. Gavalas, D., et al.: Renewable mobility in smart cities: cloud-based services. In:
Proceedings of 23rd IEEE Symposium on Computers and Communications – ISCC
2018. IEEE Computer Society (2018, to appear)

12. Giannakopoulou, K., Kontogiannis, S., Papastavrou, G., Zaroliagis, C.: A cloud-
based time-dependent routing service. In: Sellis, T., Oikonomou, K. (eds.) ALGO-
CLOUD 2016. LNCS, vol. 10230, pp. 41–64. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-57045-7 4

13. Giannakopoulou, K., Nikoletseas, S., Paraskevopoulos, A., Zaroliagis, C.: Dynamic
timetable information in smart cities. In: Proceedings of 22nd IEEE Symposium on
Computers and Communications – ISCC 2017, pp. 42–47. IEEE Computer Society
(2017)

https://doi.org/10.1007/978-3-319-49487-6_2
https://doi.org/10.1007/978-3-319-38851-9_3
https://doi.org/10.1007/978-3-319-38851-9_3
https://doi.org/10.1007/978-3-642-38527-8_24
https://doi.org/10.1007/978-3-642-05465-5_7
https://doi.org/10.1007/978-3-319-57045-7_4
https://doi.org/10.1007/978-3-319-57045-7_4

168 K. Giannakopoulou

14. Giannakopoulou, K., Paraskevopoulos, A., Zaroliagis, C.: Multimodal dynamic
journey planning. In: Proceedings of 23rd IEEE Symposium on Computers and
Communications – ISCC 2018. IEEE Computer Society (2018, to appear)

15. Goldberg, A., Harrelson, C.: Computing the shortest path: A* search meets graph
theory. In: ACM-SIAM Symposium on Discrete Algorithms (SODA 2005), pp.
156–165. SIAM (2005)

16. Kontogiannis, S., Michalopoulos, G., Papastavrou, G., Paraskevopoulos, A.,
Wagner, D., Zaroliagis, C.: Engineering oracles for time-dependent road networks.
In: Algorithm Engineering and Experiments – ALENEX 2016, pp. 1–14. SIAM
(2016)

17. Kontogiannis, S., Papastavrou, G., Paraskevopoulos, A., Wagner, D., Zaroliagis, C.:
Improved oracles for time-dependent road networks. In: Algorithmic Approaches
for Transportation Modeling, Optimization, and Systems - ATMOS 2017. OASIcs,
vol. 59, pp. 4:1–4:17 (2017)

18. Kontogiannis, S., Wagner, D., Zaroliagis, C.: Hierarchical time-dependent oracles.
In: Algorithms and Computation – ISAAC 2016. LIPIcs, vol. 64, pp. 47:1–47:13
(2016)

19. Kontogiannis, S., Zaroliagis, C.: Distance oracles for time-dependent networks.
Algorithmica 74(4), 1404–1434 (2016)

20. MOVESMART EU FP7 project. https://cordis.europa.eu/project/rcn/110310 en.
html

21. Mali, G., Michail, P., Paraskevopoulos, A., Zaroliagis, C.: A new dynamic graph
structure for large-scale transportation networks. In: Spirakis, P.G., Serna, M.
(eds.) CIAC 2013. LNCS, vol. 7878, pp. 312–323. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38233-8 26

22. Müller-Hannemann, M., Schulz, F., Wagner, D., Zaroliagis, C.: Timetable informa-
tion: models and algorithms. In: Geraets, F., Kroon, L., Schoebel, A., Wagner, D.,
Zaroliagis, C.D. (eds.) Algorithmic Methods for Railway Optimization. LNCS, vol.
4359, pp. 67–90. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
74247-0 3

23. OpenStreetMap Data Extracts. http://download.geofabrik.de
24. Pyrga, E., Schulz, F., Wagner, D., Zaroliagis, C.: Efficient models for timetable

information in public transportation systems. ACM J. Exp. Algorithmics 12(2.4),
1–39 (2008)

25. Reference CPU scores. http://i11www.iti.kit.edu/∼pajor/survey
26. Transit Feeds. https://transitfeeds.com
27. Transport for London. https://tfl.gov.uk
28. Wagner, D., Zündorf, T.: Public transit routing with unrestricted walking. In:

Algorithmic Approaches for Transportation Modeling, Optimization, and Systems
– ATMOS 2017. OASIcs, vol. 59, pp. 7:1–7:14 (2017)

https://cordis.europa.eu/project/rcn/110310_en.html
https://cordis.europa.eu/project/rcn/110310_en.html
https://doi.org/10.1007/978-3-642-38233-8_26
https://doi.org/10.1007/978-3-540-74247-0_3
https://doi.org/10.1007/978-3-540-74247-0_3
http://download.geofabrik.de
http://i11www.iti.kit.edu/~pajor/survey
https://transitfeeds.com
https://tfl.gov.uk

A Frequent Itemset Hiding Toolbox

Aris Gkoulalas-Divanis1(B), Vasileios Kagklis2, and Elias C. Stavropoulos3

1 IBM Watson Health, Cambridge, MA, USA
gkoulala@us.ibm.com

2 Computer Engineering and Informatics Department, University of Patras,
Patras, Greece

kagklis@ceid.upatras.gr
3 Educational Content, Methodology and Technology Laboratory,

Hellenic Open University, Patras, Greece
estavop@eap.gr

Abstract. Advances in data collection and storage technologies have
given way to the establishment of transactional databases among com-
panies and organizations, as they allow enormous amounts of data to be
stored efficiently. Useful knowledge can be mined from these data, which
can be used in several ways depending on the nature of the data. Quite
often companies and organizations are willing to share data for the sake
of mutual benefit. However, the sharing of such data comes with risks,
as problems with privacy may arise. Sensitive data, along with sensitive
knowledge inferred from this data, must be protected from unintentional
exposure to unauthorized parties. One form of the inferred knowledge
is frequent patterns mined in the form of frequent itemsets from trans-
actional databases. The problem of protecting such patterns from being
discovered, is known as the frequent itemset hiding problem. In this paper
we present a toolbox, which provides several implementations of frequent
itemset hiding algorithms. Firstly, we summarize the most important
aspects of each algorithm. We then introduce the architecture of the
toolbox and its novel features. Finally, we provide experimental results
on real world datasets, demonstrating the capabilities of the toolbox and
the convenience it offers in comparing different algorithms.

Keywords: Privacy preserving data mining · Knowledge hiding ·
Frequent itemset hiding · Sensitive knowledge

1 Introduction

Nowadays, transactional databases are being used more and more by organiza-
tions, as they support efficient storage of large volumes of data. By using data
mining techniques on such data, modern companies can extract useful informa-
tion that can help these companies understand the behavior of their customers,
support decision making, plan their business strategy, etc.

Companies and organizations are willing to share data for the sake of mutual
benefit. The benefits derived from the sharing of such data are considerable
c© Springer Nature Switzerland AG 2019
Y. Disser and V. S. Verykios (Eds.): ALGOCLOUD 2018, LNCS 11409, pp. 169–182, 2019.
https://doi.org/10.1007/978-3-030-19759-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19759-9_11&domain=pdf
https://doi.org/10.1007/978-3-030-19759-9_11

170 A. Gkoulalas-Divanis et al.

and they cannot be ignored. A typical example is a supermarket, which collects
market basket data of its customers’ purchases on a regular basis. These organi-
zations might be willing to share their collected information with other parties,
such as advisory organizations, for mutual benefit. For example. two stores, say
A and B, cooperate in order to discover their customers’ purchase behaviors.

Unfortunately, the sharing of such data does not come without risks, as
problems with privacy may arise. Therefore, it must be done in such a way,
that no sensitive information will be exposed to unauthorized parties. In our
previous example, there might be some sensitive information that could reflect
the business strategies and secrets of the participating companies that should
not be revealed to their adversary competitors. For example, if data analysts of
store A found out that its customers tend to purchase products x and y at the
same time, they should regard this knowledge as sensitive information, and not
disclose it to store B. With this knowledge, store B could offer sales with a lower
price for customers who buy x and y together. Then, store A could possibly
face the danger of losing some of its customers. Verykios et al. [33], Oliveira
and Zäıane [25], and Evfimievski et al. [15] discuss other examples of situations
where the sharing of operational databases could have serious adverse effects.

Privacy preserving data mining (PPDM) [3,22] is the research area that
investigates techniques to preserve the privacy of data and patterns. Knowledge
hiding [19], which is a subfield of PPDM, has as its goal to prevent the exposure of
sensitive patterns included in the data to be published. Knowledge hiding can be
achieved in several ways. The most commonly used is through the sanitization [4]
of a number of transactions in the database, so that the sensitive information
can no longer be extracted. Therefore, a hiding technique must be applied before
making a database available for sharing. Many data mining tasks rely on frequent
itemsets to be identified as a first step in their process. Thus, concealing the
frequent patterns associated with the sensitive information would guarantee the
preservation of the privacy of the sensitive relationships between patterns of the
itemsets that may be discovered through any of these data mining tasks.

In this paper, we present the software architecture and implementation of
a frequent itemset hiding (FIH) toolbox, which can be used to apply a suite
of hiding techniques on real world datasets. The toolbox comes with a built-
in library containing several implementations of FIH algorithms and a suite of
performance metrics. Lastly, we present experimental results, to demonstrate
the efficiency of the toolbox and the convenience it offers to data owners in
comparing different frequent itemset hiding algorithms.

The rest of this paper is organized as follows. Section 2 provides an overview of
the related work. In Sect. 3 we present the necessary background information and
define the FIH problem. Section 4 describes the software architecture of the FIH
toolbox and Sect. 5 presents its features. Section 6 summarizes the evaluation
process and presents the experimental results. Finally, Sect. 7 concludes this
work.

A Frequent Itemset Hiding Toolbox 171

2 Related Work

Clifton et al. [12,13] are among the first to deal with privacy preservation in
the field of data mining and propose data-obscuring techniques in order to avoid
discovery of sensitive patterns. Atallah et al. [5] prove that optimally solving the
frequent itemset hiding problem is NP-hard. The authors also present a greedy
algorithm that turns ones into zeros in the database in order to hide sensitive
frequent patterns. Various extensions of this work have been proposed over the
years, including those by Verykios et al. [33] and Dasseni et al. [14].

Saygin et al. [30] and Verykios et al. [34] present another approach, according
to which items may be added or removed from transactions, recording the pos-
sible participation of certain items to transactions with “?” (question marks), so
that the hiding is achieved not by falsifying, but by fuzzifying the data. Oliveira
and Zäıane [26,27] propose a technique for hiding multiple association rules
simultaneously that requires only one pass over the whole database, regardless
the size of the database. Pontikakis et al. [28,29] perform an exhaustive evalu-
ation of distortion and blocking (using question marks for hiding) techniques.
Bertino et al. [8] propose an evaluation framework that aims at measuring the
performance of frequent itemset and association rule hiding techniques.

Menon et al. [23] were the first to introduce an integer linear program (ILP)
formulation of the frequent itemset hiding problem. The solution of their ILP
points out which transactions need to be sanitized in order to conceal the sensi-
tive patterns. The sanitization process is addressed as a separate phase, indepen-
dently of the linear programming solution, in a heuristic yet suboptimal way. Sun
and Yu [32] introduce a greedy border-based approach for hiding sensitive fre-
quent itemsets. They propose an algorithm that takes advantage of the interplay
between preserving maximally non-sensitive and downsizing minimally sensitive
frequent itemsets, and gives an accurate and efficient hiding solution.

In [20], Kagklis et al. formulate the FIH problem as an ILP and present a
heuristic approach to calculate the coefficients of the objective function of the
ILP, while at the same time minimizing the side effects introduced by the hiding
process. They also propose a sanitization algorithm for the hiding process.

Stavropoulos et al. [31] relied on the enumeration on the minimal transver-
sals of a hypergraph in order to induce the ideal border between frequent and
sensitive itemsets. The ideal border is then utilized to formulate an ILP, the
solution of which identifies the set of transactions that need to be sanitized so
that the hiding can be achieved with maximum accuracy.

A large number of different approaches towards solving the frequent itemset
hiding problem have been proposed. Additionally, several performance evalua-
tion metrics or frameworks have been developed, so as to compare the quality
of these techniques. Nevertheless, to our knowledge, there is yet no publicly
available tool that offers implementations of such techniques and/or evaluation
metrics, along with a common ground for performing experimental evaluation.
The work proposed in this paper presents such a toolbox, which can be easily
extended to host other hiding techniques, as well as additional evaluation metrics
and visualization capabilities.

172 A. Gkoulalas-Divanis et al.

3 Problem Formulation

3.1 Definitions

Let I = {i1, i2, ..., in} be a set of items. Any non empty subset of I, X ⊆ I, is
called an itemset. An itemset consisting of k elements is called a k-itemset. A
transaction T is a pair T = (tid , Z), where Z ⊆ I is the itemset and tid is a
unique identifier, used to distinguish among transactions that correspond to the
same itemset. Let also D be a set of transactions. A transaction T supports an
itemset X, if and only if X ⊆ T . Given a set of items I, we will denote as P (I)
the powerset of I, that is all possible combinations of items from I.

The support of an itemset X in a database D, denoted as σD(X), is the
number of transactions containing X. Support can also be expressed as the
percentage of transactions in D. An itemset X is frequent in D, if and only if
its support in D is at least equal to a support threshold σmin . The set of all
frequent itemsets, denoted as F , is given by F = {X ⊆ I| σD(X) ≥ σmin}.

Let S be the set of sensitive (frequent) itemsets that need to be hidden. We
will denote as IS the set of different items contained in S. Moreover, let all
sensitive itemsets and their supersets in F be denoted as SS , where SS = {X ∈
F | ∀Y ∈ S, X ⊇ Y } and S ⊆ SS ⊆ F . The revised set of frequent itemsets,
denoted as ˜F , is given by ˜F = F − SS .

By its definition, the revised set of frequent itemsets ˜F is the ideal set of item-
sets that would still remain frequent after hiding the sensitive itemsets. The ideal
case is when only the sensitive itemsets and their supersets are concealed. Sen-
sitive itemsets is desirable to get concealed, while their supersets are inevitably
concealed, due to the antimonotonicity property of support, that is ∀X,Y ⊆ I:
X ⊆ Y ⇒ σD(X) ≥ σD(Y).

3.2 Problem Description

We are given a transactional database D, a support threshold σmin and a set
of sensitive frequent itemsets S. The frequent itemset hiding (FIH) problem
involves sanitizing selected transactions in database D, so that itemsets in S
cannot be mined from the sanitized database D′ using a support threshold equal
or above σmin . A database is said to be sanitized, if it is altered in such a way
that it no longer supports any sensitive itemset in it. Sanitizing a database
involves the sanitization of one or more transactions. A transaction is said to
be sanitized, if it is altered so that it no longer supports any sensitive itemset.
In the best case scenario, the sensitive itemsets should be hidden with minimal
damage to the database. In other words, we want to conceal the itemsets in S,
whilst having the minimum impact on the utility of the database.

4 The Architecture of the FIH Toolbox

From an abstract point of view, the toolbox is divided into four layers (see Fig. 1).
The top layer is the “Presentation Layer”, which implements the Graphical User

A Frequent Itemset Hiding Toolbox 173

Interface (GUI) of the toolbox and provides visualizations of the results received
from the next layer below. Users interact with the toolbox through the presen-
tation layer, depending on the options they make. The GUI is implemented in
Python, using the Tkinter and ttk modules.

Fig. 1. The architecture of the FIH toolbox.

The next layer is the “Logic Layer”. In this layer, the performance analysis
phase is implemented and the calculation of the metrics take place. Such metrics
are the number of changes made in the raw data, the number of side effects, the
execution time and the information loss incurred. A detailed description of the
performance metrics is presented in Sect. 6. This layer is also responsible for
moving and processing data between its two surrounding layers.

The third layer is the “Core Layer”, which consists of two sublayers: the
“Algorithmic Sublayer” and the “Infrastructure Sublayer”. The “Algorithmic
Sublayer” is basically the built-in library with the implemented FIH algorithms,
described in Sect. 5.1, along with the implementation of some basic data mining
methods. Currently, the only data mining method offered is the Apriori algorithm
[3]. The “Infrastructure Sublayer” consists of all the tools used for the develop-
ment of the toolbox. Most of the code is implemented in Python. The hiding
algorithms are implemented in Cython [7]. The Apriori algorithm [3] is part of
the PyFIM extension module. This module is a C extension for Python [10] to
efficiently mine the set of frequent itemsets. The IBM ILOG CPLEX 12.6 [2] is
used for solving any linear program.

174 A. Gkoulalas-Divanis et al.

Finally, the last layer is the “Data Layer”, which is related to the datasets
that can be used and their corresponding supported formats. The toolbox sup-
ports both space-separated value (.ssv) and comma-separated value (.csv) for-
matted files. The delimiter is declared by the extension of the file. Therefore, a
space-separated file must have the extension “.ssv”, while a comma-separated
file must have the extension “.csv”. If the input file has a different extension,
then by default the space delimiter is used.

Fig. 2. The GUI of the FIH toolbox.

In Fig. 2, the GUI of the toolbox is presented. For the time being, there
is a beta version of the toolbox available [1]. Linear programming techniques
require a license for CPLEX, which can be obtained for free through IBM’s
Academic Initiative program. The user can apply a hiding technique on a dataset
by following a few easy steps, which are summarized in Fig. 3.

Firstly, a data mining algorithm from field 1 must be selected. Then, a
dataset must be supplied by the user, by using field 2. Respectively, the file
with the sensitive itemsets must be given by using field 3. In field 4, the sup-
port threshold must be specified. Field 5 is a group of checkboxes. By checking a
checkbox, the user selects the corresponding algorithm to be executed. Field 6 is
a text editor, where the sanitized dataset and the calculated metrics are printed.
The user can save these results by using the “Save” button below the text editor.
Finally, field 7 is a canvas that displays visualizations of the metrics. Below the
canvas, there is drop-down list with options related to the axes of the figures.
The “Plot” button should be used after an option from the drop-down list is
selected, so as to plot the corresponding figure. Buttons “Save” and “Clear” can
be used to save and clear the current figure respectively.

A Frequent Itemset Hiding Toolbox 175

Fig. 3. “How-to-use” flow chart for the FIH toolbox.

5 Special Features of the FIH Toolbox

5.1 Built-In Library

The toolbox comes with a built-in library that consists of the following FIH
algorithm implementations as independent modules: Max-Min Algorithms [24],
Weight-Based Approach [32], Max-Accuracy Algorithm [23], Coefficient-Based
Max-Accuracy Algorithm [21], Heuristic Coefficient Based Approach [20], and
Inline Algorithm [16]. The Max-Min algorithms (Max-Min 1, Max-Min 2) and
the Weight-Based Approach (WBA) use the border revision theory [32]. The
Max-Accuracy algorithm, the Coefficient-Based Max-Accuracy algorithm and
the Heuristic Coefficient Based Approach formulate the problem as an ILP. A
heuristic algorithm for the sanitization is also used. The Inline algorithm com-
bines border revision theory and linear programming. Future versions of the
tool will include algorithms in [17,18], as well as methods for hiding sensitive
association rules [5,14,25,26,28–30,33,34].

5.2 Extensibility

The toolbox comes with a built-in library, which contains some implemented
FIH algorithms. However, a non-extensible library would limit the utility of the
Toolbox. An important feature of the toolbox is that it can be extended by its
users. Users can implement and import new algorithms, and compare them with
the existing algorithms in the built-in library.

User-implemented algorithms must be compatible with the toolbox. There-
fore, any implementation must comply to the restrictions and guidelines, as
described in the manual that can be found in [1]. Users can easily implement
compatible source files by following the instructions given in the manual. After
the implementation is completed, it can be used right away; create a folder with
the name “Extensions” (without the quotes) in the same directory with the
Toolbox and copy the source file in it.

176 A. Gkoulalas-Divanis et al.

5.3 Automatic Option Loading

In Sect. 4, we described how the user can manually load data and apply a hiding
algorithm. The use of the toolbox can become even more convenient by defin-
ing option scenarios before using them. Instead of making the options manually,
the Toolbox gives the capability to load automatically predefined option sce-
narios. Assume that we want to load the dataset “myDataset.dat” and the file
of sensitive itemsets “HS1.dat”, and use a threshold equal to “0.05”. Firstly,
we create a folder named “Datasets” in the same directory that the Toolbox is
located. Then, we simply create the tree hierarchy of files and folders as shown
in Fig. 4 (left). If we run the Toolbox, we can load the option scenario by clicking
on Datasets → myDataset → 0.05 → HS1.dat, as shown in Fig. 4 (right). An
option scenario can be also imported during runtime by following the same steps
and by clicking Datasets → Update Datasets.

Fig. 4. Automatic loading predefined option scenario.

6 Experimental Evaluation

We evaluated some of the implemented algorithms on real datasets, by using
different parameters such as the number of sensitive itemsets to be hidden and
the support count threshold. In this section, we also present the datasets used
with their special characteristics, the selected parameters and the experimen-
tal results. All experiments were conducted on a PC running Windows 7 with
an Intel Core i5, 3.20 GHz processor. For the linear programming techniques,
CPLEX [2] was used for solving the formulated linear programs.

6.1 Datasets

All datasets used for evaluation are publicly available in the FIMI repository
(http://fimi.ua.ac.be/data/). These datasets have different characteristics in
terms of transactions and items, and the average transaction length. The char-
acteristics of the datasets used are presented in Table 1. The mushroom dataset
was prepared by Roberto Bayardo (University of California, Irvine) [6]. The
retail dataset is a market basket dataset from an anonymous Belgian store [11].
The kosarak dataset was provided by Ferenc Bodon [9] and contains anonymized
click-stream data of a Hungarian online news portal.

http://fimi.ua.ac.be/data/

A Frequent Itemset Hiding Toolbox 177

Table 1. Characteristics of the datasets.

Dataset
name

Number of
transactions

Number of
items

Avg. trans.
length

σmin used

Mushroom 8,124 119 23.00 1,625

Retail 88,162 16,470 10.30 22; 44; 66; 88

Kosarak 990,002 41,270 8.10 4,950

6.2 Evaluation Metrics and Framework

For the evaluation of the algorithms, we implemented and used several metrics
along with the framework proposed by Bertino et al. [8]. The framework is based
on several evaluation dimensions. We used the following metrics.

Efficiency. It is the ability of a PPDM algorithm to execute with good perfor-
mance, in terms of all the resources consumed by the algorithm. Simply put,
the efficiency of an algorithm quantifies how good is the relationship between
its performance and the overall resources it uses. As in most cases, we assess
efficiency in terms of time and space. In other words, efficiency is evaluated in
terms of CPU time and the amount of memory that an algorithm requires.

Scalability. It is used to evaluate the behavior of the efficiency of a PPDM
algorithm for a growing amount of input data, from which relevant information
is mined while ensuring privacy. We conducted experiments with datasets of dif-
ferent size and density, so as to test the scalability of the algorithms implemented
in the toolbox.

Data Quality. It refers to the quality of data after the hiding process. As men-
tioned earlier, attempting to hide sensitive information might have an impact
on non-sensitive information as well. If data quality is too degraded, then the
released database is useless for the purpose of knowledge extraction. According
to Bertino et al. [8], the information loss can be measured in terms of the dis-
similarity between the original dataset D and the sanitized D′. The information
loss is defined as the ratio between the sum of the absolute errors made in com-
puting the frequencies of items in the sanitized database and the sum of all the
frequencies of items in the original database.

We also use two additional measures: (a) the number of raw changes that
occurred in data, and (b) the number of side effects. The raw data changes
is the total number of items that have been removed in order to sanitize the
database. The number of side effects (SE) introduced by the application of the
sanitization process can be measured by SE (˜F , F ′) = | ˜F | − |F ′| ≥ 0, where | ˜F |
is the number of itemsets in the revised set of frequent itemsets ˜F , whilst |F ′|
is the number of itemsets in the set of frequent itemsets F ′ mined from D′.

178 A. Gkoulalas-Divanis et al.

(a) # of changes in dataset. (b) Side effects.

(c) CPU time (sec). (d) Frequency Information Loss.

Fig. 5. Results for the mushroom dataset.

6.3 Experimental Results

Figure 5 presents the results we obtained for the mushroom dataset. Figure 5(a)
displays how many changes (item removals) each algorithm made in the origi-
nal database. Figure 5(b) displays the number of side effects that occurred as a
result of the concealing process. Figure 5(c) presents the times needed by each
algorithm. Lastly, Fig. 5(d) presents the frequency information loss. For the eval-
uation with this dataset, we used 4 different hiding scenarios; hiding 10, 20, 50
and 100 sensitive itemsets of different, random length. The support threshold
used is σmin = 1625. We selected randomly the sensitive itemsets.

The mushroom dataset is a small, yet dense dataset. Thus, the number of
frequent itemsets increases dramatically as we decrease the support thresh-
old. Linear programming techniques (Max-Accuracy and Coefficient-Based
Max-Accuracy) achieve better results than their heuristic-based counterparts

A Frequent Itemset Hiding Toolbox 179

(Max-Min 1, Max-Min 2 and WBA). Concerning the time complexity, we notice
that the simpler the algorithm, the less time is needed to run, as expected.

(a) # of changes in dataset. (b) Side effects.

(c) CPU time (sec). (d) Frequency Information Loss.

Fig. 6. Results for the retail dataset.

Figures 6(a)–(d) present the results for the retail dataset. We used a single
hiding scenario of 100 sensitive itemsets. The set of sensitive itemsets consists of
randomly selected itemsets. We performed experiments with this hiding scenario
for different support thresholds, σmin = {22, 44, 66, 88}.

The lower the mining threshold is, the larger the values of all metrics are.
Notice that for this dataset, which is not as dense as the mushroom dataset,
WBA achieves the best results, as far as side effects and information loss are
concerned, with a fairly good time complexity. Although the results are printed
in the text editor of the toolbox, the figures drawn in the canvas give a direct
sense of which algorithm prevails.

180 A. Gkoulalas-Divanis et al.

(a) # of changes in dataset. (b) Side effects.

(c) CPU time (sec). (d) Frequency Information Loss.

Fig. 7. Results for the kosarak dataset.

Finally, Figs. 7(a)–(d) present the results for the kosarak dataset. We used 4
different hiding scenarios for the evaluation with this dataset; hiding 10, 20, 50
and 100 sensitive itemsets of different, random length. The support threshold
used is σmin = 4950. The sensitive itemsets were picked randomly. Again WBA
has the best results in terms of the number of side effects and the information
loss. The time complexity is quite low for most of the algorithms and increases
linearly with respect to the number of sensitive itemsets.

From the aforementioned experimental results, it is clear that the execu-
tion times of most of the techniques increase linearly as the number of sensitive
itemsets increases, the size of the dataset increases, and the support thresh-
old decreases. The density of the dataset has a great impact on the results.
Linear programming techniques have good scalability. Then, the border-based
techniques, such as Max-Min 1 and WBA, follow. Max-Min 2 appears to have a
poor scalability compared to the rest of the heuristic algorithms.

A Frequent Itemset Hiding Toolbox 181

7 Conclusions and Future Work

In this paper, we presented a FIH toolbox which can be used to apply a suite
of hiding techniques on real world datasets. The toolbox comes with a built-
in library containing several implementations of FIH algorithms and a suite of
performance metrics. Currently the toolbox is in beta version and many improve-
ments can be made, concerning both the GUI and the overall performance. Sev-
eral features are currently under development, including a feature to recommend
the appropriate FIH algorithm that, based on the characteristics of the input
dataset, is expected to give the best results.

References

1. https://github.com/kagklis/Frequent-Itemset-Hiding-Toolbox-x86
2. IBM ILOG CPLEX User’s Manual v12.6
3. Agrawal, R., Srikant, R.: Privacy-preserving data mining. In: SIGMOD Conference,

pp. 439–450 (2000)
4. Askari, M., Safavi-Naini, R., Barker, K.: An information theoretic privacy and

utility measure for data sanitization mechanisms. In: Proceedings of the 2nd ACM
Conference on Data and Application Security and Privacy (CODASPY 12), pp.
283–294 (2012)

5. Atallah, M., Bertino, E., Elmagarmid, A., Ibrahim, M., Verykios, V.: Disclosure
limitation of sensitive rules. In: Proceedings of the 1999 Workshop on Knowledge
and Data Engineering Exchange (KDEX 99), pp. 45–52 (1999)

6. Bayardo Jr., R.J.: Efficiently mining long patterns from databases. In: Proceedings
of the 1998 ACM SIGMOD International Conference on Management of Data
(SIGMOD 98), pp. 85–93 (1998)

7. Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D.S., Smith, K.: Cython:
the best of both worlds. Comput. Sci. Eng. 13(2), 31–39 (2011)

8. Bertino, E., Fovino, I.N., Provenza, L.P.: A framework for evaluating privacy pre-
serving data mining algorithms. Data Min. Knowl. Discov. 11(2), 121–154 (2005)

9. Bodon, F.: A fast APRIORI implementation. In: Proceedings of the IEEE ICDM
Workshop on Frequent Itemset Mining Implementations (FIMI 03), vol. 90, pp.
56–65 (2003)

10. Borgelt, C.: Frequent item set mining. Wiley Interdisc. Rev. Data Min. Knowl.
Discov. 2(6), 437–456 (2012)

11. Brijs, T., Swinnen, G., Vanhoof, K., Wets, G.: Using association rules for product
assortment decisions: a case study. In: Proceedings of the 5th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD 99),
pp. 254–260 (1999)

12. Clifton, C., Marks, D.: Security and privacy implications of data mining. In: Pro-
ceedings of the 1996 ACM SIGMOD International Conference on Management of
Data, pp. 15–19 (1996)

13. Clifton, C., Kantarciog̈lu, M., Vaidya, J.: Defining privacy for data mining.
In: National Science Foundation Workshop on Next Generation Data Mining
(WNGDM), pp. 126–133 (2002)

14. Dasseni, E., Verykios, V.S., Elmagarmid, A.K., Bertino, E.: Hiding association
rules by using confidence and support. In: Moskowitz, I.S. (ed.) IH 2001. LNCS,
vol. 2137, pp. 369–383. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-45496-9 27

https://github.com/kagklis/Frequent-Itemset-Hiding-Toolbox-x86
https://doi.org/10.1007/3-540-45496-9_27
https://doi.org/10.1007/3-540-45496-9_27

182 A. Gkoulalas-Divanis et al.

15. Evfimievski, A., Srikant, R., Agrawal, R., Gehrke, J.: Privacy preserving mining of
association rules. Inf. Syst. 29, 343–364 (2004)

16. Gkoulalas-Divanis, A., Verykios, V.S.: An integer programming approach for fre-
quent itemset hiding. In: CIKM, pp. 748–757 (2006)

17. Gkoulalas-Divanis, A., Verykios, V.S.: Hiding sensitive knowledge without side
effects. Knowl. Inf. Syst. 20(3), 263–299 (2009)

18. Gkoulalas-Divanis, A., Verykios, V.S.: Exact knowledge hiding through database
extension. IEEE Trans. Knowl. Data Eng. 21(5), 699–713 (2009)

19. Johnsten, T., Raghavan, V.V.: A methodology for hiding Knowledge in databases.
In: Proceedings of the IEEE International Conference on Privacy, Security and
Data Mining (CRPIT 14), pp. 9–17 (2002)

20. Kagklis, V., Verykios, V.S., Tzimas, G., Tsakalidis, A.K.: An integer linear pro-
gramming scheme to sanitize sensitive frequent itemsets. In: International Confer-
ence on Tools with Artificial Intelligence (ICTAI 14), pp. 771–775 (2014)

21. Leloglu, E., Ayav, T., Ergenc, B.: Coefficient-based exact approach for frequent
itemset hiding. In: eKNOW2014: The 6th International Conference on Information,
Process, and Knowledge Management, pp. 124–130 (2014)

22. Lindell, Y., Pinkas, B.: Privacy preserving data mining. In: Proceedings of the
20th Annual International Cryptology Conference on Advances in Cryptology
(CRYPTO 00), pp. 36–54 (2000)

23. Menon, S., Sarkar, S., Mukherjee, S.: Maximizing accuracy of shared databases
when concealing sensitive patterns. INFORMS 16(3), 256–270 (2005)

24. Moustakides, G.V., Verykios, V.S.: A MaxMin approach for hiding frequent item-
sets. Data Knowl. Eng. 65(1), 75–89 (2008)

25. Oliveira, S.R., Zäıane, O.R.: Protecting sensitive knowledge by data sanitization.
In: Proceedings of the 3rd IEEE International Conference on Data Mining (ICDM
2003), pp. 99–106 (2003)

26. Oliveira, S.R., Zäıane, O.R.: Algorithms for balancing privacy and knowledge dis-
covery in association rule mining. In: IDEAS, pp. 54–65 (2003)

27. Oliveira, S.R., Zäıane, O.R.: Protecting sensitive knowledge by data sanitization.
In: ICDM, pp. 613–616 (2003)

28. Pontikakis, E.D., Tsitsonis, A.A., Verykios, V.S.: An experimental study of
distortion-based techniques for association rule hiding. In: Farkas, C., Samarati, P.
(eds.) DBSec 2004. IIFIP, vol. 144, pp. 325–339. Springer, Boston (2004). https://
doi.org/10.1007/1-4020-8128-6 22

29. Pontikakis, E.D., Verykios, V.S., Theodoridis, Y.: On the comparison of association
rule hiding heuristics. In: Hellenic Database Management Symposium (2004)

30. Saygin, Y., Verykios, V.S., Clifton, C.: Using unknowns to prevent discovery of
association rules. SIGMOD Rec. 30(4), 45–54 (2001)

31. Stavropoulos, E.C., Verykios, V.S., kagklis, V.: A transversal hypergraph approach
for the frequent itemset hiding problem. Knowl. Inf. Syst. 47(3), 625–645 (2016)

32. Sun, X., Yu, P.S.: Hiding sensitive frequent itemsets by a border-based approach.
JCSE 1(1), 74–94 (2007)

33. Verykios, V.S., Elmagarmi, A.K., Bertino, E., Saygin, Y., Dasseni, E.: Association
rule hiding. IEEE Trans. Knowl. Data Eng. 16(4), 434–447 (2004)

34. Verykios, V.S., Pontikakis, E.D., Theodoridis, Y., Chang, L.: Efficient algorithms
for distortion and blocking techniques in association rule hiding. Distrib. Parallel
Databases 22(1), 85–104 (2007)

https://doi.org/10.1007/1-4020-8128-6_22
https://doi.org/10.1007/1-4020-8128-6_22

Author Index

Aiyar, Srinivas 25
auf der Heide, Friedhelm Meyer 46

Benter, Markus 46

Caskurlu, Bugra 1
Charikar, Moses 73

Delis, Alex 102

Gazis, Alexandros 137
Giannakopoulou, Kalliopi 152
Gkoulalas-Divanis, Aris 118, 169
Gupta, Karan 25

Kagklis, Vasileios 169
Karapiperis, Dimitrios 118
Katsiri, Eleftheria 137
Knollmann, Till 46
Kulkarni, Ketki 13

Naamad, Yonatan 73
Neumann, Frank 59

Pagourtzis, Aris 13
Polyakovskiy, Sergey 59

Potika, Katerina 13
Potikas, Petros 13

Rajaraman, Rajmohan 25
Rexford, Jenifer 73

Setzer, Alexander 46
Shen, Bochao 25
Skutella, Martin 59
Souliou, Dora 13
Stavropoulos, Elias C. 169
Stougie, Leen 59
Subramani, K. 1
Sun, Zhifeng 25
Sundaram, Ravi 25
Sundermeier, Jannik 46

Vatsalan, Dinusha 118
Velasquez, Alvaro 1
Vlantis, Panayiotis I. 102

Wu, Junhua 59

Zou, X. Kelvin 73

	Preface
	Organization
	Algorithms For and Against the Cloud (Keynote Talk)
	Contents
	Minimization of Testing Costs in Capacity-Constrained Database Migration
	1 Introduction
	2 Notations and Problem Formulation
	3 Computational Complexity of the CCDM Problem
	4 Fixed Parameter Intractability of the CCDM Problem
	5 Approximation Algorithm for a Special Case of the CCDM Problem
	6 Conclusion and Future Research Directions
	References

	Community Detection via Neighborhood Overlap and Spanning Tree Computations
	1 Introduction
	1.1 Community Detection
	1.2 Terminology
	1.3 Related Work
	1.4 Our Contribution

	2 Neighborhood Overlap-Based Approaches
	3 Experimental Results
	3.1 Synthetic Network Models
	3.2 Real-World Networks

	4 Conclusions
	References

	Colocation, Colocation, Colocation: Optimizing Placement in the Hybrid Cloud
	1 Introduction
	1.1 Motivation and Model
	1.2 Our Results
	1.3 Related Work

	2 VITA(F) for Linear F
	3 VITA(min)
	3.1 Unconstrained, Bounded - Exact
	3.2 Constrained, Bounded - Strongly NP-Hard
	3.3 Unconstrained, Unbounded - Inapproximable
	3.4 Constrained, Unbounded - O(logn, logn) Bicriteria

	4 VITA(max)
	4.1 Unconstrained, Unbounded - Exact
	4.2 Constrained, Bounded - Strongly NP-Hard
	4.3 Constrained, Unbounded - (logn)

	5 VITA(2ndmax)
	5.1 Unweighted, Bounded, Unconstrained - Weakly NP-Hard
	5.2 Unweighted, Constrained, with Number of Buckets Exceeding Number of Dimensions - O(logn) Approximation

	6 Experiments
	6.1 Solution Quality
	6.2 Running Time

	7 Conclusion and Future Work
	References

	A Peer-to-Peer Based Cloud Storage Supporting Orthogonal Range Queries of Arbitrary Dimension
	1 Introduction
	1.1 Related Work

	2 Notations
	2.1 Embedding a Hilbert Curve in a Mesh
	2.2 Network Properties

	3 Answering Range Queries
	3.1 The Algorithm
	3.2 Analysis

	4 Concluding Remarks
	References

	A Fully Polynomial Time Approximation Scheme for Packing While Traveling
	1 Introduction
	2 Dynamic Programming
	3 Approximation Algorithms
	3.1 Inapproximability of the Packing While Traveling Problem
	3.2 An FPTAS for Amount over Baseline Travel Cost

	4 Experiments and Results
	5 Conclusion
	References

	Multi-commodity Flow with In-Network Processing
	1 Introduction
	2 Flow Routing with In-Network Processing
	2.1 Processed Flow Routing Problem
	2.2 A 2-Walk-Based Solution

	3 An Edge-Based Polynomially-Sized LP
	3.1 The Edge-Based Solution
	3.2 Proof of Equivalence to the 2-Walk-Based LP

	4 Evaluations
	5 Multiplicative Weights Based Approximation Algorithm
	5.1 Multiplicative Weight Update for Traditional MCF
	5.2 Formulation and Analysis
	5.3 Proof of the (1-) Approximation

	6 Middlebox Node Purchase Optimization
	6.1 Approximation Hardness for Directed Min Middlebox Node Purchase
	6.2 Bicriterion Approximation Algorithm for Directed and Undirected Min Middlebox Node Purchase
	6.3 Approximation Hardness for Undirected Min Middlebox Node Purchase
	6.4 Approximation Algorithm for Directed Budgeted Middlebox Node Purchase
	6.5 Approximation Algorithm for Undirected Budgeted Middlebox Node Purchase
	6.6 Approximation Hardness for Directed Budgeted Middlebox Node Purchase
	6.7 Approximation Hardness for Undirected Budgeted Middlebox Node Purchase

	7 Related Work
	References

	On-Line Big-Data Processing for Visual Analytics with Argus-Panoptes
	1 Introduction
	2 Related Work
	3 Argus-Panoptes Design Principles
	4 The Argus-Panoptes System
	4.1 The Architecture
	4.2 The VA Client Functionality

	5 Assessment with a Government ASB Dataset
	6 Concluding Remarks
	References

	An Overview of Big Data Issues in Privacy-Preserving Record Linkage
	1 Introduction
	2 Analysis Tool
	2.1 Protocols and Applications
	2.2 Privacy Techniques
	2.3 Computational Methods
	2.4 Theoretical Analysis
	2.5 Evaluation

	3 Literature Review
	3.1 Blocking Techniques
	3.2 Block Processing Techniques
	3.3 Filtering Techniques
	3.4 Parallel Processing
	3.5 Improved Communication Patterns

	4 Conclusions
	References

	Web Frameworks Metrics and Benchmarks for Data Handling and Visualization
	1 Introduction
	2 Literary Review
	3 Aims and Objectives
	4 First Stage of Tests
	4.1 Proposed Method
	4.2 Model of Study
	4.3 Results

	5 Second Stage of Tests
	5.1 Proposed Method
	5.2 Model of Study
	5.3 Results
	5.4 Results

	6 Future Work
	References

	Algorithms for Cloud-Based Smart Mobility
	1 Introduction
	2 Algorithms for Smart Mobility in Road Networks
	2.1 Time-Dependent Heuristics
	2.2 Time-Dependent Oracles

	3 Algorithms for Smart Mobility in Public Transit Networks
	3.1 Array-Based Approaches
	3.2 Graph-Based Approaches
	3.3 Practical Performance

	4 Conclusions
	References

	A Frequent Itemset Hiding Toolbox
	1 Introduction
	2 Related Work
	3 Problem Formulation
	3.1 Definitions
	3.2 Problem Description

	4 The Architecture of the FIH Toolbox
	5 Special Features of the FIH Toolbox
	5.1 Built-In Library
	5.2 Extensibility
	5.3 Automatic Option Loading

	6 Experimental Evaluation
	6.1 Datasets
	6.2 Evaluation Metrics and Framework
	6.3 Experimental Results

	7 Conclusions and Future Work
	References

	Author Index

