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Abstract. The deterioration in the bridges that cross the watercourses
is a situation that must be resolved in a timely manner to avoid the
collapse of its structure. Its repair can mean a high cost, road and envi-
ronmental alteration. An effective solution, which minimizes this impact,
is the installation of a superstructure in the form of an arch that covers
the entire length of the bridge and which, by means of a hook anchored
to the deck of the bridge, allows the arch to support the weight. This
structure must try to maintain the original properties of the bridge, so
the calculation of the magnitude of tension of the hangers and the order
in which it is applied should not cause damage to the structure. In this
document, we propose to optimize the process of calculating the hanger
magnitudes and the order in which they must be applied using the moth
search algorithm, in order to obtain one or several satisfactory solutions.
Finally, we present the results obtained for an arch bridge and three
hangers and, thus, evaluate the efficiency and effectiveness in the pro-
cess of obtaining results in comparison with the Black Hole Algorithm.

Keywords: Reinforcement of bridges · Metaheuristics ·
Moth search algorithm · Combinatorial optimization

1 Introduction

Computer science is a transversal discipline for many areas of study and human
activities. One of them is the construction area. Many constructive designs are
based on models that predict how the behavior of the design will be, in order to
avoid risks or unexpected results. The more data representative of reality is able
to capture the model, it will be possible to generate information to make better
decisions. However, the quality of the information depends on the quality of
the data and the accuracy in them is a fundamental requirement. This is where
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computing comes into play, by processing data more accurately and quickly,
delivering timely, useful and error-free information.

A bridge is a structure built with the purpose of saving a geographical acci-
dent, road, water course or other obstacle that comes before it. Its design depends
on its function and the nature of the terrain on which it rests. They are usually
built on the basis of metallic structures, reinforced concrete, wood or a combina-
tion of these. Basically, the forms that the bridges adopt are three, being directly
related to the efforts that support their constructive elements. These are: beam
bridges, arches and pendants. The present paper will address the reinforcement
of a beam bridge through an arch with tension hangers.

Every structure created by the human being has a useful life. In the case
of bridges vary depending on various causes. In the case of beam bridges, the
undermining of the piers is one of the most frequent causes and damage to
these structures can be very serious, such as collapse. Repairing them has a high
impact on cost, time and use, so a suitable solution alternative is one that has
the least impact. The design of a cable-stayed bridge with a lower deck is a
viable solution. This consists of an arc that covers the longitudinal extension
of the bridge from which hangings hang anchored to the board, supporting the
weight of the structure, in this way it is possible to do without the piers where
it rested.

This paper is organized in the following way, in Sect. 2 the problem to be
solved is presented, in Sect. 3 Moth Search algorithm is explained, in Sect. 4 the
integration of metaheuristics to the bridges problem, and in Sect. 5 the results
obtained with their respective statistical tests to evaluate performance, ending
with the conclusion and future work.

2 Problem

The problem to solve was proposed by Valenzuela [10–12] using Algorithm
Genetic [4] and then by Black Hole [3] in order to determine which of the algo-
rithms achieved better results. The best of both turned out to be Black Hole.
Now we will use Moth Search (MS) [13] to determine if it achieves better results
than Black Hole [7].

The structure of the bridge is modeled in a CAD application called SAP2000
[1], which provides an API that allows it to be operated externally by our algo-
rithm. Thanks to this, the application will perform many complex structural
calculations, so that our algorithm will provide the necessary data to perform
these calculations and, thus, obtain a solution.

2.1 Objective Function

The objective function is defined as the sum of the tense difference between
the original and the modified bridge for each of K cuts in each of the beams,
minimizing this difference.
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min

2∑

i=1

K∑

k=1

|σoi,k − σmi,k| ; i ∈ {1, 2} , k ∈ {1, 2, . . . , k} (1)

Minimize the difference between the stresses of the original bridge and the mod-
ified arch bridge of the hangers. As long as the optimum result tends to zero, it
means that the stress calculations will tend to equal the stresses of the models
of both bridges (original and modified), preserving the original properties of the
bridge. The tensions are obtained through the following formulas.

σoi,k =
Moi,k · vi

Ioi
; i ∈ {1, 2} , k ∈ {1, 2, . . . , k} (2)

σmi,k =
P

A
+

P · e · vi

ImTOTAL
+

Mmi,k · vi

Imi
; i ∈ {1, 2} , k ∈ {1, 2, . . . , k} (3)

2.2 Decision Variable

For a bridge of three hanging will be 6 decision variables, three to indicate the
order of tension and the other three to determine the magnitude of tension of
each hanger.

ord1, ord2, . . . , ordn ∈ {1, 2, . . . , n} (Orders) (4)

mag1,mag2, . . . ,magn ∈ [Tmin, Tmax ] (Magnitudes) (5)

2.3 Constraints

The problem have two constraints that must be met to satisfy the objective
function.

– The hangers cannot be jacking simultaneously.

ordw �= ordj ; ∀w, j con w �= j w, j ∈ {1, 2, . . . , n} (6)

– The effort of the modified bridge deck should not pass the limits of the BAM:

σmi,k ≥ σo (7)

σmi,k ≥ fct (8)

σmi,k ≤ fcmax2 (in internmediate stages) (9)

σmi,k ≤ fcmax (in final stages) (10)

σmi,k: Tension (top or bottom) in the beams of the cable-stayed bridge.
fct: Maximum tension of admissible traction by the concrete.
fcmax: Maximum compressive stress admissible by the concrete.
fcmax2: Maximum compressive stress admissible for expanded concrete.
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3 Moth Search

Moth Search is a bio-inspired metaheuristic algorithm to respond to global opti-
mization problems. It was created by Wang [13].

Moths are a type of insects that belong to the order Lepidoptera. Among
the various characteristics of moths, phototaxis and Levy flights are the most
representative characteristics described below.

Phototaxis is the orientation reaction of free cellular organisms in response
to a luminous stimulus. In general, moths tend to fly around the light source, in
the form of Lévy flights.

3.1 Lévy Flights

Lévy flights are one of the most important flight patterns in nature. Many species
move following a flight pattern of Lévy and describe a type of random walks,
whose length steps are taken from the distribution of Lévy. The distribution of
Lévy can be expressed mathematically in the form of a power law formula.

L(s) ∼ |s|−β (11)

where 1 < β <= 3
Lévy flights can maximize the efficiency of finding resources in uncertain

environments. Therefore, β = 1.5 is used to optimize benchmarks and engineering
cases.

The moths, which have a smaller distance than the best, will fly around it
in the form of Lévy flights. In other words, their positions are updated by Lévy
flights.

For moth i in each variable, it can be updated as:

xt+1
i = xt

i + αL(S) (12)

xt+1
i = xt

i + α(
(β − 1)Γ (β − 1)sin(π(β−1)

2 )
πSβ

) (13)

Where xt+1
i and xt

i are respectively the updated original position in generation t,
and t is the current generation. L(s) is the passage of Lévy flights. The parameter
is the scale factor related to the problem of interest. In our current work, it can
be given as:

α =
Smax

t2
(14)

Where Smax is the maximum walking step and its value is established according
to the given problem. Lévy distribution L(s) in equation can be formulated as
follows:

L(s) =
(β − 1)Γ (β − 1)sin(π(β−1)

2 )
πSβ

(15)

Where s is greater than 0, Γ (s) it is the gamma function.
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3.2 Straight Flight

Certain moths that are far from the source of light will fly towards that source
of light in line. This process can be described below.

For moth i in each variable, its flights can be formulated as:

xt+1
i = λ(xt

i + φ(xt
best − xt

i)) (16)

where xt
best is the best moth in generation t, and φ is an acceleration factor

established in golden relation in our current work. λ is a scale factor. On the
other hand, the moth can fly towards the final position that is beyond the light
source. For this case, the final position for moth i can be formulated as:

xt+1
i = λ(xt

i +
1
φ

(xt
best − xt

i)) (17)

For simplicity, for moth i, its position will be updated by Eqs. 16 or 17 with
the possibility of 50%. In addition, these two update processes mentioned above
can be represented in (Fig. 1a, b) respectively. In Fig. 1, xbest, xi and xi,new

are respectively the best, original and updated position for moth i, and are
considered as a light source, start point and end point. λ is a scale factor that
can control the speed of convergence of the algorithm and improve the diversity
of the population. In our current work, the scale factor is set to a random number
drawn by the standard uniform distribution.

4 Integration

In the MS method, for simplicity, the entire population of moths is divided into
two equal subpopulations (Subpopulation 1 and Subpopulation 2) according
to their suitability, and they are updated according to the Lévy flights or in a
straight line, respectively. This is equivalent to saying that the moths in Subpop-
ulation 1 are much closer to the better than Subpopulation 2. In addition, like
many other metaheuristic algorithms, an elitism strategy is incorporated in order
to accelerate the convergence of the MS method. MaxIterations is the initial
maximum generation that can be considered as the term condition.Algorithm 1
describes this process.

In synthesis, two models will be used: one of the original bridge and another
with the modifications to compare it with the first one. Therefore, the meta-
heuristic will provide the voltage magnitudes for SAP2000 to perform and thus
obtain a solution. The communication between metaheuristics and SAP2000 will
be made through the API provided by the latter.
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Algorithm 1. Integration between SAP2000 and Moth Search algorithmic.
1: Establish bridge models to evaluate (Instance).
2: for all Instance do
3: SAP2000.Open
4: SAP2000.Load(Original Bridge Model)
5: Randomly initialize the population P of NP moths randomly
6: Set MaxIterations, MaxWalkStep Smax, β, ϕ
7: for Iteration ≤ MaxIterations do
8: SAP2000.Load(Modified Bridge Model)
9: SAP2000.ApplyTension()

10: SAP2000.GetFitness()
11: Sort all the moth individuals as per their fitness and Save BesthMoth.
12: Save Best Moth
13: for i = 1 to NP/2 (for all moth individuals in Subpopulation 1) do
14: for j = 1 to D do
15: Generate xt+1

ij by (15) performing Lévy flights.
16: end for
17: end for
18: for i = NP/2 + 1 to NP do
19: for j = 1 to D do
20: if rand > 0.5 then
21: Generate xt+1

ij by (16)
22: else
23: Generate xt+1

ij by (17)
24: end if
25: end for
26: end for
27: end for
28: SAP2000.Close()
29: end for

The configuration was parameters used for the execution, it was obtained
through parametric sweep are shown in the Table 1 [5].

Table 1. Parameters for execution.

Population Executions Iterations Alpha

48 15 200 0.000001

5 Experimental Results

The Tables 2, 3 and 4 summarize the best solutions achieved in each of the 15
executions for instance.
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Table 2. Fitness comparation (a)

PV-TCV HW-TCV PT-TCV AB-TCV

BH MS BH MS BH MS BH MS

1 525788,701 524139,528 522992,527 520707,516 520560,471 522709,168 520152,444 529824,623

2 524362,167 527337,192 518566,592 521467,410 520610,728 523656,669 520848,212 529462,056

3 523983,245 526024,026 520271,778 521921,189 523880,059 523871,984 519373,561 529358,722

4 523941,247 522720,317 517752,373 522429,087 518340,350 520855,130 520872,273 534472,795

5 523427,989 522383,486 518554,722 522249,702 519411,917 523411,190 524023,770 529321,548

6 523381,036 523860,029 521443,876 521619,530 525110,874 521199,953 524821,681 529332,343

7 522809,147 522924,479 523204,076 522837,239 520863,041 525332,737 524246,509 529154,644

8 522648,276 522267,417 520515,557 522237,042 522029,399 523449,317 523785,395 538118,512

9 522138,965 524027,438 520214,641 525463,179 521966,778 522385,429 521241,888 528748,384

10 521950,827 523160,081 518227,336 522954,810 526676,105 523310,390 517068,779 528751,098

11 521351,709 521923,453 519526,112 522385,494 522617,218 521627,024 520203,824 528794,300

12 521114,467 522200,113 519225,675 525625,865 525204,201 521776,053 523623,834 528710,845

13 520927,571 522624,045 516990,684 522918,025 524252,033 526735,660 520622,784 528653,496

14 520202,016 522023,396 521974,260 520395,044 518891,310 524878,383 522447,219 528455,727

15 518788,669 522492,710 522006,562 521272,424 523880,059 525725,692 517564,071 527881,264

Table 3. Fitness comparation (b)

WR-TCV VC-TCV CC-TCV TC-TCV

BH MS BH MS BH MS BH MS

1 523896,152 529477,706 521676,411 519846,831 518616,048 527953,566 522834,907 520217,120

2 519204,810 531663,354 523586,259 521680,027 524706,864 529698,713 521301,708 524967,128

3 522236,031 531239,237 520710,801 522635,853 522562,147 530439,770 522591,311 524796,056

4 525384,947 531139,511 521939,460 521775,646 517694,832 536831,146 525268,020 522572,121

5 519448,379 529715,769 516764,747 523607,474 520212,174 531236,044 519571,134 523143,451

6 519880,227 528671,041 526420,203 523382,604 520538,000 532152,376 524103,151 523030,723

7 518685,865 529270,895 520958,228 522720,927 515930,442 530039,302 521634,820 521806,946

8 521471,347 529918,358 522523,255 522645,384 520447,927 530745,301 523052,417 523451,586

9 521745,606 530487,258 520900,604 527274,068 520404,149 531022,389 521994,378 524235,633

10 521210,450 533216,584 517454,836 534720,702 520682,197 529892,495 519824,404 522523,995

11 523417,258 530490,245 521104,325 536159,250 523472,335 537619,557 524988,999 523543,682

12 522611,368 528807,423 524091,123 529433,687 524143,332 529270,743 519926,614 523253,590

13 526646,976 528620,138 517878,923 530675,662 522918,409 531145,877 522386,876 523829,050

14 522051,315 529381,392 520548,389 527051,075 515608,056 531853,565 519598,167 523178,525

15 519162,739 530263,611 515963,267 530497,598 519413,560 530729,770 522191,193 523907,308

5.1 Comparing Results

To determine which algorithm achieves the best results, the best solutions of the
15 executions made to each instance have been collected.

This allows obtaining 2 sets of data to be compared for each instance: those
obtained with BH and those obtained with MS. These two samples are subjected
to two statistical tests. The first allows to determine if both samples are inde-
pendent, which would clear the doubt if the samples are reliable to compare,
and the second to verify the veracity of the hypothesis formulated with respect
to the best result obtained.
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Table 4. Fitness comparation (c)

RD-AA10 RC-AA10 CR-AA10

BH MS BH MS BH MS

1 517200,649 524066,303 514508,111 520920,138 511024,809 521705,173

2 512678,644 521738,302 517790,493 521047,167 517088,897 522055,256

3 511107,489 521460,585 515619,911 522175,344 515740,371 522952,922

4 508556,024 521818,123 514564,776 520969,151 514210,370 521523,765

5 519226,401 521090,646 514605,633 521769,704 514470,308 521105,522

6 513572,503 521829,232 517856,008 522029,575 517102,869 520597,009

7 514930,924 522007,048 513847,138 521218,138 512584,970 521202,212

8 509176,298 521473,608 514603,894 523063,544 517126,961 522001,367

9 514299,205 521996,533 514367,665 522363,607 514913,049 522064,221

10 517038,968 520935,668 514019,852 521063,580 517761,806 521254,353

11 512632,111 520250,193 513776,522 520626,463 516430,949 526959,437

12 516494,402 523463,306 514272,046 520083,744 512943,624 520758,016

13 511665,241 520327,645 514457,070 524280,148 514502,449 520874,602

14 513408,640 521210,740 513593,241 520569,576 512808,821 520048,010

15 515799,785 520597,995 510072,744 520109,998 516154,932 520660,141

The Kolmogorov-Smirnov test, with Lilliefors correction [6], is used to test if
a data set fits a normal distribution or not, in our the test concluded that the
samples are independent.

Then, the Mann-Whitney-Wilcoxon test [2] will be applied to the same
group of data to determine the veracity of the hypothesis with respect to which
algorithm of the comparators presents the best results, based on the following
hypotheses:

H0 : MS is better than BH
H1 : BH is better tha MS

If the p-value of a hypothesis of one sample with respect to the other is less
than 0.05, it can not be assumed to be true.

When applying this test, the results presented in Table 5 were obtained.

5.2 Distribution Comparison

The best solutions obtained in each execution are presented in the following
graphs, where you can see a comparison between Black Hole and Moth Search.
The boxes of blue color represent the solutions given by BH, the red ones corre-
spond to those of MS.

In all situations, the results obtained by MS do not surpass BH. This is due
to a number of insufficient iterations, a small population and parameter settings
that allow greater precision (progress at a smaller step).



252 Ó. Carrasco et al.

Table 5. p-value Mann-Whitney-Wilcoxon test

Instance BH better than MS MS better than BH

PV-TCV 0,864152 0,13584722

HW-TCV 0,998273 0,00172669

PT-TCV 0,873017 0,12698204

AB-TCV 0,999998 0,00000153

WR-TCV 0,999998 0,00000153

VC-TCV 0,999346 0,00065324

CC-TCV 0,999998 0,00000153

TC-TCV 0,979971 0,02002832

RD-AA10 0,999998 0,00000153

RC-AA10 0,999998 0,00000153

CR-AA10 0,999998 0,00000153

Fig. 1. Best fitness instances

6 Conclusions

The use of optimization techniques, present great advantages when solving prob-
lems of great complexity [8,9]. The solutions given by Moth Search in the vast
majority of cases do not exceed those achieved by Black Hole. However, in some
situations the proximity has been close, so it is possible to infer that by making
the necessary adjustments to the algorithm, results such as Black Hole can be
achieved.

In two of the eleven instances it is not concluded that Moth Search is unable
to achieve results like those of Black Hole, which would lead to promising results
if improvements are applied to the algorithm and execution parameters.
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In conclusion, it is proposed to make improvements in the parameters such as
Population Size, Number of Iterations, Acceleration Factors, Disturbance Oper-
ators and in the algorithm as Elitist Strategies, Convergence Acceleration Strate-
gies, Selective Population, Population Grouping, others.
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