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Abstract This chapter explores the application of a hybrid approach namely multi-
objective optimization based on ratio analysis (MOORA) in fuzzy context to obtain
the best parametric combination during machining of commercially pure titanium
(CP-Ti) Grade 2 with uncoated carbide inserts in dry cutting environment. A series of
experiment was performed by adopting Taguchi based L27 orthogonal array. Cutting
speed, feed rate, and depth of cut were selected as three process variables whereas
cutting force, surface roughness and flank wear were selected as three major quality
attributes to be minimized. The minimization was exploited using fuzzy embedded
MOORA method and hence an optimal parametric combination was attained. The
results of the investigation clearly revealed that, the fuzzy coupled with MOORA
method, was capable enough in acquiring the best parametric setting during turning
operation under specified cutting conditions.

Keywords Fuzzy logic · MOORA · Flank wear · Optimization · Surface
roughness · Titanium

1 Introduction

The present era is well-known for the creation and development of a large number
of structural materials. Among these materials, titanium and its alloys are identi-
fied as more promising owing to their inherent properties. Titanium alloys are more
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attracting than that of other similar materials due to their unique characteristics such
as superior corrosion resistance, highest strength-to-weight ratio, exceptional tissue-
inertness and sustainability of these properties even at elevated temperatures [1–3].
Therefore, these alloys are most widely used in aerospace, chemical processing,
marine, automobile and medical industries [4, 5]. Consequently, the aforementioned
applications necessitate a substantial machining. Regrettably, titanium alloys are
characterized as ‘hard-to-cut’ typematerials owing to their poor thermal conductivity
and high chemical affinity [6–8]. Poor thermal conductivity restricts heat dissipation
from the primary cutting zone which in turn leads to excessive temperature gradi-
ent and hence to rapid tool wear at its pre-mature stages. Similarly, high chemical
affinity of these alloys contributes in localizing the heat and hence a remarkable
adhesion between tool and work materials which strongly curtails the tool life. The
afore-discussed consequencesmay possibly lead to high production cost, high energy
requirement in associationwith compromising dimensional accuracy [9]. These chal-
lenges can be addressed by selecting an appropriate cutting tool materials as well
as a suitable combination of machining variables. However, a sufficiently enormous
variety of cutting tool materials are now available, carbide inserts were recognized as
the most suitable for machining titanium and its alloys [10, 11]. Therefore, commer-
cially available uncoated carbide inserts were used for the machining of the selected
work material during this investigation.

Selection of an appropriated combination of cutting variables is of paramount
importance while machining “hard-to-cut” materials like titanium and its alloys. In
machining of such alloys, an appreciable tool life, superior surface finish and rel-
atively lower values of the cutting forces are acknowledged as the most noticeable
manufacturing desires. To meet these requirements, adoption of optimization meth-
ods becomes essential to confirm high productivity without compromising the qual-
ity. In the past few decades, several experimental investigations have been reported
exhibiting the application potential of different optimization techniques for optimiz-
ing turning parameters in order to achieve quality products. Lalwani et al. [12] studied
the influence of various turning variables viz. cutting speed, feed rate and depth of cut,
on two distinct cut qualities (i.e. cutting force and surface roughness) while turning
MDN 250 steel with ceramic inserts. Aouici et al. [13], developed response surface
methodology (RSM)-based quadratic models for the prediction of various turning
responses such as surface roughness and cutting force, during turning of AISI H11
steel using CBN (Cubic boron nitride) inserts. Asiltürk and Neşeli [14] and Hashmi
et al. [15], in their experimental investigations also developed RSM-based empirical
models for the prediction of two different surface roughness characteristics viz. arith-
metic mean roughness (Ra) and maximum peak-to-valley height (Rz). The results of
both the investigations indicated that the suggested quadratic models were effective
enough in predicting cut qualities and can be used to estimate the machining charac-
teristics of other machining processes too. Similarly, Tebassi et al. [16] advised two
different prediction models for estimating cutting force and surface roughness dur-
ing machining of nickel based super alloy Inconel 718. They suggested RSM-based
quadratic model and artificial neural network (ANN)-based model. In the current
investigation, they compare the estimation efficiency of both the models and noticed
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that, ANNmodel was around 10.1%more precise in estimating cutting force (Fc) and
24.83% precise in estimating average roughness or arithmetic mean roughness (Ra),
in comparison to the quadratic model counterpart. Furthermore, ANN model was
also signified as an effective prediction tool for predicting cutting force, tool wear
and surface roughness during turning operation [17]. Abburi and Dixit [18], recom-
mended ANN coupled with fuzzy set theory to estimate the surface roughness during
turning operation. Similarly, Basheer et al. [19], also used ANNmodel for predicting
various output characteristics while precision machining of metal matrix composites
(MMCs). The above mentioned studies were performed in dry cutting environment.
In contrast, some researchers have reported the effectiveness of employing cool-
ing media such minimum quantity lubrication (MQL) in order to attain improved
machinability of different titanium and nickel-based super alloys [20–23]. These
investigations highlighted the technical hitches and the benefits of MQL approach in
a real time manufacturing system.

In addition to the afore discussed machining approaches, optimization techniques
and prediction models, an extensive work has been found in which researchers have
used various multi-criteria decision making (MCDM)-based approaches to solve
turning problems consisting ofmultiple process variables and attributes. Thesemeth-
ods include Analytical hierarchy process (AHP), Analytical network process (ANP),
Fuzzy logic, multi-objective optimization based on ratio analysis (MOORA) method
and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)
method etc. [24–28]. Apart from this, some hybrid and innovative techniques viz.
Fuzzy-TOPSIS, Fuzzy-MOORA, and ANP-TOPSIS were also reported in order to
confirm better solution of a specific problem [29]. The aforesaid approaches were
found to bemore precise in attaining the best alternative among a set of feasible alter-
natives. From the above literature survey it is clear that, an extensive work has been
dedicated to the utilization of several MCDM-based approaches in solving a wide
range of problems.However, turning parameters ofCP-Ti grade 2 and their vagueness
has not been studied and reported adequately so far. This might be contributed to the
uncertain behavior of turning responses and vague information about the interaction
between turning variables. Thus, the aforesaid situation leads an unclear solution.
Therefore, selection of a suitable and effective methodology to solve MCDM-based
problems is a great challenge to the researchers as well as the industries dealing with
such situations. Keeping in mind, the vagueness and uncertainty of turning param-
eters, a fuzzy embedded MOORA method has been introduced in this study. The
concepts of fuzzy set theory have been implemented to determine the best parametric
combination while machining CP-Ti grade 2. The relationship between turning input
and the selected output, were described with the help of fuzzy linguistic variables.
In addition, a fuzzy control rule was developed for each of the selected attribute by
adopting seven different linguistic grades. Thus, an optimal combination of process
variables was attained and reported.
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2 Multi-objective Optimization Based on Ratio Analysis
(MOORA)

TheMOORAmethod is a newly introduced approach having a substantial potential in
dealing with a wide range of problems comprising of multiple as well as conflicting
attributes. This method was developed and proposed by two European (Vilnius;
Lithuania) researchersBrauers andZavadskas in the year 2006.Basically, thismethod
comprises of two distinct elements viz. the ratio system and the reference point
approach. The first element is used to determine the overall performance of each
alternative. This can be done by calculating the difference between the summations
of the corresponding normalized values related to each criteria. On the other hand,
the reference point approach helps in indicating the best or optimal combination of
the alternatives.

The MOORA method can be understood deeply and clearly with the help of the
following steps:

Step 1: Initially a decision matrix is constructed which represents all the selected
responses and the corresponding set of input variables.

X =

⎡
⎢⎢⎢⎣

x11 x12 . . . x1n
x21 x22 . . . x2n
...

...
...

...

xm1 xm2 . . . xmn

⎤
⎥⎥⎥⎦ (1)

here, xij denotes the selected outcomes of the ith alternative on jth attribute,
whereas m and n represents the number of alternatives (a set of input vari-
ables) and number of attributes (machining response) respectively.

Step 2: Normalization of the data sets observed in step number 1 and thus estab-
lishing a ratio system.

x∗
i j = xi j√∑m

i=1 x
2
i j

( j = 1, 2, . . . , n) (2)

here, x∗
i j denotes the normalized value of the ith alternative on jth attribute.

This is a dimensionless quantity that lies between 0 and 1.
Step 3: In the next step, the overall assessment value is calculated by

adding/subtracting the normalized values corresponding to each alterna-
tive. All the beneficial (higher-is-better) type performance characteristics
are added whereas non-beneficial (lower-is-better are subtracted in order to
obtain the overall assessment value.

yi =
g∑
j=1

x∗
i j −

n∑
j=g+1

x∗
i j (3)
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here, g denotes the number of attributes related to beneficial criterion
whereas (n − g) is the number of attributes corresponding to non-beneficial
criterion. yi represents the overall assessment value of the ith alternative
with respect to all alternatives.
Many a times, it was perceived that some of the attributes are of paramount
importance when compared to the others. In such situations, weight criteria
or factor can be multiplied with the same. After incorporation of weighting
parameter the above equation can be written as below:

yi =
g∑
j=1

w j x
∗
i j −

n∑
j=g+1

w j x
∗
i j (4)

where, wj is the weight of jth attribute.
Step 4: Assign ranking to overall assessment value yi in descending order. The

highest value of the yi represents the best alternative, while the lowest value
of yi represents the worst.

3 An Introduction to Fuzzy Set Theory

A multi-criteria decision making (MCDM)—based problem has been identified as
one of the difficult problems associated with real time manufacturing systems, due to
the involvement of several uncertain situations. Therefore, to acquire an acceptable
solution from this kind of problems has always been a challenging task to meet, for
the researchers. In this situation, fuzzy set theory plays a key role in dealing with the
ambiguity of the process and offers better results [30]. A fuzzy set theory, allows the
decision maker to express their opinions in terms of specified linguistic variables.
These linguistic variables can be converted into different fuzzy numbers with the
help of fuzzy membership functions. In this way, MCDM-based problems can be
solved easily and effectively. Consequently, fuzzy set theory has been identified as a
significant as well as efficient tool for explaining human activities inclusive of vague
and uncertain information.

Fuzzy inference system (FIS) is a well-recognized computing tool for handling
linguistic knowledge andnumerical data together. In general, FISutilizes the concepts
of fuzzy reasoning, fuzzy rules (If-then) and fuzzy set theory to deal with a wide
range of problems viz. decision making, automatic control, robotics, classification
of data and pattern recognition etc. This might be contributed to its effectiveness in
mapping of any prescribed input to an output by using the aforesaid approaches. An
FIS consists of four distinct elements such as fuzzifier, inference engine, knowledge
base and defuzzifier. Initially, the crisp input is converted in terms of predefined
linguistic variable by utilizing the membership function kept in the fuzzy knowledge
base. This can be performed with the help of the first element i.e. fuzzifier and hence
this process is termed as fuzzification. Secondly, the fuzzy input is converted to the
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Fig. 1 The architecture of fuzzy—interface system

fuzzy output by adopting fuzzy rules (If-then) inside the inference engine. Finally,
the last element i.e. defuzzified is engaged to convert these fuzzy output to a crisp
value. The architecture of a fuzzy inference system is represented in Fig. 1.

Fuzzy number: A fuzzy number, is a subset of real numbers which denotes the
development of the idea within a specified confidence interval [30]. For example,
let A be the classical set of objects, whose elements are represented by X. The crisp
value of a prescribed statement is characterized by means of a membership function
and can be represented by a curve indicating the membership values lying in the
range of 0 and 1.

µA(X) =
{
1, i f X ∈ A
0, Otherwise

(5)

Here, {0, 1} is known as the evaluation set and it is permissible to be represented
in a real interval [0, 1] for the continuous mapping membership function. More-
over, assortment of a suitable membership function is of utmost significance in the
fuzzification process. These membership functions are typically created by means of
amply of elementary functions such as linear, quadratic and cubic polynomial curves,
Gaussian distribution function, sigmoid curve etc. Conversely, the modest member-
ship function can be created expending straight lines. In this category, the triangular
membership function is recognized as the simplest one, which can be described with
the help of a center-based triplet tactic. A triangular membership function can be
constructed by keeping and equal and identical distance between the lowest and the
highest points attached to the adjacent center. As a result of this, for each input value
there will not be fuzzy sets greater than two. Similarly, the addition of their member-
ship degrees always remains unity. Figure 2 explains the schematic representation
of a triangular fuzzy membership function. For a clear understanding of fuzzy set
theory and fuzzy numbers, some important definitions are enumerated below:
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Fig. 2 A triangular fuzzy
membership function

Definition 1: A fuzzy set Ã in a universe of discourse X is described by a member-
ship function µ Ã(x) which is characterized as the grade of member-
ship of x in Ã.

Definition 2: The triangular fuzzy numbers (TFNs) can be exemplified as Ã = (a1,
a2, a3), and the membership function of the fuzzy number Ã can be
designated as below (Eq. 6):

µ Ã(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 x < 1,
x−a1
a2−a1

a1 ≤ x ≤ a2,
a3−x
a3−a2

a2 ≤ x ≤ a3,

0 x > a3

(6)

Definition 3: The fuzzy sumand fuzzy subtraction of twodifferent TFNs are also tri-
angular fuzzy numbers. But, the multiplication of two different TFNs
is only an approximate TFN. For example, if there are two triangular
fuzzy numbers Ã = (a1, a2, a3) and B̃ = (b1, b2, b3), and a positive
real number r = (r, r, r), then the various algebraic operations between
these two TFNs can be described as below:

Ã(+)B̃ = (a1 + a2, b1 + b2, c1 + c2) (7)

Ã(−)B̃ = (a1 − a2, b1 − b2, c1 − c2) (8)

Ã(×)B̃ = (a1a2, b1b2, c1c2) (9)

Ã(/)B̃ = (a1/b1, a2/b2, a3/b3) (10)

Ã(×)r = (a1r, a2r, a3r) (11)

Definition 4: The defuzzified value m( Ã) of a triangular fuzzy number Ã =
(a1, a2, a3), can be calculated using Eq. (12):

m( Ã) = a1 + a2 + a3
3

(12)
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Definition 5: The distance between these two TFNs Ã = (a1, a2, a3) and B̃ =
(b1, b2, b3), can be calculated using Eq. (13):

d( Ã, B̃) =
√
1

3
(a1 − b1)2 + (a2 − b2)2 + (a3 − b3)2 (13)

Definition 6: The best non-fuzzy performance (BNP) value cab be computed by
employing center of area (COA) method, as described in Eq. (14):

BN Pi = [(c − a) + (b − a)]

3
+ a,∀i (14)

4 Fuzzy Embedded MOORA Method

The concept of fuzzy set theory in combination with MOORA method, was accom-
plished to estimate an optimal parametric combination in order to confirm better
machinability of the selected workmaterial. The hybridization of the two approaches
attracted the attention of several researchers in the direction of the decision science
community. Therefore, in the present work, an attempt has been made to exhibit the
application potential of Fuzzy-MOORA method in solving an MCDM-based prob-
lem. The proposed hybrid approach offers a set of linguistic variables to express the
opinions of decision makers. These variables were further utilized to construct fuzzy
decisionmatrix and normalized fuzzy decisionmatrix. In the next step, weighted nor-
malizedmatrixwas acquired by adopting a suitableweightage for each of the selected
response. Further, crisp values for weighted normalized fuzzy decision matrix was
obtained, by calculating the best non-fuzzy performance value corresponding to each
alternative. At the end, overall assessment values were computed and ranking was
done by arranging them in descending order. The recommended hybrid approach
consists of the following steps:

Step 1: Formation of fuzzy decisionmatrix using the adopted fuzzy triangular num-
ber illustrating all the alternatives (in rows) and attributes (in columns).

X̃ =
⎡
⎢⎣

[
xl11, x

m
11, x

n
11

] [
xl12, x

m
12, x

n
12

] [
xl1n, x

m
1n, x

n
1n

]
...

...
...[

xlm1, x
m
m1, x

n
m1

]
xlm2, x

m
m2, x

n
m2 xlmn, x

m
mn, x

n
mn

⎤
⎥⎦ (15)

Step 2: Calculate the normalized fuzzy decision matrix using Eqs. (16–18).

xl∗i j = xli j√
∑m

i=1

[(
xli j

)2 +
(
xmi j

)2 +
(
xni j

)2
] (16)
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xm∗
i j = xmi j√

∑m
i=1

[(
xli j

)2 +
(
xmi j

)2 +
(
xni j

)2
] (17)

xn∗
i j = xni j√

∑m
i=1

[(
xli j

)2 +
(
xmi j

)2 +
(
xni j

)2
] (18)

Step 3: Estimate theweighted normalized fuzzy decisionmatrix usingEqs. (19–21).

Vm
i j = w j x

m∗
i j (19)

V l
i j = w j x

l∗
i j (20)

V n
i j = w j x

n∗
i j (21)

here, wj represents the weight criteria of each attribute.
Step 4: Convert the overall fuzzy assessment value (ỹi ) into a non-fuzzy value

(crisp). The best non-fuzzy performance (BNP) can be calculated using
Eq. (22).

BN Pi (yi ) =
(
yni − yli

) + (
ymi − yli

)
3

+ yli (22)

where ỹi = (
yli , y

m
i , y

n
i

)
.

Step 5: Determine the overall fuzzy assessment value using Eq. (23).

ỹi = Ṽ+
i j − Ṽ−

i j (23)

here, Ṽ+
i j is the overall assessment value of beneficial criterion whereas Ṽ−

i j
denotes the overall assessment value of non-beneficial criterion.

Step 6: Rank the above values by arranging them in descending order. The highest
value exhibits the best alternative whereas the lowest value indicates the
worst alternative.

5 Experimental Case Study

5.1 Work and Tool Materials

A cylindrical bar of commercially pure titanium (CP-Ti) was selected as the work
material having diameter 50 mm and length 500 mm. The chemical composition
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Table 1 Chemical composition of work material

Element C N O Fe H Ti

Wt. (%) 0.08–0.1 0.03 0.25 0.30 0.015 Balance

Table 2 Tool insert geometry

Parameter

Insert shape Square

Insert clearance angle 0°

Tolerance ±0.002

Cutting edge length 12 mm

Insert thickness 04 mm

Nose radius 0.8 mm

Holder style PSBN

Shank height 20 mm

Shank width 20 mm

Tool length 125 mm

of the workpiece is listed in Table 1. A square shaped, ISO designated (SNMG
120408; Grade K313) cutting inserts were used for the machining of the selected
work part. These inserts were rigidly mounted on a tool holder (ISO designation:
PSBNR 2020K12). The geometry details of the cutting insert and tool holder are
listed in Table 2.

5.2 Domain of the Investigation

The present investigation exploited Taguchi based orthogonal array design (L27) to
execute a series of experiment. These arrays were observed to be helpful in optimiz-
ing various quality characteristics and offering the best alternative amongst several
alternatives. In the current investigation, an orthogonal array comprising of three
factors and three levels is adopted as shown in Table 3. The allocation of the selected
process variables was done according to the linear graph depicted in Fig. 3. Table 4,
represents the experimental layout along with the measured outcomes.

5.3 Experimental Procedure

The selected round bar of the workmaterial was turned on a heavy duty lathe (Model:
NH-26; Manufacturer: HMT, India). A series of experiment was conducted as per
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Table 3 Input variables with
their levels

S. no. Input
variable

Unit Levels

Level
1

Level
2

Level
3

1 Cutting
speed (v)

m/min 30 60 90

2 Feed rate
(f )

mm/rev 0.08 0.12 0.16

3 Depth of
cut (d)

mm 0.2 0.4 0.6

Fig. 3 Linear graph of
proposed L27 orthogonal
array

the list given in Table 4. Machining length was kept fixed as 250 mm and a new
and sharp cutting edge was used for each experimental run. Figure 4 illustrates the
experimental setup of the current investigation. Three distinct quality characteristics
of turning operation viz. cutting force (Fc), surface roughness (Ra) and flank wear
(VB) were examined and measured after completion of each trial. Cutting force was
measured using a three dimensional (3D) piezoelectric dynamometer (Manufacturer:
Kistler Instrument Corporation). The values of Fc were recorded at three different
locations (roughly 80 mm apart) throughout the cutting length and the average value
was noted. A roughness testing device (Model: Surtronic 3+ , Manufacturer: Taylor
Hobson) was used to measure the roughness parameter Ra of the machined surface.
The measurements of Ra values were performed at six different locations (roughly
60° apart) around the circumference of the turned part. Similarly, wear on the flank
surfaces of each cutting insert was examined andmeasuredwith the help of an optical
microscope (Model:AxioCamERc 5s,Manufacturer: Carl Zeiss). To confirmabetter
measurement accuracy, wear height at the flank surfaces of each cutting tool insert
was recorded at three different locations and the average value was calculated for
consideration.
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Table 4 Outcomes of the experimentation

Run Input variables Responses

Speed Feed DOC Fc (N) Ra (µm) VB (mm)

1 30 0.08 0.2 67.574 1.015 0.082

2 30 0.08 0.4 115.7 1.225 0.1

3 30 0.08 0.6 99.749 1.453 0.223

4 30 0.12 0.2 135.755 1.295 0.104

5 30 0.12 0.4 110.796 1.195 0.087

6 30 0.12 0.6 78.62 1.497 0.232

7 30 0.16 0.2 126.747 1.87 0.099

8 30 0.16 0.4 78.37 1.595 0.099

9 30 0.16 0.6 96.794 1.942 0.166

10 60 0.08 0.2 76.921 1.215 0.193

11 60 0.08 0.4 117.233 1.24 0.241

12 60 0.08 0.6 101.344 1.328 0.225

13 60 0.12 0.2 138.554 1.549 0.157

14 60 0.12 0.4 113 1.517 0.093

15 60 0.12 0.6 68.873 1.413 0.23

16 60 0.16 0.2 129.407 1.597 0.145

17 60 0.16 0.4 79.994 1.995 0.11

18 60 0.16 0.6 98.058 1.721 0.196

19 90 0.08 0.2 77.93 1.337 0.11

20 90 0.08 0.4 119.074 1.402 0.124

21 90 0.08 0.6 102.799 1.395 0.282

22 90 0.12 0.2 139.544 1.696 0.142

23 90 0.12 0.4 114.067 1.338 0.217

24 90 0.12 0.6 70.667 1.114 0.23

25 90 0.16 0.2 130.199 1.566 0.225

26 90 0.16 0.4 84.638 1.64 0.239

27 90 0.16 0.6 100.175 1.509 0.253

5.4 Estimation of Optimal Parametric Combination Using
Fuzzy-MOORA Method

In the current investigation, fuzzy coupled with MOORA method was exploited to
acquire the best parametric combination of input variables during machining of CP-
Ti Grade 2 using uncoated carbide inserts in dry cutting environment. The main
attention was given to minimize the cutting force and tool wear in combination with
an appreciable surface finish. These performance characteristics are identified as
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Fig. 4 Experimental setup

Table 5 Linguistic variables
used for each criteria

Linguistic variable Triangular fuzzy numbers (TFNs)

Very low (VL) (0, 0, 0.1)

Low (L) (0, 0.1, 0.3)

Medium low (ML) (0.1, 0.3, 0.5)

Medium (M) (0.3, 0.5, 0.7)

Medium high (MH) (0.5, 0.7, 0.9)

High (H) (0.7, 0.9, 1.0)

Very high (VH) (0.9, 1.0, 1.0)

of paramount importance which significantly affect the production rate as well as
the production cost, to a great extent. In this situation, acquiring and adopting the
best parametric combination, become a challenging task. This also contributed to
the vagueness of machining characteristics and the interaction effects among the
selected process variables. Therefore, the proposed fuzzy set theory, uses linguistic
terms such as very good, average, poor, very poor etc. for an effective assessment
of the afore mentioned machining characteristics. Furthermore, the relative weights
of each machining characteristic are also explained with the help of aforesaid fuzzy
linguistic variables.

During this investigation, each alternative or experimental trail was primarily
described in terms of specified linguistic variables as shown in Table 5. This was
done to determine the relative weights of the selected output criterion viz. Fc, Ra and
VB respectively, as listed in Table 6.

Secondly, valuation of all the available alternatives was accomplished based on
the linguistic variables illustrated in Table 7. During this valuation, seven dissimilar
fuzzy linguistic variables viz. very poor, poor, medium poor, fair, medium good, very
good etc. were occupied. Table 8 represents the results of the assessment process.
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Table 6 Relative weights of
each criteria

Criteria Decision maker Fuzzy numbers

Fc H (0.7, 0.9, 1.0)

Ra H (0.7, 0.9, 1.0)

VB VH (0.9, 1.0, 1.0)

Table 7 Linguistic variables
used for each alternative

Linguistic variable Triangular fuzzy numbers (TFNs)

Very poor (VP) (0, 0, 1)

Poor (P) (0, 1, 3)

Medium poor (MP) (1, 3, 5)

Fair (F) (3, 5, 7)

Medium good (MG) (5, 7, 9)

Good (G) (7, 9, 10)

Very good (VG) (9, 10, 10)

Further, formation of fuzzy decision matrix was done by converting the data
sets attained after the aforesaid assessment process, into a suitable triangular fuzzy
numbers. The results of the conversion process are depicted in Table 9.

Normalization of the data sets illustrated in fuzzy decision matrix (Table 9), was
executed using Eqs. (16–18) and the outcomes are shown in Table 10. In the next
step, the relevant weights of each machining criterion were multiplied with their cor-
responding values to attain weighted normalized fuzzy decision matrix as illustrated
in Table 11.

The data sets listed in Table 11, were further converted into crisp values using
Eq. (22) and depicted in Table 12. At the end, overall assessment values were calcu-
lated using Eq. (23) and listed in Table 13.

Finally, preference ranking was given to each alternative after arranging the over-
all assessment values in descending order, as exhibited in Table 13. By visualizing
this table, it is clearly seen that, experiment number 1 is the best alternative offer-
ing minimum cutting force and tool wear along with appreciable surface quality. In
contrast, experiment number 25, is signified as the worst alternative. Thus, an ade-
quate machinability of the selected work material lies at lower range of machining
variables. At lower, cutting speed, feed rate and depth of cut, machinability of the
work part was observed to be better when compared to the higher ranges of machin-
ing variables counterpart. This might be contributed to the lower machining zone
temperature at lower cutting speed, feed and depth of cut. Machining of titanium
alloys at lower cutting speeds, does not raise the cutting zone temperature signifi-
cantly whereas this temperature may be greater at high cutting speeds. High speed
machining causes rapid growth in the cutting temperature which in turn introduces
strain hardening and thermal softening phenomenon. This also results in a remark-
able plastic deformation of the work part and curtails the machinability to a great
extent. Therefore, lower range of the process variables are strongly recommended for
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Table 8 Results of the assessment

Alternative Responses Fuzzy linguistic variables

Fc (N) Ra (µm) VB(mm) Fc Ra VB

1 67.574 1.015 0.082 VG VG VG

2 115.7 1.225 0.1 MP G VG

3 99.749 1.453 0.223 F F MP

4 135.755 1.295 0.104 VP MG VG

5 110.796 1.195 0.087 MP G VG

6 78.62 1.497 0.232 G F P

7 126.747 1.87 0.099 VP VP VG

8 78.37 1.595 0.099 G MP VG

9 96.794 1.942 0.166 F VP MG

10 76.921 1.215 0.193 G G F

11 117.233 1.24 0.241 P G P

12 101.344 1.328 0.225 F MG MP

13 138.554 1.549 0.157 VP F MG

14 113 1.517 0.093 MP F VG

15 68.873 1.413 0.23 VG MG P

16 129.407 1.597 0.145 VP MP MG

17 79.994 1.995 0.11 G VP VG

18 98.058 1.721 0.196 F P F

19 77.93 1.337 0.11 G MG VG

20 119.074 1.402 0.124 P MG G

21 102.799 1.395 0.282 F MG VP

22 139.544 1.696 0.142 VP MP MG

23 114.067 1.338 0.217 MP MG MP

24 70.667 1.114 0.23 VG VG P

25 130.199 1.566 0.225 VP F MP

26 84.638 1.64 0.239 G MP P

27 100.175 1.509 0.253 F F P

machining titanium and its alloys, which is also witnessed during this investigation.
However, this might be limited to the selected range of machining parameters and
cutting conditions.
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Table 9 Fuzzy decision
matrix

Alternative Responses

Fc Ra VB

1 9, 10, 10 9, 10, 10 9, 10, 10

2 1, 3, 5 7, 9, 10 9, 10, 10

3 3, 5, 7 3, 5, 7 1, 3, 5

4 0, 0, 1 5, 7, 9 9, 10, 10

5 1, 3, 5 7, 9, 10 9, 10, 10

6 7, 9, 10 3, 5, 7 0, 1, 3

7 0, 0, 1 0, 0, 1 9, 10, 10

8 7, 9, 10 1, 3, 5 9, 10, 10

9 3, 5, 7 0, 0, 1 5, 7, 9

10 7, 9, 10 7, 9, 10 3, 5, 7

11 0, 1, 3 7, 9, 10 0, 1, 3

12 3, 5, 7 5, 7, 9 1, 3, 5

13 0, 0, 1 3, 5, 7 5, 7, 9

14 1, 3, 5 3, 5, 7 9, 10, 10

15 9, 10, 10 5, 7, 9 0, 1, 3

16 0, 0, 1 1, 3, 5 5, 7, 9

17 7, 9, 10 0, 0, 1 9, 10, 10

18 3, 5, 7 0, 1, 3 3, 5, 7

19 7, 9, 10 5, 7, 9 9, 10, 10

20 0, 1, 3 5, 7, 9 7, 9, 10

21 3, 5, 7 5, 7, 9 0, 0, 1

22 0, 0, 1 1, 3, 5 5, 7, 9

23 1, 3, 5 5, 7, 9 1, 3, 5

24 9, 10, 10 9, 10, 10 0, 1, 3

25 0, 0, 1 3, 5, 7 1, 3, 5

26 7, 9, 10 1, 3, 5 0, 1, 3

27 3, 5, 7 3, 5, 7 0, 1, 3

6 Conclusions

In this chapter, an efficient and effective hybrid method has been projected to solve
machining problems having multiple cut qualities under fuzzy environment. Selec-
tion of the best alternative in order to confirm better machinability of the selected
work material, was done with the help of fuzzy embeddedMOORAmethod. Thus in
the present investigation a newMCDMapproach,MOORAunder fuzzy environment
has been applied to deal with both quantitative and qualitative machining criteria.
The following conclusions may be drawn after completion of current investigation:
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Table 10 Normalized fuzzy
decision matrix

Alternative Responses

Fc Ra VB

1 0.9, 1.0, 1.0 0.9, 1.0, 1.0 0.9, 1.0, 1.0

2 0.1, 0.3, 0.5 0.7, 0.9, 1.0 0.9, 1.0, 1.0

3 0.3, 0.5, 0.7 0.3, 0.5, 0.7 0.1, 0.3, 0.5

4 0, 0, 0.1 0.5, 0.7, 0.9 0.9, 1.0, 1.0

5 0.1, 0.3, 0.5 0.7, 0.9, 1.0 0.9, 1.0, 1.0

6 0.7, 0.9, 1.0 0.3, 0.5, 0.7 0, 0.1, 0.3

7 0, 0, 0.1 0, 0, 0.1 0.9, 1.0, 1.0

8 0.7, 0.9, 1.0 0.1, 0.3, 0.5 0.9, 1.0, 1.0

9 0.3, 0.5, 0.7 0, 0, 0.1 0.5, 0.7, 0.9

10 0.7, 0.9, 1.0 0.7, 0.9, 1.0 0.3, 0.5, 0.7

11 0, 0.1, 0.3 0.7, 0.9, 1.0 0, 0.1, 0.3

12 0.3, 0.5, 0.7 0.5, 0.7, 0.9 0.1, 0.3, 0.5

13 0, 0, 0.1 0.3, 0.5, 0.7 0.5, 0.7, 0.9

14 0.1, 0.3, 0.5 0.3, 0.5, 0.7 0.9, 1.0, 1.0

15 0.9, 1.0, 1.0 0.5, 0.7, 0.9 0, 0.1, 0.3

16 0, 0, 0.1 0.1, 0.3, 0.5 0.5, 0.7, 0.9

17 0.7, 0.9, 1.0 0, 0, 0.1 0.9, 1.0, 1.0

18 0.3, 0.5, 0.7 0, 0.1, 0.3 0.3, 0.5, 0.7

19 0.7, 0.9, 1.0 0.5, 0.7, 0.9 0.9, 1.0, 1.0

20 0, 0.1, 0.3 0.5, 0.7, 0.9 0.7, 0.9, 1.0

21 0.3, 0.5, 0.7 0.5, 0.7, 0.9 0, 0, 0.1

22 0, 0, 0.1 0.1, 0.3, 0.5 0.5, 0.7, 0.9

23 0.1, 0.3, 0.5 0.5, 0.7, 0.9 0.1, 0.3, 0.5

24 0.9, 1.0, 1.0 0.9, 1.0, 1.0 0, 0.1, 0.3

25 0, 0, 0.1 0.3, 0.5, 0.7 0.1, 0.3, 0.5

26 0.7, 0.9, 1.0 0.1, 0.3, 0.5 0, 0.1, 0.3

27 0.3, 0.5, 0.7 0.3, 0.5, 0.7 0, 0.1, 0.3

• The best parametric combination to attain minimum cutting force, tool wear and
surface roughness, was apparent at cutting speed 30 m/min, feed rate 0.08 mm/rev
and depth of cut 0.2 mm, which was observed in experiment number 1.

• Lower surface roughness, cutting force and tool wear could be expected at moder-
ate cutting speed, feed rate and depth of cut while machining CP-Ti grade 2 with
uncoated carbide inserts under dry cutting environment.

• The proposed methodology was experienced systematic, easily understandable,
and robust and can be implemented to solve similar types of problems associated
in real time manufacturing systems.
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Table 11 Weighted
normalized fuzzy decision
matrix

Alternative Responses

Fc Ra VB

1 0.63, 0.9, 1.0 0.63, 0.9, 1.0 0.81, 1.0, 1.0

2 0.7, 0.27, 0.5 0.49, 0.81, 1.0 0.81, 1.0, 1.0

3 0.21, 0.45, 0.7 0.21, 0.45, 0.7 0.9, 0.3, 0.5

4 0, 0, 0.1 0.35, 0.63, 0.9 0.81, 1.0, 1.0

5 0.7, 0.27, 0.5 0.49, 0.81, 1.0 0.81, 1.0, 1.0

6 0.49, 0.81, 1.0 0.21, 0.45, 0.7 0, 0.1, 0.3

7 0, 0, 0.1 0, 0, 0.1 0.81, 1.0, 1.0

8 0.49, 0.81, 1.0 0.07, 0.27, 0.5 0.81, 1.0, 1.0

9 0.21, 0.45, 0.7 0, 0, 0.1 0.45, 0.7, 0.9

10 0.49, 0.81, 1.0 0.49, 0.81, 1.0 0.27, 0.5, 0.7

11 0, 0.09, 0.3 0.49, 0.81, 1.0 0, 0.1, 0.3

12 0.21, 0.45, 0.7 0.35, 0.63, 0.9 0.9, 0.3, 0.5

13 0, 0, 0.1 0.21, 0.45, 0.7 0.45, 0.7, 0.9

14 0.7, 0.27, 0.5 0.21, 0.45, 0.7 0.81, 1.0, 1.0

15 0.63, 0.9, 1.0 0.35, 0.63, 0.9 0, 0.1, 0.3

16 0, 0, 0.1 0.07, 0.27, 0.5 0.45, 0.7, 0.9

17 0.49, 0.81, 1.0 0, 0, 0.1 0.81, 1.0, 1.0

18 0.21, 0.45, 0.7 0, 0.09, 0.3 0.27, 0.5, 0.7

19 0.49, 0.81, 1.0 0.35, 0.63, 0.9 0.81, 1.0, 1.0

20 0, 0.09, 0.3 0.35, 0.63, 0.9 0.63, 0.9, 1.0

21 0.21, 0.45, 0.7 0.35, 0.63, 0.9 0, 0, 0.1

22 0, 0, 0.1 0.07, 0.27, 0.5 0.45, 0.7, 0.9

23 0.7, 0.27, 0.5 0.35, 0.63, 0.9 0.9, 0.3, 0.5

24 0.63, 0.9, 1.0 0.63, 0.9, 1.0 0, 0.1, 0.3

25 0, 0, 0.1 0.21, 0.45, 0.7 0.9, 0.3, 0.5

26 0.49, 0.81, 1.0 0.07, 0.27, 0.5 0, 0.1, 0.3

27 0.21, 0.45, 0.7 0.21, 0.45, 0.7 0, 0.1, 0.3

• The unification of fuzzy-MOORA, using the concepts of fuzzy set theory, was
perceived to be a competent and acceptable effort in attaining the best paramet-
ric combination to confirm high productivity without compromising the quality.
However, this might be limited to the selected range of process variables.
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Table 12 Crisp values for
weighted normalized fuzzy
decision matrix

Alternative Responses

Fc Ra VB

1 0.843 0.843 0.937

2 0.490 0.767 0.937

3 0.453 0.453 0.567

4 0.033 0.627 0.937

5 0.490 0.767 0.937

6 0.767 0.453 0.133

7 0.033 0.033 0.937

8 0.767 0.280 0.937

9 0.453 0.033 0.683

10 0.767 0.767 0.490

11 0.130 0.767 0.133

12 0.453 0.627 0.567

13 0.033 0.453 0.683

14 0.490 0.453 0.937

15 0.843 0.627 0.133

16 0.033 0.280 0.683

17 0.767 0.033 0.937

18 0.453 0.130 0.490

19 0.767 0.627 0.937

20 0.130 0.627 0.843

21 0.453 0.627 0.033

22 0.033 0.280 0.683

23 0.490 0.627 0.567

24 0.843 0.843 0.133

25 0.033 0.290 0.567

26 0.767 0.280 0.133

27 0.453 0.453 0.133
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Table 13 Overall assessment
value

Alternative Responses yi Rank

Fc Ra VB

1 0.843 0.843 0.937 2.623 1

2 0.49 0.767 0.937 2.194 3

3 0.453 0.453 0.567 1.473 15

4 0.033 0.627 0.937 1.597 14

5 0.49 0.767 0.937 2.194 3

6 0.767 0.453 0.133 1.353 16

7 0.033 0.033 0.937 1.003 24

8 0.767 0.28 0.937 1.984 6

9 0.453 0.033 0.683 1.169 18

10 0.767 0.767 0.49 2.024 5

11 0.13 0.767 0.133 1.03 23

12 0.453 0.627 0.567 1.647 11

13 0.033 0.453 0.683 1.169 18

14 0.49 0.453 0.937 1.88 7

15 0.843 0.627 0.133 1.603 12

16 0.033 0.28 0.683 0.996 25

17 0.767 0.033 0.937 1.737 9

18 0.453 0.13 0.49 1.073 21

19 0.767 0.627 0.937 2.331 2

20 0.13 0.627 0.843 1.6 13

21 0.453 0.627 0.033 1.113 20

22 0.033 0.28 0.683 0.996 25

23 0.49 0.627 0.567 1.684 10

24 0.843 0.843 0.133 1.819 8

25 0.033 0.29 0.567 0.89 27

26 0.767 0.28 0.133 1.18 17

27 0.453 0.453 0.133 1.039 22
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