
Optimization of Abrasive Water Jet
Machining for Green Composites Using
Multi-variant Hybrid Techniques

G. C. Manjunath Patel, Jagadish, Rajana Suresh Kumar
and N. V. Swamy Naidu

Abstract Traditional machining of polymer matrix composites (PMCs) possesses
difficulties as they exhibit excellent specific strength and stiffness. Superior properties
led PMCs parts were extensively used in structural, aviation, construction and auto-
motive applications. The advanced machining process abrasive water jet machining
(AWJM) has been explored to machine PMCs. The AWJM factors namely abra-
sive grain size, working pressure, standoff distance, nozzle speed, and abrasive mass
flow rate affect the final outcome of surface quality (i.e. surface roughness, SR) and
productivity (i.e. material removal rate ‘MRR’ and process time ‘PT’) are studied.
Taguchi L27 orthogonal array of experimental design is employed for conducting
practical experiments. Taguchi method limit to optimize multiple conflicting outputs
(maximize: MRR, and minimize: PT and SR), simultaneously. In general, multiple
outputs may have many solutions and are dependent on the tradeoff (relative impor-
tance or weights) assigned to each output. Traditional practices such as engineer
judgement, expert suggestion and customer requirements may lead to local solutions
(i.e. superior quality for one output, while compromising with the rest). Principal
component analysis (PCA) method overcomes the said shortcomings of traditional
practices and determines weight fractions for each output based on the experimen-
tal data. Multi-objective optimization on the basis of ratio analysis (MOORA), Grey
relational analysis (GRA), Technique for order preference by similarity to ideal solu-
tion (TOPSIS) and Data Envelopment Analysis based Ranking (DEAR) are the four
methods employed for the purpose of multi-objective optimization. MOORA, GRA
and TOPSIS methodologies require assigning weight fractions for each output by
the problem solver. Note that, solution accuracies vary with the weight fractions
assigned to each output. The aggregate (composite values of all responses) values
determined by PCA-MOORA, PCA-TOPSIS, PCA-GRA and DEAR method were
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used for determining optimal factor levels and their contributions. DEAR method
determined optimal levels resulted in better machining quality characteristics.

Keywords Abrasive water jet machining · Optimization · PCA · MOORA ·
TOPSIS

1 Introduction

An organic polymer matrix which is used to bind fibers that are continuous is usu-
ally termed as polymer matrix composites (PMCs) [1]. PMCs can be categories into
reinforced plastics and advanced composites. Due to their high specific strength and
stiffness PMCs finds their application in wide areas of structural engineering namely
aerospace, construction and automotive industries. However, superior strength and
stiffness of the PMCs makes them very difficult to be machined by the conventional
machining processes. Hence, to machine such materials which exhibit high spe-
cific strength and stiffness, Non-traditional methods of manufacturing play a vital
role. Among all the available non-traditional methods of machining, Abrasive water
jet machining (AWJM) has become the fastest growing method of non-traditional
machining process due to its versatility [2]. Low cutting temperatures, presence of
no heat activated zone (HAZ) on thematerial being cut, minimal dust and low cutting
forces are the advantages it offers over its counterparts. AJWM also compliments
its use with other non-traditional manufacturing technologies such as laser, EDM,
and plasma etc. In AWJM, material removal takes place by impact energy developed
over the surface to be machined using highly pressurized water containing abrasive
particles. It makes this process a flexible machining method through which a wide
range of higher strength materials can be machined.

The applicability of AWJM for milling of fiber reinforced plastics (FRP) was first
carried out by Hocheng et al. where the authors analyzed the factor effects on MRR
and SR in single pass cutting [3]. Arola and Ramulu used the micro analysis to know
the material properties significance over surface integrity and texture [4]. Hloch et al.
experimentally studied the cutting quality check and how the process parameters are
influencing the same [5]. Analysis of variance (ANOVA) has been used to evaluate
cutting qualitymaking it a function of process parameters. Zhu et al. noticed that duc-
tile erosion mechanism with small erosion angle and low pressure AWJM resulted in
precise surface finish [6]. Selvan et al. considered SR as an important quality param-
eter, wherein good surface finish are obtained with more hydraulic pressure (P) and
high abrasive flow rate (AFR) [7]. Manu and Babu observed that AWJM in turning
can produce required turned surface by traversing the AWJ axially and radially while
the workpiece is rotating [8]. The difficult to machine materials using AWJ turning
has been studied and was found viable by Kartal and Gokkaya [9]. Borkowski [10]
developed a novel mathematical model for the 3D sculpturing using a high pressure
abrasive water jet by proposing an experimental test bed for shaping the materials.
Wang [11] experimentally compared the various non-traditional machining methods
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and found that AWJM is best suited method to machine the polymer matrix com-
posites. Muller and Monaghan [12] compared various non-traditional processes and
wherein they concluded that AWJmachined part do not undergo problems associated
to thermal damage. Siddiqui and Shukla [13] used Hybrid approach by combining
the desired features of Taguchi method (TM) and PCA to assess the performance
of AWJM by considering multiple quality characteristics (MQC). Aluminum and
ferrous alloys find their application in many industries. Many studies are reported
that optimizing the influencing variables results in economical machining for any
alloy under AWJM. Iqbal et al. [14] used factorial experimental design to analyse the
variable effects on maximum cutting width, machined surface texture, and percent
of striation free area of AISI 4340 and Aluminum 2219.

1.1 Modelling and Optimization of AWJM Process

AWJM process performance depends on several process variables such as hydraulic
pressure, work material, nozzle distance, abrasive type, size and mass flow rate etc.
The research on AWJM process has been focused mostly on the process modelling
and the optimization of the process parameters. Optimization of the process param-
eters in the AWJM process is of prime importance due to non-linear nature of the
dependence of nozzle wear, kerf geometry, dimensional deviation, surface rough-
ness, and MRR on process parameters [1, 2]. These factors regulate the performance
of AWJM on the machinability of the material. Many research works reported on
optimization of process based on statistical design of experiments (DOE) namely TM
and response surface methodology (RSM) [15]. However, very little attention paid
to model and optimize AWJM process by utilizing advanced tools namely GRA and
soft computing tools etc. Azmir et al. used the grey rational analysis to optimize the
control factors such as standoff distance (SoD), P and AFR on the Kevlar composite
laminate surface finish [16]. Khan and Haque conducted experimental study to check
the factor effects on the AWJ machined SR of glass fibre reinforced epoxy compos-
ites [17]. A linear regression equation representing SR as a mathematical function of
process variables are derived by utilizing Taguchi method. Zohoor and Nourian [18]
applied the response surface methodology to know the control factor effect of noz-
zle wear on the SR and developed regression equations. In addition, many research
efforts were reported with a major focus on optimizing different factors for SR by
utilizing TM, RSM and modern optimization tools [19–27]. Wang [27] presented the
kerf quality of composite sheets (metal matrix) under AWJ machining. Shanmugam
et al. [28] used kerf-taper compensation technique to minimize the kerf taper in AWJ
cutting of alumina ceramics and found that compensational angle plays a major role
on kerf taper. Srinivasu et al. [29] investigated the kinematic factor effects on the
kerf geometry subjected to multi-jet erosion machining. The experimentation results
formed a good basis for controlled three dimensional AWJ machining of complex
geometries. In an important study, ANN model predicted better kerf geometry and
SR on transformation induced plasticity of steel sheet [30]. For the last two decades
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researchers busy investigating and optimizing the effect ofAWJMprocess parameters
on MRR and nozzle wear using modern optimization techniques [27–34].

From the review of literature it has been noted that modern optimization tech-
niques have been used significantly to know the effect of various control factors of
AWJM. However, it has been found that very few works on modelling of AWJM
using multi criteria optimization techniques have been reported and hence it finds
a scope for further research. Since, AWJM has multiple process parameters, multi-
criteria technique may be best suited for its modeling. The mathematical complexity
and tedious nature of the steps involved in the approaches call for new methods
for process optimization. Various optimization techniques like GRA-PCA, TOPSIS,
DEAR, and MOORA approaches are recently developed methods available for opti-
mization. Taguchi (L27) orthogonal array method is incorporated in the experiment
by varying some of the independent but critical parameters like abrasive grain size,
nozzle speed (NS), working pressure, SoD, and AFR. Since adoption of optimal pro-
cess parameters has seen a saturated amount of research mostly of which are single
response problem, whereas complexity lies in optimizing the conflicting multiple
outputs. Based on the original concept of TOPSIS approach, Ren et al. introduced a
novelmodified optimizing techniqueM-TOPSIS [35]. The drawback often encounter
with the original TOPSIS method is the rank reversals and evaluation failure. Due to
simple evaluation process in TOPSIS method, it’s being widely used for some com-
plex unconventional machining processes. A similar optimization has been done in
wire electrical discharge machining by Gadakh [36]. Three different cases including
variety of parameters have been selected followed by evaluation of those parameters
using TOPSIS approach is presented in the study. A similarity to the past results so
obtained such that TOPSIS method is more suitable for optimizing many multi crite-
ria decision making problems in the current manufacturing processes. As discussed
earlier about the availability of variety of optimization techniques, Taguchi-DEAR
method is very simplest and efficient approach. It is proven to be the extensively accu-
rate method to determine the optimal process parameters in manufacturing process.
Muthuramalingam et al. [37] have analyzed the abrasive flow orientation process
parameters in abrasive water jet machining under Taguchi-DEAR approach. Taguchi
basedL9 orthogonalmethod has been implemented in the experimental trails inwhich
liquid water pressure, feed rate, AFR, and SoD are the input factors. MRR and SR
performance characteristics enhancement has been studied by the researchers using
Taguchi-DEAR approach of solving MCDM problems and optimal process parame-
ters has been computed. To obtain distinguishable physical properties, metal matrix
composites reinforced with particles combined so as to form a more complex mate-
rial are predominantly increasing which also provides high strength to the material.
Machining such a material is a tedious job and therefore unconventional machining
is being opted. Similar study reported by authors [38] with a focus on optimiz-
ing AWJM factors while machining TiB2 particles reinforced Al7075 composites.
Taguchi-DEAR methodology has been implemented to evaluate the performance
measures such as MRR, taper angle and SR from the input parameters of water jet
pressure, stand-off distance and transverse speed. Investigation results that water jet
pressure predominantly affects the performance characteristics. The optimal process
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parameters are computed. Another optimization technique based on material selec-
tion is MOORA method. For designing any structure, the designers have to select
materials with ultimate characteristics required for that particular design or structure.
Inappropriate choice of material results in structure or design failure. In this diverse
engineering world, fabrication of products corresponds to complex design demand
for most challenging task of choice of appropriate materials for variety of compo-
nents. Authors [39] reported theMOORAmethod is an appropriate tool for selection
of proper materials. Various mathematical tools and techniques are found to be suit-
able for solving the material selection problems, which lead to the affected results
based on theweights assigned to the considered selection criteria.MOORAmethod is
simple to understand and employs suitable normalization procedure. Reference point
approach has also been tested for the considered problem by the researchers. Results
have been observed that all themethods generate approximately similar rankings cor-
respond to the material alternatives. More robust and simple method as compared to
other optimization methods as discussed in the above literatures is MOORA based
Taguchi method. In another important work, multi response problem is converted
into single response problem by integrating MOORA method with Taguchi method
[40]. It is being noticed that the time consumed in the calculations of the steps is
reduced by applying the proposedmethod. The hybridMOORA-Taguchimethod can
solve successfully many multi-response problems [41]. TOPSIS method for multi
response optimization of friction stir welding process variables was also used [41].
Materials like aluminium alloys and its composites which are difficult to weld are
joined by friction stir welding. Researchers have accentuated on friction stir welding
of aluminium matrix composite reinforced with silicon carbide particle. Since FSW
incorporates a non-consuming revolving tool which is plunged into the verges of the
material to be joined and progressed along the weld line, tool revolving speed, tool
transverse speed and tool pin profile type of process variables are optimized with
multiple responses such as percentage elongation, tensile strength and hardness of
the material. It also leads weld joint of superior quality. Multiple response character-
istics can be improved through optimization technique like TOPSIS is being revealed
by the researchers in this study. As the growth of industrialization, machining oper-
ations are stressed to work with multiple ranges of materials which a traditional
response approach cannot optimize easily. To handle such operations multi response
techniques have been developed and one such technique is GRA-PCAmulti response
approach. It is traditional multi response technique which transforms multi quality
response into single response. Researchers used this method in their study of opti-
mizing aluminium alloy employing Taguchimethod [42]. Observationswere done on
the quality values i.e. output parameters of aluminium alloy by optimizing the input
parameters of a CNC end milling machine. Taguchi L27 orthogonal array approach
has been implemented to select optimal parameters of the machine. Since there can
be numerous parameters some of which are uncertain or having incomplete informa-
tion. Here GRA-PCA provides efficient solution to this uncertainty. The researchers
have observed with the help of GRA-PCA approach that speed, depth of cut and feed
rate influence surface roughness and material removal rate significantly.
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Although a great deal of research efforts reported to optimize the multiple
responses, still industries are looking for simple, flexible, ease of understanding
and implementation tools that optimize the manufacturing process. For the con-
flicting objective functions there exists a multiple solution which is dependent on
the assigned relative importance (weights or trade-off) to individual objective func-
tion. Conventional practice of determining weights based on engineer judgement,
expert recommendation, and customer requirements may lead to erroneous results.
Although the above practice offers better individual output performance, but failed
to provide solutions that satisfy all outputs. Thereby, determining a single set of input
conditions that satisfy the conflicting outputs (maximize: MRR, and minimize: SR
and PT) is considered a tedious task for industry personal. PCA convert multiple
correlated responses into independent quality indices (i.e. single objective function)
while solving multiple objective functions. Weights for individual output functions
are determined using PCA. MOORA, TOPSIS and GRA require assigning weight
fractions while converting the multiple responses to single objective functions for
solving optimization. Note that, If PCA determine the eigen value greater than 1 for
more than one output (i.e. principal component), then there is no procedure defined
yet to select theweights to ascertain a feasible solution [43]. However, DEARmethod
does not require estimation ofweight fraction to solvemultiple objective optimization
problems. In DEAR method the combination of target (actual) outputs are mapped
into a ratio (i.e. weighted sum of outputs corresponds to larger-the-better divided
by sum of weighted outputs representing lower-the-better) such that the computed
values give ratio ranks that could help to determine the set of optimal factor levels
[43]. In the present work, attempts are made to illustrate the tools (PCA-GRA, PCA-
MOORA, PCA-TOPSIS andDEAR) involvingmathematical computation that could
help not only to optimize the AWJM process, but also the proposed methodology can
be used by any industry personnel to solve the similar complex real-world practical
problems.

2 Materials and Methods

2.1 Material Preparation

Sundi wood dust (SWD) possessing density of 0.779 g/cm3 and particle size of
approximately 600 μm is used as a reinforcement material for preparation of work
specimen. Cellulose, glucomannan, xylem, and linen are the major constituent mate-
rials present in the work sample. In addition, 6% of filler material present in the
composite matrix (94%) which is composed of epoxy (grade LY 556) possessing a
density of 1.26 g/cm3 and hardener (HY 951). Note that, resin and hardener pro-
portion are maintained equal to 10:8 by wt. The mixture of SWD and matrix are
mechanically stirred followed by pouring to vacuum glass chamber and allowed to
set under ambient environment for a curing period of 24 h. The composite samples



Optimization of Abrasive Water Jet Machining for Green … 135

are prepared to the dimension of 180 mm × 140 mm × 6 mm (refer Fig. 1a, b). The
prepared samples are subjected to perform machining.

2.2 Experimental Procedure

AWJM equipment (make: KMTWaterjet Systems) used for performing experiments
is shown in Fig. 2. Five independent factors namely AGS, SoD, WP, AMFR and NS
operating under three levels (Table 1) and Taguchi (L27) is used to design and perform
the experiments. During the experimentation, orifice diameter of 0.20 mm, nozzle

Fig. 1 a Sundi wood dust, b Sundi wood dust based polymer specimen

Fig. 2 a AWJM experimental setup, b AWJM nozzle head setup
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Table 1 Input parameters and their levels for Taguchi design

Input
parameters

Symbol Units Level 1 Level 2 Level 3

Abrasive
grain size

AGS mesh 60 80 100

Stand-off
distance

SoD mm 1.5 2.5 3.5

Working
pressure

WP MPa 150 200 250

Abrasive
mass flow
rate

AMFR g/s 2 4 6

Nozzle speed NS mm/min 120 170 220

Constant parameters

Orifice
diameter

0.20 mm Impact angle 90°

Nozzle
diameter

1.00 mm Work piece
thickness

5 mm

diameter as 1 mm, and impact angle as 90° are used. For all experimental trials, the
voltage and current are maintained equal to 300 V and 20 A. During experimentation
the square holes of dimension (15mm× 15mm) are machined on the prepared green
composite by using AWJM machine tool. Each experiment has been repeated three
times and the measured average values of MRR, SR and process time are used for
analysis and optimization (refer Table 2).

3 Methodology and Modelling

Multi-objective optimization refers to optimizing the process or product performance
involving two or more outputs with or without the conflicting outputs simultane-
ously. The present work aims at simultaneously maximizing material removal rate
while minimizing the process time and surface roughness of the AWJM process. The
proposed offline optimization tools (PCA-GRA, PCA-MOORA, PCA-TOPSIS and
DEAR) can be implemented in industries by any novice user to obtain the resulted
benefits. Various steps involved for successful implementation of said tools with a
case of AWJM process is presented in Fig. 3.

Step 1: Selection of input-output that improve efficiency of AWJM process

MRR, SR and PT are the important quality characteristics which affect the produc-
tivity, quality and economics while cutting PMCs using AWJM process. The quality
characteristics are influenced directly by process parameters which affects the effi-
ciency of AWJM process. For experimentation, analysis and optimization the most
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MOORA, GRA and TOPSIS DEAR

Computation of S/N ratio & 
PCA for weight fractions

Multi-response optimization 
of conflicting outputs

Identify output variables affecting the process

Abrasive water jet machining (AWJM) process

Identify input variables & their operating levels

Select experimental design matrix and the run

Collect the measured experimental output data

Conduct experiments for determined optimal levels and select best the tool

Fig. 3 Proposed steps for multi-response optimization in the present work

influencing parameters are selected based on consulting engineers and experts from
industries, pilot experiment study results and available literatures [1, 3, 44]. Table 1
presents the influencing parameters and their operating levels used for experimenta-
tion.

Step 2: Selection of experimental plan and perform S/N ratio computation

Taguchi robust designwas employed to conduct the experiments and perform statisti-
cal analysis. Taguchi method uses a special design of orthogonal arrays to investigate
the entire factor space on performance characteristics with the set of minimum exper-
imental trials. L27 orthogonal array experiments are employed for studying the influ-
encing five factors operating with three different levels. Experiments are repeated
three times for each run and the average values of measured performance charac-
teristics of PT, MRR and SR are presented in Table 2. The experimental values of
performance characteristics are converted to signal-to-noise (S/N) ratio. The present
work involves two categories of quality characteristics when performing analysis
with S/N ratio. Larger-the-better (LB) quality characteristics is employed for MRR,
and smaller-the-better (SB) for SR and PT. Note that, S/N ratio depicted with higher
values is treated as better quality characteristics irrespective of categories used. The
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signal-to-noise ratio computation corresponds to larger-the-better and smaller-the-
better quality characteristics is done using Eqs. (1) and (2).

S/NSB = −10 log
1

n

(
y2

)
(1)

S/NLB = −10 log
1

n

(
1

y2

)
(2)

Terms, n corresponds to total number of experimental observations, and y repre-
sents the actual experimental data.

Step 3: Multi-response optimization of AWJM

The present work involves optimization of multiple responses which are conflicting
in nature. Note that, multiple objective functions generate many solutions depending
on relative importance (weight fractions) given to individual outputs, wherein each
solution is different from one-another. This could occur due to the complex non-
linear behavior of inputs towards outputs. Selecting the best solution among many
potential solutions are treated as a tedious task for industry personnel. To limit the
shortcomings of getting local solutions with traditional methods in deciding weight
fractions for individual outputs, PCA was used.

3.1 Principal Component Analysis (PCA)

AWJM process requires optimization of multiple outputs. However, Taguchi robust
design limit to optimize single output at once [45]. The goal of the present work is to
locate the best set of control factors such that multiple responses are least sensitive to
noise factors. PCAhelps to determine theweight fractions for individual performance
characteristics. The determinedweight fractions correspond to each individual objec-
tive function was used to correlate the multiple outputs to single objective function
while optimizing with MOORA, TOPSIS and GRA. Note that DEAR method does
not require assigning weight fractions in their defined methodology.

The necessary steps essential to determine the weight fractions using principal
component analysis are as follows:

1. Collection of output data

Let Xi ( j) corresponds to the experimental data.Where, i= (1, 2, 3,…,m) and j= (1,
2, 3,…, n). Terms,m and n represent the experimental run and quality characteristics.

2. Normalize the performance characteristics

Practical requirement suggested, smaller the better-quality characteristics for SR and
PT (refer Eq. 3) and larger-the-better quality characteristics for MRR (refer Eq. 4).
X∗
i,k depicts the normalized data correspond to ith experiment and kth response.
For Smaller-the-better quality characteristics,
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X∗
i,k = min Xi (k)

Xi (k)
(3)

For Larger-the-better quality characteristics,

X∗
i,k = Xi (k)

max Xi (k)
(4)

3. Computation of co-variance matrix.

V value corresponds to variance-covariance matrix that uses normalized data as
discussed below,

V =

⎡

⎢⎢⎢
⎣

V1,1 V1,2 . . . V1,n

V2,1 V2,2 . . . V2,n
...

... . . .
...

Vm,1 Vm,2 . . . Vm,n

⎤

⎥⎥⎥
⎦

(5)

where, Ri, j = Cov X∗
i ( j),X

∗
i (k)

σ X∗
i ( j)∗X∗

i (k)θ
= Covariance of sequences X∗

i ( j) and X∗
i (k)

Standard deviation of sequences X∗
i ( j) and X∗

i (k)

Step 4: Computation of eigen values and eigen vector of the covariance matrix

PCAwas introduced to determine relative importance (weight fractions) for each per-
formance characteristics (PT, SR,MRR).Minitab software platform is used for deter-
mining the weight fractions correspond to the performance characteristics shown in
Table 4. The output data was used to estimate the correlation coefficient matrix
which could help to estimate the Eigen values and Eigen vectors. The computed
Eigen values and Eigen vectors are presented in Table 3.

The square value correspond to Eigen vector depicts the influence (i.e. signif-
icance) of each performance characteristic determined according to the principal
component (refer Table 4). There are three outputs and hence three principal com-
ponent values are determined. Note that, among all three principal components, the
explained variance of the first principal component is as high as 62.3%. Important
to note that the squares of first principal component eigen vectors are treated as
weight fractions for the performance characteristics. The weight fractions associated
to individual quality characteristics are found equal to 0.4942 for MRR, 0.4583 for
PT and 0.0475 for SR, respectively.

Table 3 Eigen values and explained variation for principal components

Principal component Eigen value Explained variation (%)

First 1.8683 62.3*

Second 0.9815 32.7

Third 0.1502 05.0

*62.3 = 100 × 1.8683/(1.8683 + 0.9815 + 0.1502)
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Table 4 Eigen vectors for principal components

Performance characteristics Eigen vector Weight
fractionPC1 PC2 PC3

Material removal rate, MRR +0.703 0.035 0.710 0.4942*

Process time, PT −0.677 −0.274 0.683 0.4583

Surface roughness, SR +0.219 −0.961 −0.169 0.0475

0.4942* = 0.703 × 0.703

3.2 Multi-objective Optimization on the Basis of Ratio
Analysis (MOORA)

In 2006, MOORA technique was developed by Brauers and Zavadskas. In gen-
eral, MOORA methods work with the following three types namely, Ratio system,
Reference point approach, and Full multiplicative form [40, 46]. The present work
employed ratio system for the task optimization. The steps involved in Ratio System
based MOORA are as discussed below [40]:

Step 1: Determination of decision matrix (D) wherein the characteristic values of
alternatives at attributes ηij. Terms, i = (1, 2, … m) and j = (1, 2, … r) are inputs
represented in a matrix shown in Eq. (6).

D =

⎡

⎢⎢⎢
⎣

η1,1 η1,2 . . . η1,r

η2,1 η2,2 . . . η2,r
...

... . . .
...

ηm,1 ηm,2 . . . ηm,r

⎤

⎥⎥⎥
⎦

(6)

Terms, m and r corresponds to total number of experimental observations or runs
and number of responses, respectively.

Step 2: Computation of normalized and weighted normalized decision matrix

Equation (7) is used to calculate the normalized decision matrix. The mathematical
formulation employed to calculate the weighted normalized decision matrix is pre-
sented in Eq. (8). In Eq. (8), wj corresponds to the weight of the output or response
j selected by the decision maker.

η∗
i j = ηi j√(∑m

i=1

(
ηi j

)2)
i = 1, 2, . . .m; and j = 1, 2, . . . r (7)

Yi j = [
ηi j × w j

]
m×r i = 1, 2, . . .m; and j = 1, 2, . . . r (8)

η∗
i j is the normalized values of S/N ratio corresponding to i on response j.
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Step 3: Computation of normalized and weighted normalized decision matrix

Y ∗
i represents the ranking scores computation done by MOORA (refer Eq. 9). The

computation of optimizing multiple conflicting responses use weighted normalized
values correspond to maximize the better quality-characteristics and are subtracted
with minimize the better quality-characteristics determine the MOORA index (Y ∗

i ).

Y ∗
i =

l∑

j=1

Yi j

︸ ︷︷ ︸
maximize the better
quali t y charecteristics

−
r∑

j=l+1

Yi j

︸ ︷︷ ︸
minimize the better
quali t y charecteristics

(9)

Terms in Eq. (9), here j = 1, 2, … l corresponds to number of responses to be
maximized, and j = l + 1, l + 2, …, n represents the number of responses to be
minimized. High value of Y ∗

i is treated as better multiple quality characteristics.

Summary of Results of PCA-MOORA
PCA supply weights to MOORA that could optimize the multiple performance
characteristics by determining the MOORA Index (Y ∗

i ). MOORA index Y ∗
i values

obtained from systematic procedure is used for further analysis and optimization.

3.3 Technique for Order Preference by Similarity to Ideal
Solution (TOPSIS)

TOPSIS method estimates the solution by considering the shortest distance from
the true solution (also called positive ideal solution), and farthest distance from
negative true solution (ani-ideal solution) [47]. TOPSIS was developed in 1981 by
Hwang and Yoon. In AWJM: True solution always aims at maximizing the MRR,
andminimizing the SR and PT, whereas negative true solutionmaximizes the SR and
PT and minimizes theMRR. TOPSIS work with the basic principle such that the best
solution always lies, when it is closest to ideal solution and farthest to negative ideal
solution. Important to note that, TOPSIS procedure does not give information about
relative importance (weights) of those distances. Thereby, the relative importance is
required for optimization of multiple outputs that are supplied with the help of PCA.
The steps followed to optimize the multiple performance characteristics by utilizing
PCA-TOPSIS are discussed below:

Step 1: Development of the decision matrix.

The decision matrix is composed of the S/N ratio of quality characteristics at
responses (η∗

i j ; where i = 1, 2, 3, … m and j = 1, 2, … r) are the inputs repre-
sented in decision matrix (D). In the present work, m corresponds to number of
experimental observations = 27, and r represents number of responses = 3.



144 G. C. Manjunath Patel et al.

D =

⎡

⎢⎢⎢
⎣

η1,1 η1,2 . . . η1,r

η2,1 η2,2 . . . η2,r
...

... . . .
...

ηm,1 ηm,2 . . . ηm,r

⎤

⎥⎥⎥
⎦

(10)

Step 2: Normalize the decision matrix.

The decision matrix is normalized according to Eq. (11). η∗
i j are the normalized

values of S/N ratio corresponding to i on response j.

η∗
i j = ηi j√(∑m

i=1

(
ηi j

)2)
i = 1, 2, . . .m; and j = 1, 2, . . . r (11)

Step 3: The computation of weighted normalized decision matrix is done according
to Eq. (12).

V = [
Xi j

]
m×r

= [
ηi j × w j

]
m×r

i = 1, 2, . . .m; and j = 1, 2, . . . r (12)

w j corresponds toweight fractions of jth response.
∑r

j=1 w j = w1+w2+· · · wr = 1.
Since, there are three outputs and weight fractions correspond to MRR, PT and SR
is found equal to 0.4942, 0.4583 and 0.0475, respectively (refer Table 4).

Step 4: Calculate the positive ideal and anti-ideal (negative) solutions: A* and A−
represents the ideal and negative ideal solution corresponds to maximum and mini-
mum values of S/N ratio for all experimental trials (refer Eqs. 13–16).

A∗ = (
X∗
1, X

∗
2, . . . X

∗
r

)
(13)

X∗
j =

[(
max

i
Xi j

∣∣
∣∣ j ∈ J

)
i = 1, 2, . . .m

]
(14)

A− = (
X−
1 , X−

2 , . . . X−
r

)
(15)

X−
j =

[(
min
i

Xi j

∣∣∣∣ j ∈ J

)
i = 1, 2, . . .m

]
(16)

Step 5: The calculation of d∗
i and d−

i represents the ideal positive solution and ideal
negative solution of distance of scenario i, respectively (refer Eqs. 17 and 18).

d∗
i =

√√√√
r∑

j=1

(
Xi j − X∗

j

)2
i = 1, 2, . . .m; j = 1, 2, . . . r (17)
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d−
i =

√√√√
r∑

j=1

(
Xi j − X−

j

)2
i = 1, 2, . . .m; j = 1, 2, . . . r (18)

Step 6: Calculate the relative closeness or ranking score (C∗
i ) of each alternative

according to Eq. (19). C∗
i corresponds to larger the better quality-characteristics of

alternative of Ai. Selection of the best alternative is decided based on the ranking
score.

C∗
i = d−

i(
d−
i + d∗

i

) i = 1, 2, . . .m; j = 1, 2, . . . r (19)

3.4 Grey Relational Analysis (GRA)

In 1982,Deng introduced theGreyTheory to handle poor, incomplete and uncertainty
information. The grey color is neither black nor white [48]. In general, system is
defined with color that represents the quantum of clear information (i.e. internal
characteristics ormathematical formulations that details dynamics) about the system.
If we know complete insight information about the system or process then it is called
white system. Contrary, if the information is completely unknown then it is referred
as the black system. Grey system refers to the information lies between the known
and unknown information. The present work is based on the optimization of AWJM
process, and maximizing the MRR and minimizing the SR and PT there. The steps
followed for optimization using PCA-GRA are discussed below.

GRA is employed to calculate the relationship between reference (i.e. ideal)
sequence X (o)

o ( j) and comparable sequence X (o)
i ( j), i = 1, 2, …, m; j = 1, 2, …, r,

respectively.

Step1: TheS/N ratio values are computed for all responses including all experimental
trials,

(
ηi j

)
m×r .

Step 2: Normalize the S/N ratio: S/N ratio values need to be normalized (using lin-
ear normalization) between the range of zero and one (unity). Note that the quality
characteristics corresponds to larger-the-better and lower-the-better quality charac-
teristics are computed using Eqs. (20) and (21).

Yi ( j) = ηo
i ( j) − min ηo

i ( j)

max ηo
i ( j) − min ηo

i ( j)
(20)

Yi ( j) = max ηo
i ( j) − ηo

i ( j)

max ηo
i ( j) − min ηo

i ( j)
(21)
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Step 3: Calculate the deviation sequences as per Eq. (22). �oi ( j) is computed based
on the absolute values of difference between reference sequence x∗

o ( j) and the com-
parable sequence of x∗

i ( j) after normalization.

�oi (k) = ∣∣Y ∗
o (k) − Y ∗

i (k)
∣∣ (22)

Step 4: Determine the grey relational coefficient (GRC). The purpose of GRC
γ (Yo( j),Yi ( j)) is to establish the relationship between the ideal and actual nor-
malized S/N ratio for all responses.

γ (Yo( j),Yi ( j)) = �min + ζ�max

�oi ( j) + �max
(23)

In general, the values correspond to �max,�min and ζ is kept fixed to 1, 0 and
0.5 respectively.

Step 5: Calculate the overall performance by utilizing weighted grey relational grad-
ing (WGRG). The composite values of all responses associated with their respective
weights determine the WGRG.

γ (Yo,Yi ) =
r∑

j=1

w1
[
γ (Yo( j),Yi ( j))

] + w2
[
γ (Yo( j),Yi ( j))

] + . . . wr
[
γ (Yo( j),Yi ( j))

]

(24)

In the present work the requiredweights are supplied through PCA (refer Table 4).
The weight fractions for MRR, PT and SR values are found equal to 0.4942, 0.4583
and 0.0475, respectively.

3.5 Data Envelopment Analysis Based Ranking (DEAR)

In 1978, Charnes et al. proposed the concept of data envelopment analysis (DEA).
The DEA estimate the efficiency of a combination of decision-making units with
utilization of multiple inputs to yield multiple outputs [49]. Note that, DEARmethod
used to solve for optimization ofmultiple responses does not require determination of
weight fractions for individual quality characteristics. Here, set of actual outputs are
correlated with simple mathematical formulation as a ratio such that the computed
values estimate the ratio ranks. These ranks are further used for determining optimal
factor levels and perform optimization. The sequential steps followed in DEAR for
the estimation of multi-response performance index (MRPI) are:

Step 1: Calculate the weights (i.e. ratio of the performance measure at any trial to
sum of all performance measures) for each output correspond to all experiments. The
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computation corresponds to determining the weight fraction of each output is done
using the following Eqs. (25)–(27).

Wmrr = MRR
∑

MRR
(25)

WPT = (1/PT )
∑

(1/PT )
(26)

WSR = (1/SR)
∑

(1/SR)
(27)

Step 2: Transform the output data into weighted data after multiplying output with
their corresponding weight fractions according to Eqs. (28)–(30).

M = Wmrr × MRR (28)

P = WPT × PT (29)

S = WSR × SR (30)

Step 3: Calculate the multi-performance ranking index by dividing the larger the bet-
ter performance characteristics with smaller-the-better performance characteristics
using Eq. (31).

MRP I = M

P + S
(31)

3.6 Determination of Optimal Factor Levels for All Outputs

The sets of optimal factor levels for abrasive water jet machining process are
determined by applying multi-objective optimization tools (PCA-MOORA, PCA-
TOPSIS, PCA-GRA, and DEAR). MOORA Index, TOPSIS ranking score, WGRG,
and MRPI values represent the composite values correspond to all responses esti-
mated by their methodology employed from PCA-MOORA (refer Table 5), PCA-
TOPSIS (refer Table 6), PCA-GRA (refer Table 7), andDEAR (refer Table 8), respec-
tively. Tables 9 and 10 present the consolidated MOORA Index, TOPSIS ranking
score, WGRG, and MRPI of all factors operating at different levels. Example (say
MOORA), the factors are calculated by adding all the MOORA index values oper-
ating under particular level of individual factors. It is worth mentioning that the
choice of optimal level for a factor corresponds to the maximum level value of input
factors on determining the performance characteristics. The optimal level of input
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factors of the AWJM process is determined by PCA-MOORA, PCA-TOPSIS, PCA-
GRA, and DEAR method is presented in Tables 9 and 10. It is observed that, DEAR
method determined optimal factor levels are different from those obtained for other
methods studied. The rank for the factors were found to be different for different
models and this might be due to the steps and procedure in determining the compos-
ite responses are found to be different. The higher difference (max. − min.) value
corresponds to the individual factor resulted in highest importance (contribution or
significance) on the performance measures. Abrasive grain size resulted in highest
significance considering all the responses, as their corresponding difference value
is more compared to other factors. Confirmation experiments are conducted for the
determined optimal levels for a factor as obtained by PCA-MOORA, PCA-TOPSIS,
PCA-GRA and DEAR, respectively. Note that the optimal factor levels determined
for PCA-MOORA, PCA-TOPSIS and PCA-GRA are not among the combination of
total twenty-seven experiments performed as per Taguchi method. This occurs due
to the multi-facture nature of experimental design method (i.e. 35 = 243 combinato-
rial set). This indicates that optimization methods (PCA-MOORA, PCA-GRA and
PCA-TOPSIS) determined best factor levels is found to be one among the total set of
243 possible experimental conditions. DEARmethod estimated optimal set of factor
levels correspond to the 26th experimental trial (E26) from the total 27 experiments
conducted.

3.7 Confirmation Experiments

Confirmation experiments are conducted to verify the predictions of optimum tech-
niques and to select the best optimization method for enhancing the multiple perfor-
mance characteristics of AWJM process. Important to note that, DEAR method out-
performed other methods (PCA-GRA, PCA-TOPSIS, and PCA-MOORA) in deter-
mining the optimal levels that resulted in desired high values of MRR, and low
values of SR and PT. Note that, DEAR method produced 26.18% improvement
in MRR, 17.83% for PT and 6.83% for SR, respectively (refer Table 11). There-
fore, A3B3C2D1E2 refers to the optimal set of factor levels recommended by DEAR
method for AWJM process. The significance of individual factors was tested based
on the obtained difference values of maximum and minimum levels. Abrasive grain
size followed by nozzle speed, stand-off distance, working pressure and abrasive
mass flow rate are the factors listed according to their importance in enhancing the
multiple performance characteristics. The optimal factor levels of AWJM process
is attributed to the following process mechanism. In AWJM, material removal phe-
nomenon initiates with indentation on the work surface with the impact of abrasive
particle. Indentation to possible material removal is dependent primarily on size of
the abrasive particle striking the work surface. Tilly [50] explains decrease in the
material removal was observed with smaller particle size as a result of less erosion
on the machined surface area. Note that, small abrasive grit size particle poses lesser
energy which is not sufficient enough tomake larger damage (i.e. indentation) results
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Table 7 Results summary of GRA based optimization

Exp.
no.

S/N ratio Normalization Grey relation
coefficient (GRC)

WGRG
γ (Yo, Yi )

MRR PT SR MRR PT SR MRR PT SR

E1 40.89 6.07 16.42 0.408a 0.378 0.887 0.458b 0.446 0.815 0.469

E2 35.44 1.71 14.61 0.077 0.146 0.711 0.351 0.369 0.634 0.373

E3 37.12 3.09 14.07 0.179 0.220 0.659 0.378 0.391 0.594 0.395

E4 34.28 −0.46 13.81 0.007 0.031 0.634 0.335 0.340 0.577 0.349

E5 35.49 0.96 12.96 0.080 0.107 0.551 0.352 0.359 0.527 0.364

E6 35.84 4.07 14.56 0.101 0.272 0.706 0.357 0.407 0.630 0.393

E7 34.17 −0.44 10.84 0.000 0.032 0.346 0.333 0.341 0.433 0.342

E8 34.38 −1.05 9.40 0.012 0.000 0.206 0.336 0.333 0.387 0.337

E9 35.90 1.15 11.47 0.105 0.117 0.407 0.358 0.361 0.457 0.365

E10 36.81 2.42 8.00 0.160 0.184 0.071 0.373 0.380 0.350 0.375

E11 39.22 5.43 10.60 0.306 0.344 0.323 0.419 0.433 0.425 0.426

E12 39.96 5.24 8.13 0.351 0.334 0.083 0.435 0.429 0.353 0.428

E13 36.28 5.53 17.59 0.128 0.349 1.000 0.364 0.435 1.000 0.427

E14 40.37 6.90 11.03 0.376 0.422 0.364 0.445 0.464 0.440 0.454

E15 39.84 4.57 13.43 0.344 0.298 0.597 0.432 0.416 0.554 0.431

E16 41.54 6.80 15.29 0.446 0.417 0.777 0.475 0.462 0.692 0.479

E17 42.36 8.11 15.60 0.496 0.486 0.807 0.498 0.493 0.722 0.507

E18 39.67 7.21 13.94 0.334 0.438 0.646 0.429 0.471 0.586 0.456

E19 46.25 17.79 10.63 0.733 1.000 0.326 0.652 1.000 0.426 0.801

E20 44.92 11.80 10.72 0.652 0.682 0.334 0.590 0.611 0.429 0.592

E21 48.21 11.28 7.27 0.851 0.654 0.000 0.771 0.591 0.333 0.668

E22 45.63 09.19 10.66 0.695 0.544 0.328 0.621 0.523 0.427 0.567

E23 49.52 14.20 8.27 0.931 0.809 0.097 0.879 0.724 0.356 0.783

E24 48.55 13.43 10.09 0.872 0.769 0.273 0.796 0.684 0.408 0.726

E25 46.17 16.31 16.36 0.728 0.921 0.881 0.647 0.864 0.808 0.755

E26 50.67 16.36 11.28 1.000 0.924 0.389 1.000 0.868 0.450 0.914

E27 48.83 11.28 17.39 0.889 0.654 0.981 0.818 0.591 0.963 0.722

Min. 34.17 −1.05 07.27

Max. 50.66 17.79 17.59

Normalization computation using Eq. [20–21]: [(40.89 − 34.17)]/[(50.66 − 34.17)] = 0.408
Computation of GRC using Eq. [23]: [0.0 + (0.5 × 1.0)]/[(1.0 − 0.408) + 0.5] = 0.458
Computation ofWGRG using Eq. [24]: [(0.458× 0.4942)+ (0.446× 0.4583)+ (0.815× 0.0475)]
= 0.469
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Table 11 Results of confirmation experiments tested for four optimization methods

Models Optimal factor
levels

Experimental performance characteristics

PCA-MOORA A3B3C1D1E2 MRR = 270.5 mm3/min
PT = 0.185 s
SR = 0.293 μm

PCA-TOPSIS

PCA-TOPSIS

DEAR A3B3C2D1E2 MRR = 341.33 mm3/min
PT = 0.152 s
SR = 0.273 μm

in less material and more cutting time. Increase in abrasive flow rate decreases the
particle velocity and number of impacts as a result of increased interference between
the particles [51]. Higher values of abrasive flowrate alter the impact angle of abrasive
attack and reduce the local impact velocities which result in lowmaterial removal and
increased process time. Lower the values of nozzle speed resulted in larger the depth
of cut and better surface quality [52]. As the traverse speed increases, the depth of cut
tends to decrease and favours for increased drag lines on the cut or machined surface
resulted in rough machined surface. The jet diameter tends to expand with increased
standoff distance [53], which favour the work piece exposed to larger machining area
and the kinetic energy of abrasive particles strike the machining area at high impact
with moderate work pressure resulted in better surface quality and productivity in
machining.

4 Conclusions

In AWJM,machining parts to precise dimensional accuracy and surface finish is well
established. Surface finish determines the functional performance characteristics of
the machined parts, wherein its counterpart must not affect the productivity (i.e.
MRR, and PT). Multi-objective optimization for the conflicting nature of outputs
(i.e. minimize SR and PT, and maximize: MRR) are optimized for PCMs using
AWJM process and the following conclusions can be drawn:

1. Taguchi robust design applied to conduct minimum practical experiments and
collected the experimental input-output data. S/N ratio values are computed for
the desired higher-the-better quality characteristics for MRR, and lower-the-
better performance characteristics for SR and PT. Taguchi method collect output
data and analyze the factors effects for each output separately, thus failed to
optimize multiple outputs simultaneously.

2. Multiple outputs generate many solutions and are dependent on the nature of
importance given to the response. Traditional practices (engineers or experts or
customer advice)may yield the best output for one output,with the compromising
solutions for the other. Statistical multi-variate analysis based principal compo-
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nent analysis tool is used to determine the weight fractions based on the collected
output data. PCA determined weight fractions for MRR, PT and SR values are
found equal to 0.4942, 0.4583 and 0.0475, respectively. Note that, summation of
all the weights correspond to the outputs must be maintained equal to one.

3. MOORA,TOPSIS andGRA require assigningweight fractionswhen performing
multi-objective optimization. Thereby, PCA supply the determined weights to
solve the said task. Note that, PCA-MOORA, PCA-TOPSIS, and PCA-GRA use
different procedural steps to perform optimization. However, the recommended
optimal levels (A3B3C1D1E2) remain identical with slight change in ranking of
factors.

4. DEAR method procedural steps itself estimate the weight fractions for each
output at their respective experimental trials. Thus, the recommended optimal
levels (A3B3C2D1E2) and ranking of factors based on importance are different
from those obtained from PCA-TOPSIS, PCA-MOORA, and PCA-GRA.

5. The confirmation experiments are conducted for the optimal levels suggested
by all four methods. DEAR method outperformed other three models (PCA-
GRA, PCA-TOPSIS and PCA-MOORA) in terms of yielding higher material
removal rate with low process time and surface roughness. Abrasive grain size
followed by nozzle speed, stand-off distance, working pressure and abrasive
mass flow rate are the factors listed according to their importance in enhancing the
multiple performance characteristics.Note that,DEARmethodproduced 26.18%
improvement in MRR, 17.83% for PT and 6.83% for SR compared to other three
(i.e. PCA-basedmodels)models. This occurs due to eachmodel possesses its own
advantages and limitations with acceptable degree of errors in estimating values.
Further, combining two such models do increase the computational complexity
and time consuming. Therefore, DEAR method is a suitable tool which not
only improves the product quality, but also provides solutions without much
computation complexity and time.This could help anypractice or novice engineer
to apply tools for solving practical problems. Noteworthy, DEAR method can
only optimize the conflicting nature of outputs is the only major limitation.
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