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Abstract The traditional trial-and error method applied to derive empirical relation
and optimize the process is time consuming and results in reduced productivity, high
rejection and cost. Hence, current research in foundries focussed towards develop-
ment of statistical modelling and optimization tools. The present research work is
focused on modelling and optimization of Alpha-set moulding sand system. The
variables such as percent of resin and hardener, and curing time will influence the
sandmould properties, namely, compression strength, permeability, mould hardness,
gas evolution and collapsibility. Experimental data is collected as per CCD design
matrix and non-linear models have been developed for all responses. The behaviour
of all responses is studied by utilizing surface plots. The statistical adequacy of all
models is tested with help of ANOVA. All responses are tested for their prediction
capacity with the help of test cases. The predictive non-linear models, developed for
the process resulted in average deviation of less than 5%. The optimization (GA,
PSO, DFA and TLBO) tools are applied to optimize the process for conflicting
requirements in sand mould properties. Six case studies with different combination
of weight fractions assigned to sand mould properties are considered. The optimum
solution correspond to highest composite desirability value is selected. TLBO out-
performed other optimization tools (i.e. GA, PSO, and DFA) while determining the
highest desirability value and resulted in optimized sand mould properties. Exper-
iments are conducted for the optimized and normal (i.e. lowest desirability) sand
mould conditions. Castings are prepared by pouring molten LM20 alloy to the pre-
pared moulds. The casting obtained for the optimized sand mould condition resulted
in a better casting quality.
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1 Introduction

In sand castings, parts and components are produced by pouring molten metal into
the sand mould. The quality of casting is largely influenced by the moulding sand
properties. Hence, attaining good moulding sand properties is of industrial rele-
vance. Holtzer et al. reported that, approximately 103 million tonnes of metal was
accounted for the production of cast parts throughout the year across the globe [1].
80% production of cast parts were produced in sand moulds with either bentonite
or organic resin binder. Resin bonded sand mould (that is, chemical binder) system
offered better sand mould and casting properties as compared to green sand moulds
(that is, clay binder or bentonite) [2]. Thoroughly mixed silica sand with chemicals
(i.e. binder) will help to harden the mould using catalytic reaction [3]. Chemically
mixed silica sand has the ability to prepare moulds with intricate shape and precise
dimension at an ambient temperature [4]. However, chemical mixed sand moulds
emit harmful toxic gases (i.e. chemical compounds) during the foundry processes,
which causes environmental pollution and serious human health hazards. The emis-
sivity of harmful compounds (benzene, toluene, ethylbenzene and xylene (BTEX)
and polycyclic aromatic hydrocarbons (PAHs) group) to environment from alphaset
resin is 2–5 times lesser than the furan resin sand moulds [5]. Further, smokeless,
minimal erosion, better hot strength, good finishing and better collapsibility are the
distinguished characteristics of alphaset binder [5, 6].

The molten metal poured into the mould cavity had released the undesirable
gasses and resulted many surface defects in the casting produced [7–9]. Alphaset
binder sand moulds offer excellent surface quality on ferrous castings, due to the
absence of phosphorous and sulphur [6]. Further, absence of nitrogen restricts the
formation of pinholes in the casting part [6]. Alphaset binder is found to be eco-
friendly and keeps the foundry with a healthy working environment. Hence, working
on Alphaset bonded sand moulding system to produce good quality castings is of
industrial relevance.

The detailed analysis of moulding sand system with associated sand mould prop-
erties will provide good insight of a process and on casting quality. Chemical mix
sodium silicate sand moulds will have low quantity of gas evolution (GE) as com-
pared to the green sand moulding [7]. Sodium silicate binder is relatively cheap,
but is limited to high residual stress, poor shake out property (that is, collapsibility)
and difficult to sand reclamation [10]. The moulds with a poor collapsibility (CP)
will result in casting defect, namely hot tear [11]. Casting dimensional accuracy
and surface finish are primarily dependent on the mould compression strength and
hardness. Correlation among sand mould properties were studied by researchers in
the recent past. Strong third order non-linear regression relationship exists between
the compression strength (CS) and mould hardness (MH) in sand moulds [12]. The



Modelling and Optimization of Alpha-set Sand Moulding System … 3

CS of sand moulds increased with the increase in MH, this was due to the existence
of strong dependency relationship among themselves. Lower compression strength
will yield rough casting surface, shrinkage porosity, sand erosion and dimensional
inaccuracy etc. However, high compression strength moulds do not allow the gener-
ated gas to escape from mould (i.e. permeability, P). Casting defects (i.e. blowhole,
misrun and porosity) in sand moulds might occur as a result of insufficient space for
the trapped or generated gases inside the sandmould [13]. The casting quality in sand
moulding process is affected largely by the moulding sand properties. The inappro-
priate combination of moulding sand properties will result in casting defects such
as, blow holes, rat tails, misruns, dimensional in accuracies, rough surface, porosity,
segregations and so on [14]. These defects can be minimized by selection of optimal
levels of moulding sand variables (that is, grain fineness number, degree of ramming,
percent of resin and hardener, curing time and so on). Observations made from the
above literature, shows that the casting quality is dependent primarily on sand mould
properties (GE, CS, MH, CP, and P). Further, studying the appropriate method to
control the moulding sand properties is of significant scope for the researchers.

Researchwork onmoulding sand system in the past fewdecadeswasmore focused
on classical engineering experimental (that is, varying one parameter at once after
fixed the rest at middle values), analytical and numerical approaches. Numerical
methods were applied to predict the gas evolution when the molten metal was poured
into the furan bondedmoulding sand system [15]. The chemicallymixed sandmoulds
contain resin and hardener, however their impact in furan sand moulds on gas evo-
lution was neglected and was limited to establish the input-output relationships.
Classical experiments were conducted to study the influence of different quantity
of furan resin and hardener on moulding strength, gas evolution, surface quality
and casting microstructure [16–18]. However, interaction effects of furan resin and
hardener quantity were not considered and no predictive equations were developed
in their study. The optimized binder composition had yielded good casting surface
features with dimensional accuracy and better mould collapsibility [19]. However,
the effect of curing time was not considered during their experimental investigations.
The effect of sodium silicate and bentonite binders on gas evolution was studied by
conducting classical experiments [7]. The influence of size (that is, coarse or fine)
of the sand particles and their impact on moulding sand permeability and casting
surface finish studied [11, 20]. The coarse sand resulted in a high permeability with
rough casting surface, whereas, smooth uniform casting surface was obtained with
fine sand particles but resulted in low permeability. Gas porosity in castings occurred
due to the generated pressure inside the mould as a result of low permeability [13].
High percent of resin was resulted in better mechanical properties in sand moulds,
whereas it was difficult to extract the cores from the solidifiedmetal cast [21]. Further,
higher resin content resulted in evolving huge amount of gas due to resin decom-
position during casting solidification. The evolved gases resulted in defects in the
casting part [21]. The above literature confirmed that, the moulding sand variables
(proportion of resin and hardener, curing time, grain fineness number and so on) will
have large influence on sand mould properties and in-turn casting quality. The con-
flicting requirements (higher compression strength in moulds offer low permeability
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and vice versa) in sand mould are found to be complex (that is, non-linear). It is
difficult to establish good control of a process with analytical, numerical and classi-
cal experiment approaches. To attain better casting quality through setting the sand
mould properties at optimal level by utilizing appropriate method (that is, modelling
and analysis) is the concern for foundry industries.

Early in 1964, the statistical methods were first applied to conduct foundry exper-
iments and analysis [22]. Design of experiments (DOE) is an effective statistical
tool used to study, analyse and establish the input-output relationships. DOE meth-
ods estimate both individual and combined factor effects by conducting minimum
experimental trials. Taguchi method was applied to model and optimize the casting
defects in green sand moulding process [23]. Computer aided simulation was per-
formed to obtain the casting data (defects) for Taguchi parametric design. Taguchi
method might fail to establish full quadratic (that is, linear, square and interaction)
factor effects due to limitation in orthogonal array. DOE was applied to conduct
analysis of moulding sand variables (proportion of resin, and hardener, and tem-
perature) on moulding strength and sand inclusion defects in furan sand moulding
system [24]. DOE and response surface methodology (RSM) were applied to get the
full quadratic factor effects and develop predictive models for green sand mould-
ing [25], phenol formaldehyde sand mould [26], sodium silicate, CO2 gas hardened
[27], and furan sand moulding processes [28]. Further, the models predicted the sand
moulding properties with a better accuracy for test cases. It was observed from the
above literature that, the design of experiments and response surface methodology
is an ideal tool to study many variables, which are complex and highly non-linear.
Further, the combined tools can be used to establish precise mathematical equation
representing outputs as a function of inputs. Moreover, the derived empirical rela-
tionship can be used to determine optimal points for a process. Important to note
that, not much of the research efforts were made in the recent past on modelling,
analysis and optimization of Alphaset sand moulding system.

The optimization task is generally carried out to determine the best results sub-
jected to various resource (that is, input or design variable) constraints. Conventional
optimization and nonconventional optimization are the two broad classifications of
optimization techniques, distinguished based on search (that is, operating) mecha-
nism employed to yield best results [29]. Conventional optimization algorithms are
deterministic algorithms (such as, dynamic programming, non-linear programming,
quadratic programming, geometric programming etc.) work with specific transition
rules for moving solutions from one to another space during the optimal search [30].
For multi-modal optimization problems, the conventional optimization methods fail
to locate the global optimal solutions. This is due to the difficulty in handling many
variableswith complex non-linear characteristics. The speed of convergence to locate
the optimal solutions with conventional optimization tools is slow. Nonconventional
optimization tools (that is, population based search methods include evolutionary
and swarm intelligence algorithms) overcome the difficulties of conventional opti-
mization tools by attaining the global solutions and rapid convergence that yield
better results. Nonconventional optimization tools use heuristic search methods with
definite set of probabilistic transition rules to get better solutions. The difference in
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the performance of evolutionary and swarm intelligence algorithms can be found for
multi-modal and multidimensional optimization problems. This occur due to the dif-
ferent search mechanisms and different combination of employed rules to move pop-
ulation and associated solutions towards optimal. The population based algorithms
[genetic algorithm (GA), particle swarm optimization (PSO), and teaching learn-
ing based optimization (TLBO)] are cost effective optimization tools in determining
near optimal solutions through their heuristic search mechanism. Evolutionary GA,
needs to set mutation rate and crossover parameters, and Swarm intelligence based
PSO, needs to set inertia weight, social and cognitive parameters, at optimal level to
yield best results [31]. Improper choice of genetic and swarm optimization param-
eters will affect both the computational efficiency and optimality of solutions [30].
Teaching learning based optimization (TLBO) do not require specific tuning param-
eters, thereby the probability to hit the global solutions are more [32]. GA and PSO
were applied to optimize the green sand moulding [14] and squeeze casting process
[33, 34] for better casting quality. PSO and GA had produced approximately similar
results while locating global solution, and the computational effort and time was
less for PSO. TLBO outperformed GA, PSO, and Taguchi optimization tools while
performing optimization for different casting (that is, squeeze casting, die casting
and continuous casting) and machining (wire electric discharge machining, abrasive
jet machining and ultrasonic machining) processes [35, 36]. GA, PSO and TLBO
tools can be applied to optimize the conflicting requirements (that is, maximize:
CS, MH and P, and minimize: CP and GE) in sand mould properties. Further, use
of optimization tools will minimize the requirements of practical experiments and
analytical tools which are always costlier, tedious and time-consuming.

In the present work, the modelling of eco-friendly alphaset bonded sand mould
system is conducted to understand the effect of sandmouldingvariables andmoulding
sand properties and to establish accurate relation between them. Statistical analysis
will help the foundry personnel and researchers to study the full quadratic factors
effects (linear, square and interaction) on sand mould properties. The statistical and
3D surface plot analysis will provide detailed insight of the physics of a process (i.e.
processmechanics and dynamics). Further, sandmould properties (CP, CS, P, GE and
MH) are expressed as a mathematical non-linear function of input variables. These
predictive equations will help the foundry man to know the values of sand mould
properties for the known set of moulding sand variables (that is, percent of resin,
percent of hardener, and setting time). The conflicting requirements in moulding
sand properties (minimize: GE and CP and maximize: CS, MH and P) are optimized
by applying non-conventional optimization methods (that is, GA, PSO, and TLBO).
Motivated by this, systematic study ofmodelling and optimization of alphaset bonded
sandmould systemwould help the foundry personnel to obtain good quality castings,
without much efforts, time and prior detailed knowledge of the process.
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Fig. 1 Sequence of tasks performed during experimentation, modelling and optimization for better
sand mould and casting properties
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2 Experimentation, Modelling and Optimization

Theexperiments havebeen conducted inAlphaset sandmouldingprocess. Further,
the experimental data is used to develop non-linear models and optimize the process
parameters. Figure 1 shows the sequence of various tasks with experimental setup
during experimentation, modelling, and optimization of Alphaset sand moulding.

Step 1: The moulding materials (i.e. alphaset resin, hardener, and silica sand) are
collected for experimentation. Sieve analysis test is conducted to determine the
grain fineness number (GFN) as per American Foundry Society (AFS) standard. The
required quantity of resin and hardener is measured with the help of digital weighing
balance. The moulding materials and associated parameters used for the experimen-
tation are selected based on trial experiments, consulting industrial expert’s opinion,
and available literature [12, 16–19, 25–28] (refer Table 1).
Step 2: Experiments are conducted with different set of sand mould variables as per
Central Composite Design (CCD)matrix. The specimens (height of 5 cm and 3 cm in
diameter) are prepared in accordance with American Foundry Society standard. The
test specimens prepared as per CCD are used to determine the sand mould properties
(that is, CS, P, MH, CP and GE).
Step 3: Moulding sand properties are expressed in terms of moulding sand variables
by non-linear mathematical equations (regression models). Statistical tests (that is,
coefficient of determination, significance test, analysis of variance and prediction
tests) are carried out to determine statistical adequacy and to understand the behaviour
of variables on mould properties.
Step 4: The derived empirical relationships for all sand mould properties are treated
as an objective function for process optimization. Weight based method is employed
to convert the conflicting objective function (maximize: CS, MH and P, and mini-
mize: GE and CP) to a single objective function for maximization. GA, PSO, and
TLBO algorithms are applied to optimize the sand mould properties in Alphaset
sand moulding process. Further, the casting quality is evaluated for the different
sand moulding conditions (that is, optimized and normal).

Table 1 Moulding materials
and associated parameters

Parameters Value

Grain fineness number or AFS
number

55

Alphaset resin 1.8–2.2%

Ester cured 0.2–0.4%

Weighing balance accuracy 0.1 mg

Degree of ramming 3

Curing time 60–120 s

Mulling time 180 s
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Table 2 Sand mould
variables and associated
operating levels

Input variables Units Un-coded levels

Low Medium High
aResin % 1.8 2.0 2.2
aHardener % 0.2 0.3 0.4

Curing time min 60 90 120

awt% of sand

3 Data Collection

The silica sand with 55 GFN is mixed with binder and catalyst for 3 min in sand
muller and the test specimen are prepared by using this moulding sand mixture.
The operating levels of moulding sand (input) variables used for conducting the
experiments is presented in Table 2.

The following tests are conducted on the prepared test specimen to measure the
sand mould properties. The height of the sand mould specimens are measured using
standard height gauge and kept within the range of 5–5.1 cm. The permeability
measurements are conducted using permeability meter. The compression strength
and collapsibility (that is, retained strength) in the sand moulds are measured with
the help of universal strength testing unit. The samples are kept in a muffle furnace
maintained at 650 °C in for period of about 2 min and the collapsibility (that is,
strength retained after heating) is determined by using universal strength testing
machine. The harmful toxic compounds are emitted when the resin comes in contact
with the molten metal. This will pollute the environment and cause serious threat to
human health. 1 g of thoroughly mixed silica sand with alphaset binder and hardener,
is taken in the ceramic boat and placed in the heated tube maintained at a temperature
of 850 °C. The evolved gases as a result of burnt resin and hardener is measured by
the displacement of water level in burette. The unit corresponding to gas evolution
is ml/gm (Table 3).

4 Analysis, Modeling and Optimization

This section describes the modelling and optimization of Alphaset sand moulding
process. The input-output data collected through experiment is used to develop sur-
face plots for responses namely, GCS, CP, GE, MH, and P. The surface plots are the
powerful graphical tool depicting the influence of linear and non-linear relation of
the responses with input parameters. Statistical analysis is conducted to know the
significance of full quadratic factor effects (that is, linear, square and interaction) of
moulding sand variables on sand mould properties is tested by analysis of variance
(ANOVA). Minitab (version 17) platform software is utilized for the said purpose.
The prediction tests are also conducted to check the performance and practical utility
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Table 3 CCD based experimental matrices for alphaset sand moulding

Exp. No. Input variables Sand mould properties

A B C CS, KPa CP, KPa GE, ml/gm MH P

1 2.0 0.3 090 371.2 270.70 7.60 75.1 118.5

2 2.2 0.4 120 388.9 285.20 9.28 75.6 106.6

3 2.0 0.3 120 378.6 280.20 7.75 76.8 125.8

4 2.0 0.3 060 350.7 268.20 7.34 72.8 134.6

5 1.8 0.4 060 252.8 181.70 6.63 67.1 159.5

6 2.2 0.4 060 390.7 290.30 9.01 73.1 108.9

7 2.0 0.2 090 351.8 257.50 8.70 71.8 131.9

8 1.8 0.2 060 168.6 107.80 8.54 60.7 203.5

9 2.2 0.2 060 368.7 280.50 8.86 74.2 109.3

10 2.0 0.4 090 421.6 328.20 8.49 77.7 101.4

11 2.0 0.3 090 372.8 274.50 8.27 75.2 114.2

12 2.2 0.2 120 360.6 272.04 8.11 74.7 138.4

13 1.8 0.4 120 352.8 264.60 8.52 73.9 131.6

14 2.0 0.3 090 370.7 288.70 8.43 75.5 116.7

15 2.2 0.3 090 372.2 281.20 8.97 75.6 121.3

16 1.8 0.2 120 250.7 149.60 8.78 69.1 178.6

17 1.8 0.3 090 268.8 182.60 8.32 70.5 171.2

of the developed models. Castings are prepared by pouring the molten metal into the
sandmould preparedwith normal and optimized conditions and evaluated the casting
quality.

4.1 Analysis and Modeling

4.1.1 Compression Strength

The compression strength, expressed as a non-linearmathematical function ofmould-
ing sand variables is as follows,

CS = −7159 + 6488A + 1291B + 10.69C − 1395A2 + 1040B2 − 0.01294C2

− 850AB − 4.0AC + 1.008BC (1)

Significance tests are carried out for the developed non-linear model to check
the contributions of full quadratic (linear, square and interaction) effects of the fac-
tors on compression strength. The significance tests are conducted for the preset
(P-value ≤ 0.05) confidence level of 95%. The significance test results obtained
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Table 4 ANOVA test results for sand mould properties
Response Compression strength Collapsibility

Source DF Adj. SS Adj. MS F P Adj. SS Adj. MS F P

Model 9 68,492.5 07610.3 161.96 0.000 54,232.1 06025.8 062.71 0.000

Linear 3 47,896.0 15965.3 339.77 0.000 36,847.0 12282.3 127.81 0.000

Square 3 13,603.3 04534.4 096.50 0.000 11,306.6 03768.9 039.22 0.000

Interaction 3 06993.2 02331.1 049.61 0.000 06078.6 02026.2 021.09 0.001

Error 7 00328.9 0047.0 00672.7 00096.1

Lack of fit 5 00326.5 0065.3 054.27 0.018 00492.6 00098.5 001.09 0.541

Pure error 2 00002.4 0001.2 00180.0 00090.0

Total 16 68,821.4 54,904.8

Response Mould hardness Gas evolution

Model 9 272.419 30.269 29.55 0.000 6.85901 0.76211 12.04 0.002

Linear 3 179.606 59.069 58.45 0.000 1.72008 0.57336 09.06 0.008

Square 3 057.943 19.314 18.86 0.001 1.87379 0.62460 09.87 0.007

Interaction 3 034.870 11.623 11.35 0.004 3.26514 1.08838 17.19 0.001

Error 7 007.170 01.024 0.44309 0.06330

Lack of fit 5 007.083 01.417 32.69 0.030 0.05529 0.01106 00.06 0.995

Pure error 2 000.087 00.043 0.38780 0.19390

Total 16 279.589 7.30209

Response Permeability

Model 9 12,869.1 1429.89 44.30 0.000

Linear 3 09238.3 3079.42 95.40 0.000

Square 3 02258.7 0752.89 23.32 0.001

Interaction 3 01372.1 0457.37 14.17 0.002

Error 7 00225.9 0032.28

Lack of fit 5 00216.6 0043.32 09.29 0.100

Pure error 2 00009.3 0004.66

Total 16 13,095.0

Table 5 Summary of significance test results for sand mould properties

Output Coefficient of correlations Parameters

All terms Exclude insignificant
terms

Significant terms Insignificant terms

GE 0.9393 0.8613 A, C, AA, BB, CC,
AB, AC, BC

B

CS 0.9952 0.9821 A, B, C, AA, BB, CC,
AB, AC

BC

CP 0.9877 0.9720 A, B, C, AA, AB, AC BB, CC, BC

MH 0.9744 0.9414 A, B, C, AA, AB, AC BB, CC, BC

P 0.9827 0.9606 A, B, AA, AB, AC C, BB, CC, BC
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Fig. 2 3D surface graphs of compression strength with: a percent of resin and percent of hardener,
b percent of hardener and curing time and c percent of hardener and curing time

for the compression strength is presented in Table 4. All linear, corresponding
square and combined interaction terms (excluding the interaction among percent
of hardener and curing time) are found to be significant for the response, CS
(refer Table 5). Insignificant term depict there is no significant change in the
output value when the independent variables are varied simultaneously within
their operating levels. The P-values of all square terms are found to be sig-
nificant (as their corresponding P-value is found to be less than 0.05), indicat-
ing all sand mould variables (that is, percent of resin, percent of hardener and
curing time) are found to have non-linear relation with the response, CS. The
results of statistical tests are found to be in line with the 3D surface plots (refer
Fig. 2).

Figure 2 shows the 3-dimensional response surface plots drawn to know the impact
of experimental (input) factors on the compression strength, when two variables
are varied simultaneously within their operating range and keeping the remaining
parameters at fixed center level. The observations made from the surface plots are as
follows:

1. Figure 2a shows the interaction factors effect between the percent of resin and
percent of hardener on the response, CS. It is observed that, the compression
strength tends to increase with percentage of resin and hardener. The results
showed that the resin tends to contribute more in comparison with hardener for
the CS. Lower resin quantity might not be sufficient enough to coat the sand
grains, will not develop strong bonding action between the sand grains. Further,
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low quantity of hardener might not be sufficient enough to stimulate the available
resin. The results are in line with the experiments conducted earlier by Bargaoui
et al. [21].

2. High values of compression strength are seenwith the increased values of percent
of resin (refer Fig. 2b). Further, CS is found to have a negligible impact when
the curing time is varied from low to high values. This implies high values of
hardener content support polymerization that develops strong bonding action
between the molecules of resin to coat on sand grains.

3. CS is found to increase linearly with an increase in hardener and curing time
simultaneously. This indicates high quantity of hardenermight not provide strong
bonding strength with low curing time. Increase in curing time will provide suf-
ficient time for the resin to undergo polymerization and develop strong bonding
action between the sand grains which improves the mould compression strength.

The multiple correlation coefficient established for the compression strength is
found to be close to 1, which indicates the model fits to the assumed regression
equation with good precision. The ANOVA result shows that, the model developed
for the response, CS is statistically adequate. The combined effect of linear, square
and 2-term interactions and lack-of-fit was found significant. Further, the model
needs to be tested for its accuracy in prediction by utilizing test caseswith randomized
combination of variable parameter values. However, it is to be noted that, the variable
parameters should be within their operating range.

4.1.2 Permeability

The relationship of the response permeability with the sand mould variables (per-
cent of resin, curing time and percent of hardener) is represented mathematically as
follows,

P = 3178 − 2653A − 342B − 4.320C + 566.0A2 − 696B2 + 0.00732C2 + 367AB

+ 1.658AC − 1.433BC (2)

The significance of moulding sand variables, their curvature, and two-term inter-
actions are tested at 95% confidence interval. The obtained significance test results
are discussed below (refer Table 5).

1. The variable, curing time (that is, C) is not having significant contribution towards
this response.

2. The quadratic terms of variables, namely, percent of hardener and curing time
are not significant towards the response, permeability. This indicates that, the
existence of strong dependent linear relationship of these parameters with per-
meability.

3. Although percent of hardener alone has showed a significant impact, their inter-
action with curing time is found insignificant. This indicates the permeability
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does not depend much on the interaction of curing time and percent of hardener
(i.e. BC).

The combined effect of all linear (A, B, C), corresponding square (A2, B2 and
C2), and combined two-term interaction (AB, AC, and BC) term effects is found to
be significant at 95% confidence level (refer Table 4). Excluding insignificant terms
will result in imprecise input-output relationship and might reduce the prediction
accuracy. The multiple correlation coefficient obtained for the response permeability
is found equal to 0.9827 (refer Table 5). Hence, the models are statistically adequate
to make use for prediction of permeability for known set of sand mould variables.

4.1.3 Mould Hardness

Mould hardness, expressed as a mathematical non-linear function of percent of resin,
percent of hardener and curing time is shown below-

MH = −334.0 + 322.0A + 213.0B + 0.751C − 65.4A2 − 91.8B2 − 0.000964C2

− 71.2AB − 0.2542AC + 0.017BC (3)

The result of significance test for the response-mould hardness shows that, the
combined effect of all linear, quadratic, two-factor terms and lack-of-fit are statis-
tically significant at 95% confidence level (refer Table 4). The terms (i.e. B2, and
C2) are found insignificant, indicating percentage of hardener and curing time have
strong linear relationship with the response, mould hardness. Although hardener and
curing time are found to have significant contribution, its interaction (i.e. BC) is
insignificant towards this response. Percent of resin has maximum contribution, fol-
lowed by hardener and curing time towards the response, mould hardness. Themodel
found to be statistically adequate with good fit of response surface and resulted in
a better correlation coefficient value equal to 0.9744 (refer Table 5). Therefore, the
model can be used to make mould hardness prediction for known combination of
sand mould variables.

4.1.4 Gas Evolution

Themathematicalmodel established between gas evolution and sandmould variables
(i.e. percent of resin, percent of hardener and curing time) using experimental data
is shown below,

GE = 59.1 − 49.7A − 81.6B + 0.2026C + 12.45A2 + 44.8B2 − 0.000669C2

+ 21.81AB − 0.0544AC + 0.1112BC (4)
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Table 4 shows the significance test results obtained forGE.Thepercent of hardener
is not found to be significant, because their P-value is more than 0.05. The analysis
of variance values of full quadratic (linear, square, and two term interaction) terms
for the gas evolution is shown in Table 5. The P-values of full quadratic terms are
found to be lower than 0.05, indicating good fit of response surface for GE. Further,
the coefficient of determination value obtained for gas evolution is found to be equal
to 0.9393, indicating the mathematical models are capable to predict accurately the
response, GE. Excluding non-significant terms from the derived response Eq. (4),
will make the lack-of-fit significant.

4.1.5 Collapsibility

The second order response surface model between the moulding sand variables and
collapsibility is expressed as follows:

CP = −6615 + 5993A + 1630B + 7.48C − 1290A2 + 934B2 − 0.01034C2

− 1037AB − 2.880AC + 1.85BC (5)

The significance of linear factors (i.e. sandmould variables), their nonlinearity (i.e.
curvature), and two term interactions are evaluated for the confidence level of 95%.
It is important to note that the collapsibility and mould hardness identified similar
significant and insignificant terms (refer Table 5). This might have happened due to
the existence of strong dependency between the mould hardness and collapsibility.
The coefficient of determination for the response, collapsibility was found equal to
0.9877 (refer Table 5). Since, the coefficient of correlation is close to 1, prediction
ability by the response equation will be close the actual values of collapsibility.

4.1.6 Prediction Test for the Developed Non-linear Models

The discussion from previous section indicates, all non-linear regression models
developed for the responses, namely CS, P,MH, GE and CP are statistically adequate
at 95% confidence level. These models are tested towards their prediction capability
by conducting 14 experiments (test cases), which will be treated as target values.
It is to be noted that these experiments are conducted with different set of variable
combination generated at random. The values of variables are generated at random
within their operating range (Appendix 1). The percent deviation in predicting the
sand mould properties (i.e. CS, P, MH, GE and CP) for 14 test cases are presented
in Appendices 2 and 3. The Percentage deviation in predicting the response value is
found to vary in the ranges between −6.58 and +6.26% for CS, −9.53 and +5.34%
for CP, −4.05 and +4.29% for GE, −4.86 and +3.29% for MH, and −8.38 and +
6.18% for P (Appendices 2 and 3). It is important to mention that, the % deviation
is found to vary on both positive and negative sides and vary within the acceptable
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Fig. 3 Mean absolute
percent error in prediction of
sand mould properties

range for all the responses (refer Appendices 2 and 3). This shows that, the model has
accurately captured the process physics, mechanics and dynamics. Further, the mean
absolute percent deviation in prediction for CS, CP, GE, MH and P is found equal
to 4.36, 4.25, 2.43, 2.12 and 4.6%, respectively (refer Fig. 3). The mean absolute
percent deviation in prediction of all sand mould properties (i.e. CS, CP, GE, MH
and P) is found equal to 3.55%. This depicts the developed non-linear models can be
used by any novice user to predict the sandmould properties without the requirement
of prior knowledge and conducting trial experiments.

4.2 Multi-response Optimization

Accurate control of moulding sand properties with conflicting requirements is a
tedious task in foundry industries. A situation might arise in shop floor such that
a set of sand mould variables might results in better permeability, but not offer the
desired strength and hardness of moulds. This is due to the fact that, the response
permeability has inverse relation with mould hardness and compression strength.
Multi-objective optimization would solve this complex situation by determining an
optimal set of sand mould variables (that is, percent of resin, percent of hardener
and curing time) for the conflicting requirements in sand mould properties (that is,
minimize: GE and CP, and maximize: CS, MH and P). The upper and lower con-
strained values of sand mould variables could define the three-dimensional solution
spaces, which will help optimization tools (DFA, GA, PSO, and TLBO) to conduct
search for the best sand mould properties. Optimal sand moulding properties for
the conflicting objective functions (simultaneous, maximization and minimization)
in alphaset sand moulding system will need a suitable mathematical formulation.
Weight average method is employed to convert multiple conflicting objective func-
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tions to a single objective function either for maximization or minimization [14, 34].
The present work require optimization of five conflicting objective functions. Six
different case studies are considered by assigning equal importance (i.e. 20 wt%) to
all outputs and maximum importance to one output at a time (that is, 60%), with the
rest at low and equal weights (that is, 10%). The optimal search is conducted. Accu-
rate control of moulding sand properties with conflicting requirements is treated as
a tedious task in shop floor foundry. A situation might arise in shop floor such that
a set of sand mould variables might results in better permeability, but not offer the
desired strength and hardness of moulds due to permeability pose inverse relation
with mould hardness and compression strength. Multi-objective optimization would
solve this complex situation by determining optimal set of sandmould variables (that
is, percent of resin, percent of hardener and curing time) for the conflicting require-
ments in sand mould properties (that is, minimize: GE and CP, and maximize: CS,
MH and P). The upper and lower constrained values of sand mould variables could
define the three-dimensional solution spaces, which help optimization tools (DFA,
GA, PSO, and TLBO) to conduct optimal search for best sand mould properties.
Optimal sand moulding properties for the conflicting objective functions (simulta-
neous, maximization and minimization) in alphaset sand moulding system require
suitable mathematical formulation. Weight average method is employed to convert
multiple conflicting objective functions to single function either for maximization
or minimization [14, 34]. The present work require optimization of five conflicting
objective functions, six different case studies are considered after assigning equal
importance (i.e. 20 wt%) to all outputs and maximum importance to single output
(that is, 60%), with the rest at low and equal weights (that is, 10%). Optimization
tools are used to obtain the best set of mould properties. Optimization of mathemati-
cally formulated weighted objective (output) function for maximization is discussed
as follows,

Output function (Y1) = CS
Output function (Y2) = P
Output function (Y3) = MH
Output function (Y4) = 1/GE
Output function (Y5) = 1/CP

Maximize (Y ) = W1Y1 + W2Y2 + W3Y3 + W4Y4 + W5Y5

Terms W1Y1, W2Y2, W3Y3, W4Y4, and W5Y5 are the weight fraction combina-
tion for the objective function CS, P, MH, GE and CP, respectively. Weight factors
(W1–W5) combination are selected such that their cumulative value must be equal to
one. In Alphaset sand moulding process, the sand mould properties are imposed by
parameter upper and lower bound constraints which cover percent of resin, percent
of hardener and curing time. These variable constraints are listed in Table 6.
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Table 6 Upper and lower
bound of constrained
variables

Parameters Lower bound Upper bound

Percent of resin, % 1.8 2.2

Percent of hardener, % 0.2 0.4

Curing time, s 60 120

4.2.1 Desirability Function Approach (DFA)

In 1980, Derringer and Suich had proposed the desirability function approach for
multi-response optimization [37].Reducedgradient approachwas employed to locate
the optimal solutions, which initiate with multiple solution and end with global
solution (i.e. highest desirability) [38]. The desirability (D) value could vary between
the ranges of 0 and 1. The solutions are completely acceptable (i.e. output function
value is perfectly the target or global value) when the D = 1 or close to 1. The
present work is focussed to optimize the conflicting objective functions which have
both maximizing and minimizing the individual desirability functions.

The responses (CS, MH, and P) are of maximizing type and the individual desir-
ability function is presented by YCS, YP, and YMH.

yCS = CS − CSmin

CSmax − CSmin
, yP = P − Pmin

Pmax − Pmin
, and yMH = MH − MHmin

MHmax − MHmin

where,

Pmax and Pmin is the maximum and minimum value of P
CS and CSmin is the maximum and minimum value of CS
MHmax MHmin is the maximum and minimum value of MH.

The responses (GE, and CP) are of minimizing type and the individual desirability
function is presented by YGE, and YCP.

yGE = GEmax − GE

GEmax − GEmin
and yCP = CPmax − CP

CPmax − CPmin

where,

GEmax and GEmin is the maximum and minimum value of GE
CPmax and CPmin is the maximum and minimum value of CP.

For multi-objective functions the highest composite desirability value obtained
from six different case studies is treated as an optimal choice for Alphaset sand
moulding process. The single composite desirability value, satisfying all conflicting
requirements in sand mould properties is computed as shown below

D0 = 5

√
yw1
CS × yw2

P × yw3
MH × yw4

GE × yw5
CP (6)
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4.2.2 Genetic Algorithm (GA)

In 1975, Holland introduced the concept of genetic algorithm which mimic the nat-
ural selection of living organisms based on Charles Darwin theory of survival of
fittest [14, 34]. The process starts with initialization of genetic operators (mutation,
crossover and selection) and generation of population to produce local solutions.
To obtain global solutions the decision on optimum selection of genetic operators
are of primary importance. There are no universal standards or methods established
to obtain the global solutions for optimum choice of GA parameters (i.e. genetic
operators, population size and generation or iteration number). Thereby, parameter
study is conducted to ensure the highest desirability (D0) values correspond to GA
parameters. Tournament selection method is employed to rank the obtained solutions
by balancing the diversity of new population and enhance the current solution. The
optimum GA parameters correspond to highest desirability (D0) value is decided by
conducting parameter study is presented in Table 7.

4.2.3 Particle Swarm Optimization: PSO

In 1995, Dr. Eberhart and Dr. Kennedy presented the concept of particle swarm
optimization at the Congress on Evolutionary Computation (Kennedy and Eberhart
1995). PSO imitate the cooperation among individuals and in the team utilizing
swarm intelligence and share experiences from one generation to other. PSO pose
technical advantage overGA, as PSO requires few tuning (inertiaweight, swarm size,
mutation rate and generation) parameters [14, 34], and do not require sorting of fitness
values and the solution lead to fast convergence. Mutation operator is introduced to
simple PSO to enlarge the search space to avoid local minima, if any [14]. Systematic
study results of optimization of particle swarm optimization parameters for highest
composite desirability (D0) value correspond to the sand moulding properties and
sand mould variables are presented in Table 7.

Table 7 Parameter study results of GA and PSO

GA parameter study PSO parameter study

Parameters Levels Optimum value Parameters Levels Optimum value

Cross over rate 0.3–1.0 0.5 Inertia weight 0–1 0.55

Mutation rate 0.03–0.3 0.15 Mutation rate 0.03–0.3 0.09

Population size 20–180 150 Swarm size 20–180 100

Generations 20–1000 500 Generations 20–1000 200
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4.2.4 Teacher Learning Based Optimization (TLBO)

Rao introduced the concept of teaching learning-based optimization algorithm.
TLBO is also a population-based algorithm [30], wherein the group of learners
or class of learners is treated as populations. TLBO algorithm is considered to be
more efficient for solving the non-linear optimization problem, and do not require
algorithm specific tuning parameters. Thus, TLBO algorithm converge solutions at
faster rate and avoids local minima solution due to improper choice of tuning param-
eters. The algorithm works in two phases (i.e. teacher and learner phase) to locate
optimal solutions. In teacher phase, teacher is the highly trained professional who
motivate the students to acquire greater knowledge and always focussed to improve
the mean result of a class. In learner phase, apart from acquire knowledge in teacher
phase, the learner’s mutual interaction could also help to improve the mean result
of a class. Although there are no algorithm specific tuning parameters, the size of
population and generations are required to be optimized in TLBO. TLBO parameters
are optimized for highest desirability (D0) value as below:

Number of population = 60
Number of generation = 100.

4.2.5 Comparison of Performance of Optimization Models: DFA, GA,
PSO, and TLBO

Table 8 shows the different optimization tools (DFA, GA, PSO, and TLBO) used
to locate extreme values of sand mould properties and corresponding sand mould
variables for six case studies. The values with highest global desirability will define
the best sandmould conditions (percent of resin, percent of hardener, and curing time)
and properties. The optimum set of sand mould properties, located with the help of
fine-tunedGA,PSOandTLBOparameters is used to determine the global desirability
value for six different case studies. The choice of best sandmoulding conditions from
six different case studies is obtained with the help of highest desirability (D0) value.
The composite desirability value obtained for case 1–6 are found to be {0.8826,
0.8873, 0.8881, 0.8947}, {0.9073, 0.9076, 0.9109, 0.9122}, {0.9033, 0.9098, 0.9185,
0.9152}, {0.9199, 0.9138, 0.9275, 0.9297}, {0.9099, 0.9146, 0.9351, 0.9382}, and
{0.9031, 0.9059, 0.9117, 0.9096} for DFA, GA, PSO, and TLBO, respectively (refer
Table 8). Important to note that, TLBOoutperformedPSO,DFA, andGA to locate the
highest composite desirability (Do) value. TLBO determined case 5 (that is, highest
importance assigned to GE) is recommended as an optimum choice for Alphaset-
sand moulding system, as their corresponding desirability function value found to
be maximum compared to other cases studied. Further, TLBO optimizes the sand
mould properties with less population size and generation {60 and 100} number as
compared to GA {150, 500} and PSO {100, 200} (refer Table 7). Further, TLBO
does not require algorithm specific tuning parameters unlike in GA (crossover, and
mutation) and PSO (inertia weight, social and cognitive leader) and lead to faster
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Table 9 Validate the optimization models with experimental sand mould conditions

D0 Condition Sand mould
variables (inputs)

Sand mould properties (outputs)

A B C CS, KPa P MH GE,
ml/gm

CP, KPa

0.9382 Optimized 1.84 0.38 60.8 285.7 153.2 69.21 6.84 215.8

0.7861 Normal 2.20 0.40 120 388.9 106.6 75.60 9.28 285.2

convergence. Confirmation experiments are conducted for the determined optimal
sandmould conditions with highest composite desirability value of Case 5 by TLBO.
TLBOresults are comparedwith experimental values to confirm their practical utility.
The results are found to be more useful for a foundry personal as their deviation is
found to be less than 8% with enhanced sand mould properties. The experiments
are also conducted for the lowest desirability value obtained from Table 9 (that
is, Experiment No. 2) for the normal sand moulding condition. This experiment
is done to know the importance of optimization methods in achieving the casting
quality. Important to note that, although normal sand moulding condition (refer
Table 9) provide better strength, but affects the mould permeability, gas evolution
and collapsibility. Low permeable moulds and high gas evolution increase the mould
pressure which create inadequate space for the generated gases during metal pouring
andwill result in gas porosity in the castings [13]. Further, poor collapsibility requires
additional equipment to break the moulds, which might induce the residual stresses
and hot tear defects in castings [11].

5 Casting Quality Assessments for Different Sand Mould
(Optimized and Normal) Conditions

The Alphaset resin bonded sand mould prepared with optimized and normal sand
mould condition is used to cast the automotive bushing (refer Table 10). The castings
are subjected to different tests according to reference standards to evaluate the quality
characteristics. LM20 molten metal is poured to the prepared mould cavity. The
mould cavity is prepared with the help of aluminium pattern.

The casting, automotive bushing part is tested for different quality (density, SR,
YS, UTS, SDAS, and BHN) characteristics (refer Fig. 4a) and evaluated the differ-
ence in quality for the castings obtained from optimized and normal moulding sand
conditions. The outer casting surface structure is evaluated with the help of Mitu-
toyo Surftest SJ301. Gas porosity was observed on the tensile fracture surface for
the castings prepared by normal sand mould condition (refer Fig. 4d).

Homogeneous texture with increased amount of fine dimples on the fractured
intergranular surface is observed on tensile specimens (refer Fig. 4e). This indi-
cates relatively large amount of plastic deformation occurs before fracture (refer
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Table 10 Casting quality characteristics under different moulding conditions

Casting quality
characteristics

Notation Testing Standards Optimized
condition

Normal condition

Surface
roughness, μm

SR JIS 2001 4.88 5.63

Yield strength,
MPa

YS ASTM E8 112 104

Ultimate tensile
strength, MPa

UTS ASTM E8 183 158

Hardness BHN ASTM E10 61 58

Density, g/cm3 ρ Archimedes 2.62 2.59

Secondary
dendrite arm
spacing, μm

SDAS ASTM E112 49.0 55.0

Fig. 4e). The resulted microstructure is dendritic structure with fine α-aluminium
grains. The refined silicon particles have appeared in the matrix between the den-
drites and resulted in a low value of secondary dendrite arm spacing (refer Fig. 4c).

Segregations are formed between the dendrites for the castings obtained by normal
sand mould condition (refer Fig. 4b). The surface finish, dendritic structure, and
fracturemechanism obtained for highest desirability value (i.e. 0.9382) is found to be
better as compared to low values of global desirability (i.e. 0.7861). Three replicates
are considered for each casting condition and the average value of different quality
characteristics (i.e. 9 SR, 3 YS and UTS, 9 BHN, and 3 SDAS) at different section
on the casting samples are presented in Table 10. The casting quality obtained for the
optimized sand mould condition experiment is found to be better compared to that
obtained with the normal sand mould condition (refer Table 10). That is, the casting
quality made in mould with highest desirability value is found to be better than the
casting made in mould with lower desirability value.

6 Conclusion

The main objective of the present research work is to apply statistical modelling and
optimization tools inAlpha-setmoulding sand system to improve the quality ofmould
and thereby the quality of casting. The research work will help the foundry personnel
to produce good quality castings with lower cost. Modelling has been carried out
by conducting experiments, as per CCD matrix with different combination of sand
mould variables (i.e. percent of resin, percent of hardener and curing time). The
responses considered in the study include sand mould properties, namely CS, P,
MH, GE, and CP. Statistical (significance, analysis of variance, and prediction) tests,
and 3-dimensional response surface analysis are carried out to know the behaviour of
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Fig. 4 a Photograph of cast samples, dendrite structure of b normal sand mould and c optimized
sand mould, fracture surface of d normal sand mould and e optimized sand mould

variables, physics andmechanics of a process accurately. Optimization tools, namely
DFA, GA, PSO and TLBO are applied to optimize the multiple outputs (maximize:
CS, P, and MH, and minimize: GE, and CP). The following conclusions are drawn
from the present work:

1. All linear factors (i.e. percent of resin, percent of hardener and curing time)
are found to have significant contribution towards all sand mould properties
(excluding, curing time for permeability).
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2. The quadratic effects of percent of hardener and curing time is found insignificant
(as P-values > 0.05) for the responses, namely collapsibility, mould hardness
and permeability. This indicates CS, MH and P relationship with percent of
hardener and curing time is linear in nature. Important to note that, the interaction
among percent of hardener and curing time is insignificant for all the sand mould
properties (excluding, GE).

3. Non-linear models developed for all sand mould properties are found to be sta-
tistically adequate with good fit of response surfaces. The prediction accuracy of
all non-linear models is found to be less than 5%. The better prediction accuracy
might be due to the fact that, model captured the physics, mechanics and dynam-
ics of a process accurately. Further, the developed models help any novice user to
predict the sand mould properties without conducting the practical experiments.

4. The sand mould properties are complex, non-linear and conflicting (maximize:
CS, P, and MH, and minimize: GE and CP) in nature. The optimum solutions are
many due to multiple objective functions with conflicting requirements. Weight
based method is used to determine the optimal solutions after assigning differ-
ent combination of weight fractions (importance) to each individual output. The
highest desirability (D0) value corresponds to the different cases is studied and
treated as an optimal condition for sand mould properties. Confirmation experi-
ments revealed that, the optimized sandmould properties will produce the casting
with better quality characteristics compared to normal sandmoulding conditions.

Appendix 1: Test Case Data for Sand Moulding Variables
and Moulding Sand Properties

Test no. Moulding sand variables Moulding sand properties

% of resin % of
hardener

Curing time CS,
KPa

P MH CP, KPa GE, ml/gm

1 1.85 0.20 064 212.4 187.3 62.04 142.2 8.40

2 2.20 0.25 118 376.8 138.6 76.74 256.8 8.34

3 1.90 0.30 106 360.7 134.3 73.28 258.9 7.82

4 1.95 0.35 074 367.3 120.2 71.20 256.3 7.73

5 1.80 0.35 089 271.8 159.9 72.48 216.0 8.02

6 2.10 0.30 102 414.0 108.4 79.84 290.4 8.72

7 1.95 0.25 096 332.2 142.8 76.23 260.6 8.21

8 2.20 0.40 063 381.6 100.7 74.03 286.7 9.45

9 2.15 0.20 074 361.1 121.3 75.32 292.4 9.20

10 2.05 0.35 096 428.8 99.8 78.13 289.7 8.63

11 1.85 0.30 088 276.3 164.3 72.38 218.9 8.04

12 2.20 0.25 112 350.8 132.4 75.30 280.1 8.80

13 1.80 0.25 092 247.8 182.7 65.23 151.5 8.38

14 2.05 0.35 078 402.5 101.4 76.40 278.7 8.08
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Appendix 2: Summary Results of Model Predicted Test
Cases of Sand Mould Properties (CS, P, MH, GE and CP)

Test no. Compression strength, KPa Permeability

Exp.
value

Model
predic-
tion

Deviation
(%)

Absolute
devia-
tion
(%)

Exp.
value

Model
predic-
tion

Deviation
(%)

Absolute
devia-
tion
(%)

1 212.4 225.17 −6.01 −6.01 187.3 178.10 4.91 4.91

2 376.8 355.63 5.62 5.62 138.6 134.00 3.32 3.32

3 360.7 342.85 4.95 4.95 134.3 137.19 −2.15 2.15

4 367.3 356.35 2.98 2.98 120.2 124.92 −3.93 3.93

5 271.8 282.86 −4.07 −4.07 159.9 157.17 1.71 1.71

6 414.0 389.05 6.03 6.03 108.4 115.54 −6.59 6.59

7 332.2 343.86 −3.51 −3.51 142.8 135.50 5.11 5.11

8 381.6 390.71 −2.39 −2.39 100.7 106.22 −5.48 5.48

9 361.1 374.83 −3.80 −3.80 121.3 114.94 5.24 5.24

10 428.8 401.94 6.26 6.26 99.8 107.21 −7.43 7.43

11 276.3 294.49 −6.58 −6.58 164.3 154.15 6.18 6.18

12 350.8 360.63 −2.80 −2.80 132.4 130.08 1.75 1.75

13 247.8 239.59 3.31 3.31 182.7 178.71 2.18 2.18

14 402.5 391.30 2.78 2.78 101.4 109.90 −8.38 8.38

Mould hardness Collapsibility

1 62.04 64.69 −4.27 4.27 142.2 155.8 −9.53 9.53

2 76.74 75.92 1.06 1.06 256.8 267.1 −4.02 4.02

3 73.28 74.88 −2.18 2.18 258.9 252.3 2.56 2.56

4 71.20 73.98 −3.91 3.91 256.3 272.5 −6.33 6.33

5 72.48 71.16 1.82 1.82 216.0 204.5 5.34 5.34

6 79.84 77.21 3.29 3.29 290.4 296.2 −2.01 2.01

7 76.23 74.05 2.86 2.86 260.6 254.5 2.34 2.34

8 74.03 74.40 −0.50 0.50 286.7 292.5 −2.03 2.03

9 75.32 74.40 1.22 1.22 292.4 290.4 0.67 0.67

10 78.13 77.23 1.15 1.15 289.7 308.5 −6.47 6.47

11 72.38 71.68 0.97 0.97 218.9 212.7 2.84 2.84

12 75.30 76.08 −1.03 1.03 280.1 271.7 2.98 2.98

13 65.23 68.40 −4.87 4.87 151.5 158.3 −4.48 4.48

14 76.40 76.01 0.52 0.52 278.7 300.8 −7.94 7.94
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Appendix 3: Summary Results of the Test Cases
for the Responses—GE

Test no. Exp. value Model prediction Deviation (%) Absolute deviation (%)

1 8.40 8.52 −1.37 1.37

2 8.34 8.16 2.12 2.12

3 7.82 8.14 −4.05 4.05

4 7.73 7.70 0.41 0.41

5 8.02 8.13 −1.34 1.34

6 8.72 8.38 3.88 3.88

7 8.21 8.33 −1.43 1.43

8 9.45 9.11 3.60 3.60

9 9.20 8.97 2.55 2.55

10 8.63 8.43 2.35 2.35

11 8.04 8.15 −1.36 1.36

12 8.80 8.42 4.29 4.29

13 8.38 8.72 −4.04 4.04

14 8.08 8.18 −1.27 1.27
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