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Preface

In this era of the Fourth Industrial Revolution, intelligent manufacturing is a global
trend to simultaneously optimize quality, productivity, and sustainability.
Optimization of manufacturing processes and systems is possible with the available
Industry 4.0 tools and techniques. This book provides a detailed understanding on
optimization of various manufacturing processes and systems using some of the
important statistical and evolutionary (soft computing or can be called as Industry
4.0 based) techniques. It covers sufficient theoretical details, salient features,
implementation steps, effectiveness and outcomes of statistical, multi-criteria
decision-making and evolutionary techniques for single and multi-objective
optimization to improve quality, productivity, and sustainability in manufacturing.

This book consists of nine chapters on optimization of manufacturing processes.
Chapter “Modelling and Optimization of Alpha-set Sand Moulding System Using
Statistical Design of Experiments and Evolutionary Algorithms” sheds light on
modelling and optimization of sand moulding system by GA-, PSO-, and
TLBO-type evolutionary techniques. Chapter “Optimization of Electric Discharge
Machining Based Processes” provides comprehensive information on optimization
of electric discharge machining-based processes via theory, the literature review,
and case studies. Chapter “Optimization of Accuracy and Surface Finish of Drilled
Holes in 350 Mild Steel” details a statistical optimization of hole quality
characteristics in drilling of mild steel. A case study on response surface
methodology-based modelling and desirability optimization of laser additive
manufacturing of titanium is discussed in Chapter “Modelling and Optimization of
Laser Additive Manufacturing Process of Ti Alloy Composite”. Chapter
“Prediction and Optimization of Tensile Strength in FDM based 3D Printing Using
ANFIS” discusses the optimization of mechanical properties of 3D printed parts
using ANFIS. Chapter “Optimization of Abrasive Water Jet Machining for Green
Composites using Multi-variant Hybrid Techniques” focuses on multi-objective
optimization of abrasive water jet machining with the help of MOORA, GA,
TOPSIS, and DEAR methods. Machining condition optimization while turning
titanium using integrated fuzzy MOORA method is given in Chapter
“An Integrated Fuzzy-MOORA Method for the Selection of Optimal Parametric

v



Combination in Turing of Commercially Pure Titanium”. Chapter “Application
of Multi-objective Genetic Algorithm (MOGA) Optimization in Machining
Processes” provides a review of the literature on implementation of genetic algo-
rithm (GA) for quality optimization of different machining processes. Chapter
“Optimization in Manufacturing Systems Using Evolutionary Techniques” focuses
on optimization of manufacturing systems by GA and particle swarm optimization
(PSO) techniques.

We sincerely acknowledge Springer for this opportunity and their professional
support. Finally, we would like to thank all the chapter contributors for their
availability and valuable contributions.

Johannesburg, South Africa Kapil Gupta
March 2019 Munish Kumar Gupta
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Modelling and Optimization of Alpha-set
Sand Moulding System Using Statistical
Design of Experiments and Evolutionary
Algorithms

G. C. Manjunath Patel, Ganesh R. Chate and Mahesh B. Parappagoudar

Abstract The traditional trial-and error method applied to derive empirical relation
and optimize the process is time consuming and results in reduced productivity, high
rejection and cost. Hence, current research in foundries focussed towards develop-
ment of statistical modelling and optimization tools. The present research work is
focused on modelling and optimization of Alpha-set moulding sand system. The
variables such as percent of resin and hardener, and curing time will influence the
sandmould properties, namely, compression strength, permeability, mould hardness,
gas evolution and collapsibility. Experimental data is collected as per CCD design
matrix and non-linear models have been developed for all responses. The behaviour
of all responses is studied by utilizing surface plots. The statistical adequacy of all
models is tested with help of ANOVA. All responses are tested for their prediction
capacity with the help of test cases. The predictive non-linear models, developed for
the process resulted in average deviation of less than 5%. The optimization (GA,
PSO, DFA and TLBO) tools are applied to optimize the process for conflicting
requirements in sand mould properties. Six case studies with different combination
of weight fractions assigned to sand mould properties are considered. The optimum
solution correspond to highest composite desirability value is selected. TLBO out-
performed other optimization tools (i.e. GA, PSO, and DFA) while determining the
highest desirability value and resulted in optimized sand mould properties. Exper-
iments are conducted for the optimized and normal (i.e. lowest desirability) sand
mould conditions. Castings are prepared by pouring molten LM20 alloy to the pre-
pared moulds. The casting obtained for the optimized sand mould condition resulted
in a better casting quality.
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Keywords Casting · Moulding · Design of experiments · Genetic algorithm ·
Teaching learning-based optimization · Particle swarm optimization

1 Introduction

In sand castings, parts and components are produced by pouring molten metal into
the sand mould. The quality of casting is largely influenced by the moulding sand
properties. Hence, attaining good moulding sand properties is of industrial rele-
vance. Holtzer et al. reported that, approximately 103 million tonnes of metal was
accounted for the production of cast parts throughout the year across the globe [1].
80% production of cast parts were produced in sand moulds with either bentonite
or organic resin binder. Resin bonded sand mould (that is, chemical binder) system
offered better sand mould and casting properties as compared to green sand moulds
(that is, clay binder or bentonite) [2]. Thoroughly mixed silica sand with chemicals
(i.e. binder) will help to harden the mould using catalytic reaction [3]. Chemically
mixed silica sand has the ability to prepare moulds with intricate shape and precise
dimension at an ambient temperature [4]. However, chemical mixed sand moulds
emit harmful toxic gases (i.e. chemical compounds) during the foundry processes,
which causes environmental pollution and serious human health hazards. The emis-
sivity of harmful compounds (benzene, toluene, ethylbenzene and xylene (BTEX)
and polycyclic aromatic hydrocarbons (PAHs) group) to environment from alphaset
resin is 2–5 times lesser than the furan resin sand moulds [5]. Further, smokeless,
minimal erosion, better hot strength, good finishing and better collapsibility are the
distinguished characteristics of alphaset binder [5, 6].

The molten metal poured into the mould cavity had released the undesirable
gasses and resulted many surface defects in the casting produced [7–9]. Alphaset
binder sand moulds offer excellent surface quality on ferrous castings, due to the
absence of phosphorous and sulphur [6]. Further, absence of nitrogen restricts the
formation of pinholes in the casting part [6]. Alphaset binder is found to be eco-
friendly and keeps the foundry with a healthy working environment. Hence, working
on Alphaset bonded sand moulding system to produce good quality castings is of
industrial relevance.

The detailed analysis of moulding sand system with associated sand mould prop-
erties will provide good insight of a process and on casting quality. Chemical mix
sodium silicate sand moulds will have low quantity of gas evolution (GE) as com-
pared to the green sand moulding [7]. Sodium silicate binder is relatively cheap,
but is limited to high residual stress, poor shake out property (that is, collapsibility)
and difficult to sand reclamation [10]. The moulds with a poor collapsibility (CP)
will result in casting defect, namely hot tear [11]. Casting dimensional accuracy
and surface finish are primarily dependent on the mould compression strength and
hardness. Correlation among sand mould properties were studied by researchers in
the recent past. Strong third order non-linear regression relationship exists between
the compression strength (CS) and mould hardness (MH) in sand moulds [12]. The
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CS of sand moulds increased with the increase in MH, this was due to the existence
of strong dependency relationship among themselves. Lower compression strength
will yield rough casting surface, shrinkage porosity, sand erosion and dimensional
inaccuracy etc. However, high compression strength moulds do not allow the gener-
ated gas to escape from mould (i.e. permeability, P). Casting defects (i.e. blowhole,
misrun and porosity) in sand moulds might occur as a result of insufficient space for
the trapped or generated gases inside the sandmould [13]. The casting quality in sand
moulding process is affected largely by the moulding sand properties. The inappro-
priate combination of moulding sand properties will result in casting defects such
as, blow holes, rat tails, misruns, dimensional in accuracies, rough surface, porosity,
segregations and so on [14]. These defects can be minimized by selection of optimal
levels of moulding sand variables (that is, grain fineness number, degree of ramming,
percent of resin and hardener, curing time and so on). Observations made from the
above literature, shows that the casting quality is dependent primarily on sand mould
properties (GE, CS, MH, CP, and P). Further, studying the appropriate method to
control the moulding sand properties is of significant scope for the researchers.

Researchwork onmoulding sand system in the past fewdecadeswasmore focused
on classical engineering experimental (that is, varying one parameter at once after
fixed the rest at middle values), analytical and numerical approaches. Numerical
methods were applied to predict the gas evolution when the molten metal was poured
into the furan bondedmoulding sand system [15]. The chemicallymixed sandmoulds
contain resin and hardener, however their impact in furan sand moulds on gas evo-
lution was neglected and was limited to establish the input-output relationships.
Classical experiments were conducted to study the influence of different quantity
of furan resin and hardener on moulding strength, gas evolution, surface quality
and casting microstructure [16–18]. However, interaction effects of furan resin and
hardener quantity were not considered and no predictive equations were developed
in their study. The optimized binder composition had yielded good casting surface
features with dimensional accuracy and better mould collapsibility [19]. However,
the effect of curing time was not considered during their experimental investigations.
The effect of sodium silicate and bentonite binders on gas evolution was studied by
conducting classical experiments [7]. The influence of size (that is, coarse or fine)
of the sand particles and their impact on moulding sand permeability and casting
surface finish studied [11, 20]. The coarse sand resulted in a high permeability with
rough casting surface, whereas, smooth uniform casting surface was obtained with
fine sand particles but resulted in low permeability. Gas porosity in castings occurred
due to the generated pressure inside the mould as a result of low permeability [13].
High percent of resin was resulted in better mechanical properties in sand moulds,
whereas it was difficult to extract the cores from the solidifiedmetal cast [21]. Further,
higher resin content resulted in evolving huge amount of gas due to resin decom-
position during casting solidification. The evolved gases resulted in defects in the
casting part [21]. The above literature confirmed that, the moulding sand variables
(proportion of resin and hardener, curing time, grain fineness number and so on) will
have large influence on sand mould properties and in-turn casting quality. The con-
flicting requirements (higher compression strength in moulds offer low permeability
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and vice versa) in sand mould are found to be complex (that is, non-linear). It is
difficult to establish good control of a process with analytical, numerical and classi-
cal experiment approaches. To attain better casting quality through setting the sand
mould properties at optimal level by utilizing appropriate method (that is, modelling
and analysis) is the concern for foundry industries.

Early in 1964, the statistical methods were first applied to conduct foundry exper-
iments and analysis [22]. Design of experiments (DOE) is an effective statistical
tool used to study, analyse and establish the input-output relationships. DOE meth-
ods estimate both individual and combined factor effects by conducting minimum
experimental trials. Taguchi method was applied to model and optimize the casting
defects in green sand moulding process [23]. Computer aided simulation was per-
formed to obtain the casting data (defects) for Taguchi parametric design. Taguchi
method might fail to establish full quadratic (that is, linear, square and interaction)
factor effects due to limitation in orthogonal array. DOE was applied to conduct
analysis of moulding sand variables (proportion of resin, and hardener, and tem-
perature) on moulding strength and sand inclusion defects in furan sand moulding
system [24]. DOE and response surface methodology (RSM) were applied to get the
full quadratic factor effects and develop predictive models for green sand mould-
ing [25], phenol formaldehyde sand mould [26], sodium silicate, CO2 gas hardened
[27], and furan sand moulding processes [28]. Further, the models predicted the sand
moulding properties with a better accuracy for test cases. It was observed from the
above literature that, the design of experiments and response surface methodology
is an ideal tool to study many variables, which are complex and highly non-linear.
Further, the combined tools can be used to establish precise mathematical equation
representing outputs as a function of inputs. Moreover, the derived empirical rela-
tionship can be used to determine optimal points for a process. Important to note
that, not much of the research efforts were made in the recent past on modelling,
analysis and optimization of Alphaset sand moulding system.

The optimization task is generally carried out to determine the best results sub-
jected to various resource (that is, input or design variable) constraints. Conventional
optimization and nonconventional optimization are the two broad classifications of
optimization techniques, distinguished based on search (that is, operating) mecha-
nism employed to yield best results [29]. Conventional optimization algorithms are
deterministic algorithms (such as, dynamic programming, non-linear programming,
quadratic programming, geometric programming etc.) work with specific transition
rules for moving solutions from one to another space during the optimal search [30].
For multi-modal optimization problems, the conventional optimization methods fail
to locate the global optimal solutions. This is due to the difficulty in handling many
variableswith complex non-linear characteristics. The speed of convergence to locate
the optimal solutions with conventional optimization tools is slow. Nonconventional
optimization tools (that is, population based search methods include evolutionary
and swarm intelligence algorithms) overcome the difficulties of conventional opti-
mization tools by attaining the global solutions and rapid convergence that yield
better results. Nonconventional optimization tools use heuristic search methods with
definite set of probabilistic transition rules to get better solutions. The difference in
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the performance of evolutionary and swarm intelligence algorithms can be found for
multi-modal and multidimensional optimization problems. This occur due to the dif-
ferent search mechanisms and different combination of employed rules to move pop-
ulation and associated solutions towards optimal. The population based algorithms
[genetic algorithm (GA), particle swarm optimization (PSO), and teaching learn-
ing based optimization (TLBO)] are cost effective optimization tools in determining
near optimal solutions through their heuristic search mechanism. Evolutionary GA,
needs to set mutation rate and crossover parameters, and Swarm intelligence based
PSO, needs to set inertia weight, social and cognitive parameters, at optimal level to
yield best results [31]. Improper choice of genetic and swarm optimization param-
eters will affect both the computational efficiency and optimality of solutions [30].
Teaching learning based optimization (TLBO) do not require specific tuning param-
eters, thereby the probability to hit the global solutions are more [32]. GA and PSO
were applied to optimize the green sand moulding [14] and squeeze casting process
[33, 34] for better casting quality. PSO and GA had produced approximately similar
results while locating global solution, and the computational effort and time was
less for PSO. TLBO outperformed GA, PSO, and Taguchi optimization tools while
performing optimization for different casting (that is, squeeze casting, die casting
and continuous casting) and machining (wire electric discharge machining, abrasive
jet machining and ultrasonic machining) processes [35, 36]. GA, PSO and TLBO
tools can be applied to optimize the conflicting requirements (that is, maximize:
CS, MH and P, and minimize: CP and GE) in sand mould properties. Further, use
of optimization tools will minimize the requirements of practical experiments and
analytical tools which are always costlier, tedious and time-consuming.

In the present work, the modelling of eco-friendly alphaset bonded sand mould
system is conducted to understand the effect of sandmouldingvariables andmoulding
sand properties and to establish accurate relation between them. Statistical analysis
will help the foundry personnel and researchers to study the full quadratic factors
effects (linear, square and interaction) on sand mould properties. The statistical and
3D surface plot analysis will provide detailed insight of the physics of a process (i.e.
processmechanics and dynamics). Further, sandmould properties (CP, CS, P, GE and
MH) are expressed as a mathematical non-linear function of input variables. These
predictive equations will help the foundry man to know the values of sand mould
properties for the known set of moulding sand variables (that is, percent of resin,
percent of hardener, and setting time). The conflicting requirements in moulding
sand properties (minimize: GE and CP and maximize: CS, MH and P) are optimized
by applying non-conventional optimization methods (that is, GA, PSO, and TLBO).
Motivated by this, systematic study ofmodelling and optimization of alphaset bonded
sandmould systemwould help the foundry personnel to obtain good quality castings,
without much efforts, time and prior detailed knowledge of the process.
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Fig. 1 Sequence of tasks performed during experimentation, modelling and optimization for better
sand mould and casting properties
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2 Experimentation, Modelling and Optimization

Theexperiments havebeen conducted inAlphaset sandmouldingprocess. Further,
the experimental data is used to develop non-linear models and optimize the process
parameters. Figure 1 shows the sequence of various tasks with experimental setup
during experimentation, modelling, and optimization of Alphaset sand moulding.

Step 1: The moulding materials (i.e. alphaset resin, hardener, and silica sand) are
collected for experimentation. Sieve analysis test is conducted to determine the
grain fineness number (GFN) as per American Foundry Society (AFS) standard. The
required quantity of resin and hardener is measured with the help of digital weighing
balance. The moulding materials and associated parameters used for the experimen-
tation are selected based on trial experiments, consulting industrial expert’s opinion,
and available literature [12, 16–19, 25–28] (refer Table 1).
Step 2: Experiments are conducted with different set of sand mould variables as per
Central Composite Design (CCD)matrix. The specimens (height of 5 cm and 3 cm in
diameter) are prepared in accordance with American Foundry Society standard. The
test specimens prepared as per CCD are used to determine the sand mould properties
(that is, CS, P, MH, CP and GE).
Step 3: Moulding sand properties are expressed in terms of moulding sand variables
by non-linear mathematical equations (regression models). Statistical tests (that is,
coefficient of determination, significance test, analysis of variance and prediction
tests) are carried out to determine statistical adequacy and to understand the behaviour
of variables on mould properties.
Step 4: The derived empirical relationships for all sand mould properties are treated
as an objective function for process optimization. Weight based method is employed
to convert the conflicting objective function (maximize: CS, MH and P, and mini-
mize: GE and CP) to a single objective function for maximization. GA, PSO, and
TLBO algorithms are applied to optimize the sand mould properties in Alphaset
sand moulding process. Further, the casting quality is evaluated for the different
sand moulding conditions (that is, optimized and normal).

Table 1 Moulding materials
and associated parameters

Parameters Value

Grain fineness number or AFS
number

55

Alphaset resin 1.8–2.2%

Ester cured 0.2–0.4%

Weighing balance accuracy 0.1 mg

Degree of ramming 3

Curing time 60–120 s

Mulling time 180 s
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Table 2 Sand mould
variables and associated
operating levels

Input variables Units Un-coded levels

Low Medium High
aResin % 1.8 2.0 2.2
aHardener % 0.2 0.3 0.4

Curing time min 60 90 120

awt% of sand

3 Data Collection

The silica sand with 55 GFN is mixed with binder and catalyst for 3 min in sand
muller and the test specimen are prepared by using this moulding sand mixture.
The operating levels of moulding sand (input) variables used for conducting the
experiments is presented in Table 2.

The following tests are conducted on the prepared test specimen to measure the
sand mould properties. The height of the sand mould specimens are measured using
standard height gauge and kept within the range of 5–5.1 cm. The permeability
measurements are conducted using permeability meter. The compression strength
and collapsibility (that is, retained strength) in the sand moulds are measured with
the help of universal strength testing unit. The samples are kept in a muffle furnace
maintained at 650 °C in for period of about 2 min and the collapsibility (that is,
strength retained after heating) is determined by using universal strength testing
machine. The harmful toxic compounds are emitted when the resin comes in contact
with the molten metal. This will pollute the environment and cause serious threat to
human health. 1 g of thoroughly mixed silica sand with alphaset binder and hardener,
is taken in the ceramic boat and placed in the heated tube maintained at a temperature
of 850 °C. The evolved gases as a result of burnt resin and hardener is measured by
the displacement of water level in burette. The unit corresponding to gas evolution
is ml/gm (Table 3).

4 Analysis, Modeling and Optimization

This section describes the modelling and optimization of Alphaset sand moulding
process. The input-output data collected through experiment is used to develop sur-
face plots for responses namely, GCS, CP, GE, MH, and P. The surface plots are the
powerful graphical tool depicting the influence of linear and non-linear relation of
the responses with input parameters. Statistical analysis is conducted to know the
significance of full quadratic factor effects (that is, linear, square and interaction) of
moulding sand variables on sand mould properties is tested by analysis of variance
(ANOVA). Minitab (version 17) platform software is utilized for the said purpose.
The prediction tests are also conducted to check the performance and practical utility
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Table 3 CCD based experimental matrices for alphaset sand moulding

Exp. No. Input variables Sand mould properties

A B C CS, KPa CP, KPa GE, ml/gm MH P

1 2.0 0.3 090 371.2 270.70 7.60 75.1 118.5

2 2.2 0.4 120 388.9 285.20 9.28 75.6 106.6

3 2.0 0.3 120 378.6 280.20 7.75 76.8 125.8

4 2.0 0.3 060 350.7 268.20 7.34 72.8 134.6

5 1.8 0.4 060 252.8 181.70 6.63 67.1 159.5

6 2.2 0.4 060 390.7 290.30 9.01 73.1 108.9

7 2.0 0.2 090 351.8 257.50 8.70 71.8 131.9

8 1.8 0.2 060 168.6 107.80 8.54 60.7 203.5

9 2.2 0.2 060 368.7 280.50 8.86 74.2 109.3

10 2.0 0.4 090 421.6 328.20 8.49 77.7 101.4

11 2.0 0.3 090 372.8 274.50 8.27 75.2 114.2

12 2.2 0.2 120 360.6 272.04 8.11 74.7 138.4

13 1.8 0.4 120 352.8 264.60 8.52 73.9 131.6

14 2.0 0.3 090 370.7 288.70 8.43 75.5 116.7

15 2.2 0.3 090 372.2 281.20 8.97 75.6 121.3

16 1.8 0.2 120 250.7 149.60 8.78 69.1 178.6

17 1.8 0.3 090 268.8 182.60 8.32 70.5 171.2

of the developed models. Castings are prepared by pouring the molten metal into the
sandmould preparedwith normal and optimized conditions and evaluated the casting
quality.

4.1 Analysis and Modeling

4.1.1 Compression Strength

The compression strength, expressed as a non-linearmathematical function ofmould-
ing sand variables is as follows,

CS = −7159 + 6488A + 1291B + 10.69C − 1395A2 + 1040B2 − 0.01294C2

− 850AB − 4.0AC + 1.008BC (1)

Significance tests are carried out for the developed non-linear model to check
the contributions of full quadratic (linear, square and interaction) effects of the fac-
tors on compression strength. The significance tests are conducted for the preset
(P-value ≤ 0.05) confidence level of 95%. The significance test results obtained
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Table 4 ANOVA test results for sand mould properties
Response Compression strength Collapsibility

Source DF Adj. SS Adj. MS F P Adj. SS Adj. MS F P

Model 9 68,492.5 07610.3 161.96 0.000 54,232.1 06025.8 062.71 0.000

Linear 3 47,896.0 15965.3 339.77 0.000 36,847.0 12282.3 127.81 0.000

Square 3 13,603.3 04534.4 096.50 0.000 11,306.6 03768.9 039.22 0.000

Interaction 3 06993.2 02331.1 049.61 0.000 06078.6 02026.2 021.09 0.001

Error 7 00328.9 0047.0 00672.7 00096.1

Lack of fit 5 00326.5 0065.3 054.27 0.018 00492.6 00098.5 001.09 0.541

Pure error 2 00002.4 0001.2 00180.0 00090.0

Total 16 68,821.4 54,904.8

Response Mould hardness Gas evolution

Model 9 272.419 30.269 29.55 0.000 6.85901 0.76211 12.04 0.002

Linear 3 179.606 59.069 58.45 0.000 1.72008 0.57336 09.06 0.008

Square 3 057.943 19.314 18.86 0.001 1.87379 0.62460 09.87 0.007

Interaction 3 034.870 11.623 11.35 0.004 3.26514 1.08838 17.19 0.001

Error 7 007.170 01.024 0.44309 0.06330

Lack of fit 5 007.083 01.417 32.69 0.030 0.05529 0.01106 00.06 0.995

Pure error 2 000.087 00.043 0.38780 0.19390

Total 16 279.589 7.30209

Response Permeability

Model 9 12,869.1 1429.89 44.30 0.000

Linear 3 09238.3 3079.42 95.40 0.000

Square 3 02258.7 0752.89 23.32 0.001

Interaction 3 01372.1 0457.37 14.17 0.002

Error 7 00225.9 0032.28

Lack of fit 5 00216.6 0043.32 09.29 0.100

Pure error 2 00009.3 0004.66

Total 16 13,095.0

Table 5 Summary of significance test results for sand mould properties

Output Coefficient of correlations Parameters

All terms Exclude insignificant
terms

Significant terms Insignificant terms

GE 0.9393 0.8613 A, C, AA, BB, CC,
AB, AC, BC

B

CS 0.9952 0.9821 A, B, C, AA, BB, CC,
AB, AC

BC

CP 0.9877 0.9720 A, B, C, AA, AB, AC BB, CC, BC

MH 0.9744 0.9414 A, B, C, AA, AB, AC BB, CC, BC

P 0.9827 0.9606 A, B, AA, AB, AC C, BB, CC, BC
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Fig. 2 3D surface graphs of compression strength with: a percent of resin and percent of hardener,
b percent of hardener and curing time and c percent of hardener and curing time

for the compression strength is presented in Table 4. All linear, corresponding
square and combined interaction terms (excluding the interaction among percent
of hardener and curing time) are found to be significant for the response, CS
(refer Table 5). Insignificant term depict there is no significant change in the
output value when the independent variables are varied simultaneously within
their operating levels. The P-values of all square terms are found to be sig-
nificant (as their corresponding P-value is found to be less than 0.05), indicat-
ing all sand mould variables (that is, percent of resin, percent of hardener and
curing time) are found to have non-linear relation with the response, CS. The
results of statistical tests are found to be in line with the 3D surface plots (refer
Fig. 2).

Figure 2 shows the 3-dimensional response surface plots drawn to know the impact
of experimental (input) factors on the compression strength, when two variables
are varied simultaneously within their operating range and keeping the remaining
parameters at fixed center level. The observations made from the surface plots are as
follows:

1. Figure 2a shows the interaction factors effect between the percent of resin and
percent of hardener on the response, CS. It is observed that, the compression
strength tends to increase with percentage of resin and hardener. The results
showed that the resin tends to contribute more in comparison with hardener for
the CS. Lower resin quantity might not be sufficient enough to coat the sand
grains, will not develop strong bonding action between the sand grains. Further,
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low quantity of hardener might not be sufficient enough to stimulate the available
resin. The results are in line with the experiments conducted earlier by Bargaoui
et al. [21].

2. High values of compression strength are seenwith the increased values of percent
of resin (refer Fig. 2b). Further, CS is found to have a negligible impact when
the curing time is varied from low to high values. This implies high values of
hardener content support polymerization that develops strong bonding action
between the molecules of resin to coat on sand grains.

3. CS is found to increase linearly with an increase in hardener and curing time
simultaneously. This indicates high quantity of hardenermight not provide strong
bonding strength with low curing time. Increase in curing time will provide suf-
ficient time for the resin to undergo polymerization and develop strong bonding
action between the sand grains which improves the mould compression strength.

The multiple correlation coefficient established for the compression strength is
found to be close to 1, which indicates the model fits to the assumed regression
equation with good precision. The ANOVA result shows that, the model developed
for the response, CS is statistically adequate. The combined effect of linear, square
and 2-term interactions and lack-of-fit was found significant. Further, the model
needs to be tested for its accuracy in prediction by utilizing test caseswith randomized
combination of variable parameter values. However, it is to be noted that, the variable
parameters should be within their operating range.

4.1.2 Permeability

The relationship of the response permeability with the sand mould variables (per-
cent of resin, curing time and percent of hardener) is represented mathematically as
follows,

P = 3178 − 2653A − 342B − 4.320C + 566.0A2 − 696B2 + 0.00732C2 + 367AB

+ 1.658AC − 1.433BC (2)

The significance of moulding sand variables, their curvature, and two-term inter-
actions are tested at 95% confidence interval. The obtained significance test results
are discussed below (refer Table 5).

1. The variable, curing time (that is, C) is not having significant contribution towards
this response.

2. The quadratic terms of variables, namely, percent of hardener and curing time
are not significant towards the response, permeability. This indicates that, the
existence of strong dependent linear relationship of these parameters with per-
meability.

3. Although percent of hardener alone has showed a significant impact, their inter-
action with curing time is found insignificant. This indicates the permeability
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does not depend much on the interaction of curing time and percent of hardener
(i.e. BC).

The combined effect of all linear (A, B, C), corresponding square (A2, B2 and
C2), and combined two-term interaction (AB, AC, and BC) term effects is found to
be significant at 95% confidence level (refer Table 4). Excluding insignificant terms
will result in imprecise input-output relationship and might reduce the prediction
accuracy. The multiple correlation coefficient obtained for the response permeability
is found equal to 0.9827 (refer Table 5). Hence, the models are statistically adequate
to make use for prediction of permeability for known set of sand mould variables.

4.1.3 Mould Hardness

Mould hardness, expressed as a mathematical non-linear function of percent of resin,
percent of hardener and curing time is shown below-

MH = −334.0 + 322.0A + 213.0B + 0.751C − 65.4A2 − 91.8B2 − 0.000964C2

− 71.2AB − 0.2542AC + 0.017BC (3)

The result of significance test for the response-mould hardness shows that, the
combined effect of all linear, quadratic, two-factor terms and lack-of-fit are statis-
tically significant at 95% confidence level (refer Table 4). The terms (i.e. B2, and
C2) are found insignificant, indicating percentage of hardener and curing time have
strong linear relationship with the response, mould hardness. Although hardener and
curing time are found to have significant contribution, its interaction (i.e. BC) is
insignificant towards this response. Percent of resin has maximum contribution, fol-
lowed by hardener and curing time towards the response, mould hardness. Themodel
found to be statistically adequate with good fit of response surface and resulted in
a better correlation coefficient value equal to 0.9744 (refer Table 5). Therefore, the
model can be used to make mould hardness prediction for known combination of
sand mould variables.

4.1.4 Gas Evolution

Themathematicalmodel established between gas evolution and sandmould variables
(i.e. percent of resin, percent of hardener and curing time) using experimental data
is shown below,

GE = 59.1 − 49.7A − 81.6B + 0.2026C + 12.45A2 + 44.8B2 − 0.000669C2

+ 21.81AB − 0.0544AC + 0.1112BC (4)
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Table 4 shows the significance test results obtained forGE.Thepercent of hardener
is not found to be significant, because their P-value is more than 0.05. The analysis
of variance values of full quadratic (linear, square, and two term interaction) terms
for the gas evolution is shown in Table 5. The P-values of full quadratic terms are
found to be lower than 0.05, indicating good fit of response surface for GE. Further,
the coefficient of determination value obtained for gas evolution is found to be equal
to 0.9393, indicating the mathematical models are capable to predict accurately the
response, GE. Excluding non-significant terms from the derived response Eq. (4),
will make the lack-of-fit significant.

4.1.5 Collapsibility

The second order response surface model between the moulding sand variables and
collapsibility is expressed as follows:

CP = −6615 + 5993A + 1630B + 7.48C − 1290A2 + 934B2 − 0.01034C2

− 1037AB − 2.880AC + 1.85BC (5)

The significance of linear factors (i.e. sandmould variables), their nonlinearity (i.e.
curvature), and two term interactions are evaluated for the confidence level of 95%.
It is important to note that the collapsibility and mould hardness identified similar
significant and insignificant terms (refer Table 5). This might have happened due to
the existence of strong dependency between the mould hardness and collapsibility.
The coefficient of determination for the response, collapsibility was found equal to
0.9877 (refer Table 5). Since, the coefficient of correlation is close to 1, prediction
ability by the response equation will be close the actual values of collapsibility.

4.1.6 Prediction Test for the Developed Non-linear Models

The discussion from previous section indicates, all non-linear regression models
developed for the responses, namely CS, P,MH, GE and CP are statistically adequate
at 95% confidence level. These models are tested towards their prediction capability
by conducting 14 experiments (test cases), which will be treated as target values.
It is to be noted that these experiments are conducted with different set of variable
combination generated at random. The values of variables are generated at random
within their operating range (Appendix 1). The percent deviation in predicting the
sand mould properties (i.e. CS, P, MH, GE and CP) for 14 test cases are presented
in Appendices 2 and 3. The Percentage deviation in predicting the response value is
found to vary in the ranges between −6.58 and +6.26% for CS, −9.53 and +5.34%
for CP, −4.05 and +4.29% for GE, −4.86 and +3.29% for MH, and −8.38 and +
6.18% for P (Appendices 2 and 3). It is important to mention that, the % deviation
is found to vary on both positive and negative sides and vary within the acceptable
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Fig. 3 Mean absolute
percent error in prediction of
sand mould properties

range for all the responses (refer Appendices 2 and 3). This shows that, the model has
accurately captured the process physics, mechanics and dynamics. Further, the mean
absolute percent deviation in prediction for CS, CP, GE, MH and P is found equal
to 4.36, 4.25, 2.43, 2.12 and 4.6%, respectively (refer Fig. 3). The mean absolute
percent deviation in prediction of all sand mould properties (i.e. CS, CP, GE, MH
and P) is found equal to 3.55%. This depicts the developed non-linear models can be
used by any novice user to predict the sandmould properties without the requirement
of prior knowledge and conducting trial experiments.

4.2 Multi-response Optimization

Accurate control of moulding sand properties with conflicting requirements is a
tedious task in foundry industries. A situation might arise in shop floor such that
a set of sand mould variables might results in better permeability, but not offer the
desired strength and hardness of moulds. This is due to the fact that, the response
permeability has inverse relation with mould hardness and compression strength.
Multi-objective optimization would solve this complex situation by determining an
optimal set of sand mould variables (that is, percent of resin, percent of hardener
and curing time) for the conflicting requirements in sand mould properties (that is,
minimize: GE and CP, and maximize: CS, MH and P). The upper and lower con-
strained values of sand mould variables could define the three-dimensional solution
spaces, which will help optimization tools (DFA, GA, PSO, and TLBO) to conduct
search for the best sand mould properties. Optimal sand moulding properties for
the conflicting objective functions (simultaneous, maximization and minimization)
in alphaset sand moulding system will need a suitable mathematical formulation.
Weight average method is employed to convert multiple conflicting objective func-
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tions to a single objective function either for maximization or minimization [14, 34].
The present work require optimization of five conflicting objective functions. Six
different case studies are considered by assigning equal importance (i.e. 20 wt%) to
all outputs and maximum importance to one output at a time (that is, 60%), with the
rest at low and equal weights (that is, 10%). The optimal search is conducted. Accu-
rate control of moulding sand properties with conflicting requirements is treated as
a tedious task in shop floor foundry. A situation might arise in shop floor such that
a set of sand mould variables might results in better permeability, but not offer the
desired strength and hardness of moulds due to permeability pose inverse relation
with mould hardness and compression strength. Multi-objective optimization would
solve this complex situation by determining optimal set of sandmould variables (that
is, percent of resin, percent of hardener and curing time) for the conflicting require-
ments in sand mould properties (that is, minimize: GE and CP, and maximize: CS,
MH and P). The upper and lower constrained values of sand mould variables could
define the three-dimensional solution spaces, which help optimization tools (DFA,
GA, PSO, and TLBO) to conduct optimal search for best sand mould properties.
Optimal sand moulding properties for the conflicting objective functions (simulta-
neous, maximization and minimization) in alphaset sand moulding system require
suitable mathematical formulation. Weight average method is employed to convert
multiple conflicting objective functions to single function either for maximization
or minimization [14, 34]. The present work require optimization of five conflicting
objective functions, six different case studies are considered after assigning equal
importance (i.e. 20 wt%) to all outputs and maximum importance to single output
(that is, 60%), with the rest at low and equal weights (that is, 10%). Optimization
tools are used to obtain the best set of mould properties. Optimization of mathemati-
cally formulated weighted objective (output) function for maximization is discussed
as follows,

Output function (Y1) = CS
Output function (Y2) = P
Output function (Y3) = MH
Output function (Y4) = 1/GE
Output function (Y5) = 1/CP

Maximize (Y ) = W1Y1 + W2Y2 + W3Y3 + W4Y4 + W5Y5

Terms W1Y1, W2Y2, W3Y3, W4Y4, and W5Y5 are the weight fraction combina-
tion for the objective function CS, P, MH, GE and CP, respectively. Weight factors
(W1–W5) combination are selected such that their cumulative value must be equal to
one. In Alphaset sand moulding process, the sand mould properties are imposed by
parameter upper and lower bound constraints which cover percent of resin, percent
of hardener and curing time. These variable constraints are listed in Table 6.
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Table 6 Upper and lower
bound of constrained
variables

Parameters Lower bound Upper bound

Percent of resin, % 1.8 2.2

Percent of hardener, % 0.2 0.4

Curing time, s 60 120

4.2.1 Desirability Function Approach (DFA)

In 1980, Derringer and Suich had proposed the desirability function approach for
multi-response optimization [37].Reducedgradient approachwas employed to locate
the optimal solutions, which initiate with multiple solution and end with global
solution (i.e. highest desirability) [38]. The desirability (D) value could vary between
the ranges of 0 and 1. The solutions are completely acceptable (i.e. output function
value is perfectly the target or global value) when the D = 1 or close to 1. The
present work is focussed to optimize the conflicting objective functions which have
both maximizing and minimizing the individual desirability functions.

The responses (CS, MH, and P) are of maximizing type and the individual desir-
ability function is presented by YCS, YP, and YMH.

yCS = CS − CSmin

CSmax − CSmin
, yP = P − Pmin

Pmax − Pmin
, and yMH = MH − MHmin

MHmax − MHmin

where,

Pmax and Pmin is the maximum and minimum value of P
CS and CSmin is the maximum and minimum value of CS
MHmax MHmin is the maximum and minimum value of MH.

The responses (GE, and CP) are of minimizing type and the individual desirability
function is presented by YGE, and YCP.

yGE = GEmax − GE

GEmax − GEmin
and yCP = CPmax − CP

CPmax − CPmin

where,

GEmax and GEmin is the maximum and minimum value of GE
CPmax and CPmin is the maximum and minimum value of CP.

For multi-objective functions the highest composite desirability value obtained
from six different case studies is treated as an optimal choice for Alphaset sand
moulding process. The single composite desirability value, satisfying all conflicting
requirements in sand mould properties is computed as shown below

D0 = 5

√
yw1
CS × yw2

P × yw3
MH × yw4

GE × yw5
CP (6)
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4.2.2 Genetic Algorithm (GA)

In 1975, Holland introduced the concept of genetic algorithm which mimic the nat-
ural selection of living organisms based on Charles Darwin theory of survival of
fittest [14, 34]. The process starts with initialization of genetic operators (mutation,
crossover and selection) and generation of population to produce local solutions.
To obtain global solutions the decision on optimum selection of genetic operators
are of primary importance. There are no universal standards or methods established
to obtain the global solutions for optimum choice of GA parameters (i.e. genetic
operators, population size and generation or iteration number). Thereby, parameter
study is conducted to ensure the highest desirability (D0) values correspond to GA
parameters. Tournament selection method is employed to rank the obtained solutions
by balancing the diversity of new population and enhance the current solution. The
optimum GA parameters correspond to highest desirability (D0) value is decided by
conducting parameter study is presented in Table 7.

4.2.3 Particle Swarm Optimization: PSO

In 1995, Dr. Eberhart and Dr. Kennedy presented the concept of particle swarm
optimization at the Congress on Evolutionary Computation (Kennedy and Eberhart
1995). PSO imitate the cooperation among individuals and in the team utilizing
swarm intelligence and share experiences from one generation to other. PSO pose
technical advantage overGA, as PSO requires few tuning (inertiaweight, swarm size,
mutation rate and generation) parameters [14, 34], and do not require sorting of fitness
values and the solution lead to fast convergence. Mutation operator is introduced to
simple PSO to enlarge the search space to avoid local minima, if any [14]. Systematic
study results of optimization of particle swarm optimization parameters for highest
composite desirability (D0) value correspond to the sand moulding properties and
sand mould variables are presented in Table 7.

Table 7 Parameter study results of GA and PSO

GA parameter study PSO parameter study

Parameters Levels Optimum value Parameters Levels Optimum value

Cross over rate 0.3–1.0 0.5 Inertia weight 0–1 0.55

Mutation rate 0.03–0.3 0.15 Mutation rate 0.03–0.3 0.09

Population size 20–180 150 Swarm size 20–180 100

Generations 20–1000 500 Generations 20–1000 200
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4.2.4 Teacher Learning Based Optimization (TLBO)

Rao introduced the concept of teaching learning-based optimization algorithm.
TLBO is also a population-based algorithm [30], wherein the group of learners
or class of learners is treated as populations. TLBO algorithm is considered to be
more efficient for solving the non-linear optimization problem, and do not require
algorithm specific tuning parameters. Thus, TLBO algorithm converge solutions at
faster rate and avoids local minima solution due to improper choice of tuning param-
eters. The algorithm works in two phases (i.e. teacher and learner phase) to locate
optimal solutions. In teacher phase, teacher is the highly trained professional who
motivate the students to acquire greater knowledge and always focussed to improve
the mean result of a class. In learner phase, apart from acquire knowledge in teacher
phase, the learner’s mutual interaction could also help to improve the mean result
of a class. Although there are no algorithm specific tuning parameters, the size of
population and generations are required to be optimized in TLBO. TLBO parameters
are optimized for highest desirability (D0) value as below:

Number of population = 60
Number of generation = 100.

4.2.5 Comparison of Performance of Optimization Models: DFA, GA,
PSO, and TLBO

Table 8 shows the different optimization tools (DFA, GA, PSO, and TLBO) used
to locate extreme values of sand mould properties and corresponding sand mould
variables for six case studies. The values with highest global desirability will define
the best sandmould conditions (percent of resin, percent of hardener, and curing time)
and properties. The optimum set of sand mould properties, located with the help of
fine-tunedGA,PSOandTLBOparameters is used to determine the global desirability
value for six different case studies. The choice of best sandmoulding conditions from
six different case studies is obtained with the help of highest desirability (D0) value.
The composite desirability value obtained for case 1–6 are found to be {0.8826,
0.8873, 0.8881, 0.8947}, {0.9073, 0.9076, 0.9109, 0.9122}, {0.9033, 0.9098, 0.9185,
0.9152}, {0.9199, 0.9138, 0.9275, 0.9297}, {0.9099, 0.9146, 0.9351, 0.9382}, and
{0.9031, 0.9059, 0.9117, 0.9096} for DFA, GA, PSO, and TLBO, respectively (refer
Table 8). Important to note that, TLBOoutperformedPSO,DFA, andGA to locate the
highest composite desirability (Do) value. TLBO determined case 5 (that is, highest
importance assigned to GE) is recommended as an optimum choice for Alphaset-
sand moulding system, as their corresponding desirability function value found to
be maximum compared to other cases studied. Further, TLBO optimizes the sand
mould properties with less population size and generation {60 and 100} number as
compared to GA {150, 500} and PSO {100, 200} (refer Table 7). Further, TLBO
does not require algorithm specific tuning parameters unlike in GA (crossover, and
mutation) and PSO (inertia weight, social and cognitive leader) and lead to faster
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Table 9 Validate the optimization models with experimental sand mould conditions

D0 Condition Sand mould
variables (inputs)

Sand mould properties (outputs)

A B C CS, KPa P MH GE,
ml/gm

CP, KPa

0.9382 Optimized 1.84 0.38 60.8 285.7 153.2 69.21 6.84 215.8

0.7861 Normal 2.20 0.40 120 388.9 106.6 75.60 9.28 285.2

convergence. Confirmation experiments are conducted for the determined optimal
sandmould conditions with highest composite desirability value of Case 5 by TLBO.
TLBOresults are comparedwith experimental values to confirm their practical utility.
The results are found to be more useful for a foundry personal as their deviation is
found to be less than 8% with enhanced sand mould properties. The experiments
are also conducted for the lowest desirability value obtained from Table 9 (that
is, Experiment No. 2) for the normal sand moulding condition. This experiment
is done to know the importance of optimization methods in achieving the casting
quality. Important to note that, although normal sand moulding condition (refer
Table 9) provide better strength, but affects the mould permeability, gas evolution
and collapsibility. Low permeable moulds and high gas evolution increase the mould
pressure which create inadequate space for the generated gases during metal pouring
andwill result in gas porosity in the castings [13]. Further, poor collapsibility requires
additional equipment to break the moulds, which might induce the residual stresses
and hot tear defects in castings [11].

5 Casting Quality Assessments for Different Sand Mould
(Optimized and Normal) Conditions

The Alphaset resin bonded sand mould prepared with optimized and normal sand
mould condition is used to cast the automotive bushing (refer Table 10). The castings
are subjected to different tests according to reference standards to evaluate the quality
characteristics. LM20 molten metal is poured to the prepared mould cavity. The
mould cavity is prepared with the help of aluminium pattern.

The casting, automotive bushing part is tested for different quality (density, SR,
YS, UTS, SDAS, and BHN) characteristics (refer Fig. 4a) and evaluated the differ-
ence in quality for the castings obtained from optimized and normal moulding sand
conditions. The outer casting surface structure is evaluated with the help of Mitu-
toyo Surftest SJ301. Gas porosity was observed on the tensile fracture surface for
the castings prepared by normal sand mould condition (refer Fig. 4d).

Homogeneous texture with increased amount of fine dimples on the fractured
intergranular surface is observed on tensile specimens (refer Fig. 4e). This indi-
cates relatively large amount of plastic deformation occurs before fracture (refer
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Table 10 Casting quality characteristics under different moulding conditions

Casting quality
characteristics

Notation Testing Standards Optimized
condition

Normal condition

Surface
roughness, μm

SR JIS 2001 4.88 5.63

Yield strength,
MPa

YS ASTM E8 112 104

Ultimate tensile
strength, MPa

UTS ASTM E8 183 158

Hardness BHN ASTM E10 61 58

Density, g/cm3 ρ Archimedes 2.62 2.59

Secondary
dendrite arm
spacing, μm

SDAS ASTM E112 49.0 55.0

Fig. 4e). The resulted microstructure is dendritic structure with fine α-aluminium
grains. The refined silicon particles have appeared in the matrix between the den-
drites and resulted in a low value of secondary dendrite arm spacing (refer Fig. 4c).

Segregations are formed between the dendrites for the castings obtained by normal
sand mould condition (refer Fig. 4b). The surface finish, dendritic structure, and
fracturemechanism obtained for highest desirability value (i.e. 0.9382) is found to be
better as compared to low values of global desirability (i.e. 0.7861). Three replicates
are considered for each casting condition and the average value of different quality
characteristics (i.e. 9 SR, 3 YS and UTS, 9 BHN, and 3 SDAS) at different section
on the casting samples are presented in Table 10. The casting quality obtained for the
optimized sand mould condition experiment is found to be better compared to that
obtained with the normal sand mould condition (refer Table 10). That is, the casting
quality made in mould with highest desirability value is found to be better than the
casting made in mould with lower desirability value.

6 Conclusion

The main objective of the present research work is to apply statistical modelling and
optimization tools inAlpha-setmoulding sand system to improve the quality ofmould
and thereby the quality of casting. The research work will help the foundry personnel
to produce good quality castings with lower cost. Modelling has been carried out
by conducting experiments, as per CCD matrix with different combination of sand
mould variables (i.e. percent of resin, percent of hardener and curing time). The
responses considered in the study include sand mould properties, namely CS, P,
MH, GE, and CP. Statistical (significance, analysis of variance, and prediction) tests,
and 3-dimensional response surface analysis are carried out to know the behaviour of
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Fig. 4 a Photograph of cast samples, dendrite structure of b normal sand mould and c optimized
sand mould, fracture surface of d normal sand mould and e optimized sand mould

variables, physics andmechanics of a process accurately. Optimization tools, namely
DFA, GA, PSO and TLBO are applied to optimize the multiple outputs (maximize:
CS, P, and MH, and minimize: GE, and CP). The following conclusions are drawn
from the present work:

1. All linear factors (i.e. percent of resin, percent of hardener and curing time)
are found to have significant contribution towards all sand mould properties
(excluding, curing time for permeability).
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2. The quadratic effects of percent of hardener and curing time is found insignificant
(as P-values > 0.05) for the responses, namely collapsibility, mould hardness
and permeability. This indicates CS, MH and P relationship with percent of
hardener and curing time is linear in nature. Important to note that, the interaction
among percent of hardener and curing time is insignificant for all the sand mould
properties (excluding, GE).

3. Non-linear models developed for all sand mould properties are found to be sta-
tistically adequate with good fit of response surfaces. The prediction accuracy of
all non-linear models is found to be less than 5%. The better prediction accuracy
might be due to the fact that, model captured the physics, mechanics and dynam-
ics of a process accurately. Further, the developed models help any novice user to
predict the sand mould properties without conducting the practical experiments.

4. The sand mould properties are complex, non-linear and conflicting (maximize:
CS, P, and MH, and minimize: GE and CP) in nature. The optimum solutions are
many due to multiple objective functions with conflicting requirements. Weight
based method is used to determine the optimal solutions after assigning differ-
ent combination of weight fractions (importance) to each individual output. The
highest desirability (D0) value corresponds to the different cases is studied and
treated as an optimal condition for sand mould properties. Confirmation experi-
ments revealed that, the optimized sandmould properties will produce the casting
with better quality characteristics compared to normal sandmoulding conditions.

Appendix 1: Test Case Data for Sand Moulding Variables
and Moulding Sand Properties

Test no. Moulding sand variables Moulding sand properties

% of resin % of
hardener

Curing time CS,
KPa

P MH CP, KPa GE, ml/gm

1 1.85 0.20 064 212.4 187.3 62.04 142.2 8.40

2 2.20 0.25 118 376.8 138.6 76.74 256.8 8.34

3 1.90 0.30 106 360.7 134.3 73.28 258.9 7.82

4 1.95 0.35 074 367.3 120.2 71.20 256.3 7.73

5 1.80 0.35 089 271.8 159.9 72.48 216.0 8.02

6 2.10 0.30 102 414.0 108.4 79.84 290.4 8.72

7 1.95 0.25 096 332.2 142.8 76.23 260.6 8.21

8 2.20 0.40 063 381.6 100.7 74.03 286.7 9.45

9 2.15 0.20 074 361.1 121.3 75.32 292.4 9.20

10 2.05 0.35 096 428.8 99.8 78.13 289.7 8.63

11 1.85 0.30 088 276.3 164.3 72.38 218.9 8.04

12 2.20 0.25 112 350.8 132.4 75.30 280.1 8.80

13 1.80 0.25 092 247.8 182.7 65.23 151.5 8.38

14 2.05 0.35 078 402.5 101.4 76.40 278.7 8.08
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Appendix 2: Summary Results of Model Predicted Test
Cases of Sand Mould Properties (CS, P, MH, GE and CP)

Test no. Compression strength, KPa Permeability

Exp.
value

Model
predic-
tion

Deviation
(%)

Absolute
devia-
tion
(%)

Exp.
value

Model
predic-
tion

Deviation
(%)

Absolute
devia-
tion
(%)

1 212.4 225.17 −6.01 −6.01 187.3 178.10 4.91 4.91

2 376.8 355.63 5.62 5.62 138.6 134.00 3.32 3.32

3 360.7 342.85 4.95 4.95 134.3 137.19 −2.15 2.15

4 367.3 356.35 2.98 2.98 120.2 124.92 −3.93 3.93

5 271.8 282.86 −4.07 −4.07 159.9 157.17 1.71 1.71

6 414.0 389.05 6.03 6.03 108.4 115.54 −6.59 6.59

7 332.2 343.86 −3.51 −3.51 142.8 135.50 5.11 5.11

8 381.6 390.71 −2.39 −2.39 100.7 106.22 −5.48 5.48

9 361.1 374.83 −3.80 −3.80 121.3 114.94 5.24 5.24

10 428.8 401.94 6.26 6.26 99.8 107.21 −7.43 7.43

11 276.3 294.49 −6.58 −6.58 164.3 154.15 6.18 6.18

12 350.8 360.63 −2.80 −2.80 132.4 130.08 1.75 1.75

13 247.8 239.59 3.31 3.31 182.7 178.71 2.18 2.18

14 402.5 391.30 2.78 2.78 101.4 109.90 −8.38 8.38

Mould hardness Collapsibility

1 62.04 64.69 −4.27 4.27 142.2 155.8 −9.53 9.53

2 76.74 75.92 1.06 1.06 256.8 267.1 −4.02 4.02

3 73.28 74.88 −2.18 2.18 258.9 252.3 2.56 2.56

4 71.20 73.98 −3.91 3.91 256.3 272.5 −6.33 6.33

5 72.48 71.16 1.82 1.82 216.0 204.5 5.34 5.34

6 79.84 77.21 3.29 3.29 290.4 296.2 −2.01 2.01

7 76.23 74.05 2.86 2.86 260.6 254.5 2.34 2.34

8 74.03 74.40 −0.50 0.50 286.7 292.5 −2.03 2.03

9 75.32 74.40 1.22 1.22 292.4 290.4 0.67 0.67

10 78.13 77.23 1.15 1.15 289.7 308.5 −6.47 6.47

11 72.38 71.68 0.97 0.97 218.9 212.7 2.84 2.84

12 75.30 76.08 −1.03 1.03 280.1 271.7 2.98 2.98

13 65.23 68.40 −4.87 4.87 151.5 158.3 −4.48 4.48

14 76.40 76.01 0.52 0.52 278.7 300.8 −7.94 7.94
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Appendix 3: Summary Results of the Test Cases
for the Responses—GE

Test no. Exp. value Model prediction Deviation (%) Absolute deviation (%)

1 8.40 8.52 −1.37 1.37

2 8.34 8.16 2.12 2.12

3 7.82 8.14 −4.05 4.05

4 7.73 7.70 0.41 0.41

5 8.02 8.13 −1.34 1.34

6 8.72 8.38 3.88 3.88

7 8.21 8.33 −1.43 1.43

8 9.45 9.11 3.60 3.60

9 9.20 8.97 2.55 2.55

10 8.63 8.43 2.35 2.35

11 8.04 8.15 −1.36 1.36

12 8.80 8.42 4.29 4.29

13 8.38 8.72 −4.04 4.04

14 8.08 8.18 −1.27 1.27
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Optimization of Electric Discharge
Machining Based Processes

Roan Kirwin, Aakash Niraula, Chong Liu, Landon Kovach
and Muhammad Jahan

Abstract The results of Electrical Discharge Machining (EDM) are characterized
through many parameters. These include, material removal rate, surface finish, geo-
metrical accuracy, tool wear, and kerf width. The three main types of EDM, wire,
sinker, and micro EDM all have similar characteristics in relation to input parameters
and their effects on the results. The typical EDM system is too complex to accurately
model the effect of all the parameters together. Therefore, it is necessary to create
an optimization algorithm to predict the results of specific input parameters. Vari-
ous techniques such as Taguchi robust design, grey relational analysis, desirability,
genetic algorithm, and neural network etc. have been used for optimization of EDM
based processes. This chapter first briefly introduces all the aforementioned opti-
mization processes and comprehensively discusses their implementation and effect
for optimization of EDM based processes.

Keywords EDM · Wire-EDM · Optimization · Design-of-experiment · Surface
roughness · Material removal rate · Fuzzy

1 Introduction

ElectricDischargeMachining (EDM) is a non-traditionalmachining techniquewhere
the desired shape, size and geometry are obtained by thermoelectric erosion by
electric sparks [1]. In general, machining is conducted by melting and vaporizing
materials using electrical energy assisted by dielectric fluid. Dielectric fluid acts both
as flushing source to carry melted and re-solidified craters, and as controlling agent
for spark gap between electrode and workpiece. Workpiece and tool electrode act
as cathode and anode, and maintain no contact throughout the machining process.
For this reason, EDM is preferred when machining hard but electrically conductive
materials as using conventional machining processes can be challenging.
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EDM is categorized intomainly two types: Sinker EDMandwire EDM[2]. Sinker
EDM is used to drill holes and cavities using an electrode of desired shape and profile.
Sinker EDM uses profiled electrode to machine and is adopted for complex shapes
as the electrode can be fabricated for various shapes. Wire EDM uses a wire to cut
material, and is used to machine intricate shapes as the accuracy is extremely high.
Micro-EDM is the variant of EDM where it is used at micro scale, along with micro
level tools, axes resolution, and discharge energy [3]. The micro-EDM applies for
both sinker and wire EDM, in addition to other micro-EDM varieties. Machining
quality of EDM depends on several pre-built parameters. These parameters control
the machining process, and can prominently change the output such as production
time, surface roughness, over-cut, and dimensional accuracy in addition to desired
material removal rate and electrode wear rate. Some of the common input parameters
in EDM are [1–3]:

Gap voltage: Potential difference between anode and cathode for a cycle
Peak current: Maximum current that is used in machining per cycle
Pulse on time: Time duration for which current flows per cycle
Pulse off time: Time duration between two consecutive pulses
Duty cycle: Percentage of pulse on time over sum of pulse on time and pulse off time
Spark gap: Distance between electrode and the workpiece
Flushing pressure: Pressure at which the dielectric is dissipated

Given the impact of parameters and ever changing output demand, it can be diffi-
cult to find combination of variables that provides desired output. Numerousmethods
are used to approximate the favorable parameters. Statistical methods provide inex-
pensive and reliable means to test the effect of input variables to predict the desired
outcome. In addition, some of the statistical methods like response surface method,
and Taguchi method greatly aid in designing theoretical studies. This book chapter
discusses the common statistical approaches in the beginning, and then transitions
to provide overview of research works on optimization of EDM, based on various
optimization techniques. In addition to studies on common wire and sinker EDM,
descriptive review of research on optimization of smaller scale micro-EDM is also
included in this chapter.Upon reviewof researchworks, the chapter ends byproviding
future avenues for subsequent research works on optimization of EDM parameters.

2 General Optimization Techniques

2.1 Single Variable Optimization

2.1.1 Taguchi Method

Taguchi method, sometimes called robust design method, is a statistical method
that envisaged by Genichi Taguchi to optimize the quality of industrial goods, and
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recently was applied in the engineering, biotechnology and many other fields [4].
For the experimental design, Taguchi developed some well-structured guidelines.
A set of arrays, named orthogonal arrays, is used in this method. These standard
arrays could help the user find the minimum number of experiments that tell the full
information of all the factors influencing the optimization results, i.e. performance
parameters. Additionally, for each experiment, how the level combination of the
input design variables is chosen, decides the crux of the orthogonal arrays method
[5].

For the Taguchi method, the following steps need to be followed in order to design
a good experiment.

1. Independent variable selection

Before the actual experiment is conducted, the researchers need to identify the key
setting parameters that will influence the final performance parameters. For EDM
process, different EDM machines need researchers to consider different setting of
parameters. For example, when the wire EDM machine is used as the experimental
setup, the parameters that researchers need to consider are pulse on time, pulse off
time, peak current, gap voltage, servo voltage, servo feed rate, dielectric flow rate,
wire speed or wire feed and wire tension. Depending on the potential research field,
the researchers need to pick several or all of the setting parameters as the independent
variables.

2. Number of level settings selection for each independent variable

Usually, the number of levels decided by getting the relation between the performance
parameter and the independent variables. When the performance parameter has a
linear relationship with the independent variables, 2 level settings are needed due to
the fact that 2 points define a line. Similarly, when there is a quadratic relationship
between the performance parameter and the independent variables, 3 level settings are
needed. For all the nonlinear relationship, the number of level setting goes higher as
the order of the relationship goes higher. For example, cubic relationship corresponds
to a level setting of 4, quadratic relationship corresponds to a level setting of 5 and
so on.

3. Orthogonal array selection

For orthogonal array, there are many standard arrays available, and each array corre-
sponds to different number of independent design variable and level. For example, in
Table 1, a typical L9 orthogonal array layout is presented. In L9 orthogonal array, the
users aim to investigate the influence of 4 different independent variables with 3 set
of (level) values followed. The array assumes that any of two factors are independent
from each other. If there is any case, where the two factors have a strong interaction
with each other, the orthogonal array would no longer be a suitable method for the
experiment design.

In Table 1, there are 4 independent variables. And under each independent variable
sections, there are 3 different level values. In order for user to get a better view
of the influences of the independent variables, experiments need to be conducted
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Table 1 Layout of typical L9 orthogonal array [6]

L9(34) orthogonal array

Experiment # Independent variables Performance
parameter valueVariable 1 Variable 2 Variable 3 Variable 4

1 1 1 1 1 P1

2 1 2 2 2 P2

3 1 3 3 3 P3

4 2 1 2 3 P4

5 2 2 3 1 P5

6 2 3 1 2 P6

7 3 1 3 2 P7

S 3 2 1 3 P8

9 3 3 2 1 P9

under each combination. For example, in the first experiment, all the independent
variables are set as level 1. After the experiment 1, the performance parameter value
is recorded as p1. In the second experiment, the first independent variable is set as
level 1, all the other independent variables are set as level 2 and the performance
parameter value is recorded as p2. And so on for the rest of the experiments. Under
these circumstances, a total of 9 experiments need to be conducted. And after all the
experiments are conducted, 9 different performance parameter values are recorded.
Once the results are achieved, the user needs to use optimized technique to find out
optimum combination.

Depending on the numbers of the independent variables and the level of each
independent variable, the orthogonal array has large number of variations. For two
level designs, the Taguchi method has L4, L8, L12 and L16 orthogonal arrays; for
three level designs, the Taguchi method has L9 and L27 orthogonal arrays; And for
mixed level designs, the Taguchi method has L8, L16 and L18 orthogonal arrays.
Additionally, for L16 orthogonal arrays, there are four different types of number of
the independent variables and the levels combination. Once the orthogonal array type
is decided, the overall structure of the whole experiment is outlined.

4. Experiment data and results analyzation

After all the experiments are conducted, the data are analyzed by the Taguchi signal
to noise ratio (S/N) method. The signal to noise ratio is the ratio of mean value
(signal) to the ratio of standard deviation (noise). The signal-to-noise ratio method
is applied to determine the optimized settings based on the results. The S/N ratio has
three different functions, larger is better, nominal is the best, and smaller is better.
In the EDM machining parameters analysis, the S/N ratio of the smaller-the-better
and the larger-the-better are the most useful characteristics and can be expressed as
Eqs. (1) and (2) below [7].
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2.1.2 ANOVA

Analysis of variance (ANOVA) is a process by which a set of independent variables
are analyzed for their influence on a single dependent variable. ANOVA is intended to
demonstrate how strongly each independent variable is correlatedwith a change in the
dependent variable [8]. At early stages of experimentation, ANOVA is used to narrow
down which independent variables have the greatest effect and therefore should be
studied. Also, later in the process, ANOVA is used to ensure that the results are
statistically significant. A software package, such as R or SPSS [9], is typically used
to performANOVA analysis because it is an extremely commonmethod of statistical
analysis. ANOVA produces both an F value and a percent of contribution for each
independent variable. An F value references whether that parameter is significant
at a specific confidence level. While a percentage contribution value measures the
relative impact that a parameter has with respect to the rest of the parameters [10].
An example ANOVA table is included in Table 2.

2.1.3 Signal to Noise Ratio (S/N)

Signal-to-noise ratio (S/N) is used to optimize parameters once their individual
impact on the independent variable is known. This ratio is commonly used in the

Table 2 ANOVA data table for surface roughness (Ra) [10]

Control factors dof Sum of squares Mean squares F-ratio Percentage
contribution

M 1 0.0012 0.0012 0.233 0.233

VO 2 0.1267 0.0634 11.810 24.625

PN 2 0.2683 0.1342 25.004 52.147

PF 2 0.0172 0.0086 1.6051 3.343

VS 2 0.0029 0.0015 0.2738 0.563

FW 2 0.0438 0.0219 4.0786 8.531

TW 2 0.0115 0.0058 1.074 2.235

PD 2 0.032 0.0160 2.985 6.219

Error 2 0.0107 0.0054 – 2.122

Total 17 0.5145 – – 100.00
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Fig. 1 Mean S/N ratio for effects of process parameters on surface roughness in EDM [11]

Taguchi method after ANOVA. S/N uses so-called control factors and noise factors.
Control factors are defined as parameters that have a significant impact on the depen-
dent variable while noise factors are defined as parameters that have no significant
impact. S/N is a function of the output characteristic and the number of trials. This
is demonstrated in Eq. (3) below.

S

NLB
= −10 log

(
1

r

r∑

i=1

y2i

)
(3)

where, r equal to the number of trials and yi equal to the output characteristic.
This specific equation favors lower value output characteristics. This would be used
for dependent variables such as surface roughness or kerf width that are typically
desired to be minimized. There are separate equations for characteristics that are to
be maximized or be normal [11].

On a signal-to-noise ratio graph, the difference between these factors is very
apparent because control factors will have a high degree of slope while noise factors
have a small slope. Figure 1 shows an example of signal-to-noise ratio (S/N) chart.
The optimal parameters are chosen by the highest mean S/N ratio for each set of
parameters [12].

2.2 Multiple Variable Optimization

All of the aforementioned single dependent variable optimization methods are able
to be adapted for multiple dependent variables. Typically, they are used as initial
stepping stones to organize the data and then new set of organized data is analyzed
again using other techniques such as multiple linear regression or neural network-
ing. Other times, some normalization is applied so the dependent variables can be
combined into one which can be optimized in the preceding ways.
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2.2.1 Grey Relational Analysis (GRA)

The most common adaptation applied to the Taguchi method is grey relational anal-
ysis. Grey relational method is a data analysis method, which is used to measure
the relation between the parameters. For two or more parameters where there is no
information available in between, the situation is defined as black. For two or more
parameters with perfect information, the situation is defined as white. In reality, nei-
ther of these situations happen in the experiment. So, for the situation in between
the black and white, the relation is defined as grey. In the grey relational method,
the degree of relation is defined as grey relational grade. For the situation of black
relation, the grey relational grade is 0. For the situation of white relation, the grey
relational grade is 1. And for the situation of grey relation, reality, the grey relational
grade is between 0 and 1.

Typically, the grey relational method contains the following processing steps [13]:

• Normalize the experimental results of each response variable.
• Determine the grey relational coefficient for each response variable.
• Calculate the grey relational grade by the mean value of grey relational coefficient.
• Perform the response table and response graph for each level of the process param-
eters.

• Recognize the obvious and invisible variable factors and select the optimal level
of the process parameter.

• Confirm test and verify the optimal levels of process parameter.

Mathematically finding the grey relational grades can be performed through a
modification of the S/N formula. All data must be normalized by Eqs. (4) and (5)
below before plugging it into the standard smaller the better S/N equation. With yi
= characteristic and k as the population size, the smaller the better equation (Eq. 4)
is used, because the optimization direction is performed during the normalization
step. The Grey relational coefficients that were fed into the modified S/N become
the Gray relational grades. These grades are used as a measure of performance for
multi response optimization [14].

xi (k) = max(yi )k − (yi )k

max(yi )k − min(yi )k
(4)

yi (k) = (yi )k − min(yi )k

max(yi )k − min(yi )k
(5)

2.2.2 Response Surface Methodology (RSM)

Response Surface Methodology (RSM) is a group of statistical methods that analyze
the response of interest in terms of many different variables to optimize the response.
RSM is an alternative of the Taguchi method. RSM was developed significantly
earlier than the Taguchi method and requires more expertise but can outperform
Taguchi in some situations. RSM allows for the analysis of the interaction of two
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independent variables simultaneously. This is typically realized by creating a second
order response surface equation for each of the dependent variables. Occasionally, if
the correlation is not strong enough for a simple second order polynomial equation
to model, a log transformation could be required [15].

2.2.3 Multiple Regression Technique

The multiple regression technique is typically used to create models. After analysis
by ANOVA or GRA or S/N, the parameters that are revealed to be significant can
be related to the independent variables by multiple regression. All the independent
variables must be normalized because they generally do not have the same units or
ranges. This allows them to be directly related to the dependent variable through
generally a polynomial relationship. These normalized values are typically called
coded variables and vary from −1 to 1. A value of −1 corresponds to the minimum
of this specific independent variable, while a value of 1 corresponds to the maximum
value.Because insignificant variables are discarded, a simpler equation can be created
similar to Eq. (6) below.

ŷ = β̂0 + β̂1x1 + β̂2x2 + β̂3x1x2 (6)

where ŷ represents the dependent variable, the β values represent the coefficients,
and the statistically significant x values are the aforementioned coded variables. This
case is for linear relationships that are not necessarily orthogonal. Higher β values
indicate a higher influence of that coded variable on the dependent variable. Many
papers rely solely on the P value to say that the results are statistically significant, but
that is not necessarily true, and a method of residual should be performed to ensure
statistically accurate result [16].

2.2.4 Desirability Function

Desirability function optimization is performed by first normalizing the response
parameters into a desirability function di with the range 0≥ di≥ 1.When the response
parameter is at the desired target then di = 1 and if it is outside a specified range
di = 0. Each desirability function is then assigned a weight, ri. The weight of each
of the desirability functions changes its polynomic order. All of the desired ability
functions are then combined using a weighted geometric mean. This is demonstrated
in Eq. (7) below.

D =
(
di1
1 d

i2
2

)1/(i1+i2)
(7)

The majority of statistical software, such as Minitab®, use a reduced gradient
algorithm with multiple starting points to maximize the overall desirability function.
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However, this is not necessarily the true optimal solution if the boundary is non-
convex. A localmaximummay be achieved, so somemanual tweaking is necessary in
thismethod. This can be done by changing theweighting of the individual desirability
functions [15].

2.2.5 Pareto Optimization

Pareto optimization is based on a concept called non-inferiority. Non-inferiority
is defined as being reached when improving one response absolutely requires the
decrease in quality of another response variable. As this is a multi-objective opti-
mization, there are more than one “optimal” solution and this manifests itself as an
optimal front. Imagine a scatter plot with surface roughness on one axis and 1/MRR
on the other. Graphed on this plot are a series of results from parametric testing. The
data will be distributed in a cloud. If each data point that were on the bottom left
side of the cloud were connected, this would form an optimal front. This process can
severely reduce the problem size of an optimization problem. It can be applied to
not only individual response variables but also normalized and combined variables
allowing many more response dimensions [15].

2.2.6 Genetic Optimization Algorithms

Genetic algorithms (GA) perform optimizations through an evolutionary approach.
In general, they work by randomly seeding an initial population of random weights
for each response parameter. The best individual is chosen and a new population is
generated by randomly applying a certain amount of mutation to the individual. This
process is repeated either a set number of times or until the rate of convergence reaches
a set threshold [7]. A common application of genetic optimization is called the Non-
Dominated Sorting Genetic Algorithm (NSGA). This adapts Pareto Optimization
to work with the genetic algorithm to ensure only non-inferior solutions are found.
The non-inferior front that is found in Pareto optimization is also called the non-
dominated solution set.

The process of a non-dominated genetic sorting algorithm is as follows:

1. A set of chromosomes are generated within the solution space that have all the
input variables on each chromosome. This is the initial population.

2. These chromosomes are sorted based on the following rules, if satisfied they are
marked dominated else they are non-dominated.

a. Response A of Chromosome A < Response A of Chromosome B
b. Response B of Chromosome A < Response B of Chromosome B

3. All non-dominated solutions are ranked 1.
4. The sorting is repeated with already ranked chromosomes removed and new

non-dominated chromosomes are ranked 2.
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5. This process is repeated until all chromosomes in the population are ranked.
6. A dummy fitness value is assigned to the rank 1 chromosomes.
7. The normalized Euclidean distance is calculated between each rank 1 chromo-

some and the rest of the rank 1 subpopulation.
8. The Sharing function values are calculated for each of this subpopulation which

are then used to calculate the niche count. Sharing functions are based on the
largest distance allowed between chromosomes in a niche group. The niche count
is used to estimate the clustering close to a specific chromosome.

9. The dummy fitness values are then divided by the niche count to find the shared
fitness value of the rank 1 subpopulation.

10. This process is repeated until all ranks are assigned a shared fitness value.
11. The fitness values are used to choose which chromosomes to mate and mutate to

form the next generation population.
12. This entire process is repeated on the next population.

Non-dominated Sorting Genetic Algorithm (NSGA) will generate varying results
dependingon the parameters chosen such as population size andmutation rate.Higher
mutation rate will typically lead to a faster convergence but a less accurate one while
a larger population size will lead to a higher convergence rate at the expense of
computational power [17].

2.2.7 Neural Networking

Neural networking works similarly to genetic algorithm optimization in that it is
an iterative process. Neural networking simulates the learning process of neurons,
connections that lead to advantageous results are reinforced while connections that
are useless or have a negative impact fade in strength. These neurons are made up of
levels. The first set of neurons are the input neurons that receive the input parameters
which, in the case ofWEDM, are things such as pulse on time, wire tension, and open
voltage. Each of the input neurons is then linked to the first ‘hidden’ layer. There
can be one or more hidden layers depending on how the input parameters are related
to each other and the guessed order of the input output relation. More complex
relationships between the input variables and the response variables require more
hidden layers to model. The drawback of more hidden layers is a longer convergence
time and a less accurate result. Typically, the lowest complexity model that gives an
effective result will be the best model. Using overly complex models or overtraining
a model can lead to overfitting, which looks like a very effective model for the data
already collected but is a very poor predictor of new data. Each of the connections
between the two layers is assigned a weight and these weights are adapted using a
system similar to the genetic algorithm optimization discussed above [8]. Figure 2
shows the block diagram listing the steps for optimization using back propagation
neural networking [18].
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Fig. 2 Flow chart showing
the steps of back propagation
neural networking (BPNN)
for optimization [18]

2.2.8 Simulated Annealing

Simulated annealing is applied to neural networks to ensure a speedy convergence
while allowing for a more accurate result than a typical high entropy neural network
training scheme. Its namesake, metal annealing, is the slow reduction of heat from
a chaotic state to a cooler more rigid state. The slow cooling rate allows crystals to
form and the final state to be highly ordered.With a very high cooling rate crystals do
not have time to grow and the final metal is amorphic with the metal stuck in a high
energy state. Simulated annealing applies these ideas to a neural net. As the system is
trained the entropy allowed between generations is decreased so large changes can be
made early and the model can be generally optimized. As iterations pass the system
entropy is ‘cooled’ which simplymeans that the size of changes between generations,
or the mutation rate, is decreased. This allows the system to make smaller changes,
as it approaches what is theoretically the optimal, or the most ordered crystalline,
solution [19]. In many cases, the simulated annealing is integrated with the neural
network to perform the optimization. Figure 3 shows the flow chart of an integrated
neural network and simulated annealing.

3 Optimization Techniques Used in Wire EDM

Most wire electro-discharge machining (WEDM) optimizations seek to increase
material removal rate (MRR) or decrease the kerf width while decreasing surface
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Fig. 3 Integrated neural network and simulated annealing steps for optimization [18]

roughness. The requirement of optimizing two variables simultaneously greatly com-
plicates the process. The Taguchi method was developed in order to optimize a single
dependent variable [20]. In order to optimize more than one variable another statis-
tical technique is needed. Common analyses include Grey relational method, neural
networking, response surfacemethodology, the desirability function, and Pareto opti-
mality. While the majority of optimizations in this space are optimizing for at least
two characteristics, sometimes it is desired that a single variable be optimized. Such
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cases are simpler to optimize using a standard Taguchi method or another method
such as the finite element method.

3.1 Taguchi Method, ANOVA, S/N Ratio

As the Taguchimethod ismore oriented towards experimental design, all of the single
variable optimization methods used Taguchi to create the initial parametric layout
of the experiments. Goswami and Kumar [21] optimized the wire-EDM process
for machining of Nimonic alloy using Taguchi approach along with utility concept.
Taguchi’s robustmethodologywasused for designof experiments andmulti-response
optimizationmethod was used to study the effect of pulse on time, pulse off time, and
peak current on thematerial removal rate (MRR), surface roughness (SR) and surface
topography. The optimized process conditions were identified for MRR and SR
using both single- andmulti-response optimization techniques. In addition, the effect
of parameters on microstructure and recast layer under the machined surface was
studied. It was found that multi-response optimization with utility concept provided
optimized parameters that could be used to improve the wire EDM performance.

Ramakrishnan and Karunamoorthy [22] optimized the wire-EDM operation for
machining tool steel using multi-response optimization methods with Taguchi’s
robust design approach. The experiments were planned using Taguchi’s L16 orthog-
onal array to study the effect of wire-EDM operating parameters on MRR, SR, and
wirewear ratio. ANOVAwas applied to study the level of importance of eachmachin-
ing parameter on the wire EDM performance. It was found based on ANOVA that
pulse on time and ignition current intensity had more significant influence on wire
EDM performance than other operating parameters. It was reported that the pro-
posed optimization method could successfully predict the wire-EDM performance
and could be applied to improve the machining performance.

Manna and Bhattacharyya [12] investigated the effect of operating parameters
experimentally and optimized the process using Taguchi’s optimization technique
during wire-EDM of aluminum-reinforced silicon carbide metal matrix composite
(Al/SiC-MMC). A Taguchi L18 orthogonal array was used to design the experi-
ments and identify S/N ratio, and then ANOVA and F-test were used to identify the
significant parameters affecting the wire EDM performance. Mathematical models
were developed using the Gauss elimination method and compared with the experi-
mental results. The model was found to successfully predict the optimum conditions
suggested by the experiments.

Mahapatra and Patnaik [23] optimized the wire-EDM process for machining D2
tool steel using the Taguchi method. The significant parameters influencing the wire-
EDM process were identified and their effect on wire EDM performance of D2 tool
steel was studied. The relationship between the input machining parameters and out-
put performance parameters were established using model developed by non-linear
regression analysis. It was demonstrated that the optimization technique enabled
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adjustment of machining parameters to obtain higher material removal rate while
minimizing the surface roughness during wire-EDM of D2 steel.

Tilekar et al. [24] optimized the process parameters for wire EDM of aluminum
and mild steel using Taguchi method for obtaining minimum surface roughness and
kerf width. Single objective Taguchi method was used for optimization of process
parameters, while ANOVA was used to test statistical significance of each process
parameter on influencing the wire EDM performance. The ANOVA results show that
spark on time and wire feed rate has significant effect on kerf width, whereas spark
on time and input current influences the surface roughness more significantly.

ANOVA was also used in almost all papers as an initial analysis of the impact
of specific parameters on response variables. Kanlayasiri and Boonmung [16] used
design of experiments, ANOVA, and regression model to investigate the impact of
machining parameters on surface roughness of a new die steel, DC53. The ANOVA
was used to identify the parameters that influenced the wire EDM process most
significantly. It was determined that pulse on time and peak current had the largest
impact on the surface roughness. Themathematicalmodelwas developed bymultiple
regression method, and was validated by experimental data with the prediction error
less than 7%.

Signal-to-noise ratio (S/N) is the most common way to optimize parameters after
performing ANOVA. Manna and Bhattacharyya [12] attempted to optimize MRR,
surface roughness, gap current, or spark gap in WEDM of Al/SiC-MMC composite
using S/N. As S/N optimization does not create a true model, it can only optimize
the tested parameters without any interpolation between values, the returned opti-
mization is in terms of the original experimental values. This specific study was able
to optimize for each of the desired response parameters. Figure 4 shows the com-
parison of experimental results with the predicted results obtained from developed
mathematical models [12]. It can be seen that the proposed mathematical model
can predict the outcome of the experiments quite successfully during wire EDM of
Al/SiC-MMC.

Ikram et al. [10] sought to optimize effect of eight operating parameters on MRR,
SR, and kerf width during WEDM of D2 tool steel. This was performed using
Taguchi’s design of experiment (DOE), ANOVA, and S/N. The S/N returned an
optimal setting for each of the eight parameters for MRR or surface roughness. It
was deduced that higher MRR required a higher pulse on time and open voltage,
while a lower surface roughness required the opposite.

3.2 Grey Relational Analysis

Rajyalakshimi and Venkata Ramaiah [25] strove to optimize MRR, surface rough-
ness, and spark gap in WEDM of Inconel 825. Optimization using Grey relational
analysis on nine input parameters and three output parameters were able to improve
MRR from 119 to 126 mm3/min, spark gap from 15 to 13μm, and surface roughness
from 1.68 to 1.44 μm.
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Fig. 4 Comparison of experimental results with developedmathematical models for aMRR, b sur-
face roughness, and c spark gap [12]

Bobbili et al. [14] attempted to optimize WEDM machining of ballistic grade
aluminum alloy with four input parameters and three response parameters. Using
grey relational analysis, three of the input parameters were found to have a significant
impact and were optimized. Significant improvements in MRR, surface roughness,
and gap current were observed with a 6% error.

Durairaj et al. [11] applied grey relational theory and Taguchi optimization tech-
nique to optimize the cutting parameters during wire EDM of SS304 steel. The goal
of the optimization was to identify optimum parameters for minimum kerf width and
best surface finish separately and simultaneously. Taguchi’s L16 orthogonal array
was used for designing experiments. It was found that the Taguchi optimization and
grey relational theory provided two different settings of optimized parameters. In
Taguchi optimization technique, the parameters combination for minimum surface
roughness were 40 V gap voltage, 2 mm/min wire feed, 6 μs pulse on time, 10 μs
pulse off time, and for minimum kerf width the combination was 50 V gap voltage,
2 mm/min wire feed, 4 μs pulse on time, 6 μs pulse off time. According to grey rela-
tional analysis, the optimized parameters setting to get both the minimum surface
roughness and the nominal kerf width were 50 V gap voltage, 2 mm/min wire feed,
4 μs pulse on time and 4 μs pulse off time.

Huang and Liao [5] carried out optimization of wire EDM process for machining
SKD 11 tool steel using a combination of Taguchi method, Grey relational analysis
and S/N ratio. First the experiments were design using Taguchi’s L18 orthogonal
arrays, then the parameters were optimized using Grey relational analysis and S/N
ratio for obtaining the maximummaterial removal rate and minimum surface rough-
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Fig. 5 Surface plots showing interactions of pulse on time and pulse off time with a surface
roughness, and b material removal rate [26]

ness in wire EDM of SKD 11. The statistical analysis, including S/N ratio, ANOVA,
and F-test, was carried out to find out the significant parameters for wire EDM.

3.3 Desirability Function and Pareto Optimization

Raj and Senthilvelan [26] optimized the wire EDM machining conditions using
desirability function with a goal to improve the surface finish and material removal
rate. They used Box-Benkhen approach to design the experiments, and desirability
function to empirically model and optimize the process parameters for wire EDM
of Ti-6Al-4V alloy. It was found that pulse duration and pulse interval were two
important parameters influencing the surface roughness most, whereas pulse interval
had the most influence on material removal rate. Higher pulse interval decreased the
material removal rate significantly. Figure 5 shows the surface plot representing the
influence of pulse on time and pulse off time on the surface roughness and material
removal rate during wire EDM of Ti-6Al-4V, as obtained by desirability function
optimization [26].

Sarkar et al. [27] sought to model and optimize WEDM of γ-titanium aluminide
alloy during trim cutting. Trim cutting was used to increase the surface finish after a
roughing operation so the desired response parameters would be below a chosen sur-
face roughness while at the highest machining speed possible. First, the desirability
function was used in Minitab and then a Pareto optimization was performed. Both
of the techniques were effective at modeling the relationships but the desirability
approach required a lot more manual fiddling and tuning than the Pareto optimiza-
tion approach. Figure 6a shows that multiple optimal points were identified in the
Pareto optimization, and when plotted (Fig. 6b), they showed a trend of increasing
the surface roughness with the increase of cutting speed [28].
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Fig. 6 aMultiple optimal solutions for surface roughness based on cutting speed, as suggested by
the Pareto-optimal solution, b Plot of optimal points in the form of maximum cutting speed versus
surface roughness [28]

3.4 Genetic Optimization Algorithms

Mahapatra and Patnaik [29] used the Taguchi method along with ANOVA and S/N
as an initial optimization and for data gathering. They then used this data to train a
genetic algorithm to predict MRR and surface finish. A model of MRR and surface
finish was created with multi regression and were then combined and ran through
a genetic algorithm to optimize the input variable to achieve the desired response
parameters. The optimal settings for MRR and surface finish agreed well with the
confirmation experiments with 4 and 1.5% errors respectively.

Kumar and Agarwal [30] used a multi-objective genetic algorithm to find optimal
solutions for MRR and surface finish. The experiments were designed based on
the Taguchi’s design of experiments to study the effect of operating parameters on
wire EDM performance of high speed steel (SKH9). The mathematical model has
been developed by non-linear regression analysis. They were able to use the Pareto
optimization technique alongwith non-dominated sorting genetic algorithm (NSGA)
to further increase the efficiency of the solutions. Figure 7 shows the proposed multi-
objective optimizationmethodology used in the study [30]. Theywere able to develop
a tablewith 50different optimal solutions thatwould then allow the operator to choose
the set that best matches their requirements. Out of 50 optimal solutions, the best
parametric combination providing highest MRR while maintaining the minimum
surface finish requirement is pulse peak current of 30 A, pulse duration of 37 μs,
pulse off time of 50 μs, wire feed of 7 m/min, wire tension of 1260 g, flushing
pressure of 2.1 kg/cm2.

Kuriakose and Shunmugam [17] optimized the wire-EDM process for machining
titanium alloy using Non-Dominated Sorting Genetic Algorithm (NSGA)method. A
multiple regressionmethodwasused to study the effect of operatingparameters on the
wire EDM performance, while NSGA method was used for optimizing the process.
It was found that a number of optimized set of solution could be obtained using the



46 R. Kirwin et al.

Fig. 7 Proposed multi-objective optimization methodology used in the wire EDM of high speed
steel SKH9 [30]

Pareto optimization method. They proposed a table with 36 optimal combination of
parameters.

Rao et al. [31] carried out experimental investigation and parametric optimiza-
tion of wire EDM process for machining Al2014T6 aluminum alloy. The Taguchi
methodwas used to design the experiments and a hybrid genetic algorithmwith linear
regression model was used for optimization of machining parameters for improved
surface finish and material removal rate. It was found that the developed model could
successfully predict the machining performance. It was also found from the genetic
optimization that the cutting efficiency was important for generation of good quality
surface finish. It was also reported that the recast layer in aluminum alloy was com-
paratively higher than those reported in wire EDM of heavier materials and other
lighter material like titanium alloy.

3.5 Response Surface Methodology, Neural Networking
and Simulated Annealing

Response surface methodology (RSM) is a comparatively old method of optimiza-
tion, so it is often used to compare to neural networking optimizations. Speeding
and Wang [32] used both RSM and a back-propagation neural network to optimize
MRR, surface roughness, and surface waviness. Both models were found to achieve
an acceptable level of accuracy with neural networking achieving a slightly higher
accuracy. The prediction errors of the neural network model are generally lower than
the RSM model.

Yang et al. [33] investigated both RSM and neural networking optimization, but
with a more advanced simulated annealing neural networking system for optimizing
the wire EDM process. Taguchi L18 orthogonal array was used for designing the
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Fig. 8 Block diagram
showing different stages of
the proposed adaptive
neuro-fuzzy interface system
(ANFIS) model [34]

experiments before optimizing with RSM and BPNN. The neural network provided
a more accurate predictive model than RSM did, but the neural network took more
experience and training to implement.

Çaydas et al. [34] developed an adaptive neuro-fuzzy interface system (ANFIS)
model to predict the white layer thickness and surface roughness as a function of
machining parameters during wire EDM of AISI D5 tool steel. The dual approaches
allowed the solution to converge faster and to improve the accuracy of themodel. The
model and verification experiments were closely correlated within a small margin of
error. Figure 8 shows the steps of ANFIS optimization model used in this study. The
comparison of the predicted results of surface roughness and white layer thickness
with those obtained from experimentation is shown in Fig. 9. It can be seen from the
graphs that the proposed model was able to predict the surface roughness and white
layer thickness with minimal error.

Simulated annealing, a modification of standard neural networking, is commonly
used to allow a fast convergence while still getting an accurate model. Chen et al. [18]
developed amodel ofWEDMof pure tungsten using the simulated annealing assisted



48 R. Kirwin et al.

Fig. 9 Comparison of predicted results from ANFIS model with experimental results, a surface
roughness, and b white layer thickness [34]

neural networking approach. In their study, a back-propagation neural network with
simulated annealing method was proposed to optimize the parameters for improved
surface finish and cutting velocity. This model was extraordinarily accurate for both
the average roughness and maximum roughness, but the cutting velocity model was
almost six orders of magnitude less accurate. Figure 10 shows the configuration of
the proposed back propagation neural network model for wire EDM optimization
[18].

Tarng et al. [35], quite a while ago in 1995, developed a simpler neural network
to model theWEDM of SUS-304 stainless steel. This paper was written when neural
networking was new. As a result, it was more of a proof of concept, but they proved
that simulated annealing could indeed be used to increase the efficiency of Wire
EDM.

Spedding and Wang [36] modeled the surface generated in wire EDM process
using artificial neural network and time series techniques. The experiments were
designed using central composite design (CCD). The feed-forward BPNN was used
to develop the model and optimize the process. The optimal combination of process
parameters for improved surface finish was identified and the wire EDM surface
profile were evaluated by predicting the periodic component of the surface.

4 Optimization Techniques Used in Die Sinker EDM

4.1 Response Surface Method

Response surface method is a statistical process to estimate response variables using
input parameters. It is useful in quantifying the connection between input and output
parameters and is cost effective. Using response surface method, Balasubramanian
et al. [37] conducted a study to assess the effects of peak current, pulse on time, dielec-
tric pressure and tool diameter on material removal rate (MRR), surface roughness
(SR), and tool wear rate (TWR). Cast and sintered copper electrodes were used to
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Fig. 10 The configuration of the proposed back propagation neural network (BPNN) model used
for optimizing the wire EDM process [18]

machine EN8 and D3 steels. It was found that increasing the pulse on time increased
surface roughness with cast copper electrode and increasing peak current increased
MRR and TWR on EN-8 and D3. Tool diameter had a directly proportional rela-
tionship with MRR, TWR and SR. Both EN-8 and D3 showed higher MRR and
lower TWR with cast electrode in comparison to sintered copper electrode. Surface
roughness mean values were found to be lower with sintered electrode. High peak
current and pulse on time with larger electrode diameter provided high MRR and
SR, but low TWR was obtained with sintered copper electrode on EN8. The cast
copper electrode provided better MRR, TWR and SR on D3 with low pulse on time
and dielectric pressure.

Mishra et al. [38] focused on investigating the effect of hardness on MRR and
TWR during die-sinking EDM of EN31 steel using copper electrode. During the
experiment, four parameters, pulse on time, pulse off time, peak current and gap
voltage, were varied under response surface method to identify changes in response
variables. It was found that more than 70% out of 30 experiments had increased
machining time for hardened workpiece including increase in tool wear rate as dis-
played in Fig. 11.
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Fig. 11 Comparison of a MRR and b TWR of base alloy and hardened alloy after die sinking
EDM using copper electrode [38]

Payaghan et al. [39] utilized response surface method using current, voltage,
pulse on time and duty factor as input parameters during EDM of copper tungsten
matrix composite. Copper electrode with Rush lick-30 dielectric fluid was used dur-
ing the die-sinking operation. It was observed that increasing discharge current and
pulse on time increased surface roughness. Overheating and molten metal in addi-
tion to discharge column expansion were suggested as the reasons for increase in
surface roughness. The optimal machining condition resulted in surface roughness
of 3.62 μm. All the results presented had over 95% confidence interval.

Leao et al. [40] explored the effect of different electrodes and dielectric fluids on
the electrode life during fast hole EDMdrilling of nickel basedworkpiece. Deionized
water and amixture of water, alcohol and salts were two di-electric fluids, and copper
and brass were two electrodes used in this study. With the help of Pareto chart, it was
found that drilling time was mostly affected by duty cycle and peak current, along
with the interaction of dielectric with duty cycle and peak current. Electrode wear
was greatly influenced by the dielectric and duty cycle. Heat generation due to high
peak current resulted in low drilling time but high electrodewear. Brass electrode and
water mixture dielectric produced the best results with only 47% of electrode wear.
Deionized water had higher breakthrough time due to electrode tapering. Overall,
the impact of dielectric fluid in optimization of fast hole drilling was justified in the
study.

4.2 Taguchi Method

One of the frequent challenges during EDM machining is the tool wear. To provide
accurate machining and smoother surface, it is important to gain minimal tool wear
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by optimizing the process parameters. Urade and Deshpande [41] investigated TWR
during die-sinking EDM of EN 31 alloy steel using copper electrode. Parameters
such as pulse current, pulse duration, and gap voltage were varied and studied for
L16 orthogonal array. It was found that 3 A discharge current with 110 μs pulse
duration and 130 V provided optimal quality in regards to TWR. Pulse current was
noted to be the most significant factor affecting the response variable.

Lee et al. [42] studied the effect on machining parameters on SR and TWR using
Taguchi method while also incorporating utility concept. It was found that current
and duty cycle had notable effect on both SR and TWR, during die-sinking EDM of
EN31 steel using copper electrode. Interactions between voltage and pulse on time
andduty cyclewere significant in addition to spark gap and pulse on time. The optimal
parameters for die-sinking EDM of EN31 steel using copper electrode were found to
be current of 6 A, duty cycle of 9 and pulse on time of 200 μs. Further experiments
were conducted to analyze the response variable results with the optimal parameters.
Utility value was found to be 8.289, and average surface roughness and average
tool wear rate at the optimal setting were found to be 5.102 μm and 0.0092 g/min
respectively.

One important characteristics of sinker EDM is flushing method, as it is critical
to clean eroded particles from the machining zone. Malhotra et al. [43] utilized slide
flushing to study the effect of flushing along with other machining parameters on
the surface roughness of EN-31 die steel using die-sinker EDM. Copper electrode
was used during the study. L27 orthogonal array was used using input parameters
such as current, voltage, pulse on time, duty cycle, spark gap and flushing pressure
to study the effects on surface roughness. It was found that current in addition to
pulse on time had greater influence on the surface roughness. Interaction between
pulse on time and spark gap was also significant. The optimal parameters to produce
minimum surface roughness were found to be a combination of 6 A current, 100 μs
pulse on time, 0.5 mm spark gap, 0.6 kgf/cm2 flushing pressure, and 35 V voltage.

Rath [44] conducted L27 orthogonal array based experiments on EN19 alloy steel
using copper electrode on die-sinker EDM. The parameters used were pulse on time,
current, and pulse duty factor, and the performance parameterswereMRR,TWR, SR,
and overcut (OC). It was found that pulse on time was the most dominant parameter
that changed MRR and TWR results. MRR was seen to increase with increase in
pulse on time to a certain extent, and reduced as the energy transfer was difficult
with formation of plasma. OC was seen to increase with increase in pulse on time
and open circuit current due to extreme melting and evaporation. Grey Relational
Analysis was also utilized to obtain optimal parameters, and they were found to be
open circuit current of 30 A, pulse on-time of 3000 μs, and pulse duty factor of 12.

According to the study by Prasad et al. [45] on AISI P20 tool steel using die-
sinker EDM with copper electrode, MRR increased with increase in pulse current.
The analysis of the input parameters, i.e. current, voltage, pulse on time, and pulse
off time, were performed using L9 orthogonal array of Taguchi method. Higher pulse
on time was attributed to increased MRR due to thermal power improvement, and
higher current led to excessive material erosion. It was noted that increase in both
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voltage and current increased MRR, while TWR was decreased with voltage and
increased with current.

Belgassim et al. [46] evaluated the influence of pulse current, pulse on time, pulse
off time, and gap voltage on EDM of AISI D3 steel using L9 orthogonal array of
Taguchi method. Primary variables of output interests were surface roughness and
over-cut. Die-sinker EDMwith brass electrode and kerosene dielectric were utilized
during machining. Using S/N ratio, pulse current was found to influence the surface
roughness the highest. Optimal parameters for best surface finish were determined
to be 26 A current, 50 μs pulse on time, 200 μs pulse off time, and 45 V voltage.
For over-cut pulse on time was the most influential factor as well.

Shrivastava et al. [47] investigated SR,MRR, and TWR on one of the widely used
AISI 202 stainless steel using die-sinker EDM with copper electrode. Taguchi’s L9
orthogonal array of four factors and three levels input variables such as pulse on time,
pulse off time, peak current and servo voltage were applied. It was seen that pulse
on time and servo voltage were the essential factors that affected surface roughness.

Panda et al. [48] used die sinking EDMwith a copper electrode on 6061 aluminum
alloy. Three input parameters, i.e. duty cycle, pulse on time, and current, were used
in Taguchi method to study their effect on MRR. It was found that increase in pulse
on time and duty cycle increased MRR. Optimal process parameters were found to
be 100 μs pulse on time, 10 duty cycle and 30 A current. Overall, current had the
largest impact on MRR.

Instead of using common method of submerged dielectric for machining in die-
sinking EDM, Shahril et al. [49] tested the alternative by spraying dielectric fluid
during machining. Taguchi method was used to study effect of discharge current,
pulse on time and pulse off time on theMRR.Graphite electrodewas used tomachine
tool steel workpiece in the presence of kerosene dielectric fluid. It was found that
spray method provided lower machining time but higher surface roughness in com-
parison to submerged method. The MRR was observed to be higher as pulse on time
increased, and found to be lower with increase in pulse off time.

Sangeetha et al. [50] explored die-sinking EDMon different aluminum basemetal
matrix composites under change in parameters such as current, pulse on time, pulse
off time, and tool lifting time. L27 orthogonal array was utilized for designing the
experiments with a copper electrode. It was found that reinforcement material for
composite, current, and tool lifting time were highly influential in increasing MRR,
and reducing SR, cost, and TWR.

Dubey et al. [51] investigated a different composite made of Al and Al2O3 to
find the optimal parameters for machining using die sinker EDM with copper elec-
trode. The input variables that were analyzed using desirability function and Taguchi
method included pulse duration, discharge current, and duty cycle. The effect of oper-
ating parameters on the MRR, SR and TWR were also studied. The study confirmed
the effectiveness of using desirability function with Taguchi method in a production
system to maintain quality control.

Gaikwad et al. [52] studied the effect of input variables, i.e. gap current, pulse on
time, pulse off time, workpiece electrical conductivity, and electrode conductivity
during EDM of NiTi alloy using copper electrode. The experiments were conducted
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Fig. 12 Comparison of predicted ANN model with experimental results for a MRR (tested) and
b SR (tested) [54]

based on Taguchi’s L36 orthogonal array. It was found that gap current, work elec-
trical conductivity and pulse on time had significant effect on MRR. Optimal param-
eters for obtaining MRR of 7.0806 mm3/min were found to be 4219 S/m electrical
conductivity, 16 A gap current, and 38 μs pulse on time.

Daud [53] carried out experiments with changes in current rates to see the effect
on surface of SKD 11 using die-sinker EDM with hollow copper electrode. In the
study, pits were machined, and the results of variable current rates were analyzed
using Taguchi method. It was found that there was notable relationship between
current rate and radius of workpiece. Higher current magnitude led to anomalies in
the machined radius due to increase in recast later.

4.3 Artificial Neural Network (ANN)

Chandramouli and Eswaraiah [54] studied the influence of artificial neural network
(ANN) on determining machining standard for die sinking EDM. The effect of
parameters such as peak current, pulse on time, pulse off time and tool lift time
were investigated during the EDM of precipitation hardening stainless steel with
copper tungsten as tool electrode. Neural Network Toolbox in MATLAB was used
to develop and assess the neural network model. The neural network model had two
response variables which included MRR and SR. It was found that the difference
between experimental data and predicted data was very low for both MRR and SR
with average error as 3.32 and 2.25%. Figure 12 displays comparison of results for
testing stage for MRR and SR respectively. The study corroborates the reliance on
neural networkmodel for estimating effect of parameters on die-sinker EDMprocess.
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5 Optimization Techniques Used in Micro-EDM

Micro-EDM, developed from EDM, is used to machine parts in micro level. Micro-
EDM has the same mechanism as the EDM process, with the differences in size
of the tool electrode, axes movement and resolution, and level of discharge energy
applied during machining. Similar to EDM process, micro-EDM also contains a
series of variations, such as, micro-EDM drilling, micro die-sinking EDM, micro-
EDM milling, micro wire-EDM (micro-WEDM) and micro WEDG (wire electro-
discharge grinding). There were several optimization methods reported in the past
years for optimization of the process parameters for improved micro-EDM perfor-
mance. Depending on the method type, they could be categorized into three main
methods: Taguchi Method, Grey Relational Method and Response Surface Method.

5.1 Taguchi Method

Maity et al. [55] applied Taguchi method to identify optimal process parameters of
micro-EDMmachinewhile fabricatingmicro-holes in copper using 300μmdiameter
tungsten electrode. L9 orthogonal array design of experiment was applied. It was
found that different combinations of optimum parameters could be obtained with
different goals. When the goal of the machining was to reduce the machining time,
the optimized settings for capacitance, feed rate, rpm and voltage were 0.1 μF,
0.003 μm/s, 1500 RPM and 90 V, respectively. When the goal of the machining
was to minimize the recast layer thickness, the optimized settings for capacitance,
feed rate, rpm and voltage were 0.0001 μF, 0.0003 μm/s, 1000 RPM and 110 V,
respectively. When the goal of the machining was to find the optimized performance
for all conditions, the optimized settings were suggested as 0.0001 μF, 0.001 μm/s,
1500 RPM and 120 V, respectively. In all the cases, the capacitance was found out
to be the most influential factor in micro-EDM.

Azad et al. [56] used the Taguchi method in the micro-EDM drilling of titanium
alloy using tungsten carbide electrode to optimize multiple performance characteris-
tics of titanium alloy. The process parameters varied were pulse on time, frequency,
voltage and supply current. And the performance characteristics studied were MRR,
TWR and overcut (OC). The Taguchi orthogonal array L18 was found out to be
the most suitable experimental design for this study. A confirmation test was also
conducted. The Taguchi method was found to be an efficient experimental design
method. The optimized process settings for micro-EDM drilling of titanium alloy
were finally decided as 80 V voltage, 150 kHz pulse frequency, 1 A current and 50μs
pulse on time.

Kadirvel et al. [57] applied the Taguchi method to find optimized settings for
obtaining a higherMRR, a lower TWR and theminimumSR in themicro die-sinking
EDM process. During the study, the electrode was 300 μm silver tungsten (AgW)
and the workpiece was EN-24 die steel. The Taguchi L16 orthogonal array method
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was applied under different conditions of gap voltage, capacitance, feed rate, and
threshold voltage. After all the experiment, the ANOVA method was applied. The
capacitance and the gap voltage were found to be the most significant independent
variables influencing the performance characteristics during die-sinkingmicro-EDM
process.

Chiou et al. [58] identified the optimized process parameters for the micro-EDM
milling of high-speed steel alloy (SKH59) using tungsten carbide (WC) electrode.
Taguchi method L9 orthogonal array was applied. The independent variables, i.e.
process parameters, were decided as discharge current, pulse duration, pulse off time
and jump distance. The performance characteristics were decided as TWR,MRR and
overcut. Each independent variable contained three levels, from high to low. After
the orthogonal array was set up, four columns and nine rows were contained in the
array chart. The discharge energy was found to have the dominating effect on the
three performance characteristics.

Lin et al. [7] applied the Taguchi method to optimize micro-EDMmilling process
parameters for machining of Inconel 718 alloy using 200 μm tungsten carbide elec-
trodes. After all the Taguchi experiments were conducted, the signal-to-noise ratio
(S/N) method was applied to determine the optimized settings based on the results.
The S/N ratio has three different functions, larger is better, nominal is the best, and
smaller is better. The goal of the study was to find the minimum electrode wear, the
maximum material removal rate and the minimum working gap. By applying the
Taguchi method, the experimental results showed the electrode wear was decreased
by 7%, the MRR increased 357.5%, and the working gap decreased 6.3% in the opti-
mum setting. For micro-EDM milling of Inconel 718 alloy, the optimized settings
were found to be 0.5 A peak current, 3 μs pulse on time, 3 μs pulse off time and
60 V gap voltage. The peak current and gap voltage were the two factors that had
the most influence on the performance characteristics.

5.2 Grey Relational Method (GRA)

Grey relational method is a data analysis method, which allows to find the grey
relational grade of the parameters used in micro-EDM and identifies their effect on
machining performance. Once all the experimental data are collected and the grey
relational grades are calculated, the relationship between the process parameters
and the performance parameters will be obvious. Bhosle et al. [13] used grey rela-
tionalmethod to explore the optimizedmicro-EDMdrilling conditions formachining
micro-holes in Inconel 600 alloy using 500μmdiameter tungsten carbide electrodes.
The performance characteristic considered were MRR, overcut, taper angle and dia-
metric variance at entry and exit of micro-holes. Table 3 shows the Taguchi design
of experiments used in this study and Table 4 presents the grey relation methods
resulted from the analysis. The optimized micro-EDM drilling settings were sug-
gested as 175 V voltage, 1000 pF capacitance, 20 μm/s EDM feed rate, 15 μs pulse
duration and 50 μs pulse interval. It was found that the capacitance had the high-
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Table 3 The design of experiments [13]

Exp.
No.

A B C D E MRR
(10−5mm3/s)

Taper angle
(°)

Overcut
(μm)

DVEE

1 1 1 1 1 1 2.0401 6.2365 46.28 54.64

2 1 2 2 2 2 2.59 0.4079 50.24 3.56

3 1 3 3 3 3 14.34 0.8112 68.08 7.08

4 2 1 1 2 2 4.3412 3.3479 44.08 29.28

5 2 2 2 3 3 8.597 0.7562 54.88 6.6

6 2 3 3 1 1 33.912 0.7654 79.2 6.7

7 3 1 2 1 3 5.3179 1.6084 42.8 14

8 3 2 3 2 1 12.709 1.416 52.3 12.3

9 3 3 1 3 2 52.462 7.3798 87.2 64.8

10 1 1 3 3 2 1.1112 8.5442 35.44 75.12

11 1 2 1 1 3 4.1387 1.077 49.52 9.4

12 1 3 2 2 1 15.9932 5.2291 77.76 45.76

13 2 1 2 3 1 2.8099 2.5925 40.56 22.64

14 2 2 3 1 2 9.0418 0.3964 51.4 3.72

15 2 3 1 2 3 23.6342 1.2511 79.96 10.92

16 3 1 3 2 3 3.1063 1.0128 39.12 8.84

17 3 2 1 3 1 19.765 0.4629 53.2 4.04

18 3 3 2 1 2 46.2656 0.4766 78.48 1

est influence on performance characteristics followed by the voltage. The feed rate
turned out to be the least influential. However, feed rate played important role in
controlling the taper angle.

5.3 Response Surface Method

Different from GRA method, the response surface method (RSM) helps the
researchers to build a mathematical model between the process parameters and per-
formance parameters inmicro-EDMprocess. Once themathematical model is set up,
the relationship between the parameters can be obtained. Tiwary et al. [59] used the
RSM to explore the influence of themicro-EDMprocess parameterswhilemachining
of Ti-6Al-4V. During the study, the electrode was 300 μm brass and the workpiece
was Ti-6Al-4V alloy. The process parameters were decided as pulse on time, peak
current, gap voltage, and flushing pressure, and the performance characteristics were
MRR, TWR, overcut (OC), and taper. With the help of the RSM, a mathematical
model was built for these process parameters and performance parameters. In order
to test all the possible combinations, a total of 31 experiments were conducted based
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on uniform rotatable central method. At the end of each experiment, all 4 of the per-
formance characteristics were also recorded in the database. After all the experiments
were conducted, the data were analyzed using “Minitab version 15” software. Based
on the built mathematical model, all the coefficients were calculated by “Minitab ver-
sion 15” for each performance characteristics. The average percentage of prediction
errors forMRR, TWR,OCand taperwere 2.61, 3.74, 3.21 and 3.7% respectively. The
researchers also suggested that in order to achieve the optimized performance charac-
teristics while machining Ti-6Al-4V alloy, i.e. the maximumMRR and the minimum
TWR, OC and taper, the pulse on time should be set as 1 μs, the peak current should
be set as 2.5 A, the gap voltage should be set as 50 V and the flushing pressure should
be set as 0.2 kg/cm2. Under those settings, the maximumMRR was 0.0777 mg/min,
and the minimum values of TWR, OC, and taper were 0.0088 mg/min, 0.0765 mm,
and 0.0013, respectively.

6 Conclusion and Future Research

Electrical dischargemachining (EDM)usage has been drastically increasing in indus-
trial applications. Therefore, optimization of machining parameters is essential to
produce cost effective finished products. This chapter provides a concise overview
of the various optimization techniques used in EDM, and entails comprehensive lit-
erature work conducted on optimization of EDM based processes using numerous
statistical techniques. Die-sinking, fast hole drilling, wire, and micro EDM were
used as machining processes with varieties of dielectric fluids and electrodes. Crit-
ical information on the findings of optimization in EDM has been covered in this
chapter. Below are some of the key results from the chapter:

Wire EDM optimization:

• There have been more studies on optimizing the process parameters for wire
EDM compared to die-sinking EDM and micro-EDM, which demonstrates more
stochastic nature of the wire EDMprocess and importance of optimization process
parameters in wire EDM.

• Taguchi method was found to be effective in designing the experiments. However,
Taguchi based design of experiments are supported by other optimization tech-
niques. ANOVA was used more commonly to identify the significance of each
operating parameters on the machining performance.

• In many cases, combination of multiple optimization methods and comparing the
outcome of different methods with each other may be an effective approach to
identify the optimal process parameters and machining conditions in EDM.

• Among various methods, neural network and simulated annealing were found
to be very accurate in predicting the optimum conditions, when compared with
experimental results.
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• The response surface method was found to be useful in developing empirical
models and identifying the influence of individual parameter or combination of
parameters on the performance characteristics of EDM.

• The peak current and pulse duration were found to be the two most significant
parameters in wire EDM.

Sinker EDM optimization:

• Response surface method and Taguchi method were both found to be effective
and recommended in determining optimal parameters and improving quality for
sinker EDM optimization.

• Pulse on time, pulse current, and duty cyclewere themost significant input parame-
ters affectingmaterial removal rate, surface roughness, tool wear rate, and over-cut
during sinker EDM.

• Tool wear rate, material removal rate and over-cut generally increased with current
and pulse on time. The electrical conductivity and thermal conductivity of work-
piece and electrode material were also found to be significant in affecting output
variables in sinker EDM.

Micro EDM optimization:

• The capacitance and the gap voltagewere found to be themost significant indepen-
dent variables influencing the performance characteristics for die-sinking micro-
EDM.

• The peak current and spark gap were the two factors that had the most influence
on the performance characteristics for micro-EDM milling.

• In micro-EDM drilling, the capacitance had the most influence on both side gap
and taper ratio, followed by gap voltage. The feed rate turned out to be the least
influential. However, feed rate plays important role in controlling the taper angle.

• The optimized settings depend on the goal of the experiment. Different optimized
performance characteristics require different optimized process setting combina-
tions.

Newmaterials with intricate shapes and versatile properties are created frequently
tomaximize performance and production. Thus, constant effort should bemade in the
research field to comprehend the impact of machining parameters on the materials
and productivity, and to find optimal parameters which can be used in industries.
Following are some of the ideas and challenges that can be tackled in the future
research:

• Limited research was conducted using various shapes or dimensions of electrodes
in die-sinking EDM. Future work should comprise of electrodes with common
shapes used in industries. Analysis of dielectric fluid in optimization was insuffi-
cient, and needs further exploration.

• Due to growing demand of composites, the optimization techniques in EDM of
popular metal matrix composites (MMCs) should be studied.
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• Responses such as residual stress, surface morphology, and mechanical properties
after EDM must be analyzed moving forward.

• Cost analysis and mass production efficiency should also be studied in addition to
optimization to provide pragmatic outcome of changes in parameters.

• After the initial experiments are finished, a repeated set of experiments or machin-
ing a final productwith optimized settings could be conducted in order to guarantee
the optimized results could be used in the future operations in industries.

• Depending on fields of study, the process parameters and the performance param-
eters could vary and new research should consider optimization in real industrial
applications.
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Optimization of Accuracy and Surface
Finish of Drilled Holes in 350 Mild Steel

A. Pramanik, A. K. Basak, M. N. Islam, Y. Dong, Sujan Debnath
and Jay J. Vora

Abstract This chapter presents analysis and optimization of machinability of Mild
steel grade 350 while high speed drilling operation. Taguchi design of experiments
(DoEs), analysis of variance (ANOVA) and other traditional methods were applied
to optimize the input variables in order to minimise the circularity, cylindricity,
diameter error and surface roughness of drilled holes. It was found that point angle
was the highest contributor for the circularity, cylindricity and surface roughness
of drilled holes. The circularity error was minimum at the low speed (584 rpm),
low feed (0.15 mm/rev) and moderate point angle (125°). The cylindricity error
of holes was minimised at the high speed (849 rpm), moderate feed (0.2 mm/rev)
and moderate point angle (125°). The moderate speed, low feed and moderate point
angle minimised surface roughness considerably. The interaction between speed and
point angle had the maximum contribution to the diameter error of drilled holes. The
diameter error was minimum at the moderate speed, low feed and moderate point
angle.

1 Introduction

Drilling is a widely used fabrication process to form cylindrical holes of varying
size (diameters and depths) by removing materials with the help of rotating cutting
tool called ‘drill’. Drilling plays a very vital role in manufacturing industry, without
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which no manufacturing/fabrication becomes possible. There are three regions in a
drill tool, namely shank, flute and drill point. The function of a shank is to permit
the drill to be held and driven. Flute can help to remove chips when the drill starts
cutting the material, thus leading to the formation of chips of removed materials
and heat generation due to the friction. Flute at that point assists in the removal of
chips as well as carries cutting fluids all the way to the drill point. This is beneficial
to extract the excessive heat form cutting zones and keep the operation running
smoothly. The helix angle present in flute plays a very important role in the chip
formation during a drilling process. Depending on the end-users’ requirements, two
different sets of helix angles can be chosen, namely low helix angle (15°–20°) and
high helix angle (35°–40°). Low helix angle gives a greater torque and thrust due
to its rigidity compared to low helix angle. High helix angle facilitates greater chip
clearance for drilling a deeper hole in materials with less tensile strength. The point
region of drill helps to penetrate workpiece materials. It also contains chisel edge
and two cutting lips. For a standard drill bit, its point angle is generally 118° and
a lip relief or clearance angle vary between 7 and 20° [12]. The quality of the hole
fabricated by drilling operation in terms of cylindricity, circularity, diameter and
surface finish depends on the values of input parameters. Inappropriate values can
lead to an unnecessary increase of thrust and torques on cutting tool. In addition,
vibrations produced by a spindle during cutting operation can result in increased
thrust and torque. Also, it contributes to heat generation due to friction and cause
workpiece deformation.

In this work, the type of workpiece taken into considerations for drilling is mild
steel 350 as one of the most common metals used in industries for structural applica-
tions. Mild steel is most widely employed in applications with excellent mechanical
strength and combinations of varying properties [3]. Due to its high hardness and
malleability, it is used for construction materials, pipelines and cookware. It is easy
to machine and shaped to required geometries because of its flexible behavior. To
obtain the extra strength and hardness, it can always be hardened with the help of
carburising and heat treatment. The hardness of this type of steel can reach up to
550 BHN. However, hardenability is restricted within thin areas close to surfaces
due to the restricted diffusion of surface hardening elements during the process. As a
result of high carbon content, mild steel is prone to rusting and therefore, preventive
measures should be taken to avoid further rusting (https://sciencestruck.com/mild-
steel-properties).

The main input parameters responsible for obtaining desired quality of drilling
hole in a workpiece are cutting speed, cutting feed and point angle. Cutting speed
is a machining distance per unit time covered by the cutting edge while the tool is
rotating. Increase in speed results in higher frictional heat that induces tool wear
and defects in the hole [8]. Cutting feed is defined as the rate at which tool is being
penetrated in workpiece during drilling operation. It is one of the most important
parameters in drilling operation. The failure to choose an appropriate value of this
parameter may adversely affect the hole accuracy, burr formation, surface finish
and drill breakage in worst case scenario [8]. Point angle of a drill is another cutting
parameter of drilling operation. It is practically equivalent to the lead angle in turning

https://sciencestruck.com/mild-steel-properties
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and milling operations. The point angle of a drill results in surface penetration of a
workpiece and giving rise to cutting forces. It is evident that more surfaces of a drill
point come in contact to workpiece (decrease in point angle) with thinner and wider
chip formation. Increases in cutting edge resulting in better tool life, reduction in
axial forces and rise in radial thrust [12].

2 Literature Review

Optimization of any machining process is very important to improve the produc-
tivity and part/feature quality. There have been many investigations conducted to
optimize the drilling process using various methods. For example, Lee et al. [24]
used abductive network for modelling drilling processes where the network was
composed of a number of functional nodes. These were self-organized and applied
optimization by using a predicted squared error criterion. The developed network
was capable to predict the drilling performance from the process parameters. After
this, they applied simulated annealing optimization algorithm with a performance
index to the developed network when searching for the optimal process parameters.
Kim and Ramulu [19] utilized multiple objective linear program to optimize drilling
feed and speed to maximize hole quality and minimize machining cost. The anal-
ysis of variance (ANOVA) technique was used to predict the relative significance
of the process parameters and to estimate the experimental errors. ANOVA analysis
of a model with input parameters and all the second order interactions were used
to isolate important process factors. An empirical quadratic equation was used to
determine the correlations between input and output parameters. Haq et al. [13] con-
sidered multiple responses based on orthogonal array with grey relational analysis
to optimize drilling parameters. A grey relational grade is obtained from the grey
analysis. Based on the grey relational grade, optimum levels of parameters have
been identified and significant contribution of parameters is determined by ANOVA.
Confirmation test is conducted to validate the test result. Experimental results have
shown that the responses in drilling process can be improved effectively through
the new approach. Kurt et al. [23] utilize Taguchi methods to optimize dry drilling
process. Orthogonal arrays of Taguchi, the signal-to-noise (SNR) ratio, ANOVA
and regression analyses are employed to find the optimal levels and to analyse the
effect of the input parameters on output parameters. Krishnamoorthy et al. [21] used
Taguchi’s L27 orthogonal array where the optimal combination of drilling parameters
was chosen using grey fuzzy relational analysis. The optimization of drilling param-
eters was based on five different output performance characteristics, namely, thrust
force, torque, entry delamination, exit delamination and eccentricity of the holes.
They used ANOVA to find the percentage contribution of the drilling parameters.
Vankanti and Ganta [40] optimized drilling process based on Taguchi experimental
design and an L9 orthogonal array to understand the effect of different combina-
tions of input parameters on hole quality. ANOVA test was conducted to determine
the significance of each process parameter on drilling. The Taguchi’s experimental
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design and ANOVA techniques were also implemented by Prasanna et al.[32] to
understand the effects, contribution, significance and optimal machine settings of
process parameters during drilling small holes where grey relational analysis and
mathematical modelling were undertaken by regression analysis.

The literature review shows that the drilling process has mainly been optimized
by Taguchi’s experimental design and ANOVA techniques. An abundant number of
reports are available on drilling steels and many other materials in literature. Firouz-
dor et al. [11] investigated wear and tool life of HSS drills under dry machining of
carbon steels. It was noted that tool life of the drill bits improved by 77 and 126%
when drill bits underwent cryogenic and cryogenic-temper treatment, respectively.
This resulted from fine and homogeneous carbide particles formation during the
cryogenic treatment that deterred diffusion wear. In addition, improved hardness due
to the martensite formation played an active role in the reduction of tool wear. Çiçek
et al. [7] also used cryogenically treated M 35 high speed steel (HSS) twist drills
in drilling AISI 304 and 316 stainless steels (SS). In this case, treated drills also
performed better than untreated drills in terms of thrust generation, surface rough-
ness, tool wear and tool life for both types of stainless steels. Tool life of treated
HSS drills in drilling of AISI 304 SS and AISI 316 SS improved by 32 and 14%,
respectively, compare to that of untreated drills. The machinability of AISI 304 SS
was worse than that of AISI 316 SS. Dolinšek et al. [9] investigated the chip for-
mation procedure using quick-stop during the process of drilling austenitic stainless
steels. Severe work hardening was noted in cutting zone, predominantly owing to the
action of chisel edge by feed (50%) and cutting (30%) forces. This formed a hard but
narrow chisel edge chip acting as a built-up edge (BUE). Belluco et al. [2] evaluated
the performance of vegetable-based oils while drilling AISI 316L austenitic stain-
less steel using conventional HSS-Co tools. They found that vegetable-based oils
performed better than conventional mineral oil where the tool experienced as high
as 177% increment of tool-life and as low as 7% reduction in thrust. Kıvak et al. [20]
studied the optimisation of drilling parameters using Taguchi method and analysis
of variance (ANOVA) during the dry drilling of AISI 316 stainless steel by uncoated
and coated M35 HSS twist drills. It was found that the type of cutting tool was the
most significant factor that affected surface roughness, whereas feed rate influenced
the thrust most. It was reported that nano-TiAlN coated drill with the cutting speed
of 18 m/min and feed rate of 0.12 mm/rev gave the best surface finish. On the other
hand, uncoated drill with the cutting speed of 16 m/min and feed rate of 0.1 mm/rev
generated the lowest thrust force. Chen et al. [6] investigated the performance of tita-
nium nitride (TiN) and titanium carbonitride (TiCN) coated tools during the drilling
of JIS SUS 304 SS. In this case, TiN multilayer coated drills performed better under
different machining conditions than that of uncoated drill. Both thrust and torque
increased with the rise of feed for both coated drills and increased with the rise of
spindle speed up to 120 rpm, but decreased with further rise of speed to 157 rpm. The
contributions of feed on thrust and torque for both coated drills were higher than that
of spindle speed. Min et al. [25] developed a burr formation control chart during the
drilling of low alloy steel AISI 4118, using high-speed steel split-point twist drills.
Burrs were classified as small uniform burr, large uniform burr, crown burr, and
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transient burr based on their shapes. New parameters consisting of process param-
eters and drill diameter were developed and used to show a unique distribution of
burr types. The uniform burrs were independent of drill diameter. There were certain
limits of feed and cutting speed, above which crown burrs were generated. Routio
et al. [34] investigated tool-monitoring methods during the drilling of stainless steel
where three cutting fluids and high-speed steel (uncoated and TiN-coated) tools were
compared. Nomani [27] investigated machinability of duplex alloys SAF 2205, SAF
2507 and austenite stainless steel 316L during the drilling process. It was observed
that duplex alloys displayed poor machinability responses, with SAF 2507 being
the worst where abrasion and adhesion wears appeared on flank and rake faces. The
adhesion wear was most severe on the flank face that was triggered by built-up edge
formation, which was the highest in case of duplex alloys. It was found that duplex
2507 had higher sensitivity to cutting speed duringmachining and strain hardening at
a higher velocity and less machinability due to presence of higher percentage of Ni,
Mo and Cr. the mechanism of BUE formation in stagnation region of duplex alloys
[28, 29] was further investigated during the material removal by a turning process.
Kilickap et al. [18] optimised input variables such as cutting speed, feed rate and
point angle that affected burr height during the drilling of AISI 304 stainless steel by
using the response surface methodology and genetic algorithm. It was reported that
the minimum burr height could be achieved at lower cutting speed and feed rates,
as well as at a higher point angle. Tosun [39] employed a grey relational analysis to
optimise the drilling process parameters such as feed rate, cutting speed, drill point
angles to minimize surface roughness and burr height. The order of importance with
respect to controllable factors towards multi-performance characteristics was drill
type, cutting speed, feed rate and drill point angle sequentially. It was claimed that
surface roughness and burr height could be minimized via this approach. Hashmi
et al. [14] used a fuzzy model to evaluate drilling parameters for different types of
workpiece materials in a different range of hardness values. Çaydaş et al. [4] investi-
gated the performances of HSS, K20 solid carbide and TiN-coated HSS tools in dry
drilling AISI 304 austenitic stainless steel. Spindle speed, feed rate, drill point angle
varied for different holes and surface roughness, tool flank wear, exit burr height
and enlargement of hole size were measured. It was found that TiN-coated HSS drill
performed the best with longer tool life and better hole quality, as well as lower
surface roughness, which was followed by K20 carbide and HSS tools. Kaplan et al.
[17] studied the effect of cutting speed and feed rate on cutting force and torque
while dry drilling AISI D2 and AISI D3 cold work tool steels. It was determined that
the most significant factor contributing to thrust was feed rate. High spindle speed
increased the thermal expansion, resulting in the increased plastic deformation of the
workpiece leading to the reduction in the microhardness of chips and further thrust
reduction. Endo et al. [10] assessed the accuracy of drilled holes using a Fourier
series approach for small holes of 1 mm diameter in a mild steel plate. The accuracy
was measured by the extreme possible difference between hole’s configuration and
radius of least-square circle resulting in mean radius. The assessments by universal
projector and a digital camera indicated that holes were not completely circular. They
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concluded that bending rigidity of drill tools significantly influenced the accuracy
and led to an exceptional impact on drilled holes.

Hayajneh [15] investigated the effect of input parameters on the quality such as
surface roughness, out-of-roundness and hole size of deep holes produced by bor-
ing trepanning association (BTA) drilling on medium carbon steel (AISI 1060). It
was found that there was a critical cutting speed which gave the best surface fin-
ish. The roundness error increased with the increase of feed rate and cutting speed.
The variation of hole was the minimum at the moderate feed rate, but it was higher
at the low cutting speed. Samui [36] used MPMR (Minimax Probability machine
regression), MARS (Multi-variate Adaptive Regression Spline) and LSSVM (Least
square support vector machine) to investigate surface roughness and roundness error
of drilled holes in AISI D2 workpiece by TiAlN/TiN multilayer coated cemented
carbide drill bits. It was argued that all the methods remained valid for determin-
ing the output parameters and cutting tool significantly affected the roughness and
roundness error. However, MPMR technique was found to be more accurate than
MARS and LSSVM. Kumar et al. [22] used the Taguchi method to minimize the
surface roughness of drilled holes in mild steel workpiece where the input variables
were spindle speed, cutting feed and point angles. It was found that an integration of
lower spindle speed (7 m/min), cutting feed (0.35 mm/rev) and intermediate point
angle (90°) could be used tominimise the surface roughness. Sultan et al. [37] investi-
gated the effect of cutting speed, feed rate and point angle on circularity, cylindricity,
diameter error and surface roughness of drilled holes on AISI 316L stainless steel
produced by uncoated carbide drill with 30° helix angle. It was reported that the effect
of cutting speed on roundness error was minor, but the diameter error increased, and
surface roughness decreased with the increase of cutting speed. The combined effect
of cutting speed and feed rate on circularity error was not significant. The increase
of cutting speed and feed rate increased the cylindricity error significantly, which
further affected the straightness of the cutting tool.

3 Scope of the Investigation

The accuracy specification of machined holes is normally represented by their circu-
larity, diameter error and cylindricity as the most important parameters. Circularity
is also called roundness, which can be defined as the property of a surface on which
all points are at an equal distance from the central axis of aforementioned surface
[31]. It basically measures a deviation of geometric tolerance compared to a perfect
circle. Figure 1 represents the schematic view of circularity of a particular hole.

Diameter error can be defined as the difference between experimental values
obtained through coordinate measuring machine (CMM) and the actual size of the
hole. If the diameter value obtained via CMM is greater than the actual size of the
circle, it can be said that the hole has been over cut at a specified input parameter
[31].
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Fig. 1 Schematic of circularity error [35]

Fig. 2 Cylindricity analysis on a drilled hole [5]

Cylindricity is defined as a feature of a plane of revolution at which all points
lying on the plane are at an equal distance from a common axis. Cylindricity toler-
ance can be explained as the determination of a tolerance zone for two concentric
cylinders and planes where the cylinders must lie inside it [5]. In this case, the
tolerance implies concurrently circular as well as longitudinal components of the
surface. Cylindricity measurement incorporates circularity, straightness and taper-
ing of a circular-hole dimension. In order tomeasure the cylindricity of a drilled hole,
various methods can be employed, namely least square cylinder (LSCY), minimum
circumcised cylinder (MCCY), maximum inscribed cylinder (MICY) and minimum
zone cylinder (MZCY), as shown in Fig. 2.
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Above-mentioned parameters accessing hole quality are very important in prac-
tical applications of drilled parts. When cylindrical fit is necessary, diameter error
is the most important characteristic of a machined hole. It is particularly important
for rotating component parts where excessive circularity may cause unacceptable
vibration and heat. Another important quality parameter to examine is surface finish
(e.g., surface roughness) as it is very significant in relation towear, corrosion, fatigue,
noise, load-carrying capacity, heat transfer and so on. Surface roughness represents
random and repetitive deviations of a surface profile from nominal surface, which
is usually expressed by arithmetic average (Ra) since it is most commonly used and
internationally accepted.

The quality parameter data were analyzed by applying two statics techniques
including ParetoANOVAandTaguchi’s signal-to-noise (SNR) ratio analysis through
design of experiments (DOE). In a traditional ANOVA analysis, average response
values have been used. This strategy is particularly suitable for monitoring trends or
changes in the relationship of variables. However, it does not provide the complete
representation because it normally does not include data with respect to the response
scattering. Pareto ANOVA is a statistical method for determining the contribution
of individual input parameters and their interactions with output quality parameters
[30].

DOE is a powerful tool for experimentation which is widely used by researchers
and engineers to study the effects of input parameters on output parameters in all
fields. It plans experiments for appropriate data collection through the least number of
experiments. Basically, DOE is the scientific management of information acquisition
by experiment [30] which was first proposed by R. A. Fisher in England in the 1920s
[26]. The inventive work dealt with agricultural applications of statistical methods.
R. A. Fisher sought to find out how much rain, water, fertilizer, sunshine, etc. are
needed to produce the best crop and pioneered the DOE methodology. It is also
known as factorial DOE which can be full or partial. A full factorial DOE considers
all possible combinations for a given set of factors and their levels. In general, full
factorial DOE requires nk number of experimental runs, where n is the number of
factor levels and k is the number of factors considered. The main advantage of this
method is that it takes into account all the main and interaction effects, providing
a full picture. However, the method requires a large number of experimental runs
which are cumbersome, time consuming and expensive. The alternative is fractional
factorial DOE in which only a small set of experiments are selected from a full
factorial design. As a result, the interaction effects are often disregarded. While the
fractional factorial method is well known, it is problematic as there are no guidelines
for its application and subsequent analysis [16].

Taguchi formalized the fractional factorial DOE method and published a library
of orthogonal arrays, which reduces the number of required experiments signifi-
cantly. The method is simple and easy to apply. Orthogonality of the DOE permits
the separation of the individual effects of each of several variables [38]. Taguchi’s
orthogonal array is represented in a symbolic format as La(bc), where the letter ‘L’
indicates that the experimental designs are associated with Latin square designs, a
is the number of runs, b is the number of levels considered, and c is the number
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Fig. 3 Flow chart of Taguchi method [41]

of columns (number of factors) [16]. Thus, L9 (34) represents that a total of nine
experimental runs will be conducted for a three-level, four-parameter experiment.
A full factorial DOE conducted by the traditional method for the same study will
need 34 = 81 experiments. Hence, for an industrial application, the Taguchi method
provides a significant savings of experimental runs.

The Taguchi method makes use of a special design of orthogonal array (OA) to
examine the quality characteristics through a minimal number of experiments. The
experimental results based on the OA are then transformed into S/N ratios to evaluate
the performance characteristics [1]. Theflowchart of theTaguchimethod is illustrated
in Fig. 3 [41]. It is more compact and includes a failure loop for invalidated design
of experiment. The first step is the problem formulation, which requires defining an
objective function, factors and levels. This step requires an in-depth knowledge of
the process of interest. The inputs from experienced operators are essential in deter-
mining the potential optimization and disturbance variables, as well as their normal,
high and low values. The optimization and disturbance variables are, respectively,
called controllable and noise factors in the Taguchi-related literature. Limits of high
and low values are called levels. Median, and lower and upper quartiles of the limits
may also be included to augment experimental design configurations. The second
step involves designing and conducting experiments. The number of factors and lev-
els has an effect on selection of standard orthogonal arrays. The third step deals with
the analysis of results. Three major statistical tools commonly applied in the Taguchi
method are signal-to-noise ratio (SNR), analysis of means (ANOM) and analysis of
variance (ANOVA). The fourth step is the validation of experiment.

In the traditional analysis, the averagevalues of the responsedata are used,whereas
theTaguchimethod utilizes both average and variation of data. Therefore, theTaguchi
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method is expected to produce better results because it guarantees the highest qual-
ity with minimum variance [16]. Taguchi proposed the S/N ratio as a quantitative
analysis tool for optimizing the outcome of a process. Taguchi classifies quality char-
acteristics into three categories: (i) the smaller the better, (ii) the larger the better,
and (iii) the nominal the better. The formula for calculating the SNR ratio depends
on the type of quality characteristics investigated. For example, Eq. (1) calculates
the SNR ratio of a quality characteristic in which the adage “the smaller the better”
holds true [33].

To optimize the robustness of manufacturing process data, Taguchi statistical
method was used by applying signal-to-noise ratio (SNR) was used in this inves-
tigation. The SNR can be calculated by using the following formula based on ‘the
smaller the better’ criterion [33]:

SN R = −10 log
1

n

(
n∑

i=1

y2i

)
(1)

where n is the number of observations and y is the observed data. The higher the
value of S/N ratio, the better the results are because it guarantees the highest quality
with a minimum variance. An expanded explanation of Taguchi method can be found
elsewhere [33].

It is worth pointing out that the main emphasis of the Taguchi method is on robust
design, i.e., making a product’s quality of performance insensitive to variations in
manufacture, in-service wear, and in-service environmental variations. It is a tool
for quality improvement and cost reduction rather than determining the casual rela-
tionships of how things happen. The Taguchi approach is more engineering-oriented
than science-oriented [30]. The results were analyzed applying average response,
Taguchi’s S/N ratio, and Pareto ANOVA. Pareto ANOVA is an excellent tool for
determining the contribution of each input parameter and its interactions with the
output parameters. It is a simplified ANOVA analysis method that does not require
an ANOVA table and does not use F-tests. Consequently, it does not require detailed
knowledge about the ANOVA method [30].

4 Experimental Procedure

Drilling process was carried out in a CNCmachine centre as shown in Fig. 4. Experi-
ments were performed on a metal plate (i.e., mild steel 350 with dimension of 440 ×
75× 12mmand associated chemical compositions: 0.25% carbon, 1.5%manganese,
0.04% phosphorous, 0.04% sulphur and iron balance). Workpiece material including
12 mm thick and 12 mm diameter holes were drilled through the metal plate with
the help of HSS drills with the specification of 12 mm diameter and different point
angles (118°, 125° and 135°). Cutting fluid was used as coolant to minimize heat
generation duringmachining. Circularity, diameter error and cylindricity of the holes
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Fig. 4 Experimental setup

Table 1 Range and level of input parameters

Input parameters Symbol Level 0 Level 1 Level 2

Cutting speed (RPM) A 584 (A0) 716 (A1) 849 (A2)

Feed (mm/rev) B 0.15 (B0) 0.2 (B1) 0.25 (B2)

Point angle (°) C 118° (C0) 125° (C1) 135° (C2)

were measured via coordinate measuring machine (CMM). A Discovery Model D-8
coordinate measuring machine (CMM), was used to determine the precision of cut
hole, using Renishaw probe in a star configuration for convenience. The diameters
of cut holes were determined by using standard built-in software of CMM. Eight
coordinate points were measured to establish diameter values and each coordinate
measurement was repeated three times. This coordinate data was also used to find
the circularity of cut holes. Surface roughness of each turned surface was determined
by using a tally surf Surftest SJ-201P. The measurement was taken at three locations
on each hole with average data being reported.

These input parameters such as speed, feed and point angle were designed with
the help of Taguchi method, as shown in Tables 1 and 2. The input parameters were
categorized on the basis of different levels according to a L27 Taguchi approach. The
levels were numbered starting from 0 to 2, where 0 was the lowest level while 2
represented the highest level.
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Table 2 Details of each
experiment

Experiment Cutting speed
(A)

Feed rate
(B)

Point angle
(C)

1 0 0 0

2 0 0 1

3 0 0 2

4 0 1 0

5 0 1 1

6 0 1 2

7 0 2 0

8 0 2 1

9 0 2 2

10 1 0 0

11 1 0 1

12 1 0 2

13 1 1 0

14 1 1 1

15 1 1 2

16 1 2 0

17 1 2 1

18 1 2 2

19 2 0 0

20 2 0 1

21 2 0 2

22 2 1 0

23 2 1 1

24 2 1 2

25 2 2 0

26 2 2 1

27 2 2 2

5 Results and Discussions

Theoptimizationof input parameters such as speed, feed andpoint anglewas basedon
the effect of these parameters on circularity, diameter error, cylindricity and surface
roughness. The following results and discussions were presented according to the
output parameters sequentially.
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5.1 Circularity

The contributions of individual parameters and their interactions on the circularity of
drilled holeswere given in Table 3 based on ParetoANOVAanalysis. The table shows
that the highest and most significant contributor on circularity was point angle (C),
which contributed approximately 85% (P ∼= 85.78%). The next highest interacting
contribution was from speed and point angle (A × C), approximately 3.5% (P ∼=
3.48). A very similar contribution (P ∼= 3.47) was also made by cutting speed (A).
It was noted that individual parameters were most responsible factors affecting the
circularitywith 89.90%.Whereas, interactions of parameters only affected circularity
by 10.10%. This made it easier to analyze that input parameters lead to the reduction
in the circularity of drilled holes.

In order to validate the results obtained from Pareto ANOVA analysis, response
table and graph for the circularity are presented in Table 4 and Fig. 5, respectively.
These depicted input parameters and their responses against S/N ratio. The slopes
obtained in the graphs express potential influence ratio that can further be valued.
As seen from Table 4, it was noted that the lowest individual parameter contributing
to higher circularity was point angle (C). This was followed by the contributions of
speed and point angle interaction (A × C) and cutting speed (A). Hence, it can be
said that in order to minimize the circularity, A0B0C1 was regarded as the perfect
set of input parameters, where A0 was lowest cutting speed (584 RPM), B0 was low
feed rate (0.15 mm/rev) and C1 was moderate point angle (125°). The above-stated
results can be further verified using a traditional method, as shown in Fig. 6. Thus it is
confirmed that the minimum circularity can be found with the lowest cutting speed,
lowest feed rate and moderate point angle. This can also be proven by using Taguchi
analysis with similar results. Based on the consideration of input parameters (i.e.,
cutting speed, feed and point angle) obtained from ANOVA, Taguchi and traditional
methods, it can be confirmed that all three methods yield similar results to optimized
parameters leading to the minimum circularity.

5.2 Cylindricity

The contributions of input parameters and their interactions on the cylindricity of
drilled holes are given in Table 5 based on Pareto ANOVA analysis. It was found that
the most significant individual contributing parameter was point angle (C) where the
influence ratio was P ∼= 40.8%. This was followed by the contribution of interaction
effect between cutting speed and point angle (A × C) and then interaction effect
between feed rate and point angle (B × C) with influence ratios of P ∼= 14.45 and
12.86%, respectively. In this case, contributions of interactions among the parameters
(P ∼= 56.62%) on the cylindricity were greater than that of individual parameters (P
∼= 43.38%). This made it more difficult to analyze the input parameters leading to the
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Table 4 Response table for
mean S/N ratio in relation to
circularity and significant
interaction

Input
parame-
ter

Symbol Level 0 Level 1 Level 2 max-
min

Speed A 26.93 25.09 25.20 1.84

Feed B 26.23 25.62 25.36 0.87

Point
angle

C 26.09 30.68 20.44 10.25

Interaction A × C 24.63 26.68 25.90 2.05
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Fig. 5 Response graph of SNR ratio for circularity
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Fig. 6 Impact of input parameters on circularity using traditional method
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Fig. 7 Response graph SNR ratio for cylindricity
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Fig. 8 Effect of input parameters on cylindricity using traditional method

least cylindricity error in holes, as interaction parameters involved a two-way table
in order to evaluate the influence of individual parameters on the cylindricity.

Table 6 andFig. 7 respectively present SNR response and graph for the cylindricity
to validate the results obtained from Pareto ANOVA analysis. The slopes obtained in
the graphs expressed the potential of influence ratio that could further be confirmed
using Table 6. As shown from Table 6, it was noted that the most remarkable indi-
vidual parameter contributing to highest cylindricity was point Angle (C). This was
followed by feed rate (B) and cutting speed (A). As also illustrated in Fig. 7, it was
found that the optimum parameters contributing to minimum cylindricity error were
A2B1C1, where A2 was maximum cutting speed (849 RPM), B2 was moderate feed
rate (0.2 mm/rev) and C2 was moderate point angle (125°). The above-stated results
were further proven by using the traditional method, as displayed in Fig. 8. It was also
showed that the minimum cylindricity error of drilled holes occurred at maximum
cutting speed, moderate feed rate and moderate point angle. Therefore, the values
of optimum input parameters (i.e., cutting speed, feed and point angle) obtained
from ANOVA, Taguchi and traditional methods are similar in order to minimise the
cylindricity error of drilled holes.
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Table 6 Response table for
mean SNR ratio for
cylindricity

Input
parame-
ter

Symbol Level 0 Level 1 Level 2 max-
min

Speed A 17.34 16.98 17.92 0.94

Feed B 17.64 17.74 16.86 0.88

Point
angle

C 18.65 18.90 14.70 4.20

Interaction A × C 16.38 19.02 16.84 2.65

5.3 Diameter Error

The contributions of different input parameters and their interactions on diameter
error of the holes are presented in Table 7 based on Pareto ANOVA analysis. It was
shown that the highest contributor on diameter error was the interaction between
cutting speed (A) and point angle (C) with an influence ratio of P ∼= 44.78%. This
was followed by the contribution of second interaction between the same parameters
(C and A) with the influence ratio of P ∼= 27.16%. The third highest contributor was
point angle which had the influence ratio of P∼= 16.73%. Based on total contributions
from individual and interaction of parameters, it was noted that individual parameters
contributed on diameter error by P ∼= 23.02% whereas the contributions from the
interaction of parameters was P ∼= 76.98%. Therefore, it was not easier to minimise
diameter error by simply controlling individual parameters.

The results obtained from Pareto ANOVA analysis regarding diameter error were
validate by SNR response table and graph, as demonstrated in Table 8 and Fig. 9,
respectively. As the slopes of the graphs expressed the potential of influence ratio,
Table 8 showed that the highest individual contributor was point angle (C) and lowest
individual contributor was feed (B). Figure 9 showed that the minimum diameter
error occurred at the lowest cutting speed (A0 = 584 RPM), moderate feed rate (B1 =
0.20mm/rev) and lowest point angle (C0 =118°). These resultswere further validated
by using the traditional method as depicted in Fig. 10. It was clearly demonstrated
that the lowest diameter error took place with the lowest cutting speed, moderate
feed rate and lowest point angle.

5.4 Surface Roughness

Based on Pareto ANOVA analysis, the contributions of different input parameters on
surface roughness (Ra) of drilled holes were presented in Table 9. It was shown that
the highest contributor to surface roughness of the drilled holes was point angle (C),
which was followed by cutting speed (A). The contributions of these two parameters
were P ∼= 48.6 and 12.5%, respectively. These were followed by the contributions
of interactions between feed rate and point angle (B × C) and the other interaction
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Table 8 Response table for mean SNR ratio for diameter error

Input parameter Symbol Level 0 Level 1 Level 2 max-min

Speed A 15.40 13.81 13.73 1.67

Feed B 14.10 14.57 14.27 0.46

Point Angle C 16.14 13.49 13.31 2.83

Interaction A × C 14.38 16.87 11.69 5.19
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Fig. 9 Response graph SNR ratio for diameter error
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Fig. 10 Effect of input parameters on diameter error using traditional method

between cutting speed and point angle (A × C) with the influence ratios of P ∼=
10.85 and 9.97%, respectively. In this case, the total contribution from the effect
of individual parameters was P ∼= 69.39%, which was much greater than that of
interactions among parameters (P ∼= 30.61%). This made it easier to analyze the
individual input parameters leading to the minimum surface roughness of drilled
holes.

Table 10 and Fig. 11 represent the response of S/N ratio for surface roughness.
Similar to Pareto ANOVA analysis, the response table showed that point angle (C)
was the most contributing parameter for surface roughness. This was followed by
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Table 10 Response table for mean S/N ratio for surface roughness

Input parameter Symbol Level 0 Level 1 Level 2 max-min

Speed A −17.16 −16.70 −19.10 2.40

Feed B −16.47 −18.16 −18.33 1.87

Point angle C −18.94 −14.76 −19.27 4.50

Interactions A × C −17.11 −17.38 −18.48 1.36
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Fig. 11 Response graph of SNR ratio for surface roughness

cutting speed (A) and feed rate (B). As shown in Fig. 11, it was noted that optimum
values of parameters contributing to the minimum surface roughness were A1B0C1

where A1 is moderate cutting speed (716 RPM), B0 is lowest feed rate (0.15 mm/rev)
and C1 is moderate point angle (125°). The above-mentioned results were further
proven using the traditional method, as shown in Fig. 12. It was also confirmed that
the lowest surface roughness of drilled holes was found at moderate cutting speed,
lowest feed rate and moderate point angle. As such, taking into consideration the
values of input parameters (i.e., cutting speed, feed and point angle) obtained from
ANOVA, Taguchi and traditional methods, it can be confirmed that all three methods
gave similar results for optimised parameters leading to the least surface roughness
of drilled holes.

6 Optimised Conditions

The optimised conditions of different output parameters are given in the Table 11. For
the same conditions the CMM measurement of circularity error, cylindricity error
and diameter error are presented in Fig. 13.



Optimization of Accuracy and Surface Finish of Drilled Holes … 87

0.0

2.0

4.0

6.0

8.0

10.0

12.0

584 716 849 0.15 0.2 0.25 118 125 135

Cutting Speed Feed Point angle

Su
rf

ac
e 

ro
ug

hn
es

s (
μm

)

Fig. 12 Impact of input parameters on surface roughness using traditional method

Table 11 Values of input parameters for optimum output parameters

Output parameters Speed (RPM) Feed (mm/rev) Point angle (°)

Circularity error A0B0C1 584 0.15 125

Cylindricity error A2B1C1 849 0.2 125

Diameter error A0B1C0 584 0.2 118

Surface roughness
(A1B0C1)

716 0.15 125

Fig. 13 CMM results for different error measurement at the optimized conditions
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7 Conclusions

The accuracy and surface roughness of holes were analyzed by using Taguchi and
Pareto ANOVAmethod while drilling holes in mild steel 350 grade. The accuracy of
drilled holes has been evaluated based on three criteria: circularity, cylindricity and
diameter error. The above-stated investigation on these factors can be summarized
as follows:

1. Point angle was themost dominant factor to affect the circularity along the length
of drilled holes, as confirmed by both Taguchi and ANOVAmethods. Circularity
error was the minimum at the low speed, low feed and moderate point angle.
Minimum cylindricity error was achieved at the high speed, moderate feed and
moderate point angle.

2. The interaction of speed and feed was the most significant factor to influence the
diameter error of drilled holes. Low cutting speed, moderate feed and low point
angle resulted in least diameter error. The diameter error for moderate cutting
speed, low feed and moderate point angle was small as well, which was almost
close to the parameters leading to lowest diameter error. Point angle was the most
influencing factor, followed by cutting speed and interaction of feed and point
angle as it caused the highest surface roughness drilled holes. Moderate speed,
low feed andmoderate point angle gave the minimum roughness along the length
of drilled holes.

3. In case of circularity and surface roughness, the summation of the contribution
of individual parameters is higher than that of interactions among parameters.
This makes it easier to control circularity and surface roughness easily by vary-
ing input parameters. On the other hand, the summation of the contribution of
individual parameters was smaller than that of interactions among parameters
for cylindricity and diameter errors. Consequently, it is not easier to optimize
cylindricity and diameter errors by simply controlling input parameters.
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Modelling and Optimization of Laser
Additive Manufacturing Process of Ti
Alloy Composite

Rasheedat M. Mahamood and Esther T. Akinlabi

Abstract Laser metal deposition process is one of the important processes of addi-
tive manufacturing technology which is used for the production of end-use parts as
well as repair of worn-out high valued engineered parts. The functional performance
of laser metal deposition process is greatly dependent on its process parameters;
therefore, considering the type of job and nature of material, they need to be ade-
quately optimized before a job can be successfully carried out and with the desired
properties. The processing parameters that govern the laser metal deposition process
include: the laser power, the scanning speed, the powder flow rate and the gas flow
rate. A lot of interactions exist among these processing parameters that make the
careful optimization of the processing parameters an important task. In this chapter,
modelling of laser metal deposition process of metal alloys and composites is pre-
sented. The chapter consist of an in depth review of literature on this subject in the
introduction (Sect. 1). Optimization of process parameters for laser metal deposition
of titanium alloy is presented in Sect. 2. A case study on statistical modelling of tita-
nium alloy composite and process parameters optimization is presented in Sect. 3.
The chapter ends with the summary in Sect. 4.

Keywords Additive manufacturing · Laser metal deposition · Modelling ·
Optimization · Titanium · Wear

1 Introduction

Additivemanufacturingmethodhas come to revolutionized thewayproduct are being
manufactured and has offer solutions to a number of industrial problems, including
reduction of waste in product remanufacturing [1]. Products can be manufactured
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with desired material properties using additive manufacturing process through the
flexibilities offered by the process having the ability to handle multilateral [2–4].
Additive manufacturing technology can be broadly classified into two, namely: laser
based additive manufacturing and non-laser based additive manufacturing technolo-
gies [5]. Laser based additive manufacturing technology is the most popular additive
manufacturing technology due to the unique properties provided by the laser beam
which is the source of energy used in this manufacturing process. The ability to
direct laser beam only to the needed area without interfering with the surrounding
material. Laser metal deposition process, selective laser sintering and selective laser
melting are important laser additive manufacturing technologies. These important
technologies are still evolving because, a lot still need to be understood as regards
to the physics of these processes. A number of research works has been recorded
in the literature towards understanding these processes. Some research works are
dedicated to model the process. There is no doubt that modeling and simulation will
go a long way to properly understand this process, as against the commonly trial and
error methods usually adopted in process optimization when components are built.
It will also help to quantify the properties of the manufactured components based on
the process parameters employed. The flexibility offered by additive manufacturing
process in its ability to produce components with combination of materials makes
modelling of these processes more challenging. In order to adequately model these
additive manufacturing processes, multiple scales modeling techniques are required.
This is to be able to account for the detail properties of the newclass ofmaterials being
processed through this importantmanufacturing process. For example, the traditional
alloying place limit on the quantity of alloying element that can be permissible by
thermodynamic laws. Additive manufacturing has transient this laws and it makes it
possible to produce alloys of materials with wide apart melting temperatures. This
type of material cannot be alloyed together using the traditional melting process
because the two materials will segregate upon cooling. The rapid solidification of
the melt pool that characterized laser additive manufacturing technologies makes it
difficult for materials to segregate and the melting takes place bit by bit and layer
by layer. The use of multiple length scales modelling will help in the development
of the basic understanding of the underlying physics of the process and within the
macro-scale models to effectively simulate component performance.

Against this background, Francois et al. [6] review some of the challenges fac-
ing the modelling and simulation of additive manufacturing processes. This study
showed that modeling the process, microstructure, and other properties, and process
optimization needs to be done at different scales and regimes, which will enable the
advancement towards an integrated computational method in achieving the process-
structure-properties-performance which will help optimization of materials to meet
a specific performance requirement. This is shown schematically in Fig. 1. Criales
et al. [7] investigated the effect of process parameters on temperature profile andmelt
pool geometry and developed a predictivemodel for selective lasermelting of Inconel
625. The influence of powder parking density on the characteristics of the product
was analyzed. The result of this study showed that the proposed finite element model
is in good agreement with the experimental data. The temperature distribution with
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Fig. 1 Illustration of the envisioned integrated process-structure-properties-performancemodeling
and simulation approach and associated length scales [6]

the melt pool geometry predicted by the model is very close to the melt pool from
an experiment conducted by Yadroitsev et al. [8] as shown in Fig. 2. Verma and Rai
[9] formulated an optimal process planning model for selective laser sintering pro-
cess to address the sustainability issue in additive manufacturing. Acharya and Das
[10] investigated the modelling of IN100, a high gamma-prime nickel-based super-
alloy, using scanning laser epitaxy. The result of this study showed that a crack free
deposition of IN100 can be produced using the developed model. Comprehensive
modelling approaches in additive manufacturing was done by Bikas et al. [11] for the
purpose of identifying research gaps and highlighted the importance of modelling in
development of closed-loop control for the additive manufacturing process.

Stender et al. [12] proposed a finite element (FE) analysis to simulate the thermal
and mechanical responses in laser engineered net shaping (LENS), a laser additive
manufacturing process, at a macroscopic length scale to predict thermal conditions
during the manufacturing process, distortions, strength and residual stresses. The
proposed model allows surfaces for radiation and convection, the coupling of dis-
placements between thermal and mechanical calculations, and explicit consideration
of solid and fluid phases to be accurately defined. The results were compared to
experimental data of temperature profiles, Vickers hardness mapping, and electron
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Fig. 2 Measured and predicted melt pool geometry in SLM of Inconel 625: a measured melt pool
marks on the surface, b cross-section, c longitudinal section [8], and d predicted temperature [7]

backscatter diffraction. There was good agreement between the experiment andmod-
elling results. The modelling approach was able to predict thermal and mechanical
responses in the manufacturing process which can be measured in real materials
and can be used in design and optimization of the LENS process. Tapia et al. [13]
also proposed a predictive model for predicting the porosity in metallic parts fab-
ricated using selective laser melting, also a laser additive manufacturing process.
The authors developed a spatial Gaussian process regression model for part porosity
as a function process parameters. Bayesian inference framework was then used to
estimate the statistical model parameters. Kriging method was employed to predict
the part porosity at any given setting.

The model was validated through experiment for predicting the porosity in 17-4
PH stainless steel manufactured using a ProX 100 selective laser melting machine.
The algorithm of the proposed model is shown in Fig. 3. The study showed that the
proposed model was able to accurately predict porosity in the manufacture samples
and was able to reduce porosity to as low as 0.325% at with predicted processing
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Fig. 3 Summary of the predictive methodology [13]

parameters; a laser power of 50 W and scanning velocity of 275 mm/s. Owing to the
importance of modelling and simulation in process development and enhancements,
a number of research works has appeared in the literature on modelling the addi-
tive manufacturing processes. These effort will ultimately help to further understand
these manufacturing processes and also help in the much needed processes maturity
that will expand the application of these manufacturing process to the fabrication of
more critical parts especially in the aerospace industry. This chapter presents some of
these important research works in modelling and processes parameter optimization
of laser additive manufacturing technologies. A case study is also presented on pro-
cess parameter optimization of titanium alloy composite produced with laser metal
deposition process, an additive manufacturing technology, using response surface
method. The chapter ends with summary.
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2 Process Parameter Modelling and Optimization of Laser
Additive Manufacturing

Laser additive manufacturing is a promising manufacturing process that is capa-
ble of solving engineering problems and also for building innovative engineering
machine components. One of the road blocks in the rapid development of this excit-
ing manufacturing process is the ability to adequately predict the material properties
resulting from these processes. A lot of research works has been conducted through
experimental study to understand the processing parameter influence on the result-
ing material properties. Experiments are expensive and time consuming which is
why model development will go a long way in providing a better understanding of
the process and through simulations the process can be effectively controlled. In this
section, some of the research works in the literature onmodelling and process param-
eters optimization of laser additive manufacturing technologies are presented. Lee
and Prabhu [14] developed a process control models for direct energy deposition
and powder bed fusion processes. The models were built using regression meta-
model of heat transfer and thermal model that helps to account for residual heat in
track-to-track interactions. The twomodels are coupled using temperatures that were
predicted with the auxiliary model as initial conditions for predictions in metamodel
for future laser scans. The models are used to generate training data for a model-free
optimal controller. The result of the simulation showed that the proposed optimal
controller is capable of adjusting the laser scan speed in order to control temperature.
Foteinopoulos et al. [15] carried out a similar study by proposing a finite difference
(FD) model of the thermal history of parts produced using powder bed fusion Addi-
tive Manufacturing (AM). The model was developed by calculating the temperature
of the part at each time-step to describe the material thermal properties by taking into
account, the moving laser heat source, the melting phase change and the functions
of both temperature and porosity. The developed model is capable of simulating and
storing the temperature history of a thin walled 3D part using an adaptive meshing
strategy that helps to decrease the computational load for the simulation and opti-
mization of the process parameters to improve the production efficiency based on
time and energy.

Conti et al. [16] studied a finite element modeling of laser additive manufacturing
to predict material performance from the process. The authors have tried to simplify
the specific heat dependence and thermal conductivity from temperature to develop
themodel for assessing the process parameters. Baturynskaa et al. [17] also usedfinite
element method and machine learning techniques to evaluate and optimize additive
manufacturing process parameters. Xiao et al. [18] developed aGibson-Ashbymodel
to predict and optimize the topology, performance and porosity in three types of
three dimensional structures namely: Face Centre Cube (FCC), Vertex Cube (VC),
and Edge Centre Cube (ECC) structures produced through selective laser melting
process. The results revealed that the performance of topological optimization of
selective lasermeltedbuilt lattice structuresmade from316Lstainless steel is superior
and proved that the developed topological optimization technique can be used to build
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lightweight lattice structure units. Bonada et al. [19] used finite element method to
develop an optimisation procedure to control additive manufacturing process and to
also increase manufacturing accuracy of printed part. The optimisation procedure
was used to increase the Z accuracy in spatial location. The developed model was
able to account for the photo curing material parameters and can easily be adapted
to different photosensitive materials. It also allows the photo conversion ratio of any
spatial location of printed parts to be controlled which makes it possible to define
the desired conversion ratio with the manufacturing direction, so as to obtain a more
uniform conversion profile. Themodelwas validatedwith experimental resultswhich
show a good agreement with one another.

Zinovieva et al. [20] developed a three-dimensional numerical model to evaluate
evolution of grain structure for additive manufacturing. The model was developed
using cellular automata and finite difference methods to predict the evolving grain
structure based on the transient temperature in selective laser melting process. The
developed model was able to represent the columnar grain structure very well which
is attributed to characteristic solidification conditions in selective laser melting and
associated grain growth that promotes the development of coarse columnar grains
with resulting morphological and crystallographic texture as shown in Fig. 4. The
model result is in good agreement with the experimental results as shown in Fig. 5.
Modelling of additive manufacturing process chains was conducted by Thompson
et al. [21] using new two-dimensional approach to modeling manufacturing process
chains. In this approach, the role of additive manufacturing technologies in process
chains for a part with micro scale features and no internal geometry was used to
develop the model. The result of this study showed that additive manufacturing can
compete very well with traditional process chains for any small production run. The
model can serve as an important tool in manufacturing process selection, concurrent
engineering, and design for manufacturing in the early phases of conceptual and
detailed design. The efforts of researchers in the area of process modelling in laser
additive manufacturing can be seen to be of importance in advancing the technology
further as it reduces the financial burden of intensive experimentation. However,
more is still needed to be done in this area so that adequate models can be developed
that will be capable of predicting and controlling the process more effectively.

Laser metal deposition process for example is an important laser additive manu-
facturing technology that offers a number of solutions to many manufacturing indus-
tries’ problems such as the repair of high valued parts and the ability to extend
material service life through product remanufacturing. This additive manufacturing
technology is very sensitive to the processing parameters and any slight change in
the process parameter settings can result in considerable change in the resulting
properties. This process need to be adequately modeled so that the process can be
adequately controlled using proper close loop control system.

A case study on laser additive manufacturing process is presented in the next
section. The case study is based on laser metal deposition process, an important
laser additive manufacturing technology [22]. Response surface method of design
of experiment was used in a previous study as detailed in a patent filed in 2016 [23]
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Fig. 4 Grain structures in different boundary planes of the computational volume. Laser beam
moved along the Y-axis, from 0 to L2, n! denotes the unit normal vector of a plane [20]

to develop an empirical model. The model was used in this case study for process
parameter optimization.
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Fig. 5 Experimental grain structure of Ti-6Al-4V alloy subjected to SLM. The scanning strategy
was unidirectional, the scanning speed was 1200 mm/s [20]

3 Process Parameters Optimization of Laser Metal
Deposited Ti6Al4V-TiC Composite Using Response
Surface Method (RSM): A Case Study

Empirical modelling is used to describemodels that are constructed from experimen-
tal data. In empirical Modelling, the observables or experimental data responses are
variables that can take different values and the current values are used to determine
the current state of the observables. It may become complicated when the value of
one observable affects the output of another observable which is known as interac-
tion. To be able to capture this behaviour in empirical modelling, the experimental
data needs to be collected based on experimental design. A careful use of design of
experiment (DOE) technique plays a major role to capture the needed causal and
effect relationship as well as interactions among the experimental factors. A number
of software is now available for the design of experiment and model development.
Examples of such software include Minitab and Design Expert. With these software,
the experiment can be designed, implemented, analysed and the required model
developed. In this case study, the experimental data was collected based on experi-
mental design matrix prepared based on response surface methodology of design of
experiment, applied via Design Expert software. The experiments were conducted
following the experimental design and the results were uploaded the Design Expert
software for analysis and model development. The empirical model used in this case
study for process parameter optimizationwas referenced from [23]. An initial screen-
ing experiment was conducted using full factorial design of experiment in order to
establish the least significant process parameter from four process parameters. This
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was required to reduce the number of experiment for the response surface method.
The screened process parameters are the laser power, scanning speed, powder flow
rate and gas flow rate. The gas flow rate was found to be the least significant pro-
cess parameter and it was removed from the response surface method. The process
parameters used in the response surface method are the laser power, powder flow
rate, scanning speed and TiC percentage. Design expert 8 software was used for
experimental design, modelling and optimization. Statistical technique Desirability
Analysis has been used for optimization. This optimization technique was first pre-
sented by Derringer and Suich [24]. In this, the initial step is to change the single
response yi (x) into an individual desirability function (di) and differ over the extent
0≤ di≤ 1. The desirability function can be divided into three categories on the basis
of kind of response characteristics:

1. “Higher is better”,

di =

⎧
⎪⎨

⎪⎩

0, yi ≤ yi∗[
yi−yi∗
y

′
i −yi∗

]t
, yi∗ < yi < y

′
i

1, yi ≥ y
′
i ,

(1)

where yi* is the minimum adequate value of yi, y
′
i is the maximum value of yi and t

describes the shape function for desirability.

2. “Smaller is better”,

di =

⎧
⎪⎨

⎪⎩
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′′
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i −yi

y∗
i −y

′′
i

]r
, y

′′
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i
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where y
′ ′
i is the minimum value of yi, y*i is the highest adequate value of yi and r

describes the shape function.

3. “Nominal is better”,

di =

⎧
⎪⎪⎨

⎪⎪⎩

[
yi−y∗

i
Ci−y∗

i

]s
, yi∗ < yi < Ci

[
yi−y∗

i
Ci−y∗

i

]t
, Ci < yi < y∗

i

0, yi > y∗
i or yi∗ > yi

(3)

where Ci is the mainly adequate or objective value, s and t describes the exponential
parameters which verify the shape of desirability function.

Overall desirability function of the multi-response is presented as D =
(dw1

i . dw2
2 . . . dwn

n ), where wj (0 < wj < 1) is the weight value given for the impor-
tance of jth response variable and

∑n
j=1 w j = 1. The combination of parameters

with highest desirability is considered as the optimum factor.
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Table 1 Constraints to minimize the wear volume loss

Parameter Goal Lower limit Upper limit

A: laser power is in range 1.6 2.8

B: scanning speed is in range 0.005 0.01

C: powder flow rate is in range 2 4

D: vol% TiC is in range 20 50

Wear volume Minimize 0.009744 0.0886989

The optimization in this case studywas achieved by setting the constraints and set-
ting the goal for optimization, which is ‘smaller-is-better’, for minimizing the wear
volume, (that maximizes the wear resistance property of the composite). The opti-
mization was done by setting the goal for wear-volume optimization. After entering
the constraints into the software, the software was allowed to search for optimized
process parameters that resulted in minimum wear volume loss. The summary of the
constrained entered into the model is presented in Table 1.

The model used the constraint parameters presented in Table 1 to search for the
sets of optimised processing parameters that would minimise the wear volume. A
total of 47 solutions were found, as shown in Table 2. The software also suggested
one of the results by underlining selected in the remark column of the table as seen
in Table 2. From Table 2, it can be seen that the optimisation for a wear volume as
low as 0.009, is achievable. The suggested optimization result is taken and analyzed.
The surface plot of the optimised setting for the selected result is shown in Fig. 6.

Table 2 Solutions for the optimization problem

Number Laser
power

Scanning
speed

Powder
flow rate

vol%
TiC

Wear
volume

Desirability Remark

1 2.08 0.0083 3.00 43.66 0.009 1.000 Selected

2 2.17 0.0088 3.08 43.35 0.010 1.000

3 2.17 0.0078 2.89 42.18 0.010 1.000

4 2.03 0.0081 2.96 43.31 0.010 1.000

5 2.24 0.0081 3.00 41.86 0.010 1.000

6 2.25 0.0083 3.21 41.97 0.010 1.000

7 2.15 0.0080 3.00 41.28 0.010 1.000

8 2.16 0.0085 3.20 44.03 0.009 1.000

9 2.14 0.0075 3.07 42.74 0.010 1.000

10 2.15 0.0087 3.11 43.41 0.009 1.000

11 2.14 0.0080 2.94 41.09 0.010 1.000

12 2.16 0.0081 3.22 44.36 0.009 1.000

13 2.26 0.0082 3.16 42.08 0.009 1.000

(continued)
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Table 2 (continued)

Number Laser
power

Scanning
speed

Powder
flow rate

vol%
TiC

Wear
volume

Desirability Remark

14 2.08 0.0084 3.07 43.62 0.009 1.000

15 2.17 0.0081 3.05 42.13 0.009 1.000

16 2.20 0.0079 2.90 42.91 0.010 1.000

17 2.13 0.0084 3.01 41.72 0.010 1.000

18 2.31 0.0083 3.23 45.99 0.010 1.000

19 2.04 0.0081 3.10 45.15 0.009 1.000

20 2.11 0.0082 3.15 48.15 0.009 1.000

21 2.12 0.0085 3.05 48.47 0.009 1.000

22 2.19 0.0086 3.10 41.85 0.010 1.000

23 2.28 0.0084 3.07 46.10 0.009 1.000

24 2.26 0.0088 3.15 43.40 0.010 1.000

25 2.21 0.0077 3.18 44.70 0.010 1.000

26 2.06 0.0084 3.02 46.34 0.009 1.000

27 2.13 0.0081 3.16 47.17 0.009 1.000

28 2.02 0.0085 2.96 45.89 0.010 1.000

29 2.20 0.0087 3.23 46.06 0.009 1.000

30 2.11 0.0080 3.17 42.52 0.009 1.000

31 2.25 0.0088 3.13 49.25 0.010 1.000

32 2.22 0.0083 3.16 46.54 0.009 1.000

33 2.08 0.0081 3.01 44.85 0.009 1.000

34 2.11 0.0082 3.18 41.78 0.010 1.000

35 2.29 0.0081 3.22 44.41 0.010 1.000

36 2.01 0.0083 3.19 46.69 0.010 1.000

37 2.16 0.0080 3.21 41.80 0.009 1.000

38 2.17 0.0081 3.26 44.61 0.009 1.000

39 2.18 0.0081 3.21 43.61 0.009 1.000

40 2.08 0.0088 3.11 47.55 0.010 1.000

41 2.24 0.0089 3.16 44.75 0.010 1.000

42 2.15 0.0085 3.05 47.36 0.009 1.000

43 2.16 0.0087 3.13 45.93 0.009 1.000

44 2.17 0.0087 3.37 46.35 0.010 1.000

45 2.23 0.0084 3.32 47.68 0.010 1.000

46 2.16 0.0080 3.08 44.26 0.009 1.000

47 2.18 0.0083 3.16 47.51 0.009 1.000
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Fig. 6 Surface plot for the optimized setting showing the desirability versus scanning speed and
laser power

Another optimization was performed by fixing the TiC percentage to 20%, and
setting the optimization goal to ‘minimize the wear volume’. The laser power, the
scanning speed and the powder flow ratewere kept in range in order for that themodel
to search for the appropriate laser power, scanning speed and powder flow rate values
that would minimize the wear-volume loss and within the given range. In the first
optimization process, the percentage TiC was kept in range of between 20 and 50.
And the optimized percentageTiCwas found to be 43.66%.This current optimization
process finds the optimized process parameters while keeping the percentage TiC to
20% and at the same time minimizing the wear volume loss. Table 3 presents the
summary of the optimization constraints that was fed into the model.

Table 3 Optimization constraints for the 20 vol% TiC

Name Goal Lower limit Upper limit

A: laser Power is in range 1.6 2.8

B: scanning speed is in range 0.005 0.01

C: powder flow rate is in range 2 4

D: vol% TiC is equal to 20.00 20 50

Wear volume Minimize 0.009744 0.0886989
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Fig. 7 Surface plot for the optimized process parameters at 20% TiC

The software found only one solution, which is presented as follows:

Laser Power: 2.27 kW
Scanning Speed: 0.0078 m/s
Powder Flow Rate: 3.12 g/min
vol% TiC: 20
Wear Volume: 0.026 mm3

Desirability: 0.790.

The surface plot for the desirability versus the processing parameters is shown in
Fig. 7.

The third optimization problem was setting the laser power, the scanning speed,
the powder flow rate, and %TiC to the fixed values, and using the model and in
the Design Expert 8 software environment to predict the wear volume loss. The
constraints are presented in Table 4.

Only one solution was found that is as follows:

Laser Power: 2.0 kW
Scanning Speed: 0.006 m/s
Powder Flow Rate: 2.5 rpm
vol% TiC: 50%
Wear Volume: 0.018 mm3.
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Table 4 The constraints with fixed process parameters to predict wear-volume

Name Goal Limit Limit

A: laser power is equal to 2.00 1.6 2.8

B: scanning speed is equal to 0.0060 0.005 0.01

C: powder flow rate is equal to 2.50 2 4

D: vol% TiC is equal to 50.00 20 50

Wear volume is in range 0.009744 0.0886989

Table 5 Validation of optimization results

Number Laser
power

Scanning
speed

Powder flow
rate (rpm)

vol%
TiC

Predicted
wear volume

Actual wear
volume

1 2.08 0.0083 3.00 43.66 0.009 0.012

2 2.27 0.0078 3.12 20 0.026 0.027

3 2.0 0.006 2.5 50 0.018 0.022

Fig. 8 Graph of actual wear volume loss against the predicted optimized wear loss

In order to validate these process parameters optimization results, experiments
were conducted using the process parameters in the optimization results. These
experiments were repeated twice; and the wear tests were conducted on the sam-
ples. The average wear volume loss for each set of the processing parameters are
reported in Table 5.

In order to compare the experimental results with the predicted optimized process
parameters that minimizes wear volume, a graph of the experimental or actual wear
volume loss against the predicted wear volume loss results is shown in Fig. 8.
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Fig. 9 The SEMmicrograph
of sample at: a laser power
of 2.08 kW, scanning speed
of 0.0083 m/s, powder flow
rate of 3 rpm and % TiC of
43.66, b laser power of
2.0 kW, scanning speed of
0.006 m/s, powder flow rate
of 2.5 rpm and % TiC of 50

The graph shows that the actual experimental values are close to the predicted
values, and the slight differences could be attributed to some experimental uncertain-
ties, which are still within a tolerable limit. The microstructures of the samples 1 and
3 are presented in Fig. 9 and the wear tracks of the two samples are also shown in
Fig. 10. The microstucture of the sample number 1 is characterized by large quantity
of dendritic TiC and fewer resolidified carbide are also seen as indicated in Fig. 9.
The microstructure of the sample 3 on the other hand consists of larger quantity of
resolidified carbide and fewer dendritic TiC. The better wear resistance performance
of sample 1 can be attributed to the less resolidified carbide and the larger quantity of
dendritic TiC which is harder and become grinded into powder during the slidding



Modelling and Optimization of Laser Additive Manufacturing … 107

Fig. 10 The SEM micrograph for the wear track of sample at: a laser power of 2.08 kW, scanning
speed of 0.0083 m/s, powder flow rate of 3 rpm and % TiC of 43.66, b laser power of 2.0 kW,
scanning speed of 0.006 m/s, powder flow rate of 2.5 rpm and % TiC of 50, c higher magnification
of (a), d higher magnification of (b)
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wear test as shown in Fig. 10. The powder formed help to reduce the wear action by
forming a power lubricant. The sample 3 also behave in the same manner but not as
better as that of sample 1 because of fewer quantity of dendritic TiC as compared to
the larger ones seen in sample 1.

4 Summary

This chapter has summarized modelling and optimization of laser additive manu-
facturing process. A case study in process parameter optimization using response
surface method and desirability technique is also presented. The results showed that
the model was able to predict optimize processing parameters and are in good agree-
ment with the experimental data. It is concluded that modeling and optimization is a
key to understand the process further, establish the relationship between parameters
and outputs, and improve the process performance. Enough attempts have beenmade
in this area, however a vast scope exists for future work for modeling and optimiza-
tion of all laser based additive manufacturing processes for repair, maintenance, and
remanufacturing applications using various statistical and evolutionary techniques
to establish the filed further.
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Prediction and Optimization of Tensile
Strength in FDM Based 3D Printing
Using ANFIS

Shilpesh R. Rajpurohit and Harshit K. Dave

Abstract Fused Deposition Modeling (FDM) is universally used 3D printing tech-
nology, to manufacture prototypes as well functional parts due to its capability to
create components having any geometric complexity in shorter duration, without
any specific tooling requirement or human intervention. FDM fabricated parts have
found many promising application in various industries such as aerospace, automo-
bile, medical, customizable products etc. However, the application of FDM parts has
been restricted by poor mechanical performance. The mechanical properties of the
FDM fabricated part are largely affected by selection of various build parameters.
Optimal selection of various build parameters can help to achieve better mechanical
strength. The Adaptive network-based a fuzzy Interference System (ANFIS) is uses
both neural networks and fuzzy logic to generate a mapping between inputs and
response. In ANFIS, the parameters for fuzzy system has been identifying using a
neural network. Hybrid learning rule can be used for creating a fuzzy set of IF-THEN
rules with the appropriate membership functions and generating previously defined
Input/Outputs pairs. Initially, a detailed experimental investigation was conducted to
understand the impact of different build parameters on the tensile strength of printed
PLA. Using experimental data, an optimized model of ANFIS was developed to
anticipate the tensile strength of printed parts.

Keywords Fused deposition modeling · Tensile strength · ANFIS · Fuzzy logic ·
Membership function

1 Introduction

3D printing techniques have tremendous application in the various engineering field,
due to a reduction in product development time and able to make a part with any
complex geometry [1, 2]. FDM iswidely usedAM techniques owing to its simplicity,
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inexpensive and ease in operation. Fused deposition modelling (FDM) is widely
used for creating three-dimensional polymer components by deposition of filament
material layer by layer through liquefier nozzle with a movement in X-Y plane. The
molten material is extruded through heated liquefier wherein filament material is
heated to semi-solid deposited through nozzle. After a layer is deposited, build table
is moved downward in z-direction and another layer is deposited. Then the whole
process is repeated until the whole object is printed [1, 2]. The schematic diagram
of the FDM process is illustrated in Fig. 1.

FDM fabricated parts are widely used in many industries like automobile,
aerospace, medicine, electronics, and customer product industries etc. However,
further use of the FDM produced object is restricted owing to the poor mechani-
cal performance. The mechanical properties of FDM parts strongly depend on the
selection of the build parameters. Mechanical performance of the FDM object can be
enhanced by the appropriate selection of build parameter during the part fabrication
stage [3]. Hence, the proper section of build parameter and the modeling of the FDM
build parameter gaining attentions among the research community. In the view of
this, many researchers have tried to model and formulate the relevance between the
FDM build parameter and output to enhance the performance of the FDM processed
part.

Papazetis and Vosniakos [4] have used ANN to forecast the shape fidelity and
material extrusion in fused deposition modelling process to retain and obtain defect
free parts. Alimardani and Toyserkani [5] has developed an ANFIS based model to
estimate the clad height as a function of with respect to build parameter for laser
based additive manufacturing process. They developed a model with 0.07% absolute
error to predict the clad height. Garg et al. [6] have used M5 genetic programming

Fig. 1 Schematic representation of fused deposition modeling process
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to develop empirical modelling for FDM process variables with an aim to predict
the compressive strength. Further, they compared the proposed model with support
vector regression (SVR) and ANFIS model. They observed better performance of
the proposed model compared to SVR and ANFIS model. Mohamed et al. [7] used
a definitive screening approach and ANN to assess the effect of build parameters
on creep properties of printed object. Panda et al. [8] used an evolutionary algo-
rithm to formulate the relationship between bead dimensions as response and peak
current, travel speed and wire speed as input process parameters. They observed
that gene expression programming (GEP) model performed better than multi-gene
genetic programming (MGGP). Panda et al. [9] did a comparative study to develop
a relationship between tensile strength and build parameters (layer height, raster
orientation, bead width and air gap). They found differential evolution algorithm
(DEA) perform better than particle swarm optimization (PSO) method. Peng et al.
[10] used response surface methodology (RSM) in a combination with fuzzy inter-
face system to optimize the build parameters. Raju et al. [11] used a combination
of PSO and bacterial foraging optimization algorithm to optimize the build param-
eters. Sood et al. [12] used a grey Taguchi method to improve the part accuracy
of the FDM processed components. Sood et al. [13] used a hybrid artificial neural
network (ANN)—bacterial foraging optimization algorithm (BFOA) to optimize the
build process variable to have better mechanical strength. Boschetto et al. [14] used
a NN to forecast the surface roughness of the FDM processed samples. Rayegani
and Onwubolu [15] used GMDH and differential evolution algorithm to forecast the
tensile strength of the fabricated part as a function of build parameters.

It has been observed that some work has been carried out with different types
of intelligent techniques to optimize and modelling of FDM build parameters to
enhance the quality of the printed part. Mostly various techniques have been used to
enhance the surface quality and part accuracy of the FDM printed part. Few works
have been reported that discussing enhancement ofmechanical quality of printed part
using intelligent techniques. However, optimization and modeling of build parame-
ters with ANFIS are also lacking. With the aim of the build parameter optimization
such as raster orientation, layer thickness and raster width are selected as a control
parameter, input variable and tensile strength is selected as output response, evalua-
tion index. Further, in this study, ANFIS model has been developed to estimate the
tensile strength of FDM processed sample.

2 Adaptive Neuro Fuzzy Interface System

ANN and fuzzy logic are combined used by the ANFIS model. Fuzzy logic is a
useful tool to convert qualitative approach into crisp output. However, it does not
have any defined method for conversion and it is takes a longer time to accommodate
the membership functions. While ANN has a greater learning capability to cope-up
with the environment. Therefore, fuzzy logic system can use ANN to accommodate
fuzzy logic membership functions.
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Fig. 2 FIS system

2.1 Fuzzy Interface System

A FIS is designed on three basic components, based on the choice of fuzzy logic
rule “If-Then”, fuzzy set membership and technique inference. Use fuzzy interface
from basic rule to get output. Detailed structure of FIS is shown in Fig. 2. FIS
convert the actual value into fuzzy value using the membership functions whose
fuzzy values are between 0 and 1. Knowledge base includes basic rules and databases
that are two important elements of decision-making. Generally, the database contains
definitions such as fuzzy set parameter informationwith functions defined for existing
language variables. Database development typically involves defining the universe,
determining the number of language values used for each language variable, and
creating membership functions. Depending on the rules, include the fuzzy logic
operator and the If-Then conditional statement. The basic rule can be built with or
without human intervention and here a search rule using numerically input-output
data [10, 16].

2.2 Adaptive Network

The adaptive network is an example of a multilayer feed forward neural network.
Figure 3 shows the basic adaptive network. The adaptive network contained a plu-
rality of directly interconnected adaptation nodes, with architectural characteristics
without a weight value between them. The error in the output can be reduced by the
proper selection of the leaning rules in the adaptive network [16–18].

Basic Adaptive Network learning typically uses a back propagation and spread
chain rule or gradient. Since the learning algorithm is an adaptive network, gra-
dient descent or return propagation are always used until date. However, the back
propagation algorithm still has weaknesses and can degrade the performance of the
adaptive network for decision-making. Slow convergence tends to always stay local
minimum, which poses a big problem of back propagation algorithm. Therefore,
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Fig. 3 Adaptive network

a hybrid-learning algorithm was proposed with a better performance to speed up
convergence and avoid being trapped by local minimum [16–18].

2.3 ANFIS Architecture

ANFIS is one of the widely used fuzzy interface systems, especially for real physi-
cal problems. ANFIS combines both fuzzy logic and ANN, and the neural network
method is used to adjust fuzzy interface system parameters. The ANFIS structure
consists of five network layers and a hybrid learning algorithm is used to adjust
the system according the input and output data structures. An ANFIS type Takag-
i–Sugeno’s schematic diagram with two inputs (x and y) and an output (z), two
membership functions for each input and two rules illustrated in Fig. 4.

First order Sugeno FIS is an easy example of a fuzzy interface system. First order
Sugeno model consists of two fuzzy rules “If-Then” shown as below:

Rule 1 : If X is A1 and y is B1 Then f1 = p1x + q1y + r1 (1)

Rule 2 : If X is A2 and y is B2 Then f2 = p2x + q2y + r2 (2)

where, A1, B1, A2 and B2 are the parameter for the input functions, p1, q1, r1, p2, q2
and r2 are the parameters for output functions.

Each layer of the ANFIS structure is explained as below:

Layer 1: In fuzzification layer, every input node is an adaptive node that converted
into linguistics with the use of membership function. The output of the adaptive node
can be followed as:
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Fig. 4 ANFIS architecture

O1,i = μAi (x), i = 1, 2 (3)

where μAi the degree of membership functions for input x .

Layer 2: In product layer, each node is non-adaptive. Each fixed node in the present
layer multiples all the incoming signals and the firing strength of each rule can be
calculated as follows.

O2,i = ωi = μAi (x)μBi (y), i = 1, 2 (4)

Layer 3: In the normalization layer, all nodes are fixed. Each node is representing
the normalization of firing strength from layer 2. The normalized firing strength can
find out as follows.

O3i = ω̄i = ωi
∑

iωi
(5)

Layer 4: The de-fuzzification layer is an adaptive layer. The relation between output
and input can be expressed as follows.

O4i = ω̄i fi = ω̄i (pix + qi y + ri ) (6)

where ωi is output from the previous layer and (pix + qi y + ri ) is a consequent
parameter.
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Level 5: The output layer represents the modelled output by ANFIS network.

O5i =
∑

i

ω̄i f =
∑

iωi f
∑

iω
(7)

The training data set contained the input/output pairs needed to form the ANFIS
model for predicting the target outcome. The ANFIS model adaptively maps inputs
and outputs using different MFs, rule bases, and associated parameters acquired by
the loaded learning dataset.

2.4 Hybrid Learning Algorithm

The purpose of the learning algorithm in the ANFIS model is to adapt parameters,
so that the ANFIS output can be mapped with learning data. The hybrid-learning
algorithm uses both gradient descendent and least square method. In the forward
passage, least square used to identify the parameters while going in the opposite
direction, a gradient descendent method is used. The result of the proposed model
can be determined as follows.

f = ω1

ω1 + ω2
f1 + ω2

ω1 + ω2
f2 (8)

f = ω̄(p1x + q1y + r1) + ω̄(p2x + q2y + r2) (9)

f = (ω̄1x)p1 + (ω̄1y)q1 + (ω̄1)r1 + (ω̄2x)p2 + (ω̄2y)q2 + (ω̄2)r2 (10)

where p1, q1, r1, p2, q2 and r2 are the consequent parameters.
The hybrid learning is very efficient learning algorithm to train the ANFIS model

that approach converges much faster compared to back propagation algorithm.

3 Experimental Plan and Procedure

3.1 Process Parameters and Experimental Plan

In the present investigation, effect of raster angle, raster width and layer height have
been evaluated as a function of tensile strength. The raster angle is defined as the
angle of the raster relative to the x-axis of the machine. Five different values of the
raster angle are considered and varied as 0°, 30°, 45°, 60° and 90°. The height of the
layer can be defined by the height of deposited layer. Five different values of the layer
height are considered to be 100, 150, 200, 250 and 300 µm. The raster width can be
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defined as the width of the bead of material during the deposition of the raster. Four
different raster width values are chosen and change to 400, 500, 600 and 700 µm.
The layer height and raster width of the selected layer within the possible range of
the open source printer being used.

In this study, a full factorial design is used to perform experiments on all combi-
nations of factor levels. Two factors have been varied at the five levels and one factor
has been varied at four levels so according to full factorial experimental design, total
100 number of experiments need to be performed. Two identical specimens were
constructed for each experiment and a total of 200 specimens were obtained for all
the factorial test models.

3.2 Sample Fabrication

In the present investigation, raster angle and layer height have been varied at five
levels and raster width has been varied at four levels. After consideration of all
possible combination of process parameters, total of 100 experiments have been
performed and entire set of experiments have been performed twice. Using PLA
filament, all the specimenwere built with anOMEGADual Extruder, a high precision
open source FDM printer. Figure 5 shows a schematic diagram of test components
modeled in Pro Engineering and save as STL files. Then STL file was transferred to
machine software to create the deposition strategy and to adjust all build parameters.
Test specimens were created using constant process parameters as shown in Table 1.
The samples were made with the same brand of PLA filament coils and to retain the
same properties of the filamentary material. Figure 6 shows the FDM machine used
in the present investigation to manufacture test specimen.

3.3 Tensile Testing

To evaluate tensile properties, tensile test has been performed by using Tinus Olsen
H50KL universal testingmachine. Themachine has a load cell of 50 kN and a built-in
Horizon software. The testing speed is maintained at 5mm/min for tensile specimens

Fig. 5 Tensile specimen as per ASTM D638
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Table 1 Build parameters and their variations

Fixed build parameters Variable build parameters

Parameters Value Unit Parameters Levels Unit

1 2 3 4 5

Liquefier
temperature

210 °C Raster angle
(RA)

0 30 45 60 90 °

Bed
temperature

70 °C Layer height
(LH)

100 150 200 250 300 µm

Scan speed 50 mm/s Raster width
(RW)

400 500 600 700 – µm

No of
perimeters

1 –

% Infill 100 %

Infill pattern Rectilinear –

Fig. 6 Experimental set up (OMEGA dual extruder)
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Fig. 7 Tensile test sample a before testing, b during testing and c after testing

according toASTMD638. Crossheadmotionwill continue until the specimen breaks
during the test. Figure 7 illustrate the tensile test sample before, during and afterward
tensile testing.

3.4 ANFIS Model for Tensile Strength Prediction

TheNeuro Fuzzy design tool ofMATLABMathwork has been used tomodel ANFIS
structure. This tool is provided for constructing and evaluating a fuzzy system using
a GUI. User can use the ANFIS editor’s GUI menu bar to load a new Sugeno system
that loads the initialization of the FIS training, saves the trained FIS, and interprets
the trained models. Figure 8 shows ANFIS structure used in the present study.

The training strategy for the ANFIS system is summarized in the flowchart of
Fig. 9. This process beginswith acquiring a training data set and verifying the dataset.
The training data set is used to search the constant of the membership function. An
error threshold between the current output and the desired output is determined.

In this study, the result was randomly divided into two parts. It is 80% for the
training data (80 data points) of the learning process and 20% for the test data (20
data points).

Using the MATLAB software, the ANFIS model was developed from experi-
mental data and the tensile strength was predicted. A fuzzy inference system of the
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Fig. 8 Proposed ANFIS architecture

Sugeno type has been used for modeling the tensile strength. In order to predict the
optimal selection of the Sugeno type FIS parameter, a hybrid learning algorithm was
used. Due to their small error, 50 epochs were chosen.

The ANFIS training process begins with the determination of the membership
functions. All learning data carried out by neural network, adjust the input parameters
to the input-output relationship, and minimizes the error.

The parameters have been optimized after several tests. Finally, the model has
been validated. The characteristics of the model are shown in Table 2.

4 Results and Discussion

In this study, all experiments were performed for each experimental design. It is
desirable to maximize the tensile strength. The main effects graph is created using
the average S/N ratio of each parameter at all levels. The maximum value of the
average S/N ratio of the parameters is the best combination of parameters. The main
effect is the direct influence of independent parameters on tensile strength. Figure 10
shows the effect of build variables on the tensile strength of FDMspecimen. Figure 10
dissipates that tensile strength found to be decrease with increment in raster angle
and layer height and increases when raster width is increased up to 600 µm. The
analysis of S/N ratio revealed that the optimal tensile strength can be observed at
raster angle 0° (Level 1), Layer height 100 µm (Level 1) and raster width 600 µm
(Level 3).
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Loading training and 
checking data

Start 

Input parameter and membership function 
Select optimization method 

Identify the number of epochs for training and checking 

Training data into ANFIS

Training finished 

Obtain outcome from 
trained ANFIS

Checking data into ANFIS

Testing 
finished 

Stop 

Fig. 9 ANFIS training system
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Table 2 Characteristics of the developed ANFIS model

Parameter Description/value

Structure of FIS Sugeno

Initial FIS for training genfis2 (subtractive clustering)

Range of influence 0.3

Squash factor 0.2

Accept ratio 0.2

Reject ratio 0.15

Number of inputs 3

Number of output 1

Number of input membership function 80 80 80

Optimization method Hybrid

Training epoch number 50
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Fig. 10 Main effect plot of SN ratio for tensile strength

4.1 Evaluation of ANFIS Model Performance

Experiments were executed and the size of the test is determined by the classification
of accuracy. The data is divided into twodistinct sets of training data sets and checking
data sets. The checking data was used to form ANFIS using the training dataset and
to check the accuracy and efficiency of the training content of the ANFIS model
trained for adaptation.
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The performance of the ANFISmodel was assessed using the coefficient of corre-
lation (R2),mean square error (MSE), rootmean square error (RMSE),mean absolute
error (MAE) and mean absolute percentage error (MAPE) [19, 20]. The R2, MSE,
RMSE, MAE and MAPE can be determined as follows.

MAPE = 1

n

n∑

t=1

∣
∣
∣
∣
Et − Pt

Et

∣
∣
∣
∣ (11)

RMSE =
√∑n

t=1 (Et − Pt )2

N
(12)

MSE =
∑n

t=1 (Et − Pt )2

N
(13)

MAD = 1

n

n∑

t=1

|Pt − Et | (14)

R2 =
∑n

t=1 (Et − Et )(Pt − Pt )
√∑n

t=1 (Et − Et )2
∑n

t=1 (Pt − Pt )2
(15)

where, Et is experimental value, Pt is predicted value, n is the total number of data,
Et is the mean of the experimental value and Pt is the mean of the predicted values.

The smaller the MAPE value, the better the predictability of the output. Table 3
represent the results of error measurements performed to evaluate prediction capa-
bility using training data and model test data. It can be seen that the error value is
lower. Therefore, reasonable prediction accuracy is expected.

Experimental strength is compared with those of the predicated strength for train
data and test data (as shown in Figs. 11 and 12). AHigh relative of coefficient suggest
the predictive model to estimate the tensile strength for FDM fabricated part.

Similarly, Fig. 13 shows the difference between experimental and predicted results
for test data and it can be observed that predicted strength is near to the experimental
strength in most of the cases.

The variation in tensile strength with respect to build parameters are shown in
Fig. 14. Figure 14a illustrate the relationship between layer height, raster angle and
tensile strength. It can be seen that tensile strength is found to be reduced as the raster
angle was increasing. The smaller value of the raster angle (0°) has a highest tensile
strength. Moreover, Fig. 14b shows the relationship between layer height and raster
width. At the higher value of raster width, tensile strength is found to be decreased

Table 3 Error measures for predicting the results

MSE RMSE MAPE MAE R2

Training 1.04015E−05 0.003226 9.8728E−05 0.002353 1

Testing 6.7319 2.5946 0.0644 2.2537 0.7946
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Fig. 11 Predicted versus experimental tensile strength during training using the ANFIS model
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Fig. 12 Predicted versus experimental tensile strength during testing using the ANFIS model
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Fig. 13 The comparison of experimental and predicted tensile strength



126 S. R. Rajpurohit and H. K. Dave

Fig. 14 Variation in tensile strength with respect to a layer height versus raster angle, b layer height
versus raster width and c raster angle versus raster width
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with increment in layer height. At the lower value of raster width, tensile strength
is found to be decreased with increment in layer height and then its start increasing
with further increment in layer height. Referring to Fig. 14c, it interprets that higher
tensile strength is found to be achieved at 600 µm raster width and further its start
decreasing.

5 Conclusion

The present work involves the development of an ANFIS predictionmodel for tensile
strength in FDM printed part. The developed model allows for estimation of the
tensile strength as a function of FDM build parameter which includes raster angle,
layer height and raster width. The experimental response shows that build parameter
deeply affects the tensile strength of FDMpart. The developedmodel was verified for
its predictability of the tensile strength using 20 samples of the testing data. ANFIS
model constructed for predicting the tensile strength observed the result close to the
experimental one. The model can be useful tool when involved in process planning
to predict the tensile strength prior to manufacturing.
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Optimization of Abrasive Water Jet
Machining for Green Composites Using
Multi-variant Hybrid Techniques

G. C. Manjunath Patel, Jagadish, Rajana Suresh Kumar
and N. V. Swamy Naidu

Abstract Traditional machining of polymer matrix composites (PMCs) possesses
difficulties as they exhibit excellent specific strength and stiffness. Superior properties
led PMCs parts were extensively used in structural, aviation, construction and auto-
motive applications. The advanced machining process abrasive water jet machining
(AWJM) has been explored to machine PMCs. The AWJM factors namely abra-
sive grain size, working pressure, standoff distance, nozzle speed, and abrasive mass
flow rate affect the final outcome of surface quality (i.e. surface roughness, SR) and
productivity (i.e. material removal rate ‘MRR’ and process time ‘PT’) are studied.
Taguchi L27 orthogonal array of experimental design is employed for conducting
practical experiments. Taguchi method limit to optimize multiple conflicting outputs
(maximize: MRR, and minimize: PT and SR), simultaneously. In general, multiple
outputs may have many solutions and are dependent on the tradeoff (relative impor-
tance or weights) assigned to each output. Traditional practices such as engineer
judgement, expert suggestion and customer requirements may lead to local solutions
(i.e. superior quality for one output, while compromising with the rest). Principal
component analysis (PCA) method overcomes the said shortcomings of traditional
practices and determines weight fractions for each output based on the experimen-
tal data. Multi-objective optimization on the basis of ratio analysis (MOORA), Grey
relational analysis (GRA), Technique for order preference by similarity to ideal solu-
tion (TOPSIS) and Data Envelopment Analysis based Ranking (DEAR) are the four
methods employed for the purpose of multi-objective optimization. MOORA, GRA
and TOPSIS methodologies require assigning weight fractions for each output by
the problem solver. Note that, solution accuracies vary with the weight fractions
assigned to each output. The aggregate (composite values of all responses) values
determined by PCA-MOORA, PCA-TOPSIS, PCA-GRA and DEAR method were
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used for determining optimal factor levels and their contributions. DEAR method
determined optimal levels resulted in better machining quality characteristics.

Keywords Abrasive water jet machining · Optimization · PCA · MOORA ·
TOPSIS

1 Introduction

An organic polymer matrix which is used to bind fibers that are continuous is usu-
ally termed as polymer matrix composites (PMCs) [1]. PMCs can be categories into
reinforced plastics and advanced composites. Due to their high specific strength and
stiffness PMCs finds their application in wide areas of structural engineering namely
aerospace, construction and automotive industries. However, superior strength and
stiffness of the PMCs makes them very difficult to be machined by the conventional
machining processes. Hence, to machine such materials which exhibit high spe-
cific strength and stiffness, Non-traditional methods of manufacturing play a vital
role. Among all the available non-traditional methods of machining, Abrasive water
jet machining (AWJM) has become the fastest growing method of non-traditional
machining process due to its versatility [2]. Low cutting temperatures, presence of
no heat activated zone (HAZ) on thematerial being cut, minimal dust and low cutting
forces are the advantages it offers over its counterparts. AJWM also compliments
its use with other non-traditional manufacturing technologies such as laser, EDM,
and plasma etc. In AWJM, material removal takes place by impact energy developed
over the surface to be machined using highly pressurized water containing abrasive
particles. It makes this process a flexible machining method through which a wide
range of higher strength materials can be machined.

The applicability of AWJM for milling of fiber reinforced plastics (FRP) was first
carried out by Hocheng et al. where the authors analyzed the factor effects on MRR
and SR in single pass cutting [3]. Arola and Ramulu used the micro analysis to know
the material properties significance over surface integrity and texture [4]. Hloch et al.
experimentally studied the cutting quality check and how the process parameters are
influencing the same [5]. Analysis of variance (ANOVA) has been used to evaluate
cutting qualitymaking it a function of process parameters. Zhu et al. noticed that duc-
tile erosion mechanism with small erosion angle and low pressure AWJM resulted in
precise surface finish [6]. Selvan et al. considered SR as an important quality param-
eter, wherein good surface finish are obtained with more hydraulic pressure (P) and
high abrasive flow rate (AFR) [7]. Manu and Babu observed that AWJM in turning
can produce required turned surface by traversing the AWJ axially and radially while
the workpiece is rotating [8]. The difficult to machine materials using AWJ turning
has been studied and was found viable by Kartal and Gokkaya [9]. Borkowski [10]
developed a novel mathematical model for the 3D sculpturing using a high pressure
abrasive water jet by proposing an experimental test bed for shaping the materials.
Wang [11] experimentally compared the various non-traditional machining methods
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and found that AWJM is best suited method to machine the polymer matrix com-
posites. Muller and Monaghan [12] compared various non-traditional processes and
wherein they concluded that AWJmachined part do not undergo problems associated
to thermal damage. Siddiqui and Shukla [13] used Hybrid approach by combining
the desired features of Taguchi method (TM) and PCA to assess the performance
of AWJM by considering multiple quality characteristics (MQC). Aluminum and
ferrous alloys find their application in many industries. Many studies are reported
that optimizing the influencing variables results in economical machining for any
alloy under AWJM. Iqbal et al. [14] used factorial experimental design to analyse the
variable effects on maximum cutting width, machined surface texture, and percent
of striation free area of AISI 4340 and Aluminum 2219.

1.1 Modelling and Optimization of AWJM Process

AWJM process performance depends on several process variables such as hydraulic
pressure, work material, nozzle distance, abrasive type, size and mass flow rate etc.
The research on AWJM process has been focused mostly on the process modelling
and the optimization of the process parameters. Optimization of the process param-
eters in the AWJM process is of prime importance due to non-linear nature of the
dependence of nozzle wear, kerf geometry, dimensional deviation, surface rough-
ness, and MRR on process parameters [1, 2]. These factors regulate the performance
of AWJM on the machinability of the material. Many research works reported on
optimization of process based on statistical design of experiments (DOE) namely TM
and response surface methodology (RSM) [15]. However, very little attention paid
to model and optimize AWJM process by utilizing advanced tools namely GRA and
soft computing tools etc. Azmir et al. used the grey rational analysis to optimize the
control factors such as standoff distance (SoD), P and AFR on the Kevlar composite
laminate surface finish [16]. Khan and Haque conducted experimental study to check
the factor effects on the AWJ machined SR of glass fibre reinforced epoxy compos-
ites [17]. A linear regression equation representing SR as a mathematical function of
process variables are derived by utilizing Taguchi method. Zohoor and Nourian [18]
applied the response surface methodology to know the control factor effect of noz-
zle wear on the SR and developed regression equations. In addition, many research
efforts were reported with a major focus on optimizing different factors for SR by
utilizing TM, RSM and modern optimization tools [19–27]. Wang [27] presented the
kerf quality of composite sheets (metal matrix) under AWJ machining. Shanmugam
et al. [28] used kerf-taper compensation technique to minimize the kerf taper in AWJ
cutting of alumina ceramics and found that compensational angle plays a major role
on kerf taper. Srinivasu et al. [29] investigated the kinematic factor effects on the
kerf geometry subjected to multi-jet erosion machining. The experimentation results
formed a good basis for controlled three dimensional AWJ machining of complex
geometries. In an important study, ANN model predicted better kerf geometry and
SR on transformation induced plasticity of steel sheet [30]. For the last two decades
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researchers busy investigating and optimizing the effect ofAWJMprocess parameters
on MRR and nozzle wear using modern optimization techniques [27–34].

From the review of literature it has been noted that modern optimization tech-
niques have been used significantly to know the effect of various control factors of
AWJM. However, it has been found that very few works on modelling of AWJM
using multi criteria optimization techniques have been reported and hence it finds
a scope for further research. Since, AWJM has multiple process parameters, multi-
criteria technique may be best suited for its modeling. The mathematical complexity
and tedious nature of the steps involved in the approaches call for new methods
for process optimization. Various optimization techniques like GRA-PCA, TOPSIS,
DEAR, and MOORA approaches are recently developed methods available for opti-
mization. Taguchi (L27) orthogonal array method is incorporated in the experiment
by varying some of the independent but critical parameters like abrasive grain size,
nozzle speed (NS), working pressure, SoD, and AFR. Since adoption of optimal pro-
cess parameters has seen a saturated amount of research mostly of which are single
response problem, whereas complexity lies in optimizing the conflicting multiple
outputs. Based on the original concept of TOPSIS approach, Ren et al. introduced a
novelmodified optimizing techniqueM-TOPSIS [35]. The drawback often encounter
with the original TOPSIS method is the rank reversals and evaluation failure. Due to
simple evaluation process in TOPSIS method, it’s being widely used for some com-
plex unconventional machining processes. A similar optimization has been done in
wire electrical discharge machining by Gadakh [36]. Three different cases including
variety of parameters have been selected followed by evaluation of those parameters
using TOPSIS approach is presented in the study. A similarity to the past results so
obtained such that TOPSIS method is more suitable for optimizing many multi crite-
ria decision making problems in the current manufacturing processes. As discussed
earlier about the availability of variety of optimization techniques, Taguchi-DEAR
method is very simplest and efficient approach. It is proven to be the extensively accu-
rate method to determine the optimal process parameters in manufacturing process.
Muthuramalingam et al. [37] have analyzed the abrasive flow orientation process
parameters in abrasive water jet machining under Taguchi-DEAR approach. Taguchi
basedL9 orthogonalmethod has been implemented in the experimental trails inwhich
liquid water pressure, feed rate, AFR, and SoD are the input factors. MRR and SR
performance characteristics enhancement has been studied by the researchers using
Taguchi-DEAR approach of solving MCDM problems and optimal process parame-
ters has been computed. To obtain distinguishable physical properties, metal matrix
composites reinforced with particles combined so as to form a more complex mate-
rial are predominantly increasing which also provides high strength to the material.
Machining such a material is a tedious job and therefore unconventional machining
is being opted. Similar study reported by authors [38] with a focus on optimiz-
ing AWJM factors while machining TiB2 particles reinforced Al7075 composites.
Taguchi-DEAR methodology has been implemented to evaluate the performance
measures such as MRR, taper angle and SR from the input parameters of water jet
pressure, stand-off distance and transverse speed. Investigation results that water jet
pressure predominantly affects the performance characteristics. The optimal process
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parameters are computed. Another optimization technique based on material selec-
tion is MOORA method. For designing any structure, the designers have to select
materials with ultimate characteristics required for that particular design or structure.
Inappropriate choice of material results in structure or design failure. In this diverse
engineering world, fabrication of products corresponds to complex design demand
for most challenging task of choice of appropriate materials for variety of compo-
nents. Authors [39] reported theMOORAmethod is an appropriate tool for selection
of proper materials. Various mathematical tools and techniques are found to be suit-
able for solving the material selection problems, which lead to the affected results
based on theweights assigned to the considered selection criteria.MOORAmethod is
simple to understand and employs suitable normalization procedure. Reference point
approach has also been tested for the considered problem by the researchers. Results
have been observed that all themethods generate approximately similar rankings cor-
respond to the material alternatives. More robust and simple method as compared to
other optimization methods as discussed in the above literatures is MOORA based
Taguchi method. In another important work, multi response problem is converted
into single response problem by integrating MOORA method with Taguchi method
[40]. It is being noticed that the time consumed in the calculations of the steps is
reduced by applying the proposedmethod. The hybridMOORA-Taguchimethod can
solve successfully many multi-response problems [41]. TOPSIS method for multi
response optimization of friction stir welding process variables was also used [41].
Materials like aluminium alloys and its composites which are difficult to weld are
joined by friction stir welding. Researchers have accentuated on friction stir welding
of aluminium matrix composite reinforced with silicon carbide particle. Since FSW
incorporates a non-consuming revolving tool which is plunged into the verges of the
material to be joined and progressed along the weld line, tool revolving speed, tool
transverse speed and tool pin profile type of process variables are optimized with
multiple responses such as percentage elongation, tensile strength and hardness of
the material. It also leads weld joint of superior quality. Multiple response character-
istics can be improved through optimization technique like TOPSIS is being revealed
by the researchers in this study. As the growth of industrialization, machining oper-
ations are stressed to work with multiple ranges of materials which a traditional
response approach cannot optimize easily. To handle such operations multi response
techniques have been developed and one such technique is GRA-PCAmulti response
approach. It is traditional multi response technique which transforms multi quality
response into single response. Researchers used this method in their study of opti-
mizing aluminium alloy employing Taguchimethod [42]. Observationswere done on
the quality values i.e. output parameters of aluminium alloy by optimizing the input
parameters of a CNC end milling machine. Taguchi L27 orthogonal array approach
has been implemented to select optimal parameters of the machine. Since there can
be numerous parameters some of which are uncertain or having incomplete informa-
tion. Here GRA-PCA provides efficient solution to this uncertainty. The researchers
have observed with the help of GRA-PCA approach that speed, depth of cut and feed
rate influence surface roughness and material removal rate significantly.
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Although a great deal of research efforts reported to optimize the multiple
responses, still industries are looking for simple, flexible, ease of understanding
and implementation tools that optimize the manufacturing process. For the con-
flicting objective functions there exists a multiple solution which is dependent on
the assigned relative importance (weights or trade-off) to individual objective func-
tion. Conventional practice of determining weights based on engineer judgement,
expert recommendation, and customer requirements may lead to erroneous results.
Although the above practice offers better individual output performance, but failed
to provide solutions that satisfy all outputs. Thereby, determining a single set of input
conditions that satisfy the conflicting outputs (maximize: MRR, and minimize: SR
and PT) is considered a tedious task for industry personal. PCA convert multiple
correlated responses into independent quality indices (i.e. single objective function)
while solving multiple objective functions. Weights for individual output functions
are determined using PCA. MOORA, TOPSIS and GRA require assigning weight
fractions while converting the multiple responses to single objective functions for
solving optimization. Note that, If PCA determine the eigen value greater than 1 for
more than one output (i.e. principal component), then there is no procedure defined
yet to select theweights to ascertain a feasible solution [43]. However, DEARmethod
does not require estimation ofweight fraction to solvemultiple objective optimization
problems. In DEAR method the combination of target (actual) outputs are mapped
into a ratio (i.e. weighted sum of outputs corresponds to larger-the-better divided
by sum of weighted outputs representing lower-the-better) such that the computed
values give ratio ranks that could help to determine the set of optimal factor levels
[43]. In the present work, attempts are made to illustrate the tools (PCA-GRA, PCA-
MOORA, PCA-TOPSIS andDEAR) involvingmathematical computation that could
help not only to optimize the AWJM process, but also the proposed methodology can
be used by any industry personnel to solve the similar complex real-world practical
problems.

2 Materials and Methods

2.1 Material Preparation

Sundi wood dust (SWD) possessing density of 0.779 g/cm3 and particle size of
approximately 600 μm is used as a reinforcement material for preparation of work
specimen. Cellulose, glucomannan, xylem, and linen are the major constituent mate-
rials present in the work sample. In addition, 6% of filler material present in the
composite matrix (94%) which is composed of epoxy (grade LY 556) possessing a
density of 1.26 g/cm3 and hardener (HY 951). Note that, resin and hardener pro-
portion are maintained equal to 10:8 by wt. The mixture of SWD and matrix are
mechanically stirred followed by pouring to vacuum glass chamber and allowed to
set under ambient environment for a curing period of 24 h. The composite samples
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are prepared to the dimension of 180 mm × 140 mm × 6 mm (refer Fig. 1a, b). The
prepared samples are subjected to perform machining.

2.2 Experimental Procedure

AWJM equipment (make: KMTWaterjet Systems) used for performing experiments
is shown in Fig. 2. Five independent factors namely AGS, SoD, WP, AMFR and NS
operating under three levels (Table 1) and Taguchi (L27) is used to design and perform
the experiments. During the experimentation, orifice diameter of 0.20 mm, nozzle

Fig. 1 a Sundi wood dust, b Sundi wood dust based polymer specimen

Fig. 2 a AWJM experimental setup, b AWJM nozzle head setup
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Table 1 Input parameters and their levels for Taguchi design

Input
parameters

Symbol Units Level 1 Level 2 Level 3

Abrasive
grain size

AGS mesh 60 80 100

Stand-off
distance

SoD mm 1.5 2.5 3.5

Working
pressure

WP MPa 150 200 250

Abrasive
mass flow
rate

AMFR g/s 2 4 6

Nozzle speed NS mm/min 120 170 220

Constant parameters

Orifice
diameter

0.20 mm Impact angle 90°

Nozzle
diameter

1.00 mm Work piece
thickness

5 mm

diameter as 1 mm, and impact angle as 90° are used. For all experimental trials, the
voltage and current are maintained equal to 300 V and 20 A. During experimentation
the square holes of dimension (15mm× 15mm) are machined on the prepared green
composite by using AWJM machine tool. Each experiment has been repeated three
times and the measured average values of MRR, SR and process time are used for
analysis and optimization (refer Table 2).

3 Methodology and Modelling

Multi-objective optimization refers to optimizing the process or product performance
involving two or more outputs with or without the conflicting outputs simultane-
ously. The present work aims at simultaneously maximizing material removal rate
while minimizing the process time and surface roughness of the AWJM process. The
proposed offline optimization tools (PCA-GRA, PCA-MOORA, PCA-TOPSIS and
DEAR) can be implemented in industries by any novice user to obtain the resulted
benefits. Various steps involved for successful implementation of said tools with a
case of AWJM process is presented in Fig. 3.

Step 1: Selection of input-output that improve efficiency of AWJM process

MRR, SR and PT are the important quality characteristics which affect the produc-
tivity, quality and economics while cutting PMCs using AWJM process. The quality
characteristics are influenced directly by process parameters which affects the effi-
ciency of AWJM process. For experimentation, analysis and optimization the most
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MOORA, GRA and TOPSIS DEAR

Computation of S/N ratio & 
PCA for weight fractions

Multi-response optimization 
of conflicting outputs

Identify output variables affecting the process

Abrasive water jet machining (AWJM) process

Identify input variables & their operating levels

Select experimental design matrix and the run

Collect the measured experimental output data

Conduct experiments for determined optimal levels and select best the tool

Fig. 3 Proposed steps for multi-response optimization in the present work

influencing parameters are selected based on consulting engineers and experts from
industries, pilot experiment study results and available literatures [1, 3, 44]. Table 1
presents the influencing parameters and their operating levels used for experimenta-
tion.

Step 2: Selection of experimental plan and perform S/N ratio computation

Taguchi robust designwas employed to conduct the experiments and perform statisti-
cal analysis. Taguchi method uses a special design of orthogonal arrays to investigate
the entire factor space on performance characteristics with the set of minimum exper-
imental trials. L27 orthogonal array experiments are employed for studying the influ-
encing five factors operating with three different levels. Experiments are repeated
three times for each run and the average values of measured performance charac-
teristics of PT, MRR and SR are presented in Table 2. The experimental values of
performance characteristics are converted to signal-to-noise (S/N) ratio. The present
work involves two categories of quality characteristics when performing analysis
with S/N ratio. Larger-the-better (LB) quality characteristics is employed for MRR,
and smaller-the-better (SB) for SR and PT. Note that, S/N ratio depicted with higher
values is treated as better quality characteristics irrespective of categories used. The
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signal-to-noise ratio computation corresponds to larger-the-better and smaller-the-
better quality characteristics is done using Eqs. (1) and (2).

S/NSB = −10 log
1

n

(
y2

)
(1)

S/NLB = −10 log
1

n

(
1

y2

)
(2)

Terms, n corresponds to total number of experimental observations, and y repre-
sents the actual experimental data.

Step 3: Multi-response optimization of AWJM

The present work involves optimization of multiple responses which are conflicting
in nature. Note that, multiple objective functions generate many solutions depending
on relative importance (weight fractions) given to individual outputs, wherein each
solution is different from one-another. This could occur due to the complex non-
linear behavior of inputs towards outputs. Selecting the best solution among many
potential solutions are treated as a tedious task for industry personnel. To limit the
shortcomings of getting local solutions with traditional methods in deciding weight
fractions for individual outputs, PCA was used.

3.1 Principal Component Analysis (PCA)

AWJM process requires optimization of multiple outputs. However, Taguchi robust
design limit to optimize single output at once [45]. The goal of the present work is to
locate the best set of control factors such that multiple responses are least sensitive to
noise factors. PCAhelps to determine theweight fractions for individual performance
characteristics. The determinedweight fractions correspond to each individual objec-
tive function was used to correlate the multiple outputs to single objective function
while optimizing with MOORA, TOPSIS and GRA. Note that DEAR method does
not require assigning weight fractions in their defined methodology.

The necessary steps essential to determine the weight fractions using principal
component analysis are as follows:

1. Collection of output data

Let Xi ( j) corresponds to the experimental data.Where, i= (1, 2, 3,…,m) and j= (1,
2, 3,…, n). Terms,m and n represent the experimental run and quality characteristics.

2. Normalize the performance characteristics

Practical requirement suggested, smaller the better-quality characteristics for SR and
PT (refer Eq. 3) and larger-the-better quality characteristics for MRR (refer Eq. 4).
X∗
i,k depicts the normalized data correspond to ith experiment and kth response.
For Smaller-the-better quality characteristics,



Optimization of Abrasive Water Jet Machining for Green … 141

X∗
i,k = min Xi (k)

Xi (k)
(3)

For Larger-the-better quality characteristics,

X∗
i,k = Xi (k)

max Xi (k)
(4)

3. Computation of co-variance matrix.

V value corresponds to variance-covariance matrix that uses normalized data as
discussed below,

V =

⎡

⎢⎢⎢
⎣

V1,1 V1,2 . . . V1,n

V2,1 V2,2 . . . V2,n
...

... . . .
...

Vm,1 Vm,2 . . . Vm,n

⎤

⎥⎥⎥
⎦

(5)

where, Ri, j = Cov X∗
i ( j),X

∗
i (k)

σ X∗
i ( j)∗X∗

i (k)θ
= Covariance of sequences X∗

i ( j) and X∗
i (k)

Standard deviation of sequences X∗
i ( j) and X∗

i (k)

Step 4: Computation of eigen values and eigen vector of the covariance matrix

PCAwas introduced to determine relative importance (weight fractions) for each per-
formance characteristics (PT, SR,MRR).Minitab software platform is used for deter-
mining the weight fractions correspond to the performance characteristics shown in
Table 4. The output data was used to estimate the correlation coefficient matrix
which could help to estimate the Eigen values and Eigen vectors. The computed
Eigen values and Eigen vectors are presented in Table 3.

The square value correspond to Eigen vector depicts the influence (i.e. signif-
icance) of each performance characteristic determined according to the principal
component (refer Table 4). There are three outputs and hence three principal com-
ponent values are determined. Note that, among all three principal components, the
explained variance of the first principal component is as high as 62.3%. Important
to note that the squares of first principal component eigen vectors are treated as
weight fractions for the performance characteristics. The weight fractions associated
to individual quality characteristics are found equal to 0.4942 for MRR, 0.4583 for
PT and 0.0475 for SR, respectively.

Table 3 Eigen values and explained variation for principal components

Principal component Eigen value Explained variation (%)

First 1.8683 62.3*

Second 0.9815 32.7

Third 0.1502 05.0

*62.3 = 100 × 1.8683/(1.8683 + 0.9815 + 0.1502)
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Table 4 Eigen vectors for principal components

Performance characteristics Eigen vector Weight
fractionPC1 PC2 PC3

Material removal rate, MRR +0.703 0.035 0.710 0.4942*

Process time, PT −0.677 −0.274 0.683 0.4583

Surface roughness, SR +0.219 −0.961 −0.169 0.0475

0.4942* = 0.703 × 0.703

3.2 Multi-objective Optimization on the Basis of Ratio
Analysis (MOORA)

In 2006, MOORA technique was developed by Brauers and Zavadskas. In gen-
eral, MOORA methods work with the following three types namely, Ratio system,
Reference point approach, and Full multiplicative form [40, 46]. The present work
employed ratio system for the task optimization. The steps involved in Ratio System
based MOORA are as discussed below [40]:

Step 1: Determination of decision matrix (D) wherein the characteristic values of
alternatives at attributes ηij. Terms, i = (1, 2, … m) and j = (1, 2, … r) are inputs
represented in a matrix shown in Eq. (6).

D =

⎡

⎢⎢⎢
⎣

η1,1 η1,2 . . . η1,r

η2,1 η2,2 . . . η2,r
...

... . . .
...

ηm,1 ηm,2 . . . ηm,r

⎤

⎥⎥⎥
⎦

(6)

Terms, m and r corresponds to total number of experimental observations or runs
and number of responses, respectively.

Step 2: Computation of normalized and weighted normalized decision matrix

Equation (7) is used to calculate the normalized decision matrix. The mathematical
formulation employed to calculate the weighted normalized decision matrix is pre-
sented in Eq. (8). In Eq. (8), wj corresponds to the weight of the output or response
j selected by the decision maker.

η∗
i j = ηi j√(∑m

i=1

(
ηi j

)2)
i = 1, 2, . . .m; and j = 1, 2, . . . r (7)

Yi j = [
ηi j × w j

]
m×r i = 1, 2, . . .m; and j = 1, 2, . . . r (8)

η∗
i j is the normalized values of S/N ratio corresponding to i on response j.
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Step 3: Computation of normalized and weighted normalized decision matrix

Y ∗
i represents the ranking scores computation done by MOORA (refer Eq. 9). The

computation of optimizing multiple conflicting responses use weighted normalized
values correspond to maximize the better quality-characteristics and are subtracted
with minimize the better quality-characteristics determine the MOORA index (Y ∗

i ).

Y ∗
i =

l∑

j=1

Yi j

︸ ︷︷ ︸
maximize the better
quali t y charecteristics

−
r∑

j=l+1

Yi j

︸ ︷︷ ︸
minimize the better
quali t y charecteristics

(9)

Terms in Eq. (9), here j = 1, 2, … l corresponds to number of responses to be
maximized, and j = l + 1, l + 2, …, n represents the number of responses to be
minimized. High value of Y ∗

i is treated as better multiple quality characteristics.

Summary of Results of PCA-MOORA
PCA supply weights to MOORA that could optimize the multiple performance
characteristics by determining the MOORA Index (Y ∗

i ). MOORA index Y ∗
i values

obtained from systematic procedure is used for further analysis and optimization.

3.3 Technique for Order Preference by Similarity to Ideal
Solution (TOPSIS)

TOPSIS method estimates the solution by considering the shortest distance from
the true solution (also called positive ideal solution), and farthest distance from
negative true solution (ani-ideal solution) [47]. TOPSIS was developed in 1981 by
Hwang and Yoon. In AWJM: True solution always aims at maximizing the MRR,
andminimizing the SR and PT, whereas negative true solutionmaximizes the SR and
PT and minimizes theMRR. TOPSIS work with the basic principle such that the best
solution always lies, when it is closest to ideal solution and farthest to negative ideal
solution. Important to note that, TOPSIS procedure does not give information about
relative importance (weights) of those distances. Thereby, the relative importance is
required for optimization of multiple outputs that are supplied with the help of PCA.
The steps followed to optimize the multiple performance characteristics by utilizing
PCA-TOPSIS are discussed below:

Step 1: Development of the decision matrix.

The decision matrix is composed of the S/N ratio of quality characteristics at
responses (η∗

i j ; where i = 1, 2, 3, … m and j = 1, 2, … r) are the inputs repre-
sented in decision matrix (D). In the present work, m corresponds to number of
experimental observations = 27, and r represents number of responses = 3.
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D =

⎡

⎢⎢⎢
⎣

η1,1 η1,2 . . . η1,r

η2,1 η2,2 . . . η2,r
...

... . . .
...

ηm,1 ηm,2 . . . ηm,r

⎤

⎥⎥⎥
⎦

(10)

Step 2: Normalize the decision matrix.

The decision matrix is normalized according to Eq. (11). η∗
i j are the normalized

values of S/N ratio corresponding to i on response j.

η∗
i j = ηi j√(∑m

i=1

(
ηi j

)2)
i = 1, 2, . . .m; and j = 1, 2, . . . r (11)

Step 3: The computation of weighted normalized decision matrix is done according
to Eq. (12).

V = [
Xi j

]
m×r

= [
ηi j × w j

]
m×r

i = 1, 2, . . .m; and j = 1, 2, . . . r (12)

w j corresponds toweight fractions of jth response.
∑r

j=1 w j = w1+w2+· · · wr = 1.
Since, there are three outputs and weight fractions correspond to MRR, PT and SR
is found equal to 0.4942, 0.4583 and 0.0475, respectively (refer Table 4).

Step 4: Calculate the positive ideal and anti-ideal (negative) solutions: A* and A−
represents the ideal and negative ideal solution corresponds to maximum and mini-
mum values of S/N ratio for all experimental trials (refer Eqs. 13–16).

A∗ = (
X∗
1, X

∗
2, . . . X

∗
r

)
(13)

X∗
j =

[(
max

i
Xi j

∣∣
∣∣ j ∈ J

)
i = 1, 2, . . .m

]
(14)

A− = (
X−
1 , X−

2 , . . . X−
r

)
(15)

X−
j =

[(
min
i

Xi j

∣∣∣∣ j ∈ J

)
i = 1, 2, . . .m

]
(16)

Step 5: The calculation of d∗
i and d−

i represents the ideal positive solution and ideal
negative solution of distance of scenario i, respectively (refer Eqs. 17 and 18).

d∗
i =

√√√√
r∑

j=1

(
Xi j − X∗

j

)2
i = 1, 2, . . .m; j = 1, 2, . . . r (17)



Optimization of Abrasive Water Jet Machining for Green … 145

d−
i =

√√√√
r∑

j=1

(
Xi j − X−

j

)2
i = 1, 2, . . .m; j = 1, 2, . . . r (18)

Step 6: Calculate the relative closeness or ranking score (C∗
i ) of each alternative

according to Eq. (19). C∗
i corresponds to larger the better quality-characteristics of

alternative of Ai. Selection of the best alternative is decided based on the ranking
score.

C∗
i = d−

i(
d−
i + d∗

i

) i = 1, 2, . . .m; j = 1, 2, . . . r (19)

3.4 Grey Relational Analysis (GRA)

In 1982,Deng introduced theGreyTheory to handle poor, incomplete and uncertainty
information. The grey color is neither black nor white [48]. In general, system is
defined with color that represents the quantum of clear information (i.e. internal
characteristics ormathematical formulations that details dynamics) about the system.
If we know complete insight information about the system or process then it is called
white system. Contrary, if the information is completely unknown then it is referred
as the black system. Grey system refers to the information lies between the known
and unknown information. The present work is based on the optimization of AWJM
process, and maximizing the MRR and minimizing the SR and PT there. The steps
followed for optimization using PCA-GRA are discussed below.

GRA is employed to calculate the relationship between reference (i.e. ideal)
sequence X (o)

o ( j) and comparable sequence X (o)
i ( j), i = 1, 2, …, m; j = 1, 2, …, r,

respectively.

Step1: TheS/N ratio values are computed for all responses including all experimental
trials,

(
ηi j

)
m×r .

Step 2: Normalize the S/N ratio: S/N ratio values need to be normalized (using lin-
ear normalization) between the range of zero and one (unity). Note that the quality
characteristics corresponds to larger-the-better and lower-the-better quality charac-
teristics are computed using Eqs. (20) and (21).

Yi ( j) = ηo
i ( j) − min ηo

i ( j)

max ηo
i ( j) − min ηo

i ( j)
(20)

Yi ( j) = max ηo
i ( j) − ηo

i ( j)

max ηo
i ( j) − min ηo

i ( j)
(21)
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Step 3: Calculate the deviation sequences as per Eq. (22). �oi ( j) is computed based
on the absolute values of difference between reference sequence x∗

o ( j) and the com-
parable sequence of x∗

i ( j) after normalization.

�oi (k) = ∣∣Y ∗
o (k) − Y ∗

i (k)
∣∣ (22)

Step 4: Determine the grey relational coefficient (GRC). The purpose of GRC
γ (Yo( j),Yi ( j)) is to establish the relationship between the ideal and actual nor-
malized S/N ratio for all responses.

γ (Yo( j),Yi ( j)) = �min + ζ�max

�oi ( j) + �max
(23)

In general, the values correspond to �max,�min and ζ is kept fixed to 1, 0 and
0.5 respectively.

Step 5: Calculate the overall performance by utilizing weighted grey relational grad-
ing (WGRG). The composite values of all responses associated with their respective
weights determine the WGRG.

γ (Yo,Yi ) =
r∑

j=1

w1
[
γ (Yo( j),Yi ( j))

] + w2
[
γ (Yo( j),Yi ( j))

] + . . . wr
[
γ (Yo( j),Yi ( j))

]

(24)

In the present work the requiredweights are supplied through PCA (refer Table 4).
The weight fractions for MRR, PT and SR values are found equal to 0.4942, 0.4583
and 0.0475, respectively.

3.5 Data Envelopment Analysis Based Ranking (DEAR)

In 1978, Charnes et al. proposed the concept of data envelopment analysis (DEA).
The DEA estimate the efficiency of a combination of decision-making units with
utilization of multiple inputs to yield multiple outputs [49]. Note that, DEARmethod
used to solve for optimization ofmultiple responses does not require determination of
weight fractions for individual quality characteristics. Here, set of actual outputs are
correlated with simple mathematical formulation as a ratio such that the computed
values estimate the ratio ranks. These ranks are further used for determining optimal
factor levels and perform optimization. The sequential steps followed in DEAR for
the estimation of multi-response performance index (MRPI) are:

Step 1: Calculate the weights (i.e. ratio of the performance measure at any trial to
sum of all performance measures) for each output correspond to all experiments. The
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computation corresponds to determining the weight fraction of each output is done
using the following Eqs. (25)–(27).

Wmrr = MRR
∑

MRR
(25)

WPT = (1/PT )
∑

(1/PT )
(26)

WSR = (1/SR)
∑

(1/SR)
(27)

Step 2: Transform the output data into weighted data after multiplying output with
their corresponding weight fractions according to Eqs. (28)–(30).

M = Wmrr × MRR (28)

P = WPT × PT (29)

S = WSR × SR (30)

Step 3: Calculate the multi-performance ranking index by dividing the larger the bet-
ter performance characteristics with smaller-the-better performance characteristics
using Eq. (31).

MRP I = M

P + S
(31)

3.6 Determination of Optimal Factor Levels for All Outputs

The sets of optimal factor levels for abrasive water jet machining process are
determined by applying multi-objective optimization tools (PCA-MOORA, PCA-
TOPSIS, PCA-GRA, and DEAR). MOORA Index, TOPSIS ranking score, WGRG,
and MRPI values represent the composite values correspond to all responses esti-
mated by their methodology employed from PCA-MOORA (refer Table 5), PCA-
TOPSIS (refer Table 6), PCA-GRA (refer Table 7), andDEAR (refer Table 8), respec-
tively. Tables 9 and 10 present the consolidated MOORA Index, TOPSIS ranking
score, WGRG, and MRPI of all factors operating at different levels. Example (say
MOORA), the factors are calculated by adding all the MOORA index values oper-
ating under particular level of individual factors. It is worth mentioning that the
choice of optimal level for a factor corresponds to the maximum level value of input
factors on determining the performance characteristics. The optimal level of input
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factors of the AWJM process is determined by PCA-MOORA, PCA-TOPSIS, PCA-
GRA, and DEAR method is presented in Tables 9 and 10. It is observed that, DEAR
method determined optimal factor levels are different from those obtained for other
methods studied. The rank for the factors were found to be different for different
models and this might be due to the steps and procedure in determining the compos-
ite responses are found to be different. The higher difference (max. − min.) value
corresponds to the individual factor resulted in highest importance (contribution or
significance) on the performance measures. Abrasive grain size resulted in highest
significance considering all the responses, as their corresponding difference value
is more compared to other factors. Confirmation experiments are conducted for the
determined optimal levels for a factor as obtained by PCA-MOORA, PCA-TOPSIS,
PCA-GRA and DEAR, respectively. Note that the optimal factor levels determined
for PCA-MOORA, PCA-TOPSIS and PCA-GRA are not among the combination of
total twenty-seven experiments performed as per Taguchi method. This occurs due
to the multi-facture nature of experimental design method (i.e. 35 = 243 combinato-
rial set). This indicates that optimization methods (PCA-MOORA, PCA-GRA and
PCA-TOPSIS) determined best factor levels is found to be one among the total set of
243 possible experimental conditions. DEARmethod estimated optimal set of factor
levels correspond to the 26th experimental trial (E26) from the total 27 experiments
conducted.

3.7 Confirmation Experiments

Confirmation experiments are conducted to verify the predictions of optimum tech-
niques and to select the best optimization method for enhancing the multiple perfor-
mance characteristics of AWJM process. Important to note that, DEAR method out-
performed other methods (PCA-GRA, PCA-TOPSIS, and PCA-MOORA) in deter-
mining the optimal levels that resulted in desired high values of MRR, and low
values of SR and PT. Note that, DEAR method produced 26.18% improvement
in MRR, 17.83% for PT and 6.83% for SR, respectively (refer Table 11). There-
fore, A3B3C2D1E2 refers to the optimal set of factor levels recommended by DEAR
method for AWJM process. The significance of individual factors was tested based
on the obtained difference values of maximum and minimum levels. Abrasive grain
size followed by nozzle speed, stand-off distance, working pressure and abrasive
mass flow rate are the factors listed according to their importance in enhancing the
multiple performance characteristics. The optimal factor levels of AWJM process
is attributed to the following process mechanism. In AWJM, material removal phe-
nomenon initiates with indentation on the work surface with the impact of abrasive
particle. Indentation to possible material removal is dependent primarily on size of
the abrasive particle striking the work surface. Tilly [50] explains decrease in the
material removal was observed with smaller particle size as a result of less erosion
on the machined surface area. Note that, small abrasive grit size particle poses lesser
energy which is not sufficient enough tomake larger damage (i.e. indentation) results
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Table 7 Results summary of GRA based optimization

Exp.
no.

S/N ratio Normalization Grey relation
coefficient (GRC)

WGRG
γ (Yo, Yi )

MRR PT SR MRR PT SR MRR PT SR

E1 40.89 6.07 16.42 0.408a 0.378 0.887 0.458b 0.446 0.815 0.469

E2 35.44 1.71 14.61 0.077 0.146 0.711 0.351 0.369 0.634 0.373

E3 37.12 3.09 14.07 0.179 0.220 0.659 0.378 0.391 0.594 0.395

E4 34.28 −0.46 13.81 0.007 0.031 0.634 0.335 0.340 0.577 0.349

E5 35.49 0.96 12.96 0.080 0.107 0.551 0.352 0.359 0.527 0.364

E6 35.84 4.07 14.56 0.101 0.272 0.706 0.357 0.407 0.630 0.393

E7 34.17 −0.44 10.84 0.000 0.032 0.346 0.333 0.341 0.433 0.342

E8 34.38 −1.05 9.40 0.012 0.000 0.206 0.336 0.333 0.387 0.337

E9 35.90 1.15 11.47 0.105 0.117 0.407 0.358 0.361 0.457 0.365

E10 36.81 2.42 8.00 0.160 0.184 0.071 0.373 0.380 0.350 0.375

E11 39.22 5.43 10.60 0.306 0.344 0.323 0.419 0.433 0.425 0.426

E12 39.96 5.24 8.13 0.351 0.334 0.083 0.435 0.429 0.353 0.428

E13 36.28 5.53 17.59 0.128 0.349 1.000 0.364 0.435 1.000 0.427

E14 40.37 6.90 11.03 0.376 0.422 0.364 0.445 0.464 0.440 0.454

E15 39.84 4.57 13.43 0.344 0.298 0.597 0.432 0.416 0.554 0.431

E16 41.54 6.80 15.29 0.446 0.417 0.777 0.475 0.462 0.692 0.479

E17 42.36 8.11 15.60 0.496 0.486 0.807 0.498 0.493 0.722 0.507

E18 39.67 7.21 13.94 0.334 0.438 0.646 0.429 0.471 0.586 0.456

E19 46.25 17.79 10.63 0.733 1.000 0.326 0.652 1.000 0.426 0.801

E20 44.92 11.80 10.72 0.652 0.682 0.334 0.590 0.611 0.429 0.592

E21 48.21 11.28 7.27 0.851 0.654 0.000 0.771 0.591 0.333 0.668

E22 45.63 09.19 10.66 0.695 0.544 0.328 0.621 0.523 0.427 0.567

E23 49.52 14.20 8.27 0.931 0.809 0.097 0.879 0.724 0.356 0.783

E24 48.55 13.43 10.09 0.872 0.769 0.273 0.796 0.684 0.408 0.726

E25 46.17 16.31 16.36 0.728 0.921 0.881 0.647 0.864 0.808 0.755

E26 50.67 16.36 11.28 1.000 0.924 0.389 1.000 0.868 0.450 0.914

E27 48.83 11.28 17.39 0.889 0.654 0.981 0.818 0.591 0.963 0.722

Min. 34.17 −1.05 07.27

Max. 50.66 17.79 17.59

Normalization computation using Eq. [20–21]: [(40.89 − 34.17)]/[(50.66 − 34.17)] = 0.408
Computation of GRC using Eq. [23]: [0.0 + (0.5 × 1.0)]/[(1.0 − 0.408) + 0.5] = 0.458
Computation ofWGRG using Eq. [24]: [(0.458× 0.4942)+ (0.446× 0.4583)+ (0.815× 0.0475)]
= 0.469
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Table 11 Results of confirmation experiments tested for four optimization methods

Models Optimal factor
levels

Experimental performance characteristics

PCA-MOORA A3B3C1D1E2 MRR = 270.5 mm3/min
PT = 0.185 s
SR = 0.293 μm

PCA-TOPSIS

PCA-TOPSIS

DEAR A3B3C2D1E2 MRR = 341.33 mm3/min
PT = 0.152 s
SR = 0.273 μm

in less material and more cutting time. Increase in abrasive flow rate decreases the
particle velocity and number of impacts as a result of increased interference between
the particles [51]. Higher values of abrasive flowrate alter the impact angle of abrasive
attack and reduce the local impact velocities which result in lowmaterial removal and
increased process time. Lower the values of nozzle speed resulted in larger the depth
of cut and better surface quality [52]. As the traverse speed increases, the depth of cut
tends to decrease and favours for increased drag lines on the cut or machined surface
resulted in rough machined surface. The jet diameter tends to expand with increased
standoff distance [53], which favour the work piece exposed to larger machining area
and the kinetic energy of abrasive particles strike the machining area at high impact
with moderate work pressure resulted in better surface quality and productivity in
machining.

4 Conclusions

In AWJM,machining parts to precise dimensional accuracy and surface finish is well
established. Surface finish determines the functional performance characteristics of
the machined parts, wherein its counterpart must not affect the productivity (i.e.
MRR, and PT). Multi-objective optimization for the conflicting nature of outputs
(i.e. minimize SR and PT, and maximize: MRR) are optimized for PCMs using
AWJM process and the following conclusions can be drawn:

1. Taguchi robust design applied to conduct minimum practical experiments and
collected the experimental input-output data. S/N ratio values are computed for
the desired higher-the-better quality characteristics for MRR, and lower-the-
better performance characteristics for SR and PT. Taguchi method collect output
data and analyze the factors effects for each output separately, thus failed to
optimize multiple outputs simultaneously.

2. Multiple outputs generate many solutions and are dependent on the nature of
importance given to the response. Traditional practices (engineers or experts or
customer advice)may yield the best output for one output,with the compromising
solutions for the other. Statistical multi-variate analysis based principal compo-
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nent analysis tool is used to determine the weight fractions based on the collected
output data. PCA determined weight fractions for MRR, PT and SR values are
found equal to 0.4942, 0.4583 and 0.0475, respectively. Note that, summation of
all the weights correspond to the outputs must be maintained equal to one.

3. MOORA,TOPSIS andGRA require assigningweight fractionswhen performing
multi-objective optimization. Thereby, PCA supply the determined weights to
solve the said task. Note that, PCA-MOORA, PCA-TOPSIS, and PCA-GRA use
different procedural steps to perform optimization. However, the recommended
optimal levels (A3B3C1D1E2) remain identical with slight change in ranking of
factors.

4. DEAR method procedural steps itself estimate the weight fractions for each
output at their respective experimental trials. Thus, the recommended optimal
levels (A3B3C2D1E2) and ranking of factors based on importance are different
from those obtained from PCA-TOPSIS, PCA-MOORA, and PCA-GRA.

5. The confirmation experiments are conducted for the optimal levels suggested
by all four methods. DEAR method outperformed other three models (PCA-
GRA, PCA-TOPSIS and PCA-MOORA) in terms of yielding higher material
removal rate with low process time and surface roughness. Abrasive grain size
followed by nozzle speed, stand-off distance, working pressure and abrasive
mass flow rate are the factors listed according to their importance in enhancing the
multiple performance characteristics.Note that,DEARmethodproduced 26.18%
improvement in MRR, 17.83% for PT and 6.83% for SR compared to other three
(i.e. PCA-basedmodels)models. This occurs due to eachmodel possesses its own
advantages and limitations with acceptable degree of errors in estimating values.
Further, combining two such models do increase the computational complexity
and time consuming. Therefore, DEAR method is a suitable tool which not
only improves the product quality, but also provides solutions without much
computation complexity and time.This could help anypractice or novice engineer
to apply tools for solving practical problems. Noteworthy, DEAR method can
only optimize the conflicting nature of outputs is the only major limitation.
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An Integrated Fuzzy-MOORAMethod
for the Selection of Optimal Parametric
Combination in Turing of Commercially
Pure Titanium

Akhtar Khan, Kalipada Maity and Durwesh Jhodkar

Abstract This chapter explores the application of a hybrid approach namely multi-
objective optimization based on ratio analysis (MOORA) in fuzzy context to obtain
the best parametric combination during machining of commercially pure titanium
(CP-Ti) Grade 2 with uncoated carbide inserts in dry cutting environment. A series of
experiment was performed by adopting Taguchi based L27 orthogonal array. Cutting
speed, feed rate, and depth of cut were selected as three process variables whereas
cutting force, surface roughness and flank wear were selected as three major quality
attributes to be minimized. The minimization was exploited using fuzzy embedded
MOORA method and hence an optimal parametric combination was attained. The
results of the investigation clearly revealed that, the fuzzy coupled with MOORA
method, was capable enough in acquiring the best parametric setting during turning
operation under specified cutting conditions.

Keywords Fuzzy logic · MOORA · Flank wear · Optimization · Surface
roughness · Titanium

1 Introduction

The present era is well-known for the creation and development of a large number
of structural materials. Among these materials, titanium and its alloys are identi-
fied as more promising owing to their inherent properties. Titanium alloys are more
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attracting than that of other similar materials due to their unique characteristics such
as superior corrosion resistance, highest strength-to-weight ratio, exceptional tissue-
inertness and sustainability of these properties even at elevated temperatures [1–3].
Therefore, these alloys are most widely used in aerospace, chemical processing,
marine, automobile and medical industries [4, 5]. Consequently, the aforementioned
applications necessitate a substantial machining. Regrettably, titanium alloys are
characterized as ‘hard-to-cut’ typematerials owing to their poor thermal conductivity
and high chemical affinity [6–8]. Poor thermal conductivity restricts heat dissipation
from the primary cutting zone which in turn leads to excessive temperature gradi-
ent and hence to rapid tool wear at its pre-mature stages. Similarly, high chemical
affinity of these alloys contributes in localizing the heat and hence a remarkable
adhesion between tool and work materials which strongly curtails the tool life. The
afore-discussed consequencesmay possibly lead to high production cost, high energy
requirement in associationwith compromising dimensional accuracy [9]. These chal-
lenges can be addressed by selecting an appropriate cutting tool materials as well
as a suitable combination of machining variables. However, a sufficiently enormous
variety of cutting tool materials are now available, carbide inserts were recognized as
the most suitable for machining titanium and its alloys [10, 11]. Therefore, commer-
cially available uncoated carbide inserts were used for the machining of the selected
work material during this investigation.

Selection of an appropriated combination of cutting variables is of paramount
importance while machining “hard-to-cut” materials like titanium and its alloys. In
machining of such alloys, an appreciable tool life, superior surface finish and rel-
atively lower values of the cutting forces are acknowledged as the most noticeable
manufacturing desires. To meet these requirements, adoption of optimization meth-
ods becomes essential to confirm high productivity without compromising the qual-
ity. In the past few decades, several experimental investigations have been reported
exhibiting the application potential of different optimization techniques for optimiz-
ing turning parameters in order to achieve quality products. Lalwani et al. [12] studied
the influence of various turning variables viz. cutting speed, feed rate and depth of cut,
on two distinct cut qualities (i.e. cutting force and surface roughness) while turning
MDN 250 steel with ceramic inserts. Aouici et al. [13], developed response surface
methodology (RSM)-based quadratic models for the prediction of various turning
responses such as surface roughness and cutting force, during turning of AISI H11
steel using CBN (Cubic boron nitride) inserts. Asiltürk and Neşeli [14] and Hashmi
et al. [15], in their experimental investigations also developed RSM-based empirical
models for the prediction of two different surface roughness characteristics viz. arith-
metic mean roughness (Ra) and maximum peak-to-valley height (Rz). The results of
both the investigations indicated that the suggested quadratic models were effective
enough in predicting cut qualities and can be used to estimate the machining charac-
teristics of other machining processes too. Similarly, Tebassi et al. [16] advised two
different prediction models for estimating cutting force and surface roughness dur-
ing machining of nickel based super alloy Inconel 718. They suggested RSM-based
quadratic model and artificial neural network (ANN)-based model. In the current
investigation, they compare the estimation efficiency of both the models and noticed
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that, ANNmodel was around 10.1%more precise in estimating cutting force (Fc) and
24.83% precise in estimating average roughness or arithmetic mean roughness (Ra),
in comparison to the quadratic model counterpart. Furthermore, ANN model was
also signified as an effective prediction tool for predicting cutting force, tool wear
and surface roughness during turning operation [17]. Abburi and Dixit [18], recom-
mended ANN coupled with fuzzy set theory to estimate the surface roughness during
turning operation. Similarly, Basheer et al. [19], also used ANNmodel for predicting
various output characteristics while precision machining of metal matrix composites
(MMCs). The above mentioned studies were performed in dry cutting environment.
In contrast, some researchers have reported the effectiveness of employing cool-
ing media such minimum quantity lubrication (MQL) in order to attain improved
machinability of different titanium and nickel-based super alloys [20–23]. These
investigations highlighted the technical hitches and the benefits of MQL approach in
a real time manufacturing system.

In addition to the afore discussed machining approaches, optimization techniques
and prediction models, an extensive work has been found in which researchers have
used various multi-criteria decision making (MCDM)-based approaches to solve
turning problems consisting ofmultiple process variables and attributes. Thesemeth-
ods include Analytical hierarchy process (AHP), Analytical network process (ANP),
Fuzzy logic, multi-objective optimization based on ratio analysis (MOORA) method
and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)
method etc. [24–28]. Apart from this, some hybrid and innovative techniques viz.
Fuzzy-TOPSIS, Fuzzy-MOORA, and ANP-TOPSIS were also reported in order to
confirm better solution of a specific problem [29]. The aforesaid approaches were
found to bemore precise in attaining the best alternative among a set of feasible alter-
natives. From the above literature survey it is clear that, an extensive work has been
dedicated to the utilization of several MCDM-based approaches in solving a wide
range of problems.However, turning parameters ofCP-Ti grade 2 and their vagueness
has not been studied and reported adequately so far. This might be contributed to the
uncertain behavior of turning responses and vague information about the interaction
between turning variables. Thus, the aforesaid situation leads an unclear solution.
Therefore, selection of a suitable and effective methodology to solve MCDM-based
problems is a great challenge to the researchers as well as the industries dealing with
such situations. Keeping in mind, the vagueness and uncertainty of turning param-
eters, a fuzzy embedded MOORA method has been introduced in this study. The
concepts of fuzzy set theory have been implemented to determine the best parametric
combination while machining CP-Ti grade 2. The relationship between turning input
and the selected output, were described with the help of fuzzy linguistic variables.
In addition, a fuzzy control rule was developed for each of the selected attribute by
adopting seven different linguistic grades. Thus, an optimal combination of process
variables was attained and reported.
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2 Multi-objective Optimization Based on Ratio Analysis
(MOORA)

TheMOORAmethod is a newly introduced approach having a substantial potential in
dealing with a wide range of problems comprising of multiple as well as conflicting
attributes. This method was developed and proposed by two European (Vilnius;
Lithuania) researchersBrauers andZavadskas in the year 2006.Basically, thismethod
comprises of two distinct elements viz. the ratio system and the reference point
approach. The first element is used to determine the overall performance of each
alternative. This can be done by calculating the difference between the summations
of the corresponding normalized values related to each criteria. On the other hand,
the reference point approach helps in indicating the best or optimal combination of
the alternatives.

The MOORA method can be understood deeply and clearly with the help of the
following steps:

Step 1: Initially a decision matrix is constructed which represents all the selected
responses and the corresponding set of input variables.

X =

⎡
⎢⎢⎢⎣

x11 x12 . . . x1n
x21 x22 . . . x2n
...

...
...

...

xm1 xm2 . . . xmn

⎤
⎥⎥⎥⎦ (1)

here, xij denotes the selected outcomes of the ith alternative on jth attribute,
whereas m and n represents the number of alternatives (a set of input vari-
ables) and number of attributes (machining response) respectively.

Step 2: Normalization of the data sets observed in step number 1 and thus estab-
lishing a ratio system.

x∗
i j = xi j√∑m

i=1 x
2
i j

( j = 1, 2, . . . , n) (2)

here, x∗
i j denotes the normalized value of the ith alternative on jth attribute.

This is a dimensionless quantity that lies between 0 and 1.
Step 3: In the next step, the overall assessment value is calculated by

adding/subtracting the normalized values corresponding to each alterna-
tive. All the beneficial (higher-is-better) type performance characteristics
are added whereas non-beneficial (lower-is-better are subtracted in order to
obtain the overall assessment value.

yi =
g∑
j=1

x∗
i j −

n∑
j=g+1

x∗
i j (3)
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here, g denotes the number of attributes related to beneficial criterion
whereas (n − g) is the number of attributes corresponding to non-beneficial
criterion. yi represents the overall assessment value of the ith alternative
with respect to all alternatives.
Many a times, it was perceived that some of the attributes are of paramount
importance when compared to the others. In such situations, weight criteria
or factor can be multiplied with the same. After incorporation of weighting
parameter the above equation can be written as below:

yi =
g∑
j=1

w j x
∗
i j −

n∑
j=g+1

w j x
∗
i j (4)

where, wj is the weight of jth attribute.
Step 4: Assign ranking to overall assessment value yi in descending order. The

highest value of the yi represents the best alternative, while the lowest value
of yi represents the worst.

3 An Introduction to Fuzzy Set Theory

A multi-criteria decision making (MCDM)—based problem has been identified as
one of the difficult problems associated with real time manufacturing systems, due to
the involvement of several uncertain situations. Therefore, to acquire an acceptable
solution from this kind of problems has always been a challenging task to meet, for
the researchers. In this situation, fuzzy set theory plays a key role in dealing with the
ambiguity of the process and offers better results [30]. A fuzzy set theory, allows the
decision maker to express their opinions in terms of specified linguistic variables.
These linguistic variables can be converted into different fuzzy numbers with the
help of fuzzy membership functions. In this way, MCDM-based problems can be
solved easily and effectively. Consequently, fuzzy set theory has been identified as a
significant as well as efficient tool for explaining human activities inclusive of vague
and uncertain information.

Fuzzy inference system (FIS) is a well-recognized computing tool for handling
linguistic knowledge andnumerical data together. In general, FISutilizes the concepts
of fuzzy reasoning, fuzzy rules (If-then) and fuzzy set theory to deal with a wide
range of problems viz. decision making, automatic control, robotics, classification
of data and pattern recognition etc. This might be contributed to its effectiveness in
mapping of any prescribed input to an output by using the aforesaid approaches. An
FIS consists of four distinct elements such as fuzzifier, inference engine, knowledge
base and defuzzifier. Initially, the crisp input is converted in terms of predefined
linguistic variable by utilizing the membership function kept in the fuzzy knowledge
base. This can be performed with the help of the first element i.e. fuzzifier and hence
this process is termed as fuzzification. Secondly, the fuzzy input is converted to the
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Fig. 1 The architecture of fuzzy—interface system

fuzzy output by adopting fuzzy rules (If-then) inside the inference engine. Finally,
the last element i.e. defuzzified is engaged to convert these fuzzy output to a crisp
value. The architecture of a fuzzy inference system is represented in Fig. 1.

Fuzzy number: A fuzzy number, is a subset of real numbers which denotes the
development of the idea within a specified confidence interval [30]. For example,
let A be the classical set of objects, whose elements are represented by X. The crisp
value of a prescribed statement is characterized by means of a membership function
and can be represented by a curve indicating the membership values lying in the
range of 0 and 1.

µA(X) =
{
1, i f X ∈ A
0, Otherwise

(5)

Here, {0, 1} is known as the evaluation set and it is permissible to be represented
in a real interval [0, 1] for the continuous mapping membership function. More-
over, assortment of a suitable membership function is of utmost significance in the
fuzzification process. These membership functions are typically created by means of
amply of elementary functions such as linear, quadratic and cubic polynomial curves,
Gaussian distribution function, sigmoid curve etc. Conversely, the modest member-
ship function can be created expending straight lines. In this category, the triangular
membership function is recognized as the simplest one, which can be described with
the help of a center-based triplet tactic. A triangular membership function can be
constructed by keeping and equal and identical distance between the lowest and the
highest points attached to the adjacent center. As a result of this, for each input value
there will not be fuzzy sets greater than two. Similarly, the addition of their member-
ship degrees always remains unity. Figure 2 explains the schematic representation
of a triangular fuzzy membership function. For a clear understanding of fuzzy set
theory and fuzzy numbers, some important definitions are enumerated below:
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Fig. 2 A triangular fuzzy
membership function

Definition 1: A fuzzy set Ã in a universe of discourse X is described by a member-
ship function µ Ã(x) which is characterized as the grade of member-
ship of x in Ã.

Definition 2: The triangular fuzzy numbers (TFNs) can be exemplified as Ã = (a1,
a2, a3), and the membership function of the fuzzy number Ã can be
designated as below (Eq. 6):

µ Ã(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 x < 1,
x−a1
a2−a1

a1 ≤ x ≤ a2,
a3−x
a3−a2

a2 ≤ x ≤ a3,

0 x > a3

(6)

Definition 3: The fuzzy sumand fuzzy subtraction of twodifferent TFNs are also tri-
angular fuzzy numbers. But, the multiplication of two different TFNs
is only an approximate TFN. For example, if there are two triangular
fuzzy numbers Ã = (a1, a2, a3) and B̃ = (b1, b2, b3), and a positive
real number r = (r, r, r), then the various algebraic operations between
these two TFNs can be described as below:

Ã(+)B̃ = (a1 + a2, b1 + b2, c1 + c2) (7)

Ã(−)B̃ = (a1 − a2, b1 − b2, c1 − c2) (8)

Ã(×)B̃ = (a1a2, b1b2, c1c2) (9)

Ã(/)B̃ = (a1/b1, a2/b2, a3/b3) (10)

Ã(×)r = (a1r, a2r, a3r) (11)

Definition 4: The defuzzified value m( Ã) of a triangular fuzzy number Ã =
(a1, a2, a3), can be calculated using Eq. (12):

m( Ã) = a1 + a2 + a3
3

(12)
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Definition 5: The distance between these two TFNs Ã = (a1, a2, a3) and B̃ =
(b1, b2, b3), can be calculated using Eq. (13):

d( Ã, B̃) =
√
1

3
(a1 − b1)2 + (a2 − b2)2 + (a3 − b3)2 (13)

Definition 6: The best non-fuzzy performance (BNP) value cab be computed by
employing center of area (COA) method, as described in Eq. (14):

BN Pi = [(c − a) + (b − a)]

3
+ a,∀i (14)

4 Fuzzy Embedded MOORA Method

The concept of fuzzy set theory in combination with MOORA method, was accom-
plished to estimate an optimal parametric combination in order to confirm better
machinability of the selected workmaterial. The hybridization of the two approaches
attracted the attention of several researchers in the direction of the decision science
community. Therefore, in the present work, an attempt has been made to exhibit the
application potential of Fuzzy-MOORA method in solving an MCDM-based prob-
lem. The proposed hybrid approach offers a set of linguistic variables to express the
opinions of decision makers. These variables were further utilized to construct fuzzy
decisionmatrix and normalized fuzzy decisionmatrix. In the next step, weighted nor-
malizedmatrixwas acquired by adopting a suitableweightage for each of the selected
response. Further, crisp values for weighted normalized fuzzy decision matrix was
obtained, by calculating the best non-fuzzy performance value corresponding to each
alternative. At the end, overall assessment values were computed and ranking was
done by arranging them in descending order. The recommended hybrid approach
consists of the following steps:

Step 1: Formation of fuzzy decisionmatrix using the adopted fuzzy triangular num-
ber illustrating all the alternatives (in rows) and attributes (in columns).

X̃ =
⎡
⎢⎣

[
xl11, x

m
11, x

n
11

] [
xl12, x

m
12, x

n
12

] [
xl1n, x

m
1n, x

n
1n

]
...

...
...[

xlm1, x
m
m1, x

n
m1

]
xlm2, x

m
m2, x

n
m2 xlmn, x

m
mn, x

n
mn

⎤
⎥⎦ (15)

Step 2: Calculate the normalized fuzzy decision matrix using Eqs. (16–18).

xl∗i j = xli j√
∑m

i=1

[(
xli j

)2 +
(
xmi j

)2 +
(
xni j

)2
] (16)
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xm∗
i j = xmi j√

∑m
i=1

[(
xli j

)2 +
(
xmi j

)2 +
(
xni j

)2
] (17)

xn∗
i j = xni j√

∑m
i=1

[(
xli j

)2 +
(
xmi j

)2 +
(
xni j

)2
] (18)

Step 3: Estimate theweighted normalized fuzzy decisionmatrix usingEqs. (19–21).

Vm
i j = w j x

m∗
i j (19)

V l
i j = w j x

l∗
i j (20)

V n
i j = w j x

n∗
i j (21)

here, wj represents the weight criteria of each attribute.
Step 4: Convert the overall fuzzy assessment value (ỹi ) into a non-fuzzy value

(crisp). The best non-fuzzy performance (BNP) can be calculated using
Eq. (22).

BN Pi (yi ) =
(
yni − yli

) + (
ymi − yli

)
3

+ yli (22)

where ỹi = (
yli , y

m
i , y

n
i

)
.

Step 5: Determine the overall fuzzy assessment value using Eq. (23).

ỹi = Ṽ+
i j − Ṽ−

i j (23)

here, Ṽ+
i j is the overall assessment value of beneficial criterion whereas Ṽ−

i j
denotes the overall assessment value of non-beneficial criterion.

Step 6: Rank the above values by arranging them in descending order. The highest
value exhibits the best alternative whereas the lowest value indicates the
worst alternative.

5 Experimental Case Study

5.1 Work and Tool Materials

A cylindrical bar of commercially pure titanium (CP-Ti) was selected as the work
material having diameter 50 mm and length 500 mm. The chemical composition
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Table 1 Chemical composition of work material

Element C N O Fe H Ti

Wt. (%) 0.08–0.1 0.03 0.25 0.30 0.015 Balance

Table 2 Tool insert geometry

Parameter

Insert shape Square

Insert clearance angle 0°

Tolerance ±0.002

Cutting edge length 12 mm

Insert thickness 04 mm

Nose radius 0.8 mm

Holder style PSBN

Shank height 20 mm

Shank width 20 mm

Tool length 125 mm

of the workpiece is listed in Table 1. A square shaped, ISO designated (SNMG
120408; Grade K313) cutting inserts were used for the machining of the selected
work part. These inserts were rigidly mounted on a tool holder (ISO designation:
PSBNR 2020K12). The geometry details of the cutting insert and tool holder are
listed in Table 2.

5.2 Domain of the Investigation

The present investigation exploited Taguchi based orthogonal array design (L27) to
execute a series of experiment. These arrays were observed to be helpful in optimiz-
ing various quality characteristics and offering the best alternative amongst several
alternatives. In the current investigation, an orthogonal array comprising of three
factors and three levels is adopted as shown in Table 3. The allocation of the selected
process variables was done according to the linear graph depicted in Fig. 3. Table 4,
represents the experimental layout along with the measured outcomes.

5.3 Experimental Procedure

The selected round bar of the workmaterial was turned on a heavy duty lathe (Model:
NH-26; Manufacturer: HMT, India). A series of experiment was conducted as per
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Table 3 Input variables with
their levels

S. no. Input
variable

Unit Levels

Level
1

Level
2

Level
3

1 Cutting
speed (v)

m/min 30 60 90

2 Feed rate
(f )

mm/rev 0.08 0.12 0.16

3 Depth of
cut (d)

mm 0.2 0.4 0.6

Fig. 3 Linear graph of
proposed L27 orthogonal
array

the list given in Table 4. Machining length was kept fixed as 250 mm and a new
and sharp cutting edge was used for each experimental run. Figure 4 illustrates the
experimental setup of the current investigation. Three distinct quality characteristics
of turning operation viz. cutting force (Fc), surface roughness (Ra) and flank wear
(VB) were examined and measured after completion of each trial. Cutting force was
measured using a three dimensional (3D) piezoelectric dynamometer (Manufacturer:
Kistler Instrument Corporation). The values of Fc were recorded at three different
locations (roughly 80 mm apart) throughout the cutting length and the average value
was noted. A roughness testing device (Model: Surtronic 3+ , Manufacturer: Taylor
Hobson) was used to measure the roughness parameter Ra of the machined surface.
The measurements of Ra values were performed at six different locations (roughly
60° apart) around the circumference of the turned part. Similarly, wear on the flank
surfaces of each cutting insert was examined andmeasuredwith the help of an optical
microscope (Model:AxioCamERc 5s,Manufacturer: Carl Zeiss). To confirmabetter
measurement accuracy, wear height at the flank surfaces of each cutting tool insert
was recorded at three different locations and the average value was calculated for
consideration.
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Table 4 Outcomes of the experimentation

Run Input variables Responses

Speed Feed DOC Fc (N) Ra (µm) VB (mm)

1 30 0.08 0.2 67.574 1.015 0.082

2 30 0.08 0.4 115.7 1.225 0.1

3 30 0.08 0.6 99.749 1.453 0.223

4 30 0.12 0.2 135.755 1.295 0.104

5 30 0.12 0.4 110.796 1.195 0.087

6 30 0.12 0.6 78.62 1.497 0.232

7 30 0.16 0.2 126.747 1.87 0.099

8 30 0.16 0.4 78.37 1.595 0.099

9 30 0.16 0.6 96.794 1.942 0.166

10 60 0.08 0.2 76.921 1.215 0.193

11 60 0.08 0.4 117.233 1.24 0.241

12 60 0.08 0.6 101.344 1.328 0.225

13 60 0.12 0.2 138.554 1.549 0.157

14 60 0.12 0.4 113 1.517 0.093

15 60 0.12 0.6 68.873 1.413 0.23

16 60 0.16 0.2 129.407 1.597 0.145

17 60 0.16 0.4 79.994 1.995 0.11

18 60 0.16 0.6 98.058 1.721 0.196

19 90 0.08 0.2 77.93 1.337 0.11

20 90 0.08 0.4 119.074 1.402 0.124

21 90 0.08 0.6 102.799 1.395 0.282

22 90 0.12 0.2 139.544 1.696 0.142

23 90 0.12 0.4 114.067 1.338 0.217

24 90 0.12 0.6 70.667 1.114 0.23

25 90 0.16 0.2 130.199 1.566 0.225

26 90 0.16 0.4 84.638 1.64 0.239

27 90 0.16 0.6 100.175 1.509 0.253

5.4 Estimation of Optimal Parametric Combination Using
Fuzzy-MOORA Method

In the current investigation, fuzzy coupled with MOORA method was exploited to
acquire the best parametric combination of input variables during machining of CP-
Ti Grade 2 using uncoated carbide inserts in dry cutting environment. The main
attention was given to minimize the cutting force and tool wear in combination with
an appreciable surface finish. These performance characteristics are identified as
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Fig. 4 Experimental setup

Table 5 Linguistic variables
used for each criteria

Linguistic variable Triangular fuzzy numbers (TFNs)

Very low (VL) (0, 0, 0.1)

Low (L) (0, 0.1, 0.3)

Medium low (ML) (0.1, 0.3, 0.5)

Medium (M) (0.3, 0.5, 0.7)

Medium high (MH) (0.5, 0.7, 0.9)

High (H) (0.7, 0.9, 1.0)

Very high (VH) (0.9, 1.0, 1.0)

of paramount importance which significantly affect the production rate as well as
the production cost, to a great extent. In this situation, acquiring and adopting the
best parametric combination, become a challenging task. This also contributed to
the vagueness of machining characteristics and the interaction effects among the
selected process variables. Therefore, the proposed fuzzy set theory, uses linguistic
terms such as very good, average, poor, very poor etc. for an effective assessment
of the afore mentioned machining characteristics. Furthermore, the relative weights
of each machining characteristic are also explained with the help of aforesaid fuzzy
linguistic variables.

During this investigation, each alternative or experimental trail was primarily
described in terms of specified linguistic variables as shown in Table 5. This was
done to determine the relative weights of the selected output criterion viz. Fc, Ra and
VB respectively, as listed in Table 6.

Secondly, valuation of all the available alternatives was accomplished based on
the linguistic variables illustrated in Table 7. During this valuation, seven dissimilar
fuzzy linguistic variables viz. very poor, poor, medium poor, fair, medium good, very
good etc. were occupied. Table 8 represents the results of the assessment process.
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Table 6 Relative weights of
each criteria

Criteria Decision maker Fuzzy numbers

Fc H (0.7, 0.9, 1.0)

Ra H (0.7, 0.9, 1.0)

VB VH (0.9, 1.0, 1.0)

Table 7 Linguistic variables
used for each alternative

Linguistic variable Triangular fuzzy numbers (TFNs)

Very poor (VP) (0, 0, 1)

Poor (P) (0, 1, 3)

Medium poor (MP) (1, 3, 5)

Fair (F) (3, 5, 7)

Medium good (MG) (5, 7, 9)

Good (G) (7, 9, 10)

Very good (VG) (9, 10, 10)

Further, formation of fuzzy decision matrix was done by converting the data
sets attained after the aforesaid assessment process, into a suitable triangular fuzzy
numbers. The results of the conversion process are depicted in Table 9.

Normalization of the data sets illustrated in fuzzy decision matrix (Table 9), was
executed using Eqs. (16–18) and the outcomes are shown in Table 10. In the next
step, the relevant weights of each machining criterion were multiplied with their cor-
responding values to attain weighted normalized fuzzy decision matrix as illustrated
in Table 11.

The data sets listed in Table 11, were further converted into crisp values using
Eq. (22) and depicted in Table 12. At the end, overall assessment values were calcu-
lated using Eq. (23) and listed in Table 13.

Finally, preference ranking was given to each alternative after arranging the over-
all assessment values in descending order, as exhibited in Table 13. By visualizing
this table, it is clearly seen that, experiment number 1 is the best alternative offer-
ing minimum cutting force and tool wear along with appreciable surface quality. In
contrast, experiment number 25, is signified as the worst alternative. Thus, an ade-
quate machinability of the selected work material lies at lower range of machining
variables. At lower, cutting speed, feed rate and depth of cut, machinability of the
work part was observed to be better when compared to the higher ranges of machin-
ing variables counterpart. This might be contributed to the lower machining zone
temperature at lower cutting speed, feed and depth of cut. Machining of titanium
alloys at lower cutting speeds, does not raise the cutting zone temperature signifi-
cantly whereas this temperature may be greater at high cutting speeds. High speed
machining causes rapid growth in the cutting temperature which in turn introduces
strain hardening and thermal softening phenomenon. This also results in a remark-
able plastic deformation of the work part and curtails the machinability to a great
extent. Therefore, lower range of the process variables are strongly recommended for
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Table 8 Results of the assessment

Alternative Responses Fuzzy linguistic variables

Fc (N) Ra (µm) VB(mm) Fc Ra VB

1 67.574 1.015 0.082 VG VG VG

2 115.7 1.225 0.1 MP G VG

3 99.749 1.453 0.223 F F MP

4 135.755 1.295 0.104 VP MG VG

5 110.796 1.195 0.087 MP G VG

6 78.62 1.497 0.232 G F P

7 126.747 1.87 0.099 VP VP VG

8 78.37 1.595 0.099 G MP VG

9 96.794 1.942 0.166 F VP MG

10 76.921 1.215 0.193 G G F

11 117.233 1.24 0.241 P G P

12 101.344 1.328 0.225 F MG MP

13 138.554 1.549 0.157 VP F MG

14 113 1.517 0.093 MP F VG

15 68.873 1.413 0.23 VG MG P

16 129.407 1.597 0.145 VP MP MG

17 79.994 1.995 0.11 G VP VG

18 98.058 1.721 0.196 F P F

19 77.93 1.337 0.11 G MG VG

20 119.074 1.402 0.124 P MG G

21 102.799 1.395 0.282 F MG VP

22 139.544 1.696 0.142 VP MP MG

23 114.067 1.338 0.217 MP MG MP

24 70.667 1.114 0.23 VG VG P

25 130.199 1.566 0.225 VP F MP

26 84.638 1.64 0.239 G MP P

27 100.175 1.509 0.253 F F P

machining titanium and its alloys, which is also witnessed during this investigation.
However, this might be limited to the selected range of machining parameters and
cutting conditions.
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Table 9 Fuzzy decision
matrix

Alternative Responses

Fc Ra VB

1 9, 10, 10 9, 10, 10 9, 10, 10

2 1, 3, 5 7, 9, 10 9, 10, 10

3 3, 5, 7 3, 5, 7 1, 3, 5

4 0, 0, 1 5, 7, 9 9, 10, 10

5 1, 3, 5 7, 9, 10 9, 10, 10

6 7, 9, 10 3, 5, 7 0, 1, 3

7 0, 0, 1 0, 0, 1 9, 10, 10

8 7, 9, 10 1, 3, 5 9, 10, 10

9 3, 5, 7 0, 0, 1 5, 7, 9

10 7, 9, 10 7, 9, 10 3, 5, 7

11 0, 1, 3 7, 9, 10 0, 1, 3

12 3, 5, 7 5, 7, 9 1, 3, 5

13 0, 0, 1 3, 5, 7 5, 7, 9

14 1, 3, 5 3, 5, 7 9, 10, 10

15 9, 10, 10 5, 7, 9 0, 1, 3

16 0, 0, 1 1, 3, 5 5, 7, 9

17 7, 9, 10 0, 0, 1 9, 10, 10

18 3, 5, 7 0, 1, 3 3, 5, 7

19 7, 9, 10 5, 7, 9 9, 10, 10

20 0, 1, 3 5, 7, 9 7, 9, 10

21 3, 5, 7 5, 7, 9 0, 0, 1

22 0, 0, 1 1, 3, 5 5, 7, 9

23 1, 3, 5 5, 7, 9 1, 3, 5

24 9, 10, 10 9, 10, 10 0, 1, 3

25 0, 0, 1 3, 5, 7 1, 3, 5

26 7, 9, 10 1, 3, 5 0, 1, 3

27 3, 5, 7 3, 5, 7 0, 1, 3

6 Conclusions

In this chapter, an efficient and effective hybrid method has been projected to solve
machining problems having multiple cut qualities under fuzzy environment. Selec-
tion of the best alternative in order to confirm better machinability of the selected
work material, was done with the help of fuzzy embeddedMOORAmethod. Thus in
the present investigation a newMCDMapproach,MOORAunder fuzzy environment
has been applied to deal with both quantitative and qualitative machining criteria.
The following conclusions may be drawn after completion of current investigation:
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Table 10 Normalized fuzzy
decision matrix

Alternative Responses

Fc Ra VB

1 0.9, 1.0, 1.0 0.9, 1.0, 1.0 0.9, 1.0, 1.0

2 0.1, 0.3, 0.5 0.7, 0.9, 1.0 0.9, 1.0, 1.0

3 0.3, 0.5, 0.7 0.3, 0.5, 0.7 0.1, 0.3, 0.5

4 0, 0, 0.1 0.5, 0.7, 0.9 0.9, 1.0, 1.0

5 0.1, 0.3, 0.5 0.7, 0.9, 1.0 0.9, 1.0, 1.0

6 0.7, 0.9, 1.0 0.3, 0.5, 0.7 0, 0.1, 0.3

7 0, 0, 0.1 0, 0, 0.1 0.9, 1.0, 1.0

8 0.7, 0.9, 1.0 0.1, 0.3, 0.5 0.9, 1.0, 1.0

9 0.3, 0.5, 0.7 0, 0, 0.1 0.5, 0.7, 0.9

10 0.7, 0.9, 1.0 0.7, 0.9, 1.0 0.3, 0.5, 0.7

11 0, 0.1, 0.3 0.7, 0.9, 1.0 0, 0.1, 0.3

12 0.3, 0.5, 0.7 0.5, 0.7, 0.9 0.1, 0.3, 0.5

13 0, 0, 0.1 0.3, 0.5, 0.7 0.5, 0.7, 0.9

14 0.1, 0.3, 0.5 0.3, 0.5, 0.7 0.9, 1.0, 1.0

15 0.9, 1.0, 1.0 0.5, 0.7, 0.9 0, 0.1, 0.3

16 0, 0, 0.1 0.1, 0.3, 0.5 0.5, 0.7, 0.9

17 0.7, 0.9, 1.0 0, 0, 0.1 0.9, 1.0, 1.0

18 0.3, 0.5, 0.7 0, 0.1, 0.3 0.3, 0.5, 0.7

19 0.7, 0.9, 1.0 0.5, 0.7, 0.9 0.9, 1.0, 1.0

20 0, 0.1, 0.3 0.5, 0.7, 0.9 0.7, 0.9, 1.0

21 0.3, 0.5, 0.7 0.5, 0.7, 0.9 0, 0, 0.1

22 0, 0, 0.1 0.1, 0.3, 0.5 0.5, 0.7, 0.9

23 0.1, 0.3, 0.5 0.5, 0.7, 0.9 0.1, 0.3, 0.5

24 0.9, 1.0, 1.0 0.9, 1.0, 1.0 0, 0.1, 0.3

25 0, 0, 0.1 0.3, 0.5, 0.7 0.1, 0.3, 0.5

26 0.7, 0.9, 1.0 0.1, 0.3, 0.5 0, 0.1, 0.3

27 0.3, 0.5, 0.7 0.3, 0.5, 0.7 0, 0.1, 0.3

• The best parametric combination to attain minimum cutting force, tool wear and
surface roughness, was apparent at cutting speed 30 m/min, feed rate 0.08 mm/rev
and depth of cut 0.2 mm, which was observed in experiment number 1.

• Lower surface roughness, cutting force and tool wear could be expected at moder-
ate cutting speed, feed rate and depth of cut while machining CP-Ti grade 2 with
uncoated carbide inserts under dry cutting environment.

• The proposed methodology was experienced systematic, easily understandable,
and robust and can be implemented to solve similar types of problems associated
in real time manufacturing systems.
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Table 11 Weighted
normalized fuzzy decision
matrix

Alternative Responses

Fc Ra VB

1 0.63, 0.9, 1.0 0.63, 0.9, 1.0 0.81, 1.0, 1.0

2 0.7, 0.27, 0.5 0.49, 0.81, 1.0 0.81, 1.0, 1.0

3 0.21, 0.45, 0.7 0.21, 0.45, 0.7 0.9, 0.3, 0.5

4 0, 0, 0.1 0.35, 0.63, 0.9 0.81, 1.0, 1.0

5 0.7, 0.27, 0.5 0.49, 0.81, 1.0 0.81, 1.0, 1.0

6 0.49, 0.81, 1.0 0.21, 0.45, 0.7 0, 0.1, 0.3

7 0, 0, 0.1 0, 0, 0.1 0.81, 1.0, 1.0

8 0.49, 0.81, 1.0 0.07, 0.27, 0.5 0.81, 1.0, 1.0

9 0.21, 0.45, 0.7 0, 0, 0.1 0.45, 0.7, 0.9

10 0.49, 0.81, 1.0 0.49, 0.81, 1.0 0.27, 0.5, 0.7

11 0, 0.09, 0.3 0.49, 0.81, 1.0 0, 0.1, 0.3

12 0.21, 0.45, 0.7 0.35, 0.63, 0.9 0.9, 0.3, 0.5

13 0, 0, 0.1 0.21, 0.45, 0.7 0.45, 0.7, 0.9

14 0.7, 0.27, 0.5 0.21, 0.45, 0.7 0.81, 1.0, 1.0

15 0.63, 0.9, 1.0 0.35, 0.63, 0.9 0, 0.1, 0.3

16 0, 0, 0.1 0.07, 0.27, 0.5 0.45, 0.7, 0.9

17 0.49, 0.81, 1.0 0, 0, 0.1 0.81, 1.0, 1.0

18 0.21, 0.45, 0.7 0, 0.09, 0.3 0.27, 0.5, 0.7

19 0.49, 0.81, 1.0 0.35, 0.63, 0.9 0.81, 1.0, 1.0

20 0, 0.09, 0.3 0.35, 0.63, 0.9 0.63, 0.9, 1.0

21 0.21, 0.45, 0.7 0.35, 0.63, 0.9 0, 0, 0.1

22 0, 0, 0.1 0.07, 0.27, 0.5 0.45, 0.7, 0.9

23 0.7, 0.27, 0.5 0.35, 0.63, 0.9 0.9, 0.3, 0.5

24 0.63, 0.9, 1.0 0.63, 0.9, 1.0 0, 0.1, 0.3

25 0, 0, 0.1 0.21, 0.45, 0.7 0.9, 0.3, 0.5

26 0.49, 0.81, 1.0 0.07, 0.27, 0.5 0, 0.1, 0.3

27 0.21, 0.45, 0.7 0.21, 0.45, 0.7 0, 0.1, 0.3

• The unification of fuzzy-MOORA, using the concepts of fuzzy set theory, was
perceived to be a competent and acceptable effort in attaining the best paramet-
ric combination to confirm high productivity without compromising the quality.
However, this might be limited to the selected range of process variables.
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Table 12 Crisp values for
weighted normalized fuzzy
decision matrix

Alternative Responses

Fc Ra VB

1 0.843 0.843 0.937

2 0.490 0.767 0.937

3 0.453 0.453 0.567

4 0.033 0.627 0.937

5 0.490 0.767 0.937

6 0.767 0.453 0.133

7 0.033 0.033 0.937

8 0.767 0.280 0.937

9 0.453 0.033 0.683

10 0.767 0.767 0.490

11 0.130 0.767 0.133

12 0.453 0.627 0.567

13 0.033 0.453 0.683

14 0.490 0.453 0.937

15 0.843 0.627 0.133

16 0.033 0.280 0.683

17 0.767 0.033 0.937

18 0.453 0.130 0.490

19 0.767 0.627 0.937

20 0.130 0.627 0.843

21 0.453 0.627 0.033

22 0.033 0.280 0.683

23 0.490 0.627 0.567

24 0.843 0.843 0.133

25 0.033 0.290 0.567

26 0.767 0.280 0.133

27 0.453 0.453 0.133
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Table 13 Overall assessment
value

Alternative Responses yi Rank

Fc Ra VB

1 0.843 0.843 0.937 2.623 1

2 0.49 0.767 0.937 2.194 3

3 0.453 0.453 0.567 1.473 15

4 0.033 0.627 0.937 1.597 14

5 0.49 0.767 0.937 2.194 3

6 0.767 0.453 0.133 1.353 16

7 0.033 0.033 0.937 1.003 24

8 0.767 0.28 0.937 1.984 6

9 0.453 0.033 0.683 1.169 18

10 0.767 0.767 0.49 2.024 5

11 0.13 0.767 0.133 1.03 23

12 0.453 0.627 0.567 1.647 11

13 0.033 0.453 0.683 1.169 18

14 0.49 0.453 0.937 1.88 7

15 0.843 0.627 0.133 1.603 12

16 0.033 0.28 0.683 0.996 25

17 0.767 0.033 0.937 1.737 9

18 0.453 0.13 0.49 1.073 21

19 0.767 0.627 0.937 2.331 2

20 0.13 0.627 0.843 1.6 13

21 0.453 0.627 0.033 1.113 20

22 0.033 0.28 0.683 0.996 25

23 0.49 0.627 0.567 1.684 10

24 0.843 0.843 0.133 1.819 8

25 0.033 0.29 0.567 0.89 27

26 0.767 0.28 0.133 1.18 17

27 0.453 0.453 0.133 1.039 22
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Application of Multi-objective Genetic
Algorithm (MOGA) Optimization
in Machining Processes

Nor Atiqah Zolpakar, Swati Singh Lodhi, Sunil Pathak
and Mohita Anand Sharma

Abstract Multi-objectives Genetic Algorithm (MOGA) is one of many engineer-
ing optimization techniques, a guided random search method. It is suitable for solv-
ing multi-objective optimization related problems with the capability to explore the
diverse regions of the solution space. Thus, it is possible to search a diverse set of
solutions with more variables that can be optimized at one time. Solutions of MOGA
are illustrated using the Pareto fronts. A Pareto optimal set is a set of solutions that
are non-dominated solutions frontier. With the Pareto optimum set, the correspond-
ing objective function’s values in the objective space are called the Pareto front.
The conventional methods for solving multi-objective problems consist of random
searches, dynamic programming, and gradient methods whereas modern heuristic
methods include cognitive paradigm as artificial neural networks, simulated anneal-
ing and Lagrangian approcehes. Some of these methods are managed in finding the
optimum solution, but they have tendency to take longer time to converge so that
need much computing time. Thus, by implementing MOGA approach that based on
the natural biological evaluation principle will be used to tackle this kind of problem.
In this chapter authors attempts to provide a brief review on current and past work
on MOGA application in few of the most commonly used manufacturing/machining
processes. This chapter will also highlights the advantages and limitations ofMOGA
as compared to conventional optimization techniques.
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1 Introduction

In the manufacturing field, the ultimate objectives are to produce high quality prod-
uct with minimum cost and time constrains. In manufacturing field, the common
step applied to produce a product is machining [1]. In some cases, a single product
needs to undergo different types of machining processes to come into its final shape,
size, and form. The success of machining operation in terms of best combination of
productivity, machinability, cost and sustainability can only be achieved when per-
form under optimum set of process parameters. To accomplish this objective, one of
the consideration methods is optimization techniques. For machining optimization,
there are two main methods which are conventional or classical technique (Design
of Experiment (DOE), and Mathematical Iterative Search) and modern or advanced
Technique (Meta-Heuristic Search and Problem Specific Heuristic Search). Figure 1
presents various optimization tools and techniques used in the past research for opti-
mization of machining parameters. A review of past work based on implementation
of conventional techniques such asmachining theory, experiment investigation (para-
metric study), and DOE etc. has been reported in [2]. For this chapter, the focus is
on optimization of machining process using Genetic Algorithm (GA).

Genetic algorithms are exceptionally well known heuristic techniques which have
been effectively utilised to address optimization issues of machining. Genetic algo-
rithm approves the consistency of the numerical model. For example, when company
gets a large order, planner in the company needs to schedule and come outwith a gantt
chart for the particular product. In the Gantt chart, the information related machining
and process is stated. The Gantt chart also represents the connection activities, time,
and cost to be spent by production line. This step involves a lot of parameters such

Fig. 1 Conventional (classical) and non-conventional (advanced) optimization techniques [3]
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as machining time for every geometry, time for changing tools, surface roughness,
and power consumtion. The function of GA is to find the combination of parameters
to obtain a set of parameters that produces the optimum results. GA is one of the
advanced techniques based on meta-heuristic search. One of the advantages of GA
optimization including avoid converging into local minimum/maximum and instead
this algorithm is able to find global minimum/maximum in the search space. Besides
that, GA algorithm has capability to optimize more than one parameters in a single
algorithm. This characteristic is important to apply in machining processes since
machining process has a lot of parameters that need to be optimized such as spindle
speed, feed rate, depth of cut, and axial angel of cutting etc.

Parameter selection is a critical part in optimizing the machining process in order
to attain effective machining operation [4]. The selection of parameters typically
based on the human judgement and experience. Due to that, most of the time, the
selected process parameters does not provide an optimal result due to the fact that
each of the parameters interrupt the process in getting optimum performance and
quality. In fact, each machining parameter significantly affect other parameters as
well. Based on that fact, a number of researchers used meta-heuristic search such as
GA in their optimization (see Table 1). The following section will further discusses
about application of GA optimization in machining process.

2 Genetic Algorithm (GA)

Genetic algorithm (GA) which was initially introduced by John Holland in 1975,
is one of the classes for transformative algorithms that have been widely utilized in
optimization problems. In spite of the fact that it is normal and conceivable to take
care of issues with single target work, significant advantages of using GA are as
follow:

• Real-life engineering problems usually demand for more than one objective func-
tions and the GA is used to analyze various objective functions simultaneously.

• More than one parameter can be optimized.
• Optimization results are represented in the Pareto front form. It shows the combi-
nation of parameters with the values of objective function/s.

• Optimization results remain in the domain of the search area. Users have agility
to define the size of the search area, and this avoids extreme results.

Today, due to the involvement of more complex engineering systems and pro-
cesses, the optimum solutions are mainly trade-off based, where it is on the user
description to select the appropriate and preferable decision criteria [37]. In GA
optimization, if the algorithm has more than one objective functions, and one func-
tion is more important than the other, in that case the user needs to declare this by
assigning weightage for every function. This new scheme of evaluating competing
solutions without the necessity to determine relative importance weights, has given
rise to multi-objective genetic algorithms (MOGA). In literature, MOGA has been
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Table 1 Summary of past work based on GA optimization in machining process (2010–2018)

No. Researcher Process para meter Machining process Machining
performance
measure

1 Sekulic et al. [5] Spindle speed, feed
per tooth, axial
depth, and radial
depth

Ball-end milling Surface roughness

2 Shukla and Singh
[6]

Transverse speed,
standoff distance,
and mass flowrate

Abrasive wafer jet
machining

Kerf top width and
angle

3 Sangwan and Kant
[7]

Cutting speed, feed,
depth of cut

Turning Energy
consumption

4 Kumar et al. [8] Cutting speed, feed
rate, depth of cut,
type of cutting tool

Turning Surface finish

5 Kant and Sangwan
[9]

Cutting speed, feed
rate, depth of cut

Drilling milling Surface roughness

6 Li et al. [10] Speed, feed per
tooth, width and
depth of cut

Milling Tool life, residual
stress and surface
roughness

7 Santos et al. [11] Cutting speed, feed
rate, depth of cut

Turning Machining force,
chip thickness ratio,
and chip disposal

8 Manesh et al. [12] Spindle speed, feed
rate, axial depth of
cut, and radial
depth of cut

End milling Surface roughness,
MRR

9 Sahali and Serra
[13]

Cutting speed,
depth of cut

Turning Production time

10 Sangwan et al. [14] Cutting speed,
depth of cut and
feed rate

Turning Surface roughness

11 Shivasheshadri
et al. [15]

Speed and feed rate Milling Machining time

12 Agrawal and Varma
[16]

Speed, feed Milling Surface roughness

13 Durairaja and
Gowri [17]

Speed, feed, and
depth of cut

Micro tuning Surface roughness

14 Petkovic and
Radovanovic [18]

Cutting speed and
feed

Turning Production cost

15 Selvam et al. [19] Number of passes,
cutting depth,
spindle speed, and
feed rate

Face milling Surface roughness

(continued)
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Table 1 (continued)

No. Researcher Process para meter Machining process Machining
performance
measure

16 Rai et al. [20] Axial depth of cut,
radial immersion,
feed rate and
spindle speed

Multi-tool milling Machining time

17 Zeng et al. [21] Rotate speed, speed
and depth of cutting

N/A Surface roughness

18 Gao et al. [22] Bonding wear, feed
per tooth and axial
depth of cut

High speed
machining

Cutting force, tool
life

19 An et al. [23] Speed, feed rate,
depth of cut, and
the number of
passes

Multi-pass milling Production cost

20 An [24] Speed, feed rate
and depth of cut

Multi-pass milling Production cost

21 Kilickap et al. [25] Cutting speed, feed
rate, and cutting
environment

Drilling Surface roughness

22 Kuruvila and
Ravindra [26]

Pulse-on and off
duration, current,
bed-speed and
flushing rate

WEDM Dimension error,
surface roughness,
volumetric MRR,
production time

23 Ganesan et al. [27] Depth of cut,
cutting speed and
cutting rate

Multi-pass turning Production time

24 Xie and Guo [28] Depth of cut,
cutting speed and
cutting rate

Multi-pass turning Production cost

25 Zain et al. [29] Cutting speed, feed
rate, and radial rake
angle

End milling Surface roughness

26 Zain et al. [30] Traverse speed,
waterjet pressure,
standoff distance,
abrasive flow rate

Abrasive waterjet
machining

Surface roughness

27 Zain et al. [31] Cutting speed, feed
rate and radial rake
angle

End milling Surface roughness

28 Zain et al. [32] Radial rake angle,
cutting speed and
feed

End milling Surface roughness

(continued)
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Table 1 (continued)

No. Researcher Process para meter Machining process Machining
performance
measure

29 Sultana and Dhar
[33]

Feed rate, pressure,
flow rate and high
pressure coolant

Turning Chip reduction
coefficient and
surface roughness

30 Yongzhi et al. [34] Axial depth-of-cut,
radial depth-of-cut
and helical angle

High speed milling Cutting force, metal
removal rate

31 Pasam et al. [35] Ignition pulse
current, short pulse
duration, time
between two pulses,
servo speed, servo
reference voltage,
injection pressure,
wire speed and wire
tension

Wire electrical
discharge
machining

Surface roughness

32 Ansalam Raj and
Narayanan
Nambodiri [36]

Feed, speed rate,
and depth of cut

NC milling Surface roughness

reported superior compared to other classical algorithms [38]. In recent years, the
GAs in machining application have been used by a number of researchers to find
the optimal surface quality in various traditional and modern machining [5, 8, 9,
17]. Besides of surface roughness, many researchers applied GA optimization for
minimize production cost and production time [13, 24, 27]. There are some variants
of GA, some of the most commonly used in machining are as follows:

(a) Factual Coded Genetic Algorithm (FCGA): In FCGA, every gene signifies to a
variable of the problem, and the extent of the chromosome is kept the same as the
length of the response for the issue. In this way, FCGA can manage substantial
areas without compromising with its accuracy as the binary execution. More-
over, FCGA has the ability with regards to the nearby tuning of the responses; it
additionally permits integrating the domain knowledge in order to enhance the
execution of Genetic Algorithm (GA).

(b) Binary coded Genetic Algorithm: Binary coded Genetic Algorithm (BCGA)
is a probabilistic search algorithm that iteratively changes a set (called as a
population) of numerical items (typically settled length paired character strings),
each associated with a fitness value, into another populace of posterity objects
utilizing the Darwinian rule of regular choice and utilizing activities that are
designed after normally happening genetic tasks, for example, hybrid (sexual
recombination) and transformation. Following the model of development, they
build up a population of individual, where every individual relates to a point in
the hunt space. A target work is connected to every person to rate their wellness.
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(c) Differential Evolution: Differential Evolution (DE) tries to supplant the tradi-
tional hybrid and transformation plans of the genetic algorithm (GA) by elective
differential administrators. The DE algorithm has as of late turned out to be
very famous in the machine insight and computer science network. Much of
the time, it has beaten the GA or the particle swarm enhancement (PSO). As in
other developmental algorithms, two basic processes drive the advancement of a
DE populace: the variety procedure, which empowers investigating the diverse
districts of the inquiry space, and the determination process, which guarantees
misuse of the obtained information about the wellness scene.

(d) Least Mean Square Algorithm: Least mean squares (LMS) algorithms are uti-
lized in versatile channels to discover the channel coefficients that identify with
delivering the minimum mean squares of the blunder flag (difference between
the desired and the actual signal). It is a stochastic inclination drop technique
in which the channel is versatile in view of the blunder at the present time. The
LMS algorithm can be actualized without squaring, averaging or separation and
is a basic and effective process.

(e) SawtoothGenetic Algorithm: Various strategies have been produced to enhance
the heartiness and computational proficiency of GAs. A straightforward GA uti-
lizes a populace of consistent size and aides the development of an arrangement
of haphazardly chose people through various ages that are liable to progressive
determination, hybrid, and transformation, in view of the measurements of the
age (standard GA). Population (data set) size is one of the principle parameters
that influence the power and computational productivity of the GAs. Little pop-
ulace sizes may result in untimely merging to non-ideal arrangements, while
extensive populace sizes give a significant increment of computational exertion.
A few strategies have been proposed in the writing that endeavors to build the
decent variety of the populace and maintain a strategic distance from untimely
merging.

2.1 GA Methodology

The GA algorithm start with randomly created initial population. Initial population
is created by randomly form binary number. Every set of binary code that represent
the solution is called chromosome. The length of the chromosome, L, is equal to the
number of the bit in the string. There are 2L − 1 possible solution for selection and
each solution is presented by L-bit binary code of chromosome, C. The optimiza-
tion began with initialisation of a chromosome that contains the parameters to be
optimized. A general representation is shown below:

Ck = [Xk1, Xk2, . . . Xkn]
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X1 X2 X3 X4 

= [|110 ... 00||101 ... 1||001 ... 11||110 ...11|]

Where X is represent the parameters that need to be optimized. From this ini-
tial population, a population that has a better representation of the strong species
generated through selection process.

In GA, the selection process is based on the best individual performance on fitness
function. The performance evaluation is depended on the fittest objective function.
For minimization optimization problem, individual’s chromosome with a smaller
value of the fitness function will have higher possibilities selected for producing
offspring. In the aforesaid explanation, the selection process is one in which the
individuals that undergo genetic operations and comeoutwith the offspring solutions.
The selection has two primary objectives:

1. To choose the fittest individuals chromosome that can be directly copied for the
next generation (elitism).

2. To give a chance to individual’s chromosome with the fitness function that rel-
atively bad value to partake in the process of the subsequent generations. To
accomplish this, the observation of the global character of the search process is
needed by not allowing a single individual dominate the population.

The selection process will create the intermediate population. The intermediate
population is allowed to mate through cross-over and to modify through mutation
and thus produce the next set of population. In the crossover operator, two solutions
(parent) are chosen in the mating pool and at random point of string and some
portion of the string are switched between the two solutions to create a new solution
or offspring.

Parents Offspring

0 1 1 0 0 1 1 1 0 1 0        0 1 1 1 0 1 1 1 0 1 0 
0 0 1 1 0 1 1 1 0 0 0        0 0 1 0 0 1 1 1 0 0 0 

Meanwhile, the mutation operator modifies a string locally to expectantly gen-
erate a better string. The bit-wise mutation process necessitates the construction of
a random number for every bit. This procedure is repeated until the termination
condition is reached [39]. Population is a collection of chromosomes that randomly
initialized. The population get more fit with the search progress. The two operators
that improve the population fitness are crossover and mutation. The flowchart of GA
algorithm is shown in Fig. 2. The step-by-step procedure to apply GA in optimizing
machining processes are listed as follow:

i. The selected parameters are encoded from real number to binary by binary
encoding.

ii. A chromosome is performed by combination of a set of genes which this set is
used to perform crossover and mutation.
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Fig. 2 Flowchart of GA
optimization
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iii. Crossover operator will combine two chromosomes from population to form
new chromosome that called offspring. The offspring chromosome expected to
have better genes compared to the parent. As the crossover operator applied, the
good chromosome will appear in the population and provide an overall good
solution.

iv. Mutation is the process that applied after crossover operation. The mutation
operator will apply random changes into a string of chromosome. The mutation
process will help to overcame trapping at local minima.

v. The evaluation of chromosome is determinate by encoding from binary codes
of chromosome to machining parameters values that can be used to estimate
the machining performance.

vi. Objective function or fitness function is the function that needs to be maxi-
mize/minimize in the machining operation. This function must contain all the
parameters that need to be optimized. The values of fitness function can be used
as indication whether the parameters to be optimized or not.

vii. The iteration of the algorithm will continue until certain stopping criterion is
made. One of the stopping criteria usually used is when value of fitness function
of previous generation is less than 1 × 10−7 with the subsequent generation.
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2.2 GA in Machining Applications

GA algorithm has the ability to optimize more than one parameter and more than
one objective function simultaneously. This characteristic is very crucial in machin-
ing performance by optimizing several machining parameters to satisfy one or
more objective functions. Moreover, in machining processes, machining condi-
tions have an effect on diminishing the production cost and time and choosing
the nature of the end product. To discover ideal cutting parameters amid a turn-
ing/milling/drilling/advanced machining procedure, the genetic algorithm has been
successfully implemented. Process optimization needs to yield the least production
time while thinking about innovative and material limitations. Target work is to
decide the ideal machining parameters amid a machining procedure that limits the
production time without disregarding any forced cutting imperatives. In the present
work authors have tried to summarize few of the articles whereMOGAhas been used
as optimization tool for machining application. From the review it was observed that
majority of the work in machining was done to optimize the surface quality in terms
of finish by optimizingmachining conditions (almost 56%), production cost and time
(almost 28%) and others such as cutting tool life span and energy consumption takes
the stake of 16% as presented in Fig. 3.

Various researchers have donework using artificial intelligence for optimization of
manufacturing and machining processes. This includes optimization of conventional
machining such as turning, milling, cutting and drilling, and advanced machining
techniques which includes electrochemical machining, electrical discharge machin-
ing, wire-electrical discharge machining and many more. The optimization has been
used either to optimize the performance or improve the production cost and pro-
ductivity. Aggarwal and Singh [2] have presented a detailed review on optimization
of machining techniques using advanced optimization techniques including details
of methodology and implementation of genetic algorithm (GA). Evolutionary algo-
rithm and its comparison with various optimization techniques have been presented
by Alberto et al. [39]. They have also developed new pareto rankings and compared
them with the conventional methods.

Fig. 3 Distribution of the
research objectives in the
previous study (2010–2018)
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In the most recent work Sekulic et al. [5] have used response surface methodol-
ogy (RSM), genetic algorithm (GA) optimization and grey wolf optimizer (GWO)
algorithm for optimization of in ball end milling for prediction of surface roughness
of hardened steel. They used predefined reduced-quadratic model as a benchmark
model to develop GA and GWO algorithm. There results suggest 89.58% accu-
racy for GA model for training and testing data. Shukla and Singh [6] have used
Taguchi method and Evolutionary optimization techniques in abrasive jet machining
to optimize the transverse speed, stand-off distance and mass flow rate for attaining
optimum values of kerf-top width and taper angle. They also used regression anal-
ysis to correlate the data of experimental findings. Sangwan and Kant [7, 14] have
used integrated response surface methodology with genetic algorithm to optimize
the energy efficiency in machining of AISI steel in turning, they also used GA to
optimize the surface finish of the workpiece in turning operation. Sangwan and Kant
[9] found experimental values and predicted results quite close with mean relative
error is 4.11% showing fine accurateness in predicting the surface roughness values
in ANN model joined with GA.

Kumar et al. [8] used GA to optimize the surface finish of the aluminum alloy
composite. They praise the capabilities of GA in optimization of independent process
parameters of machining methods. Multi-objective study on turning operation to find
optimum cutting conditions for aluminium alloy using GA was done by Santos et al.
[11]. Their study involves optimization of cutting speed, feed rate, and depth of cut on
various inter related responses namely machining force, chip thickness ratio (CTR),
and chip disposal. Durairaja and Gowri [17] had obtained the optimized cutting
conditions for both surface roughness and tool wear by optimization of process
parameters and statistical modeling using the multi objective genetic algorithm with
valid experimental results. Petkovic and Radovanovic [18] obtained with minimal
cost for the turning process, optimal parameters ofmachining (cutting speed and feed)
were determined. Similar outcome was obtained during the use of GA checked by
SQP (Sequential Quadratic Programming) algorithm and of machining cost, cutting
speed and feed found with the GA.

According to Gao et al. [22], it was very essential to logically optimize cutting
parameters prior tomachiningwhile the cutting force and toolwear have significantly
reduced and cutting efficiency improved.

Training, testing and application subsequent to optimized 300 steps was adapted
by Zeng et al. [21] resulting with the test error less than 2.6% with average relative
error tended to saturation training was 4.0%.

Similarly, Sahali and Serra [13], Sultana and Dhar [33] and various other
researchers have used GA as primary optimization tool to optimize the machining
condition and responses in turning operations. The non-traditional algorithms were
formulated by Ganesan et al. [27] where the optimal machining parameters for the
continuous profile, GA and PSO have been employed. PSO produces better results
with minimized time and Xie and Guo [28] have used GA to optimize the parame-
ters in multi-pass turning for different materials, the complexity of optimization if
multi-pass turning has been effectively eased by using GA.
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Genetic Algorithm has been effectively used in optimization of milling parame-
ters, many researchers have used to identify the optimum combination of parameters
of milling using GA to obtain best results. Santos et al. [11] showed significant effect
on the responses by the results of the input parameters acting both individually or in
combination with each other. Li et al. [10] solved the multi-objective optimization
problem by non-dominated sorting genetic algorithm-II (NSGA-II) and the Pareto-
optimal solutions was obtained. The relative errors of surface roughness, tool life,
and residual stress were less than 7, 5, and 5%, respectively after comparison of
optimized results and experimental results.

Machining time was reduced by minimizing the negative effect to the part quality
by Shivasheshadri et al. [15]. Initially required machining parameters (speed, feed
and depth of cut) were given and 3Dmodel was created which was undergone by five
milling operations (facing, cornering, pocketing and two slot milling). Agrawal and
Varma [16] proposed that GA can attain better-quality solutions to other metaheuris-
tics to optimize the parameters of other machining processes (drilling and uncon-
ventional machining). By using RSM within the specified limits the optimal surface
roughness value can be attained. The genetic algorithm (GA) model was trained and
tested inMATLAB byManesh et al. [12] to discover the best possible cutting param-
eters leading to least surface roughness (recommended 0.25 µm). Selvam et al. [19]
used Taguchi technique that was fine-tuned with Genetic algorithm for finding Opti-
mum machining parameter combination. The surface roughness evaluated through
genetic algorithm it was 0.88 µm with 4.625% error from the predicted value and
for Taguchi technique was 0.975 µm with 4.308% error from the predicted value.
The different methods (integer programming, genetic algorithms and nonlinear pro-
gramming) were used by An et al. [24] for obtaining optimal values of machining
parameters. They match up the results from the literature and machining data hand-
book. Approximation algorithms used by An [23] developed the methods useful to
optimize grinding and drilling type processes. The optimal cutting conditions were
analyzed and obtained by Zain et al. [29] that yielded 0.138 µm as the minimum
surface roughness value. The GA technique has reduced 27% of the least surface
roughness value of the experimental sample data, 26% of regression modeling and
50% of response surface methodology technique. The Ra value was compared by
Zain et al. [31] at about 26.8% to the experimental, 25.7% regression, 26.1% ANN
and 49.8% response surface method in the reduced ANN–GA integration system.
It was as well establish in comparison to the conventional GA result that integrated
ANN–GA reduced the mean Ra value at about 0.61% and the number of iterations
in searching for the optimal result at about 23.9%. Zain et al. [30] proposed that by
means of the integrated SA–GA, the time for penetrating the optimal solution can
be made quicker. A full-factorial experimental design and multi-linear regression
technology were used by Yongzhi et al. [34] for developing the predictive model of
surface roughness, for obtaining minimum cutting force and reasonably good metal
removal rate it was possible to select optimum axial depth-of-cut, radial depth-of-cut
and helical angle. Rai et al. [20] also have used multi-objective genetic algorithm
(MOGA) for optimization of parameters of milling namely Speed, feed rate, depth
of cut, radial rake angle and the number of passes on surface quality of different
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materials. Ansalam and Nambodiri [36] used MOGA for optimization of surface
roughness in numerical control milling machines, they considered effects of feed,
speed rate, and depth of cut for multi-objective optimization techniques. MOGA
has also been used to optimize advanced machining processes such as abrasive jet
machining (AJM), EDM, WEDM, ECM, ECH and PECH [40, 41] etc. In AJM tra-
verse speed, waterjet pressure, standoff distance, abrasive flow rate was considered
as most frequently used input parameter while surface roughness has been selected
as response [32]. Kuruvila and Ravindra [26] and Pasam et al. [35] have usedMOGA
to analyze and optimize the pulse current, pulse duration, pulse interval, servo speed,
servo voltage, wire speed and wire tension during wire-EDM. Simultaneous opti-
mization of such variety of parameters were possible at same time due to the use of
genetic algorithm.

The afore discussed literature review is summarized in Table 1.

3 Conclusion

Multi-objective genetic algorithm technique has widely been employed for opti-
mization of machining parameters to secure the best possible values of various
machinability indicators such as surface roughness, material removal rate, and
surface integrity etc.

GA optimization in optimizing machining parameters showed positive results
based on literature review. Based on the review, most of the researchers used single-
objective GA in their optimization scheme. By doing this, the other outcomes of
machining is ignored even thought the same parameters will contribute to that out-
come. Thus, as suggestion for the future researchers, Multi-Objective GA (MOGA)
can be implemented in optimizing machining process without neglecting other prop-
erties. For now, themain concern is surface roughness and production cost, bymaking
one of this as objective function, another function need to be sacrificed. To obtain
maximum quality of surface roughness, production cost gets higher. Due to that fact,
implementation of MOGA techniques will balance out the objective function and
produces high quality surface roughness within the cost limitation.

In terms of machining, every different setup of machining with different type
of workpiece, type of machining work and coolant used, and other parameters will
provide unique solution set of optimization for particular setup when apply GA
optimization. This showed that GA optimization is capable to provide technologist
the required parameters for optimum machining processes.
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Optimization in Manufacturing Systems
Using Evolutionary Techniques

Ravi Shankar Rai and Vivek Bajpai

Abstract This chapter introduces various types of manufacturing systems and dif-
ferent types of traditional and modern optimization techniques. Chapter briefs about
evolutionary techniques such as Particle swarm optimization and Genetic algorithm
to optimize the various kind of manufacturing system with an objective to overcome
the limitations of traditional optimization techniques and to enhance the optimality
of objective function. Besides that, customary methodology is to utilize an ordi-
nary least squares relapse investigation for building up the machinability models. In
recent decade, the utilization of evolutionary calculation techniques, or additionally
called the Genetic strategies, in light of impersonation of Darwinian characteristic
choice has turned out to be across the board. This is because of truth that numer-
ous frameworks are excessively complex, making it impossible to be effectively
enhanced by the utilization of traditional deterministic calculations. Despite what
might be expected, the evolutionary algorithms (EA) include probabilistic tasks. The
current chapter also presents brief details about stepwise procedure of implementa-
tion of genetic algorithm and particle swarm optimization to solve various problems
associate with manufacturing systems.

Keywords Evolutionary · Genetic algorithm · Manufacturing · Optimization ·
Particle swarm

1 Introduction

In order to sustain in today’s era of fluctuating and fierce market, manufacturing
systems are to be flexible, efficient and productive. Such requirements can be achieve
by following the principle of optimizationwhich is known as the procedure of finding
the fittest solution out of the numerous solutions. Therefore optimization is essential
for making decisions in manufacturing system [1]. Mathematical techniques provide
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Fig. 1 Transformation process in manufacturing

foundation for solving problems having multiple variables and physical problem
can be modeled in mathematical equations. The problems can be modeled in such
a way that above requirement can fulfill and such function is known as objective
function and in case of optimization these functions have to be either maximized
or minimized. Objective functions can be expressed as a function of independent
variables known as decision variables [2]. Every optimization problem must specify
the range of decision variables which is called as geometric constraints. Several
optimization techniques are developed over a few decades for optimizing different
factors of manufacturing system, but evolutionary techniques have edge of solving
problems in an effective manner. Operations segment is the key component of a
manufacturing firm. Operations are defined as the process happening in the system
to get work done. This consists of service operations and manufacturing operations.
The process deals with the conversion of some raw materials into a useful product or
service. Figure 1 illustrates the transformation process. Researchers are focusing on
to optimize every operation of manufacturing systems that affect their performance.

2 Manufacturing System

Manufacturing system is defined as the collection or arrangement of different oper-
ations related to produce desired component. It consists of relevant infrastructure
and machineries for performing and arranging those processes. Manufacturing sys-
tem must be functionally efficient so that it can accommodate or adjust itself under
any circumstances. Usually the occurrence of critical conditions or disturbances can
counter by controlling the inputs or the system [3]. A generalized definition of man-
ufacturing system is illustrated in Fig. 2.

2.1 Classification of Manufacturing Arrangements

Manufacturing arrangements can be categorized in terms of physical and structural
features. As per the physical features, traditional manufacturing systems are cate-
gorized in four kinds such as Job based arrangement, Flow arrangement, Project
arrangement and Continuous arrangement. There are some major categories of non-
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Fig. 2 Generalized frame for a manufacturing system [4]

traditionalmanufacturing areDedicatedmanufacturing system (DMS),Cellularman-
ufacturing system (CMS), Flexible manufacturing system (FMS), Reconfigurable
manufacturing system (RMS) and Focused flexible manufacturing system (FFMS).
In Job based arrangement assortments of items are made in little part sizes to an
explicit client arrange. To play out a wide assortment of manufacturing forms, gen-
eral purpose machines are needed. A group of skilled labors are used for performing
various tasks. Machines are grouped as per the processes used for manufacturing of
an item or product [5]. Flow arrangement is based “Product oriented layout” consist-
ing of material flow line due to which arrangement can achieve high production rate.
This arrangement uses “Special purpose machines” and designed to manufacture the
specific product or family. Automated assembly lines and Television manufacturing
factories are examples of such system [5]. Project shop systems are based on fixed
position of product due to robust size and weight. The man, machines and materials
have brought to site for fabrication. Such shop is named as fixed position shop [5].
The classical systemwhich allows physical flow of product and it named as flow pro-
duction while considering production of complex products like bottling process or
assembling work like TVs. Nonetheless, this is definitely not a ceaseless procedure,
however large quantity stream lines is named as continuous layout format [5].
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2.2 Modern Manufacturing System

This systemmust have the capacity to adjust to sudden interior and exterior changes.
An assortment of designedmodels and control procedures has been produced over the
past two decades which is based upon the theory and tools of computer technology
and management science. Under the recent industrial era, manufacturing organiza-
tions are confronting drastic variations driving to enhance their standards in product
design development and execution. High adaptability, vigorous demand in market,
expanding customization, astounding items, adaptable bunches and less life cycle
are prominent elements driving the change from the classical system to the supposed
Next Generation Manufacturing Systems (NGMSs) [6]. To cope up the bar of the
present arrangements, advanced systems have to achieve great flexibility, AI-features
and ease to reconfigure to resolve vigorous market conditions [7].

During the 1900s, there was a significant transformation in manufacturing sec-
tor. The principle cause was execution by Henry Ford arrangement of large scale
manufacturing and devoted production arrangements. Model T was created in 1907.
Model T has a specific measure of reputation, on the grounds that at one phase Henry
Ford should had quoted for his brainchild “you can have any color, so long as it’s
black” [8]. The origination of large scale manufacturing presented by Ford, adds to
advancement of DMSs which for the most part show up in two structures [9] such as
Continuous DMS and Intermittent DMS. Continuous DMSwill work tomanufacture
items in high orders and no explicit orders. Sales forecasting is an important work
in this system but in intermittent framework, the products are fabricated uniquely
to satisfy demands prepared by clients instead of for stock. This system runs on
irregular stream of material. But CMS is a hybridized framework for connecting the
upsides of both flow lines and job arrangements. A CMS is made out of “linked
cells”. Each cell of CMS is composed of flow shop arrangement of workstations
[10]. This system allows modifications of machines, retooling and rearrangement
inside equivalent “part family”. Amidst the 1960s, demands of competitive mar-
ket make organizations to stand up for advancements in production orientations. To
resolve market challenges, flexible manufacturing system was evolved [11]. A cell
of computerized numeric controlled machines operated by a common control unit
will form a FMS. System has high operational flexibility because numerous product
features can be manufactured with fast delivery [12]. Similarly RMS was concocted
in 1999 in the “Engineering Research Center for Reconfigurable Manufacturing
Systems (ERC/RMS) at the University of Michigan College of Engineering” [13].
Supreme objective of the RMS was outlined by the comment “Exactly the capacity
and functionality needed, exactly when needed”. The second advanced origination
of production frameworks configuration is an origination of FFMS. These systems
speak to likewise a focused response to adapt with requirement of customization and
they ensure the ideal exchange-off among efficiency and adaptability [14].
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2.3 Potential Requirement of Optimization in Manufacturing
Systems

In the present economic condition, organizations are confronting complex difficulties
caused by unstable markets, specific items, less life cycles, and worldwide compet-
itiveness [15]. Manufacturing frameworks in quest for expense and time decrease
without diminishing quality and adaptability are winding up increasingly perplex-
ing. The comprehension and command over difficulties of system is exceptionally
fundamental on the grounds that the non-linear conduct of production frameworks
will definitely allow the system to be more gainful and prescient [16]. In this manner
the system must be advanced dimension of execution in every part of the creation to
satisfy the optimized necessities. Competitive era of economy imposed the system to
have superior performance at least possible cost. In this manner, specific considera-
tion must be taken to the choice of qualities for the distinctive elements which impact
performance and expenses [17]. Components can be with respect to the arrangement
of the physical framework (e.g. various equipment, logistics and storage concerns)
or the executives parameters (e.g. storage strategies, dispatching variables, amount
of Kanban). This can be tended to by optimizing amodel, that is, to precisely pick the
estimations of the n factors, Xi, of a vector X= (X1, X2,…, Xn), where the Xi factors
can opt data from an element of the real set (e.g., velocity of AGV), an element of
the integer set (e.g., number of spots in a stockroom) or in any usual set E (e.g.,
decision among various dispatching rules). In this manner to satisfy the necessities
of the item or conquer the issues of the production framework, the framework needs
optimum amount of operational and administrative resources for efficient working
of the firms.

2.4 Approaches for Modeling of Manufacturing Systems

Amodel is defined as an exact portrayal of a framework. A precise model of a frame-
work enables investigator to draw deductions about the framework under investiga-
tion without exploring different avenues regarding the real framework. When all is
said and done, the contributions to a quantitative model are of two sorts: parameters
(non-controllable factors) and choice factors (controllable factors). Design considers
different set of elements of decision parameters. The refinement between decision
factors and parameters were always not clear. Such as set-up time on a specific
machine may represents parameters of one model but for other model it can be taken
as decision variable [18]. The yields from a model of a production framework could
incorporate performance estimates. The essential thought of model experimentation
is to decide the qualities for the decision factorswith the end goal that the performance
factors are optimum.

This is a troublesome procedure for various reasons like regularly there are many
clashing execution measures to be taken amid experimentation. Subsequently, inves-
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tigator must worry about a multi-objective optimization in which contracts can made
between different execution measures [19]. Next difficult element of model exper-
imentation is the way that few of the decision factors might be number in nature.
Mostly traditional optimization methods consider that taken problems have single
local optima. Henceforth, every optimization technique has multiple local optimum
values whose functional relations are not accessible. Approaches of modeling are
relies upon following factors:

• Model definition
• Model formulation
• Model development
• Model validation
• Model evaluation.

Tomeet demand of the various optimization issues, following prominentmodeling
techniques were developed:

i. Linear programming,
ii. Nonlinear programming,
iii. Classical optimization techniques,
iv. Integer programming,
v. Dynamic programming,
vi. Stochastic programming,
vii. Geometric programming,
viii. Evolutionary algorithms, etc.

3 Optimization in Manufacturing Industries

The most simplified definition of optimization is “doing the most with the least”.
The procedure of calculating most favorable value is called as optimization [20]. The
motivation behind optimization is to accomplish the “best” structure with respect to
an arrangement of organized criteria. These incorporate maximizing elements like
profitability, quality, life span, productivity, and usage [21]. In production system
optimization is defined as the control of calculating the best option among a set,
with in an explicit rule in the production condition. Optimization incorporates real
problems and finds solution from model [22].

The purpose of manufacturing of a product is to deliver items satisfying intended
functions, qualities, performances and attributes [23]. At each level of system opti-
mization can be used and for that objective function with constraints must be for-
mulated in each case. Linear programming model will be form from general man-
ufacturing system to find out the optimal parameters to maximize the gain [24].
In subtleties let b the arrangement of assets of the manufacturing framework to be
changed in item amounts x through the innovative modalities A. A is the innovative
lattice and its nonexclusive component Aij characterizes the asset of sort i expected
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to deliver j. Every row of the innovative lattice characterizes the amount of asset
required for each unique item. Each column characterizes an explicit item, specifi-
cally the amounts of the diverse assets which must be utilized to create a unit of the
item. The multiplication of an item column of A by the vector x gives the amount
of asset that must be utilized to deliver the predetermined item and that must be not
exactly accessible asset (pronounced in b). The target of the issue is to augment the
benefit z. Therefore the issue can be planned in the accompanying way as mentioned
in equation (i):

MaxZ = cx (1)

Subject to, Ax ≤ b
x ≥ 0
So as to optimize manufacturing system, it is basic to plan items so as to per-

mit successful optimization. The strong relation between design, manufacturing,
and appropriation is an essential component for all encompassing optimization in
production.

3.1 Traditional Optimization

The traditional optimization procedures are helpful in finding the optima point of
a function and maxima or minima values. In this category utilizes the concepts of
differential calculus to obtain optimal value, so called as analytical methods. These
techniques assume that functions have double differentiability with respect to design
parameters and their derivatives have continuous nature. These techniques have nar-
row utility as few problems contain discontinuous and not differentiable functions.
But still thesemethods provide foundation for producing advance techniques to solve
real world issues.

Three important categories of issues can be solved by the traditional optimization
methods:

i. Single variable functions
ii. Multivariable functions without constraints
iii. Multivariable functions with both constraints (equality and inequality).

Conventional optimization methods initiate from randomly selected initial solu-
tion then propagates to optima point iteratively. Direction of search and step size is
two prime factors to be selected by optimization algorithms. Large numbers of clas-
sical methods are in existence and they classified into two major category, namely
direct search and gradient-based methods [25]. Direct search methods apply only
function parameters at various points to search and never use partial derivatives of
the functions that’s why called as non-gradient techniques. But gradient based meth-
ods implement differential calculus on objective functions and constraints to obtain
optimal result. In general, the techniques of optimization which need gradient values
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are taken more effective [26]. Some gradient based methods are steepest descent
method, Newton’s method, conjugate gradient method and variable-metric method.
The most widely used direct search methods are Hooke-Jeeves method, Powell’s
conjugate direction method.

3.1.1 Disadvantages of Traditional Optimization

Numerous challenges like multi-methodology, differentiability and dimensionality
are relatedwith the optimization of large-scale issues.Conventional strategies namely
steepest decent, dynamic programing and linear programing for the most part neglect
to take care of such substantial issues particularly with nonlinear target functions.
The greater part of the customary methods requires gradient data and consequently
it is absurd to expect to explain non-differentiable issues with the assistance of
such conventional procedures. Additionally, such procedures regularly fail to take
care of optimization issues that have numerous local optima. To defeat these issues,
researchers need to grow all the more incredible optimization methods and over the
30 years, considerable research has been proceeding to discover new techniques to
effectively solve such issues. Classical optimization tools have the following disad-
vantages [27]:

1. Obtained solutions are reliant on the randomly selected initial point. Chance of
calculated solution to be global optima is uncertain.

2. Discontinues function based optimization issues cannot be handled utilizing the
gradient-based strategies. Additionally, the results of gradient techniques may
stall out at local optima.

3. There exists an assortment of optimization issues. A specific conventional opti-
mization strategy might be appropriate for taking care of just a single kind of
issue. Along these lines, there is no flexible optimization strategy, which can
apply to tackle an assortment of issues.

4. The convergence to an optima point relies upon the picked optima point.
5. Most of the algorithms cannot find suboptimal solution.
6. Algorithms are not productive in dealing with issues having discrete factors.
7. Algorithms cannot be productively utilized on parallel machine.

3.2 Advanced Optimization Techniques

To beat the disadvantages of the customary methods, analysts created advanced sys-
tems to tackle the optimization issues. The majority of the cutting edge optimization
calculation depends on populace and natural or transformative hereditary qualities.
People, have a characteristic propensity to pursue the manner in which the nature
has tackled complex optimization issues, at whatever point we neglect to fathom
them utilizing conventional improvement techniques. Some common procedures,
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like organic, physical procedures and so on are displayed artificially to create opti-
mization tools for taking care of the issues.

A portion of the notable populace based procedures created over the 30 years are:
Particle Swarm Optimization (PSO) [28] which relies on “the principle of foraging
behavior of the swarm of birds”; Genetic Algorithms (GA) [29] which is based
on “Darwinian theory of the survival-of-the-fittest and the theory of evolution of
the living things”; Differential Evolution (DE) [30] which resembles with GA but
have distinguished selection and the crossover; Ant Colony Optimization (ACO)
[31] which relies on “the principle of foraging behavior of the ant for the food”;
Artificial ImmuneAlgorithms (AIA) [32]which is based on “the principle of immune
system of the human being”; Artificial Bee Colony (ABC) [33] and so on. Numerous
engineering problems can be solved by these algorithms and found effective to obtain
solutions of explicit sort of issues.

4 Evolutionary Algorithms

Evolutionary calculation is the investigation of computational frameworks which
utilizes thoughts from nature’s evolution and adaptation. Numerous evolutionary
calculation procedures get their thoughts and motivations from atomic advancement,
populace hereditary qualities, immunology, and so forth. A portion of the phrasing
utilized in evolutionary calculation has been acquired from these areas to mirror
their associations like as genetic algorithms, mutation, crossover, phenotypes and
species. From a regular perspective, an EA is a calculation that simulates—at some
dimension of reflection a Darwin’s evolutionary framework. To be more explicit, a
standard EA incorporates:

1. At least one populaces of people viewing for constrained assets.
2. These populaces vary progressively because of the birth and death of people.
3. An idea of fitness whichmirrors the capacity of a person to endure and reproduce.
4. An idea of modificational proliferation: posterity nearly looks like their folks,

yet are not indistinguishable.

More or less, the Darwinian theory of evolution proposed that, by and large,
species enhance their fitness over ages (i.e., their ability of adjusting to the earth).

4.1 Principle of Evolutionary Algorithm

These algorithms are based on stochastic way to search. EAs have two conspicuous
highlights which separate themselves from other techniques. Initially, they are based
on populace. Second, there is interchanges and data transfer amidst individuals in a
populace. EAs for the most part continue on a basic level as indicated by the plan
represented in Fig. 3.
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Fig. 3 The basic cycle of evolutionary algorithm [34]

Stepwise procedure can be illustrated as follows:

i. In first generation, a populace of n > 0 people is made. Generally, these people
have arbitrary genotypes yet here and there, the underlying populace is seeded
with great candidate solution either recently known or made by some different
techniques.

ii. The genotypes, i.e., the values in the search region, are then meant phenotypes.
For the situation that seeks tasks specifically deal with the solution information
structures, this genotype-phenotype mapping is called as identity mapping.

iii. The estimations of the target function are then assessed for every applicant
solution in the populace. This assessment may join confounded simulations and
computations.

iv. In the objective function, applicability of various highlights of the candidate
arrangements has been resolved. On the off chances that there is in excess of
one objective function, constraints, or other applicability factor, at that point a
scalar fitness point is allotted to every one of them.

v. An ensuing determination process sifts through the candidate arrangements with
least fitness and permits thosewith great fitness to join inmating pool with larger
likelihood.

vi. In the reproduction stage, offspring are gotten from the genotypes of the chose
people by applying the search tasks. There are typically two distinctive repro-
duction tasks: mutation, which alters one genotype, and crossover, which joins
two genotypes to another one.

If the final measure is satisfied, the advancement stops here. Else the evolutionary
cycle proceeds with coming generation at point 2.
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4.2 Optimization in Manufacturing Using Evolutionary
Techniques

Bulgak et al. [35] studied the buffer improvement problems related to asynchronous
systems. Choosing applicable buffer sizes for the transportation of automatic pro-
duction systems could be a difficult job that has to take for random variations in
productivity by the individual stations additionally as for delay in transports which is
associated with material transport system. GA is applied to the present case in a trial
to increase the appliance domain of GAs to the random style optimization issues of
producing systems. Supported the obtained results, they all over that these advanced
random combinatorial engineering issues may be resolved at least time with better
accuracy.

Ozcelik and Erzurumlu [36] suggested ANN and GA to reduce warpage of skinny
shell plastic elements made-up by injection molding. Computer button base is con-
sidered as sample of skinny shell plastic element. ANN hybrid with GA effectively
applied to enable the objectives to attain optimum level and GA considerably dimin-
ishes the warpage of primary model and outcomes were enhanced by 51%.

Cook et al. [37] developed NN-GA hybrid for optimization of process for fiber-
board production shop. GA was implemented for training of NN-Model to calculate
process parameters that may end in desired values of the strength factors for given
operational condition. The NN-GA codes may be utilized by factory staff to review
and assess the association betweenmethod parameters and obtained product features,
additionally provide operators aided data to enable real time changes.

Rao and Pawar [38] studied factors of optimization of multi-pass milling with
goal considered is reduction of processing time exposed to the requirements of arbor
quality, arbor redirection and cutting force. The execution of three non-customary
evolutionary calculations such as ABC, PSO and SA is considered as far as rate of
convergence and exactness of the arrangement. The rate of convergence of ABC and
PSO is exceptionally high and these calculations require least iterations for optimal
results, though SA requires more iteration.

Lian et al. [39] suggested another methodology called “Similar PSO algorithm
(SPSOA)”which depends onPSOand crossover factor to tackle flow shop scheduling
problems (FSSP). Despite the fact that optimality is not assured, such a methodology
gives arrangements great quality in a sensible time span, and contrasted with GAs,
every particlesmove for best convergence. Performance of the proposed computation
is assessed and compare with GA on eight test problems.

Önüt et al. [40] examined an appropriation type distribution center which means
to show the issue of structuring a multi-level stockroom considering three dimen-
sional handling cost. One of the commitments of this model is to improve the two-
dimensional stockroom plan to the multi-level distribution structure with category
based capacity specifically, A, B and C. However, the principle trouble of tackling
this sort of planning issues is to battle with nonlinearity in the factors and the imper-
atives for finding an ideal arrangement. To beat this trouble, they utilized a novel
calculation PSO which can discover optimal outcomes in a brief timeframe.
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Tandon et al. [41] proposed PSO computation to effectively optimize multiple
parameters of milling process simultaneously. Also, this computation is employed
for optimization of feed and speed for industrial pocket-milling and minimization
of 35% in machining time was measured. GA-based optimization process has been
utilized by Palanisamy et al. [42] for machining of mild-steel sample at optimum
values of feed, cutting speed associated depth of cut for a continuing MRR in an
end-milling process. Similarly Zain et al. [43] implemented GA for the optimization
of process parameters of end milling for diminishing surface roughness.

Saravanan et al. [44] observed the optimummachining parameters for continuous
profile machining with relevance the minimum cost having practical constraints.
They studied power constraint, cutting force and tool-tip temperature as constraints.
Because of complex nature of such machining optimization issues SA and GA were
implemented to solve.

Bharathi Raja and Baskar [45] delineate empirical models for machining time
and surface roughness for optimization of turning process parameters. PSO has been
accustomed for optimization of parameters for least machining time under high
surface finishing.GAoptimization process for resolvingmulti-pass turning downside
is planned by Onwubolu and Kumalo [46]. The outcomes from scrutiny the planned
GA-approach with literatures prove its effectiveness. A PSO technique for choosing
optimal parameters in multi-pass turning was developed by Srinivas et al. [47] in
which PSO is enforced to get the value of cutting parameters that reduces unit cost
under practical constraints.

Hecker et al. [48] executed a case study on victimization biological process algo-
rithms to optimize production panning of bakery andmodeled production in bakeries
as a function of continuous hybrid flow shop. PSO and ACO algorithms were imple-
mented for scheduling issues and to optimize production planning of an example
bakery and it was found that both the tools have strength of attain optimized findings
for scheduling with in processing time of 15 min.

Jerald et al. [49] proposed optimization method relies on four unconventional
computations, i.e., GA, SA, MA and PSO are enforced with success for finding
scheduling optimization concerns of FMS. Outcomes are attained for 3 test problems
such as ten jobs eight machines, twenty jobs fifteen machines and forty three jobs
sixteen machines. Out of all methods PSO outcomes is very promising and provides
the best result of objective functions.

Pierreval and Tautou [50] instructed an optimization methodology for production
systems. This methodology can be applicable to optimality issues with any variety of
variables. This is relies upon combination of biological process rule and a simulation
model. Advancements of Michalewicz’s biological process operators and rule are
projected to handle production system issues. They implemented proposed method-
ology on test problem: the layout of a workshop manufacturing plastic curd pots.
Navalertporn and Afzulpurkar [51] projected hybrid optimization technique utiliz-
ing ANN and a bi-directional PSO (BPSO). The projected approach is employed
to resolve a process parameter design issues in cement roof-tile production. They
concluded that BPSO is an efficient methodology for finding multiple objective opti-
mizations and to solve complex design issues.
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Zain et al. [52] projected 2 hybrid systems, integrated SA–GA-type1 and inte-
grated SA–GA-type2, so as to calculate the optimum method parameters of abra-
sive waterjet machining that result in low machining outcomes. The findings of this
investigation showed that hybridization of GA results in calculating optimal process
parameters with least machining performance in comparison to real experimental
findings.

Yamada et al. [53] projected a layout optimization technique for production cells
and an assignment optimization technique for material handling robots in reconfig-
urable production systems, employing a PSO technique. A GA based computation
for resolving facility Layout issues of production system with dynamic features
and qualitative and structural call variables was proposed by Azadivar and Wang
[54]. The projected approach integrates GAs, computer simulation and an auto-
matic simulation model having friendly interface. Organic process techniques play
outstanding role in optimization of supply chain management conjointly. Subrama-
nian et al. [55] projected hybrid forward logistics multi-echelon distribution inven-
tory model (FLMEDIM) and close loop multi-echelon distribution inventory model
(CLMEDIM) for the built-to-order surroundings victimization GA and PSO.

Ciurana et al. [56] investigated surface finishing and geometrical and dimensional
properties of the grooves/cavities are investigated in laser milling of hardened AISI
H13 tool victimization periodic Nd:YAG laser. Additionally PSO is implemented to
optimize laser micromachining parameters and this technique will assist in process
design conjointly.

Rao et al. [57] investigated single-objective optimisation andmulti-objective opti-
misation factors of an electrochemical machining process parameters employing
PSO. This is ascertained that findings of the PSO computation shows important
advancement over different optimization processes like goal programing, fuzzy set
theory, and GAs. The utilization of GA including the feed-forward NN with back-
propagation learning formula for the optimization beneath varied cutting stages of
the discharge machining method has been according by Su et al. [58].

Yildiz [59] proposed a new optimization method to resolve optimization issues
within the areas of design and production with the integration of PSO and recep-
tor redaction property of immune system and then applied to the optimization of
both design concerns and machining parameters taking minimum cost beneath a
collection of machining constraints in multi-pass turning operation. An advanced
method relies on PSO and local search computation was proposed by Moslehi and
Mahnam [60] to resolve the multi-objective flexible job-shop programing drawback
with completely different release time. Bean bestowed a strong GA to handle big
selection of sequencing and optimization issues like multiple machine programing
issues, resource allocation drawback, and quadratic assignment issues [61].
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4.3 Genetic Algorithm

This technique was presented by Holland in the year 1975. It is a meta-heuristic
pursuit procedure, which works with the idea of Darwin’s hypothesis of natural
development [62]. GA is a coordinated random pursuit strategy that depends on
the mechanics of natural choice and reproducing to effectively investigate a huge
space of candidate plans and discover optimal arrangements [63]. GA controls the
pursuit via the arrangement region by utilizing natural choice and GA operators like
mutation, selection and the crossover.

4.3.1 Principle

GA keeps up a populace of individuals that indicate candidate solutions. Every indi-
vidual is assessed to give some proportion of its fitness to the issue from the objective
function. In every production, another populace is framed by choosing the fittest peo-
ple dependent on a specific determination system. A few individuals from the new
populace experience hereditary tasks to shape new arrangement. The two normally
utilized activities are crossover and mutation. After a few productions, the algorithm
unites to the best chromosome, which ideally speaks to the optimum or close ideal
arrangement. GA has four parts as explained by Davis and Mitchell [64] which are
recorded underneath:

1. Mode of encoding obtained values for the issue as chromosome
2. Mode of acquiring an initial populace of arrangements
3. A function that assesses the “fitness” of an answer
4. Reproduction operators for the encoded arrangements.

The well-ordered execution of GA is clarified as follows :

i. Problem representation

Thefirst and the principal essential advance in applyingGA to an issue is the encoding
plan since it can seriously restrain the window of data that has been seen from the
framework. To improve the execution of the algorithm, a chromosome portrayal
is wanted. By and large, the GA advances a multiple set of chromosomes. The
chromosome is generally communicated as a series of factors, every component of
which is known as a gene. The factors can be spoken to as real number, binary or
different structures and its span is normally characterized by the issue determined.

ii. Initialization of population

For initialization of populace, two parameters are used, one is population and other
is method to initialize the population. GA cannot depend on single point, rather it
produces a number of points having predefined size. Due towhichGAhas capacity to
search from various possibilities of the predefined region and extracts global optima.
For normal populace generally size of 20–50 will prefer. Random initiation and
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heuristic initiation are the two important way of generating initial populace, which
randomly produces solution for the complete population.

iii. Evaluation of fitness function

The GA imitates the “survival of the fittest” guideline of nature to do the searching
and utilizes the fittest value of function as pay off data to direct them via the issue
space. When GA knows the ebb and flow proportion of “goodness” about a point, it
can utilize this to keep searching ideal. GA is normally reasonable for taking care of
maximization issues. Minimization issues are generally changed into maximization
issue by some reasonable change.

iv. Constraint handling

GA is preferably suitable for unconstrained problems. In any case, the vast majority
of the optimization issues are constrained in nature. Henceforth, it is important to
change it into an unconstrained issue [65]. Transformation strategies accomplish this
by including a penalty term with the objective work. Two primary methodologies for
penalty work are: (i) one the basis of violated number of constraints and (ii) in view
of some separation from the feasible locale.

v. Generation of new population

At that point the assessment ideas are converted into the new populace production
to look for the best chromosome in a very natural manner. It comprises of three
hereditary factors: (a) Selection, (b) Crossover and (c) Mutation.

(a) Selection

This is a process of choosing strings fromapopulace as per its fitness. Thefitness of an
individual is assessed concerning a given target function. The most astounding posi-
tion chromosome will have greater probability of choice and the most exceedingly
awful will be dispensed with. There are number of determination strategies accessi-
ble. The techniques incorporate, roulette wheel determination, competition choice,
position choice, consistent state choice, etc. All in all, “Roulette wheel” determina-
tion strategy is utilized. In this technique, parents are chosen by their wellness. The
better the chromosomes they have, the more shots are there to be chosen.

(b) Crossover

When the determination procedure is finished, next we have to apply crossover
operator. Crossover is defined as an operator of recombinationwhich joins subgroups
of two parental chromosomes to generate offspring that consists of few sections of
both the parental hereditary material. In the hybridization very fit people are offered
chances to repeat by trading bits of their hereditary data with other exceptionally
fit people. This generates new “offspring” arrangements, which share some great
attributes taken from the two guardians. Figure 4 demonstrates the hybridization task
between the two parent strings and the formation of off springs. The hybridization
factor essentially consolidates substructures of two parent chromosomes to deliver
new structures with the picked hybridization probability ‘Pc’. It demonstrates how
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Fig. 4 Crossover operation [66]

Fig. 5 Bitwise mutation [66]

regularly hybridization is performed. A likelihood of 0% implies that the ‘offspring’
will be the correct imitation of their ‘folks’ and a likelihood of 100% implies that
every production is made out of altogether new spring.

(c) Mutation

The selection and crossover administrators will create a lot of various off springs.
Be that as it may, there are two primary issues with this. They are

i. Depending upon the initial populace picked, there may not be sufficient decent
variety in the underlying strings to guarantee that theGA looks through thewhole
issue space and

ii. The GA will converge on sub-optima strings because of an awful decision of
initial populace.

These issuesmight be overwhelmed by the presentation of mutation administrator
into GA. It is utilized to infuse new hereditary material into the hereditary populace.
Transformation can be acknowledged as an arbitrary deformation of the strings with
certain likelihood. The beneficial outcome is conservation of hereditary variety and,
as an impact that nearby maxima can be maintained a strategic distance from. In
this, the offspring can either supplant the entire populace or supplant less fit people.
Operator changes 1 as 0 and the other way around by bit wise. Bitwise change is
done a little bit at a time by flipping a coin with low likelihood. On the off chance
that the result is valid, the bit is changed; generally the bit is not changed.

Greater mutation rate would decimate the fit strings and savage the GA into an
arbitrary search. Probability of mutation ‘Pm’ of 0.01–0.001 is normal and these
qualities speak to the likelihood that a specific string will be chosen for change, i.e.,
for a likelihood of 0.01, one string in one thousand, will be chosen for transformation.
Figure 5 delineates the bitwise task. As appeared in Fig. 5 bitwise transformation
activity arbitrarily chooses a string and switches the haphazardly picked bit from 0
to 1 or 1 to 0.

vi. Termination criteria

Amid the run of algorithm, fitness values increment step by step and at one specific
production, fitness value will not increase further which speaks to the optima or close
optima arrangement. At this point, running of GA should be stop.
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4.3.2 Advantages

Contrasted with conventional continuous optimization strategies, GA has the accom-
panying critical contrasts.

• GA controls coded forms of the issue parameters rather than the parameters them-
selves.

• While every ordinary technique seeks from a single point, GA dependably works
on an entire populace of focuses (strings). This contributes a lot to the vigor of
hereditary calculation. It enhances the shot of achieving the global optima and, the
other way around, decreases the danger of getting to be caught in a neighborhood
stationary point.

• Normal genetic computations do not utilize any auxiliary data about the target
work values like derivatives. Henceforth, they can be connected to any sort of
continuous or discrete optimization issue.

• GA utilizes expectation factors while customary techniques for continuous prob-
lem apply deterministic factors. All the more explicitly, the manner in which
another production is figured from the real one has some arbitrary parts.

4.4 Particle Swarm Optimization

This evolutionary technique was evolved by the combined effort of two scientist
of different specialization one is Russell Eberhart and other is James Kennedy in
1995. Kennedy was a social psychologist but Eberhart was an electrical engineer
[28]. Kennedy visualizes the intelligence of birds flocking and fish schooling and
it was found that they have some intelligence which will give motivation to evolve
different evolutionary computation which is called as PSO. This is a characteristics
perception that birds can travel in expansive gatherings without impact and they
maintain optimumdistance between themselves. This segment exhibits a few insights
regarding birds in nature and outlines their abilities and sociological conduct also
[67].

4.4.1 Principle

The PSO isworks on evolutionary computation procedure impersonating the conduct
offlocks of birds and theirmethods for data trade. InPSOvarious particles are traveled
in problem space by an efficient methodology. At time t, every particle i has a vector
position, xi(t), and a vector speed, vi(t). Memory of PSO stores particle’s present
location and their personal ever best position. Speed of each particle will vary as per
the authentic data put away in the memory and furthermore arbitrary data. Now the
new speed will utilized as to update the location of the particle and assess the new
position of target function validation.
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4.4.2 Initial Solutions

The developed algorithm requires numerous initial points for initiation of search in
problem space. These underlying solutions are essentially the particles utilized amid
pursuit. Since no particle is conceived or decimated amid the search, the quantity
of initial points is actually equivalent to the quantity of particles of the calculation
amid its investigation. The developed calculation creates L random numbers as the
underlying arrangements which are alluded as xi; i= 1, 2,…−L; where n represents
quantity of potential tools in the taken issue. Better diversified particles will be
guaranteed by the random permutations of initial points. And producing random
numbers in the taken time duration said that feasible search is takes place.

4.4.3 Parameters and Criterion

Developed algorithmconsiders L particles to investigate the possible space, L particle
speeds are additionally expected to refresh position of the each particles amid trails
of the calculation. The computation at first creates L arbitrary integers as speed of
particle so as to refresh position of the molecule. Consider that speeds must be in a
proper span with the goal that the particles stay in feasible region subsequent to being
refreshed. Since the feasible arrangement interim is [0; n! − 1], the suitable speed
interim which ensures attainability of every particle after refresh in kth cycle for
every particle i. Calculation should likewise update particle speeds amid the pursuit
to manage the particles with the help of more alluring territories of feasible area.
Refereeing to Fig. 6; initially PSO calculation uses to refresh speeds condition as per
relation mentioned in equation (ii) [28]:

Vk[t + 1] = Vk[t] + C1r1(Pkbest−Pk) + C2r2(Gkbest−Pk) (2)

where, Vk[t + 1] means new velocity of particle,

Fig. 6 Vector representation
of particle’s position and
velocity [68]
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Vk[·] means old velocity of particle,
Pk means current solution,
Pkbest means personal best solution,
Gkbest means global best solution,
Vp = velocity of personal best solution,
Vg = velocity of global best solution,
C1 and C2 are social and cognitive factors.
Normally, C1 = C2 in the range of [0–4].
r1 and r2 means random numbers between [0–1].
Particle’s updated location can be calculated by expression derived in equation

(iii):

Pk[t + 1] = Pk + Vk[t + 1] (3)

These two equations entail about the new design in search along global optima
by applying velocity vector which generates on the basis of local and global opti-
mal point. Hence it is concluded that PSO updates its parameters by learning from
previous and neighbors.

4.4.4 Flow Chart

Figure 7 illustrates the flow of the commands for performing particle swarm opti-
mization in MATLAB.

4.4.5 Advantages

PSO is a populace dependent evolutionary method which has many prime favorable
circumstances over different strategies as pursues:

• It is a non-derivative algorithm not at all like numerous customary procedures.
• It has the adaptability of joining with other improvement procedures to shape cross
breed devices.

• It has few parameters to alter not at all like numerous other contending procedures.
• It can escape local minima.
• Implementation of PSO is very easy and it can program with fundamental numer-
ical and rationale tasks.

• PSO can deal with stochastic target functions as on account of speaking to one of
the factors as random.

• PSO do not relies on a selection of good initial value for begin its iterative proce-
dure.
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Fig. 7 Flowchart of PSO [69]

5 Case Study: Design of Loop Layout in FMS Using
Evolutionary Technique

Loop layout is a common layout in FMS, because it allows placing machines in a
loop and transportation of material is along one direction only. A preliminary step in
solving loop layout design problem (LLDP) is calculation ofmachine sequence inside
the loop. A LLDP can formulate as permutations of workstations with (m1, m2…mn)
considering loading/unloading station with notation 0. Every object is featured by
its part route, in sequencing of workstation it must reach to finish processing of job.
For a given job, assume processing on jth machine successively processed on ith
machine. If location of jth machine is lower than ith, then the job have to traverse
through loading/unloading point called as reload. The amount of reloads needed to
finish process for a job is outlined as traffic congestion [70]. Afentakis [71] prompt
the employment of traffic congestion as deciding factor of the loop layout. The
congestion is explained in terms of number of times traverse of job in a loop till
complete processing. Mostly two varieties of congestion amount used in LLDP are
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MIN_SUM and MIN_MAX [72]. A MIN_SUM drawback makes an attempt to
attenuate the whole congestion of all components whereas a MIN_MAX drawback
makes an attempt to attenuate the most congestion among family of components.

The effectiveness of the projected algorithm is assessed by the subsequent per-
formance condition mentioned in Nearchou [72].

1. Minimization of average cost of best loop layouts

Cost(S) =
N∑

i=1

reloadi

where, S is the best loop layout combination
reload is the crossing through loading/unloading station
N is number of parts.

2. Minimization of average percentage solution effort (%SE) spent by algorithm

SE (%) =
(
NEbest

N Etotal

)
× 100

where, NEbest is the number of evaluation to get the best result
NEtotal is the total number of evaluations.
This is required to furnish few numerical coefficients to assess the parameters in

PSO and GA because these coefficients directly affect the effectiveness of global
optimization. The basic setting of parameters for PSO is given as Size of population
= 100, velocity factors = C1 = C2 = 2, termination criteria = 300 iterations and no.
of evaluations = 30,000 {referred from [73]}.

The basic setting of parameters for genetic algorithms is given as Pc (ratio of
crossover operation) = 0.3, Pm (ration of mutation operation) = 0.3, pop_size (pop-
ulation size) = 20 and max_gen (maximum generation) = 200 {referred from [70]}.

The PSO computation is evaluated by the randomly crated benchmark issues
presented in Nearchou [72]. Required sequencing of workstations of hypothetical
test problems are given in Table 1. Findings of PSO computation [69] compared
with GA [70, 74] and DEA [72] for the benchmark downside are shown in Table 2.
It is observed that for the test problems 1 and 2, PSO results optimal solution as
same as other heuristics. In terms of %SE spent by the PSO algorithm to reach the
optimal solutions is comparatively lower than DEA_2 and equal to GA for problem,
but higher in case of problem 2 due to less number of evaluations. The low amount of
%SE indicates the quick convergence of the algorithm towards the optimal solution.
The PSO algorithm is executed on MATLAB and graphical representation of the
results obtained by Rai and Jayswal [69] are depicted in Figs. 8, 9, 10 and 11. Since
computed values in Table 2, is based on the evaluation of layout on traffic congestion
factor, but in actual layout everyworkstation has its own clearancewhich differs from
station to station. Required clearance must be included between each workstation for
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Table 1 Required machine sequence [72]

Problem no. NoM and NoP Part no. Required machine sequence

1 10 and 3 1 2–1–6–5–8–9–3–4

2 10–8–7–5–9–6–1

3 9–2–7–4

3 15 and 9 1 4–2–5–1–6–8–14–9–11–3–15–12

2 3–2–15–14–11–1–7–10–4–5–13–6–9

3 5–6–11–15–2–12–3–4

4 10–9–4–14–2–3–15–8

5 11–2–4–14–5–3–15

6 8–10–12–11–15–13–1–14–4–5–3

7 5–11–10–3–7–13–8

8 7–3–2–8–4–10–6–15–13–9–1

9 11–13–3–1–12–14–4–8–9–2

NoM and NoP—Number of machines and number of parts

Fig. 8 Graph of number of iterations versus best cost for test problem 1

storage, handling,maintenance and safety. Therefore clearance betweenworkstations
must be taken into consideration while solving LLDP [73].

In this case study, an implementation of PSO based approach on obtaining the
optimal solution of unidirectional loop layout design problem is discussed. In this
work the minimization of total traffic congestion, minimization of total cost in terms
of reload and minimization of solution effort have been considered as an objective.
The proposed algorithm is tested on different combinations of machines to vali-
date the performance of algorithm, and the obtained results are very promising. It
is seen that the PSO algorithm is efficient in finding good quality solutions for the
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Fig. 9 Graph of total evaluation versus best cost for test problem 1

Fig. 10 Graph of number of iterations versus best cost for test problem 2

layout problems with less percentage solution effort. A comparison chart with other
techniques such as GA and DEA also suggested that evolutionary approach in manu-
facturing leads towards the optimality in each and every aspect of the manufacturing
technology. So the present era of manufacturing needs implementation of various
evolutionary techniques to resolve these issues.
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Fig. 11 Graph of total evaluation versus best cost for test problem 2

6 Comparisons Between PSO and GA

There are a few similitudes among GA and PSO. Both these calculations begin with
a populace of arrangements created randomly and the nature of these arrangements is
communicated as far as their fittest values. There are a few dissimilarities additionally
among PSO and GA. For instance, in PSO, there are no crossover and mutation
parameters, though these are considered as critical factors of the GA. In PSO, the
particles have memory, and thusly, effectively discovered great data of the particles
is conveyed forward iteratively. Then again, the past learning of the issue is lost once
the populace changes. AGA is an amazing asset for global optimization. Then again,
PSO completes both the local and global seek at the same time. PSO calculation is
more straightforward in development and quicker than the GA. The PSO may give
more precise outcomes contrasted with the GA.

7 Future Aspects of Evolutionary Techniques

Evolutionary calculations are nature motivated populace based optimization strate-
gies, yet they have a few constraints in either perspective. Because of this reality,
extensive research is needed to verify computations for various issues to assess their
reasonableness for a large assortment of issues. Research is kept on upgrading the
current computations to enhance their execution. Improvement can happen either (a)
by changing the current computation methods or (b) by hybridization of the current
computation methods. Improvement because of alterations in the current compu-
tation is accounted for in GA [75], PSO [76], ACO [77], ABC [78], etc. Upgrade
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should likewise be possible by joining the qualities of various optimization compu-
tations, called as hybridization of computations. It is a compelling method to make
the computation proficient and it consolidates the features of various computations.
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