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Abstract. Imbalanced datasets often pose challenges in classification
problems. In this work we study and quantify the problem of imbal-
anced classification using support vector machines (SVM). We identify
the conditions under which a SVM failure occur, both theoretically and
experimentally, and show that it can be relevant even in cases of very
weakly imbalanced data. The guidelines for exploratory data analysis are
presented to avoid the SVM failure.
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1 Introduction

Often in statistical learning, the available training data set has few samples in a
high dimensional space, allowing very poor estimations on probability distribu-
tion functions. Non-parametric approaches based on statistical learning theory,
such as neural networks or SVMs, have been proven to be very succesful solving
classification problems. However, in the case of unbalanced training datasets,
some difficulties arise if the learning algorithms are straightforwardly applied.
For example, the soft margin solution in SVM [4,9] for non-separable classes,
includes a term in the lagrangian that accounts for the classification error rate
together with the structural risk minimization. If the learning algorithm is opti-
mized to minimize the risk of misclassifying samples, some additional constraints
must be imposed to avoid the trivial solution in imbalanced datasets. The trivial
solution is achieved when all samples are classified as the dominant class. In that
undesirable case, the misclassification error can be very small if the dominant
class outnumbers the scarce class in several orders of magnitude, thus masking
the problem. It is however possible that the trivial solution is achieved in cases
of weakly imbalanced data.

A common practice in SVM imbalanced classification is to apply penalties to
the classification errors on the scarce class, so that the risk of classification errors
is weighted. Usually, no other method or theoretical ground for class weight
estimation but trial-and-error is proposed. Moreover, it has been shown that
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applying class weights is equivalent to use fuzzy-SVMs [6]. The importance of
the data properties has been studied in imbalanced data [7], although the use of
weights in SVM is usually reserved to heavily imbalanced data.

In this work we study the relevant properties of the data for SVM imbalanced
classification and its theoretical relation to the trivial solution.

2 Methods

The methodology followed in this study is as following: first a review on SVM is
given, fixing the notation. Secondly, a definition of SVM failure is given, together
with a theoretical derivation of the conditions that cause it. Lastly, a experimen-
tal set is proposed to illustrate the effects of the SVM failure and the circum-
stances around it.

2.1 Support Vector Machines

SVM is a machine learning algorithm that separates a given set of binary labeled
training data with a hyper-plane that is maximally distant from the two classes
(known as the maximal margin hyper-plane). In the C-SVM formulation, the
problem of finding the maximal margin hyperplane is solved by quadratic pro-
gramming algorithms that try to minimize the dual of the cost function J :

J(w , w0, ξ) =
1
2
||w||2 + C

l∑

i=1

ξi, (1)

subject to the inequatity constraints:

yi[w · xi + w0] ≥ 1 − ξi, ξi ≥ 0 i = 1, 2, ..., l. (2)

where the slack variables ξi make the margin “soft”, by incorporating to the
optimization those feature vectors that are not separable, leading to the soft
margin solution (details can be found in [10] and [9]).

By applying Lagrange duality and introducing kernel methods, the following
dual optimization problem is obtained:

min
α

1
2

l∑

j=1

l∑

i=1

yiyjαiαjK(xi,xj) −
l∑

i=1

αi (3)

subject to the KKT dual conditions:

l∑

i=1

yiαi = 0, and 0 ≤ αi ≤ C, i = 1, ..., l (4)
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where K(., .) is the kernel function and αi are the Lagrange multipliers that need
to be solved. The dual conditions will be related to the primal problem as:

αi = 0 → yi[w · xi + w0] ≥ 1 (5)
αi = C → yi[w · xi + w0] ≤ 1 (6)

0 < αi < C → yi[w · xi + w0] = 1 (7)

Common kernels that are used by SVM practitioners for the nonlinear feature
mapping are:

– Polynomial
K(x,y) = [γ(x · y) + c]d. (8)

– Radial basis function (RBF)

K(x,y) = exp(−γ||x − y||2). (9)

as well as the linear kernel.
The solution to that problem can be expressed by a linear combination of a

subset of vectors, called support vectors:

d(x) =
NS∑

i=1

αiyiK(si,x) + w0 (10)

where si are the NS support vectors; those vectors with αi > 0. Taking the sign
of the function d(x) leads to the binary classification solution [10]. The solution
may also be expressed as:

y(x) = sign(ϕ(x) · w + w0) (11)

where:

w =
l∑

i=1

αiyiϕ(xi) (12)

with K(xi,xj) = ϕ(xi) ·ϕ(xj) being the kernel mapping that will be the identity
in the linear case.

3 SVM Failure

The solution given in 13 can be split into its positive and negative class fractions
as:

w =
l∑

i=1

α+
i ϕ(x+

i ) −
l∑

i=1

α−
i ϕ(x−

i ) (13)

where x−
i and x+

i are the negative and positive training examples. The sign of
the vector w will determine how the positive and negative labels are assigned in
reference to the hyperplane. Ideally, the vector w will point from the negative
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class to the positive class. However, there will be some special cases where the
vector w will point in the wrong direction, that is, from the positive class towards
the negative class. In those cases, the training of the SVM will fail, and the only
possible adjustment is to set w0 so that all the training examples are classified as
positive (or negative). We will call that situation SVM failure. There are several
properties of the training data involved in a SVM failure, namely: the proportion
between training samples and the overlap between them. We will show here how
this undesirable situation occurs when the difference in support vector density
between classes reaches a threshold inside the margin.

Let us first consider the simpler case of linear SVM. In accordance with the
dual KKT conditions, αi = C for all the training examples inside the margin,
including those in the wrong side of the margin. The constraints imposed in
Eq. 4 to the solution of Eq. 10 make it possible to express the vector w as:

w = C(x̄+
s − x̄−

s ) (14)

where x̄+
s and x̄+

s are the average positive and negative support vectors respec-
tively, and where we have neglected those support vectors with 0 < αi < C
for reasons that will become clear later. Intuitively, w can be thought as the
difference vector between the average positive support vector and the average
negative support vector, up to a factor. However, to guarantee the optimal per-
formance of the SVM, the sign of the vector w must be the same as the sign of
the vector v defined as:

v =
n+∑

i=1

x+
i −

n−∑

i=1

x−
i (15)

where n+ is the total number of samples in the positive class and n− is the total
number of samples in the negative class. In oder words, we expect the classifier
to be somewhere between the average positive class and the average negative
class, thus dividing both point clouds. To understand when this condition is not
met, it is useful to analyze the different scenarios in which the Eq. 14 vanishes.
For Eq. 14 to vanish, the classes are required to be non-separable. It is easier to
analyze first the simpler case of imbalanced data in which all the samples of the
scarce class are support vectors, and then discuss the more general case in which
Eq. 14 can vanish but there are a non-negligible number of samples that are not
support vectors.

3.1 All Support Vectors

In the case of a complete overlap between classes, it is a consequence of the
constraints 2 that all the samples of at least one class must be support vectors.
Take the negative class to be the scarce one. In that case, one of the terms of
Eq. 14 can be calculated explicitly from the data only, the x̄−

s term. Therefore,
if it was possible to calculate the x̄+

s term, it would be possible to predict if
the classifier will fall into a SVM failure. The smallest value of the second term
can be achieved only for no support vectors outside the margin, or all αi = C,
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neglecting smaller values of αi as mentioned earlier. If we define the subset of
one class samples that are in the region of the feature space delimited by the
hyperplane located at a distance C of the furthest negative sample in the v
direction as L, then the SVM failure condition is:

∑

i∈L
x+

i =
n−∑

i=1

x−
i (16)

4 Experiments

We performed simulations of real case scenarios in which the different properties
of the data are varied, as the imbalance proportion between classes or their
overlap. To model the data we used multidimensional Gaussian distributions,
that allowed us to control the aforementioned characteristics. Two classes w1 and
w2 were modeled with Gaussian distributions with different mean and covariance,
and described by:

p(w1 |x) =
1

2π|Σ1| 1
2

exp
(

−1
2
(x − μ1)T Σ−1

1 (x − μ1)
)

(17)

p(w2 |x) =
1

2π|Σ2| 1
2

exp
(

−1
2
(x − μ2)T Σ−1

2 (x − μ2)
)

(18)

Experiment 1: μ1 =
(

0 0
0 0

)
, μ2 =

(
1 0
0 1

)
and Σ1 =

(
2 0
0 1

)
Σ2 =

(
0.25 0
0 0.5

)
.

The training set is built by joining a varying number b of w1 samples and a fixed
number m = 100 of w2 samples. 400 different trained SVM are built by modifying
the proportion ρ = b/m ranging form ρ = 1 to ρ = 5 in 0.01 increments. (see
Fig. 1)

Experiment 2: Σ1 =
(

2 0
0 1

)
Σ2 =

(
0.25 0
0 0.5

)
, and m = 100 b = 125 . The

training set is built by varying the value of μ2 while keeping μ1 =
(

0 0
0 0

)
.

300 different trained SVM are built by modifying the value of μ2 according

to μ2 =
(

a 0
0 a

)
, with a ranging from 0 to 3 in 0.01 increments. (see Fig. 1)

For each variation of the parameters a and ρ, a SVM was trained, and the
accuracy, sensitivity and specificity of each classifier on the trained data was
acquired. The results are shown in Fig. 2. To perform the experiments we used
the SVC implementation of scikit-learn [8] based on libsvm [3].

Although the data is synthetic, these kind of datasets can represent real
data. Such an example can be realized in dynamic-contrast-enchancing magnetic-
resonance-imaging (DCE-MRI) for breast cancer diagnosis [5]. Consider a DCE-
MRI patient image with N voxels. In such case, the classification problem reduces
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(Experiment 1) ρ = 1 (Experiment 1) ρ = 3 (Experiment 1) ρ = 5

(Experiment 2) a = 0 (Experiment 2) a = 1 (Experiment 2) a = 3

Fig. 1. Illustration of simulated data for different parameter settings and different
experiments.

to separate healthy tissues from malignant ones. A set of voxels m belonging to
a malignant region constitutes a tumor. It is expected that the number of voxels
b belonging to benign regions outnumber the voxels in malignant regions, so that
n/b << 1 in either the training set or the unseen case. However, the size of the
tumor is unknown in unseen cases, and do not have to match necessarily the size
of tumors in the training set. Therefore, the proportion n/b is variable as well
as its overlapping.

5 Discussion

Results showed in Fig. 2 illustrate the effect of a SVM failure when the condi-
tions are met. For this particular datasets, SVM failure occurs for ρ ≈ 4.5 in
Experiment 1 and when a ≈ 0.4 in Experiment 2.

For ρ ≈ 4.5 in Experiment 1 Eq. 16 is fulfilled. By varying the imbalance
proportion while keeping the overlap between classes fixed, there is a limit in
which there are not enough support vectors in the scarce class to balance the
density of support vectors of the dominant class inside the margin, and the sign
of w gets reversed producing the failure. This situation is easier to predict and
quantify, since the number of samples in the scarce class establishes a fixed limit.

In the circumstances of Experiment 2, it is harder to predict the SVM failure
since it depends on the particular realization of the data, adding to it the limi-
tation to Gaussian distributions of this study. It is however showed that Eq. 14
can vanish in some particular configurations of the data, independently from its
imbalanced proportion between classes. It also shows that SVM failure is less
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Experiment 1 Experiment 2

Fig. 2. Performance of the SVM on the training set by varying the parameters ρ and a.

consistent, and more random in nature, suggesting that the small changes in
the particular realization of the probability distribution function can affect sig-
nificantly in the SVM failure. This fact can be very relevant in cross-validated
studies, where subsampling the data into cross validation folds can produce SVM
failure.

A common practice in SVM imbalanced classification is the use of class-
weights. This solution is equivalent to the FSVM problem [6] or more precisely,
the latter problem is more general and includes the former as an special case. In
the light of this interpretation, applying different weights to class-slack variables
is the same as decreasing the membership level of one class, say the w1 class,
misclassified samples, while keeping the w0 membership not fuzzy.

The FSVM-CIL method proposed in [2] explicitly makes use of this corre-
spondence, and propose three different functions to estimate the membership
function si; distance to class center, distance to estimated hyperplane and dis-
tance to actual hyperplane. To tackle the imbalanced problem, they propose to
use different upper bound values in the membership function for each class so
that the ratio corresponds with the ratio on the priors, in concordance with [1].

However, the solutions to the imbalanced SVM classification problem do
not usually study the conditions under which the solutions should be applied.
Here we show that even weakly imbalanced data can require of a imbalanced
solution as FSVM or weighted-SVM if certain conditions are met, suggesting
that balanced classes in SVM are important in guaranteeing its performance.

Here, we have limited the analysis to the simpler linear case, but all the
arguments are extrapolable to the non-linear case by including the use of kernels,
without modifying any fundamental idea.

6 Conclusion

We have established the theoretical conditions for SVM failure and showed exper-
imentally the circumstances under which it may occur. We have shown that not
only the imbalanced proportion between classes is relevant for predicting the
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SVM failure, but also their overlap. We have shown that SVM failure can be
produced even for weakly imbalanced data, suggesting that balancing or weight-
ing the data is always recommendable as a default option in SVM classification.
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