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Abstract. Cognitive effort is costly and partly aversive, and thus
humans usually avoid it if given the chance. In Demand-Selection Tasks
(DST), participants tend to choose the easy option over the hard one.
The neural underpinnings of this effect, however, are not well understood.
The current study is an initial approximation to adapt a DST to a for-
mat that allows measuring concurrent high-density electroencephalogra-
phy. We used multivariate pattern analysis (MVPA) to decode conflict-
related neural processes associated with congruent or incongruent events
in a time-frequency resolved way and determined how different frequency
bands contribute to the overall decoding accuracy. The decoding anal-
ysis involved the use of Support Vector Machines, a supervised learn-
ing algorithm that provides a theoretically elegant, computationally effi-
cient, and very effective solution for many practical pattern recognition
problems. Preliminary results show significant differences in activation
patterns for congruent and incongruent trials, yielding 80% of decod-
ing accuracy 400 ms after the stimulus onset. The results of frequency
bands contribution analysis suggest that context-dependent proportion
of congruency effect may rely on neural processes operating in Delta and
Theta-band frequencies.
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1 Introduction

Cognitive effort is costly and partly aversive, and thus humans usually avoid it
if given the chance. In Demand-Selection Tasks (DST)[1], participants tend to
choose the easy option over the hard one. The neural underpinnings of this effect,
however, are not well understood. The current study is an initial approxima-
tion to adapt a DST to a format that allows measuring concurrent high-density
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electroencephalography. Supervised machine learning algorithms, more specifi-
cally Support Vector Machines (Vapnik, 1979), in conjunction with several neu-
roimaging techniques, such as functional Magnetic Resonance Imaging (fMRI),
Electroencephalography (EEG) or Magnetoencephalography (MEG), have been
widely and successfully applied in clinical applications, such as computer-aided
diagnosis of Alzheimer’s disease [2-5], automatic sleep stages classification [6,7]
or automatic detection of sleep disorders [8]. Recently, these techniques are gain-
ing popularity in Cognitive Neuroscience, especially in fMRI studies. However,
the poor temporal resolution of the fMRI signal prevents an accurate time-
resolved study of the cognitive precesses. For this reason, the use of these tech-
niques is spreading and they are being applied to M/EEG signals, studying
the neural dynamics of face detection [9], the process of memory retrieval [10],
the representational dynamics of task and object processing in humans [11] or
decoding spoken words in bilingual listeners [12].

This study uses multivariate pattern analysis (MVPA) to decode conflict-
related neural processes associated to congruent or incongruent events in a
time-frequency resolved way. Due to the noisy nature of the EEG signal, a trial
averaging approach has been carried out during the feature extraction stage,
increasing the signal-to-noise ratio (SNR). In addition, we determined how dif-
ferent frequency bands contribute to the overall decoding accuracy, showing that
context-dependent proportion of congruency effect may rely on neural processes
operating in Delta and Theta frequency bands [13].

2 Materials and Methods

Participants. Thirty-two healthy individuals (21 females, 29 right-handed,
mean age=24.65, SD =4.57) were recruited for the experiment. Subjects had
normal or corrected-to-normal vision and none reported any neurological or
psychiatric disorder. All of them provided informed, written consent before the
beginning of the experiment and received a 10-euro payment or course credits
in exchange for their participation. The experiment was approved by the Ethics
Committee of the University of Granada.

Ezxperimental Setup. Stimuli presentation and behavioral data collection were
carried out using MATLAB (MathWorks) in conjunction with Phychtoolbox-3
Toolbox [14], in a magnetically shielded room. The visual stimuli were presented
in an LCD screen (Beng, 1920 x 1080 resolution, 60 Hz refresh rate) and placed
68.31£5.37cm away of subject’s Glabella. Using a photodetector, the stimuli
onset lag was measured at 8 ms, which corresponds to half of the refresh rate
of the monitor. Triggers were sent from the presentation computer to the EEG
recording system through an 8-bit parallel port and using a custom MATLAB
function in conjunction with inpoutx64 driver [15].

Stimuli. The predictive cue acted as a difficulty selector, and consisted of two
squares of different colors stacked and presented in the center of the screen
(visual angle ~5°). In forced blocks, a small white indicator (circle 50% or
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Fig. 1. (A) Experimental sequence of events in case of a correct response on both cue
and stimulus flanker. A trial starts width a fixation point, followed by a cue, witch act
as a color picker. Subjects have to choose (freely or forced, depending on the block type)
the possible color of the upcoming target stimulus. Finally, after a variable time interval
(100-300 ms) the target stimulus appears and subjects have to respond accordingly to
the orientation of the central arrow. Another variable time interval started before the
beginning of the next trial. The cue and the target stimulus remained in the screen
for 190 ms. (B) Cognitive effort manipulation through the percentage of congruent and
incongruent trials. Each cue color is associated to a high and low conflict context.
(Color figure online)

square 50%) appeared on top of the color that had to be chosen. In voluntary
blocks, this indicator appeared between the two colored squares (see Fig.1).
Each target stimulus consisted of five arrows pointing left or rightwards, which
were displayed at the center of the screen (visual angle ~6°). The color of the
target stimulus depended on the previously selected color.
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Ezxperimental Design. The Color-Based Demand-Selection Task [Fig.1 (a)],
modified from [1], consisted of a cue-target sequence where participants were
required to choose (voluntarily or forced, in different blocks: 4 blocks, 240 trials
per block, ~90min) the color of the upcoming stimulus and discriminate the
orientation (right or left) of an arrow target surrounded by arrows pointing at
the same (compatible distracters) or opposite (incompatible distracters) direc-
tion. Difficulty, or cognitive effort, was manipulated through the percentage of
congruent or incongruent trials associated with each color.

Participants were instructed to respond as fast and accurately as possible,
and to not choose color based on personal preference. They were unaware of the
cognitive effort manipulation. In order to preserve the signals as clean as possible
and remove the least number of trials, participants were encouraged to remain as
still and relaxed as possible, avoiding face muscle activity and eye movements,
but blinking normally. The order of the blocks, cue colors, response keys and
color-conflict context mappings were counterbalanced between subjects.

Behavioral Data Acquisition and Preprocessing. The reaction time (RT)
and error rates were registered for each subject. Before the statistical analysis,
the first trial of each block, trials with choice errors and trials after errors were
filtered out, as suggested in [16]. Finally, RT outliers were also rejected using a
+2.5 SD threshold, calculated individually per subject. As a result, there was a
total removal of 19% of the trials.

EEG Data Acquisition and Preprocessing. High-density electroencephalog-
raphy was recorded from 65 electrodes mounted on an elastic cap (actiCap slim,
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Fig. 2. (A) Feature extraction process in simulated data. The feature vectors of each
condition and time point consisted of an z-scored voltage array for all the scalp elec-
trodes. For an improved SNR, five trials were averaged before the feature extraction.
(B) Cross-validated LSVM classifier. For each time point, a LSVM was trained and
tested (stratified k-fold cross-validation, k = 10). Chance level was calculated permuting
the labels.
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Brain Products). The TP9 and TP10 electrodes were used to record the elec-
trooculogram (EOG) and were placed below and next to the left eye of the
subject. Impedances were kept below 5k. EEG activity was referenced to the
FCz electrode and signals were digitalized at a sampling rate of 1 KHz.

Electroencephalography recordings were average referenced, downsampled to
256 Hz, and digitally filtered using a bandpass FIR filter [0.5-40 Hz], preserving
the phase information. No channel was interpolated for any subject. EEG record-
ings were epoched [—1000, 2000 ms centered at the target arrows| and baseline
corrected [—200, 0 ms], extracting data only from correct trials. A total of 90 518
epochs (target, cue and cue response) were extracted. To remove blinks from the
remaining data, Independent Component Analysis (ICA) was computed using
the runica algorithm from EEGLAB [17], excluding TP9 and TP10 channels.
Artifactual components were rejected by visual inspection of raw activity of each
component, scalp maps and power spectrum. Then, an automatic trial rejection
process was performed, pruning the data from no stereotypical artifacts. The
trial rejection procedure was based on (1) extreme values: all trials with ampli-
tudes in any electrode out of £75uV range were automatically rejected (~7%
of the total sample); (2) abnormal spectra: the spectrum should not deviate
from baseline by £50dB in the 0-2 Hz frequency window (which is optimal for
localizing any remaining eye movements) and should not deviate by —100dB
or +25dB in 20-40 Hz (useful for detecting muscle activity) (<1% of the total
sample).

Multivariate Pattern Analysis (M VPA ). The MVPA for the decoding anal-
ysis was performed in MATLAB by a custom-developed set of linear Support
Vector Machines (LSVM), trained to discriminate between congruent and incon-
gruent target stimuli. To avoid skewed classification results due to a possible
unbalanced dataset, the prior probabilities of each class were set to uniform.
The rest of the classification parameters remained by default. The generalization
performance of the classifiers was calculated through cross-validation technique
(stratified k-fold, k= 10).

To obtain the classification performance in a time-resolved way, the feature
vectors were extracted as shown in Fig. 2. Thus, the classification procedure, for
each subject, ran as follows: (1) For each timepoint and trial, we generated two
feature vectors (one for each condition or class) consisting of the raw poten-
tial measured in all electrodes (excluding EOG electrodes: TP9 and TP10). (2)
Features vector containing raw potential values were normalized (z-score). (3)
LSVMs were trained and cross-validated, resulting in a single value of accuracy
for each timepoint and subject. (4) Finally, a single measure of accuracy for each
timepoint was calculated by averaging the classification performance over all the
subjects. The chance level was calculated following the former analysis but using
randomly permuted labels for each trial.

In a second analysis, to increase the signal-to-noise ratio [18] (SNR), improv-
ing the overall decoding performance and reducing the computational load, each
subjects dataset was reduced by randomly averaging a number of trials belong-
ing to the same condition. The number of trials to average is a trade-off between



408 D. Loépez-Garcia et al.

09—

ACC [Trial Ay =5, C Opti d]
STIMULUS ON > 190 ms < — T Avernse =B G Opmzec]

ACC [Trial Average = 5]
0.85 — —SEM

ACC [Trial average = 0]
[ SEM

Chance level

SEM

® p<.05

® p<0s

® p<.05

08—

°
° S
2 B

T

Classification performance
o
2
&
T

g
)

0.5 IV A A

- P :
-1000 -500 0 500 1000 1500 2000
Time (ms)

Fig. 3. Classification performance. The green line represents the classification results
when no trial average was carried out. An improved classification performance is shown
in orange, averaging 5 trials before the feature extraction. Finally, the former analysis
was repeated optimizing the cost parameter C (fivefold cross-validated), shown in blue.
The gray line represents the classifier chance level, calculated through permuted labels.
The shaded areas show the standard error. The statistically significant regions are
indicated on the bottom of the figure by colored dots. (Color figure online)

an increased classification performance (due to an increased SNR) and the vari-
ance in the classifier performance, since reducing the trial per condition typically
increases the variance in (within-subject) classifier performance [19]. The opti-
mal number of trials to average depends on the data. In our dataset (~500 trials
per condition and subject) considering that averaging more trials does not incre-
ment the decoding performance linearly, we found that averaging 5 trials is a
good trade-off between SNR and trials per conditions (~100 trials per condition
and subject). Finally, a search-grid based cost parameter (C) optimization was
carried out using fivefold cross-validation on the training set and increasing the
final decoding accuracy.

Frequency Contribution Analysis. The contribution of each frequency band
to the overall decoding accuracy was assessed through a sliding filter approach.
We designed a band-stop FIR filter (4 Hz bandwidth, 0.5Hz transition band,
2816 filter order, Blackman window) and pre-filtered the EEG data (37 over-
lapped frequency bands, between 2-40Hz and logarithmically spaced steps)
producing 37 filtered versions of the original EEG dataset. The former decod-
ing analysis was repeated for each filtered version and the importance of each
filtered-out band was quantified computing the difference in decoding accuracy
between the filtered and the original datasets.
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Fig. 4. Frequency contribution analysis. (A) Classification differences when a specific
frequency band is filtered-out. (B) T-test statistics showing significant differences in
classification at each time point and frequency band. (C) p <.05 thresholded signifi-
cance map.

3 Results and Discussion

The behavioral results replicate well-known conflict effects linked to context-
dependence congruency. Effort avoidance was observed in voluntary deci-
sion blocks (percentage of choice of easy 57.11% SEM =2.93 vs difficult
42.88% SEM =2.93 contexts; t=2.42, p=.021). Planned comparisons show
significant differences in reaction time between contexts for both congruent
(F(1,31) = 12 76, p=.001, n2=.292) and incongruent trials (F(1,31)=10.72,
p=.003, np— .257) and interaction of context and congruency, showing the
context-dependent congruency effect.

The electrophysiological analyses (Fig.3) show significant differences
(p<0.05) in activation patterns for congruent and incongruent trials, peaking
400 ms after the stimulus onset. A paired t-test was computed comparing the
classification performance mean at each time point with the classifier chance
level, which was calculated through permuted labels. The significant region
extends from stimulus onset (t=0ms) to 1500 ms later, when no trial average
was carried out. When the signal to noise ratio was increased by trial averaging,
this significant region extends throughout the entire analyzed temporal window,
which suggests that neural patterns associated to congruent or incongruent tri-
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als are significantly different even before the stimulus presentation. These results
are reasonable, since the stimulus onset is preceded by a predictive cue, which
indicates with 80% of validity, once the context is chosen (easy or hard), if the
following trial will be congruent or incongruent. These activation patterns dif-
ferences between conditions may relay on the differences in preparatory neural
mechanisms triggered by the selected context, reasserting the context-dependent
congruency effects in reaction times showed in the behavioral results.

A sliding bandstop filter approach was followed to study the contribution
of each frequency band to the overall decoding accuracy, showing that context-
dependent proportion of congruency effect may rely on neural processes operat-
ing in Delta and Theta frequency bands. Figure 4A shows how decoding accuracy
significantly drops when frequencies up to 8 Hz were filtered-out. A paired t-
test was computed comparing the classification performance mean at each time
point and frequency band with the classifier performance when no frequency
was filtered-out (Fig.4B). Finally, Fig. 4C shows a thresholded significance map
(p <0.05) of the former analysis.

4 Conclusion

The current study is an initial approximation to adapt a DST to a format that
allows measuring concurrent high-density electroencephalography. We used mul-
tivariate pattern analysis (MVPA) to decode conflict-related neural processes
associated with congruent or incongruent events in a time-frequency resolved
way, yielding 80% of decoding accuracy 400 ms after the stimulus onset. Our pre-
liminarily results of frequency bands contribution analysis suggest that context-
dependent proportion of congruency effect may rely on neural processes operat-
ing in Delta and Theta-band frequencies. For a better understanding of prepara-
tion processes and conflict effects, it would be of interest to continue analyzing
our data, focusing not only on the target stimulus, but also on the cue. Fur-
ther detailed analyses should be carried out to study the activation differences
between forced and voluntary blocks or high and low congruency contexts.

Acknowledgments. This research was supported by the Spanish Ministry of Econ-
omy and Business under the TEC2015-64718-R and PSI2016-78236-P projects. The
first author of this work is supported by a grant from the Spanish Ministry of Econ-
omy and Business (BES-2017-079769).

References

1. Kool, W., McGuire, J.T., Rosen, Z.B., Botvinick, M.M.: Decision making and the
avoidance of cognitive demand. J. Exp. Psychol.: Gen. 139(4), 665 (2010)

2. Ramirez, J., et al.: Computer-aided diagnosis of Alzheimer’s type dementia com-
bining support vector machines and discriminant set of features. Inf. Sci. 237,
59-72 (2013)



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

MVPA of Electroencephalography Data in a Demand-Selection Task 411

Chaves, R., et al.: SVM-based computer-aided diagnosis of the Alzheimer’s disease
using t-test nmse feature selection with feature correlation weighting. Neurosci.
Lett. 461(3), 293-297 (2009)

Salas-Gonzalez, D., et al.: Computer-aided diagnosis of Alzheimer’s disease using
support vector machines and classification trees. Phys. Med. Biol. 55(10), 2807
(2010)

Alvarez, I, et al.: Alzheimer’s diagnosis using eigenbrains and support vector
machines. Electron. Lett. 45(7), 342-343 (2009)

Koley, B., Dey, D.: An ensemble system for automatic sleep stage classification
using single channel EEG signal. Comput. Biol. Med. 42(12), 1186-1195 (2012)
Aboalayon, K.A.I., Ocbagabir, H.T., Faezipour, M.: Efficient sleep stage classifi-
cation based on EEG signals. In: IEEE Long Island Systems, Applications and
Technology (LISAT) Conference 2014, pp. 1-6. IEEE (2014)

Lépez-Garcia, D., Ruz, M., de Inestrosa, J.R.P., Sdez, J.M.G.: Automatic detec-
tion of sleep disorders: multi-class automatic classification algorithms based on
support vector machines. In: International Conference on Time Series and Fore-
casting (ITISE 2018), vol. 3, pp. 1270-1280 (2018)

Cauchoix, M., Barragan-Jason, G., Serre, T., Barbeau, E.J.: The neural dynamics
of face detection in the wild revealed by MVPA. J. Neurosci. 34(3), 846-854 (2014)
Kerrén, C., Linde-Domingo, J., Hanslmayr, S., Wimber, M.: An optimal oscillatory
phase for pattern reactivation during memory retrieval. Curr. Biol. 28(21), 3383—
3392 (2018)

Hebart, M.N., Bankson, B.B., Harel, A., Baker, C.I., Cichy, R.M.: The represen-
tational dynamics of task and object processing in humans. Elife 7, €32816 (2018)
Correia, J.M., Jansma, B., Hausfeld, L., Kikkert, S., Bonte, M.: EEG decoding
of spoken words in bilingual listeners: from words to language invariant semantic-
conceptual representations. Front. Psychol. 6, 71 (2015)

Cohen, M.X., Donner, T.H.: Midfrontal conflict-related theta-band power reflects
neural oscillations that predict behavior. Am. J. Physiol.-Heart Circ. Physiol. 110,
2752-2763 (2013)

Kleiner, M., Brainard, D., Pelli, D., Ingling, A., Murray, R., Broussard, C., et al.:
What’s new in psychtoolbox-3. Perception 36(14), 1 (2007)

Logix4U, Gibbons, P.: Inpout32 is an open source windows DLL and driver to give
direct access to hardware ports

Schouppe, N., Demanet, J., Boehler, C.N., Ridderinkhof, K.R., Notebaert, W.: The
role of the striatum in effort-based decision-making in the absence of reward. J.
Neurosci. 34(6), 2148-2154 (2014)

Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of single-
trial EEG dynamics including independent component analysis. J. Neurosci. Meth-
ods 134(1), 9-21 (2004)

Isik, L., Meyers, E.M., Leibo, J.Z., Poggio, T.A.: The dynamics of invariant object
recognition in the human visual system. Am. J. Physiol.-Heart Circ. Physiol. 111,
91-102 (2013)

Grootswagers, T., Wardle, S.G., Carlson, T.A.: Decoding dynamic brain patterns
from evoked responses: a tutorial on multivariate pattern analysis applied to time
series neuroimaging data. J. Cogn. Neurosci. 29(4), 677-697 (2017)



	Multivariate Pattern Analysis of Electroencephalography Data in a Demand-Selection Task
	1 Introduction
	2 Materials and Methods
	3 Results and Discussion
	4 Conclusion
	References




