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Abstract. Deep learning models for image classification face two recur-
ring problems: they are typically limited by low sample size and are
abstracted by their own complexity (the “black box problem”). We
address these problems with the largest functional MRI connectome
dataset ever compiled, classifying it across gender and Task vs rest
(no task) to ascertain its performance, and then apply the model to
a cross-sectional comparison of autism vs typically developing (TD)
controls that has proved difficult to characterise with inferential statis-
tics. Employing class-balancing to build a training set, a convolutional
neural network was classified fMRI connectivity with overall accura-
cies of 76.35% (AUROC 0.8401), 90.71% (AUROC 0.9573), and 67.65%
(AUROC 0.7162) for gender, task vs rest, and autism vs TD, respectively.
Salience maps demonstrated that the deep learning model is capable of
distinguishing complex patterns across either wide networks or localized
areas of the brain, and, by analyzing maximal activations of the hidden
layers, that the deep learning model partitions data at an early stage in
its classification.

Keywords: Autism · Big data · Functional connectivity ·
Deep learning

1 Introduction

Motivated by reports of increased head circumference in children diagnosed with
autism, the first measurements with MRI reported increased total brain, total
tissue, and total lateral ventricle volumes in autistic adults [31]. Many similar
studies followed, leading to a general consensus that brain volume was increased
in autism. Moreover, in a highly cited article [8], increases in brain volume were
suggested to occur in the first few years of life when diagnostic symptoms - social
communication challenges, restricted and repetitive behaviours - also emerge.
Since then, as further evidence has accumulated, the period of early brain over-
growth has been restricted to the first year of life [35], although large-scale
longitudinal studies have failed to reproduce these meta-analytic findings [2,13].
Localising putative changes to brain structure has proved to be an even greater
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difficultly, with discrepancies between meta-analyses even though there is a sig-
nificant overlap in the primary literature [6,10,41].

To address variations in data acquisition and processing that make between
study comparisons less powerful, publicly available large-sample datasets
are now a key aspect of imaging research. The ABIDE (http://fcon 1000.
projects.nitrc.org/indi/abide/) multi-centre initiative has made available over
2000 images in two releases, but cross-sectional analyses of structural MRI have
failed to observe significant differences [17,42]. The majority of these studies
have used the established voxel brain morphometry technique (VBM), to esti-
mate voxelwise tissue occupancies, and mass-univariate statistical testing. Other
morphological properties of the cortex may yield greater sensitivity [25].

The measurement of correlation, or ‘functional connectivity’, between time-
series of blood oxygenation level dependent (BOLD) endogenous contrast esti-
mated from brain regions whilst in resting wakefulness has been demonstrated
as a reproducible measurement on an individual basis [16]. Functional connec-
tivity estimates represented as undirected graphs (connectomes) of nodes (brain
regions) and edges (connectivity strengths) show promise in localising differences
in resting activity to specific large-scale brain networks [40], and although there
is cautionary evidence using the ABIDE dataset and others [32], it would appear
that statistically significant differences in connectivity are generally observable,
although variable in their presentation.

Computing power and access to large datasets have led to a resurgence in the
popularity of neural networks (NNs) as a tool for data classification. In parallel,
because of their wide applicability in representing complex data such as proteins
and social networks, connectors have undergone significant development in terms
of global and local characteristics. Some recent work has used NNs for processing
connectomes, including whole-graph classification, clustering into sub-graphs,
and node-wise classification [4,9,19,21,26,29].

In this article, we leverage publicly available datasets to amass and automat-
ically pre-process a total of 39,461 functional MRIs from nine different multi-
centre collections. We first classify them based on gender and task vs rest (no
task) as a test of the validity of the application NNs to imaging data due to
the known connectivity differences identified using inferential statistics [1,37].
We then classify autistic individuals from typically developing (TD) controls.
All classifications were undertaken using a convolutional neural network (CNN)
that uniquely encodes multi-layered connectivity matrices, an extension of the
deep learning architecture previously described in [23]. To incentivise the model
to classify based on phenotypic differences rather than site differences, class bal-
ancing techniques were used when building the training and test sets and com-
pared against the fully-inclusive samples. Key outputs of the CNN were salience
maps [23,38] that highlighted areas of the connectome the model preferentially
focused on when performing its classification, and activation maximization [15]
of a hidden layer inspected to visualize how the model partitioned the dataset
following classification.
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Table 1. Populations present in each dataset. Note that this represents the data that
was successfully preprocessed and does not include data that failed this stage.

Age Sex Disorders

Collection Subjs Conns Rest Task Min Max Mean Stddev F M Depr ASD Alzh

1000 FC 833 833 833 0 7.88 85 26.47 11.22 475 358 0 0 0

ABCD 1424 11789 5142 6647 0.42 11.08 10.05 0.64 5553 6236 1557 124 0

ABIDE 658 658 658 0 6 64 17.18 7.94 84 574 0 307 0

ABIDE II 646 674 674 0 5.32 55 14.48 7.63 155 464 0 293 0

ADNI 158 309 309 0 56 95 73.38 7.22 171 138 0 0 157

BioBank 11275 11275 11275 0 40 70 54.93 7.50 6172 5103 1486 0 0

ICBM 83 353 0 353 19 74 43.53 14.58 169 184 0 0 0

OPEN FMRI 1409 6548 997 5551 5.89 78 27.11 10.47 2774 3037 182 81 0

NDAR 1284 7022 5080 1942 0.25 53.42 20.51 8.05 3434 3588 0 404 0

All 17770 39461 24968 14493 0.25 95 28.97 19.88 18987 19682 3225 1209 157

In attempting to classify components of this accumulated dataset, we sought
to address the following questions: (1) How effective is a machine learning
paradigm at classifying fMRI connectomes? (2) Which areas or networks of the
brain do models focus on when undertaking classifications? (3) How does the
model partition large datasets during classification? (4) Can the model effectively
classify functional connectivities taken from multiple sources without relying
explicitly on site differences to do so? (5) What is the best current evidence for
cross-sectional differences in functional connectivity that characterise autism?

2 Methods

2.1 Datasets and Preprocessing

Datasets were acquired from OpenFMRI [33,34]; the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI); ABIDE [12]; ABIDE II [11]; the Adolescent Brain
Cognitive Development (ABCD) Study [5]; the NIMH Data Archive, including
the Research Domain Criteria Database (RDoCdb), the National Database for
Clinical Trials (NDCT), and, most predominantly, the National Database for
Autism Research (NDAR) [18]; the 1000 Functional Connectomes Project [14];
the International Consortium for Brain Mapping database (ICBM); and the UK
Biobank; we refer to each of these sets as collections. OpenFMRI, NDAR, ICBM,
and the 1000 Functional Connectomes Project are collections that comprise
different datasets submitted from unrelated research groups; ADNI, ABIDE,
ABIDE II, ABCD, and the UK Biobank are collections that were acquired as
part of a larger research initiative.

Data were preprocessed using the fMRI Signal Processing Toolbox and
the Brain Wavelet Toolbox [30] and parcellated with the 116-area Automated
Anatomical Labelling (AAL) atlas that defined the nodes of the connectome,
with the edges weighted by the correlation of the wavelet coefficients from the
decomposition of the pre-processed BOLD time-series in each of four temporal
scales: 0.1–0.2 Hz, 0.05–0.1 Hz, 0.03–0.05 Hz, and 0.01–0.03 Hz.
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Datasets with regional dropout or which otherwise failed the parcellation
stage were omitted from the analysis. Redundant datasets across collections were
discarded. Multiple instances of connectivity matrices from the same individu-
als were used, though contributions from the same individuals were not shared
between the training, validation, and test sets. The numbers of participants,
total numbers of datasets used as well as phenotypic distributions, are shown in
Table 1.

Fig. 1. The structure of the neural network, based on BrainNetCNN.

2.2 Neural Network Model and Training

The data used for training and testing the CNN were 4 × 116 × 116 (4 wavelet
scales and 116 nodes) symmetric connectivity (wavelet coefficient correlation)
matrices with values scaled on [0, 1].

To classify data, we employed a CNN with cross-shaped filters described
in [23]; to allow the network to train on connectivity matrices (Fig. 1. We re-
implemented the architecture of [23] using Keras [7], a popular machine learning
library, leveraging the advantages of other software libraries that support Keras.
Additionally, this re-implementation extended the model to include multiple
channels in the inputs, as opposed to single connectivity matrices.

The CNN was constructed with: 24 edge-to-edge filters; 24 edge-to-node fil-
ters; 2 fully-connected layers, each with 64 nodes; and a final softmax layer.
Three leaky rectified linear unit (ReLU) layers, with a slope of 0.2, and three
dropout layers, with a dropout rate of 0.5, were also used in the network. Spec-
ifications are shown in Fig. 1. The model was trained using an Adam optimizer
with batch sizes of 64, otherwise Keras defaults were used. Models were trained
for 250 epochs, and the epoch with the highest validation accuracy was selected.

2.3 Set Division

Datasets were partitioned into three sets: the training set, comprised of two-
thirds of the data and used to train the model; the validation set, comprised of
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one-sixth of the data and used to select the epoch at which training stopped;
and the test set, used to assess the trained classifier performance.

For all classifications, balancing was used such that each class comprised
approximately half of the datasets. To account for gender, age, and possible scan-
ning site differences between datasets, we report the inter-dataset classification
accuracy as well as the global accuracy. Two different class-balancing approaches
were used when building the sets: one selected two age-matched cases for gender
and task vs rest classification, and the other selected a case and corresponding
control from the same collection for the autism vs TD classification.

2.4 Test Set Evaluation

Inter-data Classification. Following the training of the models, the accuracy
and the area under the receiver operating characteristic curve (AUROC) were
calculated as measures of machine learning performance on the test set. This
was to determine if one group in the classification outperformed the other in
training leading to a biasing of the overall accuracy.

Activation Maximization. Activation maximization [15] is a technique to
determine the maximally activated hidden units in response to the test set of the
CNN layers following training. Activation maximization was applied to the 116×
24 second layer of our network (Fig. 1) as this two-dimensional convolutional
layer acts as a bottleneck, and is thus easier to interpret and visualize. This
layer is naturally stratified by 24 filters, each with 116 nodes that correspond
to parcellated brain areas. To offset the influence of spurious maximizations,
we opted to record the 10 datasets that maximally activated each hidden unit,
displaying their mode, collection, gender, age group, and task/rest; for example,
if 6 connectomes that maximally activated a unit were from Biobank and four
from Open fMRI, Biobank would be displayed as maximally activating that unit.

Salience Maps. We deployed salience maps [23,28,38] using a previous Keras
implementation [27] to display the parts of the connectivity matrix the CNN
emphasised in its classification of the test set. Class saliency extractions operate
by taking the derivative of the CNN classification function (approximated as a
first-order Taylor expansion, estimated via back-propagation) with respect to
an input matrix, with the output being the same dimensions as the input [38].
Saliency extractions are particularly advantageous when applied to connectivity
matrices, because unlike typical 2D images these matrices are spatially static
(i.e. each part of the matrix represents the same connection in the brain, across
all datasets), and thus global tendencies of the model can be visualized. Saliency
maps for each adjacency matrix were averaged and displayed to demonstrate on
which aspects of the connectome the CNN was most focused when performing
the classification.
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Table 2. Populations present in the training set for each round of classification, with
and without class balancing

With class balancing Without class balancing

Autism Rest v Task Gender Autism Rest v Task Gender

non-ASDASD Rest non-Rest Female Male non-ASDASD Rest non-Rest Female Male

1000 FC 0 0 507 0 320 271 0 0 625 0 358 272

ABCD 61 82 3088 3634 3370 3275 7301 82 3091 4292 3416 3991

ABIDE 232 229 461 0 62 375 263 230 493 0 60 434

ABIDE II 221 218 408 0 113 303 284 221 505 0 117 346

ADNI 0 0 4 0 106 88 0 0 230 0 135 95

BIOBANK 3 3 597 0 3967 3704 0 0 8458 0 4633 3825

ICBM 0 0 0 185 99 105 0 0 0 217 121 94

NDAR 122 130 2164 909 2194 2020 4307 138 3215 1230 2180 2240

OPEN FMRI 61 62 372 2792 1977 2059 0 0 883 4030 2059 2299

TOTAL 700 724 7601 7520 12208 12200 12155 671 17500 9769 13079 13596

2.5 Experiments

We performed the classification on class-balanced datasets that then classified
based on gender, task vs rest, and autism vs TD controls. For gender and task
vs rest classifications, we also balanced classes by age; that is, the distribution
of ages for each group was the same. For autism vs TD controls, we balanced
across collections to minimise site differences, and also as a proxy for age whilst
maximising the sample size.

Additionally, we trained models without the use of class balancing, only
excluding collections that entirely lacked a particular class. The number of con-
nectomes used in each experiment’s training set, with and without class balanc-
ing, are given in Table 2. Where training was successful, we report the overall
classification accuracy and AUROC for the balanced and unbalanced test sets.

3 Results

The results displayed a tendency of the model to use particular filters to sequester
data by different variables, especially if it were attempting to classify by that
variable, although the model divided data across certain filters independent of
the classification variable. While gender, task vs rest, and autism vs TD controls
each have a small proportion of their filters wholly activated by the datapoints
of a single collection (which may be easy to distinguish based on differences
between MRI scanners), the majority of filters were activated by a variety of dif-
ferent collections, indicating the effective synthesis of data from different sources.
Those comparisons that saw the highest classification accuracy tended to acti-
vate individual filters in most nodes, indicating the network’s tendency to group
data early in the architecture, prior to the fully-connected layers.
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Fig. 2. Activation maximization, salience map, and ROC-curve results on gender clas-
sification

3.1 Gender Comparison

With class balancing, classification accuracy on the test group was 76.35%
(AUROC 0.8401). Classification was most successful on the UK Biobank col-
lection (87.31% accuracy). When stratifying by age, the CNN was able to obtain
higher performance distinguishing gender in older age groups than younger age
groups, and better able to achieve classification of gender in resting than task-
based fMRI (78.96% versus 71.44%).

In activation maximization Fig. 2, filters 3/8, 9, and 10 were almost entirely
dedicated to the classification of OPEN fMRI, Biobank, and ABCD collections,
respectively. Filter 18 was activated by females, whilst most other filters are
activated by males. Filter 3 was activated by task-based fMRI from OPEN fMRI,
while filter 15 as activated by resting-state fMRI from no particular collection.
Salience maps indicated that gender classification utilized a wider spread of
areas, focusing on networks in the frontal lobe.

Without class balancing, the results on gender were a comparable 0.8406
AUROC and 76.88% accuracy.

3.2 Task vs Rest (No Task)

With balanced classes, task vs rest fMRI classification was successful with 90.71%
(AUROC 0.9573) of the test set correctly assigned. The training set, whilst bal-
anced by age, had a high imbalance between collections. The AUROC of those
collections that contributed substantial amounts both resting-state and task par-
ticipants - i.e., NDAR, ABCD, and Open fMRI - had comparable AUROCs to
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Fig. 3. Activation maximization, salience map, and ROC-curve results on resting-state-
versus-task classification

that obtained overall. Furthermore, the salience map focused on the default mode
network in the left hemisphere and its connection to the right frontal medial
orbital area. Together, this suggests that the main influence in classification was
not site differences.

In activation maximization six filters were dedicated to the resting-state class,
fourteen to task-based fMRI, and four were mixed Fig. 3. This is likely indica-
tive of the deep learning model using a simpler characterization of resting-state
fMRI than task-based, which used more of its internal memory to capture the
distinguishing patterns.

Without class balancing, the model achieved a higher 0.9792 AUROC, pre-
sumably displaying the effects of using more data on these models, as the age-
balancing technique applied effectively discarded nearly half the training set
data. However, a classification based partially on age groups is also possible.

3.3 Autism vs TD Controls

With class balancing, the overall performance on the test set was 67.65%
(AUROC 0.7162). Autism classifications were highly dependent on the collec-
tion used, though the final accuracies were above chance for all collections. Class
balancing was necessary, as data from autistic individuals comprised a relatively
low percentage; collections with data from autistic individuals - Open fMRI,
ABIDE I and II, NDAR, and ABCD - had <10%. Without class balancing the
model failed to converge, simply classifying every datapoint as a TD control.
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Fig. 4. Activation maximization, salience map, and ROC-curve results on autism clas-
sification

In activation maximization of the second layer, autism classification used
filters 1, 5, 9, and 23 for the ABIDE collection, and filters 7, 18, and 24 were
mostly used for females from the Open fMRI coillection Fig. 4. The majority of
nodes were maximally activated by data from the ABIDE I and II collections,
although a disproportionately high number were used to classify Open fMRI
autism data, which comprised < 10% of the total. A surprisingly low proportion
of data from the NDAR and ABCD collections maximally activated the nodes,
even though its classification was relatively successful and comprised a more
substantial portion of the dataset. Most other nodes were maximally activated
by the male resting-state data, which reflects the autism dataset as a whole. The
salience maps indicate autism was classified using specific, localised regions of
the brain; notably, bilateral posterior cingulum and the right caudate nucleus.

4 Discussion

This work describes how large and diverse imaging data might be analyzed by
deep learning models, encouraging the aggregation of publicly available collec-
tions. Data were partitioned based on clear and logical features of the images,
and that, even with imperfect classification accuracies, deep learning models are
capable of recognizing highly complex patterns in large datasets representing
large-scale brain networks and localized structures.

The neuroscientific objective of this study was to use the available imaging
data with deep learning to describe the pattern of functional brain changes that
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distinguishes individuals with autism from TD controls. With the absence of
any gold standard in the cross-sectional comparison, we first undertook other
classifications that have more secure, robust findings in the extant literature to
confirm the veracity of the developed methods.

When classifying gender, the model was influenced by diffuse areas connected
to the frontal lobe (Fig. 2). This is consistent with previous findings in gender
comparisons of functional imaging, which did not find differences in brain activity
between specific areas, but rather differences in local functional connectivity over
large areas of the cortex [39]. Gender classifications were most successful with
larger collections with more consistent image quality (e.g. ABCD and BioBank),
rather than smaller collections of very high-quality images.

Deep learning models are prone to sorting data by different variables rela-
tively early on in the classification process (Figs. 2, 3, and 4), reserving different
filters for different classes of data.

Task vs rest functional connectivity classifications, as expected, identified
the major components of the well-known default mode network (Fig. 3), a set of
bilateral and symmetric regions that is suppressed during exogenous stimulation.
More filters maximally activated by task fMRI than resting-state, indicating the
greater variation that characterizes task fMRI, which is related to cognitive
performance [20]. The high classification accuracies and detected patterns gives
credibility to the use CNN with neuroimages.

Bilateral areas with some correspondence to the default mode network, par-
ticularly parietal, temporal and frontal medial regions, were identified as salient
to the comparison of the autism vs TD controls: Figs. 3 and 4. Notably, autistic
individuals were additionally classified by connections to the cerebellum and deep
structures (caudate and hippocampus). Prior cross-sectional studies of functional
connectivity in autistic individuals have primarily thresholded connectivity esti-
mates (i.e. correlations), whereas here all existing connections were included,
both positive and negative. A comparison of connectors using a highly matched
sub-set of the ABIDE II collection [24] found global differences, and reduced
network segregation within the default mode network and primary auditory and
somatosensory cortical regions, and between these regions and other large net-
works.

Model accuracy was lower compared to the highest rates reported in litera-
ture [3,22,28], although this result should be viewed with several caveats. The
dataset used in this analysis was larger and more complex than any other pre-
viously analyzed, consisting of data from many collections. Direct comparisons
of machine learning classification methods is difficult as there are no univer-
sally accepted methods to divide collections into training and test sets (unlike
standardized competitions in other fields, such as the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) [36]). Furthermore, our exclusion crite-
ria differed, and, because we opted to use multiple scanning sessions from single
subjects during training, we also used data in ABIDE not employed in previous
studies. Class balancing may also have significantly affected the classification
accuracy. Nevertheless, this was necessary to avoid spuriously large accuracies



Deep Learning on Brain Images in Autism 399

due to the highly skewed ratio of autism:TD, where high rates of classification
the larger groups lead to biases to the overall rate. Lastly, preprocessing methods
and exclusion criteria are not typically shared across studies, and thus differences
due to the input data cannot be discounted.

More generally, our deep learning model employed multichannel input.
Although this has long been the standard in 2D image classification (for instance,
RGB images), it has not been utilized before in the classification of connec-
tomes. Theoretically, this provides an advantage, since it encodes more informa-
tion about the underlying timeseries. In practice, multichannel inputs generally
increased the accuracy of our model by 2–3% over the single-channel models
tested.

We used salience maps [38] to identify connections and areas that the model
incorporated in its classification; this method has previously been used in deep
learning on functional connectivity [23,28] as is an effective method of dissecting
neural networks. However, a caveat to this is that salience maps are imperfect
indicators of areas of importance in the data that may not give a complete
depiction of the distinguishing features.

One of the key methods we used to interrogate the results from our deep learn-
ing model was activation maximization. Previously, activation maximization has
been used for intuiting the internal configuration of neural networks rather than
for interpretation purposes [15]. In this study, while some filters were solely acti-
vated by data from single collections, the majority by mixed data from different
collections suggesting an ability to account for site differences during classifica-
tion. Deployment of activation maximisation here led to specific observations:
variation of task-based fMRI is far greater than during rest (six filters maxi-
mally activated by rsfMRI and 14 by tasks); dataset sequestering happens even
without successful classification; the number of filters activated maximally by a
particular dataset is not necessarily proportional to the classification accuracy
of that dataset.

5 Conclusion

With careful class-balancing, deep learning models are capable of good quality
classifications across mixed collections detecting differences in brain networks,
and functions of localized structures, or functional connections over large areas.
Salience maps highlighted key spatial elements of the classification and activation
maximisation gave insights into the types of features on which the CNN based
its classification. This deep learning model is an example of the apparatus to
leverage publicly accessible large volumes of data for discovery science.
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