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Abstract. Developmental dyslexia (DD) is a specific difficulty in the
acquisition of reading skills not related to mental age or inadequate
schooling. Its prevalence is estimated between 5% and 12% of the pop-
ulation. Currently, biological causes and processes of DD are not well
known and it is usually diagnosed by means of specifically designed tests
to measure different behavioural variables involved in the reading pro-
cess. Thus, the diagnosis results depend on the analysis of the test results
which is a time-consuming task and prone to error. In this paper we use
EEG signals to search for brain activation patterns related to DD that
could result useful for differential diagnosis by an objective test. Specif-
ically, we extract spectral features from each electrode. Moreover, the
exploration of the activation levels at different brain areas constitutes an
step towards the best knowledge of the brain proccesses involved in DD.
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1 Introduction

Developmental dyslexia (DD) is a specific difficulty in the acquisition of read-
ing skills not related to mental age or inadequate schooling. Its prevalence is
estimated between 5% and 12% of the population [7], depending on the reading
performance benchmark. It has an important social impact and may determine
school failure. In addition, it has harmful effects in the self-esteem of affected
children. Early diagnosis and prognosis to start an adequate, early and individu-
alized, intervention is decisive in the in the personal and intellectual development
of these children. Currently, biological causes and processes of DD are not well
known. It is usually diagnosed by means of specifically designed tests to mea-
sure different behavioural variables involved in the reading process. Examples of
these variables are reading efficiency, or the ability to split words in their con-
stituent syllables. These tests are individually applied by specialists who need
further time to analyze the results and usually, diagnosis is established by means
of cut-off points computed over a non very large population. On the other hand,
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the results of the tests depend on the motivation and the mood of the child
when performing the benchmark tasks. As a result, classical diagnosis meth-
ods are time-consuming and prone to error, and it is usual that children with
specific difficulties in the acquisition of reading skills are neither correctly diag-
nosed nor treated, what affects their cognitive and emotional development. In
addition, most benchmarks are designed for readers, limiting the minimum age
for the early diagnosis. Hence, research work oriented towards obtaining results
which allow an early diagnosis and an individualized intervention would have a
theoretical and a practical impact [10]. There is an active research activity in
search of objective, quantifiable measures with diagnostic capability, to improve
the diagnosis accuracy and eventually, to reveal unknown aspects of the DD
related to its neural basis. Additionally, the research in the biological causes of
dyslexia can offer valuable information for a better understanding of the dif-
ferences between dyslexic and non-dyslexic subjects, with special application in
the design of individualized intervention tasks. These quantifiable measures are
known as biomarkers, and different studies carried out in the last years used
different techniques to extract them. Recent studies searching for DD-related
patterns in EEG signals [1,8] have shown differences in readers due to cognitive
impairment of the phonological representation of word forms. Speech encoding
which is related to speech prosody and sensorimotor synchronization problems
can be revealed by finding patterns in EEG channels at different sub-bands as it
provides enough time resolution. In this work, we used EEG signals recorded by
a 32 active electrodes BrainVision equipment during 5 min sessions, while pre-
senting an auditive stimulus to the subject. These signals are then pre-processed
and analyzed in the frequency domain. Spectral features extracted from the
EEG signals are then used to classify the subjects between Controls (CN) and
Dyslexic (DD).

The rest of the paper is structured as follows. Section 2 shows details on
the database used and the applied preprocessing. Then, this section describes
the auditive stimulus, EEG preprocessing and post-processing (feature extrac-
tion) as well as the classification method. Section 4 presents and discusses the
classification results, and finally, Sect. 5 draws the main conclusions.

2 Materials and Methods

2.1 Database

The present experiment was carried out with the understanding and written
consent of each child’s legal guardian and in the presence thereof. Forty-eight
participants took part in the present study, including 32 skilled readers (17
males) and 16 dyslexic readers (7 males) matched in age (t(1) = −1.4, p > 0.05,
age range: 88–100 months). The mean age of the control group was 94, 1 ± 3.3
months, and 95, 6 ± 2.9 months for the dyslexic group. All participants were
right-handed Spanish native speakers with no hearing impairments and normal
or corrected-to-normal vision. Dyslexic children in this study had all received a
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formal diagnosis of dyslexia in the school. None of the skilled readers reported
reading or spelling difficulties or had received a previous formal diagnosis of
dyslexia.

3 Methods

DD is a reading disorder often characterized by reduced awareness of speech units
[6]. Recent models of neuronal speech coding suggest that dyslexia originates
from the atypical dominant neuronal entrainment in the right hemisphere to
the slow-rhythmic prosodic (delta band, 0.5–1 Hz), syllabic (theta band, 4–8
Hz) or the phoneme (gamma band, 12–40 Hz), speech modulations, which are
defined by the time of increase in amplitude (i.e., the envelope) generated by the
speech rhythm [2,4]. Thus, we compared the cortical entrainment to AM white-
noise at a fixed rate in delta (2 Hz), theta (8 Hz) and gamma (20 Hz) bands.
In a sample composed of 7 years old children, listened to stimuli obtained by
rhythmically modulating the amplitude (AM) of white-noise sound either in
the delta, theta and gamma band. Our hypothesis was that the quality of the
oscillatory neural processes measured through AM modulations contribute to
the optimal construction of predictions of incoming auditory information (such
as linguistic sequences or their simplification through AM modulations), these
neurophysiological responses should explain the manifestations of the temporal
processing deficits described in dyslexia. Then, we recorded EEG signals using
a 32 active electrodes (BrainVision actiCAP, https://www.brainproducts.com)
while presenting the auditory stimulus. Figure 1 shows the construction of a 8 Hz
auditive stimulus, which is based on the AM modulation of bandwidth-limited
white noise.

Fig. 1. Stimulus example (a) bandwidth-limited noise, (b) 8 Hz modulating signal, (c)
8 Hz AM Modulated noise

https://www.brainproducts.com
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EEG signals were pre-processed in order to remove artefacts related to eye
blinking and impedance variations due to movements. Since eye blinking signal
is recorded along with EEG signals, these artefact are removed by blind source
separation using Independent Component Analysis (ICA) [5]. Other artefacts
required the removal of EEG segments. Afterwards, the remaining, cleaned sig-
nals were segmented into 5 s excerpts. As a result, a different number of segments
are available for different subjects.

Figure 2 shows the average activation levels by frequency bands for the 2 Hz
stimulus.

(a)

(b)

Fig. 2. Average activation patterns computed for 2 Hz stimulus by different bands for
(a) Controls and (b) Dyslexic subjects. Multitaper [11] method is used to estimate the
PSD.

3.1 Feature Extraction

In this section, we show features extracted from each segment. Since we expect
differences in the power spectrum at different frequency bands, we extracted
different spectral descriptors. Thus, the first step consist on estimating the Power
Spectral Density (PSD). This is usually computed by the Fourier transform.
However, the reliability of the PSD computed by this method is reduced by (1)
high variance of the estimate, which makes the spectrum noisy and (2) the bias
created by the leakage of energy across frequencies [11]. The solution proposed in
[11] consist on using windows (also called tapers) in the time domain, reducing
the leakage produced by multiple side lobes of a window in the frequency domain.
This is also achieved by using tapers with low spectral power in the side lobes.
Thus, the PSD can be computed as:

PSD(ω) =

∣
∣
∣
∣
∣
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x(t)a(t)e−jωt

∣
∣
∣
∣
∣

2

(1)

where x(t) is the N -samples time series corresponding to the signal and a(t) is
the window (taper) in the time domain. The total energy of these tappers is
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normalized to keep the total power invariant. This approach can be extended to
reduce the variance of the estimate at each frequency by using multiple tapers.
Specifically, Thomson proposed the use of K orthogonal tapers, providing K
orthogonal samples of the data x(t). As a result, we have K spectral estimations
PSDk(ω) that can be averaged to reduce the variance. Furthermore, the method
devised by Thomson includes an optimization step to find the tapers that mini-
mize the leakage by maximizing the energy within a specific bandwidth.

Once PSD is computed, two features are extracted to characterize the spec-
trum of each band for each electrode. The first feature is the spectral centroid,
(SC) that indicates where the location of the center of mass of the spectrum
(i.e. the frequency where the PSD is concentrated). This can be calculated as
the weighted average of the amplitude spectrum:

SC =
∑N

k=1 k · w · PSD(k)
∑N

k=1 PSD(K)
(2)

where PSD(k) and w are the PSD estimated for the k-bin and the width of each
spectral bin, respectively.

Moreover, the mean PSD for each band is also computed and used as a
feature.

This way, a feature vector can be composed for the electrode l as

fl = (SCΔ
l , PSDΔ

l , SCθ
l , PSDθ

l , SCα
l , PSDα

l , SCβ
l , PSDβ

l , SCγ
l , PSDγ

l ) (3)

for the Delta, Theta, Alpha, Beta and Gamma bands.

3.2 Feature Selection

Feature selection is addressed by keeping those electrodes presenting a small
spectral coherence when comparing Controls and DD. Spectral coherence is a
statistic with many applications in neuroscience [3] that measures the relation
between the signals acquired from two electrodes x(t) and y(t):

Cxy =
|Cxy|2
CxxCyy

(4)

where Cxx and Cyy are the power spectral densities of signals x and y, respec-
tively, and Cxy is the cross-spectral density, which can be calculated as the power
spectrum of the cross-correlation function between x and y.

As shown in this figure, different electrodes present different coherence values
depending on the frequency band. This indicates that signals acquired by dif-
ferent electrodes contain information regarding different bands. Thus, electrode
selection can be addressed by keeping the electrodes that present the lower coher-
ence when comparing CN to DD subjects. Hence, Fig. 3 shows the coherence only
for the bands presenting the lowest values.
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(a)

(b)

(c)

Fig. 3. Minimum coherence bands for each electrode for (a) 2 Hz stimulus, (b) 8 Hz
stimulus and (c) 20 Hz stimulus

3.3 Classification

Class imbalance is an usual problem in biomedical engineering, where databases
normally contains more controls than experimental subjects. On the other hand,
it is not straightforward to balance the database by obtaining more experimental
subjects, due to the distribution of controls and experimental subjects in the
general population. As a result, models generated from unbalanced databases are
biased, showing special affinity to the most probable class. There are different
methods to mitigate the biasing effect such as using cost sensitive objective
functions by assigning different weights to miss-classification of samples from
different classes. An alternative method to overcome the biasing effect while
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taking advantage of it consists on modelling the most probable class and then,
identify whether a new sample belongs to that distribution or not. This is also
known as anomaly detection.

In this work, we used the One-Class SVM [9], a variant of the Support Vec-
tor Classifier (SVC) [12] devised to identify outliers with respect to the training
dataset. This method separates all datapoints of the training dataset from the
origin in the feature space, maximizing the distance from the computed hyper-
plane to the origin. This is addressed by solving the quadratic programming,
minimization problem:

min
ω,ξi,b

{

1
2
‖ω‖ +

a

νN

N∑

i=1

ξi − b

}

(5)

subject to:

(ω · φ(xi)) ≥ b − ξi i ∈ {1, ..., N}
ξi > 0, ν ∈ (0, 1] i ∈ {1, ..., N}

where ξi are non-zero variables to control the margin, and ν controls the number
of support vectors and the fraction of training samples considered as outliers.
Additionally, φ is the kernel function.

Hence, a decision function can be constructed to produce a different value
for samples belonging to the same distribution of the training samples that for
out-of-class samples, using the hyperplane defined by ω and b parameters

f(z) = sign{(ω · φ(z)) − b} (6)

In our experiments, a Radial Basis Function was used for the kernel.

4 Results and Discussion

In this section, we present the experimental results obtained when classifying
the subjects by means of the features extracted from the EEG signals. These
classification experiments used EEG features from signals acquired during the
2 Hz, 8 Hz and 20 Hz stimuli as explained in Sect. 3. Moreover, experiments using
all the features and the selection provided by the method described in Sect. 3.2
are shown here. The classification method exposed here has been assessed by
stratified k-fold cross-validation (k = 5) to ensure the database independence
and to avoid double dipping in the training-testing process.

Thus, Figs. 4a, b and c, shows the ROC curves obtained when classifying the
subjects using th 2 Hz, 8 Hz and 20 Hz stimuli, respectively.

The feature selection method based on using only the band that shows the
lowest coherence between CN and DD subjects, improves the performance of
the classifier with respect to the use of all the features for 2 Hz and 8 Hz. The
improvement of the performance comes from the reduction of the dimension-
ality and the use of more discriminative features. Nevertheless, the use of all
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(a) (b)

(c)

Fig. 4. ROC curves obtained with the (a) 2 Hz, (b) 8 Hz and (c) 20 Hz stimuli. All
features vs. per electrode band selection method is shown.

the features (i.e. all bands for all the electrodes) provides higher AUC values
for the 20 Hz stimulus. Moreover, Table 1 shows the classification performance
in terms of accuracy, sensitivity and specificity. As shown in this table, the fea-
ture selection method improves the sensitivity and specificity for 2 Hz and 8 Hz,
while decreases the performance in the 20 Hz case. This suggest that discrimina-
tive information regarding electrode inter-dependence is present when the 20 Hz
stimulus is used.

Table 1. Classification results

Stimulus Accuracy Sensitivity Specificity AUC

2 Hz (All features) 0.62 0.66 0.60 0.72

2 Hz (Band Selection) 0.70 0.66 0.69 0.72

8 Hz (All Features) 0.63 0.80 0.55 0.80

8 Hz (Band Selection) 0.66 0.86 0.56 0.89

20 Hz (All Features) 0.78 0.66 0.81 0.83

20 Hz (Band Selection) 0.71 0.53 0.78 0.69
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5 Conclusions and Future Work

In this paper, EEG signals have been recorded during the presentation of differ-
ent stimulus related to the frequency of neural oscillations generated at differ-
ent brain areas during language processing. Then, a feature extraction process
directed to characterize the signals from each electrode in terms of the predomi-
nant brainwave. Moreover, these features are selected by computing the spectral
coherence for all electrodes between controls and experimental subjects. The
feature extraction and selection method used in this work improves the classifi-
cation performance for 2 Hz and 8 Hz stimulus, which suggest that discriminative
information regarding DD diagnosis is in the distribution of power along differ-
ent bands. In fact, the proposed method always provides AUC values up to
0.89, showing its diagnostic utility. In addition, the 20 Hz seems to produce
effects beyond the spectral distribution and thus, a different feature selection
method has to be used. In a future work, we will explore the use of different,
time-frequency features and different descriptors to characterize the power dis-
tribution along different bands, as well as to compute electrode synchronicity
among different brain areas.
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