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Abstract. We present a comparison of two known methodologies for
group analysis in EEG signals, which are the analysis by Group ICA
on synchronization and desynchronization ERS/ERD, and brain con-
nectivity analysis by measuring wPLI, both analyzes based on the brain
synchronization information. For comparison, we have taken into account
different frequency bands related to sensorimotor stimuli and time seg-
mentation in order to overcome the nonstationarity of the EEG signal. In
addition, we have used a threshold algorithm to reduce the dimension of
the connectivity matrix, conserving the connections that are most impor-
tant for both methodologies. The results obtained from the BCI competi-
tion IV-2a database show that the variable can be measured between two
different measurement spaces, using the Euclidean distance, conserving
spatial zones with more meaningful physiological interpretation.

Keywords: Event-related Synchronization/Desynchronization ·
Functional connectivity · Group analysis · wPLI

1 Introduction

The brain is a vastly complex network of interconnected elements, having differ-
ent brain regions interacting in the resting state as well as in response to a given
stimulus or task by synchronization of oscillatory activities. In this regard, brain
response could be useful in the development of Media and Information literacy
applications. Functional connectivity is defined as the temporal correlation of
neural activity between brain regions, measured by functional MRI, magneto or
electroencephalography (MEG/EEG) signals that are very convenient because
of their low cost and high temporal resolution.

Among the widely used applications, computer-based technologies are
employed to communicate the brain with external devices. In particular, Motor
Imagery (MI) is a mental process by which an individual rehearses or simulates
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some actions without involving muscle activities [2]. This cognitive neuroscience
paradigm operates the signals measured from the sensorimotor cortex regions,
which are the most directly linked to the motor output pathway in the brain,
assuming that the imagination of movement execution attenuates the brain sen-
sorimotor rhythms (SMRs).

Here, with the aim of enhancing the interpretation of MI tasks, we develop a
group-level comparison between two different methods to analyze the synchro-
nization, ss a result, the use of thresholding allows performing a reduced set of
relevant brain connections, but with enough confidence to construct a meaningful
explanation in time and frequency of the brain activity [3,4].

Although further adaptations are to be performed to optimally address the
sources of inter-subject and inter-trial variance commonly found in EEG record-
ings, the presented group-level approach can be considered valid and promising
to infer the latent structure of multi-subject datasets [5].

2 Materials

2.1 EEG Database and Preprocessing

We carry out experimental validation using the Dataset 2a from the BCI Com-
petition IV, publicly available at1, holding EEG signals recorded from nine
subjects and measured with a 22-channels montage. All signals are sampled
at Fs = 250Hz and bandpass-filtered between 0.5 and 100Hz. The dataset holds
a trial set of four MI tasks, i.e., left hand, right hand, both feet, and tongue.
The recordings were carried out in six runs separated by short breaks. Each run
contained N = 48 trials lasting of 7 s and distributed. A short beep indicated
the trial beginning followed by a fixation cross that appeared on the black screen
within the first 2 s. Further, as the cue, an arrow (pointing to the left, right, up
or down) appeared during 1.25 s, indicating the each MI task to imagine: left
hand, right hand, both feet or tongue movement, respectively. In the following
time interval, ranging from 3.25 to 6 s, each subject performed the demanded MI
task while the cross re-appeared. In our analysis, a bi-class task (left and right
hand) set is used, from which artifacts had been removed previously.

As a result, we have a set of N raw EEG data trials X = {Xn : r =
1, . . . , N ∈ N} together with the respective class label set L = {ln}, with lr ∈
{l, l′}, where Xn ∈ R

C×T is n-th EEG trial, with C ∈ N channels and T ∈ N

time samples. Over this raw data set, each raw EEG channel is band-pass filtered
using 17 five-order overlapped bandpass Butterworth filters within the range 4Hz
to 40Hz. Each filter bandwidth is adjusted to 4Hz with overlapping rate at 2Hz
as suggested in [6].

2.2 Subject-Level Feature Extraction

At this stage, we compare the following two feature extraction methods:
1 www.bbci.de/competition/iv/.

www.bbci.de/competition/iv/
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Event-Related Desynchronization/Synchronization. This change of the ongoing
EEG is a somatotopical organized control mechanism that can be generated
intentionally by mental imagery and is frequency band specific. Using each
band-pass filtered event-related trial Xc

r , the ERD/S estimation is performed by
squaring of samples and averaging over EEG trials, computing the variational
percentage (decrease or increase) in EEG signal power regarding a reference
period, at specific frequency band f and sample t [7]:

ζft = (ξft − ξ̄f )/ξ̄f [%], t ∈ T (1)

where ξft = E
{|x2

t |rf ∈ xrf :∀r
}

is the power scatter averaged across the trial
set and ξ̄f = E {ξft:∀t ∈ τR} is the trial power scatter averaged on the reference
interval τR.

Functional Connectivity Estimation. Weighted Phase Locking Index (wPLI) is
commonly used for estimation of functional connectivity between two EEG chan-
nels, due to its nonparametric nature and easy implementation [1]. wPLI quanti-
fies the asymmetry of phase difference distribution between two specific channels
c, c′ (with ∀c, c′ ∈ C, c�=c′), being defined within the recording time span T ∈ R

+.
Initially, the instantaneous phase difference ΔΦft(; c, c′) ∈ R[0,π] is the angle
computed through the continuous wavelet transform coefficients Wft(; ) ∈ R

+,

ΔΦft(n; c, c′) =
Wft(n; c)Wft(n; c′)

|Wft(n; c)||Wft(n; c′)| , t ∈ T , (2)

Thus, the pair-wise connectivity estimation ys
ft(c, c

′) for subject is com-
puted as,

ys
f,τ(c, c

′), =

∣
∣E

{|(ΔΦfτ(n; c, c′)
)| sgn

(
ΔΦfτ(n; c, c′)

)
: ∀n

} ∣
∣

E
{|(ΔΦfτ(n; c, c′)

)| : ∀n
} (3)

where notations sgn and E {· : ∀n} stand for sign function and averaging oper-
ator over n, respectively. The metric is normalized to highlight the connectivity
patterns generated by each induced stimulus, being each ys

fτ(c, c
′) mean-value

averaged over the trial set {n ∈ N} and on a given baseline interval [8]. Accord-
ingly, ŷfτ(c, c′) = Es

{
ys
fτ(c, c

′)
}

contains the pair-wise connectivity measures of
each subject group.

2.3 Group Independent Components Analysis

With the aim of inferring about the source configuration at the group-level, all
components constantly expressed across subjects can be estimated using a single
ICA decomposition, which is performed on aggregate data sets built from EEG
recordings of multiple subjects. Specifically, provided the computed ERD/S of
the k-th subject Zk ∈ R

c×T , the aggregate data set Y ∈ R
c×(T∗Ns) is given

by the temporal concatenation Y = [y1, ...,yk, ...,yNs
], with k ∈ Ns, being Ns

the total number of subjects included in the analysis. Furthermore, we apply
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centering and whitening via principal component analysis (PCA) to Y , yielding
the principal components R�Y , where R is the orthonormal transformation
matrix obtained from PCA. Applying the basic ICA model to the preprocessed
data leads to R�Y = AS where S = [s1, . . . , sk, . . . , sNs

] is the matrix holding
the temporally concatenated component time-courses of Ns subjects [3].
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Fig. 1. Differences between classes from the estimated group patterns based on both
methods Group-ICA (a) and connectivity (b).

3 Experimental Set-Up and Results

To measure the group differences in time-frequency relevant pattern, we perform
a piecewise time segmentation. In each case of contrasting feature extraction,
EEG and ERS/D, we split the whole time recording span (ranging from 2.5–
4.5 s) into 10 segments, each one lasting 0.2 s. The segment length is adjusted,
considering that a short segment leads to bias and variance at estimation level,
while a long segment imposes a high computational load and restrain implemen-
tation on real-time system operation [9]. The subject analysis is carried out in
the supervised mode, extracting separately the feature set for each class.

In the case of ERD/S, to estimate the variational percentage (decrease or
increase) in EEG signal power regarding a reference period TR, we fix TR = [0.5−
1.5] s as in [10]. Accordingly, we build a matrix by class for each frequency band
and time segment Ẑfτ ∈ R

22×450 that holds the concatenated ERD/S response
for all subjects. Afterward, ICA is applied by mean of the fastICA algorithm
using a nonlinear tangent hyperbolic function to obtain Ŷ g−ica

fτ ∈ R
22×22 with

columns holding the channel weights of the assessed independent components
by class. In the case of functional connectivity extraction, we obtain a matrix
Ŷ wpli
f,τ ∈ R

22×22 by mean of wPLI measure to encode the estimated pairwise
changes in phase synchronization of the subject group.

As a result, the feature extraction stage provides a total of 170 matrices
Ŷf,τ by each class and estimated for all frequencies and time partitions. For the
purpose of comparison, the contribution of across the channel set, at values τ and
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Fig. 2. Normalized frequency relevance value obtained based on both Group-ICA (left)
and connectivity (right). – right class, – left class.

f , is assessed by ρf,τ = Ec

{
Ŷf,τ

}
, being ρf,τ ∈ R

22. However, the comparison
is performed by averaging further the channel contribution across time, that is,
ηf = Eτ

{‖ρf,τ‖2
}
, and yielding a vector contribution η ∈ R

17. ‖·‖2 stands for
�2−norm.

Further, using the conventional Euclidean distance, we assess the difference of
contribution vectors between classes as seen in Fig. 1 that shows the normalized
distances values. Besides, the marginal estimates of contribution by frequency
are presented in Fig. 2, i.e., the normalized relevance values in terms of the
frequencies that show more differences between time by class.

In this work, we consider as a relevant frequency the value overcoming 0.9.
Accordingly, Figs. 3 and 4 exhibits the normalized time-frequency relevance val-
ues obtained for all channels by class for the selected relevant frequencies. Bright
color designates high relevance values.

4 Discussion and Concluding Remarks

The estimation of cerebral synchronization and desynchronization allows high-
lighting the information contained in the domains of time and frequency. Accord-
ing to Fig. 1(a), we observe spurious differences for all segments and frequency
bands with values lower than 0.7. However, the frequency bands from [24–28]Hz
to [32–36]Hz shows high differences values in different time segments. Some lower
differences are shown for the frequency bands [6–10]Hz and [14–18]Hz at dif-
ferent time segments. In the case of Fig. 1(b), we see a marked difference in the
frequency [28–32]Hz the beginning of MI interval. However, we observe spurious
differences for the end of MI period at frequencies belonging to μ band. However,
we observe spurious differences for the end of MI period at frequencies belonging
to μ band.

The contributions by frequency in Sect. 3, Group-ICA presents as the higher
frequencies contributions in μ and β bands being the highest contributor the
frequency band [8–12]Hz and [28–32]Hz, frequencies that are normally related



Group Differences in Time-Frequency Relevant Patterns 143

2.5 − 2.7 − 2.9 − 3.1 − 3.3 − 3.5 − 3.7 − 3.9 − 4.1 − 4.3 − 4.5

32−36

30−34

28−32

10−14

8−12

6−10

32−36

30−34

28−32

10−14

8−12

6−10

Fig. 3. Normalized time-frequency relevance values obtained by channel. Right class
(first box) and left class (second box).

to MI tasks [10,11]. On the other hand, Sect. 3 shows the highest frequencies
contributors in [16–20]Hz and [28–32]Hz bands.

Figures 3 and 4 show the change of channels contribution through the seg-
ment windows. For both classes, in Fig. 3 the highest channel contributions are at
the MI period beginning. Nevertheless, the analysis finds highest channel contri-
bution values in [24–36]Hz frequency band at the end of the trial. Regarding to
Fig. 4, the highest contribution values appears at the frequency band [28–32]Hz.

In order to guarantee the interpretability in imagery motor tasks, the group
analysis was carried out on brain synchronization information. Due to each sub-
ject has its own brain dynamics is necessary to include a group model that allows
estimating similar patterns for all subjects. In this work, we used Group ICA
and a connectivity analysis to perform this task. Group ICA is widely known
and used to analyze tasks of multiple subjects through EEG. For both methods
differents partens were found in the bands which are part of the rhythms μ and
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Fig. 4. Normalized time-frequency relevance values computed based on connectivity
for all channels. Right class (first box) and left class (second box).

β frequencies which are known as sensorimotor rhythms. The obtained results
on a concrete attention task show that the developed relevant connectivity anal-
ysis on group-level synchronization, improve the interpretation, although the
proposed comparison for connectivity analysis depends on the time interval. As
future work, we intend to validate EEG data with more complicated dynamics.
To overcome more effectively nonstationarities of neural responses and struc-
tural homogeneity of latent processes across the sample, we plan to introduce
an elaborate group-level strategy, including more complex approaches for graph
analysis as well as enhanced relevance metrics.
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