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Abstract. Visual neuroprostheses that provide electrical stimulation
along several sites of the human visual system constitute a potential
tool for vision restoring for the blind. In the context of a NIH approved
human clinical trials project (CORTIVIS), we now face the challenge of
developing not only computationally powerful, but also flexible tools that
allow us to generate useful knowledge in an efficient way. In this work, we
address the development and implementation of computational models of
different types of visual neurons and design a tool -Neurolight alpha- that
allows interfacing these models with a visual neural prosthesis in order
to create more naturalistic electrical stimulation patterns. We implement
the complete pipeline, from obtaining a video stream to developing and
deploying predictive models of retinal ganglion cell’s encoding of visual
inputs into the control of a cortical microstimulation device which will
send electrical train pulses through an Utah Array to the neural tissue.

Keywords: Visual neuroprostheses · Neural encoding ·
Computational models · Artificial vision

1 Introduction

To restore the ability of the human neural system to function properly is one of
the main purposes of neural engineering. In the context of this broad and mul-
tidisciplinary research field, where disciplines ranging from clinical neurology
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Fig. 1. A general idea of a cortical visual neuroprosthesis is composed of a camera
obtaining a video stream, a encoding module and a stimulator which sends electrical
pulses throughout an intracortical microelectrode interface.

to computational neuroscience, scientific advancement and engineering devel-
opment has taken us until today’s achievements: EEG-Based BCI [1], motor
control BCIs with UTAH arrays [2,3], cochlear implants [5], retinal prosthesis
[6], and Deep Brain Stimulation systems [7]. Regarding visual function recover-
ing, several approaches are being extensively explored, such as optogenetics [8],
biocompatible material design for neural interfaces [4] and neuromorphic com-
puting for neuroprosthesis [9]. Specifically, several advances have been done in
retinal prostheses, where several devices have been already clinically tested or
are currently in use [10,11]. These devices are limited to a very specific causes of
blindness, where the optic nerve function is intact. Cortical prosthesis appears
as a potential solution to those blindness conditions for people with a functional
visual cortex, regardless of their retinal or optic nerve condition.Several research
groups around the globe are pursuing this goal [13–16,18]. In this context, the
main goal of this work is to create and integrate the actual knowledge on neural
function, psychophysics, signal processing and neural encoding modeling, and
build a working pipeline which leads us towards further experiments and tech-
niques that advance in the development of cortical visual prostheses. A general
idea of the complete pipeline of a functional cortical prosthesis is composed of a
video camera which receives the visual information, sends its to a signal process-
ing device which sends orders to the neurostimulator that sends electrical pulse
trains to the neural tissue accordingly to that commands (see Fig. 1) [13,14]. In
the scenario of a NIH approved human clinical trials project named Develop-
ment of a Cortical Visual Neuroprosthesis for the Blind [17], we now face the
challenge of creating not only powerful but also flexible tools that overcome the
limitations and needs of the current neurostimulation systems, allowing for new
experimental trials.

Inspired by the success of cochlear implants, who greatly benefited from the
developing and tuning of signal processing models according to psychophysics
[19], we designed an end-to-end image processing and stimulation control
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Fig. 2. Two main train modulation strategies are contemplated: Intensity modulation
(A) and Frequency modulation (B).

workflow aimed to constitute a useful tool for neuroprosthesis research. In order
to allow the designed system to incorporate bioinspired control capabilities of the
electrical stimulation parameters (Amplitude of the phases, Pulse Width, Pulse
Frequency, Inter Pulse, Inter Phase, Inter-Train, see Fig. 2), we created a neural
encoding module which makes use of Deep Learning libraries Keras and Tensor-
flow [32,33], allowing us to create and make use of custom-defined or data-driven
models of neural encoding of light patterns, simulating this way a retina-like visual
processing, which output will be used for the stimulation control.

The possibility of reproducing neuronal activity present on the retina during
natural vision has been studied with regards of electrical stimulation in epiretinal
prosthesis [21], with promising results. In addition, techniques for computing
population coding distances on retina have been proposed [22], along with visual
perception simulation frameworks [20,23]. These results are encouraging, and the
new methodologies could apply and be tested on the visual cortex.

In addition, diverse models of animal and human neural visual encoding
systems of different nature have been created until today, targeting different
processing stages, some of them focusing on the retina [24–27], which is the
primary stage of visual processing.

2 System Overview

In this work, an end-to-end stimulation pipeline has been designed, integrating
both hardware and software components into a flexible tool for visual neuropros-
thesis research. This system, schematized in Fig. 3, is composed of several stages.
First, a commercial USB camera device mounted on a pair of glasses captures
the video signal that is received by a computer with a Linux operating system.
We implemented the system with both a custom local computer and a Rasp-
berry Pi model 3B+. The input images are then processed and sent to a model’s
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Fig. 3. Illustration of the main system’s pipeline.

prediction module, an artificial retina, in our case. Finally, the model’s output
is interpreted as the main command for the neural stimulation (Cerestim96,
Blackrock Microsystems, Inc., Salt Lake City, UT), which provides customized
electrical pulse trains to the visual cortex through intracortical microelectrodes
such as the Utah Electrode Array [31].

In order to handle the video stream, open source python libraries for sci-
entific computing have been used: openCV scipy, numpy [28–30], along with
state-of-the-art deep learning libraries: Tensorflow and Keras [32,33] as the tools
to implement the neural coding previous to the stimulation control signals. In
addition, we explored the possibility of deploying the visual coding models into
a specialized deep learning acceleration hardware device [34], which relies on a
Vision Processing Unit (VPU).

In the next section, we detail the function and features of the main blocks of
the proposed system.

3 Software Interface Design

3.1 Modules Organization

In order to provide a modular, easy to use and extendable software corpus, we
organized our python library, named Neurolight alpha, in the following structure:

Main experiment. Contains the main thread on which the needed submodules
are imported and the camera and stimulation devices configurations are set,
before launching the “experiment” code.

Experiments. Each experiment is defined as a sequence of common steps:
retrieving a new frame from the camera, preprocessing the incoming image
(image normalization and resizing), optionally updating the video buffer (in
case of a spatial-only retina model), performing the model’s firing rate predic-
tions, adapting the prediction to create stimulation commands, and sending
those commands to the stimulator. The main workflow in the experiment
module is detailed in Algorithm1 (an example of an experimental workflow
is described in Sect. 3.3).
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Algorithm 1. Experiments module
Create train configurations
Select electrodes to use
Create encoding model
while processFlag do

Obtain and process frame
Update video buffer
Model processing
Stimulation command
if exitCondition == True then

processF lag ← True
end if

end while

VisionModels. This module allows to define Keras (TensorFlow) retinal pro-
cessing models. It also contains model’s prediction normalization functions,
which are necessary to interface the neurostimulator correctly. In addition,
it wraps the Neural Compute Stick API functions necessary to compile the
designed Tensorflow models in order to deploy them into the Vision Process-
ing Unit.

StimAPI. This module incorporates the main functions which builds the nec-
essary messages that allows us to interact with the neurostimulator. Those
are the basic commands blocks which are used by “StimControl”.

StimControl. A higher level API that performs the communication operations
needed to control the stimulator. Each StimControl function calls StimAPI
one or more times in order to create and send functional commands.

NCSControl. This module can be used to accelerate the model’s predictions
upon the videostream on the Intel’s Neural Compute Stick device. Contains
functions for communication with the NCS device, loading models and per-
forming inference over the input.

Utils. Contains various helper functions, as generating custom image filters(for
example, Gaussian filters), or mapping the desired electrodes to the actual
stimulator output channels.

3.2 Computational Neural Models and Image Preprocessing

The VisionModels module allows to define simple and complex, retina-like visual
preprocessing models, which are defined as Keras Sequential models or Tensor-
flow Graphs. This models can be deployed using a CPU, GPU or specialized
architectures, such as FPGAs. In this first design version, we prepared two
modalities: spatial processing models and spatiotemporal processing models,
where the defined filters are 2D and 3D, respectively.

Custom Linear-Nonlinear 2D/3D filter can be custom-defined or created
using data-driven, machine learning techniques, as Linear-Nonlinear models or
Convolutional Neural Networks (see Fig. 4).
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Fig. 4. Spatiotemporal filters can be defined and used as part of the pipeline. In the
image, a selection of four of the linear part of the Linear-Nonlinear models after a rank-
one decomposition performed with pyret [43]. The ganglion cell’s retinal recordings were
performed as mentioned in [24].

In order demonstrate the naturalistic stimulation control capability of our
system, we fitted ganglion cell’s firing responses to light patterns of different
nature: full-field light flashes, checkerboard patterns, moving bars and natural
scenes, following procedures similar of what is described in [24]. The natural
scenes images were obtained from [35], and the rest of the stimuli was created
by code scripts.

The ganglion cell’s firing rates were fitted by means of a two-stage iterative
process, in which each single neuron is modeled by means of a L2 regularized spa-
tiotemporal Linear-Nonlinear process [36] (LN), which parameters are obtained
with the Adam optimizer [37], which is a variant of the Gradient Descent opti-
mization. The loss function utilized was a weighted sum of the mean squared
error and the cross entropy between the biological retina’s responses and the
model’s output.

In the first modeling stage, the input of the model consists on the flattened
spatiotemporal visual stimulus that was projected into the retina during each
time bin, and the output is the smoothed firing rate of the neuron as a response
to the input [24]. The discrete time binning was 10 ms.

Due to the high dimensionality of the input (50 pixels× 50 pixels × 30
frames), the LN models created struggle to converge and are usually suboptimal.
In order to tackle this, in the first stage we used a high regularization factor.
This will promote that the model’s parameters tends to zero in the spatial pixels
which are out of the ganglion cell’s receptive field, which is convenient in order
to figure out which parts of the image are being encoded by the neuron. For the
second modeling stage, we centered the model’s target around the most relevant
15 × 15 pixels for each neuron, decreasing this way the number of parameters
from 75000 to 6750, this is, 11x less parameters, leading the model to a more
robust and faster convergence.

Once the Linear-Nonlinear models of the neurons are created, they can be
loaded as the weights of a 1-layer Convolutional Neural Network either into
a Keras sequential model (for quick deployment into the working pipeline) or
TensorFlow graph, which will allow to compile it into a specific graph format to
be used by a Neural Compute Stick (see Sect. 3.4).
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Both the Keras and Tensorflow libraries allow for application-specific cus-
tomization, by selecting the convolution stride or making spatial or spatio-
temporal predictions over batches of images.

3.3 Neurostimulator Control and Stimulation Strategy

We developed and implemented a python version of the Blackrock Microsystems’
API for the control of the CereStim96 neurostimulation device (briefly described
in Sect. 3.1). This device allows for 16 simultaneous active channels, and 15 dif-
ferent pulse train configurations, that can be dynamically created (by overriding
previous configurations on demand). After checking the correct operation of
the device’s current modules, a base pulse train configuration is defined. Then,
modified versions of the base pulse trains are created, with different pulse inten-
sity/frequency/pulse width values. This configurations, which shapes the pulse
trains that will be delivered through the corresponding channels, are defined by
the following parameters: Amplitude1, Amplitude2, PulseWidth1, PulseWidth2,
InterPhase, InterPulse (see Fig. 2). Another key parameter to take in consider-
ation its the InterTrain, this is, time between train pulses.

In this experiment, we select a list of electrodes which will be activated and
map them into the actual channels which the device connects to.

After this, the camera configuration parameters are set, taking into consider-
ation the dimensions of the input image, and the number of frames to buffer for
the spatiotempoal processing. The retina model is defined by loading, reshaping
and normalizing the ganglion cell’s Linear-Nonlinear -or any other customized
filter-based- model’s weights into a Keras or Tensorflow model which will handle
the convolution operations and strides. In the case of using a hardware acceler-
ation device like the NCS for offloading the model’s computations, we compile
the desired model and load it into the device.

Once the main configurations are set, the main thread starts. Each input
frame from the camera device is handled by openCV, resized and normalized,
and stored into a buffer variable of the desired length. This buffer will be pro-
cessed by the retina model, either in the main computer of in the accelera-
tion device. The model’s predictions are then normalized between 0 and 1 and
matched to the closest of the 15 configurations selected for each electrode, which
vary either in the intensity of frequency, depending on the desired train modu-
lation strategy. Then, a single group stimulation sequence is generated for the
corresponding electrodes and configurations and the command is sent to the
stimulation device. If desired, a prompt windows will be updated, showing the
camera input and stimulation information. After checking that the stimulation
operation was properly performed, the next frame is obtained from the camera,
and the whole process is repeated.

The stimulation strategies must be shaped by decisions of diverse nature:
the actual knowledge of the psychophysics, computational modeling needs, soft-
ware design decisions, hardware features and limitations. Two main strategies
are contemplated currently: Amplitude Modulation and Frequency modulation
(see Fig. 2), where the model’s predictions for each electrode are mapped to the
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closest matching configurations, which are previously set and loaded into the
stimulator device.Clinical studies will reveal the most optimal way of operating.
[12,38–41].

3.4 Hardware Implementation

In order to explore the possibilities that dedicated hardware acceleration offers,
we deployed the vision models into a Intel’s Neural Compute Stick [34], a low-
power consuming, edge-computing device designed to deploy Deep Learning
models for inference, which incorporates an Intel R© MovidiusTM Vision Pro-
cessing Unit (VPU). This device is connected to the main computer, and the
preprocessed image/video data its passed to it through an USB port, returning
the model’s predictions after the processing.

After creating single Linear-Nonlinear ganglion cell’s models, they were
loaded into a Tensorflow graph. The Linear-Nonlinear models, as described in
Sect. 3.2 consists of a spatial or spatiotemporal filter with a nonlinear activa-
tion function which is convoluted through the image/video input, returning the
predicted ganglion cell’s firing rates, predictions which can be used for the stimu-
lator control after proper normalization and configuration-matching (see Fig. 5).
The created graph its prepared for inference-only mode and compiled into a
compatible format to be used into the device.

4 Discussion and Future Work

Since many questions regarding the psychophysics of the phosphene generation
are either still unanswered or in need of a more extensive exploration, cortical
neurostimulators control tools must be smooth and easy to use and at the same
time they have to permit to be adapted to the ongoing experimental findings as
the theoretical and experimental hyopothesis are confirmed or discarded in the
clinical research.

In this work, a cortical prosthesis control framework prototype is developed,
having at its core the design principles of robustness and flexibility, allowing
custom adaptation to the needs of clinical research. This functional working
pipeline allows to incorporate both simple and complex computational neural
encoding models of visual inputs (such as data-driven or custom linear-nonlinear
models of retinal ganglion cells) for prosthesis control and to define different
stimulation strategies, such as amplitude and frequency modulation, based on
the implemented models. This framework has been designed and implemented
into an experimental setup with a commercial neurostimulator that can be used
on both animal an human research. The core pipeline modules, as the image
capturing and preprocessing, the neural encoding module and the stimulator
control API are based on open-source python libraries commonly used by the
scientific community, which we believe is a fundamental feature for scientific
tools and knowledge sharing.
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Fig. 5. Illustration of a spatiotemporal filter being applied to a video stream. The out-
put of the model is an array of activation values that can be mapped to the stimulator’s
electrodes, after a proper normalization and matching with the pre-configured stimulus
configuration values.

Among the weaknesses of the current system its the fact that its pipeline is
sequential: every new image has to be processed before sending the image/video
data for the model to return its output. After that, the stimulator has to finish its
function before a new image its fetched. With this operation mode, the system
is able to change the running stimulation parameters at 14 FPS. This bottleneck
can be avoided by using threading, and its one of the main improvements to be
made in future works. As a future planned improvement, Neurolight will allow
to parallelize the image/video inputs pre-processing with the model encoding
modules and the stimulation control, obtaining this way a better maximum sys-
tem’s performance in terms of FPS and more diverse possibilities for stimulation
strategies development.

The fact that the electrical pulse trains are sent after the image processing-
model prediction stage leads to a blinking stimulation strategy: train pulses
are interleaved with an inter-train resting period. This way of stimulation on
the visual cortex has been tested previously [39], and prevents the neural tis-
sue to be permanently under the influence of external electrical fields, although
the implications of this stimulation strategy has yet to be elucidated. In this
matter, the inter-train interval necessary to generate a separated or continuous
phosphene will be one of the main features of study in the clinical phases, along
with the effects of temporal summation, and phosphene size and brightness.

Among the main challenges that a visual prosthesis designer faces is how
to convey the most useful information trough the prosthesis. One of the most
promising alternative pre-processing strategies is semantic segmentation [42] -
which can already be implemented into our working pipeline by compiling a
U-NET-like semantic segmentation CNN. The main idea of this approach is to
simplify the transmitted visual information in a meaningful way, such that the
complexity of the environment is diminished without disregarding the important
information necessary for scene understanding and navigation.
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In future works, we expect to implement several psychophysics modules
which complement the tool and allow for a better fine-tuning of the whole sys-
tem. Regarding the visual encoding models, it is hypothesized that retina-like
image preprocessing could be beneficial for visual prosthesis [13], by perform-
ing a bioinspired feature extraction of visual information, although this remains
unanswered. Along with the technical achievements made, new experiments need
to be designed accordingly to provide answers. In this way, more complex, CNN-
RNN based retina models which are proven to mimic the retinal encoding will
be compiled and tested, and a tradeof between model’s complexity and overall
system’s performance in terms of computing speed will be extensively studied.

We hope that the present work constitutes a step forward towards integrat-
ing knowledge from many scientific and engineering fields into a useful clinical
research tool, and it is designed under the aim that neural engineers dream of:
to help people achieving a level of neural function recovery sufficient to improve
their life’s quality.
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