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Preface

Bio-inspired computing methods take inspiration from nature to develop optimization
and search algorithms or metaheuristics, typically in order to tackle the search for
optimal solutions of complex problems in science and engineering, which usually
imply a high dimensionality of the search space. The interplay between natural and
artificial computation creates new paradigms not only in computer science but also in
medicine and biology. The hybridization between social sciences and social behaviors
with robotics, between neurobiology and computing, between ethics and neuropros-
thetics, between cognitive sciences and neurocomputing, and between neurophysiology
and marketing, will give rise to new concepts and tools that can be applied to ICT
systems, as well as to natural science fields. Through IWINAC, we provide a forum in
which research in different fields can converge to create new computational paradigms
that are on the frontier between neural and biomedical sciences and information
technologies.

As a multidisciplinary forum, IWINAC is open to any established institutions and
research laboratories actively working in the field of natural or neural technologies. But
beyond achieving cooperation between different research realms, we wish to actively
encourage cooperation with the private sector, particularly SMEs, as a way of bridging
the gap between frontier science and societal impact. In this edition, four main themes
outline the conference topics: Affective Computing, Machine Learning Applied to
NeuroScience, Deep Learning, and Biomedical Applications.

Emotions are essential in human–human communication, cognition, learning and
rational decision-making processes. However, human–machine interfaces (HMIs) are
still not able to understand human feelings and react accordingly. With the aim of
endowing HMIs with the emotional intelligence they lack, affective computing science
focuses on the development of artificial intelligence by means of the analysis of affects
and emotions, such that systems and devices may be able to recognize, interpret,
process and simulate human feelings.

Today, the evaluation of electrophysiological signals plays a key role in the
advancement toward that purpose since they are an objective representation of the
emotional state of an individual. Hence, the interest in physiological variables like
electroencephalogram, electrocardiogram, or electrodermal activity, among many
others, has notably grown in the field of affective states detection. Furthermore,
emotions have also been widely identified by means of the assessment of speech
characteristics and facial gestures of people under different sentimental conditions. It is
also worth noting that the development of algorithms for the classification of affective
states in social media has experienced a notable boost in the last years. In this sense,
language of posts included in social networks, such as Facebook or Twitter, is
evaluated with the aim of detecting the sentiments of the users of these media tools.
Affective computing and sentiment analysis is intended to be a meeting point for
researchers that are interested in any of those areas of expertise related to sentiment



analysis and who want to initiate their studies or are currently working on these topics.
Hence, manuscripts introducing new proposals based on the analysis of physiological
measures, facial recognition, speech recognition, or natural language processing in
social media are examples on affective computing and sentiment analysis.

Currently, machine learning holds great promise in the development of new models
and theories in the field of neuroscience, in conjunction with classic statistical
hypothesis testing. Machine learning algorithms have the potential to reveal interac-
tions, hidden patterns of abnormal activity, brain structure and connectivity, and
physiological mechanisms of the brain and behavior. In addition, several approaches
for testing the significance of the machine learning outcomes have been successfully
proposed to avoid “the dangers of spurious findings or explanations void of mecha-
nism” by means of proper replication, validation, and hypothesis-driven confirmation.
Therefore, machine learning can effectively provide relevant information to take great
strides toward understanding how the brain works. The main goal of this field is to
build a bridge between two scientific communities, the machine learning community,
including lead scientists in deep learning and related areas in pattern recognition and
artificial intelligence, and the neuroscience community.

Deep learning has represented a breakthrough for the artificial intelligence
community. The best performances attained so far in many fields, such as computer
vision or natural language processing, have been overtaken by these novel paradigms
up to a point that only ten years ago was just science fiction. In addition, this
technology has been open sourced by the main AI companies, hence making it quite
straightforward to design, train, and integrate deep-learning based systems. Moreover,
the amount of data available every day is not only enormous, but growing at an
exponential rate. Over the past few years there has been increasing interest in using
machine learning methods to analyze and visualize massive data generated from very
different sources and with many different features: social networks, surveillance
systems, smart cities, medical diagnosis, business, cyberphysical systems or media
digital data. This topic is designed to serve researchers and developers to publish
original, innovative, and state-of-the art machine learning algorithms and architectures
to analyze and visualize large amounts of data.

Finally, biomedical applications are essential in IWINAC meetings. For instance,
brain–computer interfaces (BCI) implement a new paradigm in communication
networks, namely, brain area networks. In this paradigm, our brain receives input data
(external stimuli), performs multiple media-access controls by means of cognitive tasks
(selective attention), processes the information (perception), takes a decision
(cognition) and, eventually, transmits data back to the source (by means of a BCI), thus
closing the communication loop. Image understanding is a research area involving both
feature extraction and object identification within images from a scene, and a posterior
treatment of this information in order to establish relationships between these objects
with a specific goal. In biomedical and industrial scenarios, the main purpose of this
discipline is, given a visual problem, to manage all aspects of prior knowledge, from
study start-up and initiation through data collection, quality control, expert independent
interpretation, to design and development of systems involving image processing
capable of tackle with these tasks. These areas are clear examples of innovative
applications in biology or medicine.

vi Preface



The wider view of the computational paradigm gives us more elbow room to
accommodate the results of the interplay between nature and computation.
The IWINAC forum thus becomes a methodological approximation (set of intentions,
questions, experiments, models, algorithms, mechanisms, explanation procedures, and
engineering and computational methods) to the natural and artificial perspectives of the
mind embodiment problem, both in humans and in artifacts. This is the philosophy that
continues in IWINAC meetings, the “interplay” movement between the natural and the
artificial, facing this same problem every two years. This synergistic approach will
permit us not only to build new computational systems based on the natural measurable
phenomena, but also to understand many of the observable behaviors inherent to
natural systems.

The difficulty of building bridges between natural and artificial computation is one
of the main motivations for the organization of IWINAC 2019. The IWINAC 2019
proceedings contain the works selected by the Scientific Committee from nearly 200
submissions, after the refereeing process. The first volume, entitled Understanding the
Brain Function and Emotions, includes all the contributions mainly related to the new
tools for analyzing neural data, or detecting emotional states, or interfacing with
physical systems. The second volume, entitled From Bioinspired Systems and
Biomedical Applications to Machine Learning, contains the papers related to bioin-
spired programming strategies and all the contributions oriented to the computational
solutions to engineering problems in different application domains, as biomedical
systems, or big data solutions.

An event of the nature of IWINAC 2019 cannot be organized without the collab-
oration of a group of institutions and people whom we would like to thank now,
starting with Universidad Nacional de Educación a Distancia (UNED) and Universidad
Politécnica de Cartagena. The collaboration of the Universidad de Granada and
Universidad de Almeria was crucial, as was the efficient work of the local Organizing
Committee, chaired by Juan Manuel Gorriz Sáez with the close collaboration of
Manuel Cantón Garbín, Manuel Berenguel Soria, Javier Ramírez Pérez de Inestrosa,
Andrés Ortiz García, Francisco Jesús Martínez Murcia, Diego Salas González,
Ignacio Álvarez Illán, Fermín Segovia Román, and Diego Castillo Barnés. In addition
to our universities, we received financial support from the Spanish CYTED, Red
Nacional en Computación Natural y Artificial, Programa de Grupos de Excelencia de la
Fundación Séneca and Apliquem Microones 21 s.l.

We want to express our gratitude to our invited speakers, Prof. Hojjat Adeli (Ohio
State University, USA), Prof. Francisco Herrera (Universidad de Málaga, Spain),
Prof. John Suckling (University of Cambridge, UK), and Prof. Hiroaki Wagatsuma
(Kyushu Institute of Technology, Japan), for accepting our invitation and for their
magnificent plenary talks. We would also like to thank the authors for their interest in
our call and the effort in preparing the papers, condition sine qua non for these pro-
ceedings. We thank the Scientific and Organizing Committees, in particular the
members of these committees who acted as effective and efficient referees and as
promoters and managers of preorganized sessions on autonomous and relevant topics
under the IWINAC global scope. Our sincere gratitude also goes to Springer and to
Alfred Hofmann and his colleagues, Anna Kramer and Elke Werner, for the continuous
receptivity, help efforts, and collaboration in all our joint editorial ventures on the
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interplay between neuroscience and computation. Finally, we want to express our
special thanks to Viajes Hispania, our technical secretariat, and to Chari García and
Beatriz Baeza, for making this meeting possible, and for arranging all the details that
comprise the organization of this kind of event.

Last year, in 2018, was 10 years without Professor Mira, without his close and
friendly presence. We want to dedicate these two volumes of the IWINAC proceedings
to Professor Mira’s memory.

June 2019 José Manuel Ferrández Vicente
José Ramón Álvarez-Sánchez

Félix de la Paz López
Javier Toledo Moreo

Hojjat Adeli
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Abstract. Transcranial direct current stimulation (tDCS) is a non-
invasive technique for brain stimulation capable of modulating brain
excitability. Although beneficial effects of tDCS have been shown, the
underlying brain mechanisms have not been described. In the present
study, we aim to investigate the effects of tDCS on EEG-based functional
connectivity, through a partial directed coherence (PDC) analysis, which
is a frequency-domain metric that provides information about direction-
ality in the interaction between signals recorded at different channels.
The tDCS montage used in our study, was focused on the lower limbs
and it was composed of two anodes and one cathode. A single-blind study
was carried out, where eight healthy subjects were randomly separated
into two groups: sham and active tDCS. Results showed that, for the
active tDCS group, the central EEG electrodes Cz, C3 and C4 turned
out to be highly connected within alpha and beta frequency bands. On
the contrary, the sham group presented a tendency to be more random
at its functional connections.

Keywords: PDC · Functional connectivity · Motor imagery · BCI ·
EEG · Gait · tDCS

1 Introduction

Transcranial direct current stimulation (tDCS) is a non-invasive technique for
brain stimulation capable of modulating brain excitability [1]. It delivers low
intensity, direct current (transferred between electrodes from anode to cathode)
to cortical areas facilitating or inhibiting spontaneous neuronal activity. Specif-
ically, anodal direct current stimulation has been shown to increase cortical
c© Springer Nature Switzerland AG 2019
J. M. Ferrández Vicente et al. (Eds.): IWINAC 2019, LNCS 11486, pp. 3–10, 2019.
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excitability, whereas cathodal stimulation decreased it [2,3]. This technique has
shown potential to improve motor performance and motor learning [4,5]. Thus,
tDCS application is now explored as a promising tool applied in motor neurore-
habilitation [6]. However, even though the beneficial effects of tDCS have been
shown, its effects on functional connectivity and the underlying brain mecha-
nisms have still not been described.

The majority of the studies have investigated the effects of tDCS as an aug-
mentative technique to improve the performance of upper limbs [7–9]. Up to this
date, only relative few studies have investigated how tDCS affects the lower limbs
performance [10,11]. Hence, we are interested in to investigate the effects of tDCS
in gait motor imagery (IM). From a cognitive perspective, brain activity during
gait, involves the supplementary motor area (SMA), the primary motor cortex
(M1), the primary somatosensory cortex (S1) and the premotor area (PM) [12].
Moreover, it has been shown that IM relies on neural processes also associated
with these areas [13,14].

In the present study, we aim to investigate tDCS effects in functional connec-
tivity, through a partial directed coherence (PDC) analysis, which is a frequency-
domain metric that provides information about directionality in the interaction
between electroencephalography (EEG) signals recorded at different channels.
In this context, in [15] authors examinated time and frequency-based measures
of EEG-based brain networks, connectivity analysis, and their applications on
brain-computer interfaces (BCI). They also reported connections between the
sensorimotor cortex and frontal areas during IM. Therefore, with better under-
standing of the mechanisms and dynamics of brain activity, it may be obtain
useful and informative features for BCI applications as well as in motor neurore-
habilitation.

2 Materials and Methods

In this section, we present the experimental procedure and the tDCS montage
focused on lower limbs. Furthermore, we introduce the PDC, in order to evaluate
the effects of tDCS in EEG-based functional connectivity.

2.1 EEG Acquisition

The brain activity was recorded using an EEG array of 30 electrodes (The
StarStim R32 system) placed on the scalp according to the extended 10–20
placing system (P7, P4, CZ, PZ, P3, P8, O1, O2, C2, C4, F4, FP2, FZ, C3, F3,
FP1, C1, OZ, PO4, FC6, FC2, AF4, CP6, CP2, CP1, CP5, FC1, FC5, AF3,
PO3) at a sampling frequency of 500 Hz.

2.2 TDCS Supply

The StarStim R32 system was used to provide tDCS to the subject’s brain.
The tDCS montage was composed by one anode located over the right cere-
brocerebellum (two centimeters right and one centimeter down of the inion),
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the other one over the motor cortex in Cz on M1, and the cathode over FC2
(using the International 10-10 system). The idea was to excite simultaneously
the right cerebrocerebelum and the motor cortex considering that both areas
are implicated in IM. The intensity was established to 0.2 mA and 0.3 mA for
the cerebrocerebellum and Cz anodes respectively. The cathode current density
was of 0.16 mA

cm2 . All the electrodes were 1 cm of radius (surface area of π cm2),
3 mm of thickness and with 4 mm of space for the conductive gel.

2.3 Experimental Procedure

The experiment was based on visual cues in order to detect gait IM. Eight sub-
jects were separated into two groups: active tDCS (labeled as S1t, S2t, S3t and
S4t) and sham (labeled as S5s, S6s, S7s and S8s). After the initial stimulation,
subjects stood in front of a screen that provided instructions while their EEG
signals were being recorded. Two types of instructions were indicated: Imagine
and +. During Imagine periods, they had to imagine a gait movement. Subjects
were instructed to avoid blinking, head movements or any other artifact dur-
ing the Imagine periods, postponing these actions to the + periods. The sham
group received 15 min of fake stimulation to create a placebo effect, while the
active tDCS group received 15 min of real stimulation. Participants performed
one session each day for five consecutive days.

2.4 Partial Directed Coherence

The partial directed coherence (PDC) is a frequency domain measure of the
relationships (information about directionality in the interaction) between pairs
of signals in a multivariate data set for application in functional connectivity
inference in neuroscience [16]. If one assumes a set S = {xm, 1 ≤ m ≤ M} of M
EEG signals (simultaneously observed time series)

x(n) = [x1(n), x2(n), . . . , xM (n)]T (1)

is adequately represented by a multivariate autoregressive (MVAR) model of
order p, or simply MVAR(p):

x(n) =
p∑

k=1

Apx(n − k) + e(n), (2)

where A1,A2, . . . ,Ap are the coefficient matrices (dimensions M ×M), contain-
ing the coefficients aij(k) which represent the linear interaction effect of xj(n−k)
onto xi(n) and where

e(n) = [e1(n), e2(n), . . . , eM (n)]T (3)

is the noise vector (uncorrelated error process). A measure of the direct causal
relations (directional connectivity) of xj to xi is given by the PDC defined by [16]
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πi←j( f) =
Aij( f)√

aj( f)aT
j ( f)

(4)

where Aij(f) and aj are, respectively, the i, j element and the j-th column of

A(f) = I −
p∑

k=1

Ake−2πifk. (5)

PDC values range between 0 and 1; πi←j measures the outflow of information
from channel xj to xi in relation to the total outflow of information from xj to
all of the channels.

2.5 EEG Processing and Analysis of Connectivities

The methods presented in this paper are implemented in the Matlab package
ARfit [17]. For the purpose of this paper, we jointly analyze data from five
experimental sessions. The first two seconds of each trial were discarded to assure
the concentration of the subject in the task and to get rid of the visual cue
artifacts on the EEG. A digital band-pass filter between 0.5 and 50 Hz, a notch
filter with 50 Hz cut-off frequency and a laplacian filter as in [12], were applied
to the data. Signals were processed in 2 s epochs (400 epochs for each subject).
Each epoch undergoes independent component analysis (ICA) with EEGLAB
toolbox [18] in order to detect visually the presence of blinking artifacts as in
[4]. From now on, we will refer to EEG channel as an electrode.

Once preprocessing was performed, we chose to analyze the directed inter-
connections in a set of M = 9 electrodes from the M1, SMA and PM regions:
S = {Cz, CP1, CP2, C1, C2, C3, C4, FC1, FC2}. Under these conditions, the
computation of the PDC was based on a method similar to the one used in [19],
where a significance threshold for testing for nonzero PDC at a given frequency
proposed in [20] was assessed.

In our case, in order to compute the PDC, the signals were fitted with
a MVAR(9), where the model order was determined by the Akaike Informa-
tion Criterion [21]. We analyzed the frequency range of 1 to 30 Hz, as they
are within the range considered for the sensorimotor rhythm modulation. For
the given set of frequencies, the PDC values from electrode j to electrode i
(i = 1, 2, . . . , 9; j = 1, 2, . . . , 9) were obtained for each 2 s epoch (400 epochs
for each subject) obtaining 9 × 9 matrixes. In all cases (epoch, frequency and
direction), the threshold for the PDC to be significant was stored with a statis-
tical significance for α = 0.05 for all possible directions at a given frequency (for
details see [19]). Then, those epochs for which the PDC value was higher than the
significance threshold (i.e., the PDC whose confidence was enough to be regarded
as indicative of directional connectivity) were retained in our calculations. For
every directed interconnection at a given frequency, we found those more likely
(in terms of the total number of epochs with significant interconnections) to be
present.
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3 Results

The preliminary results of the analysis proposed in Sect. 2.5 are shown in Figs. 1a
and 1b for the cases of active tDCS and Sham, respectively. For each subject, we
present the mean value of directed interconnections (in terms of the total num-
ber of epochs with significant interconnections) at the frequency bands theta
(4–7 Hz), alpha (8–12 Hz) and beta (13–30 Hz). The color bar indicates the nor-
malized number of epochs (out of 400) in which the corresponding directed inter-
connection was significant. Thus, red regions indicate high levels of connectivity
(e.g., 1 indicates 100% of significative epochs) among the nine electrodes.

The results showed that brain connectivity of both groups increase mainly
at the alpha and beta bands. Regarding the spatial distribution of the directed
interconnections revealed by our analysis in these frequency bands, we note that
for the active tDCS group (Fig. 1a), the central EEG electrodes Cz, C3 and C4
turned out to be highly connected. Specifically, we note the following cases:

– An outflow greater than 90% (Subjects S1t, S2t and S3t) and 75% (Sub-
ject S4t) from Cz to all electrodes;

– An outflow greater than 80% (Subjects S2t, S3t and S4t) and 65% (Sub-
ject S1t) from C4, mainly in beta band;

– An outflow greater than 60% (Subjects S2t and S4) from C3;
– An outflow greater than 90% (Subject S1t) from C2 and 50% (Subjects S2t

and S3t).

On the contrary, the sham (Fig. 1b) group presented a tendency to be more
random at its functional connections. The characteristic patterns of this group
presented relevant differences among subjects in the resulted interconnections.
Expressly, the largest percent of outflows was presented in C3/CP2/FC2 (Sub-
ject S5s), C4 (Subject S6s), CP1/CP2 (Subject S7s) and C3/C4 (Subject S8s).
It is important to note that the outflow number in this group, in the central elec-
trodes Cz, C3 and C4 is always lower than the active tDCS group. It is important
to note that the outflow number in this group, in the central electrodes Cz, C3
and C4 is always lower than the active tDCS group.

So far, based on preliminary findings more directional connectivity existed
in the active tDCS group in comparison with the sham group. These results
are in accordance with the tDCS montage used. As we mentioned above, the
montage was composed by one anode located over the right cerebrocerebellum
(two centimeters right and one centimeter down of the inion). The effects of the
stimulation over the cerebellum are still nuclear [22]. However, recent studies
have reported that anodal stimulation over the cerebellum, produces cortical
excitability changes in a polarity-specific manner [23]. Furthermore, a second
anode was placed over Cz on M1 with a slightly higher current, exciting the
motor area, which can explain why the central EEG electrodes Cz, C3 and C4
turned out to be highly connected in the active tDCS group.
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Fig. 1. Functional brain connectivity during IM for the groups of (a) active tDCS and
(b) sham. For each subject, the mean value of directed interconnections (in terms of the
total number of epochs with significant interconnections) at the frequency bands theta
(4–7 Hz), alpha (8–12Hz) and beta (13–30 Hz) is presented. The color bar indicates
the normalized number of epochs (out of 400) in which the corresponding directed
interconnection was significant. Thus, blue regions indicate low and red regions indicate
high levels of connectivity (e.g., 1 indicates 100% of significative epochs) among the 9
electrodes. In all cases the diagonal elements were set to zero. (Color figure online)

4 Conclusions

In conclusion, in this preliminary study we demonstrated that EEG-based PDC
analysis is able to detect changes in functional connectivity mediated by the
application of transcranial direct current stimulation (one anode located over the
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right cerebrocerebellum, the other one over the motor cortex in Cz on M1, and
the cathode over FC2) in healthy subjects. Our future work will include a more
rigorous assessment of our connectivity-based analysis in more complex sensor
networks and extending our approach to the study of resting-state brain net-
works. Furthermore, in the context of BCI applications, we will study the effects
of tDCS in the relationship between the brain connectivity (assessed through
PDC) and the IM detection accuracy in operating a BCI, in order to develop-
ment of brain plasticity over the course of training sessions. This information
can be useful to help understanding the neuroplastic modifications induced by
tDCS, and design therapies to motor neurorehabilitation.
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Effect of tDCS stimulation of motor cortex and cerebellum on EEG classification
of motor imagery and sensorimotor band power. J. Neuroeng. Rehabil. 14(1), 31
(2017)

5. Matsumoto, J., Fujiwara, T., Takahashi, O., Liu, M., Kimura, A., Ushiba, J.: Mod-
ulation of mu rhythm desynchronization during motor imagery by transcranial
direct current stimulation. J. Neuroeng. Rehabil. 7(1), 27 (2010)

6. Reis, J., Fritsch, B.: Modulation of motor performance and motor learning by
transcranial direct current stimulation. Curr. Opin. Neurol. 24(6), 590–596 (2011)

7. Lee, S.J., Chun, M.H.: Combination transcranial direct current stimulation and vir-
tual reality therapy for upper extremity training in patients with subacute stroke.
Arch. Phys. Med. Rehabil. 95(3), 431–438 (2014)

8. Butler, A.J., Shuster, M., O’hara, E., Hurley, K., Middlebrooks, D., Guilkey, K.:
A meta-analysis of the efficacy of anodal transcranial direct current stimulation
for upper limb motor recovery in stroke survivors. JJ. Hand Ther. 26(2), 162–171
(2013)

9. Kim, D.Y., et al.: Effect of transcranial direct current stimulation on motor recov-
ery in patients with subacute stroke. Am. J. Phys. Med. Rehabil. 89(11), 879–886
(2010)



10 J. A. Gaxiola-Tirado et al.
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Abstract. Nowadays, video games are not considered only mere hob-
bies. The use of these tools is increased in last years. On the other hand,
gamification and usability techniques have empowered the improve-
ment of communication between player/user and Aided Communication
Devices (ACD). New ACDs provide a novel approach to capture biome-
chanical features or indicators. This work consists of a novel methodology
development to capture biomechanical indicators throughout multiplat-
form video games. The present work has an exploratory nature to mea-
sure, hand-wrist articulation features estimated from the smartphone’s
accelerometer. The intention of the study is to answer some hypothe-
sis for instance, if the device is crucial to evaluate player’s movement
capabilities or if the age of the person as a key biomarker. Once these
indicators have been tested, it will be able to use them in studies of
neurodegenerative diseases, where involuntary tremor is one of the most
important observable correlates.

Keywords: Hand-wrist articulation · Video games ·
Gamification · Mobile devices · Neurodegenerative diseases

1 Introduction

When speaking about a case of study or proof of concept, one of the aims is
to find an objective method which produces always consistent results. However,
some well-known scales, such as Hoëhn-Yahr [9] or UPDRS [7], which are used
to diagnose the grade or level of symptom severity in Parkinson’s Disease (PD)
patients do not satisfy this premise because two raters could produce different
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scores for the same patient using the same rating scale. This methodology is
based on the subjective opinion of the clinician. The rater is going to review a list
of items where each item has a lower and upper limit. That is where a subjective
decision of the professional comes in. This decision could be crucial due to the
waiting list in health services. Depending on the speciality and clinical diagnosis,
patients must wait between four and eighteen months for their next clinical
revision. Furthermore, it must also be remembered that posology and dosing
must be subject to frequent revision and updating. For this reason, it is necessary
to design and develop a methodology reproducible, simple and ubiquitous to
assess the conditions of the patient in any circumstance.

According to the results of Tardon’s work [8], the serious video games and
gamification are a powerful tool for direct social transformation in several fields:
health improvement [4], learning [10], work performance [11], etc. Furthermore,
as is well known, the industry of video games has clearly grown fast in last years
and the use of video games in biomedical research has been notable [17] but not
without critical voices in this approach [2,3]. On the other hand, the use of video
consoles such as Wii of NintendoR© in biomedicine is a reality [14]. Moreover, in
the rehabilitation area, video games are a novel approach and are used as well
[16,18].

The contribution of this work is to propose and assess a methodology to cap-
ture and monitor biomechanical features throughout the use of a hand-held video
game. The calculated trait and the hand-wrist articulation, were estimated from
the smartphone’s accelerometer through a video game using a mobile device.

This paper is organized as follows. In Sect. 2, we introduce the proposed meth-
ods. The following section, the materials used. Results are shown and discussed
in Sect. 4. And finally, conclusions are presented in Sect. 5.

2 Methods

2.1 Objectives

In what follows, the objectives that are to be achieved at the beginning of this
work will be presented. To monitor player’s activity it is necessary to design and
develop two questionnaires. The first one is based on an enrolment form to know
the initial conditions of the user, and consists of items such as user code, age,
gender, region, country, current diseases, and in its case, prescriptions and dosage
in the moment of the enrolment. This form is presented only the first time. The
second one is the dialy questionnaire, which must take into account occasional
data, as the circumstantial use of a painkiller, antihistaminics, antibiotics, etc.,
to have into account any possible factors which could alter patient’s neuromo-
tor conditions beforehand at each session start. Once the state of the player is
assessed, the a priori conditions of the hand-wrist articulation will be monitored
using the smart device accelerometer, to be saved in the server database.
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2.2 Methodology

The experiment consists of three stages: Home, Game and Scores. During the
Game, the player must turn the wrist from the right to left, and vice-versa, as in
driving a car in both directions. This movement is similar to turn the steering
wheel in a car. In Fig. 1a an example of the game interface is illustrated.

The experiment is based on the development of a first-person racing video
game, where the player has to collect the highest number of coins on the road,
as it may be seen in Fig. 1b. The number of coins collected is an indication of
the ability of the player to stay within the road limits, if this number is below
a given value, an alarm will warn the players to improve their performance.
Furthermore, the game has some props for a high quality immersive experience,
for example, trees, road, grass, and other details. On the other hand, there are
distractor objects such as stones and fences. The last ones are obstacles that slow
down the race. If the player crashes with these objects, the car stops. However,
if the players pulls back the mobile device towards their chest, the car jumps
these obstacles and continue the race. In every single moment of the game, the
device captures the accelerometer’s outcomes. This information is sent via a 4G
connection to the database server.

(a) Mode of use the device. (b) Screenshot of
racing game.

Fig. 1. Capture of racing video game.

2.3 Technical Description of Video Game

The game controller is in charge of starting the game, managing the objects
and ending the game. This controller generates the roadmap dynamically in
real time, using eleven different roads aspects as the ones depicted in Fig. 2a
and b, respectively. It was necessary to create checkpoints, which informed the
controller when it had to draw the next road. The checkpoints are hidden to
players.



14 D. Palacios-Alonso et al.

Simple and little overloaded interfaces have been contemplated because the
target user may not be familiar with video games lore. Big font sizes to facilitate
the reading and large buttons were used as well. The naming of the screens and
texts were very descriptive.

(a) Curved road with fence. (b) Straight road with two
stones.

Fig. 2. Kind of roads for the racing game.

2.4 Framework and Hardware

The application has been developed as a 3D project in Unity [1]. The version
used was 5.6.1 because of its stability, fixed bugs, and online documentation.
The operative system used in the laptop was Windows 10. Considering that
the application was addressed to mobile devices (smartphones and tablets), the
use of external libraries of Android and Java was required. Therefore, Android
version 24.4.1 of the Software Development Kit (SDK) and Java Development Kit
(version 1.8.0) were included. On the other hand, e-mail management required
the use of a Dynamic Link Library (DLL) as a project dependency.

Two groups were involved in the proof of concept: end-users and contrast-
users. Each group tested the proof in different devices. The first group used
a smartphone Huawei P8 Lite with two GB of RAM, sixteen GB of memory,
octa-core, a screen of 5.2 in., and Android version 6.0. The contrast group used a
tablet Bq Elcano with a GB of RAM, sixteen GB of memory, dual-core, a screen
of seven inches, and Android version 4.1.2.

2.5 Statistical Methods

One-Sample Kolmogorov-Smirnov Test is a non-parametric statistical test which
is used to assess if a variable follows a given distribution in a population [13]. The
null hypothesis for the Kolmogorov-Smirnov test is rejected if its p−value < 0.05,
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this means that the data is normally distributed, otherwise, the distribution is
not normally distributed [5]. The K-S test measures the largest distance between
the empirical distribution function(EDF) Fdata(x) and the theoretical function
F0(x) [19]. Let F0(x) is the cumulative distribution function (cdf) of the hypothe-
sized distribution and Fdata(x) is the EDF of your observed data. The expression
of KS-test:

D = supx|F0(x) − Fdata(x)| (1)

Parametric test: t-Student is a statistical test which is used to compare the
mean of two groups of samples, assessing if the means of the two sets of data
are significantly different from each other [5]. The unpaired two sample T test
has been used, used to compare the mean of two independent samples, where its
expression is given in Eq. (2) X and Y represent the two groups to compare; mX

and mY being the means of groups, respectively. Finally, nX and nY represent
the group sizes.

T =
mX − mY√

σ2

nX
+ σ2

nY

(2)

Non-Parametric test: Mann-Whitney U test is the non-parametric alternative
to the independent T-test [12]. The test compares two distributions. If these
samples are part of the same population, the null hypothesis is not rejected.
Otherwise, an alternate null hypothesis is that the two samples belong to the
same distribution, that is to say, both samples have the same median. Let X and
Y are the distributions, respectively. R is the sum of ranks in the sample, and n
is the number of items in the sample.

U1 = R1 − nX(nX + 1)
2

;U2 = R2 − nY (nY + 1)
2

(3)

Cohen’s Coefficient or Size effect is determined by calculating the mean differ-
ence between two groups M1 and M2, respectively, and then dividing the result
by the standard deviation of the pooled population [6,15]. This coefficient is
used to measure the differences among samples when the T-Student or U-Mann-
Whitney tests are used.

d =
M1 − M2

σ
(4)

3 Materials

3.1 Corpora

The corpus consists of two groups, control (nine volunteers) and contrast (four
volunteers). The number of participant users was thirteen of different ages and
genders and they did not have any neurodegenerative disease at the moment of
the experiment. The Kolmogorov-Smirnov test was used to assess the distribu-
tions and it was concluded that both distributions are normal as their p-values
were higher than 0.05 as shown in Fig. 3. In Fig. 4 the boxplots of both datasets
are shown.
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Fig. 3. Summary of one-sample Kolmogorov-Smirnov test with 95% confidence interval.

(a) Distribution of control group. (b) Distribution of contrast group.

Fig. 4. Capture of both datasets.

3.2 Control Group

The control group was composed of the nine volunteers (familiars and friends)
with ages between 22 and 58 years old, five of whom were women and four men.
The details are shown in Table 1.

3.3 Contrast Group

The contrast group was composed of four volunteers (relatives and friends) with
ages between 35 and 69 years old, of whom two were women and two men. The
details are shown in Table 2.
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Table 1. Corpus of control group.

ID Age Gender Competence in video games

A1 24 Male High

A2 22 Female Medium

A3 23 Female High

B1 34 Female Medium

B2 36 Male High

B3 34 Male High

C1 56 Female High

C2 57 Male Medium

C3 58 Female Low

Table 2. Corpus of contrast group.

ID Age Gender Competence in video games

ContrastB1 35 Male High

ContrastB2 35 Female Medium

ContrastC1 68 Male High

ContrastC2 69 Female Low

4 Results

The results presented in this paper are extracted from a game session with a
duration of 2 min. The volunteers did not know this game in advance. In this
way, all participants had the same opportunities and level of knowledge about
the test, game, and the scenario at the beginning of test.

As it was explained before, the statistical tests used in the evaluation were
T-test, U-test and Cohen’s Coefficient. Given the number of samples in both
dataset it was necessary to check the values with parametric and non-parametric
approaches, because parametric methods assume a statistical distribution in
data. However, non-parametric techniques do not require these initial conditions.

The outcomes of the test are depicted in the following pictures Fig. 5a for
the control group and Fig. 5b for the contrast group, respectively.

The results are divided into three categories, such as aging test, smartphone
tests, and tablet tests. Cluster A includes people between 20 and 30 years old.
The second cluster (B) includes volunteers between 31 and 50 years old. Finally,
the last cluster is composed of players between 51 to 70 years old.

The outcomes are depicted in Table 3 for women and men, regardless of the
specific device used. Analyzing the results, it may be noticed that the significant
results were obtained in comparing cluster C with A and B, being both tests,
parametric and non-parametric, the null hypothesis being rejected with 95%
confidence interval. Furthermore, Cohen’s coefficient reveals a negative value
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Fig. 5. Results to a session of racing game. Left (a): values of distance respect the
middle of road of control group. Cluster A (blue), Cluster B (orange) and Cluster
C (grey). Right (b): values of distance respect the middle of road of contrast group.
Cluster B (blue) and Cluster C (orange). (Color figure online)

greater than −1.15 (kappa value), in others words, the distributions can be
considered different.

Table 3. Summary of results according to the age of volunteers.

Test T-student Mann-Whitney test Cohen coefficient

Cluster A vs B 0.057 (No) 0.101 (No)

Cluster A vs C 0.021 (Yes) 0.025 (Yes) −1.762

Cluster A vs (B U C) 0.101 (No) 0.028 (Yes) −1.10

Cluster B vs C 0.042 (Yes) 0.016 (Yes) −1.515

Cluster B vs (A U C) 0.260 (No) 0.380 (No)

Cluster C vs (A U B) 0.032 (No) 0.005 (No) −1.98

Table 4 shows results using only the smartphone. Once again, cluster C seems
to be different in both techniques and Cohen’s coefficient asserts this condition
with respect to cluster A and B even when the third cluster is compared with
the union of both.

Table 4. Summary of results from the smartphone.

Test T-student Mann-Whitney test Cohen coefficient

Cluster A vs B 0.215 (No) 0.275 (No)

Cluster A vs C 0.015 (Yes) 0.05 (Yes) −5.06

Cluster A vs (B U C) 0.078 (No) 0.071 (No)

Cluster B vs C 0.012 (Yes) 0.05 (Yes) −2.86

Cluster B vs (A U C) 0.411 (No) 0.606 (No)

Cluster C vs (A U B) 0.006 (Yes) 0.02 (Yes) −4.15
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Table 5. Summary of results according to the tablet.

Test T-student Mann-Whitney test Cohen Coefficient

Cluster B vs C 0.008 (Yes) 0.121 (No) −13.45

Table 6. Summary of results according to devices and age.

Test T-student Mann-Whitney test Cohen coefficient

Smartphone vs Tablet 0.097(No) 0.045 (Yes) −1.76

Smartphone vs Tablet with Cluster B 0.033 (Yes) 0.083 (No) −2.15

Smartphone vs Tablet with Cluster C 0.002 (Yes) 0.083 (No) −7.61

The test results obtained with the tablet are given in Table 5, where T-Student
rejects the initial hypothesis with a rather low value (0.008). However, the U-test
does not reject the hypothesis. Nevertheless, Cohen’s coefficient returns a high
negative value (−13.45), being the lowest value obtained for all tests.

Finally, Table 6 describes the results having into account the devices and the
age of players. In this case, T-Student rejects the initial hypothesis in two tests
and the U-test only on one occasion. However, both tests have never coincided.

5 Conclusions

The use of video games in biomedical applications is a hot topic. Through the
present exploratory study a first approach to this problem under a systematic
methodology has been presented. Although limited by the small number of sam-
ples included, the most relevant findings derived are the following:

– The third cluster, the elder players, had produced the highest difference
respect to the two other groups, that is to say, the young and middle-aged
populations. This fact is illustrated when the tests reject the null hypothesis
with a p-value less than 0.05 and with a rather high Cohen’s coefficient.

– It seems that the devices are a key point in producing this kind of results. The
use of a tablet or smartphone produces distinct outcomes. Of course, there
are several factors to be taken into account such as weight, performance, and
size of devices. It is worth to highlight that the smartphone used is a medium-
range device but the tablet is a bottom-range device. Nevertheless, this fact
allows a further reflection: it is not necessary to use a top-range device to
produce significant results in this type of study.

– Although the outcomes of this research are very promising, a drawback in this
exploratory study is the number of samples. For this reason, the continuation
of the study foresees two main ideas: Firstly, increasing the number of samples
with both devices using another game mode, for example, a third-person
mode, where the player can visualize the car instead of being inside the car.
Secondly, releasing the video game in Play Store (Android) or App Store
(Apple) to recruit more samples.
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Abstract. This work shows a system that appropriately integrates a
Brain–Computer Interface and an Internet of Things environment based
on eye state identification. The Electroencephalography prototype for
brain electrical signal acquisition has been designed by the authors. This
prototype uses only one electrode and its size is very small, which facili-
tates its use for all type of applications. We also design a classifier based
on the simple calculation of a threshold ratio between alpha and beta
rhythm powers. As shown from some experiment results, this threshold-
based classifier shows high accuracies for medium response times, and
according to that state identification any smart home environment with
those response requirements could correctly act, for example ON–OFF
switching room lights.

Keywords: Brain–Computer Interface · EEG devices ·
Internet of Things

1 Introduction

A Brain–Computer Interface (BCI) is defined as a hardware and software com-
munication system that records brain electrical activity, commonly obtained by
means of Electroencephalography (EEG), and translates it into control com-
mands for external devices [12]. These systems are especially interesting for
people with severe motor disabilities since they allow them to interact with their
environment without physical activity requirements.

Recent development of low-cost EEG devices together with emerging Internet
of Things (IoT) have promoted the creation of new daily-used BCI applications
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in several domains [11]. As an extension of our proposal presented in [8], we will
consider the utilization of BCI to determine the eye state and its integration
with IoT.

Eye state identification or the eye-gaze analysis have become emerging topics
of study in recent years due to its implication in human machine interfaces
[10,14]. In particular, EEG eye state detection has been successfully applied in
a wide variety of domains [19], such as infant sleep-waking state classification
[6], driving drowsiness detection [20], stress features identification [18] and home
automation control [7], among others.

Different approaches have been applied in the literature to classify and dis-
tinguish both eye states: closed eyes (cE) and open eyes (oE). Rösler and Suen-
dermann [16] tested 42 different machine learning algorithms to predict the eye
state from an EEG dataset of 117 s and 14 channels. The best performance was
achieved by the K-star classifier with an error rate of 2.7%.

Another study of Saghafi et al. based on that dataset employed Multivari-
ate Empirical Mode Decomposition (MEMD) for feature extraction and Logistic
Regression (LR), Artificial Neural Networks (NN), and Support Vector Machine
(SVM) classifiers for detection of eye state changes [17]. Their proposed algo-
rithm detected the eye state change with an accuracy of 88.2% in less than 2 s. In
this sense, Wang et al. [19] extracted the channel standard deviation and mean
as features for an Incremental Attribute Learning (IAL) algorithm and achieved
an error rate of 27.45% from that dataset. In a recent study, Piatek et al. [13]
tested 23 machine learning algorithms using four different datasets obtained from
a 19-channels EEG device to classify three eye states: cE, oE and blinking. They
showed that it is possible to predict eye states using EEG recordings with an
accuracy range from about 96% to 99% in a real-time scenario.

Although some related work already achieve efficient and accurate detection
of eye states, most of them collect brain activity using at least 14 electrodes
and big–size EGG devices. Therefore, the main limitation of those devices is the
user comfort and their difficulty to be used for long time periods or daily-life
activities.

In contrast to these approaches, in this work we develop a BCI software tool
integrated in an IoT system for non–critical real situations which only employs a
single–channel EEG device to capture user’s brain activity. This system monitors
alpha (8–3 Hz) and beta (14–19 Hz) rhythms and extracts the mean power ratio
between those bands as novel feature to determine user eye states. The extracted
knowledge is then communicated to the rest of IoT devices as control commands
using Message Queue Telemetry Transport (MQTT) [4].

This paper is organized as follows. Section 2 is devoted to show the system
design and its architecture. Section 3 shows the main results achieved with the
proposed system and some concluding remarks are made in Sect. 4.

2 System Design and Architecture

For the integration of both BCI application and IoT environment we propose
the architecture shown in Fig. 1. The aim of this system is to capture the user’s
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brain activity during its daily-life home activities and detect his/her eye states to
control different environment devices. The main details about this architecture
are described in this section.

MQTT
broker
Mosquitto

Raw EEG 
 data

Publish 
eye state 

EEG
device

Smart
Home
devices

Subscribe 

Publish 
eye state 

ESP32
microcontroller

Fast
Fourier

Transorm

R = β/α

Classification
unit

BCI
application

Sample
EEG signal

Communication
unit

Publisher
MQTT
client

Signal
processing

unit

Threshold
classification 

algorithm

Fig. 1. Proposed system architecture.

2.1 EEG Device

The developed wireless EEG prototype is shown in Fig. 2. It employs three elec-
trodes to capture EEG signals: input, reference and ground electrodes. The pro-
totype uses the AD8221 instrumentation amplifier followed by a 50Hz notch
filter, a second order low pass filter with a cutoff frequency of 29.20Hz, a second
order high pass filter with a cutoff frequency of 4.74Hz and a final bandpass
filter with a frequency range from 4.7Hz to 22Hz with adjustable gain. The
resulting EEG signal is sampled by the ESP32 microcontroller module [3] at a
rate of 128Hz.

Fig. 2. Proposed EGG device prototype. (1) Amplifier; (2) Electrodes; (3) ESP32
microcontroller.
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2.2 Signal Processing and Classification

The ESP32 microcontroller captures the brain signal received from the EEG
device and carries out its processing and classification. Due to its dual core
nature, complex processing tasks, such as Fast Fourier Transform (FFT), can
be performed while the signal is sampled and the extracted knowledge is sent
to the IoT environment. For the FFT implementation we will use an Arduino
library [1].

The proposed eye state classifier makes use of the mean power value of the
alpha (α) and beta (β) brain rhythms. Several studies have proved that the α
power increases during closed eyes state while significant reductions are produced
when subjects open their eyes. On the other hand, beta power does not show
relevant differences between both eye states [5,9].

According to these studies, the proposed classifier obtains both powers con-
sidering a fixed time window and their ratio, defined as R = β/α, is then calcu-
lated. This will be the extracted feature to be fed back to the threshold–based
system responsible for deciding the user’s eyes state. Thus, low ratios are asso-
ciated to cE state due to the higher alpha, while higher ratios are connected to
oE states due to lower alpha powers. Consequently, those ratio values smaller
than a predetermined threshold will be classified as closed eyes. By contrast,
the values higher than that threshold will represent the open eyes state. The
classifier criteria is then defined by the following decision rule,

cE, R ≤ Th,

oE, R > Th, (1)

where Th and R are the threshold and ratio values, respectively.
The threshold value is calibrated from different EEG recordings and eye

states. Thus, Th is defined as follows

Th =
max(RcE) + min(RoE)

2
, (2)

where RcE and RoE respectively represent the ratio value for closed and open
eyes.

Once the user’s eye state is classified, that state is communicated to the IoT
environment using the MQTT protocol.

2.3 IoT Environment

The IoT ecosystem is composed firstly by the EEG device and its BCI applica-
tion and secondly, by the rest of household devices which consult the received
information to determine its behavior.

The communication between different IoT agents is based on the MQTT
protocol. It is a publish/subscribe, extremely simple and lightweight messaging
protocol, designed for constrained devices and low-bandwidth networks. The
publish/subscribe model is built around a central broker and a number of clients
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connected to the broker. The broker acts like an intermediary agent, responsible
for relating that information provided by the publishers with the subscribers
clients [15].

These publishers send messages to the broker about an specific topic and the
subscribers register their interest in some of them with the broker. The broker
acts as a matchmaker, dealing with authentication and controlling who is allowed
to publish or subscribe to which topics. These topics can be easily combined and
created, so the system could be expanded by the inclusion of new devices or
applications into the new topics.

The BCI application, running on the ESP32, is the first publisher client of
the IoT ecosystem. It detects the user’s eye state and, making use of the Wi-Fi
module incorporated in the microcontroller, publishes the extracted information
to the broker.

The MQTT broker deals with the messages received from the BCI application
and forwards it to interested subscribers. The sent data correspond to 1–byte
data, which represents the user’s eye state. The broker is deployed in a Raspberry
Pi 2 model B and implemented using Eclipse Mosquitto [2], an open source and
lightweight MQTT broker.

A wide variety of household devices could be incorporated to the system as
subscriber clients (e.g light bulbs, kitchen burners, heating system, and so on).
These devices receive information from the broker and react accordingly to it
i.e., if the kitchen burner client receives that the user had the eyes closed for a
long time, which likely means that he/she has fallen asleep, then the subscriber
client should turn off burners in order to avoid risks.

3 Experimental Results

The experiments conducted in this study will aim to prove the accuracy in
classification of the proposed system and its possible implementation in a real-
life scenario. For this purpose, two different experiments have been developed:
firstly, an off-line experiment, which tests classifier performances and secondly,
an on-line experiment, which demonstrates the integration of both BCI and IoT
environments. The details of these experiments are described in this section.

3.1 Off-line Experiments

The proposed classifier uses 42 EEG recordings captured from four healthy male
volunteers, i.e. a total of 168 recordings is considered. Each one is composed by
20 s of each eye state. Therefore, we have 84 of them corresponding to cE and also
84 to oE. The subjects were asked not to move or speak during the experiment.
Brain signals were captured at 128Hz and, according to the 10–20 International
System, the input electrode was located at the FP2 position, while reference and
ground electrodes were placed in O2 and right mastoid positions, respectively.
Figure 3 shows this electrode position (left) and a picture of a subject during the
closed eyes recording using the proposed EEG device.
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Fig. 3. Electrode position (left) and a subject’s photo in a closed eyes task (right).

The classifier is trained by selecting 8 random recordings, 4 for each eye state.
Then, considering these training recordings, the threshold value is obtained by
applying Eq. (2). According to this threshold value, the test recordings will be
classified applying the criterion defined in Eq. (1), i.e. instances with a ratio value
smaller than this threshold are classified as closed eyes, while those with higher
values are classified as open eyes.

Depending on system applications, Th and R parameters could be calculated
considering different sizes for the time windows. Figure 4 shows the classifier
accuracy as a function of time window size. It can be observed that as this size
increases, the obtained accuracy improves, and vice versa. Thus, the accuracy
is smaller than 70% for all the subjects with windows of 1 s and greater than
90% for a size of 13 s. Therefore, there is an important trade-off between system
response time and classifier accuracy.

As can be observed from the figure, the proposed algorithm is appropriate
for non–critical applications where short response times are not required. Con-
sequently, optimal window sizes will be those with higher classifier accuracy for
medium response times. For that reason, the window sizes range from 10 s to
19 s are selected. Figure 5 shows the corresponding threshold values obtained for
these window sizes.

On the other hand, it is also important to highlight that those thresholds
are highly user-dependent and, as a consequence, the classifier accuracy also
depends on the brain characteristics of each subject.

3.2 On-line Experiments

The integration of both BCI and IoT environments will be tested now using a
more realistic scenario. For this purpose, the BCI application will perform an
on-line detection of user’s eye state and according to this information the IoT
ecosystem will control different elements of its surroundings.
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Figure 6 shows the user’s flowchart for a recording starting from an open eyes
state. Forty EEG recordings were captured from subject 1 with the electrode
position used for the off-line experiment described in the previous subsection.
Each recording is composed of 277 s constituted by a short training period, for
threshold calibration, and a longer test period, for system performance evalu-
ation. As shown from off-line experiments, the window size should be of 10 s
as minimum, and according to that, we choose a size of 13 s. Consequently, the
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Fig. 6. User’s experiment flowchart, with t ∈ {25 s, 45 s} (cE and oE for closed and
open eyes state, respectively).

training period is constituted by four windows of that size, two for cE state and
two for oE state. On the other hand, for the test period, EEG recordings were
captured using different time intervals, denoted as t, for the eye tasks, specifically
25 s and 45 s, having captured 20 recordings for each time interval. Moreover, in
order to avoid any data correlation, half of the test recordings started with the
oE task and the other half with cE.

EEG data captured from training period is processed and then used to calcu-
late the threshold value according to Eq. (2). Applying this Th value and follow-
ing the criterion defined in Eq. (1), 13 s–windows are classified during the test
period. Note that there are three types of windows: oE, cE and overlapped. It is
important to say that, since eye state changes occur every 45 or 25 s, some win-
dows could contain information from both eye states. In the transition windows,
the window state is considered as that with a greater number of seconds during
that time slot. As a consequence, the response time of the detection system will
vary according to the window type to be classified i.e.,

– Non–overlapped windows, which only contain information related to a single
state (cE or oE). In such a case, the response time is equal to the window
size i.e., 13 s.

– Overlapped windows, which contain information related to both eye states.
Since the window state corresponds to the dominant state, two possibilities
can be considered. In the first one, cE state is dominant, and therefore the
response time may be less than the window size. For example, this occurs
when a window starts with oE and the state changes only 2 s later. Thus, the
window state will be cE, since it contains 2 s for oE against 11 s for cE, and
the system detects only 11 s later than the eye state switching. In the second
one, oE state is dominant and the response time is equal to the window size,
although it produces a delay in the following detection. For example, think
about a window with 7 s of oE and 6 s of cE. After 13 s the window state
is detected and classified as oE, but the following detection of cE will suffer
from that delay of 6 s.

According to this criterion, the detection delay of the system will range between
7 s and 19 s. Table 1 shows the accuracy and the mean delay obtained by our
classifier considering two time intervals for the eye task duration. It should be
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noted that the accuracy achieved for non–overlapped windows (i.e. only oE or
cE) is above 93% for all cases, while for overlapped windows (i.e. those with
information of both eye states) it drops until 69.55%. This reveals that our
system better performs detecting eye states than changes between those states.
On the other hand, it is important to highlight that although the detection delay
can vary from 7 s to 19 s, its mean remains close to the window size.

Table 1. Accuracy and mean delay obtained by our classifier considering two time
intervals for the eye task duration.

t oE accuracy cE accuracy Overlapped accuracy Mean delay

25 s 100 % 96.93 % 69.55 % 11.93 s

45 s 93.47 % 94.17 % 87.50 % 13.12 s

Remember that a 13 s–window is processed and on-line classified using the
ESP32 microcontroller while the EEG signal is being sampled. Once the eye
state has been determined, the system employs the MQTT publisher client to
communicate that decision to the IoT ecosystem. The broker receives this infor-
mation and forwards it to interested subscriber clients. In this experiment, an
Arduino UNO connected to a light system has been implemented as a Smart
Home (SH) subscriber client. This SH device monitors the user’s eye state dur-
ing long time periods and according to that information that light is regulated.
All these MQTT messages were received by the subscriber with a latency lower
than 40ms.

4 Conclusions

In this work we demonstrate the appropriate integration of both Brain–
Computer Interface and Internet of Things when Electroencephalography sig-
nals are acquired, the accurate identification of closed and open eyes states
using a threshold–based classifier and how that extracted information can be
correctly transmitted to a simple smart home environment consisting on on–off
light switching. The experiments show high classifier accuracies and a correct
working of the whole system. Experiment results have shown that classification
accuracies, mean delays for detection or system working are sound enough for
non-critical and monitoring applications. As future work, we have in mind to
incorporate more electrodes to our prototype which will allow us to detect more
complex mental states.
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Abstract. In this paper, the connection between spatial and numerical
cognition is highlighted and some applications to improve them are dis-
cussed. Indeed, in children, it is possible to promote numerical cognition,
which is the base of mathematical cognition and academic achievement
in later years, by strengthening their natural endowment to deal both
with numerical stimuli and spatial stimuli.

Together with a brief review about spatial and numerical cognition,
two tools that are meant to improve them with a Game-based and Tech-
nology enhanced approach are reported.
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1 Introduction

Spatial and numerical cognition represent two of the four core knowledge systems
at the foundation of human knowledge [44]. They are strictly connected with
many issues that are relevant in different branches of research, including cognitive
development.

Studying the development of spatial and numerical skills can be the starting
point of relevant applications to educational context for geometry, science [26],
mathematics, but also music [25].

The importance of spatial and numerical cognition is evident if we con-
sider the developmental pathways that lead from the basic abilities that can
be observed in human beings since the very first moment of their lives to the
formal education in school context. Indeed, even if there is a common basis to
start from, many different possible outcomes can be observed, including notable
differences in math achievement at difference age, between genders [43] and in
different cultures [46].
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These differences cannot be explained by disparity in natural endowment and
are therefore likely to depend on other cultural and socio-cognitive factors, for
example related to education methodology.

What we propose in this paper is a twofold startegy to improve numerical
cognition and, possibly, the later school achievement in math, by addressing
directly numerical cognition and by improving numerical skills through spatial
cognition. Moreover we propose to adopt an approach relying on Game-based
learning and Technology Enhanced learning to improve spatial and numerical
cognition in an effective and involving way. In particular we describe two tools
that aim at improving numerical and spatial cognition: Velocicards and Flat-
landia creatures.

2 Spatial and Numerical Cognition

Human beings, as well as the other species are able to deal with numerical and
spatial information without being instructed to do so. This indicates that there
are some abilities that are innate and some others that can be acquired by the
proper instruction, especially in human beings. This natural predisposition can
be the basis of future academic abilities: an intervention on them can affect later
achievement in school context.

2.1 Numerical Cognition

Considering numerical cognition, many evidence suggest that human infants pos-
sess an intuitive sense of number, the so-called number sense [6]. It is connected
with the Approximate Number System (ANS) [14,16]: a cognitive system that
supports the estimation of the magnitude of a group with more than four ele-
ments without relying on language or symbols, together with the parallel individ-
uation system, or object tracking system for smaller magnitudes. Number sense
in infancy predicts math skills in childhood. In the study by Starr and colleagues
[45], we find the evidence that the number sense, before language acquisition,
“may serve as a developmental building block for the uniquely human capac-
ity for mathematics”. These authors show that the performance on numerical
preference scores at 6 months of age is correlated with math test scores at 3.5
years of age. This indicates that number sense may facilitate the acquisition of
numerical symbols and mathematical abilities.

This evidence supports the theory of innate numerical abilities [3,15], accord-
ing to which humans have, since the first of life, innate numerical skills to classify
small sets of elements (4–5 items), and to distinguish in a rapid and accurate
way a small amount of objects and elements, an ability called subitizing [20].
Only later, the culture teaches how to use this mathematical expertise in a
more advanced manner. The study by Starr and colleagues goes a step forward,
indicating that a stronger number sense predicts later numerical abilities, open-
ing the way to the chance to foresee educational intervention which trains and
strengthens the number sense to improve mathematical achievement in later
years, as we will see in next section.
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2.2 Spatial Cognition

Spatial competence undoubtedly represent a key competence for human adap-
tation [28]. Indeed spatial knowledge allows to represent elements in the world
around and it has a huge adaptive value from every animals who moves in an
environment, as they have to organize their action according to their spatial
world.

This is true also for artificial agents: simulated or real robots can acquire the
competence to act in the environment, only if they possess some kind of repre-
sentation of the space around them, deriving from their perception [23,24,31].
In analogy with what we have described about numerical cognition, human chil-
dren have also a predisposition to treat spatial information. For example, Hut-
tenlocher and colleagues [18] show that the basic framework for coding location
is present early in life and later development allows to increase this initial ability
by organizing a broader range of bounded spaces.

2.3 The Connection Between Spatial and Numerical Cognition

Many studies have underlined the strong connection between spatial and numer-
ical cognition. There is a wide literature on spatial associations during number
processing which correlates these two core knowledge. One notable findings is
the SNARC effect, spatial numerical association of response codes [9]. This effect
consists in the fact that small numbers are reacted to faster with the left hand,
large numbers with the right hand and gives a strong witness of this connection
[49]. Moreover Fischer and Shaki [13] describe spatial biases found for single
digits and pairs of numbers and numbers can be represented by humans on a
logarithmic number line [8].

Another interesting effect that connects spatial and numerical cognition is
the NIPE effect [30,32,39]. This effect [11], Number Interval Position Effect
has been observed in the mental bisection of number intervals both in adults
and in children. A systematic error bias in the subjective midpoint of number
intervals is found: for intervals of equal size there is a shift of the subjective
midpoint towards numbers higher than the true midpoint for intervals at the
beginning of decades while for intervals at the end of decades the error bias is
directionally reversed towards numbers lower than the true midpoint. This trend
of the bisection error is recursively present across consecutive decades.

3 Spatial and Numerical Cognition in Education

Spatial and numerical cognition are not only crucial in adaptation process, but
they also are relevant building blocks for human children and adolescents in
school context, as hinted at in the introduction.

The pre-requisites on maths are important predictors of school achievement
and success. The school readiness is a multidimensional concept that identifies
the competences that a child needs before entering school [42]. Crucial indicators
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are the pre-requisites of learning, knowledge and abilities that develop before
acquiring reading, writing and calculation skills and valuable up to preschool
years [40]. Literature highlights consistently the importance of pre-requisites of
calculation for the success in primary school and beyond [17,21,38].

Pre-requisites and later achievement connection has threats and opportuni-
ties. The transition between pre-requisites and advanced math skills can be prob-
lematic as it implies a switch from embodied elements to symbolic one. After
kindergarten where children use their fingers and physical objects to count, the
learning approach strategy soon becomes abstract, mainly relying on working
memory [1]. Whereas some children are able to follow this step, some others do
not and this can generate difficulties at school. On the opportunity side, if pre-
requisites are strengthened also later achievement can be improved, a relevant
intervention chance.

Also spatial and numerical cognition connection can be exploited to improve
math achievement. Many studies indicate that math and science learning can be
improved by spatial thinking [27,41]. Interventions that target spatial abilities
can improve math performance and, at an early age, the intervention can have
the shape of a game, as we will see in the next section.

4 Game-Based Learning to Improve Spatial
and Numerical Cognition

Jirout and Newcombe [19] show that children’s play with spatial toys (e.g., puz-
zles and blocks) correlates with spatial development. These authors underline
that spatial skills can be improved, as they are malleable. It is possible to foster
spatial skills in children as we teach them, as students’ spatial skills are corre-
lated with their success in learning science, both concurrently and predictively.
This means that spatial skills can be trained also in early childhood, even before
school entrance, also in home context [2]. In this study, the authors underline
that, whereas language skills acquisition is supported at home by caregivers,
math skills are stimulated in school context only. But, if a little help is given,
for example, in the form of a mobile app, math skills improve. This means that
together with a theoretical understanding on spatial and numerical cognition, it
is relevant to design an educational approach which promotes spatial and numer-
ical skills in the form of games. At the same time of training, these tools can be
used for assessing spatial abilities [4,5] or related abilities such as reasoning [12]
and soft-skills [22,29] also in children. Existing games that can be used for this
goal are cards game and building blocks. Cards games not only implies count-
ing and using symbolic representation of numbers, but also improve memory
skills and strategic thinking. Building blocks is a game loved by children that
stimulates spatial thinking [47,48].
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Fig. 1. A screenshot from Velocicards app in Android environment showing the
moment before the cards are displayed

5 Examples of Technology Enhanced Version of Cards
and Building Blocks

5.1 Velocicards: An Application to Strenghten Numerical Abilities

The first application we would like to introduce is the App Velocicards, an appli-
cation that can be played on Android devices, shown in Fig. 1.

The games consists in selecting the card with the highest value between 2
cards. It records the speed of the selection on 20 attempts. The cards report
the numbers from 0 to 9, represented in different codes, according to triple-code
Dehaene model [7].

These codes are analogical (with dots or little characters) and symbolic (ver-
bal and arabic numbers) and are pictured in Figs. 2 and 3.

The application allows to train people, including children, to shift quickly
between the different codes, thus favouring the transition between analogic rep-
resentation, connected with the natural endowment described above and the
symbolic one, connected to formal education in maths. These cards represent
a Technology-enhanced version of traditional card games where many statistics
can be collected and which favours the involvement by children (see [10,33–37]).
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Fig. 2. An example of number analogic representation with little characters. The other
one (not shown) is with black dots

Fig. 3. An example of number symbolic representation with arabics. The other one
(not shown) is with words
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5.2 Flatlandia Creatures

Flatlandia creatures, whose name derives from the book “Flatland: A Romance
of Many Dimensions” by Edwin Abbott are building blocks with different shapes
and colours to build geometric features. These blocks are physical blocks that
stimulate the embodied representation of space, but can be connected to a dig-
ital environment, creating a link between the physical and digital world which
stimulates mental representation of spatial elements.

Also Flatlandia creatures represent a Technology-enhanced version of tradi-
tional building blocks that keep the advantage of the physical game, augmenting
their educational possibilities thanks to technology.

6 Conclusions and Future Directions

Using cards and building blocks in their TEL version can be a very effective
way to promote spatial and numerical skills. This is true for different reasons.
The first one is related with the involvement that these tools have. In fact,
today’s children have the habit to play with digital materials and find them very
attractive.

Moreover, using together physical and digital materials allows to exploit the
embodied dimension augmented by the chance to record almost every aspect of
children-game interaction. Embodied learning approaches underline that action
can support educational objectives and also help the transition between analogic
and symbolic dimension which is crucial in math learning. Another important
aspect is related to the use of these tools in different context, included non-formal
educational contexts such as home. In fact, whereas linguistic abilities are com-
monly strengthened informally by parents and caregivers, for example reading
stories or with the daily linguistic interaction between children and adults, it is
not so common that numerical skills are trained this way.

The next step will be to extensively test these tools with a longitudinal and
experimental procedure that will follow groups of children at different ages to
verify if the use of these tools can improve numerical abilities and later math
school achievement, training spatial and numerical predispositions.
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Abstract. Nowadays technologies allow an exponential generation of
biomedical data, which must be indexed according to some standard
criteria to be useful to the scientific and medical community, being neu-
rology one of the areas in which the standardization is more necessary.
Ontologies have been highlighted as one of the best options, with their
capability of homogenise information, allowing their integration with
other kind of information, and the inference of new information based on
the data that is stored. We analyse and compare the approaches taken by
different research groups inside the area of the Alzheimer’s disease, and
the ontologies they developed with the objective of providing a common
framework to standardize information, data recovery or as a part of an
expert system. However, to make this approach work the ontologies must
be maintained over the time, a critical point which is not been followed
by any of the ontologies reviewed.

1 Introduction

During the last decade has been a revolution in the volume and complexity of
data created in the life sciences, and with them, in the possibility of studying
such data [12] . However, their utility depends fundamentally on the ability to
know how to handle and interpret large heterogeneous datasets [8] scattered
[4] across different databases and under different formats, so the integration
and standardization of the data it’s necessary in order to make information
useful [6] while allow the data interoperability, to facilitate the extraction and
retrieval of information [3], with diverse scientific and clinical objectives. Thus,
the generation of adequate infrastructures to allow standardization, exchange
and sharing information have become a key objective for the success of the
current and future research and clinic [4].

In this framework, the development of ontologies has been established as one
of the most adequate solutions to confront these problems, as in the domains
of biomedical research, where specific ontologies have been developed across
c© Springer Nature Switzerland AG 2019
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the different fields [3]. Within biomedicine, neurology is one of the fields where
integration is more necessary to make the data useful, since mental processes
extend across very heterogeneous levels [11]. Mild cognitive impairment (MCI)
has attracted significant attention in neurological research, as it is a transition
phase between normal aging and dementia, especially that related to Alzheimer’s
disease (AD), making MCI one of the main indicators of developed AD, that’s
why the development of methods that allows their early detection of AD is
essential to improve the quality of life of patients [22].

For this purpose, various types of tests have been developed, which evaluate in
different ways the state of the patients: biological test (such as the concentration
measurement of beta-amyloid); imaging test (as Nuclear Magnetic Resonance or
MRI), or neuropsychological tests. The underlying theory of those last tests
is that these neurodegenerative diseases cause damage in certain areas of the
brain, which affect different mental functions and cognitive processes. In the
neuropsychological tests, these dysfunctions created by the MCI are reflected
as different types of errors or deficiencies committed at the time of performing
of each test. Those tests are the only ones capable of measuring the cognitive
abilities in patients, such as short-term memory versus long-term memory, or
the executive functioning [11]. In addition, neuropsychological tests have the
advantage of being non-invasive, versatile and low cost.

The purpose of this article is to review the different approaches and objec-
tives carried out by different research groups in this area, not only to solve the
problems of interoperability and standardization in the AD domain, and other
neurodegenerative diseases related to the MCI, but also to allow storage, recov-
ery and making inferences from the information, as well as to help the MCI
diagnosis.

2 Ontologies and Neurodegenerative Diseases

An ontology is a formal definition of classes, properties, and relationships
between them, which is integrated inside some knowledge area, allowing the
homogenization and consensus in the representation and reutilization of a
domain [19]. It facilitates the exchange of information in biomedicine [17], the
integration and recovery of heterogeneous data from a diverse variety of sources,
with the aim to improve the diagnosis or the treatment of the disease. Depend-
ing on the approach and the final goal sought during the development of the
ontology, it can be distinguished 3 main groups [21]:

– Ontologies for the standardization in the terminology: They seek to allow both
the direct reutilization of the terminology by third parties, and the compat-
ibility of the ontology with most of reasoning engines. In design they are
characterized by a strong hierarchy of classes and a large amount of different
types of metadata for a correct definition of the terms.

– Ontologies for the storage and recovery of the information: They seek to allow
the recovery and inference of new knowledge from the stored data, as well as
achieve a standardization of the domain. In design, they tend to display less
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nesting in the class hierarchy than in the previous case, and the metadata
usually are scarce or reduced to the minimum, although their axiomatic tends
to be more specific.

– Ontologies as a diagnosis support: they are normally designed from scratch
for a practical purpose, to be integrated into a larger system as a module
or subsystem, normally working as a knowledge database. They usually are
linked to the target application, being difficult their reutilization in other
contexts. In design, the class hierarchy usually has only relevant term to the
system, few levels of nesting and scarce metadata, although their axiomatic
are heavy.

However, there are also some problems associated to the usage of the ontolo-
gies. The main and more immediate problem are the low reutilization of the
existing terminology, generating redundancy problems and conflict in the term
names, unstable references, redundancy in the class hierarchy, and inconsisten-
cies between them [15]. To avoid this situation, a priority during the development
of new ontologies must be the reutilization of already existent ontologies as much
as possible, only adding new classes and instances when they are not covered by
any of the consulted ontologies [10].

In the following sections, the main approaches are presented. They are orga-
nized according to the final objective of the ontologies described above.

2.1 Ontologies for the Standardization in the Terminology

The project of Gao et al. [9] of the Semantic Web Application in neuromedicine
(SWAN) was one of the first biomedicine ontologies focus in the storage and
contextualization of the existent information about the AD. The project was
developed as an infrastructure that integrate in an effective way the scientific
knowledge of the AD allowing the construction of a semantic web of hypothesis,
publications and digital repositories [5]. SWAN was considered as the reference
repository about the data regarding to the AD that were available in the web.
However, this ontology and the associated application has been discontinued
from all the online repositories where it had been stored, being no possible to
retrieve it.

On the other hand, Jensen et al. [14] propose Neurological Disease (ND)
Ontology, which seeks to provide a framework for the representation the key
aspects of neurodegenerative diseases for study and treatment, providing a set
of controlled classes connected in a logical way to describe the range of the
neurodegenerative diseases, as well as their signs and symptoms, evaluations,
diagnosis and interventions that have been found in the course of clinical practice.
It can also serve to link and extend other ontologies of the same domain. In the
Fig. 1, it can be observed the extension in those domain areas that ND performs
to the Basic Formal Ontology (BFO) [1]base ontology.

Later, in the paper published by Cox et al. [7] is described NeuroPsychological
Testing Ontology (NPT), which seeks to extend and to complete ND, specifically
in the part of the domain relating to the neuropsychological tests. NPT provides
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a set of classes for the realistic representation and the annotation of a wide
variety of neuropsychological tests which evaluate similar or overlapping domains
of the cognitive function, such as the MMSE, as well as other associated data,
allowing the integration of the results. This provides a realistic and detailed
representation of the functioning of the cognitive process and the functions they
involve. However, NPT also has the problem of excess of complexity, which make
it little manageable due to that. This makes difficult to locate and focus in the
relevant classes, since it has classes from very heterogeneous domains that have
little to do with the domain in which this ontology is focused.

Fig. 1. Graphic depiction of the high-level terms in ND. A subset of classes of ND that
shows the is a relations between BFP [14]

2.2 Ontologies for the Storage and Recovery of the Information

According to the authors of SWAN, this ontology, was designed both as a stan-
dardization system and as a storage and information retrieval system [18] stored
in the Alzforum digital library, in order to make information inference and gen-
eration, among other reasons. The information retrieval would be done through
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two methods: SWAN Workbench, available only for a reduce group of users, and
the SWAN Browser, designed to be used more generally [5].

Malhotra et al. [16] propose Alzheimer Disease Ontology (ADO), follow-
ing the guide of the BFO. This ontology seeks the widest possible coverage
of the different aspects of the AD domain in a structured way, from diagno-
sis to treatments. Like SWAN, ADO was designed with the idea of allowing
retrieval and inference of the information, that will be done through queries
about the stored data. However, ADO has the problem of having a low reuti-
lization of already existed ontologies, as well as an obtuse axiomatic of inter-
preting. For example, the classes generically dependent continuant and specif-
ically dependent continuant are disjointed classes, but they are also marked
as equivalent to dependent continuant. Since they are subclases of depen-
dent continuant, this makes those classes both equivalent and disjointed between
them. This kind of situations appears more than once across the ontology.

In other hand, the OntoNeuroLOG ontology from Batrancourt et al. [2] is a
multilayer ontology of the instruments used to evaluate the brain and cognitive
functions. OntoNeuroLOG is a multilayer ontology organized in sub-ontologies
or modules located in three different levels of abstraction. It has been built using
DOLCE as its main basis, which has been complemented in the different modules
with other ontologies. Also, new terms were defined specifically for the ontology
when necessary. Although it has the benefit of being one of the most complete
ones, it also has the problem of being one of the biggest ontologies, making it
impossible to integrate the 3 modules in which it’s splitted up as a whole in
Protégé.

2.3 Ontologies as a Diagnosis Support

Sanchez et al. [18] propose the MIND ontology as a decision support system that
aid physicians in the early diagnosis of AD. This project merges an ontology
and a semantic reasoner able to infer logic consequences starting from a series of
facts or given axioms to help physicians in the early detection of AD using the
multidisciplinary knowledge stored in the ontology. For that case the ontology
describes the neuropsychological, neurological, radiological, metabolomical and
genetic tests carried out to patients. Despite everything, this ontology does not
relate with the different cognitive process, or the mistakes committed in the tests
during their performance; instead it employs only in the final score.

The Ontology driven decision support for the diagnosis of MCI was proposed
by Zhang et al. [22] as a method of decision support supported by ontologies
designed to avoid subjectivity in the diagnosis of MCI through magnetic res-
onance imaging, for the detection of the cortical cortex thickness, since it is
reduced in patients with MCI [20]. However, it has the disadvantage that the
C4.5 decision tree used to developed the model is sensitive to the training data,
with the consequent problem of overfitting. Also, this ontology is focused only on
an imaging approach of MRI, modelling the ontology according to this criterion,
and ignoring other systems such as neuropsychological tests.
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Fig. 2. DSS (Disease-Symptom-Sensor) ontology model [13].

Ivascu et al. [13] propose a multiagent ontology, designed to facilitate remote
monitoring of patients who are susceptible to develop cognitive impairment dis-
ease. To achieve that goal, this ontology is built using a combination between an
ontology developed as a Disease-Symptom-Sensor (DSS) system, which serves
as a diagnosis component, which is shown in Fig. 2, and a multiagent system,
to which the ontology complements, and which is a group of programs spe-
cialized in a task and capable of working together. This way, the system can
predict the disease based on the registered symptoms. However, there are still
some elements that must be solved before this system can be release, such as
data privacy improvements, automated devices/sensors discovery, context sensi-
tive information aggregation and activities correlations for users that match the
same profile.

Finally, [21] propose an ontology based in the fuzzy logic, AlzFuzzyOnto,
which are developed using MIND as the basis to model an expert system to aid
to physicians in the early diagnosis of AD. The motivation is that there is a
significant number of terms and concepts that constitute a source of imprecision
and uncertainty. To solve this, fuzzy classes were added, and the concepts were
connected using a fuzzy relationship of belonging, in which a crisp concept are
related to a fuzzy one. Those relations have different weights of degrees of mem-
bership with each class with a value in the interval [0, 1], allowing the developed
of a fuzzy ontology for the AD. However, the experimentation, validation and
instantiation of this ontology has not carried out, but are left as a future work,
as well as the construction of a fuzzy inference engine.
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Table 1. Summary table of the ontologies. The Reutilization column is according to
the paper if the ontology was not found. Axiomatics: High (high number of relation-
ships between low or concrete clases) Medium (relationships between high or more
abstract clases, which are inherited by the concrete ones) Low (scarce number of rela-
tionships in general). Reutilization: High (they use of different kind of ontologies to
model the ontology domain, usually high level) Medium (they reuse no more of 1 or 2
ontologies) Low (they only use the squeme of one ontology for the more upper classes,
or no reutilization at all). Hierarchy: High (great depth in nesting, usually a high num-
ber of classes -more than 1000-) Medium (presence of more classes in the root, great
depth in nesting are more uncommon) Low (the nesting usually no overpass a 5 classes
depth, and the number of classes are usually less than 100). Metadata: High (label,
description, comments and other metadata tend to appear in most classes), Medium
(label and a short description, they can also count with synonyms, comments, etc,
rarely surpassing one line), Low (usually just the label; occacionally short descriptions,
comments, synonyms, etc, usually of only a few words long)

Name Publicly

available

Last

update

Focus Axiomatics/

relations

Reutilization Class

hierarchy

Metadata

SWAN No 2009 Terms

standardiza-

tion/Knowledge

inference

– – – –

ND Yes 2012 Terms

standardization

Medium High High High

NPT Yes 2013 Terms

standardization

Medium High High High

ADO Yes 2013 Knowledge

inference

Low Low Medium Medium

OntoNeuroLOG Yes 2013 Knowledge

inference

High High High Low

MIND No 2011

(paper)

Part of an

expert system

– Low – –

Ontology

Driven

Decision

No 2013

(paper)

Part of an

expert system

– No – –

Multiagent No 2015

(paper)

Part of an

expert system

High No Low Low

AlzFuzzyOnto No 2015

(paper)

Part of an

expert system

– Low – –

3 Conclusions

The new technologies are allowing an exponential generation of biomedical data,
which must be stored and indexed correctly to allow easy access and manage-
ment, so they can be useful to the scientific and medical community. Inside the
area of biomedicine, neurology, and more specifically, MCI related to the early
detection of neurodegenerative diseases, has become one of the fields where such
integration has become more necessary. Ontologies are a powerful tool in achiev-
ing the goal of integration and easy access to the data, since they can provide a
standardized vocabulary for the representation, sharing and reuse of the knowl-
edge, as well as storage, retrieval and inference of information. Moreover, they
can be integrated into expert systems, working as a knowledge database during
the early detection of MCI.
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Throughout this article the main ontologies developed in this domain has
been shown, either with the shared objective of standardizing and providing a
common framework of existing information, data recovery or as a part of an
expert system. The summary of the ontologies described is shown in Table 1.
But for this to work, ontologies must be maintained, something that are not
happening with any of the revised ones. Although this can be understandable
in those ontologies designed to work as a part of an expert system to fulfil a
specific function, in which case an operative version them would be enough,
this situation would apply to standardization-oriented ontologies, though the
absence of maintenance is common to all ontologies. Some of them only receive
a single update, corresponding to the years of publication of the article. Those
that received subsequent updates, they were made in the close years to the first
publication, being ND and OntoNeuroLog the ones which received more support
during more time, even though both have not received any updates in the recent
years. Finally, there are several ontologies described in papers that were not
possible to locate in any internet repository. Those are the ones oriented with
a more practical goal, with the exception of SWAN, which was deleted from
internet for unknown reasons.

Lastly, it has been found that term reuse between different ontologies is, on
average, scarce or non-existent, the main exception being the ontologies of ND
and the derivative ontology NPT.
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Abstract. Steady-State Visually Evoked Potentials (SSVEPs) have
been widely used in neuroscience for the characterization of dynamic
processes from the retina to the visual cortex. In Neuro-engineering,
SSVEP-based Brain-computer Interfaces (SSVEP-BCIs) have been used
in variety of applications (e. g., communication, entertainment, etc.) for
the detection of attention to visual stimuli. In this work, we propose
a hands-free videogame in which the player joystick is a SSVEP-BCI.
In the videogame, hostile avatars fire weapons against the player who
could deflect them if enough attention is exerted. Attention is detected
based on the analysis of SSVEP and Alphaband powers. For this pur-
pose, weapons are mobile checkerboards that flicker at a constant fre-
quency. We presented this videogame as a demo in a technologic event
for students of engineering who freely tried it. The main findings were:
(i) the attention detection algorithm based on SSVEPs is robust enough
to be performed in few seconds even with mobile visual stimuli and in
a non-isolated room; (ii) the videogame is capable to dose and quantify
the amount of cognitive attention that a player exerts on mobile stim-
uli by controlling their time and position. The results suggest that this
videogame could be used as a serious game to play/train the attentional
and visual tracking capabilities with direct application in Special Needs
Education or in attention disorders.

Keywords: Attention · SSVEP · Gamification · EEG ·
Brain-computer Interface
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1 Introduction

Visually Evoked Potentials (VEPs) are visually evoked electrophysiological sig-
nals generated by the visual cortex. Steady State Visually Evoked Potentials
(SSVEPs) consist in periodic VEPs generated in response to a train of peri-
odic stimuli [1,2]. The spectral power of SSVEPs extends over a very narrow
band that matches that of the stimulation [3]. Among other uses, SSVEPs are
clinically utilized to investigate the visual processing in patients who experience
migraine with aura, identify abnormal potentials in children with a history of
febrile seizures, assessment of covert attention at work [4–6] and others.

In neuro-engineering, SSVEPs are utilized as indicators of intention or voli-
tion in an extended number of Brain-computer Interfaces, namely the SSVEP-
BCIs. A BCI is a device that provides the brain with a new, non-muscular
communication and control channel [7], thus allowing a subject (e.g. a male) to
interact with an external device by means of his neural activity. The two main
reasons why SSVEPs are extensively utilized in BCIs are: (i) most part of their
spectral energy is concentrated within a narrow band and (ii) this energy can
be voluntarily modulated by attention [8,9]. Some examples of health-related
SSVEP-BCIs or daily life applications can be reviewed in [10–13]. In the field of
videogames, BCIs have been used as an alternative interface. For instance, Mind
the sheep, The Mindgame, Brain Driver and Tetris [14–17].

In this work, we propose a hands-free videogame that uses a SSVEP-BCI.
This SSVEP-BCI consists of an EEG acquisition system, a computer screen
to present the visual stimuli and a server that coordinates the entire system.
The game is designed to detect the attention that a player exerts on attacks
that hostile avatars fire from the background in a virtual scenario. Attention is
detected by measuring changes in the energy of SSVEPs and Alpha band. For
this purpose, hostile avatars weapons are texturized as moving checkerboards
that reverse their contrast at a constant frequency, thus eliciting SSVEPs [18].
Detection decision is based on a combination of SSVEP amplitude, signal-to-
noise-ratio and Alpha band power. As it is indicated in [19], SSVEP power is a
valuable biomarker in BCI applications. Moreover, Alpha band power has been
proved to be useful for detecting attention since it increases in periods of visual
inattention or relaxation [20]. If the detection process assesses that a player is
paying enough attention to the attack of an avatar, the attack is immediately
deflected, otherwise, the attack will reach the foreground of the virtual scenario
and the player will be defeated.

This game was demonstrated in technologic events celebrated at the Uni-
versity of Granada, the UGR LAN Party 2018 (http://ulp.ugr.es/). The game
involves the use of gamification principles such as continuous progress feedback,
immediate success feedback and autonomy support. Students reported to be
an exciting and challenging entertainment that kept their attention focused for
periods of time with increasing difficulty. Our proposal arises as an alternative
way to train/play with the attention capabilities that could be used as a serious
game to play/train the attentional and visual tracking capabilities with direct
application in Special Needs Education or in attention disorders.

http://ulp.ugr.es/
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2 Materials and Methods

2.1 Subjects and Recording

A total of 3 healthy subjects (3 males; age 15–24) tested the game. No cogni-
tive or visual disease was reported that could affect the experience. The game
was played in a broad and noisy room filled with people passing by during a
technologic event. Therefore, external disturbances were present throughout the
experience.

Fig. 1. Left: A student playing the game during a technologic event. Right: Schema of
the closed-loop system.

Electroencephalographic activity was acquired using a RABio w8 [21] with
a sample rate of 500 Hz. An electrode was placed on the Oz position of the
International 10-20 System [22] and a reference electrode was placed on the ear
lobe. The RABio w8 transmitted raw EEG to the Monitoring client via Bluetooth
(see Fig. 1). The raw EEG was filtered using a 2nd order bandpass Butterworth
filter with cutoff frequencies of 0.25 Hz and 40 Hz. The resulting signals were
z-scored and averaged. Finally, a Tukey window was applied to them.

2.2 Gameplay

The game advances over a maximum of five stages. In each stage, hostile avatars
sequentially appear in random positions in a 3D scenario. The position of the
avatar is defined by depth, horizontal vertical components (Z, X and Y coordi-
nates respectively) (see Fig. 2). Once an avatar appears on the screen, it fires an
attack consisting in a circular checkerboard with a fixation cross in its center.
This mobile stimulus reverses contrasts at a constant frequency of 15 Hz. The
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checkerboard advances from the position of the avatar to the foreground, thus
causing both increasing its size and changing the location. The player goal is
to visually track this mobile stimulus by keeping his attention on the fixation
cross. If the player exerts enough visual attention, the attack will be deflected
and the player will score. Otherwise, the player will be defeated, and the enemy
will score.. Immediate feedback is shown on the computer by updating the score-
board.

Fig. 2. Initial positions of enemies: in this example, the random initial position of the
first avatar (left) corresponds to (z = 10, x = 1, y = 1). The random initial position of
the second avatar (right) corresponds to (z = 5, x = 3, y = 3).

Each stage ends under two possible conditions: (i) when the running time
exceeds a prefixed limit; (ii) when either the player or the avatar scores five times.
If the player wins, the game advances to the next stage. Otherwise, the same
stage is played again. To achieve a challenging experience consecutive stages have
higher and higher difficulty (e.g., by increasing the speed of the checkerboard or
closer initial positions of avatars) that require additional attentional effort.

2.3 Application Design

The application proposed in this work consists of four functional modules: a
client for presenting the videogame, a RABio w8 for the EEG acquisition, a
client for monitoring the bio-signals and a remote server for the coordination
of the entire system (see Fig. 1). The stimuli client uses Matlab (Windows 7)
to run the game and present the visual stimuli that elicit the SSVEPs. The
monitoring client runs a GUI on Matlab to visualize the bio-signals in real time
and store them for a future statistical analysis. This client sends online the raw
EEG every second to the remote server for the attention detection process by
means of a TCP/IP socket. After signal preprocessing, the server executes an
attention detection algorithm and makes a decision over the game. The decision
is transmitted o the stimuli client to update the game.
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2.4 Stimulation

The display was configured with a resolution of 900 × 600 pixels and a screen
refresh rate of 60 Hz. A Psych toolbox (Matlab) is utilized to create the stimuli
and to control the vertical synchronization (V-sync) of the screen for optimal
precision of the stimulus onset. The stimulus consists in a circular checkerboard
that reverses its pattern to elicit SSVEPs. The checkerboard is texturized using
functions of Psych toolbox. Using these functions, the checkerboard reverses
contrast at a rate of 15 Hz, thus evoking a SSVEP of the same frequency. Along
with the reversal, the checkerboard changes the position and size, thus creating
the effect of a continuous movement (see Fig. 3).

Fig. 3. Trajectory of the mobile visual stimulus. Left: at the beginning, the enemy
fires the reversal checkerboard. Center: then, it moves forward. Right: the reversal
checkerboard enlarges at the foreground.

2.5 Attention Detection

Two facts are considered during the attention detection algorithm: attentional
efforts lead to both enhancing of the amplitude of the SSVEP and suppression of
Alpha rhythm [20,23,24]. Therefore, two decision parameters for the attention
detection process were defined.

Param1: It was defined as the spectral energy of the SSVEP (band 14–16
Hz) compared with that of the background (band 12–13 Hz and 17–18 Hz)

Param1 = P[14−16]Hz(dB) − (P[12−13]Hz + P[17−18]Hz)(dB) (1)

Param 2: It was defined as the spectral energy of the SSVEP (band 14–16
Hz) compared with that of the Alpha rhythm (band 8–12 Hz)

Param2 = P[14−16]Hz(dB) − P[8−12]Hz(dB) (2)

For each parameter we manually defined a threshold for the detection process.
The two thresholds were stablished according to the gaming expertise and age
of the participants and previous training.



56 M. A. Lopez-Gordo et al.

Table 1. Performance of the three players.

Player Stage Points won Points played Duration

1 1 5 5 41 s

1 2 5 6 53 s

1 3 5 9 68 s

1 4 1 6 44 s

1 4 5 9 59 s

1 5 1 6 41 s

1 5 5 5 29 s

2 1 5 5 51 s

2 2 5 5 44 s

2 3 5 5 41 s

2 4 5 6 40 s

2 5 1 6 57 s

2 5 5 6 40 s

3 1 5 5 38 s

3 2 5 5 37 s

3 3 1 6 60 s

3 3 5 5 29 s

3 4 5 6 40 s

3 5 5 6 41 s

3 Results

Table 1 shows the results of the three players.
Once the scores of the three players were compiled, the ratio of successful

detections was 71%. The ratio of successful detection was modelled as a binomial
distribution. The 95% confidence interval was calculated as described in [25] and
yielded a result of [62–78]%. Figure 4 shows the average time spent on each stage
and the ratio of winning stages averaged across the three players.

4 Discussion

In this manuscript we have demonstrated a ludic use of SSVEP as an effective
way to train the attention. The global accuracy of the experiment was 71%
(CI [0.62, 0.78]), which is far from random choice (50% in binary detection).
It evidences that our approach for the detection of attention to mobile visual
stimuli based on SSVEP succeeded. Table 1 shows the performance of the three
players. It shows that all players were able to defeat the enemies by means of
the attention and move on up to the last stage. Only in few cases the enemies
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Fig. 4. Left: average time consumed on every stage. Right: average success rate of each
stage.

defeated the players. This mainly happened during the second half of the sessions
(Player 1: stages 4 and 5; Player 2: stage 5; Player 3: stage 3). It is justified by
the increasing level of difficulty that demands to exert more attentional effort in
less time. The game has been designed to require players to gradually augment
the focus and intensity of their visual attention. The fact that players repeated
two times stage 5, one time stage 4 and 3 and cero times stages 2 and 1 evidences
it. Figure 4 shows the average time that participants needed to complete each
stage. As expected, the time increases with the level of difficulty. Whereas for
basic levels (stage 1 and 2) the time needed is approximately the same (43
and 44 s respectively), for the latest stages (stages 4 and 5) the time increases
approximately 50% (61 and 69 s respectively). In the same figure, average success
rate evidences that our design indeed increased the attentional difficulty stage
by stage.

5 Conclusions

In this work, we propose a hands-free videogame in which the players joystick is
a SSVEP-BCI tailored to detect user attention. Detection decision is based on
a combination of SSVEP and Alpha-band powers. We designed the game with
increasing levels of difficulty by means of stages in which the speed and proximity
of the enemies increase. It has been evidenced the suitability of our approach
to make participants to exert attentional efforts. Our proposal is a simple way
to play/train the attention capabilities that could be used as a serious game in
education or in mental health. In the future, we plan to include some additional
features to increases the potential use of the game. Among others we will add
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(i) more than one mobile visual stimulus at a time; (ii) collaborative play with
more than one user at a time; (iii) combination of visual and auditory stimulus
and distractors.
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Abstract. Nowadays, modern societies are facing the important prob-
lem of ageing of their population. On many occasions, older people must
leave their homes to be cared for by their relatives or to enter specialised
centres for the elderly. On the other hand, something similar happens
with disabled people who need the support of other people for their daily
activity. This phenomenon brings with it important social and economic
consequences. In the activities of the daily life of the elderly it is neces-
sary to have the monitoring of different aspects of their physical activity,
such as the detection of critical situations (such as falls) or dangerous
situations (such as flooding or gas leaks). The aim of this paper is to
analyse the consumption of the different household appliances in order
to model a normal behaviour within the daily activities of a house. By
means of the consumption of the electrical appliances the aim is to detect
anomalous behaviours that induce the appearance of possible problems
due to the change in the consumption pattern.

Keywords: Anomaly detection · Support for daily activities ·
Elderly · Behaviour analysis

1 Introduction

The world population is ageing rapidly. Projections are that people 60 years old
or older will outnumber children by 2030 and adolescents and youth by 2050
[10]. Therefore, concepts such as “independent living”, “active ageing”, “ageing
at home” form the nucleus of proposals for integrated care services for the elderly.
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In recent years, research is being conducted to monitor the electricity consump-
tion of homes. In this sense, there are works related to non-intrusive appliance
load monitoring (NIALM) [2]. NIALM is the process of dis-aggregating a house-
hold’s total electricity consumption into its contributing appliances.

Neural Networks have been used for the detection of anomalies in Electric
Power Systems with auto-associative neural networks [8] or autoencoders [11].
Autoencoders are a kind of neural network that allows to represent a compressed
version of the input. The aim of the paper is to analyse the typical or normal
behaviour modelling from the consumption of different appliances, so that they
can be used in the prediction of anomalous behaviours within the daily activities
of the elderly. The best appliance will be evaluated to be used in a detection
system of anomalous behaviours within the daily activity of older people.

The paper is organised with a first part where the problem to be solved is
presented based on the information of the UK-DALE dataset. Next, we describe
the complete process carried out for the modeling of behaviors based on the
analysis of the electrical consumption of household appliances. In the last part
of the paper, the results obtained and a discussion of the results are described.

Fig. 1. Phases in the process of detecting anomalous behaviours from the electrical
consumption of household appliances.

2 Problem Statement

The problem that arises in this work is divided into different phases (see Fig. 1).
Starting from the real electrical consumption of different domestic appliances, a
pre-processing of the signals will be carried out. This pre-processing is related to
the elimination of outliers (days considered as vacations, for example), as well as
the organisation of the information in a set of variables that indicate the sum-
mary of the daily behaviour of a house in terms of the electrical consumption of
household appliances. The pre-processed signals will be used to model a normal
behaviour in the electrical consumption of the different appliances. For each of the
appliances, a typical or normal behaviour model will be obtained. In order to val-
idate all the models associated with each appliance, a set of anomalous values will
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be obtained by shifting the original consumption and varying the amplitude val-
ues of the signals in a random way. Each of the models will be evaluated through
the use of a classifier. This classifier will be designed using the value of the internal
neurons of the autoencoder when at the entrance of the network both typical and
abnormal behavioural samples are presented (Fig. 2).

Television Coffee maker

Toaster Dish washer

Microwave

Fig. 2. Histogram of mean power demand on each appliance measure in watts.

2.1 Dataset

The dataset used in this work is the UK-DALE dataset [7], where the power
demand of five houses has been collected every 6 s for 4 years. The electri-
cal consumption is measured in watts. Only one house has been considered
since the habits of use of each appliance can vary significantly between houses.
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The appliance used in this paper are the television, the coffee maker, the toaster,
the microwave and the dishwasher since this are the most common appliances
in all homes and their consumption habits are relevant for the detection of
anomalies.

2.2 Data Preprocessing

This section describes the actions carried out for the preprocessing of each one of
the electrical consumption distributions of the different domestic appliances. It
has been decided to group the power demand in hours, since the average use of
the appliances usually lasts several minutes or even hours. Below it is shown the
average electricity demand per hour in the selected home for the five selected
appliances. It can be seen that the appliance usage pattern of each appliance
varies significantly.

To work effectively with the data, a Data Engineering work has been done.
The proposed model has 24 variables, each variable reflects the total watt con-
sumption of the appliance at each hour of a day. The average power consumption
at each hour is not used because some relevant information can be lost with this
metric. After a work of Data Science, there has been detected some outliers.
These outliers are the days in which no use of the appliance has been registered
and it might be vacation days or a failure in the sensor or in the appliance, so
it has been decided to eliminate this days from the dataset because this entries
may affect the performance of the model.

Once the data processing has been done, it is necessary to generate the
anomalies. As stated in [5], a nocturnal activity may be associated with Dementia
or Alzheimer, so the data has been displaced 8 hours forward. In addition, these
values have been multiplied by a random value between [0.25, 2], since a variation
in the use of appliance can be associated with anomalous behaviour. The data
has been separated by 80% for training and 20% for validation. Below at Fig. 3
it is shown a comparison between the distribution of typical data and anomalies
for each appliance.

2.3 Autoencoders for Anomaly Detection

An autoencoder is a neural network where the number of input nodes is equal to
the number of output nodes. The autoencoders has an intermediate layer with
a lower number of neurons. The autoencoders are part of unsupervised learning,
since they do not require labels for their training. This architecture tries to find
an arbitrary function f(W, b)x = x that makes the input equal to the output,
being W and b the weights and biases of the neural network [1].

The autoencoder of this paper has 24 input nodes as shown in Fig. 4, where
each input node is one hour of the day. In the intermediate layer it has two
nodes. The popularity of this architecture has increased since at the intermediate
layer, the data is represent in a smaller dimension, so the autoencoders are able
to simplify the representation of the data and it makes the classification task
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Television normal data Television anomaly data

Coffee maker normal data Coffee maker anomaly data

Toaster normal data Toaster anomaly data

Dish washer normal data Dish washer anomaly data

Microwave normal data Microwave anomaly data

Fig. 3. Normal and anomaly data for each appliance.
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easier. At the following figures, it is shown how the autoencoder represent the
data of each appliances. As shown in the graphs, the autoencoder represents the
data in a simplified way, the classification of said data is now easier (Fig. 5).

Fig. 4. Architecture of the autoencoder used.

2.4 Anomalies Classification

For the classification task, there has been selected a Random Forest Classifier.
The Random Forest is a Bagging method [3], where some Decision Trees are
put in parallel. This classifier is part of Ensemble Learning. To find the better
parameters for the model, the Grid Search [9] has been used, where the data
is split and this framework evaluate the performance of some possible values
defined for the parameters. The metrics used for evaluate the performance of
the model are:

– AUC (ROC): Measures the capacity of the model to differentiate the classes
[4].

– Precision: Success on all the data.
– Recall: True positives on all the positive data.
– F1 Score: Average of the precision and recall [6].
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Television Coffee maker

Toaster Dish washer

Microwave

Fig. 5. Representation of the data of each appliance at the intermediate layer.

3 Experimentation

With all the treatment of the dataset and with the autoencoder trained, the
results of the described model are shown. In the following table, the results of
each appliance with the optimal parameters found with the Grid Search are
showed (Table 1).

The appliance that has given better results has been the microwave with an
88% of accuracy, being the one that has obtained the best result in the other
metrics too. The confusion matrix this appliance is showed below (Fig. 6).

With the data from the microwave, not only the best precision is achieved,
but also the lowest percentage of false negatives is achieved. It is very important
that the number of false positives be low since this type of failure occurs when
the model is not able to detect an anomaly. The false positives in this model are
not so important, since they do not produce dangerous situations for the user.
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Table 1. Results of each appliance on autoencoder.

AUC (ROC) Precision Recall F1 Score

Television 0.73 0.71 0.73 0.72

Coffee maker 0.73 0.73 0.71 0.72

Toaster 0.70 0.72 0.65 0.69

Dish washer 0.62 0.65 0.60 0.63

Microwave 0.86 0.88 0.84 0.86

Television Coffee maker Toaster

Dish washer Microwave

Fig. 6. Confusion matrix of the model with each appliance.

4 Conclusions

The autoencoders are a neural network that simplify the classification work.
Finding an autoencoder that suits in a data allows to build a strong classifier
that achieves a good performance. The model use combine an Autoencoder to
represent the data in a simpler way a Random Forest Classifier, whose param-
eters has been tuned by Grid Search. The proposed model is capable of detect
anomalies in the behaviour of the user with only the power demand of the TV.
The model only requires to be trained with previous data of the power demand
of this appliance. The appliance that appears to be more relevant in anomalies
detection is the toaster and this may be due to the fact that the daily use of
the toaster follows a very stable pattern, and the use of other appliances is more
random.

This method is a non-intrusive way of caring for people with Dementia or
Alzheimer, as it will be able to detect in a precise way situations where the
user requires attention and avoid possible dangerous situations derived from
these diseases. For the future work, a better performance of the model can be
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achieved with other anomalies data. It would be interesting to test the model
with real anomaly data or use a more precise method to generate anomalies.
On the other hand, a combination of some appliances might achieve a better
performance and it should be tested.
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Abstract. Heart-brain interaction is by nature bidirectional, and then,
it is sensible to expect the heart, via the autonomic nervous system
(ANS), to induce changes in the brain. Respiration can originate dif-
ferentiated ANS states reflected by HRV. In this work, we measured
the changes in performance during a cognitive task due to four auto-
nomic states originated by breath control: at normal breathing (NB),
fast breathing (FB), slow breathing (SB) and control phases. ANS states
were characterized by temporal (SDNN) and spectral (LF and HF power)
HRV markers. Cognitive performance was measured by the response time
(RT) and the success rate (SR). HRV parameters were acquired with the
wristband Empatica E4. Classification was accomplished, firstly, to find
the best ANS variables that discriminated the breathing phases (BPH)
and secondly, to find whether ANS parameters were associated to changes
in RT and SR. In order to compensate for possible bias of the test sets,
1000 classification iterations were run. The ANS parameters that better
separated the four BPH were LF and HF power, with changes about
300% from controls and an average classification rate of 59.9%, a 34.9%
more than random. LF and HF explained RT separation for every BPH
pair, and so was HF for SR separation. The best RT classification was
63.88% at NB vs SB phases, while SR provided a 73.39% at SB vs NB
phases. Results suggest that breath control could show a relation with
the efficiency of certain cognitive tasks. For this goal the Empatica wrist-
band together with the proposed methodology could help to clarify this
hypothesis.
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1 Introduction

Brain-heart interactions have been a focus of attention for more than 150 years,
with the pioneer work of Claude Bernard, whose suggestions and intuitive frame-
work was strengthened recently, relying on solid physiological backgrounds.
Cerebral arousal and autonomic control over the cardiovascular system are bidi-
rectionally linked. Then, modifying one will affect the other, and vice versa. For
instance, a growing body of evidence suggests that heart rate variability (HRV)
reflects emotion regulation and autonomic responses in the body [11]. Further-
more, there exist a model, the neurovisceral integration model, that use HRV to
monitor the activity of a neural network regulating physiological, cognitive, and
emotional responses [4,5].

On the other hand, it has also been known that breathing frequency influ-
ences amplitude of heart rate variability [2,3], evidencing a maximum heart rate
oscillation at a 0.1 Hz (5.5 breaths per minute) respiratory frequency. Indeed, it
is in this frequency that heart rate oscillates in phase with respiration, taking
place a maximum respiratory sinus arrhythmia (RSA) and the most efficient
gas exchange. Practices in slow breathing have shown beneficial effects in many
psychological or physiological conditions such as pain and anxiety [6], stress and
hypertension [8], coronary artery disease [13] and even in sports [1].

In parallel, wearable devices have widely spread in the last decade and mea-
suring HRV indirectly from photoplethysmography (PPG) has gained increasing
attention due to its portability, low cost and flexibility [9]. The pulse rate vari-
ability (PRV), however, may lack of accuracy due to measurement errors and/or
physiological factors such as transmission of the pulse wave through the tissues
or EMG artifacts obscuring the signal. In the recent past, a number of studies
have indicated a reasonable agreement between HRV and PRV, encouraging the
use of PPG as an indirect measure of HRV [14].

Although great efforts were made on identifying the connections of the neural-
autonomic drive of the heart, the system has been extensively studied along one
direction; from brain to heart. Moreover, most of the research has focused on
emotions, but not on cognitive processes. Thus, experimental paradigms are usu-
ally designed to induce emotions and measure their reflex on the HRV. In this
work, the feasibility of the Empatica wristband for measuring ANS states has
been proved by designing an experiment to investigate to what extent a local
cardiovascular autonomic state can afferently change cortical activity. To pur-
sue this, an autonomic procedure was designed based on breath control that
directly affects the autonomic drive in the heart. Then, ANS-induced cardiovas-
cular changes were measured to check whether this affected the response times
and hit rate in a cognitive task.
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2 Materials and Methods

Study Population and Experimental Paradigm. Twenty one young
healthy subjects were enrolled aged 34.4± 7.2 years old (12 male). From this
population, two subjects were discarded due to noisy respiratory phases and two
subjects due to invalid recordings in the cognitive task.

Groups were defined according to three respiratory frequencies; normal
breathing at about 12 breaths per minute (NB), fast breathing at about 20
breaths per minute (FB) and slow breathing, below 6 breaths per minute
(SB). In addition, a control group without breath control was included. Dur-
ing respiratory phases NB, FB and SB, subjects were asked to close their eyes,
except for control, where remained with their eyes opened. All experiments were
accomplished in the morning, in the same room. Blood volume pulse (BVP)
was obtained from photoplethysmography (PPG) using the wearable device E4
Empatica wristband [10].

After the control period and every breathing phase, subjects were asked to
complete a cognitive task consisting in the N-Back task with N = 2. From
these tests, two variables describing performance were recorded, the time to
answer, called Response Time (RT) and the hit rate, denominated as Success
Rate (SR). The order of the respiratory sessions was randomized to avoid bias
due to training.

Autonomic Assessment. Maxima of blood volume pressure waveform were
detected, and the n-th pulse-to-pulse interval (PPI) was measured as the tempo-
ral distance between the n-th and (n+1)-th blood pulse maxima. From these PPI
series, NN series were constructed by concatenating normal PP intervals ignor-
ing the gaps in the time domain, while for frequency-domain analysis, gaps were
filled out with artificial PP intervals obtained by linear interpolation. Recordings
lasted from one to five minutes, from which sections free of noise and missing
beats were cropped and used for analysis. The temporal HRV index chosen was
the standard deviation of the NN series (SDNN). Prior to frequency domain anal-
ysis, the time series were preprocessed by lowpass filtering at 2 Hz (zero-phase
Butterworth filter, order 4th) and subtracting the mean value. Then, resampling
at 4 Hz by cubic splines interpolation was accomplished to obtain evenly spaced
samples. Afterwards, the periodogram was carried out to estimate the power
spectrum of the interpolated NN series. Spectral power of the low frequency
band around 0.04–0.15 Hz (LF) and that of the high frequency band around
0.15–0.4 Hz (HF) were computed.

Statistical Analysis and Classification. Kruskal-Wallis ANOVA was used
to compare within and between group comparisons, followed by Mann-Whitney
post-hoc comparisons. Statistical significance was defined for p< 0.05.
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A classification step has been performed in order to prove the plausibility of
estimating breathing phase (BPH), RT and SR, taking into account the set of
measured variables: HR, SDNN, LF and HF. For performance evaluation a test
set about (20%) was used and min-max normalization was performed over each
variable. As the number of samples is very low, 17 subjects for four experiments
make a total of 68 samples, test sets are biased, not being representative of the
whole population, therefore, the performance has been evaluated over 1000 clas-
sification iterations to evaluate its distribution. For each iteration, the training
and test sets have been chosen randomly. A multi-layer perceptron has been used
for classification with a L2 regularization term α = 1e−5.

The classification process has been split into three stages. First, feature rank-
ing was carried out using recursive feature elimination technique in order to select
the best two features for the task of estimating the BPH, resulting in the selec-
tion of LF and HF variables. Second, estimation of RT was accomplished by
the discretization of the values around the mean, that is, greater values were
labeled as 1 and lower ones as 0. With the same feature ranking method, the
best two variables have been used for the following classifications: NB versus FB,
NB versus SB and FB versus SB. Analogously, estimation of SR implemented
SR discretization around its mean and followed the classification processes as
for the RT variable.

3 Results

Figure 1 shows a representative example of the heart rate (HR), power spectral
density (PSD) and blood volume pressure signal (Bvp) for a subject at Control,
NB, FB and SB groups (from top to bottom, respectively). Notice the strong
oscillations in the HR and in the Bvp for the slow breathing group, product of
the resonance of the respiratory frequency with baroreflex activity.

Figure 2, on the other hand, shows the boxplot distributions expressed as
percentages of control values of the low frequency and high frequency energy for
the different respiratory groups. Notice that the LF band produced two increases
in the order of 300% with respect to control at NB (p = 2e−4) and SB (p = 8e−6)
groups, while in the HF band, only the NB group showed an increased activity
in the order of 200% with respect to control (p = 0.001) and FB (p = 0.001).
This evidences a significant increase in autonomic activity from eyes opened to
eyes closed, suggesting a modulation of this effect over the remaining respira-
tory groups. In FB, however, there is a supression of autonomic activity, while
a marked increase appears in the SB group at the LF band, reflecting the shift
of the respiratory peak, usually centered about 0.25 Hz in the HF band to fre-
quencies below 0.15 Hz, in the LF band. The latter is compatible with cardiac
coherence and biofeedback techniques.
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Fig. 1. HRV signals. Tachogram, PSD and Bvp signals for a representative subject
at the three breathing phases (NB, FB and SB, from top to bottom) and control.
Notice the HR greatest variability evidenced as marked oscillations in the tachogram
as well as the Bvp signal at SB and its respective shift in frequency of the breath
peak, as observed in the PSD. Stems mark the limits of the LF (0.04–0.15 Hz) and HF
(0.15–0.4 Hz) frequency bands.

Analogously, Fig. 3 shows the mean heart rate (HR), SDNN, response time
(RT) and success rate (SR) for the different respiratory groups. Even though
not significant, RT was uptrended for SB and downtrended for FB, while SDNN
produced the highest value at SB. Accordingly, SR showed a trend for the highest
CR at SB with the lowest dispersion. HR, on the other hand, was lower than
control and FB at NB, although no statistical significance was achieved.

For the classification process, Fig. 4a shows the performance distribution of
1000 classifications for estimating the BPH, where the chance is 25% for the four
cases: Control, NB, FB and SB. Results shown that on average the classifiers
perform the estimation with a 59.9 ± 12.48% of accuracy. In Fig. 4b three cases
are taken into account: NB, FB and SB. For this case, the mean average per-
formance is 83.52% ± 10.23. Therefore, LF and HF are suitable features for the
estimation of the BPH. On the other hand, the classification process has been
performed for binary cases on both RT and SR features. For a better comparison,
mean accuracy performances are shown in Table 1.
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Fig. 2. HRV spectral parameters. Boxplot representations for LF energy (top) and HF
energy (bottom) at NB, FB, SB and control for the entire population. Variables were
normalized to control values. Notice the remarkable increase of LF at SB, which is not
accompanied by a HF increase. ∗p < 0.0005 vs control, † < 0.0005 vs FB.

Table 1. Obtained estimation performances on RT and CR variables.

Classification Label Average accuracy Selected features

FB vs SB RT 52.61% ± 15.56 HF, LF

FB vs NB RT 52.38% ± 16.68 HF, LF

SB vs NB RT 63.88% ± 17.18 HF, LF

FB vs SB SR 66.97% ± 15.64 HR, HF

FB vs NB SR 49.30% ± 16.46 SDNN, HF

SB vs NB SR 73.39% ± 14.65 SDNN, HF
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Fig. 3. Trend for cardiovascular and cognitive parameters. Boxplot representation of
Heart Rate (HR), SDNN, reaction times (RT) and success rates (SR). Variables were
normalized to control values.

(a) (b)

Fig. 4. Accuracy distributions. (a) Classification performance using HF and LF fea-
tures on the BPH with four experiments: control, NB, FB and SB. (b) Classification
performance using HF and LF features on the BPH with three experiments: NB, FB
and SB.
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4 Discussion and Conclusions

The spectral HRV parameters (LF and HF) significantly changed throughout
the breathing phase. Findings related to such parameters are consistent with
the literature, particularly for the SB phase, where a state of cardiac coherence
was achieved, evidenced by large HR oscillations and maximum HRV power
[3]. Accordingly to our results, a higher SDNN, LF power and LF/HF ratio,
and no significant differences in HF power was found in [7,15] for all paced
breathing sessions as compared to the control condition (spontaneous breathing).
Moreover, HRV transitions through respiratory phases were presented, allowing
for a complete description between respiratory frequency and ANS system.

Regarding the cognitive parameters, they failed to produce statistical signif-
icance although a trend for a higher response time and higher hit rate for the
slow breathing phase can be appreciated in Fig. 3. Moreover, the neural networks
classification confirmed the trend, with both SR and RT differentiating SB from
NB, producing performances of 73.39% and 63.88% respectively. These results
suggest a relation between HRV and cognitive parameters at least during SB
and NB.

According to RT and SR changes, it could be inferred that SB induces a
relaxation state that slows down the reactivity but enhances efficiency. These
findings partially agree with Maman et al., who found significant decreases in
the response time of basketball players together with significant increases in the
shooting performance [12]. A possible explanation of this difference in RT could
be attributed to the time elapsed between the breathing session and the task,
which is immediate, while due to a long-term effect in the basketball players. It
is also worth noting that in order to avoid for training bias, we have changed
the order of the breathing phases throughout subjects, so that NB, FB and SB
had a roughly balanced amount of sessions in the last trial. Then, the better
efficiency in the congruence rate at SB should not be attributed to training but
to slow breathing per se.

Finally, from this work, the following findings could be derived: (1) the wrist-
band Empatica E4 was accurate enough to allow for HRV analysis from the
Blood Volume Pressure (Bvp) signal without significant loss for about 5 min.
(2) From all the BPH analyzed, the slow breathing phase produced the clearest
ANS change. And (3) This SB-induced ANS change produced the distribution
with less variance around the highest mean SR. This suggests that breath con-
trol could influence the efficiency of certain cognitive tasks, although a greater
number of experiments should confirm this.
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Abstract. Visuospatial abilities are framed in the capacity of perceiving,
acting and reasoning in function of spatial coordinates, permitting to iden-
tify visual and spatial relationships among objects. They represent the set
of skills conferring individuals the ability to interact with the surrounding
world. Whenever spatial cognition is impaired it is important to correctly
assess visuospatial abilities. Scientific literature, for this purpose, reports
many diagnostic tools that have been adopted by clinicians and neuropsy-
chologists.

In this paper we present a prototype that aims to evaluate the visuospa-
tial abilities that are related to how individuals explore their peripersonal
space. In particular, the presented tool makes use of tangible interfaces and
augmented reality systems.

In the final part of this study we describe the implementation of an eco-
logical test for the assessment of visuospatial abilities through our proto-
type by highlighting its advantage in terms of data collection and analysis.

Keywords: Visuospatial abilities · Spatial cognition ·
Neuropsychological assessment · Machine learning ·
Unilateral Spatial Neglect

1 Introduction

1.1 The Importance of Visuospatial Abilities

Visuospatial abilities (or spatial abilities) can be defined as the capacity of
perceiving, acting and reasoning, as well as operating on mental representations,
in function of spatial coordinates. Visuospatial skills permit to identify visual
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and spatial relationships among objects. In particular, they permit to individu-
ate targets in the surrounding space, visually perceive objects, and understand
the multidimensional spatial relationships among objects and our environment.
These abilities allow us to safely navigate our environment through the accu-
rate judgment of direction and distance. Moreover, these abilities are evaluated
in term of the capacity to locate objects, to make global shapes by individuat-
ing small components, or to understand the differences and similarities between
objects.

Spatial information related to the internal and external reality of an organ-
ism comes from all sensory modalities, but the visual system contributes most
to spatial cognition of people. According to Mishkin and Ungerleider [24], the
brain has two way to process visual information: one is named ventral path-
way, located in the occipito-temporal zone, that is responsible for the object
identification and recognition; the other way is named dorsal pathway, located
in the occipito-parietal zone, that is involved in object localization. In the last
years, the difference between these two systems has been revised, for example
Goodale and colleagues [19] sustain that both pathways contribute in the same
way in the localization and identification of objects, but, while the ventral path-
way elaborates visual information to construct a object-to-object (allocentric)
spatial representation, the dorsal pathway process visual information in terms of
coordinates to make a self-to-object (egocentric) spatial representation (Fig. 1).

Fig. 1. A model representing egocentric vs allocentric spatial representation

Both pathways consent to act in the external environment and encode infor-
mation useful to reach and manipulate objects, to recognize familiar places or
to get a correct topographical orientation.
Visuospatial abilities are involved in many activities performed in everyday life,
so it is important to accurately evaluate and assess them in the context of daily-
life routine, in order to identify their impairment that, in certain circumstances,
can evolve in a visuospatial disorder.
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2 Assessment of Visuospatial Cognition

Visuospatial disorders have been described since the dawn of neuropsychology
but they have often received less emphasis than, for example, language dis-
orders. While a language or memory impairment implies an alteration in the
behavior immediately evident, spatial impairments assume a brunt only when
people undertake their usual activities. In fact, the knowledge of the corporeal
and extracorporeal spatial coordinates is the prerequisite of every action: reach-
ing or moving objects, conducting any manual activity, navigating in the streets,
driving a car and so on.

The assessment of visuospatial abilities is usually part of the neuropsycholo-
gists duties. To evaluate visuospatial impairments it is necessary to consider that
a definitive conceptualization of the argument is still missing and that a certain
variability persists in identifying which are the basic visuospatial abilities and
the appropriate tests to assess them.

A common neuropsychological testing approach is to utilize batteries, con-
sisting in a plethora of tests, to evaluate cognitive functions, including spatial
skills. Amongst the many test adopted by clinicians to evaluate visuospatial
cognition we can list some of the bestknown:

– Judgment of Line Orientation [5], a standardized test of visuospatial skills
measuring a person’s ability to match the angle and orientation of lines in
space. It regards the visuospatial perception.

– Single Letter Cancellation Test [12], a task that requires to individuate and
delete the target letter presented on a paper among 52 typed letters. It is
aimed to asses the presence and severity of visual scanning deficits. Moreover,
cancellation tasks come in very different forms and have been administered
even to artificial agents [17,18,26].

– TERADIC [1], a battery for visuospatial abilities (also known as BVA) devel-
oped to analyse putative basic skills involved in drawing and to plan and mon-
itor outcomes after rehabilitation of visuospatial disorders. It encompasses
eight tasks assessing both simple “perceptual” abilities, such as line length
and line orientation judgments and complex “representational” abilities, such
as mental rotation.

– Behavioral Inattention Test (BIT) [34], a short screening battery of tests to
assess the presence and the extent of spatial exploration impairments on a
sample of everyday problems faced by patients with visuo-attentional deficits.

– ReyOsterrieth complex figure test (ROCF) [25,30], a neuropsychological test
based on the reproduction of a complicated drawing, first by copying it free-
hand (recognition), and then drawing from memory (recall). Many different
cognitive abilities are needed for a correct performance, from visuospatial
abilities to attention and planning functions; it allows to highlight even the
slightest visual-constructive disorders and to investigate the different copying
strategies adopted by people.

– Visual Object and Space Perception (VOSP) Battery [21], a battery evaluating
spatial and object perception, proceeding from the assumption that these
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perceptions are functionally independent. The items require simple responses,
and each of them focuses on one component of visual perception, minimizing
the effect of other cognitive skills.

Despite the massive adoption and the high reliability of the classical neu-
ropsychological tests, it is possible to notice certain problems such as the long
time administration (becoming time-consuming for examiners and participants)
or the tiredness generated by it for many participants and patients, who, some-
times, do not complete or incorrectly perform the assessment [2].

To overcome some issues represented by traditional assessment tools, modern
and digital technologies have opened new opportunities for neuropsychological
testing, allowing new computerized testing tools to be developed and paper-
and-pencil testing tools to be translated into new computerized devices. Com-
puterized tests have been used in research since 1970s, and also the American
Psychological Association [3] has recognized the importance of computerized
psychological testing suggesting how to implement and interpret computerized
test results.

In recent times, another choice of assessment is represented by the adoption
of digital, augmented and virtual environment to evaluate cognitive and spatial
skills, and some successful application are listed by different authors [10,27].

A digitalized evaluation of cognitive functions can present advantages such
as a shorter duration (e.g., by reducing downtime in stimuli presentation), great
objectivity, precision, and standardization. The computerized assessment can
also minimize the so called floor and ceiling effects, occurring when differences
among participant performance are not fully detected; thus, they can provide
more standardized measures of subjects performance, crucial for an accurate and
early detection of specific impairments.

It appears clearly that digital assessment will represent an essential part of
the clinical setting in the future, specially in screening procedures, providing an
automatized score of performances useful for the diagnosis, on condition that
these new instruments become supportive for examiners. Given the significance
and the increasing use of technology enhanced assessment tools, we proposed a
new tool to assess spatial skills and it will be described in the next section.

3 ETAN: The Assessment of Visuospatial Abilities
by Means of a Technology Enhanced Platform

In this work we present ETAN, a platform that supports the use of tangible
user interfaces ([11,23], physical manipulable object technologically enhanced)
to assess and train spatial abilities; the use of tangibles in assessment field is not
unusual as showed by several research, both for diagnostic and training purposes
[14] This prototype is based on a precedent version of a tool designed for the
evaluation of visuospatial cognition [6,8].

More specifically, we developed this prototype to investigate visuospatial
behaviors of people in their proximal/peripersonal space, that is commonly
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defined as the space immediately surrounding our bodies [31]. In peripersonal
space it is possible to interact immediately and physically with some stimuli
present in the external world inasmuch they are inside the limited portion of
space around us, reachable by our arms/hands. In this perspective, personal
space is what it is covers the entire body surface of a person, peripersonal space
refers to the space defining our field of action, and, lastly, the extra-personal
space is instead the furthest one and not reachable by the arts (Fig. 2).

Fig. 2. Materials of the prototype ETAN

The materials of ETAN consist in small disks that are detectable by a camera
connected to a PC. It is possible to recreate on the PC the disposition of these
objects thanks to a particular kind of tags, popular in augmented reality tech-
nology [7] named ArUco Markers [16], that can be traced by a specific software
developed with an artificial vision module. Moreover, for each session it is possi-
ble to store data about it, both in local that in an online database. The first use
of ETAN consisted in the implementation of a well known neuropsychological
test: the Baking Tray Task.

3.1 The Baking Tray Task (BTT)

The Baking Tray Task (BTT) represents an ecological test, ideated by Tham
e Tegner [32], aimed to assess a specific visuospatial disorder named Unilateral
Spatial Neglect (USN), consisting in the inability to analyze and be aware of
stimuli and events occurring in half hemispace (usually the left), compromising
actions towards that side of the space [33].

During the administration of BTT, subjects are asked to dispose 16 cubes
as evenly over a board, as if they were buns on a baking tray to put in the oven.
The 16 cubes have a dimension of 3.5 cm and they are placed in front of the
subject; over the years, the BTT, while maintaining the initial settings and the
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way of administration, has been re-proposed in different forms, other materials
to be disposed (like small disks) and in both digital and virtual environment
[9,13,15].

For the administration of BTT there is no time limit and all the cubes have
to be disposed. As regards the scoring of the test, the performance is evaluated
clinically counting the cubes in each half of the tray, left and right; left - (minus)
right differences greater than 2 are a sign of USN.

The baking tray task proved to be a sensitive test, suitable for screening
purposes and longitudinal studies, and as opposed to standard USN tests BTT
appears to pick up all cases of at least moderately severe neglect, while stan-
dard tests missed a few patients [20]. Moreover, BTT seems requiring low-effort
attentional resources in contrast to other neglect task like Cancellation Task [29]
and it results to be insensitive to practice and set effects.

3.2 Implementing BTT with ETAN

We decided to implement BTT with ETAN for two main reasons: the first is
related to the possibility of obtaining a new kind of data, more informative,
based on the spatial coordinates (x, y) of the objects arranged on the surface;
the second consists in the fact that with our tool it is possible to carry out a
massive data collection and store the performances of the subjects both in the
local database and the online one. Moreover, with our platform, it is also possible
to track the position of every object. The administration of the task strictly
followed the directions proposed by Tham e Tegner, and the only differences
with the original task refer to the adoption of disks instead of cubes and the
use of a board with smaller dimension (adjustments already proposed by other
scientists [4,13]). Upon completion of the task, the platform allows to access
individuals’ performance on the local database. The data can be easily exported
in a CSV file for further analyses.

In this manner it is possible to score the performance not only counting how
many objects have been placed in each half of the board but, using the X and Y
coordinates, it is possible to develop new statistics to make a more informative
diagnostic procedure. One example it will be described in the next paragraph.

3.3 A Machine Learning Approach in Analyzing BTT Data

In the Fig. 3, we can see the spatial arrangements of two participants (c and d)
at the traditional baking tray task. Although it is not possible to evaluate these
patterns as a sign of neglect, surely they show some sort of cognitive impairment.
The problem with the scoring of the traditional BTT is that in this specific case,
the two arrangements are not diagnosable as a form of disorder inasmuch the
difference of the number of cubes between the left and right side of the board
is no greater than 2. At first instance, it would help a measure to discriminate
normal arrangements (the ones similar the figure a), from abnormal ones (such
as the 3 figures) regardless of whether or not they are signs of USN.
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Fig. 3. Example of BTT dispositions (from Appelros and colleagues [2])

Thanks to the X and Y coordinates collected through our prototype it is pos-
sible to differentiate the different patterns by using a machine learning technique
based on novelty detection approach [22]. Novelty Detection techniques consist
of discriminating instances according to whether or not they belong to a given
class. This class can be thought of as a concept to be learned. Usually, concept
learning involves learning correct classification of a training set containing both
positive and negative instances of a concept, followed by a testing phase in which
novel examples are classified. In our case, the concept that represents the class
that has to be learned is represented by the correct dispositions at the BTT (like
the participants a in the Fig. 3).

Fig. 4. Simulated BTT dispositions: Normal (medium gray dots), USN (black dots),
Other disposition (light gray dots)
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In order to test the goodness of the chosen method, we simulated, in terms of
X and Y coordinates, three types of dispositions: normal, USN, and dispositions
that, while maintaining 8 objects for each side of the board, cannot be assimilated
to a proper correct disposition (Fig. 4).

Then, using Sci-kit learn [28], we tested our simulated data with a method
from Support vector machines (SVMs) named One-class SVM, that is an unsu-
pervised algorithm that learns a decision function for novelty detection, and is
thus able to classify new data as similar or different to a training set. In our case,
the application of the ONE-class SVM method proved to be effective in discrim-
inating normal dispositions from the abnormal ones. This means that thanks to
our prototype, having more informative data (such as the coordinates) about the
BTT, it is also possible to have a more in-depth analysis of the performances,
in order to support the diagnostic investigation.

4 Future Directions and Conclusions

The aims of this paper has been to present a new kind of tool designed to
assess and evaluate visuospatial abilities. Our prototype ETAN represents an
alternative to the traditional tools for assessing peripersonal spatial behaviors,
being able to count on the use of tangible interfaces and on the acquisition of
previously undetectable data (such as the coordinates of the objects); please
notice that BTT is just one possible application of ETAN. The platform, in fact,
can be used to implement other forms of visuospatial assessment.

Moreover, ETAN, thanks to its tangible interface, makes the assessment less
boring and tiresome for the participants. Additionally, alongside the diagnostic
purposes of the use of ETAN, it is also possible to implement a rehabilitative
module able to adapt task requests on the users specific requirements, keeping
trace of their singular level of abilities; starting from this point, it would be possi-
ble integrate a training and rehabilitation program for patients with visuospatial
impairments, enriching the potentialities of the assessment tool.

Regarding the technical aspect of the prototype linked to the storage of data,
the fact of having available a local and an online database allows us to perform
a massive data collection, with which to proceed to an in depth analysis of the
data on the spatial skills of the healthy and clinical populations. The adoption
of the One-class SVM algorithm described in the previous section represents just
one type of possible data analysis to perform; we think that the use of Machine
Learning techniques is well suitable for the data that we acquire through our tool,
in order to individuate and classify specific alterations of visuospatial abilities.

Once collected data through ETAN, it will be possible develop also a learn-
ing analytics module able to track individuals’ performances through time and
compare them with the rest of the population.
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Abstract. The present paper describes a tool developed to model and
simulate tasks related to numerical cognition, a very important ele-
ment of both animal and human cognition. In particular, we describe
how this software has been used to study a bias that has been consis-
tently observed in humans, both adults and children, about the calcu-
lation of the middle point between two numbers and related with the
position of numbers in intervals, called NIPE (number interval position
effect). Along with the description of the software and the experimental
results about the NIPE effect, some results are reported which show the
potential of this approach.

Keywords: Simulative models · Numerical cognition · NIPE effect ·
Developmental studies · Numerical and Spatial cognition

1 Introduction

Numbers are everywhere around us and dealing with them covers an impor-
tant part of our cognitive activity throughout our life. Number, together with
objects, actions, and space represent what has been called the core knowledge [1].
A number of studies have suggested that when left/right response codes must be
associated to number magnitudes, healthy participants belonging to western cul-
tures with left-to-right reading habits map numbers upon a mental number line
(MNL) with small integers positioned to the left of larger ones. This is reflected
in the SNARC effect, (Spatial-Numerical Association of Response Codes) first
demonstrated by Dehaene, Bossini, and Giraux [5] who argued that a represen-
tation of number magnitude is automatically accessed during parity judgments
of Arabic digits.

This representation may be likened to a mental number line, because it bears a
natural and seemingly irrepressible correspondence with the left/right coordinates
of external space.More recently an inherent spatial and spatial-response-code inde-
pendent nature of the MNL was suggested by the finding that during the mental
c© Springer Nature Switzerland AG 2019
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https://doi.org/10.1007/978-3-030-19591-5_10
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bisection of number intervals right brain damagedpatientswith attentional neglect
for the left side of space shift the subjective midpoint of number intervals toward
numbers higher than the true midpoint, i.e. supposedly to the right of the true
midpoint [2]. However, several ensuing studies have demonstrated that this numer-
ical bias is unrelated to left spatial neglect and that it is rather linked to a deficit
in the abstract representation of small numerical magnitudes [7]. This conclusion
was suggested by the finding that in right brain damaged patient the pathological
bias toward numbers higher than the midpoint in the mental bisection of number
interval is correlated to a similar bias in the bisection of time intervals on an imag-
ined clock face where higher number are positioned to the left, rather than to the
right, of the mental display. In a quite recent study, Doricchi and colleagues [26]
have discovered a new interesting psychophysical property of the number interval
bisection task. It was found that in this task, human participants show a system-
atic error bias which is linked to the position occupied by the number interval in a
decade (Number Interval Position Effect, NIPE). The subjective midpoint of num-
ber intervals of the same length is placed on numbers higher than the true midpoint
the closer the interval is to the beginning of a decade and on numbers lower than
the midpoint the closer the interval is to the end of the same decade. For example,
in case of 7 units intervals the bias is positive for the intervals at the beginning of
the decade (1–7) and negative for the intervals at the end of the decade (3–9). This
effect has been observed in healthy adults [7], right brain damaged patients [1, 5]
and in pre-school children [22] thus suggesting that it is not related to learning of
formal arithmetic and that it could be linked to some fundamental properties of
the neural representation of number magnitudes.

The NIPE effect, which has been observed in children and adults consistently,
can be explained as a direct effect of numerosity neural coding. Neurophysiolog-
ical studies have demonstrated a neuronal representations of numerosity in the
prefrontal and parietal cortex of rhesus monkeys [17]. In these areas different
neuronal populations code for different numerosities. For small numerosities, the
neural discharge is narrowly tuned, according to a Gaussian function, to the neu-
ron preferred numerosity so that the discharge is weak for adjacent numerosi-
ties. This Gaussian tuning becomes progressively larger, i.e. less selective, for
increasing numerosities, so that neurons tuned to larger numerosities show some
discharge also for numerosities that are immediately adjacent to the preferred
one. The organization of the Gaussian curves linked to the different and pro-
gressively increasing numerosities is best described by a nonlinearly logarithmic
compressed scaling of numerical information. This result is found in many organ-
isms both with concrete numerosities (such as dots) or Arabic digits, number
symbols and suggest that the Fechner law is also valid for numbers [27]. In
humans, numerosity coding with neurons tuning has been observed in the intra-
parietal sulcus, compatible with results on macaque monkeys, thus suggesting a
common evolutionary basis for numerical cognition [29].
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2 The Number Interval Position Effect in Children
and Adults

When healthy adults provide estimates of a number interval midpoint, error
biases vary as a function of the interval length and, length being equal, as a
function of the position occupied by the interval within tens (i.e. Number Inter-
val Position Effect) [9]. When 7-unit and 5-unit intervals are positioned at the
beginning of tens, subjective midpoints are shifted toward values higher than
true midpoints. When the same intervals are positioned at the end of tens, sub-
jective midpoints are shifted toward values lower than true midpoints. With
3-unit intervals a progressively increasing negative bias is found the more inter-
vals are placed at the end of tens. This bias has been observed consistently in
healthy adults, right-brain damaged patients and children.

To understand the functional origins of this phenomenon an artificial model
was conceived.

2.1 The Task

As illustrated in the previous section, one method of study of numerical cognition
is to propose simple arithmetic questions to human participants, demanding
an immediate response. In this way, participants cannot rely on their formal
education and related tips and procedures.

One such task foresees that participants have to identify the natural number
that divides equally a numerical series that is delimited by two natural numbers:
a bisection task.

For example, if we consider the series of the first natural ten (1–10), the
participant can be asked to identify the middle number between 3 (lower bound)
and 7 (upper bound) or between 4 (lower bound) and 6 (upper bound) and so
on. As the first natural ten includes even and odd numbers, this task takes
different forms: the limits may have an even or odd sum. The odd sum permits
two solutions.

For example, the middle number between 1 and 8 can be 4 or 5. To reply
indicating a natural number, the participant must choose the number that is
closer to the lower bound, rounding down, or the upper, rounding up. For this
reason, it is preferred to propose the task form with even sum.

This task has been used in neuropsychological literature, applying the tradi-
tional bisection task, used for investigating spatial neglect [21] to the study of
numerical representation. It has been administered to healthy adults right-brain
damaged patients [9] and children [22].

2.2 The Model

The model relies on two well studied neuronal principles:

a. Representations of natural numbers: basic numbers in a certain notation are
encoded in an amodal way by distinct neural groups. In other words there is
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a neural group whose activation is more probable when a specific number is
presented regardless of the presentation form.

b. Neural accumulation mechanisms: neural elaboration relies on energy transfer
between neural groups and arrives to its conclusion when some neural group
accumulates a certain energy level.

In this model we adopt an approach which considers nodes as clusters of
neurons; it is a functional representation of brain areas, rather than a single-cell
simulation. As hinted above, in order to understand which are the functional
bases of the NIPE, a simple model consisting of two modules was developed.

The first module implements the encoding process of natural numbers, it
defines how numbers are internally represented. The second one computes the
midpoint for each interval. To focus the investigation on number representation,
the second module is a perfect calculator whose output correctly bisects the
interval received as input.

Number representations have been modeled through networks provided with
a probabilistic winner-take-all dynamic. Typically, a probabilistic network is a
system of interconnected nodes in which information injected into an input node
to nearby connected nodes according to a certain probability. Figure 1 presents
a perfect encoding of the number 3, in this case when provided to the input
layer, the inner representation will be always correct because the probability
that internal node 3 is active when input node 3 is active as well is set to 1.
Information is given in input nodes and is transferred, in winner-take-all fash-
ion, to one of inner nodes. This information transfer happens according to a
discrete probability density function that, in the network, is translated into the
connection weights between nodes.

Fig. 1. Perfect representation of number 3. The probability that inner node 3 is active
when input node is active as well is set to 1.0.

In case of a perfect representation, as described above, the bisection error
would be 0 because the midpoint calculation would be carried out without any
error introduced by the encoding process.
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In order to model number interval bisection for different limits of intervals,
the activation was spread through the dedicated probabilistic network for one
step, then active nodes were used to compute the midpoint and the related error.

3 The Simulation Software: Midpoint

Midpoint is a desktop application, developed in C#, implementing the model
described in the previous section.

Midpoint can be used to run simulation of numerical bisection task by means
of probabilistic networks. Its user-friendly interface allows users to easily run sim-
ulation experiments. The interface, reported in Fig. 2 displays every number as a
node and it is possible to set the connection weights (expressed as probabilities)
to the nearby nodes.

These connection weights in the probabilistic network correspond to the prob-
ability that an activation is transmitted from one node to another node. A set of
10 sliders allows users to easily set connections for each node representing num-
bers from 1 to 10. To each slider, the probability, multiplied by 100, is pictured.

Resulting curves are displayed beneath the sliders panel. Each time a slider is
modified, Midpoint runs a new experiment by administering to the probabilistic
network model 3-, 5- and 7-unit intervals for 200 times. Collected bisection errors
are then displayed through three graphs in the main window of the application.

To run new experiments users have to select the menu Experiment where
Run and save option allows to save the average performance of 200 artificial
subjects for each interval described above. Data are saved in a data file that can
be easily imported in software for data analyses such as R.

The sliders indicate the probability that the number that is selected with
the radio button under select input number code is encoded as another number.
Every pattern of curves can be saved from the menu File in a file .data. Some
initial sets are already available and can be modified by the users to easily see
how the error changes in relation with the underlying probabilistic network.
Every time a slider is modified, the software immediately runs the requested
simulations and graphics are updated.

3.1 Materials and Methods

The Midpoint simulator has been used to replicate the data observed in adults
and children [9,22,25], confirming the indications from a previous model [18].
Three sets of probabilistic networks, constrained to be unimodal, expressing
three different form of number representations, were tested against real data
collected on 91 adults by Doricchi and colleagues [26]. The three networks were:

a. Random networks. In which number representations are randomly chosen.
b. Gaussian networks. In which each number is represented by a gaussian prob-

ability distribution with σ = .5.
c. Bio-inspired networks: unimodal and positively skewed gaussian distributions

(see [25]).
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Fig. 2. Midpoint user interface with the slider to modify connection weights and the
representation of numbers connection in network form

3.2 Results and Discussion

For each set of number coding networks we simulated 200 performances on the
interval bisection task including seven 3-unit intervals, five 5-unit intervals and
three 7-unit intervals. Average errors were collected and analyzed against adult
individuals’ data, by using the statistic software R, for random networks (an
unimodal random representation of numerosities), gaussian networks and bio-
inspired networks (see Fig. 3).

Among the tested coding models, only the bio-inspired one resulted very
close to human subjects’ data. Thus the difference between data and model,
evaluated by means of the multivariate test on a mean vector (Hotelling’s test,
[28]), was highly not significant (p = 0.7408361). By contrast, differences with
the other number representations were highly significative (random networks,
p = 1.777496e−100 and gaussian networks with σ = .5), p = 9.33615e−28).

These results indicate that the NIPE effect is likely linked to number repre-
sentation rather than calculation. In other words, the functional origins of the
NIPE effect, investigated in adults and through a biologically plausible com-
putational model of the neural coding of numbers, can be traced back to the
logarithmic representation of number magnitudes that has been found in pre-
frontal and parietal neuronal populations in macaque-monkeys.

Although effective in modeling the representation on numbers, Midpoint in
future works should be complemented with an embodied approach able to shed
light on the ecological roots behind the formation of a specific representation of
numbers. Such kind of work can be carried out by putting together robotics,
genetic algorithms and neural networks [10,30–33]. Finally, another future
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direction should expand the platform by including a system able to automatize
the data collection process (for example by administrating the task and store
performances in a local database) as in [34].

Fig. 3. Probabilistic networks. For each set of networks the weights, expressing the
probability of a number to be represented by another, have been normalized in the
range [0, 100]

4 Additional Materials

More details about the model and the related code can be provided upon request
by emailing Onofrio Gigliotta (onofrio.gigliotta@unina.it).
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Abstract. Cognitive science and cognitive psychology have long used
creativity tests to measure and investigate the relationships between cre-
ativity, creative problem solving and other cognitive abilities. Implement-
ing cognitive systems that can model and/or solve creativity tests can
shed light on the cognitive process, and presents the possibility of build-
ing much more precise creativity measuring tools. This paper describes
four cognitive AI systems related to the Remote Associates Test (RAT)
and their contributions to creativity science. comRAT-C is a system that
solves the RAT, correlating with human performance. comRAT-G reverse
engineers this process to generate RAT queries with a high degree of
parameter control. fRAT generates functional RAT queries, resurrecting
a theoretical concept proposed by researchers many decades ago. The
visual RAT takes advantage of the formal conceptualization necessary
for computational implementation, to expand the RAT to the visual
domain. All the cognitive systems and generated RAT queries have been
successfully validated with human participants and have contributed in
improving creativity modeling and measuring tools.

Keywords: Remote Associates Test · Human creativity ·
Visual associates · Computational creativity · Cognitive systems

1 Introduction

Creativity and creative problem solving, though not uniquely human traits,
have contributed to technological, scientific and cultural advances that lay at
the foundation of human civilization. They are still cognitive tools which make
humans adaptable and able to progress in conditions in which not all knowledge
or resources are available.

Various streams of research have been connecting creativity research and
the computational sciences. One of these is computational creativity - which
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focuses on the development of computational creativity systems capable of var-
ious creativity feats - like poetry and painting [3] and on coming up with ways
of evaluating computational creativity systems.

However, this research does not bring us closer to understanding human
(cognitive) creativity. Cognitive creativity is generally explored in cognitive sci-
ence and cognitive psychology. Computational implementations of hypotheses
from the cognitive science community are very valuable, because they offer the
chance to test cognitive theories via computational systems [7]. Some such sys-
tems have been implemented in the literature to study metaphor, insight, object
replacement, etc. Furthermore, cognitive AI systems able to perform or model
creativity tasks studied in the cognitive science domain may be used to later (i)
build cognitive AI systems that act as a more natural interface for humans and
(ii) improve creativity in human participants, by intuiting and supporting the
weaknesses of their human counterparts.

This paper focuses on describing a research arc consisting of four cognitive
AI systems, focused on one initial type of task - creative association. Besides
providing a shortened eagle-eye overview of these systems, this paper’s goal is to
showcase how this type of research on cognitive AI systems contributes towards
improving the tools used for modeling and measuring creativity.

The rest of the paper has been organized as follows. The first section describes
the Remote Associates Test as a measure for the associativity factor in creativ-
ity, and briefly summarizes the principles of the CreaCogs framework. Section 2
describes the initial formalization of the RAT for adaptation to the CreaCogs
framework, its implementation as the comRAT-C cognitive system and relation
to human performance.

2 The Remote Associates Test and CreaCogs

Building AI systems which solve tasks that have an empirical creativity measure
attached has not been explored systematically. With creativity being a multi-
faceted cognitive skill, many empirical creativity measures exist.

Among many other tests, one of the most popular and widely used tests to
measure creativity in humans is the Remote Associates Test (RAT) proposed
by Mednick and Mednick in 1971 [5]. Inspired from Mednick’s belief that the
creative process has an associative bias [4], the RAT was designed to measure the
creativity of a participant based on their ability to draw remote associations. The
RAT comprises a number of test queries where each query consists of 3 words
and the participant is supposed to answer the word that is connected to all 3 of
the query words. For example, for the “SWISS-COTTAGE-CAKE” query the
answer would be “CHEESE” as “CHEESE” appears with each of the three query
words forming a compound word in the English language.

CreaCogs [8,17] is a theoretical framework aiming to implement a set of creativ-
ity related abilities with a minimal set of processes and the same type of knowledge
organization and cognitive architecture. This is in accord with main principles of
cognitive architectures [7], in which one architecture should be flexible enough to
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solve a multiplicity of tasks within a certain domain. CreaCogs proposed processes
[8] to solve associativity related tasks (treated here), creative use and inferences
related to objects [18], and more complex insight problems using objects from the
practical domain [9,16], using a multilayered type of knowledge organization. In
the following, we focus on the impact of this knowledge organization on construct-
ing cognitive AI systems related to the associative ability.

3 Computational Solver for the Compound RAT -
comRAT-C

A computational solver of the RAT named comRAT-C was proposed [10] to
test the CreaCogs abilities related to associative process. For this, the Remote
Associates Test was formalized as a succession of queries, in which three words
wa, wa and wc are shown to the system, and an answer word is expected.

In order to test its knowledge organization hypothesis, comRAT-C sequen-
tially extracted 2-grams from the Corpus of Contemporary American English
(COCA: http://corpus.byu.edu/coca/) and used them to organize its knowledge
base (RAT-KB) with three primary atomic structures: EXPRESSION, CON-
CEPT and LINK. Whenever comRAT-C arrives at a 2-gram EXPRESSION
(two words representing two CONCEPTS), it checks for the presence of each
of the two CONCEPTS in its existing KB. If both CONCEPTS are present,
only a LINK between them is added. The LINK contains a numerical tag of
the frequency of the 2-gram in the corpus attached to it, and represents a form
of encoding the trace of cognitive association strength. If one or both of the
words are unknown, they are added as CONCEPTS and a LINK between them
is also added. When the comRAT-C is done constructing its RAT-KB, each
CONCEPT then contains LINKS to all other CONCEPTS that it has been in
an EXPRESSION with. This is then used to solve the Remote Associates Test.

comRAT-C performs a convergence process based on its associations. This pro-
cess is meant as a hypothesis for a cognitive process humans may use when solving
the task, and uses the strength of associations. It is known for example that some
human participants, when given a query, reach the answer by what they perceive
as insight: the answer seems to just “pop in” to their mind. The comRAT-C con-
vergence process aims to replicate a form of associative search in the memory, in
which the answer is revealed through the strength of the associations.

The probability of reaching an answer is calculated by comRAT-C based on
association strength. The probability that w

′
i is the answer is:

P [w
′
i] = 1/3 ∗ P [w

′
i|wa] ∗ P [w

′
i|wb] ∗ P [w

′
i|wc] (1)

Figure 1 shows a visualization of the convergence process when comRAT-C
searches for solutions to a query in RAT-KB. The words surrounded by green
circles represent the query words. The blue ones are the words associated with
LINKS to the query words. The yellow ones represent a 2-item convergence
and the red one represents a 3-item convergence which is chosen as a plausible
solution by comRAT-C.

http://corpus.byu.edu/coca/
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Fig. 1. Visual representation of the comRAT-C activation and convergence. (Color
figure online)

The performance of comRAT-C was measured over the Bowden and Jung-
Beeman normative dataset [2] of compound RAT queries. Out of 144 queries in
the dataset, in 64 of them comRAT-C provided the exact answers to the queries.
In more than 20 cases, comRAT-C provided an answer that could be considered
as a plausible answer but it was not considered in the Bowden & Jung-Beeman
dataset. In 97.92% of the cases in which comRAT-C had all the query words
present in its KB, it gave the correct answer. It was interesting to note that
in 30.36% of the cases comRAT-C gave the correct answer when it had only 2
query items in its KB demonstrating the robustness of the system.

In terms of its promise as a tool for future modeling, comRAT-C’s process
probability to solve a RAT query significantly correlated with the Accuracy
of human participants, and correlated negatively with their reponse times (the
higher the probability, the less time human participants take to solve a query).

4 Computational Generator of Compound RAT Queries
- comRAT-G

The RAT was found be the second most used creativity test in a meta analysis
study [1]. There are few repositories of normative data for the RAT, like Bowden
and Jung-Beeman dataset of 144 RAT queries which was used in the validation of
comRAT-C. These repositories still do not provide the ability to vary the query
items on the basis of the frequency of occurrence of query words or answer words.

To deal with this bottleneck, after the successful validation of the comRAT-C,
it was found that the knowledge organization used by it could not only be used
to solve the RAT queries but also to generate them by reversing the convergence
process. Hence, comRAT-G was created as a variant of comRAT-C that generates
RAT queries using the same knowledge base (KB).
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The intuition of the query creation process is the following: each query word
in this type of knowledge organization can, in turn, be seen as a potential answer
word. For example, in Fig. 1 – SWISS can be seen as an answer word for query
Alps, Army, Chocolate.

The comRAT-G first iterated over the KB and provided nouns which were
the potential answer words (wans) along with their linked query words (wqs).
Only the wanss that had at least three wqs were selected by comRAT-G. This
process yielded around 81500 unique (wans, wq) combinations out of 9601 unique
wanss. The probability of wans as answer for a query word wq was calculated as:

P [wans|wq] =
fr(wqwans)∑n
k=1(wq, wk)

(2)

To make constructing all the combinations computationally feasible,
comRAT-G used Alan Tucker’s combinatorics formula [20] and capped n at
100. With this, 17 million possible RAT queries were obtained. The probability
of answering the generated queries was calculated as the conditional probability
of wans being triggered by each of the query words (wa, wb, wc) was calculated
as in comRAT-C.

Table 1 shows a few examples from the generated queries. Frequency and fre-
quency based probability of finding an answer was computed for all the queries.

Table 1. Example queries generated by comRAT-G.

wa wb wc wans P (wans)

box panes shades window 0.4016

penalty suit toll death 0.5243

paddle roulette steering wheel 0.5582

checking escrow deficits account 0.5626

To validate the generated queries, a study was conducted in which human
performance in comRAT-G queries was compared to that in a normative dataset
[2]. 113 native English speakers (72 females and 41 males) recruited from the
University of Pittsburg and Figure-Eight (F8, https://figure-eight.com) partic-
ipated in the study. The test consisted of 50 queries randomly selected from
the Bowden & Jung-Beeman dataset and 50 queries randomly picked from the
queries generated by comRAT-G.

An average significant correlation of r = 0.54 (p< 0.0001) was observed
between the accuracy in comRAT-G queries and Bowden & Jung-Beeman
queries. A highly significant large correlation of r = 0.75 (p< 0.0001) was
observed between the response times for the two sets of queries. Cronbach’s
alpha on accuracy was 0.932 for Bowden & Jung-Beeman queries, 0.851 for
comRAT-G queries and 0.936 for both the sets combined. The average and high

https://figure-eight.com
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correlations obtained between the performance of human participants on both
the datasets validated the comRAT-G queries. The high Cronbach’s alphas show
that both the datasets are highly reliable and consistent with each other.

This showed the first implementation in which a cognitive AI system was
used for the generation of new queries – displaying applications to improving
creativity tests and other psychometric tools related to creativity science. Later
on, this system was shown to provide a stronger control over factors and allow
new empirical designs [13].

5 Functional RAT and Its Computational Generator -
fRAT and comRAT-GF

Worthen and Clark [21] argued that Mednick’s original queries were not uni-
form, and could be broadly categorized into at least two types: structural and
functional. “TOOTH-POTATO-HEART” (answer: “SWEET”) is an example
of a structural query since “SWEET” occurs together with each of the three
query words syntactically in the English language. Whereas, in “DAISY-TULIP-
VASE” (answer: “FLOWER”), “FLOWER” shares a language-independent
functional relationship with the query words.

As the functional queries examples proposed by Worthen and Clark were
lost in transport between two libraries, and this concept was thus never fully
explored in the scientific community, [12] set as a goal the resurrection of the
concept by computationally constructing a set of functional queries. This set of
queries was to then allow comparisons between compound and functional queries
for cognitive scientists.

comRAT-GF [12] is thus a cognitive AI system that aims to computationally
generate functional RAT (fRAT) queries. This approach modifies the comRAT-
G (Sect. 4) to generate functional queries instead of compound (structural) ones.
As Worthen and Clarke considered Palermo-Jenkins word association norms [19]
a good source for validating Mednick’s initial queries, comRAT-GF uses a more
modern dataset of free association, rhyme and word fragment norms [6] to extract
the data for building the knowledge base. This dataset recorded words that were
produced by human participants when presented with cue words. For example,
when presented with “ABUNDANCE” as a cue word, participants came up with
words like “FAMINE”, “FOOD”, “FULL”.

For the creation of functional queries, items were extracted from the dataset
and the knowledge base was organized in a structure similar to that of comRAT-
G. Words with more than three associates were considered as possible answers
and were used as the basis for generating potential functional queries in further
stages. The number of subjects producing a target word from the University of
South Florida association norms was used as a stand-in for frequency metric.
Similarly, the number of participants producing a target word when given a cue
over the total participants given that cue was used as a stand-in for probability.

Out of the 13,534,865 fRAT queries generated by comRAT-GF , Table 2 shows
a few examples. To evaluate the created queries, and establish human perfor-
mance baselines on them, two studies were conducted.



Cognitive AI Systems for Creativity Science 103

Table 2. Example fRAT queries generated by comRAT-GF .

wa wb wc wp Probability

exhausted sleepy weary tired 0.7202

frame photo portrait picture 0.6897

bassinet crib infant baby 0.6916

daisy tulip vase flower 0.6914

bulb dark dim light 0.5530

In the first study, Figure-Eight users who had previously solved compound
queries in a previous study were invited. In the test, 75 fRAT queries with
probabilities of obtaining the answer word distributed over the range of 0 to
0.5 were presented to every participant in randomized order. The number of
correct answers (accuracy) of every participant was computed and correlated
to their performance in the comRAT-G study with compound queries. The
accuracy scores on fRAT queries show a large positive significant correlation
of r = 0.55 (p< 0.005) with accuracy on compound queries. For the response
times, a medium sized correlation of r = 0.41 (p< 0.05) was observed.

The second study aimed to further investigate the relationships observed in
the first study with a larger sample of 61 participants (44 females and 17 males).
Participants were presented with 96 queries consisting of 48 fRAT queries and 48
compound RAT queries (24 comRAT-G queries and 24 Bowden & Jung-Beeman
queries) in randomized order. A significant correlation of r = 0.44 (p< 0.001) was
observed between the accuracy in fRAT and compound RAT queries. A highly
significant and strong correlation of r = 0.88 (p< 0.001) was found between the
response times for fRAT and compound RAT queries. A measure of reliability,
Cronbach’s alpha was found to be 0.79 for the accuracy on fRAT queries and 0.87
on compound RAT queries. Cronbach’s alpha on response items of the correct
answers also showed a high reliability, 0.90 for fRAT queries, compared to 0.96
for compound RAT queries.

The comRAT-GF cognitive system was thus successful at creating functional
queries of high reliability, that correlate in both accuracy and reponse times with
compound queries. This offers a new point of measurement and psychometric tool
for creativity science.

6 Visual Remote Associates Test - vRAT

The Remote Associates Test is a language based test, and has been widely used
in literature to explore linguistic creativity and problem-solving in humans. How-
ever, solving complex insight problems may require forms of creativity beyond
the linguistic - for example visual and/or spatial creativity. Though empiric
evaluation methods for both visual and linguistic creativity exist, these are dif-
ferent: there is no one test through which visual and linguistic performance can
be assessed cross-domain.
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In order to provide such a tool, a visual adaptation of the RAT was attempted
[11]. The formalization of the linguistic RAT supposes that three words are
given (w1, w2 and w3), and an answer word (wans) is to be found. This word is
subsequently searched for with the knowledge organization boost from comRAT-
C – by using associations, their strength and convergence. In adapting the RAT
to the visual domain, the elements of this formalization were considered to more
abstractly be sensory elements (e1, e2 and e3), with a related answer element
(eans) to be found.

Specifically for the visual domain, the three elements were considered to be
visual elements (e.g. objects), with the answer a visual element as well, For
example, such a visual query can be seen in Fig. 2, where visual elements in the
three pictures – the chimney, the blacksmith in his workshop and the wood –
are meant to elicit a visual association answer (fire).

Fig. 2. An example vRAT query (“chimney-blacksmith-wood”). Answer: “fire”.

Two separate studies were conducted to investigate the human response to
the created vRAT queries and comparability with linguistic RAT [15].

In Study 1 (n = 38), previous participants to a compound RAT study were
presented with 46 vRAT queries in a randomized sequence. Study 2 investigated
how people performed when they were administered with vRAT and linguistic
RAT one after the other in the same session. Study 2 was administered via
two platforms: F8 and Amazon Mechanical Turk (MTurk, http://mturk.com).
Participants (n = 170) were presented with 46 vRAT queries (same as Study-1)
followed by a set of 24 comRAT-G queries and 24 queries from the Bowden and
Jung-Beeman dataset [2].

Table 3 shows the correlations of vRAT scores with linguistic queries from the
comRAT-G and Bowden & Jung-Beeman (B-JB) datasets scored for both the
studies. In Study-1, a significant correlation of 0.431 was observed between the
vRAT score and comRAT-G score. The significance of this correlation was cor-
roborated by Study-2 where the correlation between vRAT score and comRAT-G
score was significant for each of the platforms independently and both of them
combined.

This showed that the initial computational formalization of the RAT for a
cognitive AI system can be used to create valid queries in the visual domain,
and thus expand the reach of creativity evaluation tools.

http://mturk.com
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Table 3. Correlations between the visual RAT and the linguistic RAT scores

Correlated with vRAT score Study-1 Study-2

F8 MTurk Combined

comRAT-G score 0.431∗∗ 0.447∗ 0.307∗∗∗ 0.331∗∗∗

B-JB score 0.022 0.395∗ 0.169∗ 0.210∗∗

linguistic RAT score 0.202 0.465∗ 0.266∗∗ 0.302∗∗∗

Correlations significance level indicated as follows: 0.05 - ∗; 0.01 - ∗∗;
0.001 - ∗∗∗.

7 Discussion and Perspectives

Various cognitive AI systems have been implemented and experimented with –
they showed to contribute to improving creativity modeling and measuring tools.

In the creative association domain, comRAT-C was the first system to use the
knowledge organization proposed under the CreaCogs framework. comRAT-C
was successful in solving the compound RAT queries from the normative Bowden
& Jung Beeman dataset and the system’s performance significantly correlated
with the performance of humans on compound RAT queries. comRAT-G was the
first system to computationally generate RAT queries and contributed a large
set of generated and validated queries to the existing normative data for RAT.
This computational approach to generating new queries has shown to be fruitful
by both correlating to human data on a compound normative dataset [14], and
also allowing for more refined empirical designs with a better ability to record
previously unexplored factors influencing creativity [13].

Before the comRAT-GF system, functional queries were a theoretical idea
[21], the examples of which have been lost to the influence of time and lack of
digitalization. No normative data was available for functional RAT queries, thus
no researchers could explore this idea further. comRAT-GF generated a large
sized dataset for functional RAT which was successfully evaluated with human
participants.

Finally, even formalizing a task in the computational manner required by
constructing a subsequent cognitive AI system can have an impact. The visual
RAT test is the proof of how this formalization can help grasp a task with more
precision, and deploy it in new fields. The visual RAT takes the Remote Asso-
ciates Test beyond the linguistic domain, creating visual queries which can help
gain cross-modal strength when investigating the associative factor in creativity.

In summary, computational cognitive approaches to creativity science can be
very fruitful. The formalization and implementation of cognitive AI systems has
had and can further have a deep impact on cognitive science tools and models.

As further work on the research arc regarding creativity and association,
the authors plan to focus on (i) building a computational solver for the visual
RAT, (ii) exploring multiple answer queries in the linguistic RAT, which were
suspected to exist but first discovered computationally using comRAT-C and
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can be addressed in a systemic manner using comRAT-G, and on (iii) taking the
RAT to other sensory domains.
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17. Olteţeanu, A.-M.: From simple machines to eureka in four not-so-easy steps:
towards creative visuospatial intelligence. In: Müller, V.C. (ed.) Fundamental
Issues of Artificial Intelligence. SL, vol. 376, pp. 159–180. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-26485-1 11
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Abstract. Visual neuroprostheses that provide electrical stimulation
along several sites of the human visual system constitute a potential
tool for vision restoring for the blind. In the context of a NIH approved
human clinical trials project (CORTIVIS), we now face the challenge of
developing not only computationally powerful, but also flexible tools that
allow us to generate useful knowledge in an efficient way. In this work, we
address the development and implementation of computational models of
different types of visual neurons and design a tool -Neurolight alpha- that
allows interfacing these models with a visual neural prosthesis in order
to create more naturalistic electrical stimulation patterns. We implement
the complete pipeline, from obtaining a video stream to developing and
deploying predictive models of retinal ganglion cell’s encoding of visual
inputs into the control of a cortical microstimulation device which will
send electrical train pulses through an Utah Array to the neural tissue.

Keywords: Visual neuroprostheses · Neural encoding ·
Computational models · Artificial vision

1 Introduction

To restore the ability of the human neural system to function properly is one of
the main purposes of neural engineering. In the context of this broad and mul-
tidisciplinary research field, where disciplines ranging from clinical neurology
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Fig. 1. A general idea of a cortical visual neuroprosthesis is composed of a camera
obtaining a video stream, a encoding module and a stimulator which sends electrical
pulses throughout an intracortical microelectrode interface.

to computational neuroscience, scientific advancement and engineering devel-
opment has taken us until today’s achievements: EEG-Based BCI [1], motor
control BCIs with UTAH arrays [2,3], cochlear implants [5], retinal prosthesis
[6], and Deep Brain Stimulation systems [7]. Regarding visual function recover-
ing, several approaches are being extensively explored, such as optogenetics [8],
biocompatible material design for neural interfaces [4] and neuromorphic com-
puting for neuroprosthesis [9]. Specifically, several advances have been done in
retinal prostheses, where several devices have been already clinically tested or
are currently in use [10,11]. These devices are limited to a very specific causes of
blindness, where the optic nerve function is intact. Cortical prosthesis appears
as a potential solution to those blindness conditions for people with a functional
visual cortex, regardless of their retinal or optic nerve condition.Several research
groups around the globe are pursuing this goal [13–16,18]. In this context, the
main goal of this work is to create and integrate the actual knowledge on neural
function, psychophysics, signal processing and neural encoding modeling, and
build a working pipeline which leads us towards further experiments and tech-
niques that advance in the development of cortical visual prostheses. A general
idea of the complete pipeline of a functional cortical prosthesis is composed of a
video camera which receives the visual information, sends its to a signal process-
ing device which sends orders to the neurostimulator that sends electrical pulse
trains to the neural tissue accordingly to that commands (see Fig. 1) [13,14]. In
the scenario of a NIH approved human clinical trials project named Develop-
ment of a Cortical Visual Neuroprosthesis for the Blind [17], we now face the
challenge of creating not only powerful but also flexible tools that overcome the
limitations and needs of the current neurostimulation systems, allowing for new
experimental trials.

Inspired by the success of cochlear implants, who greatly benefited from the
developing and tuning of signal processing models according to psychophysics
[19], we designed an end-to-end image processing and stimulation control
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Fig. 2. Two main train modulation strategies are contemplated: Intensity modulation
(A) and Frequency modulation (B).

workflow aimed to constitute a useful tool for neuroprosthesis research. In order
to allow the designed system to incorporate bioinspired control capabilities of the
electrical stimulation parameters (Amplitude of the phases, Pulse Width, Pulse
Frequency, Inter Pulse, Inter Phase, Inter-Train, see Fig. 2), we created a neural
encoding module which makes use of Deep Learning libraries Keras and Tensor-
flow [32,33], allowing us to create and make use of custom-defined or data-driven
models of neural encoding of light patterns, simulating this way a retina-like visual
processing, which output will be used for the stimulation control.

The possibility of reproducing neuronal activity present on the retina during
natural vision has been studied with regards of electrical stimulation in epiretinal
prosthesis [21], with promising results. In addition, techniques for computing
population coding distances on retina have been proposed [22], along with visual
perception simulation frameworks [20,23]. These results are encouraging, and the
new methodologies could apply and be tested on the visual cortex.

In addition, diverse models of animal and human neural visual encoding
systems of different nature have been created until today, targeting different
processing stages, some of them focusing on the retina [24–27], which is the
primary stage of visual processing.

2 System Overview

In this work, an end-to-end stimulation pipeline has been designed, integrating
both hardware and software components into a flexible tool for visual neuropros-
thesis research. This system, schematized in Fig. 3, is composed of several stages.
First, a commercial USB camera device mounted on a pair of glasses captures
the video signal that is received by a computer with a Linux operating system.
We implemented the system with both a custom local computer and a Rasp-
berry Pi model 3B+. The input images are then processed and sent to a model’s
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Fig. 3. Illustration of the main system’s pipeline.

prediction module, an artificial retina, in our case. Finally, the model’s output
is interpreted as the main command for the neural stimulation (Cerestim96,
Blackrock Microsystems, Inc., Salt Lake City, UT), which provides customized
electrical pulse trains to the visual cortex through intracortical microelectrodes
such as the Utah Electrode Array [31].

In order to handle the video stream, open source python libraries for sci-
entific computing have been used: openCV scipy, numpy [28–30], along with
state-of-the-art deep learning libraries: Tensorflow and Keras [32,33] as the tools
to implement the neural coding previous to the stimulation control signals. In
addition, we explored the possibility of deploying the visual coding models into
a specialized deep learning acceleration hardware device [34], which relies on a
Vision Processing Unit (VPU).

In the next section, we detail the function and features of the main blocks of
the proposed system.

3 Software Interface Design

3.1 Modules Organization

In order to provide a modular, easy to use and extendable software corpus, we
organized our python library, named Neurolight alpha, in the following structure:

Main experiment. Contains the main thread on which the needed submodules
are imported and the camera and stimulation devices configurations are set,
before launching the “experiment” code.

Experiments. Each experiment is defined as a sequence of common steps:
retrieving a new frame from the camera, preprocessing the incoming image
(image normalization and resizing), optionally updating the video buffer (in
case of a spatial-only retina model), performing the model’s firing rate predic-
tions, adapting the prediction to create stimulation commands, and sending
those commands to the stimulator. The main workflow in the experiment
module is detailed in Algorithm1 (an example of an experimental workflow
is described in Sect. 3.3).
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Algorithm 1. Experiments module
Create train configurations
Select electrodes to use
Create encoding model
while processFlag do

Obtain and process frame
Update video buffer
Model processing
Stimulation command
if exitCondition == True then

processF lag ← True
end if

end while

VisionModels. This module allows to define Keras (TensorFlow) retinal pro-
cessing models. It also contains model’s prediction normalization functions,
which are necessary to interface the neurostimulator correctly. In addition,
it wraps the Neural Compute Stick API functions necessary to compile the
designed Tensorflow models in order to deploy them into the Vision Process-
ing Unit.

StimAPI. This module incorporates the main functions which builds the nec-
essary messages that allows us to interact with the neurostimulator. Those
are the basic commands blocks which are used by “StimControl”.

StimControl. A higher level API that performs the communication operations
needed to control the stimulator. Each StimControl function calls StimAPI
one or more times in order to create and send functional commands.

NCSControl. This module can be used to accelerate the model’s predictions
upon the videostream on the Intel’s Neural Compute Stick device. Contains
functions for communication with the NCS device, loading models and per-
forming inference over the input.

Utils. Contains various helper functions, as generating custom image filters(for
example, Gaussian filters), or mapping the desired electrodes to the actual
stimulator output channels.

3.2 Computational Neural Models and Image Preprocessing

The VisionModels module allows to define simple and complex, retina-like visual
preprocessing models, which are defined as Keras Sequential models or Tensor-
flow Graphs. This models can be deployed using a CPU, GPU or specialized
architectures, such as FPGAs. In this first design version, we prepared two
modalities: spatial processing models and spatiotemporal processing models,
where the defined filters are 2D and 3D, respectively.

Custom Linear-Nonlinear 2D/3D filter can be custom-defined or created
using data-driven, machine learning techniques, as Linear-Nonlinear models or
Convolutional Neural Networks (see Fig. 4).
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Fig. 4. Spatiotemporal filters can be defined and used as part of the pipeline. In the
image, a selection of four of the linear part of the Linear-Nonlinear models after a rank-
one decomposition performed with pyret [43]. The ganglion cell’s retinal recordings were
performed as mentioned in [24].

In order demonstrate the naturalistic stimulation control capability of our
system, we fitted ganglion cell’s firing responses to light patterns of different
nature: full-field light flashes, checkerboard patterns, moving bars and natural
scenes, following procedures similar of what is described in [24]. The natural
scenes images were obtained from [35], and the rest of the stimuli was created
by code scripts.

The ganglion cell’s firing rates were fitted by means of a two-stage iterative
process, in which each single neuron is modeled by means of a L2 regularized spa-
tiotemporal Linear-Nonlinear process [36] (LN), which parameters are obtained
with the Adam optimizer [37], which is a variant of the Gradient Descent opti-
mization. The loss function utilized was a weighted sum of the mean squared
error and the cross entropy between the biological retina’s responses and the
model’s output.

In the first modeling stage, the input of the model consists on the flattened
spatiotemporal visual stimulus that was projected into the retina during each
time bin, and the output is the smoothed firing rate of the neuron as a response
to the input [24]. The discrete time binning was 10 ms.

Due to the high dimensionality of the input (50 pixels× 50 pixels × 30
frames), the LN models created struggle to converge and are usually suboptimal.
In order to tackle this, in the first stage we used a high regularization factor.
This will promote that the model’s parameters tends to zero in the spatial pixels
which are out of the ganglion cell’s receptive field, which is convenient in order
to figure out which parts of the image are being encoded by the neuron. For the
second modeling stage, we centered the model’s target around the most relevant
15 × 15 pixels for each neuron, decreasing this way the number of parameters
from 75000 to 6750, this is, 11x less parameters, leading the model to a more
robust and faster convergence.

Once the Linear-Nonlinear models of the neurons are created, they can be
loaded as the weights of a 1-layer Convolutional Neural Network either into
a Keras sequential model (for quick deployment into the working pipeline) or
TensorFlow graph, which will allow to compile it into a specific graph format to
be used by a Neural Compute Stick (see Sect. 3.4).
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Both the Keras and Tensorflow libraries allow for application-specific cus-
tomization, by selecting the convolution stride or making spatial or spatio-
temporal predictions over batches of images.

3.3 Neurostimulator Control and Stimulation Strategy

We developed and implemented a python version of the Blackrock Microsystems’
API for the control of the CereStim96 neurostimulation device (briefly described
in Sect. 3.1). This device allows for 16 simultaneous active channels, and 15 dif-
ferent pulse train configurations, that can be dynamically created (by overriding
previous configurations on demand). After checking the correct operation of
the device’s current modules, a base pulse train configuration is defined. Then,
modified versions of the base pulse trains are created, with different pulse inten-
sity/frequency/pulse width values. This configurations, which shapes the pulse
trains that will be delivered through the corresponding channels, are defined by
the following parameters: Amplitude1, Amplitude2, PulseWidth1, PulseWidth2,
InterPhase, InterPulse (see Fig. 2). Another key parameter to take in consider-
ation its the InterTrain, this is, time between train pulses.

In this experiment, we select a list of electrodes which will be activated and
map them into the actual channels which the device connects to.

After this, the camera configuration parameters are set, taking into consider-
ation the dimensions of the input image, and the number of frames to buffer for
the spatiotempoal processing. The retina model is defined by loading, reshaping
and normalizing the ganglion cell’s Linear-Nonlinear -or any other customized
filter-based- model’s weights into a Keras or Tensorflow model which will handle
the convolution operations and strides. In the case of using a hardware acceler-
ation device like the NCS for offloading the model’s computations, we compile
the desired model and load it into the device.

Once the main configurations are set, the main thread starts. Each input
frame from the camera device is handled by openCV, resized and normalized,
and stored into a buffer variable of the desired length. This buffer will be pro-
cessed by the retina model, either in the main computer of in the accelera-
tion device. The model’s predictions are then normalized between 0 and 1 and
matched to the closest of the 15 configurations selected for each electrode, which
vary either in the intensity of frequency, depending on the desired train modu-
lation strategy. Then, a single group stimulation sequence is generated for the
corresponding electrodes and configurations and the command is sent to the
stimulation device. If desired, a prompt windows will be updated, showing the
camera input and stimulation information. After checking that the stimulation
operation was properly performed, the next frame is obtained from the camera,
and the whole process is repeated.

The stimulation strategies must be shaped by decisions of diverse nature:
the actual knowledge of the psychophysics, computational modeling needs, soft-
ware design decisions, hardware features and limitations. Two main strategies
are contemplated currently: Amplitude Modulation and Frequency modulation
(see Fig. 2), where the model’s predictions for each electrode are mapped to the
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closest matching configurations, which are previously set and loaded into the
stimulator device.Clinical studies will reveal the most optimal way of operating.
[12,38–41].

3.4 Hardware Implementation

In order to explore the possibilities that dedicated hardware acceleration offers,
we deployed the vision models into a Intel’s Neural Compute Stick [34], a low-
power consuming, edge-computing device designed to deploy Deep Learning
models for inference, which incorporates an Intel R© MovidiusTM Vision Pro-
cessing Unit (VPU). This device is connected to the main computer, and the
preprocessed image/video data its passed to it through an USB port, returning
the model’s predictions after the processing.

After creating single Linear-Nonlinear ganglion cell’s models, they were
loaded into a Tensorflow graph. The Linear-Nonlinear models, as described in
Sect. 3.2 consists of a spatial or spatiotemporal filter with a nonlinear activa-
tion function which is convoluted through the image/video input, returning the
predicted ganglion cell’s firing rates, predictions which can be used for the stimu-
lator control after proper normalization and configuration-matching (see Fig. 5).
The created graph its prepared for inference-only mode and compiled into a
compatible format to be used into the device.

4 Discussion and Future Work

Since many questions regarding the psychophysics of the phosphene generation
are either still unanswered or in need of a more extensive exploration, cortical
neurostimulators control tools must be smooth and easy to use and at the same
time they have to permit to be adapted to the ongoing experimental findings as
the theoretical and experimental hyopothesis are confirmed or discarded in the
clinical research.

In this work, a cortical prosthesis control framework prototype is developed,
having at its core the design principles of robustness and flexibility, allowing
custom adaptation to the needs of clinical research. This functional working
pipeline allows to incorporate both simple and complex computational neural
encoding models of visual inputs (such as data-driven or custom linear-nonlinear
models of retinal ganglion cells) for prosthesis control and to define different
stimulation strategies, such as amplitude and frequency modulation, based on
the implemented models. This framework has been designed and implemented
into an experimental setup with a commercial neurostimulator that can be used
on both animal an human research. The core pipeline modules, as the image
capturing and preprocessing, the neural encoding module and the stimulator
control API are based on open-source python libraries commonly used by the
scientific community, which we believe is a fundamental feature for scientific
tools and knowledge sharing.
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Fig. 5. Illustration of a spatiotemporal filter being applied to a video stream. The out-
put of the model is an array of activation values that can be mapped to the stimulator’s
electrodes, after a proper normalization and matching with the pre-configured stimulus
configuration values.

Among the weaknesses of the current system its the fact that its pipeline is
sequential: every new image has to be processed before sending the image/video
data for the model to return its output. After that, the stimulator has to finish its
function before a new image its fetched. With this operation mode, the system
is able to change the running stimulation parameters at 14 FPS. This bottleneck
can be avoided by using threading, and its one of the main improvements to be
made in future works. As a future planned improvement, Neurolight will allow
to parallelize the image/video inputs pre-processing with the model encoding
modules and the stimulation control, obtaining this way a better maximum sys-
tem’s performance in terms of FPS and more diverse possibilities for stimulation
strategies development.

The fact that the electrical pulse trains are sent after the image processing-
model prediction stage leads to a blinking stimulation strategy: train pulses
are interleaved with an inter-train resting period. This way of stimulation on
the visual cortex has been tested previously [39], and prevents the neural tis-
sue to be permanently under the influence of external electrical fields, although
the implications of this stimulation strategy has yet to be elucidated. In this
matter, the inter-train interval necessary to generate a separated or continuous
phosphene will be one of the main features of study in the clinical phases, along
with the effects of temporal summation, and phosphene size and brightness.

Among the main challenges that a visual prosthesis designer faces is how
to convey the most useful information trough the prosthesis. One of the most
promising alternative pre-processing strategies is semantic segmentation [42] -
which can already be implemented into our working pipeline by compiling a
U-NET-like semantic segmentation CNN. The main idea of this approach is to
simplify the transmitted visual information in a meaningful way, such that the
complexity of the environment is diminished without disregarding the important
information necessary for scene understanding and navigation.
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In future works, we expect to implement several psychophysics modules
which complement the tool and allow for a better fine-tuning of the whole sys-
tem. Regarding the visual encoding models, it is hypothesized that retina-like
image preprocessing could be beneficial for visual prosthesis [13], by perform-
ing a bioinspired feature extraction of visual information, although this remains
unanswered. Along with the technical achievements made, new experiments need
to be designed accordingly to provide answers. In this way, more complex, CNN-
RNN based retina models which are proven to mimic the retinal encoding will
be compiled and tested, and a tradeof between model’s complexity and overall
system’s performance in terms of computing speed will be extensively studied.

We hope that the present work constitutes a step forward towards integrat-
ing knowledge from many scientific and engineering fields into a useful clinical
research tool, and it is designed under the aim that neural engineers dream of:
to help people achieving a level of neural function recovery sufficient to improve
their life’s quality.
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Abstract. This paper is concerned with motivation in autonomous
robots. In particular we focus on the basic structure that is necessary
for bootstrapping the initial stages of multiple skill learning within the
motivational engine of the MDB cognitive architecture. To this end,
taking inspiration from a series of computational models of the use of
motivations in infants, we propose an approach that leverages two types
of cognitive motivations: exploratory and proficiency based. The latter
modulated by the concept of interestingness. We postulate that these
make up the minimum set of motivational components required to initi-
ate the unrewarded learning of a skill toolbox that may later be used in
order to achieve operational goals. The approach is illustrated through an
experiment with a real robot that is learning skills in a real environment.

Keywords: Cognitive Developmental Robotics ·
Motivational system · Skill learning · Open-ended learning

1 Introduction

Making robots able to learn in open-ended manner throughout their lives implies
that the robot is expected to learn an unbounded sequence of a priori unknown
tasks in unknown domains [6]. At design time, the designer does not know what
competences or knowledge the robot will need to achieve its objectives. Con-
sequently, the problem is not that of providing a robot with competences to
perform particular tasks in known environments, but to provide the robot with
mechanisms that allow it to figure out what tasks to carry out, and how, to
achieve its objectives in the situations faces. This is, obviously, a much more
difficult problem.

In order to try to find ways to solve it, many authors have drawn inspira-
tion from natural systems. This has been the focus of Cognitive Developmental
Robotics (CDR) [1], which addresses the design of robotic systems based on
insights from the onto-genetic development of cognition, mostly in children. It
deals with the progressive acquisition of competences which are later used as
scaffolding to acquire new, more complex, competences.
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J. M. Ferrández Vicente et al. (Eds.): IWINAC 2019, LNCS 11486, pp. 120–129, 2019.
https://doi.org/10.1007/978-3-030-19591-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19591-5_13&domain=pdf
https://doi.org/10.1007/978-3-030-19591-5_13


Bootstrapping Autonomous Skill Learning in the MDB 121

However, a CDR approach implies establishing a series of innate competences
that allow for autonomous learning and adaptation. Taking inspiration from the
way infants autonomously learn, it is easy to see that they have a tendency to
explore their environment and to address and learn from new problems they
select by themselves without any explicit external reward. In other words, the
individual is the one that defines what to do and what, when, and how learning
will take place as a function of its internal state and the needs that emerge from
its interaction with the different environments it may face.

Obviously, from a roboticist point of view, the purpose of the robot cannot
be defined in terms of what it must do but rather in terms of what it must
achieve with respect to its internal state and needs. One way to do this is for
the designer to establish an internal state space, which is usually called the
motivational space [5], given by a set of domain independent variables that
reflect the robot needs in terms of meeting some criteria. Any deviation from
these criteria implies a need the robot must fulfill and the amount of deviation
the intensity of the need or the drive.

Now the problem becomes how can the robot figure out what tasks to carry
out when confronted with an unknown domain as a in order to fulfill its needs.
In other words, it needs to self-discover and self-select goals, defined as desired
end-states in the domain [14], end-states that will lead to an increase in the
fulfillment of its needs. It is important to emphasize here that a goal determines
a task the robot must carry out (to reach the goal) and, consequently, a skill it
must learn in order to be able to achieve it.

On the other hand, the robot also needs to determine how valuable any goal
is (what is its utility) and, by extension, what may the expected utility of any
point in state space be with regards to that goal (defining expected utility as
the probability of reaching a goal from that point multiplied by the utility of
the goal). The mechanisms in charge of this are generally called motivational
mechanisms or value systems and, as stated by Begum et al. “The success of
designing truly developmental robot depends largely on the design of a value
system” [2].

In the classical psychological and educational literature on motivation [5],
most authors distinguish two classes of motivations from an external observer’s
point of view. On the one hand, when the agent is perceived as trying “to obtain
some separable outcome” [15], it is said to be extrinsically motivated [12]. The
observer sees the agent seeking goal states where some observable explicit utility
can be obtained. On the other hand, animals and humans spend time and effort
carrying out behaviors that produce no observable explicit utility. This has been
explained away as driven by intrinsic motivations [15] arising from within the
individual because the behavior is naturally satisfying.

This work is framed within the problem of creating adequate motivational
systems for autonomous robots, in particular, within the MDB cognitive archi-
tecture [3,7], to be able to efficiently learn and purposefully behave in open-ended
settings. For this purpose, the aforementioned traditional classification of moti-
vations is not satisfying. In fact, from an engineering point of view, intrinsic
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motivations only differ from extrinsic ones in the fact that their drives are usu-
ally related to cognitive aspects of the operation of the system. However, no
matter what type of drive it is, it is always fulfilled by acquiring utility, whether
in terms of a cognitive aspect (e.g. found something new) or an operational
one (e.g. increased my energy level). For this reason, we believe a classification
of drives into cognitive drives and operational drives is much more useful for
engineering purposes and this is the classification we will use in the rest of the
paper.

In this paper we describe the motivational engine that has been designed for
the MDB cognitive architecture focusing on the initial stages of skill learning.
That is, taking inspiration from a series of computational models of the use of
cognitive motivations in infants to explore and learn that have been proposed
in the last decade [8,13], we will address the problem of how to bootstrap the
system to opportunistically start learning skills in domains where multiple skills
can be learned at the same time.

2 MDB Motivational Engine

As we have previously indicated in the introduction, motivation should be the
driver that makes a cognitive robot perform some action [10] directing its activ-
ities. It does this, by providing an evaluation of states determining how good
they are for the robot survival or design objectives in the form of an utility value
that reflects how much the satisfaction of a drive or drives has improved when
the state was reached. This evaluation can be carried out over the real current
state of the robot or over prospective states in order to decide on which future
state would be the best choice for the robot.

When prospectively evaluating states, a utility value needs to be estimated by
a utility model Uk, which is associated to goal k. Goals are points or areas in state
space that, when reached, increase the satisfaction of one or more drives of the
robot (produce utility). Given the set of goals the system has at any moment in
time, the motivational engine must provide their corresponding activation levels
depending on the needs it wants to fulfill. This way, states can be evaluated
depending on the drives related to those goals. To be able to achieve this, the
motivational engine must perform three main processes: select the goal activation
for the current context, discover new goals, and learn the utility functions that
allow it to evaluate the states depending on the goals.

Figure 1 displays a schematic representation of the Motivational Engine,
called MotivEn, that was designed for the MDB architecture. The black boxes
delimit the main components of the system: Goal Manager, State Evaluator and
Utility Modeler. The red blocks are output elements that are transferred to the
rest of the cognitive architecture: the goal activation vector and the discovered
goals, provided by the Goal Manager, the utility models provided by the Util-
ity Modeler, and the evaluation of the perceptual states, provided by the State
Evaluator.

As a general overview of the operation of the motivational engine, we can
start from the left block, the Trace Buffer (TB). The episodes in the TB are
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traces, that is, a limited number of consecutive states that lead to a goal, as in
classical reinforcement learning. These traces are used by the Goal Manager to
define the new goal states, and by the Utility Modeler to carry out Utility Model
learning processes. The top part of the TB contains a sub-block called Current
State, which represents the last perceptual state, required to define the goal
activation vector. This definition is performed by the Goal Manager component,
taking into account the set of innate drives of the robot. This Goal Activation
Vector is used by the State Evaluator to provide the evaluation of the Candidate
State when necessary (green block in Fig. 1).

Fig. 1. Motivational engine diagram. (Color figure online)

The utility modeler component is in charge of obtaining models of the utility
function associated to each goal. The utility model provides an internally useful
representation of expected utility for any point in state-space with regards to a
particular goal aimed at establishing clues on how to reach goals. Utility can be
modeled in different ways and in this paper we will make use of Value Functions
(VFs) in the form of ANNs as utility models in the examples we will present in
the experimental section.

The Goal Manager component is tasked with creating and maintaining a goal
graph (Fig. 2) that represents the relationships among goals. The goal graph is
rooted in the innate motivational vector (top vector of Fig. 2), that is, the vector
of drives of the system. This vector provides an indication of the needs of the
robot each moment in time as a function of the values of the innate motivational
sensors that were established at design time and that constitute the motivational
state space. Goals are areas of the operational state space of the system (which
has to do with the external sensorial apparatus of the robot and the domain it
is immersed in) and they are related to the drives by the fact that achieving a
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particular goal produces an increase in the satisfaction of the associated drives
(utility). As the robot discovers goals in the different environments it finds itself
in, the Goal Manager links these goals through a weighed connection to the
particular drive they satisfy. Some of the goals may not directly satisfy an innate
drive, but may be stepping stones towards another goal, that is, they may be
sub-goals. Operationally, given a set of values for the drives, these are propagated
along the goal graph to determine the activation level of each goal. This way,
the motivational engine uses its experience in the form of stored goals to try
to determine goal paths to satisfy the active drives that instant of time in that
particular domain.

Fig. 2. A representation of the drive-goal hierarchy. Each goal has, at least, one utility
model associated to it.

3 Unrewarded Skill Acquisition and Interestingness

This paper deals with the problem of bootstrapping the operation of a devel-
opmental cognitive robot in its initial stages of autonomous interaction with an
unknown world or a series of worlds. At this stage the robot can only rely on
what it has been innately endowed with by the designer and it must use it to
progressively acquire new skills that will allow it to become more proficient. Con-
sequently, designing an appropriate set of innate drives is key to the adequate
performance of the robot.

As indicated before, operational drives, which are the ones most authors
assimilate to classical extrinsic goals, or what the Reinforcement Learning liter-
ature calls external rewards, and that reflect the main objectives of the robot,
are relatively straightforward to design. However, for practical reasons, the util-
ity (rewards) they provide in state space is usually very sparse, slowing down
learning and forcing the robots to perform many “useless” or non-informative
interactions with the environment before finding goals and starting to learn skills
to achieve them.
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This problem was initially addressed, for instance in the field of Reinforce-
ment Learning, through hand designing “well-shaped” reward functions [11].
But this has proven to be a very difficult endeavor in all but the simplest
problems [4], especially when considering real life robotic environments. Conse-
quently, inspired by the observations of child cognitive development, a different
approach based on supplementing the sparse operational rewards using cognitive
(or intrinsic) drives to generate dense utility landscapes was proposed in the last
few years [13].

This is the approach chosen within the motivational engine of the MDB.
Thus, in order to initially bootstrap the operation of the system, even before
any operational goals have been found, we postulate that the designer must
define a set of cognitive drives that allow for an efficient exploration of the state-
space of the robot and that lead to the concentration of sampling and learning
effort where it is more productive. This permits learning skills to be stored in
the Long Term Memory so that they can later be used to simplify the process of
finding and achieving operational utility, which is the main driver of any robot.

Here we postulate that two types of drives constitute the minimum set of
cognitive drives required for this process. On the one hand, the robot needs to
explore its state space in order to find utility. This exploration must be efficient
and, consequently, some type of cognitive drive related to exploration must be
included. In particular, in the experiments we present in the next section, we
have made use of a drive related to novelty [9]. However, to learn a skill, it is also
necessary to train and become proficient at it. That is, the robot needs to be
motivated to concentrate its interaction with the environment on cases that can
lead to learning the skill. That is, to establish a virtual goal in that point and
learn its utility model. We will call this a Proficiency based type of motivation.
In particular, as skills are usually learned in order to be able produce some effect
on the environment, we will make use of an effectance based motivation in the
experiments and associate it to sensors that determine when unpredicted change
has occurred.

To induce training, we incorporate the concept of interestingness within the
related proficiency based motivation as a virtual utility value that can change
in time as the robot becomes more proficient at achieving the corresponding
goal. Thus, when an effect is produced by chance for the first time, the point
in state space where that occurred becomes interesting (its interestingness level
increases). This is reflected within the motivational engine as a virtual utility
value when the goal is achieved and within the attention mechanism of the robot
by increasing the saliency of the state-space point in the process of choosing
where to go next. However, interestingness is also modulated by the proficiency
in achieving the goal: the more proficient the robot becomes, the less interesting
the virtual goal becomes. Once the robot is very proficient, the skill for achieving
the goal will have been acquired and it can be sent to Long Term Memory for
storage and future recall.

Summarizing, to be able to explore and learn skills that may later be useful to
achieve operational goals before any operational goal has been found, we postu-
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late that the designer of the robot cognitive architecture and motivational system
needs to provide, at least, two types of innate basic motivations: Exploratory
motivations and a Proficiency based motivations. The former allow for efficient
exploration of state-space (some type of babbling). The latter allow for tempo-
rally focusing efforts to learning skills through virtual goals even though no real
operational utility is achieved.

4 Experiment with Real Robot

To test how interestingness coupled with a proficiency based motivation allows
the motivational engine to autonomously learn new skills while interacting with
its environment, a simple but very illustrative real robot setup has been defined.
The experiment is carried out using the Baxter robot, which is placed in front
of a white table with three different objects it can detect: a brown box, a red
ball and a small plastic jar which lights up when it is grabbed. The robot can
detect the distance to the objects by using their color and shape. Regarding
its actuation, it is equipped with two 7 DOF arms with gripper effectors. The
grippers automatically grab an object when it is detected between the gripper
plates.

Fig. 3. The left image corresponds to the pushing skill, while the right image corre-
sponds to the grasping skill.

Thus, in this particular experiment, we, as designers, have endowed MotivEn
with one exploratory (novelty based) motivation that makes the Baxter right arm
move around the table in a sort of babbling pattern seeking states that it has not
experienced before. Obviously, for novelty, the objects are more attractive than
an empty table and we have included a basic attention mechanism for which,
other aspects being equal, the closest one is the most attractive. In addition, we
have provided a proficiency based motivation in the form of an effectance drive.
That is, a drive towards causing changes in the environment. In this case, the
changes it detects have to do with changes in the positions of objects or changes
in color. In particular, in this experiment, the jar lights up when it is grabbed
and all of the objects can be pushed around.
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The execution of the experiment, illustrated in the images of Fig. 3, can be
described as follows: the robot started its operation without any explicit goal
nor skill apart from the two innate motivations mentioned above. Consequently,
it started moving its right arm guided by the novelty motivation. Eventually,
this novelty seeking motivation leads it to hitting and pushing a an object, in
this case the ball (see left image in Fig. 3), thus generating a change in the
perceptions of the robot that it will interpret as an effect of its actions on the
environment (it has caused effectance). This increases the interestingness value
of the point in state space where the change occurred (defined by the color of
the object, a distance of zero between the gripper and the object and a speed
of the arm that is different from zero) and establishes it as a virtual goal to be
achieved.

The interestingness value triggers the effectance drive through an increase
of the drive value. This drive is only satisfied when the robot is able to con-
sistently achieve the virtual goal, which is when interestingness drops to zero.
Consequently, the robot concentrates on finding ways to reach the goal point in
state space from any initial point it is in. In other words, if the object is the red
ball, as in the left of Fig. 3, it explores how to make the ball move and progres-
sively creates a utility model that allows it to consistently make the ball move
(push the ball) by selecting actions that follow its positive gradient. In the case
of this experiment, the utility models took the form of a value function that was
encoded as an ANN that was progressively trained using the ADAM algorithm
on the samples the robot produced.

As the robot becomes more proficient, that is, as the utility model improves,
the level of interestingness in moving the ball decreases, thus reducing the
effectance drive. Depending on the level of its other drives, this may imply a
change of activity on the part of the robot. In this particular example, the
only other drive is the novelty drive and it does not become dominant until the
effectance drive is very low. Once this happens, the robot looses interest in mov-
ing the ball and goes back to seeking novelty. At this point the value function
obtained for the push-ball skill, shown in Fig. 4(b), is stored in the Long Term
Memory (LTM) of the MDB for future use.

As the robot continues to explore, some object may end up between its
gripper pads triggering the close gripper reflex action. This action really does
not cause any effect in any of the objects except for the jar. Thus, when the
object is not the jar, the robot continues with its novelty seeking behavior.
When it is the jar the one the gripper closes on, it lights up. This obviously is
an effect and, as in the previous case, an interestingness value is assigned (see
right image of Fig. 3). Again, the proficiency based motivation starts guiding the
robot response and a second value function learning process is launched. As the
grasping skill associated to this VF improves the interestingness value decreases
until the corresponding value function (displayed in Fig. 4(a)) has been correctly
learnt and is stored in the LTM.

The process continues with a new exploratory stage and, if pertinent, new
activations of the effectance drive that will allow learning new skills. What
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is important here is that in this experiment MotivEn was able to learn two
primitive skills (grabbing and pushing) in a very efficient manner while it was
autonomously interacting with the world, without any extrinsic reward.

(a) VF to grab (b) VF to push

Fig. 4. 3D representation of the primitive skills learned.

To illustrate the response of the learned skills, Fig. 4 shows a 3D represen-
tation of the value functions in terms of distance and speed of the gripper that
were learnt. The VF associated with the grabbing skill (Fig. 4(a)) shows how
the expected utility is higher the closer the robot is to the object and the lower
the speed of the gripper. Something logical, since the robot will need to be close
to the object and stopped to grab it. On the other hand, in the VF associated
to the push-object skill (Fig. 4(b)) the expected utility is maximum when the
distance to the object is zero and the gripper speed is greater than a threshold
so that it can push it.

5 Conclusions

In this paper we have addressed the problem of bootstrapping autonomous
robotic learning when operational reward is sparse in terms of the basic drives
that should be present within the motivational engine of the MDB cognitive
architecture in order to make this bootstrapping possible and efficient. Thus, we
have established that a minimum of two types of cognitive drives need to be put
in by the designer: Exploratory drives and Proficiency based drives. Exploratory
drives are quite common in the motivation literature and provide a way for the
system to efficiently explore its state space. Proficiency based drives are the ones
that allow the system to concentrate on promising points in state space and learn
possible skills in order to consistently reach them. In our case, this focusing is
achieved through the use of the concept of interestingness in order to provide
temporal virtual reward and saliency, thus allowing the system to learn multiple
skills in an environment. This approach was successfully tested in a real robot
operating in a real, albeit simple, environment.
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Abstract. Ultrasound (US) medical imaging rises as a technique used
to visualize nerve structures, among other applications. It has been used,
typically, as a tool for assisting in the practice of peripheral nerve anes-
thesia. Due to its non-invasive nature, US may reduce the risk of injury
to medical patients during surgical procedures. Despite its usefulness,
it is challenging for anesthesiologists to perform the anesthesia process,
mainly due to the presence of speckle and acoustic multiplicative noise,
significantly degrading the image quality. Besides, the lack of homogene-
ity in the imaged structures disorients the anesthesiologist in the effec-
tive localization of the nerve structure. In this paper, we present the
design and implementation of the software toolkit HAPAN (HAPAN
is a Spanish acronym for H erramienta de Asistencia para la Práctica
de Anestesia en N ervios periféricos-Assistance tool for the anesthesia
of peripheral nerves.), developed in MATLAB, for the segmentation of
different peripheral nerves in ultrasound images. HAPAN includes algo-
rithms for automatic nerve segmentation based on appearance shape
models, and image resolution enhancement.

Keywords: Peripheral nerves · Regional anesthesia · Support tool

1 Introduction

Medical ultrasound (US) imaging stands as a technology widely used by anesthe-
siologists for the localization of nerves structures [14]. Despite being the stan-
dard tool for peripheral nerve blocking, the US strongly suffers from multi-
plicative acoustic noise and lack of structure homogeneity [16]. To deal with
above issues, researches focus on the automatic segmentation of US includ-
ing fetal catches [1,8], blood vessels [10,15], and pathological tissue [11,19].
In general, the approaches of US segmentation are grouped into statistical
approaches [9,13], superpixel or patch-based approaches [2,18], and texture and
classification approaches [7,12].

Nonetheless, there are few relevant approaches for peripheral nerve segmen-
tation that provide on-line assistance to the anesthesiologists. Some of them
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include are clustering algorithms [4], Bayesian shape models [3]; and Gaussian
processes [5,6]. Despite reporting promising results, most of the works only test
small US collections. Therefore, there is a need for tools allowing anesthesiologist
visualization, validation, and analysis of automatic US processing.

This paper presents the design and development of software for the auto-
matic segmentation of ultrasound images, termed HAPAN. HAPAN includes
conventional segmentation and appearance and shape models as user alterna-
tives. Besides, HAPAN as a support software deploys complementary tools rang-
ing from digital filters to image resolution enhancement algorithms, developed
to facilitate the visualization and localization of the nerve in ultrasound images.

The rest of the article is organized as follows. Section 2 provides a detailed
analysis of materials and methods. Section 3 discusses the experimental results.
Section 4 presents the concluding remarks and future research directions.

2 Materials and Methods

2.1 Database

The database used for building the HAPAN Software contains a collection of
approximately 200 ultrasound images. Two peripheral nerves from 6 different
patients were captured. Ultrasonic images were obtained by an acquisition sys-
tem consisting of the combination of a portable NanoMaxx SONOSITE ultra-
sound system with a video converter (EASYCAP). The ultrasound system is
used to acquire the image of the nerve to study by means of an ultrasonic trans-
ducer, and the EASYCAP system allows the scanner to communicate directly
with the computer in which the processing will be performed. Any scanner that
has similar characteristics to the one used in HAPAN could be compatible with
the software. Acquired images go through a pre-processing stage which performs
a series of adjustments in order to enhance the quality of the image.

Fig. 1. HAPAN software structure.

2.2 Software Development

HAPAN’s interface is comprised of two processing methods and two processing
tools, which can be used at any time. The software structure can be seen in Fig. 1.
Hapan allows many actions, Zoom In, Zoom Out, Open Images or Projects,
Save Images or Projects, Helps and Captures Images directly from the scanner.
Figure 2 shows the application interface in which the user can appreciate the
different images generated by the software.
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Fig. 2. Software interface for processing ultrasonic images.

2.3 Methodologies

Two different methodologies were used in the segmentation of the peripheral
nerve: Classical Techniques and Appearance and Shape Models.

Classical Techniques. This methodology is based on the classical techniques
of digital image processing, such as identifying edges, thresholding, dilation,
erosion, opening, and closing areas. These techniques are used iteratively to
identify the nerve structure in the ultrasound image.

Appearance and Shape Models. It is a semiautomatic method, which can be
trained to learn the different forms of nerve structures that can be found in the
database. This model requires, as an initial step, that the user locates an ellip-
soidal contour on the region containing the nerve structure. Then, the algorithm
adjust the contour to the nerve structure in the image. One of the drawbacks
of this method is that it requires that the initial region (the ellipsoidal contour
placed by the user) contains the nerve structure. If this constraint is not fulfilled,
the algorithm would perform the segmentation to a different region of the image.

2.4 Tools

The HAPAN’s tools are used to improve the quality of the image and therefore to
obtain a more accurate segmentation of the nerve structure. The user is allowed
to change the parameters of these tools.
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Image Filtering. When an echography is acquired by the scanner, the image is
commonly corrupted either by Speckle noise, random variations in intensity, poor
contrast or illumination variations as a result of changes in gain or depth of the
scanner. The segmentation algorithms used in HAPAN were designed to tackle
these effects to some extent. In some cases, these algorithms do not accomplish
this goal; however, in those cases an improved segmentation is possible by using
image filtering techniques. HAPAN includes the following filters:

– Average filter: This is a two dimensional digital filter which averages the
neighborhood of pixels. The default size for this filter is 3 × 3 pixels.

– Gaussian: A Gaussian low pass digital filter with a symmetric rotation, with
standard deviation sigma. The default size of this filter is 3×3 pixels and the
default sigma’s value is 0,5.

– Bayesian: A Bayesian framework is used to adapt the Non Local (NL) means
filter for removing speckle noise in ultrasound images. This algorithm intro-
duces the Pearson distance as a relevant measure for region comparison [20].

Super-Resolution. This tool allows to create a new image, based on the original,
performing an increase of the resolution by an user-adjustable factor (2, 3, 4,
and so on). The objective is to generate a high-resolution image from a single
low-resolution image without any external training set. It uses a framework for
both magnification and de-blurring using only the original low-resolution image
and its blurred version. In this method, each pixel is predicted by its neighbors
through a Gaussian process regression [17].

3 Experimental Results and Discussion

3.1 System Efficiency

The leftmost columns in Table 1 shows the results of the performance of the
methodologies implemented in HAPAN in terms of computational consumption
(CC) for each of the techniques used during the segmentation process. The test
was performed on a Intel Core i3 with 4 GB RAM. The nomenclature used in
Table 1 is CT: Classical Techniques, ASM: Appearance and Shape Models,
AF: Average Filter, BF: Bayesian Filter, GF: Gaussian Filter, IR: Increased
Resolution.

The results show that the computational consumption is considerably low
when the user do not use any of the additional tools provided by the software.
The results also show that the most efficient methodology (in terms of CC)
are the classical techniques. This efficiency is due basically to the fact that its
processes and algorithms have a low computational cost. The tools with the
lowest cost (in terms of time) are IR1 and BF.

1 The average execution time of the algorithm with a ×2 factor is about one hour.
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3.2 Validation

This software has been tested using a database composed of ultrasound images.
These images have been manually labeled by an anesthesiologist. The perfor-
mance of the system was evaluated using two parameters: dice similarity coef-
ficient and F1 score. These metrics have been computed for measuring the
efficiency of both segmentation methods and the additional software tools.

Dice Similarity Coefficient (DSC). DSC is a commonly used metric for evalu-
ating the accuracy of automated or semi-automated segmentation methods. In
this work, DSC has been used as a statistical validation metric to evaluate the
similarity between two samples (the labels created by the anesthesiologist and
the labels provided by HAPAN).

F1 Score. F1 score is a measure of a test’s accuracy. It considers both the pre-
cision (the number of true positive results divided by the number of all positive
results) and the recall (the number of true positive results divided by the num-
ber of true positive plus false negative results) of the test. The F1 score can be
interpreted as a weighted average of the precision and recall, where an F1 score
reaches its best value at 1 and worst at 0.

3.3 Practical Results and Discussion

This section presents the results obtained by HAPAN in the segmentation of
the ultrasound images of the database. Figure 3 shows an example of an ASM
segmentation process by using an image of a Median nerve. Figure 3(a) shows
the original image without segmentation. Figure 3(b) presents the original image
after the segmentation process. Figure 3(c) shows the image after both filtering
and segmentation processes. Figure 3(d) illustrates the segmented image by tak-
ing as input an increased resolution version of the original image. Figure 3(e)
shows the image obtained by increasing the resolution, filtering and applying
the segmentation process on the original image.

The rightmost columns in Table 1 show the global performance results of the
HAPAN software. These results were obtained by processing all the ultrasound
images of the database. Both methodologies and all the additional tools were
evaluated. Remind that the database was previously described in Sect. 2.1.

Results in Table 1 show that the best segmentation performance, using DSC,
can be obtained in the Cubital nerve (0,672± 0,04). This result is achieved using
a Bayesian filter in the preprocessing stage and the ASM methodology for the
segmentation process. However, it must be noticed that this performance is not
statistically significant when compared to the same procedure in the Median
nerve (0,604± 0,047).

When using the F1 score for comparing the effectiveness of the methodolo-
gies, results show that the best performance is achieved in the Median nerve
(0,573± 0,042) by means of an Average filter and Classical techniques. This
result improves significantly the performance obtained in the Cubital nerve by
the same techniques.
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(a) (b) (c) (d)

(e)

Fig. 3. Example of a practical result obtained with HAPAN. (a) Original image. (b)
Original image segmented using ASM. (c) Filtered image and segmented using ASM.
(d) Increased resolution (×2 factor) and segmented image using ASM. (e) Increased
resolution (×2 factor), filtered and segmented image using ASM.

Table 1. Global performance results of the HAPAN software

Process Median nerve Cubital nerve Median nerve Cubital nerve

Time (s) Time (s) Dice F1 score Dice F1 score

CT 0,330± 0,003 0,328± 0,007 0,647± 0,041 0,567± 0,041 0,519± 0,063 0,437± 0,065

CT+AF 0,336± 0,003 0,380± 0,019 0,663±0,041 0,573±0,042 0,532± 0,062 0,452± 0,064

CT+BF 14,88± 0,234 15,36± 0,521 0,653± 0,041 0,571± 0,041 0,565± 0,053 0,487± 0,060

CT+GF 0,364± 0,009 0,368± 0,015 0,653± 0,041 0,570± 0,041 0,539± 0,059 0,455± 0,062

CT+IR 0,521± 0,022 0,973± 0,035 0,577± 0,030 0,447± 0,034 0,479± 0,073 0,425± 0,055

CT+AF+IR 0,514± 0,021 0,945± 0,032 0,581± 0,031 0,450± 0,035 0,491± 0,070 0,439± 0,052

CT+BF+IR 26,51± 1,131 44,69± 1,934 0,579± 0,030 0,447± 0,034 0,493± 0,071 0,426± 0,055

CT+GF+IR 0,640± 0,038 0,895± 0,026 0,578± 0,031 0,447± 0,034 0,478± 0,073 0,426± 0,055

ASM 3,174± 0,035 4,355± 0,182 0,628± 0,045 0,496± 0,046 0,661± 0,042 0,542± 0,042

ASM+AF 3,345± 0,047 4,277± 0,120 0,628± 0,045 0,520± 0,043 0,646± 0,037 0,555±0,044

ASM+BF 3,530± 0,057 4,265± 0,053 0,604± 0,047 0,509± 0,044 0,672±0,040 0,548± 0,041

ASM+GF 3,631± 0,067 4,289± 0,031 0,619± 0,044 0,502± 0,043 0,668± 0,040 0,554± 0,043

ASM+IR 4,608± 0,121 5,533± 0,126 0,649± 0,031 0,536± 0,040 0,604± 0,022 0,521± 0,025

ASM+AF+IR 4,838± 0,137 5,813± 0,057 0,662± 0,025 0,561± 0,038 0,597± 0,023 0,524± 0,032

ASM+BF+IR 30,904± 1,20 43,640± 1,370 0,630± 0,041 0,565± 0,040 0,585± 0,027 0,505± 0,025

ASM+GF+IR 5,415± 0,187 5,070± 0,070 0,636± 0,027 0,561± 0,038 0,603± 0,023 0,521± 0,028

Overall results show higher rates for the Median nerve. This may be a conse-
quence of a more uniform anatomic structure of the Median nerve along the arm.
Also, between the Cubital nerve and skin exist different anatomical structures
that may degenerate the image capture.

Better results can be obtained with the combination of IR images and ASM
rather than IR combined with Classical techniques. In contrast to ASM, CT is
not fully compatible with IR. Take into account that IR tool increases image
resolution and therefore changes its parameters. This may be a drawback since
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CT makes use of morphological operations with masks and cuts, which in turn
depend on the parameters of the image (i.e. depth and resolution). Thereby, a
manual readjustment becomes necessary in order to correct this problem. Nev-
ertheless, it must be noticed that ASM is a supervised method while CT does
not require user intervention, it is fully automatic.

4 Conclusions and Future Work

This work presents the HAPAN software supporting the automatic segmenta-
tion of peripheral nerves in ultrasound images for developing research, and clin-
ical procedures. The results evidence that HAPAN as an interactive tool allows
medical specialists to save time, providing a safer and higher quality process for
patient healthcare.

Among the algorithms available in HAPAN, the ASM along with IR yield the
best segmentation results thanks to including both supervised and unsupervised
information. Particularly, ASM drastically reduces the search area of the nerve
structure, thus avoiding undesired structures to appear in the ultrasound image.

As a future work, we plan to develop GPU algorithms to achieve real-time
processing. Besides, we will extend the coverage of the database by including
additional nerve structures.
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Abstract. We present a comparison of two known methodologies for
group analysis in EEG signals, which are the analysis by Group ICA
on synchronization and desynchronization ERS/ERD, and brain con-
nectivity analysis by measuring wPLI, both analyzes based on the brain
synchronization information. For comparison, we have taken into account
different frequency bands related to sensorimotor stimuli and time seg-
mentation in order to overcome the nonstationarity of the EEG signal. In
addition, we have used a threshold algorithm to reduce the dimension of
the connectivity matrix, conserving the connections that are most impor-
tant for both methodologies. The results obtained from the BCI competi-
tion IV-2a database show that the variable can be measured between two
different measurement spaces, using the Euclidean distance, conserving
spatial zones with more meaningful physiological interpretation.

Keywords: Event-related Synchronization/Desynchronization ·
Functional connectivity · Group analysis · wPLI

1 Introduction

The brain is a vastly complex network of interconnected elements, having differ-
ent brain regions interacting in the resting state as well as in response to a given
stimulus or task by synchronization of oscillatory activities. In this regard, brain
response could be useful in the development of Media and Information literacy
applications. Functional connectivity is defined as the temporal correlation of
neural activity between brain regions, measured by functional MRI, magneto or
electroencephalography (MEG/EEG) signals that are very convenient because
of their low cost and high temporal resolution.

Among the widely used applications, computer-based technologies are
employed to communicate the brain with external devices. In particular, Motor
Imagery (MI) is a mental process by which an individual rehearses or simulates
c© Springer Nature Switzerland AG 2019
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some actions without involving muscle activities [2]. This cognitive neuroscience
paradigm operates the signals measured from the sensorimotor cortex regions,
which are the most directly linked to the motor output pathway in the brain,
assuming that the imagination of movement execution attenuates the brain sen-
sorimotor rhythms (SMRs).

Here, with the aim of enhancing the interpretation of MI tasks, we develop a
group-level comparison between two different methods to analyze the synchro-
nization, ss a result, the use of thresholding allows performing a reduced set of
relevant brain connections, but with enough confidence to construct a meaningful
explanation in time and frequency of the brain activity [3,4].

Although further adaptations are to be performed to optimally address the
sources of inter-subject and inter-trial variance commonly found in EEG record-
ings, the presented group-level approach can be considered valid and promising
to infer the latent structure of multi-subject datasets [5].

2 Materials

2.1 EEG Database and Preprocessing

We carry out experimental validation using the Dataset 2a from the BCI Com-
petition IV, publicly available at1, holding EEG signals recorded from nine
subjects and measured with a 22-channels montage. All signals are sampled
at Fs = 250Hz and bandpass-filtered between 0.5 and 100Hz. The dataset holds
a trial set of four MI tasks, i.e., left hand, right hand, both feet, and tongue.
The recordings were carried out in six runs separated by short breaks. Each run
contained N = 48 trials lasting of 7 s and distributed. A short beep indicated
the trial beginning followed by a fixation cross that appeared on the black screen
within the first 2 s. Further, as the cue, an arrow (pointing to the left, right, up
or down) appeared during 1.25 s, indicating the each MI task to imagine: left
hand, right hand, both feet or tongue movement, respectively. In the following
time interval, ranging from 3.25 to 6 s, each subject performed the demanded MI
task while the cross re-appeared. In our analysis, a bi-class task (left and right
hand) set is used, from which artifacts had been removed previously.

As a result, we have a set of N raw EEG data trials X = {Xn : r =
1, . . . , N ∈ N} together with the respective class label set L = {ln}, with lr ∈
{l, l′}, where Xn ∈ R

C×T is n-th EEG trial, with C ∈ N channels and T ∈ N

time samples. Over this raw data set, each raw EEG channel is band-pass filtered
using 17 five-order overlapped bandpass Butterworth filters within the range 4Hz
to 40Hz. Each filter bandwidth is adjusted to 4Hz with overlapping rate at 2Hz
as suggested in [6].

2.2 Subject-Level Feature Extraction

At this stage, we compare the following two feature extraction methods:
1 www.bbci.de/competition/iv/.

www.bbci.de/competition/iv/
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Event-Related Desynchronization/Synchronization. This change of the ongoing
EEG is a somatotopical organized control mechanism that can be generated
intentionally by mental imagery and is frequency band specific. Using each
band-pass filtered event-related trial Xc

r , the ERD/S estimation is performed by
squaring of samples and averaging over EEG trials, computing the variational
percentage (decrease or increase) in EEG signal power regarding a reference
period, at specific frequency band f and sample t [7]:

ζft = (ξft − ξ̄f )/ξ̄f [%], t ∈ T (1)

where ξft = E
{|x2

t |rf ∈ xrf :∀r
}

is the power scatter averaged across the trial
set and ξ̄f = E {ξft:∀t ∈ τR} is the trial power scatter averaged on the reference
interval τR.

Functional Connectivity Estimation. Weighted Phase Locking Index (wPLI) is
commonly used for estimation of functional connectivity between two EEG chan-
nels, due to its nonparametric nature and easy implementation [1]. wPLI quanti-
fies the asymmetry of phase difference distribution between two specific channels
c, c′ (with ∀c, c′ ∈ C, c�=c′), being defined within the recording time span T ∈ R

+.
Initially, the instantaneous phase difference ΔΦft(; c, c′) ∈ R[0,π] is the angle
computed through the continuous wavelet transform coefficients Wft(; ) ∈ R

+,

ΔΦft(n; c, c′) =
Wft(n; c)Wft(n; c′)

|Wft(n; c)||Wft(n; c′)| , t ∈ T , (2)

Thus, the pair-wise connectivity estimation ys
ft(c, c

′) for subject is com-
puted as,

ys
f,τ(c, c

′), =

∣
∣E

{|(ΔΦfτ(n; c, c′)
)| sgn

(
ΔΦfτ(n; c, c′)

)
: ∀n

} ∣
∣

E
{|(ΔΦfτ(n; c, c′)

)| : ∀n
} (3)

where notations sgn and E {· : ∀n} stand for sign function and averaging oper-
ator over n, respectively. The metric is normalized to highlight the connectivity
patterns generated by each induced stimulus, being each ys

fτ(c, c
′) mean-value

averaged over the trial set {n ∈ N} and on a given baseline interval [8]. Accord-
ingly, ŷfτ(c, c′) = Es

{
ys
fτ(c, c

′)
}

contains the pair-wise connectivity measures of
each subject group.

2.3 Group Independent Components Analysis

With the aim of inferring about the source configuration at the group-level, all
components constantly expressed across subjects can be estimated using a single
ICA decomposition, which is performed on aggregate data sets built from EEG
recordings of multiple subjects. Specifically, provided the computed ERD/S of
the k-th subject Zk ∈ R

c×T , the aggregate data set Y ∈ R
c×(T∗Ns) is given

by the temporal concatenation Y = [y1, ...,yk, ...,yNs
], with k ∈ Ns, being Ns

the total number of subjects included in the analysis. Furthermore, we apply
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centering and whitening via principal component analysis (PCA) to Y , yielding
the principal components R�Y , where R is the orthonormal transformation
matrix obtained from PCA. Applying the basic ICA model to the preprocessed
data leads to R�Y = AS where S = [s1, . . . , sk, . . . , sNs

] is the matrix holding
the temporally concatenated component time-courses of Ns subjects [3].
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Fig. 1. Differences between classes from the estimated group patterns based on both
methods Group-ICA (a) and connectivity (b).

3 Experimental Set-Up and Results

To measure the group differences in time-frequency relevant pattern, we perform
a piecewise time segmentation. In each case of contrasting feature extraction,
EEG and ERS/D, we split the whole time recording span (ranging from 2.5–
4.5 s) into 10 segments, each one lasting 0.2 s. The segment length is adjusted,
considering that a short segment leads to bias and variance at estimation level,
while a long segment imposes a high computational load and restrain implemen-
tation on real-time system operation [9]. The subject analysis is carried out in
the supervised mode, extracting separately the feature set for each class.

In the case of ERD/S, to estimate the variational percentage (decrease or
increase) in EEG signal power regarding a reference period TR, we fix TR = [0.5−
1.5] s as in [10]. Accordingly, we build a matrix by class for each frequency band
and time segment Ẑfτ ∈ R

22×450 that holds the concatenated ERD/S response
for all subjects. Afterward, ICA is applied by mean of the fastICA algorithm
using a nonlinear tangent hyperbolic function to obtain Ŷ g−ica

fτ ∈ R
22×22 with

columns holding the channel weights of the assessed independent components
by class. In the case of functional connectivity extraction, we obtain a matrix
Ŷ wpli
f,τ ∈ R

22×22 by mean of wPLI measure to encode the estimated pairwise
changes in phase synchronization of the subject group.

As a result, the feature extraction stage provides a total of 170 matrices
Ŷf,τ by each class and estimated for all frequencies and time partitions. For the
purpose of comparison, the contribution of across the channel set, at values τ and
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Fig. 2. Normalized frequency relevance value obtained based on both Group-ICA (left)
and connectivity (right). – right class, – left class.

f , is assessed by ρf,τ = Ec

{
Ŷf,τ

}
, being ρf,τ ∈ R

22. However, the comparison
is performed by averaging further the channel contribution across time, that is,
ηf = Eτ

{‖ρf,τ‖2
}
, and yielding a vector contribution η ∈ R

17. ‖·‖2 stands for
�2−norm.

Further, using the conventional Euclidean distance, we assess the difference of
contribution vectors between classes as seen in Fig. 1 that shows the normalized
distances values. Besides, the marginal estimates of contribution by frequency
are presented in Fig. 2, i.e., the normalized relevance values in terms of the
frequencies that show more differences between time by class.

In this work, we consider as a relevant frequency the value overcoming 0.9.
Accordingly, Figs. 3 and 4 exhibits the normalized time-frequency relevance val-
ues obtained for all channels by class for the selected relevant frequencies. Bright
color designates high relevance values.

4 Discussion and Concluding Remarks

The estimation of cerebral synchronization and desynchronization allows high-
lighting the information contained in the domains of time and frequency. Accord-
ing to Fig. 1(a), we observe spurious differences for all segments and frequency
bands with values lower than 0.7. However, the frequency bands from [24–28]Hz
to [32–36]Hz shows high differences values in different time segments. Some lower
differences are shown for the frequency bands [6–10]Hz and [14–18]Hz at dif-
ferent time segments. In the case of Fig. 1(b), we see a marked difference in the
frequency [28–32]Hz the beginning of MI interval. However, we observe spurious
differences for the end of MI period at frequencies belonging to μ band. However,
we observe spurious differences for the end of MI period at frequencies belonging
to μ band.

The contributions by frequency in Sect. 3, Group-ICA presents as the higher
frequencies contributions in μ and β bands being the highest contributor the
frequency band [8–12]Hz and [28–32]Hz, frequencies that are normally related
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Fig. 3. Normalized time-frequency relevance values obtained by channel. Right class
(first box) and left class (second box).

to MI tasks [10,11]. On the other hand, Sect. 3 shows the highest frequencies
contributors in [16–20]Hz and [28–32]Hz bands.

Figures 3 and 4 show the change of channels contribution through the seg-
ment windows. For both classes, in Fig. 3 the highest channel contributions are at
the MI period beginning. Nevertheless, the analysis finds highest channel contri-
bution values in [24–36]Hz frequency band at the end of the trial. Regarding to
Fig. 4, the highest contribution values appears at the frequency band [28–32]Hz.

In order to guarantee the interpretability in imagery motor tasks, the group
analysis was carried out on brain synchronization information. Due to each sub-
ject has its own brain dynamics is necessary to include a group model that allows
estimating similar patterns for all subjects. In this work, we used Group ICA
and a connectivity analysis to perform this task. Group ICA is widely known
and used to analyze tasks of multiple subjects through EEG. For both methods
differents partens were found in the bands which are part of the rhythms μ and
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Fig. 4. Normalized time-frequency relevance values computed based on connectivity
for all channels. Right class (first box) and left class (second box).

β frequencies which are known as sensorimotor rhythms. The obtained results
on a concrete attention task show that the developed relevant connectivity anal-
ysis on group-level synchronization, improve the interpretation, although the
proposed comparison for connectivity analysis depends on the time interval. As
future work, we intend to validate EEG data with more complicated dynamics.
To overcome more effectively nonstationarities of neural responses and struc-
tural homogeneity of latent processes across the sample, we plan to introduce
an elaborate group-level strategy, including more complex approaches for graph
analysis as well as enhanced relevance metrics.
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Abstract. Detecting and identifying emotions expressed in speech sig-
nals is a very complex task that generally requires processing a large
sample size to extract intricate details and match the diversity of human
expression in speech. There is not an emotional dataset commonly
accepted as a standard test bench to evaluate the performance of the
supervised machine learning algorithms when presented with extracted
speech characteristics. This work proposes a generic platform to capture
and validate emotional speech. The aim of the platform is collaborative-
crowdsourcing and it can be used for any language (currently, it is avail-
able in four languages such as Spanish, English, German and French).
As an example, a module for elicitation of stress in speech through a set
of online interviews and other module for labeling recorded speech have
been developed. This study is envisaged as the beginning of an effort
to establish a large, cost-free standard speech corpus to assess emotions
across multiple languages.

Keywords: Characterizing stress · Data acquisition ·
Stress behavior in human-computer interaction ·
Cooperative framework · Emotional stress

1 Introduction

Nowadays, multimedia show machines, robots and other interactive agents
endowed with an unusual intelligence. An example of that is the film, “Her” [7],
where the main character falls in love with a new generation of a talking opera-
tive system, which is designed to act, feel and evolve as a human being. Another
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example is “Robot and Frank” [12]. Frank is an old man with a serious mental
deterioration and the robot is looking after him. The robot is programmed to
provide Frank therapeutic care, it fixes his daily routine and helps him to do
cognitive enhancing activities. The examples mentioned above are not far from
being real nowadays, but a large body of research is being done in order to pro-
vide the machines cognitive capabilities and emotional abilities similar to those
of humans beings.

This study has two main aims: determining a robust feature set extracted
from voice signals to characterize an emotion and identify emotions using classi-
fication algorithms [14]. Speech emotion characterization is an arduous task that
starts with an enormous work of data acquisition.

Emotion identification is a very complex task because is dependent on cul-
ture, language, gender and age of the subject, among other factors. The available
literature mentions a few databases and data collections of emotional speech in
different languages but in many cases this information is not open to the com-
munity and not available for research. There is not an emotional voice data set
recognized for the research community as a basic test bench, which impedes
progress in this exciting and challenging research field, due to the difficulty in
evaluating the quality of new proposals in features for characterization and in
the classification algorithms obtained using the same input data.

On the other hand, it should be noted that this type of work is linked to
the new regulation of Personal Data Protection Act. These regulations set the
general principles according to which biometric data is considered amongst the
“special categories of personal data”, categories that are consequently protected
by a more restrictive set of rules than common data, based on the thought that
an adequate processing of this type of data depends on the result of a very severe
risk analysis [1]. Therefore, researchers need to take into account and work in
full alignment with these new regulations towards making data accessible.

The contribution of this work is to promote the idea of establishing a com-
munity to collaborate in collecting and analyzing emotional speech data and
define a standard corpus in different languages. In this sense, this paper is a first
step to propose the design and development of an online collaborative research
community for multilingual data acquisition of emotional speech. This paper is
organized as follows. In Sect. 2 preliminary research is reviewed. In Sect. 3 Mate-
rials and Methods are described. In Sect. 4 results are presented and discussed.
Conclusions are drafted in Sect. 5.

2 Previous Works

The study of emotions is a multidisciplinary field that involves neurological,
physiological, psychological, sociological and cultural aspects.

Regarding speech, most databases have been recorded by actors simulating
emotional discourses and there are very few studies of spontaneous speech [11,15].
The emotions are rated and labeled by a panel of experts or by a voting system.
Most of the databases include few speakers and sometimes they are heavily skewed
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in terms of gender bias [10,13], whereas in many cases, age is not recorded to be
taken into account. It can be noticed that in several publications the data are pro-
duced just for a specific study, and not made available to the community. Some
databases related to our research work are briefly mentioned next.

Two of the well-known emotional databases for speech are the Danish Emo-
tional Speech Database (DES) [5] in Danish and the Berlin Emotional Speech
Database (BES) [4] in German. Regarding stress in speech, the SUSAS database
in English (Speech Under Simulated and Actual Stress) is publically accessible
and is widely used [6]. It contains a set of 35 aircraft communication words, which
are spoken spontaneously by aircraft pilots during a flight, and also contains
other samples of non-spontaneous speech. Another stress database is ATCOSIM
- Air Traffic Control Simulation Speech. It consists of ten hours of speech data,
which were recorded during ATC real-time simulations. The utterances are in
English and pronounced by ten non-native speakers. The data are not categorized
into emotional states and is freely available. Besides, it includes orthographic
transcriptions and additional information on speakers and recording sessions.
The corpus is provided by Graz University of Technology (TUG) and Eurocon-
trol Experimental Centre (EEC) [8].

3 Methods and Materials

3.1 The Framework

The aim of this work is the elaboration of a multilingual cooperative database.
The idea is that the database collects stressed voice in different languages, with
different accents and origins. These stressed speeches are labeled in a subjective
way using a first-past-the-post system. These utterances will be labeled and
classified with the state that seems to express (stressed and non-stressed). This
framework can be defined as collaborative, modular and unbiased.

According to Fig. 1, the provided framework is divided into three main stages:
User identification, Voice donation and Speech validation (it has been high-
lighted with three distinct colors). At the top of the sketch, an individual using
devices with internet connection, is interacting with the framework. The user
identification step starts once the user is connected to the framework. It consists
of a sign-up process through a web form through which, users provide personal
data, as a nickname, native language, country, gender, age and email. This last
requirement, email address, is convenient in order to keep contact with users
and to give them information about the progress of the project. Once logged in
the platform, the user can choose either to donate voice or validate speech. The
actions to follow the options mentioned before are explained next.

3.2 Voice Donation

First of all, the platform checks if the current user has donated speech samples
before. If the answer is affirmative, the application informs the user that the
process cannot be repeated again. However, the user can contribute validating
other samples from other users.



152 D. Palacios-Alonso et al.

Fig. 1. Overview of online framework for multilingual data acquisition of stress speech
(Color figure online)

The method used to elicit stress is based on Arciuli’s work [3]. The main idea
of this method consists of asking a controversial question about one trending
topic. The user is compelled to defend their opinion and the opposite, as well.
It is important to highlight that users are differently stressed when producing
a statement in agreement with their ideas than when producing a statement
contrary to them. This stress is manifested in phonation [9].

The method works as follows: the first survey is composed of ten questions
which have been extracted of a multilingual bag of questions, depicted as a
bucket in Fig. 1. Next, the survey assesses the arousal and valence about personal
opinions as illustrated in Fig. 2(a). Some questions could be “Is the globalization
a big problem for society?”, “Is the public health system self-sufficient?”, “Is it
fair that student grant funding has been reduced, whereas football players do not
pay taxes?”, and other related statements. Afterwards, users have to give their
opinion about each topic grading it from 1 to 7 (strongly disagree = 1, strongly
agree = 7) and they have also to grade their feelings or confidence about each
topic using the same scale (indifference = 1, very strong feelings = 7). These steps
are shown from 2 to 4 in Fig. 1.

Once the survey has been answered (see Fig. 2a), the application selects any
topic, where the user expressed a strong opinion or valence (agreement or dis-
agreement) and strong feelings or confidence in the arousal. After that, users
are asked to defend their self-consistent opinion about one of the topics and
to sustain a self-contradictory opinion. Each answer is recorded during 40 s (see
Fig. 2b). The complication of this kind of exercise is based on artificial discourse.
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The mind must build an intelligible speech intended to convince a fictitious inter-
locutor as the time allowed is too short. Moreover, the time is brief to construct
a good discourse. In this period of time, a number of stops, long vowels, fillers,
and delays are produced.

(a) Screenshot of survey process. (b) Screenshot of recording
speech.

Fig. 2. Test answer and speech recording interfaces.

3.3 Stress Validation

This procedure is seeking to improve the biased labeling of the raw speech record-
ings which are given in step 6 of the previous procedure. The process is divided
in two parts. The first one consists of answering six questions on the web form
such as language, gender, age range, type of response (agreement, disagreement
or politically correct), and whether the person is under stress or not (see Fig. 3).
The option politically correct is used to express a feeling accepted by society
but it is not donor’s real opinion. On the other hand, the second part of the
validation test is the same as the first part but in this test, the rater knows the
donor’s answer given in their speech recording. In this way, the rater may change
the previous response.

Finally, the process of labeling is saved in the database, according to the
language chosen by rater. The entire process is summarized at the bottom right
in Fig. 1. The selected methodology is similar to that used in the manufacturing
processes [2]. Using surveys and interviews in order to find customer trends. Some
examples of this technique are testing video games, cosmetics and household
products. Then, they focus their attention on these interviews and develop or
redesign new product strategies and recommendation systems.
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Fig. 3. Overview of validation process in the framework.

3.4 Implementation

The developed platform is divided into 4 main sections or web pages: Home,
Speech Data Gathering, Validate Emotions and FAQ. The first section,
Home, consists of a scorecard where the user can obtain progress information
about the platform as it depicted in Fig. 4. FAQ, Frequently Asked Questions, is a
help page where the user can find the information related to different procedures.
The third and fourth pages are the exercises or procedures which have been
explained above.

The application is currently at the test stage. It has not been open yet to the
research community. As observed in the introduction section, the main problem
at this moment is the Personal Data Protection Act in Spain and the speech
recordings custody. Therefore, these recordings and surveys were obtained in
offline mode and in a controlled environment. In other words, the validation
process has been carried out with a private Intranet server and the assessing
process was undertaken by five raters, members of the research group.

From the analysis of the first results, it was made evident that some questions
were controversial. Some of them were: “Men at work and women at home?”,
“Better salary for men, because they are better than women?”. The classical
questions related to gender issues revealed to be the most productive ones. In
other words, these questions have produced more arousal and valence than any
others.
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Fig. 4. Overview of online framework for multilingual data acquisition of stress speech

3.5 Corpora

The corpora contain data from sixteen volunteers divided into two groups, female
and male, respectively. Therefore, these corpora are gender-balanced. The num-
ber of participants was 32 from different ages. The age distributions for males
and females are provided in Fig. 5a and b.

In Fig. 6 it is illustrated the distribution of datasets, respectively.

4 Results and Discussion

The results presented in this paper are composed of two parts. In the first part,
some of the queries of the database are detailed, where the difference between
the replies of volunteers and the raters is explained. On the other hand, in the
second part, the summary of the questionnaire about the framework is outlined.

The validation process was performed by four raters, three males (ages: 22,
22 and 43) and a female (35), as shown in Table 1. None of the participants had
been evaluated before and they did not know the test methodology in advance.

Table 1. Rater’s profiles.

Rater Gender Age

A1 Male 22

A2 Male 43

A3 Female 35

A4 Male 22
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(a) Histogram of Male’s Distribution.

(b) Histogram of Female’s Distribution.

Fig. 5. Explanation about corpora.

Fig. 6. Distribution datasets divided into male and female corpora.
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Raters’ scores are given in Table 2. The first rater evaluated 36 speech record-
ings. Thirty three cases showed a match between users’ and raters’ answers.
However, in three cases, the raters’ opinion does not match to the donners’
opinion.

The second rater scored eighteen answers, the lowest number respect to the
rest of raters. This time, twelve answers showed a user-rater match. In other
six the rater considered that the user was defending the opposite idea as far as
personal opinions were concerned.

The option politically correct was selected in five cases only by the woman
rater. In other words, she considered that the user answered with a prefabricated
opinion. On the other hand, the users’ and the raters’ answers matched in 15 of
22 cases, and there were two exceptions.

Finally, the highest number of validation was made by the last rater. The
validated 54 speech recordings. The raters’ answers coincided in 45 out of 54
cases.

Table 2. Summary of responses between donors and raters.

Rater Disagreement Politically correct Agreement Total

Disagree Agree Disagree Agree Disagree Agree

A1 10 3 – – – 23 36

A2 2 – – – 6 10 18

A3 7 2 5 – – 8 22

A4 25 4 – – 5 20 54

TOTAL 44 9 5 - 11 61 130

The questionnaire used to gather rater’s opinion about the methodology and
application is the following:

– What do you think about the application?
– What part do you like most, recording or validation?
– What do you think about the registration form, speech recording and record

evaluation?
– Have you felt stressed at any moment?
– What do you think about the application’s colors and font size?
– What do you think about the speech recordings? Are they done by an actor

or a real person?
– What do you think about the methodology to elicit stress?
– Be honest, please. Are you comfortable in sharing your opinions with the

research community?

The most interesting graphical responses to the questionnaire are highlighted
in Fig. 7. For example, all raters consider the speech recordings original and non-
acted. On the other hand, three of four raters liked the methodology to elicit
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stress and the last one considered the technique difficult to be understood. The
response in regard to sharing the voice in a public way is illustrated in the bottom
right. Again, three of four raters do not have any doubt in this fact. However,
one of them is not sure about this question.

Fig. 7. Screenshot of rater’s questionnaire.

5 Conclusions

Acquiring high quality voice data exhibiting emotions is a complex topic to tackle
which has not been sufficiently addressed in the research literature. However, it is
the key point to progress fast in the research line of emotional and stressed speech
recognition. As mentioned before, current databases do not have a standard
format and sometimes they are not publicly available, making it very difficult to
validate the quality of developed systems for emotion detection because reference
samples are different.

This work has presented a collaborative platform where users donate and
evaluate their speech. Thanks to this generated open dataset, the research com-
munity can better develop their projects. The Internet is a widely accessible
resource which we can capitalize on to (a) record a large dataset and (b) label
the data accordingly and using some consensus amongst raters in a collaborative
process. It is remarkable, the necessity to find a fully efficient and law-compliant
approach with the Data Protection Act to ensure this becomes feasible and
practical.

The structure of this platform is scalable, flexible and modular. The key point
is how to evoke or elicit stress for different languages, cultures, and so on.
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A benefit derived from the cooperative characteristic is to be open to ordinary
people. Exercises can be carried out without any prior preparation. Therefore,
this research can be easily usable by non-expert public. In conclusion, a general
methodology has been developed that can be adapted to support multicultural
data and addressed to a specific speech emotion target.
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Abstract. The application introduced within this paper, BCI Touch,
is based on a prior knowledge base focused on the world of accessi-
bility, within the field of information and communication technologies,
EVA Facial Mouse application. Our main objective is to explore new
paradigms of interaction, for the specific context of elder people with
psycho-motor impairments. Something as routine and humdrum as the
use of mobile devices can be an insurmountable barrier depending on the
psycho-motor abilities of the user. Therefore, BCI Touch makes use of
an innovative data source within the human-computer interaction field,
such as brainwaves and brain activity patterns.

Through the processing and adequate treatment of the bio-signals
coming from the electroencephalography (EEG), which is recorded by
the Emotiv Epoc+ brain-computer interface (BCI), we are able to con-
trol events that in turn trigger actions that facilitate interaction with the
mobile device. BCI Touch includes a variety of possible interaction mech-
anisms, ranging from interaction by movement (cursor control with the
nose tracker) to interaction using mental commands, passing through
interaction through facial expressions. All these capabilities involve a
comprehensive solution that considerably improves the technological and
personal autonomy of elder people with Parkinson’s disease (PD).

Keywords: Elderly people · Ambient assisted living ·
Brain-computer interfaces (BCI) · Wearable systems ·
Applications and case studies

1 Introduction and Motivation

This paper aims to take a step further in the different set of possibilities and
functionalities that EVA Facial Mouse [4] offers. EVA allows the user to control
an Android device by tracking the facies. It is based on the facial movements
captured through the front camera, the app allows the user to control a pointer
on the screen (i.e., like a mouse), which provides direct access to most elements
c© Springer Nature Switzerland AG 2019
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of the user interface. EVA is intended to those who cannot use a touchscreen.
For instance, people with amputations, cerebral palsy, spinal cord injury, mus-
cular dystrophy, multiple sclerosis, amyotrophic lateral sclerosis (ALS) or other
disabilities may benefit from this app. This paper introduces an application that
customizes interactive capabilities between people with Parkinson’s disease and
smartphones. We aim to develop an Android application to improve the way
older people interact with mobile devices, making it easier and more accessi-
ble their interaction with smartphones. Also, our contribution provides a facial
expressions training environment for people with Parkinston’s Disease (PD).
Stemming from the electric activity registered from a brain computer interface
(BCI) device, different and innovative types of interactions will be proposed and
evaluated, with the aim of improving the final user autonomy and quality of life.
Within this field there exist interesting research in different areas, such as robotic
arm control in persons with reduced mobility [10], or more complex systems that
integrate multiple devices [2].

The main goal of this paper is to introduce and develop a brain computer
interface (BCI) based application to allow disabled people in general and peo-
ple with Parkinson’s Disease in particular, to control mobile devices without
using their hands. Parkinson’s disease is the second most common neurode-
generative disease of movement disorders, affecting the central nervous system.
Parkinson’s disease causes masking problems as the progressive loss of motor
control extends to the facial muscles as it does to other parts of the body.
Masked facies (Hypomimia) can complicate an already difficult situation, alien-
ating acquaintances who may be put off or disturbed by the apparent lack of
emotional response. Our application combines a different interaction style and a
tool for facial expressions training in older people with PD. In this context, there
exist other solutions and proposals that help people with PD in their daily lives,
such as the Gyenno spoon [5] or the Emma watch, framed within the Project
Emma [9].

The improvement processes and quality contribution activities to be per-
formed on the EVA based application are summarized in the following four
major milestones:

1. Training of facial expressions in older people with PD and Slight hypomimia.
2. Detection and implementation of facial expressions as actions that can launch

software events (i.e., tap, double tap, etc.).
3. Detection and implementation of mental commands as actions that can launch

software events (i.e., click home button, scroll forwards, etc.).
4. Study and evaluation of the wide range of EVA Facial Mouse software events

that can be launched by the aforementioned actions.
5. Integration of the previous points with EVA Facial Mouse, to have a high

usability and accessibility system in which the most attractive and innovative
part consists on tuples of the type action collected by the neuroheadset-
software event that improve the interaction mechanisms between the user
and the smart phone.
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The rest of the paper is organized as follows. First, the brain-computer inter-
action is presented in Sect. 2. Then, the authoring tool is presented in Sect. 3.
BCI Touch evaluation procedures are described and covered in Sect. 4. Finally,
Sect. 5 illustrates some conclusions and provides guidelines for future research.

2 Brain-Computer Interface Interaction in BCI Touch

Figure 1 shows a schematic approach to the application operation. On the one
hand, the user will use their head to move the mouse pointer displayed on the
screen. The way in which this feature is implemented is by using the mobile
front camera, which tracks the user nose as a method to control the cursor of
the screen, considering aspects such as the head speed movements. But the real
innovation component of the application, is the way in which the app uses the
Emotiv Epoc+ neuroheadset to control the system. First of all, data collected by
the brain computer interface is sent using Bluetooth technology (step 1). That
data reaches the smart phone, coming from either the front camera to move the
mouse or from the electrical brain activity to trigger specific software events.

Fig. 1. BCI Touch application behaviour
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The application will extend the functionality offered by EVA Facial Mouse
application by making use of the Emotiv Epoc+ wearable electroencephalog-
raphy headset and the whole collection of new interaction mechanisms that it
introduces to build a richer and more effective user experience [3]. The set of
events sent by the headset via Bluetooth are intended to trigger the execution of
different typical gestures that support the touchscreen devices such as tap, dou-
ble tap, swipe forward, press home button, etc., without actually touching the
screen. In other words, the idea is to manage a set of actions sent wirelessly by
the EEG that could programmatically trigger software events, which would give
rise to different modes of interaction with mobile devices touchscreens. More-
over, our end users, elder people with PD have an environment to train facial
expressions and emotions.

3 BCI Touch System Description

In this section, the purpose of the application, its main characteristics, the
required resources to execute the application and recommendations to be fol-
lowed will be detailed and explained. The operation of the application will also
be explained, indicating in the first instance what forms of interaction can be
used throughout the app. After that we will go into detail about how navigation
is done through the different windows that make up the user interface.

BCI Touch is an application focused on improving accessibility in the use
of mobile devices with touch screen to elder people with functional diversity
problems. The greatest innovation introduced by this application lies in its ability
to have a full and integral control over the mobile system only through interaction
through movement, in this case through the movement of the head. Through the
use of the front camera and the necessary software for detecting our face, the
application establishes a relationship between the movement of our nose and the
position of the cursor on the screen.

BCI Touch is based on EVA Facial Mouse. The choice of this open source
application as a base proposal was made taking into account the target group
of potential users.

3.1 Requirements

First of all, the mobile device in which the application will be run must comply
with a series of specific requirements for the correct operation of the application,
these requirements and needs are listed below:

– Smartphone
– Android mobile operating system (MOS) Jelly Bean 4.1 or higher
– Big Launcher [1], a simple Android interface for seniors and people with vision

problems
– Bluetooth as a communication protocol to pair the smartphone with the

Emotiv Epoc+
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– Front camera with at least 4 megapixels
– Dual-core processor or higher in order to run smoothly

Despite the above requirements, the huge variety of mobile devices with
Android as an operating system that include modifications at the software level
means that the correct operation of the application cannot be guaranteed in all
variety of devices.

3.2 Structure of the Application

The interaction mechanisms that are recognized throughout the application,
thanks to the introduction of Emotiv Epoc+ brain-computer interface, have been
split into facial expressions and mental commands. But, that said, it should also
be pointed that both the application and the mobile system do not respond to
tactile interaction as a traditional mobile communication mechanism. It simply
loses its meaning due to the target group we are focusing on and the nature of
the application we are developing, framed within the accessibility field.

In BCI Touch, all the tactile actions that we would perform through a direct
interaction with the touch screen, are replaced by programmed software events
that provide us with the same functionality. In fact, these events that are mapped
with the Emotiv Epoc+ neuroheadset are not randomly selected. It has been
decided to select those that are most used by smartphone users in their basic
activities of daily living (BADL), such as, setting of alarms, contact management,
make SOS calls, make phone calls, etc.

In the traditional version of EVA Facial Mouse, the interaction mechanism
consisted of a controlled pointer with the user’s head, which located at a certain
point on the screen, performed a specific action once a concrete time had elapsed
without moving the cursor. Therefore, the mechanism that controlled the release
of the action was a time lapse when the cursor in a fixed position. BCI Touch
goes a step further by introducing the novel interaction mechanisms provided by
the Emotiv Epoc+ BCI device. The correct control and processing of this new
paradigm will provide us with new control mechanisms to launch the actions
available in the application. And, without a doubt, the most disruptive attribute
is that these control mechanisms are implemented with an exclusive data source,
our own brain and its bioelectrical signals.

Therefore, customization and adaptation to the user are assured, due to the
unique nature of the biosignals of each person. This flexibility and elasticity
fit perfectly with the nature and purpose of the paper. To create particular
models of brain activity, it is necessary to previously train the actions, both facial
expressions and mental commands. In this sense, there is a specific state called
“neutral state”, which registers the user’s background brain activity to conform
an initial pattern. It is a preliminary requirement that must be performed in
order to train both facial expressions and mental commands respectively.

Next, we will describe the control mechanisms related to facial expressions.
Most BCI devices that use the electroencephalography (EEG) as a technique for
reading brain activity remove muscle signals as a step prior to the processing of
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the purest brain activity. However, Emotiv Epoc+ treats these signals, allowing
us to access this data source. It is important to understand that the common
denominator between facial expressions and mental commands are biosignals.

In our contributions people with PD and slight hypomimia were specially
considered. The three types of facial expressions that has been considered for
this paper are smile, smirk right and clench. The procedure for training each of
these actions is identical in all three cases. Firstly, and under supervision, the
user has to stay a time lapse of eight seconds carrying out the specific action.
At the end of this time, the activity pattern will have been generated. The
application will ask the user if they accept the training. In the affirmative case,
the training is completed, and the Emotiv Epoc+ keeps listening to the arrival
of new events. Then users use their mobile phones freely without supervision.
In the opposite case, the training is undone and not taken into consideration by
BCI Touch.

Once the facial expressions have been described, we will focus our attention
on the use of mental commands as a mechanism for interaction and control. The
user must remain a time lapse of eight seconds consciously thinking about some-
thing concrete, in our case, it is proposed to imagine that a picture is directed
to the bottom of the screen (push) or directed in front of the screen (pull). The
most important concept to keep in mind is that the Emotiv Epoc+ is continu-
ously sending information through the Bluetooth protocol to the mobile device.
This information flow contains data related to the events captured (i.e. facial
expressions and/or mental commands) and its intensity. A better description
of the idea that we have just mentioned, can be observed in Fig. 2. The figure
represents in a graphic way the communication between the different parts of
the application, from a relatively high abstraction level.

Fig. 2. Conceptual model of the system behaviour
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4 BCI Touch System Evaluation with Older People
with PD

After the application development an evaluation with final users has been car-
ried out. This proposal would be meaningless if the application performed (at
least in an evaluation phase) had not been tested with actual users. Specifically,
an evaluation of the quality in use has been performed, with the objective of
observing and quantifying the sensations of real users while interacting with the
application. The ISO/IEC 25062:2006 international standard [6], according to
which this section has been structured, has been taken as a reference for the
evaluation.

The evaluation was carried out with one objective in mind: to assess the
functional quality of the application in usability terms. The training and con-
scious control of both facial expressions and mental commands was emphasized,
although other elements of the interaction were also evaluated. During the eval-
uation, the following aspects were verified:

– Facial recognition’s and training. The application offers a user-friendly and
intuitive interface for facial expressions training and interaction.

– Functionality. Users do not miss any feature during the use of the application,
and with each step they take, they are aware that the application is reacting
and responding in a correct and adequate way.

– User experience. Users perceive the use of the application as satisfactory or
not in order to fully and comprehensively control a mobile device, without
the need to request any additional help from an external person.

4.1 Evaluation Method

This section will detail the process followed to conduct the evaluation, including
information about the participants, the context in which the evaluation was
perform, the tasks that the users had to accomplish, and the metrics that were
employed.

Participants
The evaluation was developed with 7 elder people with Parkinson’s disease and
slight hypomimia from several Day Centers for the elderly (Albacete, Helĺın and
Almansa). All these participants have previous experience with mobile phones
and they must to do facial exercises suggested by their specialists. The strategy
behind this approach lies in detecting any type of problem when interacting,
whether it originates from a target audience or not. In any case, the wider the
sample is, the richer the potential feedback to be obtained will be.

For each user, their age, their level of knowledge in IT and their frequency of
use of mobile devices, as well as other parameters such as the hypomimia degree.

Tasks
All participants had to perform three activities (BADLs) after configuration
were done: setting up an alarm, find a contact (son, daughter or sister) in your
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contacts and make a phone call. It is important to take into consideration the
fact that before beginning the evaluation, it is necessary to carry out a whole
previous process in which the Emotiv Epoc+ is prepared to be used.

The tasks chosen are the same as any user could perform to control a mobile
device with a touch screen. The data on the tasks to be performed were provided
to the user in an instruction sheet. This sheet shows the objectives that the user
should achieve.

Equipment and Devices
The computational equipment used in the evaluation was the following:

– To check the contact quality of the Emotiv Epoc+ electrodes, the Emotiv
Control Panel software was used, which was executed on a laptop with macOS
Sierra version 10.12.6 operating system, with Intel Core i7 at 2.7 GHz and
16GB of LPDDR3 RAM at 2133 MHz. In addition, we also used the Emotiv
SDK Community Edition.

– For the detection of facial expressions, mental commands, and brain activ-
ity patterns in general, the brain-computer device Emotiv Epoc+ v1.1 was
used, which sent the information to the mobile device through the Bluetooth
communication protocol.

– EVA Facial Mouse and BCI Touch were used in the evaluation process. A
mobile device with Android v6.0 operating system was used, equipped with
an 8-megapixel front camera that integrated the Toshiba T4KA3 FFC sensor,
as well as with a 5.5-in. touch screen.

4.2 Results

In this section an analysis of the obtained data is accomplished. First, data
obtained during the different evaluation processes are summarized, distinguish-
ing between the three main categories in which data is split (functionality effec-
tiveness, facial recognition’s effectiveness and user experience).

Due to the fact that we start from the same set of participants, we have
decided to apply a paired samples t-test in order to compare the obtained results
from both EVA Facial Mouse and BCI Touch.

Functionality Effectiveness Results. The first parameter analyzed in the
evaluation process was the effectiveness of the functionality. In our study, the
metric associated with this feature has been the time spent on tasks performance
measured in seconds.

The corresponding mean values obtained for EVA Facial Mouse and BCI
Touch in this case were µEV A = 486.14 s for the first and µBCI Touch = 365.43 s
for the latter. In this case, the paired samples t-test reflected significant statistical
data values (p–value = 0.0043). Comparing the analyzed values we can affirm
that the time to complete the proposed tasks is lower in the case of BCI Touch, in
addition to existing a significant differences with regards to EVA Facial Mouse.

Facial Recognition Effectiveness Results. In order to address the effec-
tiveness of facial expressions as a means of interaction in our application, we
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have decided to take as a measurement value the number of errors made by
participants in the development of the tasks in question.

In this case, the mean values obtained that corresponds to EVA Facial Mouse
and BCI Touch were µEV A = 6.86 for the EVA and µBCI Touch = 4.43 for BCI
Touch. In this second scenario, we were retrieved with a meaningful statisti-
cal value (p–value = 0.0074) which reveals a significant difference between BCI
Touch and EVA Facial Mouse.

User Experience Results. Lastly, the participants in the evaluation were
asked to complete a spoken-version of a UMUX-Lite questionnaire [8] through
which they could score the user experience they had. The Usability Metric for
User Experience Lite (UMUX-Lite) is intended to be similar to the SUS ques-
tionnaire but is shorter and targeted toward the ISO 9241 definition of usability
[7]. It contains two positive items with a 7-point response scale. The two items
to be evaluated are “The app capabilities meet my requirements” and “The app
is easy to use”.

Lewis et al. [8] provided a regression equation to predict SUS scores from
the two items (they call the UMUX-Lite) and found that the UMUX-Lite could
predict SUS scores with about 99% accuracy. The regression equation is shown
below. SUSScore = 0.65∗((UmuxItem1 + UmuxItem2 − 2)∗(100/12)) + 22.9
The obtained results in the context of satisfaction are summarized and reported
in Fig. 3.

Fig. 3. Distribution of satisfaction values

Discussion and Treats of Validity. It is important to highlight that evalu-
ation has been done with relevant subjects belonging to the main target group
and represented by elder people with Parkinson’s disease and slight hypomimia.

The results of the UMUX questionnaires are tremendously interesting. These
questionnaires reflect that users are more satisfied with the designed solution,
which adapts to their personal capabilities, in the sense that they can train
actions to interact with the device. These final users value to a much greater
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extent the positive impact that an application of this characteristics can have
on their daily life, despite having aspects that can be improved.

5 Conclusions and Future Work

This paper introduced BCI Touch, a brain computer interface (BCI) based appli-
cation to allow older people with Parkinson’s diseases to control mobile devices.
BCI Touch is framed within the field of brain-computer interface devices, as
well as in the mobile application category focused on accessibility. It is a rela-
tively new and disruptive field of research, with enormous potential. Using BCI
Touch elder people with PD can train their facial expressions in order to avoid
“masked facies”. There is no doubt about the fact that soon we will begin to see
concepts such as thought-based interaction, as a result of applying techniques
such as the electroencephalogram (EEG) as the main data asset that nourishes
our relationship with technology.
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Univ. Politécnica de Cartagena, Cartagena, Spain
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Abstract. Recognizing emotions in controlled conditions, based on
facial expressions, has achieved high accuracies in the past years. This is
still a challenging task for robots working in real-world scenarios due to
different factors such as illumination, pose variation or occlusions. One of
the next barriers of science is to give sociable robots the ability to fully
engage in emotional interactions with users. In this paper a real-time
emotion recognition system using a YOLO-based facial detection system
and an ensemble CNN for sociable robots, is proposed. Experiments have
been carried out on the most challenging database, FER 2013, giving a
performance of 72.47% on test sets, achieving current standards.

Keywords: Emotion recognition · Sociable robotics ·
Facial expression · Human-machine interaction

1 Introduction

In the last decades, several applications such as biometrics, biomedical, human-
machine interaction, robotics, etc, became dependent on computer vision, and
much progress has been made in this field. Recently, considerable attention has
been paid to recognizing facial expressions in real environments including illumi-
nation and posture variations, and occlusions. The integration of computer vision
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applications into daily life could improve fields such as behavioral surveillance,
education techniques, psychological medicine and sociable robotics.

Emotions play a key role in our lives. The first step in emotion recognition
is to set out a reference system; emotional models. Even though a recent study
has evidenced that emotional responses are not universal and are dependent on
culture [10] and thus many emotional models exist there is a need to narrow
down the reference system for a research study. Based on psychological studies,
facial expressions are generally divided into six prototypical emotions [5]: anger,
disgust, fear, happiness, sadness, surprise, to which neutral emotion has been
added.

Many studies have been carried-out in the field of facial expression recogni-
tion(FER) under controlled conditions, obtaining high recognition rates [1,15].
However, FER under real conditions is still a challenging task due to the multi-
ple environment variations can affect the information available in the processed
image.

Due to recent developments on graphical processing units(GPU), the use of
deep learning techniques has been made possible, which has in turn changed the
field of computer vision, since deeper convolutional neural networks (CNN) can
now be trained. Compared to traditional feature extraction methods, such as
local binary patterns (LBP) [17] or histogram of oriented gradients (HOG) [2],
deep learning techniques have achieved high and robust recognition rates [13].
Nevertheless, CNN requires a sufficient amount of data to properly generalize
the targeted task and avoid overfitting. More recently, a growing interest on
ensemble CNN has been noticed since it usually yields an improved recognition
rate in comparison to single CNN performance.

In order to compare the obtained results to state of the art, the FER-2013
dataset is used [7]. The performance and accuracy of the proposed model has
been compared with the following articles: [22] was the winning submission on
Kaggle FER challenge 2013; [3,8,12,16] and [18] achieved the best performances
on the FER 2013 database.

This paper proposes an emotion recognition system used in real-world sce-
narios, based on two stages: facial detection using a YOLO-based model and an
ensemble CNN model; for FER in human-robot interaction (HRI).

2 Methods

The proposed emotional recognition system is structured into two main stages:
database description, preprocessing, and emotion recognition based on an ensem-
ble deep network approach.

FER 2013 Database. The FER 2013 database was introduced in the ICML
2013 workshop [7] on challenges in representation learning. The database com-
prises grayscale face images of 48× 48 px resolution, with 6+1 different face
expressions (angry (AN), disgusted(DI), afraid (AF), happy (HA), sad (SA),
surprised (SU) and neutral (NE)) in different real-life scenarios, divided into 3
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Table 1. FER 2013 dataset distribution per class

Emotion AN DI AF HA SA SU NE Total

Training 1 3995 436 4097 7215 4830 3171 4965 28709

Training 2 3983 435 4087 7201 4824 3162 4952 28644

Validation 491 55 528 879 594 416 626 3589

Test 467 56 496 895 653 415 607 3589

subsets: a training set (Training 1) including 28709 face images, a validation set
and a test set comprising 3589 face images for the latter two, see Table 1.

2.1 Preprocessing

Preprocessing aims to detect only the region of interest: the face. A face detector
based on YOLO architectures trained using a fully annotated face database
WIDER DB is used for the following [9,19,25]. Detected faces are cropped and
resized to 48× 48 px, followed by a conversion from RGB to grayscale space with
[0, 1] normalization range.

2.2 Ensemble Deep Network

The recognition stage is based on a fully convolutional neural network (FCNN)
approach. In CNN, features are extracted from a series of learnable convolution
layers and then injected to a fully connected neural network for classification.
Early convolution layers extract more general features such as edges and shapes,
while the previous layers extract more specific features. In order to find more
detailed and discriminative features, the proposed recognition system uses an
ensemble of FCNN architectures, where the first convolution layers are fixed
and the mapping to the last ones is modified for each model.

After testing many well-known state of the art architectures, a modified ver-
sion of the proposed architecture ConvPool-CNN-C in [21], with more batch
normalization and dropout layers are used for regularization and prevent overfit-
ting, is defined as our baseline (Model A). Each convolution layer uses a number
of filters 3× 3, with same padding and a stride of 1. ReLu activation function
is used for all convolution layers except the last one where a softmax activation
function is employed to get class probabilities. Furthermore, in this deep model,
the fully connected network is replaced by a global average pooling (GAP) that
acts as a regularizer [14], and in the same time reduces the number of trainable
parameters generated by conventional densely connected networks.

For the training step, categorical cross entropy is employed as loss function
with Adam as optimizer, we have trained the models with batch size of 64, for
100 epochs as initial configuration until there is no improvement regarding the
validation loss.
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Three other FCNN models (Models B, C, and D respectively) are derived
from the baseline. The architecture of the model is shown in detail in Table 2.
The Nvidia Tesla K80 GPU is used to train the FCNN ensembles.

Table 2. Architecture description of the four FCNN baseline models

Layers Model A Model B Model C Model D
1 Input (48, 48, 1)
2 Conv 2D (96, (3 × 3), relu, same)
3 Conv 2D (96, (3 × 3), relu, same)
4 Conv 2D (96, (3 × 3), relu, same)
5 BatchNorm
6 MaxPool 2D ((3 × 3), 2)
7 Dropout (0.5)
8 Conv 2D (192, (3 × 3), relu, same)
9 Conv 2D (192, (3 × 3), relu, same)
10 Conv 2D (192, (3 × 3), relu, same)
11 BatchNorm
12 MaxPool 2D ((3 × 3), 2)
13 Dropout (0.5)
14 Conv 2D (192, (3 × 3), relu, same)

15
Conv 2D

(192, (1 × 1)
, relu, same)

Conv 2D
(192, (3 × 3)
, relu, same)

Conv 2D
(192, (3 × 3)
, relu, same)

Conv 2D
(192, (3 × 3)
, relu, same)

16
MaxPool 2D
((3 × 3), 2)

MaxPool 2D
((3 × 3), 2)

MaxPool 2D
((3 × 3), 2)

17 Dropout (0.5) Dropout (0.5) Dropout (0.5)

18
Conv 2D

(256, (1 × 1)
, relu, same)

Conv 2D
(256, (3 × 3)
, relu, same)

Conv 2D
(256, (3 × 3)
, relu, same)

19
Conv 2D

(256, (1 × 1)
, relu, same)

Conv 2D
(256, (3 × 3)
, relu, same)

20 Dropout (0.5)

21
Conv 2D

(512, (1 × 1)
, relu, same)

Last layers

Conv 2D (7, (1 × 1), relu, same)
BatchNorm

GlobalAvgPool 2D
Softmax (7)

Trainable Parameters � 1.37m � 1.71m � 2.17m � 2.83m
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3 Experimental Results

To evaluate the proposed approach, experiments have been carried out on
the most challenging database FER 2013 [7]. This section presents the results
obtained when testing the proposed model with the FER 2013 database.

Using the FER 2013 dataset, experiments have been carried out using mul-
tiple trained network configurations on the filtered training set (Training 2). In
the first plan, single fully convolutional neural networks (A, B, C, and D respec-
tively) were used giving results on validation and test sets, presented in Table 3,
with their confusion matrices in Fig. 1.

In a second plan, all possible ensembles were built based on tested single
FCNN networks in the first plan. Average and Maximum score fusion strategies
were used for the interpretation of ensemble results. Obtained performances are
highlighted in Table 4 and their confusion matrices are illustrated in Fig. 2.

Actually, the ensemble model has achieved comparable results to the best
state of the art approaches; quantified in Table 6. The best results are obtained
with FCNN ensemble using models A,B and C with the average score fusion
strategy, achieving an accuracy of 72.47% on the test set.

4 Discussions

The system is capable of recognizing facial expressions with real time constraints,
as shown in Table 5. The average time for the first stage is 238 ms± 191.7 run-
ning on a multicore i7 CPU processor for the YOLO model. That is, 150 ms
slower than with Haar Cascade method [24] that runs at 88.3 ms± 12.23. In
contrast, the second stage of the system, the ensemble, needs a total time of
145.7 ms± 111.1 for the estimation of emotion of a face. This means that the
entire system performs the detection of facial emotions at approximately a fre-
quency of 3 Hz. This recognition rate is fast enough for the purposes of sociable
robotics.

The facial detection stage gives a solution to the impediments encounter
when detecting facial emotions in real environments where lighting, occlusions
and other factors, make the detection of faces difficult, in Fig. 3. The area of the
image that constraints the face, and therefore the facial expression, is detected
by the ensemble method using a collaborative scheme.

Although FCNNs are not capable of performing parallel estimation like the
YOLO-based model, this can be improved with the use of multi-threading tech-
niques in Python, where the synchronization of the entire set would behave as
badly as the slowest model, but at the price of improving the accuracy of the
entire system, as measured in Table 6. Based on confusion matrices in Fig. 1, it
is noticed that each single model has a better generalization for particular emo-
tions, such as Model A for ‘sad’and ‘surprised’, Model B for ‘disgust’, ‘happy’
and ‘neutral’, Model C for ‘afraid’, and Model D for ‘angry’ and ‘neutral’. In
comparison with the obtained confusion matrices in Fig. 2, the ensembles ABC
and ABCD, take the best from every single model and generalize better for each
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Fig. 1. Obtained confusion matrices for FCNN single models

Table 3. Obtained recognition performances for FCNN single models

Model A B C D

Validation accuracy 66.40% 65.76% 65.51% 67.28%

Test accuracy 68.68% 67.48% 68.15% 68.15%

emotion than using them independently. For a compromise between real-time
application and accurate performance, ensemble ABC with average score fusion
technique was chosen as the best trained ensemble, since it has the best reported
test performance with 72.47%, and requires fewer parameters, 5.25 millions. In
comparison, the second best ensemble ABCD requires 8.08 millions.

The subtle differences between facial expressions corresponding to various
emotions, offer the main challenge in obtaining a more generalized model. Even
though only 435 images are available in the ‘Training 2’ dataset for the facial
expression for ‘disgust’, most single models perform a better generalization on it
than for the ‘afraid’, ‘angry’ or ‘sad’ facial emotions. A possible explanation could
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Fig. 2. Obtained confusion matrices for the two best FCNN ensemble models based on
test set accuracy (Up : Average fusion strategy, Down : Maximum fusion strategy)

Table 4. Obtained recognition performances for FCNN ensemble models

Ensembles Validation accuracy Test accuracy

Average Maximum Average Maximum

A B 68.96% 68.65% 70.47% 70.38%

A C 68.93% 68.15% 70.91% 70.97%

A D 69.77% 69.32% 71.11% 70.55%

B C 68.43% 68.04% 70.58% 70.05%

B D 67.46% 67.32% 69.60% 69.43%

C D 68.68% 68.04% 70.08% 69.80%

A B C 69.30% 69.32% 72.47 % 71.75%

A B D 69.41% 69.30% 71.08% 70.80%

B C D 68.88% 68.15% 71.50% 70.69%

B D A 69.41% 69.30% 71.08% 70.80%

C A D 69.69% 69.52% 71.66% 71.08%

A B C D 70.00% 69.43% 72.14 % 71.55%
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Table 5. Comparative study of real time constraints using YOLO model and Haar
cascade method with the proposed ensemble model

Method Preprocessing time Ensemble recognition time Total

Haar cascade 88.3 ms± 12.23 128.6 ms± 53.6 217ms± 54.8

YOLO faced 238ms± 191.7 145.7 ms± 111.1 384.2ms± 302.1

Table 6. Comparative study of reported performances on FER 2013 test set

Method [16] [3] [22] [8] Proposed
method

[12] [18]

Reported
performance

66.4% 67.21% 71.2% 71.33% 72.47% 73.73% 75.2%

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 3. Experimental emotion detections under real conditions - (a, c, e, g, i, k) using
Haar Cascade and (b, d, f, h, j, l) using YOLO based model.

be, that the training, validation and test sets, have different multidimensional
distributions in terms of the learned features. This phenomenon could be a bias
over the whole database when selecting different sets of data, emphasized by the
constraint of having a small dataset relative to the task at hand.
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5 Conclusions

An accurate face emotion recognition system could improve human-robot inter-
actions(HRI), by rendering the robot accurately aware of the users emotional
state, as in therapeutic robotics [11], and by enhancing social interactions in
real life scenarios [6,23]. Actually, different kinds of robots are being used as
a companion for elder people or in interactions with autists [4,20], alzheimer
patients [26], etc.

Dividing and conquering has demonstrated to be a good strategy since the
first stage deals only with preprocessing signals in different conditions and allow
to focus the second stage only on inferring the emotional state; therefore, sim-
plifying the whole process. This system provides both face detection and face
emotional recognition and could provide an advanced solution to expand sociable
robotics and emotional recognition systems.

The results are comparable to the best state of the art architectures and,
furthermore, it faces real-time constraints for accurate emotional recognition in
a sociable robotics environments.
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Abstract. This paper presents a motorised circular rail that generates
the motion of two carts with an RGB-D sensor each. The objective of
both carts’ trajectory generation is to track a person’s physical rehabili-
tation exercises from two points of view and his/her emotional state from
one of these viewpoints. The person is moving freely his/her position and
posture within the circle drawn by the motorised rail. More specifically,
this paper describes the calculation of trajectories for safe motion of the
two carts on the motorised circular rail in detail. Lastly, a study case is
offered to show the performance of the described control algorithms for
trajectory generation.

Keywords: Physical rehabilitation · Facial emotion detection ·
Moving cart · Motorised circular rail · RGB-D sensor

1 Introduction

Popularity of computer-based physical rehabilitation systems is constantly
increasing. Such systems typically use depth cameras to detect and track humans
[1–4]. Moreover, some previous works that provide solutions based on RGB-D for
monitoring rehabilitation exercises have been presented in the last years [5,6].
In addition, facial emotion detection [7,8] of the human doing exercises is a
good way to understand how he/she feels during the rehabilitation program.
Our vision-based solutions are based on human detection [9,10] and tracking
[11–13]. This paper is also inspired in previous research in multi-robotics [14–16]
tracking robotics [17–19] and rehabilitation robotics [20–22].

It is mandatory to continuously provide excellent viewpoints by modifying
the camera’s angles [23] to monitor people who are undergoing physical reha-
bilitation programs. RGB-D sensors must be placed in the best positions in an
c© Springer Nature Switzerland AG 2019
J. M. Ferrández Vicente et al. (Eds.): IWINAC 2019, LNCS 11486, pp. 181–190, 2019.
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intelligent manner to acquire images of the most relevant parts of the patients’
bodies. This is why, mechanical solutions and control strategies are being devel-
oped for optimally placing RGB-D sensors during human rehabilitation exercises
[24]. Moreover, facial emotion detection determines that one of the viewpoints
must be frontal to the patient.

This article describes an advanced trajectory generator for a motorised circu-
lar rail capable of smartly relocating two carts equipped with an RGB-D sensor
each. The layout of such cart is shown in Fig. 1. The aim is to monitor a patient’s
face and body from two complementary views [25], one of them being frontal to
the patient. In this particular design, a patient can move freely within the rail’s
circle, so that the carts are placed around him/her to monitor all body gestures
from two sights.

Fig. 1. Layout of a cart equipped with an RGB-D sensor.

2 Trajectory Generator

The proposed trajectory generator must calculate the displacements of both
carts to locate them in the optimal position to track the patient’s face and
physical rehabilitation exercises. For this sake, dynamically one of the carts is
assigned the role of master, in front of his/her face, and the other one the role of
slave. The patient is described as input vector within the trajectory generation
system. It is assumed that both the patient’s tracking position and the position
of the two carts are known in each instant. Several parameters are considered
to correctly carry out the trajectory. These are the tilt and pan movements of
the cameras (one per cart), the final angular positions of the carts with respect
to the rail, the direction that each cart must follow, and the possible collisions
between both carts.

2.1 Angles of the Cameras

First, the location of the patient is defined with respect to the circle’s centre
(xp,yp) and the camera’s pan angle γc. On the other hand, the camera’s tilt
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Fig. 2. Vector schemes.

angle αc is defined by considering the height of the tracked zone. Figure 2 shows
an outline of this arrangement.

The formulas that govern the behaviour of the carts are different depending
on the master and slave roles assigned. These roles are established according to
the current locations of both carts. On the other hand, the angular position of
the slave cart must vary when a collision is foreseen with the master cart after
the trajectories have been calculated. In this case, the slave cart must follow the
opposite path.

In this arrangement, also the camera’s pan movement γc is calculated as
follows. The direction opposite to the RGB-D sensor vector, which angle is γc +
π, moves until occupying the position of RGB-D sensor vector with angle γp.
However, as the RGB-D sensor is mounted on a cart rotating around the rail,
the turn βc done by the cart is subtracted, obtaining

Δγ1 = γc − (γp + π) − min(|Δβ1|, |Δβ2|); (1)

Δγ2 = π − γc + γp − min(|Δβ1|, |Δβ2|) (2)

where Δβ1 and Δβ2 are magnitudes that will be defined in Sect. 2.2. When
calculating the tilt movement of the RGB-D sensor, the height of the tracked
zone zp is considered. The angles of the patient’s vector covered by the master
and slave carts, named αpm and αpe respectively, are calculated with respect to
the RGB-D sensor height zc. That is,

αpm = arctan
(xm − xp)2 + (ym − yp)2

zp − zc
; (3)

αpe = arctan
(xe − xp)2 + (ye − yp)2

zp − zc
(4)

Moreover, the movement of the RGB-D sensor is obtained considering that
the cart is also moving. Thus, the objective is that αc occupies the place of the
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angle opposite to αp, that is, −αp. Again, there are two rotation possibilities for
the RGB-D sensor to reach the desired point:

Δα1 = −αp − αc (5)

Δα2 = 2π + αp + αc (6)

2.2 Angular Positions of the Carts

The destination of the carts are defined through their current positions, the
patient’s position with respect to the centre of the circle, and the observed
patient’s direction. The new RGB-D sensor position to observe the patient’s
direction is the angular position of the circle that intersects with the imaginary
line that passes through the direction of the patient with origin in his/her current
position.

Fig. 3. Angular positions of the carts.

By means of this approach, the two cut points of the line passing through
the position of the patient are obtained geometrically, taking the patient as the
direction (see Fig. 3). To obtain line Rp, the position of the patient P = (xp, yp)
and the patient’s direction vp = (xv, yv) = (cos γp, sin γp) are used, obtaining

x − xp

xv
=

y − yp
yv

(7)

being x and y the coordinates of the different points that belong to line Rp. On
the other hand, the parametrisation of the circular path of radius R is defined as

x2 + y2 = R2 (8)

Operating with expressions (7) and (8), we get

(m2 + 1)y2 + 2mny + (n2 − R2) = 0 (9)
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where m = xv

yv
and n = xp − yp

yv
· xv, resulting in cut points P1 = (x1, y1) and

P2 = (x2, y2)

y1 =
−2mn +

√
4m2n2 − 4(m2 + 1)(n2 − R2)

2(m2 + 1)
; x1 = (y1 − yp) · m + xp (10)

y2 =
−2mn − √

4m2n2 − 4(m2 + 1)(n2 − R2)
2(m2 + 1)

; x2 = (y2 − yp) · m + xp (11)

In order to obtain which point is correct, the parametric equation of line Rp

with the value of parameter t = x1−xp

xv
= y1−yp

yv
is calculated by substituting in

said equation the value of the first calculated point. If the value of parameter t
is positive, then point P1 is the cart’s destination point. If it is negative, then
the cart must move to P2.

The next step is using parameter βm = arctan y
x to convert that point of the

circumference into an angular position around the circle. Once we have obtained
the point to be addressed, the cart movement has two possible solutions. The
first one is Δβ1 = βm − βc. The second one depends on the sign of the first,
since it corresponds to the opposite direction. If Δβ1 corresponds to a clockwise
turn, we have Δβ2 = 2π + βm − βc. If the turn is counter-clockwise, we have
Δβ2 = −2π + βm − βc. Next, the displacements Δβ of both carts are summed
up and the role of each cart is selected as a function of said displacements. The
movement function of the master cart is

MCM = (min(|Δβ1|, |Δβ2|),min(|Δα1|, |Δα2|),min(|Δγ1|, |Δγ2|)) (12)

A similar mathematical development is carried out for the slave cart.

2.3 Selection of the Carts’ Roles

The selection of each cart’s role is determined according to the following criteria:

i. When the carts’ destination points to cover the patient’s position have been
calculated, firstly the cart closest to the main vector becomes the master.
The other cart is assigned the role of slave. However, this may change, as the
total route made by both carts is priority when choosing the roles.

ii. Any collision between the carts must be avoided. For this purpose, it is
checked that the route used by one cart is not interspersed with the other,
avoiding such possible route.

iii. If both carts are at the same distance from point βM , the cart closest to
point βE becomes the slave.

iv. If both points are at the same distance from the two carts, the one whose
speed in the direction of the point is larger is the one that takes the role of
master.

v. And, if both carts have the same speed or are quiet, cart 1 will be the master
and cart 2 will be the slave.
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To explain these situations, two examples are analysed (see Fig. 4), where it
is determined which of the two carts should go to each position according to the
destination. In example (a) of the figure, the distribution of roles is very simple
according to the first rule described. Cart 1 takes the role of master and moves to
position βM since it is the closest one. On the other hand, cart 2 takes the slave
role and moves to position βE . In example (b), the same assignment of roles is
done: cart 1 would be the master and go to point βM , while cart B would take
the role of slave and go to point βE . However, the algorithm foresees a collision
of both carts, and immediately changes the trajectory of cart 2 to move to point
βE , which is at least slightly optimal. To avoid such situation, a change of roles
is convenient, taking cart 1 the role of slave and cart 2 the role of master. In this
way, the total journey made by both carts is much smaller and optimal.

Fig. 4. Examples of role distribution.

3 Study Case

A study case presented to validate the functioning of the advanced trajectory
generator. The complete tracking of a patient whose position has moved with
respect to the centre of the circular rail is performed. Figure 5a shows the position
of the carts and the patient at the initial simulation instant. Figure 5b illustrates
the final positions reached, where it can be seen how the carts have reached the
desired positions, just as the RGB-D sensor has successfully rotated to point
directly to the patient.

The trajectory generator selects the shortest route and gives the role of mas-
ter to cart Q and that of slave to S. In addition, we compare the values calcu-
lated by the algorithm and the final route to check if the system has selected
the shortest route. Table 1 collects the aforementioned data. As can be verified,
the system selects the shortest path between the possible routes (clockwise or
counter-clockwise). This is, the route in counter-clockwise direction for cart Q
and the clockwise for cart S, respectively.

Besides, it is checked that the system has correctly selected the roles so that
the total distance travelled by both carts is the minimum (see Table 2). Since
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Fig. 5. Positioning graphs of the study case. Left: start positions. Right: final positions.

Table 1. Distance according to path.

Data (rad) Cart Q Cart S

Path clockwise −5.1706 −1.0147

Path counter-clockwise 1.1126 5.2685

Path selected 1.1126 −1.0147

Table 2. Distance according to role.

Data (rad) Q master, S slave Q slave, S master

Distance Q 1.1126 −1.8980

Distance S −1.0147 1.8980

Total distance 2.1273 3.796

cart Q was selected as master and cart S as slave, it is verified that the trajectory
generator has correctly selected the shortest distance travelled by both carts.

The next check is related to the tilt of the RGB-D sensor. The data shown in
Table 2 throw the graphs shown in Fig. 6. Since the cart’s turn is now considered,
the tilt angle of the RGB-D sensor must be the opposite of that direction. As
can be seen in the graph, the direction of cart Q is tilted until it takes the angle
opposite to the patient’s master direction. In the same way, cart direction S is
tilted to observe the slave vector of the patient.

As with positioning, it is checked that the system is able to select the shortest
route. The data obtained for the study are included in Table 3. Finally, the pan
angle that the RGB-D sensor takes to focus on the patient must be checked in
the same direction but in the opposite sense. As can be seen from the graph, the
vector of cart Q tilts until it points directly to the patient’s master vector. In
the same way, cart S vector is tilted to observe the slave vector of the patient.
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Fig. 6. Tilt graphs of the study case. Left: start positions. Right: final positions.

Table 3. Tilt according to path.

Data (rad) Cart Q Cart S

Path clockwise −0.9337 −6.2076

Path counter-clockwise 5.3495 0.0755

Path selected −0.933 0.0755

Table 4. Pan according to path.

Data (rad) Cart Q Cart S

Path clockwise −1.1126 6.0539

Path counter-clockwise 5.1706 0.2293

Path selected −1.1126 0.2293

It is also observed that the system is able to select the shortest route. Table 4
shows that the system has correctly selected the route to travel the smallest
possible path. In this case, routes are counter-clockwise and clockwise for carts
Q and S, respectively.

The final displacement functions of carts Q and S are called MCQ and MCS ,
respectively:

MCQ(β, α, γ) = (2.1271,−0.9337,−1.1126) rad (13)

MCS(β, α, γ) = (3.7960,−0.0755, 0.2293) rad (14)

4 Conclusions

This paper has presented an advanced trajectory generator for the motion of two
carts with an RGB-D sensor aboard on a motorised circular rail. A continuous
monitoring of the facial emotion expressed by the patient and the performed
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physical rehabilitation exercises is the final objective of the described system.
This will be a future tool for evaluation of the proper physical exercises by
calculating possible deviations of the optimal gestures, and, at the same, the
degree of comfort of the patient during rehabilitation through the emotions felt.
This is why, the paper has introduced the description of the displacements of
both carts and the positioning of the tilt and pan angles of each RGB-D sensor
to track the face and the body of the patient from the best viewpoints.

The paper has also described a study case that demonstrates that the pro-
posed advanced trajectory generator offers enough security to ensure that both
carts never collide during their tracking of the human undergoing a rehabilitation
program.
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Multi-camera systems for rehabilitation therapies: a study of the precision of
Microsoft Kinect sensors. Front. Inf. Technol. Electron. Eng. 17(4), 348–364 (2016)

6. Oliver, M., Montero, F., Fernández-Caballero, A., González, P., Molina, J.P.: RGB-
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Abstract. Emotional estimation systems based on electroencephalog-
raphy (EEG) signals are gaining special attention in recent years due to
the possibilities they offer. The field of human-robot interactions (HRI)
will benefit from a broadened understanding of brain emotional encod-
ing and thus, improve the capabilities of robots to fully engage with the
user’s emotional reactions. In this paper, a methodology for real-time
emotion estimation aimed for its use in the field of HRI is proposed. The
proposed methodology takes advantage of the lateralization produced
in brain oscillations during emotional stimuli and the use of meaningful
features related to intrinsic EEG patterns. In the validation procedure,
both DEAP and SEED databases have been used. A mean performance
of 88.34% was obtained using four categories of the valence-arousal space,
and 97.1% using three discrete categories; both of them obtained with a
Gaussian-Process classifier. This lightweight method could run on inex-
pensive, portable devices such as the openBCI system.

Keywords: Emotion estimation · EEG · Robotics ·
Human-robot interaction

1 Introduction

The increasing use of robots that can interact with human beings is attracting
more interest in the application of machine learning techniques for the recog-
nition of human emotions. A recent branch of studies based on the recognition
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of emotions is being developed to measure and understand how they are pro-
duced. These latest developments will advance research into the direction of the
emotional human-robot interactions (HRI).

The recognition of emotions in the field of robotics is being studied from dif-
ferent perspectives. For instance, several studies focus on facial emotion recog-
nition, where emotions are related to external cues, such as facial features. In
contrast, other approaches study the relationship between emotions and inter-
nal cues, i.e. physiological keys related to brain patterns or balances between the
parasympathetic and sympathetic autonomous systems.

Different factors make recognition of emotions a challenging task. On one
hand, there is no basic truth for self-evaluation, so the assessment of experi-
enced emotions is guided by emotional models developed in the field of psychol-
ogy. These can be grouped generally as discrete and dimensional models. The
former assumes that emotions are qualitatively differentiated neuro-physiological
responses which produce independent emotional experiences, while the dimen-
sional approach captures continuous quantified relationships among emotions.
However, qualitative differences arise when moving across fuzzy boundaries,
between valence and arousal.

Whether brain patterns evoked by emotions can be mapped onto specific
brain regions still remains unresolved. In fact, current studies suggest that infor-
mation encoded during emotional experiences spread over cortical and subcor-
tical areas [12]. There is still no clear evidence on which of the local and global
distributions of brain patterns are consistent among subjects, both in dimen-
sional and discrete emotion models. Therefore, there is not yet a consensus on
the relevant brain pattern features and brain regions suitable for emotion detec-
tion, invariant across subjects.

There are significant variations for each individual in terms of the properties
of the measured signals and their related emotional encoding properties, there-
fore, the studies differ in methodology. To find the invariant relationships across
individuals, subject-independent analysis is performed while for user-adapted
HRI applications, subject-dependent analysis is done.

The main objective of this research is to focus on developing an accurate
methodology for real-time emotion recognition that will be used in the domain
of HRI with the openBCI system, taking that into account the preprocessing
and feature extraction techniques must be performed with real time feasible
techniques. For validation of the methodology, DEAP and SEED databases have
been chosen.

2 State of the Art

In order to compare the obtained results, a set of the latest best state of the art
articles have been used. First, Zheng et al. [17] used Deep Belief Neural Net-
works (DBNs) for the classification of three discrete categories on their own pro-
duced from SEED database. Critical frequency bands and channels were selected
through the weight distributions of the trained DBNs. The best obtained accu-
racy result was 86.65% with a selection of 12 channels.
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Later, Zheng et al. [19] systematically evaluated the performance with a
set of popular features used in the domain of electroencephalography (EEG)
emotion recognition. Analysis was performed for DEAP and SEED databases.
In conclusion, the combination of the differential entropy feature and the Graph
regularized Extreme Learning Machine (GELM) classifier outperformed state of
the art results. A mean accuracy of 69.67% was obtained using DEAP database
for the four quadrants of the valence-arousal dimensional space and 91.07% for
SEED database.

Third, Tripathi et al. [15] focused on Deep and Convolutional neural net-
works (DNN, CNN) to compare the obtained performances and robustness using
DEAP database. With the CNN model, 81.46% valence was obtained and 73.12%
arousal classifications. With the CNN model 81.46% valence and 73.36% arousal
were best obtained results. The DNN model provided more consistent results as
the performance was between 65–80% per subject, while the CNN model perfor-
mance rating was less robust despite having a higher performance average. The
valence and arousal dimensions were split into three categories. Self assessments
higher than 6 become category 1, ratings between 6 and 4 as category 2, and
ratings below 4 as category 3. The DNN model achieved 58.44% and 55.70%,
while the CNN model achieved 66.79% and 57.58%, respectively.

Fourth, Khosrowabadi et al. [10] proposed a novel approach called ERNN.
EEG data from 57 subjects were produced with emotionally tagged audio-visual
stimuli having an average performance of 70.83% for arousal and 71.43% for
valence dimensional spaces.

Finally, Song et al. [14] developed a novel Dynamical Graph Convolutional
Neural Network (DGCNN). Performances were tested over SEED database. Dif-
ferential entropy features of five frequency bands were combined resulting in
an average recognition accuracy of 90.40% for the case of subject-dependent
experiments.

3 Methods

The proposed methodology has been applied to two databases and it comprises
four main steps: preprocessing data, feature extraction, feature selection and
classification.

3.1 DEAP and SEED Databases

The DEAP database contains 32 different subjects which were stimulated with
a set of 40 emotionally-tagged videos, each of them 60 s long. During the exper-
iments, each individual quantified the experienced emotion based on the dimen-
sional valence-arousal model. For the sake of this paper, the database has been
classified into four labels by the discretization of the dimensional space: low
valence-low arousal (LVLA), low valence-high arousal (LVHA), high valence-low
arousal (HVLA) and high valence-high arousal (HVHA).
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On the other hand, the SEED database has 15 subjects but the experiment
was performed three times each, with a time interval of one week. Emotions were
quantified in terms of three discrete categories: POSITIVE, NEGATIVE and
NEUTRAL. A set of 15 emotional-tagged videos were employed, each approx-
imately 180 s long. Both studies used the international 10–20 system for EEG
acquisition, however 32 channels were used for the DEAP database and 62 chan-
nels for the SEED database.

3.2 Preprocessing

EEG signals are arranged in a three dimensional matrix containing n trials, c
channels and s samples at a sample frequency fs. First, given that each sig-
nal has it’s own scaling factor values, signals are standardized using z-score
method. Second, a filter bank, based on sixth-order Butterworth filters, is
applied for all n, c and s, within a set of 4 non-overlapping bandwidths of
B = {4−8, 8−16, 16−32, 32−45}Hz.

3.3 Feature Extraction

Once the data-set has been preprocessed, a set of features are computed based
on the oscillatory properties of brain signals: differential entropy, estimations
(using Hilbert Transform) of instantaneous amplitude and frequency, and lagged-
coherence for measuring rhythmicity in neural oscillations.

The differential entropy for a signal X, whose values have a probability den-
sity function similar to a Gaussian distribution, N(μ, σ2), as is the case for EEG
signals, can be defined as h(X) = log(2 ∗ π ∗ e ∗ σ2)/2.

The estimated values for the instantaneous amplitude and frequency of a sig-
nal can be obtained through the analytic representation of the signal (or Gabor’s
complex signal) that uses the Hilbert transform of the signal [3]. Instantaneous
amplitude or envelope can be computed from the modulus of the analytic signal,
and instantaneous frequency can be computed from the discrete approximation
for the derivative of the instantaneous angular phase (argument of analytic sig-
nal). The mean values along each time interval of the instantaneous amplitude,
a(X), and instantaneous frequency, f(X), for a signal X are used for the fea-
tures.

Lagged-coherence, λ(X), is a metric related to the rhythmicity of neural
oscillations as defined by Fransen et al. [7]. It is a frequency-indexed measure
that estimates the phase of a signal with a particular window length, where
the rhythmicity is evaluated as the consistency of the measured phases across
adjacent non-overlapping time windows of fixed length.

Following the proposed strategy by Zheng et al. [19], lateralization in brain
oscillations during emotional stimuli is used for feature computation. The set of
features is defined as follows:
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hA = h(Xleft) − h(Xright)

hR = h(Xleft)/h(Xright)

aA = a(Xleft) − a(Xright)

aR = a(Xleft)/a(Xright)

fA = a(Xleft) − f(Xright)

fR = h(Xleft)/f(Xright)

λA = a(Xleft) − λ(Xright)

λR = h(Xleft)/λ(Xright)

Where hA is the differential entropy asymmetry, hR is the differential entropy
asymmetry ratio, aA is the mean instantaneous amplitude asymmetry, aR is the
mean instantaneous amplitude asymmetry ratio, fA is mean instantaneous fre-
quency asymmetry, fR is the mean instantaneous frequency asymmetry ratio,
λA is the lagged coherence asymmetry, and λR is the lagged coherence asymme-
try. Where Xleft uses (‘Fp1’, ‘AF3’, ‘F7’, ‘F3’, ‘FC1’, ‘FC5’, ‘T7’, ‘C3’, ‘CP1’,
‘CP5’, ‘P7’, ‘P3’, ‘PO3’, ‘O1’) and Xright uses (‘Fp2’, ‘AF4’, ‘F8’, ‘F4’, ‘FC2’,
‘FC6’, ‘T8’, ‘C4’, ‘CP2’, ‘CP6’, ‘P8’, ‘P4’, ‘PO4’, ‘O2’) channels.

All features have been computed using a sliding window of 6 s as suggested
by Candra et al. [4], with a step size of 1 s.

Each training sample represents the computed features for each time win-
dow. Features are computed for each band/channel and later concatenated for
each training sample. Thus, resulting in feature sets of 2200 samples with 416
features, and 2250 samples with 864 features, for DEAP and SEED databases
respectively. Finally, normalization is performed using the Quantile-Transform
method (histogram equalization to uniform distribution) over feature sets.

Features related to instantaneous amplitude, instantaneous frequency and
lagged-coherence have been computed with the Neuro Digital Signal Processing
Toolbox (neurodsp) python library [16] developed at Voytek’s Lab. Classification
process has been done using the scikit-learn python library [13].

3.4 Feature Selection

A key step in machine learning is the dimensional reduction process. Care must
be taken while choosing the number of features relative to the number of sam-
ples in the training data set. This problem is directly related with the course of
dimensionality [11], where feature distributions in hyper-space can become non
meaningful in terms of the geometrical distances. At some degree, all classifi-
cation techniques have to deal with this problem, but some are more sensitive
than others, if they are based on geometrical distances over the euclidean space,
i.e. the K-nearest neighbour as is demonstrated by Beyer et al. in [2]. Moreover,
as Babyak et al. [1] suggests, there are two main factor to achieve a model that
generates accurate estimates of the unknown, that is, over new samples. The first
one is the number of samples of the population relative to the objective task,
and the second one, the ratio between the samples and variables where some
statisticians uses the rule “One in ten”, meaning that at least, 10 samples are
needed for each dimension. Based on this drawback, the ratio between samples



196 M. Val-Calvo et al.

and features is chosen to be at least higher than 100 samples/dimension, to pre-
vent that the model will not over-fit. Therefore, a set of best 15 selected features
have been used in this study, making a ratio of 146.6 and 150 samples/dimension
on DEAP and SEED cases, respectively.

3.5 Classification

Classification processes have been performed using a set of 10 classifiers: Multi
Layer Perceptron, K-nearest neighbors, Support Vector Machine with linear and
radial basis function kernels, Gaussian-Process, Decision Trees, Random Forests,
Ada-Boost, Gaussian Naive-Bayes and Quadratic Discriminant Analysis.

The performance has been evaluated as the average accuracy over all par-
ticipants for each experiment, taking into account POSITIVE, NEGATIVE
and NEUTRAL labels for the SEED database and LVLA, LVHA, HVLA and
HVHA for the DEAP database. Results have been obtained with default hyper-
parameter values.

4 Experimental Results

In Fig. 1 the results obtained on the DEAP and SEED databases are shown as
an average score on each label over all subjects. For both databases the best
results were obtained with the Gaussian-Process classifier. In order to illustrate
the robustness in terms of the generalization of the different labels, the confusion
matrices are shown in Fig. 2, both for the subjects with best and worst perfor-
mance on the DEAP and SEED databases. The final average accuracy is shown
in Table 1, where state of the art performances are compared with our proposed
methodology, in the context of subject dependent EEG emotion recognition.

Table 1. Obtained recognition performances on EEG databases.

Study Model Databases Categories Performance

Zheng et al. [17] DBN SEED 3 86.65%

Zheng et al. [19] GELM SEED, DEAP 3 91.07%, 69.67%

Tripathi et al. [15] CNN DEAP 2 73.36–81.46%

Khosrowabadi et al. [10] ERNN Own produced database 2 70.83–71.43%

Song et al. [14] DGCNN SEED 3 90.40%

Proposed method GPC SEED, DEAP 3, 4 97.1%, 91.2%

As our purpose was to create a computationally light method and meaningful
features for future use on the openBCI system, the classification process was
repeated taking into account the constraints of this particular system in terms
of the number of electrodes available, 8 in total. Selected channels positions
were (‘FP2’, ‘F4’, ‘C4’, ‘F8’) for Xright and (‘FP1’, ‘F2’, ‘C3’, ‘F7’) for Xleft.
The corresponding confusion matrices for these cases are shown in Fig. 3.
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(a) DEAP database.

(b) SEED database.

Fig. 1. Average accuracies over all subjects on each label with the set of classifiers
selected.

5 Discussion

Our proposed method is optimal in terms of accuracy results in the context of
subject dependent analysis. Moreover, it still remains robust when only a subset
of electrodes are selected. The average classification accuracy is 95.07% and
78.86% for the SEED and DEAP databases, respectively, when only a subset of
8 electrodes are employed.

The set of selected features are easy to compute in any type of computer and
can be easily implemented in any programming language, allowing the quick
development of portable systems with high accuracy results, as is the case for
the openBCI system. In addition, these features allow for the interpretation of
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(a) Worst classified subject in DEAP
database.

(b) Best classified subject in DEAP
database.

(c) Worst classified subject in SEED
database.

(d) Best classified subject in SEED
database.

Fig. 2. Confusion matrices for DEAP and SEED databases, using all channels, over
worst and best subjects. Rows correspond to True labels while columns to predicted
labels.

the phenomenon under study, as they are direct measurements of the proper-
ties of brain patterns, being far from black-box techniques using deep-learning
approaches such as auto-encoders [5], or very complex features with difficult
interpretation in biological terms [18].

A limitation in the domain of EEG signal analysis is often related with the
high dimensional space that must be covered due to the great number of elec-
trodes employed. Such signals are complicated in their structure as their intrinsic
properties are non-linear and non-stationary. Thus, one of the main limitations is
the obligation to construct high dimensional space of features that then must be
treated carefully with feature reduction techniques; often biased by the statis-
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(a) Worst classified subject in DEAP
database.

(b) Best classified subject in DEAP
database.

(c) Worst classified subject in SEED
database.

(d) Best classified subject in SEED
database.

Fig. 3. Confusion matrices for DEAP and SEED databases, restricted to OpenBCI
channels, over worst and best subjects. Rows correspond to True labels while columns
to predicted labels.

tics in hand [6]. The proposed methodology shows that it is not necessary to
have a large number of electrodes but rather a set of carefully chosen ones and
a set of well inter-related meaningful features, to emphasize the differences of
brain pattern properties in the task at hand. In this way, after proving that the
robustness of the methodology remains almost unchanged when only a subset of
8 electrodes is used, a feature space with less dimensions provides the possibility
to further the analysis of where and how each feature is related to an emotional
state. Thus, mathematical analysis such as factor analysis, to find invariant rela-
tionships among variables, can be performed in a less complex statistical domain.
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6 Conclusions

Our method has proved to be robust even with a low set of channels while
reaching the best state of the art results in subject dependent analysis for the
EEG emotion recognition task.

An accurate and computationally light EEG emotional estimation methodol-
ogy could allow the use of portable and cheap devices to the domain of emotional
HRI. Such systems are essential in emotional HRI as clinical systems are not
always affordable and as a drawback they need complex hardware systems with
also complex wire connections between them and the user. OpenBCI system has
proved to have meaningful information carried out by it’s components [8]. There-
fore, it is an optimal device for HRI [9], and, with the proposed methodology, it
could further the research in this field.

Acknowledgments. We want to acknowledge to Programa de Ayudas a Grupos de
Excelencia de la Región de Murcia, from Fundación Séneca, Agencia de Ciencia y
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Abstract. Continuous atmosphere of competitiveness, job pressure,
economic status and social judgment in modern societies leads many peo-
ple to a frenetic life rhythm, thus favoring the appearance of stress. Con-
sequently, early detection of calm and negative stress is useful to prevent
long-term mental illness as depression or anxiety. This paper describes
the acquisition of electrodermal activity (EDA) signals from a commer-
cial wearable, and their storage and processing. Several time-domain,
frequency-domain and morphological features are extracted over the skin
conductance response component of the EDA signals. Afterwards, classi-
fication is undergone by using several support vector machines (SVMs).
The International Affective Pictures System has been used to evoke calm-
ness and distress to validate the classification results. The best results
obtained during training and validation for each of the SVMs report
around 87.7% accuracy for Gaussian and cubic kernels.

Keywords: Electrodermal activity · Support vector machines ·
Calmness · Distress

1 Introduction

Early stress detection prevents health problems related to negative stress. There
is a great need to create and adapt technologies to monitor and detect con-
ditions of negative stress in everyday life [3,22]. Such early detection helps in
the process of emotional self-regulation of the individual under stressful condi-
tions [4,9]. Fortunately, advances have been made in stress detection without
disturbing people [16,17]. The use of non-invasive wearable devices allows a
constant monitoring of people arousal state. These wearable are well valued as
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they are comfortable, lightweight, provide long battery life and allow wireless
communication.

Lately, many methods and methodologies have been used to determine levels
of arousal through detecting alterations of the central nervous system. One of
the most commonly used physiological variables to determine arousal is elec-
trodermal activity (EDA). Moreover, this marker is able to quantify changes in
the sympathetic nervous system by measuring the conductivity of the skin. In
this paper, it has been decided to use a commercial wearable device to record
these EDA variations. Empatica E4 [7] is a wristband dedicated to the measure-
ment of several physiological signals (e.g. electrodermal activity, heart rate, skin
temperature).

Concretely, this paper describes how to detect calmness and negative stress
conditions using a wearable, signal processing techniques and advanced classi-
fiers. The use of advanced classifiers, based on supervised learning, brings an
innovative approach against a more classic statistical treatment of the signal
features [15,16]. We consider that these classifiers can be implemented in new
tools to allow a rapid detection of negative stress conditions.

This paper is structured as follows. Section 2 introduces a description of all
materials and software used to identify stress through electrodermal activity
acquired from the wearable. In Sect. 3, there is a detailed explanation of the
signal processing, feature extraction and classification methods used to validate
the developed emotional model. Then, Sect. 4 offers several approaches to seg-
ment EDA signals. In addition, the results obtained with the different classifier
configurations are shown. Finally, Sect. 5 includes the most relevant conclusions
related to this work.

2 Materials for EDA Signals Acquisition and Processing

A fundamental part of this work is EDA signal acquisition and processing. For
data acquisition (see Sect. 1) a commercial device [7] has been selected. The
Empatica E4 wristband (see Fig. 1) is a wearable designed to measure and col-
lect physiological signals. The wearable is widely used in clinical and domestic
research. It incorporates a variety of sensors that provide great versatility like a
photoplethysmograph to measure blood volume pulse, as well as electrodermal
activity (EDA), three-axis accelerometer and metallic temperature sensors. Each
of the sensors has a different sampling frequency. The blood volume pulse works
at 64 Hz, the accelerometer at 32 Hz, the skin temperature at 4 Hz and the EDA
sensor at 4 Hz. Empatica E4 must be securely attached to the wrist so that the
electrodes touch the skin. Otherwise, if the device is not properly connected, the
device does not sample well and data are not valid.

On the other hand, we have used the EmoSys software suite as data process-
ing tool. EmoSys software has been developed by some authors of this paper
for the integration of a series of devices to acquire both physiological and neuro-
physiological signals. As shown in Fig. 2, the functionality of EmoSys application
is quite simple. EmoSys obtains the physiological signals and stores them into.
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CSV (comma-separated values) files. These files will be segmented and analyzed
using signal processing techniques and artificial intelligence (AI) [20].

Fig. 1. Empatica E4 wearable (see [7]).

Fig. 2. Acquisition system using Empatica E4 and EmoSys software.

3 Methods and Experiment Design

3.1 Participants

A total number of sixteen participants were recruited to carry out this study,
concretely 43.75% women(mean = 31.4 SD = 8.03) and 56.25% men (mean = 27.3
SD = 4.99). All participants enrolled voluntarily and no one received financial
compensation. All of them were in good physical and mental condition. The
participants signed a participation agreement to take part in the study. The
agreement form provided information about the risks associated with partic-
ipating. It described the type of images shown and the possibility to stop the
experiment at any time. This experiment was designed following the protocols of
Helsinki Declaration and it was approved by the Ethical Committee in Clinical
Research according to European and Spanish legislation [20].
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The experiment was carried out in a controlled environment. Each participant
was seated in a comfortable space avoiding external stimuli that could interfere
in the correct development of the study. Once the wearable was placed on a
volunteer, he/she was left alone to perform the experiment.

3.2 E-Prime and IAPS

In order to validate the results in this article, we decided to use two tools widely
used in the field of Psychology and Affective Computing. Firstly, E-Prime is a
software used in psychological experimentation [21]. This software allows to con-
trol experiments and their experimental conditions. It covers the design phase
of the experiment and the execution phase too. It allows to create slide to show,
show videos and make customized questionnaires to be offered during the exper-
iment.

The International Affective Picture System (IAPS) image library is used
to evoke a feeling of calmness or distress in the participant [14]. Indeed, the
IAPS image database is commonly used to perform and induce emotions. It
consists in a huge set of color images grouped into categories that evoke specific
emotional states [2]. The database was originally validated using a graphic scale
named Self-Assessment Manikin (SAM) [13]. This questionnaire consist of a to
rate how pleasant/unpleasant (valence), calm/excited (arousal) and controlled
(dominance) they felt when looking at each of them.

In our experiment, different batches of images that have similar values of
valence, arousal and dominance were selected. To evaluate if images induce the
state of calmness/distress, two conditions were established: LH for low arousal
and high valence (stress condition), HL for high arousal and low valence (calm
condition) [18]. Dominance in all conditions took usually medium values. Table 1
shows the average and standard deviation values for each group consisting of 25
images.

Table 1. Mean value and standard deviation of valence, arousal and dominance for
each IAPS images group.

Experimental condition Valence Arousal Dominance

HL 7.23 (1.54) 3.26 (2.22) 6.44 (2.10)

LH 1.67 (1.21) 6.93 (2.22) 2.79 (2.11)

3.3 Experiment Design

The objective of this experiment is to determine calmness and stress conditions
by exposing each participant to a set of images from the IAPS library. The
experiment uses the tools described before. As explained before, our idea is to
expose every subject to different levels of valence and arousal. Two conditions
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are established to appear randomly in the experiment. The first condition is to
induce stress, the second one to induce calmness in the participant.

The experiment starts when the participant is seated and the wearable have
been placed on his/her wrist. When the wearable gets connected to the server
(see Fig. 3), E-Prime takes over the execution of the experiment. The experiment
begins by showing the participant a brief description and how to respond to the
SAM questionnaires. After this, the batch of neutral images is shown. These
types of images are used to establish a baseline and induce a neutral emotional
state in the participant. Once this has been reached, the first SAM questionnaire
is answered. Next, E-Prime offers a distracting task with the purpose of elimi-
nating the induced emotional state. This task forces the subject to concentrate
and stop thinking about the images shown previously. Then, the system starts
to randomly repeat each of the image blocks (HL, LH). When each blocks is
finished, the SAM questionnaire is answered.

At the same time the experiment is being performed, physiological data are
collected using the EmoSys software. The signals are synchronized with the
events related to the occurrence of each batch of images. This synchronization
will help to detect calmness and stress conditions.

Fig. 3. Flowchart of experiment design as used in E-Prime.

3.4 Electrodermal Activity Processing and Feature Extraction

EDA is one of the most used measurement to identify the affective state of a
person, specially when the arousal level is needed. Previous studies have used
EDA to characterize changes in emotional experiences [4,5,8]. EDA signals are
obtained by measuring the potential drop that occurs when a small current
is applied between two electrodes located on the wearable across two metallic
electrodes (see Fig. 1).

Prior to analyzing this physiological response, the data typically undergo
several processing steps. Rapid gesture and body movements may introduce
signal artifacts in the form of high frequency changes that need to be considered.
Therefore, the EDA signals must be filtered. To do this a low-pass filter with a
cut-off frequency of 4 Hz and a Gaussian filter to smooth the signal have been
applied to attenuate these artifacts.
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Electrodermal signals are composed of two components, one is the skin con-
ductance level, commonly referred to tonic signal, and the other component
is called skin conductance response (SCR), also known as phasic signal. SCR is
considered the effective signal for establishing an individual’s response to a stim-
ulus [1]. We will have to perform a continuous deconvolution operation to obtain
the two components of an EDA signal (see Fig. 4). This operation prepares the
signal for the next stage, the extraction of features.

Fig. 4. Flowchart of feature extraction from EDA signals.

In this paper, the signal is processed to obtain all the parameters shown in
Table 2 to gain better emotion pattern classification performance. This charac-
terizes each of the signal segments and makes it possible to differentiate the
difference between calmness and stress when classifying [23].

Table 2. Features obtained from phasic signals (SCR).

Analysis Features

Temporal M, SD, MA, MI, DR, D1, D2, FM, FD, SM, SSD

Morphological AL, IN, AP, RM, IL, EL, SK, KU, MO

Frequency F1, F2, F3

As shown in Table 2, several time-domain, frequency-domain and morpho-
logical metrics are computed over the SCR component. Firstly the name of
temporal parameters over SCR are mean value (M), standard deviation (SD),
maximum peak value (MA), minimum peak value (MI), and dynamic range
(DR), which is the difference between maximum and minimum value. To see
the tendencies in skin conductivity we computed the first and second derivative
(D1 and D2), their means (FM and FD), and their standard deviations (SM and
SSD). In addition, several morphological features were chosen: arc length (AL),
integral area (IN), normalized mean power (AP), perimeter and area ratio (IL),
energy and perimeter ratio (EL) and ,finally, two statistic parameters, skewness
(SK) and kurtosis (KU). Lastly, in relation to the frequency, we calculated the
fast Fourier transform (FFT) through bandwidths F1(0.1,0.2), F2(0.2,0.3) and
F3(0.3,0.4) [23].
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3.5 Stress Identification by Support Vector Machines

Support vector machines (SVMS) are one of the most well-known machine learn-
ing methods. Indeed, this method is used in a large number of fields [10,11]. One
remarkable property of SVMs is their ability to learn independently of the dimen-
sionality of the feature space [12]. It has been decided to use SVMs due to the
high number of input parameters (23 signal features, as depicted in Table 2) and
two classes (calm and distressed). To prevent overfitting, several configuration
settings for cross-validation are selected. These settings allow to optimize learn-
ing performance. In this particular study, SVMs with polynomial and Gaussian
kernels are used.

Two sets of data are provided for the training phase. The first dataset of
features is gotten after processing each one of the segments obtained with the
LH and HL image sets. Each of these segments have a 20-s length, corresponding
to ten images with two seconds duration each. The second dataset corresponds
to four second segments for each LH and HL condition, eliminating the first two
and last seconds in each section.

4 Results

Once the signals have been processed, the training accuracy of the different
SVM topologies is analyzed. Moreover, thirty repetitions are performed for each
different SVM and every cross-validation set to ensure that the data obtained
are robust.

Table 3 shows the training results with segments 20 s long. It can be observed
that the SVM with higher performance is the Gaussian type with 70.8% accuracy
for a set of cross-validation (C.V) of 5. For a C.V. set of 7, the best result is
provided by the a linear kernel SVM with an average accuracy of 75.0%. Finally,
the accuracy remains at 75.0% for the cubic kernel using a C.V. of 10.

Table 3. Results using segment lengths of 20 s.

SVM type C.V. Accuracy C.V. Accuracy C.V. Accuracy

Linear 5 54.2% 7 75.0% 10 70.0%

Quadratic 5 66.7% 7 70.8% 10 58.3%

Cubic 5 50.0% 7 70.8% 10 75.0%

Fine Gaussian 5 70.8% 7 62.5% 10 70.8%

Medium Gaussian 5 62.5% 7 62.5% 10 62.5%

Coarse Gaussian 5 62.5% 7 62.5% 10 62.5%

On the other hand, Table 4 shows the training results with segments longing
4 s. The SVM that works best is the quadratic one with an accuracy of 87.7%
for a set of C.V. of 5. Also for a C.V. of 7, two other SVMs work quite well,



Stress Identification from Electrodermal Activity 209

the linear and the fine Gaussian, both offering 87.7% accuracy. At last, for a
cross-validation set of 10 folds, the best result comes from a from a cubic kernel
(again 87.7% accuracy). None of the three cases do we see any improvement in
the precision of the training.

Table 4. Results of interval segments of 4 s.

SVM type C.V. Accuracy C.V. Accuracy C.V. Accuracy

Linear 5 84.6% 7 87.7% 10 86.2%

Quadratic 5 87.7% 7 81.5% 10 86.2%

Cubic 5 78.5% 7 80.8% 10 87.7%

Fine Gaussian 5 70.8% 7 87.7% 10 86.2%

Medium Gaussian 5 82.6% 7 70.8% 10 72.3%

Coarse Gaussian 5 58.5% 7 61.5% 10 61.5%

5 Conclusions

There is numerous literature for stress detection. Most works agree that stress
is a very complex subject and measuring it is not an easy task. There are many
markers that can be used, many algorithms that can be applied, and many forms
of stress that can be observed [6,15,16,19]. Due to the existence of many ways
to produce distress, the results provided in all these works should be taken with
caution. In this sense, we can say that the results obtained in this paper has
given an accuracy of 87.5%. If we compare this work with the results obtained
in other related studies, it is possible to conclude that outcomes obtained using
the approach proposed in this works are comparable and slightly better than
others works. In other similar approaches, stress detection rates range between
70% and 95%. Our approach uses solely skin conductance response features to
achieve a high performance comparable to other works.

The most prominent aspect of our contribution is the development of a com-
plete acquisition system [20], a signal processing and a classification model based
on SVMs with a high capacity to discriminate between the two calmness and
distress conditions. The simplicity of the classification model allows this sys-
tem to work in the long term. Another relevant aspect found is that the use
of such non-invasive device enables to constantly monitor electrodermal activity
and have a larger database to work with.

On the other hand, we must consider a number of limitations. Firstly, the
experiment has taken place in a controlled environment on middle-aged subjects.
For this reason, the results cannot be generalized beyond the age range of the
participants (18 to 44 years old). The second limitation is the quality of the data
obtained. In acquisition systems based on physiological signals, it is common
that artifacts that damage or worsen the signal occur. To be able to detect these
problems in time will help to improve the rest of the process.
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As a final conclusion, let us highlight that this study has helped to design
an experiment that allows us to detect states of calm and stress. Throughout
the study we have verified that there are many factors that can influence this
classification, although the results are very acceptable. In our opinion, during
the previous treatment of the EDA signal, a correct filtering and smoothing
of the signal must be carried out to avoid problems. Also, it is necessary to
avoid artifacts and events of disconnection of the electrodes with the skin. We
must understand that good practices have to be adopted from the beginning. If
any of the previous processes fails, it will induce errors in the following stages,
increasing the global error and decreasing the accuracy.
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Abstract. This article introduces a framework for assisting dependent
people at home through a vision-based autonomous unmanned aerial
vehicle (UAV). Such an aircraft equipped with onboard cameras can be
useful for monitoring and recognizing a dependent’s activity. This work
is focused on the problem of planning the flight path of a quadrotor to
perform monitoring tasks. The objective is to design a trajectory plan-
ning algorithm that allows the UAV to position itself for the sake of cap-
turing images of the dependent person’s face. These images will be later
treated by a base station to evaluate the persons emotional state, together
with his/her behavior, this way determining the assistance needed in each
situation. Numerical simulations have been carried out to validate the
proposed algorithms. The results show the effectiveness of the trajectory
planner to generate smooth references to our previously designed GPI
(generalized proportional integral) controller. This demonstrates that a
quadrotor is able to perform monitoring flights with a high motion preci-
sion.

Keywords: Home assistance · Dependent people ·
Unmanned aerial vehicles · Quadrotor · Trajectory planning ·
Generalized proportional integrated controller

1 Introduction

Inability to perform daily tasks reduces the autonomy and quality of life of
dependent people. These people require daily help that has traditionally been
provided by health personnel in specialized care centers. However, this kind of
care forces dependents to leave their homes, which is an additional problem,
since this is not usually the habitual preference. To counteract this situation,
family members are usually those who dedicate their time to assist the depen-
dent person. But, in many cases, this is not the ideal solution either. Family
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caregivers, who cope with a lack of resources and preparation, are sometimes
overwhelmed by the situation. Consequently, their quality of life is also affected.
In addition, every day the number of cases of dependent people living alone is
more frequent. Therefore, they must obligatory move to specialized centers to
receive the necessary care.

Hence, it is necessary to focus research on the development of home care
strategies that allow assistance to dependents. In this way, their personal auton-
omy is increased. They can stay at home as long as possible and improve their
quality of life. In this sense, new technologies provide novel solutions for the care
and support of dependents [11,16,23,25]. Assistance robotics is fundamental at
this point. However, it is essential to work with methods that allow the correct
monitoring and identification of the dependent’s condition for designing systems
that respond to their needs [21,28]. One of them is automatic recognition of emo-
tions, a non-invasive method in which our research group has extensive expe-
rience [6,7,13,18]. This approach requires taking photographs of the person’s
face for further analyzing the information collected. Thus, the person’s mood is
detected and the necessary assistance is determined under each situation.

In this context, unmanned aerial vehicles (UAVs) may suppose a new model
of home care [17,20,30]. Indeed, an UAV equipped with an on-board cam-
era [1,2], can be very useful in home monitoring. This type of vision-based
aircraft allows, unlike other static vision systems, access to remote points, avoid
dead angles, and position itself in front of the person [14,15]. The taking of snap-
shots allows a subsequent recognition of emotions [22]. For this purpose, this
article describes a trajectory planner for the flight of a quadrocopter equipped
with a camera to capture snapshots of the person’s face. The aim is to gener-
ate smoothed reference trajectories for a generalized proportional integral (GPI)
control algorithm [12], so that the UAV performs the simulation of a flight aimed
at monitoring the person. The proposed approach is validated by numerical simu-
lations in MALTAB/Simulink environment [3–5]. This work is part of an ongoing
research to design autonomous UAVs for their future use as home assistance for
dependent people.

2 Quadrotor Dynamics

A quadrotor [12,31] is a rotatory-wing UAV formed by four rotors arranged in
the shape of a cross and equidistant from the center of mass of the aircraft,
as shown in Fig. 1. Such a vehicle allows vertical take-off and landing, and is
characterized by high maneuverability, agility, and versatility. In addition, it can
move at low speed, reducing the risk of collision in flight, and improving the
quality of the image recorded by a camera aboard. For all these reasons, it has
been considered suitable for the proposed approach.

The quadrotor’s thrust is generated by the four fixed-angle propellers of the
rotors. The lift forces are modified by changing the propellers rotation speed, thus
achieving the three possible movements, namely, pitch, roll, and yaw. As shown
in Fig. 1, by increasing (reducing) the speed of the propeller [1] while reducing
(increasing) the speed of the propeller [3] the pitch movement is obtained. In
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Fig. 1. Quadrotor’s motion principles.

the case of increasing (reducing) the speed of the propeller [2] while reducing
(increasing) the speed of the propeller [4], the roll movement is produced. And
finally, by increasing (decreasing) the speed between each pair of propellers, it
is possible to modify the yaw angle. The system of equations that model this
dynamic behavior has been obtained through the Euler-Lagrange approach [8,
19], resulting in:

mẍ = −u sin θ ψ̈ = τψ

mÿ = u cos θ sin φ θ̈ = τθ

mz̈ = u cos θ cos φ φ̈ = τφ

where m is the mass, g is the gravity acceleration, x and y are coordinates in
the horizontal plane, z is the vertical position, the angles φ, θ and ψ express the
independent orientation angles, u is defined as the total thrust and τψ, τθ and
τφ denote the angular moments (yawing moment, pitching moment and rolling
moment, respectively). Moreover, the following assumption has been considered:
orientation angles θ and φ are upper and lower bounded in intervals −π

2 < φ < π
2

and −π
2 < θ < π

2 .

3 Control Algorithm

A control scheme is necessary for regulating and tracking the trajectory that
will be generated by the planner (which will be detailed in the next section)
to perform a precise flight that allows monitoring a dependent in the proposed
assistance system. For this purpose, we have selected a generalized proportional
integral (GPI) controller, which is based on the theory of differential flatness, and
which has demonstrated good performance in the control of nonlinear systems,
which is the case od a quadrotor. GPI control sidesteps the need for traditional
asymptotic state observers and proceeds directly to use structural state esti-
mates in place of the actual state variables [26,27]. The effect of such structural
estimates in the controller is neglected in the feedback control law by means of
suitable integral output tracking error feedback control actions.

The complete design of the GPI controller can be consulted in detail in our
previous work [12]. The results of this research demonstrated the effectiveness
of the proposed approach in comparison with the classical PID control in the
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following terms: (a) stabilization and trajectory tracking tasks; (b) performance
when the measured signals are corrupted by noise; and (c) dynamic response
when atmospheric disturbances such as gusty wind affect the quadrotor.

4 Trajectory Planning

Planning trajectories is one of the problems to necessarily resolve when designing
autonomous mechatronic systems and mobile robots. For this reason, it is a field
that has attracted the interest of the research community in recent years [9,10,
24,29]. Thus, this section describes the trajectory planning algorithm designed
for the quadrotor. The overall goal is to make a flight for monitoring a dependent
person. To do this, the UAV, which will initially be in a base position on the
ground, must take off, approach the person and surround him/her until finding
the face. Then, the UAV will take a photograph of the face that will be sent to
a base station for analysis. Finally, the UAV must conclude the circular motion
around the person and return to its base.

During the planner’s development, the following considerations have been
considered. (i) The sensors provide the information of the person’s position
defined by the face’s center coordinates (xp, yp, zp); (ii) the person remains static
during the monitoring process; (iii) there are not obstacles at the monitoring
height at which the UAV works; (iv) a safety radius, R, is defined during the
whole monitoring process to avoid collisions between the UAV and the person;
and, (v) when the UAV does not perform any monitoring task, it remains in the
base position whose coordinates are (xb, yb, zb).

The trajectory planner is based on a state machine. The states define the
maneuvers to be performed by the UAV during the monitoring process. For
each state, the planner generates smoothed reference trajectories for the position
(coordinates x, y, z) and the yaw angle (ψ) of the UAV. These references are the
inputs to the GPI algorithm, which determines the required inputs to control
the UAV’s flight. The general control scheme of the quadrotor is illustrated in
Fig. 2.
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As shown in the figure, the trajectory generator depends on the person’s
information provided by the sensors (xp, yp, zp), the UAV’s output variables
(x, y, z, ψ), and the previous machine state. The planner defines the references
trajectories during the monitoring process so that the UAV’s camera focus points
towards the UAV’s forward direction or the person. The considered states for
the trajectory planner are the following.

– State 0: Home. It defines the initial state of the UAV located on its base.
When it receives the instruction to start the monitoring process, it transits
to state 1.

– State 1: Takeoff. Generation of the trajectory for the take-off of the UAV.
When the quadrotor reaches the face’s height defined by zp coordinate, it
transits to state 2.

– State 2: Person Search. The UAV is requested to rotate its position, that
is, to vary its yaw angle to find the person. When the cameras center is aligned
with the person, it transits to state 3.

– State 3: Approximation. The UAV performs an approach maneuver
advancing in a straight line towards the person. The objective is to reach
the Safety Position located in the circumference of radius R defined around
the person. When this position is reached, it transits to state 4.

– State 4: Waiting in Safety Position. Intermediate state in which the
UAV stops before starting the circular movement around the person in order
to search his/her face. Once the programmed timeout has elapsed, it transits
to state 5.

– State 5: Face Search. The UAV is requested to perform a circular movement
around the person while varying the yaw angle so that the camera on board
points towards the person. When the UAV is in front of the face, it transits
to state 6.

– State 6: Data Capture. The UAV stops for a while to take a picture of the
person’s face. This image is transmitted to a base station for analysis. After
the time required for data capture elapses, it transits to state 7.

– State 7: Motion to Safety Position. Continuation of the circular move-
ment until the turn is completed and the previously defined safety position
has been reached. In that position, it transits to state 8.

– State 8: Base Search. Keeping the position, the UAV is requested to modify
its yaw angle until the camera is focused towards the base; then, it transits
to state 9.

– State 9: Return to Base. The UAV must advance in a straight line until it
is positioned on the base. When the UAV is on position (xb, yb, zp), it transits
to state 9.

– State 10: Yaw Angle Adjustment. The UAV is requested to modify its
yaw angle so that it can subsequently land on the base correctly and be ready
for the next monitoring process.

– State 11: Landing. The UAV lands at the base position and transits to the
initial state (0) for the next monitoring process.
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5 Numerical Simulations

The numerical simulations carried out to evaluate the trajectory planning for
the quadrotor are detailed in this section. These simulations were performed
within the MATLAB/Simulink environment. The parameters used are defined
in Table 1.

Table 1. Parameters defined in the MATLAB/Simulink trials.

Planner’s parameters

Safety radius, R = 2 [m]

Base position, (xb, yb, zb) = (0, 0, 0) [m]

Velocity in Z axis, vz = 6.8 · 10−2 [m/s]

Velocity in diagonal motion (x, y), vd = 7 · 10−2 [m/s]

Angular velocity for yaw adjustment, ωψ = 3 · π/100 [rad/s]

Angular velocity for circular motion, ωcircle = 3 · π/100 [rad/s]

Period of time for State 4 (waiting in safety position), ts4 = 15 [s]

Period of time for State 6 (data capture), ts6 = 30 [s]

Person’s parameters

Face’s position, (xp, yp, zp) = (4, -4, 1.7) [m]

Face’s orientation, αp = π/4 [rad]

UAV’s parameters

Initial position, (x(0), y(0), z(0)) = (xb, yb, zb) [m]

Initial yaw angle, ψ(0) = 0 [rad]

Camera’s angle, αcamera = π/4 [rad]

Controller’s parameters

The same design parameters used in our previous work [12]

Simulation parameters

Sample time, Ts = 0.01 [s]

Simulation time, t = 300 [s]

Figure 3 illustrates the reference trajectory generated by the planner and the
trajectory performed by the UAV, both in a 3D representation. In this picture,
the planner’s highlight points are detailed. Firstly, there is the base position in
which the UAV remains between each monitoring process. Second, we have the
person’s face position and the direction (where he/she is looking at), which is
represented by an arrow. In third place, there is the safety position reached by
the UAV in the approximation maneuver and the same position where the UAV
returns after taking the photo. Finally, we have the position where the UAV
stops to capture that data.
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In Figs. 4 and 5 it is possible to appreciate the precision of the GPI controller
for trajectory tracking of the quadrotor’s position and orientation. And, finally,
the control inputs applied to the UAV model are detailed in Fig. 6.

6 Conclusions

The need of novel home care strategies for dependent people has motivated this
work. We have designed a trajectory planner for a quadrotor aimed to monitor
dependents. The final aim is to perform an autonomous flight to observe the
person and take a photo of his/her face that will be later analyzed to determine
the person’s mood. That information will allow providing the assistance required
at each moment.

Despite being the first development of the trajectory planner, the results of
the simulations are positive. The planner is able to generate smoothed refer-
ence trajectories that allow performing precise flights of the UAV governed by
a GPI controller. In future works, it will be necessary to improve the planner in
the following aspects: (a) to increase the planner’s detail to consider the tran-
sitions between states as a consequence of the movement of the person during
the monitoring process; (b) to develop a strategy for detecting obstacles and
avoiding collisions in the flight environment; (c) to perform an experimentation
of the proposed approach in virtual reality environments before moving to real
scenarios.
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Abstract. This paper introduces the design process of facial expressions
on virtual humans to play basic emotions. The design of the emotions
is grounded on the Facial Action Coding System that enables describ-
ing facial expressions based on Action Units. All the tools employed to
attain the final human avatar expressions are detailed. Then, an exper-
iment with healthy volunteers is carried out to validate the designed
virtual human facial emotions. As result, we obtained that the faces
are correctly interpreted by healthy people with an accuracy of 83.56%.
Thus, as recognition works quite well with this small sample of healthy
people, this paper is a first step towards validating and enhancing the
avatar characters generated, experimenting with a sufficient number of
healthy persons, and, then, designing therapies based on human avatars
to enhance facial affect recognition in patients with deficits in facial affect
recognition.

Keywords: Virtual human · Avatar · Facial expression ·
Facial affect recognition · Virtual reality

1 Introduction

Facial emotion recognition is the ability to identify and recognize basic forms
of affective expression in faces [26]. This capacity, used daily by individuals, is
crucial for effective social interaction, determining a large part of social function-
ing [27]. Thus, the way an individual recognizes emotional states in others affects
his/her social success, which is relevant for adaptation to the community [33].
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There is consistent evidence that patients with different neuropsychiatric disor-
ders have significant difficulty in accurately recognizing emotions expressed by
others. This generates a misinterpretation of social situations that favors the
appearance of psychotic symptoms and reduction of social functioning [6].

This deficit in facial recognition of emotions has been extensively studied
in psychotic disorders, especially in schizophrenia and related disorders [23].
The impairment seems to be stable in the course of the disorder, not related
to psychopathology or pharmacological treatment, and independent of general
cognitive deficits [5].

This is why multiple psychological interventions have been designed to
improve facial affect recognition in patients with schizophrenia. Indeed,
recent meta-analyzes have shown promising results of these psychotherapeutic
approaches improving facial affect recognition and functionality [6]. Considering
these results, the design and evaluation of facial emotion recognition have an
important relevance in order to improve social functioning and quality of life of
several neuropsychiatric disorders. For this sake, computer-based therapies seem
to be appropriate to date. In fact, access to digital technology and the Inter-
net to people suffering from mental disorders [16] enables new computer-based
approaches to tackle with their illness.

Frameworks for emotion [7,14,29] and facial emotion detection [22] have been
at the center of our research. The creation of systems based on virtual humans
for facial affect recognition [3,21] is also one of current main interests. In the
last years, some works on the creation of multimodal avatars for social cognition
therapies [18,19] as well as proposals for using avatars to describe hallucinations
in schizophrenia patients [13,15] have been introduced.

The first attempt to recreate human faces in 3D using computer graphics
imagery was probably more than 45 years ago [25]. Since then, 3D human faces
have been extensively used in video games and movies. Current advances in
graphic technology are climbing out of the uncanny valley, as virtual charac-
ters rendered in real time become more and more realistic. However, a lack of
human-like facial expressions depicted by virtual characters increases the level
of strangeness perceived despite physical realism [31]. Moreover, physical real-
ism should be accompanied by behavioural realism [20], as people expectations
about realistic movements or behaviours are raised by the degree of physical
realism [28]. Several physical models describing facial expressions from the point
of view of muscle activation have been proposed and can be used to achieve a
higher degree of realism. One of the most popular model in the literature is the
one by Ekman et al. [10]. However, conveying emotions using virtual characters
is not an easy task, and this may be related to the lack of knowledge about the
time course of facial movements and the affective content perceived from those
movements [30].

This paper presents the design process of facial expressions on virtual humans
for demonstrating basic emotions. Then, an experiment is carried out with
healthy people to validate that the designed facial emotions are correctly inter-
preted by persons who have no social cognitive deficits. Should the results be
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concluding, our virtual human emotional faces could be used as comparison to
patients with schizophrenia. This would be a first step towards designing a com-
plete therapy to enhance facial affect recognition in these patients.

2 Virtual Human Facial Expressions

2.1 Facial Action Coding System

Humans are social creatures, and to socialize they need to convey emotions. Peo-
ple express emotions in different ways and the face plays an important role in how
emotions are transmitted both in verbal and non-verbal communications. Emo-
tions have been studied in the field of Psychology and Psychiatry. For instance,
Ekman et al. arrived to the conclusion that there exist six universal basic emo-
tions (anger, disgust, fear, happiness, sadness, and surprise) [11]. Facial muscles
are used to show these emotions, changing that way the appearance in the face.
Several studies tried to find a system to quantify the different changes in the face
using several approximations (linguistically based, anatomically based, etc.) [9].

To recreate the changes in the face, our study is not based in an accurate rep-
resentation and study of the muscles, but in the so-called Facial Action Coding
System (FACS). We chose this system because it is the most widely used and has
proven its efficacy. Hence, it provides more information than other systems about
the changes in the face such as intensity [9]. Indeed, the Facial Action Units Sys-
tem (FACS), designed in 1978 [17], and revised and improved in 2002 [10], is a
well known and used system that categorizes facial movements based on different
Action Units (AUs), teaching how to recognize and score them.

Each AU defines a group of muscles that work together to make a change on
the facial appearance. The different AUs are grouped according to the location
of the facial muscles which are divided in upper and lower face muscles. Upper
face muscles include eyebrows, forehead, eye cover fold, and upper and lower lids.
The lower face includes the muscles around mouth and lips, and it is divided in
other categories according to the movement directions of these muscles. There
are other AUs based on muscles that move the neck and the gaze direction.

2.2 Facial Expressions from FACS

Among other uses, FACS is used to describe facial expressions based on AUs.
Only fifteen AUs from the twenty-eight main AUs are required to describe the
six emotions and neutral expression used in this research. These emotions are the
six basic emotions (anger, disgust, fear, happiness, sadness, and surprise) and
the neutral one. The AUs used and their relation with each emotion is shown in
Table 1. The table shows that:

– Fourteen animations were modelled.
– For each emotion two animations were designed, levels (1, 2), expect for hap-

piness, where three animations were modelled, levels (1, 2, 3).
– For modelling the neutral emotion no AU was needed.
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– Each level indicates the emotion intensity; a higher number shows greater
emotional intensity ((3) > (2) > (1)).

– For some emotions new AUs are added, indicating that more muscles are
moved and more facial changes appear.

Table 1. Action Units used to describe the six basic emotions (based on [9,10,12]).

AU Name Surprise Fear Happiness Sadness Disgust Anger
1 Inner Brow Raiser (1,2) (1,2) (1,2)
2 Outer Brow Raiser (1,2) (1,2)
4 Brow Lowerer (1,2) (1,2) (1,2)
5 Upper Lid Raiser (1,2) (1,2) (1,2)
6 Cheek Raiser (1,2,3)
7 Lid Tightener (1,2)
9 Nose Wrinkler (1,2)

)3,2,1(relluPrenroCpiL21
15 Lip Corner Depressor (1,2) (1,2)

)2,1(rosserpeDpiLrewoL61
17 Chin Raiser (2) (1)
20 Lip Stretcher (1,2)
23 Lip Tightener (1,2)

)2(traPspiL52
26 Jaw Drop (1,2) (1,2)

2.3 Creation of Affective Virtual Humans

The work flow for the creation of the affective virtual humans used in this pro-
posal is described next. We started by selecting two predefined characters avail-
able in Adobe Fuse [1]. This is a software tool mainly aimed at video game
developers that enables users to create 3D characters using an advanced char-
acter creation editor. The characters obtained by using this tool take advantage
of many visual characteristics that are standard in recent high-end video games,
namely high-resolution textures, normal maps, ambient occlusion maps, and so
on. Moreover, they are fully configurable, from the face to the length of the arms,
torso or the clothes they wear.

For this work, predefined avatars were selected and not modified apart from
choosing clothes and selecting a haircut that did not occlude important parts of
the face (i.e. the forehead and the eyes). The characters were then taken to Mix-
amo [2], a web platform that provides an auto-rigging of humanoid 3D models.
Then, an idle animation was selected from the available ones. This platform also
provides some basic facial animation to the models. However, it is not based on
FACS so that there is no direct correspondence between them.

After that, the resulting 3D character is brought into 3D Studio Max [4]
authoring tool to create the AUs, starting from the neutral facial expression.
For this aim, we used blendshapes, also known as morph animation targets,
that consist in modifying the mesh accordingly and storing the vertex positions
for each AU. Then, these AUs are smoothly morphed and combined to form
the desired facial animation. Other options to implement AUs are the use of a
muscle-based animation system or a hierarchy of bones to modify the geometry.
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A blendshape animation system was used due to its simplicity and the possibility
to combine AUs to create complex facial expressions.

Once all the AUs were included in the virtual human models, they were
exported and imported into Unity 3D [32], the 3D real-time engine used to
play the animations. This software tool allows using the initial idle animation
included in Mixamo as well as the blendshapes included in 3D Studio Max.
Then, the facial expressions were enhanced by adding wrinkles to the models.
For this, a shader that made use of several Normal Map textures was created in
Unity. Each one included a different wrinkle pattern associated to every emotion.
Normal maps are used to simulate details in the objects surface by changing the
vertices’ normal and, therefore, affecting light calculation on the surface.

The Nvidia Normal Map Filter for Adobe Photoshop [24] was used to cre-
ate the normal maps based on photographs of people depicting the facial emo-
tion and based on the wrinkle descriptions given by Ekman et al. [12]. Finally,
the shader smoothly interpolated between the neutral normal map and each
facial expression normal map, simulating a dynamic generation of wrinkles. As
an example, Fig. 1 shows how the surprise and disgust facial expressions are
improved by using wrinkles.

Fig. 1. Male virtual human depicting the surprise emotion (first and second images)
and female avatar depicting disgust (third and fourth). Both pairs of pictures show
how they look without (first and third) and with (second and fourth) normal maps.
Notice the wrinkles on the forehead and on both sides of the mouth in the male avatar,
and the wrinkles around the nose and mouth in the female avatar.

3 Preliminary Validation of Facial Expressions

A preliminary validation of the system was performed to assess its suitability
to propose a clinical therapy for enhancing facial affect recognition in people
with schizophrenia. This is why, in first term it is mandatory to evaluate the
recognizability of the human facial expressions with healthy people.

3.1 Participants

Twenty three people took part in this preliminary validation of the system
(N = 23), 14 males (60.9%) and 9 females (39.1%). The mean age of the par-
ticipants was M = 26.3 (SD = 8.2). As we already stated, this validation was
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intended for healthy people. They were all volunteers and did not receive any
compensation for their participation. Exclusion criteria consisted in reporting a
neuropsychiatric disorder or any somatic disorders that could interfere in emo-
tion recognition. This study was conducted in accordance with the Declaration
of Helsinki, and, as no patients was involved, the approval of an Ethics Commit-
tee in Clinical Research was not required according to Spanish and European
legislation.

3.2 Experiment Design

Two virtual humans, a male and a female, were used in this validation process. As
previously described in Sect. 2.2, the virtual characters were used to express six
basic emotions and neutral. In reality, several intensities of the six emotions plus
neutral expression were implemented, showing fourteen different facial emotional
expressions. These were neutral, surprise1, surprise2, fear1, fear2, anger1, anger2,
disgust1, disgust2, happiness1, happiness2, happiness3, sadness1, and sadness2.

Each of these facial expressions was presented to the participants four times
as described next. Two frontal views of each facial emotion and two lateral, one
from each side. The lateral views show the face turned in one direction so that
the nose is almost touching the outline of the cheek on the far side. This summed
a total amount of fifty-six facial expressions that were randomly presented to the
participants. For each of these facial expressions, both virtual humans were used
exactly half of the times in a randomized way (see, for instance, the female faces
created in Fig. 2).

Fig. 2. Female’s facial expressions. First row: neutral, surprise1, surprise2, fear1, fear2,
anger1, anger2. Second row: disgust1, disgust2, happiness1, happiness2, happiness3,
sadness1, sadness2.

The validation process starts with a black screen in which a simple menu is
used by the participant to start the experiment. Each time a new facial expression
is shown, the character’s face is faded in from a black background. A transition
is made from the neutral expression to the new expression (lasting 0.4 s), which
is held for 1.5 s and, then, there is a new transition to neutral expression (again,
0.4 s). This is in accordance with transition studied in the past [8], as expression
time longs between 0.5 and 4 s.
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Once this process had finished, a panel was shown to the participant asking
for the expression just offered by the virtual human. This panel also included
a button for each of the six basic emotions, the neutral one and an “I don’t
know” button. After a participant clicks on an option, the character face is
faded out. This process is repeated for each of the fifty-six facial expressions.
Once the system had presented all the facial expressions to the participant, the
experiment finished and a sociodemographic questionnaire was filled out.

We used the same idle animation for both virtual humans. This animation is
subtle enough to not distract the participants, while it adds a slight swing that
provides more realism to the character. Similarly, a blinking animation was also
added, but only for the time while the system was waiting for a participant’s
response, not during the actual expression of the emotion.

4 Results and Discussion

Table 2 shows the successful recognition for each of the six basic emotions plus
neutral expression, with an average rate of 83.56% accuracy. The results show
that most of the facial emotion expressions were perceived with high recognition
accuracy by the participants (over 80%), except for disgust (69.6%) and sadness
(62%). This was expected for disgust, since it is also confused with anger in
previous works by other authors [3,21], but was surprising for sadness, which is
mainly confused with disgust and fear.

Table 2. Emotion recognition confusion matrix for each emotion.

Neutral Surprise Fear Anger Disgust Happiness Sadness I dont know
Neutral 98.9 0.0 0.0 0.0 0.0 0.0 1.1 0.0
Surprise 0.0 95.1 4.3 0.0 0.0 0.5 0.0 0.0
Fear 0.0 15.8 81.0 0.0 3.3 0.0 0.0 0.0
Anger 0.0 0.0 0.0 91.3 4.9 0.0 1.6 2.2
Disgust 0.0 0.0 0.5 28.3 69.6 0.0 0.0 1.6
Happiness 10.5 0.4 0.7 0.0 0.4 87.0 0.0 1.1
Sadness 1.6 0.5 15.2 0.5 17.9 0.0 62.0 2.2

Moreover, Table 3 is created to find out whether a single animation of the
two that compose sadness is responsible for the bad classification. As can be
noted, sadness2 is the one that is confused with disgust and fear, obtaining a
recognition percentage of 31.5% as opposed to 92.4% for sadness1. Possibly, the
way the AUs were combined to create sadness2 was not correct enough and,
thus, it needs to be redone. This situation was, again, expected to happen, as
creating blendshapes is a skillful and laborious task that usually takes weeks or
even months to an experienced 3D artist.

A closer look to Table 3 shows that happiness1 obtains low recognition accu-
racy as well (67.7%) compared to happiness2 (98.9%) and happiness3 (94.6%).
Happiness1 depicts a subtle smile in which AU6 (cheek riser) and AU12 (lip
corner puller) are applied at their lowest intensity. In fact, they did not affect
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the eyes and no wrinkles (crow’s feet) were noticeable. It was confused mainly
with the neutral expression (31.5%), which may reflect that, even if the partic-
ipants were able to notice the smile, it was not strong enough to be considered
a sign of joy. Therefore, even though this subtle smile is described by Ekman
and Friesen [12], we will consider removing it in future works. It is interesting
to note that after removing the results of happiness1 and sadness2, the global
accuracy increases up to 89.3%.

The results of our experiment are consistent with those obtained by other
authors in previous works with regards to emotion recognition accuracy using
virtual humans. We obtained an accuracy of 83.56%, while other authors reached
73.22% [21] and 83.8% [3].

Table 3. Emotion recognition confusion matrix for the 14 animations created.

Neutral Surprise Fear Anger Disgust Happiness Sadness I dont know
Neutral 98,9 0.0 0.0 0.0 0.0 0.0 1,1 0.0
Surprise1 0.0 97,8 1,1 0.0 0.0 1,1 0.0 0.0
Surprise2 0.0 92,4 7,6 0.0 0.0 0.0 0.0 0.0
Fear1 0.0 9,8 83,7 0.0 6,5 0.0 0.0 0.0
Fear2 0.0 21,7 78,3 0.0 0.0 0.0 0.0 0.0
Anger1 0.0 0.0 0.0 85,9 6,5 0.0 3,3 4,3
Anger2 0.0 0.0 0.0 96,7 3,3 0.0 0.0 0.0
Disgust1 0.0 0.0 0.0 27.2 70,7 0.0 0.0 2,2
Disgust2 0.0 0.0 1.1 29.3 68,5 0.0 0.0 1,1
Happiness1 31,5 0.0 0.0 0.0 0.0 67,7 0.0 1,1
Happiness2 0.0 0.0 0.0 0.0 0.0 98,9 0.0 1,1
Happiness3 0.0 1,1 2,2 0.0 1,1 94,6 0.0 1,1
Sadness1 2,2 1,1 3,3 0.0 0.0 0.0 92,4 1,1
Sadness2 1,1 0.0 27,2 1,1 35,9 0.0 31,5 3,3

5 Conclusions

This paper has detailed the complete design process of a couple of human avatars
expressing facial emotions. The human avatars play the basic emotions (anger,
disgust, fear, happiness, sadness, and surprise) plus the neutral state. The design
of the proper emotions was based on the well-known Facial Action Coding Sys-
tem, where facial expressions are described as Action Units. In addition, the
paper has described in detail all the tools employed to obtain the human avatar
expressions.

Afterwards, an experiment to validate the designed virtual human facial emo-
tions has been described. For this sake, healthy volunteers have visualized four-
teen different facial emotional expressions (different intensities of the expres-
sions) four times: two frontal and two lateral views each. Each volunteer had
to push one of the six basic emotions, the neutral one or an “I don’t know”
button as response to every stimulus. The results showed that the human avatar
facial emotions are correctly interpreted by persons who have no social cognitive
deficits with an accuracy of 83.56%.
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Based on these results, a validation study is proposed in healthy volunteers
with a larger sample, representative of the general population. Once this valida-
tion was done, the use of this tool would be considered to be used in cognitive
rehabilitation programs in patients with a deficit in facial affect recognition.
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Abstract. Understanding the neurophysiology of emotions, the neu-
ronal structures involved in the processing of emotional information and
the circuits by which they act, is key to design applications in the field of
affective neuroscience, both to advance in new treatments and in appli-
cations of brain-computer interactions. With this objective, we have car-
ried out a study of cortical asymmetries based on the spectral power
and differential entropy (DE) of the electroencephalographic signal of
24 subjects stimulated with videos of positive and negative emotional
content. The results have shown different interhemispheric asymmetries
throughout the cortex, presenting opposite patterns for both emotional
categories. In addition, increased activity has also been observed in the
right hemisphere and in anterior cortical regions during emotion pro-
cessing. These preliminary results are encouraging for elucidating the
neuronal circuits of the emotional brain.

Keywords: Asymmetries · Differential entropy · EEG · Emotions ·
Valence dimension

1 Introduction

Emotions are a key part of people’s daily lives, they regulate our behavior,
through modulating and influencing our attention [1,2], mood and decision mak-
ing [3]; and our social behavior through communication, tone of voice, gestures
and facial expressions [4]. It is for this reason that more and more importance has
been given to the detection, recognition and classification of emotions. Less than
30 years ago a new branch known as affective neuroscience emerged [5], which
tries to understand the psychobiology of emotions, together with the develop-
ment of affective brain computer interface (aBCI) applications [6,7]. However,
c© Springer Nature Switzerland AG 2019
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despite many advances in aBCI, little is known about the brain mechanisms,
structures, and neural networks that underlie the processing of emotions. In order
to achieve its mission, affective neuroscience has relied mainly on neuroimaging
techniques such as functional magnetic resonance and electroencephalography
(EEG), the latter being especially noteworthy for its applicability in BCI sys-
tems. The EEG is the most widely used technique given its advantages over other
neuroimaging systems [8]; it has a temporal resolution of the order of millisec-
onds which allows applications in realtime; there are wireless versions, so that
its use is not restricted to clinical or laboratory environments; it is non-invasive
and has a relatively low cost; thus the results obtained are susceptible to be
implemented for real applications.

Different brain structures, both cortical and subcortical, have been identified
as relevant, or at least, have shown involvement, in the processing of emotions
[9,10]. However, due to the lack of consensus in the very definition of the term
[11] and taxonomy of emotions [12,13], finding the key to the neurophysiology of
emotion is a complicated task. The authors devoted to the study of the neuro-
physiology of emotions have based themselves mainly on two models, the discrete
theory and the dimensional theory of emotions. Discrete theory holds that there
are a number of basic, innate and universal emotions, which possess a unique
physiological signature [14], and are encoded by a specific brain circuit [15].
Although for some of these discrete emotions, such as disgust and fear, specific
circuits have been found, there has not been as much luck or consensus for the
rest [16,17]; this is why this emotional model is not the most widespread in the
applications of affective neuroscience. On the other hand, the dimensional theory
of emotions holds that emotions are defined on the basis of two main dimensions,
valence (pleasure/positive vs displeasure/negative) and arousal (calm vs excited)
[18,19]. As for the arousal dimension, it is believed that as such it has no rep-
resentation in a specific neuronal circuit or structure, but is more related to
the general state or level of activity of the emotional system [20]. Valence has
been related to specific brain regions, especially with asymmetries between both
brain hemispheres; as for example in frontal and temporal regions in the alpha
band of the EEG, in which positive-approach emotions lateralize towards the
left hemisphere and negative-withdrawal towards the right [21].

Previous studies have allowed us to develop a model for recognition of bipha-
sic emotions based on EEG, focused on applications in real-time [22] (unpub-
lished). The obtained results showed a set of cortical regions involved in the pro-
cessing of these emotions, spread throughout the cerebral cortex and encoded in
almost the entire frequency spectrum of the EEG signal. These results, together
with those of other authors such as Mauss and Robinson [8], indicate that emo-
tions probably involve neuronal circuits rather than individual brain regions.
The present work consists of a preliminary study with the aim of defining the
substrates and cortical circuits of the dimension of emotional valence. To this
end, we have undertaken the study of interhemispheric and rostro-caudal asym-
metries related to the processing of positive and negative emotions, using two
methodologies: (1) the traditional way of studying asymmetries based on the
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spectral power of the different EEG frequency bands [23]; and (2) a new method-
ology that is beginning to gain popularity in EEG, based on the DE of certain
fragments of the signal in specific frequency ranges [24].

2 Materials and Methods

2.1 Experimental Setup

We used the database used in previous work [22,25], consisting of a sample of
24 subjects, who were stimulated audio-visually with a total of 14 videos of
positive and negative emotional content. During stimulation, the brain activity
of the participants was recorded by means of a 64-channel electroencephalog-
raphy system (NeuroScan SynAmps EEG amplifier (Compumedics, Charlotte,
NC, USA)), with a sampling frequency of 1000 Hz and following the 10/10 posi-
tioning system [26]. EEG signals were filtered between 0.5 Hz and 45 Hz; and
artifacts derived from nearby muscle activity and flickering were eliminated by
selecting independent components. However, 10 channels were eliminated due to
the presence of noise.

After pre-processing, the signal corresponding to each video was extracted
in the 52 electrodes and standardized by means of a z-score with respect to the
baseline. The electrodes were grouped into 13 functional sets (left prefrontal,
right prefrontal, left frontal, right frontal, frontal midline, central linear midline,
parieto-occipital midline, left central, right central, left parietal, right parietal,
left occipital and right occipital), calculating the regional means. The resulting
signal was segmented into two data matrices depending on the size of the seg-
ment; on the one hand, 1-s trials were obtained, and on the other, 12-s fragments
were created using a 1-s sliding window. In both sets, the characteristics corre-
sponding to the spectral power of the signal in 6 frequency bands (delta, theta,
alpha, beta1, beta2, gamma) were extracted using the Level 8 wavelet packets
decomposition method, using the mother wavelet known as db4 (Daubechies
order 4). See previous work for details (unpublished). For the following analyses,
the data set of all subjects was used, adopting an independent subject model for
the calculation of asymmetries. All analyses were carried out using the Matlab
software (The MathWorks Inc.).

2.2 Asymmetry Index (AI)

Asymmetries have usually been studied by comparing spectral power in different
frequency bands on contralateral inter-hemispheric sides. However, in order to
see the direction and magnitude of the asymmetry, the AI is used, so that the
result of the difference between the power of left and right hemisphere homolo-
gous regions is divided for the sum of the total power [23].

AI =
right − left

right + left
(1)
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Spectral power values in the 6 studied frequency bands with the window
size of 12 s were used as inputs to calculate AI in the hemispheric prefrontal,
frontal, central, parietal and occipital pairs. The outliers were replaced by the
median value for each variable. After the AI calculation, the Mann-Whitney
statistical test [27] was performed to analyze the differences between the positive
and negative emotional videos. On the other hand, the same test was applied
to the spectral power data proving the existence of significant differences in
the different frequency bands in homologous regions within the same emotional
category.

2.3 Differential Entropy

Lately, there are authors who are beginning to apply the DE parameter, used to
measure the complexity of a variable, to the EEG signals, obtaining results that
are not negligible and even improving those obtained with the classic parame-
ters of spectral power when classifying emotions [24,28]. We calculated the DE
according to the formula (2) described by [24], where hi(X) is the differential
entropy of the corresponding EEG signal, e is a constant and i is the variance of
that signal, all for a given frequency band and in a specific segment of time [29].
We have used sets of 12 s of signal spectral power extracted for each bandwidth,
in the trials of 1 s, that is to say, every 12 s of signal we obtain a value of entropy.
The outliers were replaced by the median value for each variable. With the DE
values we studied the asymmetry features DASM (differential asymmetry) (3),
RASM (rational asymmetry) (4) and fronto-posterior asymmetry, DCAU (dif-
ferential caudality) (5).

hi(X) =
1
2
log(2πeσ2

i ) (2)

DASM = DE(Xleft) − DE(Xright) (3)

RASM =
DE(Xleft)
DE(Xright)

(4)

DCAU = DE(Xfrontal) − DE(Xposterior) (5)

For DASM and RASM variables, we analyzed the DE in 5 homologous func-
tional sets (prefrontal (PF), frontal (F), central (C), parietal (P) and occipital
(O)), for the 6 frequency bands of study, obtaining a total of 30 features for each
asymmetry parameter. We use absolute values to work with the RASM results.
On the other hand, we studied the differences between rostral and caudal regions
in 9 pairs (PF-O left, PF-O right, F-O left, F-O right, F-O midline, PF-P left,
PF-P right, F-P left, F-P right), for all frequency bands, obtaining a total of 54
DCAU features. In order to study the differences in positive and negative emo-
tional conditions in the different asymmetry parameters and the intra-emotional
differences in DE, we performed the Mann-Whitney statistical test.
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3 Results

3.1 Classical Asymmetry Index

The interpretation of the results of the asymmetry index is complex, due to
the different possibilities regarding the punctuation sign of the spectral power,
which when positive indicates an increase of the spectral power with respect to
the baseline and a decrease when negative. We will say that there is a lateral-
ization towards a concrete hemisphere when this one possesses greater amount
of spectral power with respect to the other one, in a certain band of frequency.
Figure 1 shows the results obtained for the IA of the 30 pairs of frequency-region
for both emotional categories. Table 1 indicates the lateralization direction of
those pairs that have shown significant differences. In most pairs, the activity is
opposite in the studied emotional conditions, i.e. the different frequency bands in
the same cortical regions lateralize towards opposite hemispheres when dealing
with positive and negative emotions; excepting three pairs, PF-theta, C-theta
and P-gamma.

In prefrontal regions we found increased activity in the left hemisphere dur-
ing stimulation with positive valence emotions and increased activity in the right
hemisphere when dealing with negative emotions; specifically, in the alpha and
beta2 frequency bands. At the frontal level, we also found asymmetries in the
spectral power of the delta and beta1 bands. However, although the PF pat-
tern was maintained for the low frequencies, it was shown to be opposite in the
high frequencies. In central areas, opposite contralateral activations were also
observed when comparing positive and negative emotions, however, each fre-
quency seems to act independently to any pattern. In the parietal lobe, we again
observed a pattern of lateralization towards the right hemisphere of the low fre-
quencies (delta and theta) in positive emotions and towards the left in negative
emotions. And on the contrary, the lateralization was reversed for the high fre-
quency beta2, increasing its activity in the left hemisphere in positive emotions
and in the right in negative emotions. The same pattern found for high and low
frequencies in parietal zones was maintained in the occipital region. In positive
emotions the activity of lower frequencies such as delta, alpha and beta1 lateral-
ized towards the right hemisphere and that of the highest, gamma, towards the
left hemisphere. Conversely, in the negative emotions, the increase in activity of
the delta, alpha and beta1 frequencies occurred in the left hemisphere, while the
increase in gamma occurred in the right hemisphere. Finally, interhemispheric
differences that presented significant differences within the same emotional cate-
gory are shown in Table 2. Here it is worth noting the lateralization towards the
left hemisphere in more rostral regions and towards the right in caudal zones in
the positive emotions. And, on the contrary, lateralization towards the left hemi-
sphere in caudal regions and towards the right in rostral regions in the negative
emotional category.
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Fig. 1. AI in the five study regions for the 6 frequency bands into which we divide
the EEG signal corresponding to positive and negative emotions. The bracket with
the asterisk above, which joins two bars of the histogram, indicates those pairs that
have shown significant differences (p-value< 0.05) between the positive-negative con-
ditions. Asterisks on the bars indicate significant differences (p-value< 0.05) between
interhemispheric, intra-condition (positive-positive or negative-negative).

3.2 DASM and RASM

With respect to asymmetry metrics derived from DE, positive DASM values
indicate greater DE in the left hemisphere; conversely, negative values would
indicate greater DE values in the right hemisphere. When comparing the emo-
tional categories of study (Fig. 2), we found significant differences in all the
cortical regions, although, unlike the results obtained with the IA, there are no
opposite directions in the lateralization, but there were differences in the magni-
tude of ED, that is to say, one category presented greater activity than the other.
The same occurs within the same emotional category, no opposing differences
were observed in positive and negative emotions, but there was lateralization in
terms of the activity of the oscillations of the cerebral hemispheres.
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Table 1. Interhemispheric asymmetries between emotional categories. Left or right
refers to the hemisphere with the greatest spectral power.

Cortical region Bandwidth Positive emotion Negative emotion

Pre-frontal Theta Right Right

Alpha Left Right

Beta2 Left Right

Frontal Delta Left Right

Beta1 Right left

Central Delta Left Right

Theta Left left

Alpha Right Left

Beta1 Left Right

Beta2 Right Left

Parietal Delta Right Left

Theta Right Left

Beta2 Left Right

Gamma Left Left

Occipital Delta Right Left

Alpha Right Left

Beta1 Right Left

Gamma Left Right

Table 2. Lateralization within the same emotional category.

Cortical region Bandwidth Positive emotion Negative emotion

Pre-frontal Theta Right Right

Beta1 Left

Beta2 Left

Frontal Delta Left Right

Theta Left

Central Delta Left

Alpha Right Left

Parietal Delta Right Left

Theta Left

Alpha Left

Beta1 Right Left

Occipital Delta Left

Theta Right Left

Alpha Left

Beta1 Left

Beta2 Right Left
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Fig. 2. DASM. Results for the DASM asymmetry feature for the 24 subjects in the
30 variables in the positive and negative emotional conditions. The bracket with the
asterisk above, which joins two bars of the histogram, indicates those pairs that have
shown significant differences (p-value< 0.05) between the positive-negative conditions.
Asterisks on the bars indicate significant differences (p-value< 0.05) between inter-
hemispheric, intracondition (positive-positive or negative-negative).

There were also significant differences in interhemispheric frequency ratios
when comparing both emotional categories (Fig. 3). In this case, values greater
than the unit would indicate greater activity in the left hemisphere and lower val-
ues in the right hemisphere. In general, we could observe how in most regions and
frequencies, except for the alpha-prefrontal, theta-frontal, delta-central, beta1
and gamma parietal and theta-occipital pairs; the right hemisphere presented
greater activity than the left while processing both positive and negative emo-
tions.

3.3 DCAU

Finally, significant differences were also found comparing caudality between pos-
itive and negative emotional conditions (Fig. 4). Positive DCAU values would
reflect greater frontal or anterior activity, and negative values, greater posterior
activity. In general, we can observe that there is greater activity at all frequen-
cies in the prefrontal and frontal areas compared to the parietal and occipital
areas in both hemispheres and in both types of emotion.
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Fig. 3. RASM. Asymmetry ratios for the 30 variables (5 cortical regions× 6 frequency
bands) of study in both emotional conditions. The bracket with the asterisk above,
which joins two bars of the histogram, indicates those pairs that have shown significant
differences (p-value< 0.05) between the positive-negative conditions. The red dotted
line indicates the unit value. (Color figure online)

4 Discussion

The study of neural substrates underlying the processing of emotions is key to
understanding the neurophysiology and structure of emotions, in order to imple-
ment aBCI systems that would be more faithful to neuroscience and therefore
provide better performance; as well as to design more specific treatments for the
broad spectrum of emotional disorders, as autism or depression.

Studies related to emotional asymmetries based on the EEG signal have
focused mainly on the frontal lobe, supporting the evidence that the frontal
asymmetry present in the EEG can serve as a moderator and mediator in emo-
tions and motivations [21,30]. Using other neuroimaging techniques such as PET
and fMRI, it has also found an increase in activity throughout the left hemisphere
to emotions that provoke approach responses; however, no differential results
have been found between the activation of the left and right hemispheres, to
emotions that trigger a withdrawal response [17]. Our results showed a later-
alization pattern towards the left hemisphere of positive emotions and towards
the right of negative emotions in prefrontal zones that coincides with the theory
of Davidson. In addition, we saw how this pattern changed as we moved toward
more posterior regions. Already at frontal level, the low frequencies changed the
laterality in the positive and negative emotions conferring a pattern opposite to
the one presented at prefrontal regions and, nevertheless, the higher frequencies
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Fig. 4. Differences in fronto-posterior rate for the 54 location-frequency pairs of positive
and negative emotions. The bracket with the asterisk above, which joins two bars of the
histogram, indicates those pairs that have shown significant differences (p-value< 0.05)
between the positive-negative conditions.

did maintain the prefrontal pattern. The exception to this pattern was found in
central motor regions, in which, although there was interhemispheric lateraliza-
tion of the entire frequency spectrum, except for the gamma band, there was no
clear pattern between positive and negative emotions.

With respect to the results obtained by the different parameters calculated
from the DE feature, no differences have been found in the direction of later-
alization of the EEG activity in positive and negative emotions, but the same
lateralization pattern has been found in all frequencies and the difference between
emotional categories would lie in the magnitude of the complexity of the signal.
The results of the DASM and RASM parameters suggest increased activity of
the right hemisphere compared to the left hemisphere during emotion process-
ing. On the other hand, the DCAU results suggest a greater involvement of the
rostral, prefrontal and frontal cortical regions, in emotion processing compared
to the more caudal, parietal and occipital cortical regions.

The interpretation of the IA is clearer and seems to provide more informa-
tion than the DE, however, it has been seen that, when using this information
to classify positive, negative and neutral emotions, the characteristics of DE
provide higher percentages of success and with less standard deviation than the
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traditional characteristics of spectral power [28]. Preliminarily, in the absence of
comparing the performance of a classification that uses the significant param-
eters found in this paper, for the explanation of the neurobiology of emotion,
the AI would be more useful, but for real applications of aBCI possibly the
DE would be more robust. Our results suggest a distinct pattern of asymmetry
between hemispheres and between anterior and posterior regions in positive and
negative emotions, revealing possible neural circuits involved in the coding of the
emotional valence dimension. Still, in order to characterize the neural pathways
that encode emotional information, studies of coherence and phases can provide
useful information about how the different cortical regions interact with each
other and the relationship that exists between them.
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Abstract. Since emotions affect physical and psychologically the health of peo-
ple, their identification is crucial for understanding human behavior. Despite the
several systems developed in this regard, most of them underperform on peo-
ple with disabilities, their setup is sensitive to noise or non-emotional stimuli.
Recent studies consider electroencephalographic (EEG) signals for understand-
ing emotional responses due to reflecting the activity of the central nervous sys-
tem. However, the non-stationary nature of EEG signals demand elaborated signal
processing approaches because not all time instants hold information related to
the stimulus-response. This work proposes a temporal analysis approach, termed
MILRES, based on the Multi-Instance Learning framework that includes a mul-
tiple instance Regularization with LASSO penalty and an Embedded instance
Selection. We test MILRES in discriminating two states (high and low) of the
valence and arousal emotional dimensions from the DEAP dataset. The proposed
approach reaches 84.4% accuracy and 79.5% F1-score for valence, and 81.9%
accuracy 67.9% for arousal. Such results evidence that MILRES outperforms
other EEG-based emotion recognition approaches from the state-of-the-art, with
the additional benefit of identifying the brain areas involved in processing emo-
tions.

Keywords: Electroencephalography · Emotion recognition ·
Multi-Instance learning · Feature selection

1 Introduction

Emotions are a fundamental part of people’s mental health affecting physically and
psychologically social behavior and making decisions. Thus, identifying emotions is
crucial to understand and interpret human behavior in different scenarios. As an exam-
ple of clinical applications, the measurement of emotional perception may improve the
treatment of social cognition impairments in patients with traumatic brain injury [1].
In the education scenario, the Media and Information Literacy methodology proposed
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by the UNESCO covers the competencies that are vital for people to be effectively
engaged in all aspects of human development [2]. In this sense, affective learning mod-
els the affective dimension of learning to enhance the knowledge transfer and student’s
development [3]. Also, applications such as data-driven animation, neuromarketing,
interactive games, and sociable robotics rely on emotion recognition from human facial
expression [4].

Above applications demand the analysis of human biosignals to suitably identify
emotions, as video and audio signals for recording facial expressions [5] and voice
changes [6]. Despite the high recognition rates, audio and video-based systems wrongly
perform on mute people or with facial paralysis [7]. Researches based on the auto-
nomic nervous system (ANS) variables (heart rate, skin temperature, respiration pat-
terns, blood volume pressure, and galvanic skin response) attempt to overcome such an
issue [8]. However, the nervous system response to non-emotional stimuli (e.g., physical
activity) highly hampers the performance of ANS-based approaches [9]. More recently,
electroencephalography (EEG) recordings draw attention for the analysis of emotions
as they reflect the activity of the central nervous system and allows understanding the
internal brain activity before emotional stimuli [10].

Among the reported EGG-based approaches, some of them analyze the EEG in time
domain using, for instance, fractal dimension [11], sample entropy [12], nonstation-
ary index [13], and Hjort features [14]. Also, frequency features as the power spectral
density suitably perform on emotion recognition [15]. Further, some researchers have
gathered both time and frequency analysis based on Short-time Fourier transform [16],
Hilbert-Huang transform [17], Discrete Wavelet Transform [18], and Wigner-Ville dis-
tribution [19]. However, these approaches assume stationarity of time series, which
hardly applies to brain activity from external stimuli [20]. A straightforward solution
is carrying out a piece-wise analysis [21], at the cost of reduced performance because
not all time segments hold information about the stimulus response, that is noisy seg-
ments [22].

Aiming to identify relevant samples that cope with the previous issue, multiple
instance learning (MIL) analyzes independent instances to predict the label of bags
without information about instance labels. MIL has been widely used in fields such as
video-based visual tracking [23], image-based object recognition [24], and text-based
language recognition [25]. Particularly for EEG-based emotion recognition, MIL con-
siders as bags the whole EEG recording and as instances its time windows [22]. Despite
its evident premise, MIL strongly depends on the instance representation and demands
a subject-wise feature extraction to deal with the inter-subject variability [19].

In this paper, we propose a time-window analysis based on a multi-instance frame-
work with LASSO penalty approach and embedded instance selection (MILRES). Our
method allows selecting relevant information of each EEG channel through the least
absolute shrinkage and selection operator (LASSO) from the quadratic time-frequency
distribution of each time window.
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2 Materials and Methods

2.1 DEAP Dataset and Preprocessing

In this work, we consider EEG from the Database for Emotion Analysis using Phys-
iological Signals (DEAP) [26]. DEAP records physiological signal from 32 subjects
(16 males and 16 females) while watching 40 videos, selected to evoke specific emo-
tional states. For each subject, the EEG recording related to a video represents a trial
lasting 63 s (summing up to 1280 trials). At each trial, the BioSemi ActiveTwo system
records 32 channels (using the 10–20 system) for a three-seconds baseline period fol-
lowed by a 60-s stimulus response. After the stimulus, each subject quantified the emo-
tional response for valence, arousal, dominance, and linking in a continuous interval
from 1 to 9. Since the two-dimensional valence-arousal model represents several emo-
tional states [27], we carry out our experiment as two binary classification task, namely,
high valence ([6−9]) vs. low valence ([1−5]), and high arousal vs. low arousal.

For the signal preprocessing, we apply a three-stage pipeline. Firstly, we downsam-
pled the raw EEG signals to 128 Hz and excluded the first three seconds of baseline.
Secondly, we attenuated the electrooculographic artifacts and band-passed the signals
from 4 to 45 Hz so reducing the high-frequency electromyographic noise [26]. Lastly,
we referenced all channels to the common average and selected 22 symmetric ones (6
parietal, 12 frontal, 2 temporal, and 2 occipital) [19]. Therefore, the i-th trial becomes
a matrix of T = 7680 time instants and C = 22 channels, ZZZi∈RT×C, where i ∈ [1,40].

2.2 Feature Extraction

For each trial matrix, we compute the quadratic time-frequency features that are known
to suitably perform in the emotion recognition task [19]. Particularly, the Choi-Williams
transform (CWD) extracts the quadratic time-frequency distribution at 512 time instants
for 1024 frequency bins as:

CWDz (t, f )=
∫ ∞

−∞

∫ ∞

−∞
WVDz (φ,τ)ξ(φ,τ)e j2π(tφ− f τ)∂τ∂φ, (1)

ξ(t, f )=exp

(
− t2 f 2

α2

)
,

where WVDz (t, f ) is the Wigner-Ville distribution of the signal z, ξ(t, f ) is a exponen-
tial kernel and α is a parameter that controls the suppression of the cross-terms fixed
to 0.5 [19]. Then, we estimate the following set of 13 CWD-based frequency features
at four-second sliding windows with 50% overlap within the channel-wise CWD [19]:
mean, variance, skewness, kurtosis, the sum of logarithmic amplitudes, median abso-
lute deviation, inter-quartile range of the CWD, root mean square value, flatness, flux,
spectral roll-off, normalized Renyi entropy, and energy concentration. As a result, each
trial becomes a set of vectors BBBi={xxxi j∈RD : j=1 . . .M}, being D=13 ×C and M=29
the number of sliding windows in a trial.
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2.3 Multiple Instance Learning-Based Representation

The MIL framework defines the i-th EEG trial BBBi as a bag composed of M instances
extracted xxxi j, and the provided bag label as yi ∈ {0,1}. To estimate the bag label, the
Multiple-Instance Logistic Regression with LASSO Penalty (MILR-LASSO) aggre-

gates the approximated instance labels as ỹi=I
(

∑M
j=1 yi j > 0

)
, where I(x)=1 if x > 0

and I(x)=0 in otherwise, and yi j results from the logistic regression [28]: yi j ∼
Bernoulli(pi j), being pi j=p

(
β0 + xxx�

i jβββ
)

, p(x)=1/(1+ e−x), β0 the bias term, and

βββ∈RD the coefficient vector. Therefore, finding the regression paramters becomes a
quadratic optimization problem [29]:

min
β0,βββ

(
−Qq

(
β0,βββ|βt

0,βββ
t)+λ

D

∑
d=1

|βd |
)
, (2)

Q
(
β0,βββ|βt

0,βββ
t)= N

∑
i=1

Mi

∑
j=1

yiγ t
i j

(
β0 + xxx�

i jβββ
)

− log
(

1+ e(β0+xxx�i jβββ)
)
, (3)

where Qq is the quadratic approximation of Q, γi j is the conditional expectation given
yi = 1, γi j = pi j/(1 − ∏Mi

j=1 qi j), and βt
0,βββ

t are the parameters at iteration t. We solved
the optimization problem using the iterative coordinate decent algorithm [30]. Given
that the larger the magnitud of βd - the more relevant the feature to regress the instance
labels, we select the features with a coefficient exceeding a predefined threshold, yield-
ing instances with selected features, x̃xxi j.

From the resulting feature selection stage, we embed trials in a vector space aiming
to apply conventional classification machines [31]. To this end, the MIL via embedded
instance selection represents bags in terms their similarity against training instances x̃xxk
sssi=

{
max j exp

(−‖x̃xxi j − x̃xxk‖2/σ2
)

: k=1 . . .M
}

, where vector sssi∈RM corresponds to the
representation of the i-th trial and σ∈R+ a bandwidth parameter.

2.4 Classification and Performance Assessment

After the MIL representation, vectors sssi feed a support vector machine classifier with a
Gaussian kernel to discriminate the emotional states. To tune the regularization param-
eter λ, the threshold ε, and kernel bandwidth, we carried out a 5-fold cross-validation
grid search. Due to class imbalance impacts classification results, we reported the F1-
score as the performance measure along with the conventional accuracy rate. Besides,
we compare our approach against performance results reported for Citation-kNN (C-
kNN) [32], mi-SVM [22], and MILR-LASSO [29] in the same classification tasks.

3 Results and Discussion

Figure 1 compares C-kNN, mi-SVM, MILR-LASSO, and the proposed MILRES in
terms of their performed accuracy and F1-score for discriminating High vs Low valence
and High vs Low arousal. For the valence dimension in Fig. 1(a), MILRES outperforms
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the compared approaches from 3% to 12% in both, accuracy and F1-score. Regard-
ing the arousal dimension in Fig. 1(b), MILRES reaches a larger accuracy (81.9%)
than MILR-LASSO (78.2%), mi-SVM (77.5%), and C-kNN (76.3%). However, mi-
SVM (73.65%) and C-kNN (70.25%) better perform in F1-score than MILR-LASSO
(64.89%) and MILRES (67.94%). Such a fact is due to the class imbalance in the
arousal discrimination problem that implies a smaller number of training instances for
the minority class. Therefore, the similarity representation biases towards the larger
class, so increasing the average accuracy but reducing the F1-score.

Accuracy F1
50

60

70

80

90

(a) Valence

C-kNN mi-SVM MILR-LASSO MILRES

Accuracy F1
50

60

70

80

90

(b) Arousal

Fig. 1. Comparison of classification accuracies and F1-scores obtained by C-kNN, mi-SVM,
MILR-LASSO, and MILRES.

Since we compute the feature set in Sect. 2.2 at the channel level, MILRES allows
interpreting the relevance of each EEG channel for discriminating emotional states
according to its corresponding regression coefficients βd . In this regard, the topographic
plots in Fig. 2 illustrate the channel-wise sum of absolute regression coefficients for four
subjects. Our results indicate that the frontal, prefrontal, temporal, parietal and occipi-
tal regions contribute the most in identifying the emotional response, which agrees with
previous studies [33,34]. Particularly, the subjects 13 and 12 (Fig. 2(a) and (c) respec-
tively) highly concentrate the relevant information in the frontal, prefrontal, and parietal
areas, processing the emotional stimuli, self-reflection, and activation from pleasant and
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unpleasant emotions [35]. Also, the proposed MILRES identifies discriminant infor-
mation all over the 22 channels for subjects 11 and 7 (Fig. 2(b) and (d) respectively)
that include parietal, temporal, and occipital. Those areas involve the emotional work-
ing memory [36], decision making based on emotions [37], experiencing emotional
states [38], visual processing of emotional images [39], and emotional attachment [40].
Therefore, our proposed approach not only suitably discriminates states within an emo-
tional dimension but also identifies the brain areas involved in the process.

(a) Subject 13 (b) Subject 11 (c) Subject 12 (d) Subject 7

0

0.5

1

Fig. 2. Channel-based spatial activation relevance for two subjects in valence (a, b) and arousal
(c, d) using the proposed MILRES.

4 Conclusions and Future Work

This work proposes a temporal analysis of EEG signals based on a multi-instance
framework including LASSO regularization for feature selection at the instance level
and the embedded instance selection for the similarity representation of trials. Joining
the MIL representation and the feature selection possess two main advantages: First,
the instance representation as an overlapping temporal segmentation allows each time-
segment to be analyzed individually to account for the appearance of stimulus response.
Second, the feature selection allows identifying information improving the discrimina-
tion of emotional states with interpretability from the brain physiology.

As a future work, we plan to extend the MIL framework to multi-class and regres-
sion problems for modeling emotional dimensions at a finer level. Also, we will work
on a temporal relevance analysis that provides information about the stimulus-response
for education and neuromarketing applications.
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Abstract. This paper introduces a system composed of hardware, con-
trol software, signal processing and classification for the deployment of
a wearable with a high ability to discriminate among seven emotional
states (neutral, affection, amusement, anger, disgust, fear and sadness).
The study described in this proposal focuses on comparing the emo-
tional states of young and older people by means of two physiological
parameters, namely electro-dermal activity and heart-rate variability,
both captured from the wearable. The wearable emotion detection sys-
tem is trained by eliciting the desired emotions on eighty young (16 to
26 years old) and fifty older adults (aged 60 to 84) through a film mood
induction procedure. Seventeen features are calculated on skin conduc-
tance response and heart-rate variability data. Then, these features are
classified by a support vector machines. State amusement reached a high
number of hits (87.4%), whilst affection received the lowest rate of hits
(82.5%). The negative emotion with lowest value is anger (82.4%) and
the highest is disgust (85.9%).

Keywords: Electro-dermal activity · Heart-rate variability ·
Emotion detection · Aging adults

1 Introduction

Population aging is a recent concern in developed countries due to decreas-
ing birth rate and higher life expectancy. The growth of older population is
attributable to the joint action of various factors, including advances in health
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systems, public hygiene, and sanitation, regularization of income, and improved
nutrition [1]. This phenomenon relates to a shift in the structure of the popu-
lation ages, where basically those groups with greater ages grow, while younger
population is reduced. Although improvements in nutrition and health care
enable aging with high quality of life, there are cases in which some health-related
issues require close and personalized supervision. Indeed, Ambient Assisted Liv-
ing (AAL) approaches are gaining importance in recent years as they provide
a personalized support to older people, mainly at home [2]. We believe that
perceiving and enhancing the quality of life of the elderly who lives at home is
possible through automatic emotion recognition and regulation using different
means [3,4].

From an individual perspective, quality of life can be considered in terms of
well-being. It includes emotional (self-esteem, emotional intelligence, mindset),
social (friends, family, community) and physical (health, physical safety) aspects
in a person’s life. Indeed, it has been largely studied that positive emotional
states promote healthy perceptions, beliefs and physical well-being [5,6]. In the
context of research on well-being in old age, the need of a specific software
architecture for emotion recognition and regulation tasks is justified. Besides, we
have introduced a new gerontechnological approach for monitoring the elderly
at home. In first place, the goal is to detect the elder’s emotions by analyzing
their physiological signals, facial expression, behavior and voice [2].

Nowadays, human emotions are present in countless daily situations, like
communications, learning processes or rational decision-making [5]. Research-
ing on smart environments, home automation, ambient intelligence, and enter-
tainment systems or e-health care assistance are trying to relief social isolation
and/or exclusion suffered by elderly who decide to stay at their homes [6]. Aging
adults living alone are prone to develop mental illness as they experiment nega-
tive emotions like disgust, sadness, anger and/or fear. Technological paradigms
aforementioned often lack from emotional intelligence, being unable to recognize
the human emotional states [5]. Therefore, they fail to properly decide which
actions to execute depending on the emotion, and adequate their behavior to
the mood of elderly.

This is where the paradigm of affective computing raises, trying to provide
emotional intelligence to machines for improving human-machine interaction.
However, the first step towards a machine emotional intelligence is the develop-
ment of mathematical models able to classify human feelings. This is not an easy
task, because feeling emotions involves a number of complex physiological pro-
cesses that may variate depending on age, memory or past experiences. Indeed,
the same stimulus may affect disparately to different people [7].

It is important to understand the differences between young and older adults
in emotional states and reactions. Many theoretical models studying emotional
experience across adulthood predict changes throughout this life stage. A grow-
ing number of studies find that the way we understand, manage, and react to
positive and negative events changes as we age. Previous findings clearly show
that film clips evoke differential emotional responses in younger and older adults,
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and corroborate the importance of measuring the baseline state of each par-
ticipant using neutral stimuli. Only by considering the baseline state can the
strength of the emotion induction be identified, since this takes into account the
distance between affect at baseline and after induction [7,8].

Emotion detection requires continuous monitoring of relevant physiological
data. Besides other bio-potentials, electro-dermal activity (EDA) and heart-
rate variability (HRV) are some of the most used, because they are linked with
the central nervous system through sympathetic and parasympathetic compo-
nents [9]. More concretely, it has been reported that EDA is exclusively linked to
the sympathetic component whilst HRV seems to be related to the parasympa-
thetic, such that both variables cover the autonomous nervous system. Thanks to
the recent advances on microelectronics, communications and low-power devices,
EDA and HRV sensors use to be embedded into wearables, providing an easy
and non-intrusive way to continuously acquire physiological data [10–15].

In this work, we present a classification system of EDA and HRV physiological
responses in young and older caused by exposure to seven types of emotions by
using films as inductors. Based on previous research, we expect to find high levels
of accuracy of the metrics [11,14,15]. For this, a novel mathematical model in
which the responses of the two physiological parameters are combined is used. In
summary, this study introduces a wearable technology and an emotional model,
specifically tailored to detect a series of emotions in elders. The proposed sys-
tem is trained through eliciting emotions using films that have demonstrated to
induce mood in aging adults and young people [7,8].

2 Method

2.1 Participants

The final sample comprises 130 volunteers aged between 18 and 84 years
(M = 39.02, SD = 25.32, 68.83% women). From the initial sample, 4 older adults
and 7 young adults were excluded due to depressive symptoms. The participants
were recruited from a research volunteer pool at the Department of Psychology,
University of Castilla- La Mancha (UCLM) Medical School, from an association
at the “Universidad de Mayores” (a university program for older adults) and
two socio-cultural centers in the city of Albacete. Participants were divided into
age groups to form a younger group of 80 participants aged 18–26 (M = 18.87,
SD = 1.63, 69.9% women) and an older group of 50 participants aged 60–84 years
(M = 69.74, SD = 6.56, 68.4% women).

Participants were receiving no psychotropic treatment or drug use and had no
previous history of psychological, psychiatric or neurological disorder, according
to the criteria of the Diagnostic and Statistical Manual of Mental Disorders Fifth
Edition (DSM-V). They presented no auditory or visual impairments other than
requiring corrective lenses. All were of Caucasian ethnicity and native Spanish
speakers. They gave voluntary consent to take part in the study without obtain-
ing any type of remuneration and according to the requirements of the approved
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ethics procedure of the Clinical Research Ethics Committee of the Albacete Uni-
versity Hospital.

2.2 Procedure

The experiment is performed in a small room equipped with a comfortable arm-
chair and a 27-inches screen monitor. Upon arrival of the participants, they are
welcomed by offering an overview of the experiment and they sign a written
consent. Before starting the experimental session, Beck Depression Inventory
(BDI) and Positive and Negative Affect Schedule (PANAS) are administered to
know the participant’s current emotional state. Moreover, if the participant is
older than 60, Mini-Mental State Examination (MMSE) is administered to rule
out any cognitive impairment. The experimental task has an average duration of
50 min depending on the participant who may answer the complete questionnaire
quicker or slower. The experiment has been designed with software E-Prime 2.0
professional, which includes the instructions on the experiment for each event.

We selected 54 scenes from HD films dubbed in Spanish with an average
length of 2’38”. These fragments were a battery of audio-visual stimuli, pre-
viously validated in a population of young Spanish adults [16]. The selected
excerpts maintained the same features used in previous studies [17,18]. Further-
more, we added a scene from film ‘127 h’ to the disgust category, which presented
the characteristics of this stimulus used in previous studies. In accordance with
the previously published film clip batteries, each segment was expected to induce
an emotion from a specific category: amusement, affection, anger, sadness, dis-
gust, fear and neutral state.

2.3 Physiological Measures

EDA. Electro-dermal activity (EDA) measures the changes in conductivity pro-
duced in the skin derived from the increase in the activity of the sweat glands.
The sudomotor nerve activity (SMNA) is responsible for triggering the sudomo-
tor fibers which activate the sweat glands. Nevertheless, it has been reported
that SMNA is linked to emotional states, particularly influencing the arousal
dimension [19]. EDA signals are composed by the superposition of two different
components. On the one hand, the skin conductance response (SCR) can be
observed when the sudomotor nerve is activated [12–15]. From a morphological
point of view, SCR is represented by a peak or a burst of peaks with different
amplitudes, slopes and decays depending of the stimulus intensity.

On the other hand, the tonic component, or skin conductance level (SCL),
represents the base line of the skin conductance. SCL varies among people,
depending on their physiological states and autonomic regulation [11]. Finally,
EDA morphology is represented by a fast-changing SCR signal modulated by a
slowly varying SCL component. Given the slow response of the SCL component,
the useful information ranges from 0 to 0.05 Hz. Similarly, the energy of the SCR
component ranges from 0.05 to 1.5 Hz.
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EDA signal

SCL component

SCR component

Fig. 1. Extraction of SCR component.

In this study, EDA signal are acquired by using a direct-current exosomatic
technique, using a couple of Ag/AgCl disc electrodes with contact diameter of
10 mm attached to medial phalanges in palm of non-dominant hand, as it is
described in [11,12]. Signals are acquired to a sampling frequency of 10 Hz to
accomplish with Nyquist criteria. Then, signals are filtered by using a 1.5 cut-off
low-pass finite impulse response filter with order N = 32. Considering that SCL
could behavior as a confounding factor, it is separated from SCR component
using a deconvolution approach [20] (Fig. 1).

HRV. The heart rate (HR) represents the successive heart polarization and
depolarization caused by the electrical impulses generated on the sinoatrial node
and transmitted to the ventricles [21]. During ventricular polarization, blood is
pumped into the cells throughout the circulatory system. This process is reflected
in the electrocardiogram as the QRS complex, where R-peaks are the most sig-
nificant points within this wave. However, in recent years and thanks to the
emerging of wearable technologies, one of the most extended approaches to mea-
sure the HR consists in measuring the blood volume changes caused by the
circulatory system functioning in veins or capillaries [9,12,21].

In this work, raw blood pumping signals are obtained by using a photo-
plethysmography (PPG) technique, able to measure small variations in the
reflected/transmitted light intensity, associated with changes in the blood pump-
ing function. The signals are recording using a sampling frequency of 60 Hz, since
useful information is located between 0 Hz and 30 Hz. Then, signals are filtered in
order to remove possible interferences, such as power line interference or ambient
electromagnetic signals. Maximums of signals corresponds with pulse pumping,
and they are highly correlate with the R-R series in the electrocardiogram [22].
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Fig. 2. Obtaining of HRV series.

Therefore, maximums of PPG signal are located by using a robust and reliable
peak detection, able to deal with different signal morphologies [12]. Finally, the
heart rate variability (HRV) is estimated by measuring the variation in consec-
utive PPG peaks (Fig. 2).

2.4 Feature Extraction and Statistical Analysis

With the aim of characterizing the processed information, seventeen features
were calculated on skin conductance response (SCR) and heart-rate variability
(HRV) data, grouped into five statistical, four temporal and eight morphological
features.

Statistical features measure the level sample distribution and may provide rel-
evant information about how the samples are distributed, and their deviations. In
this category, mean (MEN), standard deviation (STD), maximum (MAX), min-
imum (MIN) and dynamic range (DRG) are computed. Furthermore, temporal
features emphasize the sudden changes on the data series and provide impor-
tant information regarding evolution of data along time. This group contains the
computation of mean and standard deviation of the first derivative (FRD and
FRS, respectively) and mean and standard deviation of the second derivative
(SDM and SDS, respectively). Finally, morphological characteristics focus on
highlighting the shape and form of the data. In this group, arc-length (ARC),
integral (INT), potency (POT), root mean square (RMS), area-perimeter ratio
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Fig. 3. Confusion matrix.

(APR), energy-perimeter ratio (EPR) are computed. It is worth noting that
these features were always normalised by the length of the sample, since the
duration of the data may variate depending on the duration of the stimulus.
Finally, the asymmetry (ASY) and kurtosis (KUR) of the data distribution was
computed.

A multi-parametric model was considered to build an algorithm able to dis-
criminate among different emotions. Thus, aforementioned features, calculated
for both physiological variables EDA and HRV, were used to feed a support vec-
tor machine (SVM). This classifier was latter run using a cubic kernel function
and kernel scale one.

3 Results

Using an advanced quadratic SVM classifier with normalized data, seven matri-
ces are obtained, one for each of the emotions studied.: affection, amusement,
anger, disgust, fear and neutral. Moreover, by means of a confusion matrix, Fig. 3
shows the performance of the SVM classifier.
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As shown in the figure, the overall accuracy varies from 68.9% for ‘neutral’ to
a maximum of 87.4% for ‘amusement’. In ‘affection’ the overall accuracy is 82.5%
(graph 1). For ‘amusement’ the overall accuracy is 87.4%. The overall accuracy
is 82.0% for ‘anger’. For ‘disgust’, we obtain an overall accuracy of 85.9%. ‘Fear’
offers an overall accuracy of 84.5%. For ‘sadness’ the overall accuracy is 85.4%.
Finally, the overall accuracy is 68.9% for ‘neutral’.

4 Conclusions

In this work, a complete system composed of hardware, control software, signal
processing and classification model has been considered to deploy a wearable
with a remarkable ability to discriminate among seven considered emotional
states (neutral, affection, amusement, anger, disgust, fear and sadness). More-
over, contrary to most algorithms usually trained with a non-targeted sample,
in this study the experimentation and results are completely focused on compar-
ing young and older people in two joint physiological parameters, namely, EDA
and HRV. Indeed, it has been already reported that a reaction against a specific
stimulus of a young individual is different from the reaction shown by an older
person [8]. Therefore, most models by other authors cannot be extrapolated.

The classification results for each detected emotion have been explained
through previous psychological evidences. The results have shown that the
present system achieves 82.4% global accuracy for all emotions, including the
neutral one. This value is in line with some theoretical models predicting emo-
tional responses in aging adults. Nevertheless, the results have shown a different
trend for positive emotions. As in some previous research, amusement reached
a high number of hits (87.4%) whilst affection received the lowest rate of hits
(82.5%). For negative emotions, the one with the lowest value is anger (82.4%)
and the highest is disgust (85.9%).

In conclusion, this work is in line with previous results [14,23], and demon-
strates that the proposed wearable emotion detection system can be used by
aging adults, especially for detecting negative emotions that usually deteriorate
health and wellness and lead to social isolation.
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Abstract. The willingness to share personal information about negative
social experiences is of great importance for the effectiveness of robot-
mediated social therapies. This paper reports the results of a pilot test
on the effectiveness of using a game or a conversation on achieving a
higher self-disclosure in people with visual and intellectual disabilities.
The participants interacted with a humanoid robot NAO. Comparable
game-based and conversation-based interaction were implemented. We
measured the length of the self-disclosing sentences during the two inter-
actions. The majority of the participants said that they preferred the
conversation-based over the game-based interaction. The results indicate
that during the game-based interaction the participants used much longer
self-disclosing sentences in comparison with the to be conversation-based
interaction. The outcomes of this pilot will help to improve the human-
robot interactions for promoting self-disclosure as the first step in a
research project that aims to alleviate worrying behavior in this user
group.

1 Introduction

Self-disclosure is defined as the process by which people reveal personal infor-
mation to others and is important in all types and stages of social relationships.
Reciprocity via effective self-disclosure can lead to positive outcomes in interac-
tions and promote further disclosure and relationship building [1,2]. Willingness
to share personal information about negative social experiences with the robot is
especially important for the effectiveness of social therapies. Robots might play a
positive role in this process – a person might more easily engage in self-disclosure
with a robot than with a human even if s/he realizes that the robot might be
c© Springer Nature Switzerland AG 2019
J. M. Ferrández Vicente et al. (Eds.): IWINAC 2019, LNCS 11486, pp. 262–272, 2019.
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teleoperated by a human [3]. In this project we target to achieve self-disclosure
as the first step towards alleviating worrying behavior – the persons first need to
disclose what is troubling them, before the robot or the therapist can offer a set
of solutions. The question that arises at this stage of the research is how can we
design robot behaviors and human-robot interaction that contributes to better
self-disclosure and engagement in this activity in such a way that the robot can
be used effectively in robot-mediated therapies. As stated in [4]: ‘The challenge
in building effective social and behavioral therapies with robots is mainly in the
difficulties of bridging social interaction studies, and clinical expertise to com-
putational models that the robots can utilize’ [4]. Methods from user-centered
design can contribute to solving this challenge. By using participatory research
through design method as proposed in [5], we aim to develop effective human-
robot interaction scenarios that can improve the quality of self-disclosure, and
thus the therapy.

Two user research methods, shadowing and empathy map, described in
the Materials and Methods section, and previous research about the usabil-
ity of robots in care for persons with a visual and intellectual disability led to
the initial idea to see if game-based interactions that incorporate these tech-
niques could also be beneficial for this user group. Previous research has shown
that also conversation-based interactions are well-suited for people with visual
impairments and intellectual disability since many contemporary therapies are
conversation-based. For instance, Kumazaki et al. [6] found that robots might
be useful in eliciting and promoting self-disclosure for adolescents with autism
spectrum disorder (ASD). In this study, adolescents with ASD and a typically
developing group of participants communicated with two types of humanoid
robots or with a human interviewer. Inspired by the study of Kumazaki et al. [6]
we measure the differences of an impression of emotional state and the measured
length of self-disclosing statements to gain insight in the amount of self-disclosure
the participants would show. We propose an additional measure of the content
of the self-disclosing sentences through analysis of the transcripts of the answers,
to evaluate the quality of the disclosed information. With this pilot experiment,
we want to get an indication whether the game-based or conversation-based
approach will bring to better self-disclosure.

2 Materials and Methods

2.1 Participants

Six participants with visual impairments and intellectual disabilities from the
Bartiméus expertise center were recruited for the experiment. Bartiméus is an
organization providing care for persons with a visual impairment, but often the
clients have more complex conditions. For this experiment, three participants
took part in the conversation-based interaction (P1, P3, P6), and the other three
in the game-based interaction (P2, P4, P5). This order was randomly chosen. Of
the six participants, there were five men and one woman (P1). The participants
were young adults and adults. Their specific ages are not recorded. Four of the



264 J.-J. De Groot et al.

participants had mild intellectual disability (P1, P2, P3, P4); two had moderate
intellectual disability (P5, P6). All participants had visual impairment below a
certain cut-off point of 6/18 according to the World Health Organization criteria
[7]. The exact specifications of the visual and intellectual disability are not of
much importance yet, as the goal of this study is to get a general overview of the
self-disclosure towards the robot. The research ethics committee at Bartiméus
approved this pilot study. All the participants signed an informed consent where
they agreed to participate and to be filmed while interacting with the robot. The
parents of the participants also signed consent forms.

2.2 Aim of the Study

The main goal of the pilot study is to find ways for increasing the amount and the
level of detail of self-disclosed information and engagement the participant would
show during the interactions. The outcomes of the pilot are expected to help us
understand how we might improve the robot interactions on the effectiveness
of self-disclosure and engagement in robot-mediated therapies for people with
visual impairments and intellectual disability and how to improve the interaction
design in follow-up research.

The topics of both interactions are about dealing with positive and negative
social experiences in everyday life. We measured the amount of self-disclosure
the participants would show during a self-disclosing question towards the robot
by counting the number of words the participant spoke while answering a self-
disclosing question in both conditions. For the word counting, transcribed audio
from the interactions with the robot was used. In addition, after each interaction
with a participant, a 5-point smiley preference scale was used for measuring the
levels of enjoyment, embarrassment, stress, and boredom of the conversation-
based and game-based interaction. Also, a preference for one of the two different
interactions was asked for. The sessions were recorded, and qualitative analysis
of the answers was made as well.

2.3 Human-Robot Interactions Design Methods

The participatory research through design approach was done in close collabo-
ration with clinical/psychological experts from the Bartiméus expertise center
and the Vrije Universiteit in Amsterdam. Technical expertise in the design of a
task-appropriate human-robot interaction came from the Technical University
of Eindhoven and the TiViPE company.

In the early stages of interaction development, several results were gathered.
An Empathy map with professional caregivers from the Bartiméus expertise
center was used to find out what characteristics the robot should have and what
kind of skills it should possess while interacting with people with a visual and
intellectual disability [8]. The outcomes from the empathy mapping gave some
practical guidelines - the robot should speak slowly, in simple, short sentences
to the participants. The robot should appear to be friendly and funny. The
Shadowing technique was used to elicit information about the everyday life of



Game-Based Human Robot Interaction Promotes Self-disclosure for People 265

the participants [9]. Based on this input, the participants showed a preference
for playing games, and enjoyment of music. The circle of security was taken into
account while developing the interactions [10,11], which implies that the robot
should respond supportive and reassuring to the answers a participant will give.

2.4 Materials

For this research project, an NAO robot from Softbank robotics was used.
This robot has a humanoid appearance and movements. The robot can express
through the head and bodily gestures, speech and LED light. Two sets of interac-
tion scenarios were developed. The robot was teleoperated to ensure more natural
speech-based interaction. At the end of each interaction, the robot would dance
with a large onset of the limbs so the visually impaired participants could see the
dance. The interactions were created with TiViPE environment [12] since it will
make possible high level of autonomy and interaction fluency of the behaviors
at the final test.

For the game-based interaction, four cards, each containing one question were
used (Fig. 1). These cards were inspired by card games like Unstuck and Cards of
Calm. They were designed to be large so even persons with impaired vision can
read them, although during the game the robot read the text. In collaboration
with the clinical experts, these questions were fine-tuned to be clear for this user
group.

Fig. 1. (a) The design of the question cards used in the game-based interaction. From
left to right: What makes you happy? What makes you angry? What do you do when
you are sad? Can you forgive people quickly? (b) Experimental setup in the two con-
ditions Game condition – above.
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2.5 Procedure and Data Collection

Each participant was welcomed by two researchers and a small introduction
about the interaction with the robot was provided. The participant was seated
in front of the robot during both interactions. On a separate table, one of the
researchers operated the robot from a computer, and a video camera recorded
the interaction between the participant and the robot (Fig. 1b). By switching the
order of the interactions for each participant, we excluded bias from the novelty
effect of the robot. Also, the robot would wear a blue t-shirt during the game-
based interactions and white one during the conversation based interaction to
appear as a different robot.

After the first interaction, the participant was offered a drink, and meanwhile,
the researchers set up the robot for the second interaction. After each interac-
tion, each participant was asked to rate the interaction with a five-point smiley
scale (Fig. 2) on the level of joy, embarrassment, stress, and boredom they felt
during the interactions with the robot. At the end of the second interaction, each
participant was asked whether they prefer the game or the conversation-based
interaction with the robot.

Fig. 2. Five-point smiley face scale was set to acquire information about the experi-
enced level of joy, embarrassment, stress and boredom. Retrieved from https://www.
shutterstock.com/search/smiley+face.

Both types of interaction scenarios were recorded using a GoPro camera.
This resulted in 142.85 min of video material form six participants. The videos
recorded during the interactions were first transcribed to analyze the measured
length of self-disclosure statements and to check whether the participant would
respond to a question or maybe interprets the question wrongly. The interactions
were viewed twice by one researcher to transcribe the audio correctly.

3 Implementation

Previously we developed a robot controller that can facilitate the robot ther-
apy co-creation process [13]. This means that persons with a different level of
technical skills can develop human-robot interaction scenarios using either the
main program or one of the interfaces [14], which will result in simpler program,
for instance without interpretation of sensory information and low cyclomatic
complexity [14]. To allow the creation of realistic interactions with a robot we
adopted the event-based finite state machine approach. In this approach, a state
diagram, which is a graphical representation of a finite state machine, is used as

https://www.shutterstock.com/search/smiley+face
https://www.shutterstock.com/search/smiley+face
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a basic concept for the creation of all training scenarios for both technical pro-
fessionals and end-users. All the sensory and motor information from the robot
is continuously available and updated 5–10 times per second, and can provide
triggers for state change.

Both visual programming and end-user interfaces to TiViPE are designed so
that the state diagram is incorporated in a loop that constantly updates of all
sensory and motor information of the robot. The robot actuators information is
available to the robot as proprioceptive sensory information defining the current
3D positioning (state) of the robot [15]. This implies that sensory information
from the outside environment or the robot proprioceptive sensing can be an
event that causes a transition to a new state. Once a task is accomplished, the
scenario proceeds to the next state or set of states if no event occurs. The state
concept makes it possible to handle every event more flexible than for instance
if-than-else loops, since these only support applications with only one trigger
and one action and lacks real-time feedback from the outside world.

Clinical psychologists who design the therapies usually define the progres-
sion of therapy with a flowchart. The difference between a state machine and a
flowchart is that the state machine performs actions in response to explicit events
(such as sensory readings) and the current state. In contrast, the flowchart does
not need explicit events; it makes transitions from node to node in its graph
automatically upon completion of activities. Therefore, the difference in defin-
ing a state machine or a flowchart by therapists or other end-users is that they
always need to specify with which another state the flow continues. Another
difference is that in a state machine the scenario can be repeated from the step
it was not functioning – for instance, if the person did not hear the last sentence,
the robot would repeat it until the person understands it. Another example, the
robot can point to the cards, if it is sitting or standing, so if the user has pushed
the robot and it has fallen, the robot will first need to go from state laying on
the ground to sitting state before it can proceed with pointing to a card. In a
flow-chart based behavior definition, such a failure should result either in the
human intervention or in restarting the whole scenario from the beginning.

In robotics (social robotics in particular), the behavior can consist of more
than one parallel action (like movement and speech) and can be triggered by
different events. With such a system design we aim to reach a better match with
the user’s mental models when they want to specify how the interactive robot
should behave according to the objects and situations available in the context
of use.

In summary, the created robot behaviors are constantly updated for changes
in the environment or the robot state. This means that the changes in the
environment are determining the robot actions in real-time. For the end-user
programmers as the clinical psychologists and occupational therapists, who are
accustomed to thinking in the flow-chart framework, the transition to the new
concept of event-based state diagram is accomplished by them explicitly giving
the next state if it is not only the one that follows in the flow-chart representa-
tion.
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The state diagram of the actual interaction was as follows. To start of the
game-based interaction, the robot introduces itself to the participant first. The
robot asks if the participant has talked to a robot before. Based on the par-
ticipant’s reaction, the robot will respond in a friendly manner. After that, the
robot invites the participant to play a game to get to know each other better.
The robot will explain the rules of the game, and asks if it needs to repeat the
rules again if it is unclear for the participant. The participant asks one of the
questions on the cards to the robot. For the game-based interaction, the four
cards, each containing one questions are used. The robot gives an example of
self-disclosure by answering one of the questions (on the cards) in the game. In
the next round, the participant has to answer a question from the cards in the
game, in predefined order. The participant does this by showing the question
card to the robot, so the robot can ask the question to the participant. When
the participant answered the question, the robot will give a reward by colorful
blinking LED’s and playing a happy tune. The player lays the card down, and
the next self-disclosing question will be asked in the indicated order. Several
rounds will be played where all the self-disclosing questions will be answered by
the participant.

4 Results

4.1 Interview Questions and Five-Point Smiley Face Scale

The results of the smiley-scale rating and the preferences are shown in Fig. 3.
The five smileys are transcribed to numbers weighting from factors 1 (very low)
to 5 (very high).

Fig. 3. Emotions reported after both interactions using a 5 point smiley scale. Each
participant rated their level of Joy, Embarrassment, Irritation, and Boredom (1- Low,
5 High).

By asking about what could be improved in the interaction Participant 1
proposed that the robot was sweet and kind, but she did find annoying that she
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had to wait for a while before the robot responded. Participant 2 said the speech
of the robot could be clearer. He wanted to get to know the robot even better.
Participant 3 liked both interactions just as much. Participant 4 preferred if the
robot would ask a bit more about a particular conversation topic. He said it
would be nice if the robot can ask how your day was, and what your hobbies
are. Participant 4 could hear the robot clearly, but he did prefer a human voice
over a robot voice. He also stated that he prefers to talk with a human when
something is bothering him compared to the robot. Participant 5 also mentioned
that he prefers a human voice over a robot voice. He said he had to get used
to interacting with the robot, but in the end, he said he enjoyed it very much.
Participant 6 also said to prefer a human voice over a robot voice. Participant 6
mentioned several times that he would like to ask the robot what time it is.

4.2 Audio Transcription Self-disclosing Statements

Each interaction with the robot was recorded with a GoPro camera, which
resulted in video material for the game-based and conversation-based interaction
for each participant. During the conversation-based and game-based interaction,
several self-disclosing questions were asked. The questions were asked in Dutch
but transcribed in this paper in English. Figure 4 visualizes the total number of
words in the answers of the participants to the questions on the same topic that
were asked in both interactions.

Fig. 4. Graphical representation on the number of self-disclosing words used in both
interactions to answer the same 2 questions. The Game-based interaction triggers much
longer self-disclosing statements.

5 Discussion

This is to the best of our knowledge the first study that attempts to provoke self-
disclosure in persons with visual impairments and intellectual disability through
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interaction with a robot. There are several studies showing that children with a
medical condition and high IQ initiated dialogue with a robot or increased the
level of self-disclosure [12], but experiments with adults with such a complex
condition have not been performed before.

The results show that the self-disclosing statements by the participants with
visual impairments and intellectual disability are not very long or detailed. Since
in the game interaction the participants and the robot took turns, the partic-
ipants answered half of the questions that were asked. To see the differences,
we calculated the descriptive statistics (Mean and Standard Deviation) which
are independent from the number of the answers, and we can see that by the
Game interaction the mean length of the answers is much higher 12.6 vs. 2.48
words, which indicates that Game-based interaction might be a better choice for
promoting self-disclosure. This paper also offers a methodological improvement
in comparison with the related work reported in [6]. While in the referred study
the number of words in the answers were counted, we also analyzed the con-
tent of the transcripts of the answers. The number of words in the responses of
self-disclosing questions were counted after we evaluated whether the sentence
contains self-disclosing information.

In both interactions, there were correspondingly two and three occasions
when the participant did not answer. This might be because the participants
found it difficult to interpret the questions that aim self-disclosure properly. The
personality of the participants could also be taken into account for explaining
the length of self-disclosing questions.

We observed that in both interactions the participants were impressed by
the robot, and one participant wanted to join a new robot session when he saw
the experimenter coming to the Bartiméus facilities. The participants described
the robot as friendly and kind. Four of the six participants preferred a human
voice over the robot-voice the NAO-robot had during the two interactions, which
is in line with previous experiments [16], see also [17]. Because of the visual
impairment of the participants, sound plays an important role in their lives. Not
all the participants found the robot voice annoying, but the majority preferred a
more human-like voice. Maybe a more human-like voice is more pleasing to the
ear, can convey more emotion/intonation and takes less effort to understand.
The human voice was shown to make the participants happier when interacting
with the robot [16].

Several participants mentioned that they sometimes found it annoying to wait
for a reaction from the robot, which we will improve for the main experiment.
There could be a link between the rating of irritation and boredom with the
smiley-scale and the time a participant had to wait before the robot responded.
This aspect could also have had an impact on the affective state and user expe-
rience of the participant. The level of irritation and boredom scored higher in
the game-based interaction compared to the conversation-based interaction.

The level of joy was also rated higher during the conversation-based inter-
action compared to the game-based interaction. This was not expected, as we
had assumed that the gaming elements of surprise and structure would influence
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the interaction more positively compared to a conversational robot interaction.
The type of self-disclosing questions the robot would ask during the interactions
could also have influenced the kind of experience the participant had.

There were some limitations to the design process. Due to the exploratory
nature of this preliminary study, the robot interaction was not programmed to
have quick reaction times and autonomy. Another limitation of the study is that
although similar in meaning, the self-disclosing questions by game-based and
conversation-based interaction slightly differ, although they address the same
problem. A more extensive behavioral analysis of engagement could be done to
look at the level of engagement while the robot asks a self-disclosing question.
Because of the limitations in the reflective capabilities of the participants, it was
hard to ask specific and reflection-promoting questions about the interaction.
Also, the participants needed guidance when using the 5-point smiley scale.
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Abstract. Computational Neuroethology comprises a wide variety of
devices, computational tools and techniques used in studies aiming to
understand the neural substrate of the observable behavior. In this short
review we focus on the description of available computational tools in a
landscape of resources that is steadily growing as the scientific commu-
nity recognizes this Computational Neuroethology as one of the frontiers
of scientific endeavor. We comment on the biological basis and some
examples of studies reported in the literature before providing a descrip-
tion and taxonomy of resources and tools.

1 Introduction

Ethology is the study of behavior that allows animals to survive and reproduce
in natural environments (i.e., adaptive behavior). Neuroethology is the study
of the neural basis of adaptive behavior. Computational neuroethology is the
use of modeling and simulation to study the neural control of adaptive behavior
[48]. Traditionally, neuroethology tries to find the neural basis for behavior by
direct intervention or by accidental observation. For instance, the ablation of
the pretectum in zebra fish [38] abolishes the prey capture behavior even with
intact hyothalamus (that regulates food intake), hence showing that prey related
information flow is interrupted.

Under the label of computational neuroethology there are some very abstract
attempts to stablish a brain-behavior model, that try to relate mathematical
dyanmical models of behaviors (such as the dynamics of finger tapping) with
neural dynamics [31], however such abstract approach is limited in the scope of
the modeling target. These models follow from a tradition of attempts to repro-
duce neural mechanisms underlying biological behaviors by artificial mechani-
cal/computational systems, such as Arbib’s rana computatrix [6] attempt to pro-
duce a computational explanation of language evolution, the attempt to model
autism via surrogate robot models [27], or modeling the spatiotemporal map
building process of honeybees [34]. A more general approach is to try to find
correlations between behavioral observations and neural activity measurements

c© Springer Nature Switzerland AG 2019
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obtained from a variety of synchronized sensors. Hence the predominant app-
roach is a data science based approach, using statistics and machine learning
tools.

Behaviors develop because they have some evolutionary advantage that
allows the animal/human to survive and reproduce. For instance, there are quite
diverse behavioral reactions triggered by fear in predator-prey encounters which
are mediated by the specifically optimal environment survival strategy [36]. It
is only natural that an entire field called behavioral ecology has emerged from
the need to explain the interaction between individual and social behavior in
an evolutionary framework, strongly interwined with innovative computational
methods biologically inspired [33].

Neuroethology is increasingly used as a tool to evaluate the effect of treat-
ments to a diversity of brain diseases or injuries, such as the hipoxia-isquemia
in newborns [52]. Objective behavior impairment measures, such as the Longa
score, can be correlated to brain damage observed via postmortem histology, or
via EEG measurement through electrode implants.

2 Animal and Human Models

The behaviors arising in the predator-prey interaction is one of the computa-
tional ethology topics studied more intensely [36]. It is a key evolutive scenario,
where complex decision making process are emerging from the survival pulsion.
In this setting, early behavioral neuroscience models found that fear inhibits pain
and injury related behaviors [9], and a ranking of sterotyped behaviors according
to the threat imminence continuum [21]. Current studies have identified several
brain circuits involving the amygdala and hypothalamus and other cortex areas
as survival circuits responsible for the flight-fight-freeze behaviors of the prey
as a function of predator distance through experiments carried out on rodents
and humans. Animal models consists in the presentation of the predator or some
surrogate sensorial correlate, such as odour or a shape. For instance, a human
model described in [36] was the presentation of a tarantula at the foot of a human
subject under fMRI scanning. An animal model of fear, also reported in [36], was
a rat presented with a robot simulating a predator performing aggressive moves
when the rat approaches the food pellets.

Ecological laboratory models covering the relation of the social and individual
behaviors benefited from the advances in image and video processing to a large
scale that actually allows to track individual larvae or fly, but the real challenge
is the tracking in the wild [18] under uncontrolled conditions and with great
sparsity of the actual animal observations. Social relations and their neural cor-
relate are of outmost importance. The ability to intervene on the brain pathways
is illustrated in [26] where optical fiber implants allow to activate or shutdown
groups of neurons in the amigdala of genetically modified mice, showing that
antagonistic groups of neurons control the social role of grooming.

Emotion is topic that is gathering a lot of attention from the neuroetholog-
ical point of view [4]. Emotion is characterized by an internal brain state and
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external behavioral manifestations. There is the question of whether animals
suffer emotional states analogous to human emotions, which can be attacked
with neuroethology tools to find the “emotion primitives” that are the build-
ing blocks of emotion, so that emotion in animal models could be investigated
without referring to anthopocentric labels. The investigation aims to identify
the “central emotion states” in species as far of humans as Drosophila, which,
paradoxically, allow for more precise identification of neural correlates of specific
emotional behaviors.

A growing concern worldwide is the aging population, which poses many
problems such as brain degenerative diseases and the need to monitor the elder
people in a non intrusive way. The kinect sensor has been shown accurate enough
for the latter task [39,51]. Table 1 summarizes the variety of animal and human
models that have been studied in the literature.

Table 1. Human and animal models in the literature

Models Study target

Wild animals Locomotion [15]; Deep-sea [1]

Fish Motion [15]; Larvae, predation and feeding [38]; Swim evolution
[22]; Abnormal school behavior [58]; Drug induced behavior
[50,56]

Human Fear [36]; Foraging [35]; Team behavior [5]; Locomotion and age
[30]; Impact of robot interaction [23,55]

Mice Social behavior [26,40]; Pain [3]; Home cage behavior [7]; Object
recognition [8]; Olfactory research [14]; Grooming [29]; Spinal
cord injury [24]; Stroke [19]; Parkinson [25]

Rat Fear [36]

C elegans Seasonality an the brain [53]; Locomotion [10,16]

Spider Foraging [49]

Drosophila Social behavior [20], Courtship [54] and Aggression [17]

Honeybees Communication [57]

3 Data Resources

There have been early attempts to setup data repositories that could be used for
training of students and professionals, such as the video database of behaviors1

presented in [37] dedicated to farm animals. The database was also intended
to develop multitarget tracking of animals in natural farm environments. More
recently, Caltech Resident-Intruder Mouse dataset (CRIM13)2, a big annotated

1 http://www.ansc.purdue.edu/USDA-LBRU/vdb/video3.htm.
2 http://www.vision.caltech.edu/Video Datasets/CRIM13/CRIM13/Main.html.

http://www.ansc.purdue.edu/USDA-LBRU/vdb/video3.htm
http://www.vision.caltech.edu/Video_Datasets/CRIM13/CRIM13/Main.html
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video recording dataset of experiments regarding aggression and courtship in
mice has been produced by Caltech researchers [11]. It consists of 237× 2 videos
recoded synchronously from top and side views. Another extensive dataset3 of
hom-cage behavior of mice is reported in [28] provides extensive samples of videos
as well as a software prototype for the automated analysis of the videos which
can be used for additional developments.

4 Computational and Data Capture Systems

The general structure of a computational neuroethological observation system
has two main concurrent modules, one is devoted to the capture and analysis
of the neural activation, often via Electorencephalogram (EEG) sensors, which
can be external or internally implanted. In some animal models it is possible to
produce mutant individuals whose neural activity can be observed optically in
specific apparatus, such as fluorescent micrscopy [38].

The second module is devoted to the observation of the behavior, for instance
by some imaging method. Image processing is a key technology for the develop-
ment of the ecological behavior observation, allowing identification of individuals,
tracking and classification of their behaviors using supervised and unsupervised
approaches [18]. There is a wide variety of sensors providing the imaging sources
besides the optical cameras, such as infrared camera/illumination, X-ray imaging
for animals embedded in the soil, thermal imaging for video shooting in dark-
ness [11], sonar signals for underwater monitoring, sensitive pressure sensors for
micromotion detection [12], catwalk systems for animal gait analysis [25]. Some-
times, ingenuity allows to improve data capture, such as adding lateral mirrors
that help to obtain 3D information in aquariums [59]. For instance, radar pulses
are used customarily to track honeybees [44], and functional Magnetic Resonance
Imaging (fMRI) has been used for neuroethological experiments in humans [35].

Thirdly, specific computational modules are devoted to extract the correla-
tion between observed behavior and neural activity. Specific behaviors have to
be codified and calibrated in the observation hardware/software. An example,
fear produces immobility, but calibration of the system in order to distinguish
between fear induced immobility and other conditions needs a careful calibration
[43].

Some systems provide some machine learning enhancement to the video anno-
tation by human observers [29], which a time consuming and error prone process,
but the current research interest is in the fully automated behavior analysis. For
instance, the continuous recognition of social behavior on video recordings with-
out human intervention [11]. This fully automated systems are specially desirable
if you plan to do experiments over long periods of time, such when studying the
social interactions in a mildy restricted environment [40] approaching as much
as possible to the wild conditions. Machine learning techniques are of paramount
value for the automated interpretation of observation data. Characterization of

3 http://cbcl.mit.edu/software-datasets/mouse/.

http://cbcl.mit.edu/software-datasets/mouse/
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the observation data, aka feature extraction, has been approached from a diver-
sity of points of view. For instance, fractal dimension has been used in [30]
to characterize walking path tortuosity of aging person walks. Rather classi-
cal approaches, such as Fourier descriptors and a k-NN classifier provided good
results in the detection of bottom-of-the-sea wandering animals [1]. Conditional
random field models have been exploited for human motion recognition [47],
because they can jump over the restrictive and artificious independence assump-
tions of other models. The application of innovative machine learning includes
deep learning techniques, such as the convolutional neural networks (CNN) [2], or
the spatio-temporal bags of words used by [11] for the automated construction of
ethograms from continuous video, recognizing the behavior building blocks by
an Adaboost trained classifier. Another deep learning application to behavior
understanding is the application of short time long memory (STLM) recurrent
neural networks to the modeling of abnormal behaviors in schools of fish [58].
However, also traditional techniques like hierarchical clustering and K-means
have produced good results discriminating behaviors of zebra fish under some
antidepresant drugs [56]. Unsupervised techniques are quite useful as discovery
tools when no labeled information is accesible, which often is the case in behav-
ioral sciences. Some systems, however, use a plethora of approaches, such the
catwalk gait analysis system in [25] which uses gradient boosting engine, ran-
dom forests, and elastic nets for the catwalk data analysis in order to discriminate
gait types from control and Parkinson model animals.

Some early human centered techniques, such as facial image processing, have
been translated into animal behavior characterization, such as the analysis of
mice facial expressions to assess pain intensity [2,3], or the use of the Kinect,
originally a game oriented device, for the monitoring of fishes in an aquarium
[45].

All these improved computational techniques lead to the goal of fully automa-
tion of the experimental observation, such as the long term observation of
behaviors in hone cages [7] which will allow detailed phenotypic characteriza-
tions. Many of the current experiments use quite conventional image processing
techniques, such as binarization and detection of the tip point for mouse nose
detection in exploratory environments [8], using the image processing toolbox
of MATLAB to develop custom solutions [32], or the direct use of open source
resources (i.e. OpenCV [15]). There are also commercial solutions4 5 that provide
the behavior observation summary that are customary in laboratory research,
but no one that carries out the synchronized neural activation and behavior
measurement.

Tracking of many individuals in the field of view requires to use accurate
and robust motion prediction process, while the body pose needs specific mod-
els, such as the misture of gaussians proposed in [54], or accurate geometrical
modeling of zebra fish for the study of swimming evolution [22]. Human pose
decomposition into body parts (head, hands, etc.) can be made on depth data

4 https://www.harvardapparatus.com/smart-video-tracking-system.html.
5 https://www.noldus.com/animal-behavior-research/products/ethovision-xt.

https://www.harvardapparatus.com/smart-video-tracking-system.html
https://www.noldus.com/animal-behavior-research/products/ethovision-xt
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obtained from instruments such as Kinect [46]. Occlusions and crossings of the
images corresponding to the individuals is a big problem in tracking multiple ani-
mals, such as fishes, flies, and ants. A patented software claims to have solved
this issue by identification of each animal through a fingerprinting process that is
carried online [42]. A more down to the earth solution to the individual tracking
problem is to mark each individual with a specific bleach pattern that is learnt
by the system by simple pattern recognition [40]. Similar approach was followed
in [57] where the objective is to carry out a study of honeybee communication
dances inside the hive. They tag the bees to be identified with a binary image
code. This allows quite accurate social behavior analysis in a long time frame.

A tracking and velocity analysis method carries out the composition of time
subsampled video frames into a single image containing the time variation of fish
positions [13]. Trying to remove the effect of the human presence in the recorded
experiments may be a concern when dealing with fish populations whose motion
may be conditioned by human presence. To achieve this, remote visualization
and control of the cameras via web services is proposed [41].

5 Concluding Remarks

Computational neurothology has deep roots in computational models of brain
and behavior relations, but it is also deeply related to neuroscience search for
neural mechanisms and biological behavior analysis. In fact, it is a convergence
point of many computational models and data capture devices and techniques
which produces an extraordinary fertile ground for new research ideas, which
eventually become products that are changing our lives, such as new ways to
validate drug effect in the fight against degenerative brain diseases, which are
becoming highly prevalent as the aging population grows worldwide.
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Abstract. We report the application of recurrent deep learning net-
works, namely long term short memories (LSTM) for the modeling of
gait synchronization of legs using a basic configuration of off-the-shelf
inertial measurement units (IMU) providing six acceleration and rotation
parameters. The proposed system copes with noisy and missing data due
to high sampling rate, before applying the training of LSTM. We report
accurate testing results on one experimental subject. This model can be
transferred to robotised prostheses and assistive robotics devices in order
to achieve quick stabilization and robust transfer of control algorithms
to new users.

1 Introduction

Aging population is pushing research towards improving quality of life of depen-
dent and fragile people, such as the elderly. One such research avenues is assistive
robotics, where the aim is to develop autonomous or semi-autonomous devices
that may help the patients or users to achive normal activity performance.
For instance, walking may be assisted by exoeskeletons in persons suffering of
reduced mobility of the legs [8]. Fine tuning of the control of such devices may be
guided by the actual measurements from healthy persons. The approach taken
in this paper is to produce a generative model of walking patterns that may be
used for the fine control of the assistive devices. This generative model takes the
form of a predictive non-linear model implemented as a deep neural network and
trained from the actual walking gait measurements of a healthy person. It has
been shown that inertial measurement units (IMUs) allow to characterize human
motion fort activity recognition [7]. In this paper we propose a minimal config-
uration of IMUs that allow the characterization of gait and the construction of
the predictive model.

2 Gait Characterization

Gait is a complex activity involving several parts of the body, including upper
and lower limbs. Upper limps have an effect on the body dynamics during the
c© Springer Nature Switzerland AG 2019
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Fig. 1. Gait parametrization

displacement, helping to maintain the equilibrium in some of the critical posi-
tions or to give additional impulse. However, they are usually not considered
in the characterization of gait, which often refers to the lower limbs dynamics.
Figure 1 illustrates the typical states of the lower limbs at some of the critical
instants of gait steps, i.e. when there is a change in the limb’s parts relative
motion and the articulation angle variation. We have chosen to parameterize the
gait motion instantaneous state by the angles of the knee and ankle joints relative
to the hips. These angles provide enough information to induce the remaining
leg component positions and dynamics. Our goal is to estimate the correlation of
the dynamics of both legs in a balanced gait, so that we can predict the desired
position of one leg knowing the position of the other. This prediction will provide
us with the desired control commands for an exoskeleton to produce a balanced
gait motion. Measurement of the gait parameters is carried out by a minimal set
of IMUs placed in specific positions of the leg.

3 Human Activity Recognition Using IMUs

Inertial sensors (i.e. accelerometers and gyroscopes) provide acceleration and
oritetation of the motion. This information has been used by researcher for the
recognition of specific human activities. Up to now, Markovian modeling tools
have been the most used, but next generation approaches, based on deep learning
architectures are under extensive testing. Some authors [7] use fuzzy logic clas-
sifiers to recognize daily human activities from using instantaneous information
of the IMU sensors constellation. Other authors have used artificial neural net-
works [9] achieving discrimination between dynamic and static activities with an
specific feature selection process, while other use classical decision trees [10] for
instantaneous activity modeling. Comparative evaluation of static classifiers is
provided in [13], including support vector machines (SVM), k Nearest neighbors
(KNN), and random forests, which are found best performing. However, dynamic
activity modelling is better achieved with Hidden Markov Models [11,12]. On
the other hand, histogram modeling and classification using kNN [14,15] allows
for long term activity modeling using inertial sensors. Smartphone emergence
in our daily life has also been profitted by some researchers in order to obtain
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motion information without requiring the need to put the sensors on the sub-
ject body. Careful noise filtering and the use of an heterogeneous ensemble of
classifiers allows great precision in human activity recognition [16]. Additionally,
combining with GPS information improves recognition (using Random Forest)
of outdoor activities [17]. A critical issue is the online adaptation to drifts in
behavior, in other words to non stationary feature distribution. It has been
shown that Adaboost can cope with this time changes successfully [18] using
up to 300 weak classifiers. More recent trends apply deep learning approaches,
specifically convolutional neural networks [4]. In this paper we are not strictly
concerned with activity classification, but with modeling gait dynamics in order
to use this model for the steering of the exoskeletons.

4 System Description

The system hardware is composed of four IMUs connected to a multiplexor for
simulating parallel inputs to an Arduino board. The computations have carried
out in an Intel Core i5-3330 with a GTX750i graphics board. The software
platform for deep neural network training is Keras. Figure 2 shows the position
of the IMUs and their connectivity. Firstly, we apply.

Fig. 2. Positioning of the inertial units

Figure 3 shows the overall process of training and validation pipeline. Data
capture has been done at the maximum allowable velocity of the IMU sensors,
resulting in some instances of missing data. When there is some IMU sensor
data missing in a time instant, the entire reading for the four IMUs is dropped,
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Fig. 3. Pipeline of the system training and validation

Fig. 4. Architecture of the deep neural network trained and tested in the experiments.

ensuring complete data stream. The next step, is noise removal from the data.
We use a combination of low pass and high pass filtering of the accelerometer
and gyroscopes in order to remove noise and drift of the data. Moreover, for
the preprocessing of the data, in order to reduce measurement error, we use the
complementary filter [5].

The recurrent neural network that we use is the long term short memories
(LSTM) [1] which has been widely used in time series analysis as well as in
natural language processing. Recent works have reported also the use of convo-
lutional neural networks to human activity recognition [4]. However, the cyclic
nature of gait lends itself to the modeling by a recurrent neural network.

Figure 4 presents the actual architecture of the deep neural network. Input is
a given by a sliding window of size 50, for each time instant the feature vectors
are the acceleration and orientation of the left leg IMUs. The output are the
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inclination angles (saggittal and coronal) of the right leg. These data are enough
to check for the correct coordination between legs while walking. Complete right
leg parameters could also be predicted. The architecture is composed of two
hidden layers of LSTM units fully connected that inject to a non-recurrent fully
connected outer layer carrying the final regression of the right leg parameters.
Training was carried out using ADAM optimization and we used a validation set
to test for overfitting. We have used dropout as the regularization mechanism
[2,3].

5 Empirical Results

The data for training and testing corresponds to several walking gaits performed
by the same subject. The training uses a validation dataset to stop the training
before overfitting effects occcur. Besides the root mean square error (RMSE)
whose evolution is shown in Fig. 5, we also computed the coefficient of determi-
nation of the output to ensure significant convergence of the training process.
Figure 6 shows the prediction of the right leg parameters (bottom plot) and the
original data of left and right leg during a short interval of the test (unknown
gait). Therefore it can be appreciated that the model is able to approximate the
real gait parameters of one leg from the observation of the other leg for a gait
that was not part of the training data. This means that the system would be
able to adapt to new situations, and even new users. Predicting one leg motion is
very useful for situations where one leg is being substituted by the robotic pros-
thesis. In this situation, the predicted motion parameters maybe used to guide
the motion of the robotic prostheses to be in harmony with the biological one.
This model may be retrained on the actual subject motions in order to obtain
fine tuning of the predictions.

(a) (b)

Fig. 5. Evolution of (a) training and validation error; (b) training and validation coef-
ficient of determination.
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Fig. 6. Example prediction interval, from top to bottom, data from the first and second
legs, and the predictions for the second leg. The curves are the angles in the saggital
plane of knee (blue) and ankle (green) joints, and the angles in the coronal plane of
the knee (cyan) and ankle (yellow) joints (Color figure online).

6 Conclusions

We show that it is possible to model accurately the time evolution of motion
parameters of the legs, i.e. acceleration and angles of the knee and ankle joints,
using off-the-shelf IMUs whose data is fed to a recurrent neural network archi-
tecture. Prediction appears to be very robust, achieving high accuracy in unseen
gait movements. Further testing is necessary, adding general population recruited
subjects. However, the approach may be useful to provide initial models for fine
tuning of the prostheses control [6].
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5. Kok, M., Hol, J. D., Sch öon, T.B.: Using inertial sensors for position and orienta-
tion estimation. arXiv preprint arXiv:1704.06053 (2017)

6. Ikehara, T., et al.: Development of closed-fitting-type walking assistance device for
legs and evaluation of muscle activity. In: 2011 IEEE International Conference on
Rehabilitation Robotics (ICORR), pp. 1–7. IEEE, June 2011

7. Chen, Y.P., Yang, J.Y., Liou, S.N., Lee, G.Y., Wang, J.S.: Online classifier con-
struction algorithm for human activity detection using a tri-axial accelerometer.
Appl. Math. Comput. 205(2), 849–860 (2008)

8. Dollar, A.M., Herr, H.: Lower extremity exoskeletons and active orthoses: chal-
lenges and state-of-the-art. IEEE Trans. Rob. 24(1), 144–158 (2008)

9. Yang, J.Y., Wang, J.S., Chen, Y.P.: Using acceleration measurements for activ-
ity recognition: an effective learning algorithm for constructing neural classifiers.
Pattern Recogn. Lett. 29(16), 2213–2220 (2008)

10. Godfrey, A., Del Din, S., Barry, G., Mathers, J.C., Rochester, L.: Instrumenting
gait with an accelerometer: a system and algorithm examination. Med. Eng. Phys.
37(4), 400–407 (2015)

11. Mannini, A., Sabatini, A.M.: Machine learning methods for classifying human phys-
ical activity from on-body accelerometers. Sensors 10(2), 1154–1175 (2010)

12. Wang, J., Chen, R., Sun, X., She, M.F., Wu, Y.: Recognizing human daily activities
from accelerometer signal. Proc. Eng. 15, 1780–1786 (2011)

13. Erdas, C.B., Atasoy, I., Acici, K., Ogul, H.: Integrating features for accelerometer-
based activity recognition. Proc. Comput. Sci. 98, 522–527 (2016)

14. Garcia-Ceja, E., Brena, R.: Long-term activity recognition from accelerometer
data. Proc. Technol. 7, 248–256 (2013)

15. Zhang, M., Sawchuk, A.A.: A feature selection-based framework for human activity
recognition using wearable multimodal sensors. In: Proceedings of the 6th Inter-
national Conference on Body Area Networks, pp. 92–98. ICST (Institute for Com-
puter Sciences, Social-Informatics and Telecommunications Engineering) (2011)

16. Bayat, A., Pomplun, M., Tran, D.A.: A study on human activity recognition using
accelerometer data from smartphones. Proc. Comput. Sci. 34, 450–457 (2014)

17. Lee, K., Kwan, M.P.: Physical activity classification in free-living conditions using
smartphone accelerometer data and exploration of predicted results. Comput. Env-
iron. Urban Syst. 6, 124–131 (2018)

18. Wen, J., Wang, Z.: Sensor-based adaptive activity recognition with dynamically
available sensors. Neurocomputing 218, 307–317 (2016)

http://arxiv.org/abs/1704.06053


Recognizing Cognitive Activities Through
Eye Tracking

Sara Moraleda1, Javier de Lope Asiain1(B), and Manuel Graña2

1 Computational Cognitive Robotics Group, Department of Artificial Intelligence,
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Abstract. Eye detection and tracking is usually performed by using spe-
cific devices that allow to determine the pupil position in many different
situations. We propose to use these techniques for recognizing cognitive
activities that a potential user is carrying out in front of a computer.
We use the images captured by a conventional web camera located over
the computer display. Those image are processed and, after the face and
facial landmarks are found, the user gaze is analyzed and the ethogram
and several statistics associated to the eyes and gaze destination are
computed. They are used for determining what is doing the user from a
set of predefined activities.

Keywords: Neuroethology · Activities recognition · Eye tracking ·
Screen-based eye tracker · Non-invasive techniques

1 Introduction

Nowadays faces and facial landmarks detection is becoming a usual task. It
is performed by most of smartphones and handheld cameras. Once the facial
landmarks are localized, it is possible to analyze if the subject is smiling or
where he or she is looking at. Thus, we can determine what kind of behaviors
and activities are been carried out. For instance, it is common to analyze the
visual behavior of users while visiting a web page, i.e. where they are looking at
and which areas are demanding his or her attention. We may get data on what is
looking at the visitor, what was previously demanding his or her interest, which
are his or her real motivations, or even where must be located the most valuable
content, surely the advertising. Also it can be used to know if the visual contents
in the web page drive efficiently in the visit or if the visitor is able to localize
the data that he or she is looking for.

Real world examples of these analyzers are applied to different areas, for
example, to find where the people’s visual attention in web search results is
focused to be applied to digital neuromarketing [1], to determine students’ visual
attention and how it may influence the school failure [2], to evaluate the decision
c© Springer Nature Switzerland AG 2019
J. M. Ferrández Vicente et al. (Eds.): IWINAC 2019, LNCS 11486, pp. 291–300, 2019.
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making process during sports playing [3], or to contribute to the analysis of
general cognitive processes [4]. The latter is probably the area that receives a
greater number of applications, which are focused on the discovering mechanisms
in which visual memory, visual attention and learning are based on.

Eye tracking defines the changes in the gaze direction, i.e., it does not deter-
mine the exact gaze direction. Both conventional techniques [5–8] and artificial
neural networks [9–12] have been used to develop systems for eye tracking.

The most used techniques for finding the iris are generally based on electro-
oculography (EOG) and video-oculography (VOG) [13]. EOG uses a series of
electrodes situated in the user’s face to measure the eye movement. Usually
pairs of electrodes are placed either to the left and right of eye or above and
below the eye. It is considered as an invasive method. On the other hand VOG
employs a head-mounted mask that is equipped with small cameras. Although
it is considered as a non-invasive method for medical purposes, it is not directly
applicable for everyday use.

Generally, an initial calibration process is required in order to record the
approximate destination point associated to the gaze position. This calibration
process could be challenging.

Commercial eye trackers for research are also available. They use special
near-infrared lighting and additional hardware for detecting the iris. The light
is directed towards the pupil, infrared cameras are used to track the reflections
produced in the cornea and estimate the gaze direction. There exist screen-based
eye trackers (also called desktop or stationary eye trackers) that are used when
the user interacts with a screen-based content, and eye tracking glasses (generally
known as head-mounted eye trackers) that are mobile devices usually mounted
onto eyeglass frames that are fitted near the user eyes.

We propose an adaptation of conventional screen-based or desktop eye track-
ers that uses conventional cameras. Thus, the infrared lighting is not longer
needed and the users annoyance generated by this special lighting or the use
of head-mounted trackers is eliminated. The results may be quite comparable
depending on the camera resolution and processing used.

The rest of the paper is organized as follows. Firstly, we define some concepts
concerning eye movements and gaze analysis. Then, we determine the methods
for finding faces and facial landmarks in images. The method for defining and
recognizing cognitive activities in front of a computer is described in the next
sections. Finally, we summarize the experiments carried out for validating the
proposal and discuss the experimental results and conclusions.

2 Identifying Eye Movements

In order to analyze the eye movements and recognize the activity that is been
carried out, it is important to identify the different types of eye movements.
There exist three basic types of eye movements that can be easily detected:
saccadic eye movements, fixations and blinking.

Saccades are quick, simultaneous movement of both eyes between two or more
phases of fixation in the same direction [14]. When someone is reading a book
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or watching a movie, the eyes perform several saccades per second for inspecting
the paper or the screen. The duration of each saccade is about 10–100 ms and the
peak angular speed of the eye reaches up 900 ◦/s. It is not retrieved information
from the stimulus with these movements.

After a saccade, a fixation occurs. A visual fixation is the maintaining of the
gaze on a single location and it is when the information retrieval is carried out.
The averaged duration of fixations is about 200 ms.

The third eye movement considered is the blinking. Blinking is a semi-
autonomic rapid closing of the eyelid. Its function helps spread tears across and
remove irritants from the surface of the cornea and conjunctiva. It basically keeps
the eye lubricated and avoids that the eyes became irritated and tired, which
may produce a loss of sharpness of eyesight and blurred vision. Blinking depends
on environmental factors such as the relative humidity, the temperature or the
bright but also the physical activity, the fatigue or the intensity of cognitive
work. Generally the rate of blinking is about 12–18 blinks per minute, although
it may decrease to about 3–4 times per minute when the eyes are focused on an
object for an extended period of time, such as when reading, this is the major
reason that eyes dry out and become fatigued. The averaged duration of blinking
is about 200–300 ms.

3 Getting Features from Images

In order to detect the eyes in an image, the first step is to localize the face. It
can be achieved in a number of ways. We use a pre-trained detector based on
histograms of oriented gradients and linear support vector machines [15].

Once the face is localized in the image, the next step deals with the problem
of face alignment for images. Here, we use the method proposed by Kazemi
and Sullivan [16], which uses an ensemble of regression trees to estimate the
face’s landmarks positions directly from a sparse subset of pixels intensities.
The method has been deeply tested and it is well-known by it performance and
high quality predictions. The method returns 68 pairs of coordinates referred
to the image that describe the facial landmarks. These coordinates can be used
to localize the eyes, eyebrows, nose, mouth and jawline. For the purpose of the
current work we only employ the pairs corresponding to the eyes.

Then, the eye aspect ratio (EAR) is computed [17]. This ratio between height
and width of the eye is used to determine if it is open (the value is mostly
constant) or it is closing (the value will be getting close to zero). The ratio is
computed as shown in (1).

EAR =
‖p2 − p6‖ + ‖p3 − p5‖

2 ‖p1 − p4‖ (1)

where p1, . . . , p6 are the points that describe the eye position that have been
detected in the previous step. p1 and p4 correspond to the left and right edges of
the eye, p2 and p3 are two points above the eye about the intersection between
the eyelid and the pupil, and p6 and p5 are the points below the eye relative
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to the two previous ones. The points are numbered clockwise starting from the
leftmost one as shown in Fig. 1.

Fig. 1. Points used to compute the eye aspect ratio (EAR) as proposed in [17].

The EAR will be used as one of the descriptors due to it is very helpful in
order to determine if the gaze destination is the top or the bottom of the display.
The greater EAR, the higher the gaze destination (the EAR is zero when the
eye is closed).

We continuously check the EAR values of both eye. When they go to about
zero, it can be considered that a blinking movement has been performed. As we
stated above the duration of blinking is about 200–300 ms. Thus, we use this
estimation to determine if the user is just blinking or if he or she almost closed
the eyes. We count the blinking during the experiment when appropriate.

The next step is to localize the center of each pupil in the image. It is per-
formed by applying basic image processing techniques in the area surrounding
the eyes. The final result of this process is shown in Fig. 2.

Fig. 2. The coordinates in the image of the center of the pupil are computed after
applying basic image processing techniques in the area around the eyes are detected.

Summarizing, firstly, we detect the face and its facial landmarks in the image.
Then, we compute the EAR of both eyes and the center of the pupil coordinates
in the image. The EAR and the center of the pupil will be used as some of the
features to classify the gaze. Also, we compute the times that the user blinks
although this value is not currently used for the gaze classification, just as an
index of the user fatigue.

4 Defining Activities

The final purpose of our system is to define what activities is carrying out the
user in front of the computer. We have empirically determined that it is not
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needed to get the exact gaze destination as for example if it would used in a HCI
context where it could be used to choose an option or to gain access to a specific
feature. Thus, we have defined a set of targets to which the gaze is associated.
These targets are shown in Fig. 3. The target will be also a feature that will be
used for the classifier in order to identify the gaze destination.

Fig. 3. Template with the targets to identify the gaze destination. Note that the target
number has been arbitrarily assigned to each target to reduce the user fatigue during
the calibration stage.

A calibration or training stage is needed for getting samples to train the
classifier. This procedure is performed as follows. Each target is displayed for
about 3 s. The system takes 60 samples for each target. We have considered
interesting that the user follows the order shown in Fig. 3 for the fixations to
minimize the fatigue and to reduce the length of eye movements between targets.

For each sample the center of the pupil coordinates and the EAR are com-
puted. Note that blinking is also estimated. These values are used as features
to determine the target destination of the gaze. We use a k-NN classifier. We
have compared the classifier performance with values from k = 1 to k = 5 and
leave-one-out as cross-validation and we get the best results for k = 1.

Once that we can determine the approximate display area that the user is
looking at, the next step is to try to define which activity is carrying out. To do
that we introduce the concept of ethogram. An ethogram is a representation of
the different actions that occur during an activity or activities, which indicates
the frequency or probability with which each action is followed by other action
(either the same or a different one) [18]. In our case the actions are determined
by the target that is associated to the current gaze destination of the user during
an experiment, and the activity is what the user is doing in that experiment.
Figure 4 depicts an ethogram that has been recorded while the user is reading
a text, which is the activity. The destination target (from 1 to 9) is the action
and is shown on the vertical axis, the horizontal one shows the time when the
samples are taken.
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Fig. 4. Ethogram associated to a reading activity. Note that the gaze destination of
this user is mainly in the targets corresponding to the top area if the display, namely
targets 3, 4, and 5.

5 Recognizing Activities

Once the activities have been defined and can be recorded as ethograms we can
focus on how to compare them. We compute some statistics of the data gathered
while generating the ethogram: the pupil coordinates and the EAR as well as
the targets. Those statistics are used to compose a feature vector, which is used
to determine the activity. Again, we use a k-NN classifier.

We define three kind of activities to be performed in front of a computer
display: reading a text, watching a movie and typing a text. All of them are
very common activities in a office-like environment. Figure 5 show the ethograms
recorded during an experiment in which the experimental subject is reading a
text. Figures 6 and 7 are the ethograms for the movie watching and text typing
activities, respectively.

The experiments are carried out in an office during the workday with conven-
tional light and temperature conditions. The experimental subjects are seated in
front of a conventional computer with a 15.6 in. display. They are to a distance
between 40–60 cm of the display. The camera is situated to a height equiva-
lent determined for each subject, thus the eye aspect ratio and position can
be computed more efficiently. The head movements are restricted during the
experiments in order to improve the sensibility of the whole system.

After a calibrating or training procedure defined above, the experimental
subject is recorded for about 2 min for each activity. The recording is repeated
several times. Then, as the ethograms as the feature vector are computed for
creating the dataset for the classifier.

As can be observed these activities generate very different ethograms. While
reading a text (Fig. 5) the experimental subjects tend to visit more frequently
the target 4. Probably it is due to the fact that the text starts in the top of the
display and the subject was scrolling the text.

During the video watching activity (Fig. 6) the experimental subjects tend
to visit more frequently the targets 1 and 8. Moreover, there are many gaze
changes between both targets. Target 1 corresponds to the center of the display,
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Fig. 5. Ethograms associated to reading activity.

so it is an expectable output. It is where the visual field is wider and higher in
comparison to the other targets and where can gather much more information.

The ethograms relative to the typing activity (Fig. 7) show that the user tend
to focus to targets 7, 8 and 9. These targets are in the bottom of the display.
Probably the output is also expectable. Once the area in which the text must be
typed has been filled, we use the bottom most line in the document. Moreover, it
is usual that some users also watch to the keyboard while typing. On the other
hand, this set of experiments has a number of blinking movements much lower
than the experiments concerning reading and movie watching, probably because
the gaze destination was in the bottom of the display.

All the above mentioned experiments have been repeated also for a duration
about 7 min. No fundamental difference has been found between both sets of
ethograms and statistics.

Table 1 shows some examples of featured vectors computed from the data
gathered in the experiments with a duration of 2 min. The averaged EAR is
practically the same for each type of activity. As the averaged pupil coordinates
as the targets are also quite similar for the same activities.

The best classification results with the k-NN classifier are again with k = 1
(from k = 1 to k = 5). We get an averaged performance of 94.526 and a standard
deviation equals to 6.594. We get a pretty good performance in many situation,
very near to 100%, but several experiments give certainly bad performance. After
analyzing those situations it seems it could be related to the image processing
step and the eye color of the experimental subjects. The median performance
with k = 1 is 97.220.
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Fig. 6. Ethograms associated to video watching activity.

Fig. 7. Ethograms associated to the typing activity.
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Table 1. Some examples of feature vectors computed from three experiments of the
analyzed activities (averaged values).

Activity X Y Ear Target

Reading 23 11 32 2

Reading 25 14 32 3

Reading 23 11 32 2

Video watching 22 11 37 2

Video watching 24 11 31 1

Video watching 21 10 27 1

Typing 27 8 21 9

Typing 25 10 24.5 8

Typing 27 6 14 8

6 Conclusions and Further Work

A system for recognizing cognitive activities in front of a computer by means of
eye tracking has been presented. The system uses images captured by a conven-
tional web camera. Once a face is detected in the image, several facial landmarks
are localized. Then, the gaze is analyzed in order to create an ethogram and sev-
eral statistics associated to the eyes and gaze destination. The data is used for
classifying the activity that a potential user in front of the computer is carrying
out.

Based on the experimental results it is concluded that the system is able
to classify a reduced number of activities in normal office-like conditions and
several experimental subjects with different physical characteristics as color of
the skin and eyes, form of the face, and so on.

Future work is planned towards improving the image processing techniques
that are used in order to detect the face and facial landmarks in the image.
Currently the head movements are restricted in order to improve the results. If
the user turns the head several degrees, the face is not detected and no data
is gathered. It can be easily accomplished by updating the dataset with more
samples. Now it only includes samples with frontal face images.

Also, we are currently working with other templates that with more targets
and different target structure. We have to trade off the low resolution of the
employed equipment and the detection of gaze destination. We are also consid-
ering to use directly an estimation of the display area of the gaze destination
and to overcome the use of landmarks.

Finally we want to increase the number and diversity of activities. Although
the selected ones for this work are quite representatives, they are just some
activities that an user performs in front of a computer.

Acknowledgments. This work has been partially supported by FEDER funds
through MINECO project TIN2017-85827-P.
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Abstract. Endowing social robots with natural interaction abilities,
such as following a dialogue that gives the human user a sense of natural
interaction, is a current interest in many areas. We are interested in devel-
oping the dialogue skills of the Nao robot for its potential use in treat-
ment of children with special educational needs and elder people at risk
of isolation. Corpora based dialog system development approaches are
not adequate for personalization. In our approach we propose a teacher
and introspection approach that may be able to produce highly person-
alized and entertaining dialog systems. The introspection module would
run in the background using generative randomized systems creating new
dialog pathways from the patterns learnt by direct teaching interaction.

1 Introduction

In order to set the stage for our work, we would like to remind the reader about
the two basic categories of dialogue systems that appear in the literature [17]:

– Task oriented systems, where the conversation has some specific goal that has
to be achieved through the dialogue interaction. Commercial assistant sys-
tems propsoed by companies such as Google, Apple or Amazon, are intended
to help the user to search for specific information items or to patronize them
in routine tasks, such as looking for the nearest restaurant, or to coordinate
events, such as planning an appointment or a date [11]. Other examples of
automated dialog services are technical support services, and goal-free sys-
tems, such as language learning tools or computer game characters [22]. The
iteration always reaches a termination state when the user achieves its goals.
The dialogue system is an interface to other digital services, such as entertain-
ment, travel, and house maintenance. They are typically designed according
to a structured ontology (or a database schema), which defines the domain
that the system can talk about [25]. Getting the info is usually achieved using
slot-filling, where a dialogue state is a set of slots to be filled during dialogue
[3].

– Conversational systems, on the other hand, have no specific goal for the con-
versation. Hence, the user-machine iteration can evolve indefinitely, though it
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is expected that the iterations would produce some evolution of both the user
and the automated agent internal states. For instance, if the dialog agent is
used for some kind of therapeutic purpose, we expect that the user has some
benefit from the dialog. As an example, consider the treatment of children
with autism spectrum disorders (ASD) by interaction with anthropomorphic
robots in order to achieve better social skills. After some interactions, we
expect some permanent changes in the child social abilities. The main fea-
ture that we want from conversational systems is that they engage the user
and are entertaining [27].

From the technological point of view, dialog systems have been boosted in
performance and capabilities by the current explosion of data driven machine
learning approaches, foremost the resurgence of deep learning [3] techniques,
architectures, and tools for training and development following their success in
natural language procesing, machine translation [8,20,22], language interpre-
tation [18], and response generation [13,14,23]. Though there have been some
attempts to use convolutional neural networks (CNN) [20], most successful appli-
cations are based on the well known long-short term memory recurrent neural
networks (LSTM) [10]. LSTMs are well suited to learn sequential information
and provide great flexibility. They have been used for humor prediction in dia-
logues [2], sentence embedding [18] The other computational advance has been
deep reinforcement learning approaches [5,12,13], and the use of adversarial net-
works [14].

One of the keystones to build data driven systems is the availability of data
for system training. Specifically, data repositories (corpora) for dialog systems
are scarce [21] and they are often topic specific [15], hence training based on
them are prone to introduce bias and artifacts in the dialog. For this reason we
interested in approaches that build the systems from scratch personalizing it to
the user as much as possible. Besides, dialog corpora in Spanish are non-existent.

Intended Contribution. The aim of the work in this article is to present our
current work towards the implementation of an open dialog system in the Nao
robot that will be tailored to the user from scratch. We are using of-the-shelf
tools provided by the Nao development environment, as well as some widely used
machine learning tools, such as the keras python package for deep learning, and
tools for speech recognition and speech synthesis that are well integrated in the
Nao development environment. The current language is Spanish, and the aim of
the system is to assist in some experimental treatments of children with special
educational needs or elder people at risk of isolation.

The contents of the paper are as follows: Sect. 2 discusses system architec-
tures, and evaluation issues. Finally, Sect. 3 discusses some future challenges.

2 Architectures of Dialogue Systems

The traditional architecture for dialogue systems is composed of a series of mod-
ules, each with specific functionality:
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– Speech Recognizer, in charge of providing the lexical units for the system
extracting them from the voice signal,

– Language Interpreter, in charge of extracting meaning from the stream of
lexical units by Natural Language Processing techniques,

– State Tracker, in charge of modelling the dialogue state and dynamics, it keeps
track of the goal in task oriented systems and of the contextual information
in task-free systems. It is the semantic backbone of the dialog system, setting
the stage for understanding the messages [9].

– Response Generator, produces a semantically grounded response to a current
input,

– Language Generator, formulates the response in correct language constructs
by Natural Language Generation techniques, and

– Speech Synthesizer generates a recognizable voice signal for the communica-
tion with the human side.

We intend that our Nao based system has an interface as natural as possible,
so Speech Recognizer and Speech Synthesizer modules are required in voice-
based dialogue systems. Text based dialogue systems do not need them. Each of
these modules can be tackled with as an independent problem, hence they have
been approached using different techniques. Lately, the mainstream approach
was statistical modeling of diverse flavors, until the eclosion of deep learning
approaches.

One critical issue is that of the time and resources required for training the
systems, and the need to overcome the inherent semantic limitations of given
corpora. A bold approach is to tackle it in an incremental process [1], where the
system is in a continuous learning process. If we recognize that dialog processes
may change the actors, then the dialog is per se an open-end learning process,
where actors (humans or automata) must be able to understand and answer new
inputs, generating also innovative responses.

It seems that end-to-end architectures [3,7,22,24,29] provide the required
flexibility due to its data driven approach. Drifting of the conversation patterns
is possible by direct application of the same training process, and does not
need additional engineering, such as identifying the new semantic domain. Such
flexibility is a requirement for social robot dialog applications [4]. The greatest
flexibility is achieved by end-to-end systems that decompose the response into
utterances that are selected probilistically, i.e. by maximization of the posterior
probability among all possible utterances. Most either rule-based or corpus-based
chatbots tend to do very little modelling of the conversational context. Instead
they tend to focus on generating a single response turn that is appropriate
given the user’s immediately previous utterance. For this reason they are often
called response generation systems [11]. Given the lack of precise goals, the
conversational systems can be formulated as sequence-to-sequence transductors
(SEQ2SEQ). However the SEQ2SEQ models tend to generate generic responses,
which closes the conversation, or become stuck in an infinite loop of repetitive
responses [13].

Some approaches to dialog system evaluation use quality measures developed
for machine translation systems, such as the bilingual evaluation understudy
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(BLEU), assuming that the dialogue process is akin to a translation between
the system generated responses and the natural ones from humans. Other use
the word perplexity measure [22] from probabilistic word modelling. This app-
roach requires big corpora often unavailable for conversational dialogue systems,
and scarce for task oriented systems. Most of the corpora available for dialogue
system training and tuning come from very specific domains (e.g chats about
technical problems such as the Ubuntu IRC chats, or restaurant/movie picking)
or were designed for other purposes such as automatic speech recognition system
training [21].

Reinforcement Learning (RL) approaches [14,24,26] only require rewards at
some point in time, such as the successful task achievement or some negative
rewards when the task-free dialogue becomes senseless, and the estimation of
the policy gradient, often done by a likelihood trick. RL allow to treat dialogue
system training as an optimisation problem. Moreover, RL-based systems can
improve their performance over time with experience [6] following a life-long
learning approach. However, training dialogue policies in an efficient, scalable
and effective way across domains remains an unsolved problem as often requires
significant time to explore the state-action space, which is a critical issue when
the system is trained on-line with real users where learning costs are expensive
[26].

Reinforcement learning approaches need some mechanism to generate the
reward function values. The natural approach is to use human operators that
provide rewards according to some quality criteria (i.e. easy of answering, coher-
ence, informativeness, keyword retrieval) but in general it is difficult to extend
the approach to wide open dialogue systems. A way to automate the process is
to apply adversarial approaches [11,14] mimicking the Turing test of indistin-
guishability of the machine responses from the human responses. For example
in [14] the authors use a generator (a neural SEQ2SEQ model) that defines the
probability of generating a dialogue sequence, and a discriminator analogous to
the human evaluator in the Turing test that labels dialogues as human-generated
or machine-generated. The generator is driven by the discriminator to generate
utterances indistinguishable from human generated dialogues. In the end the
human evaluation is the gold standard for all approaches, despite the high cost
and inconvenience of having to deal with humans in the loop.

3 Social Robots and Children with ASD

Recent reviews [19] have found that there are positive effects of the interaction
between social robots and children with ASD:

– they often performed better with a robot partner rather than a human part-
ner;

– sometimes, they show toward robots, behaviors that TD patients had toward
human caretakers;

– they had a lot of social behaviors toward robots;



An Approach to Teach Nao Dialogue Skills 305

– during robotic sessions, ASDs showed reduced repetitive and stereotyped
behaviors and;

– interaction with social robots improved spontaneous language during therapy
sessions.

Therefore, robots provide a way to connect with ASD subjects. But it seems
that studies in this area are still insufficient. Besides small sample sizes [16], it
is necessary to assess the influence of other covariants such as age, sex, and IQ.
Also, it is required to assess if the outcome of the therapy are still observable
outside the clinical/experimental context.

Moreover, robots were operated mostly in a wizard-of-Oz setting or in an
open loop automata behavior, with no real autonomy or feedback interaction,
so it is mostly the esthetic aspects that were evaluated. A long term interaction
will become stuck if only a few robot behavior patterns are available. Next step
for this kind of studies is the contact with a truly evolving and autonomously
interacting robot. In this setting, we are working on endowing the Nao with an
adaptive and evolving dialog interface whose elements will be described below.

4 On Going Development of Spoken Dialog Interface
for the Nao

We are working on the Python interface to the Naoqui API for Nao and other
Aldebaran social robotics products. Nao has been a highly exploited robot in
experiments with ASD children. The company has marketed a product for deal-
ing with experiments and treatment of ASD children. However, the review of

Fig. 1. Early Nao dialog structure
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Fig. 2. Proposed architecture of the dialog system.

the literature shows that in fact the robot has been used in open loop behaviors,
with no autonomy or little feedback of what is happening in the experimental
room. In fact, it is little different from a nineteen century automaton regarding
autonomous behavior. Figure 1 shows the actual structure of the dialog system,
which consists in two separate modules that can be reached by voice commands.
The LEARNING module asks for new pairs of phrases that are to be used as
question-answer patterns. The teaching is carried out by actual speech recog-
nition. Coding details can be found at zenodo [28]. An actual realization of a
simple session has been published in youtube1. At its current state, the dialog
system is a spoken interface for collection of input/output pairs, that can be
make a little bit more robust by adding some sequence distance search to cope
with errors in the recognition such as incomplete phrases. However, the next
step that we are envisaging tries to go a little further. The proposed architecture
is illustrated in Fig. 2. The main issue we want to solve is the generation of the
system from scarce input information. The solution we seek to implement is an
introspective module which is hidden from the user. This module is in charge
of elaborating over the response pairs acquired through the direct teacher inter-
action, which sets the standards for the introspection module. A randomization
module is in charge of the generation of randomized question/answer patterns
that are fed to the introspection module for training. The introspection mod-
ule will run an adversarial learning scheme to train the generative network [14].
The hidden subconscious elaboration is a deep reinforcement module which is
running in between user interactions. User reward comes from the dialog or the

1 https://www.youtube.com/watch?v=RbfM-9gaxzY.

https://www.youtube.com/watch?v=RbfM-9gaxzY
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teaching mode. Updates to the current system will be published in the same
zenodo reference.

5 Conclusions

We are working towards the implementation of a dialog system that learns from
scratch to carry out spoken dialogues. We have reviewed in this paper the current
trends in dialogue system design. The deep reinforcement learning with adver-
sarial learning is the approach that offers greater flexibility and potential for
our purposes. The aim is the development of truly autonomous dialog systems
embedded in the Nao robot for the treatment of children with special educa-
tional needs that may be benefitting from humanoid robot interaction. A target
population are the children with ASD, whose positive reaction to social robot
interaction has been noted by many researchers.

Acknowledgments. This work has been partially supported by the EC through
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Abstract. The construction of Cyberphysical systems requires provid-
ing intelligent behavior to physical agents at the smallest scale and, there-
fore, the need to develop very efficient and resource-aware algorithms. In
this paper we present an object detection algorithm that may endow an
agent with perceptual object detection capabilities at a small computa-
tional cost. To this end we adapt a recent Multi-class Boosting scheme
to create an efficient detector with the capability of regressing the object
bounding box. In the experiments we prove that the resulting algorithm
shows Average Precision (AP) improvements in a multi-view car detec-
tion problem.

Keywords: Object detection · Multi-class boosting ·
Cyberphysical systems

1 Introduction

The last years have witnessed such evolution in internet technology that almost
everything can now be connected transparently and seamlessly through the Inter-
net of Things (IoT). In parallel, advances in Artificial Intelligence enable the
construction of autonomous agents that perceive and take actions in the real
world. In this context Cyberphysical (CBP) systems emerge as an evolution of
the IoT in which physical objects not only have computing and communication
abilities, but also sensing and operation capacities, enabling them to co-operate
in the construction of distributed and autonomous ecosystems [11,15].

Perceptual skills, such as for example detecting and recognizing objects of
interest, is a requirement for a CBP agent to interact with the environment.
Powered by the use of deep neural nets, modern object detection algorithms
have achieved remarkable performance [8]. However, these approaches require
advanced computational resources such as Graphical Processing Units (GPUs).
Although there is an ever-increasing number of devices shipping GPUs, it is also
true that such intelligent behavior is required at the smallest scale, such as in
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micro-scale mobile robots, that are inherently limited in powering and computa-
tional capabilities [2]. Hence, the necessity of developing very efficient algorithms,
that are aware of the time and energy required for their execution [15].

In this paper we propose a detection algorithm based on Viola and Jones
seminal Boosting scheme [12]. Boosting classifiers have been extensively used
for building multi-class object detectors [14]. This approach has received much
attention because it is very efficient and achieves very good performance in
various object detection problems [1,9]. The key for its success is the exploitation
of the feature selection capabilities of Boosting together with efficient image
descriptions such as the Integral Channel Features [3]. The usual framework for
Boosting-based object detection uses binary classification (e.g. AdaBoost). In
this regard, multi-class detection problems are usually solved with K detectors,
one per object view or positive class. Here we propose the use of a single multi-
class Boosting algorithm.

A key methodological advance in object detection is the bounding box refine-
ment. When dealing with objects that can present different aspect ratios depend-
ing on their pose or configuration, the bounding box refinement step is crucial
to get better precision. Recent CNN-based detectors already perform bounding
box parameters regression, e.g. [10].

In this paper we improve the Boosting-based object detection paradigm [12]
in two ways. First using BAdaCost [4], a recent multi-class cost-sensitive Boost-
ing algorithm. With it we get a precise control over class boundaries (e.g.
errors between positive classes). Hence improving the performance compared to
approaches based on plain binary classifiers, e.g. [7]. Second, we extend BAda-
Cost so it is able to regress the detected target bounding box. We present our
approach in a car detection problem and evaluate it with the KITTI benchmark.
In the experiments we show that our approach results in an improvement in AP
from previous baseline results.

2 Multi-class Boosting Algorithm

A Boosting algorithm is a supervised learning scheme that requires N training
data instances {(xi, li)}Ni=1, where xi ∈ X encodes the object to be classified
with class label li ∈ L = {1, 2, . . . ,K}. Each label l ∈ L has a corresponding
margin vector yl ∈ Y where Y = {y1, . . . ,yK} [4]. yl has a value 1 in the l-th
coordinate and −1

K−1 elsewhere. So, if l = 1, the margin vector representing class

1 is y1 =
(
1, −1

K−1 , . . . , −1
K−1

)�
. Hence, it is immediate to see the equivalence

between classifiers G defined over L and classifiers g defined over Y , G(x) = l ∈
L ⇔ g(x) = yl ∈ Y .

2.1 BAdaCost: Cost-Sensitive Multi-class Boosting Classification

Cost-sensitive classification endows the traditional Boosting scheme with the
capability to to modify pair-wise class boundaries. In this way, we can reduce the
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number of errors between positive classes (e.g. different target orientations) and
improve recall when object classes have different aspect ratios. To this end we use
BAdaCost [4] (Boosting Adapted for Cost matrix), a recently introduced multi-
class cost-sensitive Boosting classifier. In this section we briefly introduce it.

The costs are encoded in a K × K-matrix C, where each entry C(i, j) rep-
resents the cost of miss-classifying an instance with real label i as j. Here it is
assumed that C(i, i) = 0,∀i ∈ L, i.e. the cost of correct classifications is zero.

Let C∗ be a K × K-matrix defined in the following way

C∗(i, j) =
{

C(i, j) if i �= j

−∑K
h=1 C(j, h) if i = j

, ∀i, j ∈ L. (1)

In a cost-sensitive classification problem each value C∗(j, j) represents a
“reward” associated to a correct classification. The j-th row in C∗, denoted
as C(j,−), is a margin vector that encodes the costs associated to the j-th
label. The multi-class cost-sensitive margin associated to instance (x, l) is given
by zC := C∗(l,−) · g(x). It is easy to verify that if g(x) = yi ∈ Y , for a certain
i ∈ L, then C∗(l,−) · g(x) = K

K−1C
∗(l, i). Hence, using this generalized mar-

gin, BAdaCost defines a Cost-sensitive Multi-Class Exponential Loss Function
(CMELF ):

LC(l,g(x)) := exp(zC) = exp (C∗(l,−) · g(x)) = exp
(

K

K − 1
C∗(l, G(x))

)
.

(2)
The margin, zC , yields negative values when the classification is correct under
the cost-sensitive point of view, and positive values for costly (wrong) outcomes.
The CMELF is a generalization of the Multi-class Exponential Loss introduced
in [17].

BAdaCost resorts to the CMELF (2) for evaluating classifications encoded
with margin vectors. The expected loss is minimized using a stage-wise addi-
tive gradient descent approach. The strong classier that arises has the following
structure:

H(x) = arg min
k

(
C∗(k,−) ·

M∑
m=1

βmgm(x)

)
= arg min

k
(C∗(k,−) · f(x)) , (3)

where f(x) is a linear combination of M cost-sensitive weak learners,
{gm(x)}Mm=1, that the algorithm learns incrementally. In this case f(x) is a vector
with the estimated per-class costs from the feature vector x.

2.2 Object Detection Score for BAdaCost

When building an object detector it is necessary to have a confidence measure
or detection score. In BAdaCost the predicted costs incurred when classifying
sample x in one of the K classes are given by the vector:

c = C∗ · f(x) = (c1, . . . , cK)�. (4)
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From now on, in multi-class detection problems, we assume that the back-
ground (negative) class has label l = 1 and the object classes (e.g. different views
of a car) have label l > 1. Therefore, we can compute the score of x as

s(x) = (c1 − min(c2, . . . , cK)). (5)

This score has desirable properties for detection problems: (1) s(x) > 0 when
the winner class (i.e. the class with lowest cost) has label l > 1; (2) s(x) < 0
when the winner class is l = 1. Given that score definition, we can use any
cascade calibration algorithm for Boosting, for example [16], and stop execution
of weak learners whenever the score falls below a calibrated threshold.

3 Bounding Box Aspect Ratio Estimation

In our experiments we build a multi-view car detector. One of the challenges in
the car detection problem is that the bounding box aspect ratio (AR) changes
with the view (i.e. frontal cars have lower AR than side view ones). By posing a
classification problem where the labels are the 20 car views (plus no-car label),
we can also compute information related to the AR in the Boosted tree leaves.
The overall approach to simultaneous detection and AR estimation is shown in
Fig. 1.

Fig. 1. Algorithmic pipeline. BAdaCost learns an ensemble of multi-class cost-sensitive
trees. The estimation of AR distribution is computed using all the trees starting with
the tp one. The final AR is the one of the the minimal cost class.

The classifier learns m weak-learners that are cost-sensitive decision trees.
The split measure used in each tree node is the Gini impurity. The modifications
of the tree to make it cost-sensitive are two-fold:
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1. On each split node S the probability of class l, p(l), is multiplied by the
percentage of costs associated to class l (i.e. sum of a row in the cost matrix),
c(l):

p′(l) =
∑

i∈S wiΔI(yi = l)∑
i∈S wi︸ ︷︷ ︸
p(l)

∑K
k=1 C(l, k)∑K

i=1

∑K
j=1 C(i, j)︸ ︷︷ ︸
c(l)

, (6)

where I() is the indicator function.
2. On each leaf node the minimum cost rule is applied for classification:

h = arg min
l

C(l,−)(p(1), . . . , p(K))�. (7)

During the training phase, for every decision tree and leaf node S, we store:
(1) the minimum cost label, hS and (2) a K × 1 vector, aS , with the mean AR
of each view class. During the detection phase, the trees are traversed with the
feature vector x corresponding to a candidate window (see Fig. 1). As we have
seen in Sect. 2, the vector f(x) is computed as a linear combination of tree labels
outputs h, codified as its corresponding margin vector g(x) = yh ∈ Y . Vector
f(x) is then used in Eq. (3) to obtain the minimum cost view class estimation.

Our procedure to estimate the aspect ratio follows a similar approach. Let
at(x) be the per class view aspect ratios stored in the leaf node of t-th tree in
which x ends. After traversing the weak learners trees, the vector of class aspect
ratios is computed as a linear combination: a(x) =

∑M
i=tp

βiai(x). If h is the
class estimated by the BAdaCost strong learner, H(x), then the estimated AR
is given by a(h). Note here that we drop all the trees below the tp-th one. The
rationale is that in the first trees the strong classifier are not accurate enough.
In the experimental section we will see that this is in fact true and it is better
to use only the final trees in the ensemble to estimate the AR.

4 Experiments

In our experiments we have modified Piotr Dollar’s Matlab Toolbox1 with BAda-
Cost (e.g adding cost-sensitive decision trees and multi-class detection). Our
modified implementation with the BAdaCost detectors is already available2.

In the experiments we use a detection problem in which the target object
changes its Bounding Box AR depending on the view angle. Car detection in
the KITTI dataset [6] is a good example of this kind of problem. The database
presents three subsets: easy, moderate and hard (easy ⊂ moderate ⊂ hard).
We carry out the evaluation in each level separately. In total there are 7481
images for training and 7518 for testing. Since the testing images have no ground
truth, we split the train set in training and validation subsets: cars in the first
6733 images (90%) to train (KITTI-train90) and the last 748 images (10%) as
validation (KITTI-train10).
1 https://github.com/pdollar/toolbox.
2 https://github.com/jmbuena/toolbox.badacost.public.

https://github.com/pdollar/toolbox
https://github.com/jmbuena/toolbox.badacost.public
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Fig. 2. KITTI cars classes we use in our experiments.

We divide the images into K = 20 view classes (see Fig. 2). With the BAda-
Cost algorithm we use cost-sensitive decision tree weak learners that select fea-
tures from LDCF channels [13]. In all the experiments we train a car model
of size 48 × 84 pixels, AR = 1.75. We start the pyramid one octave above the
actual image size, to detect cars 25 pixel high. This approach produces detec-
tion bounding boxes with fixed AR of 1.75 (Fixed-Equal approach). On the other
hand, since the multi-class detector outputs the view class, we can correct the
fixed size window to the training mean (Fixed-Class-Mean approach) AR of the
predicted class view as done in [5,9].

We train the classifier storing the mean AR of each class in tree leaves as
explained in Sect. 3. During training we perform 4 rounds of hard negatives min-
ing with the KITTI training image subset (KITTI-train90). We set the number
of cost-sensitive trees to T = 1024 (4 rounds with 32, 128, 256 and T weak learn-
ers, respectively), tree depth to D = 8, the number of negatives per round to add
to N = 7500 and the total amount of negatives to NA = 30000.

The costs matrix is set to weight up gross errors between view classes. This is
important because estimating the wrong class will output a Bounding Box with
the wrong AR (e.g. frontal car, AR = 1.0, to left side car, AR>> 1.0). We show
the cost matrix we use in Fig. 3. The non-car class has label 1. Positive classes
have the labels shown in Fig. 2 plus one.

Predicted class
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Fig. 3. Costs matrix used in our experiments.

First, we train only one detector with the mean aspect ratio of each view
class stored on the tree leaves. The detector uses KITTI-train90 for training
and KITTI-train10 for testing. We set the detection threshold to an entersection
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over union (IoU) value 0.7, es established in the KITTI benchmark. Then, we
use different strategies to estimate the ARs using this detector. First we test the
AR estimation algorithm introduced Sect. 3 with different values of tp (first tree
to use in the estimation). In Fig. 4 we show that neither using all the trees nor
using the last few trees are the best strategies. We can see that, in the Moderate
KITTI car detection problem, using all trees starting with tp = 950 we get the
best result.
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Fig. 4. Using different number of weak learners for estimating the detections AR. Here
we train in KITTI-train90 and test in the validation subset, KITTI-train10.

Secondly, once we have found the best tp value we can compare it with other
AR estimation strategies: use the output of the fixed size sliding window detector
(Fixed-Equal), modify the fixed aspect ratio window with the estimated class
view aspect ratio (Fixed-Class-Mean) and, finally, our proposal (Estimated-AR).
In Fig. 5 we confirm that a fixed aspect ratio detector as Fixed-Equal, gets the
worst results. We get a much better result in the Moderate KITTI subset (the one
used for ranking) with the Fixed-Class-Mean procedure. On the other hand, we
can improve even further the AP by using our Estimated-AR strategy. We get an
better AP by 1.7%, 1.2% and 1.1%, respectively, in the Easy, Moderate and Hard
settings. Given that our procedure is computationally cheap it is a significant
improvement. On Fig. 6 we show results of the different methods on images were
our method (Estimated-AR) improves over the baseline (Fixed-Class-Mean).

To further analyze the performance of our procedure (Estimated-AR) with
respect to the baseline (Fixed-Class-Mean), we have performed an additional
experiment varying the IoU threshold (see Table 1). The good behavior of our
approach is more evident when we look for higher overlapping in the detection.
With a threshold of IoU = 0.8, Estimated-AR, in Moderate subset, is better by
11,53% (from 44.2% to 49.3%) and with IoU = 0.9 it is better by 63.15% (from
1.9% to 3.1%).
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Fig. 5. Comparing different strategies to compute the detection AR. Here we train in
KITTI-train90 and test in the validation subset, KITTI-train10.

Fig. 6. Sample car detection improvement with AR estimation on KITTI-train10. In
green, red and yellow we show respectively the ground truth, Estimated-AR-Mean
and Fixed-Class-Mean true positives for the data base moderate settings. (Color figure
online)

Table 1. AP for different IoU values on the KITTI train90/train10 experiment

Algorithm/IoU 0.5 0.6 0.7 0.8 0.9

Easy Fixed-Class-Mean 95.6 % 94.9 % 84.8 % 44.2 % 1.5 %

Estimated-AR 95.6 % 94.8 % 86.4 % 49.3 % 2.8 %

Moderate Fixed-Class-Mean 90.3 % 89.8 % 83.3 % 44.2 % 1.9 %

Estimated-AR 90.3 % 89.8 % 84.5 % 47.7 % 3.1 %

Hard Fixed-Class-Mean 79.5 % 78.2 % 67.2 % 36.9 % 1.7 %

Estimated-AR 79.5 % 78.1 % 68.3 % 39.1 % 2.9 %

5 Conclusions

Detection algorithms have evolved over time by changing various components of
the pipeline. Some of these improvements, however, have been exploited only in
the context of modern deep neural nets. In this paper we improve the perfor-
mance of Boosting-based detectors by refining the target bounding box using a
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new cost-sensitive multi-class boosting scheme. This is a relevant result in the
construction of Cyberphysical Systems, given the computational efficiency of this
family of algorithms.

In the experiments we show that our approach improves the detection AP
with respect to the baseline Fixed-Class-Mean regressor. Moreover, it beats
the results of its closest Boosting competitor [7]. This Boosting-based detec-
tor achieves 52.9% AP in the moderate KITTI testing set, where as our result
is 67.23%.

If we analyze the results in the moderate set in Table 1 we can see that for
an IoU of 0.5, we achieve a result above 90% AP. However, as the IoU threshold
increases, the AP goes down to 3.1% in the most demanding case, IoU = 0.9.
This means that most of the detections are correct, but the accurate location of
the object bounding box is an important source of errors that should be further
studied in the future.

The use of proper data augmentation and alternative and more accurate
bounding box regression algorithms are future research avenues that will further
improve AP with no extra computing cost.

Acknowledgments. The authors gratefully acknowledge funding from the Spanish
Ministerio de Economı́a y Competitividad, project TIN2016-75982-C2-2-R.
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Abstract. A central issue in Computational Neuroethology is the fusion
of information coming from a wide variety of devices, by computational
tools and techniques aiming to correlate the neural substrate and the
observable behavior. In this paper we are concerned with the fusion of
information from two specific commercial devices, the Emotiv EPOC+
EEG recorder, and the Rokoko motion capture suite based on inertial
motion units (IMU). We have built an ad hoc system for synchronized
data capture. We test the system on the recognition of simple activities.
We are able to confirm that the fusion of the neural activity information
and the motion information improves the activity recognition.

1 Introduction

Traditionally, neuroethology tries to find the neural basis for behavior by direct
intervention or by accidental observation. Neuroethology is increasingly used as a
tool to evaluate the effect of treatments to a diversity of brain diseases or injuries,
such as the hipoxia-isquemia in newborns [12]. Objective behavior impairment
measures can be correlated to brain damage observed via postmortem histology,
or via EEG measurement through electrode implants.

Under the label of computational neuroethology there are some very abstract
attempts to establish a brain-behavior model, that try to relate mathematical
dynamical models of behaviors (such as the dynamics of finger tapping) with
neural dynamics [8], however such abstract approach is quite limited to some
modeling targets. A more general approach is to try to find correlations between
behavioral observations and neural activity measurements obtained from a vari-
ety of synchronized sensors. Hence the predominant approach is a data science
based approach, using statistics and machine learning tools. Animal or human
models are designed to gather data that can be subjected to statistical analy-
sis or machine learning predictive modeling. For instance, animal models of fear
consists in the presentation of the predator or some surrogate sensorial correlate,
c© Springer Nature Switzerland AG 2019
J. M. Ferrández Vicente et al. (Eds.): IWINAC 2019, LNCS 11486, pp. 319–326, 2019.
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such as odor or a shape, or a robot simulating the predator performing aggres-
sive moves [10]. A human model of fear was the presentation of a tarantula at
the foot of a human subject whose neural activity was recorded by fMRI [10].

We are interested in the development of tools that may allow the study of how
some treatments affect subjects with brain degenerative diseases, and children
with special needs. Many of these conditions show typical external behavioral
traits that can be objectively measured by means of motion capture devices,
allowing to measure changes in behavior due to treatment with great accuracy.
Simultaneous recording of brain activity allows to measure how the changes in
behavior correlate with neural activity changes.

In this paper we report on going work devoted to the identification of activ-
ities based on two commercial devices: an inertial motion capture and an elec-
troencephalogram (EEG) recorder. Both have wireless connection via wifi pro-
tocol allowing for broad and natural mobility of the subject under study. Code
developed for data capture is published in Zenodo [2]. We report exploratory
results on the identification of some basic behaviors.

The paper structure is as follows: Sect. 2 presents the data capture and data
processing systems employed in our work. Section 3 presents results on prelim-
inary testing data collected in-house with the proposed system. Section 4 gives
some conclusions and further work.

2 Data Capture and Data Processing

The general structure of a computational neuroethological observation system
has the following main concurrent modules,

– One module is devoted to the capture and analysis of the neural activity, often
via Electroencephalogram (EEG) sensors, which can be external or internally

Fig. 1. Emotiv EPOC+ (a) the device, (b) the recording channels
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Fig. 2. Rokoko elements (a) the hub collecting information from IMU sensors, (b) the
placement of the sensors in the suit

implanted. Functional Magnetic Resonance Imaging (fMRI) has been used
for neuroethological experiments in humans [9]. We use the Emotiv EPCO+1

wireless EEG recorder, a minimally invasive device allowing natural mobility
of the subjects. Figure 1 shows the actual device and the channels that are
recorded. Instead of the raw EEG signals2, we will be working with the neural
activity band activities as computed by the Emotiv API, which are computed
at 10 Hz:
• Theta (4–7 Hz): Associated with first stages of sleep.
• Alpha (8–13 Hz): Associated with cortex activity in resting state.
• Low Beta (12.5–16 Hz) y High Beta (20.5–28 Hz): Associated with waken

conscious state.
• Gamma (32–100 Hz): Related with the conscious cognition processes.

Taking into account that we have 17 channels, as illustrated in Fig. 1(b),
we may end up with 85 features for classification building characterizing the
neural activity state each 0.1 s. In the computational results reported below
we make several combinations of this channel information with the behavior
measurement information.

– The second module is devoted to the quantitative observation of the subject
behavior. Image processing is a key technology for the development of the
ecological behavior observation, allowing identification of individuals, track-
ing and classification of their behaviors using supervised and unsupervised
approaches [5]. There is a wide variety of imaging sensors providing the motion
capture besides the optical cameras, such as infrared camera/illumination,
X-ray imaging for animals embedded in the soil, thermal imaging for video
shooting in darkness [3], sonar signals for underwater monitoring, sensitive
pressure sensors for micromotion detection [4], catwalk systems for animal
gait analysis [6]. We use the Rokoko motion capture suit3. Figure 2 shows the

1 https://www.emotiv.com/epoc/.
2 Raw signals need a specific license which we can not pay at this time.
3 https://www.rokoko.com.

https://www.emotiv.com/epoc/
https://www.rokoko.com
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schema of the central hub collecting the information from the 9 degrees of
freedom inertial measurement units (IMU) and sending it via wifi connection,
and the placement of the IMU on the body. The IMU are embedded in the
textile’s suite, which can be tightly adjusted to minimize noise from random
motions. The system needs no anatomical calibration, and can be setup in a
few minutes. Calibration of the initial pose is easy. The sampling frequency
is 100 Hz, much higher than that of the EPOC+ computation of EEG bands,
so some synchronization problems need to be solved. Besides, Rokoko suite
shows some drifting effects, greater in lab conditions with many electromag-
netic sources nearby. Information fusion with optical sensing to help to correct
the drift is under development. The suite contains 19 IMU providing XYZ
spatial information as well as motion quaternions vectors (discarded in this
paper) at up to 25 body positions. For synchronization with the neural read-
ings, we carry out subsampling of the position readings to 10 Hz. We keep
the differences between positions at each sampling time, i.e. we use differen-
tial instead of instantaneous information. Hence we have up to 75 position
features each 0.1 s.

– Thirdly, specific computational modules are devoted to extract the correla-
tion between observed behavior and neural activity. Specific behaviors have to
be codified and calibrated in the observation hardware/software [7]. Machine
learning techniques are of paramount value for the automated interpreta-
tion of observation data. Characterization of the observation data, aka fea-
ture extraction, has been approached from a diversity of points of view.
For instance, fractal dimension has been used in [7] to characterize walk-
ing path tortuosity of aging person. Conditional random field models have
been exploited for human motion recognition [11], avoiding restrictive and
artificious independence assumptions. The application of innovative machine
learning includes deep learning techniques, such as the convolutional neural
networks (CNN) [1], or the spatio-temporal bags of words used by [3] for the
automated construction of ethograms from continuous video, recognizing the
behavior building blocks by an Adaboost trained classifier. In our work, we
have used a machine learning approach testing several classifiers which are
available at the scikit-learn Python package4. Namely, we have applied logis-
tic regression, nearest neighbors, linear SVM, gradient boosting (estimators
= 1000), decision trees, random forest (estimators = 1000), multilayer per-
ceptron (MLP) (alpha = 1), and naive bayes. We tried to predict the actual
activity state of the subject from several combinations of motion and neural
activity features.

3 Some Preliminary Results

To test our system we have designed a simple task. We want to discriminate
three activity states of the subject: standing, advancing forward, and advancing

4 https://scikit-learn.org/.

https://scikit-learn.org/
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Fig. 3. Precision of all classifiers for different combinations of Rokoko and Emotiv
EPOC+ features.

Fig. 4. Average precision over all classifiers for each combination of features

backwards. The dataset is well balanced as the time spent in each activity is the
same. We have repeated the process ten times with one subject. For validation
we follow a 50% holdout approach, repeated ten times, so we report the average
results of the holdout training and validation. The classification task is instanta-
neous, that is, we classify the activity at each time point independently. Hence,
all the data points conform the validation dataset. Figure 3 shows the plot of the
average holdout precision for each classifier tested and each one-to-one combina-
tion of rokoko data, including the rokoko data alone. It can be appreciated that
some classifiers (logistic regression, linear SVM, MLP, and naive bayes) give very
bad results when using only rokoko data. Another salient feature of the plot is
that all classifiers improve their results when some neural activity band is added
to the set of features. This effect is more notorious in Fig. 4 where we plot the
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Fig. 5. Precision of classifiers achieved with Rokoko combined with high-beta versus
high-beta and low-beta (denoted beta in the figure), versus all neural activity bands
(denoted Emotiv in the figure)

Fig. 6. Average over all classifiers of the precision achieved with high beta versus high-
beta and low-beta (denoted beta in the figure), versus all bands (denoted Emotiv in
the figure)

average of the results achieved by all classifiers over each combination of fea-
tures. It appears that high-beta is the neural activity band that produces the
best results when added to the rokoko motion features. Regarding classifiers,
it is apparent that random forest and gradient boosting are the ones provid-
ing best results. However, our interest is on the actual features selected. The
question already positively answered is “do neural activity features add some
information over motion capture, thus enhancing classifier performance?”. The
next question is “what is the optimal feature selection?”. Figure 5 shows the pre-
cision achieved by the classifiers under three conditions: adding only high-beta
band data, adding high-beta and low-beta bands (denoted beta in the figure),
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and adding all bands (denoted emotiv in the figure). The effect is unclear, as
adding all the bands improves the precision of the best classifiers, but decreases
on others. To summarize, we plot in Fig. 6 the average results over all classifiers.
The results are in favor of using the two beta bands as the most robust feature
selection. It seems that this selection is also well grounded on the interpretation
of the bands. Beta bands correspond to wake and conscious activity, therefore
are quite relevant for the activities performed. On the other hand, it must be
noted that even the theta band associated with deep sleep, has some information
regarding instantaneous classification of activity.

4 Concluding Remarks

Computational neuroethology has deep roots in computational models of brain
and behavior relations, but it is also deeply related to neuroscience search for
neural mechanisms and biological behavior analysis. It can be of great use in the
detailed quantitative analysis of the effect of treatments to patients suffering a
wide spectrum of brain related conditions. In this paper we have introduced a sys-
tem that is based on inertial motion capture and EEG recording. The devices are
wirelessly connected, which allows natural motion of the subjects. A preliminary
evaluation on a simple task is quite successful, showing that the combination of
both motion and neural activity information provides improved activity classifi-
cation capabilities. Future works will be aiming to adapt the system to various
experimental settings, so that it can be used for actual evaluation of treatments.
One potential setting is the evaluation of the impact of social robots on children
with special needs, specially children with autistic spectrum disorder.

Acknowledgments. This work has been partially supported by FEDER funds
through MINECO project TIN2017-85827-P, and project KK-2018/00071 of the Elka-
rtek 2018 funding program of the Basque Government
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Abstract. Bioinformatics pipelines dealing with analysis of sequences
of aminoacids are tricky. It is not easy to match the input and out-
puts of stand-alone applications that sometimes were developed for
quite different kinds of sequences. In this paper we propose a tool for
the guided and safe composition of pipelines to treat a specific kind
of sequences. This tool can easily extend to more general bioinfor-
matics setting. Cross-Linking Immuno Precipitation associated to high-
throughput sequencing (CLIP-seq) has been recently developed aim-
ing to uncover the RNA-protein interaction genome-wide. Specifically
PhotoActivable-Ribonucleoside-enhanced-CLIP (PAR-CLIP) has been
proposed to achieve single-nucleotide resolution. A critical step in the
analysis of PAR-CLIP sequences is peak calling. Specific methods pro-
pose probabilistic models based on its substitution properties, allow-
ing for a more accurate detection of RNA-protein interaction sites. The
pipeline construction tool proposed here can be used for systematic com-
parison of the effect of the choice of peak calling method.

1 Introduction

1.1 What Is PAR-CLIP?

RNA-binding proteins (RBPs) bind RNAs to regulate their fate, function, local-
ization or secondary structure, therefore they influence many biological processes
including cell apoptosis, growth, fate and differentiation. Cross-Linking Immune
Precipitation associated to high-throughput sequencing (CLIP-seq) has been
recently developed aiming to uncover the RNA-protein interaction genome-wide.
CLIP-seq protocol has many steps involving sample preparation, sequencing and
bioinformatics analysis. The main workflow of a CLIP bio-chemical protocol
starts with UV radiation of the cell or tissue culture, which induces covalent
crosslinks between RBPs and their bound RNAs. This is followed by immuno-
precipitation of the RBP-RNA complexes and partial RNase digestion to narrow
down the binding sites to appropriate sequencing and mapping lengths. Further
steps aim at stringent purification, including radioactive labeling, recovery by
c© Springer Nature Switzerland AG 2019
J. M. Ferrández Vicente et al. (Eds.): IWINAC 2019, LNCS 11486, pp. 327–336, 2019.
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SDS–PAGE, transfer to nitrocellulose membrane to abolish loose RNA frag-
ments, excision and proteinase K treatment to remove the RBP and recover
the trimmed RNA fragments. Finally, the fragments are reverse-transcribed and
their cDNAs are subjected to deep sequencing. The resulting sequencing data is
then analysed to obtain RBP sites which can be identified based on the mapped
read profiles.

PhotoActivable-Ribonucleoside-enhanced-CLIP (PAR-CLIP) [13,16] is an
experimental procedure based on next-generation sequencing (NGS) targeting
the RNA interaction sites of a given protein. To increase crosslinking efficiency,
cells are additionally supplemented with 4-thiouridine (4SU), and UV radiation
is applied at 365 nm instead of 256 nm. Interestingly, these modifications also lead
to a high number of thymidine to cytidine transitions (T => C) in the cDNA at
the crosslink sites, which can be exploited in a subsequent mutational analysis for
pinpointing the crosslink position, thus basically enabling PAR-CLIP to achieve
single-nucleotide resolution. PAR-CLIP has allowed new discoveries, such as the
role of Nrd1-Nab3-dependent transcription termination in the regulation of the
expression of hundreds of protein coding genes in yeast [21].

1.2 Contributions in this Paper

This paper presents a new tool for the composition of computational pipelines for
bioinformatics, specifically for the comparison of PAR-CLIP sequence analysis
alternatives. The need of such a tool became apparent while working in a previous
paper on the comparison of peak calling algorithms [10]. Besides, this paper
icludes a breief review of the most relevant computational proposals for peak
calling which have been applied over PAR-CLIP data. Section 2 gives an overview
of the PAR-CLIP data processing elements and its natural sequence. Section 3
gives an overview of peak calling algoritms that can be applied to PAR-CLIP
sequences. Section 4 describes some aspects of BIOTHINGS. Section 5 gives some
conclusions of the paper.

2 Data Processing General Schema

After high-throughput sequencing, the bioinformatics analysis workflow illus-
trated in Fig. 1 starts by a preprocessing aimed to filter out the low quality
and duplicate reads, and to map them onto the genome or the transcriptome
of reference. Afterward, to assess real signal over the noise background, the
reads are processed by peak-calling programs. Called peaks are further analyzed
for functional, structural and biochemical characterizations of the RNA–protein
interaction, including motif discovery, expression profile and gene ontology. Short
explanation of each step in de workflow follows:

1. Preprocessing: involves adapter removal, filtering raw data according to read
quality scores and collapsing reads with the exact sequence. While for the
adapter removal, specific programs have been developed such as cutadapt [6]
or Trimmomatic [3], for the quality filtering, usually bioinformaticians develop
ad hoc scripts.
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Fig. 1. General dataflow for CLIP data (extracted from [4])

2. Reads Mapping: Reads that survive the preprocessing steps are mapped onto
the reference sequences that can be the complete genome, the transcrip-
tome or sequences belonging to specific categories. The most common algo-
rithms used to perform this task are Novoalign (http://www.novocraft.com/
products/novoalign/), STAR [9], Bowtie [17], and RMAP [20].

3. Peak calling (Clustering): Assessing peaks is a central step of the analysis to
determine specific signal over the noise background for the identification of
real binding sites. The number of identified peaks increases with the sequenc-
ing depth because weaker sites become statistically significant with a greater
number of reads [19]. However, the optimal sequencing depth can only be
experimentally evaluated, as it depends on the noise background of the anti-
body. The most common strategy is to analyze distribution profiles to find
clusters of reads that belong to the same peak. This strategy is used by
different programs, including PIPE-CLIP [5], Pyicos [1] for all CLIP-seq pro-
tocol variants, and WavClusteR [7], PARalyzer [8], PARma [12], and BMix
[14] designed for PAR-CLIP data. PIPE-CLIP and Pyicos group the reads
based on positional overlap. To discriminate enriched read clusters over the
background, the peak-calling programs use different statistical models.

4. Motif discovery: Following the peak calling, the analysis mainly focuses on the
characterization of the RBP-RNA interactions, especially looking for possible
binding sequence signature(s), using a candidate screening or a de novo motifs
identification. For the candidate screening approach, programs like FIMO [15]
can be used to screen peak sequences for the identification of known RNA
binding motifs. If the user is looking for unknown RNA-binding motifs, a de
novo motif identification could be performed. For this task, two main parame-
ters should be calibrated before launching the analysis. The first parameter is
the nucleotide length of the motif. The second parameter to take into account

http://www.novocraft.com/products/ novoalign/
http://www.novocraft.com/products/ novoalign/
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is the so-called ‘background sequences’ that can be used as negative template
in which it is not expected to contain the enriched motif sequence(s).

5. Downstream analysis: The last step of CLIP-seq analysis involves functional
characterization of the target RNAs identified to provide clues about the
molecular function of the RBP(s) or the miRNA(s) of interest. Although not
always routinely updated, many resources have been developed for the func-
tional analysis of RBPs and miRNAs. For instance, miRonTop is an online
Java Web tool that integrates DNA microarrays or high-throughput sequenc-
ing data to identify the potential miRNA target mRNAs by complementary
between the seed and the 30 UTR sequences.

As illustrated in Fig. 1, there are some pipelines that deal with some of the
general process steps using specific solutions and applications. Our goal is to
easy the construction of such pipelines aiming to a fair comparison of different
solutions to the same bioinformatics processing tasks. An example are the peak
calling algorithms, which are critical in some aspects.

3 Algorithms for Peak Calling

If the CLIP experiment was performed for a specific RBP, the generated reads
should agglomerate in regions to which the RBP binds. Many reads appear
from unspecific binding and thus have to be discarded, which is done in the
process of peak calling. This task can typically be divided into two parts: one first
extracts potentially interesting peaks based on peak shape or height and then
filters the resulting peaks such that only sites enriched over a certain threshold
or background are kept. Once the peaks are identified, they can be quantified
and their statistical significance should be evaluated by comparing them to a
control experiment. Depending on the biological question and sample conditions,
scientists may need to tune the parameters of the different peak-calling programs
to find the best set to perform this task such as the P value and the minimal
number are significant.

3.1 BMix

BMix [14] is a probabilistic method which explicitly accounts for the sources of
noise in PAR-CLIP data and distinguishes cross-link induced T => C sub-
stitutions from low and high-frequency erroneous alterations in PAR-CLIP
cDNA sequencing reads. After alignment to the reference genome, the observed
nucleotide can either match or differ from the reference at each position in an
aligned read. In order to detect RNA-protein cross-link-induced T => C sub-
stitutions, BMix models for each position i in the genome where the genomic
reference ri is different from C, the probability of the observed T => C, A =>
C or G => C substitution. Denote xi as the sequencing coverage at position i, yi
as the number of times the reference nucleotide is substituted with C in all the
reads covering position i, and latent random variable zi ∈ {1, 2, 3} corresponding
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to the three possible reasons that can explain the observed C nucleotide at locus
i on the genome. Specifically, for reference ri = T positions, zi = 1 refers to
background substitutions, zi = 2 corresponds to a sequence variant, and zi = 3
refers to an RNA-RBP cross-link. For reference ri = A or ri = G positions, only
zi = 1 and zi = 2 are possible. Denote ε as the probability of a substitution due
to sequencing noise. Thus, the probability of substitution at sequence variant
loci becomes 1 − 3ε. Finally, at cross-link loci (zi = 3), which can, at the same
time, be affected by sequencing errors, T => C substitutions occur with prob-
ability θ = (1 − γ) ε + (1 − 3ε) γ where γ corresponds to the probability of a T
nucleotide to be mutated to C following photo-activation and cross-link during
PAR-CLIP. The probability of an observation is:

P ((xi, yi) |ri = T ) =
3∑

i=1

P ((xi, yi) |zi, ri = T ) P (zi |ri = T ) (1)

Model parameters can be estimated by likelihood maximization. The classifi-
cation of each T locus is done choosing the class with maximum a posteriori
probability.

3.2 PARalyzer

The rationale of PARalyzer [8] is to examine the pattern of T => C conversions
in order to spot, with high confidence, RNA–protein interaction sites. A kernel-
density-based classifier is used to characterize crosslinked regions, identified by T
=> C conversions (the signal), against not crosslinked ones, characterized by the
absence of T => C conversions (the background). Class-specific densities (one
for the signal and one for the background) are assessed by employing a Gaussian
kernel density estimator with globally fixed precision parameter λ = 3 that, for
each reference T nucleotide, considers the number of T => C conversions and the
number of non T => C conversions in the aligned reads. To exploit available
read data in an effective way, PARalyzer utilizes relatively lenient alignment
parameters allowing reads to be as short as 13 nucleotides after adapter stripping,
and a read may contain up to 2 mismatches restricted to T => C conversions.
Nucleotides within the read groups that maintain a minimum read depth, and
where the likelihood of T => C conversion is higher than non-conversion, are
considered interaction sites.

WavClusteR
WavClusterR [7,18] is an R implementation of peak calling procedures for
PAR-CLIP data. Let A = A,C,G, T be the nucleotide alphabet and S =
(g, r) |g, r ∈ A&g �= r be the set of substitutions of any base g in the refer-
ence genome to any other base r contained in the already mapped read. The
relative substitution frequency (RSF) can be computed as x̂s,i = ys,i

zi
, s ∈ S,

where ys,i indicates the total number of observed substitutions s at position i
and zi represents the total coverage at position i. At any position the number
of substitutions can be regarded as a independent binomially distributed ran-
dom variables ys,i ∼ Bin(zi, xs,i) parametrized by sample size zi and probability
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xs,i. Consequently, x̂s,i represents the maximum likelihood estimate (MLE) of
xs,i. Since the variance of the MLE is a function of the coverage it was required
that zi ≥ c , where c = 20 was chosen in this study, as regions of low cover-
age will give rise to MLE with high variance. Considering all genomic positions
exhibiting a particular substitution, the parameter xs will be distributed accord-
ing to some probability density function (PDF) ps, xs ∼ ps. Therefore, ps can
be expressed as mixture of two components ps (x) = λs,1ps,1 (x) + λs,2ps,2 (x),
subject to λs,k ≥ 0 and

∑
k λs,k = 1. Here, the first component accounts for

non-experimentally induced substitutions, whereas the second component mod-
els experimentally induced substitutions. The estimation of the PDFs is carried
out following a Bayesian approach that uses a beta prior.

Binding sites identified by PAR-CLIP appear as narrow regions exhibiting
jump discontinuities and often localize within broader regions of non-zero cov-
erage. Geometric properties of the coverage function at binding sites can be
used for two purposes: (i) proximal binding sites can be resolved and regions
exhibiting low signal-to-noise ratio can be excluded, referred to as peak calling
and (ii) the coverage function at high confidence interaction sites can be utilized
to determine cluster boundaries. Peak calling is performed within the time-scale
domain using the continuous wavelet transform (CWT) of the coverage function.
Time corresponds to the reference genome position. Prior to peak calling, ridges
are identified as local maxima of CWT coefficients connected across scale dimen-
sion. The set of all ridges constitutes the branches of a tree, employed for peak
detection, i.e. branches are pruned starting from small scales until a specified
signal-to-noise ratio is exceeded. The time coordinate corresponding to the scale
coordinate closest to zero is returned as peak location.

PIPE-CLIP
The aim of PIPE-CLIP [5] is to provide a public web-based resource to process
and analyze CLIP-seq data. It provides a unified pipeline for PAR-CLIP, HITS-
CLIP and iCLIP, with the following features: (1) user-specified parameters for
customized analysis; (2) statistical methods to reduce the number of false pos-
itive cross-linking sites; (3) statistical significance levels for each binding site
to facilitate planning of future experimental follow-ups; and (4) a user-friendly
interface and reproducibility features.

To identify enriched peaks, the adjacent mapped reads are clustered together
if they overlap each other by at least one nucleotide. The clusters are used for
further analysis. Let ri denote the total number of reads within the ith cluster
of length si. Longer clusters tend to have greater read counts, so the variable si
needs to be used to adjust the length effect on modeling ri. Given that all clus-
ters receive at least one read, PIPE-CLIP proposes a model based on the zero-
truncated negative binomial (ZTNB) likelihood. We assume the ZTNB regression
of r on s with mean μs and dispersion θ−1

s . The length effect is incorporated
into the model by link functions for μs and θs as follows: log μs = α + log f (s)
and log θs = β +log f (s) where f(s) is used as an explanatory variable that rep-
resents the functional dependence of the read count on the cluster length. This
model allows us to test whether a cluster is significantly enriched by reads, while
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adjusting the span of the cluster. For clusters of length si and read count ri,
the P-value is defined as the probability of observing read counts ≥ ri. That is,
the P-value = P (r ≥ ri|s = si). For the model inference, first we estimate f(s)
using the local liner regression of r on s. Then, the estimate f̂(s) is plugged into
the ZTNB regression as a predictor. To obtain maximum likelihood estimates
(MLEs) of α and β, the conditional maximization method is implemented along
with the Fisher’s scoring method for α and the Newton-Raphson method for β.
False discovery rates are calculated using the Benjamin- Hochberg procedure [2].

4 BIOTHINGS

We propose a Python tool that enables the seamlessly construction of PAR-CLIP
sequence treatment pipelines. The first version of this tool has been published
in zenodo [11] and development continues in github. Figure 2 shows the general
procedure for the creation of the pipeline, which starts creating an empty process
graph, to which new elements are added. If the compilation of the entire pipeline
is correct the user may proceed to pipeline execution. If it is not correct, the user
needs to come back to pipeline definition. The process of adding new modules
to the pipeline is illustrated in Fig. 3, where some natural order of insertion is
recommended (yellow line) preserving the order explained in Fig. 1, i.e. prepro-
cessing followed by mapping followed by peak calling. Some comparison modules
can be also included that allow the quantitative comparison between approaches.
Finally, Fig. 4 shows an example pipeline produced with BIOTHINGS. There a
preprocessing step uses cutadapt, the mapping process uses bowtie, and there are
three alternative peack calling algorithms (Bmix, WavclusteR, and Paralyzer) to
be tested and compared by the final two modules that measure the differences
in hits.

Fig. 2. General processing steps for the construction of a pipeline
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Fig. 3. Adding new modules to the pipeline

Fig. 4. Example pipeline

5 Conclusions

Bioinformatics pipeline creation is a tricky process. We propose a tool that helps
to put together the diverse pieces ensuring the seamlessly integration into a work-
ing pipeline. The code has been published in its early stage [11]. Besides, we have
revised the definition of four approaches to peak calling in PAR-CLIP data. Each
of these approaches propose a model for the probability of the matching reads
to the reference genomic data taking into account the number of substitutions,
and specifically the T => C substitutions, which are induced by the PAR-CLIP
protocol. The comparison of these peak callling processes is a good example of
the usefulness of the proposed tool.

Acknowledgments. This work has been partially supported by FEDER funds
through MINECO project TIN2017-85827-P.
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Abstract. Learning from existing data allows building models able to
classify patterns, infer association rules, predict future values in time
series and much more. Choosing the right features is a vital step of the
learning process, specially while dealing with high-dimensional spaces.
Autoencoders (AEs) have shown ability to conduct manifold learning,
compressing the original feature space without losing useful information.
However, there is no optimal AE architecture for all datasets. In this
paper we show how to use evolutionary approaches to automate AE
architecture configuration. First, a coding to embed the AE configura-
tion in a chromosome is proposed. Then, two evolutionary alternatives
are compared against exhaustive search. The results show the great supe-
riority of the evolutionary way.

Keywords: Deep learning · Autoencoder · Optimization ·
Evolutionary

1 Introduction

The performance of many machine learning methods mostly depends on the
quality of the data patterns. Hence the prevalence of feature engineering (FE) [7]
techniques in late years. Feeding the training model with good features greatly
improves its predictive ability. This is specially important with high-dimensional
and other nonstandard problems [4]. The subset of features can be picked up from
the original set of attributes through feature selection [10] procedures. A new
reduced set of features holding more information can also be obtained [11], e.g.
relying on algorithms such as Principal Component Analysis (PCA) [13].

Representation learning [2] is an inherent capability of numerous artificial
neural networks (ANNs). Many of them generate this representation as an inter-
mediate step in the full learning process, such is the case of two Deep Learning
(DL) models, Convolutional Neural Networks and Deep Belief Networks. There
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are a plethora of DL applications in the neuroscience field, and the high dimen-
sionality problem is usually present in them [17].

In this context Autoencoders (AEs) [5] are an interesting tool, since they
are mostly devoted to learn new data representations. AEs work in unsuper-
vised fashion, trying to reconstruct the input into the output the best they can
while preserving certain restrictions in the coding (hidden) layer. The benefits of
AEs compared to classic alternatives such as PCA, specifically in brain disease
diagnosis, have been also demonstrated [15].

As usually happens with most ANNs, adjusting the architecture of an AE is
not an easy work. There are too many options to perform an exhaustive search
of parameters. Therefore, the design frequently is entrusted to the experience of
the practitioner or researcher. However, there is no a best AE architecture to all
cases as the traits of the data to be processed vary.

Our proposal is to lean on evolutionary approaches (EAs) [1], that usually
provide good results in many optimization problems, to design the best AE for
every specific data. The main contributions of this paper are the introduction of
an scheme to represent the AE architecture as a chromosome and the conducted
experiments. These demonstrate that evolutionary methods are able to find good
AE configurations in acceptable time.

The rest of this paper is structured as follows. Basic concepts related to FE,
AEs and EAs are provided in Sect. 2. Section 3 describes the proposal, detailing
the chromosome codification, the EAs to be used and their configuration. The
conducted experimentation and its results are covered in Sect. 4. Some final
thoughts in Sect. 5 close this work.

2 Preliminaries

This section provides a concise introduction to a few essential concepts, including
how FE has been faced until now, what AEs are and the foundations of EAs.
Some basic references useful for further study in these fields are supplied.

2.1 Feature Engineering

Feature engineering is a manual or automated task aimed to obtain a set of fea-
tures better than the original one. Feature selection [10] consists in choosing a
subset of attributes while maintaining most useful information in the data. It can
be manually performed by an expert in the field, but mostly is faced with auto-
mated methods based on feature correlation [12] and mutual information [16].
By contrast, feature extraction methods transform the original data features
to produce a new, usually reduced, set of attributes. Popular algorithms to do
this are PCA and LDA, whose mathematical foundations are relatively easy to
understand.

More advanced studies work with the hypothesis that the distribution of
variables in the original data lies along a lower-dimensional space, usually known
as manifold. A manifold space works with the parameters that produce the data
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points in the original high-dimensional space. Finding this embedded space is the
task of manifold learning [3] algorithms. Unlike PCA or LDA, manifold methods
apply non-linear transformations, so they fall into the non-linear dimensionality
reduction [14] category.

2.2 Autoencoders

Autoencoders, as detailed in [5], are ANNs having a symmetric architecture, as
shown in Fig. 1. The input and output layers have as many units as features there
are in the data. Inner layers usually have fewer units, so that a more compact
representation of the information hold in the data is produced. The goal is to
reconstruct the input patterns into the output as faithfully as possible.

Fig. 1. Classic architecture for an AE. Black nodes denote a 2-variable encoding layer.

Although AEs have many practical applications, the most common one is to
perform feature fusion [5], searching the manifold in which the parameters to
rebuild the data are found. AEs can be configured with a variable amount of
inner layers, each of them having different lengths. The proper architecture will
mostly depend on the complexity of the patterns to be reconstructed and the
restrictions imposed by the codification layer.

2.3 Evolutionary Optimization

Finding the best parameters to tune a machine learning model is an uphill bat-
tle. Performing a grid search through an internal validation process is an usual
approach. However, it is useful only for limited sets of parameters taking known
ranges of values. Evolutionary algorithms [8] have been used to optimize hyper-
parameters for many years, for instance for support vector machines [9] and more
recently for deep learning networks [18].

Even though EAs have been also used to optimize ANNs, and even AEs,
most of the proposals have been focused on learning the weights linked to each
connection. By contrast, the proposal described in the following section is based
on EAs to evolve the AE architecture, while weights are learned through the
usual back-propagation algorithm.
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3 Learning AE Configuration Through Evolution

Next, the approach used to code an AE configuration in a chromosome and the
evolutionary methods used to search good configurations are described.

3.1 Coding AE Structure in a Chromosome

Evolutionary algorithms usually work with binary or real-valued genes. A set
of genes builds a chromosome or individual of the population. In our case each
chromosome will code the configuration of an AE. However, an integer gene
representation is used rather than binary or real-valued genes.

The chromosome will be made up of 14 genes, as shown in Fig. 2. The number
of each gene is shown above, their names inside and just below the range of values
that can be assigned to them. The purpose of each gene, as well as the meaning
of its values, are portrayed in Table 1.

Type Layers Units per layer Activation function per layer Loss

4131-76-321

[1,6] [0,3] [1,f] [1,8] [1,5]

Fig. 2. Chromosome genes, name and interval of values they can get.

Table 1. Purpose of each gene and description of their values.

Name Purpose Values

Type Sets the type of AE to be used (1) Basic, (2) Denoising, (3)
Contractive, (4) Robust, (5) Sparse,
(6) Variational

Layers Number of additional layers in
coder/decoder

(0) Only a coding layer, (1–3)
Additional layers in both coder and
decoder

Units Set the number of units per layer,
with f being the amount of features in
the dataset

The first integer (gen 3) configures the
number of units in the outer layer,
while the last one (gen 6) sets the
coding length

Activ. Activation function to use in each
layer, both for the coder and decoder

(1) linear, (2) sigmoid, (3) tanh, (4)
relu, (5) selu, (6) elu, (7) softplus, (8)
softsign

Loss Loss function to evaluate during fitting (1) Mean squared error, (2) Mean
absolute error, (3) Mean absolute
percentage error, (4) Binary
crossentropy, (5) Cosine proximity
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As can be easily seen, the search space is huge. Excluding genes 3–6, whose
values would vary depending on the number of features in the dataset, there
are more than 250 million combinations: Type × Layers × Activation7 × Loss.
For small datasets having only a few dozens of attributes, this number will
grow to several billions, reaching the trillions of solutions or even more for high-
dimensional datasets. Evaluating all those solutions to find the best one is cur-
rently unfeasible. Therefore, searching the optimal AE configuration will be not
always possible by brute force. However, we could find good enough solutions
through optimization mechanisms based on evolution strategies.

3.2 Evolutionary Approaches

We propose two different evolutionary ways of attacking the outlined prob-
lem. Both of them will use the former chromosome representation. These two
approaches are:

– Genetic algorithm (GA). A classical genetic algorithm, in which a popu-
lation of individuals evolves through a crossover operator, to give rise to new
ones, and to which a mutation operator is applied with a certain probability.

– Evolution strategy (ES). An aggressive solution-seeking procedure, work-
ing with a few individuals who give rise to new ones exclusively through
mutation.

Table 2 summarizes the main parameters used to run these methods. Each
gene in the chromosome is mutated with a probability of 1/15, value based on
the chromosome length itself. Elitism is used in the GA to preserve the tenth
percent of individuals having better fitness.

For the GA, crossover points have been established according to the diagram
in Fig. 2. This allows the two individuals acting as parents to interchange several
of their genes to produce childhood.

Table 2. Main parameters of the evolutionary algorithms.

Parameter GA ES

Population size 50 4

Iterations 100 500

Prob. mutation 1/15 1/15

Elitism (individuals) 5 NA

Termination cost 0 0

Regarding the fitness function that will decide the quality of the solutions,
it will be computed as shown in (1), where trainloss is the reconstruction loss
produced by the AE with training data, Layers is the number of additional
hidden layers (gen 2), Unitscode is the size of the codification layer (gen 6),
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and α is a coefficient setting the level of penalization applied according to the
complexity of the AE.

fitness = trainloss + α(Layers × Unitscode) (1)

4 Experiments

In order to test the ability of evolutionary algorithms to find good solutions in a
reasonable time, two experiments have been carried out. The first one is a small-
scale experiment with the sonar dataset, while the second is a large-scale one
using the well-known MNIST dataset. Exactly the same hardware1 and software2

configuration has been used in both cases. The high-level interface provided by
the ruta [6] package has been used to configure the AEs. The penalization factor
has been set as α = 1 × 10−4, so that simpler architectures are preferred over
complex ones for AEs with similar performance.

Three runs are made for each experiment. One will use the GA to look up
for a solution, other will rely on the ES approach, and the last one will try an
exhaustive search. In the latter case the experiment is run for 24 hours, since it is
impossible to evaluate all existing configurations. Publicly available training/test
partitions were used.

4.1 Small-Scale Case Study

As it happens with all neural networks having several layers, adjusting AE
parameters through training is a time consuming process. The more units there
are in these layers the longer it will take. Because of this our first experiment
is small-scale with the sonar dataset, having only 60 input features. This will
be the number of units in the input and output layers, as well as it would be
the maximum amount of units in the hidden layers. The goal is to obtain a
lower-dimensional codification preserving enough information to reconstruct the
original data.

Having at most 60 units per layer implies that there will be 3.26×1015 possible
AE configurations. Assuming we were able to evaluate one AE per millisecond
in a machine running 24/7, we would need > 100 000 years to find the optimal
solution.

The plots in Fig. 3 give a clear glimpse of each algorithm behavior. The top
row shows the quality3 (Y axis) of evaluated solutions by each approach through
the running time (X axis). The GA tests some bad solutions at the beginning
(left), but it quickly focuses on the better ones. ES only uses mutation and it
produces some bad solutions from time to time, but most of them are quite
good. By contrast, the exhaustive search is not guided by any strategy, so quite
heterogeneous results are obtained.
1 1 PC, CPU Core i5, 16 GB RAM, GPU Nvidia RTX-2080.
2 GNU/Linux, Tensorflow and Keras.
3 Measured by the reconstruction mean squared error expressed as percentage.
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Fig. 3. Analysis of results from the Sonar dataset.

543210

0
2

4
6

8
10

Sonar

Elapsed time (hours)

%
 e

rr
or

Exhaustive
Genetic
Evolution

Fig. 4. Comparative convergence of three approaches on the Sonar dataset.

The bottom row in Fig. 3 shows the same data but with all tested configura-
tions sorted by committed error. As can be seen, both the GA and the ES have
most of the configurations close to the baseline of the Y axis (% error), while
the exhaustive search is not able to reach this point.

In addition to the quality of the solutions, it is also interesting to know how
quickly each method converges to the best solution they are able to find. This
is represented in Fig. 4. It can be noted that ES is the first method to complete
its work. It is quite fast at the beginning, mutating the initial bad solutions
into others much better. The GA takes a little more time and it is able to find
solutions a little more precise than the ES. The convergence of the exhaustive
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search is too slow, and the improvement achieved from the 5th hour (period
presented in this plot) until the end of the 24th hour was negligible.

4.2 Large-Scale Case Study

The MNIST dataset, containing handwritten digit images, was used for the large-
scale study. The images are 28×28 pixels, so it has 784 input features. Following
the former reasoning for sonar, in this case we have 9.51×1019 potential config-
urations. It will take more than 3 billion years of computation time to evaluate
all of them.
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Fig. 5. Analysis of results from the MNIST dataset.
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Solutions tested through time and all solutions sorted by quality have been
represented in Fig. 5. Once again, the GA forgets bad solutions faster than the
ES does. Moreover, it seems that the ES takes longer to reach the same baseline
than the GA. The exhaustive approach, with its non-guided search, explores lots
of bad solutions through time.

The convergence plot for this dataset (see Fig. 6) is quite similar to that
of sonar. Once again, the ES quickly reduces the error and it achieves better
solutions than the GA in less time. The GA spends more time, and eventually
it seems to reach the same performance as the ES but several hours later. As it
would be expected after analyzing its behavior in Fig. 5, the exhaustive search
almost stalled in the same error level for all the running time.

4.3 Summary of Results

The exact running time, number of evaluated configurations and error percentage
for the best one are provided in Table 3. From the analysis of these results the
following consequences can be drawn:

– The non-guided exhaustive search evaluates a larger amount of AE config-
urations, but it is not able to reach the reconstruction performance level of
GA and ES.

– GA and ES almost achieve the same error levels. The GA returned a slightly
better configuration for sonar, while the ES found the best one for MNIST.

– Although it starts with worse solutions than the GA, the ES takes less time
to hit at the same level.

Table 3. Summary of results.

Approach Running time Configurations Error (%)

Sonar Exhaustive 24 h 21 262 7.093

Genetic algorithm 3h 21m 4 505 1.180

Evolution strategy 1 h 16m 4 001 1.553

MNIST Exhaustive 24 h 7 153 6.084

Genetic algorithm 10 h 39m 4 505 0.607

Evolution strategy 4 h 40m 4 001 0.560

Overall, if we are willing to sacrifice a minimal performance advantage in
some cases, the ES seems the best approach to find a good AE configuration for
any dataset, even in cases as MNIST with hundreds of features and several dozens
of thousands of instances.
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5 Final Thoughts

AEs are a useful tool to perform manifold learning, but setting the most appro-
priate AE architecture for every case is a difficult task. Internal cross-validation
is an usual approach for tuning hyper-parameters. However, when the structure
of the AE has to be adjusted the search space is huge. Therefore, more powerful
ways of facing this problem are needed.

In this paper we propose the use of EAs to find the best AE architecture for
each dataset. This may not be the optimal, but it is the best that can be found
in a reasonable time. The conducted experiments demonstrate that ES and GA
are competitive methods to accomplish the job.
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Abstract. Electroencephalography (EEG) signals provide an important
source of information of brain activity at different areas. This information
can be used to diagnose brain disorders according to different activation
patterns found in controls and patients. This acquisition technology can
be also used to explore the neural basis of less evident learning disabil-
ities such as Developmental Dyslexia (DD). DD is a specific difficulty
in the acquisition of reading skills not related to mental age or inade-
quate schooling, whose prevalent is estimated between 5% and 12% of
the population. In this paper we propose a method to extract discrim-
inative features from EEG signals based on the relationship among the
spectral density at each channel. This relationship is computed by means
of different correlation measures, inferring connectivity-like markers that
are eventually selected and classified by a linear support vector machine.
The experiments performed shown AUC values up to 0.7, demonstrating
the applicability of the proposed approach for objective DD diagnosis.

Keywords: Periodogram · EEG · Connectivity ·
Principal Component Analysis · Dyslexia

1 Introduction

Developmental dyslexia (DD) is a learning disability, specifically related to the
acquisition of reading skills. Its prevalence is estimated between 5% and 12% of
the population [11], with an important social impact. Furthermore, it may deter-
mine school failure. Usually, DD is diagnosed using specifically designed tests to
measure different behavioural variables involved in the reading process. Never-
theless, the results of the tests depend on the motivation and the mood of the
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child when performing the benchmark tasks, which implies an important source
of error in the final diagnosis. On the other hand, early diagnosis allows starting
specific learning tasks to leverage the intellectual and personal development of
the affected children [15]. This way, objective diagnosis methods, based on bio-
logical markers play a decisive role not only to improve the diagnosis accuracy
but also in the best knowledge of the biological basis of DD.

Recent models of neuronal speech coding suggest that dyslexia originates
from the atypical dominant neuronal entrainment in the right hemisphere to the
slow-rhythmic prosodic (delta band, 0.5–1 Hz), syllabic (theta band, 4–8 Hz) or
the phoneme (gamma band, 12–40 Hz), speech modulations, which are defined
by the time of increase in amplitude (i.e., the envelope) generated by the speech
rhythm [2,3]. Thus, we compared the cortical entrainment to a modulated white-
noise at a fixed rate in the delta (2 Hz). In a sample composed of 7 years old
children, listened to stimuli obtained by rhythmically modulating the amplitude
(AM) of white-noise sound either in the delta, theta and gamma band.

Machine learning, e.g. classification models, has been extensively for signal
processing [4]. In EEG, the classification of spectral power features is widely doc-
umented [1,17]. In this regard, functional connectivity could reveal new patterns
in the EEG spectrum. Functional connectivity analysis was originally applied in
neuroimaging [10] and progressive extended to other fields such as EEG [6,12,13].
It revealed that the co-variances between the signals acquired at each region of
the brain (e.g., EEG or the BOLD activation in fMRI) were indicative of the
underlying neural circuitry, supporting the modelling of the brain as a network.

In this proposal we assume that the connectivity of the spectral density esti-
mation acquired at each electrode under a 2 Hz auditory stimulation could be
indicative of differences in the brain function of children affected with dyslexia
and those not affected at all. To do so, we built a system composed of a spectral
estimator (via a modified Welch’s method), the computation of several connec-
tivity measures (that is, correlation, covariance and precision -also known as
inverse covariance-) and a further reduction of the features by using Principal
Component Analysis (PCA). These last features are then analysed and classified
using a Support Vector Classifier (SVC).

2 Materials and Methods

2.1 EEG Dataset

The present experiment was carried out with the understanding and written
consent of each child’s legal guardian and in the presence thereof. Forty-eight
participants took part in the present study, including 32 skilled readers (17
males) and 16 dyslexic readers (7 males) matched in age (t = −1.4, p > 0.05).
The mean age of the control group was 94, 1 ± 3.3 months, and 95, 6 ± 2.9
months for the dyslexic group. All participants were right-handed Spanish native
speakers with no hearing impairments and normal or corrected-to-normal vision.
Dyslexic children in this study had all received a formal diagnosis of dyslexia in
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the school. None of the skilled readers reported reading or spelling difficulties or
had received a previous formal diagnosis of dyslexia.

In this work, we only used data from children listening to AM white-noise at a
fixed rate in the delta/prosodic (2 Hz) band. We proceeded with the elimination
of ocular and non-ocular artifacts, and a number of 5-sec segments were obtained
for each subject. Neither averaging nor grand averaging was used.

2.2 Spectral Estimation

In order to estimate the spectral density of each subject’s signals, we applied
a modification of the Welch’s method [16], a robust estimator which improves
the standard periodogram by reducing the noise, but at the cost of reducing the
spectral resolution.

In the original method, the signal is divided into different overlapping seg-
ments. Then, a modified periodogram is computed for each windowed segment,
and the resulting periodograms are averaged. Here, we computed the modified
periodogram over each subject’s 5-sec segment. Here, the ‘Hanning‘ window is
used, and then the average periodogram per subject is used as feature for com-
puting the spectral connectivity in the following steps.

2.3 Connectivity Features

When assessing connectivity in neuroimaging or EEG [12,13], three measures
appear consistently: correlation, covariance and precision. In this work, we use
the Ledoit-Wolf shrunk covariance estimator [7] in order to compute all these
three measures. The shrinkage overcomes some of the pitfalls of empirical covari-
ance estimators, which frequently fail at estimating the eigenvalues of the covari-
ance matrix, resulting in problems to obtain the inverse covariance. The shrink-
age can be defined mathematically as a simple convex transformation:

ΣS = (1 − δ)S + δF (1)

in which the ΣS is the shrunk covariance, δ is the amount of shrinkage (con-
trolling a bias-variance trade-off), S is the sample covariance. F is a highly
structured estimator whose diagonal elements fii are the same as those of S,
fii = sii and the rest are defined as fij = r̄

√
siisjj , where r̄ is:

r̄ =
2

(N − 1)N

N−1∑

i=1

N∑

j=i+1

(
sij√
siisjj

)
(2)

Then, the shrinkage parameter δ is automatically selected using the Ledoit-Wolf
formula [7].

The covariance ΣS is directly estimated and the precision is defined as its
inverse. Finally, the correlation R is obtained from the covariance matrix as:

R = ΣSdd′ where d =
1√

diag(ΣS)
(3)
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2.4 Principal Component Analysis

Principal Component Analysis (PCA) is a well known technique for feature
reduction in many studies [5,8]. It intuitively defines a new space in which each
dimension (better known as component) explains the maximum variance in the
data; the second will account for most of the remaining variance and so on. These
components are meant to be uncorrelated, and the coordinates of a dataset in
the new space can be computed as:

S = XW (4)

where S are the K × M set of new coordinates, X is the original data matrix
(containing K samples of length N) and W is the basis of the new space, a
N × M matrix whose columns contains the so-called ‘principal components‘.
An efficient and popular way of computing the PCA is via the Singular Value
Decomposition (SVD) of the data matrix X.

The feature reduction is then achieved via a truncated reconstruction, in
which the C first components (ranked by their eigenvalues) are retained, which
generates a new set SC of size K × C where C is small:

SC = XWC (5)

where SC is a truncated estimate of the dataset in the PCA space, containing
K samples of C features, and WC contains only the C first columns of W.

2.5 Experimental Setup and Evaluation

Two models will be tested in this work:

– A baseline model, in which we estimate the periodogram, and then the
connectivity features, but they are directly fed to a linear Support Vector
Classifier (SVC) [14].

– The PCA+SVC model, similar to the baseline, but in which PCA is applied
to reduce the spectral feature vector and then, the reduced vector is used as
input in the SVC.

In order to evaluate the ability of system in detecting dyslexia, we have used
a leave-one-out cross-validation procedure. It estimates the generalization ability
of the classifier by training the system with all but one of the feature vectors,
and then estimates the class of the one remaining. It is important to note that
in the PCA+SVC model, the whole PCA is estimated over the training set, not
the whole dataset. By repeating this procedure for all subjects, we obtain the
performance of the system.

We have used the following classification performance metrics: accuracy, sen-
sitivity, specificity, balanced accuracy, precision and F1, all derived from the
confusion matrix, and additionally, the area under the Receiver-Operating Char-
acteristic (ROC) curve (AUC). To compare between different features, we have
also plot the ROC curve at the operation point.
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3 Results and Discussion

3.1 Classification Results

To evaluate the performance of our EEG-based dyslexia detection system, we
have obtained several performance measures as stated in Sect. 2.5. The system
combines spectral connectivity analysis in order to extract features from the
EEG signals, and then performs PCA to reduce the feature space. Since the
number of PCA components is key in this task, we have tested the performance
of the model (via AUC) when varying the number of components C for each of
the connectivity features.

Fig. 1. Evolution of the performance when varying the number of components in the
PCA decomposition.

In Fig. 1, we depict the evolution of the AUC when increasing the number of
components C in the model. The three features vary in their behaviour. Covari-
ance has a relatively large range of components in which the performance is
relatively high (between 2 and 20 components), standing out clearly for 7 and
8. For its part, correlation only starts to increase performance after 13 compo-
nents and then remaining stable, but small. Finally, precision achieves its best
performance after 16, and substantially degrades after 20 or so.

Since the number of components is related to the variability of the dataset,
the behaviour is coherent with what was expected. Correlation seems not to
have significant information for dyslexia diagnosis, regardless of the number of
components used. However, covariance and precision, both of which have been
extensively used in connectome analyses, achieve large performance. Covariance
needs much less components (8) to achieve a maximum, whereas precision needs
some more, indicating that there is more variability in the precision than in the
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covariance matrices. In order to continue with the analysis we will use 45, 8 and
17 PCA components for correlation, covariance and precision respectively.

For this values we obtain the performance displayed at Table 1, where it is
compared with the baseline system (as commented before, the same system with
no PCA reduction).

Table 1. Performance of the baseline model compared to the PCA+SVC system.

Feature C AUC CR Sens. Spec. Prec. F1 Bal-Acc

Correlation - 0.494 0.520 0.318 0.679 0.497 0.388 0.498

Covariance - 0.575 0.600 0.400 0.733 0.600 0.480 0.567

Precision - 0.522 0.560 0.375 0.731 0.582 0.456 0.553

Correlation 45 0.511 0.580 0.333 0.686 0.515 0.405 0.510

Covariance 8 0.750 0.680 0.500 0.800 0.714 0.588 0.650

Precision 17 0.748 0.760 0.667 0.789 0.760 0.710 0.728

Fig. 2. Comparison of the performance of the three spectral connectivity features at
the operation point (where B is the excitation band -2Hz- and C is the number of PCA
components).

From the table we can infer that the introduction of the PCA model gener-
ally improves the performance of the system, but more substantially with the
covariance and precision features. It particularly improves the sensitivity of all
systems, which one of the main problems in an imbalanced dataset. The balanced
accuracy (average of sensitivity and specificity) is therefore also higher. So we
can conclude that summarizing the variability within the connectivity features
has significant effects on the performance, especially in the case of correlation,
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Fig. 3. Comparison of the average of the connectivity matrices per group and feature
under the same scale.

when the feature reduction is large and the information is key. To obtain a more
detailed view of this comparison, the ROC curves of these combinations (for the
baseline and PCA+SVC model) are provided in Fig. 2.
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Fig. 4. Comparison of the average of the connectivity matrices per group and feature
under the same scale.

3.2 Visual Analysis of the Differences

In order to provide a further understanding of the differences between classes,
we have computed the average connectivity matrix per group for each of the
spectral connectivity features. These are displayed at Fig. 3.

In that figure we observe what we already saw in the classification results.
There are few differences between the average correlation matrices, which is con-
sistent with the small classification performance of this feature. However, there
are significant differences between the covariance matrices that can explain why
these features lead to larger performance. In the case of the precision matrices,
the differences are large but in very few places, mainly due to their sparsity.

Finally, to model the separability of the classes in the PCA space, we focus
on the ‘precision’ matrices. Since they stand for the sparse inverse covariance
in many cases, the variability in these matrices could account for relevant inter-
relations between the spectral density of the different electrodes. Therefore, in
Fig. 4 we display all subjects in the database in the PCA space. Note that only
two components are visualized (of all 17 which were used), and they were selected
by means of the separability, modelled via a Mann-Whitney-Wilcoxon U-Test [9].

In Fig. 4 we observe that subjects are well separated via components 2 and
13. Component 13 weights many links, and its analysis might be long. But com-
ponent 2 provides the better separability, and highlights mainly two connections:
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CP1 to Fz, that connects an electrode in the occipital lobe to the frontal lobe,
and PO9 to PO10, which corresponds to a bilateral symmetric connection.

4 Conclusions

Electroencephalography (EEG) has been key to study many kinds of brain disor-
ders and neurological diseases. In this work, we analyse a series of EEG signals in
order to prove their ability in the differential diagnosis of Developmental Dyslexia
(DD). To do so, we propose a method to extract a series of discriminative fea-
tures from the raw EEG signals, based mainly on the spectral density computed
at each channel of the device. The relationship between these measures, using
correlation-like measures, allowed to extract a series of spectral connectivity fea-
tures that could serve as a biomarker for DD. After further reducing the feature
space using Principal Component Analysis (PCA), we analysed the performance
of a classifier, which obtained AUC values up to 0.7, demonstrating the applica-
bility of the proposed approach for objective DD diagnosis.
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selection by multi-objective optimisation: application to network anomaly detec-
tion by hierarchical self-organising maps. Knowl.-Based Syst. 71, 322–338 (2014)

5. Illán, I., et al.: 18F-FDG PET imaging analysis for computer aided Alzheimer’s
diagnosis. Inf. Sci. 181(4), 903–916 (2011)

6. Lafuente, V., Gorriz, J.M., Ramirez, J., Gonzalez, E.: P300 brainwave extraction
from EEG signals: an unsupervised approach. Expert Syst. Appl. 74, 1–10 (2017).
https://doi.org/10.1016/j.eswa.2016.12.038

7. Ledoit, O., Wolf, M.: A well-conditioned estimator for large-dimensional covariance
matrices. J. Multivar. Anal. 88(2), 365–411 (2004). https://doi.org/10.1016/s0047-
259x(03)00096-4

8. Markiewicz, P., Matthews, J., Declerck, J., Herholz, K.: Robustness of multivari-
ate image analysis assessed by resampling techniques and applied to FDG-PET
scans of patients with Alzheimer’s disease. Neuroimage 46, 472–485 (2009).
http://www.sciencedirect.com/science/article/B6WNP-4VFK7X3-3/2/e7833cb1d
62f98e28326352e45981d00

https://doi.org/10.1016/j.compbiomed.2017.09.017
https://doi.org/10.1016/j.compbiomed.2017.09.017
https://doi.org/10.1121/1.5026239
https://doi.org/10.1016/j.eswa.2016.12.038
https://doi.org/10.1016/s0047-259x(03)00096-4
https://doi.org/10.1016/s0047-259x(03)00096-4
http://www.sciencedirect.com/science/article/B6WNP-4VFK7X3-3/2/e7833cb1d62f98e28326352e45981d00
http://www.sciencedirect.com/science/article/B6WNP-4VFK7X3-3/2/e7833cb1d62f98e28326352e45981d00


Periodogram Connectivity of EEG Signals for the Detection of Dyslexia 359
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2017. CCIS, vol. 723, pp. 413–424. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-60964-5 36

11. Peterson, R., Pennington, B.: Developmental dyslexia. Lancet 379, 1997–2007
(2012)

12. Sakkalis, V.: Review of advanced techniques for the estimation of brain connec-
tivity measured with EEG/MEG. Comput. Biol. Med. 41(12), 1110–1117 (2011).
https://doi.org/10.1016/j.compbiomed.2011.06.020

13. Schoffelen, J.M., Gross, J.: Source connectivity analysis with MEG and EEG. Hum.
Brain Mapp. 30(6), 1857–1865 (2009). https://doi.org/10.1002/hbm.20745

14. Stoeckel, J., Ayache, N., Malandain, G., Koulibaly, P.M., Ebmeier, K.P., Darcourt,
J.: Automatic classification of SPECT images of Alzheimer’s disease patients and
control subjects. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004.
LNCS, vol. 3217, pp. 654–662. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-30136-3 80

15. Thompson, P.A., Hulme, C., Nash, H.M., Gooch, D., Hayiou-Thomas, E., Snowl-
ing, M.J.: Developmental dyslexia: predicting individual risk. J. Child Psychol.
Psychiatry 56(9), 976–987 (2015)

16. Welch, P.: The use of fast fourier transform for the estimation of power spec-
tra: a method based on time averaging over short, modified periodograms. IEEE
Trans. Audio Electroacoust. 15(2), 70–73 (1967). https://doi.org/10.1109/tau.
1967.1161901

17. Zhou, S.M., Gan, J.Q., Sepulveda, F.: Classifying mental tasks based on features
of higher-order statistics from EEG signals in brain-computer interface. Inf. Sci.
178(6), 1629–1640 (2008). https://doi.org/10.1016/j.ins.2007.11.012

https://doi.org/10.1016/j.eswa.2012.02.153
https://doi.org/10.1016/j.eswa.2012.02.153
https://doi.org/10.1007/978-3-319-60964-5_36
https://doi.org/10.1007/978-3-319-60964-5_36
https://doi.org/10.1016/j.compbiomed.2011.06.020
https://doi.org/10.1002/hbm.20745
https://doi.org/10.1007/978-3-540-30136-3_80
https://doi.org/10.1007/978-3-540-30136-3_80
https://doi.org/10.1109/tau.1967.1161901
https://doi.org/10.1109/tau.1967.1161901
https://doi.org/10.1016/j.ins.2007.11.012


Isosurface Modelling of DatSCAN Images
for Parkinson Disease Diagnosis
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Abstract. This paper proposes the computing of isosurfaces as a way
to extract relevant features from 3D brain images. These isosurfaces are
then used to implement a Computer aided diagnosis system to assist in
the diagnosis of Parkinson’s Disease (PD) which uses a most well-known
Convolutional Neural Networks (CNN) architecture, LeNet, to classify
DaTScan images with an average accuracy of 95.1% and AUC = 97%,
obtaining comparable (slightly better) values to those obtained for most
of the recently proposed systems. It can be concluded therefore that the
computation of isosurfaces reduces the complexity of the inputs signifi-
cantly, resulting in high classification accuracies with reduced computa-
tional burden.

Keywords: Deep learning · Convolutional networks · Isosurfaces ·
Parkinson’s Disease

1 Introduction

In recent years, different works have analyzed DaTSCAN (3D) images for early
diagnosis of PD. Thus, a range of semi-quantification methods can be found in
the literature [22]. These methods compute SBRs (Striatal Binding Ratios) from
both, with and without consideration of the caudates, and use different methods
and establish certain limits and likelihood of disease being present. The clinician
must eventually interpret the results to come to an overall decision. At this point,
machine learning algorithms can be used to help with such decision. Machine
learning algorithms can combine multiple input variables describing different
features to produce a single value that helps the clinician.

The development of novel architectures and effective training algorithms, has
enabled to use multi-layer neural networks or deep neural networks (aka deep
learning) for a wide range of applications, such as speech recognition, drug dis-
covery and genomics, but it is in the field of computer vision and image classifica-
tion where deep learning, and particularly convolutional neural networks (CNN),
c© Springer Nature Switzerland AG 2019
J. M. Ferrández Vicente et al. (Eds.): IWINAC 2019, LNCS 11486, pp. 360–368, 2019.
https://doi.org/10.1007/978-3-030-19591-5_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19591-5_37&domain=pdf
https://doi.org/10.1007/978-3-030-19591-5_37


PD Diagnosis by DatSCAN Image Modelling 361

has undergone a real revolution of the state of the art. CNNs are biologically-
inspired models that resemble the human vision system, computing image fea-
tures at different abstraction levels by means of the convolution operator, which
is subsequently applied to the response of the previous layer. Nowadays, these
architectures have practically reached, or even surpassed, human-level perfor-
mance in object recognition. Two of the most famous CNN architectures are
LeNet-5 [7] and AlexNet [6]. They have been well-studied and provide good
results compared to other machine learning algorithms and even more complex
CNNs.

This work analyzes DaTSCAN (3D) images and identifies features which are
suitable for use in a computer-aided classification system intended to classify
between positive and negative cases of PD. In particular, this is realized through
the identification of isosurfaces and the extraction of descriptive features from
these by using CNN architectures based on LeNet-5 and AlexNet. Isosurfaces
connect voxels that have the specified intensity or value much the way contour
lines connect points of equal elevation. This work culminates in the implemen-
tation of a classification system which uses supervised learning through CNN
architectures to classify DaTSCAN images with an average accuracy of 95.1%.
Sensitivity and specificity of the system have been also calculated resulting at
an average of 95.5% and 94.8% respectively.

The rest of the paper is structured as follows. Section 2 reviews related works.
Section 3 shows details on the database used and the applied preprocessing.
Then, Sect. 4 describes the computing of isosurfaces, the analyzed architectures
and their training process. Section 5 presents and discusses the classification
results, and finally, Sect. 6 draws the main conclusions.

2 Related Work

Two of the first works to analyze the possibilities of machine learning algo-
rithms with DaTSCAN were Palumbo et al. in 2010 [17] and Towey et al. in
2011 [23]. The former compared a probabilistic neural network (PNN) with a
classification tree (CIT) to differentiate between PD and essential tremor. Stri-
atal binding ratios for caudate and putamina on 3 slices were used as image
features. The latter used Näıve-Bayes with PCA decomposition of the voxels in
the striatal region. These were followed for a series of works where SVMs were
used as the main classifier tool, with linear or RBF kernel and different image
features: [4,13] used voxel-as-features, [5,21] used Partial Least Square (PLS),
[19] proposed the use of 2D empical mode decomposition and [9] decomposed
the DaTSCAN images into statistically independent components which revealed
patterns associated to PD. A more recent approach also based on multivariate
decomposition techniques is proposed in [15], where the use of functional prin-
cipal component analysis and fractal curves on 3D images is proposed. Striatal
binding ratios for both caudates and putamina were used in [2,16,18]. [8] pro-
posed the extraction of 3D textural-based features (Haralick texture features) for
the characterization of the dopamine transporters concentration in the image.
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And finishing with those based on SVM, [1] used univariate (voxel-wise) sta-
tistical parametric mapping and multivariate pattern recognition using linear
discriminant classifiers to differentiate among different Parkinsonian syndromes.

More recently, and in line with general trends, methods based on neural
networks, especially deep learning-based methods, have paved the way to dis-
cover complex patterns and, consequently, to outperform the diagnosis accuracy
obtained by classical statistical methodologies. [24] proposes a classifier based on
a single layer neural network and voxel-as-features from different slices. [10,11]
propose the use of CNNs to discover patterns associated to PD. Increasing the
accuracy requires the use of deeper networks, but this increment also makes the
network prone to overfitting and the limitations of the training algorithms arise.

3 Materials

Data used in the preparation of this article was obtained from the Parkinson’s
Progression Markers Initiative (PPMI) (www.ppmi-info.org/data). A total of
N = 269 DaTSCAN images from this database were used in the preparation of
the article. Specifically, the baseline acquisition from 158 subjects suffering from
PD and 111 normal controls (NC) was used.

Spatial normalization is frequently used in neuroimaging studies to elimi-
nate differences in shape and size of brain, as well as local inhomogeneities due
to individual anatomic particularities. The DaTSCAN images from the PPMI
dataset are roughly realigned. We further preprocessed the images using the
SPM12 [12] New Normalize procedure with default parameters, which applied
affine and local deformations to achieve the best warping of the images and a
custom DaTSCAN template defined in [20]. After this, the regions of interests,
those which reveal dopaminergic activity (intensity values which are not close to
zero), were selected. As a result, the original size of (95,69,79) were converted
into images of size (29,25,41).

Intensity normalization is also important to ensure that the same intensity
levels corresponds to similar drug uptakes, so that intensities can be compared
as an indirect measure of the neurophysical activity. This paper uses Integral
Normalization [4], where the intensity normalization values is computed inde-
pendently for each subject as the mean of the whole image (in an approximation
of the integral). Sometimes, for Parkinson, In is set to the average of the brain
without the striatum; although the influence of this is small and it can be approx-
imated by the mean of the whole image. Finally, in this work, the resulting values
are further normalized within [0 1].

4 Methods

4.1 Feature Extraction Using Isosurfaces

DaTSCAN SPECT images contains an enormous amount of information. The
extraction and selection of features is an important and determinant part in any

www.ppmi-info.org/data
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classification method, which allows reducing this complexity. This results in lower
computational burden, more efficient training algorithms and less proneness to
overfitting.

For feature extraction, this paper proposes the use of isosurfaces. Isosurfaces
connect voxels that have the specified intensity or value much the way contour
lines connect points of equal elevation. Roughly, this implies to set a threshold at
a certain level and take the surface that envelops the remaining voxels above that
threshold (see Fig. 1 for an example). In this work, however, a refined version
for computing isosurfaces is used where interpolation is employed instead of
just thresholding. When different thresholds are used, isolines are preferred for
representation. Isolines are simply 2D slices of the corresponding isosurfaces (see
Fig. 1).

The following characteristics can be observed in isosurfaces/isolines: (i)
they define closed volumes/areas, (ii) they do not cross each other (iii) the
same threshold can result in several isosurfaces/isolines, and (iv) the proximity
between isosurfaces/isolines provides information about intensity gradients; the
closer they are, the faster the changes. Regarding the diagnosis of PD, it can be
observed in previous figures, that isosurfaces and isolines from PD patients, in
contrast with those from NC subjects, are characterized by a loss of symmetry
between hemispheres.

Fig. 1. Examples of isosurfaces (threshold = 0.5) for NC subject (a) and PD patient (b)

For feature selection classification results using isosurfaces computed with
different thresholds have been compared, choosing those that provide the best
classification results, with forward (starting with one and then adding one each
time) and backward (starting with all of them and then removing one each time)
selection.

4.2 CNNs for Classification

Method based on CNNs are becoming more and more popular for the develop-
ment of new early diagnosis tools [14]. The election and configuration of the CNN
architecture are, however, not trivial tasks. The best performances are obtained
with balanced architectures; that is, architectures complex enough to reveal the
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relevant patterns but not so complex that it cannot be conveniently trained with
certain guarantees of non-overfitting. In this paper, two 3D versions based on
the well-known LeNet architecture has been tested.

The LeNeT architecture comprises 7 layers, not counting the input (see
Fig. 2): 2 convolutional layers (1st and 3rd), 2 subsampling layers (2nd and 4th),
1 flatten layer (5th) and 2 full connected layers (6th and 7t). The 2 convolutional
layer use five 3D-kernels of [3 × 3 × 3] to sweep over the input topologies and
transform them into feature maps. Stride of (1,1,1) and padding are employed
with the convolution so that the output feature maps keep the size of the input.
For the second convolutional layer (3DCONV 2), each unit is connected to the
entire set of input feature maps (not just a subset). The number of trainable
parameters of these two layers are 140 (for a single input volume) and 680,
respectively. The two subsampling layers apply max-pooling with a [2 × 2 × 2]
window. After the learning phase, feature maps are flattened into a feature vector
with 3050 neurons, which is followed by two fully-connected layers of 4096 and
2 neurons, respectively. These two layers have 12, 6190, 776 and 8194 trainable
parameters, respectively. Between these two layers there is a dropout interphase
with 0.5 dropout probability. The last layer yields the prediction probability
using softmax activation. The total number of trainable parameters of this CNN
is 12,628,790.

Fig. 2. CNN architecture based on LeNet.

Classification performance is evaluated by means of the accuracy, sensitivity
and specificity. Resulting from these values, Receiver Operating Curves (ROC)
and the Areas Under the ROC Curves are also computed. Classification exper-
iments conducted in this work have been assessed by k-fold cross-validation
(k = 10) to avoid double-dipping and determine the generalization ability of the
proposed method. More specifically, resampling by stratified cross-validation has
been used to ensure that the proportion of both classes is preserved in each fold.
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5 Results and Discussion

Classification results were firstly compared with single input volumes to deter-
mine which of the computed isosurfaces (see Sect. 4.1) provided more significant
information and performance (see Fig. 3). Intermediate values of isosurfaces, i.e.
0.5, 0.6 and 0.7, seem to contain the most relevant information providing slightly
better classification results.

Fig. 3. Results of the LeNet-based architecture using as input a single isosurface: sen-
sibilities, sensitivities and accuracies (a) and ROC curves (b)

Then, classification performances obtained when different isosurfaces were
combined at the input were compared. Note that, although the introduction
of more isosurfaces adds more information, it also increases the complexity of
the CNN (number of trainable parameters of the first layer) so that the best
results are only obtained when the input has an optimum trade-off between
the information it provides and the complexity that it introduces. Thus, many

Fig. 4. Results of the LeNet-based architecture using as input several isosurfaces: sen-
sibilities, sensitivities and accuracies (a) and ROC curves (b)
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Table 1. Classification results using different methods

Method Accuracy Sensitivity Specificity AUC

EMD [19] 0.95 0.95 0.94 0.94

Significance M. [9] 0.92 0.95 0.89 0.90

Brahim et al. [3] 0.92 0.94 0.91 -

EfPCA [15] 0.93 0.97 0.88 0.94

LeNet-based 0.948 0.945 0.948 0.97

possible combinations of isosurfaces have been tested. One of these tests is shown
in Fig. 4 for LeNet-based architecture using a forward selection from top level
(0.8) to bottom level (0.4); that is, first the isosurface with level 0.8 is used on
its own (marked as 1 in the figures), then 0.7 is added (2 in the figures) and so
on (5 in the figures when all of them are used).

The inputs chosen eventually as providing the best classification results while
keeping the complexity as low as possible have been the combination of isosur-
faces 0.8 and 0.7, providing an AUC of 0.95. These classification performances
can be considered as very good, outperforming most methods recently published
in the bibliography for the detection of Parkinsonism [3,9,19]. Table 1 collects
the different performance classifications.

Finally, and for the sake of completeness, the saliency maps for the last layer
of the Lenet-based architecture are computed (see Fig. 5 for the Lenet-based).
Saliency maps use the gradient of output category with respect to input image
to determine the regions of the input image that have a greater impact on the
output class.

Fig. 5. Saliency maps of the LeNet-based architecture: NC (a) and PD (b)

6 Conclusions

This paper proposes the use of isosurfaces as a way to extract the relevant infor-
mation from 3D DatSCAN images so that they can be used as inputs of CNN
architectures. As a result, a classification system that uses LeNet-based CNN
architectures has been implemented. This system achieves accuracy of 95.1%,
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providing comparable (slightly better) vales to those obtained for recently pro-
posed systems. It can be concluded, therefore, that the computation of isosur-
faces reduces the complexity of the inputs significantly while keeping the relevant
information, resulting in high classification accuracies with reduced computa-
tional burden. Finally, in order to determine which areas of the input brain
images has a greater impact on the predicted output class, saliency maps of the
last two-neuron layer are also computed.
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Abstract. Developmental dyslexia (DD) is a specific difficulty in the
acquisition of reading skills not related to mental age or inadequate
schooling. Its prevalence is estimated between 5% and 12% of the pop-
ulation. Currently, biological causes and processes of DD are not well
known and it is usually diagnosed by means of specifically designed tests
to measure different behavioural variables involved in the reading pro-
cess. Thus, the diagnosis results depend on the analysis of the test results
which is a time-consuming task and prone to error. In this paper we use
EEG signals to search for brain activation patterns related to DD that
could result useful for differential diagnosis by an objective test. Specif-
ically, we extract spectral features from each electrode. Moreover, the
exploration of the activation levels at different brain areas constitutes an
step towards the best knowledge of the brain proccesses involved in DD.

Keywords: EEG · Dyslexia · One-Class-SVM · Automatic diagnosis

1 Introduction

Developmental dyslexia (DD) is a specific difficulty in the acquisition of read-
ing skills not related to mental age or inadequate schooling. Its prevalence is
estimated between 5% and 12% of the population [7], depending on the reading
performance benchmark. It has an important social impact and may determine
school failure. In addition, it has harmful effects in the self-esteem of affected
children. Early diagnosis and prognosis to start an adequate, early and individu-
alized, intervention is decisive in the in the personal and intellectual development
of these children. Currently, biological causes and processes of DD are not well
known. It is usually diagnosed by means of specifically designed tests to mea-
sure different behavioural variables involved in the reading process. Examples of
these variables are reading efficiency, or the ability to split words in their con-
stituent syllables. These tests are individually applied by specialists who need
further time to analyze the results and usually, diagnosis is established by means
of cut-off points computed over a non very large population. On the other hand,
c© Springer Nature Switzerland AG 2019
J. M. Ferrández Vicente et al. (Eds.): IWINAC 2019, LNCS 11486, pp. 369–378, 2019.
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the results of the tests depend on the motivation and the mood of the child
when performing the benchmark tasks. As a result, classical diagnosis meth-
ods are time-consuming and prone to error, and it is usual that children with
specific difficulties in the acquisition of reading skills are neither correctly diag-
nosed nor treated, what affects their cognitive and emotional development. In
addition, most benchmarks are designed for readers, limiting the minimum age
for the early diagnosis. Hence, research work oriented towards obtaining results
which allow an early diagnosis and an individualized intervention would have a
theoretical and a practical impact [10]. There is an active research activity in
search of objective, quantifiable measures with diagnostic capability, to improve
the diagnosis accuracy and eventually, to reveal unknown aspects of the DD
related to its neural basis. Additionally, the research in the biological causes of
dyslexia can offer valuable information for a better understanding of the dif-
ferences between dyslexic and non-dyslexic subjects, with special application in
the design of individualized intervention tasks. These quantifiable measures are
known as biomarkers, and different studies carried out in the last years used
different techniques to extract them. Recent studies searching for DD-related
patterns in EEG signals [1,8] have shown differences in readers due to cognitive
impairment of the phonological representation of word forms. Speech encoding
which is related to speech prosody and sensorimotor synchronization problems
can be revealed by finding patterns in EEG channels at different sub-bands as it
provides enough time resolution. In this work, we used EEG signals recorded by
a 32 active electrodes BrainVision equipment during 5 min sessions, while pre-
senting an auditive stimulus to the subject. These signals are then pre-processed
and analyzed in the frequency domain. Spectral features extracted from the
EEG signals are then used to classify the subjects between Controls (CN) and
Dyslexic (DD).

The rest of the paper is structured as follows. Section 2 shows details on
the database used and the applied preprocessing. Then, this section describes
the auditive stimulus, EEG preprocessing and post-processing (feature extrac-
tion) as well as the classification method. Section 4 presents and discusses the
classification results, and finally, Sect. 5 draws the main conclusions.

2 Materials and Methods

2.1 Database

The present experiment was carried out with the understanding and written
consent of each child’s legal guardian and in the presence thereof. Forty-eight
participants took part in the present study, including 32 skilled readers (17
males) and 16 dyslexic readers (7 males) matched in age (t(1) = −1.4, p > 0.05,
age range: 88–100 months). The mean age of the control group was 94, 1 ± 3.3
months, and 95, 6 ± 2.9 months for the dyslexic group. All participants were
right-handed Spanish native speakers with no hearing impairments and normal
or corrected-to-normal vision. Dyslexic children in this study had all received a
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formal diagnosis of dyslexia in the school. None of the skilled readers reported
reading or spelling difficulties or had received a previous formal diagnosis of
dyslexia.

3 Methods

DD is a reading disorder often characterized by reduced awareness of speech units
[6]. Recent models of neuronal speech coding suggest that dyslexia originates
from the atypical dominant neuronal entrainment in the right hemisphere to
the slow-rhythmic prosodic (delta band, 0.5–1 Hz), syllabic (theta band, 4–8
Hz) or the phoneme (gamma band, 12–40 Hz), speech modulations, which are
defined by the time of increase in amplitude (i.e., the envelope) generated by the
speech rhythm [2,4]. Thus, we compared the cortical entrainment to AM white-
noise at a fixed rate in delta (2 Hz), theta (8 Hz) and gamma (20 Hz) bands.
In a sample composed of 7 years old children, listened to stimuli obtained by
rhythmically modulating the amplitude (AM) of white-noise sound either in
the delta, theta and gamma band. Our hypothesis was that the quality of the
oscillatory neural processes measured through AM modulations contribute to
the optimal construction of predictions of incoming auditory information (such
as linguistic sequences or their simplification through AM modulations), these
neurophysiological responses should explain the manifestations of the temporal
processing deficits described in dyslexia. Then, we recorded EEG signals using
a 32 active electrodes (BrainVision actiCAP, https://www.brainproducts.com)
while presenting the auditory stimulus. Figure 1 shows the construction of a 8 Hz
auditive stimulus, which is based on the AM modulation of bandwidth-limited
white noise.

Fig. 1. Stimulus example (a) bandwidth-limited noise, (b) 8 Hz modulating signal, (c)
8Hz AM Modulated noise

https://www.brainproducts.com
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EEG signals were pre-processed in order to remove artefacts related to eye
blinking and impedance variations due to movements. Since eye blinking signal
is recorded along with EEG signals, these artefact are removed by blind source
separation using Independent Component Analysis (ICA) [5]. Other artefacts
required the removal of EEG segments. Afterwards, the remaining, cleaned sig-
nals were segmented into 5 s excerpts. As a result, a different number of segments
are available for different subjects.

Figure 2 shows the average activation levels by frequency bands for the 2 Hz
stimulus.

(a)

(b)

Fig. 2. Average activation patterns computed for 2Hz stimulus by different bands for
(a) Controls and (b) Dyslexic subjects. Multitaper [11] method is used to estimate the
PSD.

3.1 Feature Extraction

In this section, we show features extracted from each segment. Since we expect
differences in the power spectrum at different frequency bands, we extracted
different spectral descriptors. Thus, the first step consist on estimating the Power
Spectral Density (PSD). This is usually computed by the Fourier transform.
However, the reliability of the PSD computed by this method is reduced by (1)
high variance of the estimate, which makes the spectrum noisy and (2) the bias
created by the leakage of energy across frequencies [11]. The solution proposed in
[11] consist on using windows (also called tapers) in the time domain, reducing
the leakage produced by multiple side lobes of a window in the frequency domain.
This is also achieved by using tapers with low spectral power in the side lobes.
Thus, the PSD can be computed as:

PSD(ω) =

∣
∣
∣
∣
∣

N−1∑

t=0

x(t)a(t)e−jωt

∣
∣
∣
∣
∣

2

(1)

where x(t) is the N -samples time series corresponding to the signal and a(t) is
the window (taper) in the time domain. The total energy of these tappers is
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normalized to keep the total power invariant. This approach can be extended to
reduce the variance of the estimate at each frequency by using multiple tapers.
Specifically, Thomson proposed the use of K orthogonal tapers, providing K
orthogonal samples of the data x(t). As a result, we have K spectral estimations
PSDk(ω) that can be averaged to reduce the variance. Furthermore, the method
devised by Thomson includes an optimization step to find the tapers that mini-
mize the leakage by maximizing the energy within a specific bandwidth.

Once PSD is computed, two features are extracted to characterize the spec-
trum of each band for each electrode. The first feature is the spectral centroid,
(SC) that indicates where the location of the center of mass of the spectrum
(i.e. the frequency where the PSD is concentrated). This can be calculated as
the weighted average of the amplitude spectrum:

SC =
∑N

k=1 k · w · PSD(k)
∑N

k=1 PSD(K)
(2)

where PSD(k) and w are the PSD estimated for the k-bin and the width of each
spectral bin, respectively.

Moreover, the mean PSD for each band is also computed and used as a
feature.

This way, a feature vector can be composed for the electrode l as

fl = (SCΔ
l , PSDΔ

l , SCθ
l , PSDθ

l , SCα
l , PSDα

l , SCβ
l , PSDβ

l , SCγ
l , PSDγ

l ) (3)

for the Delta, Theta, Alpha, Beta and Gamma bands.

3.2 Feature Selection

Feature selection is addressed by keeping those electrodes presenting a small
spectral coherence when comparing Controls and DD. Spectral coherence is a
statistic with many applications in neuroscience [3] that measures the relation
between the signals acquired from two electrodes x(t) and y(t):

Cxy =
|Cxy|2
CxxCyy

(4)

where Cxx and Cyy are the power spectral densities of signals x and y, respec-
tively, and Cxy is the cross-spectral density, which can be calculated as the power
spectrum of the cross-correlation function between x and y.

As shown in this figure, different electrodes present different coherence values
depending on the frequency band. This indicates that signals acquired by dif-
ferent electrodes contain information regarding different bands. Thus, electrode
selection can be addressed by keeping the electrodes that present the lower coher-
ence when comparing CN to DD subjects. Hence, Fig. 3 shows the coherence only
for the bands presenting the lowest values.
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(a)

(b)

(c)

Fig. 3. Minimum coherence bands for each electrode for (a) 2 Hz stimulus, (b) 8Hz
stimulus and (c) 20 Hz stimulus

3.3 Classification

Class imbalance is an usual problem in biomedical engineering, where databases
normally contains more controls than experimental subjects. On the other hand,
it is not straightforward to balance the database by obtaining more experimental
subjects, due to the distribution of controls and experimental subjects in the
general population. As a result, models generated from unbalanced databases are
biased, showing special affinity to the most probable class. There are different
methods to mitigate the biasing effect such as using cost sensitive objective
functions by assigning different weights to miss-classification of samples from
different classes. An alternative method to overcome the biasing effect while
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taking advantage of it consists on modelling the most probable class and then,
identify whether a new sample belongs to that distribution or not. This is also
known as anomaly detection.

In this work, we used the One-Class SVM [9], a variant of the Support Vec-
tor Classifier (SVC) [12] devised to identify outliers with respect to the training
dataset. This method separates all datapoints of the training dataset from the
origin in the feature space, maximizing the distance from the computed hyper-
plane to the origin. This is addressed by solving the quadratic programming,
minimization problem:

min
ω,ξi,b

{

1
2
‖ω‖ +

a

νN

N∑

i=1

ξi − b

}

(5)

subject to:

(ω · φ(xi)) ≥ b − ξi i ∈ {1, ..., N}
ξi > 0, ν ∈ (0, 1] i ∈ {1, ..., N}

where ξi are non-zero variables to control the margin, and ν controls the number
of support vectors and the fraction of training samples considered as outliers.
Additionally, φ is the kernel function.

Hence, a decision function can be constructed to produce a different value
for samples belonging to the same distribution of the training samples that for
out-of-class samples, using the hyperplane defined by ω and b parameters

f(z) = sign{(ω · φ(z)) − b} (6)

In our experiments, a Radial Basis Function was used for the kernel.

4 Results and Discussion

In this section, we present the experimental results obtained when classifying
the subjects by means of the features extracted from the EEG signals. These
classification experiments used EEG features from signals acquired during the
2 Hz, 8 Hz and 20 Hz stimuli as explained in Sect. 3. Moreover, experiments using
all the features and the selection provided by the method described in Sect. 3.2
are shown here. The classification method exposed here has been assessed by
stratified k-fold cross-validation (k = 5) to ensure the database independence
and to avoid double dipping in the training-testing process.

Thus, Figs. 4a, b and c, shows the ROC curves obtained when classifying the
subjects using th 2 Hz, 8 Hz and 20 Hz stimuli, respectively.

The feature selection method based on using only the band that shows the
lowest coherence between CN and DD subjects, improves the performance of
the classifier with respect to the use of all the features for 2 Hz and 8 Hz. The
improvement of the performance comes from the reduction of the dimension-
ality and the use of more discriminative features. Nevertheless, the use of all
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(a) (b)

(c)

Fig. 4. ROC curves obtained with the (a) 2Hz, (b) 8 Hz and (c) 20Hz stimuli. All
features vs. per electrode band selection method is shown.

the features (i.e. all bands for all the electrodes) provides higher AUC values
for the 20 Hz stimulus. Moreover, Table 1 shows the classification performance
in terms of accuracy, sensitivity and specificity. As shown in this table, the fea-
ture selection method improves the sensitivity and specificity for 2 Hz and 8 Hz,
while decreases the performance in the 20 Hz case. This suggest that discrimina-
tive information regarding electrode inter-dependence is present when the 20 Hz
stimulus is used.

Table 1. Classification results

Stimulus Accuracy Sensitivity Specificity AUC

2Hz (All features) 0.62 0.66 0.60 0.72

2Hz (Band Selection) 0.70 0.66 0.69 0.72

8Hz (All Features) 0.63 0.80 0.55 0.80

8Hz (Band Selection) 0.66 0.86 0.56 0.89

20Hz (All Features) 0.78 0.66 0.81 0.83

20Hz (Band Selection) 0.71 0.53 0.78 0.69
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5 Conclusions and Future Work

In this paper, EEG signals have been recorded during the presentation of differ-
ent stimulus related to the frequency of neural oscillations generated at differ-
ent brain areas during language processing. Then, a feature extraction process
directed to characterize the signals from each electrode in terms of the predomi-
nant brainwave. Moreover, these features are selected by computing the spectral
coherence for all electrodes between controls and experimental subjects. The
feature extraction and selection method used in this work improves the classifi-
cation performance for 2 Hz and 8 Hz stimulus, which suggest that discriminative
information regarding DD diagnosis is in the distribution of power along differ-
ent bands. In fact, the proposed method always provides AUC values up to
0.89, showing its diagnostic utility. In addition, the 20 Hz seems to produce
effects beyond the spectral distribution and thus, a different feature selection
method has to be used. In a future work, we will explore the use of different,
time-frequency features and different descriptors to characterize the power dis-
tribution along different bands, as well as to compute electrode synchronicity
among different brain areas.

Acknowledgments. This work was partly supported by the MINECO/FEDER under
PSI2015-65848-R and TEC2015-64718-R projects.
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1. Cutini, S., Szũcs, D., Mead, N., Huss, M., Goswami, U.: Atypical right hemisphere
response to slow temporal modulations in children with developmental dyslexia.
NeuroImage 143, 40–49 (2016)

2. Di Liberto, G., Peter, V., Kalashnikova, M., Goswami, U., Burnham, D., Lalor, E.:
Atypical cortical entrainment to speech in the right hemisphere underpins phone-
mic deficits in dyslexia. NeuroImage 175, 70–79 (2018)

3. Engel, A.K., Fries, P., Singer, W.: Dynamic predictions: oscillations and synchrony
in top-down processing. Nat. Rev. Neurosci. 2, 704–716 (2001)

4. Flanagan, S., Goswami, U.: The role of phase synchronisation between low fre-
quency amplitude modulations in child phonology and morphology speech tasks.
J. Acoust. Soc. Am. 143, 1366–1375 (2018). https://doi.org/10.1121/1.5026239

5. Li, R., Principe, J.C.: Blinking artifact removal in cognitive EEG data using ICA.
In: 2006 International Conference of the IEEE Engineering in Medicine and Biology
Society, pp. 5273–5276 (2006)

6. Molinaro, N., Lizarazu, M., Lallier, M., Bourguignon, M., Carreiras, M.: Out-of-
synchrony speech entrainment in developmental dyslexia. Hum. Brain Mapp. 37,
2767–2783 (2016)

7. Peterson, R., Pennington, B.: Developmental dyslexia. Lancet 379, 1997–2007
(2012)

8. Power, A.J., Colling, L., Mead, N., Barnes, L., Goswami, U.: Neural encoding of
the speech envelope by children with developmental dyslexia. Brain Lang. 160,
1–10 (2016)

https://doi.org/10.1121/1.5026239


378 A. Ortiz et al.

9. Schölkopf, B., Williamson, R., Smola, A., Shawe-Taylor, J., Platt, J.: Support
vector method for novelty detection. In: Proceedings of the 12th International
Conference on Neural Information Processing Systems, NIPS 1999, pp. 582–588.
MIT Press, Cambridge (1999)

10. Thompson, P.A., Hulme, C., Nash, H.M., Gooch, D., Hayiou-Thomas, E., Snowl-
ing, M.J.: Developmental dyslexia: predicting individual risk. J. Child Psychol.
Psychiatry 56(9), 976–987 (2015)

11. Thomson, D.: Spectrum estimation and harmonic analysis. Proc. IEEE 70, 1055–
1096 (1982)

12. Vapnik, V.N.: Statistical Learning Theory. Wiley, New York (1998)



Comparison Between Affine
and Non-affine Transformations Applied
to I[123]-FP-CIT SPECT Images Used

for Parkinson’s Disease Diagnosis

Diego Castillo-Barnes(B), Francisco J. Martinez-Murcia, Fermin Segovia,
Ignacio A. Illán, Diego Salas-Gonzalez, Juan M. Górriz, and Javier Ramı́rez
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Abstract. In recent years, the use of I[123]-FP-CIT or I[123]-Ioflupane
SPECT images has emerged as an effective support tool for Parkinson’s
Disease diagnosis. Many works in this field have consisted on compar-
ing different images obtained from subjects both Healthy Control (HC)
subjects and patients with Parkinsonism (PD) and using them to obtain
measures (features) able to discern among them. In this scenario, spatial
normalization of I[123]-FP-CIT images is fundamental to match equiva-
lent areas of the brain from different subjects.

This work tries to compare the two most common ways to make the
spatial normalization of SPECT images from PD and HC subjects in the
study of Parkinsonism: affine and non-affine transformations. For that,
these two approaches have been applied to a set of 20 images obtained
from 20 different subjects (11 HC and 9 with PD) and measured how
volume of new voxels, when applying normalization to a reference tem-
plate, has changed.

Despite the accurate match obtained when using a non-affine spatial
normalization procedure, using this method involves that some parts of
the brain are compressed or stretched in excess to fit the template. This
effect is even more pronounced when using PD images than HC. Using
the affine procedure, striatum area preserves better its morphology and
can be used to obtain more reliable morphological features.

Keywords: Neuroimaging · Normalization ·
Single Photon Emission Computed Tomography (SPECT) ·
Statistical analysis · Parkinson’s Disease · Striatum

1 Introduction

In recent years, the use of medical procedures based on medical imaging have
strengthened due to their practical considerations in diagnosis of a great amount
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of illnesses. This is the case of Parkinson’s Disease which can be defined as a
chronic neurodegenerative disorder that affects an estimated 6.3 million people
worldwide, according to the European Parkinson’s Disease Association [1].

An extended tool for Parkinson’s Disease diagnosis is based on the
use of I[123]-FP-CIT or I[123]-Ioflupane SPECT images [2,3]. These images
make use of the radio-ligand Iodine-123-fluoropropyl-carbomethoxy-3-β-(4-
iodophenyltropane) that presents a high binding affinity for presynaptic
dopamine transporters (DAT) in the brain. Because of this affinity, the radi-
oligand is able to give us a quantitative measure of the spatial distribution of
the dopaminergic neurons whose loss is related to Parkinson’s Disease onset.
This information will be used to discern between subjects with probable PD and
HC [4].

The emergence of Computer-Aided Diagnosis (CAD) systems based on image
analysis techniques have also had a positive impact on the study of Parkinsonism
[5–9]. Generally, structure of these works is organized starting with the spatial
normalization of I[123]-Ioflupane SPECT images. This let to compare all subjects
between them or just to obtain comparative measures (features) about striatum
area in the brain. As this region has a high relevance in PD pathogenesis [10],
many of the works are focused almost exclusively on this region [11,12].

Focusing on striatum area, or not, the more common scenario is that a set
of images from several subjects are fitted to a reference template to compare
them lately. In these cases, some parts of striatum area might be deformed in
excess. This process is even more apparent in the case of PD subject images
with a highlighted reduction of dopamine transporters, as an small area like the
striatum has to be adjusted to a bigger one in the template.

With this aim, this paper compares the two main approaches about spatial
normalization: affine and non-affine transformation and check which of them
preserves better the shape of striatum area. In order that, both approaches
(affine and non-affine) have been applied to a set of 20 I[123]-FP-CIT SPECT
images and compared between them. All the images used in this work have been
previously diagnosed and labelled by experts from Hospital Virgen de la Victoria
(Málaga, Spain).

2 Methods

2.1 Dataset

This work includes imaging acquisition of 20 subjects from Hospital Virgen de
la Victoria (Málaga, Spain). All images has been labeled by three experienced
clinicians from the Nuclear Medicine department of the hospital as: Control
Subjects (labelled as HC or CS) and Parkinsonian patients (labelled as PKS or
PD). Demographics have been included in Table 1.

Neuroimaging data were acquired 3–4 h after the radiopharmaceutical injec-
tion of 185 MBq (5 mCi) of I[123]-Ioflupane using a gamma camera1 equiped with

1 Millennium model from General Electric.
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Table 1. Demographics.

Number Age (years)

Total Male Female Mean Std

HC 11 5 6 70.73 5.83

PD 9 5 4 71.89 5.01

a dual head and general purpose collimator. All the images have been recon-
structed by means of filtered back-projection algorithms without attenuation
correction and a Hanning filter (with frequency of 0.7) has also been applied.

Informed consents to clinical testing and neuroimaging prior to participation
of the study were obtained and approved by the institutional review boards
(IRB) from Hospital Virgen de la Victoria2. During the acquisition of I[123]-
Ioflupane images, no subject was on treatment with drugs that could interfere
with any imaging test result.

2.2 Spatial Normalization

For each I[123]-FP-CIT input image, it has been studied two different spatial
normalization procedures: affine and non-affine transformations.

Affine Transformation. Consists of the combination of different procedures
including: (a) traslation Mt; (b) rotation Mr; (c) enlargement (or zoom) Mz;
and (d) shears Ms. As any of these procedures come from rigid transformations
with general expression as shown in (1), it can be used a matrix notation y = Mx
with M equal to the product of matrices that correspond to each transformation
as follows in (2):

⎡
⎢⎢⎣

y1
y2
y3
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

M1,1 M1,2 M1,3 M1,4

M2,1 M2,2 M2,3 M2,4

M3,1 M3,2 M3,3 M3,4

0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x1

x2

x3

1

⎤
⎥⎥⎦ (1)

Mr =

⎡
⎢⎢⎣

1 0 0 0
0 cos(r1) sin(r1) 0
0 −sin(r1) cos(r1) 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

cos(r2) 0 sin(r2) 0
0 1 0 0

−sin(r2) 0 cos(r2) 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

cos(r3) sin(r3) 0 0
−sin(r3) cos(r3) 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

Mt =

⎡
⎢⎢⎣

1 0 0 t1
0 1 0 t2
0 0 1 t3
0 0 0 1

⎤
⎥⎥⎦ Mz =

⎡
⎢⎢⎣

z1 0 0 0
0 z2 0 0
0 0 z3 0
0 0 0 1

⎤
⎥⎥⎦ Ms =

⎡
⎢⎢⎣

0 c1 c2 0
0 1 c3 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

(2)
2 For more info, visit: http://www.huvv.es/

http://www.huvv.es/
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Since the registration of a 3D-image using an affine transformation can be
explained as a geometric transformation of an Euclidean space [13,14], next step
will be determining how to calculate the parameters that optimize the fitting
between a I[123]-FP-CIT image and a reference template.

Using Gauss-Newton approach, suppose a function bi(q) that describes dif-
ferences between an objective image and a reference one for voxel i when using
a transformation parameters vector q. For each voxel, it can be used the first
approximation of Taylor theorem to estimate the value of this difference when q
is lessen by a factor of t as shown in expression (3):

bi(q − t) ∼= bi(q) − t1
∂bi(q)
∂q1

− t2
∂bi(q)
∂q2

− . . . (3)

This expression allows to determine a set of simultaneous equations (At ∼= B)
to estimate t that minimizes

∑
i bi(q − t)2. This is described in expressions (4)

and (5). Note that the process is repeated until convergence although it is not
sure that convergence conditions will be reached in all cases [15].

A =

⎡
⎢⎢⎣

∂b1(q)
∂q1

∂b1(q)
∂q2

· · ·
∂b2(q)

∂q1

∂b2(q)
∂q2

· · ·
...

...
. . .

⎤
⎥⎥⎦ B =

⎡
⎢⎣

b1(q)
b2(q)

...

⎤
⎥⎦ (4)

qn+1 = qn − (AT A)−1AT B (5)

Non-affine Transformation. Once the image has been registered using the
12 parameters affine registration, it can be performed a non-affine spatial regis-
tration using a small-deformation approach [17]. In this case, the inverse trans-
formation is usually approximated by subtracting the displacement. In addition,
the regularization is by the bending energy of the displacement field [16,18]. In
this case. The deformations are parameterized using a three-dimensinoal cosine
transform bases. The non-linear spatial transformation from voxels in the origi-
nal image x to transformed positions of the voxels y is given by expression (6)
where αm,k is the coefficient m for dimension k = [1, 2, 3] and φm(x) is the cosine
transform bases as shown in expression (7).

y1(x, α) = x1 + u1 = x1 +
M∑

m=1
αm,1 φm(x)

y2(x, α) = x2 + u2 = x2 +
M∑

m=1
αm,2 φm(x)

y3(x, α) = x3 + u3 = x3 +
M∑

m=1
αm,3 φm(x)

(6)

φm(x) = φm,3(x3)φm,2(x2)φm,1(x1)

φ1(i) = 1√
I

i = 1, ..., I

φm(i) =
√

2
I cos

(π(2i−1)(m−1)
2I

)
i = 1, ..., I m = 2, ...,M

(7)
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2.3 Evaluation

In order to compare the two approaches, the spatial normalization of 20 SPECT
images has been carried out considering the two approaches. Deformation fields
have also been applied to prebuilt 3D cubes. Figure 1 shows how an original image
is deformed when applying an affine or a non-affine transformation. These cubes
have been designed to measure the compression of each voxel in the original
image.

Fig. 1. Original (left), affine transformation (center), non-affine transformation (right).

Next steps describes this process:

– First, a 3D matrix filled with zeros is created. This matrix has a size equal
to its subject SPECT image. Then, each voxel (sv) is filled with an unique
value, ui with ui = 1, 2, 3, . . . , N where N is equivalent to the total size of its
input subject image.

– Second, the 3D matrix is expanded by a factor of 3. This process defines for
each voxel a neighbourhood of voxels which will be defined here as “supervox-
els”. These supervoxels that present the same value, have a size of 3 × 3 × 3
voxels as shown in Fig. 2.

Fig. 2. 3D cube labelled using a 3 × 3 × 3 grid.
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– Once cubes are created for all subjects, next step consists on apply the same
deformation fields that SPM computes when normalizing original subjects
images to a reference template. This process is performed for both affine and
non-affine approaches.

– A loop is used to measure how many voxels present the intensity given by
label ui. High values correspond with more expanded voxels.

– Finally, histograms are used to compare the volumes given by these two
approaches.

3 Results

For this work it has been compared the affine and the non-affine transforma-
tions applied to a set of 20 I[123]-Ioflupane SPECT images from subjects using
the Statistical Parametric Mapping (SPM) software tool available from its web-
site1. With this aim, each image has been spatially normalized to a reference
template twice: one for the affine transformation and other for the non-affine.
This template has been built following the approach proposed in [19]. An axial
slice of this template is shown in Fig. 3.

Fig. 3. Template in the MNI space used for this work.

Deformation fields obtained when applying the two approaches (affine and
non-affine) were then applied to a set of prebuilt 3D cubes designed as explained
in Sect. 2.3. Each cube has the same size as its correspondent subject image.
The objective of this process is to check how volume of each voxel in the original
image increases or decreases when the spatial normalization is applied.
1 Website: https://www.fil.ion.ucl.ac.uk/spm/. Documentation about SPM, manuals

and references are also available from this URL.

https://www.fil.ion.ucl.ac.uk/spm/
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Figure 4 shows distribution of supervoxels volume in prebuilt 3D cubes for
affine and non-affine normalization.

Fig. 4. Volume histograms for all subjects using affine and non-affine transformations.

A direct comparison of deformation fields applied to two subjects (a HC
subject and a patient with PD) is depicted in Figs. 5 and 6.

4 Discusion

As stated in introduction section, sometimes shape differences between subjects
are interesting in the diagnosis of many neurological disorders [10]. This is the
case of Parkinsonism where measuring not only the size of striatum area but
also its shape could be indicative of suffering this disorder or not [11]. Thus,
in order to compare subjects as precise as possible, it is important to select an
spatial normalization method that preserves as well as possible structures and,
more precisely, voxels from original images.

If focusing on histogram results in Fig. 4, it can be observed that affine app-
roach preserves better voxel volumes: affine histograms are more tight while
non-affine results present a distribution more similar to a soft gaussian distribu-
tion. This can be explained as parts of the brain have been comprissed in excess
while others have been stretched. In Fig. 6 it can be observed this effect. In fact,
centering on striatum area, it can be checked that some voxels have grown trying
to cover the most part of the striatum area of our reference template at the cost
of comprissing the region situated around prefrontal cortex. This effect is even
more highlighted as less DAT levels are detected in subjects with advanced PD.
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Fig. 5. HC subject: original image (left), affine transformation (center) and non-affine
transformation (right).

Fig. 6. Subject with PD: original image (left), affine transformation (center) and non-
affine transformation (right).

5 Conclusions

Spatial normalization is one of the most important steps in the current analysis
of neurological images for the development of novel and accurate automated
diagnosis systems. This technique allows us to compare different subjects images
between them and describing in an standarized way, for example, how intensities
of functional images are distributed. However, as this work proposes, not all
techniques are able to preserve, in the same way, the morphology of structures
like striatum area that could be useful for their analysis using ML algorithms
[20].

When morphology of striatum region is an important feature of the study, it is
better to use an spatial normalization procedure based on an affine-registration.
This method preserves better the contour of the region and do not compress
or stretch other brain parts in excess to fit the objective image to a reference
template. This idea is reinforced when considering works in which new imaging
biomarkers for Parkinsonism are proposed [21,22].
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J.R., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds.) IWINAC 2017. LNCS,
vol. 10337, pp. 324–333. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-59740-9 32

8. Segovia, F., et al.: Multivariate analysis of 18F-DMFP PET data to assist the
diagnosis of Parkinsonism. Front. Neuroinform. 11, 23 (2017)

9. Castillo-Barnes, D., et al.: Robust ensemble classification methodology for I123-
ioflupane SPECT images and multiple heterogeneous biomarkers in the diagnosis
of Parkinson’s disease. Front. Neuroinform. 12, 53 (2018)

10. Owens-Walton, C., et al.: Striatal changes in Parkinson disease: an investigation of
morphology, functional connectivity and their relationship to clinical symptoms.
Psychiatry Res.: Neuroimaging 275, 5–13 (2018)

11. Segovia, F., et al.: Automatic separation of Parkinsonian patients and control
subjects based on the striatal morphology. In: Ferrández Vicente, J.M., Álvarez-
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Abstract. Deep learning models for image classification face two recur-
ring problems: they are typically limited by low sample size and are
abstracted by their own complexity (the “black box problem”). We
address these problems with the largest functional MRI connectome
dataset ever compiled, classifying it across gender and Task vs rest
(no task) to ascertain its performance, and then apply the model to
a cross-sectional comparison of autism vs typically developing (TD)
controls that has proved difficult to characterise with inferential statis-
tics. Employing class-balancing to build a training set, a convolutional
neural network was classified fMRI connectivity with overall accura-
cies of 76.35% (AUROC 0.8401), 90.71% (AUROC 0.9573), and 67.65%
(AUROC 0.7162) for gender, task vs rest, and autism vs TD, respectively.
Salience maps demonstrated that the deep learning model is capable of
distinguishing complex patterns across either wide networks or localized
areas of the brain, and, by analyzing maximal activations of the hidden
layers, that the deep learning model partitions data at an early stage in
its classification.

Keywords: Autism · Big data · Functional connectivity ·
Deep learning

1 Introduction

Motivated by reports of increased head circumference in children diagnosed with
autism, the first measurements with MRI reported increased total brain, total
tissue, and total lateral ventricle volumes in autistic adults [31]. Many similar
studies followed, leading to a general consensus that brain volume was increased
in autism. Moreover, in a highly cited article [8], increases in brain volume were
suggested to occur in the first few years of life when diagnostic symptoms - social
communication challenges, restricted and repetitive behaviours - also emerge.
Since then, as further evidence has accumulated, the period of early brain over-
growth has been restricted to the first year of life [35], although large-scale
longitudinal studies have failed to reproduce these meta-analytic findings [2,13].
Localising putative changes to brain structure has proved to be an even greater
c© Springer Nature Switzerland AG 2019
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https://doi.org/10.1007/978-3-030-19591-5_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19591-5_40&domain=pdf
http://orcid.org/0000-0001-9631-2567
http://orcid.org/0000-0002-5098-1527
https://doi.org/10.1007/978-3-030-19591-5_40


390 M. Leming and J. Suckling

difficultly, with discrepancies between meta-analyses even though there is a sig-
nificant overlap in the primary literature [6,10,41].

To address variations in data acquisition and processing that make between
study comparisons less powerful, publicly available large-sample datasets
are now a key aspect of imaging research. The ABIDE (http://fcon 1000.
projects.nitrc.org/indi/abide/) multi-centre initiative has made available over
2000 images in two releases, but cross-sectional analyses of structural MRI have
failed to observe significant differences [17,42]. The majority of these studies
have used the established voxel brain morphometry technique (VBM), to esti-
mate voxelwise tissue occupancies, and mass-univariate statistical testing. Other
morphological properties of the cortex may yield greater sensitivity [25].

The measurement of correlation, or ‘functional connectivity’, between time-
series of blood oxygenation level dependent (BOLD) endogenous contrast esti-
mated from brain regions whilst in resting wakefulness has been demonstrated
as a reproducible measurement on an individual basis [16]. Functional connec-
tivity estimates represented as undirected graphs (connectomes) of nodes (brain
regions) and edges (connectivity strengths) show promise in localising differences
in resting activity to specific large-scale brain networks [40], and although there
is cautionary evidence using the ABIDE dataset and others [32], it would appear
that statistically significant differences in connectivity are generally observable,
although variable in their presentation.

Computing power and access to large datasets have led to a resurgence in the
popularity of neural networks (NNs) as a tool for data classification. In parallel,
because of their wide applicability in representing complex data such as proteins
and social networks, connectors have undergone significant development in terms
of global and local characteristics. Some recent work has used NNs for processing
connectomes, including whole-graph classification, clustering into sub-graphs,
and node-wise classification [4,9,19,21,26,29].

In this article, we leverage publicly available datasets to amass and automat-
ically pre-process a total of 39,461 functional MRIs from nine different multi-
centre collections. We first classify them based on gender and task vs rest (no
task) as a test of the validity of the application NNs to imaging data due to
the known connectivity differences identified using inferential statistics [1,37].
We then classify autistic individuals from typically developing (TD) controls.
All classifications were undertaken using a convolutional neural network (CNN)
that uniquely encodes multi-layered connectivity matrices, an extension of the
deep learning architecture previously described in [23]. To incentivise the model
to classify based on phenotypic differences rather than site differences, class bal-
ancing techniques were used when building the training and test sets and com-
pared against the fully-inclusive samples. Key outputs of the CNN were salience
maps [23,38] that highlighted areas of the connectome the model preferentially
focused on when performing its classification, and activation maximization [15]
of a hidden layer inspected to visualize how the model partitioned the dataset
following classification.
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Table 1. Populations present in each dataset. Note that this represents the data that
was successfully preprocessed and does not include data that failed this stage.

Age Sex Disorders

Collection Subjs Conns Rest Task Min Max Mean Stddev F M Depr ASD Alzh

1000 FC 833 833 833 0 7.88 85 26.47 11.22 475 358 0 0 0

ABCD 1424 11789 5142 6647 0.42 11.08 10.05 0.64 5553 6236 1557 124 0

ABIDE 658 658 658 0 6 64 17.18 7.94 84 574 0 307 0

ABIDE II 646 674 674 0 5.32 55 14.48 7.63 155 464 0 293 0

ADNI 158 309 309 0 56 95 73.38 7.22 171 138 0 0 157

BioBank 11275 11275 11275 0 40 70 54.93 7.50 6172 5103 1486 0 0

ICBM 83 353 0 353 19 74 43.53 14.58 169 184 0 0 0

OPEN FMRI 1409 6548 997 5551 5.89 78 27.11 10.47 2774 3037 182 81 0

NDAR 1284 7022 5080 1942 0.25 53.42 20.51 8.05 3434 3588 0 404 0

All 17770 39461 24968 14493 0.25 95 28.97 19.88 18987 19682 3225 1209 157

In attempting to classify components of this accumulated dataset, we sought
to address the following questions: (1) How effective is a machine learning
paradigm at classifying fMRI connectomes? (2) Which areas or networks of the
brain do models focus on when undertaking classifications? (3) How does the
model partition large datasets during classification? (4) Can the model effectively
classify functional connectivities taken from multiple sources without relying
explicitly on site differences to do so? (5) What is the best current evidence for
cross-sectional differences in functional connectivity that characterise autism?

2 Methods

2.1 Datasets and Preprocessing

Datasets were acquired from OpenFMRI [33,34]; the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI); ABIDE [12]; ABIDE II [11]; the Adolescent Brain
Cognitive Development (ABCD) Study [5]; the NIMH Data Archive, including
the Research Domain Criteria Database (RDoCdb), the National Database for
Clinical Trials (NDCT), and, most predominantly, the National Database for
Autism Research (NDAR) [18]; the 1000 Functional Connectomes Project [14];
the International Consortium for Brain Mapping database (ICBM); and the UK
Biobank; we refer to each of these sets as collections. OpenFMRI, NDAR, ICBM,
and the 1000 Functional Connectomes Project are collections that comprise
different datasets submitted from unrelated research groups; ADNI, ABIDE,
ABIDE II, ABCD, and the UK Biobank are collections that were acquired as
part of a larger research initiative.

Data were preprocessed using the fMRI Signal Processing Toolbox and
the Brain Wavelet Toolbox [30] and parcellated with the 116-area Automated
Anatomical Labelling (AAL) atlas that defined the nodes of the connectome,
with the edges weighted by the correlation of the wavelet coefficients from the
decomposition of the pre-processed BOLD time-series in each of four temporal
scales: 0.1–0.2 Hz, 0.05–0.1 Hz, 0.03–0.05 Hz, and 0.01–0.03 Hz.
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Datasets with regional dropout or which otherwise failed the parcellation
stage were omitted from the analysis. Redundant datasets across collections were
discarded. Multiple instances of connectivity matrices from the same individu-
als were used, though contributions from the same individuals were not shared
between the training, validation, and test sets. The numbers of participants,
total numbers of datasets used as well as phenotypic distributions, are shown in
Table 1.

Fig. 1. The structure of the neural network, based on BrainNetCNN.

2.2 Neural Network Model and Training

The data used for training and testing the CNN were 4 × 116 × 116 (4 wavelet
scales and 116 nodes) symmetric connectivity (wavelet coefficient correlation)
matrices with values scaled on [0, 1].

To classify data, we employed a CNN with cross-shaped filters described
in [23]; to allow the network to train on connectivity matrices (Fig. 1. We re-
implemented the architecture of [23] using Keras [7], a popular machine learning
library, leveraging the advantages of other software libraries that support Keras.
Additionally, this re-implementation extended the model to include multiple
channels in the inputs, as opposed to single connectivity matrices.

The CNN was constructed with: 24 edge-to-edge filters; 24 edge-to-node fil-
ters; 2 fully-connected layers, each with 64 nodes; and a final softmax layer.
Three leaky rectified linear unit (ReLU) layers, with a slope of 0.2, and three
dropout layers, with a dropout rate of 0.5, were also used in the network. Spec-
ifications are shown in Fig. 1. The model was trained using an Adam optimizer
with batch sizes of 64, otherwise Keras defaults were used. Models were trained
for 250 epochs, and the epoch with the highest validation accuracy was selected.

2.3 Set Division

Datasets were partitioned into three sets: the training set, comprised of two-
thirds of the data and used to train the model; the validation set, comprised of
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one-sixth of the data and used to select the epoch at which training stopped;
and the test set, used to assess the trained classifier performance.

For all classifications, balancing was used such that each class comprised
approximately half of the datasets. To account for gender, age, and possible scan-
ning site differences between datasets, we report the inter-dataset classification
accuracy as well as the global accuracy. Two different class-balancing approaches
were used when building the sets: one selected two age-matched cases for gender
and task vs rest classification, and the other selected a case and corresponding
control from the same collection for the autism vs TD classification.

2.4 Test Set Evaluation

Inter-data Classification. Following the training of the models, the accuracy
and the area under the receiver operating characteristic curve (AUROC) were
calculated as measures of machine learning performance on the test set. This
was to determine if one group in the classification outperformed the other in
training leading to a biasing of the overall accuracy.

Activation Maximization. Activation maximization [15] is a technique to
determine the maximally activated hidden units in response to the test set of the
CNN layers following training. Activation maximization was applied to the 116×
24 second layer of our network (Fig. 1) as this two-dimensional convolutional
layer acts as a bottleneck, and is thus easier to interpret and visualize. This
layer is naturally stratified by 24 filters, each with 116 nodes that correspond
to parcellated brain areas. To offset the influence of spurious maximizations,
we opted to record the 10 datasets that maximally activated each hidden unit,
displaying their mode, collection, gender, age group, and task/rest; for example,
if 6 connectomes that maximally activated a unit were from Biobank and four
from Open fMRI, Biobank would be displayed as maximally activating that unit.

Salience Maps. We deployed salience maps [23,28,38] using a previous Keras
implementation [27] to display the parts of the connectivity matrix the CNN
emphasised in its classification of the test set. Class saliency extractions operate
by taking the derivative of the CNN classification function (approximated as a
first-order Taylor expansion, estimated via back-propagation) with respect to
an input matrix, with the output being the same dimensions as the input [38].
Saliency extractions are particularly advantageous when applied to connectivity
matrices, because unlike typical 2D images these matrices are spatially static
(i.e. each part of the matrix represents the same connection in the brain, across
all datasets), and thus global tendencies of the model can be visualized. Saliency
maps for each adjacency matrix were averaged and displayed to demonstrate on
which aspects of the connectome the CNN was most focused when performing
the classification.
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Table 2. Populations present in the training set for each round of classification, with
and without class balancing

With class balancing Without class balancing

Autism Rest v Task Gender Autism Rest v Task Gender

non-ASDASD Rest non-Rest Female Male non-ASDASD Rest non-Rest Female Male

1000 FC 0 0 507 0 320 271 0 0 625 0 358 272

ABCD 61 82 3088 3634 3370 3275 7301 82 3091 4292 3416 3991

ABIDE 232 229 461 0 62 375 263 230 493 0 60 434

ABIDE II 221 218 408 0 113 303 284 221 505 0 117 346

ADNI 0 0 4 0 106 88 0 0 230 0 135 95

BIOBANK 3 3 597 0 3967 3704 0 0 8458 0 4633 3825

ICBM 0 0 0 185 99 105 0 0 0 217 121 94

NDAR 122 130 2164 909 2194 2020 4307 138 3215 1230 2180 2240

OPEN FMRI 61 62 372 2792 1977 2059 0 0 883 4030 2059 2299

TOTAL 700 724 7601 7520 12208 12200 12155 671 17500 9769 13079 13596

2.5 Experiments

We performed the classification on class-balanced datasets that then classified
based on gender, task vs rest, and autism vs TD controls. For gender and task
vs rest classifications, we also balanced classes by age; that is, the distribution
of ages for each group was the same. For autism vs TD controls, we balanced
across collections to minimise site differences, and also as a proxy for age whilst
maximising the sample size.

Additionally, we trained models without the use of class balancing, only
excluding collections that entirely lacked a particular class. The number of con-
nectomes used in each experiment’s training set, with and without class balanc-
ing, are given in Table 2. Where training was successful, we report the overall
classification accuracy and AUROC for the balanced and unbalanced test sets.

3 Results

The results displayed a tendency of the model to use particular filters to sequester
data by different variables, especially if it were attempting to classify by that
variable, although the model divided data across certain filters independent of
the classification variable. While gender, task vs rest, and autism vs TD controls
each have a small proportion of their filters wholly activated by the datapoints
of a single collection (which may be easy to distinguish based on differences
between MRI scanners), the majority of filters were activated by a variety of dif-
ferent collections, indicating the effective synthesis of data from different sources.
Those comparisons that saw the highest classification accuracy tended to acti-
vate individual filters in most nodes, indicating the network’s tendency to group
data early in the architecture, prior to the fully-connected layers.
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Fig. 2. Activation maximization, salience map, and ROC-curve results on gender clas-
sification

3.1 Gender Comparison

With class balancing, classification accuracy on the test group was 76.35%
(AUROC 0.8401). Classification was most successful on the UK Biobank col-
lection (87.31% accuracy). When stratifying by age, the CNN was able to obtain
higher performance distinguishing gender in older age groups than younger age
groups, and better able to achieve classification of gender in resting than task-
based fMRI (78.96% versus 71.44%).

In activation maximization Fig. 2, filters 3/8, 9, and 10 were almost entirely
dedicated to the classification of OPEN fMRI, Biobank, and ABCD collections,
respectively. Filter 18 was activated by females, whilst most other filters are
activated by males. Filter 3 was activated by task-based fMRI from OPEN fMRI,
while filter 15 as activated by resting-state fMRI from no particular collection.
Salience maps indicated that gender classification utilized a wider spread of
areas, focusing on networks in the frontal lobe.

Without class balancing, the results on gender were a comparable 0.8406
AUROC and 76.88% accuracy.

3.2 Task vs Rest (No Task)

With balanced classes, task vs rest fMRI classification was successful with 90.71%
(AUROC 0.9573) of the test set correctly assigned. The training set, whilst bal-
anced by age, had a high imbalance between collections. The AUROC of those
collections that contributed substantial amounts both resting-state and task par-
ticipants - i.e., NDAR, ABCD, and Open fMRI - had comparable AUROCs to
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Fig. 3. Activation maximization, salience map, and ROC-curve results on resting-state-
versus-task classification

that obtained overall. Furthermore, the salience map focused on the default mode
network in the left hemisphere and its connection to the right frontal medial
orbital area. Together, this suggests that the main influence in classification was
not site differences.

In activation maximization six filters were dedicated to the resting-state class,
fourteen to task-based fMRI, and four were mixed Fig. 3. This is likely indica-
tive of the deep learning model using a simpler characterization of resting-state
fMRI than task-based, which used more of its internal memory to capture the
distinguishing patterns.

Without class balancing, the model achieved a higher 0.9792 AUROC, pre-
sumably displaying the effects of using more data on these models, as the age-
balancing technique applied effectively discarded nearly half the training set
data. However, a classification based partially on age groups is also possible.

3.3 Autism vs TD Controls

With class balancing, the overall performance on the test set was 67.65%
(AUROC 0.7162). Autism classifications were highly dependent on the collec-
tion used, though the final accuracies were above chance for all collections. Class
balancing was necessary, as data from autistic individuals comprised a relatively
low percentage; collections with data from autistic individuals - Open fMRI,
ABIDE I and II, NDAR, and ABCD - had <10%. Without class balancing the
model failed to converge, simply classifying every datapoint as a TD control.
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Fig. 4. Activation maximization, salience map, and ROC-curve results on autism clas-
sification

In activation maximization of the second layer, autism classification used
filters 1, 5, 9, and 23 for the ABIDE collection, and filters 7, 18, and 24 were
mostly used for females from the Open fMRI coillection Fig. 4. The majority of
nodes were maximally activated by data from the ABIDE I and II collections,
although a disproportionately high number were used to classify Open fMRI
autism data, which comprised < 10% of the total. A surprisingly low proportion
of data from the NDAR and ABCD collections maximally activated the nodes,
even though its classification was relatively successful and comprised a more
substantial portion of the dataset. Most other nodes were maximally activated
by the male resting-state data, which reflects the autism dataset as a whole. The
salience maps indicate autism was classified using specific, localised regions of
the brain; notably, bilateral posterior cingulum and the right caudate nucleus.

4 Discussion

This work describes how large and diverse imaging data might be analyzed by
deep learning models, encouraging the aggregation of publicly available collec-
tions. Data were partitioned based on clear and logical features of the images,
and that, even with imperfect classification accuracies, deep learning models are
capable of recognizing highly complex patterns in large datasets representing
large-scale brain networks and localized structures.

The neuroscientific objective of this study was to use the available imaging
data with deep learning to describe the pattern of functional brain changes that
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distinguishes individuals with autism from TD controls. With the absence of
any gold standard in the cross-sectional comparison, we first undertook other
classifications that have more secure, robust findings in the extant literature to
confirm the veracity of the developed methods.

When classifying gender, the model was influenced by diffuse areas connected
to the frontal lobe (Fig. 2). This is consistent with previous findings in gender
comparisons of functional imaging, which did not find differences in brain activity
between specific areas, but rather differences in local functional connectivity over
large areas of the cortex [39]. Gender classifications were most successful with
larger collections with more consistent image quality (e.g. ABCD and BioBank),
rather than smaller collections of very high-quality images.

Deep learning models are prone to sorting data by different variables rela-
tively early on in the classification process (Figs. 2, 3, and 4), reserving different
filters for different classes of data.

Task vs rest functional connectivity classifications, as expected, identified
the major components of the well-known default mode network (Fig. 3), a set of
bilateral and symmetric regions that is suppressed during exogenous stimulation.
More filters maximally activated by task fMRI than resting-state, indicating the
greater variation that characterizes task fMRI, which is related to cognitive
performance [20]. The high classification accuracies and detected patterns gives
credibility to the use CNN with neuroimages.

Bilateral areas with some correspondence to the default mode network, par-
ticularly parietal, temporal and frontal medial regions, were identified as salient
to the comparison of the autism vs TD controls: Figs. 3 and 4. Notably, autistic
individuals were additionally classified by connections to the cerebellum and deep
structures (caudate and hippocampus). Prior cross-sectional studies of functional
connectivity in autistic individuals have primarily thresholded connectivity esti-
mates (i.e. correlations), whereas here all existing connections were included,
both positive and negative. A comparison of connectors using a highly matched
sub-set of the ABIDE II collection [24] found global differences, and reduced
network segregation within the default mode network and primary auditory and
somatosensory cortical regions, and between these regions and other large net-
works.

Model accuracy was lower compared to the highest rates reported in litera-
ture [3,22,28], although this result should be viewed with several caveats. The
dataset used in this analysis was larger and more complex than any other pre-
viously analyzed, consisting of data from many collections. Direct comparisons
of machine learning classification methods is difficult as there are no univer-
sally accepted methods to divide collections into training and test sets (unlike
standardized competitions in other fields, such as the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) [36]). Furthermore, our exclusion crite-
ria differed, and, because we opted to use multiple scanning sessions from single
subjects during training, we also used data in ABIDE not employed in previous
studies. Class balancing may also have significantly affected the classification
accuracy. Nevertheless, this was necessary to avoid spuriously large accuracies
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due to the highly skewed ratio of autism:TD, where high rates of classification
the larger groups lead to biases to the overall rate. Lastly, preprocessing methods
and exclusion criteria are not typically shared across studies, and thus differences
due to the input data cannot be discounted.

More generally, our deep learning model employed multichannel input.
Although this has long been the standard in 2D image classification (for instance,
RGB images), it has not been utilized before in the classification of connec-
tomes. Theoretically, this provides an advantage, since it encodes more informa-
tion about the underlying timeseries. In practice, multichannel inputs generally
increased the accuracy of our model by 2–3% over the single-channel models
tested.

We used salience maps [38] to identify connections and areas that the model
incorporated in its classification; this method has previously been used in deep
learning on functional connectivity [23,28] as is an effective method of dissecting
neural networks. However, a caveat to this is that salience maps are imperfect
indicators of areas of importance in the data that may not give a complete
depiction of the distinguishing features.

One of the key methods we used to interrogate the results from our deep learn-
ing model was activation maximization. Previously, activation maximization has
been used for intuiting the internal configuration of neural networks rather than
for interpretation purposes [15]. In this study, while some filters were solely acti-
vated by data from single collections, the majority by mixed data from different
collections suggesting an ability to account for site differences during classifica-
tion. Deployment of activation maximisation here led to specific observations:
variation of task-based fMRI is far greater than during rest (six filters maxi-
mally activated by rsfMRI and 14 by tasks); dataset sequestering happens even
without successful classification; the number of filters activated maximally by a
particular dataset is not necessarily proportional to the classification accuracy
of that dataset.

5 Conclusion

With careful class-balancing, deep learning models are capable of good quality
classifications across mixed collections detecting differences in brain networks,
and functions of localized structures, or functional connections over large areas.
Salience maps highlighted key spatial elements of the classification and activation
maximisation gave insights into the types of features on which the CNN based
its classification. This deep learning model is an example of the apparatus to
leverage publicly accessible large volumes of data for discovery science.
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Abstract. Cognitive effort is costly and partly aversive, and thus
humans usually avoid it if given the chance. In Demand-Selection Tasks
(DST), participants tend to choose the easy option over the hard one.
The neural underpinnings of this effect, however, are not well understood.
The current study is an initial approximation to adapt a DST to a for-
mat that allows measuring concurrent high-density electroencephalogra-
phy. We used multivariate pattern analysis (MVPA) to decode conflict-
related neural processes associated with congruent or incongruent events
in a time-frequency resolved way and determined how different frequency
bands contribute to the overall decoding accuracy. The decoding anal-
ysis involved the use of Support Vector Machines, a supervised learn-
ing algorithm that provides a theoretically elegant, computationally effi-
cient, and very effective solution for many practical pattern recognition
problems. Preliminary results show significant differences in activation
patterns for congruent and incongruent trials, yielding 80% of decod-
ing accuracy 400 ms after the stimulus onset. The results of frequency
bands contribution analysis suggest that context-dependent proportion
of congruency effect may rely on neural processes operating in Delta and
Theta-band frequencies.

Keywords: Multivariate pattern analysis · Electroencephalography ·
Classification · Support Vector Machine · Demand-Selection Task

1 Introduction

Cognitive effort is costly and partly aversive, and thus humans usually avoid it
if given the chance. In Demand-Selection Tasks (DST)[1], participants tend to
choose the easy option over the hard one. The neural underpinnings of this effect,
however, are not well understood. The current study is an initial approxima-
tion to adapt a DST to a format that allows measuring concurrent high-density
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electroencephalography. Supervised machine learning algorithms, more specifi-
cally Support Vector Machines (Vapnik, 1979), in conjunction with several neu-
roimaging techniques, such as functional Magnetic Resonance Imaging (fMRI),
Electroencephalography (EEG) or Magnetoencephalography (MEG), have been
widely and successfully applied in clinical applications, such as computer-aided
diagnosis of Alzheimer’s disease [2–5], automatic sleep stages classification [6,7]
or automatic detection of sleep disorders [8]. Recently, these techniques are gain-
ing popularity in Cognitive Neuroscience, especially in fMRI studies. However,
the poor temporal resolution of the fMRI signal prevents an accurate time-
resolved study of the cognitive precesses. For this reason, the use of these tech-
niques is spreading and they are being applied to M/EEG signals, studying
the neural dynamics of face detection [9], the process of memory retrieval [10],
the representational dynamics of task and object processing in humans [11] or
decoding spoken words in bilingual listeners [12].

This study uses multivariate pattern analysis (MVPA) to decode conflict-
related neural processes associated to congruent or incongruent events in a
time-frequency resolved way. Due to the noisy nature of the EEG signal, a trial
averaging approach has been carried out during the feature extraction stage,
increasing the signal-to-noise ratio (SNR). In addition, we determined how dif-
ferent frequency bands contribute to the overall decoding accuracy, showing that
context-dependent proportion of congruency effect may rely on neural processes
operating in Delta and Theta frequency bands [13].

2 Materials and Methods

Participants. Thirty-two healthy individuals (21 females, 29 right-handed,
mean age = 24.65, SD = 4.57) were recruited for the experiment. Subjects had
normal or corrected-to-normal vision and none reported any neurological or
psychiatric disorder. All of them provided informed, written consent before the
beginning of the experiment and received a 10-euro payment or course credits
in exchange for their participation. The experiment was approved by the Ethics
Committee of the University of Granada.

Experimental Setup. Stimuli presentation and behavioral data collection were
carried out using MATLAB (MathWorks) in conjunction with Phychtoolbox-3
Toolbox [14], in a magnetically shielded room. The visual stimuli were presented
in an LCD screen (Benq, 1920 × 1080 resolution, 60 Hz refresh rate) and placed
68.31±5.37 cm away of subject’s Glabella. Using a photodetector, the stimuli
onset lag was measured at 8 ms, which corresponds to half of the refresh rate
of the monitor. Triggers were sent from the presentation computer to the EEG
recording system through an 8-bit parallel port and using a custom MATLAB
function in conjunction with inpoutx64 driver [15].

Stimuli. The predictive cue acted as a difficulty selector, and consisted of two
squares of different colors stacked and presented in the center of the screen
(visual angle ∼ 5◦). In forced blocks, a small white indicator (circle 50% or
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Fig. 1. (A) Experimental sequence of events in case of a correct response on both cue
and stimulus flanker. A trial starts width a fixation point, followed by a cue, witch act
as a color picker. Subjects have to choose (freely or forced, depending on the block type)
the possible color of the upcoming target stimulus. Finally, after a variable time interval
(100–300ms) the target stimulus appears and subjects have to respond accordingly to
the orientation of the central arrow. Another variable time interval started before the
beginning of the next trial. The cue and the target stimulus remained in the screen
for 190ms. (B) Cognitive effort manipulation through the percentage of congruent and
incongruent trials. Each cue color is associated to a high and low conflict context.
(Color figure online)

square 50%) appeared on top of the color that had to be chosen. In voluntary
blocks, this indicator appeared between the two colored squares (see Fig. 1).
Each target stimulus consisted of five arrows pointing left or rightwards, which
were displayed at the center of the screen (visual angle ∼6◦). The color of the
target stimulus depended on the previously selected color.
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Experimental Design. The Color-Based Demand-Selection Task [Fig. 1 (a)],
modified from [1], consisted of a cue-target sequence where participants were
required to choose (voluntarily or forced, in different blocks: 4 blocks, 240 trials
per block, ∼90 min) the color of the upcoming stimulus and discriminate the
orientation (right or left) of an arrow target surrounded by arrows pointing at
the same (compatible distracters) or opposite (incompatible distracters) direc-
tion. Difficulty, or cognitive effort, was manipulated through the percentage of
congruent or incongruent trials associated with each color.

Participants were instructed to respond as fast and accurately as possible,
and to not choose color based on personal preference. They were unaware of the
cognitive effort manipulation. In order to preserve the signals as clean as possible
and remove the least number of trials, participants were encouraged to remain as
still and relaxed as possible, avoiding face muscle activity and eye movements,
but blinking normally. The order of the blocks, cue colors, response keys and
color-conflict context mappings were counterbalanced between subjects.

Behavioral Data Acquisition and Preprocessing. The reaction time (RT)
and error rates were registered for each subject. Before the statistical analysis,
the first trial of each block, trials with choice errors and trials after errors were
filtered out, as suggested in [16]. Finally, RT outliers were also rejected using a
±2.5 SD threshold, calculated individually per subject. As a result, there was a
total removal of 19% of the trials.

EEG Data Acquisition and Preprocessing. High-density electroencephalog-
raphy was recorded from 65 electrodes mounted on an elastic cap (actiCap slim,

Fig. 2. (A) Feature extraction process in simulated data. The feature vectors of each
condition and time point consisted of an z-scored voltage array for all the scalp elec-
trodes. For an improved SNR, five trials were averaged before the feature extraction.
(B) Cross-validated LSVM classifier. For each time point, a LSVM was trained and
tested (stratified k-fold cross-validation, k = 10). Chance level was calculated permuting
the labels.
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Brain Products). The TP9 and TP10 electrodes were used to record the elec-
trooculogram (EOG) and were placed below and next to the left eye of the
subject. Impedances were kept below 5 k. EEG activity was referenced to the
FCz electrode and signals were digitalized at a sampling rate of 1 KHz.

Electroencephalography recordings were average referenced, downsampled to
256 Hz, and digitally filtered using a bandpass FIR filter [0.5–40 Hz], preserving
the phase information. No channel was interpolated for any subject. EEG record-
ings were epoched [−1000, 2000 ms centered at the target arrows] and baseline
corrected [−200, 0 ms], extracting data only from correct trials. A total of 90 518
epochs (target, cue and cue response) were extracted. To remove blinks from the
remaining data, Independent Component Analysis (ICA) was computed using
the runica algorithm from EEGLAB [17], excluding TP9 and TP10 channels.
Artifactual components were rejected by visual inspection of raw activity of each
component, scalp maps and power spectrum. Then, an automatic trial rejection
process was performed, pruning the data from no stereotypical artifacts. The
trial rejection procedure was based on (1) extreme values: all trials with ampli-
tudes in any electrode out of ±75µV range were automatically rejected (∼7%
of the total sample); (2) abnormal spectra: the spectrum should not deviate
from baseline by ±50 dB in the 0–2 Hz frequency window (which is optimal for
localizing any remaining eye movements) and should not deviate by −100 dB
or +25 dB in 20–40 Hz (useful for detecting muscle activity) (<1% of the total
sample).

Multivariate Pattern Analysis (MVPA). The MVPA for the decoding anal-
ysis was performed in MATLAB by a custom-developed set of linear Support
Vector Machines (LSVM), trained to discriminate between congruent and incon-
gruent target stimuli. To avoid skewed classification results due to a possible
unbalanced dataset, the prior probabilities of each class were set to uniform.
The rest of the classification parameters remained by default. The generalization
performance of the classifiers was calculated through cross-validation technique
(stratified k-fold, k= 10 ).

To obtain the classification performance in a time-resolved way, the feature
vectors were extracted as shown in Fig. 2. Thus, the classification procedure, for
each subject, ran as follows: (1) For each timepoint and trial, we generated two
feature vectors (one for each condition or class) consisting of the raw poten-
tial measured in all electrodes (excluding EOG electrodes: TP9 and TP10). (2)
Features vector containing raw potential values were normalized (z-score). (3)
LSVMs were trained and cross-validated, resulting in a single value of accuracy
for each timepoint and subject. (4) Finally, a single measure of accuracy for each
timepoint was calculated by averaging the classification performance over all the
subjects. The chance level was calculated following the former analysis but using
randomly permuted labels for each trial.

In a second analysis, to increase the signal-to-noise ratio [18] (SNR), improv-
ing the overall decoding performance and reducing the computational load, each
subjects dataset was reduced by randomly averaging a number of trials belong-
ing to the same condition. The number of trials to average is a trade-off between
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Fig. 3. Classification performance. The green line represents the classification results
when no trial average was carried out. An improved classification performance is shown
in orange, averaging 5 trials before the feature extraction. Finally, the former analysis
was repeated optimizing the cost parameter C (fivefold cross-validated), shown in blue.
The gray line represents the classifier chance level, calculated through permuted labels.
The shaded areas show the standard error. The statistically significant regions are
indicated on the bottom of the figure by colored dots. (Color figure online)

an increased classification performance (due to an increased SNR) and the vari-
ance in the classifier performance, since reducing the trial per condition typically
increases the variance in (within-subject) classifier performance [19]. The opti-
mal number of trials to average depends on the data. In our dataset (∼500 trials
per condition and subject) considering that averaging more trials does not incre-
ment the decoding performance linearly, we found that averaging 5 trials is a
good trade-off between SNR and trials per conditions (∼100 trials per condition
and subject). Finally, a search-grid based cost parameter (C) optimization was
carried out using fivefold cross-validation on the training set and increasing the
final decoding accuracy.

Frequency Contribution Analysis. The contribution of each frequency band
to the overall decoding accuracy was assessed through a sliding filter approach.
We designed a band-stop FIR filter (4 Hz bandwidth, 0.5 Hz transition band,
2816 filter order, Blackman window) and pre-filtered the EEG data (37 over-
lapped frequency bands, between 2–40 Hz and logarithmically spaced steps)
producing 37 filtered versions of the original EEG dataset. The former decod-
ing analysis was repeated for each filtered version and the importance of each
filtered-out band was quantified computing the difference in decoding accuracy
between the filtered and the original datasets.
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(a) Accuracy difference map
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(b) t-test statistics
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(c) t-test statistics thresholded (p < .05)
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Fig. 4. Frequency contribution analysis. (A) Classification differences when a specific
frequency band is filtered-out. (B) T-test statistics showing significant differences in
classification at each time point and frequency band. (C) p< .05 thresholded signifi-
cance map.

3 Results and Discussion

The behavioral results replicate well-known conflict effects linked to context-
dependence congruency. Effort avoidance was observed in voluntary deci-
sion blocks (percentage of choice of easy 57.11% SEM = 2.93 vs difficult
42.88% SEM = 2.93 contexts; t = 2.42, p = .021). Planned comparisons show
significant differences in reaction time between contexts for both congruent
(F(1,31) = 12.76, p = .001, η2

p = .292) and incongruent trials (F(1,31) = 10.72,
p = .003, η2

p = .257) and interaction of context and congruency, showing the
context-dependent congruency effect.

The electrophysiological analyses (Fig. 3) show significant differences
(p < 0.05) in activation patterns for congruent and incongruent trials, peaking
400 ms after the stimulus onset. A paired t-test was computed comparing the
classification performance mean at each time point with the classifier chance
level, which was calculated through permuted labels. The significant region
extends from stimulus onset (t = 0 ms) to 1500 ms later, when no trial average
was carried out. When the signal to noise ratio was increased by trial averaging,
this significant region extends throughout the entire analyzed temporal window,
which suggests that neural patterns associated to congruent or incongruent tri-
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als are significantly different even before the stimulus presentation. These results
are reasonable, since the stimulus onset is preceded by a predictive cue, which
indicates with 80% of validity, once the context is chosen (easy or hard), if the
following trial will be congruent or incongruent. These activation patterns dif-
ferences between conditions may relay on the differences in preparatory neural
mechanisms triggered by the selected context, reasserting the context-dependent
congruency effects in reaction times showed in the behavioral results.

A sliding bandstop filter approach was followed to study the contribution
of each frequency band to the overall decoding accuracy, showing that context-
dependent proportion of congruency effect may rely on neural processes operat-
ing in Delta and Theta frequency bands. Figure 4A shows how decoding accuracy
significantly drops when frequencies up to 8 Hz were filtered-out. A paired t-
test was computed comparing the classification performance mean at each time
point and frequency band with the classifier performance when no frequency
was filtered-out (Fig. 4B). Finally, Fig. 4C shows a thresholded significance map
(p < 0.05) of the former analysis.

4 Conclusion

The current study is an initial approximation to adapt a DST to a format that
allows measuring concurrent high-density electroencephalography. We used mul-
tivariate pattern analysis (MVPA) to decode conflict-related neural processes
associated with congruent or incongruent events in a time-frequency resolved
way, yielding 80% of decoding accuracy 400 ms after the stimulus onset. Our pre-
liminarily results of frequency bands contribution analysis suggest that context-
dependent proportion of congruency effect may rely on neural processes operat-
ing in Delta and Theta-band frequencies. For a better understanding of prepara-
tion processes and conflict effects, it would be of interest to continue analyzing
our data, focusing not only on the target stimulus, but also on the cue. Fur-
ther detailed analyses should be carried out to study the activation differences
between forced and voluntary blocks or high and low congruency contexts.
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Abstract. Imbalanced datasets often pose challenges in classification
problems. In this work we study and quantify the problem of imbal-
anced classification using support vector machines (SVM). We identify
the conditions under which a SVM failure occur, both theoretically and
experimentally, and show that it can be relevant even in cases of very
weakly imbalanced data. The guidelines for exploratory data analysis are
presented to avoid the SVM failure.

Keywords: Support vector machines · Imbalanced data · SVM ·
Data analysis · SVM failure

1 Introduction

Often in statistical learning, the available training data set has few samples in a
high dimensional space, allowing very poor estimations on probability distribu-
tion functions. Non-parametric approaches based on statistical learning theory,
such as neural networks or SVMs, have been proven to be very succesful solving
classification problems. However, in the case of unbalanced training datasets,
some difficulties arise if the learning algorithms are straightforwardly applied.
For example, the soft margin solution in SVM [4,9] for non-separable classes,
includes a term in the lagrangian that accounts for the classification error rate
together with the structural risk minimization. If the learning algorithm is opti-
mized to minimize the risk of misclassifying samples, some additional constraints
must be imposed to avoid the trivial solution in imbalanced datasets. The trivial
solution is achieved when all samples are classified as the dominant class. In that
undesirable case, the misclassification error can be very small if the dominant
class outnumbers the scarce class in several orders of magnitude, thus masking
the problem. It is however possible that the trivial solution is achieved in cases
of weakly imbalanced data.

A common practice in SVM imbalanced classification is to apply penalties to
the classification errors on the scarce class, so that the risk of classification errors
is weighted. Usually, no other method or theoretical ground for class weight
estimation but trial-and-error is proposed. Moreover, it has been shown that
c© Springer Nature Switzerland AG 2019
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applying class weights is equivalent to use fuzzy-SVMs [6]. The importance of
the data properties has been studied in imbalanced data [7], although the use of
weights in SVM is usually reserved to heavily imbalanced data.

In this work we study the relevant properties of the data for SVM imbalanced
classification and its theoretical relation to the trivial solution.

2 Methods

The methodology followed in this study is as following: first a review on SVM is
given, fixing the notation. Secondly, a definition of SVM failure is given, together
with a theoretical derivation of the conditions that cause it. Lastly, a experimen-
tal set is proposed to illustrate the effects of the SVM failure and the circum-
stances around it.

2.1 Support Vector Machines

SVM is a machine learning algorithm that separates a given set of binary labeled
training data with a hyper-plane that is maximally distant from the two classes
(known as the maximal margin hyper-plane). In the C-SVM formulation, the
problem of finding the maximal margin hyperplane is solved by quadratic pro-
gramming algorithms that try to minimize the dual of the cost function J :

J(w , w0, ξ) =
1
2
||w||2 + C

l∑

i=1

ξi, (1)

subject to the inequatity constraints:

yi[w · xi + w0] ≥ 1 − ξi, ξi ≥ 0 i = 1, 2, ..., l. (2)

where the slack variables ξi make the margin “soft”, by incorporating to the
optimization those feature vectors that are not separable, leading to the soft
margin solution (details can be found in [10] and [9]).

By applying Lagrange duality and introducing kernel methods, the following
dual optimization problem is obtained:

min
α

1
2

l∑

j=1

l∑

i=1

yiyjαiαjK(xi,xj) −
l∑

i=1

αi (3)

subject to the KKT dual conditions:

l∑

i=1

yiαi = 0, and 0 ≤ αi ≤ C, i = 1, ..., l (4)



414 I. A. Illan et al.

where K(., .) is the kernel function and αi are the Lagrange multipliers that need
to be solved. The dual conditions will be related to the primal problem as:

αi = 0 → yi[w · xi + w0] ≥ 1 (5)
αi = C → yi[w · xi + w0] ≤ 1 (6)

0 < αi < C → yi[w · xi + w0] = 1 (7)

Common kernels that are used by SVM practitioners for the nonlinear feature
mapping are:

– Polynomial
K(x,y) = [γ(x · y) + c]d. (8)

– Radial basis function (RBF)

K(x,y) = exp(−γ||x − y||2). (9)

as well as the linear kernel.
The solution to that problem can be expressed by a linear combination of a

subset of vectors, called support vectors:

d(x) =
NS∑

i=1

αiyiK(si,x) + w0 (10)

where si are the NS support vectors; those vectors with αi > 0. Taking the sign
of the function d(x) leads to the binary classification solution [10]. The solution
may also be expressed as:

y(x) = sign(ϕ(x) · w + w0) (11)

where:

w =
l∑

i=1

αiyiϕ(xi) (12)

with K(xi,xj) = ϕ(xi) ·ϕ(xj) being the kernel mapping that will be the identity
in the linear case.

3 SVM Failure

The solution given in 13 can be split into its positive and negative class fractions
as:

w =
l∑

i=1

α+
i ϕ(x+

i ) −
l∑

i=1

α−
i ϕ(x−

i ) (13)

where x−
i and x+

i are the negative and positive training examples. The sign of
the vector w will determine how the positive and negative labels are assigned in
reference to the hyperplane. Ideally, the vector w will point from the negative
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class to the positive class. However, there will be some special cases where the
vector w will point in the wrong direction, that is, from the positive class towards
the negative class. In those cases, the training of the SVM will fail, and the only
possible adjustment is to set w0 so that all the training examples are classified as
positive (or negative). We will call that situation SVM failure. There are several
properties of the training data involved in a SVM failure, namely: the proportion
between training samples and the overlap between them. We will show here how
this undesirable situation occurs when the difference in support vector density
between classes reaches a threshold inside the margin.

Let us first consider the simpler case of linear SVM. In accordance with the
dual KKT conditions, αi = C for all the training examples inside the margin,
including those in the wrong side of the margin. The constraints imposed in
Eq. 4 to the solution of Eq. 10 make it possible to express the vector w as:

w = C(x̄+
s − x̄−

s ) (14)

where x̄+
s and x̄+

s are the average positive and negative support vectors respec-
tively, and where we have neglected those support vectors with 0 < αi < C
for reasons that will become clear later. Intuitively, w can be thought as the
difference vector between the average positive support vector and the average
negative support vector, up to a factor. However, to guarantee the optimal per-
formance of the SVM, the sign of the vector w must be the same as the sign of
the vector v defined as:

v =
n+∑

i=1

x+
i −

n−∑

i=1

x−
i (15)

where n+ is the total number of samples in the positive class and n− is the total
number of samples in the negative class. In oder words, we expect the classifier
to be somewhere between the average positive class and the average negative
class, thus dividing both point clouds. To understand when this condition is not
met, it is useful to analyze the different scenarios in which the Eq. 14 vanishes.
For Eq. 14 to vanish, the classes are required to be non-separable. It is easier to
analyze first the simpler case of imbalanced data in which all the samples of the
scarce class are support vectors, and then discuss the more general case in which
Eq. 14 can vanish but there are a non-negligible number of samples that are not
support vectors.

3.1 All Support Vectors

In the case of a complete overlap between classes, it is a consequence of the
constraints 2 that all the samples of at least one class must be support vectors.
Take the negative class to be the scarce one. In that case, one of the terms of
Eq. 14 can be calculated explicitly from the data only, the x̄−

s term. Therefore,
if it was possible to calculate the x̄+

s term, it would be possible to predict if
the classifier will fall into a SVM failure. The smallest value of the second term
can be achieved only for no support vectors outside the margin, or all αi = C,



416 I. A. Illan et al.

neglecting smaller values of αi as mentioned earlier. If we define the subset of
one class samples that are in the region of the feature space delimited by the
hyperplane located at a distance C of the furthest negative sample in the v
direction as L, then the SVM failure condition is:

∑

i∈L
x+

i =
n−∑

i=1

x−
i (16)

4 Experiments

We performed simulations of real case scenarios in which the different properties
of the data are varied, as the imbalance proportion between classes or their
overlap. To model the data we used multidimensional Gaussian distributions,
that allowed us to control the aforementioned characteristics. Two classes w1 and
w2 were modeled with Gaussian distributions with different mean and covariance,
and described by:

p(w1 |x) =
1

2π|Σ1| 1
2

exp
(

−1
2
(x − μ1)T Σ−1

1 (x − μ1)
)

(17)

p(w2 |x) =
1

2π|Σ2| 1
2

exp
(

−1
2
(x − μ2)T Σ−1

2 (x − μ2)
)

(18)

Experiment 1: μ1 =
(

0 0
0 0

)
, μ2 =

(
1 0
0 1

)
and Σ1 =

(
2 0
0 1

)
Σ2 =

(
0.25 0
0 0.5

)
.

The training set is built by joining a varying number b of w1 samples and a fixed
number m = 100 of w2 samples. 400 different trained SVM are built by modifying
the proportion ρ = b/m ranging form ρ = 1 to ρ = 5 in 0.01 increments. (see
Fig. 1)

Experiment 2: Σ1 =
(

2 0
0 1

)
Σ2 =

(
0.25 0
0 0.5

)
, and m = 100 b = 125 . The

training set is built by varying the value of μ2 while keeping μ1 =
(

0 0
0 0

)
.

300 different trained SVM are built by modifying the value of μ2 according

to μ2 =
(

a 0
0 a

)
, with a ranging from 0 to 3 in 0.01 increments. (see Fig. 1)

For each variation of the parameters a and ρ, a SVM was trained, and the
accuracy, sensitivity and specificity of each classifier on the trained data was
acquired. The results are shown in Fig. 2. To perform the experiments we used
the SVC implementation of scikit-learn [8] based on libsvm [3].

Although the data is synthetic, these kind of datasets can represent real
data. Such an example can be realized in dynamic-contrast-enchancing magnetic-
resonance-imaging (DCE-MRI) for breast cancer diagnosis [5]. Consider a DCE-
MRI patient image with N voxels. In such case, the classification problem reduces
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(Experiment 1) ρ = 1 (Experiment 1) ρ = 3 (Experiment 1) ρ = 5

(Experiment 2) a = 0 (Experiment 2) a = 1 (Experiment 2) a = 3

Fig. 1. Illustration of simulated data for different parameter settings and different
experiments.

to separate healthy tissues from malignant ones. A set of voxels m belonging to
a malignant region constitutes a tumor. It is expected that the number of voxels
b belonging to benign regions outnumber the voxels in malignant regions, so that
n/b << 1 in either the training set or the unseen case. However, the size of the
tumor is unknown in unseen cases, and do not have to match necessarily the size
of tumors in the training set. Therefore, the proportion n/b is variable as well
as its overlapping.

5 Discussion

Results showed in Fig. 2 illustrate the effect of a SVM failure when the condi-
tions are met. For this particular datasets, SVM failure occurs for ρ ≈ 4.5 in
Experiment 1 and when a ≈ 0.4 in Experiment 2.

For ρ ≈ 4.5 in Experiment 1 Eq. 16 is fulfilled. By varying the imbalance
proportion while keeping the overlap between classes fixed, there is a limit in
which there are not enough support vectors in the scarce class to balance the
density of support vectors of the dominant class inside the margin, and the sign
of w gets reversed producing the failure. This situation is easier to predict and
quantify, since the number of samples in the scarce class establishes a fixed limit.

In the circumstances of Experiment 2, it is harder to predict the SVM failure
since it depends on the particular realization of the data, adding to it the limi-
tation to Gaussian distributions of this study. It is however showed that Eq. 14
can vanish in some particular configurations of the data, independently from its
imbalanced proportion between classes. It also shows that SVM failure is less
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Experiment 1 Experiment 2

Fig. 2. Performance of the SVM on the training set by varying the parameters ρ and a.

consistent, and more random in nature, suggesting that the small changes in
the particular realization of the probability distribution function can affect sig-
nificantly in the SVM failure. This fact can be very relevant in cross-validated
studies, where subsampling the data into cross validation folds can produce SVM
failure.

A common practice in SVM imbalanced classification is the use of class-
weights. This solution is equivalent to the FSVM problem [6] or more precisely,
the latter problem is more general and includes the former as an special case. In
the light of this interpretation, applying different weights to class-slack variables
is the same as decreasing the membership level of one class, say the w1 class,
misclassified samples, while keeping the w0 membership not fuzzy.

The FSVM-CIL method proposed in [2] explicitly makes use of this corre-
spondence, and propose three different functions to estimate the membership
function si; distance to class center, distance to estimated hyperplane and dis-
tance to actual hyperplane. To tackle the imbalanced problem, they propose to
use different upper bound values in the membership function for each class so
that the ratio corresponds with the ratio on the priors, in concordance with [1].

However, the solutions to the imbalanced SVM classification problem do
not usually study the conditions under which the solutions should be applied.
Here we show that even weakly imbalanced data can require of a imbalanced
solution as FSVM or weighted-SVM if certain conditions are met, suggesting
that balanced classes in SVM are important in guaranteeing its performance.

Here, we have limited the analysis to the simpler linear case, but all the
arguments are extrapolable to the non-linear case by including the use of kernels,
without modifying any fundamental idea.

6 Conclusion

We have established the theoretical conditions for SVM failure and showed exper-
imentally the circumstances under which it may occur. We have shown that not
only the imbalanced proportion between classes is relevant for predicting the
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SVM failure, but also their overlap. We have shown that SVM failure can be
produced even for weakly imbalanced data, suggesting that balancing or weight-
ing the data is always recommendable as a default option in SVM classification.
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Abstract. Environmental enrichment (EE) paradigms are designed to
enhance laboratory animals surroundings to encourage natural behav-
iors. Some enrichment paradigms also include a social component, based
on the social interactions typical of the genus and species. Novel auto-
matic methodologies based on image are becoming useful tools to
improve laboratory works. This paper present a first approach to the
automatic image analysis of laboratory rats in EE: behaviour, drug
effects and pathology. The new methodology is based on image and
Machine Learning paradigms and will become a useful tool for Neu-
roscience issues.

Keywords: Entropy · Nonlinear analysis · Image analysis ·
Clustering · Optical flow · Pattern recognition · Intelligent methods ·
Environmental monitoring

1 Introduction

New and rapid developments in neuroscience, psychology, genetics, and pharma-
cology have led to growing demands for automated analysis of animal behavioral
in scientific and preclinical research experiments, while maintain to surpassing
the accuracy of expert human observer [6]. Key applications of such algorithms
include research on addiction and drug abuse and a variety of medical interven-
tions, such as development of new medications [7]. Being small, low cost, and
easy to breed mammals, rodent species, such as rats and mice, have been widely
used in experiments, further supported by the fact that their genome sequences
are widely available [1,3]. At present, most physical behavioral assessment is
conducted by expert human annotations, making the process labor-intensive,
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tedious, and yet subjective. As a result, manual assessment of rodent behav-
ior suffers from being time consuming, costly, low throughput (one animal at a
time), and poorly reproducible.

Environmental enrichment (EE) paradigms are designed to enhance labo-
ratory animals surroundings to encourage natural behaviors. Some enrichment
paradigms also include a social component, based on the social interactions typ-
ical of the genus and species. For example, wild mice and rats generally live in
colonies, whereas hamsters are known to be social with unfamiliar animals only
during mating.

Adverse environmental conditions have been shown to affect the susceptibil-
ity of animals exposed to diverse stress regimes, reflected in their behavioral,
physiologic, and biochemical responses in a strain-dependent manner. There-
fore, a diverse environment might be expected to alter their response to such
stressors. A review of the literature reveals few behavioral investigations of the
effects of EE on response to a stressor, and the results of biochemical studies
in this context have generally been inconsistent. For example, some laboratories
have reported no difference in corticosterone levels between EE- and standard-
housed animals after exposure to a stressor, whereas others have observed a
reduction in the corticosterone levels of SpragueDawley rats or even elevated
levels of plasma corticosterone in enriched Wistar rats.32 These differences may
be due to length of EE exposure or in-strain responsivity to stress. Therefore, the
first aim of the present set of experiments was to investigate whether rat strain
influences the behavioral and physiologic measures typically used to assess stress
responses. Novel automatic methodologies based on image are becoming useful
tools to improve laboratory works [2]. This paper present a first approach to the
automatic image analysis of laboratory rats in EE.

Section 2 describes the materials and methods. Section 3 analyze the results
and finally Sect. 4 presents the conclusions and future works.

2 Materials and Methods

2.1 Experimental Design and Housing Conditions

A total of 20 adult male Sprague-Dawley rats at 3-month-old (280–300g) were
randomly and equally assigned to the following groups: Saline group (n = 10) as
a control and 6-OHDA group (n = 10) including animals injected with 6-OHDA
to describe the proposed model. After saline solution or 6-OHDA administration,
all the animals were housed for two weeks in monitored enriched environment
(EE) cages under 12 h light/12 h dark cycle with access to food and water ad
libitum. EE cages (790 mm × 460 mm × 640 mm) consisted of two floors, which
were connected by a plastic ramp that enabled rats to move from one level to
the next and an external running wheel as previously described (requejo C).
There were 10 animals placed in every EE cage, one per group. In addition, EE
cages were supplied with an additional infrared camera system (developed by
our group) to collect pictures accurately every 10 s to be later analyzed by a
novel specific software in order to measure changes in the activity.



422 K. López-de-Ipiña et al.

Fig. 1. Model of a enriched environment cage

2.2 Image Processing

The schematic diagram of the working procedure is described in Fig. 2. The video
sequences and images were acquired using.

The methodology used from image acquisition to the rats centroids. trajec-
tories estimation was based on that described in [2].

From the point of view of image segmentation and object detection, and
due to the nature of the set up, (a biological experiment in a real, small-scale
industrial environment) there were three main problems: noise, artifacts and
occlusions. The main source of noise was generated by the sand moved with the
movements of the rats. This creates a uniform noise after binarization that can
be eliminated very easily. There were three main types of artifacts (anomalies
introduced in the signal or in the data by the equipment or the technique): The
first was caused by the sand that the rats move when they move. The second
(very similar to the first but larger) was caused by the objects that are inside
the cage and which moves the rat when moving, and the third by the difference
in lighting between night and day. During the night a spotlight illuminates the
cages.



Machine Learning Methods for Environmental-Enrichment 423

2.3 Clustering and Trajectory Generation

We decided to use a clustering method to identify the fish group and calculate
the groups centroid. The centroids positions were estimated by k-means because
this algorithm is robust, with a good relationship between speed and stability
and it works well with large amounts of data. Thus, once the centers of the
objects were calculated, and knowing their coordinates in the two axes within
each frame, k-means was applied to find the center of the entire group. In our
particular case, the dataset were the objects centers in each frame, from the
first frame to the last one. K-means clustering operates on actual observations
(rather than on a larger set of dissimilarity measures), and creates a single level
of clusters.

Fig. 2. Data acquisition, preprocessing and analysis workflow.

2.4 Non-linear Trajectory Analysis–Calculation of the Shannon
Entropy

SE was selected as the best parameter to analyze the trajectories due to its low
computational load and robustness [2]. As proposed by Shannon on his studies
on languages [4], the SE allows the estimation of the average minimum number of
bits needed to encode a string of symbols based, in his case, on the alphabet size
and the frequency of the symbols. This indicated the minimal number of bits per
symbol needed to encode the information in binary form in case the logarithm
base were 2. Shannon used this entropy measurement to estimate redundancy in
the English language [5]. Formally, the entropy H(X) of a single discrete random
variable X is a measure of its average uncertainty. Shannon entropy [4] was
calculated as described by Eguiraun et al. [2]. It follows a detailed description
of the equations used to perform the calculations.
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H(X) = −
∑

xi∈Θ

p(xi) logp (xi) = −E[logp(xi)], (1)

where X represents a random variable with a set of values Θ and probability
mass function p(xi) = Pr{X = xi}, xi ∈ Θ, and E represents the expectation
operator. Note that p logp = 0 if p=0.

For a time series representing the output of a stochastic process, that is, an
indexed sequence of n random variables, Xi = X1...Xn, with a set of values
θ1, ..., θn, respectively, and Xi ∈ θi, the joint entropy is defined by

Hn = H(X1...Xn) = −
∑

xi∈Θ

...
∑

xn∈Θn

p(x1...xn) logp (x1...xn), (2)

where p(x1...xn) = P{X1 = x1...Xn = xn} is the joint probability for the n
variables X1...Xn.

By applying the chain rule to Eq. (2), the joint entropy can be written as a
sum of conditional entropies, each of which is a non-negative quantity:

Hn =
n∑

i=1

H(Xi|Xi−1...X1), (3)

Therefore, the joint entropy is an increasing function of n. The rate at which
the joint entropy grows with n, i.e., the entropy rate h, is defined as

h = lim
n→∞

Hn

n
(4)

It must be said that for stationary ergodic processes as random processes, the
evaluation of the rate of entropy has proven to be a very useful parameter.

The trajectories of the response to the stochastic event were measured both
in the control case C1 and in the treated C2.

2.5 Machine Learning Paradigms

Two classifiers will be used to analyses pathological and control behaviour: Sup-
port Vector Machines (SVM) and Multilayer Perceptron (MLP). The results were
evaluated using Classification Error Rate (CER, %). For training and validation
steps we used k-fold cross-validation with k = 10.



Machine Learning Methods for Environmental-Enrichment 425

3 Results and Discussion

In the experimentation the materials described in sub-Section 2.1 are used. In the
first stage the image processing is carried out and trajectories are created. Then
the following linear and non-linear features are extracted: centroid-x - centroid-
y speed acceleration activity area entropy. Figures 3 and 4 show the obtained
results for the groups: Activity and Entropy. In the second stage Machine Learn-
ing algorithms are applied to detect pathological behavior with a CER (%) of
around 87% for MLP for 2 layers of 100 neurons that outperforms SVM with
around 85% and less computational cost. The results are hopeful, stable, good
and balanced for all of them.

Fig. 3. Analysis of area activation
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Fig. 4. Analysis of entropy

4 Conclusions and Future Work

The main aim of the present work is the development of new systems for
the analysis of laboratory animals: behaviour, drug effects and pathology. The
new methodology is based on image and Machine Learning paradigms and will
become a useful tool for Neuroscience issues. Finally, it must be emphasized
that the use of this technology could clearly benefit the development of more
sustainable, low cost, high quality, and non-invasive researcher easily adaptable
to complex environments as EE. In future research lines, other non-linear fea-
tures and automatic selection of algorithms will be explored.
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