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vcassano@famaf.unc.edu.ar

2 CONICET and Universidad Nacional de Ŕıo Cuarto, Ŕıo Cuarto, Argentina

Abstract. We investigate interpolation and Beth definability in default
logics. To this end, we start by defining a general framework which is suf-
ficiently abstract to encompass most of the usual definitions of a default
logic. In this framework a default logic DL is built on a base, monotonic,
logic L. We then investigate the question of when interpolation and Beth
definability results transfer from L to DL. This investigation needs suit-
able notions of interpolation and Beth definability for default logics. We
show both positive and negative general results: depending on how DL

is defined and of the kind of interpolation/Beth definability involved, the
property might or might not transfer from L to DL.

1 Introduction

Interpolation and Beth definability are recognized as important properties of
the meta-theory of a logic (see, e.g., [19]). Interpolation goes back to the seminal
work of Craig in [11] and is, in one form, the following result: suppose that
ϕ � ψ, there is ξ in the common language of ϕ and ψ s.t. ϕ � ξ and ξ �
ψ. In addition to its theoretical relevance, interpolation has also proven to be
influential in applications in Computer Science, e.g., in the context of software
specification [6,14,25,34], in the construction of Formal Ontologies [23], and in
Model Checking [26]. Though interpolation stands as a property in its own right,
its main importance lies in the fact that it can be used to prove a result known
as Beth definability via a standard argument (see, e.g., [28]). Intuitively, Beth
definability implies that the syntax of the language is powerful enough to define
any notion that is semantically fixed in a model. This is commonly regarded
as a sign of a well behaved logic, where syntax and semantics are in harmony.
Interpolation and Beth definability have received a lot less attention in non-
classical and, in particular, non-monotonic logics. With this as our motivation,
we investigate interpolation and Beth definability in default logics, a sub-class
of the field of Non-monotonic Logic.

We start by defining a general framework which is sufficiently abstract to
encompass most of the usual default logics (e.g., those introduced in [13,24,
27,29]), generalizing ideas presented in [17,18]. We define a default logic DL
on a base, monotonic, logic L satisfying some minimal requirements. Then, we
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turn to the question of when interpolation and Beth definability results transfer
from L to DL. As a result of the generality of our framework, we are able to
prove far-reaching transfer results for a comprehensive class of default logics. We
draw attention to the fact that interpolation and Beth definability for default
logics need suitable definitions. When dealing with a non-monotonic logical con-
sequence relation |∼, it may not simply be possible to define interpolation as: if
ϕ |∼ ψ, then there is ξ in the common language of ϕ and ψ s.t. ϕ |∼ ξ and ξ |∼ ψ.
For starters, since |∼ is non-monotonic, it may not be transitive. Moreover, since
consequence in most default logics is defined in terms of default theories, the
notion of “common language”, and the left and right hand sides of |∼ should
also be dealt with care. After discussing how to define interpolation and Beth
definability in default logics, we show both positive and negative results. Depend-
ing on how DL is defined and of which kind of interpolation/Beth definability
property we study, the property might or might not transfer from L to DL. In
particular, we show that the Strong Craig Interpolation Property (SCIP) always
transfer from L to DL (Proposition 6), while the Split Interpolation Property
(SIP) fails for any traditional DL based on L extending classical propositional
logic (CPL), even though CPL has SIP (Proposition 7). Similarly, if L has SIP and
DL is stable under substitutions, then sceptical default consequence in DL has
a version of the Beth definability property (Proposition 8), while this property
fails for credulous default consequence in traditional DL based on L extending
CPL (Proposition 9).

Structure. In Sect. 2 we provide a general definition of a default logic. We start
by defining what we require of a base logic in Sect. 2.1. We introduce default
logics in Sect. 2.2, and define traditional default logics in Sect. 2.3. In Sect. 2.4 we
briefly discuss strongly saturated default logics – a class of well behaved default
logics generalizing traditional default logics. Section 3 investigates interpolation
and Beth definability. We introduce appropriate definitions in Sects. 3.1 and 3.3.
Our main results are shown in Sects. 3.2 and 3.4. Section 4 concludes the paper
discussing related work and providing pointers for future research.

2 What Is a Default Logic?

Default logics are a sub-class of non-monotonic logics. Different default logics
have been introduced after the originating proposal in Reiter’s seminal work [29].
These different default logics have in common the notion of a default and an
extension. A default is a triple of formulas of a formal language, notation π

ρ
=⇒ χ,

capturing a conditional, defeasible statement. An extension is a set of formulas
making precise some constraints on π and ρ, enabling us to detach χ from π

ρ
=⇒ χ.

Default logics differ from one another in the conditions enabling detaching a
default. Defaults and extensions are basic ingredients in what is a default logic.
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2.1 Preliminary Definitions

We define default logics over a base logic. In our setting, a base logic, or a logic for
short, has two ingredients: a set of formulas and a consequence relation. Formulas
are defined over a language, i.e., a triple F = 〈A,L ,G 〉 where: A is a set of non-
logical symbols (the alphabet); L is a set of logical symbols with corresponding
arities; and G are the rules of grammar. We also use F for the set of all formulas
of a language F . As usual, lowercase and uppercase Greek letters are variables
for formulas and sets of formulas, resp. We restrict our attention to propositional
languages, i.e., languages where A is a set of proposition symbols. We use p, q, r,
etc., for proposition symbols. For any F and Φ ⊆ F , A(Φ) is the alphabet of Φ,
i.e., the set of proposition symbols appearing in formulas in Φ. We say that Φ is
defined on an alphabet A if A(Φ) ⊆ A. We define F �A = { ϕ ∈ F | A(ϕ) ⊆ A }.
We use Sp

q(Φ) to indicate the result of substituting every appearance of p by q in
every formula in Φ. A consequence relation � is a subset of 2F × F indicating
what follows from what in a logic. We use Φ � ϕ for (Φ,ϕ) ∈ �; and � ϕ if
Φ = ∅ (we omit brackets for singleton sets). We make no assumptions regarding
whether � is defined syntactically or semantically. We do assume that � satisfies
reflexivity, monotonicity, cut, and structurality (see, e.g., [16]). We make precise
what a logic is in the next definition.

Definition 1 (Logic). A logic is a tuple L = 〈F ,�〉 where F is a language,
and � ⊆ 2F × F is a consequence relation s.t. ϕ � ϕ (reflexivity); if Φ � ϕ and
Φ ⊆ Φ′, then Φ′ � ϕ (monotonicity); if Φ � ϕi and Φ ∪ {ϕi | i ∈ I } � ψ, then
Φ � ψ (cut); and if Φ � ϕ, then Sp

q(Φ) � Sp
q(ϕ) (structurality).

For any logic L, we say that ϕ is a consequence of Φ iff Φ � ϕ. We define
Φ• = { ϕ | Φ � ϕ }. The operator ( )• is a closure operator, i.e.: Φ ⊆ Φ•; if Φ ⊆ Φ′,
then Φ• ⊆ Φ′•; and Φ• = Φ••. A set of sentences Φ is consistent if Φ• ⊂ F .

Definition 2. An implicative logic is a logic whose logical symbols contain
nullary symbols � (verum) and ⊥ (falsum), and a binary symbol ⊃ (implica-
tion); whose set F of formulas contains {� ⊃ ϕ,ϕ ⊃ �,⊥ ⊃ ϕ,ϕ ⊃ ⊥, ϕ ⊃ ψ};
and whose consequence relation satisfies: � ∈ Φ• iff ⊥ ⊃ ⊥ ∈ Φ• (�⊥-def);
ϕ ∈ Φ• iff � ⊃ ϕ ∈ Φ• (�-left-neutral); if {ϕ ⊃ φ, φ ⊃ ψ} ⊆ Φ•, ϕ ⊃ ψ ∈ Φ•

(⊃-transitive); and if {ϕ,ϕ ⊃ ψ} ⊆ Φ•, ψ ∈ Φ• (modus ponens).

Henceforth, by a logic, we mean an implicative logic. Implicative logics play
a fundamental role in our treatment of interpolation and Beth definability.

Example 1. The following are some typical cases of logics: Classical Propositional
Logic (CPL) [15]; Intuitionistic Propositional Logic (IPL) [33]; the class of Normal
Modal Logics [7]; in particular, the Basic Modal Logic K with local consequence
[7]; the Basic Modal Logic K with global logical consequence [7]; the Modal Logic
KAlt1 [7]; the Standard Deontic Logic D [10,35]; the Deontic Logic KDA [9]; the
epistemic logic S5 [10,21]; and the hybrid logic H(A, ↓) [5] (which is equivalent
to Classical First-Order Logic over the appropriate language).
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2.2 Default Logics

We start with a general definition of a default logic.

Definition 3 (Default Logic). A default logic is a pair DL = 〈L,E 〉 where L

is a logic and E : (2F × 2(F 3)) → 2(2F ) is a function s.t. for every E ∈ E (Φ,Δ),
E = (Φ ∪ {χ | (π, ρ, χ) ∈ Δ′ })• for some Δ′ ⊆ Δ.

D = F 3 is the set of all defaults of a default logic. π
ρ
=⇒ χ is notation for

(π, ρ, χ) ∈ D . A default theory Θ is a pair (Φ,Δ) where Φ ⊆ F and Δ ⊆ D .
If Θ is a default theory, ΦΘ and ΔΘ are the sets of formulas and defaults of Θ,
resp. For a default theory Θ, E (Θ) is its set of extensions. We associate with
each default logic two notions of default consequence: credulous, and sceptical.
Formally, ϕ is a credulous default consequence of a default theory Θ, notation
Θ |∼c ϕ, iff ϕ ∈ ⋃

E (Θ); in turn, ϕ is a sceptical default consequence of Θ,
notation Θ |∼s ϕ, iff ϕ ∈ ⋂

E (Θ). If E (Θ) = ∅,
⋃
E (Θ) = ∅ and

⋂
E (Θ) = F

(see [32]). Define Θc = { ϕ | Θ |∼c ϕ } and Θs = { ϕ | Θ |∼s ϕ }. We use |∼ and Θd

when there is no need to distinguish between |∼c and |∼s, and Θc and Θs, resp.
The rest of this section illustrates how some of the most common properties of

Default Logics fit into our definition. We say that a default logic DL guarantees
extensions iff for all Θ, E (Θ) �= ∅. Default logics that guarantee extensions are
supra-classical, i.e., for all Θ, (ΦΘ)• ⊆ Θd; and they satisfy Θs ⊆ Θc for all Θ.
These properties are not satisfied if extensions fail to exist, i.e., if there is Θ s.t.
E (Θ) = ∅. Let Θ1 and Θ2 be default theories, define Θ1 � Θ2 iff ΦΘ1 ⊆ ΦΘ2

and ΔΘ1 ⊆ ΔΘ2 . We say that DL is non-monotonic iff there are Θ1 and Θ2 s.t.
Θ1 � Θ2 and (Θ1)

d � (Θ2)
d. We say that DL is semi-monotonic iff for any

two Θ1 and Θ2 s.t. Θ1 � Θ2, if ΦΘ1 = ΦΘ2 , then for all E1 ∈ E (Θ1), there is
E2 ∈ E (Θ2) s.t. E1 ⊆ E2. Further, we say that DL is E -consistent iff for all Θ, if
ΦΘ is L-consistent, then all E ∈ E (Θ) are L-consistent. Non-monotonocity, semi-
monotonicity, and E -consistency do not follow from Definition 3. Moreover, they
need not be satisfied by default logics (even if they guarantee extensions); they
depend on the particularities of the definition of E . We make no assumptions
regarding whether an arbitrary default logic satisfies any of the properties above.

2.3 Traditional Default Logics

Definition 3 paints a general picture of what is a default logic. At the same
time, it captures default logics that are, in a sense, “degenerate”. E.g., we can
define a default logic s.t. for all Θ, E (Θ) = {(ΦΘ)•}. This default logic ignores
defaults, thus collapsing default reasoning into reasoning in the underlying logic,
i.e., Θc = Θs = (ΦΘ)• for all Θ. We call any default logic satisfying this condition
trivial. Trivial default logics are extreme cases of little interest from a Default
Logic perspective. In defining a default logic, we wish to provide a precise account
of what does it mean to reason with defaults in a way such that reasoning
in the underlying logic is extended non-monotonically. This is the purpose of
traditional default logics. Traditional default logics encompass Reiter’s seminal
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work on default logic [29] and some of its major variants, e.g., [13,24,27,30],
summarized in [2,12]. We introduce what we mean by a traditional default logic
in Definition 8 by building on, and generalizing, definitions and results presented
in [17,18].

We begin by taking a closer look at defaults. Typically, a default π
ρ
=⇒ χ is

intuitively read as: if π is grounded in what is known and ρ is coherent with what
is known, then, detach χ and assume it tentatively as part of what is known.
Extensions formalize the set of “known things”, what is meant by grounded,
coherent, and detached and assumed tentatively. How these concepts are for-
malized separate traditional default logics from each other, as different intuitions
lead to different formalizations.

Henceforth, by consistency we mean L-consistency. Define, for all sets Δ,
ΔΠ = { π | π

ρ
=⇒ χ ∈ Δ }, ΔP = { ρ | π

ρ
=⇒ χ ∈ Δ } and ΔX = { χ | π

ρ
=⇒ χ ∈ Δ }.

Definition 4 (Grounded). Let Θ be a default theory, and Δ1 ⊆ Δ2 ⊆ ΔΘ;
we say that Δ2 is grounded in Δ1 iff ΔΠ

2 ⊆ (ΦΘ ∪ ΔX
1 )•. In addition, for all

Δ ⊆ ΔΘ, we say that Δ is a closed set iff ΔΠ ⊆ (ΦΘ ∪ ΔX)•.

Definition 4 captures a standard view on what does it mean for a set of
defaults to be grounded. Intuitively, if we think of the sets Δ1 and Δ2 as defaults
“already considered” and defaults “to be considered”, resp., the view of grounded
in Definition 4 permits only for the consequents of “already considered” defaults
to be used to establish the prerequisites of “to be considered” defaults. Closed
sets are sets of defaults whose prerequisites can be established from within the
set.

Definition 5 (Coherence). Let Θ be a default theory, and Δ1 ⊆ Δ2 ⊆ ΔΘ; we
say that Δ2 is i-coherent w.r.t. Δ1 iff:

(1-coherent) for all δ2 ∈ Δ2, (ΦΘ ∪ ΔX
1 ∪ δP

2 )• is consistent.
(2-coherent) for all δ2 ∈ Δ2, (ΦΘ ∪ ΔX

2 ∪ δP
2 )• is consistent.

(3-coherent) (ΦΘ ∪ ΔX
1 ∪ ΔP

2 )• is consistent.
(4-coherent) (ΦΘ ∪ ΔX

2 ∪ ΔP
2 )• is consistent.

In addition, we say that Δ2 is self i-coherent if it is i-coherent w.r.t. itself.

Proposition 1. i-coherence implies 1-coherence, while 4-coherence implies i-
coherence, for 1 ≤ i ≤ 4. Further, self 1-coherence implies self 2-coherence; self
3-coherence implies self 4-coherence.

A default π
ρ
=⇒ χ ∈ Δ is normal iff ρ = χ. We use π =⇒ χ as notation for

normal defaults. A default theory Θ is normal if all δ ∈ ΔΘ are normal.

Proposition 2. For normal default theories, the four notions of coherence
introduced in Definition 5 are equivalent.
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Table 1. Coherence and detachment

Coherence Detachment Proponent Reference

1-coherence classical Reiter [29]

2-coherence justified �Lukaszewicz [24]

3-coherence rational Mikitiuk and Truszczynski [27]

4-coherence constrained Delgrande, Jackson, and Schaub [13,30]

Definition 5 captures four different views on what does it mean for a set of
defaults to be coherent. The relation between these different views is made clear
in Propositions 1 and 2. Again, if we think of the sets Δ1 and Δ2 as defaults
“already considered” and defaults “to be considered”, resp., 1-coherence and
2-coherence require the justifications of the defaults “to be considered” to be
individually consistent w.r.t. the defaults “already considered”. They differ from
each other in whether or not the consequents of the defaults “to be considered”
should be included in the consistency check. These takes on coherence correspond
to Reiter [24,29] and to �Lukaszewicz [24], resp. In turn, 3-coherence and 4-
coherence require the justifications of the defaults “to be considered” to be jointly
consistent; and differ from each other in whether or not the consequents of
the defaults “to be considered” should be included in the consistency check.
These takes on coherence correspond to Mikitiuk and Truszczynski [27], and
to Delgrande, Jackson, and Schaub [13,30], resp. When there is no need to
distinguish between the different types of coherence, we simply say that Δ2 is
coherent w.r.t. Δ1.

Definition 6 (Detachment). Let Θ be a default theory and Δ1,Δ2 ⊆ ΔΘ; we
say that Δ2 is detached by Δ1 if Δ2 is grounded in, and coherent w.r.t., Δ1.
We say that δ is detached by Δ1 if Δ2 = Δ1 ∪ δ is detached by Δ1.

Intuitively, detachment can be thought of as a version of modus-ponens for
defaults. Fixing a definition of coherence, we say that detachment is: classical,
justified, rational, and constrained, according to Table 1.

Remark 1. Recall that every well-ordering ≺ is order-equivalent to exactly one
ordinal number τ. Such an ordinal number τ is the order type of ≺. The precise
definitions of these terms, and that of a limit ordinal, can be found in [32].

Definition 7. Let Θ be a default theory; we say that Δ ⊆ ΔΘ is regular if there
is a well-ordering ≺ on ΔΘ s.t. Δ = D≺

Θ(τ), where τ is the order type of ≺, and
for all ordinals ω s.t. 0 < ω < τ, and all limit ordinals λ s.t. λ ≤ τ, D≺

Θ is
defined:

D≺
Θ(0) = ∅

D≺
Θ(ω + 1) =

⎧
⎪⎨

⎪⎩

D≺
Θ(ω) ∪ δ if δ ∈ (Δ \ D≺

Θ(ω)) is detached by D≺
Θ(ω) and for all other

δ′ ∈ (Δ \ D≺
Θ(ω)), if δ′ is detached by D≺

Θ(ω), δ ≺ δ′

D≺
Θ(ω) otherwise

D≺
Θ(λ) =

⋃{D≺
Θ(ω) | ω ≤ λ }
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Again, Definition 7 encompasses four kinds of regularity. We say that a regu-
lar set of defaults is: classical, justified, rational, and constrained, depending on
the definition of detachment it uses. Regularity captures a prescriptive view of
how to cumulatively detach defaults in default theory. The function D≺

Θ is the
closure under detachment of a set of defaults under the selection strategy defined
by the well-ordering ≺, and is a standard definition of a function by transfinite
recursion. Example 2 illustrates the need for transfiniteness.

Example 2. In some cases, we may wish to prove that our default logic is semi-
monotonic. Suppose that extensions in a default logic DL are obtained through
regular sets of defaults, and only those sets. This example shows that unless we
allow for transfinite steps, we may fail to prove semi-monotonicity due to restric-
tions on the definition of D≺

Θ. Let DL be an E -consistent default logic built over
KAlt1�+ (i.e., the modal logic where � is interpreted over a weakly functional
accessibility relation, and �+ is its transitive closure, see, e.g., [7]). Let Θ1 be a
default theory s.t. ΦΘ1 = {��} and ΔΘ1 = { �i� =⇒ �(i+1)� | i ≥ 0 }. ΔΘ1 is
regular for all kinds of detachment. Let E1 = (ΦΘ1 ∪ ΔΘ1)

• = {�i� | i ≥ 0 }•.
E1 is satisfied in Kriple models in which every world has a successor. Let Θ2 be
s.t. Θ1 � Θ2, ΦΘ1 = ΦΘ2 , and ΔΘ2 = ΔΘ1 ∪ {� =⇒ �+�⊥}; the formula �+�⊥
describes the existence of a world reachable in a finite number of steps through
the accessibility relation, which has no successors. There is no well-ordering ≺
on ΔΘ2 of order type ω0 s.t. E1 ⊆ ({��} ∪ (D≺

Θ2
(ω0))X)•. To see why, note that

any such ≺ on ΔΘ2 contains � =⇒ �+�⊥ at some position n. Since � =⇒ �+�⊥
is detached by any Δ2 ⊆ ΔΘ2 , D

≺
Θ2

(ω0) detaches � =⇒ �+�⊥ in at most n steps.
But as soon as � =⇒ �+�⊥ is detached no other default in ΔΘ2 can be detached.
Thus, for all ≺, E2 = ({��} ∪ (D≺

Θ2
(ω0))X)• is satisfied in Kripke models con-

sisting of chains of at most n worlds; and so E1 � E2. This establishes a failure of
semi-monotonicity. By allowing transfinite steps, we can first detach all defaults
in ΔΘ1 , and then proceed to check whether or not � =⇒ ��⊥ can be detached
in a transfinite step. From this, we can recover semi-monotonicity.

Definition 8 (Traditional Default Logic). We say that a default logic DL is
traditional iff for all default theories Θ, E (Θ) is the smallest set s.t. for all regular
and self coherent subsets Δ of ΔΘ, there is E ∈ E (Θ) s.t. E = (ΦΘ ∪ ΔX)•.

From Definition 8 it is possible to prove that traditional default logics
encompass four distinct sub-classes of default logics. These classes are: classi-
cal default logics (classical regularity and 1-coherence); justified default logics
(justified regularity and 2-coherence); rational default logics (rational regular-
ity and 3-coherence); and constrained default Logics (constrained regularity and
4-coherence). This claim is made precise in Proposition 3.

Proposition 3. Every traditional default logic is either a classical, a justified,
a constrained, or a rational default logic, and vice-versa.

It follows by construction, adapting the argument in [17,18], that Classical
Default Logic, defined by Reiter in [29], is a classical default logic. The same is
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true, mutatis mutandis, for Justified Default Logic, defined by �Lukaszewicz in
[24], Rational Default Logic, defined by Mikitiuk and Truszczynski in [27], and
Constrained Default Logic, defined by Delgrande, Jackson, and Schaub in [13].

2.4 Intermediate Default Logics

Definition 3 paints a very general picture of what is a default logic. In turn,
Definition 8 captures default logics whose extensions are obtained in a very pre-
scriptive way via regular set of defaults. The obvious question is whether there
are some “interesting” default logics “stricter” than those in Definition 3 but
“weaker” than those in Definition 8.

Definition 9. Let DL be any default logic, and Θ be any default theory; we say
that Δ ⊆ ΔΘ is saturated iff for all Δ′ ⊆ ΔΘ, if Δ′ is detached by Δ, Δ′ ⊆ Δ.

Definition 10. We say that a default logic DL is weakly saturated iff for all
default theories Θ and all E ∈ E (Θ), there exists a saturated Δ ⊆ ΔΘ s.t.
E = (ΦΘ ∪ ΔX)•. In addition, we say that DL is strongly saturated iff it is
weakly saturated and for all default theories Θ and all saturated Δ ⊆ ΔΘ, if Δ
is self coherent, then there is E ∈ E (Θ) s.t. E = (ΦΘ ∪ ΔX)•.

Proposition 4. Every traditional default logic is strongly saturated.

We can think of weakly saturated default logics as imposing an “upper
bound” on extensions, i.e., anything that is not a saturated set of defaults cannot
be an extension. On the other hand, strongly saturated default logics impose a
“lower bound” on extensions, i.e., anything that is a saturated and self coher-
ent set of defaults must be an extension. Strongly saturated default logics are
an interesting generalization of traditional default logics for they simplify the
proof of some results circumventing the prescriptive definition of extensions in
Definition 8.

3 Interpolation and Beth Definability

As mentioned, interpolation and Beth definability are recognized as important
properties of the meta-theory of a logic. Here, we investigate interpolation and
Beth definability in Default Logics. More precisely, we investigate when results
transfer from L to DL. In order to accomplish this, we first need to formulate
suitable notions of interpolation and Beth definability for a default logics.

3.1 Interpolation

There is no unifying definition of interpolation in the literature, see [22]. Instead,
this property comes in many flavours. In what follows, we discuss some relevant
formulations of interpolation. In this discussion we assume an arbitrary logic L.

Let us start with the so-called Craig Interpolation Property (CIP).
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Definition 11. We say that consequence in L has CIP iff whenever � ϕ ⊃ ψ,
there is ξ defined on A(ϕ) ∩ A(ψ) s.t. � ϕ ⊃ ξ and � ξ ⊃ ψ.

On certain occasions, in place for CIP, we may wish to have a stronger version.

Definition 12. We say that consequence L has the Strong Craig Inteprolation
Property (SCIP ) iff whenever Φ � ϕ ⊃ ψ, there is ξ defined on A(Φ,ϕ) ∩ A(ψ)
s.t. Φ � ϕ ⊃ ξ and Φ � ξ ⊃ ψ.

A rather different formulation of interpolation, used in the standard argument
for Beth Definability, is the so-called Split Interpolation Property (SIP), see [31].

Definition 13. We say that consequence L has SIP iff for any Φ and ϕ defined
on an alphabet A1, and any Ψ and ψ defined on an alphabet A2; if Φ ∪ Ψ � ϕ ⊃ ψ,
there is ξ defined on A1 ∩ A2 s.t. Φ � ϕ ⊃ ξ and Ψ � ξ ⊃ ψ. The formula ξ is
called a split interpolant.

In general, CIP, SCIP, and SIP are not equivalent (having one does not imply
having the others). Equivalence depends on the particularities of the logical con-
nectives under consideration and on logical consequence satisfying properties
such as compactness, deduction, etc. Logics known to have all three different
versions of interpolation are, for example, CPL, IPL, and the modal logics K, S5
and H(A, ↓) with local and global consequence. For a discussion regarding equiv-
alence of interpolation in these logics see [3,4]. We take a particular interest in
SIP: as an interpolation result in its own right, given its widespread applicability,
and as a step towards obtaining Beth definability in a standard way [28].

3.2 Interpolation in Default Logics

We explore what the natural formulations of CIP, SCIP, and SIP, look like for
default consequence in default logics.

Definition 14. We say that default consequence in a default logic DL has the
Default Craig Interpolation Property, notation DCIP, iff whenever |∼ ϕ ⊃ ψ,
there is ξ defined on A(ϕ) ∩ A(ψ), s.t. |∼ ϕ ⊃ ξ and |∼ ξ ⊃ ψ.

Proposition 5. For any default logic DL = 〈L,E 〉; if consequence in L has
CIP, then, default consequence in DL has DCIP.

The proof of Proposition 5 is direct from the definition of a default logic
and CIP for � in L. DCIP is rather trivial as it involves only reasoning from
empty default theories, thus reducing default consequences to consequences in
the underlying logic. Let us consider the more interesting case of DSCIP, the
SCIP version of interpolation for Default Logics, which makes use of non-empty
default theories.

Definition 15. We say that default consequence in a default logic DL has
the Default Strong Craig Interpolation Property, notation DSCIP, iff whenever
Θ |∼ ϕ ⊃ ψ, there is ξ defined on A(Θ, ϕ) ∩ A(ψ), s.t. Θ |∼ ϕ ⊃ ξ and Θ |∼ ξ ⊃ ψ.
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Proposition 6. For any default logic DL = 〈L,E 〉; if consequence in L has
SCIP, then, default consequence in DL has DSCIP.

Proof (by cases). Let Θ be a default theory; if E (Θ) = ∅, Θc = ∅ and Θs = F .
The result follows trivially from these facts. If E (Θ) �= ∅:

(c) Let Θ |∼c ϕ ⊃ ψ; then, there is E ∈ E (Θ) s.t. E � ϕ ⊃ ψ. From SCIP, there is
ξ defined on A(E,ϕ) ∩ A(ψ) s.t. E � ϕ ⊃ ξ and E � ξ ⊃ ψ. So, Θ |∼c ϕ ⊃ ξ
and Θ |∼c ξ ⊃ ψ, with A(ξ) ⊆ A(Θ, ϕ) ∩ A(ψ).

(s) Let Θ |∼s ϕ ⊃ ψ, and Γ =
⋂
E (Θ); then, Γ � ϕ ⊃ ψ. From SCIP, there is ξ

defined on A(Γ, ϕ) ∩ A(ψ) s.t. Γ � ϕ ⊃ ξ and Γ � ξ ⊃ ψ. Thus, Θ |∼s ϕ ⊃ ξ
and Θ |∼s ξ ⊃ ψ, with A(ξ) ⊆ A(Θ, ϕ) ∩ A(ψ).

The result follows from (c) and (s).

We now turn our attention to what does SIP look like for default consequence.

Remark 2. For default theories Θi, define Θ1 � Θ2 = (ΦΘ1 ∪ ΦΘ2 ,ΔΘ1 ∪ ΔΘ2).

Definition 16. We say that default consequence in a default logic DL has the
Default Split Interpolation Property, notation DSIP, iff for all Θ1 and ϕ defined
on an alphabet A1, and Θ2 and ψ defined on an alphabet A2, if Θ1 � Θ2 |∼ ϕ ⊃ ψ,
there is ξ defined on A1 ∩ A2, s.t. Θ1 |∼ ϕ ⊃ ξ and Θ2 |∼ ξ ⊃ ψ.

For DSIP we obtain a negative result in the following form.

Proposition 7. For any traditional default logic DL built on a logic extending
Classical Propositional Logic, default consequence in DL does not have DSIP.

Proof. W.l.o.g. let L be CPL, and Θ1 = ({p}, {p =⇒ q}) and Θ2 = (∅, {q =⇒ r}),
it follows that:

(1) for all E1 ∈ E (Θ1), E1 = {p, q}•.
(2) for all E2 ∈ E (Θ2), E2 = ∅•.
(3) for all E ∈ E (Θ1 � Θ2), E3 = {p, q, r}•.

From (3), Θ1 � Θ2 |∼ p ⊃ r. Immediately, p ∈ A(Θ1), and r ∈ A(Θ2). Then, any
formula ξ defined on A(Θ1) ∩ A(Θ2) is equivalent to �, ⊥, q, or ¬q. If we fix ξ
to any of these formulas, either from (1), Θ1 �|∼ p ⊃ ξ; or from (2), Θ2 �|∼ ξ ⊃ r.

We explored some natural formulations of CIP, SCIP, and SIP for default
consequence in a default logic. We have shown positive transfer results for DCIP
and DSCIP. We highlight the generality of these results: not only they con-
cern traditional logics, but all default logics. This level of generality, i.e., proofs
depending on extensions and not their construction, is achieved thanks to the
abstract presentation of what is a default logic. We have also shown a negative
transfer result for DSIP. In this case the counter-example is much more concrete,
but still sufficiently general to cover all traditional default logics. Lack of DSIP
is a set back for Beth definability, as we are now pre-empted to use the standard
argument for establishing the latter from the former [28]. Nonetheless, we show
that Beth definability can still be obtained in some form for some default logics.
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3.3 Definability

Beth definability is commonly regarded as a sign of a well behaved logic. We
adapt our definition of this property from [22].

Definition 17. Let L be any logic, Φ be a set of formulas s.t. A(Φ) ⊆ A, and
q /∈ A; we say that consequence in L has the Beth Definability Property (BDP)
iff whenever

Φ ∪ Sp
q(Φ) � p ⊃ q and Φ ∪ Sp

q(Φ) � q ⊃ p (1)

there is ε defined on an alphabet A0 = A \ {p} s.t.

Φ � p ⊃ ε and Φ � ε ⊃ p (2)

Equation (1) expresses that Φ implicitly defines p; whereas Eq. (2) is the explicit
definition of p from Φ.

In general, BDP can be obtained from SIP through a standard argument [28].
Let us remark that failure of SIP does not necessarily imply failure of BDP. The
latter property may still be obtained through other means.

3.4 Definability in Default Logics

Definition 18 introduces a natural formulation of Beth definability for default
logics.

Definition 18. Let DL be a default logic, Θ a default theory s.t. A(Θ) ⊆ A, and
q /∈ A; we say that default consequence in DL has the Default Beth definability
property (DBDP ) iff whenever

Θ � Sp
q(Θ) |∼ p ⊃ q and Θ � Sp

q(Θ) |∼ q ⊃ p (3)

there is ε defined on an alphabet A0 = A \ {p} s.t.

Θ |∼ p ⊃ ε and Θ |∼ ε ⊃ p (4)

Equation (3) expresses that Θ implicitly defines p; whereas ε in Eq. (4) is the
explicit definition of p from Θ.

Proving Beth definability for default consequence in default logics requires
some additional definitions and lemmas (the proofs of which are in AppendixA).
First, it needs a condition on stability, see Definition 19. This condition states
that the extensions of a default theory are in harmony with the extensions of its
extended default theory under substitution.

Definition 19. We say that a default logic DL = 〈L,E 〉 is stable iff for all
default theories Θ defined on an alphabet A, if q /∈ A, it follows that for all
E ∈ E (Θ), there is E′ ∈ E (Θ � Sp

q(Θ)) s.t. E′ = (E ∪ Sp
q(E))•.
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Lemma 1 shows that the condition of being stable is rather natural, in the
sense that it is satisfied by a non-trivial class of default logics, i.e., those that
are strongly saturated and, in particular, by traditional default logics.

Lemma 1. Any strongly saturated default logic DL is stable.

Lemma 2 establishes that the notion coherence for the extensions of a given
default theory is preserved if we augment the default theory by substitution.

Lemma 2. Let DL be a default logic; for all default theories Θ and all Δ ⊆ ΔΘ,
if Δ is self coherent in Θ, then, Δ ∪ Sp

q(Δ) is self coherent in Θ � Sp
q(Θ).

The following lemma, simplifies a key step in the proof of Proposition 8.

Lemma 3. Let { Φi | i ∈ I } be a set of sets of formulas s.t. for all i ∈ I,
A(Φi) ⊆ A and Φi = Φi

•; if consequence in L has SIP, q /∈ A, and p ⊃ q ∈⋂{
(Φi ∪ Sp

q(Φi))• ∣
∣ i ∈ I

}
, then p ⊃ q ∈ (

⋂{ Φi | i ∈ I } ∪ ⋂{
Sp

q(Φi)
∣
∣ i ∈ I

}
)•.

Proposition 8. For any default logic DL = 〈L,E 〉; if DL is stable and conse-
quence in L has SIP, then, sceptical default consequence in DL has DBDP.

Proof (by cases). Let Θ be any default theory defined on alphabet A, and q /∈ A;
if E (Θ � Sp

q(Θ)) = ∅, the result holds trivially from the fact that DL is stable.
Otherwise, i..e, if E (Θ � Sp

q(Θ)) �= ∅, let Θ � Sp
q(Θ) |∼s p ⊃ q; from the fact that

DL is stable, p ⊃ q ∈ ⋂{
(E ∪ Sp

q(E))• ∣
∣ E ∈ E (Θ)

}
. From Lemma 3, p ⊃ q ∈

(
⋂{ E | E ∈ E (Θ) } ∪ ⋂{

Sp
q(E)

∣
∣ E ∈ E (Θ)

}
)•. From SIP, there is ξ defined on

A \ {p} s.t. p ⊃ ξ ∈ ⋂{ E | E ∈ E (Θ) } and (†) ξ ⊃ q ∈ ⋂{
Sp

q(E)
∣
∣ E ∈ E (Θ)

}
.

Substituting p for q in (†) we obtain ξ ⊃ p ∈ ⋂{ E | E ∈ E (Θ) }. Therefore, there
is ξ defined on A \ {p} s.t. Θ |∼s p ⊃ ξ and Θ |∼s ξ ⊃ p.

Corollary 1. For all traditional default logics built on a logic L; if L has SIP,
then sceptical consequence has DBDP.

For credulous default consequence we obtain the following negative result.

Proposition 9. For all traditional default logic DL built on a logic extending
CPL, credulous default consequence in DL does not have DSIP.

Proof. W.l.o.g. let L be CPL; consider a default theory Θ = (∅, {δ1, δ2}), where

δ1 = � ¬p
=⇒ [(¬p ∨ r) ∧ s] δ2 = s

p
=⇒ (p ∧ ¬r)

Trivially, we get Sp
q(Θ) = (∅, {� ¬q

=⇒ [(¬q ∨ r) ∧ s], s
q
=⇒ (q ∧ ¬r)}). Moreover:

(1) In classical, justified, constrained, and rational default logic on L, it follows
that, E (Θ � Sp

q(Θ)) ⊇ { (ΔX
i )• | i ∈ {1, 2} } where: Δ1 = {δ1,Sp

q(δ2)}; and
Δ2 = {Sp

q(δ1), δ2}.
(2) In justified, constrained, and rational default logic on L, it follows that, for

all E ∈ E (Θ), E = ({δ1}X)•.
(3) In classical default logic on L, it follows that, E (Θ) = ∅.
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Clearly, q /∈ A(Θ). From (1), Θ � Sp
q(Θ) |∼c p ⊃ q and Θ � Sp

q(Θ) |∼c q ⊃ p. To see
why, note that (ΔX

1 )• = {[(¬p ∨ r) ∧ s],¬r}• and (ΔX
2 )• = {[(¬q ∨ r) ∧ s],¬r}•

are both in E (Θ � Sp
q(Θ)). Immediately, {[(¬p ∨ r) ∧ s],¬r} � p ⊃ q, and also

{[(¬q ∨ r) ∧ s],¬r} � q ⊃ p. In justified, constrained, and rational default logic
on L, there is no ξ defined on A(Θ) \ {p} for which Θ |∼c p ⊃ ξ and Θ |∼c ξ ⊃ p.
To see why, note from (2) that every E ∈ E (Θ) is equal to {(¬p ∨ r) ∧ s}•. Let
E be any such extension, it is easy to see that there are models M1 and M2

of E s.t. M1 � p and M1 � ¬p. This establishes failure of DBDP for justified,
constrained, and rational default logic on L. In classical default logic on L, there
is no ξ defined on A(Θ) \ {p} for which Θ |∼c p ⊃ ξ and Θ |∼c ξ ⊃ p simply
because E (Θ) = ∅. This establishes failure of DBDP for classical default logic on
L. In summary, the default theory Θ defined above exhibits a counter-example
for DBDP for credulous default consequence in any traditional default logic built
on a logic extending CPL.

Even though DSIP fails for default logics, we showed that under certain
conditions, DBDP can be still obtained for the sceptical default consequence.

4 Final Remarks

Interpolation and Beth definability are recognized as important properties of the
meta-theory of a logic. However, few authors have explored these properties in
the field of Non-monotonic Logic, and in default logics in particular. A pioneering
work in this area is [1]. Therein the author studies interpolation for circumscrip-
tion, default logic, and logic programs with the stable models semantics. The
version of interpolation presented in [1] is different from the ones investigated
here, and is proven for sceptical default consequence in what we would call classi-
cal default logic over CPL (with finite vocabularies). The author also formulates a
version of split interpolation and proves it for credulous consequence in the same
context. However, the proof of this property requires the alphabet of the conse-
quences of one default theory to be disjoint from the alphabet of the prerequisites
and justifications of the defaults in other default theory. Thus the result applies
to a restricted set of cases. In contrast, our results hold for a richer collection of
default logics and generalize some of those introduced in [1]. Another interest-
ing interpolation result in the field of Non-monotonic is [20]. This work studies
interpolation in equilibrium logic; presenting a technique to obtain interpolation
results by relying on the fact that the version of non-monotonic consequence in
question can be defined via some minimally (axiomatically) defined models in
some monotonic logic. This technique does not directly apply in default logics,
since minimal sets of models of the base logics are not immediately connected to
extensions. But this deserves a deeper investigation. We are, to the best of our
knowledge, unaware of investigations of Beth definability in default logics.

We investigated interpolation and Beth definability in default logics. To this
end, we started with a presentation of a general frawework for defining a default
logic DL from a basic monotonic logic L. This framework covers well-known
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traditional default logics found in the literature, but encompasses a much richer
family of default logics. Then, we defined suitable versions of interpolation and
Beth definability for Default Logics, and studied their statuses. Given the gener-
ality of our definition of a default logic, the discussed results hold (or fail to hold)
for several versions of default logics. In particular, we showed that CIP and SCIP
(two versions of the so-called Craig Interpolation Property) transfers from L to
DL, but Split Interpolation SIP fails for default logics extending CPL, even if L
has it. When considered as a step towards Beth definability, this negative result
is a set back. However, we showed that the sceptical default consequence in a DL
has Beth definability (DBDP) if DL is stable (i.e., the extensions of a default
theory are in harmony with those of its augmented default theory under substi-
tution) and L has SIP. Different is the case for credulous default consequence,
in which DBDP fails for any DL built on a logic extending CPL.

We view this work as a first step towards a better understanding of the
meta-theory of default logics in general. As future work, it would be interesting to
apply similar ideas to study proof calculi for default logics that are parameterized
on the underlying logic. Moreover, it would be interesting to see whether the
methods for constructing interpolants in the underlying proof calculi transfer to
the default version (see e.g. [8]).
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Associé INFINIS and the European Union’s Horizon 2020 research and innovation
programme under the Marie Skodowska-Curie grant agreement No. 690974 for the
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A Selected Proofs

Remark 3. Let L be any logic, and Φ and Ψ be sets of sentences; we say that Ψ is
a conservative extension of Φ, notation Ψ ≥ Φ, iff Φ• ⊆ Ψ• and (Ψ•�A(Φ)) ⊆ Φ•.

Lemma 4. Let L be any logic, Φ be a set of sentences defined on an alphabet A,
and q /∈ A; if consequence in L has SIP, Φ ∪ Sp

q(Φ) ≥ Φ and Φ ∪ Sp
q(Φ) ≥ Sp

q(Φ).

Proof. Trivially, Φ• ⊆ (Φ ∪ Sp
q(Φ))•. In turn, let ϕ ∈ (Φ ∪ Sp

q(Φ))•�A(Φ); then,
Φ ∪ Sp

q(Φ) � ϕ, alt., Φ ∪ Sp
q(Φ) � � ⊃ ϕ. From SIP, there is ε defined on A \ {p}

s.t. Sp
q(Φ) � � ⊃ ε and Φ � ε ⊃ ϕ. Since q /∈ A(Φ, ε), Sq

p(S
p
q(Φ)) � Sq

p(� ⊃ ε)
results in Φ � � ⊃ ε. Then, Φ � � ⊃ ε and Φ � ε ⊃ ϕ; and so, Φ � � ⊃ ϕ, alt.,
Φ � ϕ. Therefore, (Φ ∪ Sp

q(Φ))•�A(Φ) ⊆ Φ•.

Lemma 1. Any strongly saturated default logic DL is stable.

Proof. Let Θ be a default theory defined on an alphabet A, and and q /∈ A.
In addition, let E ∈ E (Θ) be s.t. E = (ΦΘ ∪ ΔX)• for some Δ ⊆ ΔΘ. Since
DL is strongly saturated, Δ is saturated in Θ. The result follows immediately
if Δ ∪ Sp

q(Δ) is saturated in Θ � Sp
q(Θ); as E′ = (ΦΘ ∪ Sp

q(ΦΘ) ∪ (Δ ∪ Sp
q(Δ))X)•

is our extension. The proof proceeds by contradiction. Let Δ ∪ Sp
q(Δ) be not
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saturated in Θ�Sp
q(Θ); w.l.o.g. there is a default δ /∈ Δ∪Sp

q(Δ) s.t. δ is detached
by Δ ∪ Sp

q(Δ). Clearly, δ ∈ ΔΘ or δ = Sp
q(δ

′) for some δ′ ∈ ΔΘ. If δ ∈ ΔΘ,
from Lemma 4, δ is detached by Δ; and so Δ is not saturated. This yields a
contradiction. If δ = Sp

q(δ
′) for some δ′ ∈ ΔΘ, from Lemma 4, Sp

q(δ
′) is detached

by Sp
q(Δ); and so Sp

q(Δ) is not saturated. But by substitution, δ′ is detached by
Δ, and so Δ is not saturated. This also yields a contradiction. Thus, Δ ∪ Sp

q(Δ)
is saturated in Θ � Sp

q(Θ).

Lemma 2. Let DL be a default logic; for all default theories Θ and all Δ ⊆ ΔΘ,
if Δ is self coherent in Θ, then, Δ ∪ Sp

q(Δ) is self coherent in Θ � Sp
q(Θ).

Proof. Similar to that of Lemma 1.

Lemma 3. Let { Φi | i ∈ I } be a set of sets of formulas s.t. for all i ∈ I,
A(Φi) ⊆ A and Φi = Φi

•; if consequence in L has SIP, q /∈ A, and p ⊃ q ∈⋂{
(Φi ∪ Sp

q(Φi))• ∣
∣ i ∈ I

}
, then p ⊃ q ∈ (

⋂{ Φi | i ∈ I } ∪ ⋂{
Sp

q(Φi)
∣
∣ i ∈ I

}
)•.

Proof (by contradiction). Let us assume that p ⊃ q ∈ ⋂{ (Φi ∪ Sp
q(Φi))• | i ∈ I };

by definition, it follows that all (∗) Φi ∪ Sp
q(Φi) � p ⊃ q. At the same time, let

p ⊃ q /∈ (
⋂{ Φi | i ∈ I } ∪ ⋂{

Sp
q(Φi)

∣
∣ i ∈ I

}
)•; then, for all ξ defined on A \ {p},

either (†) p ⊃ ξ /∈ ⋂{ Φi | i ∈ I } or (‡) ξ ⊃ q /∈ ⋂{
Sp

q(Φi)
∣
∣ i ∈ I

}
. From (†),

there is Φi �� p ⊃ ξ; and from Lemma 4, (§) Φi ∪ Sp
q(Φi) �� p ⊃ ξ. But (§) leads

to a contradiction; since from (∗) Φi ∪ Sp
q(Φi) � p ⊃ q, by SIP, there is in fact ξ

defined on A \ {p} s.t. Φi ∪ Sp
q(Φi) � p ⊃ ξ! Similarly, we obtain a contradiction

from (‡). Thus, p ⊃ q ∈ (
⋂{ Φi | i ∈ I } ∪ ⋂{

Sp
q(Φi)

∣
∣ i ∈ I

}
)•.
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