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Abstract. We investigate the problem of learning description logic
ontologies from entailments via queries, using epistemic reasoning. We
introduce a new learning model consisting of epistemic membership and
example queries and show that polynomial learnability in this model
coincides with polynomial learnability in Angluin’s exact learning model
with membership and equivalence queries. We then instantiate our learn-
ing framework to EL and show some complexity results for an epis-
temic extension of EL where epistemic operators can be applied over
the axioms. Finally, we transfer known results for EL ontologies and its
fragments to our learning model based on epistemic reasoning.
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1 Introduction

Description logics (DL) balance expressivity and complexity of reasoning, result-
ing in a family of formalisms which can capture conceptual knowledge in various
domains [3].1 One of the most popular ontology languages, featuring polynomial
time complexity of reasoning tasks such as entailment, is EL [2], which allows
conjunctions (�) and existential restrictions (∃) in its concept expressions but
disallows negations of concepts. The following example illustrates EL ontologies
(Sect. 4) representing knowledge of experts in different domains.

Example 1. Ana knows about Brazilian music (BM) and Nicolas is an expert in
French cuisine (FC). We can represent some parts of their knowledge as follows.

OBM
Ana = {BrazilianSinger(Caetano) OFC

Nicolas = {FrenchChef(Soyer)
BossaNova � BrazilianMusicStyle Crepe � ∃contains.Flour
ViolaBuriti � ∃madeFrom.Buriti} Crepe � ∃contains.Sugar � Dessert}

Naturally, domain experts—humans, or artificial entities with complex neu-
ral networks—cannot be expected to be able to easily transfer their knowledge.
However, when specific questions about the domain are posed, e.g., ‘is Bossa

1 The technical report [17] is a more complete version of this paper.

c© Springer Nature Switzerland AG 2019
F. Calimeri et al. (Eds.): JELIA 2019, LNAI 11468, pp. 418–433, 2019.
https://doi.org/10.1007/978-3-030-19570-0_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19570-0_27&domain=pdf
http://orcid.org/0000-0002-3889-6207
http://orcid.org/0000-0002-5763-6080
https://doi.org/10.1007/978-3-030-19570-0_27


Learning Ontologies with Epistemic Reasoning: The EL Case 419

Nova a Brazilian music style?’, an expert in the domain of Brazilian music can
accurately decide whether such statement holds or not. So the ontology rep-
resentation of the knowledge of an expert, even though not directly accessible,
can be learned via a trial and error process in which individuals or machines,
generically called agents, communicate with each other, in order to learn from
the other agents. We assume that the target domain of interest to be learned is
represented by a logical theory formulated in an ontology language.

In computational learning theory, a classical communication protocol coming
from the exact learning model [1] is based on questions of two types: member-
ship and equivalence queries. In a learning from entailments setting [11], these
questions can be described as follows. Membership queries correspond to ask-
ing whether a certain statement formulated as a logical sentence follows from
the target. Equivalence queries correspond to asking whether a certain logical
theory, called hypothesis, precisely describes the target. If there are wrong or
missing statements in the hypothesis, a statement illustrating the imprecision
should be returned to the agent playing the role of the learner.

Example 2. Assume Ana wants to learn about French cuisine. She asks Nicolas
whether it follows from his knowledge that ‘every crepe is a dessert’, in symbols,
‘does OFC

Nicolas |= Crepe � Dessert?’, which the answer in this case is ‘no’, since
only those which contain sugar are considered desserts. To receive new state-
ments about French cuisine from Nicolas, Ana needs to pose equivalence queries,
in symbols ‘does OFC

Ana ≡ OFC
Nicolas?’. Each time she poses this type of questions,

her best interest is to tell him everything she knows about French cuisine.

One of the main difficulties in implementing this protocol in practice [16, p.
297] comes from the putative unreasonableness of equivalence queries. Whenever
a learner poses an equivalence query, the expert playing the role of an oracle
needs to evaluate the whole hypothesis and decide whether or not it is equivalent
to the target. If not, then the oracle returns a statement in the logical difference
between the hypothesis and the target. One way out of this difficulty is hinted
to us by a simple observation: during interactive communication among agents,
not only domain knowledge is exchanged and acquired but also second-order
knowledge, which is the knowledge of what is known by the other agents.

Example 3. When Ana and Nicolas communicate, they know what they have
already told to each other. If Ana tells Nicolas that ‘Buriti is a Brazilian tree’
(Nicolas now knows this statement, in symbols, KNicolas(Buriti � BrazilianTree))
and that ‘Viola de Buriti is made from Buriti’ (KNicolas(ViolaBuriti �
∃madeFrom.Buriti)) she does not need to tell him that ‘Viola de Buriti
is made from a Brazilian tree’ (as it follows that KNicolas(ViolaBuriti �
∃madeFrom.BrazilianTree), see Sect. 4).

In this paper, we thus propose a new and more realistic learning model. It
is based on a protocol which takes into account what is known by the agents,
either because a statement was explicitly communicated or because it is a logical
consequence of previous statements given during their interaction. Our protocol
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Fig. 1. Polynomial learnability. Each class denotes the set of frameworks that are
polynomial query learnable in the corresponding learning model. MEM, EQ and EX
stand for membership, equivalence, and example queries respectively.

is based on queries of two types. The first is an epistemic version of membership
queries where the oracle ‘remembers’ those membership queries whose reply was
‘yes’. We call the second type example queries. When asked an example query, the
oracle answers a statement which follows from its knowledge but does not follow
from its knowledge about what the learner knows. The oracle also ‘remembers’
that the statements given are now known by the learner.

The first contribution of this work is the introduction of the learning model
based on epistemic reasoning, which we call epistemic learning model, and an
analysis of its ‘power’ in comparison with the exact learning model (Fig. 1).
The second is an instantiation to the EL ontology language, whose polynomial
learnability has been investigated in the exact learning model [10,14,15].

In more details, the epistemic learning model is introduced in Sect. 2. We
then establish in Sect. 3 that polynomial learnability is strictly harder in the
epistemic model without (an epistemic version of) membership queries (Theo-
rems 1 and 2). Nonetheless, it coincides with polynomial learnability in the exact
learning model if both types of queries are allowed (Theorem3). Since it is known
that polynomial learnability in the exact learning model with only equivalence
queries implies polynomial learnability in the classical probably approximately
correct learning model (PAC) [1,18], it follows that polynomial learnability in the
epistemic learning model with only example queries implies polynomial learn-
ability in the PAC learning model. The same relationship holds for the case where
we have (an epistemic version of) membership queries in the epistemic model
and the PAC model also allows membership queries. We also show in Sect. 4
some complexity results for an epistemic extension of EL, which we call ELK.
In particular, we show that satisfiability in ELK, which includes Boolean com-
binations of EL axioms, does not increase the NP-completeness of propositional
logic (Theorem 4). We then show that a fragment of ELK features PTime com-
plexity for the satisfiability and entailment problems (Theorem5), as in EL [2].
Crucially, it captures the epistemic reasoning that the agent playing the role of
the oracle needs to perform. Finally, in Sect. 5 we transfer known results [10,14]
for EL in the exact learning model to the epistemic learning model.

2 Learning with Epistemic Reasoning

We first define the epistemic extension of a description logic L, which is often
a notation variant of a fragment of first-order logic or propositional logic. The
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epistemic extension of L allows expressions of the form ‘agent i knows some
axiom of L’. We then use the epistemic extension of a logic to define a learning
framework based on epistemic reasoning.

2.1 The Epistemic Extension of L
In the following, we formalise the epistemic extension LK of a description logic L.
Our notation and definitions can be easily adapted to the case L is a (fragment
of) first-order or propositional logic. Assume symbols of L are taken from pair-
wise disjoint and countably infinite sets of concept, role and individual names
NC, NR and NI, respectively. Let A be a set of agents. An LK axiom is an expres-
sion of the form: β ::= α | Kiβ where α is an L formula and i ∈ A. LK formulas
ϕ,ψ are expressions of the form: ϕ ::= β | ¬ϕ | ϕ ∧ ψ where β is an LK axiom.

An L interpretation I = (ΔI , ·I) over a non-empty set ΔI , called the domain,
defines an interpretation function ·I that maps each concept name A ∈ NC to a
subset AI of ΔI , each role name r ∈ NR to a binary relation rI on ΔI , and each
individual name a ∈ NI to an element aI ∈ ΔI . The extension of the mapping ·I
from concept names to L complex concept expressions depends on the precise
definition of L. We write |=L and ≡L to denote the entailment and equivalence
relations for L formulas, respectively.

An LK interpretation I = (W, {Ri}i∈A) consists of a set W of L inter-
pretations and a set of accessibility relations Ri on W, one for each agent
i ∈ A. We assume that the relations Ri are equivalence relations. A pointed
LK interpretation is a pair (I, I) where I = (W, {Ri}i∈A) is an LK interpreta-
tion and I is an element of W. The entailment relation |=LK of an LK formula ϕ
in I = (W, {Ri}i∈A) pointed at I ∈ W is inductively defined (for simplicity, we
may omit the subscript LK from |=LK):

I, I |= α iff I |=L α I, I |= φ ∧ ψ iff I, I |= φ and I, I |= ψ
I, I |= ¬φ iff not I, I |= φ I, I |= Kiβ iff ∀(I,J ) ∈ Ri, J |= β.

An LK formula ϕ entails an LK formula ψ, written ϕ |= ψ, iff for all pointed
LK interpretations (I, I), I, I |= ϕ implies I, I |= ψ. An LK formula ϕ is
equivalent to an LK formula ψ, written ϕ ≡ ψ (we may omit LK from ≡LK), iff
ϕ |= ψ and ψ |= ϕ. We use the notion of a set of formulas and the conjunction
of its elements interchangeably. The size of a formula or an interpretation X,
denoted |X|, is the length of the string that represents it, where concept, role
and individual names and domain elements are considered to be of length 1.

2.2 A Learning Model Based on Epistemic Reasoning

We first adapt the exact learning model with membership and equivalence
queries to a multi-agent setting. We then introduce the epistemic learning model
in a multi-agent setting and provide complexity notions for these models.

We introduce basic notions for the definition of a learning framework and
the learning problem via queries [1], adapted to a learning from entailments
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setting [11] with multiple agents. A learning (from entailments) framework F
is a pair (X,L), where X is a set of examples (also called domain or instance
space), and L is a set of formulas of a description logic L. We say that x ∈ X is
a positive example for l ∈ L if l |=L x and a negative example for l if l 	|=L x. A
counterexample x for l ∈ L and h ∈ L is either a positive example for l such that
h 	|=L x or a negative example for l such that h |=L x. A multi-agent learning
framework F(A) is a set {Fi = (Xi, Li) | i ∈ A} of learning frameworks.

We first provide a formal definition of the exact learning model, based on
membership and equivalence queries, and then we introduce the epistemic learn-
ing model, with example and epistemic membership queries. Let F(A) be a
multi-agent learning framework. Each i ∈ A aims at learning a target formula
lj ∈ Lj of a description logic L of each other agent j 	= i ∈ A by posing them
queries.

Definition 1 (Membership query). For every i ∈ A and every li ∈ Li, let
MEMF(A),li be an oracle that takes as input x ∈ Xi and outputs ‘yes’ if li |=L x
and ‘no’ otherwise. A membership query to agent i ∈ A is a call to MEMF(A),li .

Definition 2 (Equivalence query). For every i ∈ A and every li ∈ Li, we
denote by EQF(A),li an oracle that takes as input a hypothesis formula of a
description logic h ∈ Li and returns ‘yes’ if h ≡L li and a counterexample for
li and h otherwise. An equivalence query to agent i ∈ A is a call to EQF(A),li .
There is no assumption about which counterexample is returned by EQF(A),li .

In this work, we introduce example queries, where an agent i ∈ A can ask
an agent j ∈ A to only provide examples which are not logical consequences of
what they have already communicated. Intuitively, if agent j returns x to agent i
in a language L and x |=L y then agent i knows y, in symbols, Kiy. Since agent
j returned this example to agent i, the axiom Kiy is part of the logical theory
representing the knowledge of agent j, so agent j acquires knowledge of what is
known by agent i as they communicate. We use example queries in combination
with an epistemic version of membership queries, called K-membership queries.
Given i ∈ A, assume that Li is a set of formulas of the logic L and denote by
LK

i the set of all formulas in the epistemic extension of L, which, by definition of
LK, includes all L formulas. The target formula li is an element of Li, however,
the oracles for the example and K-membership queries may add LK formulas to
li. We denote by lk+1

i the result of updating lki upon receiving the k-th query,
where l1i = li. At all times Xi is a set of examples in L (not in LK).

Definition 3 (K-membership query). For every i ∈ A and every lki ∈ LK
i ,

let MEMK
F(A),lki

be an oracle that takes as input x ∈ Xi and j ∈ A, and, if

l1i |=L x, it outputs ‘yes’ and define lk+1
i := lki ∧ Kjx

2.
Otherwise it returns ‘no’ and defines lk+1

i := lki . The k-th K-membership
query to agent i ∈ A is a call to MEMK

F(A),lki
.

2 We may write lki for the conjunction of its elements.
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Definition 4 (Example query). For every i ∈ A and every lki ∈ LK
i , let

EXF(A),lki
be an oracle that takes as input some j ∈ A and outputs x ∈ Xi such

that l1i |=L x but lki 	|=LK Kj x if such x exists; or ‘you finished’, otherwise.
Upon returning x ∈ Xi such that l1i |=L x the oracle EXF(A),lki

defines lk+1
i :=

lki ∧ Kjx. The k-th example query to agent i ∈ A is a call to EXF(A),lki
.

An exact learning algorithm Ai for Fi ∈ F(A) is a deterministic algorithm
that takes no input, is allowed to make queries to MEMF(A),li and EQF(A),li

(without knowing what the target li to be learned is), and eventually halts and
outputs some h ∈ Li with h ≡L li. An epistemic learning algorithm for Fi ∈ F(A)
is a deterministic algorithm that takes no input, is allowed to make queries to
MEMK

F(A),lki
and EXF(A),lki

(without knowing what the target l1i to be learned
is), and eventually halts after receiving ‘you finished’ from EXF(A),lki

.
We say that F(A) is exactly learnable if there is an exact learning algorithm

Ai for each Fi ∈ F(A) and that F(A) is polynomial query exactly learnable if
each Fi ∈ F(A) is exactly learnable by an algorithm Ai such that at every step
the sum of the sizes of the inputs to queries made by Ai up to that step is
bounded by a polynomial p(|li|, |x|), where li is the target and x ∈ Xi is the
largest example seen so far by Ai. F(A) is polynomial time exactly learnable if
each Fi ∈ F(A) is exactly learnable by an algorithm Ai such that at every step
(we count each call to an oracle as one step of computation) of computation
the time used by Ai up to that step is bounded by a polynomial p(|li|, |x|),
where li ∈ Li is the target and x ∈ X is the largest counterexample seen so far.
We may also say that F(A) is learnable in O(|li|, |x|) many steps, following the
same notion of polynomial time learnability, except that the number of steps is
bounded by O(|li|, |x|).

We say that F(A) is epistemically learnable if there is an epistemic learning
algorithm for each Fi ∈ F(A). Polynomial query/time epistemic learnability is
defined analogously, with p(|l1i |, |x|) defined in terms of |l1i | and |x|. Clearly, if
a learning framework F(A) is polynomial time exactly/epistemically learnable
then it is also polynomial query exactly/epistemically learnable.

3 Epistemic and Exact Polynomial Learnability

In this section we confront polynomial query and polynomial time learnability
in the exact and epistemic learning models. We start by considering the case
where the learner is only allowed to pose one type of query. Clearly, polyno-
mial (query/time) exact learnability with only membership queries coincides
with polynomial epistemic learnability with only K-membership queries. We
now analyse polynomial learnability with equivalence queries only and exam-
ple queries only. Our first result is that polynomial (query/time) learnability in
the epistemic learning model implies polynomial learnability in exact learning
model.
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Theorem 1. If a multi-agent learning framework is polynomial query (resp.
time) epistemically learnable with only example queries then it is polynomial
query (resp. time) exactly learnable with only equivalence queries.

Proof. Assume F(A) is polynomial query epistemically learnable with only
example queries (the case of polynomial time epistemic learnability with only
example queries can be similarly proved). For each Fi ∈ F(A) there is an epis-
temic learning algorithm Ai for Fi with polynomial query complexity which only
asks example queries. To construct an exact learning algorithm A′

i for Fi which
only asks equivalence queries using Ai, we define auxiliary sets sK

i (k) and sL
i (k)

which will keep the information returned by EQF(A),li up to the k-th query posed
by a fixed but arbitrary agent in A \ {i} and agent i. We define sK

i (1) = ∅ and
sL

i (1) = ∅.

– Whenever Ai poses an example query to agent i ∈ A (assume it is the k-th
query), A′

i calls the oracle EQF(A),li with sL
i (k) as input. The oracle either

returns ‘yes’ if sL
i is equivalent to li or it returns some counterexample for li

and sL
i (k) (we may write sL

i (k) to denote
∧

β∈sL
i (k) β). Then A′

i adds Kjx to
sK

i (k) and x to sL
i (k).

If EQF(A),li returns ‘yes’ then algorithm A′
i converts it into ‘you finished’, as

expected by algorithm Ai. We now argue that, for all x ∈ Xi and all k ≥ 0 such
that li |=L x, we have that x is a (positive) counterexample for li and sL

i (k)
iff li ∧ sK

i (k) 	|=LK Kj x. By definition of sK
i (k) and sL

i (k) and since li does not
contain LK axioms, for all x ∈ Xi and all k ≥ 0, we have that li ∧ sK

i (k) |=LK
Kjx iff sL

i (k) |=L x. By definition and construction of sL
i (k), it follows that

li |=L sL
i (k). So sL

i (k) 	|=L x iff li ∧ sK
i (k) 	|=LK Kj x. Hence EQF(A),li can

simulate EXF(A),lki
, where k represents the number of calls to EXF(A),lki

posed so
far by Ai. By definition of Ai, at every step, the sum of the sizes of the inputs
to queries made by Ai up to that step is bounded by a polynomial p(|li|, |x|),
where li is the target and x ∈ Xi is the largest counterexample seen so far by
Ai.Then, for all k ≥ 0, we have that |sL

i (k)| ≤ |sK
i (k)| ≤ p(|li|, |x|). Since all

responses to queries are as required by Ai, if Ai halts after polynomially many
polynomial size queries, the same happens with A′

i, which returns a hypothesis
sL

i (k) equivalent to the target li, for some k ≤ p(|li|, |x|). �
The converse of Theorem 1 does not hold, as we show in the next theorem.

Theorem 2. There is a multi-agent learning framework F(A) such that F(A) is
polynomial time exactly learnable with only equivalence queries but not polyno-
mial query (so, not polynomial time) epistemically learnable with only example
queries.

Proof. Consider the learning framework F = (X,L) where X is the set of
propositional formulas over the variables Prop = {q, p, p01, . . . , p

0
n, p11, . . . , p

1
n} and

L = {ϕ | ϕ ∈ X,ϕ ≡ (p → q)} (where ≡ denotes logical equivalence in proposi-
tional logic). So the target can only be a formula equivalent to p → q. Now let
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F(A) be the set {Fi = (X,L) | i ∈ A}, with all learning frameworks are equal to
F (this does not mean that the target is the same for all agents but that they are
taken from the same set L). If L is a language which only contains propositional
formulas equivalent to p → q, an exact learning algorithm can learn the target
with only one equivalence query, passing the hypothesis {p → q} as input. How-
ever, EXF(A),{p→q} can return any of the exponentially many examples of the
form p ∧ (p�1

1 ∧ . . . ∧ p�n
n ) → q, with �j ∈ {0, 1} and j ∈ {1, . . . , n}. The example

oracle can always provide an example which does not follow from its knowledge
of what is known by the learner by taking a fresh binary sequence. Thus, there
is no epistemic algorithm which can learn the target with polynomially many
queries. �

Interestingly, if we consider both types of queries then polynomial exact
learnability coincides with polynomial epistemic learnability.

Theorem 3. Let F(A) be a multi-agent learning framework. F(A) is polynomial
query (resp. time) exactly learnable if, and only if, F(A) is polynomial query
(resp. time) epistemically learnable.

Proof. (⇒) In our proof we use polynomial query exact learnability, the argu-
ment for polynomial time exact learnability is analogous. Assume F(A) is poly-
nomial query exactly learnable. Then, for each Fi ∈ F(A) there is an exact
learning algorithm Ai for Fi. We construct an epistemic learning algorithm A′

i

for Fi using Ai as follows. Recall that we write lki to denote the target lki after
the k-th query (Sect. 2.2).

– Whenever Ai poses a membership query to agent i ∈ A with x ∈ Xi as
input, A′

i calls MEMK
F(A),lki

with x as input, where k represents the number
of queries posed so far by A′

i.
– Whenever Ai poses an equivalence query to agent i ∈ A with a hypothesis h

as input, we have that, for each x ∈ h, A′
i calls MEMK

F(A),lki
with x as input

(and k is incremented). Then, the algorithm calls the oracle EXF(A),lki
.

MEMK
F(A),li behaves as it is required by algorithm Ai to learn Fi. We show that

whenever EXF(A),lki
returns some x ∈ Xi we have that x is a counterexample for

l1i and h, where h is the input of the equivalence query posed by Ai. By definition
of Ai, at every step, the sum of the sizes of the inputs to queries made by Ai

up to that step is bounded by a polynomial p(|l1i |, |x|), where l1i is the target and
x ∈ Xi is the largest example seen so far by Ai. Let h� denote the input to the
�-th equivalence query posed by Ai. For all � > 0, we have that |h�| ≤ p(|l1i |, |x|).
The fact that x is a counterexample for l1i and h� follows from the definition of
A′

i, which poses membership queries for each x ∈ h�, ensuring that lki is updated
with Kjx after each query. Hence EXF(A),lki

returns counterexamples for l1i and
h� (if they exist), as EQF(A),l1i

. Since Ai poses only polynomially many queries,
� is bounded by p(|l1i |, |x|). So the sum of the sizes of the inputs to queries made
by the epistemic learning algorithm A′

i simulating Ai is quadratic in p(|l1i |, |x|).
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All in all, since all responses to queries are as required by Ai, if Ai halts and
outputs some h ∈ Li with h ≡L l1i (with h the input to the last equivalence
query) after polynomially many polynomial size queries, we have that EXF(A),l1i
is forced to return ‘you finished’ and so A′

i also halts after polynomially many
polynomial size queries. The (⇐) direction is similar to the proof of Theorem1,
except that we now also have (K-)membership queries. �

4 The Epistemic EL Description Logic

To instantiate the multi-agent epistemic learning problem to the EL case, in
Sect. 5, we define and study in this section the epistemic extension of EL, called
ELK. We present EL [3] in Sect. 4.1. ELK is the instantiation of LK presented
in Sect. 2.1 with the logic EL. We establish the complexity of the satisfiability
problem for ELK in Sect. 4.2 and of one of its fragments in Sect. 4.3.

We showed in Sect. 3 that example queries give strictly less power to the
learner than equivalence queries. We also argued, quite informally so far, that
example queries are less demanding on the oracle than equivalence queries.
Instead of deciding whether two ontologies are equivalent, and then providing a
counterexample when it is not the case, the oracle only needs to reason about
what they know about the knowledge of the learner. Yet, we did not say any-
thing about the actual complexity of the epistemic reasoning involved in example
queries. If reasoning about the knowledge of the learner is harder than evaluat-
ing the equivalence of two ontologies, then the advantage of example queries for
the oracle would be moot. We show that indeed the epistemic reasoning that the
oracle needs to perform is in PTime (Theorem 5). So, the oracle’s benefit from
example queries over equivalence queries is a net benefit.

4.1 EL: Syntax, Semantics, and Complexity

EL concepts C,D are expressions of the form: C,D ::= � | A | ∃r.C | C�D where
A ∈ NC and r ∈ NR. An inclusion is an expression of the form C � D where
C,D are EL concept expressions; and an assertion is of the form A(a) or r(a, b)
with a, b ∈ NI, A ∈ NC, and r ∈ NR. An EL axiom is an inclusion or an assertion.
An EL formula3 is an expression of the form α ::= a | ¬α | α∧α where a is an EL
axiom. An EL literal is an EL axiom or its negation. The semantics of EL is given
by L interpretations I = (ΔI , ·I) as defined in Sect. 2.1, considering L = EL.
We extend the mapping ·I for EL complex concept expressions as follows:

�I := ΔI , (C � D)I := CI ∩ DI ,

(∃r.C)I := {d ∈ ΔI | ∃e ∈ CI : (d, e) ∈ rI}.

3 Typically an EL ontology is a set of EL axioms [3], and can also be seen as a con-
junction of positive EL axioms. Here we also consider EL formulas, where we allow
negations and conjunctions over the axioms.
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We now define the entailment relation |=EL for EL formulas. Given an EL inter-
pretation I and an EL axiom (which can be an inclusion or an assertion, as
above) we define: I |=EL C � D iff CI ⊆ DI ; I |=EL A(a) iff aI ∈ AI ;
and I |=EL r(a, b) iff (aI , bI) ∈ rI . We inductively extend the relation |=EL
to EL formulas as in Sect. 2.1: I |=EL ϕ ∧ ψ iff I |=EL ϕ and I |=EL ψ; and
I |=EL ¬ϕ iff not I |=EL ϕ. In our proofs, we use the following result.

Lemma 1. Satisfiability of a conjunction of EL literals is PTime-complete [6].

We establish in Sect. 4.2 that reasoning about ELK formulas is NP-complete,
just like reasoning about EL formulas. We note that EL(K) formulas allow
arbitrary Boolean combinations of EL(K) axioms, hence the contrast with the
PTime complexity of entailment from an EL ontology [2]. In Sect. 4.3 we show
that reasoning about ELK restricted to conjunctions of literals is in PTime.

4.2 Reasoning in ELK
Here we study the complexity of the satisfiability problem in ELK. Our combi-
nation of epistemic logic and description logic is orthogonal to the work by De
Giacomo et al. [8]: while our epistemic operators are over EL formulas, the epis-
temic operators of the mentioned work are over concepts and roles. For instance,
there, K FrenchChef denotes the concept of known French chefs. Here, ELK con-
tains formulas such as Ki(FrenchChef(Soyer)) ∧ ¬KiKj(Crepe � ∃contains.Egg)
indicating that agent i knows that Soyer is a French chef, but i does not know
that j knows that crepes contain egg.

From the definition of the language of LK in Sect. 2.1, remember that the
language of ELK does not admit alternating modalities; E.g., Ki¬KjA(a) is not
a formula of ELK. It is rather easy to see that if there were no such syntactic
restrictions, the satisfiability problem would turn out to be PSpace-complete.
(We could reduce satisfiability and adapt the tableaus method of propositional
S5n [12].) Instead, we establish that satisfiability in ELK is NP-complete.

The lower bound follows from NP-hardness for propositional logic. The fol-
lowing lemma is central for showing membership in NP. It is a consequence of
the fact that EL and propositional logic have the polynomial size model property
and that in ELK the satisfiability test can be separated into two independent
tests: one for the DL dimension and one for the epistemic dimension (see [4,6]).

Lemma 2. ELK enjoys the polynomial size model property.

Since ELK formulas can be translated into first-order logic, for a fixed ELK
formula ϕ, checking whether a polynomial size interpretation is a model of ϕ can
be performed in NLogSpace. Thus, membership in NP is by the fact that, by
Lemma 2, one can guess a polynomial size model (if one exists) and check that
it is a model in NLogSpace ⊆ PTime.

Theorem 4. Satisfiability in ELK is NP-complete.
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4.3 Reasoning in Conjunctive ELK
We conclude this section considering the satisfiability problem for conjunctive
ELK, defined as the fragment of ELK which only allows negations in front of
EL axioms or in front of ELK axioms of the form Kα, with α a conjunction
of EL literals and K a non-empty sequence of epistemic operators. Formally,
conjunctive ELK formulas ϕ are expressions of the form: ϕ ::= α | β | ¬β | ϕ ∧ ϕ
with β ::=Kiα | Kiβ, and α ::= a | ¬a | α ∧ α, where a is an EL axiom.

Algorithm 1. SAT (ϕ), deciding the satisfiability of conjunctive ELK formulas
Input: A conjunctive ELK formula ϕ
Output: TRUE if ϕ is satisfiable, and FALSE otherwise
1: if ω0 ∧ ∧{ω | Kσω ∈ ϕ�} is not EL satisfiable then
2: return FALSE
3: end if
4: for ¬Kσω ∈ ϕ� do
5: ψ = � ∧ ∧{ω′ | Kσ′ω′ ∈ ϕ�, and σ is a subword of σ′}
6: MS = {ψ ∧ ¬β | β is an EL literal in ω}
7: if all conjunctions of EL literals in MS are not EL satisfiable then
8: return FALSE
9: end if

10: end for
11: return TRUE

To establish the complexity of reasoning in conjunctive ELK, we use the
following notation. For every non-empty sequence σ = a1 . . . ak ∈ A+ of agents,
we associate a sequence Kσ = Ka1 . . .Kak

of epistemic operators. We write
β ∈ ψ if β is a conjunct occurring in ψ. We say that σ′ ∈ A+ is a subword of
σ ∈ A+ when σ′ is the result of removing zero or more elements from σ (at any
position of the sequence). Given a conjunctive ELK formula

ϕ = ω0 ∧ Kσ1ωσ1 ∧ . . . ∧ Kσn
ωσn

∧ ¬Kσn+1ωσn+1 ∧ . . . ∧ ¬Kσm
ωσm

where σi ∈ A+, for every 1 ≤ i ≤ m, and each ωi, with 0 ≤ i ≤ m, is a con-
junction of EL literals, we denote by ϕ� the formula resulting from exhaustively
substituting in ϕ every adjacent repetitions a . . . a of an agent a occurring in σi,
1 ≤ i ≤ m, with a. (E.g., a1a2a2a3a2 becomes a1a2a3a2.)

The following proposition is central to the correctness of Algorithm 1.

Proposition 1. A conjunctive ELK formula ϕ is unsatisfiable iff at least one
of the following properties holds:

1. ω0 ∧ ∧{ω | Kσω ∈ ϕ�} is not EL satisfiable;
2. there is ¬Kσω ∈ ϕ� such that ¬ω ∧ ∧{ω′ | Kσ′ω′ ∈ ϕ�, and σ

is a subword of σ′} is not EL satisfiable.
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Proof. For convenience, we introduce some additional notation. For every σ =
a1 . . . ak ∈ A∗ we note Rσ = Ra1 ◦ . . . ◦ Rak

and Kσ = Ka1 . . .Kak
. The empty

sequence is noted ε, and we have Rε = Id, where Id is the identity relation, and
Kεω = ω.

The two following properties, which are instrumental in the proof of the
proposition, are simple consequences of well-known properties of the modal sys-
tem S5 [13, p. 58]. We state them without proof.

Claim. The following holds.

i. If ϕ� is an ELK formula, ϕ and ϕ� are equivalent.
ii. Let (W, {Ri}i∈A) be an ELK interpretation. For all σ ∈ A∗ and σ′ ∈ A∗, if

σ is a subword of σ′ then Rσ ⊆ Rσ′ .

We are ready to prove the proposition. Since, by Point (i) of the Claim, ϕ�

and ϕ are equisatisfiable (in fact equivalent), w.l.o.g., we prove it for ϕ�.
(⇐) Suppose (1) holds. Since Ri is reflexive for all i ∈ A, every model

satisfying ϕ� must satisfy ω0 ∧ ∧{ω | Kσω ∈ ϕ�}. Since it is not EL sat-
isfiable, there cannot be an ELK interpretation satisfying ϕ� either. Suppose
(2) holds. For some ¬Kσω ∈ ϕ�, we have that ψ = ¬ω ∧ ∧{ω′ | Kσ′ω′ ∈
ϕ�, and σ is a subword of σ′} is not EL satisfiable. Suppose towards contradic-
tion that there exist an ELK interpretation I = (W, {Ri}i∈A) and an EL inter-
pretation J ∈ W such that I,J |= ϕ�. It means that I,J |= ¬Kσω, that
is, there is an EL interpretation J such that (J ,J ′) ∈ Rσ and I,J ′ |= ¬ω.
By Point (ii) of the Claim, for every Kσ′ω′ ∈ ϕ�, if σ is a subword of σ′, then
Rσ ⊆ Rσ′ . Hence, I,J ′ |= ψ, which is a contradiction as ψ is not EL satisfiable.

(⇒) Assume that none of (1) and (2) hold. We must show that ϕ� is sat-
isfiable. It suffices to build an ELK interpretation I = (W, {Ri}i∈A) for ϕ�.
W contains an EL interpretation J0 satisfying ω0 ∧ ∧{ω | Kσω ∈ ϕ�}. Such
an interpretation exists because (1) does not hold. For each ¬Kσω ∈ ϕ�, where
σ = a1 . . . ak, W also contains an interpretation J σ

k satisfying ¬ω ∧ ∧{ω′ |
Kσ′ω′ ∈ ϕ�, and σ is a subword of σ′}. Such an interpretation exists because
(2) does not hold. Still for each ¬Kσω ∈ ϕ�, W, where σ = a1 . . . ak, for
each 1 ≤ i < k, W also contains an interpretation J σ

i satisfying
∧{ω′ | Kσ′ω′ ∈

ϕ�, and a1 . . . ai is a subword of σ′}. Such interpretations exist because (1) does
not hold. W does not contain any more EL interpretations. We turn to the con-
struction of R. For every ¬Kσω ∈ ϕ�, where σ = a1 . . . ak, for every 1 ≤ i ≤ k,
let (J σ

i−1,J σ
i ) ∈ R′

ai
, where J σ

0 = J0. For every i ∈ A, let Ri be the equivalence
closure of R′

i. It is routine to check that I,J0 |= ϕ�. �
Proposition 1 suggests that the satisfiability of conjunctive ELK formulas can

be reduced to checking the satisfiability of a few conjunctions of EL literals. We
are finally ready to prove the complexity of deciding whether a conjunctive ELK
formula is satisfiable.

Theorem 5. Satisfiability in conjunctive ELK is PTime-complete.

Proof. Consider Algorithm 1. The conjunctive ELK formula ϕ is satisfiable iff
SAT (ϕ) returns TRUE. The correctness of the algorithm follows immediately
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from Proposition 1. It suffices to observe that Lines 5–9 check the unsatisfiability
of an EL formula ¬ω ∧ ψ where ω and ψ are two of conjunctions of EL literals
(¬ω ∧ ψ is not a conjunction of EL literals, unless ω contains only one literal)
by checking the unsatisfiability of as many conjunctions of EL literals ¬β ∧ ψ as
there are literals β in ω. A simple analysis shows that the algorithm runs in
time polynomial in the size of ϕ, with a polynomial number of calls to a
procedure for checking the unsatisfiability of conjunctions of EL literals. By
Lemma 1, each of these checks can be done in polynomial time. Membership
in PTime follows. �

Algorithm 2. Adaptation of the learning algorithm for ELlhs,rhs [10]
Input: An EL terminology O given to the oracle; ΣO given to the learner
Output: An EL terminology H computed by the learner such that O ≡EL H
1: H := {a | MEMK

F,Ok(a)=‘yes’, a is a ΣO-assertion or a = A � B, A, B ∈ ΣO}
2: while EXF,Ok �= ‘you finished’ do
3: Let C � D be the returned positive example for O
4: Compute, with MEMK

F,Ok , C′ � D′ such that C′ or D′ in ΣO ∩ NC

5: if C′ ∈ ΣO ∩ NC then
6: Compute with MEMK

F,Ok a right O-essential a from C′ � D′ 	 �

C′�F ′∈H
F ′

7: else
8: Compute with MEMK

F,Ok a left O-essential a from C′ � D′

9: end if
10: Add a to H
11: end while
12: return H

5 Learning EL with Epistemic Reasoning

It is known that EL ontologies are not polynomial query exactly learnable, while
the fragments of EL restricting one of the sides of inclusions to be a concept
name, namely ELlhs and ELrhs, are exactly learnable in polynomial time [14]. In
this section, we transfer results known for EL and its fragments to our learning
model. Our results are for learning frameworks where the learning language is
the same for all agents. That is, we deal with the special case of a multi-agent
learning framework F(A) = {Fi = (Xi, Li) | i ∈ A} where all formulas in all
Li are from a DL L, denoted F(L,A). Theorem 6 is a consequence of Theorem 3
and complexity results for EL and its fragments in the exact learning model [14].

Theorem 6. The learning framework F(EL,A) is not polynomial query epis-
temically learnable. The learning frameworks F(ELlhs,A) and F(ELrhs,A) are
polynomial time epistemically learnable.

The hardness result for EL holds even for the fragment of EL ontologies
defined as the union of ELlhs and ELrhs, that is, in a named form where at least
one of the sides of concept inclusions is a concept name, which we call ELlhs,rhs.
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An implementation of a learning algorithm for EL ontologies in this named form
was presented by Duarte et al. [9,10]. The algorithm is exponential in the size
of the vocabulary ΣO of the ontology O (which is the set of concept/role and
individual names occurring in O) and the largest concept expression CO4, but
it is not exponential in the size of the whole ontology.

Theorem 3 is not directly applicable in this case, however, we observe that if
the exact learning algorithm uses the epistemic learning model, then the outcome
of each example query will be a counterexample, and so, the complexity result
obtained with that algorithm is transferable to the epistemic setting. To see this,
consider Algorithm 2, which is an adaptation of the exact learning algorithm for
ELlhs,rhs [9,10]. Assume F in Algorithm 2 is F(ELlhs,rhs,A). The number of ΣO-
assertions (defined as assertions with only symbols from ΣO) is polynomial in
the size of O, so, in Line 1, Algorithm 2 identifies those that occur in O using
K-membership queries. It follows that all examples returned by the oracle in
the ‘while’ loop are concept inclusions. In each iteration of the ‘while’ loop, the
algorithm uses the examples returned by the EXF(ELlhs,rhs,A),Ok oracle to compute
what is called ‘left O-essential’ and ‘right O-essential’ concept inclusions using K-
membership queries, and then updates the hypothesis with such inclusions. We
do not go into details of the algorithm, which is fully presented in the mentioned
reference, but point out that it only adds to its hypothesis concept inclusions
that follow from the target ontology O.

Since we use K-membership queries, the oracle is aware of the knowledge
obtained by the learner in this way and does not return examples which follow
from such entailments. With an inductive argument on the number of iterations
of the main loop of the algorithm one can show that, at each iteration, if the
learner asks for an example query instead of an equivalence query, the outcome
will indeed be a counterexample for O and H. So the number of membership and
equivalence queries is the same as the number of K-membership and example
queries. Moreover, the hypothesis H computed by Algorithm 2 is equivalent to
the target O (where O = O1, so without epistemic axioms). Our next theorem
formalises the fact that the number of queries performed by the exact learning
algorithm has the same bound in the epistemic learning framework.

Theorem 7. F(ELlhs,rhs,A) is epistemically learnable in O(|ΣO|�O · (|C � D|)2)
many steps, where �O = 2 · |CO| · |ΣO| + 2, CO is the largest concept expression
in O and C � D is the largest counterexample given by the oracle.

6 Discussion

We introduced the epistemic learning model and investigated polynomial learn-
ability in our model, establishing that it coincides with polynomial learnability
in the exact learning model, and as a consequence, we can also transfer results
in our model to the PAC learning model extended with membership queries.

4 ‘The largest’ concept expression (and, later, counterexample) refers to the maximum
of the sizes of counterexamples/concept expressions.
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When the learner is only allowed to pose example queries, we showed that poly-
nomial learnability in our model in strictly harder than in the exact learning
model with only equivalence queries. This suggests that example queries are less
demanding for the oracle than equivalence queries. We showed that, in the EL
case, the epistemic reasoning that the oracle needs to perform features PTime
complexity. Our results complement previous research on polynomial learnabil-
ity in the exact and PAC learning models [7], where the authors analyse models
between the exact and PAC learning models, in a learning from interpretations
setting. As future work, we plan to investigate whether the implementation for
ELlhs,rhs [10] could benefit from our approach, where the oracle keeps track of the
knowledge passed to the learner, instead of processing the hypothesis at each
iteration.
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