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Abstract. We continue our exploration of the relationships between
Description Logics and Set Theory, which started with the definition of
the description logic ALCΩ . We develop a set-theoretic translation of
the description logic ALCΩ in the set theory Ω, exploiting a technique
originally proposed for translating normal modal and polymodal logics
into Ω.

We first define a set-theoretic translation of ALC based on Schild’s
correspondence with polymodal logics. Then we propose a translation
of the fragment LCΩ of ALCΩ without roles and individual names. In
this—simple—case the power-set concept is mapped, as expected, to the
set-theoretic power-set, making clearer the real nature of the power-set
concept in ALCΩ . Finally, we encode the whole language of ALCΩ into
its fragment without roles, showing that such a fragment is as expres-
sive as ALCΩ . The encoding provides, as a by-product, a set-theoretic
translation of ALCΩ into the theory Ω, which can be used as basis for
extending other, more expressive, DLs with the power-set construct.

1 Introduction

In this paper we continue our investigation of the relationships between Descrip-
tion Logics and Set Theory, starting from the description logic ALCΩ , introduced
in [5], which extends the language of ALC with the power set concept and with
membership axioms. In ALCΩ concepts are interpreted as sets living in a model
of a simple theory Ω, a very rudimentary axiomatic set theory (introduced in
Sect. 2.2), consisting of only four axioms characterizing binary union, set differ-
ence, inclusion, and the power-set. Hence, concepts are interpreted as sets of sets
(which are not necessarily well-founded), and membership among concepts has
the obvious semantic interpretation as a natural generalization of DL assertions
C(a).

The idea of enhancing the language of description logics with statements of
the form C ∈ D, with C and D concepts is not new, as assertions of the form
D(A), with A a concept name, are allowed in OWL-Full [15], and, starting from
[11], where two alternative semantics (the Contextual π-semantics and the Hilog
c© Springer Nature Switzerland AG 2019
F. Calimeri et al. (Eds.): JELIA 2019, LNAI 11468, pp. 387–398, 2019.
https://doi.org/10.1007/978-3-030-19570-0_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19570-0_25&domain=pdf
https://doi.org/10.1007/978-3-030-19570-0_25


388 L. Giordano and A. Policriti

ν-semantics) are proposed for metamodeling, many approaches to metamodel-
ing have been proposed in the literature including membership among concepts.
Most of them [4,8–10] are based on a Hilog semantics, while [12,14] define exten-
sions of OWL DL and of SHIQ (respectively), based on semantics interpreting
concepts as well-founded sets. None of these proposals includes the power-set
concept in the language.

Considering an example taken from [11,17], using membership axioms,
we can represent the fact that eagles are in the red list of endan-
gered species, by the axiom Eagle ∈ RedListSpecies and that Harry is an
eagle, by the assertion Eagle(harry). We could further consider a concept
NotModifiableList , consisting of those lists that cannot be modified (if not by,
say, a specifically enforced law) and, for example, it would be reasonable to
ask RedListSpecies ∈ NotModifiableList . However, much more interestingly, we
would also clearly want NotModifiableList ∈ NotModifiableList .

The power-set concept, Pow(C), allows to capture in a natural way the inter-
actions between concepts and metaconcepts. Considering again the example
above, the statement “all the instances of species in the Red List are not allowed
to be hunted”, observe that it can be naturally represented by the concept inclu-
sion axiom: RedListSpecies � Pow(CannotHunt), meaning that all the instances
in the RedListSpecies (as the class Eagle) are collections of individuals of the
class CannotHunt . Notice, however, that Pow(CannotHunt) is not limited to
include RedListSpecies but can include a much larger universe of sets (e.g. any-
thing belonging to Pow(Humans)).

In [5] we proved that ALCΩ is decidable by defining, for any ALCΩ knowl-
edge base K, a polynomial translation KT into ALCOI, exploiting a technique—
originally proposed and studied in [3]—consisting in identifying the membership
relation ∈ with the accessibility relation of a normal modality. Such an identifi-
cation naturally leads to a correspondence between the power-set operator and
the modal necessity operator �. We showed that the translation has the finite
model property and concept satisfiability in ALCΩ is in ExpTime.

In this paper we exploit the correspondence between ∈ and the accessibility
relation of a normal modality in another direction, to provide a polynomial set-
theoretic translation of ALCΩ in the set theory Ω. Our aim is to understand
the real nature of the power-set concept in ALCΩ , as well as showing that a
description logic with just the power-set concept, but no roles and no individual
names, is as expressive as ALCΩ .

We proceed step by step by first defining a set-theoretic translation of ALC
based on Schild’s correspondence result [16] and on the set-theoretic translation
for normal polymodal logics in [3]. Then, we consider the fragment of ALCΩ

containing union, intersection, (set-)difference, complement, and power-set (but
neither roles nor named individuals) and we show that this fragment, that we
call LCΩ , has an immediate set-theoretic translation into Ω, where the power-set
concept is translated as the power-set in Ω. Finally, we provide an encoding of
the whole ALCΩ into LCΩ . This encoding shows that LCΩ is as expressive as
ALCΩ . The full path leads to a set-theoretic translation of both the universal
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restriction and power-set concept of ALCΩ in the theory Ω using the single
relational symbol ∈. We refer to [6] for the proofs of the results.

2 Preliminaries

2.1 The Description Logic ALC
Let NC be a set of concept names, NR a set of role names and NI a set of
individual names. The set C of ALC concepts can be inductively defined as
follows:
– A ∈ NC , � and ⊥ are concepts in C;
– if C,D ∈ C and R ∈ NR, then C � D,C � D,¬C,∀R.C,∃R.C are concepts in

C.

A knowledge base (KB) K is a pair (T ,A), where T is a TBox and A is an
ABox. The TBox T is a set of concept inclusions (or subsumptions) C � D,
where C,D are concepts in C. The ABox A is a set of assertions of the form
C(a) and R(a, b) where C is a concept, R ∈ NR, and a, b ∈ NI .
An interpretation for ALC (see [2]) is a pair I = 〈Δ, ·I〉 where:

– Δ is a domain—a set whose elements are denoted by x, y, z, . . . —and
– ·I is an extension function that maps each concept name C ∈ NC to a set

CI ⊆ Δ, each role name R ∈ NR to a binary relation RI ⊆ Δ × Δ, and each
individual name a ∈ NI to an element aI ∈ Δ.

The function ·I is extended to complex concepts as follows: �I = Δ, ⊥I = ∅,
(¬C)I = Δ\CI , (C � D)I = CI ∩ DI , (C � D)I = CI ∪ DI , and

(∀R.C)I = {x ∈ Δ | ∀y.(x, y) ∈ RI → y ∈ CI},
(∃R.C)I = {x ∈ Δ | ∃y.(x, y) ∈ RI & y ∈ CI}.

The notion of satisfiability of a KB in an interpretation is defined as follows:
Definition 1 (Satisfiability and entailment). Given an ALC interpretation
I = 〈Δ, ·I〉:
– I satisfies an inclusion C � D if CI ⊆ DI ;
– I satisfies an assertion C(a) if aI ∈ CI and an assertion R(a, b) if (aI , bI) ∈

RI .

Given a KB K = (T ,A), an interpretation I satisfies T (resp. A) if I satisfies
all inclusions in T (resp. all assertions in A); I is a model of K if I satisfies
T and A.

Letting a query F be either an inclusion C � D (where C and D are concepts)
or an assertion C(a), F is entailed by K, written K |= F , if for all models
I = 〈Δ, ·I〉 of K, I satisfies F .

Given a KB K, the subsumption problem is the problem of deciding whether
an inclusion C � D is entailed by K. The instance checking problem is the
problem of deciding whether an assertion C(a) is entailed by K. The concept
satisfiability problem is the problem of deciding, for a concept C, whether C
is consistent with K, that is, whether there exists a model I of K, such that
CI �= ∅.
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2.2 The Theory Ω

The first-order theory Ω consists of the following four axioms in the language
with relational symbols ∈ and ⊆, and functional symbols ∪, \, Pow :

x ∈ y ∪ z ↔ x ∈ y ∨ x ∈ z;
x ∈ y\z ↔ x ∈ y ∧ x �∈ z;

x ⊆ y ↔ ∀z(z ∈ x → z ∈ y);
x ∈ Pow(y) ↔ x ⊆ y.

In an Ω-model everything is supposed to be a set. Hence, a set will have (only)
sets as its elements and circular definition of sets are allowed (such as a set
admitting itself as one of its elements). Moreover, not postulating in Ω any link
between membership ∈ and equality—in axiomatic terms, having no extension-
ality (axiom)—Ω-models in which there are different sets with equal collection
of elements, are admissible.

The most natural Ω-model—in which different sets are, in fact, always exten-
sionally different—is the collection of well-founded sets HF = HF0 =

⋃
n∈N

HFn,
where: HF0 = ∅ and HFn+1 = Pow(HFn). A close relative of HF0, in which sets
are not required to be well-founded, goes under the name of HF1/2 (see [1,13]).
HF0 or HF1/2 can be seen as the collection of finite (either acyclic or cyclic)
graphs where sets are represented by nodes and arcs depict the membership
relation among sets (see [13]).

A further enrichment of both HF0 and HF1/2 is obtained by adding atoms,
that is copies of the empty-set, to be denoted by a1,a2, . . . and collectively
represented by A = {a1,a2, . . .}. The resulting universes will be denoted by
HF0(A) and HF1/2(A).

We will regard the domain Δ of an ALCΩ interpretation as a fragment of
the universe of an Ω-model, i.e. as a set of sets of the theory Ω rather than as
a set of individuals, as customary in description logics.

2.3 The Description Logic ALCΩ

In [5] ALC has been extended by allowing concepts to be interpreted as sets
in a universe of the set theory Ω, introducing the power-set as a new concept
constructor, and admitting membership relations among concepts to occur in
the knowledge base. The resulting extension of ALC has been called ALCΩ . We
recap its definition.

Let NI , NC , and NR be as in Sect. 2.1. We extend the language of ALC by
allowing, for all ALCΩ concepts C,D:

– the difference concept C\D and
– the power-set concept Pow(C).

While the concept C\D can be easily defined in ALC as C � ¬D, this is not
the case for the concept Pow(C). Informally, the instances of concept Pow(C) are
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all the subsets of the instances of concept C, which are “visible” in (i.e. which
belong to) Δ.

Besides usual assertions of the forms C(a) and R(a, b) with a, b ∈ NI , ALCΩ

allows in the ABox concept membership axioms and role membership axioms
of the forms C ∈ D and (C,D) ∈ R, respectively, where C and D are ALCΩ

concepts and R is a role name.
Considering again the example from the Introduction, the additional expres-

sivity of the language allows for instance to represent the fact that polar bears
are in the red list of endangered species, by the axiom Polar � Bear ∈
RedListSpecies . We can further represent the fact the polar bears are more
endangered than eagles by the role membership axiom (Polar � Bear ,Eagle) ∈
moreEndangered .

We define a semantics for ALCΩ extending the ALC semantics in Sect. 2.1 to
capture the meaning of concepts (including concept Pow(C)) as elements (sets) of
the domain Δ, chosen as a transitive set (i.e. a set x satisfying (∀y ∈ x)(y ⊆ x))
in a model of Ω. Individual names are (essentially) interpreted as elements of
a set of atoms A, i.e. pairwise distinct copies of the empty-set from which the
remaining sets in Δ are built.

Definition 2. An interpretation for ALCΩ is a pair I = 〈Δ, ·I〉 over a set of
atoms A where: (i) the non-empty domain Δ is a transitive set chosen in the
universe U of a model M of Ω over the atoms in A;1 (ii) the extension function ·I
maps each concept name A ∈ NC to an element AI ∈ Δ; each role name R ∈ NR

to a binary relation RI ⊆ Δ×Δ; and each individual name a ∈ NI to an element
aI ∈ A ⊆ Δ. The function ·I is extended to complex concepts of ALCΩ, as in
Sect. 2.1 for ALC, but for the two additional cases: (Pow(C))I = Pow(CI) ∩ Δ
and (C\D)I = (CI\DI).

Observe that A ⊆ Δ ∈ U . As Δ is not guaranteed to be closed under union,
intersection, etc., the interpretation CI of a concept C is a set in U but not
necessarily an element of Δ. However, given the interpretation of the power-set
concept as the portion of the (set-theoretic) power-set visible in Δ, it easy to see
by induction that, for each C, the extension of CI is a subset of Δ.

Given an interpretation I, the satisfiability of inclusions and assertions is
defined as in ALC interpretations (Definition 1). Satisfiability of (concept and
role) membership axioms in an interpretation I is defined as follows: I satisfies
C ∈ D if CI ∈ DI ; I satisfies (C,D) ∈ R if (CI ,DI) ∈ RI . With this addition,
the notions of satisfiability of a KB and of entailment in ALCΩ (denoted |=ALCΩ )
can be defined as in Sect. 2.1.

The problem of instance checking in ALCΩ includes both the problem of
verifying whether an assertion C(a) is a logical consequence of the KB and the
problem of verifying whether a membership C ∈ D is a logical consequence of
the KB (i.e., whether C is an instance of D).

1 In the following, for readability, we will denote by ∈, Pow , ∪, \ (rather than PowM,
∪M, \M) the interpretation in a model M of the predicate and function symbols ∈,
Pow , ∪, \.
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A translation of the logic ALCΩ into the description logic ALCOI, including
inverse roles and nominals, has been defined in [5], based on the correspondence
between ∈ and the accessibility relation of a modality explored in [3]. There,
the membership relation ∈ is used to represent a normal modality R. In [5],
vice-versa, a new (reserved) role e in NR is introduced to represent the inverse
of the membership relation, restricted to the sets in Δ: in any interpretation
I, (x, y) ∈ eI will stand for y ∈ x. The idea underlying the translation is that
each element u of the domain Δ in an ALCOI interpretation I = 〈Δ, ·I〉 can be
regarded as the set of all the elements v such that (u, v) ∈ eI .

Soundness and completeness of this polynomial translation (see [5,6]) pro-
vide, besides decidability, an ExpTime upper bound for satisfiability in ALCΩ .
In [5] it was also proved that if the translation KT has a model in ALCOI, then
it has a finite model. From the soundness and completeness of the translation,
it follows that ALCΩ has the finite model property.

3 A Set Theoretic Translation of ALCΩ

We define a set-theoretic translation of ALCΩ in the set theory Ω, exploiting the
correspondence between ∈ and the accessibility relation of a normal modality
studied in [3]. In Sect. 3.1, we define a set-theoretic translation of ALC, based
on the translation introduced by D’Agostino et al. for normal, complete finitely
axiomatizable polymodal logics [3]. Here, according to the well known corre-
spondence between description logics and modal logics studied by Schild [16],
concepts (sets of elements) play the role of propositions (sets of worlds) in the
polymodal logic, while universal and existential restrictions ∀R and ∃R play the
role of universal and existential modalities �i and ♦i.

In Sect. 3.2 we focus on the fragment of ALCΩ admitting no roles, no indi-
vidual names and no existential and universal restrictions, that we call LCΩ . We
show that LCΩ can be given a simple set-theoretic translation in Ω. Finally, in
Sect. 3.3, we see that this set-theoretic translation can be naturally extended to
the full ALCΩ . In particular, we encode ALCΩ into its fragment LCΩ , showing
that LCΩ is as expressive as ALCΩ and providing a set-theoretic translation
of ALCΩ in which ∀Ri.C and the power-set concept Pow(C) are encoded in a
uniform way.

3.1 A Set Theoretic Translation of ALC with Empty ABox

Let R1, . . . , Rk be the roles occurring in the knowledge base K = (T ,A) and let
A1, . . . , An be the concept names occurring in K. Given a concept C of ALC,
built from the concept names and role names in K, its set-theoretic translation is
a set-theoretic term CS(x, y1, . . . , yk, x1, . . . , xn), where x, y1, . . . , yk, x1, . . . , xn

are set-theoretic variables, inductively defined as follows:
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�S = x; ⊥S = ∅;

AS
i = xi, forAi inK; (¬C)S = x\CS ;

(C � D)S = CS ∩ DS ; (C � D)S = CS ∪ DS ;

(∀Ri.C)S = Pow(((x ∪ y1 ∪ . . . ∪ yk)\yi) ∪ Pow(CS)), for Ri inK;

(∃Ri.C)S is translated to the set-theoretic term (¬∀Ri.¬C)S . Each ALC concept
C is represented by a set-theoretic term CS and interpreted as a set in each model
of Ω. Membership is used to give an interpretation of roles, as for modalities in
the polymodal logics in [3].

For a single role R, by imitating the relation RI with ∈ (where v ∈ u cor-
responds to (u, v) ∈ RI), we naturally obtain that Pow(C) corresponds to the
universal restriction ∀R.C. For multiple roles, in order to encode the different
relations R1, . . . , Rk, k sets Ui are considered. Informally, each set Ui (repre-
sented by the variable yi) is such that (v, v′) ∈ RI

i iff there is some ui ∈ Ui such
that ui ∈ v and v′ ∈ ui.

Given an ALC knowledge base K = (T ,A) with A = ∅, we define the
translation of the TBox axioms as follows:

TBoxT (x, y1, . . . , yk, x1, . . . , xk) = {CS
1 ∩ x ⊆ CS

2 | C1 � C2 ∈ T }

We can then establish a correspondence between subsumption in ALCΩ and
derivability in the set theory Ω, instantiating the result of Theorem 5 in [3] as
follows:

Proposition 1. For all concepts C and D on the language of the theory K:

K |=ALC C � D if and only if

Ω � ∀x∀y1 . . . ∀yk(Trans2(x) ∧ AxiomH(x, y1, . . . , yk)

→ ∀x1, . . . ,∀xn(
∧

TBoxT → CS ∩ x ⊆ DS))

where Trans2(x) stands for ∀y∀z(y ∈ z ∧ z ∈ x → y ⊆ x), that is, x ⊆
Pow(Pow(x)).

The property Trans2(x) on the set x, which here represents the domain Δ
of an ALCΩ interpretation (a transitive set), is needed, as in the polymodal
case in [3], to guarantee that elements accessible through Ri turn out to be in
x. The set AxiomH(x, y1, . . . , yk), which in [3] contains the translation of the
specific axioms of a polymodal logic, here is empty, as in ALCΩ roles do not
have any specific additional properties, and they correspond to the modalities
of the normal polymodal logic Km.

Roughly speaking, the meaning of Proposition 1 is that, for all the instances of
x representing the domain Δ, for all the instances U1, . . . , Uk of the set variables
y1, . . . , yk, any choice for the interpretation x1, . . . , xn of the atomic concepts
A1, . . . , An in K which satisfies the TBox axioms over the elements in x (i.e.,
over the domain Δ), also satisfies the inclusion CS ⊆ DS over Δ.
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From the correspondence of the logic ALC with the normal polymodal logic
Km in [16] and from the soundness and completeness of the set-theoretic trans-
lation for normal polymodal logics (Theorems 17 and 18 in [3]), we can conclude
that, for ALC, the set-theoretic translation above is sound and complete.

This set-theoretic translation can be naturally extended to more expres-
sive description logics adding in AxiomH(x, y) the set-theoretic encoding of the
semantic properties of the DL constructs. For instance, role hierarchy axioms,
Rj � Ri, with semantic condition RI

j ⊆ RI
i , can be simply captured by adding

in AxiomH(x, y1, . . . , yk) the condition yj ⊆ yi. The inverse role Rj of a role Ri

(i.e., Rj = R−
i ) can be captured by encoding the semantic condition (v, y) ∈ Rj

if and only if (y, v) ∈ Ri by the axiom: ∀y, v(y ∈ x ∧ v ∈ x → (∃u(u ∈ y ∧ u ∈
yj ∧ v ∈ u) ↔ ∃u′(u′ ∈ v ∧ u′ ∈ yi ∧ y ∈ u′))).

3.2 Translating the Fragment LCΩ

In this section we focus on the fragment LCΩ of ALCΩ without roles, individual
names, universal and existential restrictions and role assertions, and we show
that it can be given a simple set-theoretic translation in the set theory Ω. This
translation provides some insight in the nature of the power-set construct in
ALCΩ .

Let us consider a fragment of ALCΩ which does neither allow existential and
universal restrictions nor role assertions. We call LCΩ such a fragment, whose
concepts are defined inductively as follows:

– A ∈ NC , � and ⊥ are LCΩ concepts;
– if C,D are LCΩ concepts, then the following are LCΩ concepts:

C � D,C � D,¬C,C\D, Pow(C)

An LCΩ knowledge base K is a pair (T ,A), where the TBox T is a set
of concept inclusions C � D, and the ABox A is a set of membership axioms
C ∈ D.

Given an LCΩ knowledge base K = (T ,A), let A1, . . . , An be the concept
names occurring in K. We define a translation of an LCΩ concept C over the
language of K to a set-theoretic term CS(x, x1, . . . , xn), where x, x1, . . . , xn are
set-theoretic variables, by induction on the structure of concepts, as follows:

�S = x; ⊥S = ∅; AS
i = xi, for i = 1, . . . , n; (¬C)S = x\CS ;

(¬C)S = x\CS ; (C � D)S = CS ∩ DS ; (C � D)S = CS ∪ DS ;

(C\D)S = CS\DS ; (Pow(C))S = Pow(CS).

Given a knowledge base K = (T ,A), the translation for the TBox T and
ABox A is defined as follows:

TBoxT (x, x1, . . . , xn) = {CS
1 ∩x ⊆ CS

2 | C1 � C2 ∈ T } ∪ {AS
i ∈ x | i = 1, . . . , n}

ABoxA(x, x1, . . . , xn) = {CS
1 ∈ CS

2 ∩ x | (C1 ∈ C2) ∈ A}
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We can now establish a correspondence between subsumption in LCΩ and deriv-
ability in the set theory Ω.

Proposition 2 (Soundness and Completeness of the Translation of
LCΩ). For all concepts C and D on the language of the knowledge base K:

K |=LCΩ C � D if and only if

Ω |= ∀x(Trans(x) → ∀x1, . . . ,∀xn(
∧

ABoxA ∧
∧

TBoxT → CS ∩ x ⊆ DS))

where Trans(x) stands for ∀y(y ∈ x → y ⊆ x), that is, x ⊆ Pow(x), and
AxiomH(x, y1, . . . , yk) has been omitted as it is empty.

We refer to [6] for the proof. A similar correspondence result can be proved for
instance checking, by replacing the inclusion CS ∩ x ∈ DS in Proposition 2 with
CS ∈ DS ∩ x.

As we can see from the translation above, the power-set construct in LCΩ is
defined precisely as the set-theoretic power-set. From the translation it is clear
that only the part of the power-set which is in x (the domain Δ) is relevant when
evaluating the axioms in K or a query, as all the axioms in the knowledge base
are only required to be satisfied over the elements of the transitive set x. Notice
that it is the same as in the set-theoretic translation of ALC. Observe also that,
in both ALC and LCΩ , � is interpreted as the transitive set x. It would not be
correct to interpret � as the universe U of a model of Ω, as U might not be a
set. Furthermore, Pow(�) is in the language of concepts and the interpretation
of Pow(�) must be larger than the interpretation of �.

3.3 Translating ALCΩ by Encoding into LCΩ

It can be shown that LCΩ has the same expressive power as ALCΩ , as universal
and existential restrictions of the language ALCΩ (as well as role assertions) can
be encoded into LCΩ . The encoding, together with the set-theoretic translation
of LCΩ given in the previous section, determines a set-theoretic translation for
ALCΩ , in which both the roles and the power-set construct are translated in a
similar fashion, according to the polymodal translation in [3]. For space limita-
tions, here we omit the treatment of role assertions and role membership axioms
in the translation, and refer to [6].

Given an ALCΩ knowledge base K = (T ,A), let R1, . . . , Rk be the role names
occurring in K, A1, . . . , An the concept names occurring in K, and a1, . . . , ar the
individual names occurring in K. We introduce k new concept names U1, . . . , Uk

in the language, one for each role Ri. These concepts (that are not in NC) will
be used to encode universal restrictions ∀Ri.C as well as the power-set concept
Pow(C) of ALCΩ into LCΩ . We further introduce a new concept name Bi for
each individual name ai occurring in K2.

For an ALCΩ concept C, the encoding CE in LCΩ can be defined by recur-
sively replacing: every named individual ai with the new concept name Bi, every
2 Further concept names would be needed to translate role assertions.
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subconcept ∀Ri.C with (∀Ri.C)E and every subconcept Pow(C) with (Pow(C))E ,
as defined below, while the encoding E commutes with concept constructors in
all other cases:

aE
i = Bi

(∀Ri.C)E = Pow(¬Ui � Pow(CE))
(Pow(C))E = Pow(U1 � . . . � Uk � CE)

For the encoding of the power-set, the idea is the same underlying the encoding
of ∀Ri.C, as described in Sect. 3.1. For each (Pow(C))E-element y, we require
that all its elements y′ ∈ y, which are not U1 � . . . � Uk-elements, are CE-
elements. This is needed to keep the encoding of ∀Ri.C and Pow(C) (both based
on the set-theoretic power-set) independent of each other.

Given an ALCΩ knowledge base K, and a query F (over the language of
K), the encoding KE of K, and the encoding FE of the query F in LCΩ are
defined as follows. KE contains: an inclusion axiom CE �¬(U1 � . . .�Uk) � DE

for each C � D ∈ K; a membership axiom CE ∈ DE � ¬(U1 � . . . � Uk) for
each C ∈ D in K; an axiom aE

i ∈ CE � ¬(U1 � . . . � Uk) for each C(ai) in
K; an axioms Ai ∈ ¬(U1 � . . . � Uk), for all Ai in K. Finally, axiom ¬(U1 �
. . . � Uk) � Pow(Pow(¬(U1 � . . . � Uk))). The last one enforces the property
Trans2(Δ\(U1 � . . . � Uk)I .

For a query F , if F is an inclusion C � D, its translation is CE � DE ; if F
is an assertion C(ai), its translation is aE

i ∈ CE ; if F is a membership axioms
C ∈ D, its translation is CE ∈ DE . It can be proved that the encoding above is
sound and complete, that is: K |=ALCΩ F if and only if KE |=LCΩ FE .

Combining this encoding with the set-theoretic translation for LCΩ of
Sect. 3.2, a set-theoretic translation for ALCΩ can be obtained which extends the
translation of ALC in Sect. 3.1 to the power-set concept. Given a concept C of
ALCΩ on the language of K, its set-theoretic translation (CE)S is a set-theoretic
term C∗:

�∗ = x; ⊥∗ = ∅;
A∗

i = xi, for Ai in K; (¬C)∗ = x\C∗;
(C � D)∗ = C∗ ∩ D∗; (C � D)∗ = C∗ ∪ D∗;
(∀Ri.C)∗ = Pow(((x ∪ y1 ∪ . . . ∪ yk)\yi) ∪ Pow(C∗)), for Ri in K;
Pow(C)∗ = Pow((y1 ∪ . . . ∪ yk ∪ C∗).

The translation of an ALCΩ knowledge base K can be defined accordingly, and
a correspondence result follows from Propositions 2.

4 Conclusions and Related Work

The similarities between Description Logics and Set Theory have led to the def-
inition of an extension of ALC, called ALCΩ , with a power-set construct and
membership relationships among arbitrary concepts [5]. It was shown that an
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ALCΩ knowledge base can be polynomially translated into an ALCOI knowl-
edge base, providing an ExpTime upper bound for satisfiability in ALCΩ . In
this paper, we have developed a set-theoretic translation for the description logic
ALCΩ into the set theory Ω exploiting a technique, originally proposed in [3], for
translating normal modal and polymodal logics into Ω. The translation has been
defined step by step, first translating ALC with empty ABox, then translating
the fragment of ALCΩ without roles and individual names and, finally, providing
an encoding of ALCΩ into this fragment. The translation of role assertions and
role membership is omitted for space limitations and can be found in [6].

The set-theoretic translation allows, on the one hand, to shed some light on
the nature of the power-set concept (which indeed corresponds to the set the-
oretic power-set) and, on the other hand, to show that the fragment of ALCΩ

without roles and individual names is as expressive as whole ALCΩ . The cor-
respondence among fragments of set-theory and description logics opens to the
possibility of transferring proof methods and decidability results across the two
formalisms.

Up to our knowledge, the power-set construct has not been considered for
DLs before. However, the issue of metamodelling, and the extension of DLs
with membership among concept, have been widely studied in DLs [4,7–10,12],
starting with the work by Motik [11], and we refer to [5] for comparisons.
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