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Abstract. We make a first step towards adapting an existing approach
for privacy-preserving publishing of linked data to Description Logic
(DL) ontologies. We consider the case where both the knowledge about
individuals and the privacy policies are expressed using concepts of the
DL EL, which corresponds to the setting where the ontology is an EL
instance store. We introduce the notions of compliance of a concept with
a policy and of safety of a concept for a policy, and show how optimal
compliant (safe) generalizations of a given EL concept can be computed.
In addition, we investigate the complexity of the optimality problem.

1 Introduction

When publishing information about individuals, one needs to ensure that cer-
tain privacy constraints are fulfilled. These constraints are encoded as privacy
policies, and before publishing the information one needs to check whether the
information is compliant with these policies [10]. We illustrate this setting using
an example from [10]: when publishing information about hospitals, doctors, and
patients, the policy may require that one should not be able to find out who are
the cancer patients. In case the information to be published is not policy compli-
ant, it first needs to be modified in a minimal way to make it compliant. However,
compliance per se is not enough if a possible attacker can also obtain relevant
information from other sources, which together with the published information
might violate the privacy policy. Safety requires that the combination of the
published information with any other compliant information is again compliant
[10]. More information on privacy-preserving data publishing can be found in
the survey [13].

In [10], privacy-preserving data publishing was investigated in a setting where
the information to be published is given as a relational dataset with (labeled)
null values, and the policy is given by a conjunctive query. In order to make
a given dataset compliant or safe, one is basically allowed to replace constants
(or null values) by new null values. The paper investigates the complexity of
deciding compliance (Is a given modification of a dataset policy compliant?),
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safety (Is a given modification of a dataset safe w.r.t. a policy?), and optimality
(Is a given modification of a dataset safe w.r.t. a policy and does it change the
dataset in a minimal way?). The obtained complexity results depend on whether
combined or data complexity is considered, and whether closed- or open-world
semantics are used. For combined complexity, they lie on the second and third
level of the polynomial hierarchy. The paper does not consider the case where
the information in the dataset is augmented by ontological knowledge. In [8],
ontologies are used to formulate privacy policies, but the policies considered
there are concerned with meta-information like location and duration of data
storage, intended use of data, etc. In contrast, the policies considered in [10] and
in the present paper specify what information needs to be hidden.

In the present paper, we make a first step towards handling ontologies in the
context of privacy-preserving data publishing, but consider a quite restricted
setting, where information about an individual is given by a concept of the
inexpressive Description Logic (DL) EL. Basically, this is the setting where the
ontology consists of an ABox containing only concept assertions of the form C(a)
for possibly complex concepts C, but no role assertion. In [15], such an ABox
was called an instance store. In addition, we assume that there is no TBox, i.e.,
all the information about the individual a is given by the concept C.1 A policy is
then given by an instance query, i.e., by an EL concept D. A concept C (giving
information about some individual a) is compliant with this policy, if it is not
subsumed by D, i.e., if C(a) does not imply D(a). In our example, the policy
could be formalized as the EL concept

D = Patient � ∃seen by .(Doctor � ∃works in.Oncology),

which says that one should not be able to find out who are the patients that are
seen by a doctor that works for the oncology department. The concept

C = Patient � Male � ∃seen by .(Doctor � Female � ∃works in.Oncology)

is not compliant with the policy D since C � D. The concept

C ′ = Male � ∃seen by .(Doctor � Female � ∃works in.Oncology)

is a compliant generalization of C, i.e., C � C ′ and C ′ �� D. However, it is not
safe since C ′ �Patient � D, i.e., if the attacker already knows that a is a patient
then together with C ′(a) the hidden information D is revealed. In contrast,

C ′′ = Male � ∃seen by .(Doctor � Female � ∃works in.�),

is a safe generalization of C, though it is less obvious to see this. This concept
is, however, not optimal since more information than necessary is removed. In
fact, the concept

C ′′′ = Male � ∃seen by .(Doctor � Female � ∃works in.�) �
∃seen by .(Female � ∃works in.Oncology)

1 Since EL concepts are closed under conjunction, we can assume that the ABox
contains only one assertion for each individual a.
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is a safe generalization of C that is more specific than C ′′, i.e., C � C ′′′ � C ′′.
We will show how to compute optimal compliant and optimal safe generaliza-

tions of EL concepts C with EL policies, but instead of only one policy concept
we allow for a finite set of EL concepts as policy, where a concept C ′ is compliant
with the policy {D1, . . . , Dp} iff it is compliant with each element of this set, i.e.,
C �� Di holds for all i = 1, . . . , p. In addition, following [10], we will also view
optimality as a decision problem, and investigate its complexity. A short version
of this paper, without the results of Sect. 5, was presented at DL 2018 [7]. Due
to space restrictions, we cannot give detailed proofs of all our results. They can
be found in [3].

2 Preliminaries

A wide range of DLs of different expressive power has been investigated in the lit-
erature [2]. Here, we only introduce the DL EL, for which reasoning is tractable
[1,5,9]. Let NC and NR be mutually disjoint sets of concept and role names,
respectively. Then EL concepts over these names are constructed from concept
names using the constructors top concept (�), conjunction (C �D), and existen-
tial restriction (∃r.C). The size of an EL concept C is the number of occurrences
of � as well as concept and role names in C, its role depth is the maximal nesting
of existential restrictions, and its signature sig(C) is the set of all concept and
role names occurring in C.

The semantics of EL is defined through interpretations I = (ΔI , ·I), where
ΔI is a non-empty set, called the domain, and ·I is the interpretation function,
which maps every A ∈ NC to a set AI ⊆ ΔI and every r ∈ NR to a binary
relation rI ⊆ ΔI × ΔI . This function ·I is extended to arbitrary EL concepts
by setting �I := ΔI , (C � D)I := CI ∩ DI , and (∃r.C)I := {δ ∈ ΔI | ∃η ∈
CI .(δ, η) ∈ rI}.

The EL concept C is subsumed by the EL concept D (written C � D) if
CI ⊆ DI holds for all interpretations I. Strict subsumption (written C � D)
holds if C � D and D �� C, and we say that C is equivalent to D (written
C ≡ D) if C � D and D � C.

Subsumption between EL concepts can be decided in polynomial time. In
[5], this was shown using a homomorphism characterization of subsumption, but
it is also an easy consequence of the following result of Küsters. Given an EL
concept C, we reduce it by exhaustively replacing subconcepts of the form E �F
with E � F by E (modulo associativity and commutativity of �). As shown in
[17], this can be done in polynomial time, and two concepts C,D are equivalent
iff their reduced forms are equal up to associativity and commutativity of �.

We are now ready to define the important notions regarding privacy-
preserving publishing of ontological information that will be investigated in this
paper. As mentioned in the introduction, policies are finite sets of EL concepts.
We assume in the following, that the concepts occurring in the policy are not
equivalent to top since otherwise there would not be compliant concepts.
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Definition 1. A policy is a finite set P = {D1, . . . , Dp} of EL concepts
such that � �≡ Di for i = 1, . . . , p. Given an EL concept C and a policy
P = {D1, . . . , Dp}, the EL concept C ′ is

– compliant with P if C ′ �� Di holds for all i = 1, . . . , p;
– safe for P if C ′ � C ′′ is compliant with P for all EL concepts C ′′ that are

compliant with P;
– a P-compliant generalization of C if C � C ′ and C ′ is compliant with P;
– an optimal P-compliant generalization of C if it is a P-compliant general-

ization of C and there is no P-compliant generalization C ′′ of C such that
C ′′ � C ′;

– a P-safe generalization of C if C � C ′ and C ′ is safe for P;
– an optimal P -safe generalization of C if it is a P-safe generalization of C

and there is no P-safe generalization C ′′ of C such that C ′′ � C ′.

It is easy to see that safety implies compliance since the top concept is always
compliant: if C ′ is safe for P, then � � C ′ ≡ C ′ is compliant.

3 Computing Optimal Compliant Generalizations

In this section, we characterize the concepts that are compliant with a given
policy P, and use this to develop an algorithm that computes all optimal P-
compliant generalizations of a given EL concept C.

But first, we recall the recursive characterization of subsumption in EL given
in [6]. We call an EL concept an atom if it is a concept name or an existential
restriction. Given an EL concept C, we denote the set of atoms occurring in
its top-level conjunction with con(C). For example, if C = A � ∃r.(B � ∃s.A),
then con(C) = {A,∃r.(B � ∃s.A)}. Subsumption between atoms E,F can be
characterized as follows: E � F iff

– E = F ∈ NC or
– there is r ∈ NR such that E = ∃r.E′, F = ∃r.F ′ and E′ � F ′.

Definition 2. Let S, T be sets of atoms. Then we say that S covers T if for
every F ∈ T there is E ∈ S such that E � F .

With this notation, subsumption in EL can be characterized as follows.

Proposition 1. Let C,D be EL concepts. Then C � D iff con(C) covers
con(D).

The following (polynomial-time decidable) characterization of compliance is
an immediate consequence of this proposition.

Proposition 2. The EL concept C ′ is compliant with the policy P = {D1, . . . ,
Dp} iff con(C ′) does not cover con(Di) for any i = 1, . . . , p, i.e., for every
i = 1, . . . , p, at least one of the following two properties holds:
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– there is a concept name A ∈ con(Di) such that A �∈ con(C ′); or
– there is an existential restriction ∃r.D ∈ con(Di) such that C �� D for all

existential restrictions of the form ∃r.C ∈ con(C ′).

Now assume that we are given an EL concept C and a policy P = {D1, . . . , Dp},
and we want to construct a P-compliant generalization C ′ of C. For C ′ to satisfy
the condition of Proposition 2, there needs to exist for every i = 1, . . . , p an
element of con(Di) that is not covered by any element of con(C ′). In case con(C)
contains elements covering such an atom, we need to remove or generalize them
appropriately.

Definition 3. We say that H ⊆ con(D1) ∪ . . . ∪ con(Dp) is a hitting set of
con(D1), . . . , con(Dp) if H ∩ con(Di) �= ∅ for every i = 1, . . . , p. This hitting set
is minimal if there is no other hitting set strictly contained in it.

Basically, the idea is now to choose a hitting set H of con(D1), . . . , con(Dp)
and use H to guide the construction of a compliant generalization of C. In order
to make this generalization as specific as possible, we use minimal hitting sets.
In case the policy contains concepts Di with which C is already compliant (i.e.,
C �� Di holds), nothing needs to be done w.r.t. these concepts. This is why, in
the following definition, con(Di) does not take part in the construction of the
hitting set if C �� Di.

Definition 4. Let C be an EL-concept and P = {D1, . . . , Dp} a policy. The set
SCG(C,P) of specific compliant generalizations of C w.r.t. P consists of the
concepts that can be constructed from C as follows:

– If C is compliant with P, then SCG(C,P) = {C}.
– Otherwise, choose a minimal hitting set H of con(Di1), . . . , con(Diq ) where

i1, . . . , iq are exactly the indices i for which C � Di. Note that q ≥ 1 since we
are in the case where C is not compliant with P. In addition, according to our
definition of a policy, none of the concepts Di is equivalent to �, and thus the
sets con(Dij ) are non-empty. Consequently, at least one minimal hitting set
exists. Each minimal hitting set H yields a concept in SCG(C,P) by removing
or modifying atoms in the top-level conjunction of C in the following way:

• For every concept name A ∈ con(C), remove A from the top-level con-
junction of C if A ∈ H;

• For every existential restriction ∃ri.Ci ∈ con(C), consider the set

Pi := {G | there is ∃ri.G ∈ H such that Ci � G}.

∗ If Pi = ∅, then leave ∃ri.Ci as it is.
∗ If � ∈ Pi, then remove ∃ri.Ci.
∗ Otherwise, replace ∃ri.Ci with

�
F∈SCG(Ci,Pi)

∃ri.F.

First, we show that every element of SCG(C,P) is indeed a compliant gen-
eralization of C.
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Proposition 3. Let C be an EL-concept and P = {D1, . . . , Dp} a policy. If
C ′ ∈ SCG(C,P), then C ′ is a P-compliant generalization of C.

Proof. In case C is already compliant with P, then C = C ′ and we are done.
Thus, assume that C is not compliant with P. We show that C ′ is a compliant
generalization of C by induction on the role depth of C.

First, we show that C ′ is a generalization of C, i.e., C � C ′. This is an
easy consequence of the fact that, when constructing C ′ from C, atoms from the
top-level conjunction of C are left unchanged, are removed, or are replaced by a
conjunction of more general atoms. The only non-trivial case is where we replace
an existential restriction ∃ri.Ci with the conjunction

�
F∈SCG(Ci,Pi)

∃ri.F . By
induction, we know that Ci � F for all F ∈ SCG(Ci,Pi), and thus ∃ri.Ci ��

F∈SCG(Ci,Pi)
∃ri.F .

Second, we show that C ′ is compliant with P, i.e., C ′ �� Di holds for i =
1, . . . , p. For the indices i with C �� Di, we clearly also have C ′ �� Di since C �
C ′. Now, consider one of the remaining indices ij ∈ {i1, . . . , iq}, where i1, . . . , iq
are exactly the indices for which C � Di. The concept C ′ was constructed by
taking some minimal hitting set H of con(Di1), . . . , con(Diq ). If the element in
H hitting con(Dij ) is a concept name, then this concept name does not occur
in con(C ′), and thus C ′ �� Dij . Thus, assume that it is an existential restriction
∃ri.G. But then each existential restriction ∃ri.Ci in con(C) with Ci � G is
either removed or replaced by a conjunction of existential restrictions ∃ri.F such
that (by induction) F �� G. In addition, other existential restrictions are either
removed or generalized. This clearly implies C ′ �� Dij since ∃ri.G in con(Dij ) is
not covered by any element of con(C ′). ��

However, SCG(C,P) may also contain compliant generalizations of C that
are not optimal, as illustrated by the following example.

Example 1. Let C = ∃r.(A1 � A2 � A3 � A4) and P = {D1,D2}, where

D1 = ∃r.A1 � ∃r.(A2 � A3) and D2 = ∃r.A2 � ∃r.A4.

We have C � D1 and C � D2, and thus C is not compliant with P. Consequently,
the elements of SCG(C,P) are obtained by considering the minimal hitting sets
of {∃r.A1,∃r.(A2 � A3)} and {∃r.A2,∃r.A4}.

If we take the minimal hitting set H = {∃r.(A2 � A3),∃r.A2} and consider
the only existential restriction in con(C), the corresponding set Pi consists of
A2�A3 and A2. It is easy to see that SCG(A1�A2�A3�A4,Pi) = {A1�A3�A4}
since the only minimal hitting set of {A1, A2} and {A2} is {A2}. Thus, we obtain
C ′ := ∃r.(A1 � A3 � A4) as an element of SCG(C,P).

However, if we take the minimal hitting set H′ = {∃r.A1,∃r.A2} instead,
then the set P ′

i corresponding to the only existential restriction in con(C) is
{A1, A2}. Consequently, in this case SCG(A1 � A2 � A3 � A4,P ′

i) = {A3 � A4}
since the only minimal hitting set of {A1} and {A2} is {A1, A2}. This yields
C ′′ := ∃r.(A3 � A4) as another element of SCG(C,P). Since C ′ � C ′′, the
element C ′′ cannot be optimal.
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The next lemma states that every compliant generalization of C subsumes
some element of SCG(C,P).

Lemma 1. Let C be an EL-concept and P = {D1, . . . , Dp} a policy. If C ′′

is a P-compliant generalization of C, then there is C ′ ∈ SCG(C,P) such that
C ′ � C ′′.

Proof. If C is compliant with P, then we have C ∈ SCG(C,P) and C � C ′′

since C ′′ is a generalization of C. Thus, assume that C is not compliant with P,
and let i1, . . . , iq be exactly the indices for which C � Di.

Now, let ij be such an index. We have C � C ′′ �� Dij and C � Dij .
Since C ′′ �� Dij , there is an element Ej ∈ con(Dij ) that is not covered by
any element of con(C ′′). Obviously, H ′′ := {E1, . . . , Eq} is a hitting set of
con(Di1), . . . , con(Diq ). Thus, there is a minimal hitting set H of con(Di1), . . . ,
con(Diq ) such that H ⊆ H ′′. Let C ′ be the element of SCG(C,P) that was con-
structed using this hitting set H. We claim that C ′ � C ′′. For this, it is sufficient
to show that con(C ′) covers con(C ′′).

First, consider a concept name A ∈ con(C ′′). Since C � C ′′, we also have
A ∈ con(C). If A �∈ H ′′, then A �∈ H, and thus A is not removed in the
construction of C ′. Consequently, A ∈ con(C ′) covers A ∈ con(C ′′). If A ∈ H ′′,
then A is not covered by any element of con(C ′′) according to our definition of
H ′′, which contradicts our assumption that A ∈ con(C ′′).

Second, consider an existential restriction ∃ri.E ∈ con(C ′′). Since C � C ′′,
there is an existential restriction ∃ri.Ci in con(C) such that Ci � E. If this
restriction is not removed or generalized when constructing C ′, then we are
done since this restriction then belongs to con(C ′) and covers ∃ri.E. Otherwise,
Pi = {G | there is ∃ri.G ∈ H such that Ci � G} is non-empty.

If � ∈ Pi, then ∃ri.� ∈ H ⊆ H ′′. However, then ∃ri.E ∈ con(C ′′) covers an
element of H ′′, which is a contradiction.

Consequently, � �∈ Pi, and thus ∃ri.Ci is replaced with
�

F∈SCG(Ci,Pi)
∃ri.F

when constructing C ′ from C. According to our definition of H ′′ and the fact that
H ⊆ H ′′, none of the existential restrictions ∃ri.G considered in the definition
of Pi is covered by ∃ri.E ∈ con(C ′′). This implies that E is a Pi-compliant
generalization of Ci. By induction (on the role depth) we can thus assume that
there is an F ∈ SCG(Ci,Pi) such that F � E. This shows that ∃ri.E ∈ con(C ′′)
is covered by ∃ri.F ∈ con(C ′). ��

As an easy consequence of this lemma, we obtain that all optimal compliant
generalizations of C must belong to SCG(C,P).

Proposition 4. Let C be an EL-concept and P = {D1, . . . , Dp} a policy. If C ′′

is an optimal P-compliant generalization of C, then C ′′ ∈ SCG(C,P) (up to
equivalence of concepts).

Proof. Let C ′′ be an optimal P-compliant generalization of C. By Lemma 1,
there is an element C ′ ∈ SCG(C,P) such that C ′ � C ′′. In addition, by Propo-
sition 3, C ′ is a P-compliant generalization of C. Thus, optimality of C ′′ implies
C ′′ ≡ C ′. ��
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We are now ready to formulate and prove the main result of this section.

Theorem 1. Let C be an EL-concept and P = {D1, . . . , Dp} a policy. Then
the set of all optimal P-compliant generalizations of C can be computed in time
exponential in the size of C and D1, . . . , Dp.

Proof. It is sufficient to show that the set SCG(C,P) can be computed in expo-
nential time. In fact, given SCG(C,P), we can compute the set of all optimal
P-compliant generalizations of C by removing elements that are not minimal
w.r.t. subsumption, which requires at most exponentially many subsumption
tests. Each subsumption test takes at most exponential time since subsumption
in EL is in P , and the elements of SCG(C,P) have at most exponential size, as
shown below.

We show by induction on the role depth that SCG(C,P) consists of at most
exponentially many elements of at most exponential size. The at most exponen-
tial cardinality of SCG(C,P) is an immediate consequence of the fact that there
are at most exponentially many hitting sets of con(Di1), . . . , con(Diq ), and each
yields exactly one element of SCG(C,P) (see Definition 4). Regarding the size of
these elements, note that we may assume by induction that an existential restric-
tion may be replaced by a conjunction of at most exponentially many existential
restrictions, where each is of at most exponential size. The overall size of the
concept description obtained this way is thus also of at most exponential size.
Given this, it is easy to see that the computation of these elements also takes at
most exponential time. ��

The following example shows that the exponential upper bounds can indeed
by reached.

Example 2. Let C = P1�Q1� . . .�Pn �Qn and P = {Pi �Qi | 1 ≤ i ≤ n}. Then
SCG(C,P) contains 2n elements since the sets {P1, Q1}, . . . , {Pn, Qn} obviously
have exponentially many hitting sets. To be more precise,

SCG(C,P) = {X1 � . . . � Xn | Xi ∈ {Pi, Qi} for i = 1, . . . , n}.

This example can easily be modified to enforce an element of exponential size.
Consider ̂C = ∃r.C and ̂P = {∃r.(Pi � Qi) | 1 ≤ i ≤ n}. Then SCG( ̂C, ̂P) =
{�

F∈SCG(C,P) ∃r.F}. We leave it to the reader to further modify the example
in order to obtain exponentially many elements of exponential size.

4 Computing Optimal Safe Generalizations

Before we can characterize safety, we need to remove redundant elements from
P. We say that Di ∈ P is redundant if there is a different element Dj ∈ P such
that Di � Dj . The following lemma is easy to prove.

Lemma 2. Let P be a policy and assume that Di ∈ P is redundant. Then the
following holds for all EL concepts C,C ′:
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– C ′ is compliant with P iff C ′ is compliant with P \ {Di};
– C is safe for P iff C is safe for P \ {Di}.

This lemma shows that we can assume without loss of generality that our
policies do not contain redundant concepts. However, elements of Di of P may
also contain redundant atoms. This can be avoided by reducing the policy con-
cepts. We call a policy redundancy-free if it does not contain redundant elements
and every element is reduced.

The following proposition characterizes safety for redundancy-free policies.

Proposition 5. Let P = {D1, . . . , Dp} be a redundancy-free policy. The EL
concept C ′ is safe for P iff there is no pair of atoms (E,F ) such that E ∈
con(C ′), F ∈ con(D1) ∪ . . . ∪ con(Dp), and E � F .

Proof. First, assume that C ′ is not safe for P, i.e., there is an EL concept C ′′

that is compliant with P, but for which C ′ � C ′′ is not compliant with P. The
latter implies that there is Di ∈ P such that C ′ � C ′′ � Di, which is equivalent
to saying that con(C ′) ∪ con(C ′′) covers con(Di). On the other hand, we know
that con(C ′′) does not cover con(Di) since C ′′ is compliant with P. Thus, there
is an element F ∈ con(Di) that is covered by an element E of con(C ′). This
yields (E,F ) such that E ∈ con(C ′), F ∈ con(D1) ∪ . . . ∪ con(Dp), and E � F .

Conversely, assume that there is a pair of atoms (E,F ) such that E ∈
con(C ′), F ∈ con(Di), and E � F . Let C ′′ be the concept obtained from
Di by removing F from the top-level conjunction of Di. Then we clearly have
Di � C ′′. In addition, since Di is reduced, we also have C ′′ �� Di. Consider
Dj ∈ P different from Di, and assume that C ′′ � Dj . But then Di � C ′′ � Dj

contradicts our assumption that P does not contain redundant elements. Thus,
we have shown that C ′′ is compliant with P. In addition, con(C ′)∪ con(C ′′) cov-
ers con(Di). In fact, the elements of con(Di) \ {F} belong to con(C ′′), and thus
cover themselves. In addition, F is covered by E ∈ con(C ′). Thus C ′ �C ′′ � Di,
which shows that C ′ is not safe for P. ��

Clearly, the necessary and sufficient condition for safety stated in this propo-
sition can be decided in polynomial time. If needed, the policy can first be made
redundancy-free, which can also be done in polynomial time.

Corollary 1. Safety of an EL concept for an EL policy is in P .

We now consider the problem of computing optimal P-safe generalizations
of a given EL concept C. First note that, up to equivalence, there can be only
one optimal P-safe generalization of C. This is an immediate consequence of the
fact that the conjunction of safe concepts is again safe.

Lemma 3. Let C ′
1, C

′
2 be two EL concepts that are P-safe generalizations of C,

where P is redundancy-free. Then C ′
1 � C ′

2 is also a P-safe generalization of C.

Thus there cannot be non-equivalent optimal P-safe generalizations of a
given EL concept C since their conjunction would then be more specific, contra-
dicting their optimality. This property is independent of whether the policy is
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redundancy-free or not since turning a policy into one that is redundancy-free
preserves the set of concepts that are compliant with (safe for) the policy.

Proposition 6. If C ′
1, C

′
2 are optimal P-safe generalizations of the EL concept

C, then C ′
1 ≡ C ′

2.

The following theorem, whose proof can be found in [3], shows how an optimal
safe generalization of C can be constructed.

Theorem 2. Let C be an EL concept and P = {D1, . . . , Dp} a redundancy-free
policy. We construct the concept C ′ from C by removing or modifying atoms in
the top-level conjunction of C in the following way:

– For every concept name A ∈ con(C), remove A from the top-level conjunction
of C if A ∈ con(D1) ∪ . . . ∪ con(Dp);

– For every existential restriction ∃ri.Ci ∈ con(C), consider the set of concepts

Pi := {G | there is ∃ri.G ∈ con(D1) ∪ . . . ∪ con(Dp) such that Ci � G}.

• If Pi = ∅, then leave ∃ri.Ci as it is.
• If � ∈ Pi, then remove ∃ri.Ci.
• Otherwise, replace ∃ri.Ci with

�
F∈OCG(Ci,Pi)

∃ri.F, where OCG(Ci,Pi)
is the set of all optimal Pi-compliant generalizations of Ci.

Then C ′ is an optimal P-safe generalization of C.

Since, by Theorem 1, OCG(Ci,Pi) can be computed in exponential time, the
construction described in Theorem 2 can also be performed in exponential time.

Corollary 2. Let C be an EL concept and P = {D1, . . . , Dp} a redundancy-
free policy. Then an optimal P-safe generalization of C can be computed in
exponential time.

Example 2 can easily be modified to provide an example that shows that this
exponential bound can actually not be improved since there are cases where the
safe generalization is of exponential size.

5 The Complexity of Deciding Optimality

In this section, we consider optimality as a decision problem, i.e., given EL con-
cepts C,C ′ such that C � C ′ and a policy P, decide whether C ′ is an optimal
P-compliant (P-safe) generalization of C.

Theorem 1 and Corollary 2 show that the optimality problem is in ExpTime
both for compliance and for safety. In fact, according to Theorem1, given C
and P, we can compute the set of all optimal P-compliant generalizations of C
(up to equivalence) in exponential time. Consequently, this set contains at most
exponentially many elements and each element has at most exponential size.
This implies that we can test, in exponential time, whether a given concept C ′
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is equivalent to one of the elements of this set. If this is the case, then C ′ is an
optimal P-compliant generalization of C, and otherwise not. The case of safety
can be treated similarly, using Corollary 2 instead of Theorem 1.

In the following, we show that this complexity upper bound can be improved
to coNP. Actually, we will prove this upper bound not just for compliance and
safety, but for a whole class of properties.

Definition 5. Let F be a function that assigns a set of EL concepts to every
input consisting of an EL concept C and a policy P. We say that the function
F defines a polynomial, upward-closed property if the following holds for every
input C,P:

– for every EL concept C ′, we can decide C ′ ∈ F (C,P) in time polynomial in
C,C ′,P (polynomiality);

– if C ′ ∈ F (C,P) and C ′ � C ′′, then C ′′ ∈ F (C,P) (upward-closedness).

We say that C ′ is an optimal F -generalization of C w.r.t. P if C � C ′, C ′ ∈
F (C,P), and there is no C � C ′′ � C ′ such that C ′′ ∈ F (C,P).

It is easy to see that compliance and safety are polynomial, upward-closed
properties. In fact, upward-closedness is an obvious consequence of the definition
of compliance (safety). For compliance, polynomiality follows from the fact that
subsumption in EL can be decided in polynomial time. For safety, it is stated
in Corollary 1. In addition, the notion of optimality introduced in the above
definition coincides with the notion of optimality introduced in Definition 1 for
compliance and safety.

We will show that, for polynomial, upward-closed properties, the optimality
problem is in coNP, i.e., there is an NP-algorithm that, on input C � C ′ and P,
succeeds iff C ′ is not an optimal F -generalization of C w.r.t. P. Basically, this
algorithm proceeds as follows. It guesses a lower neighbor C ′′ of C ′ subsuming
C, i.e., a concept C ′′ such that (i) C � C ′′ � C ′ and (ii) there is no concept
C ′′′ with C ′′ � C ′′′ � C ′. If C ′′ ∈ F (C,P), then the algorithm succeeds, and
otherwise it fails.

To make this algorithm more concrete, we need to investigate the strict sub-
sumption relation � on EL concepts in more detail. Following [4], we define the
one-step relation �1 induced by � as

�1 := {(C ′′, C ′) ∈ � | there is no C ′′′ such that C ′′ � C ′′′ � C ′}.

If C ′′ �1 C ′ then we call C ′ an upper neighbor of C ′′ and C ′′ a lower neighbor of
C ′. In [4] it was shown that the relation � on EL concepts is one-step generated,
i.e., the transitive closure of �1 is again �. In the context of the optimality
problem for polynomial, upward-closed properties, this implies the following:
whenever there is a counterexample to the optimality of C ′ (i.e., a concept C ′′

such that C � C ′′ � C ′ and C ′′ ∈ F (C,P)), then there is a lower neighbor of
C ′ that provides such a counterexample. To see this, just note that C ′′ � C ′

implies that C ′ can be reached by a �1-chain from C ′′. The last element in this
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chain before C ′ is a lower neighbor of C ′, and it belongs to F (C,P) since F is
upward-closed.

Another interesting result in [4] is the following characterization of upper
neighbors: for a given reduced EL concept C, the set of upper neighbors of C
consists (up to equivalence) of the concepts D obtained from C as follows:

– Remove a concept name A from the top-level conjunction of C.
– Remove an existential restriction ∃r.E from the top-level conjunction of C,

and replace it by the conjunction of all existential restrictions ∃r.F where F
ranges over all upper neighbors of E.

Note that a special case of the second item is the removal of an existential
restriction of the form ∃r.� since � does not have any upper neighbors. As
shown in [16], this characterization implies that a given concept has only poly-
nomially many upper neighbors, each of which is of polynomial size. As an easy
consequence, we obtain the following lemma:

Lemma 4. The one-step relation �1 induced by � on EL concepts is decidable
in polynomial time.

Regarding lower neighbors, it is sufficient for our purposes to show that they
can be guessed in non-deterministic polynomial time. Thus, we are looking for
an NP-algorithm that, given input concepts C � C ′, generates exactly the lower
neighbors of C ′ that subsume C. Below, we sketch how an appropriate NP-
algorithm can be obtained. A more detailed description as well as proofs can be
found in [16]. First, note that the lower neighbors C ′′ of C ′ can be obtained by
conjoining an atom not implied by C ′ to C ′. In addition, C � C ′′ implies that
sig(C ′′) ⊆ sig(C). Given an EL concept C ′ and a finite set Σ as names, the set
of lowering atoms for C ′ w.r.t. Σ is defined as

LAΣ(C ′) := {A ∈ Σ ∩ NC | A �∈ con(C ′)} ∪ {∃r.D | r ∈ Σ ∩ NR, sig(D) ⊆ Σ,
C ′ �� ∃r.D, and C ′ � ∃r.E for all E with D �1 E}.

Lemma 5. Let C ′ be an EL concept and Σ a finite set of concept and role
names with sig(C ′) ⊆ Σ. Then C ′′ is a lower neighbor of C ′ with sig(C ′′) ⊆ Σ
iff there is an atom At ∈ LAΣ(C ′) such that C ′′ ≡ C ′ � At.

Intuitively, adding a single atom to the top-level conjunction of C ′ is sufficient
to obtain a lower neighbor since adding two (non-redundant) atoms would step
too far down in the subsumption hierarchy. The same is true for adding an
existential restriction ∃r.D for which ∃r.E with D �1 E does not subsume C ′

since then C ′ � ∃r.D � C ′ � ∃r.E � C ′ would hold.

Example 3. Let Σ := {r,A1, A2, B1, B2, C1, C2} and

C ′ := ∃r.(A1 � A2 � B1 � B2) � ∃r.(A1 � A2 � C1 � C2) � ∃r.(B1 � B2 � C1 � C2).

Then, for all i, j, k ∈ {1, 2}, the existential restriction ∃r.D with D := Ai�Bj�Ck

belongs to LAΣ(C ′). In fact, C ′ �� ∃r.D is obviously true, and since the upper
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neighbors of D are Ai � Bj , Bj � Ck, and Ai � Ck, we also have C ′ � ∃r.E
for all E with D �1 E. Obviously, by using n instead of three pairs of concept
names, we can produce a generalized version of this example that shows that
the cardinality of LAΣ(C ′) can be exponential in the size of C ′ and Σ.

In order to obtain an NP-algorithm that generates exactly the lower neigh-
bors of C ′ that subsume C, it is sufficient to generate all lowering atoms for C ′

w.r.t. Σ := sig(C), and then remove the ones that do not subsume C. Unfor-
tunately, the definition of lowering atoms given above Lemma5 does not tell
us directly how appropriate existential restrictions ∃r.D can be found. The fol-
lowing necessary conditions follows from the characterization of lower neighbors
given in [16].

Lemma 6. Let C ′ be reduced. If ∃r.D ∈ LAΣ(C ′), then there is a set of exis-
tential restrictions {∃r.F ′

1, . . . ,∃r.F ′
k} ⊆ con(C ′) and F1 ∈ LAΣ(F ′

1), . . . , Fk ∈
LAΣ(F ′

k) such that D ≡ F1 � . . . � Fk.

We illustrate this lemma using the lowering atom D = Ai � Bj � Ck in
Example 3. Here we take the set of all existential restrictions in con(C ′) and
choose Ck ∈ LAΣ(A1 � A2 � B1 � B2), Bj ∈ LAΣ(A1 � A2 � C1 � C2), and
Ai ∈ LAΣ(B1�B2�C1�C2). Obviously, D is indeed equivalent to the conjunction
of these three atoms.

In general, not all choices of subsets and lower neighbors yields an appro-
priate existential restriction. For instance, if we take a smaller set of existential
restrictions in our example (e.g., {∃r.(A1�A2�C1�C2),∃r.(B1�B2�C1�C2)}),
then the obtained conjunction of lowering atoms (e.g., B1�A2) is not appropriate
since the corresponding existential restriction (e.g., ∃r.(B1 � A2)) is subsumed
by C ′.

The NP-algorithm generating exactly the elements of LAΣ(C ′) works as fol-
lows: given a reduced concept C ′ and a finite set Σ of concept and role names
such that sig(C ′) ⊆ Σ, it non-deterministically chooses one of the following two
alternatives:

1. Choose a concept name A ∈ Σ \ con(C ′), and output A. If there is no such
concept name, fail.

2. Choose r ∈ Σ ∩ NR, a set of existential restrictions {∃r.F ′
1, . . . ,∃r.F ′

k} ⊆
con(C ′), and recursively guess elements F1 ∈ LAΣ(F ′

1), . . . , Fk ∈ LAΣ(F ′
k).

If for some i, 1 ≤ i ≤ k, the attempt to produce the atom Fi ∈ LAΣ(F ′
i ) fails,

or if C ′ � ∃r.(F1 � . . . � Fk), or if F1 � . . . � Fk has an upper neighbor E such
that C ′ �� ∃r.E, then fail. Otherwise, output ∃r.(F1 � . . . � Fk).

Lemma 7. The algorithm described above runs in non-deterministic polynomial
time, and its non-failing runs produce exactly the elements of LAΣ(C ′).

Proof. Soundness of the algorithm is an immediate consequence of the fact that,
in the second case, we explicitly test whether the conditions in the definition of
lowering atoms are satisfied. Completeness is an easy consequence of Lemma 6.
Finally, the choice of a concept name, a role name, and a subset of the existential
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restrictions in con(C ′), can clearly be achieved by making polynomially many
binary choices. By induction on the role depth, we can assume that the algorithm
can produce the elements Fi ∈ LAΣ(F ′

i ) in non-deterministic polynomial time,
which shows that the overall algorithm runs in non-deterministic polynomial
time. ��

With this lemma in place, we can now show that the optimality problem for
polynomial, upward-closed properties is in coNP.

Theorem 3. Let F be a polynomial, upward-closed property. The problem of
deciding, for a given input C,C ′,P, whether C ′ is an optimal F -generalization
of C w.r.t. P is in coNP.

Proof. We show that non-optimality can be decided by an NP-algorithm, i.e., we
describe an NP-algorithm that, given C,C ′,P, succeeds iff C ′ is not an optimal
F -generalization of C w.r.t. P.

1. Check whether C � C ′ and C ′ ∈ F (C,P). If this is not the case, then
succeed. Otherwise, continue with the next step. Polynomiality of F and of
subsumption in EL implies that this test can be done in polynomial time.

2. Set Σ := sig(C) and guess a lowering atom At ∈ LAΣ(C ′). If C �� At,
then fail. Otherwise, we know that C ′′ := C ′ � At is a lower neighbor of C ′

that subsumes C, and we continue with the next step. As shown above, the
elements of LAΣ(C ′) can be generated by an NP-algorithm.

3. Check whether C ′′ ∈ F (C,P). If this is the case, then succeed, and otherwise
fail.

It is easy to see that this algorithm is correct and runs in non-deterministic
polynomial time. ��

Since compliance and safety are polynomial, upward-closed properties, the
following corollary is an immediate consequence of this theorem.

Corollary 3. The optimality problem is in coNP for compliance and for safety.

At the moment, we do not know whether these problems are also coNP-hard.
We can show, however, that the Hypergraph Duality Problem [11] can be reduced
to them. Note that this problem is in coNP, but conjectured to be neither in P
nor coNP-hard [12,14]. Given two finite families of inclusion-incomparable sets G
and H, the Hypergraph Duality Problem (Dual) asks whether H consists exactly
of the minimal hitting sets of G.

Proposition 7. There is a polynomial reduction of Dual to the optimality prob-
lem that works both for compliance and for safety.

Proof. Let G = {G1, . . . , Gg},H = {H1, . . . , Hh} be finite families of inclusion-
incomparable sets and G := G1 ∪ . . .∪Gg. Since it can be checked in polynomial
time whether a given set H is a minimal hitting set of G, we can assume without
loss of generality that all sets Hi are indeed minimal hitting sets of G. The
problem to be decided by our reduction is thus whether H really contains all
minimal hitting sets of G. We view the elements of G as concept names, for
S ⊆ G write

�
S for the conjunction of the concept names in S, and define
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– C := ∃r1.
�

G and P := {D1 := ∃r1.
�

G1, . . . , Dg := ∃r1.
�

Gg};
– C ′ := ∃r1.

�
(G \ H1) � . . . � ∃r1.

�
(G \ Hh).

It is easy to see that C ′ is a P-compliant and P-safe generalization of C.
According to Definition 4 and the proof of Theorem1, C has exactly one opti-

mal P-compliant generalization, which is obtained as follows. First, note that
the top-level conjunctions of C and D1, . . . , Dg respectively consist of a single
existential restriction for the same role r1, and that the concepts Di are pairwise
incomparable. This implies that on this level only one hitting set is considered,
which is P. On the next role level, we have P1 = {�

G1, . . . ,
�

Gg}. The optimal
P1-compliant generalizations of C1 :=

�
G are obtained by considering all min-

imal hitting sets of G1, . . . , Gg, and removing their elements from the top-level
conjunction of C1. Consequently, the optimal P-compliant generalization of C
is given as

C ′′ :=
�

H minimal hitting set of G
∃r1.

�
(G \ H).

A close look at Theorem 2 reveals that C ′′ is also the optimal P-safe generaliza-
tion of C. This shows that C ′ is optimal for compliance (safety) iff H contains
all minimal hitting sets of G. ��

6 Conclusion

We have introduced the notions of compliance with and safety for a policy in
the simple setting where both the knowledge about individuals and the policy
are given by EL concepts. In this setting, we were able to characterize compliant
(safe) generalization of a given concept w.r.t. a policy, and have used these char-
acterizations to obtain algorithms for computing optimal generalizations. These
algorithms need exponential time, which is optimal since the generalizations may
be of exponential size. For the optimality problems, we have provided a coNP
upper bound, and have shown by a reduction from Dual that they are unlikely
to be in P since this would show Dual ∈ P, a problem that has been open for
a long time.

In the future, we intend to extend this work in two directions. On the one
hand, we will consider EL concepts w.r.t. a background ontology. On the other
hand, we will consider a setting where the ABox contains not just concept asser-
tions, but also role assertions. In the latter case, one can use not just general-
ization of concepts, but also renaming of individuals as operations for achieving
compliance (safety). Finally, of course, these two extensions should be combined.
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