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Abstract. A central algorithmic paradigm in maximum satisfiability
solving geared towards real-world optimization problems is the core-
guided approach. Furthermore, recent progress on preprocessing tech-
niques is bringing in additional reasoning techniques to MaxSAT solv-
ing. Towards realizing their combined potential, understanding formal
underpinnings of interleavings of preprocessing-style reasoning and core-
guided algorithms is important. It turns out that earlier proposed notions
for establishing correctness of core-guided algorithms and preprocessing,
respectively, are not enough for capturing correctness of interleavings
of the techniques. We provide an in-depth analysis of these and related
MaxSAT instance transformations, and propose correction set reducibil-
ity as a notion that captures inprocessing MaxSAT solving within a
state-transition style abstract MaxSAT solving framework. Furthermore,
we establish a general theorem of correctness for applications of SAT-
based preprocessing techniques in MaxSAT. The results pave way for
generic techniques for arguing about the formal correctness of MaxSAT
algorithms.
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1 Introduction

Maximum satisfiability (MaxSAT), the optimization variant of Boolean satisfi-
ability (SAT), provides a competitive approach to various real-world optimiza-
tion problems arising from AI and industrial applications, see e.g. [6,7,14,18,
25,33,34]. Most of the modern MaxSAT solvers are based on iteratively trans-
forming an input problem instance in specific ways towards a representation
from which an optimal solution is in some sense “easy” to compute. In particu-
lar, a central algorithmic paradigm in modern MaxSAT solving geared towards
real-world optimization problems is the so-called core-guided approach [2,27].
Core-guided MaxSAT solvers reduce the search for an optimal solution to a
sequence of SAT instances, forming the next instance in the sequence by trans-
forming the current one based on an unsatisfiable core reported by a SAT solver
until a solution is found. In addition to the core-guided approach, MaxSAT pre-
processing [4,5,8,19] also iteratively applies instance transformations through
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simplification (or reasoning) techniques which, however, significantly differ from
core-guided transformations.

The formal underpinning of inprocessing SAT solving [17], a popular app-
roach to modern SAT solving based on interleaving preprocessing techniques
with conflict-driven clause learning search, is today well-understood. In con-
trast, preprocessing for MaxSAT, including the realization of liftings of SAT
preprocessing to MaxSAT [5], is a more recent line of development. In fact, so
far only a few specific liftings of SAT preprocessing techniques have been shown
to be correct for MaxSAT [5]. Furthermore, towards lifting the inprocessing SAT
solving paradigm to the realm of MaxSAT, understanding how to interleave core-
guided MaxSAT inferences and inference steps made by MaxSAT preprocessing
techniques is important. While formal notions of instance transformations have
been proposed for establishing correctness of core-guided algorithms and prepro-
cessing, respectively, these notions in themselves are not expressive enough for
capturing correctness of interleavings of the two types of transformations.

To address these shortcomings, we focus in this paper on providing further
understanding of correct instance transformations for generic MaxSAT solving.
To this end, we analyze both earlier proposed formal notions of instance trans-
formations [2,5], and explain why they are fundamentally different and therefore
individually not enough to capture interleaving of core-guided and preprocessing-
style instance transformations; both types of transformations are required in
order to obtain a framework capable of modelling MaxSAT solving without rely-
ing on the correctness of SAT solvers. We propose correction set reducibility as a
general notion of instance transformations that captures to a far extent transfor-
mations applied in both core-guided solvers and MaxSAT preprocessing. We base
our analysis on a formal framework as an abstract state transition system based
on different sets of sequences of MaxSAT instances. This allows for reasoning
about correctness of core-guided solving and MaxSAT preprocessing in a uni-
fied manner which can ease the development of new MaxSAT solving methods,
including inprocessing. Furthermore, as a further form of instance transforma-
tion, we lift the notion of resolution asymmetric tautologies (RAT clauses), a
simple yet powerful notion capturing SAT preprocessing techniques at large in
a unified way [17], to MaxSAT. By doing so, we establish a general proof of
correctness for natural liftings of SAT preprocessing techniques to MaxSAT,
thereby significantly generalizing the correctness proofs earlier presented for
MaxSAT liftings of specific SAT preprocessing techniques [5]. The results pave
way for generic techniques for arguing about the formal correctness of MaxSAT
algorithms.

2 Maximum Satisfiability, MaxSAT Solving and
Preprocessing

A literal l is a Boolean variable x or its negation ¬x. For a set L of literals, the
set ¬L contains the negations of the literals in L; L is consistent if L and ¬L are
disjoint. A clause is a disjunction (logical OR) of literals (represented as a set
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of its literals) and a CNF formula F is a conjunction (logical AND) of clauses
(represented as a set of its clauses). A clause C is a tautology if {x,¬x} ⊂ C
for some variable x. The set Var(C) contains all variables x for which x ∈ C
or ¬x ∈ C. The set Var(F ) of the variables of F is ∪C∈FVar(C) and the set
Lit(F ) is ∪C∈F C (each C seen as a set of literals). For a literal l ∈ Lit(F )
we use ClF (l) to denote the set of clauses in F which contain l, dropping the
subscript when clear from context.

A (truth) assignment τ is a consistent set of literals. A literal l is true under
τ (τ(l) = 1) if l ∈ τ and false (τ(l) = 0) if ¬l ∈ τ . A literal l true or false under
τ is assigned in (or assigned by) τ , and unassigned otherwise. An assignment τ
satisfies a clause C (τ(C) = 1) if τ(l) = 1 for some literal l in C, i.e., if τ ∩C �= ∅.
τ satisfies a formula F (τ(F ) = 1) if it satisfies all clauses in it. A formula is
satisfiable if there is an assignment that satisfies it, and else unsatisfiable. An
assignment τ is a complete assignment to a CNF formula F if every literal
l ∈ Lit(F ) is assigned in τ , else it is partial. The restriction F

∣
∣
τ

of a formula F
under an assignment τ is the CNF formula F ∧ ∧

l∈τ (l).
A (weighted partial) MaxSAT instance is a triplet F = (Fh, Fs, w) consisting

of a set Fh of hard clauses, a set Fs of soft clauses and a weight function w :
Fs → N. The instance is partial if Fh �= ∅ and unweighted if w(C) = k for
some constant k ∈ N and all C ∈ Fs. The core-guided MaxSAT algorithms we
focus on in this work solve the most general case of weighted partial MaxSAT
and do not treat any variant of it any differently (cf. Sect. 2.2). Hence we will
refer to weighted partial MaxSAT simply by MaxSAT. The cost COST(F , τ)
of a complete assignment to Fh ∧ Fs is ∞ if τ(Fh) = 0 and

∑

C∈Fs
(1 − τ(C)) ·

w(C) otherwise. We say that τ is a solution to F if τ(Fh) = 1 and optimal if
COST(F , τ) ≤ COST(F , τ�) for all compete truth assignments τ� to Fh ∧ Fs.
We denote the cost of the optimal solutions to F by COST(F). The cost of
a partial assignment τp to Fh ∧ Fs is the cost of an “optimal extension” of τp

into a complete assignment, i.e., COST(F , τp) = COST(Fτp

), where Fτp

=
(Fh

∣
∣
τp , Fs, w).

A subset κ ⊂ Fs is an unsatisfiable subset (or core) of F if Fh ∧ κ is unsat-
isfiable and a minimal unsatisfiable subset (MUS) if Fh ∧ κs is satisfiable for all
κs � κ. A set H is a correction set (CS) if Fh ∧ (Fs \H) is satisfiable and a min-
imal correction set (an MCS) if Fh ∧ (Fs \ Hs) is unsatisfiable for all Hs � H.
The sets of MUSes and MCSes of F are denoted by MUS(F) and MCS(F),
respectively. For a solution τ to F the set U(F , τ) = {C | τ(C) = 0} contains
the soft clauses falsified by τ . We say that the solution τ corresponds to the
correction set U(F , τ). Similarly, a correction set H corresponds to a solution τ
if H = U(F , τ). A correction set H is optimal if it corresponds to an optimal
solution τ to F . It is easy to show that every solution corresponds to a correction
set and every correction set corresponds to some solution.

2.1 Core-Guided MaxSAT Solving and MaxSAT-Reducibility

When solving a MaxSAT instance F , a core-guided MaxSAT algorithm main-
tains a working instance F i = (F i

h, F i
s , w

i), initialized to F . During each iteration
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of the search, a SAT solver is queried for the satisfiability of F i
h ∧ F i

s . If the for-
mula is satisfiable, i.e., if COST(F i) = 0, any assignment τo satisfying F i

h ∧ F i
s

is an optimal solution to F . Otherwise, the SAT solver returns a core κi of F i.
The next working instance F i+1 is then formed by transforming F i in a way
that rules out κi as a source of unsatisfiability and lowers the optimal cost of F i

by min{wi(C) | C ∈ κi}. Many existing core-guided algorithms fit this high-level
description and differ mainly in the the specific transformation used to form the
next working instance [1,3,15,26,29]. The correctness of such solvers, i.e., that
the final assignment returned will indeed be an optimal solution to the input
instance, is often established by proving that F i is MaxSAT-reducible [2] to
F i+1.

Definition 1. An instance F is MaxSAT-reducible (or k-reducible) to the
instance FR if COST(F , τ) = COST(FR, τ) + k for some integer k and for
all complete assignments τ to F . The constant k can depend on F but not on
the assignment τ .

An important motivation for the abstract model of MaxSAT solving we detail
in Sect. 3 relates to the specifics of how cores are extracted with SAT solvers. In
practice, a core κ of an instance F = (Fh, Fs, w) is extracted by extending each
soft clause Ci ∈ Fs with an unique assumption variable ai to form the clause
Ci ∨ ai. Afterwards the so-called assumption interface of the SAT solver [28] is
used to query the satisfiability of (Fh ∧ FA

s )
∣
∣
¬A, where FA

s is the set of extended
soft clauses and A the set of all assumption variables. If the result is satisfiable,
the obtained assignment satisfies (Fh ∧ FA

s ) ∧ ∧

a∈A(¬a) and hence also (Fh ∧
Fs). If the formula is unsatisfiable, the SAT solver instead returns a subset
As ⊂ A for which Fh ∧ Fs

∣
∣
¬As

is unsatisfiable as well. Indeed, as we illustrate in
Example 1, modern core-guided solvers represent cores in terms of the variables
in As [1,26,29].

2.2 MaxSAT Preprocessing and MCS-Equivalence

MaxSAT preprocessing refers to the application of different simplification and
deduction rules to an instance F = (Fh, Fs, w), resulting in another instance
Fp. A simple example is the so-called subsumption rule which allows removing
a clause D ∈ (Fh ∧ Fs) if there is a clause C ∈ Fh for which C ⊂ D. The goal of
correct and effective preprocessing for MaxSAT is to make the time required to
transform F , solve Fp and reconstruct an optimal solution to F lower than the
time required to solve F directly. The previously proposed notion for proving
correctness of MaxSAT preprocessing requires the use of the following literal-
based definition of MaxSAT [5]. In particular, for the remainder of this paper,
we will apply the following literal-based definitions of MaxSAT.

A MaxSAT instance F consists of a CNF formula Clauses(F) and a weight
function wF : Var(Clauses(F)) → N, assigning a weight to each variable of
F . Whenever clear from context, we use F and Clauses(F) interchangeably. A
variable x ∈ Var(F) is soft in F if wF (x) > 0. The set S(F) contains all soft
variables of F . The complement Sc of a S ⊂ S(F) is S(F) \ S.



Unifying Reasoning and Core-Guided Search for Maximum Satisfiability 291

The other concepts related to MaxSAT discussed earlier are lifted from soft
clauses to soft variables in a natural way. An assignment τ is a solution to F if
τ(F) = 1 and has cost COST(F , τ) =

∑

x∈Var(F) τ(x) · w(x). A set κ ⊂ S(F)
is a a core of F if F∣

∣
¬κ

is unsatisfiable. Similarly H ⊂ S(F) is a CS of F if
F∣

∣
¬(Hc)

is satisfiable and an MCS if no Hs � H is a CS of F . Notice that under
the literal-based definitions, the set U(F , τ) is simply τ ∩ S(F). Using these
definitions, the notion of MCS-equivalence has been used as a basis for showing
correctness of the liftings of four specific preprocessing rules proposed for SAT
solving to MaxSAT [5].

Definition 2. The instance F is MCS-equivalent with the instance FR (and
vice-versa) if MCS(F) = MCS(FR) and wF (x) = wFR

(x) for all x ∈ Var(F)∩
Var(FR).

As we will demonstrate, defining MaxSAT based on soft variables instead
of soft clauses allows reasoning about core-guided solving and MaxSAT prepro-
cessing in a unified manner. We emphasize that the literal-based definition is
equivalent to the clause-based one. Furthermore, the literal-based definitions
correspond more closely with the representation of MaxSAT instances that
core-guided solvers and MaxSAT preprocessors actually operate on. Given any
MaxSAT instance (partial or not), a core-guided solver and similarly a MaxSAT
preprocessor will add an explicit variable ai to each soft clause. During solv-
ing and preprocessing, the extended soft clauses and hard clauses are treated
equally. Instead, special treatment is given to the added variables; for correct-
ness, a preprocessor is restricted from resolving on them, and a core-guided
solver extracts cores and applies transformations in terms of the ai’s, instead of
in terms of the soft clauses directly. The concept of a soft variable makes the role
of these “special” variables explicit, highlighting the similarities of core-guided
solving and preprocessing. Furthermore, applications of specific preprocessing
techniques such as bounded variable elimination will result in clauses with several
soft variables; the literal-based view also uniformly covers this. The literal-based
definitions also allow describing the transformations used by modern core-guided
solvers in a succinct manner.

Example 1. Let F be a MaxSAT instance, κ = {l1, . . . , ln} a core of F , and
wκ = minl∈κ{wF (l)}. The instance transformation used by the PMRES core-
guided algorithm [29] forms the instance FR = F ∧ ∧n−1

i=1 (ci ↔ (ci+1 ∨ li+1)) ∧
∧n−1

i=1 ((¬ci ∨ ¬li ∨ ri)) ∧ (¬cn) with the equivalence expressed as clauses in the
standard way. Each ci and ri are new variables that do not appear in Var(F).
The weights of the variables FR are modified by (i) decreasing the weight of
each l ∈ κ by wκ, (ii) setting the weight of each ci to 0, (iii) setting the weight
of each ri to wκ and (iv) keeping the weights of all other variables the same as
in F . The fact that F is MaxSAT-reducible to FR was first shown in [29].
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3 An Abstract MaxSAT Solving Framework

In the rest of this work we study MaxSAT-reducibility, MCS-equivalence and
other notions of transformation properties in an abstract framework based on
sequences of MaxSAT instances (or sequences for short). For example, solv-
ing an instance F with a core-guided MaxSAT solver is identified with a
sequence 〈F = F1, . . . ,Fn〉, where each instance Fi is MaxSAT-reducible to Fi+1

and COST(Fn) = 0. Similarly, preprocessing F is identified with a sequence
〈F = F1, . . . ,Fn〉, where each Fi is MCS-equivalent with Fi+1. The notion of
MaxSAT-reducibility (MCS-equivalence) is lifted to sequences of instances by
the set MSRED (MCSEQ) containing all sequences 〈F1, . . . ,Fn〉 for which Fi

is MaxSAT-reducible to (MCS-equivalent with) Fi+1 for all i = 1, . . . , n − 1.
More generally, the framework captures MaxSAT solving techniques that

iteratively transform an input MaxSAT instance toward a specific final instance,
from which an optimal solution to the input instance can then be obtained
based on an optimal solution to the final instance. As the final instance we use
the (unique) MaxSAT instance FF = ∅ that contains no clauses and to which
any assignment τ is an optimal solution to. The following notion of a terminating
sequence represents MaxSAT solving within the general framework.

Definition 3. A sequence 〈F , . . . ,Fn〉 is terminating if Fn = FF .

An important observation to make regarding the sets of sequences that we
work with is that the membership of a sequence 〈F1, . . . ,Fn〉 in each set can be
determined “locally” by checking if some property holds between Fi and Fi+1

for all i = 1, . . . , n − 1. For example, 〈F1, . . . ,Fn〉 ∈ MSRED can be checked
by verifying that Fi is MaxSAT-reducible to Fi+1 for all i. More formally, we
say that a set S of sequences is decomposable if 〈F1, . . . ,Fn〉 ∈ S if and only if
〈Fi,Fi+1〉 ∈ S for all i = 1, . . . , n − 1. All sets of sequences that we consider in
this work with are decomposable, including the already defined MSRED and
MCSEQ.

The following notion of allows for combining sets of sequences for modelling
interleavings of different types of instance transformations.

Definition 4. The combination S1 ◦ S2 of two sets S1 and S2 of sequences
contains all sequences 〈F1, . . . ,Fn〉 for which 〈Fi,Fi+1〉 ∈ S1 ∪ S2.

For example, the set MCSEQ ◦ MSRED contains all sequences 〈F1, . . . ,Fn〉
where Fi is either MaxSAT-reducible to, or MCS equivalent with, Fi+1 for all i.
Informally speaking, MCSEQ ◦ MSRED models inprocessing MaxSAT solving,
interleaving preprocessing and core-guided search.

When analyzing a set S of sequences, we focus on three central properties
that are interesting in the context of MaxSAT solving. The first property is
sufficiency : that for any instance F there is a terminating sequence in S that
starts from F .

Definition 5. Let F be a MaxSAT instance. A set S of sequences is sufficient
(for reaching the final state) if there is a terminating sequence 〈F , . . . ,FF 〉 ∈ S.
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The second property, effectiveness, captures the idea that for practical appli-
cability, an optimal solution τn to the last instance Fn in a sequence 〈F , . . . ,Fn〉
should be applicable or “useful” for obtaining an optimal solution τ to F . In the
following, we say that a function that on input 〈F , . . . ,Fn〉 and τn computes τ
is a reconstruction function for 〈F , . . . ,Fn〉.
Definition 6. Let S be a set of sequences and 〈F ,FT 〉 ∈ S any sequence of
length two in S. The set S is effective (for MaxSAT solving) if there is a recon-
struction function for 〈F ,FT 〉 computable in polynomial time with respect to
|F|.
If the set S is decomposable, as all of the sets we work with are, the ability to
reconstruct optimal solutions is extended to sequences of arbitrary lengths.

Observation 1. Let S be an effective decomposable set of sequences and con-
sider a sequence 〈F1, . . . ,Fn〉 ∈ S. Assume that |Fi| is polynomial in |F1| for all
i. Then there is a reconstruction function for 〈F1, . . . ,Fn〉 computable in time
O(n × g(|F1|)) for some polynomial g.

An alternative view of effectiveness is hence that a sequence 〈F1, . . . ,Fn〉 ∈
S of an effective decomposable set S is one where each Fi+1 is formed from
Fi by a transformation that preserves enough information to allow effective
reconstruction of an optimal solution. For example, a set containing 〈F ,FF 〉 for
all instances F is clearly sufficient. However, it is not effective as no “useful”
information is preserved when transforming F to FF (in most cases).

Finally, generality allows for comparing sets of sequences in a natural way.

Definition 7. Let S1 and S2 be two sets of sequences of instances. We say that

(i) S1 is at least as general as S2 if S2 ⊂ S1;
(ii) S2 is not as general as S1 if S1 \ S2 �= ∅; and
(iii) S1 is more general than S2 if S1 is at least as general and S2 is not as

general.

4 Overview of Results

Figure 1 gives an overview of our main results. Considering previously pro-
posed types of instance transformations, we establish that the sets MSRED
and MCSEQ are individually not expressive enough to be sufficient within our
generic framework, while their combination MSRED ◦ MCSEQ is. Indeed,
MSRED and MCSEQ are orthogonal in the sense that neither one is as
general as the other; we will give concrete examples of sequences 〈F ,FR〉 ∈
MSRED \ MCSEQ and 〈F ,FR〉 ∈ MCSEQ \ MSRED. Thus, neither one of
these previously proposed formalisms for MaxSAT solving techniques is expres-
sive enough to capture hybrid forms of MaxSAT solving that combine the core-
guided approach with preprocessing-style reasoning.
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In addition to MSRED and MCSEQ, we will also consider several other
sets of sequences. The set MSEQUIV in Fig. 1 contains sequences where subse-
quent instances are MaxSAT-equivalent with each other. MaxSAT-equivalence
has previously been shown to be a special case of MaxSAT resolution [2,10] and
included in this work mainly for completeness. We also propose two new sets
of sequences, MAX-RAT and CSRED, with different motivations. As detailed
in Sect. 6, we propose MAX-RAT as a natural lifting of the notion of resolu-
tion asymmetric tautology, which has been shown to give a basis for formalizing
inprocessing SAT solving [17], to the context of MaxSAT. As a main result, we
show that MAX-RAT yields a general proof of correctness of liftings of SAT
preprocessing techniques to MaxSAT, noticeably generalizing earlier correctness
proofs of liftings of specific SAT preprocessing techniques [5]. Towards more
general instance transformations, we also propose the notion of correction-set
reducibility, CSRED containing sequences in which each instance is correction-
set reducible to the next one. We show that CSRED surpasses the combina-
tion of MSRED and MCSEQ; even its effective subset CSRED-E captures
essentially all current core-guided and preprocessing-style transformations we
are aware of.

5 Analysis of Known Transformations

We begin the detailed analysis with MaxSAT-reducibility and MCS-equivalence,
their combination, and MaxSAT-equivalence.

5.1 MaxSAT-Reducibility

First, we show that MSRED is not sufficient for reaching the final state. Infor-
mally, the result follows from the fact that MaxSAT-reducibility requires pre-
serving all of the solutions to an instance while not being expressive enough
to affect the cost of different solutions in different ways. Hence any instance F
which has two solutions τ1 and τ2 such that COST(F , τ1) �= COST(F , τ2) is
not MaxSAT-reducible to the final instance FF to which all solutions have the
same cost. We generalize this argument to sequences to establish the following.

Proposition 1. MSRED is not sufficient for reaching the final state.

Note that in practice core-guided solvers that use MaxSAT-reducible transfor-
mations terminate once the cost of the working instance becomes 0, which is not
the same as the working instance being FF . This “contrast” arises from the fact
that core-guided solvers rely on a SAT solver for termination.

The effectiveness of MSRED follows by showing that τ2, an optimal solution
to F2 in 〈F1,F2〉 ∈ MSRED satisfies F1 and assigns all variables in S(F1). Thus
an optimal solution to F1 can be obtained by (i) restricting τ2 to Lit(F1) and
(ii) assigning any unassigned variables of Var(F1) arbitrarily.

Proposition 2. MSRED is effective.
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CSREDCSRED-E

MCSEQ ◦ MSRED

MSRED

MSEQUIV

MCSEQ

MAX-RATProp. 7

Theorem 5

Theorem 5Theorem 5
Theorem 6

TrivialProp. 6

Trivial

Prop. 4 [2] Prop. 4 [2] Theorem 2Theorem 2

Prop. 2

Theorem 5
Theorem 6

Pro
p. 3

Triv
ial

Fig. 1. Relationships between sets of sequences. Here S1 → S2 denotes that S1 is at
least as general as S2, S1 �→ S2 that S1 is not as general as S2. Transitive edges are not
shown. The types of transformations that are sufficient for reaching the final state are
coloured green, and effective transformations are drawn with continuous lines. (Color
figure online)

The next proposition implies that MaxSAT-reducibility can not be used as
basis for reasoning about the correctness of MaxSAT preprocessing.

Proposition 3. MSRED is not as general as MCSEQ.

Proof. Consider the sequence 〈F ,FF 〉, where F = {(l ∨ x)} with wF (l) = 1 and
wF (x) = 0. Since COST(F) = 0 it follows that MCS(F) = {∅} = MCS(FF ).
This implies that 〈F ,FF 〉 ∈ MCSEQ. To see that 〈F ,FF 〉 /∈ MSRED, consider
the solutions τ1 = {l,¬x} and τ2 = {¬l, x} to F . Since COST(F , τ1) = 1 = 0 +
1 = COST(FF , τ1)+1 while COST(F , τ2) = 0 = 0 + 0 = COST(FF , τ2) + 0,
it follows that F is not MaxSAT-reducible (for any k) to FF . ��

Finally, MaxSAT-equivalence is a special case of MaxSAT-reducibility [2,10].

Definition 8. The instance F is MaxSAT equivalent to the instance FR if
COST(F , τ) = COST(FR, τ) + k for some positive integer k and all complete
truth assignments τ for both F and FR.

Again, the constant k may depend on F but not on the particular assign-
ment τ . The set MSEQUIV contains all sequences of MaxSAT instances where
subsequent instances are MaxSAT equivalent. MaxSAT-reducibility subsumes
MaxSAT-equivalence in terms of the generality of MSRED and MSEQUIV,
which follows from comparing the definitions. The following result was first
shown in [2] and included here for completeness.
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Proposition 4 (Restated from [2]). The set MSRED is more general than
the set MSEQUIV.

5.2 MCS-Equivalence

Similarly to MSRED, MCSEQ is not sufficient for reaching the final state. The
result follows by noting that any terminating sequence 〈F , . . . ,FF 〉 containing
an instance Fi for which MCS(Fi) �= {∅} = MCS(FF ) can not be in MCSEQ.

Proposition 5. MCSEQ is not sufficient for reaching the final state.

We expect MCSEQ not to be effective. For some intuition, consider a
sequence 〈F ,F2〉 ∈ MCSEQ. In the general case, the only information obtain-
able from an optimal solution τ2 to F2 is an optimal MCS H ∈ MCS(F). In this
case, reconstructing an optimal solution to F requires computing a satisfying
assignment to F∣

∣
¬(Hc)

.
We show that MCS-equivalence can not be used in order to reason about

the correctness of core-guided solving, i.e., that MCSEQ is not as general as
MSRED. Informally, the result follows by noting that COST(F) = COST(F2)
for any MCS-equivalent instances F1 and F2. In contrast, there are sequences
〈F1, . . . ,Fn〉 ∈ MSRED for which COST(F1) > COST(Fn).

Proposition 6. MCSEQ is not as general as MSRED.

5.3 Combining MSRED and MCSEQ

So far, we have established that neither MSRED nor MCSEQ is individu-
ally sufficient for reaching the final state, and that neither one is as general
as the other. The reasons for insufficiency, however, are in a sense orthogo-
nal. While there are sequences 〈F1, . . . ,Fn〉 ∈ MSRED for which COST(F1) >
COST(Fn), any solution to F1 is also a solution to Fn. In other words, MaxSAT-
reducibility can lower the optimal cost of instances but not rule out non-optimal
solutions. In contrast, while COST(Fi) = COST(Fj) for any two instances
in a sequence〈F1, . . . ,Fn〉 ∈ MCSEQ, there can be solutions to F1 that are
not solutions to Fn. More informally, MCS-equivalence can be used to rule out
non-optimal solutions, but not to lower the optimal cost of instances. Since a
terminating sequence starting from an arbitrary instance F requires both lower-
ing the optimal cost of F to 0 and ruling out non-optimal solutions, using both
MSRED and MCSEQ obtains a sufficient set of sequences.

Theorem 1. MSRED ◦ MCSEQ is sufficient for reaching the final state.

Proof. (Sketch) Let F be a MaxSAT instance. By correctness of the PMRES
algorithm discussed in Example 1 [29], there is a sequence 〈F , . . . ,FS〉 ∈
MSRED for which COST(FS) = 0 and hence MCS(FS) = {∅}. The termi-
nating sequence 〈F , . . . ,FS ,FF 〉 ∈ MSRED ◦ MCSEQ witnesses the claim.
��
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6 RAT Clauses in MaxSAT

We propose and analyze two novel notions for transforming MaxSAT instances
and their corresponding sets of sequences, MAX-RAT and CSRED. First we
adapt the idea of resolution asymmetric tautologies (RAT) to MaxSAT to obtain
MAX-RAT, an effective subset of MCSEQ. RAT is a simple yet powerful notion
for characterizing preprocessing and inprocessing in SAT solving [17] which pro-
vides a basis for a general proof of correctness for natural liftings of SAT pre-
processing techniques that can be expressed as sequences adding and removing
RAT clauses.

Given two clauses C = l∨C ′ and D = ¬l∨D′, the resolvent C ��l D = C ′∨D′

of C and D is obtained by resolving them on l. Resolution is extended to sets
of clauses by Cl(l) ��l Cl(¬l) = {C ��l D | C ∈ Cl(l),D ∈ Cl(¬l)}. Let
F be a MaxSAT instance and C a clause. Denote by ALA(F , C) (asymmetric
literal addition) the unique clause resulting from repeating the following until
fixpoint: if l1, . . . , lk ∈ C and there is a clause (l1 ∨ · · · ∨ lk ∨ l) ∈ F \ {C},
set C := C ∪ {¬l}. We say that C has solution resolution asymmetric tautology
(SRAT) with respect to F if either C = (x ∨ ¬x) for some variable x or there is
a literal l ∈ C \ S(F) such that ALA(F , C ��l D) is a tautology for all clauses
D ∈ Cl(¬l). In the second case, we say that C has SRAT on l. When F is clear
from context, we say that C is an SRAT clause. We emphasize that the only
restriction put on l is that it is not a soft variable. Specifically, l can still be the
negation of a soft variable. Notice also that any clause C that has SRAT with
respect to to an instance F also has RAT as defined in [17] with respect to to the
CNF formula Clauses(F) but the converse is not true. We use the terms SRAT
clause to refer to the concept for MaxSAT as defined here, and RAT clause to
refer to the SAT-specific concept from [17].

Given a MaxSAT instance F and an SRAT clause C, the instance
ADD(F , C) is obtained by (i) adding C to F and (ii) extending wF by set-
ting the weight of each variable (if any) in Var(C) \ Var(F) arbitrarily. Sim-
ilarly, the instance REMOVE(F , C) is obtained by (i) removing C from F
and (ii) restricting wF onto Var(F \ {C}). These transformations are lifted to
sequences of instances by the set MAX-RAT.

Definition 9. The set MAX-RAT contains all sequences 〈F1, . . . ,Fn〉, where
Fi+1 = ADD(Fi, C) or Fi+1 = REMOVE(Fi, C) for all i = 1, . . . , n − 1.

While simple, the sequences in MAX-RAT are fairly expressive. As discussed
in [17], SAT solving techniques, including forms of preprocessing, can very gen-
erally be viewed as sequences of adding and removing RAT clauses and can thus
be easily lifted to MaxSAT with SRAT.

Example 2. Let F be an instance, x ∈ Var(F) \ S(F), Cl(x) ∪ Cl(¬x) =
{C1, . . . , Cn} and Cl(x) ��x Cl(¬x) = {D1, . . . , Dt}. The well-known variable
elimination rule allows eliminating x from F by transforming it to FR = F \
(Cl(x)∪Cl(¬x))∪ (Cl(x) ��x Cl(¬x)). This corresponds to the sequence 〈F =
F0,F1, . . . ,Ft, . . . ,Ft+n〉 with Fi = ADD(Fi−1,Di) for i = 1, . . . , t and Fi =
REMOVE(Fi−1, Ci−t) for i = t + 1, . . . , t + n. This sequence is in MAX-RAT.



298 J. Berg and M. Järvisalo

Both ADD(F , C) and REMOVE(F , C) are MCS-equivalent with F ; this is
because soft variables of F contained only in C are not members of any MCSes
of F .

Theorem 2. MCSEQ is more general than MAX-RAT.

In addition, generalizing results from [17], we show that MAX-RAT is effec-
tive. Given an instance F and a clause C that has SRAT with respect to
a literal l, we show that if τ is a solution to F but not ADD(F , C), then
τR = τ \ {¬l} ∪ {l} is a solution to both F and ADD(F , C). While this also
holds for RAT clauses [17], the added assumption l /∈ S(F) of SRAT is needed
to show COST(F , τ) ≥ COST(F , τR) = COST(ADD(F , C), τR), which in
turn implies the existence of effective reconstruction functions for sequences in
MAX-RAT.

Proposition 7. MAX-RAT is effective.

More generally, MAX-RAT provides a natural way of correctly lifting all
of the preprocessing rules proposed for SAT solving that can be modelled with
RAT based transformations to MaxSAT; this noticeably generalizes correctness
proofs of the four particular liftings considered in [5].

Theorem 3. Let F be a MaxSAT instance and FR the instance obtained
by applying a SAT preprocessing technique that can be viewed as a sequence
〈F , . . . ,FR〉 of RAT clause additions and deletions. Assume that all of the added
and removed clauses also have SRAT. Then an optimal solution to F can be
effectively computed based on an optimal solution to FR.

RAT and, by extension, SRAT are very powerful concepts, allowing for simulat-
ing essentially all SAT preprocessing techniques, including both resolution-based
and clause elimination techniques [17]. Hence Theorem 3 gives a very general
proof of correctness for natural liftings of SAT-based preprocessing techniques
to MaxSAT.

The MAX-RAT sequences also detail the relationship between core-guided
MaxSAT solvers and the abstract model of MaxSAT solving that we work
with. Since the transformations in MAX-RAT can model SAT solving [17],
the abstract state transition system models both the transformations employed
by the outer core-guided MaxSAT algorithm, and the internal SAT solver used
by it to extract cores and compute satisfying assignments. For example, the
soundness of keeping learned clauses of the internal SAT solver between iter-
ations follows easily from the fact that a SAT solver only learns clauses that
have SRAT with respect to the current instance. Therefore the combination of
MAX-RAT and MSRED captures the correctness of core-guided algorithms
and their interleavings with liftings of SAT-based preprocessing techniques.

Theorem 4. MSRED ◦ MAX-RAT is effective and sufficient for reaching the
final state.
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However, as we will discuss next, there are instance transformations, some
of which arise from MaxSAT-specific preprocessing techniques without counter-
parts in SAT preprocessing, that are not captured by MSRED ◦ MAX-RAT.
This motivates the study of more expressive instance transformations.

7 Correction Set Reducible Transformations

The second novel notion for transforming MaxSAT instances that we propose
is correction set reducibility (CS-reducibility). CS-reducibility is a more gen-
eral form of instance transformations, surpassing the combination of MaxSAT-
reducibility and MCS-equivalence, and thereby providing a wide basis for rea-
soning about the correctness of MaxSAT solving.

Definition 10. The instance F is correction set reducible (CS-reducible) to the
instance FR if U(F , τR) = τR ∩ S(F) is an optimal MCS of F whenever τR is
an optimal solution to FR

Example 3. Let F = {(l1 ∨ l2)} and FR = {(l1 ∨ l2), (¬l2)} be two instances
with wF (l1) = wFR

(l1) = 1 and wF (l2) = wFR

(l2) = 2. Then F is CS reducible
to FR which follows from τR = {l1,¬l2} being the only optimal solution of FR

and τR ∩ S(F) = {l1} being an optimal MCS of F .

Similarly to other transformations, let CSRED be the set of sequences that
contains all sequences 〈F1, . . . ,Fn〉 for which Fi is CS-reducible to Fi+1 for i =
1, . . . , n−1. In contrast to MaxSAT-reducibility, CS-reducibility does not require
uniformly changing costs of all assignments. This allows transformations that
rule out non-optimal solutions. In contrast to MCS-equivalence, CS-reducibility
only requires that an optimal solution to the transformed instance corresponds
to an optimal MCS of the original instance; an optimal MCS of the original
instance does not have to be an MCS of the transformed instance nor do all
MCSes of the instance need to be preserved. This allows transformations that
lower the optimal cost of instances.

Theorem 5. CSRED is more general than MSRED ◦ MCSEQ.

Notice that Theorem 5 also implies that CSRED is sufficient for reaching the
final state.

As CSRED is at least as general as MCSEQ we do not expect it to be effec-
tive. However, CSRED-E, the effective subset of CSRED, is in itself relatively
expressive.

Theorem 6. CSRED-E is sufficient for reaching the final state. Furthermore,
MSRED ◦ MCSEQ, is not as general as CSRED-E.

Proof. The first claim follows directly from Theorems 4 and 5. For the second
claim, consider the sequence 〈F ,FR〉 formed by the instances defined in Exam-
ple 3. The claim 〈F ,FR〉 ∈ CSRED-E follows from the fact that the sets of
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optimal solutions of F and FR are equal. To show that 〈F ,FR〉 /∈ MSRED ◦
MCSEQ we demonstrate that F is neither MaxSAT-reducible to, or MCS-
equivalent with, FR. The former follows by considering the solution τ = {l2,¬l1}
to F and the latter from MCS(F) = {{l1}, {l2}} �= {{l1}} = MCS(FR). ��

Note that Theorem 6 implies that MSRED ◦ MAX-RAT is not as general as
CSRED-E and that the sequence 〈F ,FR〉 corresponds to applying the MaxSAT-
specific preprocessing of subsumed label elimination [8] on F . Thus effective CS-
reducibility captures existing MaxSAT preprocessing techniques not captured
by MSRED ◦ MAX-RAT.

8 Related Work

In terms of previously proposed formal systems for MaxSAT, MaxSAT resolu-
tion [10,20] was proposed as a generalization of the resolution proof system. It
is a complete rule for MaxSAT in that iteratively applying MaxSAT resolution
to the clauses of a MaxSAT instance F gives another instance FRES such that
COST(FRES) = 0 and any satisfying assignment to FS

∣
∣
¬S(FS)

is an optimal
solution to F . The correctness of MaxSAT resolution was shown by establish-
ing that F is MaxSAT-equivalent to FRES. As implied by our analysis, this
means that MaxSAT resolution can be used to determine the optimal cost of an
instance, but finding an optimal solution requires computing a satisfying assign-
ment to a satisfiable CNF formula. While MaxSAT resolution and its restric-
tions give rise to simplification rules used in conjunction with branch-and-bound
MaxSAT solvers [4,16,21,22] (and also yields a proof system for SAT [9]), we
focus on the current state-of-the-art core-guided approaches and central SAT-
based preprocessing techniques. (The recent clause tableaux proof system for
MaxSAT [23] does not capture core-guided transformations or MaxSAT prepro-
cessing, either.) The recent formalization of implicit hitting set (IHS) algorithms
for optimization modulo theories of [13] captures solely extensions of the IHS
approach [12,32], extending the DPLL(T) framework [31] which has also earlier
been extended to optimization modulo theories [30] and adapted for formalizing
answer set solvers [11,24] (without optimization statements).

9 Conclusions

We studied the formal underpinnings of unifying preprocessing-style reasoning
and core-guided transformations for MaxSAT. To this end, we formalized a
generic framework for MaxSAT solving based on sequences of MaxSAT instances,
and analyzed previously proposed notions of instance transformations underlying
core-guided search and SAT-based preprocessing for MaxSAT within the frame-
work. We showed that these notions individually do not capture each other (i.e.,
inprocessing core-guided MaxSAT solving), and therefore neither can be used for
arguing about the correctness of the other. We proposed correction set reducibil-
ity as a new type of MaxSAT instance transformation which unifies core-guided
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MaxSAT solving and MaxSAT preprocessing, including SAT-based preprocess-
ing lifted to MaxSAT. Furthermore, we generalized the concept of resolution
asymmetric tautologies from SAT solving to MaxSAT solving, thereby obtain-
ing a very general proof of correctness for lifting SAT preprocessing techniques
to MaxSAT. All in all, the results build ground for generic techniques for arguing
about the formal correctness of MaxSAT algorithms.

Acknowledgments. The work has been financially supported by Academy of Fin-
land (grants 276412 and 312662) and University of Helsinki Doctoral Programme in
Computer Science.
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