
Typed Meta-interpretive Learning
of Logic Programs

Rolf Morel(B), Andrew Cropper, and C.-H. Luke Ong

University of Oxford, Oxford, UK
{rolf.morel,andrew.cropper,luke.ong}@cs.ox.ac.uk

Abstract. Meta-interpretive learning (MIL) is a form of inductive logic
programming that learns logic programs from background knowledge
and examples. We claim that adding types to MIL can improve learning
performance. We show that type checking can reduce the MIL hypothesis
space by a cubic factor. We introduce two typed MIL systems: MetagolT
and HEXMILT , implemented in Prolog and Answer Set Programming
(ASP), respectively. Both systems support polymorphic types and can
infer the types of invented predicates. Our experimental results show
that types can substantially reduce learning times.

1 Introduction

Meta-interpretive learning (MIL) [8,22,23] is a form of inductive logic program-
ming (ILP) [20]. MIL learns logic programs from examples and background
knowledge (BK) by instantiating metarules, second-order Horn clauses with exis-
tentially quantified predicate variables. Metarules are a form of declarative bias
[28] that define the structure of learnable programs. For instance, to learn the
grandparent/2 relation given the parent/2 relation, the chain metarule would
be suitable:

P (A,B) ← Q(A,C), R(C,B)

In this metarule1 the letters P , Q, and R denote existentially quantified second-
order variables (variables that can be bound to predicate symbols) and the letters
A, B and C denote universally quantified first-order variables (variables that
can be bound to constant symbols). Given the chain metarule, the background
parent/2 relation, and examples of the grandparent/2 relation, a MIL learner
will try to find the correct predicate substitutions, such as:

{P/grandparent ,Q/parent ,R/parent}

When applied to the chain metarule, these substitutions result in the theory:

grandparent(A,B) ← parent(A,C), parent(C,B)
1 The fully quantified rule is ∃P∃Q∃R∀A∀B∀C P (A,B) ← Q(A,C), R(C,B).
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The MIL hypothesis space grows quickly given more background relations [6,11].
For instance, suppose that when learning the grandparent/2 relation we have an
additional k background relations, such as head/2, tail/2, length/2, etc. Then
for the chain metarule, there are k + 2 substitutions for each predicate variable
and thus (k +2)3 total substitutions. Existing MIL systems, such as Metagol [9]
and HEXMIL [16], would potentially consider all these possible substitutions.

We claim that considering the types of predicates can significantly improve
learning performance by reducing the number of predicate substitutions. For
instance, suppose that when learning the grandparent/2 relation we add types
to the relations, such as (person, person) to parent/2, (list(T ), int) to length/2,
etc. Then given an example of the grandparent/2 relation with the type
(person, person), only the parent/2 relation (and grandparent/2 itself) matches
the example’s type, and so the number of substitutions is reduced from (k + 2)3

to 23.
Our main contributions are:

– We extend the MIL framework to support polymorphic types (Sect. 3.3).
– We show that type checking can reduce the MIL hypothesis space by a cubic

factor (Sect. 3.4).
– We introduce MetagolT and HEXMILT which extend Metagol and HEXMIL

respectively. Both support polymorphic types and both can infer types for
invented predicates (Sect. 4).

– We conduct experiments which show that types can substantially reduce
learning times when there are irrelevant background relations (Sect. 5).

2 Related Work

Program Induction. Program synthesis is the automatic generation of a com-
puter program from a specification. Deductive approaches [19] deduce a program
from a full specification that precisely states the requirements and behaviour of
the desired program. By contrast, program induction approaches induce (learn)
a program from an incomplete specification, typically input/output examples.
Many program induction approaches learn specific classes of programs, such
as string transformations [33]. By contrast, MIL is general-purpose, and is, for
instance, capable of grammar induction [22], learning robot strategies [7], and
learning efficient algorithms [10].

Types in Program Induction. Functional program induction approaches often use
types. For instance, bidirectional type checking is the foundation of the MYTH
systems [26], where MYTH2 [14] supports polymorphic types. SYNQUID [27]
forgoes input/output examples and only uses refinement types as its specifica-
tion. The authors argue that refinement specifications are terser than examples.
However, because of the need to supply correct and informative refinement types,
SYNQUID is more similar to deductive synthesis approaches. In contrast to these
inductive approaches, we focus on learning logic programs, including support for
predicate invention, i.e. the introduction of new predicate symbols [36].
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Inductive Logic Programming. ILP is a form of program induction which learns
logic programs. ILP systems are typically untyped. The use of types in ILP
is mostly restricted to mode declarations [21], which are used by many sys-
tems [17,21,29,31,35]. Mode declarations define what literals can appear in a
program. In the mode language, modeh are declarations for head literals and
modeb are declarations for body literals, where + and − are followed by the type
of each argument and represent input and output arguments respectively, e.g.
:-modeh(1,mult(+int,+int,-int)). Mode declarations are metalogical state-
ments. By contrast, we introduce typed atoms (Definition 4) which are logical
statements. As far as we are aware, our work is the first to declaratively represent
types. In addition, in contrast to the existing approaches in ILP, our approach
supports polymorphic types and we can also infer the types of invented pred-
icates. Finally, to our best knowledge, we are the first to provide theoretical
results that show that types can improve learning performance (Theorem1).

MIL is a form of ILP that supports predicate invention and learning recursive
programs. MIL is typically based on a Prolog meta-interpreter [9] but has also
been encoded as SMT [1] and ASP problems [16]. We extend MIL to support
learning with types. We demonstrate the approach in both Prolog and ASP
settings. Farquhar et al. [13] considered adding types to MIL. However, their
work is mainly concerned with applying MIL to learn strategies for interactive
theorem proving and their work on types is minimal with only two simple types
considered.

Types in Logic Programming. The main Prolog [5,38] and ASP [15] implementa-
tions do not explicitly support types. There are, however, typed Prolog-like lan-
guages, such as the functional-logic language Mercury [34] and the higher-order
logic language λProlog [25]. Most work on adding types to logic programming
[24,30] is motivated by reducing runtime errors by restricting the range of vari-
ables. By contrast, we are motivated by reducing learning times by restricting
the range of variables.

3 Framework

3.1 Preliminaries

We assume familiarity with logic programming. We do, however, restate key
terminology. We denote the predicate, constant, and function signatures as P,
C, and F respectively. A variable is first-order if it can be bound to a constant
symbol, a function symbol, or another first-order variable. A variable is second-
order if it can be bound to a predicate symbol or another second-order variable.
We denote the sets of first-order and second-order variables as V1 and V2 respec-
tively. A term is a variable, a constant symbol, or a function symbol of arity
n immediately followed by a bracketed n-tuple of terms. A term is ground if it
contains no variables. An atom is a formula p(t1, . . . , tn), where p is a predicate
symbol of arity n and each ti is a term. An atom is ground if all of its terms
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are ground. We denote as p/n a predicate or function symbol p with arity n. A
second-order term is a second-order variable or a predicate symbol. An atom is
second-order if it has at least one second-order term. A literal is an atom A (a
positive literal) or its negation ¬A (a negative literal). A clause is a disjunction
of literals. The variables in a clause are implicitly universally quantified. A Horn
clause is a clause with at most one positive literal. A definite clause is a Horn
clause with exactly one positive literal. A clause is second-order if it contains
a second-order atom. A logic program is a set of Horn clauses. The constant
symbols are distinct from the functional symbols, as the latter all have non-
zero arity. We call a logic program without proper functional symbols a datalog
program.

3.2 Meta-interpretive Learning

MIL was originally based on a Prolog meta-interpreter. The key difference
between a MIL learner and a standard Prolog meta-interpreter is that whereas a
standard Prolog meta-interpreter attempts to prove a goal by repeatedly fetching
first-order clauses whose heads unify with a given goal, a MIL learner addition-
ally attempts to prove a goal by fetching second-order metarules, supplied as
BK, whose heads unify with the goal. The resulting predicate substitutions are
saved and can be reused later in the proof. Following the proof of a set of goals,
a logic program is induced by projecting the predicate substitutions onto their
corresponding metarules.

We formally define the MIL setting, which we then extend with types. We
first define metarules [6]:

Definition 1 (Metarule). A metarule is a second-order formula of the form:

∃π∀μ A0 ← A1, . . . , Am

where π ⊆ V1 ∪ V2, μ ⊆ V1 ∪ V2, π and μ are disjoint, and each Ai is an atom
of the form p(t1, . . . , tn) such that p/n ∈ P ∪ π ∪ μ and each ti ∈ C ∪ P ∪ π ∪ μ.

When describing metarules, we typically omit the quantifiers and use the
more terse notation shown in Fig. 1.

Fig. 1. Example metarules. The letters P , Q, and R denote existentially quantified
second-order variables. The letters A, B, and C denote universally quantified first-
order variables.
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We define the standard MIL input:

Definition 2 (MIL input). The MIL input is a triple (B,E+, E−) where:

– B = BC ∪ M where BC is a logic program representing BK and M is a set
of metarules

– E+ and E− are disjoint sets of ground atoms representing positive and neg-
ative examples respectively

We now define the hypotheses that MIL will consider. Given a set of metarules
M , a logic program H is a hypothesis if each clause of H can be obtained
by grounding the existentially quantified variables of a metarule in M . This
hypothesis space definition enforces a strong inductive bias in MIL.

We define the standard MIL problem:

Definition 3 (MIL problem). Given a MIL input (BC ∪ M,E+, E−), the
MIL problem is to find a logic program hypothesis H such that H ∪ BC |= E+

and H ∪ BC �|= E−. We call H a solution to the MIL problem.

3.3 Typed Meta-interpretive Learning

We extend MIL to support types. We assume a finite set Tb ⊆ C of base types
(e.g. int , bool), a finite set Tc ⊆ F of polymorphic type constructors (e.g. list/1,
array/1), and a set of type variables Vt. We inductively define a set T of types:

– if τ ∈ Tb ∪ Vt then τ ∈ T
– if c/n ∈ Tc and τ1, . . . , τn ∈ T then c(τ1, . . . , τn) ∈ T
– if τ1, . . . , τn ∈ T then (τ1, . . . , τn) ∈ T

The last case concerns types for predicates. For instance (list(S), list(T ), (S, T ))
is the type for the map/3 predicate. We introduce typed atoms:

Definition 4 (Typed atom). A typed atom is a formula p(τ1, . . . , τm,
t1, . . . , tm), where p is a predicate symbol of arity n, m+m = n, τ1, . . . , τm ∈ T ,
and each ti is a first-order or second-order term.

We can extend this notion to logic programs:

Definition 5 (Typed logic program). A typed logic program is a logic pro-
gram with typed atoms in place of atoms.

To aid readability, in the rest of this paper we label each atom with its
type. For instance we denote succ(int , int , A,B) as succ(A,B):(int , int), and
head(list(T ), T, [H| ],H) as head([H| ],H):(list(T ), T ). Note that the definition
of typed logic programs also applies to metarules. For instance, the typed chain
metarule is:

P (A,B):(Ta, Tb) ← Q(A,C):(Ta, Tc), R(C,B):(Tc, T b)

We define the typed MIL input :
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Definition 6 (Typed MIL input). A typed MIL input is a triple (B,E+, E−)
where:

– B = BC ∪ M where BC is a typed logic program and M is a set of typed
metarules

– E+ and E− are disjoint sets of typed ground atoms representing positive and
negative examples respectively

The typed MIL problem easily follows:

Definition 7 (Typed MIL problem). Given a typed MIL input (BC ∪
M,E+, E−), the typed MIL problem is to find a typed logic program hypothe-
sis H such that H ∪ BC |= E+ and H ∪ BC �|= E−.

3.4 Hypothesis Space Reduction

We now show that types can improve learning performance by reducing the
size of the MIL hypothesis space which in turn reduces sample complexity and
expected error. Note that in this section any reference to MIL typically also
refers to typed MIL. In MIL, the size of the hypothesis space is a function of the
number of metarules m, the number of predicate symbols p, and the maximum
program size n. We typically restrict metarules by their body size and literal
arity. For instance, the chain metarule is restricted to two body literals of arity
two. We say that a metarule is in the fragment Mi

j if it has at most j literals
in the body and each literal has arity at most i. By restricting the form of
metarules, we can calculate the size of a MIL hypothesis space:

Proposition 1 (MIL hypothesis space [11]). Given a MIL input with p
predicate symbols and m metarules in Mi

j, the number of programs expressible
with at most n clauses is O((mpj+1)n).

Proposition 1 shows the MIL hypothesis space grows exponentially both in the
size of the target program and the number of body literals in a clause. For
simplicity, let us only consider metarules in M2

2, such as the chain metarule.
Then the corresponding MIL hypothesis space’s size is O((mp3)n).

We now consider the advantages of adding types, which we show can improve
learning performance when they allow us to ignore irrelevant BK predicates.
Informally, given a typed MIL input, a predicate symbol is type relevant when it
can be used in a hypothesis that is type consistent with the BK and the examples.
We define the relevant ratio to characterise the reduction of the hypothesis space:

Definition 8 (Relevant ratio). Given a typed MIL input with p predicate
symbols where only p′ are type relevant, the relevant ratio is r = p′/p.

The relevant ratio will always be between 0 and 1 with lower values indicating
a greater reduction in the hypothesis space. We characterise this reduction:
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Theorem 1 (Hypothesis space reduction). Given a typed MIL input with
p predicate symbols, m metarules in M2

2, a maximum program size n, and a
relevant ratio r, typing reduces the size of the MIL hypothesis space by a factor
of r3n.

Proof. Replacing p with rp in Proposition 1 and rearranging terms leads to
O(r3n(mp3)n).

Theorem 1 shows that types can considerably reduce the size of hypothesis
spaces2. The Blumer bound [2] says that given two hypothesis spaces of different
sizes, searching the smaller space will result in less error and lower learning times
compared to the larger space, assuming the target hypothesis is in both spaces.
This result implies that types should improve learning performance, so long as
they do not exclude the target hypothesis from the hypothesis space. In this
next section we introduce MetagolT and HEXMILT which implement this idea.

4 MetagolT and HEXMILT

We present two typed MIL systems: MetagolT and HEXMILT , which extend
Metagol and HEXMIL respectively.

4.1 MetagolT

MetagolT is based on an adapted Prolog meta-interpreter. Figure 2 shows the
MetagolT algorithm described as Prolog code. Given a set of atoms representing
positive examples, MetagolT tries to prove each atom in turn. MetagolT first
tries to prove an atom using BK by delegating the proof to Prolog (line 9).
Failing this, MetagolT tries to unify the atom with the head of a metarule (line
16) and to bind the existentially quantified variables in a metarule to symbols
in the signature. MetagolT saves the resulting predicate substitution and tries
to prove the body of the metarule. The predicate substitutions can be reused
to prove atoms later on (line 11). After proving all atoms, MetagolT induces a
logic program by projecting the predicate substitutions onto their corresponding
metarules. MetagolT checks the consistency of the induced program with the
negative examples. If the program is inconsistent, then MetagolT backtracks to
explore different branches of the SLD-tree. Metagol uses iterative deepening to
ensure that the first consistent hypothesis returned has the minimal number of
clauses. At each depth d, MetagolT searches for a consistent hypothesis with at
most d clauses. At each depth d, MetagolT introduces d-1 new predicate symbols,
formed by taking the name of the task and adding underscores and numbers.

MetagolT extends Metagol to support types. We annotate each atom with its
type using the syntax described in Sect. 3.3. For instance, the following Prolog
code denotes an atom with (list(char), int) as its type:

2 It is not hard too see that Theorem 1 generalizes to a reduction factor of r(j+1)n for
any hypothesis space Mi

j .
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Fig. 2. The MetagolT algorithm.

f([a,b,c],5):(list(char),int)

In Fig. 2, each atom and its type is denoted by the variables Atom:DT . The
variable DT represents the derivation type of an atom. The derivation type is
the type of the values of that atom. When trying to prove an atom, MetagolT
ignores predicates whose derivation types do not match, which allows it to prune
the hypothesis space (relative to untyped Metagol). This type check is done
through unification. For instance, when trying to prove an atom using BK (line
9), unification ensures that MetagolT will only call a predicate in the BK if its
derivation type matches the derivation type of the atom it is trying to prove.
For invented predicate symbols, the derivation type is inferred from the type of
the values used to induce that symbol. For instance, suppose we have induced
the following theory to explain the above f/2 atom:

f(A,B):(list(char), int) ← f1(A,C):(list(char), int), succ(C,B):(int , int)
f1(A,B):(list(char), int) ← length(A,C):(list(char), int), succ(C,B):(int , int)

In this theory the derivation type of the invented predicate symbol f1/2 is
(list(char), int). Because f1/2 is sufficiently general to be applied to lists of
any type, we want to assign it a general type that will allow it to be poly-
morphically reused. For instance, we want the theory to also entail the atom
f([1, 2, 3, 4], 6):(list(int), int). To support polymorphic reuse, we annotate each
atom with a second type that denotes the general type of its predicate symbol.
The general type is the least general generalisation of the derivation types for
an atom. For instance, given the atoms:
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f([a, b, c], 5) : (list(char), int)
f([1, 2, 3, 4], 6) : (list(int), int)

We say that (list(T ), int) is the general type of f/2. When trying to prove an
atom using an already invented predicate, line 12 in Fig. 2 checks that the deriva-
tion type of atom is an instance of the general type of the invented predicate.

4.2 HEXMILT

HEXMILT extends the forward-chained state-based encoding of HEXMIL [16].
Forward-chained refers to a restricted class of metarules. For brevity we refer
the reader to [16] for a full description of HEXMIL. Our main contribution is to
extend HEXMIL with types. We do so by augmenting every atom in the ASP
encoding with an additional argument that represents the type of that atom.
For instance, the untyped successor relation

binary bg(succ,A,B):-B=A+1,state(A).

becomes:

binary bg(succ,(int,int),A,B):-B=A+1,state(A,int).

We likewise augment all the deduction rules with types.
Our second contribution is to extend the HEXMIL encoding to support learn-

ing second-order programs. However, as this extension is not crucial to the claims
of this paper we leave a description to future work.

The full typed encoding is available as an online appendix3.

5 Experiments

We now experimentally4 examine the effect of adding types to MIL. We test the
null hypothesis:

Null Hypothesis 1. Adding types to MIL cannot reduce learning times.

To test this null hypothesis we compare the learning times of the typed versus the
untyped systems, i.e. MetagolT versus Metagol, and HEXMILT versus HEXMIL.

5.1 Experiment 1: Ratio Influence

Theorem 1 shows that types can reduce the MIL hypothesis by a cubic factor
depending on the relevant ratio (Definition 8), where a lower ratio indicates a
greater reduction in the hypothesis space. In this experiment we vary the relevant
ratio and measure the effect on learning times. In this experiment there is no
solution to the MIL problem. The purpose of the experiment is to measure the
time it takes to search the entire hypothesis space.

3 HEXMILT encoding file on https://github.com/rolfmorel/jelia19-typedmil.
4 Experimental data available at https://github.com/rolfmorel/jelia19-typedmil.

https://github.com/rolfmorel/jelia19-typedmil
https://github.com/rolfmorel/jelia19-typedmil
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Materials. We use a single positive example p(1, 0) : (int , int). We use 20 BK
predicates, each a uniquely named copy of the succ/2 relation, e.g. succ1/2 ,
succ2/2 , . . . , succ20/2 . The type of each predicate is either (int , int) or (⊥,⊥),
where ⊥ is a dummy type. We use the chain metarule.

Methods. For each relevant ratio rp in {0, 0.05, 0.1, . . . , 1.0} we set the proportion
of types (int , int) versus (⊥,⊥) to rp. We consider program hypotheses with at
most 3 clauses. We measure mean learning times and standard errors over 10
repetitions. For the HEXMIL experiments, we bound integers to the range 0 to
5000 to ensure the grounding is finite and tractable.

Results. Figure 3 shows that varying the relevant ratio (rp) does not affect the
learning times of the untyped systems. By contrast, varying rp affects the learn-
ing times of the typed systems. Specifically, types reduce learning times for both
typed systems when rp ≤ 0.95. When rp is 0 the typed systems almost instantly
determine that there is no solution. When rp is 0.5, types reduce learning time
by approximately 500% with MetagolT and 300% with HEXMILT . When rp is 1
the typed systems take slightly longer than their untyped versions because of the
small overhead in handling types. The flatter curve of HEXMILT compared to
MetagolT is because of implementation differences. The main cost of MetagolT is
trying different predicate substitutions. By contrast, the main cost of HEXMILT

is grounding the succi/2 predicates. Overall these results suggest that we can
reject the null hypothesis.

Fig. 3. Relevant ratio experiment results.

5.2 Experiment 2: Droplasts

In this experiment we learn a droplasts program that takes lists of lists and drops
the last element of each sublist. Figure 4 shows examples of this problem. We
investigate how varying the amount of BK affects learning time.
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Fig. 4. Example droplasts/2 atoms.

Materials. We provide each system with two positive droplasts(x, y) examples
where x is the input list and y is the output list. To generate an example, for
the input list we select a random integer k between 2 and 5 that represents the
number of sublists. We then randomly generate k sublists, where each sublist
contains between three and five lowercase characters. The output list is the input
list excluding the last element of each sublist. We use small list lengths because
of grounding issues with the ASP systems. The Prolog systems can handle much
larger values, as previously demonstrated [8]. Figure 5 shows the BK available
in the experiments. We always use the map/3, tail/2, and reverse/2 predicates,
and sample others to include. We use the chain and curry metarules.

Fig. 5. BK predicates used in the droplasts experiment. We omit definitions for brevity.

Methods. For each k in {0, 1, . . . , 25}, we uniformly sample with replacement k
predicates from those shown in Fig. 5 and generate 2 positive training examples.
For each learning system, we learn a droplasts/2 program using the training
examples and BK augmented with the k sampled predicates. We measure mean
learning times and standard errors over 10 repetitions.

Results. Figure 6 shows that types reduce learning times in almost all cases. The
high variance in the ASP results is mainly because of predicates that operate
over integers (e.g. length/2 ), which greatly increase grounding complexity. In
all cases both the typed and untyped approaches learn programs with 100%
accuracy (plot omitted for brevity). Figure 7 shows an example program learned
by MetagolT . The Metagol systems show a clear distinction in the learning times
that they require. For the HEXMIL systems intractability prohibits us from
running the experiment with the full 25 predicates, though the greater variance
and higher mean learning times for the untyped system are already apparent in
Fig. 6. These results suggest that we can reject the null hypothesis.
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Fig. 6. Droplasts experiment results.

Fig. 7. An example droplasts/2 program learned by MetagolT . The predicate symbols
droplasts 1/2 and droplasts 2/2 are invented by MetagolT .

5.3 Experiment 3: More Problems

To further demonstrate that types can improve learning performance, we evalu-
ate the untyped and typed systems on four additional problems:

– filtercapslower/2 takes a list of characters, discards the lowercase characters,
and makes the remaining letters lowercase

– filterevendbl/2 takes a list of integers, discards the odd numbers, and doubles
the even numbers

– nestedincr/2 takes lists of lists of integers and increments each integer by two
– finddups/2 takes a list of characters and returns the duplicate character

Materials. As with the previous experiment, we randomly generate examples of
varying lengths. We omit full details for brevity. We use the BK from Experiment
2 (Fig. 5) augmented with 14 predicates (Fig. 8), i.e. a total of 24 background
predicates. We use the chain, curry, dident, and tailrec metarules.
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Fig. 8. Additional BK predicates used in Experiment 3. We omit definitions for brevity.

Methods. For each problem, we supply each system with all 24 BK predicates and
5 positive and 5 negative examples of each problem. We measure mean learning
times and standard errors over 10 repetitions. We set a maximum learning time
of 10 min.

Results. Figure 9 shows that types can significantly reduce learning times. The
accuracy of the Prolog systems is identical in all cases, and is only less than 100%
for the finddups/2 program (4 out of 10 trials learned an erroneous hypothesis).
The ASP timeouts are because the grounding is too large when using nested lists,
integers, or recursive metarules. Again, the clear distinction in performance of
the typed and untyped systems is evidence for rejecting the null hypothesis.

Fig. 9. Experiment 3 results that show mean learning times and standard error.

6 Conclusions

We have extended MIL to support types. We have shown that types can reduce
the MIL hypothesis space by a cubic factor (Theorem 1). We have introduced two
typed MIL systems: MetagolT , which extends Metagol, and HEXMILT which
extends HEXMIL. Both systems support polymorphic types and the inference of
types for invented predicates. We have experimentally demonstrated that types
can significantly reduce learning times for both systems.
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Limitations and Future Work. Although we have focused on extending MIL with
types, our results and techniques should be applicable to other areas of ILP and
program induction. Because we declaratively represent types, our techniques
should be directly transferable to other forms of ILP that use metarules [1,4,12,
32,37]. Future work should study the advantages of using types in these other
approaches.

The MIL problem is decidable in the datalog setting [23]. However, because
typed MIL supports polymorphic types, which are represented as function sym-
bols, the decidability of the typed MIL problem is unclear. Future work should
address this issue. A possible solution involves bounding the function application
depth in the type terms while all relevant types for a hypothesis space remain
expressible.

We have focused on polymorphic types. A natural extension, which has not
been explored in ILP, is to support more complex types, such as refinement
types [18].

MIL supports predicate invention so it is sensible to ask whether it can
also support type invention. For instance, rather than treating strings as list
of characters, it would be advantageous to ascribe more precise types, such as
postcode or email. This idea is closely related to the idea of learning declarative
bias [3].
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