
Francesco Calimeri
Nicola Leone
Marco Manna (Eds.)

 123

LN
AI

 1
14

68

16th European Conference, JELIA 2019
Rende, Italy, May 7–11, 2019
Proceedings

Logics in
Artificial Intelligence

Lecture Notes in Artificial Intelligence 11468

Subseries of Lecture Notes in Computer Science

Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

Founding Editor

Jörg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/1244

http://www.springer.com/series/1244

Francesco Calimeri • Nicola Leone •

Marco Manna (Eds.)

Logics in
Artificial Intelligence
16th European Conference, JELIA 2019
Rende, Italy, May 7–11, 2019
Proceedings

123

Editors
Francesco Calimeri
University of Calabria
Rende, Italy

Nicola Leone
University of Calabria
Rende, Italy

Marco Manna
University of Calabria
Rende, Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-030-19569-4 ISBN 978-3-030-19570-0 (eBook)
https://doi.org/10.1007/978-3-030-19570-0

LNCS Sublibrary: SL7 – Artificial Intelligence

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-0866-0834
https://orcid.org/0000-0003-3323-9328
https://doi.org/10.1007/978-3-030-19570-0

Preface

This volume contains the papers presented at the 16th European Conference on Logics
in Artificial Intelligence (JELIA 2019) held during May 7–11, 2019 in Rende
(Cosenza), Italy. This edition was organized by the Artificial Intelligence Group of the
Department of Mathematics and Computer Science at the University of Calabria.

The European Conference on Logics in Artificial Intelligence (or Journées
Européennes sur la Logique en Intelligence Artificielle – JELIA) began back in 1988,
as a workshop, in response to the need for a European forum for the discussion of
emerging work in this field. Since then, JELIA has been organized biennially, with
proceedings published in the Springer series Lecture Notes in Artificial Intelligence.
Previous meetings took place in Roscoff, France (1988), Amsterdam, The Netherlands
(1990), Berlin, Germany (1992), York, UK (1994), Évora, Portugal (1996), Dagstuhl,
Germany (1998), Málaga, Spain (2000), Cosenza, Italy (2002), Lisbon, Portugal
(2004), Liverpool, UK (2006), Dresden, Germany (2008), Helsinki, Finland (2010),
Toulouse, France (2012), and Larnaca, Cyprus (2016). The aim of JELIA is to bring
together active researchers interested in all aspects concerning the use of logics in
artificial intelligence to discuss current research, results, problems, and applications of
both theoretical and practical nature. JELIA strives to foster links and facilitate
cross-fertilization of ideas among researchers from various disciplines, among
researchers from academia and industry, and between theoreticians and practitioners.
The scientific community has been increasingly showing interest in JELIA, which
during the years featured the growing participation of researchers from outside Europe
and a very high overall technical quality of contributions; hence, the conference turned
into a major biennial forum and a reference for the discussion of approaches, especially
logic-based, to artificial intelligence.

JELIA 2019 received 126 submissions in two different formats (long and short
papers); throughout the reviewing process, three Program Committee members took
care of each work; at the end, the Program Committee decided to accept a final list of
50 papers, consisting of 40 long and 10 short contributions. The accepted papers span a
number of areas within logics in AI; eventually, we classified them in the categories
that these proceedings are organized in: “Belief Revision and Argumentation,”
“Causal, Defeasible and Inductive Reasoning,” “Conditional, Probabilistic and
Propositional Logic,” “Description Logics,” “Logic Programming,” “Modal and
Default Logic,” and “Temporal Logic.” We would like to acknowledge the authors of
all the submitted papers, including those not accepted for publication: the quality of the
contributions was rather high, and this is the first and essential ingredient for a suc-
cessful scientific conference.

The JELIA 2019 program was anchored by the invited talks by Georg Gottlob and
Henri Prade, who provided the audience with two keynote speeches: “Vadalog: Recent
Advances and Applications” and “Possibilistic Logic: From Certainty-Qualified
Statements to Two-Tiered Logics – A Prospective Survey,” respectively. Two out of

all the accepted papers were nominated via a secret ballot among the Program
Committee members as the Best Paper (authored by Forkel and Borgwardt:
“Closed-World Semantics for Conjunctive Queries with Negation over ELH-bottom
Ontologies”) and the Best Student Paper (authored by Cabalar, Fandinno, Schaub and
Schellhorn: “Lower Bound Founded Logic of Here-and-There”); they received a cash
prize of EUR 500 each, kindly offered by Springer. These two contributions were also
invited to the IJCAI-19 Sister Conference Best Paper Track in order to represent JELIA
2019. Furthermore, the authors of the top-notch contributions (including both best
papers) will be invited to submit long and more elaborate versions of their work for a
special issue of Theory and Practice of Logic Programming (TPLP).

JELIA 2019 closed by hosting an engaging public event, titled “Intelligenza
Artificiale: etica, opportunità, insidie”: a disseminative panel discussion (held in Ital-
ian) about ethics, opportunities, and threats of AI that was open to the general public,
and featured top-notch scientists, journalists, and industry leaders. Among participants,
we mention here Nicola Leone, Georg Gottlob, Bruno Siciliano, Gianluigi Greco,
Pietro Scarpino, Marco Menichelli, and Maurizio Melis.

Many people and organizations contributed to the success of JELIA 2019; we start
from the authors, the members of the Program Committee, and the additional experts
who helped during the reviewing process, who diligently worked to produce a fair and
thorough evaluation of the submitted papers, thus contributing and ensuring the high
scientific quality of JELIA 2019; most importantly, we mention the invited speakers
and the authors of the accepted papers, who provided the conference with a
state-of-the-art technical program. We thank all of them!

We gratefully acknowledge all members and helpers of the local Organizing
Committee of the Department of Mathematics and Computer Science at the University
of Calabria, for taking care of all the big and small things needed in order to allow this
event to actually take place. Furthermore, we gratefully acknowledge our sponsors and
supporters for their generous help; in this respect, a special mention goes to Simona
Perri, who did an awesome job playing several key roles: publicity chair, finance chair,
member of the team organizing the closing event. Last, but not least, we thank the
people of EasyChair for providing resources and a great conference management
system.

May 2019 Francesco Calimeri
Nicola Leone
Marco Manna

vi Preface

Organization

Committees

General Chair

Nicola Leone University of Calabria, Italy

Program Chairs

Francesco Calimeri University of Calabria, Italy
Marco Manna University of Calabria, Italy

Program Committee

José Julio Alferes Universidade Nova de Lisboa, Portugal
Mario Alviano University of Calabria, Italy
Leila Amgoud IRIT-CNRS, France
Carlos Areces Universidad Nacional de Córdoba, Argentina
Franz Baader TU Dresden, Germany
Pietro Baroni University of Brescia, Italy
Peter Baumgartner CSIRO, Australia
Salem Benferhat CNRS, Université d’Artois, France
Leopoldo Bertossi Carleton University, RelationalAI Inc., Canada
Meghyn Bienvenu CNRS, University of Bordeaux, France
Alexander Bochman Holon Institute of Technology, Israel
Gerhard Brewka Leipzig University, Germany
Pedro Cabalar University of Coruna, Spain
Marco Calautti The University of Edinburgh, UK
David Carral TU Dresden, Germany
Giovanni Casini University of Luxembourg, Luxembourg
Cristina Civili Samsung R&D Institute United Kingdom, UK
Mehdi Dastani Utrecht University, The Netherlands
James Delgrande Simon Fraser University, Canada
Didier Dubois IRIT, Université Paul Sabatier, France
Ulle Endriss University of Amsterdam, The Netherlands
Wolfgang Faber Alpen-Adria-Universität Klagenfurt, Austria
Luis Farinas Del Cerro CNRS, France
Eduardo Fermé Universidade da Madeira, Portugal
Michael Fisher University of Liverpool, UK
Michael Gelfond Texas Tech University, USA
Laura Giordano Università del Piemonte Orientale, Italy
Valentina Gliozzi Università di Torino, Italy
Lluis Godo Artificial Intelligence Research Institute, IIIA-CSIC
Andreas Herzig IRIT-CNRS, University of Toulouse, France

Tomi Janhunen Aalto University, Finland
Gabriele Kern-Isberner Technische Universität Dortmund, Germany
Sébastien Konieczny CRIL-CNRS, France
Roman Kontchakov University of London, UK
Jérôme Lang CNRS, Université Paris-Dauphine, France
Joohyung Lee Arizona State University, USA
João Leite Universidade Nova de Lisboa, Portugal
Vladimir Lifschitz The University of Texas at Austin, USA
Michael Loizos Open University of Cyprus, Cyprus
Emiliano Lorini IRIT-CNRS, France
Thomas Lukasiewicz University of Oxford, UK
Inês Lynce INESC-ID, Universidade de Lisboa, Portugal
Marco Maratea University of Genoa, Italy
Jerzy Marcinkowski Uniwersytetu Wroclawskiego, Poland
Pierre Marquis CNRS, Université d’Artois, France
Thomas Meyer University of Cape Town and CAIR, South Africa
Angelo Montanari University of Udine, Italy
Michael Morak Vienna University of Technology, Austria
Manuel Ojeda-Aciego University of Malaga, Spain
Magdalena Ortiz Vienna University of Technology, Austria
David Pearce Universidad Politécnica de Madrid, Spain
Rafael Peñaloza Free University of Bozen-Bolzano, Italy
Luís Moniz Pereira Universidade Nova de Lisboa, Portugal
Andreas Pieris The University of Edinburgh, UK
Henri Prade IRIT-CNRS, France
Christoph Redl Technische Universität Wien, Austria
Christian Retoré CNRS, LIRMM University of Montpellier, France
Francesco Ricca University of Calabria, Italy
Fabrizio Riguzzi University of Ferrara, Italy
Jussi Rintanen Aalto University, Finland
Chiaki Sakama Wakayama University, Japan
Uli Sattler The University of Manchester, UK
Michael Thielscher The University of New South Wales, Australia
Mirek Truszczynski University of Kentucky, USA
Leon van der Torre University of Luxembourg, Luxembourg
Rineke Verbrugge University of Groningen, Institute of Artificial

Intelligence, The Netherlands
Carlos Viegas Damásio Universidade Nova de Lisboa, Portugal
Toby Walsh The University of New South Wales, Australia
Mary-Anne Williams Innovation and Enterprise Research Lab, UTS
Frank Wolter University of Liverpool, UK
Stefan Woltran Vienna University of Technology, Austria

Publicity Chair

Simona Perri University of Calabria, Italy

viii Organization

Finance Chair

Simona Perri University of Calabria, Italy

Organization Chairs

Giovanni Amendola University of Calabria, Italy
Carmine Dodaro University of Genoa, Italy
Valeria Fionda University of Calabria, Italy

Organizing Committee

Weronika T. Adrian University of Calabria, Italy
Pierangela Bruno University of Calabria, Italy
Francesco Cauteruccio University of Calabria, Italy
Roberta Costabile University of Calabria, Italy
Bernardo Cuteri University of Calabria, Italy
Alessio Fiorentino University of Calabria, Italy
Stefano Germano University of Calabria, Italy
Cinzia Marte University of Calabria, Italy
Aldo Marzullo University of Calabria, Italy
Francesco Pacenza University of Calabria, Italy
Jessica Zangari University of Calabria, Italy

Additional Reviewers

Alberti, Marco
Aravanis, Theofanis
Aït-Kaci, Hassan
Cohen, Andrea
Console, Marco
Cota, Giuseppe
Cramer, Marcos
Delobelle, Jérôme
Dodaro, Carmine
Doder, Dragan
Ferrando, Angelo
Flaminio, Tommaso
Gebser, Martin
Gigante, Nicola
Gonçalves, Ricardo
Hans.Van-Ditmarsch, Hans
Haslum, Patrik
Hustadt, Ullrich
Ioannou, Christodoulos
Jeřábek, Emil
Kieroński, Emanuel
Lisitsa, Alexei

Lorini, Emiliano
Mantadelis, Theofrastos
Martinez, Maria Vanina
Matos, Vinícius
Michaliszyn, Jakub
Molinari, Alberto
Nicolosi-Asmundo, Marianna
Novaro, Arianna
Nuradiansyah, Adrian
Pagnucco, Maurice
Parent, Xavier
Peppas, Pavlos
Ribeiro, Jandson S.
Sallinger, Emanuel
Sciavicco, Guido
Son, Tran Cao
Wallon, Romain
Wang, Yi
Weydert, Emil
Yang, Zhun
Zese, Riccardo

Organization ix

Main Sponsors

• University of Calabria (https://www.mat.unical.it)
• Department of Mathematics and Computer Science, University of Calabria

(https://www.mat.unical.it)
• Regione Calabria: Assessorato Istruzione e Attività Culturali, Università e

Alta Formazione (http://www.regione.calabria.it)
• EurAI (https://www.eurai.org)
• Springer (https://www.springer.com)
• Altilia S.r.l. (http://www.altiliagroup.com/)
• Integris S.p.a. (http://www.integris.it/home)
• Intellimech (https://www.intellimech.it)
• Magazzini Rossella (http://www.magazzinirossella.it)
• NTT Data (https://it.nttdata.com/)

Under the patronage of

• Città di Rende (https://www.comune.rende.cs.it/)
• Città di Cosenza (http://www.comune.cosenza.it/)

x Organization

https://www.mat.unical.it
https://www.mat.unical.it
http://www.regione.calabria.it
https://www.eurai.org
https://www.springer.com
http://www.altiliagroup.com/
http://www.integris.it/home
https://www.intellimech.it
http://www.magazzinirossella.it
https://it.nttdata.com/
https://www.comune.rende.cs.it/
http://www.comune.cosenza.it/

Contents

Invited Talks

Possibilistic Logic: From Certainty-Qualified Statements to Two-Tiered
Logics – A Prospective Survey . 3

Didier Dubois and Henri Prade

Vadalog: Recent Advances and Applications . 21
Georg Gottlob, Andreas Pieris, and Emanuel Sallinger

Belief Revision and Argumentation

AGM Meets Abstract Argumentation: Contraction for Dung Frameworks. . . . 41
Ringo Baumann and Felix Linker

A Possible World View and a Normal Form
for the Constellation Semantics . 58

Stefano Bistarelli and Theofrastos Mantadelis

Well-Foundedness in Weighted Argumentation Frameworks 69
Stefano Bistarelli and Francesco Santini

Multi-valued GRAPPA . 85
Gerhard Brewka, Jörg Pührer, and Stefan Woltran

Empirical Study on Human Evaluation of Complex
Argumentation Frameworks . 102

Marcos Cramer and Mathieu Guillaume

Preprocessing Argumentation Frameworks via Replacement Patterns 116
Wolfgang Dvořák, Matti Järvisalo, Thomas Linsbichler,
Andreas Niskanen, and Stefan Woltran

Manipulating Skeptical and Credulous Consequences
When Merging Beliefs. 133

Adrian Haret and Johannes P. Wallner

Repairing Non-monotonic Knowledge Bases . 151
Markus Ulbricht

Causal, Defeasible and Inductive Reasoning

ACUOS2: A High-Performance System for Modular ACU Generalization
with Subtyping and Inheritance. 171

María Alpuente, Demis Ballis, Angel Cuenca-Ortega, Santiago Escobar,
and José Meseguer

Taking Defeasible Entailment Beyond Rational Closure 182
Giovanni Casini, Thomas Meyer, and Ivan Varzinczak

Typed Meta-interpretive Learning of Logic Programs 198
Rolf Morel, Andrew Cropper, and C.-H. Luke Ong

Explaining Actual Causation in Terms of Possible Causal Processes 214
Marc Denecker, Bart Bogaerts, and Joost Vennekens

Explaining Actual Causation via Reasoning About Actions and Change. 231
Emily LeBlanc, Marcello Balduccini, and Joost Vennekens

Advancements in Resource-Driven Substructural Defeasible Logic 247
Francesco Olivieri, Guido Governatori, and Matteo Cristani

SLD-Resolution Reduction of Second-Order Horn Fragments 259
Sophie Tourret and Andrew Cropper

Conditional, Probabilistic and Propositional Logic

Systematic Generation of Conditional Knowledge Bases
up to Renaming and Equivalence . 279

Christoph Beierle and Steven Kutsch

Unifying Reasoning and Core-Guided Search for Maximum Satisfiability . . . 287
Jeremias Berg and Matti Järvisalo

Facets of Distribution Identities in Probabilistic Team Semantics. 304
Miika Hannula, Åsa Hirvonen, Juha Kontinen, Vadim Kulikov,
and Jonni Virtema

Description Logics

Privacy-Preserving Ontology Publishing for EL Instance Stores 323
Franz Baader, Francesco Kriegel, and Adrian Nuradiansyah

A Bayesian Extension of the Description Logic ALC 339
Leonard Botha, Thomas Meyer, and Rafael Peñaloza

Computing Minimal Projection Modules for ELHr-Terminologies. 355
Jieying Chen, Michel Ludwig, Yue Ma, and Dirk Walther

xii Contents

Closed-World Semantics for Conjunctive Queries with Negation
over ELH? Ontologies . 371

Stefan Borgwardt and Walter Forkel

Extending ALC with the Power-Set Construct . 387
Laura Giordano and Alberto Policriti

Learning Description Logic Axioms from Discrete Probability Distributions
over Description Graphs. 399

Francesco Kriegel

Learning Ontologies with Epistemic Reasoning: The EL Case. 418
Ana Ozaki and Nicolas Troquard

Counting Strategies for the Probabilistic Description Logic ALCME

Under the Principle of Maximum Entropy . 434
Marco Wilhelm, Gabriele Kern-Isberner, Andreas Ecke,
and Franz Baader

Logic Programming

Memory-Saving Evaluation Plans for Datalog. 453
Carlo Allocca, Roberta Costabile, Alessio Fiorentino, Simona Perri,
and Jessica Zangari

Chain Answer Sets for Logic Programs with Generalized Atoms. 462
Mario Alviano and Wolfgang Faber

Algorithm Selection for Paracoherent Answer Set Computation. 479
Giovanni Amendola, Carmine Dodaro, Wolfgang Faber, Luca Pulina,
and Francesco Ricca

Extending Bell Numbers for Parsimonious Chase Estimation 490
Giovanni Amendola and Cinzia Marte

The Weak Completion Semantics Can Model Inferences of Individual
Human Reasoners . 498

Christian Breu, Axel Ind, Julia Mertesdorf, and Marco Ragni

Lower Bound Founded Logic of Here-and-There . 509
Pedro Cabalar, Jorge Fandinno, Torsten Schaub,
and Sebastian Schellhorn

A Logic-Based Question Answering System for Cultural Heritage. 526
Bernardo Cuteri, Kristian Reale, and Francesco Ricca

Contents xiii

Characterising Relativised Strong Equivalence with Projection
for Non-ground Answer-Set Programs . 542

Tobias Geibinger and Hans Tompits

Uhura: An Authoring Tool for Specifying Answer-Set Programs Using
Controlled Natural Language . 559

Tobias Kain and Hans Tompits

Abstraction for Non-ground Answer Set Programs 576
Zeynep G. Saribatur, Peter Schüller, and Thomas Eiter

The Hexlite Solver: Lightweight and Efficient Evaluation
of HEX Programs . 593

Peter Schüller

Epistemic Answer Set Programming . 608
Ezgi Iraz Su

Modal and Default Logic

A Logic of Objective and Subjective Oughts . 629
Aldo Iván Ramírez Abarca and Jan Broersen

On the Complexity of Graded Modal Logics with Converse 642
Bartosz Bednarczyk, Emanuel Kieroński, and Piotr Witkowski

The Dynamic Logic of Policies and Contingent Planning 659
Thomas Bolander, Thorsten Engesser, Andreas Herzig,
Robert Mattmüller, and Bernhard Nebel

Interpolation and Beth Definability in Default Logics 675
Valentin Cassano, Raul Fervari, Carlos Areces, and Pablo F. Castro

Axiomatising Logics with Separating Conjunction and Modalities 692
Stéphane Demri, Raul Fervari, and Alessio Mansutti

Nested Sequents for the Logic of Conditional Belief 709
Marianna Girlando, Björn Lellmann, and Nicola Olivetti

Reasoning About Cognitive Attitudes in a Qualitative Setting. 726
Emiliano Lorini

Computational Complexity of Core Fragments of Modal Logics
T, K4, and S4. 744

Przemysław Andrzej Wałęga

xiv Contents

Temporal Logic

Axiomatic Systems and Topological Semantics for Intuitionistic
Temporal Logic . 763

Joseph Boudou, Martín Diéguez, David Fernández-Duque,
and Fabián Romero

Interval Temporal Logic Decision Tree Learning. 778
Andrea Brunello, Guido Sciavicco, and Ionel Eduard Stan

Stable-Ordered Models for Propositional Theories with Order Operators 794
Johannes Oetsch and Juan-Carlos Nieves

Cut-Free Calculi and Relational Semantics for Temporal STIT Logics 803
Kees van Berkel and Tim Lyon

Author Index . 821

Contents xv

Invited Talks

Possibilistic Logic:
From Certainty-Qualified Statements
to Two-Tiered Logics – A Prospective

Survey

Didier Dubois and Henri Prade(B)

IRIT – CNRS, 118, Route de Narbonne, 31062 Toulouse Cedex 09, France
{dubois,prade}@irit.fr

Abstract. Possibilistic logic (PL) is more than thirty years old. The
paper proposes a survey of its main developments and applications in
artificial intelligence, together with a short presentation of works in
progress. PL amounts to a classical logic handling of certainty-qualified
statements. Certainty is estimated in the setting of possibility theory
as a lower bound of a necessity set-function. An elementary possibilis-
tic formula is a pair made of a classical logic formula, and a certainty
level belonging to a bounded scale. Basic PL handles only conjunctions
of such formulas, and PL bases can be viewed as classical logic bases
layered in terms of certainty. Semantics is in terms of epistemic states
represented by fuzzy sets of interpretations. A PL base is associated
with an inconsistency level above which formulas are safe from incon-
sistency. Applications include reasoning with default rules, belief revi-
sion, Bayesian possibilistic networks, information fusion, and preference
modeling (in this latter case, certainty is turned into priority). Different
extensions of basic PL are briefly reviewed, where levels take values in
lattices, are replaced by vectors of levels, or are handled in a purely sym-
bolic manner (without being instantiated). This latter extension may
be of interest for explanation purposes. A paraconsistent treatment of
inconsistency is also discussed. Still another extension allows for associ-
ating possibilistic formulas with sets of agents or sources that support
them. In generalized possibilistic logic (GPL), negation and disjunction
can be applied as well as conjunction, to possibilistic formulas. It may
be viewed as a fragment of modal logic (such as KD45) where modalities
cannot be nested. GPL can be still extended to a logic involving both
objective and non-nested multimodal formulas. Applications of GPL to
the modeling of ignorance, to the representation of answer set programs,
to reasoning about other agents’ beliefs, and to a logic of argumentation
are outlined. Generally speaking, the interest and the strength of PL
relies on a sound alliance between classical logic and possibility theory
which offers a rich representation setting allowing an accurate modeling
of partial ignorance. The paper focuses more on ideas than on techni-
calities and provides references for details (Invited talk presented by the
second author).

c© Springer Nature Switzerland AG 2019
F. Calimeri et al. (Eds.): JELIA 2019, LNAI 11468, pp. 3–20, 2019.
https://doi.org/10.1007/978-3-030-19570-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19570-0_1&domain=pdf
https://doi.org/10.1007/978-3-030-19570-0_1

4 D. Dubois and H. Prade

1 Introduction

An important part of the pieces of information one has to deal with are pervaded
with uncertainty. In other words, we have to handle statements that are not
all fully certain. This does not mean that we are always able to quantify the
certainty of a given piece of information in a precise manner. This calls for a
setting that may be qualitative. Moreover, the fact that one has no certainty
at all in favor of some statement should not entail that we have some certainty
about the opposite statement, since one may be fully ignorant about a situation.
This rules out probabilities (Prob(A) = 0 entails Prob(notA) = 1).

Possibility theory has not this drawback since uncertainty about A is assessed
in terms of two dual set functions, called possibility and necessity measures, by
Π(A) and N(A) = 1 − Π(notA), and N(A) = 0 = N(notA) in case of total
ignorance about A. Moreover, possibility theory may be numerical or qualita-
tive [47]. In the first case, possibility measures and the dual necessity measures
can be regarded respectively as upper bounds and lower bounds of ill-known
probabilities; they are also particular cases of plausibility and belief functions
respectively [41,72]. In fact, possibility measures and necessity measures consti-
tute the simplest, non trivial, imprecise probabilities system [73]. Second, when
qualitative, possibility theory provides a natural approach to the grading of pos-
sibility and necessity modalities on finite scales in an ordinal way.

Possibility theory has a logical counterpart, called possibilistic logic (PL)
[35,37,48,50], which remains close to classical logic, and propagates certainty
in a qualitative manner, retaining the weakest link in a chain of inferences. As
this survey is going to show, PL logic turns to be an unexpectedly versatile tool.
The paper is organized as follows. We give a short background on possibility
theory in Sect. 2. Section 3 is devoted to basic PL, which handles conjunctions
of PL formulas, made of a classical logic formula associated with a lower bound
of necessity measure. Section 4 provides an overview of various applications of
basic PL to default reasoning, belief revision, information fusion, decision under
uncertainty, and uncertainty handling in databases; some other applications are
briefly mentioned, as well as the close relationship of PL bases with possibilistic
networks. Section 5 covers different extensions of PL where classical logic for-
mulas may be associated with values in lattices, with vectors of certainty levels,
with purely symbolic (non instantiated) values, with paraconsistent valuations,
or still with sets of agents or sources that support them. Section 6 deals with
generalized possibilistic logic, a two-tiered logic having a powerful representa-
tion ability for modeling uncertain epistemic states, which can capture answer
set programming. Section 7 points out potential applications to multiple agent
reasoning and to argumentative reasoning.

2 Short Refresher on Possibility Theory

Possibility theory originates in Zadeh’s paper [75] and has been more extensively
investigated in [40,41]. Zadeh starts from the idea of a possibility distribution to
which he associates a possibility measure. A possibility distribution is a mapping

Possibilistic Logic 5

π from a set of states, or universe of discourse, U (it may be an attribute domain,
the set of interpretation of a propositional language, etc) to a totally ordered
scale S, with top denoted by 1 and bottom by 0. It is assumed that S is equipped
with an order-reversing map denoted by λ ∈ S �→ 1−λ. Different types of scales
may be used from a finite scale S = {1 = λ1 > . . . λn > λn+1 = 0} in the
qualitative case, to the unit interval in the quantitative case, see [52] for other
options. π(u) = 0 means that state u is rejected as impossible; π(u) = 1 means
that state u is totally possible (= plausible). The larger π(u), the more possible
the state u is. If the universe U is exhaustive, at least one of the elements in S
should be the actual world, so that ∃u, π(u) = 1 (normalization). This condition
expresses the consistency of the epistemic state described by π.

A possibility distribution π is said to be at least as specific as another π′ if
and only if for each state of affairs u: π(u) ≤ π′(u) [74]. Then, π is at least as
restrictive and informative as π′, since it rules out at least as many states with
at least as much strength. In this setting, extreme forms of partial knowledge
can be captured, namely: (i) complete knowledge: for some u0, π(u0) = 1 and
π(u) = 0,∀u �= u0 (only u0 is possible); (ii) complete ignorance: π(u) = 1,∀u ∈ U
(all states are possible).

Two dual set functions are associated with a possibility distribution, namely
a possibility measure Π and a necessity measure N : ∀A ⊆ U ,

Π(A) = supu∈A π(u); N(A) = 1 − Π(Ac) = infs/∈A 1 − π(u),

with Ac = U \ A. Π(A) (resp. N(A)) evaluates to what extent A is consistent
with π (resp. A is certainly implied by π). Generally, Π(U) = N(U) = 1 and
Π(∅) = N(∅) = 0 (since π is normalized to 1). In the Boolean case, the possibility
distribution reduces to a disjunctive (epistemic) set E ⊆ U , and possibility and
necessity are s.t.: (i) Π(A) = 1 if A ∩ E �= ∅, and 0 otherwise; (ii) N(A) = 1 if
E ⊆ A, and 0 otherwise.

Possibility measures satisfy a characteristic “maxitivity” property Π(A ∪ B)
= max(Π(A),Π(B)), and necessity measures a “minitivity” property N(A∩B)
= min(N(A), N(B)). On infinite spaces, these axioms must hold for infinite fam-
ilies of sets. As a consequence, of the normalization of π, min(N(A), N(Ac)) = 0
and max(Π(A),Π(Ac)) = 1, or equivalently Π(A) = 1 whenever N(A) > 0,
namely that something somewhat certain should be first fully possible, i.e.
consistent with the available information. Moreover, one cannot be somewhat
certain of both A and Ac, without being inconsistent. But we only have
N(A ∪ B) ≥ max(N(A), N(B)). This goes well with the idea that one may be
certain about the event A ∪ B, without being really certain about more specific
events such as A and B.

Human knowledge is often expressed by statements to which belief degrees
are attached. Certainty-qualified pieces of uncertain information of the form “A
is certain to degree α” can then be modeled by the constraint N(A) ≥ α. It
represents a family of possible epistemic states π that obey this constraint. The
least specific possibility distribution among them exists and is defined by [41]:
π(A,α)(u) = 1 if u ∈ A, π(A,α)(u) = 1 − α otherwise. If α = 1 we get the charac-
teristic function of A. If α = 0, we get total ignorance. It is a key building-block

6 D. Dubois and H. Prade

to construct possibility distributions from several pieces of uncertain knowledge.
It is instrumental in PL semantics.

There are two other set functions: (i) a measure of guaranteed possibility or
strong possibility [31,47]: Δ(A) = infu∈A π(u) which estimates to what extent
all states in A are possible according to evidence. Δ(A) can be used as a degree of
evidential support for A, and its dual conjugate ∇ such that ∇(A) = 1−Δ(Ac) =
supu�∈A 1−π(u). ∇(A) evaluates the degree of potential or weak necessity of A, as
it is 1 only if some state u out of A is impossible. Thus, the functions Δ and ∇ are
decreasing wrt set inclusion (in full contrast with Π and N which are increasing).
They satisfy the characteristic properties Δ(A ∪ B) = min(Δ(A),Δ(B)) and
∇(A ∩ B) = max(∇(A),∇(B)).

Interestingly enough, the four evaluations of an event A and the four eval-
uations of its opposite Ac can be organized in a cube of opposition [49] (see
below), whose front and back facets are graded extension of the traditional
square of opposition [67]. Counterparts of the characteristic properties of the
square of opposition do hold. First, the diagonals (in dotted lines) of these
facets link dual measures through the involutive order-reversing function 1− (·).
The vertical edges of the cube, as well as the diagonals of the side facets,
which are bottom-oriented arrows, correspond to entailments here expressed by
inequalities. Indeed, provided that π and 1 − π are both normalized, we have
for all A, max(N(A),Δ(A)) ≤ min(Π(A),∇(A)). The thick black lines of the
top facets express mutual exclusiveness under the form min(N(A), N(Ac)) =
min(Δ(A),Δ(Ac)) = min(N(A),Δ(Ac)) = min(Δ(A), N(Ac)) = 0. Dually,
the double lines of the bottom facet correspond to max(Π(A),Π(Ac)) =
max(∇(A),∇(Ac)) = max(Π(A),∇(Ac)) = max(∇(A),Π(Ac)) = 1. Thus, the
following cube summarizes the interplay between the different set functions in
possibility theory.

∇(A)

Π(A) Π(Ac)

∇(Ac)

Δ(A)

N(A) N(Ac)

Δ(Ac)

3 Basic Possibilistic Logic

A basic PL formula is a pair (a, α) made of a classical logic formula a associated
with a certainty level α ∈ (0, 1], viewed as a lower bound of a necessity measure,
i.e., (a, α) is semantically understood as N(a) ≥ α. Formulas of the form (a, 0),
contain no information (N(a) ≥ 0 always holds), and are not considered. Thanks
to the minitivity property of necessity measures for conjunction, i.e., N(a∧ b) =
min(N(a), N(b)), a PL base, i.e., a set of PL formulas, can be always put in an
equivalent clausal form.

Possibilistic Logic 7

Syntactic Aspects. Here we only consider the case of (basic) possibilistic propo-
sitional logic, i.e., PL formulas (a, α) are s.t. a is a formula in a propositional
language; for (basic) possibilistic first order logic, the reader is referred to [37].

Axioms and Inference Rules. The PL axioms [37] are those of propositional logic,
where each axiom schema is now supposed to hold with certainty 1. Its inference
rules are:

– if β ≤ α then (a, α) � (a, β) (certainty weakening).
– (¬a ∨ b, α), (a, α) � (b, α), ∀α ∈ (0, 1] (modus ponens).

We may also use the certainty weakening rule with the following PL-resolution
rule:

– (¬a ∨ b, α), (a ∨ c, α) � (b ∨ c, α), ∀α ∈ (0, 1] (resolution).

Using certainty weakening, it is easy to see that the following inference rule is
valid:

– (¬a ∨ b, α), (a ∨ c, β) � (b ∨ c,min(α, β)) (weakest link resolution).

So in a reasoning chain, the certainty level of the conclusion is the smallest of the
certainty levels of the formulas involved in the premises. The following inference
rule, we call formula weakening holds also as a consequence of α-β-resolution.

– if a � b then (a, α) � (b, α), ∀α ∈ (0, 1] (formula weakening).

Inference and Consistency. Let Γ = {(ai, αi), i = 1, ...,m} be a set of possibilis-
tic formulas. In a way quite similar to propositional logic, proving Γ � (a, α)
amounts to proving Γ, (¬a, 1) � (⊥, α) by repeated application of the weak-
est link-resolution rule. Moreover, note that Γ � (a, α) if and only if Γα �
(a, α) if and only if (Γα)∗ � a, where Γα = {(ai, αi) ∈ Γ, αi ≥ α} and
Γ ∗ = {ai | (ai, αi) ∈ Γ}. The certainty levels stratify the knowledge base Γ
into nested level cuts Γα, i.e. Γα ⊆ Γβ if β ≤ α. A consequence (a, α) from Γ
can only be obtained from formulas having a certainty level at least equal to α,
so from formulas in Γα; then a is a classical consequence from the PL knowledge
base (Γα)∗, and α = max{β|(Γβ)∗ � a}.

The inconsistency level of Γ is defined by inc(Γ) = max{α|Γ � (⊥, α)}.
The possibilistic formulas in Γ whose level is strictly above inc(Γ) are safe from
inconsistency, namely inc({(ai, αi)|(ai, αi) ∈ Γ and αi > inc(Γ)}) = 0. Indeed,
if α > inc(Γ), (Γα)∗ is consistent. The classical consistency of Γ ∗ is equivalent
to inc(Γ) = 0.

Semantic Aspects. The semantics of PL [37] is expressed in terms of possibil-
ity distributions, and necessity measures on the set Ω of interpretations of the
language. A PL formula (a, α) encodes the statement N(a) ≥ α. Its semantics is
given by the following possibility distribution π(a,α) defined in agreement with
certainty qualification:

∀ω ∈ Ω, π(a,α)(ω) = 1 if ω � a and π(a,α)(ω) = 1 − α if ω � ¬a

8 D. Dubois and H. Prade

where ω is any interpretation of the considered propositional language. Intu-
itively, this means that any interpretation that is a counter-model of a, is all
the less possible as a is more certain, i.e. as α is higher. It can be easily checked
that the associated necessity measure is such that N(a,α)(a) = α, and π(a,α) is
the least informative possibility distribution (i.e. maximizing possibility degrees)
such that this constraint holds. In fact, any possibility distribution π such that
∀ω, π(ω) ≤ π(a,α)(ω) is such that its associated necessity measure N satisfies
N(a) ≥ N(a,α)(a) = α (hence is more committed).

The base Γ is semantically associated with the possibility distribution:

πΓ (ω) = mini=1,...,m π(ai,αi)(ω) = mini=1,...,m max([ai](ω), 1 − αi)

where [ai] is the characteristic function of the models of ai, namely [ai](ω) = 1 if
ω � ai and [ai](ω) = 0 otherwise. Thus, the least informative induced possibility
distribution πΓ is obtained as the min-based conjunction of the fuzzy sets of
interpretations (with membership functions π(ai,αi)), representing each formula.
It can be checked that NΓ (ai) ≥ αi for i=1, . . . ,m, where NΓ is the necessity
measure defined from πΓ . Note that we may only have an inequality here since
Γ may, for instance, include two formulas associated to equivalent propositions,
but with distinct certainty levels. The semantic entailment is defined by Γ �
(a, α) if and only if ∀ω, πΓ (ω) ≤ π{(a,α)}(ω). PL is sound and complete [37] wrt
this semantics: Γ � (a, α) if and only if Γ � (a, α).

Moreover, we have inc(Γ) = 1 − maxω∈Ω πΓ (ω), which acknowledges the
fact that the normalization of πΓ is equivalent to the classical consistency of Γ ∗.
Thus, an important feature of PL is its ability to deal with inconsistency.

4 Applications of Basic Possibilistic Logic

Before briefly surveying different uses of basic PL, we mention possibilistic net-
works as another compact representation setting that can be related to PL.

Possibilistic Networks. We first need to define conditioning in possibility
theory. Conditional possibility can be defined similarly to probability theory
using a Bayesian-like equation of the form [42] Π(B ∩ A) = Π(B | A) � Π(A)
where Π(A) > 0 and � may be the minimum or the product; moreover N(B | A)
= 1 − Π(Bc | A). If operation � is the minimum, the equation Π(B ∩ A) =
min(Π(B | A),Π(A)) fails to characterize Π(B | A), and we must resort to the
minimal specificity principle to define a qualitative conditioning [41]: Π(B | A)
= 1 if Π(B ∩ A) = Π(A) > 0, Π(B | A) = Π(B ∩ A) otherwise. It is clear
that N(B | A) > 0 if and only if Π(B ∩ A) > Π(Bc ∩ A). Note also that
N(B | A) = N(Ac ∪ B) if N(B | A) > 0. In the numerical setting, we must
choose � = product that preserves continuity, so that Π(B | A) = Π(B∩A)

Π(A)

which makes possibilistic and probabilistic conditionings very similar, and then
gradual positive reinforcement of possibility is allowed.

There are several notions of possibilistic independence between events. Let us
just mention two main directions (see [9] for details, discussions and reference):

Possibilistic Logic 9

– Unrelatedness: Π(A ∩ B) = min(Π(A),Π(B)). When it does not hold, it
indicates an epistemic form of mutual exclusion between A and B. It is sym-
metric but sensitive to negation. When it holds for all pairs made of A,B and
their complements, it is an epistemic version of logical independence, useful
in default reasoning.

– Causal independence: N(B | A) = N(B). This notion is different from the
former one and stronger. It is a form of directed epistemic independence
whereby learning A does not affect the certainty of B. It is neither symmetric
not insensitive to negation. A weaker qualitative version is N(B | A) >
0 and N(B) > 0.

Graphical Structures. Like joint probability distributions, joint possibility dis-
tributions can be decomposed into a conjunction of conditional possibility dis-
tributions (using � = minimum, or product), once an ordering of the vari-
ables is chosen, in a way similar to Bayes nets [13]. A joint possibility distribu-
tion associated with ordered variables X1, . . . , Xn, can be decomposed by the
chain rule

π(X1, . . . , Xn) = π(Xn | X1, . . . , Xn−1) � · · · � π(X2 | X1) � π(X1).

Since possibilistic nets and PL bases are compact representations of possibility
distributions, it should not come as a surprise that possibilistic nets can be directly
translated into PL bases and vice-versa, both when conditioning is based on min-
imum or on product [13]. Hybrid representations formats have been introduced
where local PL bases are associated to the nodes of a graphical structure rather
than conditional possibility tables [25]. An important feature of the PL setting is
the existence of equivalent representation formats: set of prioritized logical formu-
las, preorders on interpretations (possibility distributions) at the semantical level,
possibilistic nets, but also set of conditionals of the form Π(a ∧ b) > Π(a ∧ ¬b).
There are algorithms for translating one format in another [13].

Default Reasoning. PL can be used for describing the normal course of things.
A default rule “if a then b, generally” is understood formally as the constraint
Π(a ∧ b) > Π(a ∧ ¬b) on a possibility measure Π describing the semantics of
the available knowledge. It expresses that in the context where a is true, there
exists situations where having b true is strictly more plausible than any situations
where b is false in the same context. Any finite consistent set of constraints of
the above form, representing a set of defaults D = {ai � bi, i = 1, · · · , n}, is
compatible with a non-empty family of possibility measures Π, and induces a
partially defined ranking on the set of interpretations, that can be completed
according to the principle of minimal specificity, e.g. [18]. This principle assigns
to each world ω the highest possibility level without violating the constraints.
This defines a unique complete preorder. The method then consists in turning
each default ai � bi into a possibilistic clause (¬ai ∨ bi, N(¬ai ∨ bi)), where N
is computed from the greatest possibility distribution π induced by the set of
constraints corresponding to the default knowledge base, as already explained.
We thus obtain a PL base K. This encodes the generic knowledge embedded in

10 D. Dubois and H. Prade

the default rules. Then we apply the possibilistic inference for reasoning with
the formulas in K encoding the defaults together with the available factual
knowledge encoded as fully certain possibilistic formulas in a base F . However,
the conclusions that can be obtained from K ∪ F with a certainty level strictly
greater than the level of inconsistency of this base are safe. Roughly speaking,
it turns out that in this approach, the most specific rules w.r.t. a given context
remain above the level of inconsistency. Such an approach has been proved to be
in full agreement with the Kraus-Lehmann-Magidor postulates-based approach
to nonmonotonic reasoning [60]. More precisely, two nonmonotonic entailments
can be defined in the possibilistic setting, the one presented above, based on the
least specific possibility distribution compatible with the constraints encoding
the set of defaults, and another one more cautious, where one considers that b
can be deduced in the situation where all we know is F = {a} iff the inequality
Π(a ∧ b) > Π(a ∧ ¬b) holds true for all the Π compatible with the constraints
encoding the set of defaults. The first entailment coincides with the rational
closure inference [63], while the later corresponds to the (cautious) preferential
entailment [60]; see [15,45].

PL can be also applied to inductive logic programming (ILP). Indeed having
a stratified set of first-order logic rules as an hypothesis in ILP is of interest for
learning both rules covering normal cases and more specific rules for exceptional
cases [71].

Belief Revision. Since nonmonotonic reasoning and belief revision can be
closely related, PL finds application also in belief revision. In fact, compara-
tive necessity relations (which can be encoded by necessity measures) [28] are
nothing but the epistemic entrenchment relations [43] that underly well-behaved
belief revision processes [57]. This enables the PL setting to provide syntactic
revision operators that apply to possibilistic knowledge bases, including the case
of uncertain inputs [21,46,70]. Note that in PL, where formulas (a, α) are pieces
of belief with certain levels, the epistemic entrenchment of formulas is made
explicit through these levels. Besides, in a revision process it is expected that
all formulas independent of the validity of the input information should remain
in the revised state of belief; this idea may receive a precise meaning using a
definition of possibilistic causal independence between events [29].

Updating in a dynamic world obeys other principles than the revision of
a belief state by an input information in a static world. It is linked to the
idea of Lewis’ imaging, whose a possibilistic counterpart is proposed in [44]. A
PL transposition of Kalman filtering that combines the ideas of updating and
revision can be found in [19].

In contrast with static beliefs, expected to be closed under conjunctions,
(positive) desires are such that endorsing a ∨ b as a desire means to desire
a and to desire b. However, desiring both a and ¬a does not sound rational;
so when a new desire is added to the set of desires of an agent, a revision
process is necessary. Just as belief revision relies on an epistemic entrenchment
relation (and thus on a necessity measure), well-behaved desire revision relies on
a guaranteed possibility function Δ [39].

Possibilistic Logic 11

Information Fusion. The combination of possibility distributions can be equiv-
alently performed in terms of PL bases: The syntactic counterpart of the point-
wise combination of two possibility distributions π1 and π2 into a distribution
π1 � π2 by any monotonic combination operator � such that 1 � 1 = 1, can
be computed, following an idea first proposed in [26]. Namely, if the PL base
Γ1 is associated with π1 and the base Γ2 with π2, a PL base Γ1�2 semantically
equivalent to π1 � π2 is given by [16]:

{(ai, 1 − (1 − αi) � 1) s.t. (ai, αi) ∈ Γ1} ∪ {(bj , 1 − 1 � (1 − βj)) s.t. (bj , βj) ∈ Γ2}
∪ {(ai ∨ bj , 1 − (1 − αi) � (1 − βj)) s.t. (ai, αi) ∈ Γ1, (bj , βj) ∈ Γ2}.

For � = min,we get Γ1⊕2 = Γ1 ∪ Γ2 with πΓ1∪Γ2 = min(π1, π2) as expected
(conjunctive combination). For � = max (disjunctive combination), we get
Γ1⊕2 = {(ai ∨ bj , min(αi, βj)) s.t. (ai, αi) ∈ Γ1, and (bj , βj) ∈ Γ2}. With
non idempotent ⊕ operators, some reinforcement effects may be obtained. See
[20,58,69] for further studies on possibilistic logic merging operators. Besides,
this approach can be also applied to the syntactic encoding of the merging of
classical logic bases based on Hamming distance (where distances are computed
between each interpretation and the different classical logic bases, thus giving
birth to counterparts of possibility distributions) [14].

Decision Under Uncertainty. Possibility theory provides a valuable setting
for qualitative decision under uncertainty where a pessimistic and an optimistic
decision criterion have been axiomatized [53]. The counterpart of these criteria,
when knowledge and preferences are under the form of two distinct PL bases, is
given by the definitions [38]:

– the pessimistic utility u∗(d) of decision d is the maximal α ∈ S s.t. Kα∧d �PL

Pν(α),
– the optimistic utility u∗(d) of d is the maximal ν(α) ∈ S s.t. Kα ∧d∧Pα �≡ ⊥,

where S is a finite bounded totally ordered scale, ν the ordered reversing map of
this scale; Kα is a set of classical logic formulas gathering the pieces of knowledge
that are certain at a level at least α, and where Pβ is a set of classical logic
formulas made of a set of goals (modeling preferences) whose priority level is
strictly greater than β. An optimal pessimistic decision leads for sure to the
satisfaction of all goals in Pν(α) with a priority as low as possible, using only a
part Kα of knowledge which has high certainty. An optimal optimistic decision
maximizes the consistency of all the more or less important goals with all the
more or less certain pieces of knowledge.

Other Applications. In a computational perspective, possibilistic logic has
also impacted logic programming [1,6,65,66]. Besides, the possibilistic handling
of uncertainty in description logic [68,76] has also computational advantages,
in particular in the case of the possibilistic DL-Lite family [11,12]. Another
application is the encoding of control access policies [22]. Lastly, PL has been
recently shown to be of interest in database design where the presence of tuples in
the database is possible only to some extent, and where functional dependencies
are certain only to some extent [59,64].

12 D. Dubois and H. Prade

5 Extensions of Basic Possibilistic Logic

This section surveys various extensions of basic PL where logical formulas are
no longer associated with simple levels valued in a linearly ordered scale.

Lattices. A first idea is to use lattices of values instead of a scale. Examples
are: (i) a timed PL where logical formulas are associated with fuzzy sets of time
instants where the formula is known as being certain to some extent. Semanti-
cally, it leads to define necessity measures valued in a distributive lattice; (ii)
a logic of supporters [61], where formulas a are associated with sets of logical
arguments in their favor, (iii) an interval-based PL [23] where levels are replaced
by intervals, modeling imprecise certainty.

Vectors of Certainty Levels. An obvious consequence of the PL resolution
rule is that only the smallest weight of the formulas used in a proof is retained.
Thus no difference is made between, e.g., getting (b, β) from (¬a∨b, 1) and (a, β),
or getting it from (¬c∨d, 1), (¬d∨ b, α) and (c, β) assuming α ≥ β, although we
may find the first proof stronger. This idea can be captured by a new resolution
rule (¬a∨b,α); (a∨c,β) � (b∨c,αβ) where α and β are lists of weights, and αβ
is the list obtained as the concatenation of α and β. In the above example, the
first proof yields (b, (1, β)), while the second one leads to (b, (1, α, β)). Assuming
a finite scale, we have then to rank-order the proofs according to their strength.
This can be done by a refinement of min-based ordering, called leximin [48]
which amounts to a lexicographic ordering of the vectors once they have been
completed with 1’s for making them of equal length, and increasingly reordered.
This can be equivalently encoded by treating the vectors as multisets, replacing
αβ by the union ⊗ of the corresponding multisets, and defining an associative
operation ⊕ that selects the multiset containing the least possible value with
a number of occurrences lower than its occurrence in the other multiset (after
discarding the values common in equal number in the two multi sets). See [30]
for the semiring structure based on ⊕ and ⊗. On this basis an extended PL
could be fully developed.

Purely Symbolic Levels. Another extension of interest is to consider that
the values of certainty levels associated to formulas (still assumed to belong to a
totally ordered scale) may be unknown, while the relative ordering between some
of them may be known. In such a case, we have to process these levels in a purely
symbolic manner, i.e., computing the level from a derived formula as a symbolic
expression. For instance, Γ = {(a, α), (¬a∨b, β), (b, γ)} � (b,max(min(α, β), γ)).
There still exists a partial order between formulas based on the partial order
between symbolic levels (e.g., max(min(α, β), α, γ) ≥ min(α, δ) for any values of
α, β, γ, δ). See [24] for details and [27] for the proof of completeness.

The use of symbolic levels may serve explanation purposes by providing a
tool for tracing the impact of the certainty of some pieces of information on a
conclusion of interest, as early suggested in [56]. Possibilistic logic formulas with
symbolic weights have been used in preference modeling [10]. Then, interpre-
tations (corresponding to the different alternatives) are compared in terms of

Possibilistic Logic 13

symbolic vectors acknowledging the satisfaction or the violation of the formulas
associated with the different (conditional) preferences, using suitable order rela-
tions. Thus, partial orderings of interpretations can be obtained, and may be
refined in case some additional information on the relative priority of the prefer-
ences is given. Another use may concern access rights: The different contexts of
an ontology, like the access rights of a user, the trust level or the level of detail
requested by the user, my be expressed by elements of a lattice, leading to a
calculus similar to PL with symbolic weights [3].

Paraconsistent Valuations. An extension of the possibilistic inference has
been proposed for handling paraconsistent information [17]. The idea is the fol-
lowing. Given a PL base Γ , we build a set Γ o of bi-weighted formulas: for each
formula (a, α) in Γ , we compute triples (a, β, γ) where β (resp. γ) is the highest
degree with which a (resp. ¬a) is supported in Γ (a is said to be supported in Γ
at least at degree β if there is a consistent sub-base of (Γβ)∗ that entails a, with
Γ ∗

β = {ai | (ai, αi) ∈ Γ, αi ≥ β}).
Clearly the set of formulas of the form (a, β, 0) in Γ o is not paraconsistent,

and thus leads to safe conclusions. However, one may obtain a larger set of
consistent conclusions from Γ o as explained now. This requires two evaluations:
(i) the undefeasibility degree of a consistent set A of formulas: UD(A) = min{β |
(a, β, γ) ∈ Γ o and a ∈ A}; (ii) the unsafeness degree of a consistent set A
of formulas: US(A) = max{γ|(a, β, γ) ∈ Γ o and a ∈ A}. Then an entailment
�SS , named safely supported consequence relation, is defined by Γ o �SS b if
and only ∃ a minimal consistent subset A that classically entails b such that
UD(A) > US(A). It can be shown that the set {b | Γ o �SS b} is classically
consistent [17]. See [32,51] for details, discussions and other approaches to the
handling of inconsistency in the PL setting.

Subsets of Agents. Another early proposed idea, in an information fusion
perspective, is to associate each formula with a set of distinct explicit sources
that support its truth [36]. Then formulas are associated with sets of sources.
This has led to the proposal of a “multiple agent” logic (ma-L) where formulas
are of the form (a,A), where A denotes a subset of agents and the formula
means that at least all the agents in A believe that a is true. In spite of an
obvious formal parallel with PL, (a,A) should not only be seen as another way
of expressing the strength of the support in favor of a (the larger A, the stronger
the support) [33], but also as a piece of information linking a proposition with
a particular subset of agents. ma-L has two inference rules: (i) if B ⊆ A then
(a,A) � (a,B) (subset weakening); (ii) (¬a∨ b, A), (a,A) � (b, A), ∀A ∈ 2ALL \∅
(modus ponens). As a consequence, we also have the resolution rule if A ∩ B �=
∅, then (¬a ∨ b, A), (a ∨ c,B) � (b ∨ c,A ∩ B). If A ∩ B = ∅, the resulting
information is trivial: (a, ∅) is a formula of no use. An inconsistent subset of
agents for Γ can be defined as

inc-s(Γ) =
⋃

{A ⊆ All | Γ � (⊥, A)} and inc-s(Γ) = ∅ if �A s.t. Γ � (⊥, A).

Clearly, inc-s(Γ) = ∅ does not imply the consistency of Γ ◦ = {ai|(ai, Ai) ∈ Γ ,
i = 1,m}. It contrasts with possibilistic logic. Just consider the example

14 D. Dubois and H. Prade

Γ = {(a,A), (¬a,A)}, then inc-s(Γ) = A ∩ A = ∅ while Γ ◦ is inconsistent.
This is compatible with situations where agents contradict each other. Yet, the
consistency of Γ ◦ does entail inc-s(Γ) = ∅. What matters in ma-L is the collec-
tive consistency of subsets of agents (while the collection of the beliefs held by
the whole set of agents may be inconsistent).

The semantics of ma-L is expressed in terms of set-valued possibility distribu-
tions, and set-valued possibility and necessity measures. Namely, the semantics of
formula (a,A) is given by set-valued distribution π{(a,A)}: ∀ω ∈ Ω,π{(a,A)}(ω) =
All if ω |= a, π{(a,A)}(ω) = Ac if ω |= ¬a where Ac = All \ A, and the formula
(a,A) is understood as expressing the constraint N(a) ⊇ A where N is a set-
valued necessity measure. Soundness and completeness results can be established
with respect to this semantics [7].

Basic PL and ma-L may be combined in a possibilistic multiple agent logic
(Pma-L). Formulas are pairs (a, F) where F is a fuzzy subset of All. One may
in particular consider the fuzzy sets F = (α/A) s.t. (α/A)(k) = α if k ∈ A, and
(α/A)(k) = 0 if k ∈ Ac; it encodes the piece of information “at least all agents
in A believe a at least at level α”. Interpretations are then associated with fuzzy
sets of agents. Soundness and completeness of Pma-L has been established [8].

6 Generalized Possibilistic Logic

In basic possibilistic logic, only conjunctions of possibilistic logic formulas are
allowed. But since (a, α) is semantically interpreted as N(a) ≥ α, a possibilistic
formula can be manipulated as a propositional formula that is true (if N(a) ≥ α)
or false (if N(a) < α). Then possibilistic formulas can be combined with all
propositional connectives, including disjunction and negation. This is generalized
possibilistic logic (GPL) [34,55]. GPL is a two-tiered propositional logic, in which
propositional formulas are encapsulated by weighted modal operators interpreted
in terms of uncertainty measures from possibility theory. Let Λk = {0, 1

k , 2
k , ..., 1}

with k ∈ N \ {0} be a finite set of certainty degrees, and let Λ+
k = Λk \ {0}.

The language of GPL, Lk
N, with k + 1 certainty levels is built on top of the

propositional language L as follows: (i) If a ∈ L, α ∈ Λ+
k , then Nα(a) ∈ Lk

N; (ii)
if ϕ ∈ Lk

N, ψ ∈ Lk
N, then ¬ϕ and ϕ ∧ ψ are also in Lk

N.
Here we use the notation Nα(a), instead of (a, α), emphasizing the closeness

with modal logic. So, an agent asserting Nα(a) has an epistemic state π such
that N(a) ≥ α > 0. Hence ¬Nα(a) stands for N(a) < α, which, given the
finiteness of the set of considered certainty degrees, means N(a) ≤ α − 1

k and
thus Π(¬a) ≥ 1−α+ 1

k . Let ν(α) = 1−α+ 1
k . Then, ν(α) ∈ Λ+

k iff α ∈ Λ+
k , and

ν(ν(α)) = α,∀α ∈ Λ+
k . Thus, we can write Πα(p) ≡ ¬Nν(α)(¬p). In particular,

Π1(a) ≡ ¬N 1
k
(¬a) if k > 1. So, in GPL, one can distinguish between the absence

of sufficient certainty that a is true (¬Nα(a)) and the stronger statement that
a is somewhat certainly false (Nα(¬a)).

The semantics of GPL is as in PL defined in terms of normalized possibility
distributions over propositional interpretations, where possibility degrees are

Possibilistic Logic 15

limited to Λk. A model of a GPL formula Nα(a) is any Λk-valued possibility
distribution π such that N(a) ≥ α, where N is the necessity measure induced
by π, and then the standard definition for π |= ϕ1 ∧ ϕ2 π |= ¬ϕ. As usual, π is
called a model of a set of GPL formulas Γ , written π |= Γ , if π is a model of each
formula in Γ . We write Γ |= φ, for Γ a set of GPL formulas and φ a GPL formula,
iff every model of Γ is also a model of φ. Note that a formula in GPL will not
always have a least specific possibility distribution that satisfies it. For instance,
the set of possibility distributions satisfying the disjunction ‘Nα(a) ∨ Nα(b)’ no
longer has a unique least informative model as it is the case for conjunction in
PL. The soundness and completeness of the following axiomatization of GPL
holds with respect to the above semantics [55]:

(PL) TheHilbert axioms of classical logic; (K)Nα(a→b)→(Nα(a)→Nα(b));
(N) N1(�); (D) Nα(a) → Π1(a); (W) Nα1(a) → Nα2(a), if α1 ≥ α2.

with modus ponens as the only inference rule.
Note that when α is fixed we get a fragment of the modal logic KD. See [5]
for a survey of studies of the links between modal logics and possibility theory,
and extensions of GPL with objective and non-nested multimodal formulas, as
in KD45 and S5.

7 Applications of Generalized Possibilistic Logic

Nonmonotonic Logic Programming. A remarkable application of GPL is its
capability to encode answer set programs, using a 3-valued scale Λ2 = {0, 1/2, 1}.
Then, we can discriminate between propositions we are fully certain of and
propositions we consider only more plausible than not. It is enough to encode
nonmonotonic ASP rules (with negation as failure) within GPL and lay bare
their epistemic semantics. For instance, the ASP rule a ← b ∧ not c is encoded
as N1(b)∧Π1(¬c) → N1(a) in GPL. See [55] for theoretical results, and [54] for
the GPL encoding of Pearce equilibrium logic.

Multiple Agent Reasoning. We consider the muddy children problem: Two
children come home from garden. The father sees their muddy foreheads. They
sit by him. Father declares at least one of them has a muddy forehead. Then he
asks them whoever has mud on the forehead to stand up. None does. Then the
question is asked again. Both stand up. Why? Informally, the children did not
stand up in the first place because they do not see their own forehead and they
see the other is muddy, but as the latter did not stand up it means he did not
know either it was muddy because he sees the former is muddy.

Since there is no uncertainty, we use a particular case of GPL, where k = 1
with value scale Λ1, known as Meta-Epistemic Logic (MEL) [4]; �a is iden-
tified with N1(a) and �a with Π1(a). Moreover Π1(a) ≡ ¬N1(¬a). For the
example, we consider the point of view of one child (say child 1): we say “I”.
The other is “You”. We use a standard propositional language L with variables

16 D. Dubois and H. Prade

V = {mI ,mY , sY } (for I am muddy, you are muddy, you stand up). We use one
MEL modality �Y standing for “I know that You know” Each pure propositional
formula a ∈ L not in the scope of �Y is interpreted as “I know a” (modality
�I) is not explicitly used because we exclude for the reference agent (“I”) the
possibility of declaring ignorance). So “My” knowledge is the following:

1. Father’s public announcement: I know one of us is muddy and I know You
know it too: mI ∨ mY ; �Y (mI ∨ mY);

2. I know that You know whether I am muddy or not (You see me): �Y mI ∨
�Y ¬mI ;

3. I know that you ignore if You are muddy or not (like me): ¬�Y mY ∧¬�Y ¬mY ;
4. I know that if You knew I was not muddy and that one of us is muddy

anyway, then You would know that you are muddy: �Y ¬mI∧�Y (mI∨mY) →
�Y (mY);

5. I know that if You knew you were muddy You would stand up when invited
too: �Y (mY) → sY ; we also have �Y (mY) → mY .

I see You did not stand up, so I add ¬sY to my knowledge
base, and I reason as follows: ¬sY ,�Y (mY)→sY

¬�Y (mY) . You did not stand up
because you did not know if you were muddy (and now I know it).
¬�Y (mY),�Y (mI∨mY),�Y ¬mI∧�Y (mI∨mY)→�Y (mY)

¬�Y ¬mI
. As one of us at least is muddy

and you have no knowledge to claim you are muddy, it means that I know You
cannot claim I am not muddy. ¬�Y ¬mI ,�Y mI∨�Y ¬mI

�Y mI
. Since it is wrong that you

know I am not muddy, while you know if I am muddy or not, it is because you
know I am muddy. �Y mI ,�Y mI→mI

mI
. Now I know that You know I am muddy,

so, I know I am muddy, and I will stand up next time I am invited to.

Argumentative Reasoning. A logic of arguments similar to GPL has been
outlined in [2]. The basic formulas are pairs (x, y) (“y is a reason for x”), which
are manipulated as propositional formulas using ∧,∨,¬ connectives. Thus, e.g.,
we allow the use of negation in three places: (x,¬y), (¬x, y), ¬(x, y), making also
difference between (x, y) and (¬y∨x,�), and (¬x∨x′, y), (x∨z, y′) � (x′∨z, y∧y′)
is a valid inference rule.

8 Conclusion

This survey has covered old results and works in progress about PL, a simple,
but quite powerful approach to the handling of uncertainty that remains as close
as possible to classical logic. For complexity issues of PL and GPL the reader is
referred to [62] and [55].

Possibilistic Logic 17

References

1. Alsinet, T., Godo, L., Sandri, S.: Two formalisms of extended possibilistic logic
programming with context-dependent fuzzy unification: a comparative description.
Elec. Notes Theor. Comput. Sci. 66(5), 1–21 (2002)

2. Amgoud, L., Prade, H.: Towards a logic of argumentation. In: Hüllermeier, E., Link,
S., Fober, T., Seeger, B. (eds.) SUM 2012. LNCS (LNAI), vol. 7520, pp. 558–565.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33362-0 43

3. Baader, F., Knechtel, M., Peñaloza, R.: Context-dependent views to axioms and
consequences of semantic web ontologies. J. Web Semant. 12, 22–40 (2012)

4. Banerjee, M., Dubois, D.: A simple logic for reasoning about incomplete knowledge.
Int. J. Approx. Reason. 55, 639–653 (2014)

5. Banerjee, M., Dubois, D., Godo, L., Prade, H.: On the relation between possibilistic
logic and modal logics of belief and knowledge. J. Appl. Non-Class. Log. 27, 206–
224 (2017)

6. Bauters, K., Schockaert, S., De Cock, M., Vermeir, D.: Possible and necessary
answer sets of possibilistic answer set programs. In: Proceedings of the 24th IEEE
International Conference on Tools for AI (ICTAI), Athens, pp. 836–843 (2012)

7. Belhadi, A., Dubois, D., Khellaf-Haned, F., Prade, H.: Multiple agent possibilistic
logic. J. Appl. Non-Class. Logics 23, 299–320 (2013)

8. Belhadi, A., Dubois, D., Khellaf-Haned, F., Prade, H.: Reasoning with multiple-
agent possibilistic logic. In: Schockaert, S., Senellart, P. (eds.) SUM 2016. LNCS
(LNAI), vol. 9858, pp. 67–80. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-45856-4 5

9. Ben Amor, N., Benferhat, S., Dubois, D., Mellouli, K., Prade, H.: A theoretical
framework for possibilistic independence in a weakly ordered setting. Int. J. Uncer-
tain. Fuzziness Knowl.-Based Syst. 10, 117–155 (2002)

10. Ben Amor, N., Dubois, D., Gouider, H., Prade, H.: Possibilistic preference net-
works. Inf. Sci. 460–461, 401–415 (2018)

11. Benferhat, S., Bouraoui, Z.: Possibilistic DL-Lite. In: Liu, W., Subrahmanian, V.S.,
Wijsen, J. (eds.) SUM 2013. LNCS (LNAI), vol. 8078, pp. 346–359. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-40381-1 27

12. Benferhat, S., Bouraoui, Z., Loukil, Z.: Min-based fusion of possibilistic DL-Lite
knowledge bases. In: Proceedings of the IEEE/WIC/ACM International Confer-
ence on Web Intelligence (WI 2013), Atlanta, pp. 23–28 (2013)

13. Benferhat, S., Dubois, D., Garcia, L., Prade, H.: On the transformation between
possibilistic logic bases and possibilistic causal networks. Int. J. Approx. Reas. 29,
135–173 (2002)

14. Benferhat, S., Dubois, D., Kaci, S., Prade, H.: Possibilistic merging and distance-
based fusion of propositional information. Ann. Math. Artif. Intellig. 34, 217–252
(2002)

15. Benferhat, S., Dubois, D., Prade, H.: Nonmonotonic reasoning, conditional objects
and possibility theory. Artif. Intell. 92(1–2), 259–276 (1997)

16. Benferhat, S., Dubois, D., Prade, H.: From semantic to syntactic approaches
to information combination in possibilistic logic. In: Bouchon-Meunier, B. (ed.)
Aggregation and Fusion of Imperfect Information, pp. 141–161. Physica-Verlag,
Heidelberg (1998)

17. Benferhat, S., Dubois, D., Prade, H.: An overview of inconsistency-tolerant infer-
ences in prioritized knowledge bases. In: Fuzzy Sets, Logic and Reasoning about
Knowledge, pp. 395–417. Kluwer (1999)

https://doi.org/10.1007/978-3-642-33362-0_43
https://doi.org/10.1007/978-3-319-45856-4_5
https://doi.org/10.1007/978-3-319-45856-4_5
https://doi.org/10.1007/978-3-642-40381-1_27

18 D. Dubois and H. Prade

18. Benferhat, S., Dubois, D., Prade, H.: Possibilistic and standard probabilistic
semantics of conditional knowledge bases. J. Logic Comput. 9(6), 873–895 (1999)

19. Benferhat, S., Dubois, D., Prade, H.: Kalman-like filtering in a possibilistic setting.
In: Proceedings of the 14th European Conference ECAI 2000, Berlin, pp. 8–12. IOS
Press (2000)

20. Benferhat, S., Dubois, D., Prade, H.: A computational model for belief change and
fusing ordered belief bases. In: Frontiers in Belief Revision, pp. 109–134. Kluwer
(2001)

21. Benferhat, S., Dubois, D., Prade, H., Williams, M.A.: A framework for iterated
belief revision using possibilistic counterparts to Jeffrey’s rule. Fundam. Inform.
99, 147–168 (2010)

22. Benferhat, S., El Baida, R., Cuppens, F.: A possibilistic logic encoding of access
control. In: Proceedings of the 16th International FLAIRS Conference, St. Augus-
tine, pp. 481–485. AAAI Press (2003)

23. Benferhat, S., Hué, J., Lagrue, S., Rossit, J.: Interval-based possibilistic logic. In:
Proceedings of the 22nd IJCAI 2011, Barcelona, pp. 750–755 (2011)

24. Benferhat, S., Prade, H.: Encoding formulas with partially constrained weights in a
possibilistic-like many-sorted propositional logic. In: Proceedings of the 9th IJCAI,
Edinburgh, pp. 1281–1286 (2005)

25. Benferhat, S., Smaoui, S.: Hybrid possibilistic networks. Int. J. Approx. Reason.
44(3), 224–243 (2007)

26. Boldrin, L., Sossai, C.: Local possibilistic logic. J. Appl. Non-Class. Log. 7, 309–333
(1997)

27. Cayrol, C., Dubois, D., Touazi, F.: Symbolic possibilistic logic: completeness and
inference methods. J. Log. Comput. 28(1), 219–244 (2018)

28. Dubois, D.: Belief structures, possibility theory and decomposable measures on
finite sets. Comput. AI 5, 403–416 (1986)

29. Dubois, D., Fariñas del Cerro, L., Herzig, A., Prade, H.: A roadmap of qualitative
independence. In: Fuzzy Sets, Logics and Reasoning about Knowledge, pp. 325–
350. Kluwer (1999)

30. Dubois, D., Fortemps, P.: Selecting preferred solutions in the minimax approach
to dynamic programming problems under flexible constraints. Eur. J. Oper. Res.
160, 582–598 (2005)

31. Dubois, D., Hajek, P., Prade, H.: Knowledge-driven versus data-driven logics. J.
Logic Lang. Inf. 9, 65–89 (2000)

32. Dubois, D., Prade, H.: Inconsistency management from the standpoint of possi-
bilistic logic. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 23(Suppl. 1), 15–30
(2015)

33. Dubois, D., Prade, H.: A set-valued approach to multiple source evidence. In: Ben-
ferhat, S., Tabia, K., Ali, M. (eds.) IEA/AIE 2017. LNCS (LNAI), vol. 10351, pp.
113–118. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60045-1 14

34. Dubois, D., Prade, H.: A crash course on generalized possibilistic logic. In: Ciucci,
D., Pasi, G., Vantaggi, B. (eds.) SUM 2018. LNCS (LNAI), vol. 11142, pp. 3–17.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00461-3 1

35. Dubois, D., Lang, J., Prade, H.: Advances in automated reasoning using possibilis-
tic logic. In: Extended abstracts 1st European Workshop JELIA 1988, Roscoff, pp.
95–99 (1988)

36. Dubois, D., Lang, J., Prade, H.: Dealing with multi-source information in possibilis-
tic logic. In: Proceedings of the 10th European Conference on Artificial Intelligence
(ECAI 1992), Vienna, pp. 38–42 (1992)

https://doi.org/10.1007/978-3-319-60045-1_14
https://doi.org/10.1007/978-3-030-00461-3_1

Possibilistic Logic 19

37. Dubois, D., Lang, J., Prade, H.: Possibilistic logic. In: Gabbay, D.M., et al. (eds.)
Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 3, pp.
439–513. Oxford U. P. (1994)

38. Dubois, D., Le Berre, D., Prade, H., Sabbadin, R.: Using possibilistic logic for
modeling qualitative decision: ATMS-based algorithms. Fundamenta Informaticae
37, 1–30 (1999)

39. Dubois, D., Lorini, E., Prade, H.: The strength of desires: a logical approach. Minds
Mach. 27(1), 199–231 (2017)

40. Dubois, D., Prade, H.: Fuzzy Sets and Systems - Theory and Applications. Aca-
demic Press, Cambridge (1980)

41. Dubois, D., Prade, H.: Possibility Theory. Plenum Press, New York and London
(1988)

42. Dubois, D., Prade, H.: The logical view of conditioning and its application to
possibility and evidence theories. Int. J. Approx. Reason. 4(1), 23–46 (1990)

43. Dubois, D., Prade, H.: Epistemic entrenchment and possibilistic logic. Artif. Intell.
50, 223–239 (1991)

44. Dubois, D., Prade, H.: Belief revision and updates in numerical formalisms: an
overview, with new results for the possibilistic framework. In: Proceedings of the
13th IJCAI, Chambéry, pp. 620–625 (1993)

45. Dubois, D., Prade, H.: Conditional objects, possibility theory and default rules. In:
Conditionals: From Philosophy to Computer Science, pp. 301–336. Oxford Science
Publ. (1995)

46. Dubois, D., Prade, H.: A synthetic view of belief revision with uncertain inputs in
the framework of possibility theory. Int. J. Approx. Reason. 17, 295–324 (1997)

47. Dubois, D., Prade, H.: Possibility theory: qualitative and quantitative aspects.
In: Gabbay, D.M., Smets, P. (eds.) Quantified Representation of Uncertainty and
Imprecision. Handbook of Defeasible Reasoning and Uncertainty Management Sys-
tems, vol. 1, pp. 169–226. Kluwer (1998)

48. Dubois, D., Prade, H.: Possibilistic logic: a retrospective and prospective view.
Fuzzy Sets Syst. 144, 3–23 (2004)

49. Dubois, D., Prade, H.: From Blanché’s hexagonal organization of concepts to formal
concept analysis and possibility theory. Logica Universalis 6(1–2), 149–169 (2012)

50. Dubois, D., Prade, H.: Possibilistic logic. An overview. In: Gabbay, D.M., et al.
(eds.) Handbook of The History of Logic. Computational Logic, vol. 9, pp. 283–342.
North-Holland (2014)

51. Dubois, D., Prade, H.: Being consistent about inconsistency: toward the rational
fusing of inconsistent propositional logic bases. In: The Road to Universal Logic,
II, pp. 565–571. Birkhäuser (2015)

52. Dubois, D., Prade, H.: Qualitative and semi-quantitative modeling of uncertain
knowledge - a discussion. In: Computational Models of Rationality, pp. 280–296.
College Publ. (2016)

53. Dubois, D., Prade, H., Sabbadin, R.: Decision-theoretic foundations of qualitative
possibility theory. Eur. J. Oper. Res. 128(3), 459–478 (2001)

54. Dubois, D., Prade, H., Schockaert, S.: Stable models in generalized possibilistic
logic. In: Proceedings of the 13th International Conference Principles Knowledge
Representation and Reasoning (KR 2012), Rome, pp. 519–529 (2012)

55. Dubois, D., Prade, H., Schockaert, S.: Generalized possibilistic logic: foundations
and applications to qualitative reasoning about uncertainty. Artif. Intell. 252, 139–
174 (2017)

20 D. Dubois and H. Prade

56. Farreny, H., Prade, H.: Positive and negative explanations of uncertain reasoning
in the framework of possibility theory. In: Proceedings of the 5th Conference on
UAI 1989, Windsor, pp. 95–101 (1989)

57. Gärdenfors, P.: Knowledge in Flux. MIT Press (1988). (2nd edn, College Publica-
tions 2008)

58. Kaci, S., Benferhat, S., Dubois, D., Prade, H.: A principled analysis of merging
operations in possibilistic logic. In: Proceedings of the 16th Conference Uncertainty
in Artificial Intelligence, (UAI 2000), Stanford, pp. 24–31 (2000)

59. Koehler, H., Leck, U., Link, S., Prade, H.: Logical foundations of possibilistic keys.
In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp. 181–195.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11558-0 13

60. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential mod-
els and cumulative logics. Artif. Intell. 44, 167–207 (1990)

61. Lafage, C., Lang, J., Sabbadin, R.: A logic of supporters. In: Bouchon-Meunier, B.,
Yager, R.R., Zadeh, L.A. (eds.) Information, Uncertainty and Fusion, pp. 381–392.
Kluwer (1999)

62. Lang, J.: Possibilistic logic: complexity and algorithms. In: Algorithms for Uncer-
tainty and Defeasible Reasoning, pp. 179–220. Kluwer (2001)

63. Lehmann, D., Magidor, M.: What does a conditional knowledge base entail? AIJ
55, 1–60 (1992)

64. Link, S., Prade, H.: Relational database schema design for uncertain data. In:
Proceedings of the 25th ACM International Conference CIKM 2016, Indianapolis,
pp. 1211–1220 (2016)

65. Nicolas, P., Garcia, L., Stéphan, I., Lefèvre, C.: Possibilistic uncertainty handling
for answer set programming. Ann. Math. Artif. Intell. 47(1–2), 139–181 (2006)

66. Nieves, J.C., Osorio, M., Cortés, U.: Semantics for possibilistic disjunctive pro-
grams. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI),
vol. 4483, pp. 315–320. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-72200-7 32

67. Parsons, T.: The traditional square of opposition. In: Zalta, E.N. (ed.) The Stanford
Encyclopedia of Philosophy, Spring 2014 edn. Stanford University (1997)

68. Qi, G., Ji, Q., Pan, J.Z., Du, J.: Extending description logics with uncertainty
reasoning in possibilistic logic. Int. J. Intell. Syst. 26(4), 353–381 (2011)

69. Qi, G., Liu, W., Bell, D.: A comparison of merging operators in possibilistic logic.
In: Bi, Y., Williams, M.-A. (eds.) KSEM 2010. LNCS (LNAI), vol. 6291, pp. 39–50.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15280-1 7

70. Qi, G., Wang, K.: Conflict-based belief revision operators in possibilistic logic. In:
Proceedings of the 26th AAAI Conference on Artificial Intelligence, Toronto (2012)

71. Serrurier, M., Prade, H.: Introducing possibilistic logic in ILP for dealing with
exceptions. Artif. Intell. 171, 939–950 (2007)

72. Shafer, G.: A Mathematical Theory of Evidence. Princeton Univ. Press, Princeton
(1976)

73. Walley, P.: Measures of uncertainty in expert systems. Artif. Intell. 83, 1–58 (1996)
74. Yager, R.R.: An introduction to applications of possibility theory. Hum. Syst.

Manag. 3, 246–269 (1983)
75. Zadeh, L.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1, 3–28

(1978)
76. Zhu, J., Qi, G., Suntisrivaraporn, B.: Tableaux algorithms for expressive possibilis-

tic description logics. In: Proceedings of the IEEE/ACM International Conference
Web Intelligence (WI 2013), Atlanta, pp. 227–232 (2013)

https://doi.org/10.1007/978-3-319-11558-0_13
https://doi.org/10.1007/978-3-540-72200-7_32
https://doi.org/10.1007/978-3-540-72200-7_32
https://doi.org/10.1007/978-3-642-15280-1_7

Vadalog: Recent Advances
and Applications

Georg Gottlob1,2(B), Andreas Pieris3, and Emanuel Sallinger1,2

1 University of Oxford, Oxford, UK
georg.gottlob@cs.ox.ac.uk
2 TU Wien, Vienna, Austria

3 University of Edinburgh, Edinburgh, UK

Abstract. Vadalog is a logic-based reasoning language for modern AI
applications, in particular for knowledge graph systems. In this paper,
we present recent advances and applications, with a focus on the Vadalog
language itself. We first give an easy-to-access self-contained introduc-
tion to Warded Datalog+/−, the logical core of Vadalog. We then dis-
cuss some recent advances: Datalog rewritability of Warded Datalog+/−,
and the piece-wise linear fragment of Warded Datalog+/− that achieves
space efficiency. We then proceed with some recent practical applications
of the Vadalog language: detection of close links in financial knowledge
graphs, as well as the detection of family-owned businesses.

1 Introduction

Modern AI systems have drastically changed the way IT systems are designed
and what can be achieved using them. At the same time, the requirements such
AI systems impose on their underlying reasoning mechanisms have drastically
changed as well. Logic-based reasoning has to harmonically integrate with sta-
tistical reasoning (or machine learning). Knowledge graphs systems are a type of
modern AI systems where this can be observed particularly well. They must be
able to reason using strict rules (e.g., for encoding regulations that an organiza-
tion has to be compliant to no matter what the circumstances are), and at the
same time they need to be able to make statistical or machine-learning based
inferences (e.g., for determining whether two entities represented in the graph
are likely to be the same).

Apart from this overarching requirement, more fine-grained requirements are
imposed on knowledge graph systems: the need for recursive reasoning to be
able to traverse graphs; the need for ontological reasoning to express knowledge
about the domain the knowledge graph represents; and many more. It is well
known, and we shall discuss in more detail in the remainder of this paper, that
simply putting together many of these features will lead to high computational
complexity, or even undecidability. At the same time, scalability is at the heart of
most modern AI applications. It is particularly important for knowledge graphs,
where more often than not, we have to deal with billions of nodes and edges.
c© Springer Nature Switzerland AG 2019
F. Calimeri et al. (Eds.): JELIA 2019, LNAI 11468, pp. 21–37, 2019.
https://doi.org/10.1007/978-3-030-19570-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19570-0_2&domain=pdf
https://doi.org/10.1007/978-3-030-19570-0_2

22 G. Gottlob et al.

This requires a careful balance between expressive power and scalability when
designing reasoning languages.

Vadalog. Vadalog is a logic-based reasoning language. It is designed to be used
as a reasoning language of modern AI systems such as knowledge graph manage-
ment systems [7]. Vadalog has been developed as part of the VADA programme
[15,20], a joint initiative between the University of Oxford, Manchester and Edin-
burgh. The Vadalog system [8], an implementation of Vadalog, is currently in
use at these universities, as well as more than 20 industrial partners.

Vadalog builds upon a long legacy of KR languages, in particular that of Dat-
alog and ontology languages. The logical core of Vadalog is Warded Datalog±,
an extension of Datalog with existential quantification (the “+” in Datalog±).
Most reasoning problems under Datalog with existential quantification are unde-
cidable. Therefore, one has to impose certain restrictions on the language (the
“−” in Datalog±) based on the particular design goals of the language. Warded
Datalog± has as its design goals to (i) allow unrestricted recursion, i.e., every
Datalog program is a Warded Datalog± program, (ii) include existential quan-
tification at least as much as required by OWL 2 QL i.e., every OWL 2 QL
ontology can, by minimal syntactical translation, be transformed into a Warded
Datalog± program, and (iii) has at most PTime data complexity.

However, it is clear that Datalog alone, even if it had access to unrestricted
existential quantification, is not enough to meet all needs of real practical appli-
cations. Additional features need to be available in Vadalog, such as arithmetic,
aggregation, access to external functions and systems such as machine learning,
access to external data sources, extraction of web data, etc. [7]. It is also clear,
and well known, that adding many of these features leads to undecidability of
most reasoning tasks. Thus, a second balance has to be struck: adding features
of practical significance to extend Warded Datalog±, the logical core of Vadalog,
which could in principle lead to an explosion of computational complexity, but
in the targeted specific applications does not.

This balance provides a particularly interesting field for both theoretical and
practical research. On the practical side, which applications remain scalable when
using such features, i.e., go beyond Warded Datalog±? For which applications
is already full Warded Datalog± (with PTime data complexity) not scalable
enough? And on the theory side, which fragments of Warded Datalog± ensure
data complexity below PTime? Can theoretical guarantees be given for Vadalog
programs that use particular features (possibly in a limited way), i.e., go beyond
Warded Datalog±?

Overview. In this paper, we give an overview of recent advances on theoretical
and practical aspects of Vadalog. We first give an easy-to-access self-contained
introduction to Warded Datalog±, the logical core of Vadalog. We then discuss
recent advances. As the first one, we discuss Datalog rewritability of Warded
Datalog±. As the second one, we give an answer to the question of more efficient
fragments of Warded Datalog± by introducing the piece-wise linear fragment
of Warded Datalog±, the space-efficient core of Vadalog. To complement the
theoretical part, we then talk about practical applications, and Vadalog features

Vadalog: Recent Advances and Applications 23

that go beyond Warded Datalog± that are needed to effectively support such
applications. As concrete applications, we discuss the detection of close links
in financial knowledge graphs, and the detection of family-owned businesses.
Both applications are good examples where the employed features lead to the
undecidability of reasoning, but the specific applications scale well in practice.

2 Preliminaries

Basics. We consider the disjoint countably infinite sets C, N, and V of con-
stants, (labeled) nulls, and variables, respectively. The elements of (C ∪ N ∪ V)
are called terms. An atom is an expression of the form R(t̄), where R is an n-ary
predicate, and t̄ is an n-tuple of terms. We write var(α) for the set of variables
in an atom α; this notation extends to sets of atoms. A fact is an atom that
contains only constants. We assume the reader is familiar with the fundamental
notion of homomorphism.

Relational Databases. A schema S is a finite set of relation symbols (or pred-
icates), each having an associated arity. We write R/n to denote that R has
arity n ≥ 0. A position R[i] in S, where R/n ∈ S and i ∈ [n], identifies the i-th
argument of R. An instance over S is a (possibly infinite) set of atoms over S
that contain constants and nulls, while a database over S is a finite set of facts
over S. The active domain of an instance I, denoted dom(I), is the set of all
terms occurring in I.

Conjunctive Queries. A conjunctive query (CQ) over S is an expression

Q(x̄) ← R1(z̄1), . . . , Rn(z̄n),

where Q is a predicate used only in the head of CQs, each Ri(z̄i), for i ∈
{1, . . . , n}, is an atom without nulls over S, and x̄ ⊆ z̄1 ∪ · · · ∪ z̄n are the
output variables of q. The evaluation of q(x̄) over an instance I, denoted q(I),
is the set of all tuples h(x̄) of constants with h being a homomorphism from
{R1(z̄1), . . . , Rn(z̄n)} to I.

Tuple-Generating Dependencies. A tuple-generating dependency (TGD) σ
is a first-order sentence of the form

∀x̄∀ȳ (ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)) ,

where x̄, ȳ, z̄ are tuples of variables of V, and ϕ,ψ are conjunctions of atoms
without constants and nulls. Note that TGDs are at the heart of Datalog±

languages. A Datalog rule extended with existential quantification is essentially
a TGD. Therefore, a Datalog± language should be understood as a syntactic
class of TGDs. For brevity, we write σ as ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄), and use comma
instead of ∧ for joining atoms. We refer to ϕ and ψ as the body and head of σ,
denoted body(σ) and head(σ), respectively. The frontier of the TGD σ, denoted
frontier(σ), is the set of variables that appear both in the body and the head of σ.

24 G. Gottlob et al.

We also write var∃(σ) for the existentially quantified variables of σ. The schema
of a set Σ of TGDs, denoted sch(Σ), is the set of predicates occurring in Σ. An
instance I satisfies a TGD σ as the one above, written I |= σ, if the following
holds: whenever there exists a homomorphism h such that h(ϕ(x̄, ȳ)) ⊆ I, then
there exists h′ ⊇ h|x̄ such that h′(ψ(x̄, z̄)) ⊆ I. The instance I satisfies a set Σ
of TGDs, written I |= Σ, if I |= σ for each σ ∈ Σ.

Query Answering under TGDs. The main reasoning task under TGD-based
languages is conjunctive query answering. Given a database D and a set Σ of
TGDs, a model of D and Σ is an instance I such that I ⊇ D and I |= Σ. Let
mods(D,Σ) be the set of all models of D and Σ. The certain answers to a CQ
q w.r.t. D and Σ is

cert(q,D,Σ) :=
⋂

{q(I) | I ∈ mods(D,Σ)}.

Our main task is to compute the certain answers to a CQ w.r.t. a database and
a set of TGDs from a certain class C of TGDs; concrete classes are discussed
below. As usual when studying the complexity of this problem, we focus on its
decision version:

PROBLEM : CQAns(C)

INPUT : A database D, a set Σ ∈ C of TGDs, a CQ q(x̄), and c̄ ∈ dom(D)|x̄|.
QUESTION : Is it the case that c̄ ∈ cert(q, D, Σ)?

We consider the combined complexity and data complexity of the problem,
where the latter assumes that the set of TGDs and the CQ are fixed. A use-
ful tool for tackling the above problem is the well-known chase procedure (see,
e.g., [11,13,18,21]) that, given a database D and a set Σ of TGDs, builds a uni-
versal model chase(D,Σ) of D and Σ, i.e., a model that can be homomorphically
embedded into every other model of D and Σ. This immediately implies that
cert(q,D,Σ) = q(chase(D,Σ)).

3 The Logical Core of Vadalog

As discussed in Sect. 1, the Vadalog language is a general-purpose formalism for
knowledge representation and reasoning. The logical core of this language is the
well-behaved class of warded sets of TGDs that has been proposed in [3,17].

An Informal Description. Wardedness applies a restriction on how certain
“dangerous” variables of a set of TGDs are used. These are body variables that
can be unified with a null during the chase, and are also propagated to the head.
For example, given

P (x) → ∃z R(x, z) and R(x, y) → P (y)

the variable y in the body of the second TGD is dangerous. Indeed, once the
chase applies the first TGD, an atom of the form R(,⊥) is generated, where ⊥

Vadalog: Recent Advances and Applications 25

is a null value, and then the second TGD is triggered with the variable y being
unified with ⊥ that is propagated to the obtained atom P (⊥). The unrestricted
use of dangerous variables leads to a prohibitively high computational complexity
of reasoning [11]. The main goal of wardedness is to limit the use of dangerous
variables with the aim of taming the way that null values are propagated during
the execution of the chase procedure. This is achieved by posing the following
two conditions: (1) all the dangerous variables should appear together in a single
body atom α, called a ward, and (2) α can share only harmless variables with
the rest of the body, i.e., variables that unify only with constants. We proceed
to formalize the above informal description.

The Formal Definition. We first need some auxiliary terminology. The set of
positions of a schema S, denoted pos(S), is defined as {R[i] | R/n ∈ S, with n ≥
1 and i ∈ {1, . . . , n}}. Given a set Σ of TGDs, we write pos(Σ) instead of
pos(sch(Σ)). The set of affected positions of sch(Σ), denoted affected(Σ), is
inductively defined as follows:

– if there exists σ ∈ Σ and x ∈ var∃(σ) at position π, then π ∈ affected(Σ), and
– if there exists σ ∈ Σ and x ∈ frontier(σ) in the body of σ only at posi-

tions of affected(Σ), and x appears in the head of σ at position π, then
π ∈ affected(Σ).

Let nonaffected(Σ) = pos(Σ) − affected(Σ). We can now classify body variables
into harmless, harmful, and dangerous. Fix a TGD σ ∈ Σ and a variable x in
body(σ):

– x is harmless if at least one occurrence of it appears in body(σ) at a position
of nonaffected(Σ),

– x is harmful if it is not harmless, and
– x is dangerous if it is harmful and belongs to frontier(σ).

We are now ready to formally introduce wardedness.

Definition 1 (Wardedness). A set Σ of TGDs is warded if, for each TGD
σ ∈ Σ, there are no dangerous variables in body(σ), or there exists an atom
α ∈ body(σ), called a ward, such that (1) all the dangerous variables in body(σ)
occur in α, and (2) each variable of var(α) ∩ var(body(σ) − {α}) is harmless.

We denote by WARD the class of all (finite) warded sets of TGDs. The prob-
lem of CQ answering under warded sets of TGDs has been recently investigated
in [3,17]:

Theorem 1. CQAns(WARD) is complete for ExpTime in combined complexity,
and complete for PTime in data complexity.

4 Query Answering via Proof Trees

Our main technical tool for studying the Datalog rewritability of warded sets
of TGDs in Sect. 5, as well as the piece-wise linear fragment of warded sets of

26 G. Gottlob et al.

TGDs in Sect. 6, is a new notion of proof tree that has been recently proposed
in [9]. The goal of this section is to informally explain, via a simple example,
the essence underlying this new notion of proof tree, and how it can be used for
query answering purposes.

Unfolding. It is known that given a CQ q and a set Σ of TGDs, we can unfold
q using the TGDs of Σ into an infinite union of CQs qΣ such that, for every
database D, cert(q,D,Σ) = qΣ(D); see, e.g., [16,19]. Let us clarify that in our
context, an unfolding, which is essentially a resolution step, is more complex
than in the context of Datalog due to the existentially quantified variables in
the head of TGDs. The purpose of a proof tree is to encode a finite branch of
the unfolding of a CQ q with a set Σ of TGDs. Such a branch is a sequence
q0, . . . , qn of CQs, where q = q0, while, for each i ∈ {1, . . . , n}, qi is a obtained
from qi−1 via an unfolding step. Here is a simple example, which will serve as a
running example, that illustrates the notion of unfolding.

Example 1. Consider the set Σ of TGDs consisting of

R(x) → ∃y T (y, x) T (x, y), S(y, z) → T (x, z) T (x, y), P (y) → G()

and the CQ Q ← G(), which simply asks whether G() is entailed. Since
the unfolding of q with Σ should give the correct answer for every input
database, and therefore, for databases of the form

{
R(cn−1), S(cn−1, cn−2), . . . ,

S(c2, c1), P (c1)
}
, for some n > 1, one of its branches should be q = q0, q1, . . . , qn,

where
q1 = Q ← T (x, y1), P (y1)

obtained by resolving q0 using the third TGD,

qi = Q ← T (x, yi), S(yi, yi−1), . . . , S(y2, y1), P (y1),

for i ∈ {2, . . . , n − 1}, obtained by resolving qi−1 using the second TGD, and

qn = Q ← R(yn−1), S(yn−1, yn−2), . . . , S(y2, y1), P (y1)

obtained by resolving qn−1 using the first TGD.

Query Decomposition. One may be tempted to think that the proof tree
that encodes the branch q0, . . . , qn of the unfolding of q with Σ is the finite
labeled path v0, . . . , vn, where each vi is labeled by qi. However, another crucial
goal of such a proof tree, which is not achieved via the naive path encoding, is
to split each resolvent qi, for i > 0, into smaller subqueries q1i , . . . , qni

i , which
are essentially the children of qi, in such a way that they can be processed
independently by resolution. The crux of this encoding is that it provides us with
a mechanism for keeping the CQs that must be processed by resolution small.
Example 1 shows that by following the naive path encoding, without splitting
the resolvents into smaller subqueries, we may get CQs of unbounded size.

Vadalog: Recent Advances and Applications 27

Fig. 1. Partial trees of the proof tree that encodes the branch q = q0, . . . , qn of the
unfolding of q with Σ from Example 1.

The key question here is how a CQ q can be decomposed into subqueries
that can be processed independently. The subtlety is that, after splitting q,
occurrences of the same variable may be separated into different subqueries.
Thus, we need a way to ensure that a variable in q, which appears in different
subqueries after the splitting, is indeed treated as the same variable, i.e., it has
the same meaning. We deal with this issue by restricting the set of variables in q
of which occurrences can be separated during the splitting step. In particular, we
can only separate occurrences of an output variable. This relies on the convention
that output variables correspond to fixed constant values of C, and thus their
name is “frozen” and never renamed by subsequent resolution steps. Hence,
we can separate occurrences of an output variable into different subqueries, i.e.,
different branches of the proof tree, without losing the connection between them.
Summing up, the idea underlying query decomposition is to split the CQ at hand
into smaller subqueries that keep together all the occurrences of a non-output
variable, but with the freedom of separating occurrences of an output variable.

Query Specialization. From the above discussion, one expects that a proof tree
of a CQ q w.r.t. a set Σ of TGDs can be constructed by starting from q, which
is the root, and applying two steps: unfolding and decomposition. However, this
is not enough for our purposes as we may run into the following problem: some
of the subqueries will mistakenly remain large since we have no way to realize
that a non-output variable corresponds to a fixed constant value, which in turn
allows us to “freeze” its name and separate different occurrences of it during the
decomposition step. This is illustrated by Example 1. Observe that the size of
the CQs {qi}i>0 grows arbitrarily, while our query decomposition has no effect
on them since they are Boolean queries, i.e., queries without output variables,
and thus, we cannot split them into smaller subqueries. The above issue can be
resolved by having an intermediate step between unfolding and decomposition,
the so-called specialization step. A specialization of a CQ is obtained by con-
verting some non-output variables of it into output variables, while keeping their
name, or taking the name of an existing output variable.

28 G. Gottlob et al.

Example 2. Consider, for example, the CQ q1 from Example 1

Q ← T (x, y1), P (y1)

obtained by resolving q = q0 using the third TGD. Query decomposition cannot
split it into smaller subqueries since the variable y1 is a non-output variable, and
thus, all its occurrences should be kept together. We can consider the following
specialization of q1

Q(y1) ← T (x, y1), P (y1),

which simply converts y1 into an output variable, and now by query decompo-
sition we can split it into the atomic queries

Q(y1) ← T (x, y1) Q(y1) ← P (y1),

which represent the original query q1.

Proof Trees. We are now ready to explain the high-level idea underlying the
new notion of proof tree by exploiting our running example. Consider the set Σ
of TGDs and the CQ q from Example 1. The branch q0, . . . , qn of the unfolding
of q with Σ given in Example 1 is encoded via a proof tree of the form

where each Ti, for i ∈ {1, . . . , n − 1}, is a rooted tree with only two leaf nodes.
The actual trees are depicted in Fig. 1; the left one is T1, the middle one is Ti for
i ∈ {2, . . . , n−2}, while the right one is Tn−1. For each i ∈ {1, . . . , n−1}, the child
of the root of Ti is obtained via unfolding, then we specialize it by converting
the variable yi into an output variable, and then we decompose the specialized
CQ into two subqueries. In the tree Tn−1, we also apply an additional unfolding
step in order to obtain the leaf node Q(yn−1) ← R(yn−1). The underlined CQs
are actually the subqueries that represent the CQ qn of the unfolding. Indeed,
the conjunction of the atoms occurring in the underlined CQs is precisely the
CQ qn.

The next result illustrates how proof trees as described above can be used for
query answering purposes. We refer to a proof tree P obtained from a CQ q and
a set Σ of TGDs as a proof tree of q w.r.t. Σ. We also refer to the CQ encoded
at its leaf nodes – see the underlined CQs in Fig. 1, which essentially encode
the Boolean CQ Q ← R(yn−1), S(yn−1, yn−2), . . . , S(y2, y1), P (y1) – as the CQ
induced by P; by abuse of notation, we write P for the CQ induced by P.

Theorem 2. Consider a database D, a set Σ of TGDs, a CQ q(x̄), and c̄ ∈
dom(D)|x̄|. The following are equivalent:

1. c̄ ∈ cert(q,D,Σ).
2. There exists a proof tree P of q w.r.t. Σ such that c̄ ∈ P(D).

Vadalog: Recent Advances and Applications 29

5 Datalog Rewritability

A desirable property of a class C of TGDs is Datalog rewritability. We say that
C is Datalog rewritable if the following holds: given a set Σ ∈ C of TGDs and
a CQ q, we can construct a Datalog query qΣ such that, for every database D,
cert(q,D,Σ) coincides with the evaluation of qΣ over D. Recall that a Datalog
query is essentially a pair (Π,R), where Π is a set of existential-free TGDs with
only one head atom, called Datalog program, and R is an n-ary predicate. The
answer to such a Datalog query q over a database D, denoted q(D), is defined
as the set of tuples cert(qR,D,Σ), where qR is the atomic query R(x1, . . . , xn).
Datalog rewritability implies that the certain answers to a CQ w.r.t. a database
and a set of TGDs from C can be computed by using existing Datalog engines.
As it has been observed in [9], by exploiting the notion of the proof tree, we can
show that the class of warded sets of TGDs is Datalog rewritable. This relies on
the fact that a proof tree can be converted into a Datalog query.

A Proof Tree into a Datalog Query. Consider the set Σ of TGDs given in
Example 1, and let P be the proof tree of q w.r.t. Σ that encodes the branch
q0, . . . , qn of the unfolding of q with Σ for n = 4. In other words, P is the tree
consisting of the trees T1, Tn−2 and Tn−1 depicted in Fig. 1. Each node of P,
together with its children, is converted into a Datalog rule. Assume that the node
v has the children u1, u2 in P, where v is labeled by p0(x̄0) and, for i ∈ {1, 2}, ui

is labeled by the CQ pi(x̄i) with x̄0 ⊆ x̄i. In this case, we construct the Datalog
rule

C[p1](x̄1), C[p2](x̄2) → C[p0](x̄0),

where C[pi] is a predicate that corresponds to the CQ pi, while [pi] refers to a
canonical renaming of pi. The intention underlying such a canonical renaming is
the following: if pi and pj are the same up to variable renaming, then [pi] = [pj].
Moreover, for each leaf node of P labeled by the atomic query p(x̄) of the form
Q(x̄) ← R(ȳ), where the tuples x̄ and ȳ mention the same variables, we construct
the Datalog rule

R(ȳ) → C[p](x̄).

From the above description, P is converted into the following Datalog program
ΠP ; note that we do not keep the rules that are already present (up to variable
renaming). For brevity, we adopt the following naming convention: pi,j is the
CQ that labels the j-th node (from left-to-right) of the i-th level of P. If the i-th
level has only one node, we simply write pi. With this naming convention, the
root is labeled with p0, its child with p1, etc. The Datalog program ΠP obtained
from P follows:

C[p1] → C[p0] C[p3,1](y
2), C[p7,2](y

1, y2) → C[p6](y
1, y2)

C[p2](y
1) → C[p1] C[p13](y

3) → C[p3,1](y
3)

C[p3,1](y
1), C[p3,2](y

1) → C[p2](y
1) P (y1) → C[p3,2](y

1)

C[p5](y
1) → C[p3,1](y

1) S(y2, y1) → C[p7,2](y
1, y2)

C[p6](y
1, y2) → C[p5](y

1) R(y3) → C[p13](y
3).

30 G. Gottlob et al.

The Datalog query qP is defined as (ΠP , C[p0]). It is clear that, for every database
D, P(D) = qP(D); recall that we may write P for the CQ induced by P.

The Actual Datalog Rewriting. Having the above transformation of a proof
tree into a Datalog query, we can easily rewrite every warded set Σ of TGDs
and a CQ q into a Datalog query qΣ . But before doing this, we need a crucial
result regarding warded sets of TGDs and proof trees. The node-width of a proof
tree P, denoted nwd(P), is the size of the largest CQ over all CQs that label its
nodes. In the case of warded sets of TGDs, we can focus on proof trees of node-
width at most fWARD(|q| + |Σ|), where fWARD(·) is a polynomial. More precisely,
Theorem 2 can be strengthen as follows:

Theorem 3. Consider a database D, a set Σ ∈ WARD of TGDs, a CQ q(x̄),
and c̄ ∈ dom(D)|x̄|. The following are equivalent:

1. c̄ ∈ cert(q,D,Σ).
2. There is a proof tree P of q w.r.t. Σ s.t. nwd(P) ≤ fWARD(|q| + |Σ|) and

c̄ ∈ P(D).

The above result suggests that the Datalog rewriting qΣ can be obtained
by exhaustively converting each proof tree P of q w.r.t. Σ with node-width at
most fWARD(|q| + |Σ|) into a Datalog query qP , and then take the union of all
those queries. Since we consider the canonical renaming of the CQs occurring
in a proof tree, and since the size of those CQs is bounded by fWARD(|q| + |Σ|),
we immediately conclude that we need to explore finitely many CQs. Thus,
the above iterative procedure will eventually terminate and construct a finite
Datalog query that is equivalent to Q.

Theorem 4. Consider a set Σ ∈ WARD of TGDs and a CQ q. We can construct
a Datalog query qΣ such that cert(q,D,Σ) = qΣ(D).

At this point, we would like to stress that the notion of proof tree can be
also used to re-establish the complexity of CQAns(WARD) (see Theorem 1) in a
more transparent way than the algorithm in [3,17]. By Theorem 3, we simply
need to search for a proof tree that has bounded node-width that entails the
give tuple of constants. This can be done via a space-bounded algorithm that
constructs in a level-by-level fashion the branches of the proof tree in parallel
universal computations using alternation. Since this alternating algorithm uses
polynomial space in general, and logarithmic space when the set of TGDs and
the CQ are fixed, we immediately get an ExpTime upper bound in combined,
and a PTime upper bound in data complexity, which confirms Theorem1.

6 Limiting Recursion

We now focus our attention on the question whether we can limit the recursion
allowed by wardedness in order to obtain a formalism that provides a convenient
syntax for expressing useful recursive statements, and at the same time achieves

Vadalog: Recent Advances and Applications 31

space-efficiency. This question has been recently posed in [9], where it has been
observed that most of the examples coming from our industrial partners use
recursion in a restrictive way: each TGD has at most one body atom whose
predicate is mutually recursive with a predicate occurring in the head of the
TGD. Interestingly, this linear-like recursion has been already investigated in
the context of Datalog, and it is known as piece-wise linear; see, e.g., [2]. It
turned out that this type of recursion is the answer to our main question.

To formally define piece-wise linearity, we first need to define when two pred-
icates are mutually recursive, which in turn relies on the well-known notion of
the predicate graph. The predicate graph of a set Σ of TGDs, denoted pg(Σ),
is a directed graph (V,E), where V = sch(Σ), and there exists an edge from a
predicate P to a predicate R, i.e., (P,R) ∈ E, iff there exists a TGD σ ∈ Σ such
that P occurs in body(σ) and R occurs in head(σ). Two predicates P,R ∈ sch(Σ)
are mutually recursive (w.r.t. Σ) if there exists a cycle in pg(Σ) that contains
both P and R (i.e., R is reachable from P , and vice versa). We are now ready
to define piece-wise linearity for TGDs.

Definition 2 (Piece-wise Linearity). A set Σ of TGDs is piece-wise linear if,
for each TGD σ ∈ Σ, there exists at most one atom in body(σ) whose predicate
is mutually recursive with a predicate in head(σ).

Let PWL be the class of piece-wise linear sets of TGDs. The next result shows
that indeed the piece-wise linear fragment of warded sets of TGDs ensures space-
efficiency:

Theorem 5. CQAns(WARD∩PWL) is PSpace-complete in combined complex-
ity, and NLogSpace-complete in data complexity.

The lower bounds are inherited from linear Datalog, that is, the fragment
of Datalog where only one intensional predicate can appear in the body of a
rule. Interestingly, the upper bounds heavily rely on the notion of proof tree
discussed above. For piece-wise linear warded sets of TGDs, we can strengthen
Theorem 2 by focussing on proof trees that enjoy two syntactic properties: (i)
their node-width is bounded by fWARD∩PWL(|q| + |Σ|), where fWARD∩PWL(·) is a
polynomial (different than fWARD), and (ii) they have a path-like structure, i.e.,
each node has at most one child that is not a leaf – such proof trees are called
linear. Theorem 2 can be strengthen as follows:

Theorem 6. Consider a database D, a set Σ ∈ WARD ∩ PWL of TGDs, a CQ
q(x̄), and c̄ ∈ dom(D)|x̄|. The following are equivalent:

1. c̄ ∈ cert(q,D,Σ).
2. There is a linear proof tree P of q w.r.t. Σ with nwd(P) ≤ fWARD∩PWL(|q| +

|Σ|) such that c̄ ∈ P(D).

The above results suggests that for deciding whether c̄ ∈ cert(q,D,Σ), we
need to search for a linear proof tree P that has bounded node-width such

32 G. Gottlob et al.

that c̄ ∈ P(D). This can be done via a space-bounded algorithm that non-
deterministically constructs in a level-by-level fashion the branches of the proof
tree. Notice that we do not need alternation, as in the case of warded sets of
TGDs, since we are looking for a linear proof tree. Since this algorithm uses
polynomial space in general, and logarithmic space when the set of TGDs and
the CQ are fixed, we immediately get the desired upper bounds.

Regarding Datalog rewritability, it is clear that the machinery described in
Sect. 5 applies also in the case of piece-wise linear warded sets of TGDs. However,
since we can consider only linear proof trees, it is not difficult to verify that the
obtained Datalog query is actually piece-wise linear. Furthermore, it is well-
known that a piece-wise linear Datalog query can be transformed into a linear
Datalog query [2]. Summing up, we get the following interesting result concerning
Datalog rewritability:

Theorem 7. Consider a set Σ ∈ WARD ∩ PWL of TGDs and a CQ q. We can
construct a linear Datalog query qΣ such that cert(q,D,Σ) = qΣ(D).

7 Applications

In this section, we show how the theory of Vadalog discussed so far translates
into practice. As discussed in the introduction, it is clear that Datalog alone,
even if it had access to unrestricted existential quantification, is not enough
to meet all needs of real practical applications. Features need to be available
such as arithmetic, aggregation, access to external functions and systems such
as machine learning, access to external data sources, extraction of web data, etc.
A detailed analysis of the requirements in knowledge graphs can be found in [7],
an analysis tailored to the requirements of Enterprise AI in [5]. As mentioned
before, adding many of these features leads to undecidability of most reasoning
tasks. Thus, for practical applications, a careful balance has to be established.
Features of practical significance need to be added that go beyond warded sets of
TGDs as much as needed by applications. At the same time, these features need
to be carefully chosen and used to allow for practical scalability in the desired
applications.

We discuss here two such applications. Our domain will be financial knowl-
edge graphs, that is, knowledge graphs that represent entities in the financial
space (such as companies, persons, assets, rights, etc.) and their relationships.
Both relate to actual applications of the Vadalog system, in use with our indus-
trial partners. More details on both applications, and further financial applica-
tions, can be found in [5]. We will not be able to discuss a number of other
applications, such as the use of Vadalog and its tools in data science pipelines
[6], and data extraction [14] such as with our partners at DBLP [22]. We are
currently working on a number of other applications. A wider area of application
is the direct execution of SPARQL queries under standard bag semantics using
Vadalog, which uses existential quantifiers to distinguish duplicates [10]. We are
also working on applications in the area of large computational social choice
scenarios [12] and light-weight consistent query answering [4].

Vadalog: Recent Advances and Applications 33

Close Links. The first application is the detection of close links between compa-
nies. The concept of close link is a technical term in the financial industry, and,
e.g., specified and used in the European Central Bank regulations on monetary
policy instruments and procedures of the Eurosystem [1]. Intuitively speaking, it
enforces that companies that are in a close relationship with each other (e.g.,
by one company owning a large part of the other company) cannot be acting
as guarantors of loans for each other. This intuitively makes sense; if, e.g., the
parent company of a wholly owned subsidiary guarantees a loan, there is a risk
that if the company itself cannot repay the loan, the subsidiary cannot do so
either. Such situations are thus forbidden by regulations.

Before describing the technical implementation as a financial knowledge
graph in Vadalog, let us make the problem statement and context precise. For
the context, we are discussing real-world regulatory requirements: most types of
financial entities within the Eurosystem have to conform to these regulations.
There are two separate entities we are dealing with: the European Central Bank
(ECB), which releases the guidelines we are discussing here [1] and the Eurosys-
tem, which consists of the ECB and the national Central Banks of the countries
that adopted the euro, which adhere to and enforce it. With the terms clarified,
let us consider the concrete definition of close links [1].

Close links is a situation in which the counterparty is linked to an issuer,
debtor, or guarantor of eligible assets by reason of the fact that:

(a) the counterparty owns directly, or indirectly, through one or more other
undertakings, 20% or more of the capital of the issuer/debtor/guarantor;

(b) the issuer/debtor/guarantor owns directly, or indirectly through one or more
other undertakings, 20% or more of the capital of the counterparty; or

(c) a third party owns more than 20% of the capital of the counterparty and
more than 20% of the capital of the issuer/debtor/guarantor, either directly
or indirectly, through one or more undertakings.

While the detection of close links forms a clear problem statement, the prob-
lem still exists within the context of a larger regulatory framework. Translated
to knowledge graphs, it is thus important to note that while one requirement is
that the problem is accurately represented in the knowledge graph, another one
is that it interfaces naturally with other parts of the knowledge graph. We shall
concentrate on illustrating the first aspect here, but want to emphasize that the
second one is just as important.

Example 3. Assume that ownership of companies is encoded in a ternary pred-
icate Own(x, y, u), where x is the owning company, y is the owned company,
and u is the fraction (between 0 and 1) that x owns of y. Assume that we want
to provide close links in the relation CloseLink(x, y) in the knowledge graph,
expressing that x is in a close link with y. The Vadalog rules expressing the
definition of close link given above are:

1: Own(x, y, u), w = msum(u, 〈y〉) → TotalOwn(x, y, w).
2: TotalOwn(x, z, u), Own(z, y, v), w = msum(u · v, 〈z〉) → TotalOwn(x, y, w).

34 G. Gottlob et al.

3: TotalOwn(x, y, w), w ≥ 0.2 → CloseLink(x, y).
4: TotalOwn(z, x, v), TotalOwn(z, y, w), v ≥ 0.2, w ≥ 0.2 → CloseLink(x, y).
5: CloseLink(x, y) → CloseLink(y, x).

There are multiple things to note here. First, before discussing the actual
meaning of the rules, there is one Vadalog feature used in these rules that is not
part of warded sets of TGDs, the core language we discussed in the theoretical
part so far: this is monotonic aggregation (or, more specifically, monotonic sum,
or msum). Monotonic aggregation has been introduced in the Datalog setting
[23]. Intuitively, instead of regular aggregation, where execution is blocked until
all values contributing to the aggregation are available, in monotonic aggregation
intermediate values are provided. This is particularly important for the use of
aggregation within recursion, where collecting all such values may simply not be
possible beforehand (as it may be part of the recursion). An additional advantage
of monotonic aggregation is streamability, as execution does not become blocked.
On the other hand, there is a downside, namely the requirement for monotonicity
– both required for giving meaningful semantics within recursion, and for being
able to actually use the values in a meaningful way in the remainder of the
program. Specifically, monotonicity requires that the result values of the aggre-
gation either monotonically increase (such as, in our case, sum), or decrease.
This restriction is the reason that Vadalog, apart from monotonic aggregation
also supports regular aggregation, as both are required by applications.

Let us now return to our concrete use of monotonic aggregation. The first
rule in our program in Example 3 expresses that if a company x directly owns
of company y a fraction u, this fraction should be added to the total ownership
that x owns of y. Similarly, the second rule expresses indirect ownership, i.e., if
a company x already owns in total of company z a fraction u, and if company z
directly owns of company y a fraction v, then a fraction uv should be added to
the total ownership that x owns of y.

There are two mechanism that make such rules work. One is directly visible,
one is more subtle. The directly visible one is the expressions in angle brackets,
namely 〈y〉 and 〈z〉. These are subgrouping expressions, introduced in [23] and
similar to SQL’s subgrouping feature. Intuitively, such subgrouping expression
are “keys” for aggregation: each subgroup contributes at most once to the aggre-
gate. This is particularly important in the case of Datalog-based languages, if
(e.g., due to optimization) there is no guarantee on how many times a rule is
fired, as otherwise the (normally idempotent) repeat firing of a rule would add
to the aggregate function. The more subtle one is where the “group by” for the
aggregate function comes from, and why the two aggregate expressions in the
two separate rules contribute to the same value. Both are determined by the
head: “Group by” variables are all variables in the head that are not contained
in the aggregate expression itself, and all aggregate functions with the same head
predicate contribute to the same aggregate value. In our example, the second
rule has x and y as grouping variables and z as a sub-grouping variable – in total
ensuring that for each combination of x, y and z, the value is counted at most
once towards the aggregate.

Vadalog: Recent Advances and Applications 35

Let us note that the fourth rule, which encodes condition (c) in the definition
of close links, is computationally the most demanding one requiring in principle
to check from arbitrary third companies z whether they satisfy the underly-
ing condition. Of course, optimized execution can avoid some of that expensive
computational task.

Family Ownership. While the close link problem is a clear, distinct problem,
required to be checked by, e.g., Eurozone regulations, it is only one aspect of
a typically much larger financial knowledge graph that most institutions have
to deal with. Although we cannot go into as much detail as in the previous
application, in this last part, we give a glimpse on how such a (slightly) broader
knowledge graph looks like.

It is clear that in reality direct ownership of a person or organization of a
certain company is not the only way to have control over that company. Multiple
distinct members of a family, i.e., multiple distinct persons, may each own a
smaller part of the company, but together may control a company. It is thus clear
why economic research studies families as units of company control. Consider
the following setting.

Example 4. Assume that companies c consist of multiple assets a whose value is
a fraction v of the companies’ share capital, given as Asset(a, c, v). Assume that
an owner o has rights to a fraction h of an asset a, given as Right(o, a, h). Suppose
that a relation Person(p, x̄) provides information about persons p and a vector
of their properties x̄. Assume that an (incomplete or possibly entirely missing)
relation Family(f, p) encodes that family f contains person p as a member.

1: Right(o, a, w), Asset(a, c, v),

Right(c, a′, w′), h = msum(〈a〉, v · w · w′) → Right(o, a′, h)

2: Person(p, x̄) → ∃f Family(f, p).
3: Person(p, x̄), Family(f, p), Person(p′, x̄′), Family(f ′, p′),

#FamilyProperty(x̄, x̄′) → f = f ′.

4: Right(p, a, w), Family(f, p), v = msum(〈p〉, w) → Own(f, a, w).

We see a number of features used in this example. Among them is existential
quantification (which we know how to deal with given the earlier sections of this
paper), monotonic aggregation (described earlier in this section), equality in the
heads (called an equality-generating dependency or EGD), as well as a custom
predicate #FamilyProperty bound against an external machine-learning based
system. It is well known that a naive combination of these features (or even just
TGDs and EGDs together) will lead to undecidability. Yet, and here we return
to where we started this section, these features are in a carefully chosen balance
within this concrete application, allowing the knowledge graph system scale to
the volume of data encountered. At the same time, and here we return to the
introduction, this is also an interesting starting point for theoretical future work:
which fragment of Datalog extended by these features ensures good behavior?

36 G. Gottlob et al.

Acknowledgements. This work has been supported by the EPSRC programme grant
EP/M025268/1 VADA, the WWTF grant VRG18-013, the EU Horizon 2020 grant
809965, and the EPSRC grant EP/S003800/1 EQUID.

References

1. Guideline (EU) 2018/570 of the ECB. https://www.ecb.europa.eu/ecb/legal/pdf/
celex 32018o0003 en txt.pdf (2018). Accessed 04 Mar 2019

2. Afrati, F.N., Gergatsoulis, M., Toni, F.: Linearisability on datalog programs.
Theor. Comput. Sci. 308(1–3), 199–226 (2003)

3. Arenas, M., Gottlob, G., Pieris, A.: Expressive languages for querying the semantic
web. ACM Trans. Database Syst. 43(3), 13:1–13:45 (2018)

4. Arming, S., Pichler, R., Sallinger, E.: Complexity of repair checking and consistent
query answering. In: ICDT, pp. 21:1–21:18 (2016)

5. Bellomarini, L., Fakhoury, D., Gottlob, G., Sallinger, E.: Knowledge graphs and
enterprise AI: the promise of an enabling technology. In: ICDE (2019)

6. Bellomarini, L., et al.: Data science with Vadalog: bridging machine learning and
reasoning. In: Abdelwahed, E.H., Bellatreche, L., Golfarelli, M., Méry, D., Ordonez,
C. (eds.) MEDI 2018. LNCS, vol. 11163, pp. 3–21. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-00856-7 1

7. Bellomarini, L., Gottlob, G., Pieris, A., Sallinger, E.: Swift logic for big data and
knowledge graphs. In: IJCAI, pp. 2–10 (2017)

8. Bellomarini, L., Sallinger, E., Gottlob, G.: The Vadalog system: datalog-based
reasoning for knowledge graphs. PVLDB 11(9), 975–987 (2018)

9. Berger, G., Gottlob, G., Pieris, A., Sallinger, E.: The space-efficient core of Vadalog.
In: PODS (2019, to appear)

10. Bertossi, L.E., Gottlob, G., Pichler, R.: Datalog: bag semantics via set semantics.
In: ICDT (2019, to appear)

11. Cal̀ı, A., Gottlob, G., Kifer, M.: Taming the infinite chase: query answering under
expressive relational constraints. J. Artif. Intell. Res. 48, 115–174 (2013)

12. Csar, T., Lackner, M., Pichler, R., Sallinger, E.: Winner determination in huge
elections with MapReduce. In: AAAI, pp. 451–458 (2017)

13. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and
query answering. Theor. Comput. Sci. 336(1), 89–124 (2005)

14. Fayzrakhmanov, R.R., Sallinger, E., Spencer, B., Furche, T., Gottlob, G.: Browser-
less web data extraction: challenges and opportunities. In: WWW, pp. 1095–1104
(2018)

15. Furche, T., Gottlob, G., Neumayr, B., Sallinger, E.: Data wrangling for big data:
towards a lingua franca for data wrangling. In: AMW (2016)

16. Gottlob, G., Orsi, G., Pieris, A.: Query rewriting and optimization for ontological
databases. ACM Trans. Database Syst. 39(3), 25:1–25:46 (2014)

17. Gottlob, G., Pieris, A.: Beyond SPARQL under OWL 2 QL entailment regime:
rules to the rescue. In: IJCAI, pp. 2999–3007 (2015)

18. Johnson, D.S., Klug, A.C.: Testing containment of conjunctive queries under func-
tional and inclusion dependencies. J. Comput. Syst. Sci. 28(1), 167–189 (1984)

19. König, M., Leclère, M., Mugnier, M.-L., Thomazo, M.: Sound, complete and min-
imal ucq-rewriting for existential rules. Semant. Web 6(5), 451–475 (2015)

20. Konstantinou, N., et al.: The VADA architecture for cost-effective data wrangling.
In: SIGMOD, pp. 1599–1602 (2017)

https://www.ecb.europa.eu/ecb/legal/pdf/celex_32018o0003_en_txt.pdf
https://www.ecb.europa.eu/ecb/legal/pdf/celex_32018o0003_en_txt.pdf
https://doi.org/10.1007/978-3-030-00856-7_1
https://doi.org/10.1007/978-3-030-00856-7_1

Vadalog: Recent Advances and Applications 37

21. Maier, D., Mendelzon, A.O., Sagiv, Y.: Testing implications of data dependencies.
ACM Trans. Database Syst. 4(4), 455–469 (1979)

22. Michels, C., Fayzrakhmanov, R.R., Ley, M., Sallinger, E., Schenkel, R.: OXpath-
based data acquisition for DBLP. In: JCDL, pp. 319–320 (2017)

23. Shkapsky, A., Yang, M., Zaniolo, C.: Optimizing recursive queries with monotonic
aggregates in deals. In: ICDE, pp. 867–878 (2015)

Belief Revision and Argumentation

AGM Meets Abstract Argumentation:
Contraction for Dung Frameworks

Ringo Baumann(B) and Felix Linker

Computer Science Institute, Leipzig University, Leipzig, Germany
baumann@informatik.uni-leipzig.de, linker@studserv.uni-leipzig.de

Abstract. The aim of the paper is to combine two of the most important
areas of knowledge representation, namely belief revision and argumen-
tation. We present a first study of AGM-style contraction for abstract
argumentation frameworks (AFs). Contraction deals with removing for-
mer beliefs from a given knowledge base. Our presented approach is
based on a reformulation of the original AGM postulates. In contrast to
the AGM setup, where propositional logic is used, we build upon the
recently developed Dung-logics. These logics have been introduced to
tackle the somehow inverse problem, namely adding new beliefs. Impor-
tantly, they satisfy the characterization property that ordinary equiva-
lence in Dung logics coincides with strong equivalence for the respective
argumentation semantics. Although using the same setup we prove a neg-
ative result regarding the unrestricted existence of contraction operators.
This means, an analog to the Harper Identity, which allows to construct
a contraction operator from a given revision operator, is not available.
However, dropping the somewhat controversial recovery postulate leads
to the existence of reasonable operators.

Keywords: Abstract argumentation · Argumentation frameworks ·
Belief contraction · Belief revision · Knowledge representation

1 Introduction

Argumentation theory has become a vibrant research area in Artificial Intelli-
gence, covering aspects of knowledge representation, multi-agent systems, and
also philosophical questions (cf. [2,30] for excellent overviews). The simplicity
of Dung’s argumentation frameworks (AFs) [18], which are set-theoretically just
directed graphs, has considerably contributed to the dominant role of them in
the field of abstract argumentation. The latter is primarily concerned with the
evaluation of arguments, viewed as abstract entities. The evaluation, i.e. the
definition of acceptable sets of arguments, is performed by so-called argumen-
tation semantics which are most commonly based on the attack relation among
arguments [3].

Belief revision is concerned with changing the current beliefs of an agent,
represented in a suitable representation language, in the light of new information
c© Springer Nature Switzerland AG 2019
F. Calimeri et al. (Eds.): JELIA 2019, LNAI 11468, pp. 41–57, 2019.
https://doi.org/10.1007/978-3-030-19570-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19570-0_3&domain=pdf
https://doi.org/10.1007/978-3-030-19570-0_3

42 R. Baumann and F. Linker

(cf. [22,24] for an overview). One central paradigm is that of minimal change, i.e.
the modification of the current knowledge base has to been done economically.
Two main types of belief change are intensively studied, namely revision and
contraction.

Whereas revision potentially replaces information with new knowledge, con-
traction removes information from a given knowledge base. Both revision and
contraction have been studied in depth in the context of propositional logic, with
AGM theory [1] certainly being the most influential account. Although, as just
mentioned, AFs are widely used, and dynamic aspects obviously play a major
role in argumentation, the dynamics of AFs have received an increasing interest
over the last few years only. Confer [19] for historical relations between belief
revision and argumentation. There are a few works which are dealing with revis-
ing AFs [5,14,15,17]. All mentioned works are guided by an axiomatic approach
inspired by the AGM postulates. However, several conceptional differences can
be observed. For instance, they differ in their underlying equivalence notions,
namely strong or ordinary equivalence, respectively as well as in their allowed
types of manipulations, e.g. modifying the attack relation only vs. no restric-
tions at all. To the best of our knowledge the study of AF contraction has been
neglected so far. The aim of the paper is to close this gap.

The presented approach builds upon the recently developed Dung-logics
which have been introduced to tackle revision [5]. Although here we use the
same setup as for revision, we can show a negative result regarding the unre-
stricted existence of contraction operators. This basically means that an analog
to the Harper Identity [25], which allows to construct a contraction operator from
a given revision operator, is not available. The main reason for this impossibility
is simply that we can not rely on the same expressive power as in propositional
logic. More precisely, we do not have an analog to disjunction nor negation in
Dung-logics which is essential for the mentioned Harper Identity. It turns out,
however, that dropping the somewhat controversial recovery postulate leads to
the existence of reasonable operators.

The paper is organized as follows. In Sect. 2 we provide the background rele-
vant for this paper covering abstract argumentation, ordinary and strong equiv-
alence, kernels, Dung logics and AGM-style contraction. Section 3 presents con-
traction postulates for AFs, proves the non-existence of contraction operators
in general and shows possible ways out. Section 4 summarizes the results of the
paper and concludes.

2 Background

2.1 Abstract Argumentation

An argumentation framework (AF) is set-theoretically just a directed graph F =
(A,R) [18]. In the context of abstract argumentation we call an element a ∈ A an
argument and in case of (a, b) ∈ R we say that a attacks b or a is an attacker of
b. Moreover, an argument b is defended by a set A if each attacker of b is counter-
attacked by some a ∈ A. For a set E we use E+ = {b | (a, b) ∈ R, a ∈ E} and

AGM Meets Abstract Argumentation: Contraction for Dung Frameworks 43

define E⊕ = E∪E+. Throughout the paper we will write F�G = (AF∪AG , RF∪
RG) for the union of two AFs F = (AF , RF),G = (AG , RG) and F � G if
AF ⊆ AG and RF ⊆ RG . Moreover, for a set S we define the restriction of F
to S as F |S = (S,RF ∩ (S × S)). In this paper we consider finite AFs only (cf.
[7,8] for a consideration of infinite AFs). We use F for the set of all finite AFs.

An extension-based semantics σ is a function which assigns to any AF
F = (A,R) a set of reasonable positions, so-called σ-extension, i.e. σ(F) ⊆ 2A.
Beside the most basic conflict-free and admissible sets (abbr. cf and ad) we con-
sider the following mature semantics, namely stable, stage, semi-stable, complete,
preferred, grounded, ideal and eager semantics (abbr. stb, stg , ss, co, pr , gr , id
and eg respectively). A very good overview can be found in [3].

Definition 1. Let F = (A,R) be an AF and E ⊆ A.

1. E ∈ cf (F) iff for no a, b ∈ E, (a, b) ∈ R,
2. E ∈ ad(F) iff E ∈ cf (F) and E defends all its elements,
3. E ∈ stb(F) iff E ∈ cf (F) and E⊕ = A,
4. E ∈ stg(F) iff E ∈ cf (F) and for no I ∈ cf (F), E⊕ ⊂ I ⊕,
5. E ∈ ss(F) iff E ∈ ad(F) and for no I ∈ ad(F),E⊕ ⊂ I ⊕,
6. E ∈ co(F) iff E ∈ ad(F) and for any a ∈ A defended by E, a ∈ E,
7. E ∈ pr(F) iff E ∈ co(F) and for no I ∈ co(F), E ⊂ I ,
8. E ∈ gr(F) iff E ∈ co(F) and for any I ∈ co(F), E ⊆ I ,
9. E ∈ id(F) iff E ∈ co(F), E ⊆ ⋂

pr(F) and for no I ∈ co(F) satisfying
I ⊆ ⋂

pr(F) we have: E ⊂ I ,
10. E ∈ eg(F) iff E ∈ co(F), E ⊆ ⋂

ss(F) and for no I ∈ co(F) satisfying
I ⊆ ⋂

ss(F) we have: E ⊂ I .

Two AFs can be equivalent in many different ways (cf. [6] for an overview).
The simplest form of equivalence is possessing the same extensions known as
ordinary or standard equivalence. A further one is strong equivalence which
requires semantical indistinguishability even in the light of further information.
The latter plays an important role for nonmononotic formalisms. Consider the
following definitions.

Definition 2. Given a semantics σ. Two AFs F and G are

1. ordinarily σ-equivalent if σ(F) = σ(G) and (F ≡σ G)
2. strongly σ-equivalent if σ(F � H) = σ(G � H) for any H ∈ F . (F ≡σ

s G)

Clearly, both concepts are semantically defined. Surprisingly, in case of strong
equivalence it turned out that deciding this notion is deeply linked to the syntax
of AFs [27]. In general, any attack being part of an AF may contribute towards
future extensions. However, for each semantics, there are patterns of redundant
attacks captured by so-called kernels. Formally, a kernel is a function k : F → F
where k(F) = F k is obtained from F by deleting certain redundant attacks. We
call an AF F k-r-free iff F = F k. The following kernels will be considered.

44 R. Baumann and F. Linker

Definition 3. Given an AF F = (A,R). The σ-kernel F k(σ) =
(
A,Rk(σ)

)
is

defined as follows:

1. Rk(stb) = R \ {(a, b) | a �= b ∧ (a, a) ∈ R},
2. Rk(ad) = R \ {(a, b) | a �= b ∧ (a, a) ∈ R ∧ {(b, a), (b, b)} ∩ R �= ∅},
3. Rk(gr) = R \ {(a, b) | a �= b ∧ (b, b) ∈ R ∧ {(a, a), (b, a)} ∩ R �= ∅} and
4. Rk(co) = R \ {(a, b) | a �= b ∧ (a, a), (b, b) ∈ R}.
Please note that for any considered kernel the decision whether an attack (a, b)
has to be deleted does not depend on further arguments than a and b. Put
differently, the reason of being redundant is context-free, i.e. it stems from the
arguments themselves [4]. This property will play an essential role in several
proofs.

Example 1. Consider the AF F and its associated stable kernel.

b c dF : F k(stb) : b c d

The only stable extension in our example is {b, d}. In order to compute a
stable kernel, all attacks that come from a self-attacking argument must be
deleted. In this example, we can see why this does not change extensions. c will
have its self-attack remaining therefore it still can’t be part of any extension as
stable extensions must be conflict-free. Since stable extension must attack c, it
does not matter whether c is attacking other arguments as well.

Kernels allow to efficiently decide on strong equivalence since one just needs
to compute the respective kernels and compare them for equality. Hence, strong
equivalence regarding AFs is a syntactical feature, i.e. it can be decided just be
inspecting the syntax of two AFs.

Theorem 1 ([10,27]). For two AFs F and G we have,

1. F ≡σ
s G ⇔ F k(σ) = Gk(σ) for any semantics σ ∈ {stb, ad , co, gr},

2. F ≡τ
s G ⇔ F k(ad) = Gk(ad) for any semantics τ ∈ {pr , id , ss, eg} and

3. F ≡stg
s G ⇔ F k(stb) = Gk(stb).

2.2 Dung-Logics

In propositional logic ordinary and strong equivalence coincide. Consequently,
converting AGM postulates to a certain non-monotonic formalism L might be
studied under two different guidelines, namely respecting ordinary or strong
equivalence in L. For Dung-style AFs the latter was firstly done in [5] for belief
expansion and revision. In order to do so the authors introduced so-called Dung-
logics which perform reasoning purely on the level of AFs. The heart of these
logics are so-called k-models. A k-model of an AF F is again an AF which satisfies
at least the information of F minus redundancy, but may have more information
than encoded by F . Analogously to the relation between the logic of here and

AGM Meets Abstract Argumentation: Contraction for Dung Frameworks 45

there and logic programs we have that Dung-logics are characterization logics
for AFs [9,26]. This means, ordinary equivalence in Dung-logics is necessary and
sufficient for strong equivalence regarding argumentation semantics.

Definition 4. Given a kernel k, two AFs F and G as well as a set of AFs M.

1. The set of k-models is defined as: Modk(F) =
{
G ∈ F | F k � Gk

}
and

Modk(M) =
⋂

F∈M
Modk(F)

2. The k-consequence relation is given as: M |=k F ⇔ Modk(M) ⊆ Modk(F)
3. The ordinary k-equivalence is defined as: F ≡k G ⇔ Modk(F) = Modk(G)

In the rest of the paper we will consider AGM-style contraction for single
AFs. Therefore, as usual, we will drop braces and write F |=k G instead of
{F} |=k G . The following property is not explicitly mentioned in [5] and will
be frequently used throughout the paper. It relates consequence relations with
subgraph relations.

Lemma 1. Given a kernel k and two AFs F ,G,

F |=k G ⇔ Gk � F k.

Proof.

(⇒) F |=k G ⇔ Modk(F) ⊆ Modk(G) (Def. 4.2)

⇒ F ∈ Modk(G) ⇒ Gk � F k (Def. 4.1)

(⇐) Gk � F k ⇒ (∀H ∈ F : F k � H k ⇒ Gk � H k
)

(Def. �)

⇒ (∀H ∈ F : H ∈ Modk(F) ⇒ H ∈ Modk(G)
)

(Def.4.1)

⇒ Modk(F) ⊆ Modk(G) ⇔ F |=k G (Def.4.2)

��
In the following we illustrate several definitions (cf. [5] for more details).

Example 2. Consider the AFs F ,G and their associated stable kernels.

dcbaF :

b c dG :

Gk(stb) : b c d

In contrast to G we observe that F is k(stb)-r-free since F = F k(stb), i.e. F does
not possess any redundant attack w.r.t. stable semantics. Moreover, Gk(stb) �
F k(stb) verifies that F is a k(stb)-model of G . Loosely speaking, this means that
F is a possible future scenario of G . Finally, according to Lemma1 we deduce

46 R. Baumann and F. Linker

F |=k(stb) G , i.e. believing in the information encoded by F justifies assertions
encoded by G .

Figure 1 depicts this example and can be interpreted as a Hasse-diagram for
the partial order (F ,�). Remember that this order possesses a least element,
namely the uniquely defined tautology (∅, ∅) since (∅, ∅) � H for any H ∈ F .
Each of the cones stands for a set of k-models of a specific (redundant-free) AF
which is located at the origin of the respective cone. This figure can also be
interpreted as an upside down Hasse-diagram for the partial order (F , |=k) as
we know by Lemma 1 that the |=k relation is characterized by the � relation.
The diagram then possesses a greatest element, namely (∅, ∅). Although this
figure successfully illustrates the �-relation of AFs and their models, it still is
just an illustration and therefore inappropriate in a way. The figure conveys the
impression that for any AFs H,H ′ ∈ F there is a non-empty intersection of
their models, which is not the case. There are indeed such AFs H and H ′ that
Modk(H) ∩ Modk(H ′) = ∅ (cf. Example 3).

We drew G with dashed lines as its place in the (F , |=k) order coincides
with the place of Gk(stb). Remember, that the |=k-relation is determined only by
looking at the kernels of AFs. This partial order therefore could also be defined
on ≡k-equivlance classes.

Fig. 1. Dung-logic example

2.3 AGM-Style Contraction

Let us now take a closer look at AGM-style belief contraction [1]. In the AGM
paradigm the underlying logic is assumed to be classical logic and the beliefs are
modeled by a theory, i.e. a deductively closed set of sentences (a so-called belief
set). The provided postulates address the problem of how a current belief set K
should be changed in the light of removing a former belief p. In the following we

AGM Meets Abstract Argumentation: Contraction for Dung Frameworks 47

list the basic postulates. We use |= for the classical consequence relation, K ÷ p
for the results of contracting a belief p from K and K +p for ⊆-least deductively
closed set of formulas containing both K and p. The latter operator is called
expansion and it simply adds new beliefs without restoring consistency.

C1 K ÷ p is a belief set (closure)
C2 K ÷ p ⊆ K (inclusion)
C3 p �∈ K ⇒ K ÷ p = K (vacuity)
C4 �|= p ⇒ p �∈ K ÷ p (success)
C5 K ⊆ (K ÷ p) + p (recovery)
C6 |= p ↔ q ⇒ K ÷ p = K ÷ q (extensionality)

The closure axiom C1 states that the result of a contraction is a deductively
closed theory. The postulate of inclusion C2 stipulates that when contracting,
nothing should be added. The so-called vacuity postulate C3 complements the
former axiom since it determines the precise result of contraction whenever p is
not included in the current beliefs. C4 encodes the success of contraction, i.e.
p is no longer believed given that p is not tautological. Postulate C5, axiom
of recovery, states a relation between contraction and expansion. It stipulates
that no information is lost if we contract and afterwards expand by the same
belief. This axiom is often subject to criticism and is intensively discussed in the
literature (see [20, Section 3.1] for more details). The extensionality axioms C6
encode that the results of belief change are independent of the syntactic form,
i.e. results of contraction do not differ if contracting with semantical equivalent
formulae.

3 Dung-Style Contraction

Strong equivalence can be seen as the non-monotonic analog of ordinary equiv-
alence in classical logic since it respects the so-called substitution principle (cf.
[33] for more details), i.e. for two equivalent sets of formulas Σ and Δ and any
set of formulas Γ , Γ ∪ Σ is equivalent to Γ ∪ Δ. In [5] the authors tackled
belief revision for AFs in a way which respects exactly this strong notion of
equivalence. In this section we will continue this line of research and consider
AGM-style contraction with regard to Dung-logics. We recap the definitions of
k-tautology and k-expansion firstly introduced in [5].

Definition 5. Given a kernel k. An AF F is a k-tautology if Modk(F) = F .

It turns out that the empty framework F∅ = (∅, ∅) is the uniquely deter-
mined k-tautology. Analogously to classical logic we define expansion semanti-
cally, namely as the intersection of the initial models.

Definition 6. Given a kernel k. For two AFs F ,G we define the result of k-
expansion as, Modk(F +k G) = Modk(F) ∩ Modk(G).

48 R. Baumann and F. Linker

In classical logic, the realization of expansion is straightforward from a tech-
nical point of view since the intersection of the models can be simply encoded by
using conjunctions. It was one main result that even the intersection of k-models
is always realizable if considering sets of AFs (cf. [5, Theorem 5, Lemma 6] for
more details). In this paper we will require the following result only.

Lemma 2. Given k ∈ {k(stb), k(ad), k(gr), k(co)}. For any two AFs F ,G, s.t.
Modk(F) ∩ Modk(G) �= ∅ we have: F +k G = F k � Gk.

Example 3. Consider the AFs F , G and k = k(stb).

F : a b c G : b c

Both AFs are k-r-free, as argument c in G does not have any attacks outgoing.
In this case, what does hold regarding Modk(F)∩Modk(G)? At first glance, one
might think that the intersection is not empty, as one would surely find an AF
that is an extension of both F and G. However, remember that k-models are not
required to include (w.r.t. subgraph relation) the respective AF of which they are
a model but to do so modulo redundancy. A k-model of both AFs must include
the attacks (b, c), (c, b) and (c, c) which is not possible as (c, b) is a k-redundant
attack when (c, c) is given. Therefore we have Modk(F) ∩ Modk(G) = ∅ leading
to F +k G being undefined.

3.1 Contraction Postulates for Kernel k

The axiom translation is relatively straightforward because we can utilize a full-
fledged logic which allows us to translate all axioms in a direct fashion. Note that
since belief sets are closed sets we can rephrase any axioms using subset/element
relations into postulates using consequence relations. More precisely, for two
deductively closed sets of propositional formulas Γ and Δ we find, Γ ⊆ Δ ⇔
Δ |= Γ . For instance, the inclusion axiom K ÷ p ⊆ K translates to K |= K ÷ p.
Now, converting these from classical logic to Dung-logics, i.e. replacing |= with
|=k results in F |=k F ÷k G which is equivalent to (F ÷k G)k � F k according
to Lemma 1. All other axioms can be translated in the same fashion.

C1k F ÷k G is an AF (closure)
C2k (F ÷k G)k � F k (inclusion)
C3k Gk �� F k ⇒ (F ÷k G) ≡k F (vacuity)
C4k Gk �= (∅, ∅) ⇒ Gk �� (F ÷k G)k (success)
C5k F k � (

(F ÷k G) +k G
)k (recovery)

C6k G ≡k H ⇒ F ÷k G ≡k F ÷k H (extensionality)

Definition 7. An operator ÷k : F × F → F where (F ,G) �→ F ÷k G is called
a k-contraction iff axioms C1k–C6k are satisfied.

AGM Meets Abstract Argumentation: Contraction for Dung Frameworks 49

Let us start with some reflections on what is required for an operator in order
to be a k-contraction. The redundancy-free version of the result F ÷k G is by
postulate C2k upwards bounded by F k, i.e. (F ÷k G)k � F k. Since postulate
C1k ensures that we have to end up with an AF we deduce that any contraction
for one of the kernels considered in this paper has to delete single arguments
together with their corresponding attacks or attacks only. Note that nothing
has to be deleted if F is no k-model of G (axiom C3k). Now, given that G
is non-empty the success postulate C4k requires that at least one argument or
one non-redundant attack in G is not contained in (F ÷k G)k. Consider Fig. 2
for illustration purposes. The depicted situation illustrates that Gk � F k or
equivalently F |=k G .

Fig. 2. Dung-logic contraction

What are possible places so far for F ÷k G? The AFs F ′ and F ′′ show
two options. It is possible to move F ′ and F ′′ around inside the dotted cone
originating from F but it is crucial for them to not lie in the patterned area
between F and G since this would lead to Gk � (F ÷k G)k and an unsuccessful
contraction (C4k). It would however not be possible to move them out of the
dotted cone since this would conflict with the inclusion postulate C2k. The
postulate C5k demands the possibility of a recovery of a contracted AF. This
means the result of expanding F ÷k G by G has to be located in the grey-drawn
space. Unfortunately, we will see that in general this is impossible due to formal
reasons.

50 R. Baumann and F. Linker

3.2 Non-existence of Contraction Operators

We now formally prove the non-existence of contraction operators for Dung-
logics. Roughly speaking, the reason why there is no suitable operator is that
arguments and attacks do not possess the same independency status regarding
their own existence. More precisely, in order to reobtain an AF we observe that
the deletion of certain arguments necessarily causes the deletion of attacks. In
contrast, deleting attacks from an AF results in an AF too. As already discussed,
on the one hand, postulates C2k and C4k enforce the deletion and prohibit
the addition of information and on the other hand, axiom C5k postulates the
possibility of restoring all information. The proof of the following theorem shows
that removing arguments that have attacks dependent on them which are not
part of the contracted AF cause an irreversible loss of information.

Theorem 2. Given k ∈ {k(stb), k(ad), k(gr), k(co)}. There is no operator ÷k :
F × F → F such that ÷k satisfies C1k–C6k.

Proof. Striving for a contradiction let us assume the existence of an operator
÷k satisfying C1k–C6k. Consider the AFs F = (A,RF) = (A, {(a, a) | a ∈ A})
and G = (A,RG) = (A, ∅) with A �= ∅. Obviously F |=k G for any kernel
k considered. Due to C2k we have (F ÷k G)k � F k. Since G �= (∅, ∅) and
therefore �|=k G we also have Gk �� (F ÷k G)k � F k because of C4k. Note that
F and G are k-r-free, i.e. F k = F as well as Gk = G for all kernels k considered,
as self-loops never are removed. Hence, G �� (F ÷k G)k � F . Since RG = ∅

and therefore for any H = (AH , RH) ∈ F , we have RG ⊆ RH , our only chance
to satisfy the claimed relation lies in removing some set of arguments A′ with
∅ ⊂ A′ ⊆ A in F . Thus, a respective AF F ′ not entailing G can be identified by
F ′ = (AF ′ , RF ′) =

(
A \ A′, RF ′

)
with RF ′ = RF ∩ (AF ′ × AF ′) due to postulate

C1k. Please observe that RF ′ ⊂ RF . Since ÷k satisfies C5k we must end up
with F k � (F ′ +k G)k. Note that F ′ and G are both k-r-free. Moreover, G � F ′

and G � G witnesses Mod(F ′) ∩ Mod(G) �= ∅. Consequently, we may conclude
as follows:

F ′ +k G = F ′k � Gk = F ′ � G (Lem. 2, k-r-freeness)
= (A \ A′, RF ′) � G (Def. F ′)

=
(
(A \ A′) ∪ A,RF ′ ∪ ∅

)

= (A,RF ′)
�� F = (A,RF) (RF ′ ⊂ RF).

Contradiction! ��
Example 4. Given F ,G ∈ F as considered in the proof of Theorem 2. We illus-
trate the counterexample in Fig. 3. The result of (F ÷kG)+kG should be located
in the grey shaded area above F as C5k demands that F k � (F ÷k G) +k G
which means that F should be a �-smaller AF than the result of the expansion.

AGM Meets Abstract Argumentation: Contraction for Dung Frameworks 51

Expanding F ÷k G with G results in an AF that is �-greater than G. But,
as we have shown, the contraction of F with G results in an irreversible loss
of information, namely any argument removed from F , as G does not posses
all information formerly removed from F and therefore (F ÷k G) +k G will
be truly �-smaller than F which conflicts with C5k. Intuitively speaking, when
expanding F ÷kG with G , G is not able to “push” the contraction result “above”
F . This means that the result of (F ÷k G) +k G is located somewhere in the
area “between” F and G , highlighted by dotted lines. One imaginable result for
(F ÷k G) +k G is depicted by F ′.

Remember that one single kernel may serve for different semantics (Theo-
rem 1). This means, the non-existence of a syntactically-based version of con-
traction applies to any semantics characterizable through one of the considered
kernels. Moreover, the proof reveals that only very common properties of kernels
are used. This indicates that further semantics might be affected by this negative
result. A study of this issue will be part of future work.

Fig. 3. Counterexample (Theorem2)

3.3 Brute Contraction

In this section we will show that dropping the somewhat controversial recovery
postulate leads to the existence of reasonable operators by introducing the brute
contraction operator. In [20, Section 3.1] a good example for why the recovery
postulate might lead to counter-intuitive results is given. Suppose you know that
Cleopatra has a son but later you find out that Cleopatra doesn’t have a child
at all so you contract your belief set with the belief “Cleopatra has a child”.
Obviously, this would lead to forgetting that Cleopatra has a son as well. If you
were then to learn that Cleopatra has indeed a child thereby expanding your
belief set by “Cleopatra has a child”, the recovery postulate would demand the

52 R. Baumann and F. Linker

belief “Cleopatra has a son” to be part of your new belief set as well. This
counter-example holds in general. Whenever you contract a belief set with a
more general belief, all more specific beliefs that imply the contracted one must
be removed as well. However, when then expanding the more general belief all
more specific ones, although not implied by the more general belief, must be
restored.

We coined the name brute contraction and we will explain why. As indicated
in the proof of Theorem2, for two AFs F and G with F |=k G it suffices to
remove some non-empty subset of the arguments in G from F when contracting
G from F to accomplish success postulate C4k. This leaves us with the problem
to decide which elements to remove whilst ensuring that there is a deterministic
decision procedure to determine the result of a contraction. It seems that no
heuristic selecting arguments to be removed can accomplish this without relying
on a strict order on the set of arguments in some way. The brute contraction
operator avoids this problem by being brute in the sense that it removes any
argument and attack of G from F when contracting F with G. Consider therefore
the following definition.

Definition 8. Given a kernel k. We define the brute contraction operator −k :
F × F → F as:

(A,R) −k (A′, R′) =

{(
(A,R)|A\A′

)k (A′, R′)k � (A,R)k

(A,R)k otherwise.

Example 5. Consider the AFs F and G discussed in Example 2 and let k =
k(stb). We already observed that Gk � F k. Hence, the first case of Definition 8
applies, i.e. F −k G = ({a}, ∅).

We proceed with the main theorem of this section stating that the brute
contraction operator satisfies all contraction postulates apart from the recovery
axiom.

Theorem 3. Given k ∈ {k(stb), k(ad), k(gr), k(co)}. The brute contraction
operator −k satisfies C1k–C4k and C6k but does not satisfy C5k.

Proof. Given k ∈ {k(stb), k(ad), k(gr), k(co)} and the brute contraction −k. In
the following we consider F = (AF , RF), G = (AG, RG) and H = (AH , RH) as
arbitrary but fixed AFs.

C1k By definition we have that restrictions as well as kernels of AFs are AFs
again. Hence, in both cases of Definition 8 we obtain that F −k G is an AF.

C2k We have to prove that (F −k G)k � F k.
Consider the first case of Definition 8. Since any considered kernel k is context-
free [4, Definition 7] we have that for any AF H and any set A,

(
H |A

)k � H k.
Consequently,

F −k G =(Def. 8)
(
(AF , RF)|AF \AG

)k � (
AF , RF

)k = F k.

AGM Meets Abstract Argumentation: Contraction for Dung Frameworks 53

Since F −k G � F k we further deduce (F −k G)k � F k since
(
F k

)k = F k

and thereby, (F −k G)k = F −k G for any considered kernel k.
In the second case we have F −k G = F k. Again, since

(
F k

)k = F k we deduce
(F −k G)k � F k.

C3k We have to show Gk �� F k ⇒ (F −k G) ≡k F .
Assuming Gk �� F k pushes us to the second case, i.e. F −k G = F k. We
deduce (F −k G)k =

(
F k

)k = F k which means (F −k G) ≡k F .
C4k We have to prove Gk �= (∅, ∅) ⇒ Gk �� (F −k G)k.

For any considered kernel k we have, Gk �= (∅, ∅) if and only if G �= (∅, ∅).
Hence, assume G �= (∅, ∅). In the first case we have by definition, F −k G =
(
(AF , RF)|AF \AG

)k =
(
AF \AG, RF ∩ (AF \AG ×AF \AG)

)k. Consequently,
Gk �� (F −kG)k since AG �⊆ AF \AG because AG is assumed to be non-empty.
In the second case, we may assume Gk �� F k. Since F −k G = F k by definition
and furthermore,

(
F k

)k = F k for any considered kernel k we immediately
verify Gk �� (F −k G)k.

C5k Confer Example 6.
C6k We have to show G ≡k H ⇒ F −k G ≡k F −k H .

Assume Gk = H k. Consequently, Gk � F k if and only if Hk � F k. For the
second case we have nothing to show since the result F k neither depend on
G , nor on H . Now, for the first case. It is essential to see that Gk = H k

implies AG = AH for any considered kernel k. Thus,

F −k G =
(
(AF , RF)|AF \AG

)k =
(
(AF , RF)|AF \AH

)k = F −k H

Therefore F −k G ≡k F −k H since they are even identical. ��

The following example shows that brute contraction indeed does not satisfy
the recovery postulate C5k.

Example 6. Consider again the AFs F and G introduced in Example 2 and let
k = k(stb). For convenience, we depicted all relevant frameworks below including
the running examples F and G .

dcbaF :

b c dG :

F −k G : a

H +k G : a b c d

According to Example 5 we have H = F −k G as depicted above. Since Gk � F k

as well as Hk � F k we have Modk(G)∩Modk(H) �= ∅. Hence, in consideration of
Lemma 2 we infer that H+kG = Hk�Gk as displayed above. One can clearly see
that the recovery postulate C5k is not fulfilled since F k �� (

(F ÷k G) +k G
)k =

H +k G . The attack (a, b) in F is irrecoverably contracted.

54 R. Baumann and F. Linker

3.4 Discussion

In [25] it was shown that a contraction operator can be constructed from a given
revision operator via the union of sets of models as well as the complement of a set
of models which can be implemented with disjunction or negation, respectively,
in case of belief bases (cf. [13, Definition 3] for excellent explanations). This
raises the question why we cannot construct contraction operators although we
are equipped with revision operators for Dung-logics [5, Theorem 9]. The reason
for this is simply that we do not have an analog to disjunction or negation
in Dung-logics. In other words, not every set of k-models is realizable. In [5,
Section 3] a first study was presented and it will be an exciting project to exactly
characterize the expressive power of Dung-logic.

A further possible view why contraction is not possible in Dung-logics is
as follows: We already mentioned that the syntax of AFs is layered, i.e. one
part depends on the other whilst the converse does not. In contrast, the classical
AGM-postulates were phrased with propositional logic in mind where such a kind
of dependence is not given. Consequently, one possible way out is to rephrase all
axioms or single problematic postulates in such a way that they better match a
logic whose syntax is layered.

Finally, we want to mention that the recovery postulate C5k does not carry
the sole fault regarding the non-existence of contraction operators. It can be
shown that dropping the success postulate C4k leads to the existence of oper-
ators but giving up this axiom would be in conflict with the very idea of
contraction.

4 Related Work and Summary

In this paper we presented a first study of AGM-style contraction for abstract
argumentation frameworks. Since ordinary and strong equivalence coincide in
the underlying formalism of the AGM setup, i.e. propositional logic, one may
pursue two in principle different options for converting AGM postulates to a
certain non-monotonic logic. In this paper we focus on strong equivalence. Such
an approach was applied to logic programs [16] and abstract argumentation [5]
for AGM revision. The authors considered so-called SE -models and k-models
which capture strong equivalence for logic programs under answer set semantics
or certain argumentation semantics, respectively [5,21,28]. In order to translate
the AGM postulates of contraction we used so-called Dung-logics constituted by
k-models. This means, the paper complements the previous studies on AGM-
style revision and expansion as presented in [5].

The general result is a negative one, that is, there are no contraction opera-
tors satisfying all 6 translated postulates. This means, an analog to the Harper
Identity, which allows to construct a contraction operator from a given revision
operator, is not available (cf. discussion part). Interestingly, a similar problem
was discovered for contraction in the realm of logic programming [11]. Instead

AGM Meets Abstract Argumentation: Contraction for Dung Frameworks 55

of the problematic recovery postulate the authors considered the alternative rel-
evance postulate introduced in [23]. Such a kind of consideration, i.e. a study of
further postulates given in the literature, will be part of future work.

As mentioned in the Introduction, we are not aware of any alternative
approaches to contraction in the context of abstract argumentation. In [31] argu-
ment contraction (as well as revision) for structured argumentation was studied.
The authors presented postulates also influenced by the AGM-postulates but
adapted to the more involved ASPIC+ system [29]. In contrast to the original
setup contraction functions may return several alternative theories and moreover,
the resulting theories might be inconsistent. Interestingly, although a straight-
forward analog to the Harper Identity is not given, the authors showed how to
define a meaningful revision in terms of contraction.

There are several directions for future work. In particular, we plan to extend
the analysis of revision and contraction to the more general abstract dialectical
frameworks (ADFs) [12]. It will be interesting to compare these results with the
ones already proposed in [11,16] since there are standard translations such that
the semantics of logic programs and ADFs coincide [32].

Acknowledgments. This work was partially supported by a postdoc fellowship of
the German Academic Exchange Service (DAAD) 57407370.

References

1. Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change:
partial meet contraction and revision functions. J. Symbolic Logic 50, 510–530
(1985)

2. Baroni, P., Gabbay, D., Giacomin, M., van der Torre, L.: Handbook of Formal
Argumentation. College Publications (2018)

3. Baroni, P., Caminada, M., Giacomin, M.: An introduction to argumentation
semantics. Knowl. Eng. Rev. 26, 365–410 (2011)

4. Baumann, R.: Context-free and context-sensitive kernels: update and deletion
equivalence in abstract argumentation. In: ECAI 2014, pp. 63–68 (2014)

5. Baumann, R., Brewka, G.: AGM meets abstract argumentation: expansion and
revision for Dung frameworks. In: IJCAI 15, pp. 2734–2740. AAAI Press (2015)

6. Baumann, R., Brewka, G.: The equivalence zoo for Dung-style semantics. J. Logic
Comput. 28(3), 477–498 (2018)

7. Baumann, R., Spanring, C.: Infinite argumentation frameworks. In: Eiter, T.,
Strass, H., Truszczyński, M., Woltran, S. (eds.) Advances in Knowledge Repre-
sentation, Logic Programming, and Abstract Argumentation. LNCS (LNAI), vol.
9060, pp. 281–295. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
14726-0 19

8. Baumann, R., Spanring, C.: A study of unrestricted abstract argumentation frame-
works. In: IJCAI 2017, pp. 807–813 (2017)

9. Baumann, R., Strass, H.: An abstract logical approach to characterizing strong
equivalence in logic-based knowledge representation formalisms. In: KR 2016, pp.
525–528 (2016)

10. Baumann, R., Woltran, S.: The role of self-attacking arguments in characterizations
of equivalence notions. J. Logic Comput. 26(4), 1293–1313 (2016)

https://doi.org/10.1007/978-3-319-14726-0_19
https://doi.org/10.1007/978-3-319-14726-0_19

56 R. Baumann and F. Linker

11. Binnewies, S., Zhuang, Z., Wang, K.: Partial meet revision and contraction in logic
programs. In: AAAI 2015, pp. 1439–1445 (2015)

12. Brewka, G., Strass, H., Ellmauthaler, S., Wallner, J.P., Woltran, S.: Abstract
dialectical frameworks revisited. In: IJCAI 2013, pp. 803–809 (2013)

13. Caridroit, T., Konieczny, S., Marquis, P.: Contraction in propositional logic. In:
Destercke, S., Denoeux, T. (eds.) ECSQARU 2015. LNCS (LNAI), vol. 9161, pp.
186–196. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20807-7 17

14. Coste-Marquis, S., Konieczny, S., Mailly, J., Marquis, P.: On the revision of argu-
mentation systems: minimal change of arguments statuses. In: KR 2014 (2014)

15. Coste-Marquis, S., Konieczny, S., Mailly, J.-G., Marquis, P.: A translation-based
approach for revision of argumentation frameworks. In: Fermé, E., Leite, J. (eds.)
JELIA 2014. LNCS (LNAI), vol. 8761, pp. 397–411. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-11558-0 28

16. Delgrande, J.P., Schaub, T., Tompits, H., Woltran, S.: Belief revision of logic pro-
grams under answer set semantics. In: Principles of Knowledge Representation
and Reasoning: Proceedings of the Eleventh International Conference, KR 2008,
Sydney, Australia, 16–19 September 2008, pp. 411–421 (2008)

17. Diller, M., Haret, A., Linsbichler, T., Rümmele, S., Woltran, S.: An extension-based
approach to belief revision in abstract argumentation. Int. J. Approx. Reason. 93,
395–423 (2018)

18. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2),
321–358 (1995)

19. Falappa, M., Garcia, A., Kern-Isberner, G., Simari, G.: On the evolving relation
between belief revision and argumentation. Knowl. Eng. Rev. 26, 35–43 (2011)

20. Fermé, E.L., Hansson, S.O.: AGM 25 years - twenty-five years of research in belief
change. J. Philos. Logic 40(2), 295–331 (2011)

21. Ferraris, P., Lifschitz, V.: Mathematical foundations of answer set programming.
In: We Will Show Them! Essays in Honour of Dov Gabbay, pp. 615–664. King’s
College Publications (2005)

22. Gärdenfors, P.: Belief Revision. Cambridge Tracts in Theoretical Computer Sci-
ence, Cambridge University Press (1992)

23. Hannson, S.: New operators for theory change. Theoria 55(2), 114–132 (1989)
24. Hansson, S.O.: A Textbook of Belief Dynamics: Solutions to Exercises. Kluwer

Academic Publishers, Norwell (2001)
25. Harper, W.L.: Rational conceptual change. PSA: Proc. Biennial Meet. Philos. Sci.

Assoc. 1976, 462–494 (1976)
26. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM

Trans. Comput. Logic 2(4), 526–541 (2001)
27. Oikarinen, E., Woltran, S.: Characterizing strong equivalence for argumentation

frameworks. Artif. Intell. 175(14–15), 1985–2009 (2011)
28. Pearce, D.: A new logical characterisation of stable models and answer sets. In:

Dix, J., Pereira, L.M., Przymusinski, T.C. (eds.) NMELP 1996. LNCS, vol. 1216,
pp. 57–70. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0023801

29. Prakken, H.: An abstract framework for argumentation with structured arguments.
Argument Comput. 1(2), 93–124 (2010)

30. Rahwan, I., Simari, G.R.: Argumentation in Artificial Intelligence, 1st edn.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-0-387-98197-0

https://doi.org/10.1007/978-3-319-20807-7_17
https://doi.org/10.1007/978-3-319-11558-0_28
https://doi.org/10.1007/BFb0023801
https://doi.org/10.1007/978-0-387-98197-0

AGM Meets Abstract Argumentation: Contraction for Dung Frameworks 57

31. Snaith, M., Reed, C.: Argument revision. J. Logic Comput. 27(7), 2089–2134
(2017)

32. Strass, H.: Approximating operators and semantics for abstract dialectical frame-
works. Artif. Intell. 205, 39–70 (2013)

33. Truszczynski, M.: Strong and uniform equivalence of nonmonotonic theories - an
algebraic approach. Ann. Math. Artif. Intell. 48(3–4), 245–265 (2006)

A Possible World View and a Normal
Form for the Constellation Semantics

Stefano Bistarelli and Theofrastos Mantadelis(B)

Department of Mathematics and Computer Science,
Member of the INdAM Research Group GNCS, University of Perugia,

Perugia, Italy
{stefano.bistarelli,theofrastos.mantadelis}@unipg.it

Abstract. After Dung’s founding work in Abstract Argumentation
Frameworks there has been a growing interest in extending the Dung’s
semantics in order to describe more complex or real life situations. Sev-
eral of these approaches take the direction of weighted or probabilistic
extensions. One of the most prominent probabilistic approaches is that
of constellation Probabilistic Abstract Argumentation Frameworks.

In this paper, we introduce the probabilistic attack normal form for
the constellation semantics; and we prove that the probabilistic attack
normal form is sufficient to represent any Probabilistic Abstract Argu-
mentation Framework of the constellation semantics.

1 Introduction

Argumentation is an everyday method of humanity to discuss and solve myriad
different situations where opinions or point of views conflict. Abstract Argumen-
tation Frameworks [8] (AAFs) aim in modeling everyday situations where infor-
mation is inconsistent or incomplete. Many different extensions of AAFs from
Dung’s pioneering work have appeared in order to describe different everyday sit-
uations. Sample works includes assumption based argumentation [4], extending
AAFs with support [15], introducing labels [16]. Other approaches of extending
AAFs have focused on introducing weights in elements of the AAF, such as [2,3].
Such approaches are powerful tools to model voting systems, belief in arguments
and argument strength.

Knowledge representation with the use of probabilistic information has been
used in many areas of computer science. Probabilistic information, is a power-
ful medium to represent knowledge. Similarly, many researchers have extended
AAFs by adding probabilistic information. These very prominent extensions of
AAFs have been categorized in two big groups by Hunter [11]: the epistemic
approaches and the constellation approaches.

The epistemic approaches, such as those presented in [12] describe proba-
bilistic AAFs that the uncertainty does not alter the structure of the AAFs.

This work has been partially supported by: “Argumentation 360” and “RACRA18”
(funded by Ricerca di Base 2017/2018).

c© Springer Nature Switzerland AG 2019
F. Calimeri et al. (Eds.): JELIA 2019, LNAI 11468, pp. 58–68, 2019.
https://doi.org/10.1007/978-3-030-19570-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19570-0_4&domain=pdf
https://doi.org/10.1007/978-3-030-19570-0_4

A Possible World View and a Normal Form for the Constellation Semantics 59

Furthermore, the epistemic approaches quantify the existing uncertainty (either
of arguments being part of extensions, or aurgement label) instead of introducing
new uncertainty.

The constellation approaches, such as those presented in [6,7,9,13] introduce
probabilistic elements in the AAF in such a way that the structure of the AAF
becomes uncertain. The constellation approaches generate a set of AAFs with a
probabilistic distribution and as such define a probabilistic distribution over the
extensions of those AAFs.

In this paper we focus on the constellation approach from Li et al. [13]. [13]
introduced probabilistic elements to the structure of AAFs, resulting to a set of
AAFs. This allows for a set of arguments to be an (admissible, stable, ground,
etc.) extension in some of the AAFs that are represented by the constellation.
This simple but yet powerful representation has the ability to represent naturally
many different uncertain scenarios.

The works of [11,13] can be considered as the pioneering work on combining
probabilities with AAFs. In this paper, we (a) connect induced AAFs with pos-
sible worlds; (b) define the probabilistic attack normal forms for PrAAFs; and
(c) illustrate how the normal form can represent any general PrAAF.

The rest of the paper is structured as follows. First, we briefly introduce
AAFs and PrAAFs. We then present the possible worlds notion, the probabilistic
attack normal form for PrAAFs and a transformation of general PrAAFs to
probabilistic attack normal form. Finally, we conclude and present future work.

2 Preliminaries

2.1 Abstract Argumentation

An abstract argumentation framework [8] (AAF) is a tuple AAF = (Args,Atts)
where Args is a set of arguments and Atts a set of attacks among arguments of
the form of a binary relation Atts ⊆ Args × Args. For arguments a, b ∈ Args,
we use a → b as a shorthand to indicate (a, b) ∈ Atts and we say that argument
a attacks argument b. Figure 1 illustrates an example AAF.

Fig. 1. Example AAF
({a, b, c, d}, {a → c, b
→ c, c → d}). Argu-
ments are represented
as cycles and attacks
as arrows. Arguments
a, b are attacking argu-
ment c which attacks
argument d.

A set of arguments S ⊆ Args is said to be conflict-free
iff �a, b ∈ S where a → b ∈ Atts. An argument a ∈ Args
is acceptable with respect to set S ⊆ Args if no argument
attack a or if ∀b ∈ Args that ∃b → a ∈ Atts then ∃c ∈ S
where c → b ∈ Atts.

Given the above [8] gives semantics to AAF by the
use of extensions over subsets of arguments. Dung first
defines the admissible semantics. A set S ⊆ Args is
admissible iff S is conflict free and each a ∈ S is accept-
able with respect to S. Following our example AAF from
Fig. 1, the set {a, b, d} is admissible. Over time several
different semantics have been discussed such as complete,
preferred, grounded, stable [8], semi-stable [5], CF2 [10]
etc.

60 S. Bistarelli and T. Mantadelis

2.2 Constellation Based Probabilistic Abstract Argumentation
Frameworks

Hunter [11], categorizes probabilistic abstract argumentation frameworks
(PrAAFs) in two different categories: the constellation and the epistemic
PrAAFs. For this paper we will focus on the constellation approaches and we
base our work in the definition of PrAAFs by [13].

Fig. 2. Example PrAAF
({a, b, c, d}, {1, 1, 0.4, 1},
{a → c, b → c, c →
d}, {0.3, 0.7, 1}). Argu-
ments are represented
as cycles and attacks as
arrows.

A constellation approach to PrAAFs defines prob-
abilities over the structure of the AAF graph. One
can assign probabilities to either the arguments or/and
attacks of the AAF. We refer to arguments/attacks
with assigned probabilities less than 1 as probabilis-
tic arguments/attacks and we refer as probabilistic ele-
ments to either probabilistic arguments or probabilistic
attacks.

A probabilistic element e exists in an AAF with
probability P (e). These probabilistic elements corre-
spond to random variables, which are assumed to be
mutually independent1. As such, a PrAAF defines a
probability distribution over a set of AAFs.

Definition 1. Formally, a PrAAF is a tuple PrAAF = (Args, PArgs, Atts,
PAtts) where Args, Atts define an AAF, PArgs is a set of probabilities for each
a ∈ Args with 0 < PArgs(a) ≤ 1 and PAtts is a set of probabilities for each
→∈ Atts with 0 < PAtts(→) ≤ 1.

Finally, stating an argument or an attack having probability 0 is redundant. A
probabilistic argument or attack with 0 probability is an argument or attack that
is not part of any AAF that the constellation represents. Figure 2, illustrates an
example PrAAF with 3 different probabilistic elements.

2.3 Inducing AAFs by Imposing Restrictions

Li et al. [13] in order to restrict the combinations of probabilistic elements to
only those that generate valid AAFs introduced extra restrictions and stated
that the probabilities Patts are conditional probabilities instead the likelihood
of existence for the attack. These restrictions appear as a separate definition,
formally:

Definition 2 (Inducing an AAF from a PrAAF). An AAF (ArgsInd,
AttsInd) is said to be induced from a PrAAF (Args, PArgs, Atts, PAtts) iff all
of the following hold:

1. ArgsInd ⊆ Args
2. AttsInd ⊆ Atts ∩ (ArgsInd × ArgsInd)
1 As we are going to present later in the paper, the structure of AAF might impose

dependencies among otherwise assumed independent probabilistic elements.

A Possible World View and a Normal Form for the Constellation Semantics 61

3. ∀a ∈ Args such that PArgs(a) = 1, a ∈ ArgsInd

4. ∀a1 → a2 ∈ Atts such that PAtts(a1 → a2) = 1 and PArgs(a1) = PArgs(a2) =
1, a1 → a2 ∈ AttsInd

Furthermore, PAtt(a1 → a2) is stated to be the conditional probability of the
attack existing when both attacking and attacked argument exist in the AAF
(PAtt(a1 → a2|a1, a2 ∈ ArgsInd)).

Table 1. Induced AAF of our example PrAAF from Fig. 2. Shaded rows, illustrate an
Induced AAF that contains multiple possible worlds that would generate an invalid
AAF.

AAF Possible World Prob. Admissible Sets

a

b

d

(¬(a → c)∧¬(b →
c) ∧ ¬c) ∨ (¬(a →
c)∧(b → c)∧¬c)∨
((a → c) ∧ ¬(b →
c) ∧ ¬c) ∨ ((a →
c) ∧ (b → c) ∧ ¬c)

0.6 {}, {a}, {b}, {d}, {a, b}, {a, d}, {b, d}, {a, b, d}

a c

b

d ¬(a → c) ∧ ¬(b →
c) ∧ c

0.084 {}, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}

a c

b

d ¬(a → c) ∧ (b →
c) ∧ c

0.196 {}, {a}, {b}, {a, b}, {b, d}, {a, b, d}

a c

b

d

(a → c) ∧ ¬(b →
c) ∧ c

0.036 {}, {a}, {b}, {a, b}, {a, d}, {a, b, d}

a c

b

d

(a → c)∧(b → c)∧
c

0.084 {}, {a}, {b}, {a, b}, {a, d}, {b, d}, {a, b, d}

Table 1 presents the induced AAFs from our example PrAAF2. Clearly, there
is an exponential number of induced AAFs that a PrAAF represents. We find
that the imposed restrictions from Li et al. [13] create a more complex and less
intuitive PrAAF definition than what is necessary.

3 Possible Worlds and AAFs

As mentioned a PrAAF defines a probability distribution for all the possible
non-probabilistic AAFs it contains. Each single possible set of probabilistic ele-
ments (arguments or attacks) of the PrAAF can be called a possible world.
Table 2 presents all possible worlds for the example PrAAF of Fig. 2. One can
2 For now we ask the reader to ignore the possible world column which is used later

in the paper.

62 S. Bistarelli and T. Mantadelis

Table 2. Possible worlds of our example PrAAF from Fig. 2. Shaded rows, illustrate
possible worlds that generate an invalid AAF.

AAF Possible World Prob. Admissible Sets

a

b

d ¬(a → c) ∧ ¬(b →
c) ∧ ¬c

0.126 {}, {a}, {b}, {d}, {a, b}, {a, d}, {b, d}, {a, b, d}

a c

b

d ¬(a → c) ∧ ¬(b →
c) ∧ c

0.084 {}, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}

a

b

d ¬(a → c) ∧ (b →
c) ∧ ¬c

0.294 {}, {a}, {b}, {d}, {a, b}, {a, d}, {b, d}, {a, b, d}

a c

b

d ¬(a → c) ∧ (b →
c) ∧ c

0.196 {}, {a}, {b}, {a, b}, {b, d}, {a, b, d}

a

b

d

(a → c) ∧ ¬(b →
c) ∧ ¬c

0.054 {}, {a}, {b}, {d}, {a, b}, {a, d}, {b, d}, {a, b, d}

a c

b

d

(a → c) ∧ ¬(b →
c) ∧ c

0.036 {}, {a}, {b}, {a, b}, {a, d}, {a, b, d}

a

b

d

(a → c)∧(b → c)∧
¬c

0.126 {}, {a}, {b}, {d}, {a, b}, {a, d}, {b, d}, {a, b, d}

a c

b

d

(a → c)∧(b → c)∧
c

0.084 {}, {a}, {b}, {a, b}, {a, d}, {b, d}, {a, b, d}

notice that having only three different probabilistic elements it generates eight
possible worlds. The possible worlds of a PrAAF are exponential in the number
of probabilistic elements (2N where N the number of probabilistic elements).

Definition 3 (Probability of Possible World). The probability of a possible
world equals to the product of the probability of each probabilistic element that
is in the possible world with the product of one minus the probability of each
probabilistic element that is excluded from the possible world.

Pworld =
∏

ei∈AAFworld

P (ei) ·
∏

ej /∈AAFworld

(1 − P (ej))

While it is natural to use the notion of possible worlds to describe PrAAFs,
unfortunately in general PrAAFs3 not all possible worlds generate a valid AAF.
Ideally, we want each possible world to generate a single unique valid AAF.

3 We refer to general PrAAFs, as any constellation PrAAF that uses a definition
similar to Definition 1. With the term general PrAAFs we do not include any extra
restrictions imposed to the PrAAF definition.

A Possible World View and a Normal Form for the Constellation Semantics 63

A second pitfall for general PrAAFs, lies in the combination of the inde-
pendence assumption of PrAAFs probabilistic elements. We earlier stated that
we assume each probabilistic element is independent from the other probabilis-
tic elements. When a probabilistic argument is connected with a probabilistic
attack and we consider a possible world where the probabilistic argument does
not exist we are implicitly also forcing the probabilistic attack not to exist, thus
creating an implicit dependency among probabilistic elements.

To better illustrate this pitfall of general PrAAFs, we use the example PrAAF
of Fig. 2. Consider the attack a → c which has a 0.3 probability of existence for
each generated AAFs. If you sum the possible worlds of Table 2 where the edge
a → c exists you do get a probability of 0.3 but if you sum the possible worlds
of Table 2 where the edge a → c exists and it is a valid AAF then you get a
probability of 0.036 + 0.084 = 0.12 as it only exists in two possible worlds
(rows 6 and 8 of Table 2) instead of the expected four possible worlds (rows 5 to
8 of Table 2).

Notice at Table 1 that the highlighted induced AAF represents the four worlds
that argument c is not part of the AAF. Also notice that that the specific induced
AAF is not part of any possible world, but is the corrected AAF of the four non
valid AAFs that the possible worlds generate.

4 Probabilistic Attack Normal Form

In this section we introduce the Probabilistic Attack Normal Form for PrAAFs.
The normal formed PrAAFs definition does not require any added restrictions
in order for the PrAAFs to generate possible worlds with only valid AAFs. Also
the probabilistic elements of normal formed PrAAFs are mutually independent
and the probabilities of probabilistic elements always represents their likelihood
of existence. These characteristics of normal formed PrAAFs allow for easier
reasoning and also define a clearer probabilistic distribution.

Definition 4 (Probabilistic Attack Normal Form). A PrAAF P is in its
probabilistic attack normal form if it contains no probabilistic arguments (∀a ∈
Args, P (a) = 1).

The probabilistic attack normal form definition does not fall to the aforemen-
tioned pitfalls and does not require further restrictions like the general PrAAFs
definition. The pitfalls in general PrAAFs originate in the interaction of con-
nected probabilistic arguments with probabilistic attacks. By having only prob-
abilistic attacks the two pitfalls do not appear. Furthermore, the probabilistic
attack normal form definition for PrAAFs is simpler and allows easier reasoning
about PrAAF properties.

Finally, we are going to illustrate that having PrAAFs in the probabilistic
attack normal form does not reduce the representation power of PrAAFs and
that any probabilistic distribution that can be represented in general PrAAFs
it can also be represented in the probabilistic attack normal form for PrAAFs.
While this paper will only focus on Probabilistic Attack Normal Form PrAAFs

64 S. Bistarelli and T. Mantadelis

one could similarly illustrate the same properties also for the Probabilistic Argu-
ment Normal Form PrAAFs.

4.1 Transforming General PrAAFs to Probabilistic Attack Normal
Form PrAAFs

In this section we present a transformation that illustrates that any general
PrAAF can be transformed to a Probabilistic Attack Normal Form. Both the
original and the transformed PrAAF have the same probabilistic distribution
over their extensions. Because of the existence of such a transformation one could
use PrAAFs with only Probabilistic Attacks in order to represent any general
PrAAF. Or, from a different perspective, one could define Probabilistic Argu-
ments as syntactic sugar using Probabilistic Attacks and definite Arguments.

4.2 Transforming Probabilistic Arguments to Probabilistic Attacks

Before we present the transformation of probabilistic argument to probabilistic
attack, we need to define a special argument that we call ground truth:

Definition 5 (Ground Truth4). We introduce a special argument called
Ground Truth and shorthand it with the letter η. We say that η is undeniably
true meaning that η is never attacked by any argument and is always included
in all extensions regardless the semantics used.

The η argument modifies the extensions of an AAF for all semantics in such a
way that η must always be included. For example, in the admissible semantics of
an AAF without η a valid extension is the empty set ({}), but in an AAF that
contains η the empty set is not a valid extension under the admissible semantics
and the equivalent extension to the empty set is {η}. Note, that the extensions
of the original AAF and the extensions of an AAF with {η} have a one-on-one
correspondence for all semantics.

Definition 6 (Acceptable Extensions). For AAFs that contain η, an accept-
able extension E is one that includes η (η ∈ E).

By using {η} now we can define a normal expansion transformation for gen-
eral PrAAFs to Probabilistic Attack Normal Form as follows.

Transformation 1 (General PrAAF to Probabilistic Attack Normal
Form). Any PrAAF P , can be transformed5 to an equivalent PrAAF P ′ by
removing any probabilistic information attached to an argument a ∈ Args, with
P (a) and introducing a probabilistic attack from the ground truth η to argument
a with probability 1 − P (a).

4 The η argument is only a construct we use in order to illustrate how Probabilistic
Arguments can be transformed to Probabilistic Attacks and the PrAAF to retain
the same probabilistic distribution.

5 Such transformation is categorized as a normal expansion [1] of the original PrAAF.

A Possible World View and a Normal Form for the Constellation Semantics 65

Definition 7. We notate P ≡σ
|η P ′ the standard equivalence [14] of PrAAF P

with PrAAF P ′ under semantics σ by ignoring the existence of η in the acceptable
extensions.

Theorem 1 (Equivalence of transformed PrAAF). A transformed PrAAF
P ′ has an equivalent distribution in terms of admissible sets containing η com-
pared with the admissible sets of the original PrAAF P .

Proof. We split the proof in two parts. First we show that PrAAF P generates
AAFs that have the same admissible sets with the generated AAFs from PrAAF
P ′. We point out that for PrAAF P ′ acceptable admissible sets are only the ones
that contain the ground truth argument which we ignore its existence when com-
paring admissible sets. For example, the empty admissible set of P is equivalent
with the {η} admissible set of P ′. A probabilistic argument pa generates two
different sets of AAFs, set S1 where pa exists and S2 where pa does not exist.

PrAAF P ′ generates S′
1 the equivalent sets of S1 when η → pa does not exist

and the equivalent S′
2 sets of S2 when η → pa exists. When comparing an AAF

with pa versus an AAF without η → pa the only difference is the existence of η
as we only consider admissible sets that contain it and we ignore its existence in
the admissible sets the two graphs are equivalent thus the S′

1 sets are equivalent
with the S1 sets.

For S2 where pa does not exist, the equivalent S′
2 contains AAFs where the

argument pa is been attacked by η and is not defended by any other argument.
Clearly, as η is included in every extension that we consider then every attack
originating from pa is defended; thus, the AAFs of S2 generate the same admis-
sible extensions with the AAFs of S′

2.
Next part is to show that the probability of each extension is the same.

The probability that a set is an admissible extension is been computed by the
summation of the possible worlds where that set is admissible. As S1, S2 are
equivalent with S′

1, S
′
2 and produce equivalent AAFs then the possible worlds

are equivalent too. The probability of each possible world is also the same as
when pa would exist the possible world probability is multiplied by P (pa). In
the equivalent case the attack η → pa does not exist and the possible world
probability is multiplied by 1 − (1 − P (pa)) = pa. Similarly, for the possible
worlds that pa does not exist.

Corollary 1. PrAAF P ′ has equivalent acceptable extensions with PrAAF P
for all semantics where acceptability of an argument is necessary for the inclu-
sion of the argument in the extension. Such semantics include: complete, pre-
ferred, ground and stable semantics. Similarly, as the probabilistic distributions
are equivalent then all acceptable extensions of P ′ will have equal probability with
their equivalent extension from P .

We also want to point out that each general PrAAF can be transformed to
a unique Probabilistic Attack Normal Form containing η. Also any Probabilistic
Attack Normal Form that contains η is reversible to the general PrAAF. For
those reasons we can claim that the transformation is a one-to-one reversible
transformation.

66 S. Bistarelli and T. Mantadelis

Proposition 1 (Reversibility of the transformation). The general PrAAG
to Probabilistic Attack Normal Form transformation is reversible and creates a
one-on-one equivalent PrAAF.

Proof. Any argument a that is attacked by η is transformed to a Probabilistic
Argument with (1 − P (η → a)) probability. Finally, you can drop η to return to
the original general PrAAF.

By using the general PrAAF to Probabilistic Attack Normal Form transfor-
mation to the PrAAF of Fig. 2 we get the PrAAF of Fig. 3. Table 3 presents
the possible worlds of the PrAAF of Fig. 3. Now, each possible world represents
a valid AAF that generates the equivalent acceptable admissible sets like the
original PrAAF. Furthermore, the probabilistic distribution is identical.

Table 3. Possible worlds after transforming PrAAF of Fig. 2.

AAF Possible World Prob. Acceptable Admissible Sets

a c

b η

d ¬(a → c)∧¬(b → c)∧
(η → c) ≡ ¬(a → c)∧
¬(b → c) ∧ ¬c

0.126 {η}, {η, a}, {η, b}, {η, d}, {η, a, b},
{η, a, d}, {η, b, d}, {η, a, b, d}

a c

b η

d ¬(a → c)∧¬(b → c)∧
¬(η → c) ≡ ¬(a →
c) ∧ ¬(b → c) ∧ c

0.084 {η}, {η, a}, {η, b}, {η, c}, {η, a, b},
{η, a, c}, {η, b, c}, {η, a, b, c}

a c

b η

d ¬(a → c) ∧ (b → c) ∧
(η → c) ≡ ¬(a → c)∧
(b → c) ∧ ¬c

0.294 {η}, {η, a}, {η, b}, {η, d}, {η, a, b},
{η, a, d}, {η, b, d}, {η, a, b, d}

a c

b η

d ¬(a → c) ∧ (b → c) ∧
¬(η → c) ≡ ¬(a →
c) ∧ (b → c) ∧ c

0.196 {η}, {η, a}, {η, b}, {η, a, b}, {η, b, d},
{η, a, b, d}

a c

b η

d (a → c) ∧ ¬(b → c) ∧
(η → c) ≡ (a → c) ∧
¬(b → c) ∧ ¬c

0.054 {η}, {η, a}, {η, b}, {η, d}, {η, a, b},
{η, a, d}, {η, b, d}, {η, a, b, d}

a c

b η

d (a → c) ∧ ¬(b → c) ∧
¬(η → c) ≡ (a → c)∧
¬(b → c) ∧ c

0.036 {η}, {η, a}, {η, b}, {η, a, b}, {η, a, d},
{η, a, b, d}

a c

b η

d (a → c) ∧ (b → c) ∧
(η → c) ≡ (a → c) ∧
(b → c) ∧ ¬c

0.126 {η}, {η, a}, {η, b}, {η, d}, {η, a, b},
{η, a, d}, {η, b, d}, {η, a, b, d}

a c

b η

d (a → c) ∧ (b → c) ∧
¬(η → c) ≡ (a → c)∧
(b → c) ∧ c

0.084 {η}, {η, a}, {η, b}, {η, a, b}, {η, a, d},
{η, b, d}, {η, a, b, d}

Proposition 2 (Complexity of the Transformation). The general PrAAF
to Probabilistic Attack Normal Form transformation has linear complexity O(N)
to the number of probabilistic arguments N that the original PrAAF contains.
It grows the size of the original PrAAF by one argument and by N attacks.
The transformation does not affect the worst case complexity of computing any
extension or the probability that a set is any type of an extension.

A Possible World View and a Normal Form for the Constellation Semantics 67

5 Conclusion and Future Work

In this paper, we (a) make the connection of induced AAFs with possible worlds;
(b) formally introduce the Probabilistic Attack Normal Form for PrAAFs; and
(c) illustrate that the Probabilistic Attack Normal Form is sufficient to represent
any general PrAAF as defined by [13].

Fig. 3. Example transformed
PrAAF ({a, b, c, d, η}, {1, 1, 1,
1, 1}, {a → c, b → c, c →
d, η → c}, {0.3, 0.7, 1, 0.6}).

Our motivation is to provide a simpler but
powerful definition for constellation PrAAFs; fur-
thermore, we give an insight in the constella-
tion semantics and its restrictions from the point
of view of generating possible worlds. For future
work, we want to investigate to what degree the
constellation semantics can contain epistemic con-
structs and what relations are between the two
approaches; finally, we are planning to examine
how the properties of AAF can be used to sim-
plifying probabilistic inference in PrAAFs.

References

1. Baumann, R., Brewka, G.: Expanding argumentation frameworks: enforcing and
monotonicity results. In: Computational Models of Argument (COMMA), pp. 75–
86 (2010)

2. Bench-Capon, T.J.M.: Persuasion in practical argument using value-based argu-
mentation frameworks. J. Log. Comput. 13(3), 429–448 (2003)

3. Bistarelli, S., Rossi, F., Santini, F.: A novel weighted defence and its relaxation in
abstract argumentation. Int. J. Approx. Reason. 92, 66–86 (2018)

4. Bondarenko, A., Toni, F., Kowalski, R.A.: An assumption-based framework for
non-monotonic reasoning. In: Logic Programming and Non-monotonic Reasoning,
(LPNMR), pp. 171–189 (1993)

5. Caminada, M.W.A., Carnielli, W.A., Dunne, P.E.: Semi-stable semantics. J. Logic
Comput. 22(5), 1207–1254 (2012)

6. Doder, D., Woltran, S.: Probabilistic argumentation frameworks – a logical app-
roach. In: Straccia, U., Cal̀ı, A. (eds.) SUM 2014. LNCS (LNAI), vol. 8720, pp.
134–147. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11508-5 12

7. Dondio, P.: Toward a computational analysis of probabilistic argumentation frame-
works. Cybern. Syst. 45(3), 254–278 (2014)

8. Dung, P.M.: An argumentation-theoretic foundations for logic programming. J.
Log. Program. 22(2), 151–171 (1995)

9. Fazzinga, B., Flesca, S., Parisi, F.: On the complexity of probabilistic abstract argu-
mentation. In: International Joint Conference on Artificial Intelligence (IJCAI), pp.
898–904 (2013)

10. Gaggl, S.A., Woltran, S.: Cf2 semantics revisited. In: Computational Models of
Argument (COMMA), pp. 243–254 (2010)

11. Hunter, A.: Some foundations for probabilistic abstract argumentation. In: Com-
putational Models of Argument (COMMA), pp. 117–128 (2012)

12. Hunter, A., Thimm, M.: Probabilistic reasoning with abstract argumentation
frameworks. J. Artif. Intell. Res. 59, 565–611 (2017)

https://doi.org/10.1007/978-3-319-11508-5_12

68 S. Bistarelli and T. Mantadelis

13. Li, H., Oren, N., Norman, T.J.: Probabilistic argumentation frameworks. In: Mod-
gil, S., Oren, N., Toni, F. (eds.) TAFA 2011. LNCS (LNAI), vol. 7132, pp. 1–16.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29184-5 1

14. Oikarinen, E., Woltran, S.: Characterizing strong equivalence for argumentation
frameworks. Artif. Intell. 175(14), 1985–2009 (2011)

15. Oren, N., Norman, T.J.: Semantics for evidence-based argumentation. In: Compu-
tational Models of Argument (COMMA), pp. 276–284 (2008)

16. Wu, Y., Caminada, M.: A labelling-based justification status of arguments. Stud.
Logic 3(4), 12–29 (2010)

https://doi.org/10.1007/978-3-642-29184-5_1

Well-Foundedness in Weighted
Argumentation Frameworks

Stefano Bistarelli and Francesco Santini(B)

Department of Mathematics and Computer Science,
University of Perugia, Perugia, Italy

{stefano.bistarelli,francesco.santini}@unipg.it

Abstract. We revise classical properties of Abstract Argumentation
Frameworks in presence of weights on attacks. We focus on the notion
of well-foundedness originally provided by P. M. Dung in his pioneering
work. We generalise it by considering sequences of Set-maximal Attack
sets, instead of a plain sequence of arguments: such sets include all
the arguments attacking a previous set in the sequence. By using a
parametric framework based on an algebraic structure, we are able to
study different proposals of weighted defence in the literature, and con-
sequently relate their well-foundedness. We generalise such a property
to any weighted defence, but also to original Dung’s defence. Finally, we
provide conditions for the uniqueness of the preferred and existence of
the stable extensions.

1 Introduction

Defining the properties of Abstract Argumentation semantics [16] amounts to
specifying the criteria for deriving a set of subsets of arguments (i.e., extensions)
from an Abstract Argumentation Framework (AAF), which is simply defined
only by a set of arguments and an attack relationship, i.e., 〈A,R〉.

Properties of such extension-based semantics are important for the sake of the
theoretical approach itself, but also due to practical reasons. For instance, they
can be used to improve the performance of solvers [6]: by looking at a framework
and immediately derive from its structure that there is no stable-extension, or
just only a preferred one, we can quickly return an answer for decision problems
as the enumeration and existence of extensions, or sceptical/credulous accep-
tance of arguments in those semantics. Moreover, such properties can be studied
to improve the performance of composed tasks: for instance, in the special track
“Dung’s Triathlon” at the International Competition on Computational Models
of Argumentation (2017 edition)1, solvers were required to enumerate all exten-
sions of all standard Dung-semantics (complete, preferred, stable, grounded) at
once. However, in case the considered framework is well-founded, there is only
one complete extension, which it happens to be also the only grounded, preferred,
and stable extension at the same time.
1 ICCMA 2017: http://argumentationcompetition.org/2017/index.html.

c© Springer Nature Switzerland AG 2019
F. Calimeri et al. (Eds.): JELIA 2019, LNAI 11468, pp. 69–84, 2019.
https://doi.org/10.1007/978-3-030-19570-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19570-0_5&domain=pdf
http://argumentationcompetition.org/2017/index.html
https://doi.org/10.1007/978-3-030-19570-0_5

70 S. Bistarelli and F. Santini

In this paper we turn our attention to Weighted AAFs (WAAF), by consider-
ing AAFs where attacks are associated with a score. In particular, we mainly refer
to semiring-based WAAFs [4,7,8], which can be described by a tuple 〈A,R,W, S〉
that encompasses a weight function W with domain in R, and a c-semiring S to
be parametrically instantiated to a specific metrics of weights (see Sect. 2). In
addition, we take into consideration other two proposals of weighted abstract-
frameworks, i.e., Mart́ınez et al. [18] and Coste-Marquis et al. [14]. In [4,7] we
have proved that [18] and [14] can be cast in the same semiring-based framework,
still in terms of semiring-based operators.

Our goal is to revise well-known properties of classical frameworks [16] in
such weighted approaches, thus proposing, the first general study of this kind
on WAAFs (as far as we know). We commence by (i) revising the notion of
well-foundedness. Most of this work is focused on revising the notion of well-
foundedness from sequences of arguments to sequences of argument sets, simi-
larly to what generalised in [19]. However, we extend the synergic effect of several
attacks to a single argument (proposed in [19]), by also considering the combined
effect of several attacks from one argument to a set of arguments. Then, (ii) we
show how well-foundedness can be adapted to WAAFs and it still leads to have
a single complete/preferred/stable/grounded extension also in WAAFs. Finally,
(iii) we show we are able to recover also in WAAFs some classical unicity and
existence properties for the (w-)preferred and (w-)stable semantics.

This paper complements and extends the preliminary results in [9]. It is
structured as follows: in Sect. 2 we summarise and integrate the formal results
obtained in [4,7,8]. Then, in Sect. 3 we revise the notion of well-foundedness in
[19], and we provide a new one by showing how it is applicable to WAAFs. We
finally generalise the definition of well-foundedness for other possible notions of
weighted defence. In Sect. 4 we recover in weighted frameworks some unicity and
existence results of classical extension: for instance, if a WAAF is well-founded,
the w-grounded extension is also the only w-preferred and w-stable extension in
that WAAF. In Sect. 5 we revise the related work on weighted frameworks and
properties of them. Finally, Sect. 6 concludes the paper by drawing conclusions
and also providing ideas for future work.

2 Background

C-semirings are commutative semirings where ⊗ is used to compose values, while
an idempotent ⊕ is used to represent a partial order among them.

Definition 1 (C-semirings [3]). A c-semiring is a five-tuple S = 〈S,⊕,⊗,
⊥,�〉 such that S is a set, �,⊥ ∈ S, and ⊕,⊗ : S ×S → S are binary operators
making the triples 〈S,⊕,⊥〉 and 〈S,⊗,�〉 commutative monoids, satisfying, (i)
distributivity ∀a, b, c ∈ S.a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c), (ii) annihilator ∀a ∈
A.a ⊗ ⊥ = ⊥, and (iii) absorptivity ∀a, b ∈ S.a ⊕ (a ⊗ b) = a.

The idempotency of ⊕, which derives from absorptivity, leads to the def-
inition of a partial order ≤S over S: a ≤S b iff a ⊕ b = b, which means

Well-Foundedness in Weighted Argumentation Frameworks 71

Fig. 1. An example of WAAF; these weights may belong to, for instance, the Weighted,
Probabilistic, or Fuzzy c-semiring.

that b is “better” than a.2 ⊕ is the least upper bound of the lattice 〈S,≤S〉.
Some c-semiring instances are: Boolean 〈{F ,T},∨,∧,F ,T 〉, Probabilistic (or
Viterbi) 〈[0, 1],max,×, 0, 1〉 Fuzzy 〈[0, 1],max,min, 0, 1〉, and Weighted 〈R+ ∪
{+∞},min,+,+∞, 0〉. In the remainder of the paper we will use “semiring” as
a synonym of “c-semiring”.

The following definition of WAAFs can be used to represent problems where
attacks are weighted with different metrics of values, parametric to a given frame-
work. All the background information in the remainder of this section derives
from results in [7,8].

Definition 2 (c-semiring-based WAAF). A semiring-based Argumentation
Framework (WAAF S) is a quadruple 〈Args, R,W, S〉, where S is a semiring
〈S,⊕,⊗,⊥,�〉, Args is a set of arguments, R the attack binary-relation on Args,
and W : Args × Args → S is a binary function. Given a, b ∈ Args, ∀(a, b) ∈ R,
W (a, b) = s means that a attacks b with a weight s ∈ S. Moreover, we require
that R(a, b) iff W (a, b) <S �.

An example of c-semiring-based WAAF is represented in Fig. 1, where we can
consider weights either in the Weighted, Probabilistic, or in the Fuzzy semiring.

In [4] the authors define w-defence: a set B defends an argument b from a
if the set-wise ⊗ of the attacks from all c ∈ B that defend b, i.e., W (B, a) =⊗

c∈B W (c, a), is worse than (i.e., stronger) or equal to the set-wise ⊗ of the
attacks from a to b and all the arguments in B, i.e., W (a,B ∪ b) (some set-wise
operations can be defined3).

Definition 3 (w-defence or Dw). Given WF = 〈Args, R,W, S〉, B ⊆ Args

w-defends b ∈ Args from a ∈ Args s.t. R(a, b), iff W (a,B ∪ {b}) ≥S W (B, a);
B w-defends b iff it defends b from any a s.t. R(a, b).

2 Note that in the following of the paper we will use“worse” or “better”
because“greater” or “lesser” would be misleading: for instance, in the weighted semir-
ing we have 7 ≤S 3 (≤S is not ≤). Hence, given a WAAF, an attack with value 7 is
stronger than one associated with 3.

3 W (B, a) =
⊗

b∈B

W (b, a), W (a,B) =
⊗

b∈B

W (a, b), and W (B,D) =
⊗

b∈B ,d∈D

W (b, d).

72 S. Bistarelli and F. Santini

As defined, w-defence (Dw) implies the classical Dung’s defence (D0).

Proposition 1 (Dw ⇒ D0). Given WF = 〈Args, R,W, S〉, a subset of argu-
ments B, and b ∈ Args, “B w-defends b” ⇒ “B defends b” in the corresponding
not-weighted 〈Args, R〉.

We have now all the necessary preliminary information to introduce w-
semantics.

Definition 4 (w-semantics). Given WF = 〈Args, R,W, S〉, B is a conflict-
free set [16] iff W (B,B) = �. B can be:

– a w-admissible (wadm) extension iff all the arguments in B are w-defended
by B;

– w-strongly-admissible (wssa) iff every b ∈ B is w-defended by some B′ ⊆
B \ {b};

– a w-complete (wcom) extension iff each argument b ∈ Args s.t. B ∪ {b} is
w-admissible belongs to B;

– a w-preferred (wprf) extension iff it is a maximal (w.r.t. set inclusion) w-
admissible subset of Args;

– w-semi-stable (wsst) iff, given the range of B defined as B ∪ B+, where
B+ = {a ∈ Args : W (B, a) <S �}, B is a w-complete extension with
maximal (w.r.t. set inclusion) range.

– a w-stable extension (wstb) iff B ∈ wadm(WF) and ∀a �∈ B,∃b ∈
B.W (b, a) <S �;

– a w-grounded (wgrd) extension, iff B ∈ wadm(WF), and B ⊆ ⋂
wcom(WF),

and �B′ ∈ wadm(WF) satisfying B′ ⊆ ⋂
wcom(WF) s.t. B � B′;

– a w-ideal (wide) extension, iff B is w-admissible and ∀B′ ∈ wprf (WF),
B ⊆ B′. The w-ideal extension is the maximal (w.r.t. set inclusion) w-ideal
set;

– a w-eager (weag) extension, iff B is admissible and ∀B′ ∈ wsst(WF), B ⊆
B′. The w-eager extension is the maximal (w.r.t. set inclusion) w-eager set.

In [8], we report a novel definition of the weighted grounded extension, which
is not simply the minimal w.r.t. set inclusion of the complete extensions. Such
a definition overcomes the inconvenience that weighted frameworks often return
more than one grounded extension, e.g., [14,18]: in fact, it is desirable to have
sceptical semantics that always yields exactly one extension (also wide and
weag). Proposition 2 reports some properties of this w-grounded semantics.

Proposition 2 (Properties of w-grounded). Given the definition of w-
grounded semantics in Definition 4, then

– A w-grounded extension always exists and it is unique.
– The w-grounded extension corresponds to the set of sceptically accepted argu-

ments in wcom(WF): grd(WF) = {a ∈ Args | ∀B ∈ wcom(WF), a ∈ B}.
– The w-grounded extension is w-strongly-admissible.

Well-Foundedness in Weighted Argumentation Frameworks 73

Fig. 2. Using the Weighted semiring, {e, f} defends c from d according to D2 and
Dw, since (2 + 1) ≤Weighted 3, but not according to D1, since 2 �≤Weighted 3 and
1 �≤Weighted 3. Moreover, d defends {a, b} from c according to D1 and D2, but not
according to Dw since 3 �≤Weighted (3 + 2).

Note that, in general, the w-grounded extension is no longer the supremum
of the w-strongly-admissible extensions, as it is in Dung instead [8]. Note also
that w-ideal and w-eager are not w-strongly-admissible, as for classical frame-
works [11].

For more properties and relations among w-semantics, and between w-
semantics and their classical correspondence in unweighted frameworks, please
refer to [7].

We conclude this background section by justifying why we have not intro-
duced the framework by Dung before ours. If we use the Boolean c-semiring,
thus considering W (a, b) = ⊥ = false whenever R(a, b), we exactly obtain the
same semantics in [16]: we encompass it besides being capable of representing
weighted systems within the same parametric framework. Hence, for instance,
the set of w-stable extensions in WF is the same as the set of stable extensions
in F, that is F considered as not weighted.

2.1 Other Weighted Proposals in the Literature

In Definition 2 we have defined a formal parametric framework where it is possi-
ble to plug and play with different semirings in a WAAF. Because of the afore-
mentioned characteristics, the same framework can be also used to study different
proposals in the literature, and compare different notions of weighted defence
to Definition 3: in [4,7] we have rephrased two different proposals, i.e., [18] and
[14], by using semiring operators and WAAFs.

In [18] attacks are relatively ordered by their force, i.e., R(a, b) � R(b, a)
means that the former attack is stronger than the latter (vice-versa, a weaker
attack). Equivalent and incomparable classes are considered as well, i.e., respec-
tively R(a, b) ≈ R(b, a) and R(a, b)?R(b, a). In Definition 5 we exactly rephrase
the defence in [18] by modelling the total order defined by [�,≈] with a c-
semiring S:

Definition 5 (D1 [7]). Given WF = 〈Args, R,W, S〉, a, b, c ∈ Args, B ⊆ Args,
then b is defended by B if for any R(a, b),∃c ∈ B s.t. W (a, b) ≥S W (c, a).

In [14] the authors define σ�-extensions, where σ is one of the given seman-
tics (e.g., admissible), and � is an aggregation function. Such a function needs to

74 S. Bistarelli and F. Santini

satisfy non-decreasingness, minimality, and identity4: two examples are the arith-
metic sum and max operators. In Definition 6 we cast it in the same semiring-
based framework.

Definition 6 (D2 [7]). Given WF = 〈Args, R,W, S〉, an argument b is defended
by a subset of arguments B if ∀a ∈ Args s.t. R(a, b), we have that W (a, b) ≥S

W (B, a).

In [4] and [7] we have proved some implications between the different notions
of defence D0, D1, D2, and Dw.

Theorem 1 (Relations among defences [7]). Given Dw in Definition 3, D1

in Definition 5, D2 in Definition 6, and D0 being the classical defence in [16],
then:

1. Dw ⇒ D0, D1 ⇒ D0, D2 ⇒ D0.
2. Dw ⇒ D2.
3. D1 ⇒ D2.
4. If S = Fuzzy, then D1 ⇔ D2, and Dw ⇒ D1.
5. If S = Boolean, then Dw ⇔ D0 ⇔ D1 ⇔ D2.

Figure 2 visually supports the explanation about the differences among the
three weighted defences reported so far. All three of them aggregate weights (in
different ways) towards the same argument d to check if {e, f} defends c from
it: that is, c is defended if W ({e, f}, d) ≤S W (d, {c}). Only Dw also aggregates
all the weights on the attacks from the same attacker to the set of arguments
to be defended: to check if d defends {a, b} from c, we need that W ({d}, c) ≤S

W (c, {a, b}).

3 Well-Foundedness in Weighted AAFs

We divide the content in two subsections: the first one (Sect. 3.1) introduces
the problems in defining well-founded frameworks in case of a synergy among
attacks; the second one (Sect. 3.2) proposes a solution that encompasses different
proposals in the literature, with the definition of set-maximal attack (SMA)
sequences of sets.

3.1 Motivations

In this section we consider WAAFs in Sects. 2 and 2.1, and we revise the notion
of well-foundedness and derived properties, as the uniqueness of complete exten-
sions. We start by recalling the definition of well-founded sets.

Definition 7 (Well-founded set). A set S is well-founded iff it does not exist
any infinite descending sequence of elements of S according to a relation Rl(x, y)
(“x precedes y”), where Rl is a binary relation on the elements of S.
4 Such properties are satisfied by a c-semiring, e.g., minimality corresponds to the

absorptivity of ⊗ w.r.t. ⊥.

Well-Foundedness in Weighted Argumentation Frameworks 75

Dung defines the sufficient conditions behind well-foundedness in AAFs in
his pioneering work [16]. S is equivalent to Args, and the Rl relation is simply
the attack relation R in a framework 〈Args, R〉. A well-founded AAF is an AAF
without an infinite defeating sequence of arguments.

Definition 8 (Well-foundedDung [16]). An AAF is well-founded iff there
exists no infinite sequence a1, a2, . . . , an, . . . (with ai ∈ Args) such that for each
i, R(ai+1, ai).

However, the notion of w-defence in Definition 3 and the other two notions of
weighted defence in Sect. 2.1 take sets of arguments and their synergy into con-
sideration. For this reason, Definition 8 is not enough to capture the aggregation
of weights from/to sets, since it is based on plain sequences of arguments. The
synergy of multiple attacks towards the same argument is in practice not con-
sidered in [16]: the “added value” of two attacks towards a single argument, e.g.,
R(e, d) and R(f, d) in Fig. 2, cannot be modelled by the original formulation.

Extending such a formulation with the purpose to produce an intensification
of a combined attack has been already considered in [19]. There, the authors
generalise Dung’s approach to allow it to handle sets of attacking arguments.
However, the aim is to let the framework be capable of dealing with synergies
among arguments in and, thus without considering numerical strengths, some-
thing that is at the core of this work instead. For instance, “a1: Joe does not
like Jack”, and “a2: There is a nail in Jack’s antique coffee table” do not attack
separately “a3: Joe did not hammer a nail into Jack’s antique coffee table”, but
they do it only in conjunction (example taken from [19]).

We report the definition of minimal attack in [19], on which the notion of
well-foundedness is then based upon.

Definition 9 (Minimal attack [19]). Given a Dung’s framework, B ⊆ Args

and an argument a such that B attacks a (that is ∃c ∈ B s.t. R(c, a)), we say
that B is a minimal attack on a if there is no B′ � B such that B′ attacks a.

In [19], a framework is well-founded if there exists no infinite sequence of
B1,B2, . . . s.t. set Bi is a minimal attack on an argument in Bi−1.

We believe Definition 9 has two limitations:

(i) firstly, B is not required to be conflict-free to be a minimal attack on an
argument a. Indeed any synergic effect on a cannot be originated by a
source that is internally in conflict, even in a qualitative approach as sup-
posed in [19]. Let us rephrase the previous nail-in-the-table example as “a′

1:
Since Jack loves coffee more than tea, Joe does not like Jack”, and “a′

2:
Even if there is a nail in Jack’s antique coffee table, Jack will give prece-
dence to restoring his decorated tea-pot: so Jack loves tea more than coffee”.
These two arguments still attack “a3: Joe did not hammer a nail into Jack’s
antique coffee table” only in conjunction: nevertheless, they are just in con-
flict, so their combined effect has no sens anymore;

76 S. Bistarelli and F. Santini

(ii) secondly, the synergy of multiple combined attacks from a single attacker
towards a set of arguments (outcoming) cannot be modelled with the defini-
tion of sets in Definition 9, since minimal attack is towards one single argu-
ment in a set (incoming). This effect can be represented only by Dw [4,7],
and not by the other weighted defences in Sect. 2.1 (see Fig. 2). We provide
a qualitative example, as for the nail-in-the-table case: “a1: I have enough
money to book one single trip this summer” does not attack either “a2: I
will spend June in Norway” or “a2: I will spend July in Greece”. However,
a1 attacks a2 and a3 when taken together.

All these considerations are also valid in case of a quantitative approach,
where weights of attacks can be aggregated together in different ways, as shown in
Fig. 2. The next section rephrases well-foundedness with the purpose to address
the aforementioned issues.

3.2 Well-Foundedness

Because of the premises advanced in the previous section, in Definition 10 we
redefine the notion of minimal attack in [19] into set-maximal attack (SMA)
sets. This is one of the main contributions in the paper, from which all the other
ones follow.

Definition 10. (Set-maximal attack (SMA) sets). Given WF = 〈Args, R,
W, S〉 and B,D ⊆ Args, then B is a set-maximal attack on D , iff

(i) B is conflict-free;
(ii) ∀b ∈ B,∃d ∈ D s.t. R(b, d);
(iii) there exists no B′ s.t. condition (i) and (ii) hold and B � B′.

Note that the above definition differs from [19] because in our statement B
needs to be conflict-free. The reason is that we want to aggregate the weights
of arguments with the purpose to provide an aggregated defence: this is not
possible if defending arguments attack each other (this defence is not allowed).

Example 1. Figure 3 shows a fragment of an infinite sequence of SMA sets,
obtained on the WAAF represented in Fig. 1; we start from the conflict-free
set {f}. The sequence is: B1-B2-B3-B4-. . . (it continues as B2).

We can now provide sufficient conditions for well-foundedness in [4,7], that
is using the Dw notion of defence in Definition 3.

Definition 11 (Well-foundedness for the approach in [7] (wfdw)). A
WF = 〈Args, R, W, S〉 is well-founded if there exists no infinite sequence of
SMA sets ω = B1,B2, . . . , and ∀Bi−1,Bi, Bi+1 ∈ ω and ∀b ∈ Bi the following
holds:

W (Bi+1, b) ≤S W (b,Bi−1)

Well-Foundedness in Weighted Argumentation Frameworks 77

Fig. 3. A fragment of an infinite sequence of SMA sets. B5 is identical to B2 and the
chain infinitely continues from it. This example shows incoming synergic effect (from
B4 to B4), and outcoming synergic effect (from B3 to B2).

Similar considerations hold for well-foundedness in the other two weighted
defences surveyed in Sect. 2.1, since their defence notion is based on sets either.
We start by defining well-foundedness for [18] and then for [14]. Note that well-
foundedness is parametrically defined w.r.t. to a given semiring even in these
two proposals.

Definition 12 (Well-foundedness for the approach in [18] (wfd2)). A
WF = 〈Args, R, W, S〉 defined in [18] is well-founded if there exists no infi-
nite sequence of SMA sets ω = B1,B2, . . . , and ∀Bi−1,Bi,Bi+1 ∈ ω and
∀b ∈ Bi,∀a ∈ Bi−1,∃c ∈ Bi+1, the following holds:5

W (c, b) ≤S W (b, a)

Definition 13 (Well-foundedness for the approach in [14] (wfd1)). A
WF = 〈Args, R, W, S〉 defined in [14] is well-founded if there exists no infi-
nite sequence of SMA sets ω = B1,B2, . . . , and ∀Bi−1,Bi,Bi+1 ∈ ω and
∀b ∈ Bi,∀a ∈ Bi−1, the following holds:

W (Bi+1, b) ≤S W (b, a)

Remark 1. All these three notions of well-foundedness are similar, in the sense
that two different conditions need to be satisfied at the same time: (i) one
concerning the absence of an infinite sequence of SMA sets on a framework
(such a condition does not consider weights), and (ii) one stating that each
Bi+1 in any sequence of SMA sets has to defend Bi−1 from Bi, according to
each specific definition of defence D (which is different in the three definitions).
With “B defends D from C ” we mean that B defends all the d ∈ D from any
c ∈ C (e.g., using Definition 3 in Definition 11).

In the continuation of Example 1 we show that the WAAF presented in
Fig. 1 does not satisfy any of the definition of well-foundedness introduced so
far, including, the original one given by Dung, i.e., well-foundedDung .

5 Note that synergy in [18] is represented by ∃c ∈ Bi+1: lower-strength defences are
helped by higher-strength ones.

78 S. Bistarelli and F. Santini

Example 1 (continued). Considering the WAAF in Fig. 1, and the related infinite
sequences of SMA sets shown in Example 1, we can state that the c-semiring
based WAAF is not well-foundedDung , and it is also neither wfd1, nor wfd2, not
wfdw, as explained in the remainder of this example.

It is not well-foundedDung because there exists an infinite sequence of argu-
ments given by the cycle f ← e ← c ←

Moreover, there also exists an infinite sequence of SMA sets for the three
Definitions 11, 12, and 13. An example has been already proposed in Example 1.
This is enough to state that such a WAAF is not well-founded. However, we
check also the condition on the weighted defence to better explain the differ-
ences between the aforementioned well-foundedness notions. In the following we
consider the Weighted semiring.

– B5 = B2 does not defend B3 from a and b in B4 (there is no attack at all
from B5 to a and b), according to any possible defence used in this paper (for
this item, it is a matter of attacks more than weights);

– The second condition (on weights) in Definition 11 is respected: B4 defends
B2 from B3. W (B4, c) ≤Weighted W (c,B2), that is 0.3+0.2+0.1 ≤ 0.4+0.1.
In this case, the synergic effect of the attacks from c to B2 is compensated
by the strength of the defence.

– The second condition (on weights) in Definition 13 is respected: B4 defends
B2 from B3. W (B4, c) ≤Weighted W (c, d) since 0.3 + 0.2 + 0.1 ≤ 0.4, and
W (B4, c) ≤WeightedW (c,e) since 0.3+0.2+0.1 ≤ 0.1. In this case, the synergic
attack from c is not considered.

– The second condition (on weights) in Definition 12 is not respected: B4 cannot
defend B2 from B3 because there is no attack from B4 to c (whose values
are 0.3, 0.2, 0.1) which is at least as strong as the attack from c to d in B2

(i.e., 0.4).

Therefore, imposing further conditions on the weights restrains the possibility
of having a simple infinite sequence as required in [16]: a framework has less
chances to be well-founded when considering weighted defences, since the absence
of infinite sequences of SMA sets in not sufficient.

We relate the property of a framework to be well-founded, by considering
the three weighted proposals we consider in this paper and well-foundedDung as
well.

Theorem 2 (Implications among definitions). Given any WAAF (or AAF
if considering it without weights), the following implications hold:

1. well-foundedDung ⇐ wfdw, well-foundedDung ⇐ wfd1, well-foundedDung ⇐
wfd2.

2. wfd2 ⇐ wfdw.
3. wfd2 ⇐ wfd1.
4. When using the Fuzzy semiring, wfd1 ⇔ wfd2 wfd1 ⇒ wfdw.
5. When using the Boolean semiring, wfdw ⇔ wfd1 ⇔ wfd2.

Well-Foundedness in Weighted Argumentation Frameworks 79

Proof. Each item in Theorem 2 directly derives from (i) the corresponding defi-
nitions of well-foundedness, and (ii) the relations among the different notions of
defence in Theorem 1. Conditions based on weights (see Remark 1) for sequences
of SMA sets in Definitions 11, 12, and 13 correspond to Dw, D2, and D1.

We notice that checking the well-foundedness property on any weighted
framework, and obtaining a positive response, is enough to state that the same
framework is also well-founded according to Dung, that is without considering
weights (item 1 in Theorem 2). As a further general consideration, we notice that
wfd2 is less selective w.r.t. wfd1 and wfdw (items 2 and 3). In case of using the
Fuzzy semiring, item 4 in Theorem 2 states that it is easier for a framework to
be wfdw than to be wfd1 or wfd2.

We conclude this section with a definition that generalises the definition of
well-foundedness on the different notion of (weighted) defence. Therefore, the
definition of well-foundedness becomes parametric with respect to the chosen
semiring and the selected defence. Other weighted defences may directly inherit
from the definition to check the conditions under which they allow for a well-
founded framework. This represents the second main result of the paper.

Definition 14 (Generalisation of well-foundedness). Given a framework
WF = 〈Args, R,W, S〉, if there does not exist an infinite sequence ω of SMA
sets B1,B2, . . . , such that for every Bi+1, Bi, and Bi−1 we have that Bi+1

defends Bi−1 from each a ∈ Bi according to a generic defence D, then WF is
well-founded w.r.t. D.

4 Some Formal Results on Unicity and Existence

The well-foundedness property is interesting because it points to a framework
there exists only a set of arguments that it is worth to be considered under any
semantics. According to [16], every well-founded AAF has exactly one complete
extension, which is also grounded, preferred, and stable.

The same result is preserved also in each the weighted approaches presented
in this paper, depending on the specific notion of well-foundedness respectively
presented in Definitions 11, 12, and 13. The following theorem formalises this
result.

Theorem 3 (Uniqueness of w-complete extension). Given a notion of
defence, any well-founded WAAF where the w-grounded is also w-complete has
exactly one w-complete extension, which is also w-grounded, w-preferred, and
w-stable.

Proof. As in [16], the proof is by contradiction. We assume there exists a well-
founded WAAF whose w-grounded extension is not a w-stable extension. Let
WF = 〈Args, R,W, S〉 be a WAAF such that

S = {B | B ⊆ (Args \ wgrd(WF)) ∧ W (B,B) = � ∧ W (wgrd(WF),B) = �}

80 S. Bistarelli and F. Santini

Fig. 4. A WAAF with an even-
length cycle.

Fig. 5. An even-length sequence of SMA
sets for the WAAF in Fig. 4. It also sat-
isfies Dw.

S is made of all the conflict-free subsets of arguments not included in the
w-grounded extension, and not attacked by it; S �= {∅} by assumption. Now we
want to show that each set Bi ∈ S is attacked by another Bj ∈ S . Since Bi

is not acceptable in wgrd(WF), this means there is a conflict-free set Bj such
that wgrd(WF) does not defend Bi from all the possible arguments a ∈ Bj that
attacks an argument in Bi. For instance, considering Dw, W (wgrd(WF), a) �≤S

W (a,Bi). Hence also Bj belongs to S and the same considerations hold for it
either. Now we have an infinite sequence ω of SMA sets Bi,Bj ,

Note that the additional condition related to the w-grounded, which needs
to be w-complete in Theorem 3, is required by the fact that weighted frame-
works may have multiple grounded extensions (Sect. 2.1); we fixed it in [8] by
defining a w-grounded that can be not w-complete (see also Sect. 2). Without
such a requirement, in the proof of Theorem3 we cannot exploit the fact that
the w-grounded extension includes all the arguments that also defends (accord-
ing to any weighted defence). The case a framework is well-founded, but the
w-grounded is not w-complete, is left as future work (see Sect. 6).

Properties of Weighted Preferred and Stable Semantics. Some of formal results
obtained in the original proposal by Dung can be recovered also in weighted
frameworks. We first turn our attention to the uniqueness of the w-preferred
extension.

In [17] Dunne Bench-Capon gave sufficient conditions for a preferred exten-
sion to be unique (the converse does not hold): let F = 〈Args, R〉. If F has no
even-length cycle, then AF has an unique preferred extension. In Theorem4 we
re-obtain the same result for any WAAF using D1, D2, and Dw: the following the-
orem is parametric w.r.t. D. As for Theorem 3, we suppose that the w-grounded
extension is a w-complete extension as well.

Theorem 4 (Uniqueness of w-preferred). Given WF = 〈Args, R,W, S〉. If
WF has no even-length cycle of SMA sets ω = B1,B2, . . . such that all Bi−1 are
defended by Bi+1 from each a ∈ Bi using D, then WF has an unique w-preferred
extension.

Well-Foundedness in Weighted Argumentation Frameworks 81

Fig. 6. A WAAF with an odd-length
cycle of SMA sets, but B1 is not
defended by B3 according to, for
instance, Dw. There exists {b, c} as stable
extension.

Fig. 7. A WAAF with an odd-length
cycle of SMA sets: B1 is defended by B3

according to, for instance, Dw. For this
WAAF there exists no stable extension.

Proof (Sketch of). The proof can be provided similarity as in [17], by showing
that if a WF has two w-preferred extensions Bi and Bj , then it has an even-
length cycle. In this case, instead of plain sequences of attacks, SMA sets need
to be collected for subset of arguments that is in Bi \ Bj and Bj \ Bi.

Example 2. In Fig. 4 we show a WAAF that has an even-length ω (the length
is 4) represented in Fig. 5. Such a sequence of SMA sets also respects Dw, and
consequently, according to Theorem 4, this framework may have more than one
w-preferred extensions. In fact, it has two of them: B1 ∪ B3 = {a, d, e} and
B2 ∪ B3 = {b, c, f}.

A final result concerns the existence of at least one w-stable extension for a
given framework F , i.e., the non-emptiness of this set, which can be re-conducted
to the solutions set of the stable marriage problem [16] represented by F . If
F = 〈Args, R〉 has no odd-length cycle, then F has at least one stable extension.

Theorem 5 (Existence of w-stable extensions). If WF has no odd-length
cycle of SMA sets ω = B1,B2, . . . such that all Bi−1 are defended by Bi+1 from
each a ∈ Bi using D, then WF has at least one w-stable extension.

Proof (Sketch of). If ω has not an odd-length chain such that all its odd-indexed
sets Bi are defended, then it is not possible to have a conflict-free union of Bi that
attack all the other arguments in Args . An example is given in Figs. 6 and 7.

5 Related Work

In [1] the authors define a link between the preference relation in Preference-
based Argumentation Frameworks (PAF s), where a binary relation expresses
preferences between arguments, and the notion of well-foundedness. The main
aim is to show when a PAF has exactly one complete/preferred/stable/grounded
extension.

82 S. Bistarelli and F. Santini

In [15] first results on the relationship between Argumentation and Paul Tha-
gard’s coherence theory are introduced. The authors then interpret partitions of
Bipolar Coherence graphs in terms of extensions in PAF, and provide conditions
for the uniqueness of preferred and stable extensions.

A few properties on the existence and unicity of some extensions in bipolar
systems are described in [12]. Bipolar frameworks have both attack and support
relations between arguments, that is Ratt and Rsupp . The paper links these
properties to the property for a framework to be safe: there does not exist an
argument for which a set B attacks b and either B also supports it, or b belongs
to B.

In [13] the authors study the properties in symmetric AAF, that are frame-
works where the attack relation is symmetric. For instance, they prove that no
symmetric AAF is well-founded, or that every symmetric AAF is coherent (i.e.,
preferred and stable extensions coincide).

Finally we end this section by detailing the main difference between this work
and our previous results in [9]. In that work we proposed a preliminary approach
that only considers (i) acyclic frameworks and (ii) conditions on weights (as
in definitions in Sect. 3.2). In this paper we define and use SMA sets instead,
inspired by [19], in order to relax this restrictive condition of having acyclic
frameworks (i.e., condition i).

Proposition 3. If a weighted framework WF = 〈Args, R,W, S〉 is well-founded
according to [9], then it is well-founded also as proposed in the different defini-
tions in Sect. 3.2 (i.e., wfd1, wfd2, wfdw), if they respect the same conditions on
weights.

Proof (Sketch of). The proof comes from the fact that if a WAAF is acyclic,
then it is not possible to find an infinite sequence of SMA sets as defined in
Definition 10 in the same WAAF.

6 Conclusion

The contribution in this paper is two-sided: first, we extend the concept of syn-
ergies from what advance in [19] by also considering the effect from on argument
to a set of arguments, and we define SMA sets instead of minimal set attacks.
The second aspect represents the core of the paper and shows how the definition
of well-foundedness can be adapted in case of weighted frameworks. Besides our
proposal, we have studied [18] and [14] by casting them in the same framework.
Hence, we show that classical results can be obtained for WAAFs as well, and we
propose, as far as we know, the first general study on such properties in weighted
frameworks.

In the future we want to widen this study by exploring further properties not
investigated here for the sake of space: for instance, we would like to better study
(weighted) asymmetric frameworks by extending the results in [13]. In addition,
we plan to study the same properties recalled in this paper also from the point
of view of other weighted proposals in Sect. 5.

Well-Foundedness in Weighted Argumentation Frameworks 83

We would also like to develop algorithmic procedures and constraints with
the purpose to check such properties before the search of solutions (e.g., when
enumerating extensions), in order to improve the performance of ConArg [5] and
ConArgLib [10] in case of adopting WAAFs.

We plan to further follow the same approach adopted in [16], and to inspect
the relation between the Stable Marriage Problem with weighted preferences [2]
and w-semantics.

Finally, we would like to study well-foundedness in case the side condition
“w-grounded is also w-complete” is removed from Theorem 3. Its absence, i.e.,
the fact that sceptically accepted arguments in w-complete extensions do not
include all the arguments they defend, impacts on the results usually carried by
well-foundedness (no uncertainty), as well as further properties as the uniqueness
of w-preferred extensions. In this case, it seems that showing uncertainty in the
most certain semantics, that is the w-grounded one (the most sceptical one),
affects the lack of uncertainty from the foundations.

Acknowledgements. This work has been supported by the following three projects
funded by our Department: Argumentation 360 (“Ricerca di Base” 2017–2019) and
Rappresentazione della Conoscenza e Apprendimento Automatico (RACRA) (“Ricerca
di base” 2018–2020).

References

1. Amgoud, L., Vesic, S.: On the role of preferences in argumentation frameworks. In:
22nd IEEE International Conference on Tools with Artificial Intelligence, ICTAI,
pp. 219–222. IEEE Computer Society (2010)

2. Bistarelli, S., Foley, S., O’Sullivan, B., Santini, F.: From marriages to coalitions: a
soft CSP approach. In: Oddi, A., Fages, F., Rossi, F. (eds.) CSCLP 2008. LNCS
(LNAI), vol. 5655, pp. 1–15. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-03251-6 1

3. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and
optimization. J. ACM 44(2), 201–236 (1997)

4. Bistarelli, S., Rossi, F., Santini, F.: A collective defence against grouped attacks
for weighted abstract argumentation frameworks. In: Florida Artificial Intelligence
Research Society Conference, FLAIRS, pp. 638–643. AAAI (2016)

5. Bistarelli, S., Rossi, F., Santini, F.: ConArg: a tool for classical and weighted
argumentation. In: Computational Models of Argument - Proceedings of COMMA.
FAIA, vol. 287, pp. 463–464. IOS Press (2016)

6. Bistarelli, S., Rossi, F., Santini, F.: Not only size, but also shape counts: abstract
argumentation solvers are benchmark-sensitive. J. Log. Comput. 28(1), 85–117
(2018)

7. Bistarelli, S., Rossi, F., Santini, F.: A novel weighted defence and its relaxation in
abstract argumentation. Int. J. Approx. Reasoning 92, 66–86 (2018)

8. Bistarelli, S., Santini, F.: A Hasse diagram for weighted sceptical semantics with a
unique-status grounded semantics. In: Balduccini, M., Janhunen, T. (eds.) LPNMR
2017. LNCS (LNAI), vol. 10377, pp. 49–56. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-61660-5 6

https://doi.org/10.1007/978-3-642-03251-6_1
https://doi.org/10.1007/978-3-642-03251-6_1
https://doi.org/10.1007/978-3-319-61660-5_6
https://doi.org/10.1007/978-3-319-61660-5_6

84 S. Bistarelli and F. Santini

9. Bistarelli, S., Santini, F.: Some thoughts on well-foundedness in weighted abstract
argumentation. In: Principles of Knowledge Representation and Reasoning, KR,
pp. 623–624. AAAI Press (2018)

10. Bistarelli, S., Rossi, F., Santini, F.: A ConArg-based library for abstract argumen-
tation. In: 29th IEEE International Conference on Tools with Artificial Intelligence,
ICTAI, pp. 374–381. IEEE Computer Society (2017)

11. Caminada, M.: Comparing two unique extension semantics for formal argumen-
tation: ideal and eager. In: Belgian-Dutch Conference on Artificial Intelligence
(BNAIC), pp. 81–87 (2007)

12. Cayrol, C., Lagasquie-Schiex, M.: Bipolar abstract argumentation systems. In:
Simari, G.R., Rahwan, I. (eds.) Argumentation in Artificial Intelligence, pp. 65–84.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-0-387-98197-0 4

13. Coste-Marquis, S., Devred, C., Marquis, P.: Symmetric argumentation frame-
works. In: Godo, L. (ed.) ECSQARU 2005. LNCS (LNAI), vol. 3571, pp. 317–328.
Springer, Heidelberg (2005). https://doi.org/10.1007/11518655 28

14. Coste-Marquis, S., Konieczny, S., Marquis, P., Ouali, M.A.: Weighted attacks in
argumentation frameworks. In: Principles of Knowledge Representation and Rea-
soning (KR), pp. 593–597. AAAI (2012)

15. Dimopoulos, Y., Moraitis, P., Sierra, C.: Some theoretical results on the relation-
ship between argumentation and coherence theory. In: Criado Pacheco, N., Carras-
cosa, C., Osman, N., Julián Inglada, V. (eds.) EUMAS/AT -2016. LNCS (LNAI),
vol. 10207, pp. 565–579. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-59294-7 45

16. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2),
321–357 (1995)

17. Dunne, P.E., Bench-Capon, T.J.M.: Complexity and combinatorial properties
of argument systems. University of Liverpool, Department of Computer Science
(ULCS), Technical report (2001)

18. Mart́ınez, D.C., Garćıa, A.J., Simari, G.R.: An abstract argumentation framework
with varied-strength attacks. In: Principles of Knowledge Representation and Rea-
soning (KR), pp. 135–144. AAAI (2008)

19. Nielsen, S.H., Parsons, S.: A generalization of Dung’s abstract framework for argu-
mentation: arguing with sets of attacking arguments. In: Maudet, N., Parsons, S.,
Rahwan, I. (eds.) ArgMAS 2006. LNCS (LNAI), vol. 4766, pp. 54–73. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-75526-5 4

https://doi.org/10.1007/978-0-387-98197-0_4
https://doi.org/10.1007/11518655_28
https://doi.org/10.1007/978-3-319-59294-7_45
https://doi.org/10.1007/978-3-319-59294-7_45
https://doi.org/10.1007/978-3-540-75526-5_4

Multi-valued GRAPPA

Gerhard Brewka1(B) , Jörg Pührer2 , and Stefan Woltran2

1 Computer Science Department, Leipzig University, Leipzig, Germany
brewka@informatik.uni-leipzig.de

2 Institute of Logic and Computation, Vienna University of Technology,
Vienna, Austria

Abstract. Abstract dialectical frameworks (ADFs) are generalizations
of Dung’s argumentation frameworks which allow arbitrary relationships
among arguments to be expressed. In particular, arguments can not only
attack each other, they also may provide support for other arguments
and interact in various complex ways. The ADF approach has recently
been extended in two different ways. On the one hand, GRAPPA is
a framework that applies the key notions underlying ADFs – in par-
ticular their operator-based semantics – directly to arbitrary labelled
graphs. This allows users to represent argumentation scenarios in their
favourite graphical representations without giving up the firm ground of
well-defined semantics. On the other hand, ADFs have been further gen-
eralized to the multi-valued case to enable fine-grained acceptance val-
ues. In this paper we unify these approaches and develop a multi-valued
version of GRAPPA combining the advantages of both extensions.

Keywords: Argumentation · Nonmonotonic reasoning ·
Multi-valued logics

1 Introduction

Computational models of argumentation are a highly active area of current
research. The field has two main subareas, namely logic-based (also called struc-
tured) argumentation and abstract argumentation. The former studies the struc-
ture of arguments, how they can be constructed from a given formal knowledge
base, and how they logically interact with each other. The latter, in contrast,
assumes a given set of abstract arguments together with specific relations among
them. The focus is on evaluating the arguments based on their interactions with
one another. This evaluation typically uses a specific semantics, thus identify-
ing subsets of the available arguments satisfying intended properties so that the
chosen set arguably can be viewed as representing a coherent world view.

In the abstract approach, Dung’s argumentation frameworks (AFs) [18] and
their associated semantics are widely used. In a nutshell, an AF is a directed

This research has been supported by DFG (Research Unit 1513 and project BR 1817/7-
2) and FWF (project I2854).

c© Springer Nature Switzerland AG 2019
F. Calimeri et al. (Eds.): JELIA 2019, LNAI 11468, pp. 85–101, 2019.
https://doi.org/10.1007/978-3-030-19570-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19570-0_6&domain=pdf
http://orcid.org/0000-0001-9001-6820
http://orcid.org/0000-0003-1644-483X
http://orcid.org/0000-0003-1594-8972
https://doi.org/10.1007/978-3-030-19570-0_6

86 G. Brewka et al.

graph with each vertex being an abstract argument and each directed edge cor-
responding to an attack from one argument to another. These attacks are then
resolved using appropriate semantics. The semantics are typically based on two
important concepts, namely conflict-freeness and admissibility. The former states
that if there is a conflict between two arguments, i.e. one argument attacks the
other, then the two cannot be jointly accepted. The latter specifies that every set
of accepted arguments must defend itself against attacks. A variety of semantics
has been defined, ranging from Dung’s original complete, preferred, stable, and
grounded semantics to the more recent ideal and cf2 semantics. The different
semantics reflect different intuitions about what “coherent world view” means
in this context, see e.g. [5] for an overview.

Despite their popularity, there have been various attempts to generalize AFs
as many researchers felt a need to cover additional relevant relationships among
arguments (see e.g. the work of [14]). One of the most systematic and flexible out-
comes of this research are abstract dialectical frameworks (ADFs) [7,11]. ADFs
allow for arbitrary relationships among arguments. In particular, arguments can
not only attack each other, they also may provide support for other arguments
and interact in various complex ways. This is achieved by adding explicit accep-
tance conditions to the arguments which are most naturally expressed in terms
of a propositional formula (with atoms referring to parent arguments). This way,
it is possible to specify individually for a particular argument, say, under what
conditions the available supporting arguments outweigh the counterarguments.
Meanwhile various applications of ADFs have been presented, for instance in
legal reasoning [1–4] and text exploration [13]. Also a mobile argumentation app
based on ADF techniques has been developed [19].

The operator-based semantics of ADFs can be traced back to the work of
[15–17] on approximation fixpoint theory (AFT), an algebraic framework for
studying semantics of knowledge representation formalisms. We refer to the work
of [20] for a detailed analysis of the relationship between ADFs and AFT. The
presentation of our approach in this paper does not assume specific background
knowledge in AFT.

In the meantime, ADFs themselves have been extended in two different
ways. GRAPPA [12] allows argumentation scenarios to be represented as arbi-
trary edge-labelled graphs. Acceptance functions now are defined in terms of
the (multi-set of) active labels, that is, labels of incoming links whose source
nodes are true in an interpretation. To conveniently express these functions so-
called acceptance patterns are used. The definition of the different semantics
then is based on similar operators as for ADFs. The GRAPPA approach has
several advantages over ADFs, in particular, it is often easier to model relevant
argumentation problems in terms of labelled graphs and users commonly illus-
trate argumentation scenarios using such graphs. GRAPPA thus allows users to
stay as close as possible to their graphical representations yet turns them into
full-fledged knowledge representation formalisms by providing formal semantics.
Moreover, various intuitive acceptance conditions (e.g. “accept if there are more
active + labels than active − labels”) have the same representation as acceptance

Multi-valued GRAPPA 87

pattern for all nodes in the graph, whereas the corresponding acceptance condi-
tion for ADFs depends on the node at hand. For a joint discussion of ADFs and
GRAPPA, we refer to the recent handbook article [8].

A second extension are the recently proposed weighted ADFs (wADFs) [6,9,
10]1. Rather than being based on partial two-valued interpretations, the seman-
tics of wADFs is based on partial V -valued interpretations, where V is some
chosen set of acceptance degrees for arguments. This obviously allows for much
more fine-grained distinctions among arguments in the semantics. The authors
show that the extension to the multi-valued case is surprisingly smooth: the
standard ADF operators only need mild reformulations to be able to capture
arbitrary acceptance degrees.

The goal of this paper is to combine the two mentioned extensions of ADFs,
thus bringing together the best of the two worlds. We are interested here in
a formalism that extends GRAPPA the same way as wADFs extend ADFs.
The approach we propose, called multi-valued GRAPPA (mvGRAPPA), is thus
a knowledge representation formalism on the basis of simple labelled graphs
equipped with a variety of multi-valued semantics rooted in argumentation and
will be developed in the remainder of the paper.

Our article is organized as follows. The generalization of GRAPPA to the
multi-valued case is presented in Sect. 2. The generalization is based on accep-
tance functions which determine the value of a node in the argument graph
based on multi-sets of value/label pairs. We show that our concept of accep-
tance functions allows for a natural definition of different semantics that enjoy
the expected relationships. The challenge how to represent acceptance functions
adequately and in a user-friendly way is then addressed Sect. 3, where we pro-
pose so-called acceptance programs to specify those functions. Various examples
illustrating the flexibility and expressiveness of this approach are discussed in
Sect. 4. Section 5 concludes the paper.

2 Multi-valued GRAPPA

In this section we introduce syntax and semantics of multi-valued GRAPPA. We
will introduce the generalized definitions right away and point out where they
differ from the original definitions in [12]. Our approach allows for arbitrary sets
of values in interpretations.

We assume a dedicated undefined truth value u.

Definition 1. A set V of values (acceptance degrees) is called u-free if u �∈ V .

For every u-free set of values used in this work we assume an underlying informa-
tion ordering <i on V ∪ {u}, where <i = {〈u, v〉 | v ∈ V }, i.e., the information
content of all values in V is equal and strictly greater than that of u. We write
v ≤i v′ whenever v <i v′ or v = v′.
1 The approach in [6] differs from [10] and [9] in the treatment of non-flat information

orderings. In this paper we only consider flat orderings where u is the only value
considered less informative than others.

88 G. Brewka et al.

p1 p2 p3

yes maybe maybe

s

+
+

+

Fig. 1. The {yes,no,maybe}-LAG from Example 1 under interpretation v.

Definition 2. Let L be a set of labels and V be a u-free set of values. A V -
valued acceptance function over L is a function c : (V × L → N) → V . The set
of V -valued acceptance functions over L is denoted by FV,L.

Intuitively, c determines the truth value to be assigned to a node n. This value is
an element of V and depends on the truth values assigned to n’s parent nodes,
but also on the labels of links connecting parent nodes to n. Since the same
value/label pair may appear more than once – and since this may be relevant
for the value assigned to n – the actual assignment is based on a multi-set.
Intuitively, this set counts the number of edges to n with a given label from
parent nodes that are assigned a given truth value.

Definition 3. Let V be a u-free set of values. A V -valued labelled argument
graph (V -LAG) is a tuple G = 〈S,E,L, λ, α〉 where

– S is a set of nodes (statements),
– E ⊆ S × S is a set of edges,
– L is a set of labels,
– λ : E → L assigns labels to edges, and
– α : S → FV,L.

This definition is almost identical to the definition of LAGs in [12]. The single
exception is α which now assigns an acceptance function over an arbitrary fixed
set V , whereas acceptance functions in the earlier paper were only allowed to
assign t and f . In other words, V was fixed to {t, f} in [12].

A V-valued interpretation for S (or simply interpretation when V and S are
clear from context) is a function v : S → Vu with Vu = V ∪{u}. Slightly abusing
terminology we will also apply ≤i and <i to interpretations with the standard
pointwise reading. For instance, v ≤i v′ stands for: v(s) ≤i v′(s) for all s ∈ S. An
interpretation v is total if it does not assign u to any statement. A completion
of v is any total interpretation w with v ≤i w. We denote the set of completions
of v by [v]c.

Multi-valued GRAPPA 89

Definition 4. Let V be a u-free set of values, G = 〈S,E,L, λ, α〉 a V -LAG, and
v a total V -valued interpretation for S. The multi-set of valued labels of s ∈ S
in G under v, mv

s , is defined as

mv
s(x, l) = |{(p, s) ∈ E | v(p) = x, λ((p, s)) = l}|

for each x ∈ V and each l ∈ L.

Example 1. Let G = 〈S,E,L, λ, α〉 be a V -LAG over values V =
{
yes,no,

maybe
}

and with labels L = {+,−}. Suppose s ∈ S is a node in G with three
parents p1, p2, and p3 such that the links from p1, p2 and p2 to s are all labelled
‘+’. G is depicted in Fig. 1.

For an interpretation v with v(p1) = yes and v(p2) = v(p3) = maybe
we have

mv
s(〈yes,+〉) = 1,

mv
s(〈no,+〉) = 0,

mv
s(〈maybe,+〉) = 2,

mv
s(〈yes,−〉) = 0,

mv
s(〈no,−〉) = 0, and

mv
s(〈maybe,−〉) = 0.

Like for GRAPPA and ADFs, our semantics is based on a characteristic
operator on interpretations. As mentioned in the introduction, it is inspired
from similar operators in AFT.

Definition 5 (Characteristic Operator ΓV
G). Let V be a u-free set of values,

v : S → Vu an interpretation, and G = 〈S,E,L, λ, α〉 a V -LAG. Applying ΓV
G

to v yields a new interpretation (the consensus over [v]c) defined as

ΓV
G (v) : S → Vu with s
→ �

i {α(s)(mvc
s) | vc ∈ [v]c}

where
�

i denotes the greatest lower bound in (Vu,≤i).

Intuitively, ΓV
G (v) maps statements to the greatest truth value (with respect

to the information order) that is compatible with all results of evaluating G
under some completion of v.

Example 2. Let G = 〈S,E,L, λ, α〉 be defined as in Example 1 and let the accep-
tance function α(s) of node s be given by

α(s)(m) =

⎧
⎪⎨

⎪⎩

yes if 〈no,+〉 �∈ m,

maybe if m(〈yes,+〉) ≥ m(〈no,+〉),
no otherwise.

Hence, s is assigned yes if there are no ‘+’-parents assigned no.2 Furthermore,
s is assigned maybe if there are more or equally many ‘+’-parents assigned yes
2 We call a parent n′ of a node n l-parent if the link (n′, n) is labelled with l.

90 G. Brewka et al.

than no. Consider the interpretation v′ with v′(p1) = yes and v′(p2) = maybe
and v′(p3) = u. The set of completions of v′ is [v′]c = {v, vy, vn} where v is given
as in Example 1, and vy and vn coincide with v′ and v except for the assignments
vy(p3) = yes and vn(p3) = no of p3.

The multi-sets of valued labels of these completions are given by

mv
s = [〈yes,+〉, 〈maybe,+〉, 〈maybe,+〉],

m
vy
s = [〈yes,+〉, 〈yes,+〉, 〈maybe,+〉], and

mvn
s = [〈yes,+〉, 〈no,+〉, 〈maybe,+〉].

We have α(s)(mv
s) = yes, α(s)(mvy

s) = yes, and α(s)(mvn
s) = maybe. Conse-

quently, ΓV
G (v)(s) =

�
i {yes,maybe} = u. Note that in the example we did

not use the − label for simplicity.

We are now in the position to define the standard semantics of argumentation
on top of V -LAGs in the expected way.

Definition 6. Let G = 〈S,E,L, λ, α〉 be a V -LAG. An interpretation v : S →
Vu is

– a model of G iff v(s) �= u for all s ∈ S and ΓV
G (v) = v.

Intuition: the value of a node s in v is exactly the one required by the accep-
tance function of S.

– grounded for G iff v = lfp(ΓV
G), i. e., v is the least fixpoint of ΓV

G w.r.t ≤i.
Intuition: v collects all the information which is beyond any doubt.

– admissible for G iff v ≤i ΓV
G (v).

Intuition: v does not contain unjustifiable information.
– preferred for G iff it is ≤i-maximal admissible for G.

Intuition: v has maximal information content without giving up admissibility.
– complete for G iff v = ΓV

G (v).
Intuition: v contains exactly the justifiable information.

For σ ∈ {adm, com, prf}, σ(G) denotes the set of all admissible (resp. com-
plete, preferred) interpretations with respect to G. Moreover, we use mod(G) to
denote the models of G.

We still need to show existence of the least fixpoint of ΓV
G . This is a con-

sequence of the monotonicity of the operator ΓV
G . The pair ({v : S → Vu} ,≤i)

forms a complete partial order in which the characteristic operator ΓD of wADFs
is monotone.

Proposition 1. The operator ΓV
G is ≤i-monotone, that is, v ≤i w implies

ΓD(v) ≤i ΓD(w) for all interpretations v, w : S → Vu.

Existence of the least fixpoint of ΓV
G then follows via the fixpoint theorem

for monotone operators in complete partial orders.
Next, we show that the well-known relationships between Dung semantics

carry over to our generalizations.

Multi-valued GRAPPA 91

Proposition 2. Let G be a V -LAG. It holds that

mod(G) ⊆ prf(G) ⊆ com(G) ⊆ adm(G).

We now show how stable semantics can be generalized following the approach in
[10]. Stable semantics treats truth values asymmetrically. For standard ADFs f
(false) can be assumed to hold (by default), whereas t (true) needs to be justified
by a derivation. This is achieved by building the reduct of an ADF and then
checking whether the grounded interpretation of the reduct coincides with the
original model on the nodes which “survive” in the reduct. Moving from the two-
valued to the multi-valued case allows us to choose what the assumed, respec-
tively derived truth values are. Stable semantics thus becomes parametrized by
a subset W of the set of values V .

Definition 7. Let G = 〈S,E,L, λ, α〉 be a V -LAG. Let v : S → V be a model
of G (that is, v is total). Let W ⊆ V be the set of assumed truth values. The
v,W -reduct of G is the V -LAG Gv

W = (Sv
W , Ev

W , L, λv
W , αv

W) where

– Sv
W = {s ∈ S | v(s) /∈ W},

– Ev
W = E ∩ (Sv

W × Sv
W),

– λv
W is λ restricted to Ev

W ,
– αv

W is obtained from α as follows: αv
W (n)(m) = α(n)(m′) where, for each

value/label pair (x, l), m′(x, l) = m(x, l)+ | {s ∈ S \ Sv
W | v(s) = x, λ(s, n) =

l} |.
The v,W -reduct can be viewed as the partial evaluation of the original graph
which takes values in W for granted. Now stable models can be defined as usual:

Definition 8. Let G = 〈S,E,L, λ, α〉 be a V -LAG and let v : S → V be a
model of G. Let vg be the grounded interpretation of the v,W -reduct of G. v is
a W -stable model of G iff v(s) = vg(s) for each s ∈ Sv

W .

We conclude this section with the following result:

Proposition 3. Multi-valued GRAPPA generalizes both GRAPPA [12] and
weighted ADFs with flat information ordering [10].

Proof. Sketch: (a) Weighted ADFs can be modelled by labelling each link with
the source node. Acceptance functions of weighted ADFs are functions from
value assignments of the parents of a node to values for that node. With nodes
as labels these value assignments can be reconstructed from the multi-sets used
in multi-valued GRAPPA via the corresponding value/label pairs. This allows us
to model the acceptance functions of weighted ADFs. (b) GRAPPA is just the
special case of multi-valued GRAPPA with V = {f , t} and acceptance functions
which only depend on the number of parent nodes with value t.

From an abstract, mathematical point of view our generalization may seem
straightforward. However, it brings with it an important practical issue which
needs to be addressed: how to conveniently represent acceptance functions? In

92 G. Brewka et al.

original GRAPPA the issue was dealt with by so-called acceptance patterns. An
acceptance pattern is basically a condition that evaluates to t or f and directly
determines the value of a node via this evaluation. In our new multi-valued
setting this simple approach obviously does not work. To solve this issue we
propose a rule-based approach: we use a set of rules; each rule consists of a
condition and a value from V ; the value assigned is computed from the values
of all rules whose conditions evaluate to true.

3 Acceptance Programs

In this section we develop a method to represent multi-valued acceptance func-
tions via so-called acceptance programs. An acceptance program S = (AG,R)
consists of a collection of acceptance rules R and an aggregation function AG.
Each rule r ∈ R is of the form

v : b,

where, intuitively, v describes some value in V and b is an expression that eval-
uates to true or false for any given multi-set m of value/label pairs. This way
the rules determine potential values taken from V . The role of the aggregation
function AG : 2V → V is to determine a unique value to be assigned to the node
at hand based on the potential values. For convenience we also consider pro-
grams based on non-ground rules. We now formally define syntax and semantics
of acceptance programs.

3.1 Syntax

We define the syntax in a bottom up fashion. Acceptance rules are built from
three basic types of expressions: label expressions, value expressions, and numeric
expressions. On top of these we define Boolean expressions.

Definition 9. A GRAPPA signature Σ = (V,L, V arV , V arL, F,Rel) consists
of a set of values V , a set of labels L, sets of value and label variables V arV

and V arL, respectively, a set of function symbols F and a set of binary relation
symbols Rel.

A label expression (over Σ)3 is

– a label l ∈ L or
– a label variable XL ∈ V arL.

A value expression is recursively defined as

– a value x ∈ V ,
– a value variable X ∈ V arV ,
– a value function term f(−→e) where f ∈ F −→e = 〈e1, . . . , ek〉 is a vector of label,

value, or numeric expressions,

3 We will often leave Σ implicit in definitions from now on.

Multi-valued GRAPPA 93

– minW,�(l), or
– maxW,�(l) where W is a set of value expressions, �∈ Rel a binary relation

symbol, and l a label expression.

A numeric expression is of the form

– c ∈ R,
– #W (l), where l is a label expression,
– sumW ,
– countW ,
– minW , or
– maxW where W is a set of value expressions, or
– (n ⊕ n′) where n and n′ are numeric expressions and ⊕ ∈ {+, ∗}.

A Boolean expression is of the form

– m ∼ n where m and n are numeric expressions and ∼ ∈ {<,≤,=,≥, >, �=},
– v ∼ w where v and w are value expressions and ∼ ∈ Rel,
– ⊥,
– �,
– b ⊗ b′ where b and b′ are Boolean expressions and ⊗ ∈ {∧,∨,→}, or
– ¬a where a is a Boolean expression.

We are now in a position to define rules. As mentioned above rules derive
potential values based on some Boolean condition:

Definition 10. An acceptance rule is of the form

v : b,

where v is a value expression and b a Boolean expression. An acceptance rule is
ground if it contains no (label nor value) variables.

Since rules may identify multiple potential values (or none), acceptance pro-
grams need an additional component which computes (or simply picks) one spe-
cific value out of the set of candidate values. This is the role of the aggregation
function.

Definition 11. An acceptance program S (over Σ) is a pair 〈AG,R〉, where
AG : 2V → V is a value aggregation function and R is a set of acceptance rules.
S is ground if all of its acceptance rules are ground. ΠΣ is the set of acceptance
programs over Σ.

One obvious choice for aggregation functions are functions which, given some
total order on V , pick the maximal, respectively the minimal element among the
candidates. We will see specific examples in Sect. 4.

Definition 12. Let V be a u-free set of values. A V -valued GRAPPA instance
over Σ is a tuple G = 〈S,E,L, λ, π〉 where S, E, L and λ are defined as for a
V -LAG and π is a function π : S → ΠΣ that assigns to each statement s ∈ S
an acceptance program over Σ. G is ground if π(s) is ground for all s ∈ S.

94 G. Brewka et al.

In order to handle variables, we use variable substitutions as defined next.

Definition 13. Let G = 〈S,E,L, λ, π〉 be a V -valued GRAPPA instance. A
variable substitution for G is a mapping θ that assigns every label variable XL,
respectively every value variable X that appears in some acceptance program π(s)
(s ∈ S), a label from L, respectively, a value from V . For an acceptance rule r,
rθ denotes the acceptance rule obtained by replacing every variable v in r by
θ(v). The set of variable substitutions for G is denoted by ΘG.

The grounding of G is given by gr(G) = 〈S,E,L, λ, π′〉 such that for every
s ∈ S, π′(s) = 〈AG, {rθ | r ∈ R, θ ∈ ΘG}〉, where π(s) = 〈AG,R〉.

3.2 Semantics

In the following, we assume a GRAPPA signature Σ = (V,L, V arV , V arL,
F,Rel) where each f ∈ F with arity k comes with an associated function
f̂ : (L ∪ V ∪ R)k → V . Similarly, each relation symbol r ∈ Rel has an asso-
ciated binary relation r̂ on V .

As a first step we need to define the value assigned to a given multi-set by
an acceptance program. Since the semantics of non-ground GRAPPA instances
is defined in terms of their groundings, we can restrict the following definitions
of valuation to the ground case.

Definition 14. Let m be a multi-set m : V ×L → N. The valuation of a ground
value expression (over Σ) is given by

– valm(x) = x for x ∈ V

– valm(f(e1, . . . , en)) = f̂(valm(e1), . . . , valm(en))
– valm(minW,�(l)) = min�̂{valm(v) | v ∈ W,m(〈valm(v), l〉) > 0, l ∈ L}
– valm(maxW,�(l)) = max�̂{valm(v) | v ∈ W,m(〈valm(v), l〉) > 0, l ∈ L}4

Naturally, value constants are interpreted by themselves and function symbols by
the application of their associated functions on their evaluated arguments. Intu-
itively, minW,�(l) extracts the �̂-minimal value of all l-parents that evaluates
to a value from W . The intuition of the max-case is analogous.

Example 3. Let V = [0;1], L = {+,−}, and m = [〈0.1,+〉, 〈0.3,+〉, 〈0.4,−〉,
〈0.7,+〉)]. Then, the valuation of the the value expression max[0;0.5],≤(+),
where ≤ is the relation symbol for the natural order, is given by
valm(max[0;0.5],≤(+)) = max{0.1,0.3} = 0.3.

Definition 15. Let m be a multi-set m : V ×L → N. The valuation of a ground
numeric expression (over Σ) is given by

4 The values valm(maxW,�(l)) and valm(minW,�(l)) are only defined when �̂ is an
order that has a maximal, respectively, minimal, element for every subset of V . The
expressions maxW,�(l) and minW,�(l) may only be used when this is the case.

Multi-valued GRAPPA 95

– valm(c) = c for c ∈ R

– valm(#lW) =
∑

v∈W m(〈valm(v), l〉)
– valm(sumW) =

∑
v∈W,l∈L m(〈valm(v), l〉)

– valm(countW) = |{l | v ∈ W,m(〈valm(v), l〉) > 0}|
– valm(minW) = min{l ∈ L | m(〈valm(v), l〉) > 0, v ∈ W}
– valm(maxW) = max{l ∈ L | m(〈valm(v), l〉) > 0, v ∈ W}5
– valm(o ⊕ p) = valm(o) ⊕ valm(p) where ⊕ ∈ {+, ∗}
Notice the semantic differences of the expressions #lW , sumW , and countW :
#lW counts the number of l-parents that evaluate to values from W . In contrast,
sumW and countW are not dependent on a label. The expression sumW returns
the number of all parents that evaluate to values from W and countW counts
the number of different labels of parents that evaluate to a value from W . The
expressions minW and maxW give the minimal, respectively maximal, label to
a parent that evaluates to a value from W .

Definition 16. Let m be a multi-set m : V × L → N, where n and o numeric
expressions, v and w value expressions, and a and b Boolean expressions. Func-
tion valm maps Boolean expressions to t or f . In particular, the valuation of a
ground Boolean expression (over V and L) is given by

– valm(n ∼ o) = t iff valm(n) ∼ valm(o), where ∼ ∈ {<,≤,=,≥, >, �=}
– valm(v ∼ w) = t iff valm(v)∼̂valm(w) with ∼ ∈ Rel
– valm(⊥) = f
– valm(�) = t
– valm(a ∧ b) = t iff valm(a) = t and valm(b) = t
– valm(a ∨ b) = t iff valm(a) = t or valm(b) = t
– valm(a → b) = t iff valm(a) = f or valm(b) = t
– valm(¬a) = t iff valm(a) = f

Definition 17. Let m be a multi-set m : V × L → N. For a ground acceptance
program π = 〈AG,R〉 ∈ ΠΣ, its valuation is defined as

valm(π) = AG({valm(v) | v : b ∈ R, valm(b) = t}).

With these definitions we can reformulate the definition of the characteris-
tic operator taking into account that acceptance functions are represented by
acceptance programs:

Definition 18 (Characteristic Operator ΓV
G). Let V be a u-free set of val-

ues, v : S → Vu an interpretation, and G a V -valued GRAPPA instance with
gr(G) = 〈S,E,L, λ, π〉. Applying ΓV

G to v yields a new interpretation (the con-
sensus over [v]c) defined as

ΓV
G (v) : S → Vu with s
→ �

i

{
valm

vc
s (π(s))

∣
∣ vc ∈ [v]c

}

where
�

i denotes the greatest lower bound in (Vu,≤i).
5 The use of minW and maxW is restricted to settings where the label domain L is

numeric.

96 G. Brewka et al.

s1 s2
+

Fig. 2. The GRAPPA instance used in Example 4.

The semantics of a GRAPPA instance is then defined analogously to that of
a V -LAG (see Definition 6). For the case of stable semantics, also a v,W -reduct
of a GRAPPA instance can be defined in a similar fashion as for a V -LAG, using
the same construction of multi-set m′ as in Definition 7.

4 Examples

In this section we illustrate our approach with a number of examples. We will
make use of aggregation functions of the form provided next. Note that in case
the rules provide no candidates at all, a certain default value needs to be picked.
For some total order � on V , we use

– max�(V ′), where max�(V ′) = v when v is the �-maximal element of V ′ if
V ′ �= ∅, and the �-minimal element of V , otherwise,

– min�(V ′), where max�(V ′) = v where v is the �-minimal element of V ′ if
V ′ �= ∅, and the �-maximal element of V , otherwise, and

– Σ(V ′), where V is numeric and Σ(V ′) = Σv∈V ′v returns the sum of elements
of V ′.

We start with examples where acceptance programs evaluate to statically
chosen values. Recall that a parent n′ of a node n is an l-parent if the link (n′, n)
is labelled with l.

Example 4. Let L = {+,−} , V = {yes,no,maybe} and assume we want to
assign yes to a node if (a) more ‘+’-parents have value yes than ‘−’-parents
or (b) the same number of ‘+’- and ‘−’-parents have value yes but more ‘+’-
parents have value maybe than ‘−’-parents. In addition, we assign maybe to
the node if (a) the same number of ‘+’- and ‘−’-parents have value yes and the
same number of ‘+’- and ‘−’-parents have value maybe. We assign no to the
node in all other cases.

Using the aggregation function AG = min(yes�maybe�no) the following set
of rules R produces the intended values:

yes :
(
#{yes}(+) > #{yes}(−)

)∨(
(#{yes}(+) = #{yes}(−)) ∧ (#{maybe}(+) > #{maybe}(−))

)

maybe : (#{yes}(+) = #{yes}(−)) ∧ (#{maybe}(+) = #{maybe}(−))

no : �

Multi-valued GRAPPA 97

s1 s2
+

+

Fig. 3. The GRAPPA instance used in Example 6 that shows how acceptance rules
can derive dynamically computed value expressions and demonstrates how different
aggregation functions yield different semantics.

Note that no is always among the values derived from these rules. The aggrega-
tion function guarantees that nevertheless the right value is chosen, in case one
of the other rules fire.

Consider the V -valued GRAPPA instance 〈S,E,L, λ, π〉, given in Fig. 2, with
S = {s1, s2}, E = {(s2, s1)}, L = {+,−}, λ((s2, s1)) = +, and π assigning above
acceptance program (AG,R) to both s1 and s2.

Admissible semantics yield interpretations {s1
→ u, s2
→ u}, {s1
→ u, s2
→
maybe}, {s1
→ yes, s2
→ u}, and {s1
→ yes, s2
→ maybe}. For the com-
plete, grounded, preferred, and model semantics, we obtain a single interpreta-
tion {s1
→ yes, s2
→ maybe}: intuitively, s2 maps to maybe because it has no
parents and thus the second rule of the program applies. s1 maps to yes because
there is neither a ‘+’-parent nor a ‘−’-parent with value yes, but one ‘+’-parent
(namely s2) with value maybe but no such ‘−’-parent.

Example 5. In the next example we use the unit interval as set of values V =
[0;1] in order to exemplarily illustrate terms from the value domain of form
maxW,≤(l): the term selects the maximal truth value from W (with respect to
the natural ordering ≤ over reals) appearing in the multi-set for label l.

Moreover, let the labels be L = {−,+,++}. We want to express the following
conditions (1) Parent nodes with value at least 0.5 and connected via edges with
labels ++ can veto for full acceptance (i. e., assigned value 1). (2) Nodes with
some greater ‘+’-parent value than ‘−’-parent values get 0.75. (3) Nodes with
equal maximal ‘+’ and ‘−’-parent values get 0.6 if there are more nodes with
+ than − that have this maximal value (here we use maxW,≤(l) for indexing
a #-based term). (4) Nodes with equal maximal ‘+’ and ‘−’-parent values get
0.5 if there are equally many nodes with + and − that have this maximal
value. (5) Nodes with equal maximal ‘+’ and ‘−’-parent values get 0.4 if there
are less nodes with + than − that have this maximal value. (6) Otherwise, we
assign value 0. For the aggregation function AG we use max≤ and specify the
conditions via the following acceptance rules

1 : #[0.5;1](++) ≥ 1,
0.75 : max[0;1],≤(+) > max[0;1],≤(−)
0.6 : max[0;1],≤(+) = max[0;1],≤(−) ∧ #{max[0;1],≤(+)}(+) > max{max[0;1],≤(+)}(−)

0.5 : max[0;1],≤(+) = max[0;1],≤(−) ∧ #{max[0;1],≤(+)}(+) = max{max[0;1],≤(+)}(−)

0.4 : max[0;1],≤(+) = max[0;1],≤(−) ∧ #{max[0;1],≤(+)}(+) < max{max[0;1],≤(+)}(−)

0 : �

98 G. Brewka et al.

p1 p2 p3 p4

s

3 3 3 5

Fig. 4. In Example 7 we show how the numeric labels of this GRAPPA instance can
be used as weight factors for computing the value of node s as the weighted sum of the
values of nodes p1 to p4.

So far, we have provided rules that statically assign truth values (i. e., the
rule heads have been given via concrete values). However, our language allows
arbitrary value expressions in rule heads. The following example gives a simple
application of that.

Example 6. Let L = {+}, V = [0;1] and consider an acceptance rule of the
form

max[0;1](+) : #[0;1](+) ≥ 1

which simply states that, if there is some parent-node, assign the maximal value
of all parents to the current node. Note that in this case, any aggregation function
AG that satisfies AG({x}) = x can be chosen; however, the default-value of AG
is crucial here for nodes with no parents. Consider a V -valued GRAPPA instance
with two nodes S = {s1, s2} and two edges E = {(s1, s2), (s2, s2)}, as illustrated
in Fig. 3, including a self-loop for s2. Both nodes use the acceptance rule shown
above.

First assume both nodes use aggregation function AG1 = max≤. As s1 has
no parent, the rule body will never fire in the evaluation of s1. As a consequence
AG1 will be applied on the empty set, yielding value 0 for s1 under every inter-
pretation. Node s2 has two parents, s1 and itself, therefore the rule will fire and
s2 can take any value from [0;1].

Now assume both nodes use aggregation function AG2 = min≤. Also here,
AG2 will be applied on the empty set for node s1, this time yielding value 1 for
s1 under every interpretation. The rule will fire for s2 and its head will evaluate
to the maximal value of each ‘+’-parent, i.e., to 1 as s1 is assigned 1.

Example 7. Our final example shows that acceptance programs can also be used
to specify propagation of values throughout a network. To this end, we assume
that labels and values are both numbers, i.e. L = V = N. Suppose we want
nodes to be assigned the weighted sum of the values of parent nodes, where
labels are used as weight factors. We provide an acceptance program 〈AG, {r}〉

Multi-valued GRAPPA 99

with a single non-ground rule

r = #{X}(XL) ∗ X ∗ XL : �
and AG being the summation function Σ. Note that multiplication ∗ here is
formally a value function, X a value variable and XL a label variable. Let us
consider the graph given in Fig. 4 and apply 〈AG, {r}〉 to node s.

Consider interpretation v with v(p1) = v(p2) = 1, v(p3) = 2, and v(p4) = 0.
The relevant parts of the the grounding of r are provided by substituting X by
1, 2, and resp. 0 and XL by 3 and 5.

#{1}(3) ∗ 1 ∗ 3 : �
#{1}(5) ∗ 1 ∗ 5 : �
#{2}(3) ∗ 2 ∗ 3 : �
#{2}(5) ∗ 2 ∗ 5 : �
#{0}(3) ∗ 0 ∗ 3 : �
#{0}(5) ∗ 0 ∗ 5 : �

The evaluation of the #W (·) value expression under v is obtained via multi-set

mv
s(0, 5) = |{(p4, s)}| = 1

mv
s(1, 3) = |{(p1, s), (p2, s)}| = 2

mv
s(2, 3) = |{(p3, s)}| = 1

mv
s(x, l) = 0 for all other x, l

Thus, the value assigned to s is thus determined by the first and the third rule
of the grounding rules shown above (all others have factor 0) which evaluate to
the sum of 12.

5 Conclusions

In this paper we have successfully combined two recent extensions of ADFs,
namely the extension to the multi-valued case where the user can pick the set of
truth values which is best-suited for a particular application, and the GRAPPA
approach which defines operator-based argumentation semantics directly on top
of arbitrary labelled argument graphs. We believe this combination is highly
useful for the following reasons. First of all, it is important to come up with
knowledge representation formalisms that provide means to express the relevant
information in a way that is as user friendly as possible - without giving up pre-
cisely defined formal semantics. We believe graphical representation are particu-
larly well-suited to play this role, and our operator-based semantics turns graphs
into full-fledged knowledge representation formalisms. On the other hand, it is
important to provide enough flexibility for more fine-grained distinctions than
possible with only two truth values. Multi-valued GRAPPA combines these fea-
tures and thus, as we believe, is a useful tool for argumentation.

The challenge posed by the combination aimed for in this paper was not
so much the generalization of the relevant definitions underlying the operator-
based semantics. It was the identification of an adequate representation of the

100 G. Brewka et al.

acceptance functions. We believe acceptance programs are a sufficiently flexible
yet manageable means to this end. Acceptance programs may seem at odds with
the requirement of user-friendliness discussed above. This is to a large extent
due to the generality of our approach which allows us to handle arbitrary sets of
values. We expect that for specific sets of values simpler representations - and
maybe a small number of useful predefined functions - can be identified. This is
a topic of future research.

References

1. Al-Abdulkarim, L., Atkinson, K., Bench-Capon, T.J.M.: Abstract dialectical
frameworks for legal reasoning. In: Hoekstra, R. (ed.) Proceedings of the 27th
Annual Conference on Legal Knowledge and Information Systems (JURIX 2014),
Jagiellonian University, Krakow, Poland, 10–12 December 2014. FAIA, vol. 271,
pp. 61–70. IOS Press (2014)

2. Al-Abdulkarim, L., Atkinson, K., Bench-Capon, T.J.M.: A methodology for design-
ing systems to reason with legal cases using abstract dialectical frameworks. Artif.
Intell. Law 24(1), 1–49 (2016). https://doi.org/10.1007/s10506-016-9178-1

3. Al-Abdulkarim, L., Atkinson, K., Bench-Capon, T.J.M., Whittle, S., Williams, R.,
Wolfenden, C.: Noise induced hearing loss: an application of the angelic method-
ology. In: Proceedings of the 30th Annual Conference on Legal Knowledge and
Information Systems (JURIX 2017), Luxembourg, 13–15 December 2017, pp. 79–
88 (2017). https://doi.org/10.3233/978-1-61499-838-9-79

4. Atkinson, K., Bench-Capon, T.J.M.: Relating the ANGELIC methodology and
ASPIC+. In: Modgil, S., Budzynska, K., Lawrence, J. (eds.) Proceedings of the
7th International Conference on Computational Models of Argument (COMMA
2018), Warsaw, Poland, 12–14 September 2018, pp. 109–116 (2018). https://doi.
org/10.3233/978-1-61499-906-5-109

5. Baroni, P., Caminada, M., Giacomin, M.: An introduction to argumentation
semantics. Knowl. Eng. Rev. 26(4), 365–410 (2011)

6. Bogaerts, B.: Weighted abstract dialectical frameworks through the lens of approx-
imation fixpoint theory. In: Hentenryck, P.V., Zhou, Z.H. (eds.) Proceedings of the
33rd AAAI Conference on Artificial Intelligence (AAAI 2019), Honolulu, Hawaii,
USA, 27 January–1 February 2019 (2019)

7. Brewka, G., Ellmauthaler, S., Strass, H., Wallner, J.P., Woltran, S.: Abstract
dialectical frameworks revisited. In: Rossi, F. (ed.) Proceedings of the 23rd Interna-
tional Joint Conference on Artificial Intelligence (IJCAI 2013), Beijing, China, 3–9
August 2013, pp. 803–809. AAAI Press/IJCAI (2013). http://ijcai.org/papers13/
Papers/IJCAI13-125.pdf

8. Brewka, G., Ellmauthaler, S., Strass, H., Wallner, J.P., Woltran., S.: Abstract
dialectical frameworks. In: Baroni, P., Gabbay, D., Giacomin, M., van der Torre,
L. (eds.) Handbook of Formal Argumentation, Chap. 5, pp. 237–285. College Pub-
lications (2018)

9. Brewka, G., Pührer, J., Strass, H., Wallner, J.P., Woltran, S.: Weighted abstract
dialectical frameworks: extended and revised report. CoRR abs/1806.07717 (2018).
http://arxiv.org/abs/1806.07717

10. Brewka, G., Strass, H., Wallner, J.P., Woltran, S.: Weighted abstract dialectical
frameworks. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence
(AAAI 2018), New Orleans, Louisiana, USA, 2–7 February 2018, pp. 1779–1786
(2018). https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16373

https://doi.org/10.1007/s10506-016-9178-1
https://doi.org/10.3233/978-1-61499-838-9-79
https://doi.org/10.3233/978-1-61499-906-5-109
https://doi.org/10.3233/978-1-61499-906-5-109
http://ijcai.org/papers13/Papers/IJCAI13-125.pdf
http://ijcai.org/papers13/Papers/IJCAI13-125.pdf
http://arxiv.org/abs/1806.07717
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16373

Multi-valued GRAPPA 101

11. Brewka, G., Woltran, S.: Abstract dialectical frameworks. In: Lin, F., Sattler, U.,
Truszczyński, M. (eds.) Proceedings of the 12th International Conference on Prin-
ciples of Knowledge Representation and Reasoning (KR 2010), Toronto, Ontario,
Canada, 9–13 May 2010, pp. 102–111. AAAI Press (2010). http://aaai.org/ocs/
index.php/KR/KR2010/paper/view/1294

12. Brewka, G., Woltran, S.: GRAPPA: a semantical framework for graph-based argu-
ment processing. In: Schaub, T., Friedrich, G., O’Sullivan, B. (eds.) Proceedings
of the 21st European Conference on Artificial Intelligence (ECAI 2014), Prague,
Czech Republic, 18–22 August 2014. Frontiers in Artificial Intelligence and Appli-
cations, vol. 263, pp. 153–158. IOS Press (2014). https://doi.org/10.3233/978-1-
61499-419-0-153

13. Cabrio, E., Villata, S.: Abstract dialectical frameworks for text exploration. In: van
den Herik, H.J., Filipe, J. (eds.) Proceedings of the 8th International Conference
on Agents and Artificial Intelligence (ICAART 2016), Rome, Italy, 24–26 February
2016, vol. 2, pp. 85–95. SciTePress (2016)

14. Cayrol, C., Lagasquie-Schiex, M.: Bipolar abstract argumentation systems. In:
Simari, G., Rahwan, I. (eds.) Argumentation in Artificial Intelligence, pp. 65–84.
Springer, Boston (2009). https://doi.org/10.1007/978-0-387-98197-0 4

15. Denecker, M., Marek, V.W., Truszczyński, M.: Uniform semantic treatment of
default and autoepistemic logics. Artif. Intell. 143(1), 79–122 (2003)

16. Denecker, M., Marek, V.W., Truszczyński, M.: Approximations, stable operators,
well-founded fixpoints and applications in nonmonotonic reasoning. In: Minker, J.
(ed.) Logic-Based Artificial Intelligence, pp. 127–144. Kluwer Academic Publishers,
Dordrecht (2000)

17. Denecker, M., Marek, V.W., Truszczyński, M.: Ultimate approximation and its
application in nonmonotonic knowledge representation systems. Inf. Comput.
192(1), 84–121 (2004)

18. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2),
321–357 (1995)

19. Pührer, J.: ArgueApply: abstract argumentation at your fingertips. Künstl. Intell.
32, 209–212 (2018). https://doi.org/10.1007/s13218-018-0532-1

20. Strass, H.: Approximating operators and semantics for abstract dialectical frame-
works. Artif. Intell. 205, 39–70 (2013). https://doi.org/10.1016/j.artint.2013.09.
004

http://aaai.org/ocs/index.php/KR/KR2010/paper/view/1294
http://aaai.org/ocs/index.php/KR/KR2010/paper/view/1294
https://doi.org/10.3233/978-1-61499-419-0-153
https://doi.org/10.3233/978-1-61499-419-0-153
https://doi.org/10.1007/978-0-387-98197-0_4
https://doi.org/10.1007/s13218-018-0532-1
https://doi.org/10.1016/j.artint.2013.09.004
https://doi.org/10.1016/j.artint.2013.09.004

Empirical Study on Human Evaluation
of Complex Argumentation Frameworks

Marcos Cramer1(B) and Mathieu Guillaume2

1 International Center for Computational Logic, TU Dresden,
Dresden, Germany

marcos.cramer@tu-dresden.de
2 Centre for Research in Cognitive Neuroscience (CRCN),

Université Libre de Bruxelles, Brussels, Belgium
maguilla@ulb.ac.be

Abstract. In abstract argumentation, multiple argumentation seman-
tics have been proposed that allow to select sets of jointly acceptable
arguments from a given argumentation framework, i.e. based only on
the attack relation between arguments. The existence of multiple argu-
mentation semantics raises the question which of these semantics predicts
best how humans evaluate arguments. Previous empirical cognitive stud-
ies that have tested how humans evaluate sets of arguments depending
on the attack relation between them have been limited to a small set of
very simple argumentation frameworks, so that some semantics studied
in the literature could not be meaningfully distinguished by these stud-
ies. In this paper we report on an empirical cognitive study that over-
comes these limitations by taking into consideration twelve argumenta-
tion frameworks of three to eight arguments each. These argumentation
frameworks were mostly more complex than the argumentation frame-
works considered in previous studies. All twelve argumentation frame-
work were systematically instantiated with natural language arguments
based on a certain fictional scenario, and participants were shown both
the natural language arguments and a graphical depiction of the attack
relation between them. Our data shows that grounded and CF2 seman-
tics were the best predictors of human argument evaluation. A detailed
analysis revealed that part of the participants chose a cognitively sim-
pler strategy that is predicted very well by grounded semantics, while
another part of the participants chose a cognitively more demanding
strategy that is mostly predicted well by CF2 semantics.

Keywords: Abstract argumentation · Argumentation semantics ·
Empirical cognitive study

1 Introduction

The formal study of argumentation is an important field of research within
AI [21]. One important methodological approach in the formal study of argumen-
tation is abstract argumentation as introduced by Dung [11], in which one models
c© Springer Nature Switzerland AG 2019
F. Calimeri et al. (Eds.): JELIA 2019, LNAI 11468, pp. 102–115, 2019.
https://doi.org/10.1007/978-3-030-19570-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19570-0_7&domain=pdf
https://doi.org/10.1007/978-3-030-19570-0_7

Empirical Study on Human Evaluation of Complex AFs 103

arguments by abstracting away from their internal structure to focus on the rela-
tion of attacks between them, i.e. on the relation between a counterargument
and the argument that it counters. Multiple argumentation semantics have been
proposed in the literature as criteria for selecting acceptable arguments based
on the structure of the attack relation between the arguments (see [4]). Given
that the applicability of abstract argumentation theory to human reasoning is
desirable, this situation gives rise to the question which semantics best predicts
the judgments that humans make about the acceptability of arguments based
on the attack relation between the arguments.

There have been two previous empirical cognitive studies that have tested
how humans evaluate sets of arguments depending on the attack relation between
them, namely a 2010 study by Rahwan et al. [20] as well as a recent study by
the authors of this paper [8]. These previous studies have been limited to small
sets of very simple argumentation frameworks, so that some semantics studied
in the literature could not be meaningfully distinguished by these studies. The
study presented in this paper was designed to overcome this limitation by taking
into account a larger number of argumentation frameworks, including some that
are more complex than any of the argumentation frameworks used in previous
studies.

When studying human evaluation of argumentation frameworks, it is impor-
tant to fill the arguments with meaning rather than just presenting abstract
graphs to humans, as most humans will not be able to properly understand the
reasoning task if it is presented in a purely abstract manner (see Chapter 4 of
[14]). For this reason, we instantiated the argumentation frameworks with nat-
ural language arguments, as was also done by the two previous studies cited
above. When instantiating argumentation frameworks with natural language
arguments, one needs to be careful in choosing the natural language arguments
in such a way that for each pair of arguments, humans judge the existence
and directionality of the attack between the two arguments as intended by the
designers of the study. In a recent paper [7], we have presented the results of
two empirical cognitive studies that tested how humans judge the existence and
directionality of attacks between pairs of arguments. Note that designing sets of
natural language arguments that – based on our findings in this recent paper –
correspond to complex argumentation frameworks is a highly non-trivial task.

In order to approach this task in a systematic way, we carefully designed a
fictional scenario in which information from multiple sources is analyzed, and
developed a method to instantiate argumentation frameworks of arbitrary com-
plexity with natural language arguments related to this fictional scenario. All
attacks between arguments were based on undercutting the trustworthiness of a
source, as our recent paper suggests that undercutting the trustworthiness of a
source corresponds well to a unidirectional attack [7]. We used this method to
design twelve sets of natural language arguments corresponding to twelve argu-
mentation frameworks that had been carefully chosen to highlight the differences
between existing argumentation semantics. As the natural language arguments
were quite long and complex, we presented to the participants not only the

104 M. Cramer and M. Guillaume

natural language arguments, but also a graphical visualization of the correspond-
ing argumentation framework.

We compared the results of our study to six widely studied argumentation
semantics, namely to grounded, preferred, semi-stable, CF2, stage and stage2
semantics. More precisely, we compare them to a three-valued justification status
that can be defined with respect to each semantics. Due to certain considerations
about these justification statuses, we do not separately consider complete and
stable semantics in this paper.

The results of our study show that grounded and CF2 semantics were the best
predictors of human argument evaluation. A detailed analysis revealed that part
of the participants chose a cognitively simpler strategy that is predicted very well
by grounded semantics, while another part of the participants chose a cognitively
more demanding strategy that is mostly predicted well by CF2 semantics. In the
discussion of our results, we pay special attention to the observation that the
only argumentation framework for which CF2 semantics predicted the outcome
of this cognitively more demanding strategy not as well as some other semantics
was a framework including a six-cycle.

The rest of this paper is structured as follows: In Sect. 2, we present the
formal preliminaries of abstract argumentation theory that are required in this
paper. In particular, we define stage, CF2 and stage2 semantics and the three
justification statuses used in this paper. In Sect. 3, we present some general
background from cognitive science that will help to make our methodological
choices and our discussion of the results more understandable. The design of our
study is explained in Sect. 4. In Sect. 5, we present and discuss the results of our
study. Section 7 concludes the paper and suggests directions for future research.

2 Preliminaries of Abstract Argumentation Theory

We will assume that the reader is familiar with the basics of abstract argu-
mentation theory as introduced by Dung [11] and as explained in its current
state-of-the-art form by Baroni et al. [4]. In particular, we will assume that the
reader knows the notion of an argumentation framework (AF) as well as the
complete, grounded, stable, preferred and semi-stable argumentation semantics,
both in their traditional extension-based variant and in their label-based vari-
ant [3,4]. In this section we furthermore define stage, CF2 and stage2 semantics
as well as the notions of strong acceptance and strong rejection.

Stage semantics was first defined by Verheij [23]. The idea behind it is that we
minimize the set of arguments that are not accepted despite not being attacked
by an accepted argument. To formalize this, we first need some auxiliary notions:

Definition 1. Let F = 〈Ar, att〉 be an AF and let S ⊂ Ar be a set of arguments.
We say that S is conflict-free iff there are no arguments b, c ∈ S such that b
attacks c (i.e. such that (b, c) ∈ att). We define S+ := {b ∈ Ar | for some a ∈ S,
(a, b) ∈ att}

Now stage extensions are defined as follows:

Empirical Study on Human Evaluation of Complex AFs 105

Definition 2. Let F = 〈Ar, att〉 be an AF and let S ⊂ Ar. Then S is a stage
extension of F iff S is a conflict-free set such that S∪S+ is maximal with respect
to set inclusion.

CF2 semantics was first introduced by Baroni et al. [5]. The idea behind it
is that we partition the AF into strongly connected components and recursively
evaluate it component by component by choosing maximal conflict-free sets in
each component and removing arguments attacked by chosen arguments. We
formally define it following the notation of Dvořák and Gaggl [13]. For this we
first need some auxiliary notions:

Definition 3. Let F = 〈Ar, att〉 be an AF. We define a ∼ b iff either a = b or
there is an att-pat path from a to b and there is an att-path from b to a. The
equivalence classes under the equivalence relation ∼ are called strongly connected
components (SCCs) of F . We denote the set of SCCs of F by SCCs(F). Given
S ⊆ Ar, we define DF (S) := {b ∈ Ar | ∃a ∈ S : (a, b) ∈ att ∧ a �∼ b}.

We now recursively define CF2 extensions as follows:

Definition 4. Let F = 〈Ar, att〉 be an AF, and let S ⊆ Ar. Then S is a CF2
extension of F iff either

– |SCCs(F)| = 1 and S is a maximal conflict-free subset of A, or
– |SCCs(F)| > 1 and for each C ∈ SCCs(F), S ∩ C is a CF2 extension of

F |C−DF (S).

Stage2 semantics as introduced by Dvořák and Gaggl [12,13] combines fea-
tures of stage and CF2 semantics by making use of the SCC-recursive scheme as
in the definition of CF2, but using stage semantics rather than maximal conflict-
freeness as the criterion to apply within a single SCC:

Definition 5. Let F = 〈Ar, att〉 be an AF, and let S ⊆ Ar. Then S is a stage2
extension of F iff either
– |SCCs(F)| = 1 and S is a stage extension of A, or
– |SCCs(F)| > 1 and for each C ∈ SCCs(F), S ∩ C is a stage2 extension of

F |C−DF (S).

While the grounded extension of an AF is always unique, an AF with cycles
may have multiple preferred, semi-stable, CF2, stage and stage2 extensions. In
our experiment, however, participants were asked to make a single judgment
about each argument, so we compare their judgments to the justification status of
arguments according to various semantics (see [4,26]), as the justification status
is always unique for each argument. In particular, we focus on the justification
statuses strongly accepted, strongly rejected and weakly undecided, which can be
defined as follows:

Definition 6. Let F = 〈Ar, att〉 be an AF, let σ be an argumentation semantics,
and let a ∈ A be an argument. We say that a is strongly accepted with respect

106 M. Cramer and M. Guillaume

to σ iff for every σ-extension E of F , a ∈ E. We say that a is strongly rejected
with respect to σ iff for every σ-extension E of F , some b ∈ E attacks a. We
say that a is weakly undecided iff it is neither strongly accepted nor strongly
rejected.

Note that in the labeling approach, strong acceptance of a corresponds to a
being labeled in by all labelings, strong rejection of a corresponds to a being
labeled out by all labelings, and a weakly undecided status for a of corresponds
to a either being labeled undecided by at least one labeling, or a being labeled
in by some labeling and out by some other labeling.

When comparing semantics to responses by humans, we will use these three
justification statuses as a predictor for the human judgments to accept an argu-
ment, reject it or consider it undecided.

For some argumentation frameworks, stable semantics does not provide any
extension whatsoever, which leads to the rather unintuitive situation that all
arguments are both strongly accepted and strongly rejected. For this reason,
we do not consider stable semantics as a potential predictor for human argu-
ment evaluation in this paper. The justification status with respect to complete
semantics is always identical to the justification status with respect to grounded
semantics, so that for the rest of the paper we do not separately consider com-
plete semantics.

We would like to point our three properties that the justification status of
an argument a satisfies in all semantics considered in this paper:

– If all arguments attacking a are strongly rejected, then a is strongly accepted.
– If some argument attacking a is strongly accepted, then a is strongly rejected.
– If not all arguments attacking a are strongly rejected, then a is not strongly

accepted.

We use this observation to define a notion of coherence of a human judg-
ment of the status of an argument with respect to the judgments of the other
arguments in the same framework.

Definition 7. Let F = 〈Ar, att〉 be an AF, and let j : Ar → {accept, reject,
undecided} be a function that represents three-valued judgments on the argu-
ments in Ar. Given an argument a ∈ Ar, we say that the judgment of j on a is
coherent iff the following three properties are satisfied:

– If j(b) = reject for each argument b that attacks a, then j(a) = accept.
– If j(b) = accept for some argument b that attacks a, then j(a) = reject.
– If j(b) = undecided for some argument b that attacks a, then either j(a) =

undecided or j(a) = reject.

3 Cognitive Variability of Humans

Given that this paper presents findings of a cognitive empirical study to an audi-
ence whose scientific expertise lies mainly in areas outside of cognitive science,

Empirical Study on Human Evaluation of Complex AFs 107

we present some general background from cognitive science that will help to
make our methodological choices and our discussion of the results more under-
standable.

Humans are heterogeneous by nature; they differ from each other with respect
to their cognitive abilities [1]. Cronbach [10] claimed that human heterogeneity
is actually a major disturbance in the conduction of empirical studies. Cognitive
variability has thus been mostly considered as an undesirable random noise in
cognitive studies. This disturbance is even more problematic in the case of empir-
ical studies that evaluate complex cognitive processes such as logical thinking
and reasoning. Indeed, the inherent difficulty of such tasks not only empha-
sizes human differences relative to pure cognitive abilities (such as intelligence),
but also involves motivational aspects that are crucial to obtain a reliable per-
formance from the participant [25]. In order to test the cognitive plausibility
of abstract argumentation theory by minimizing unwanted bias purely related
to cognition and motivation properties, we set up a methodology that favored
rational thinking during the assessment.

Previous results showed that individual performance, which has generally
been reported to be quite poor in pure logic and reasoning tasks, could actually
be enhanced by cooperative discussion with peers. For instance, faced with the
Wason selection task [24], humans solving the task in groups achieved a level of
insight that was qualitatively superior to the one achieved by single individu-
als [2,15]. Additionally, and more generally, discussion with peers was shown to
substantially improve motivation to solve a given task [18]. For these reasons, we
decided to incorporate in our methodology a cooperative discussion to help par-
ticipants to elaborate and enrich their thinking. This collective step with peers
was designed to obtain an evaluation of the justification status more reliable
than a single individual judgment. Such reliability is crucial to test the cognitive
plausibility of our predictions.

4 Design of the Study

Sixty-one undergraduate students participated in the empirical study (mean
age = 20.8). With the help of a questionnaire, we asked our participants to eval-
uate the acceptability status of natural language arguments. The argument sets
were set in the following fictional context: participants were located on an imag-
inary island, faced to conflicting information coming from various islanders, and
they had to evaluate the arguments provided in order to hopefully find the loca-
tion(s) of the buried treasure(s). We used such a fictional scenario to avoid as
much as possible any unwanted interference from their general knowledge to
make a decision about the acceptability of a given argument.

All the attacks between the arguments were based on information that a
certain islander is not trustworthy. Consider for example the following set of
arguments that we used in the study:

Argument G: Islander Greg says that islander Hans is not trustworthy
and that there is a treasure buried in front of the well. So we should not
trust what Hans says, and we should dig up the sand in front of the well.

108 M. Cramer and M. Guillaume

Argument H: Islander Hans says that islander Irina is not trustworthy
and that there is a treasure buried behind the bridge. So we should not
trust what Irina says, and we should dig up the sand behind the bridge.
Argument I: Islander Irina says that there is a treasure buried near the
northern tip of the island. So we should dig up the sand near the northern
tip of the island.
Argument J: Islander Jenny says that there is a treasure buried near the
southern tip of the island. So we should dig up the sand near the southern
tip of the island.

Here argument G attacks argument H, because argument H is based on infor-
mation from islander Hans, and argument G states that islander Hans is not
trustworthy. Similarly, argument H attacks argument I, whereas arguments I
and J do not attack any argument because they do not state that someone is
not trustworthy. (Note that participants were informed that there might be mul-
tiple treasures, so there is no conflict between a treasure being in one place and
a treasure being in another.)

As the natural language arguments where quite long and complex, we pre-
sented to the participants not only the natural language arguments, but also a
graphical visualization of the corresponding AF. For example, Fig. 1 depicts the
AF corresponding to the natural language argument set presented above.

Fig. 1. Graphical visualization of the AF corresponding to the natural language argu-
ments G, H, I and J.

Before the start of the questionnaire, we showed to the participants examples
of three simple AFs of two arguments each, namely a unilateral attack from an
argument to another one, a bilateral attack between two arguments, and two
arguments without any attack between them. These examples were presented
both as sets of natural language arguments and as graphically depicted AFs, and
the correspondence between these two modes of presentation were explained.

Participants were instructed to make a judgment about each argument by
ticking a box labeled accept, undecided or reject. For the purpose of making these
judgments, participants were explicitly instructed to follow the principle that
they trust an islander as long as they do not have a good reason to believe that
this islander is not trustworthy. We explained these three possible judgments on
the six arguments from the three simple AFs that we showed as examples. Note
that on these simple AFs, the justification status of each argument is the same in
each of the six semantics considered in this paper, so that our explanations about
these examples did not prime the participants to favor one of the semantics over
the others.

Similarly as in our previous study [8], our methodology incorporated a group
discussion to stimulate more rational thinking: Participants had to first respond

Empirical Study on Human Evaluation of Complex AFs 109

individually to each argument from an argument set, then in a second step they
had to collaboratively discuss with their peers about the set under consideration,
and finally they had to make a final individual judgment. We formed twenty
groups of mostly three participants each (exceptionally two or four participants).
The questionnaire had two versions, each consisting in six different AFs, for a
total of twelve argument frameworks. The full set of the argument sets used in
our study can be found in the technical report of this paper [9].

5 Results and Discussion

Figure 2 summarizes both the theoretical predictions and the final individual
response of participants in our study. In the first six columns of the figure, we
explicitly represent the justification status of each argument with respect to
each of the six semantics considered in this paper. We depict the justification
status strongly accepted as a white square, strongly rejected as a black square,
and undecided as a gray square. In the next two columns, we have depicted
the proportion of different responses made by the participants as well as the
majority response. With the exception of argument 59, the arguments had a
unique majority response, i.e. a response chosen more often than each of the
other two responses, which is depicted by one of the three pure colors defined
above. In the case of argument 59, reject and undecided were equally frequent
responses, so the majority response square is depicted half black and half gray.

In a first analysis, we assessed which semantics was the best to predict human
evaluation of the acceptability of our natural language arguments. We com-
puted the percentage of agreement between the predictions of each semantics and
the final responses made by all participants. Predictions according to grounded
semantics were correct in 74.97%, preferred in 68.42%, semi-stable in 62.84%,
CF2 in 75.46%, stage in 62.79%, and stage2 in 68.36% of the cases. Exact bino-
mial tests revealed that for all semantics, the proportion of correct predictions
were significantly larger than the chance level (i.e., 33%), all ps < .001. It is
noteworthy that, in many cases, the semantics make the same prediction, so to
evaluate the significance of the difference between any two semantics, we should
not consider the general predictive accuracy, but rather focus on the instances
where the two semantics under consideration differed. We thus conducted exact
binomial tests between each pair of semantics, restricting to the arguments where
different predictions were provided, and we observed that both grounded and
CF2 were systematically better than the other semantics, all ps < .001. How-
ever, grounded and CF2 did not significantly differ from each other, p = .212. In
other words, across all our participants, grounded and CF2 semantics were the
semantics providing the best predictions.

In order to get a better picture of the cognitive strategies employed by par-
ticipants to evaluate arguments, we made some additional analysis of the data.
We observed that participants mostly responded in a way that is coherent in
the sense defined at the end of Sect. 2. More precisely, 86.7% of the responses
were coherent, and 49 of the 61 participants (i.e. 80.3% of the participants)

110 M. Cramer and M. Guillaume

1 AF1
2 AF1
3 AF1
4 AF1

5 AF2
6 AF2
7 AF2

8 AF3
9 AF3

10 AF3
11 AF3
12 AF3

13 AF4
14 AF4
15 AF4
16 AF4
17 AF4

18 AF5
19 AF5
20 AF5
21 AF5
22 AF5
23 AF5

24 AF6
25 AF6
26 AF6
27 AF6
28 AF6
29 AF6
30 AF6

Grounded

Preferred

Semi−stable
CF2

Stage

Stage2

All responses

Majority All

Coherent responses

Majority Coherent

Non−grounded responses

Majority Non−grounded

31 AF7
32 AF7
33 AF7
34 AF7
35 AF7

36 AF8
37 AF8
38 AF8

39 AF9
40 AF9
41 AF9
42 AF9

43 AF10
44 AF10
45 AF10
46 AF10
47 AF10

48 AF11
49 AF11
50 AF11
51 AF11
52 AF11

53 AF12
54 AF12
55 AF12
56 AF12
57 AF12
58 AF12
59 AF12
60 AF12

Grounded

Preferred

Semi−stable
CF2

Stage

Stage2

All responses

Majority All

Coherent responses

Majority Coherent

Non−grounded responses

Majority Non−grounded

Fig. 2. Visualization of the predictions and of the results. Each line represents one of
the 60 arguments in our study. The squares represent theoretical predictions accord-
ing to the six semantics and as well as final individual responses (average response
and majority response) in three categories of participants: all participants, coherent
participants and coherent non-grounded participants. White, black and gray stand for
accept, reject and undecided respectively. For representing the proportion of different
responses, the corresponding square has been filled with white, gray and black area
in proportion to the number of accept, reject and undecided judgments made by the
participants.

had more than 80% coherent responses. Recall that the notion of coherence was
based on properties that are satisfied in all semantics considered in this paper, so
these results show that participants were mostly able to use cognitive strategies
that are in line with these semantics-independent properties. We hypothesize
that those 12 participants who had more than 20% incoherent responses either
did non fully understand the task or are outliers with respect to the cognitive
strategy they employed. As we were interested in understanding the cognitive

Empirical Study on Human Evaluation of Complex AFs 111

strategies employed by the majority of participants, we decided to disregard
these 12 participants in the further analysis of our data. We use the expres-
sion coherent participants to refer to the 49 participants that had more than
80% coherent responses. The average and majority responses of coherent par-
ticipants are depicted in Fig. 2 in the two columns that are to the right of the
columns depicting the responses of all participants.

Within coherent participants, predictions according to grounded semantics
were correct in 82.79%, preferred in 75.17%, semi-stable in 68.10%, CF2 in
82.24%, stage in 67.14%, and stage2 in 74.22% of the cases. A paired t-test
revealed that the predictions here were significantly better than the predictions
across all participants, t(5) = 12.38, p < .001. This is in line with our hypoth-
esis that the identified and excluded 12 participants were outliers. Once again,
grounded and CF2 were the two best semantics, as confirmed by exact bino-
mial tests restricting to the arguments for which the predictions differed, rele-
vant ps < .001, and they did not significantly differ from each other, p = .187.
Subsequently, within coherent participants, and similarly to our findings within
all participants, grounded and CF2 were the best semantics to predict human
responses.

Furthermore, we would like to point out that in the grounded semantics, 48
of the 60 arguments in our study were undecided. For this reason, the general
strategy of choosing undecided whenever there is some reason for doubt was a
cognitively simple way to get full or almost full agreement with the prediction
of grounded semantics. While it is an interesting observation that a significant
number of participants chose this strategy for the task in our study, we were
also interested in understanding better the cognitive strategy of those who did
not make use of this simplifying general strategy. In order to get some insights
about this cognitive strategy, we decided to make some additional analysis of our
data restricted to those coherent participants that did not employ this grounded-
leaning general strategy. For this purpose, we had to define a criterion for decid-
ing who counts as not having applied the grounded-leaning general strategy. We
chose to use the following criterion: If a participant made at least one coherent
response that was not the response predicted by the grounded semantics, we
considered this participant a non-grounded participant. Of the 49 coherent par-
ticipants, 27 were non-grounded participants according to this criterion, while 22
participants were grounded participants. The average and majority responses of
coherent non-grounded participants are depicted in the two last columns of Fig. 2.

Within coherent non-grounded participants, predictions according to
grounded semantics were correct in 73.09%, preferred in 73.70%, semi-stable in
65.80%, CF2 in 79.75%, stage in 67.04%, and stage2 in 74.94% of the cases. In
this case, CF2 alone was the best predictor in comparison to every other seman-
tics, with the largest p = .001. This result provides further insights about the
cognitive strategies adopted by participants: While grounded and CF2 seman-
tics both provide adequate predictions of the human evaluation of the accept-
ability of the arguments, this is actually due to heterogeneous behavior from
our participants. Our results suggest that 27 non-grounded participants used a
more demanding cognitive strategy well predicted by CF2 whereas the other 22

112 M. Cramer and M. Guillaume

grounded participants used a more straightforward strategy well predicted by
grounded semantics.

We would like to point out that the only two arguments in which some
semantics other than CF2 predicted the judgments of coherent non-grounded
participants better than CF2 were arguments 59 and 60 according to the num-
bering used in Fig. 2, which were arguments I and J in the AF depicted in Fig. 3.
While in CF2 and grounded semantics both of these arguments are weakly unde-
cided, in preferred, semi-stable, stage and stage2 semantics, I is strongly rejected
and J is strongly accepted.

Fig. 3. AF in which other semantics made better prediction than CF2

Note that this AF contains a six-cycle, and the behavior of CF2 on a six-
cycle was criticized by Dvořák and Gaggl [13] as unintuitive and used as a
motivation for introducing stage2 semantics. We included this AF in our study
to test whether this criticism on CF2 semantics is in line with human judgments
on such AFs, and our data does indeed support this criticism on CF2. However,
all other arguments on which the predictions of CF2 and stage2 differed were
judged by most coherent non-grounded participants more in line with CF2 than
in line with stage2, so our data does not support stage2 as a good alternative to
CF2.

Taken together, this suggests that for the goal of predicting well human
argument acceptance, it might be necessary to develop a novel semantics that
behaves similarly to CF2 on most argumentation frameworks considered in our
study but which treats even cycles of length 6 or more in the way they are
treated by preferred, semi-stable, stage and stage2 semantics rather than in the
way they are treated by CF2 semantics.

6 Related Work

While there have been multiple empirical studies that have evaluated the cor-
respondence between human reasoning and formalism from abstract, structured
and dialogical argumentation (see for example [6,16,19,22]), only two previous
studies have aimed at comparing human evaluation of arguments to abstract
argumentation semantics: Rahwan et al. [20] tested how humans evaluate two
simple argumentation frameworks, the simple reinstatement framework with
three arguments and the floating reinstatement framework with four arguments.

Empirical Study on Human Evaluation of Complex AFs 113

In a recent paper [8], the authors of the present study have improved Rah-
wan et al.’s methodology and applied this improved methodology to three dif-
ferent argumentation frameworks, namely the two AFs already considered by
Rahwan as well as the 3-cycle reinstatement framework with five arguments.

Since the simple reinstatement framework is treated in the same way by
all standard semantics, in Rahwan et al.’s study only the floating reinstate-
ment framework was able to distinguish between different semantics. While this
allowed Rahwan et al. to conclude that for the floating reinstatement argumenta-
tion frameworks the preferred semantics predicts human evaluation of arguments
better than the grounded semantics, it did not allow to distinguish preferred
semantics from other non-grounded semantics like semi-stable, stage or CF2. By
including the 3-cycle reinstatement framework in our previous study, we were
able to observe that naive-based semantics like CF2, stage or stage2 are better
predictors for human argument evaluation than admissibility-based semantics
like preferred or semi-stable (see [8]). However, the AFs used in that study still
did not allow to distinguish between the different naive-based semantics, nor
did they allow to distinguish preferred from semi-stable semantics. The present
study was designed to overcome this limitation.

We now compare the results from the present paper with those from our
recent paper [8]. The current study confirmed the result of the previous study
that CF2 semantics is a better predictor for human argument evaluation than
preferred semantics, and extended this result by also showing that CF2 is a
better predictor than semi-stable, stage, stage2 semantics. The previous study
had additionally suggested that both preferred and CF2 semantics are better
predictors than grounded semantics, whereas the current study suggests that
grounded semantics is as good a predictor as CF2 semantics. We believe that
the main reason for this apparent mismatch lies in the fact that our present
study used more complex argumentation frameworks and instantiated them with
a fictional scenario, which made the reasoning task cognitively more challenging
and therefore led to more participants making use of the simplifying strategy of
choosing undecided whenever there is some reason for doubt.

Both Rahwan et al.’s study and our previous study made use of natural
language arguments that referred to real-world entities and actions rather than
to a purely fictional scenario as in the present study. While this reference to
real-world entities and actions reduces the cognitive load for participants, it also
allows them to make use of their world knowledge in judging the arguments.
But as the goal of these studies was to predict argument evaluation based on
the attack relation between arguments rather than based on the content of the
argument and the world knowledge of the participants, this interference of world
knowledge was undesirable. By making use of a fictional scenario in the present
study we avoided this undesirable feature of the previous studies.

7 Conclusion and Future Work

In this paper we have reported on an empirical cognitive study in which we
tested how humans judge the acceptability of arguments in complex argumen-

114 M. Cramer and M. Guillaume

tation frameworks. A detailed analysis of our results revealed that part of the
participants chose a cognitively simpler strategy that is predicted very well by
grounded semantics, while another part of the participants chose a cognitively
more demanding strategy that is mostly predicted well by CF2 semantics.

The present study suggests multiple paths for future research. As for future
research within formal argumentation, our study suggests that researchers in
this field who are interested in developing formalisms that correspond well to
human argumentation should direct their attention more to CF2 and similarly-
behaved semantics. More precisely, given that the cognitively more demanding
strategy was predicted well by CF2 semantics with the exception of the AF
involving a six-cycle, it seems worthwhile to develop and study novel semantics
that behave similarly to CF2 on most argumentation frameworks considered in
our study but which treat even cycles of length 6 or more in the way they are
treated by preferred, semi-stable, stage and stage2 semantics rather than in the
way they are treated by CF2 semantics. Furthermore, given that in the context
of structured argumentation frameworks like ASPIC+ (see [17]) the rationality
postulate of Closure under Strict Rules is violated for not admissibility-based
semantics like CF2, further research is required to find a method to satisfy this
rationality postulate in structured argumentation while using an argumentation
semantics that corresponds well to human judgments on argument acceptability.

As for future empirical work related to the work presented in this paper, it
would be good to empirically test whether our tentative explanation that we
have given in Sect. 6 for explaining the mismatch between the current study and
our previous study (see [8]) is correct. Furthermore, it would be good if some
future empirical study could overcome a limitation that all existing empirical
studies on abstract argumentation theory have, namely the limitation that they
can only compare the semantics on the single-outcome justification status, thus
ignoring some of the information present in the full set of extensions provided
by each semantics. For overcoming this limitation, a novel approach to design-
ing empirical cognitive studies for testing argumentation semantics needs to be
developed.

References

1. Anastasi, A.: Differential Psychology: Individual and Group Differences in Behav-
ior. Macmillan, London (1958)

2. Augustinova, M.: Falsification cueing in collective reasoning: example of the Wason
selection task. Eur. J. Soc. Psychol. 38(5), 770–785 (2008)

3. Baroni, P., Caminada, M., Giacomin, M.: An introduction to argumentation
semantics. Knowl. Eng. Rev. 26(4), 365–410 (2011)

4. Baroni, P., Caminada, M., Giacomin, M.: Abstract argumentation frameworks and
their semantics. In: Baroni, P., Gabbay, D., Giacomin, M., van der Torre, L. (eds.)
Handbook of Formal Argumentation, pp. 159–236. College Publications (2018)

5. Baroni, P., Giacomin, M., Guida, G.: SCC-recursiveness: a general schema for
argumentation semantics. Artif. Intell. 168(1), 162–210 (2005)

Empirical Study on Human Evaluation of Complex AFs 115

6. Cerutti, F., Tintarev, N., Oren, N.: Formal arguments, preferences, and natural
language interfaces to humans: an empirical evaluation. In: Schaub, T., Friedrich,
G., O’Sullivan, B. (eds.) Proceedings of the 21st ECAI 2014, pp. 207–212 (2014)

7. Cramer, M., Guillaume, M.: Directionality of attacks in natural language argu-
mentation. In: Schon, C. (ed.) Proceedings of the Workshop on Bridging the Gap
between Human and Automated Reasoning, vol. 2261, pp. 40–46. RWTH Aachen
University, CEUR-WS.org (2018). http://ceur-ws.org/Vol-2261/

8. Cramer, M., Guillaume, M.: Empirical cognitive study on abstract argumentation
semantics. Frontiers in Artificial Intelligence and Applications, pp. 413–424 (2018)

9. Cramer, M., Guillaume, M.: Technical report of “Empirical study on human eval-
uation of complex argumentation frameworks”. arXiv:1902.10552, February 2019

10. Cronbach, L.J.: The two disciplines of scientific psychology. Am. Psychol. 12(11),
671–684 (1957)

11. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2),
321–357 (1995)

12. Dvorák, W., Gaggl, S.A.: Incorporating stage semantics in the SCC-recursive
schema for argumentation semantics. In: Proceedings of the 14th International
Workshop on Non-Monotonic Reasoning (NMR 2012) (2012)

13. Dvořák, W., Gaggl, S.A.: Stage semantics and the SCC-recursive schema for argu-
mentation semantics. J. Log. Comput. 26(4), 1149–1202 (2016)

14. Evans, J.S.B., Newstead, S.E., Byrne, R.M.: Human Reasoning: The Psychology
of Deduction. Psychology Press, London (1993)

15. Geil, D.M.M.: Collaborative reasoning: evidence for collective rationality. Think.
Reason. 4(3), 231–248 (1998)

16. Hunter, A., Polberg, S.: Empirical methods for modelling persuadees in dialogical
argumentation. In: 29th International Conference on Tools with Artificial Intelli-
gence (ICTAI), pp. 382–389. IEEE (2017)

17. Modgil, S., Prakken, H.: The ASPIC+ framework for structured argumentation: a
tutorial. Argum. Comput. 5(1), 31–62 (2014)

18. Piaget, J., Smith, L., Brown, T., Campbell, R., Emler, N., Ferrari, D.: Sociological
Studies. Routledge, London (1995)

19. Polberg, S., Hunter, A.: Empirical evaluation of abstract argumentation: support-
ing the need for bipolar and probabilistic approaches. Int. J. Approx. Reason. 93,
487–543 (2018)

20. Rahwan, I., Madakkatel, M.I., Bonnefon, J.-F., Awan, R.N., Abdallah, S.: Behav-
ioral experiments for assessing the abstract argumentation semantics of reinstate-
ment. Cogn. Sci. 34(8), 1483–1502 (2010)

21. Rahwan, I., Simari, G.R.: Argumentation in Artificial Intelligence, 1st edn.
Springer, Boston (2009). https://doi.org/10.1007/978-0-387-98197-0

22. Rosenfeld, A., Kraus, S.: Providing arguments in discussions on the basis of the
prediction of human argumentative behavior. ACM Trans. Interact. Intell. Syst.
6(4), 30:1–30:33 (2016)

23. Verheij, B.: Two approaches to dialectical argumentation: admissible sets and argu-
mentation stages. Proc. NAIC 96, 357–368 (1996)

24. Wason, P.C.: Reasoning. In: Foss, B. (ed.) New Horizons in Psychology, pp. 135–
151. Penguin Books, Harmondsworth (1966)

25. Weiner, B.: Theories of Motivation: From Mechanism to Cognition. Markham Psy-
chology Series. Markham Publishing Co., Chicago (1972)

26. Wu, Y., Caminada, M.: A labelling-based justification status of arguments. Stud.
Log. 3(4), 12–29 (2010)

http://ceur-ws.org/Vol-2261/
http://arxiv.org/abs/1902.10552
https://doi.org/10.1007/978-0-387-98197-0

Preprocessing Argumentation
Frameworks via Replacement Patterns

Wolfgang Dvořák1(B) , Matti Järvisalo2 , Thomas Linsbichler1 ,
Andreas Niskanen2 , and Stefan Woltran1

1 Institute of Logic and Computation, TU Wien, Vienna, Austria
dvorak@dbai.tuwien.ac.at

2 HIIT, Department of Computer Science, University of Helsinki, Helsinki, Finland

Abstract. A fast-growing research direction in the study of formal argu-
mentation is the development of practical systems for central reasoning
problems underlying argumentation. In particular, numerous systems for
abstract argumentation frameworks (AF solvers) are available today, cov-
ering several argumentation semantics and reasoning tasks. Instead of
proposing another algorithmic approach for AF solving, we introduce in
this paper distinct AF preprocessing techniques as a solver-independent
approach to obtaining performance improvements of AF solvers. We
establish a formal framework of replacement patterns to perform local
simplifications that are faithful with respect to standard semantics for
AFs. Moreover, we provide a collection of concrete replacement patterns.
Towards potential applicability, we employ the patterns in a preliminary
empirical evaluation of their influence on AF solver performance.

Keywords: Abstract argumentation · Preprocessing ·
Extension enumeration

1 Introduction

Argumentation is today a vibrant area of modern AI research [4]. In particu-
lar, the study of computational aspects of argumentation connects with several
AI subfields such as knowledge representation, constraints, and complexity of
reasoning. The development of practical systems and algorithmic solutions for
central reasoning problems underlying argumentation is motivated by a range of
applications [1].

Abstract argumentation offers argumentation frameworks (AFs) as an impor-
tant graph-based knowledge representation formalism for argumentation [9].
Computational models of argumentation, in particular from the perspective of
the development of practical algorithms, have recently received a lot of atten-
tion. Several optimized practical AF reasoning systems (AF solvers) are available
today [6], covering several argumentation semantics and reasoning tasks such as
enumeration and skeptical and credulous query answering. The various state-of-
the-art AF solvers, developed by several research groups around the world, are
c© Springer Nature Switzerland AG 2019
F. Calimeri et al. (Eds.): JELIA 2019, LNAI 11468, pp. 116–132, 2019.
https://doi.org/10.1007/978-3-030-19570-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19570-0_8&domain=pdf
http://orcid.org/0000-0002-2269-8193
http://orcid.org/0000-0003-2572-063X
http://orcid.org/0000-0001-9143-4071
http://orcid.org/0000-0003-3197-2075
http://orcid.org/0000-0003-1594-8972
https://doi.org/10.1007/978-3-030-19570-0_8

Preprocessing Argumentation Frameworks via Replacement Patterns 117

evaluated in the biennially organized ICCMA AF solver competitions [13,22],
providing further incentives for seeking improvements in AF solver technology.

While both specialized and constraint-based AF solvers have been devel-
oped, less attention has been so far put on the development of preprocess-
ing and simplification techniques working directly on AFs. This is despite
the fact that polynomial-time preprocessing (rewriting) has been shown to
bring great practical performance improvements in various constraint solv-
ing paradigms [11,14,17–20]. Notably, preprocessing techniques applied before
invoking a solver for the reasoning task at hand are solver-independent. Thereby
the development of practical preprocessing techniques has the potential of
improving the performance of various solvers. As proven to be the case in the
area of propositional reasoning [18], applying combinations of relatively simple
individual preprocessing techniques can have a surprisingly significant positive
effect on solver performance.

In this work, we take first steps in solver-independent preprocessing for AFs.
By preprocessing we understand a family of polynomial-time applicable simpli-
fication rules which preserve an appropriate form of equivalence. In the domain
of AFs this amounts to searching for particular sub-AFs that can be replaced by
a smaller and/or simpler AF without changing the semantics of the whole AF.
However, the nonmonotonic nature of AF semantics makes the understanding of
such replacements non-trivial. In addition, we aim for removing arguments that
cannot be accepted and for merging arguments that can only be jointly accepted.
Since preprocessing itself should rely on efficient polynomial-time algorithms, we
cannot include any semantic treatment of AFs or sub-AFs into the procedures.

To this end, we introduce the concept of replacement patterns which contain
information about (i) which AFs need to be matched on subgraphs of the AF at
hand, and (ii) how to simplify them independently of the surrounding framework.
The recently introduced notion of C-relativized equivalence [5] provides a suitable
tool to prove faithfulness of such simplifications. However, we need to extend this
notion properly in order to also capture the concept of merging of arguments in
a formally sound way. Our formal results refine equivalence results for AFs with
merged arguments and show how these can be used to show faithfulness of our
patterns. Consequently, AFs obtained by iterative applications of replacement
patterns are equivalent to the original AF one started with, which makes them
applicable even for the task of extension enumeration.

An alternative approach to local simplifications of AFs is the S-equivalence
of multipoles [2]. However, S-equivalence treats the part of the AF to be replaced
as “black-box” and thus allows for changes in the extensions w.r.t. arguments
which are not in the IO-interface of the multipole. As our work is focusing on
replacements that preserve the extensions of the AF we thus follow and extend
the approach of [5].

The preprocessed AFs obtained via applications of replacement patterns can
be input to any state-of-the-art AF solver for obtaining solutions to enumera-
tion and reasoning tasks over the original input AF. After obtaining a solution
to the preprocessed AF, the only additional tasks to be performed is to recon-

118 W. Dvořák et al.

struct actual arguments from merged arguments, which is straightforward for
our replacement patterns.

We provide a set of concrete polynomial-time checkable replacement patterns
which we consider as a first suite of solver-independent AF preprocessing tech-
niques for stable, preferred, and complete semantics. We further study the impact
of our preprocessing routine via a preliminary empirical evaluation on both two
state-of-the-art native AF solvers [15,21] and a SAT-based AF solver [10,12]
on the task of extension enumeration. Our results reveal that in particular the
native solvers can highly benefit from preprocessing; also the performance of
constraint-based solvers can be improved at times. Hence preprocessing appears
promising for further closing the current performance gap [8] between state-
of-the-art native and constraint-based solvers, and the first empirical results
presented motivate further studies of practical preprocessing techniques for dif-
ferent AF reasoning tasks, including acceptance problems where preprocessing
needs not to preserve all extensions, in constrast to extension enumeration.

The paper is organized as follows. We first recall abstract argumentation and
the notion of C-relativized equivalence (Sect. 2). Next, we introduce replacement
patterns as a formal framework for studying faithful simplifications of AFs, and
extend the notion of C-relativized equivalence to allow for formally establish-
ing faithfulness of replacement patterns (Sect. 3.1). We then provide concrete
replacement patterns for preprocessing AFs (Sect. 3.2). Finally, we present an
empirical evaluation of the presented patterns (Sect. 4).

2 Argumentation Frameworks and Equivalence

We recall abstract argumentation frameworks [9], their semantics (see [3] for an
overview), and the notion of C-relativized equivalence [5] which we will employ
to show the faithfulness of replacements. We fix U as a countably infinite domain
of arguments.

Definition 1. An argumentation framework (AF) is a pair F = (A,R) where
A ⊆ U is a finite set of arguments and R ⊆ A × A is the attack relation. The
pair (a, b) ∈ R means that a attacks b. We use AF to refer to A and RF to refer
to R. We say that an AF is given over a set B of arguments if AF ⊆ B.

Definition 2. Given an AF F and set S ⊆ AF , we define S+
F = {x | ∃y ∈ S :

(y, x) ∈ RF }, S−
F = {x | ∃y ∈ S : (x, y) ∈ RF }, and the range of S in F as

S⊕
F = S ∪ S+

F .

The following adaptions of set-theoretic operators to pairs of AFs will be
useful in the rest of the paper.

Definition 3. Given AFs F = (A,R), F ′ = (A′, R′), we denote the union of
AFs as F ∪ F ′ = (A ∪ A′, R ∪ R′). For a set S ⊆ U of arguments, and a set
T ⊆ (A × A) of attacks, we define F \ S = (A \ S,R ∩ ((A \ S) × (A \ S))),
F \T = (A,R \T), F ∩S = (A∩S,R∩ ((A∩S)× (A∩S))), F ∪S = (A∪S,R),
and F ∪ T = (A,R ∪ T). For mixed sets S ∪ T of arguments S and attacks T we
define F \ (S ∪ T) = (F \ T) \ S.

Preprocessing Argumentation Frameworks via Replacement Patterns 119

We next give a formal definition of sub-AFs. In words, a sub-AF is an induced
subgraph of the directed graph representation of an AF.

Definition 4. We call an AF F to be a sub-AF of G, in symbols F � G, if
AF ⊆ AG and RF = RG ∩ (AF × AF).

Replacement is a central notion in this work, and intuitively defines substi-
tutions of a sub-AF with another.

Definition 5. Given AFs F, F ′, G such that F � G and AF ′ ∩ (AG \ AF) = ∅,
let A = (AG \ AF) ∪ AF ′ . The replacement of F by F ′ in G is defined as
G[F/F ′] = (A, ((RG \ RF) ∩ (A × A)) ∪ RF ′).

Semantics for AFs are defined based on the notions of defense and the char-
acteristic function.

Definition 6. Given an AF F = (A,R), argument a ∈ A is defended (in F)
by a set S ⊆ A if {a}−

F ⊆ S+
F . The characteristic function FF : 2A → 2A of F

is defined as FF (S) = {a ∈ A | a is defended by S in F}.
Semantics are functions σ which assign to each AF F a set σ(F) ⊆ 2AF of

extensions. We consider for σ the functions stb, com, and prf, which stand for
stable, complete, and preferred semantics, respectively.

Definition 7. Let F = (A,R) be an AF. A set S ⊆ A is conflict-free (in F),
if there are no a, b ∈ S such that (a, b) ∈ R. cf(F) denotes the collection of
conflict-free sets of F . For a conflict-free set S ∈ cf(F), it holds that

– S ∈ stb(F), if S⊕
F = A;

– S ∈ com(F), if S = FF (S);
– S ∈ prf(F), if S ∈ com(F) and �T ⊃ S s.t. T ∈ com(F).

Under a standard notion, two AFs are equivalent under a semantics iff they
have the same extensions.

Definition 8. We call two AFs F and G to be equivalent in semantics σ, in
symbols F ≡σ G, iff σ(F) = σ(G).

Baumann et al. [5] have studied the following refined notion of equivalence,
which is sensitive to expansions as long as they do not affect a certain core of
arguments.

Definition 9. Given a semantics σ and C ⊆ U . Two AFs F and G are C-
relativized equivalent w.r.t. σ (F ≡σ

C G) iff F ∪ H ≡σ G ∪ H holds for each AF
H over U \ C.

In order to decide whether two AFs are C-relativized equivalent, C-restricted
semantics have been introduced. Those restrict the relevant properties of the
original semantics to the core arguments C. We present these concepts in detail
for stable semantics, on which we shall focus in the remainder of the paper.

120 W. Dvořák et al.

Definition 10. Let F be an AF, C ⊆ U and E ⊆ AF . We have that E ∈
stbC(F) if E ∈ cf(F) and AF ∩ C ⊆ E⊕

F .

That is, for C-restricted stable extensions we relax the conditions for stable
semantics such that, beside the extension being conflict-free, we only require
that all arguments in the core are in the range of the extension.

We have that two AFs F,G can only be C-relativized equivalent w.r.t. a
semantics σ if they have exactly the same C-restricted σ extensions. However,
this is only a necessary but not a sufficient condition. We additionally require
that, except for arguments in the core C, the AFs F,G have the same arguments
and for stable semantics that all C-restricted stable extensions have the same
range in F and G when ignoring the core arguments C.

Theorem 1 [5]. Let F,G be AFs and C ⊆ U . Then, F ≡stb
C G iff the following

jointly hold:

1. if stbC(F) �= ∅, AF \ C = AG \ C;
2. stbC(F) = stbC(G); and
3. for all E ∈ stbC(F), E+

F \ C = E+
G \ C.

3 Replacement Patterns

The idea behind the notion of replacement patterns is to allow for some freedom
in the subgraphs we are looking for to apply simplifications. For example, often
the existence of certain attacks does not affect the applicability of replacements;
a specific replacement pattern defines similar graphs that qualify for replace-
ments. In what follows, we first introduce the formal framework of replacement
patterns and show how faithfulness of patterns can be achieved using the notion
of C-relativized equivalence. Then we present concrete replacement patterns for
preprocessing AFs.

3.1 Main Concepts

A central ingredient of replacement patterns is merging of arguments, resulting in
arguments of the form mS with S ⊆ U being standard arguments. The universe
of all such arguments is given by Um = {mS | S ⊆ U, S is finite}.

Definition 11. Let F = (A,R) be an AF and a, b ∈ A. The merge M(F, a, b)
of a, b in F is the AF (A′, R′) given by A′ = A \ {a, b} ∪ {m{a,b}}1 and R′ =
R ∩ (A′ × A′) ∪ {(m{a,b}, c) | (a, c) ∈ R or (b, c) ∈ R} ∪ {(c,m{a,b}) | (c, a) ∈
R or (c, b) ∈ R}.

The following two unpacking functions U(·) map (i) a set of arguments over
U ∪Um to the corresponding set of arguments in U , and (ii) an AF with merged
arguments back to an AF over U .
1 However, we keep the set structure flat, i.e., when merging arguments mS , mS′ ∈ Um

the resulting argument is mS∪S′ .

Preprocessing Argumentation Frameworks via Replacement Patterns 121

Definition 12. Let F = (A,R) be an AF with A ⊆ U ∪ Um and E ⊆ A. The
unpacked set U(E) of E is given by (E ∩U)∪⋃

mS∈E S. The unpacked AF U(F)
of F is the AF (A′, R′) given by A′ = U(A) and R′ = R ∩ (A′ × A′) ∪ {(a, c) |
(mS , c) ∈ R, a ∈ S} ∪ {(c, a) | (c,mS) ∈ R, a ∈ S} ∪ {(a, c) | (mS ,mS′) ∈ R, a ∈
S, c ∈ S′}.

Notice that U(F) is always an AF over U . In the next step we generalize stan-
dard equivalence by taking into account AFs which have resulted from merging
of arguments. That is we do not compare extensions directly but consider AFs
to be equivalent if their unpacked extensions coincide.

Definition 13. We call two AFs F and G over U ∪ Um to be equivalent in
semantics σ, in symbols F ≡σ G, iff {U(E) | E ∈ σ(F)} = {U(E) | E ∈ σ(G)}.

We are now ready to give a formal notion of a replacement pattern. In order
to define a replacement for a class of (similar) graphs instead of just a single
graph in our replacement pattern we have to define a replacement for each of
the graphs in the class. That is, a replacement pattern PC consists of pairs
(F, F ′) that coincide on arguments not in C. When applying such a pattern PC

to a larger AF G some sub-AF M of G that is isomorphic to F is replaced by a
graph isomorphic to F ′. We first give a formal definition of replacement patterns
and then define how to apply such patterns to AFs.

Definition 14 (Replacement pattern). A replacement pattern PC for C ⊆ U
is a set of pairs (F, F ′) of AFs F, F ′ such that AF ⊆ U , AF ′ ⊆ U ∪ Um, and F
and F ′ coincide on the arguments not contained in Cm = C ∪ {mS | S ⊆ C},
i.e., a replacement pattern is of the form

PC = {(F, F ′) | F, F ′ AFs, F \ C = F ′ \ Cm},

such that for any (F1, F
′
1), (F2, F

′
2) ∈ PC , F1 �= F2.

For preprocessing, we need to detect an instantiation of a pattern PC as what
we call C-encircling sub-AF of an AF G, i.e. a sub-AF F such that C might be
connected to F but is not connected to G\F , and then apply the pattern in the
form of a replacement.

Definition 15 (C-encircling sub-AF). An AF F is a C-encircling sub-AF of
an AF G if (i) F � G and (ii) C⊕

G ∪C−
G ⊆ AF , i.e., C is not connected to AG\F

in G.

Now a match of a pattern PC = {(Fi, F
′
i) | 1 ≤ i ≤ k} on G is a C ′-encircling

sub-AF I of G that is isomorphic to some Fi where C ′ is the image of C under
the isomorphism from Fi to I.

Definition 16 (Applying PC). Given AF G and pattern PC , a match of PC

on G is a tuple (F, F ′, I, α), where (F, F ′) ∈ PC , I is a C ′-encircling sub-AF of
G, and I is isomorphic to F via isomorphism α : AF → AG such that α(C) = C ′.
We say a pattern PC can be applied to G if there exists a match of PC on G.

122 W. Dvořák et al.

An application PC [G] of pattern PC on G then picks a match (F, F ′, I, α) of PC

on G and returns G[I/α(F ′)], where α is extended to arguments mS by mapping
them to mα(S).

The following example illustrates these concepts.

Example 1. Consider the replacement pattern PY
{a,b,c} containing the pair (F, F ′)

with F =({a, b, c, d, e},
{
(d, a), (a, b), (b, c), (c, e), (e, d)

}
) and F ′ =M(F\{(b, c)},

a, c) = ({m{a,c}, b, d, e}, {(d,m{a,c}), (m{a,c}, b), (m{a,c}, e), (e, d)}). Moreover,
consider the AF G depicted in in Fig. 1 (left). Now observe that the tuple
(F, F ′, I, α) is a match of PY

{a,b,c} on G with I = G ∩ {x1, . . . , x5} and α =
{a �→ x1, b �→ x2, c �→ x3, d �→ x5, e �→ x4}. Hence PY

{a,b,c} can be applied
to G, resulting in the AF G[I/α(F ′)] = G′ depicted in Fig. 1 (center). For
stable semantics, we can verify that this replacement is equivalence preserv-
ing, since stb(G) = {{x0, x1, x3}} and stb(G′) = {{x0,m{x1,x3}}}, meaning that
{U(E) | E ∈ stb(G)} = {U(E) | E ∈ stb(G′)} = {{x0, x1, x3}}. Note, however,
that U(G′) �= G, since U(G′) contains the attacks (x3, x2), (x5, x3), and (x1, x4),
which are not present in G. ♦

Naturally, a replacement pattern is faithful only if each of its possible appli-
cations is an equivalence-preserving modification.

Definition 17 (Faithful pattern). A replacement pattern PC is σ-faithful iff
PC [G] ≡σ G for all G over U ∪ Um.

Testing whether a replacement pattern is faithful can be reduced to testing C-
relativized equivalence of the pairs of AFs covered by the pattern. This applies
directly to patterns that do not involve the merging of arguments, and requires
unpacking for patterns that do.

x0

x1

x5

x2

x4

x3

⇒
x0

m{x1,x3}

x5

x2

x4

⇒
x0

m{x1,x3}

x5

x2

Fig. 1. Applying (i) the 3-path pattern (cf. Example 1) and (ii) the 3-loop pattern (cf.
Example 3).

Theorem 2. For semantics σ ∈ {stb, prf, com} and replacement pattern PC

such that for each (F, F ′) ∈ PC , AF ′ ∩ S = ∅ for mS ∈ AF ′ and S ∩ S′ = ∅ for
mS ,mS′ ∈ AF ′ , the following statements are equivalent.

1. PC is σ-faithful.
2. F ≡σ

C U(F ′) for each (F, F ′) ∈ PC .

We next continue our example to illustrate how one can use the above theo-
rem in order to prove our pattern to be stb-faithful.

Preprocessing Argumentation Frameworks via Replacement Patterns 123

Example 2. Again consider the replacement pattern PY
C with C = {a, b, c}

from Example 1 and assume it contains just the pair (F, F ′). Now observe
that U(F ′) = F \ {(b, c)} ∪ {(a, e), (d, c), (c, b)}. It holds that (1) AF \ C =
AU(F ′) \ C = {d, e}, (2) stbC(F) = stbC(U(F ′)) = {{a, c}, {b, d}}, and (3)
{a, c}+F \ C = {a, c}+U(F ′) \ C = {e} and {b, d}+F \ C = {b, d}+U(F ′) \ C = ∅.
It thus holds that F ≡stb

C U(F ′) (cf. Theorem 1) and, by Theorem 2, that PY
C is

stb-faithful. ♦

Proof of Theorem 2
In this section we provide a proof of Theorem 2. We call an AF that meets the
conditions of Theorem 2 an arg-unique AF.

Definition 18. An AF F over U ∪ Um is called arg-unique if AF ∩ S = ∅ for
mS ∈ AF and S ∩ S′ = ∅ for mS ,mS′ ∈ AF ′ .

We first observe that two arg-unique AFs are equivalent iff their unpackings are
equivalent. The proof of the lemma exploits the fact that the unpacked extensions
of an arg-unique AF F coincide with the extensions of its unpacking U(F).

Lemma 1. For semantics σ ∈ {stb, prf, com}, arg-unique AFs F,G over U ∪ Um

we have F ≡σ G iff U(F) ≡σ U(G).

Proof. We show that σ(U(F)) = {U(E) | E ∈ σ(F)} which implies the lemma.
⊆: Consider E ∈ σ(U(F)) and an argument mS ∈ AF ∩Um. As all arguments

in S have the same attackers in U(F) we have that either S ⊂ E or S ∩ E = ∅.
Now it is easy to verify that for the set E′ = {a | a ∈ AF ∩ E} ∪ {mS | ms ∈
AF , S ⊆ E} it holds that E′ ∈ σ(F) and U(E′) = E.

⊇: For E ∈ σ(F) it is easy to verify that U(E) ∈ σ(U(F)). In particular, mS

is defended by E in F iff each a ∈ S is defended by U(E) in U(F). ��
We next extend the notion of C-relativized equivalence to AFs over U ∪ Um.

Definition 19. Given a semantics σ and C ⊆ U ∪Um. Two AFs F and G over
U ∪ Um are C-relativized equivalent w.r.t. σ (F ≡σ

C G) iff F ∪ H ≡σ G ∪ H for
H over (U ∪ Um) \ C.

Notice that if F,G are AFs over U the above notion coincides with the
earlier notion of C-relativized equivalence. We next show that a pattern with
core C is faithful iff the two AFs in each of the pattern’s pairs are Cm-relativized
equivalent.

Proposition 1. For C ⊆ U and Cm = C ∪ {mS | S ⊆ C} the pattern PC is
σ-faithful iff F ≡σ

Cm
F ′ for each (F, F ′) ∈ PC .

Proof. 2 ⇒ (1) We have to show PC [G] ≡σ G, for every G and every possible
match. Consider a match (F, F ′, I, α). First notice that F ≡σ

Cm
F ′ implies I =

α(F) ≡σ
C′ α(F ′) = I ′ (with C ′ = α(C)) as the equivalence does not depend on

the names of arguments from U , but only on whether they are in the core C, resp.

124 W. Dvořák et al.

C ′, which is maintained by α. By the definition of ≡σ
C′ we have I ∪H ≡σ I ′ ∪H

for all H that do not contain arguments from C ′
m. Finally, by setting H = G\C ′

we obtain that PC [G] ≡σ G.
1 ⇒ (2) If F �≡σ

C F ′ for some (F, F ′) ∈ PC there is an AF H over (U ∪ Um) \
(C ∪ {mS | S ⊆ C} such that F ∪ H �≡σ F ′ ∪ H. Now as there is a match with
PC [F ∪ H] = F ′ ∪ H we obtain that PC is not σ-faithful. ��

Finally, for arg-unique AFs the C-relativized equivalence tests for (F, F ′) ∈
PC can be reduced to C-relativized equivalence tests on AFs over U . That is, to
the case already studied and well characterised in [5].

Lemma 2. For semantics σ ∈ {stb, prf, com}, cores C ⊆ U , Cm = C ∪ {mS |
S ⊆ C}, AF F over U and arg-unique AF F ′ over U ∪ Um such that F \ C =
F ′ \ Cm, the following statements are equivalent:

1. F ≡σ
Cm

F ′.
2. F ≡σ

C U(F ′).

The proof of the lemma is based on the observation that given an AF H over
U ∪ Um such that F �≡σ

Cm
F ′, by exploiting Lemma 1 we can construct an AF

H ′ over U showing F �≡σ
C U(F ′), and vice versa.

Proof. 2 ⇒ (1) W.l.o.g. assume there are E and H such that E ∈ σ(F ∪ H)
but E �∈ σ(F ′ ∪ H). It is easy to verify that U(F ′ ∪ H) = U(F ′) ∪ U(H) (notice
that F ′

A ∩ HA ⊆ FA ⊆ U). By Lemma 1 we have U(F ∪ H) �≡σ U(F ′ ∪ H).
Thus there is an E′ such that E′ ∈ σ(F ∪ U(H)) but E′ �∈ σ(U(F ′) ∪ U(H)),
i.e., U(F) ∪ U(H) �≡σ U(F ′) ∪ U(H). Moreover, by construction, U(H) does not
contain arguments from U(C). Hence, U(F) �≡σ

U(C) U(F ′).
1 ⇒ (2) W.l.o.g. assume there is a set E and an AF H such that E ∈ σ(F ∪H)

but E �∈ σ(U(F ′)∪H). As AF \C = AF ′ \Cm the set AF ′ \Cm does not contain
merged arguments. Thus we have U(F ′) ∪ H = U(F ′ ∪ H) and, by Lemma 1,
we have E ∈ σ(F ∪ H) but E �∈ σ(U(F ′) ∪ H), i.e., F ∪ H �≡ F ′ ∪ H. Hence,
F �≡σ

Cm
F ′. ��

Finally, Theorem 2 is immediate by combining Proposition 1 with Lemma 2.

3.2 Formalizing Concrete Patterns

We will now present our concrete replacement patterns. For this, we will use the
concept of a lagging. Intuitively, for a given core-AF F a lagging FL is an AF
extending F by new arguments that either attack or are attacked by arguments
in F . When defining our patterns we are typically interested in all laggings of a
specific core-AF satisfying certain conditions.

Definition 20. Given an AF F = (A,R), a lagging of F is any AF FL =
(A′, R′) with A ⊆ A′ such that FL ∩ A = F and A⊕

FL
∪ A−

FL
= A′. Given a

lagging FL, we sometimes refer to F as the core-AF.

Preprocessing Argumentation Frameworks via Replacement Patterns 125

For instance, the AF F in the pattern of Example 1 is a lagging of the. AF
({a, b, c}, {(a, b), (b, c)}).

We have already given a glimpse on one of the patterns in Examples 1 and 2.
There, the pattern contained just a single pair of AFs (F, F ′), where the core
contained the directed path a → b → c. The insight that, given that b and
c are otherwise unattacked, in such cases a and c can be merged as they will
appear together in every (stable) extension, is the central concept to the following
pattern.

Definition 21. Let F3P = ({a, b, c}, {(a, b), (b, c)}) be the core-AF. The 3-path
pattern is given by

P 3P
{a,b,c} = {(F, F ′) | F is a lagging of F3P ,

{b, c}−
F = {a, b}, F ′ = M(F \ {(b, c)}, a, c)}.

In words, the 3-path pattern concerns all AFs which contain a proper 3-path
a → b → c such that each argument x different from a, b, c is adjacent to this
3-path. In order to contain the 3-path properly, x can only attack a, but it can be
attacked by a, b, or c. Each such AF F is replaced by merging a and c, without
taking b → c into account. Loosely speaking we aim to replace in F the path
a → b → c by m{a,c} → b.

Proposition 2. P 3P
{a,b,c} is a stb-faithful replacement pattern.

Proof. Due to Theorem 2 it suffices to show that F ≡σ
C U(F ′) holds for each

(F, F ′) ∈ P 3P
C , where C = {a, b, c}. Consider an arbitrary (F, F ′) ∈ P 3P

C . First
note that, since F ′ = M(F \ {(b, c)}, a, c), U(F ′) = (AF , RF \ {(b, c)} ∪ {(a, x) |
(c, x) ∈ RF } ∪ {(c, x) | (a, x) ∈ RF } ∪ {(x, c) | (x, a) ∈ RF }. Let G = U(F ′).

For F ≡σ
C G we need to show that (1) if stbC(F) �= ∅ then AF \ C = AG \ C,

(2) stbC(F) = stbC(G), and (3) for all E ∈ stbC(F), E+
F \ C = E+

G \ C.
(1) is immediate by AG = AF . For (2), consider an arbitrary E ∈ stbC(F). By

F ∩ C = F3P (F is a lagging of F3P) and {b, c}−
F = {a, b}, we have {b}−

F = {a}.
Hence either (i) a ∈ E or (ii) b ∈ E. In case of (i) we get, since {c}−

F = {b}
and a attacks b, that also c ∈ E. As attacks among arguments AF \ C remain
unchanged in G, i.e. RF \ (C × C) = RG \ (C × C), we get that E ∈ cf(G).
As (a, b) ∈ RG, also E ∈ stbC(G). In case of (ii) there must be some x ∈ E
with (x, a) ∈ RF . By construction of G, then (x, a), (x, c) ∈ RG, hence E+

G ⊇ C.
Consequently, E ∈ stbC(G). Hence stbC(F) ⊆ stbC(G). For the other direction,
consider an arbitrary E ∈ stbC(G). By the same reason as above, either (i) a ∈ E
or (ii) b ∈ E. For (i) observe that, for each x ∈ AG, (x, c) ∈ RG iff (x, a) ∈ RG.
Hence also c ∈ E. By RF \ (C × C) = RG \ (C × C) and (a, b) ∈ AF , it follows
that E ∈ stbC(F). In case of (ii) there must be some x ∈ E with (x, a) ∈ RG,
hence also (x, a) ∈ RF . Moreover, (b, c) ∈ RF , hence E ∈ stbC(F).

For (3) let E ∈ stbC(F). As before, we can distinguish between (i) a, c ∈ E
and (ii) b ∈ E. Now by construction of G it holds that S+

F \ C = S+
G \ C for any

S ⊇ {a, c}, in particular for E. Also in case of (ii) we get E+
F \C = E+

G \C since
a, c /∈ E.

We can conclude that F ≡stb
C G and P 3P

C is stb-faithful. ��

126 W. Dvořák et al.

Another candidate for simplification are odd-length cycles. More concretely,
in every occurrence of a directed cycle of length 3, a → b → c → a, where only a
is attacked from the outside, one can disregard c as well as the attack (a, b) when
adding a self-loop to a. This is formalized in the following replacement pattern.

Definition 22. Let F3L = ({a, b, c}, {(a, b), (b, c), (c, a)}) be the core-AF. The
3-loop pattern is given by

P 3L
{a,b,c} ={(F, F ′) | F \ {(a, a), (c, c)} is a lagging of F3L,

{b, c}−
F ⊆ {a, b, c}, F ′ = (F \ {c, (a, b)}) ∪ {(a, a)}.

Example 3. Consider the AF G′ in Fig. 1 (center), which we obtained through
application of P 3P

{a,b,c} (cf. Example 1). We can now apply P 3L
{a,b,c} on G′: the tuple

(F, F ′, I, α) is a match of P 3L
{a,b,c} on G′ with F = F3L∪({a, b, d, e}, {(a, d), (d, a),

(b, e)}) (a lagging of F3L), F ′ = F \ {c, (a, b)} ∪ {(a, a)}, I = G′, and α = {a �→
x5, b �→ m{x1,x3}, c �→ x4, d �→ x0, e �→ x2}. One can check that (F, F ′) ∈ P 3L

{a,b,c}
and I is isomorphic to F via α. The result is the AF G′′ depicted in Fig. 1 (right).
It holds that G′ ≡stb G′′ since {U(E) | E ∈ stb(G′)} = {U(E) | E ∈ stb(G′′)} =
{{x0, x1, x3}}. ♦

Now consider two arguments in arbitrary attack relation, one of them being
otherwise unattacked. Then, any stable extension must contain one of the two
arguments. Hence, under stb, we can safely remove any argument that is attacked
by the two without attacking back, together with all incident attacks. The fol-
lowing pattern expresses this simplification.

Definition 23. Let F3C = ({a1, a2, b}, {(a1, b), (a2, b)}) be the core-AF. The
3-cone pattern is given by

P 3C
{a1,a2,b} ={(F, F ′) | F \ {(a1, a2), (a2, a1)} is a lagging of F3C ,

{a2}−
F ⊆ {a1}, F ′ = F \ {b}}.

The pattern P 3C
{a1,a2,b} is illustrated in Fig. 2. Solid edges represent necessary

attacks while optional attacks are given by dotted edges.
The next pattern expresses that two arguments which have the same attackers

and are not conflicting with each other can be merged to a single argument.

Definition 24. Let F2to1 = ({a, b}, ∅) be the core-AF. The 2-to-1 pattern is
given by

P 2to1
{a,b} ={(F, F ′) | F is a lagging of F2to1,

{a}−
F = {b}−

F , F ′ = M(F, a, b)}.

The pattern P 2to1
{a,b} is illustrated in Fig. 3.

All patterns presented so far can be generalized. We exemplify this by pre-
senting the patterns 4-path, 4-cone, and 3-to-2, extending 3-path, 3-cone, and
2-to-1, respectively.

Preprocessing Argumentation Frameworks via Replacement Patterns 127

a1 a2

b

a1 a2

⇒

Fig. 2. The pattern P 3C
{a1,a2,b}.

First, in the 4-path pattern the core-AF is the directed path a → b → c →
d and, given that beside (a, d) there are no further attacks among the core
arguments, a, c as well as b, d can be merged as they will appear together in
every (stable) extension. Loosely speaking we aim to replace in F the 4-path
a → b → c → d by the 2-path m{a,c} → m{b,d}.

Definition 25. Let F4P = ({a, b, c, d}, {(a, b), (b, c), (c, d)}) be the core-AF. The
4-path pattern is given by

P 4P
{a,b,c,d} = {(F, F ′) | F \ {(a, d)} is a lagging of F4P ,

{b, c, d}−
F = {a, b, c}, F ′ = M(M(F \ {(b, c)}, a, c), b, d)}.

In the 4-cone pattern we consider three arguments in arbitrary attack relation,
one of them being otherwise unattacked. Each stable extension contains at least
one of the three arguments and we can remove any argument that is attacked
by the three without attacking back.

Definition 26. Let F4C = ({a1, a2, a3, b}, {(a1, b), (a2, b), (a3, b)}) be the core-
AF. The 4-cone pattern is given by

P 4C
{a1,a2,a3,b} = {(F, F ′) | F \ {(ai, aj) | i �= j ∈{1, 2, 3}}

is a lagging of F4G, {a3}−
F ⊆ {a1, a2}, F ′ = F \ {b}}.

a b ⇒ m{a,b}

Fig. 3. The pattern P 2to1
{a,b}.

Finally, in the 3-to-2 pattern we consider three arguments a1, a2, b that are
attacked by the same arguments, and only a1 and a2 are conflicting. Each stable
extension can only accept one of a1 and a2 but whenever accepting one of them
also accepts b. Thus we can safely replace the three arguments by two merged
arguments m{a1,b},m{a2,b}.

128 W. Dvořák et al.

Definition 27. Let F3to2=({a1, a2, b}, ∅) be the core-AF. The 3-to-2 pattern is
given by

P 3to2
{a1,a2,b} = {(F, (A′, R′)) | F \ {(a1, a2), (a2, a1)} is a lagging of F3to2,

{a1}−
F = {a2}−

F = {b}−
F },

where A′ = (AG \ {a1, a2, b}) ∪ {m{a1,b},m{a2,b}} and

R′ = RG ∩ (A′ × A′) ∪ {(m{a,b}, c) | a ∈ {a1, a2} ∧ ((a, c) ∈ RG ∨ (b, c) ∈ RG)} ∪
{(c, m{a1,b}), (c, m{a2,b}) | c ∈ {b}−

F }.

Patterns for stb Semantics. This concludes our replacement patterns for stable
semantics. For preprocessing AFs, we apply these patterns recursively until no
match for any of the patterns can be found. Notice that by the transitivity of the
equivalence relation the recursive application of faithful replacement patterns is
also equivalence preserving. For instance we simplify a 5-cycle by first applying
the 3-path pattern and then the 3-loop pattern (cf. Fig. 1). Notice that, (a) when
searching for matches of the pattern we only need to check whether a graph from
a finite set of finite graphs appears as sub-AF and (b) with each replacement
we delete either arguments or attacks, and thus the preprocessing is indeed in
polynomial-time.

Patterns for prf and com Semantics. While the path, 2to1, and 3to2 patterns
are also prf-preserving and com-preserving (cf. Table 1) the remaining patterns,
in general, are not. However, by a small modification, we can adapt the 3-loop
pattern to work for prf as well as com as follows. Given an occurrence of a
directed cycle of length 3, a → b → c → a, where only a is attacked from the
outside, we can safely add a self-loop to a. In contrast to stable semantics we
have to maintain that attack (a, b), and cannot simply disregard c but rather
have to merge a and c, i.e. we still can delete c but for each attack (c, x) in the
original AF we have an attack (a, x) in the simplified AF. This is formalized
in the following replacement pattern. Notice that we can avoid using a merged
argument m{a,c} as both a and c cannot appear in any extension.

Definition 28. Let F3L = ({a, b, c}, {(a, b), (b, c), (c, a)}) be the core-AF. The
3-loop pattern for com and prf is given by

P 3L′
{a,b,c} = {(F, F ′) | F \ {(a, a), (c, c)} is a lagging of F3L,

{b, c}−
F ⊆ {a, b, c}, F ′ = (F \ {c}) ∪ {(a, x) | (c, x) ∈ RF }.

In order to adapt the 3-cone and 4-cone pattern for prf, one additionally requires
that one of the arguments ai defends itself against all attackers. However, there
is no such fix for com semantics.

Theorem 3. The presented patterns are σ-preserving as depicted in Table 1.

The proofs except for P 3to2 exploit Theorem 2 and the results of [5], following
the same schema as the proof of Proposition 2. Finally, we note that further
generalizations of our patterns are possible, e.g., extending the 3-loop pattern
to 5-loop.

Preprocessing Argumentation Frameworks via Replacement Patterns 129

Table 1. σ-faithfulness of replacement patterns.

3-path 3-loop 3-cone 2to1 4-path 4-cone 3to2

stb � � � � � � �
prf � (�) (�) � � (�) �
com � (�) × � � × �

4 Empirical Evaluation

We overview first empirical results of the potential of replacement patterns as an
AF preprocessing approach in the context of extension enumeration. Our main
goal was to investigate to which extent applying the patterns affects the AF
solver running times.

In terms of AF semantics we overview results under stable and preferred
semantics. As preprocessing, we applied all the presented patterns (cf. Table 1).
For these first experiments, we implemented a software prototype for the appli-
cation of the replacement patterns in a somewhat brute-force way. In particular,
we encoded the search for a set of arguments to which a specific replacement
pattern is applicable through an answer set programming (ASP) encoding, and
iterated through all considered replacement patterns one-by-one until no appli-
cable set of arguments was reported by the ASP solver Clingo (version 5.3.0).
Note that this approach would require the ASP solver to prove in the end that
a fixpoint is reached, i.e., that no replacements are applicable. To ensure the
relatively fast termination of the preprocessing loop, we enforced a time limit of
5 s on each of the ASP solver calls, and terminated preprocessing for a particular
pattern as soon as the ASP solver timed out. The experiments were run on Intel
Xeon E5-2680 v4 2.4 GHz nodes with 128 GB RAM under CentOS 7. A per-
instance timeout of 1800 s was enforced on each solver, with the preprocessing
times included.

As benchmarks, we used a total of 440 AFs based on the Watts-Strogatz
model with the number of arguments n ∈ {500, 600, . . . , 1500} and parameters
k ∈ {�log2(n)� − 1, �log2(n)� + 1}, β ∈ {0.1, 0.3, . . . , 0.9}, and probCycles ∈
{0.1, 0.3, . . . , 0.7}, generated using AFBenchGen2 [7] that was also employed in
the 2017 ICCMA argumentation solver competition.

As for size reductions achieved on these instances, on average 11% of argu-
ments and 17% of attacks were removed, with the maximum proportions of
deleted arguments and attacks being 72% and 80%, respectively.

Runtime comparisons with and without preprocessing under stable seman-
tics are shown for ArgTools [15], Heureka [21], and CEGARTIX [10] in Fig. 4,
with the runtime of the original instance on the x-axis and the runtime of the
preprocessed instance on the y-axis (with preprocessing time included). Apply-
ing the patterns has a strong effect on the runtimes of the native AF solvers
ArgTools (Fig. 4 left) and Heureka (Fig. 4 center): some instances which origi-
nally took over 500 s for solving can now be solved in under 10 s. The number of

130 W. Dvořák et al.

1 5 10 50 500

1
5

10
50

50
0

argtools

runtime without preprocessing (s)

ru
nt

im
e

w
ith

 p
re

pr
oc

es
si

ng
 (s

)

1 5 10 50 500
1

5
10

50
50

0

heureka

runtime without preprocessing (s)

ru
nt

im
e

w
ith

 p
re

pr
oc

es
si

ng
 (s

)

1 5 10 50 500

1
5

10
50

50
0

cegartix

runtime without preprocessing (s)

ru
nt

im
e

w
ith

 p
re

pr
oc

es
si

ng
 (s

)

Fig. 4. Effect of preprocessing on runtimes of solvers under stable semantics.

1 5 10 50 500

1
5

10
50

50
0

argtools

runtime without preprocessing (s)

ru
nt

im
e

w
ith

 p
re

pr
oc

es
si

ng
 (s

)

1 5 10 50 500

1
5

10
50

50
0

heureka

runtime without preprocessing (s)

ru
nt

im
e

w
ith

 p
re

pr
oc

es
si

ng
 (s

)

1 5 10 50 500

1
5

10
50

50
0

cegartix

runtime without preprocessing (s)

ru
nt

im
e

w
ith

 p
re

pr
oc

es
si

ng
 (s

)

Fig. 5. Effect of preprocessing on runtimes of solvers under preferred semantics.

timeouts also is reduced: from 141 to 134 for ArgTools and from 251 to 243 for
Heureka. The contributions of preprocessing to the running times is fairly small
even using the somewhat brute-force prototype implementation; the preprocess-
ing overhead is from some seconds to around 20 s at most. This explains the
increased running times on the easiest of the benchmark instances. The positive
impact of preprocessing is evident on the harder (expectedly more interesting)
benchmark instances. These results demonstrate the potential of AF preprocess-
ing for improving the competitiveness of native AF solvers. In contrast, prepro-
cessing appears to have no noticeable impact on the the SAT-based CEGARTIX
system (Fig. 4 right).

Results for preferred semantics are shown in Fig. 5. Again, there seems to
be no effect on CEGARTIX, and the effect on ArgTools is more modest when
compared to the results for stable semantics. However, the effect on Heureka is
similar to stable semantics, as it is able to solve instances which originally timed
out without preprocessing, although Heureka seems to perform weakly on this
particular set of instances under preferred semantics. As for size reductions, on
average 6% of arguments and 9% of attacks were removed, with the maximum
values being 62% and 72%, respectively.

Preprocessing Argumentation Frameworks via Replacement Patterns 131

5 Conclusions

In this paper, we introduced distinct preprocessing techniques for abstract argu-
mentation frameworks which provide a solver-independent approach towards
more efficient AF solving. Our formal framework of replacement patterns allows
for identifying local simplifications that are faithful w.r.t. standard semantics
for AFs. We provided a suite of concrete replacement patterns and evaluated
their impact with encouraging results especially for native AF solvers. So far we
focused on equivalence-preserving preprocessing that allows for an easy recon-
struction of all extensions of the original AF. We see even more potential for
preprocessing in the context of credulous and skeptical acceptance, where faith-
fulness is required only in terms of a particular query argument; in that context,
also the concept of S-equivalence of input/output AFs [2,16] deserves attention.
Motivated by the first empirical results presented in this work, we are planning on
engineering a fully-fledged stand-alone preprocessor, providing optimized imple-
mentations of applications of both the replacement patterns presented in this
work as well as other forms of native AF preprocessing techniques. Further-
more, preprocessing rules (or restricted forms of them) may also be integrated
into solvers for adding reasoning to the core search routine, which is another
interesting topic for further work.

Acknowledgments. This work was financially supported by Academy of Finland
grants 276412 and 312662 (M.J. and A.N.), the Austrian Science Fund (FWF) grants
P30168-N31 and I2854 (W.D. and S.W.), and University of Helsinki Doctoral Pro-
gramme in Computer Science (A.N.).

References

1. Atkinson, K., et al.: Towards artificial argumentation. AI Mag. 38(3), 25–36 (2017)
2. Baroni, P., Boella, G., Cerutti, F., Giacomin, M., van der Torre, L., Villata, S.:

On the input/output behavior of argumentation frameworks. Artif. Intell. 217,
144–197 (2014)

3. Baroni, P., Caminada, M., Giacomin, M.: An introduction to argumentation
semantics. Knowl. Eng. Rev. 26(4), 365–410 (2011)

4. Baroni, P., Gabbay, D., Giacomin, M., van der Torre, L. (eds.): Handbook of Formal
Argumentation. College Publications (2018)

5. Baumann, R., Dvořák, W., Linsbichler, T., Woltran, S.: A general notion of equiv-
alence for abstract argumentation. In: Proceedings of IJCAI, pp. 800–806. ijcai.org
(2017)

6. Cerutti, F., Gaggl, S.A., Thimm, M., Wallner, J.P.: Foundations of implementa-
tions for formal argumentation. IfCoLog J. Log. Appl. 4(8), 2623–2707 (2017)

7. Cerutti, F., Giacomin, M., Vallati, M.: Generating structured argumentation
frameworks: AFBenchGen2. In: Proceedings of COMMA. Frontiers in Artificial
Intelligence and Applications, vol. 287, pp. 467–468. IOS Press (2016)

8. Cerutti, F., Vallati, M., Giacomin, M.: Where are we now? State of the art
and future trends of solvers for hard argumentation problems. In: Proceedings
of COMMA. Frontiers in Artificial Intelligence and Applications, vol. 287, pp.
207–218. IOS Press (2016)

132 W. Dvořák et al.

9. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2),
321–358 (1995)

10. Dvořák, W., Järvisalo, M., Wallner, J.P., Woltran, S.: Complexity-sensitive deci-
sion procedures for abstract argumentation. Artif. Intell. 206, 53–78 (2014)

11. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause
elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp.
61–75. Springer, Heidelberg (2005). https://doi.org/10.1007/11499107 5

12. Egly, U., Gaggl, S.A., Woltran, S.: Answer-set programming encodings for argu-
mentation frameworks. Argum. Comput. 1(2), 147–177 (2010)

13. Gaggl, S.A., Linsbichler, T., Maratea, M., Woltran, S.: Introducing the second
international competition on computational models of argumentation. In: Proceed-
ings of SAFA. CEUR Workshop Proceedings, vol. 1672, pp. 4–9. CEUR-WS.org
(2016)

14. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Advanced preprocessing for
answer set solving. In: Proceedings of ECAI. Frontiers in Artificial Intelligence and
Applications, vol. 178, pp. 15–19. IOS Press (2008)

15. Geilen, N., Thimm, M.: Heureka: a general heuristic backtracking solver for
abstract argumentation. In: Black, E., Modgil, S., Oren, N. (eds.) TAFA 2017.
LNCS (LNAI), vol. 10757, pp. 143–149. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-75553-3 10

16. Giacomin, M., Linsbichler, T., Woltran, S.: On the functional completeness of
argumentation semantics. In: Proceedings of KR, pp. 43–52. AAAI Press (2016)

17. Heule, M., Järvisalo, M., Lonsing, F., Seidl, M., Biere, A.: Clause elimination for
SAT and QSAT. J. Artif. Intell. Res. 53, 127–168 (2015)

18. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 355–370. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3 28

19. Korhonen, T., Berg, J., Saikko, P., Järvisalo, M.: MaxPre: an extended MaxSAT
preprocessor. In: Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp.
449–456. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66263-3 28

20. Lonsing, F., Bacchus, F., Biere, A., Egly, U., Seidl, M.: Enhancing search-based
QBF solving by dynamic blocked clause elimination. In: Davis, M., Fehnker,
A., McIver, A., Voronkov, A. (eds.) LPAR 2015. LNCS, vol. 9450, pp. 418–433.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48899-7 29

21. Nofal, S., Atkinson, K., Dunne, P.E.: Looking-ahead in backtracking algorithms
for abstract argumentation. Int. J. Approx. Reason. 78, 265–282 (2016)

22. Thimm, M., Villata, S.: The first international competition on computational mod-
els of argumentation: results and analysis. Artif. Intell. 252, 267–294 (2017)

https://doi.org/10.1007/11499107_5
https://doi.org/10.1007/978-3-319-75553-3_10
https://doi.org/10.1007/978-3-319-75553-3_10
https://doi.org/10.1007/978-3-642-31365-3_28
https://doi.org/10.1007/978-3-319-66263-3_28
https://doi.org/10.1007/978-3-662-48899-7_29

Manipulating Skeptical and Credulous
Consequences When Merging Beliefs

Adrian Haret and Johannes P. Wallner(B)

Institute of Logic and Computation, TU Wien, Vienna, Austria
{haret,wallner}@dbai.tuwien.ac.at

Abstract. Automated reasoning techniques for multi-agent scenarios
need to address the possibility that procedures for collective decision
making may fall prey to manipulation by self-interested agents. In this
paper we study manipulation in the context of belief merging, a frame-
work for aggregating agents’ positions, or beliefs, with respect to a set of
issues represented by propositional atoms. Within this framework agents
submit their positions as propositional formulas that are to be aggregated
into a single formula. To reach a final decision, we employ well-established
acceptance notions and extract the skeptical and credulous consequences
(i.e., atoms true in all and, respectively, at least one model) of the result-
ing formula. We find that, even in restricted cases, most aggregation pro-
cedures are vulnerable to manipulation by an agent acting strategically,
i.e., one that is able to submit a formula not representing its true posi-
tion. Our results apply when the goal of such an agent is either that of
(i) affecting an atom’s skeptical or credulous acceptance status, or (ii)
improving its satisfaction with the result. With respect to latter task,
we extend existing work on manipulation with new satisfaction indices,
based on skeptical and credulous reasoning. We also study the extent to
which an agent can influence the outcome of the aggregation, and show
that manipulation can often be achieved by submitting a complete for-
mula (i.e., a formula having exactly one model), yet, the complexity of
finding such a formula resides, in the general case, on the second level of
the polynomial hierarchy.

Keywords: Belief merging · Manipulation · Complexity

1 Introduction

Collective decision making often involves the aggregation of multiple, possibly
conflicting viewpoints. Apart from the matter of how to represent and aggre-
gate such viewpoints, a looming concern in any deliberation scenario is that the
agents involved may have an incentive to misrepresent their positions, and thus
manipulate the aggregation result, if doing so can bring an advantage. Hence, an
understanding of the potential for manipulation of any aggregation procedure is
a prerequisite to its successful deployment in real world contexts.

c© Springer Nature Switzerland AG 2019
F. Calimeri et al. (Eds.): JELIA 2019, LNAI 11468, pp. 133–150, 2019.
https://doi.org/10.1007/978-3-030-19570-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19570-0_9&domain=pdf
http://orcid.org/0000-0002-0247-5590
http://orcid.org/0000-0002-3051-1966
https://doi.org/10.1007/978-3-030-19570-0_9

134 A. Haret and J. P. Wallner

If agents deliberate with respect to a small number of independent alterna-
tives, as is the case in a typical election, aggregation [25] and manipulation [6,13]
are well understood due to extensive research in the field of Social Choice. But
if agents have to decide on multiple interconnected issues at the same time (as
when electing a committee, or choosing a product specification), then the num-
ber of possible alternatives can grow too large to expect agents to have explicit
preferences over the whole set. The problem, known as combinatorial voting
in Social Choice [22], acquires a knowledge representation dimension as agents
need compact ways to express positions over a large domain, and automatizable
procedures to perform reasoning with such preferences.

Here we use belief merging as a framework for aggregating complex positions
over all possible assignments of values to a set of propositional atoms [19,21].
Propositional atoms, in this setting, encode the issues deliberated upon, while
truth-value assignments to atoms, also called interpretations, encode combina-
tions of issues that could make it into the final result, and over which agents
can have preferences. In this, propositional logic suggests itself as a natural
choice for representing the ways in which issues are interconnected, and lends
itself naturally to the modeling of aggregation problems inspired by Social
Choice [8,9,11,12,15].

Within the belief merging framework each agent i submits a propositional
formula Ki, which stands for i’s reported belief about what are the best inter-
pretations with respect to the issues being deliberated upon. A merging operator
then aggregates the individual reported beliefs, in the presence of an integrity
constraint that must be satisfied. Its result is a set of “winning” interpretations,
representable as a propositional formula, that respect the integrity constraint of
the merging process.

In general, the set of winning interpretations is not always expected to be
the final step in a reasoning process: without further means, such a set of inter-
pretations does not give a direct answer to which atoms (alternatives) are to be
ultimately accepted. One can view the winning set as a “tie” between all the
interpretations in the set. If the decision procedure needs to be explicit about
every issue under consideration, then a further reasoning mechanism is required,
amounting to a method of breaking ties. To this end, we employ well established
acceptance notions from the field of knowledge representation and reasoning:
skeptical and credulous consequences [24]. An atom is a skeptical consequence of
a set of interpretations if the atom is part of all interpretations, and a credulous
consequence if the atom is part of at least one interpretation in the set. With
regards to propositional formulas, skeptical reasoning is equivalent to (atom-
wise) classical logical entailment.

Example 1. A collective of four agents must decide who to give an award to.
There are three possible candidates, represented by propositional atoms a, b
and c, and the collective is operating under the constraint μ = a ∨ b ∨ c, i.e.,
at least one (and possibly more) of the candidates can receive the award. The
decision is arrived at by first aggregating the agents’ beliefs under a known
procedure, called a belief merging operator (details of which are reserved for later;

Manipulating Skeptical and Credulous Consequences When Merging Beliefs 135

see, e.g., Example 2). This produces a collective belief, potentially satisfiable
by more than one interpretation: since this does not lead to an unequivocal
decision, an additional tie-breaking step is required. This tie-breaking step can
be thought of as a general strategy, or attitude, the collective adopts for dealing
with uncertainty. In this case, we assume the collective affects a conservative (or,
as we will call it, skeptical) approach: if there is any uncertainty with respect to
a candidate, the candidate is not given the award.

The beliefs of the agents are represented by propositional formulas, as follows.
Agent 1 believes candidate b should get the award, is against candidate a and
has no opinion with respect to candidate c: this is represented by the formula
K1 = ¬a ∧ b. Agents 2 and 3 are represented by formulas K2 = a ∧ (b ↔ ¬c)
and K3 = b ∧ (a → c), respectively. We assume that agent 4 is what we will call
a strategic agent, i.e., it is not itself compelled to submit its true belief. Agent
4’s true belief happens to be KT

4 = a ∧ ¬b ∧ ¬c and, were it to actually submit
KT

4 , the result under the aggregation procedure would be b ∧ ¬c: candidate b
surely gets the award, c is ruled out and there is no verdict on a. In other words,
this particular aggregation procedure offers up two winning configurations (i.e.,
the models of the propositional formula b ∧ ¬c): one possible world in which a
gets the award, another in which a does not get it. Thus, under the conservative
tie-breaking procedure mentioned above, the final decision is arrived at by ruling
out a: the final verdict is that b is the sole recipient of the award.

Significantly, if agent 4 reports KF
4 = a ∧ ¬b ∧ c instead of KT

4 , the result
becomes a ∧ c, with the award now going to a and c. Thus, by misreporting its
own belief, agent 4 ensures that its most preferred candidate a is among the
recipients of the award.

Example 1 features the main ingredients of the framework we are working
in: propositional logic as the language in which agents state their beliefs about
the best interpretations to be included in the result, and in which the result
is expressed; aggregation via merging operators; the need for an additional tie-
breaking step; and the possibility that one agent acting strategically can influence
the result to its advantage. The example also sets up the main aims of the
paper: (i) formalizing strategic goals of possibly untruthful agents with respect to
skeptical and credulous reasoning, (ii) investigating vulnerabilities of established
merging operators to such strategic manipulation, and (iii) ways in which an
agent can change (manipulate) the outcome of the aggregation process, to the
extent that this is possible. Our main contributions are as follows:

– We propose to approach manipulation of skeptical or credulous consequences
in two ways: (a) by considering what we call constructive and destructive
manipulation, where the aim is to usher a desired atom into (or out of) the
skeptical or credulous consequences, and (b) by adapting an earlier approach
to manipulation [11] that utilizes satisfaction indices to quantify the satis-
faction of agents w.r.t. merged outcomes; our contribution here consists in
proposing new indices.

– We give the full landscape of (non-)manipulability: concretely, we show that
all main aggregation operators are manipulable (even when enforcing restric-

136 A. Haret and J. P. Wallner

tions that yielded non-manipulability in earlier works [11]); the sole exception
is the case when aggregation is done using only so-called complete bases (i.e.,
such that each formula has exactly one model) without integrity constraint
and using aggregation operator ΔdH , Σ

� (defined below), under our new satis-
faction indices.

– On the question of how an agent can manipulate, we look at general
approaches to influencing the aggregation procedure by promoting or demot-
ing interpretations. Further, we show that manipulation under skeptical con-
sequences can be carried out by the strategic agent submitting a complete
base, suggesting that manipulation does not require sophisticated proposi-
tional structures to succeed; however, in the same light, we show that decid-
ing the existence of such a complete base is a complex problem, namely a
ΣP

2 -complete problem, for destructive manipulation.

This paper improves on an earlier workshop version [17]. Proof details can be
found online [18].

2 Belief Merging

Propositional Logic. We assume a finite set P of propositional atoms, with L
the set of formulas generated from P using the usual connectives. A knowledge
base K is a formula from L. The models of a propositional formula μ are the
interpretations which satisfy it, and we write [μ] for the set of models of μ. We
typically write interpretations as words where letters are the atoms assigned
to true, e.g., {{a, b}, {b, c}} is written as {ab, bc}. If ϕ1, ϕ2 ∈ L, we say that
ϕ1 |= ϕ2 if [ϕ1] ⊆ [ϕ2], and that ϕ1 ≡ ϕ2 if [ϕ1] = [ϕ2]. A knowledge base K
is complete if it has exactly one model. A formula ϕ is consistent (satisfiable),
if [ϕ] 	= ∅. If v and w are interpretations, v�w is their symmetric difference,
defined as v�w = (v \ w) ∪ (w \ v).

Aggregation. A profile P = (K1, . . . ,Kn) is a finite tuple of consistent bases,
representing the reported beliefs of n distinct agents. We say that Ki is agent
i’s reported belief. The qualification that the Ki’s stand for reported beliefs is
important, as we want to allow for the possibility of agents participating in the
merging process with beliefs other than their truthful ones. We typically write
KT

i for agent i’s truthful belief, and KF
i for an untruthful belief that i reports

in the merging scenario.
If P1 and P2 are profiles, we write P1 + P2 for the profile obtained by append-

ing P2 to P1. If K is a base and there is no danger of ambiguity, we write P + K
instead of P + (K).

A merging operator Δ is a function mapping a profile P of consistent knowl-
edge bases and a propositional formula μ, called the constraint, to a propositional
formula, written Δμ(P). We focus on semantic operators Δd, f from the frame-
work of logic-based merging [21], the main ingredients of which are a distance
d and an aggregation function f . To define these operators we start with a dis-
tance d between interpretations. Given a distance d between interpretations, an

Manipulating Skeptical and Credulous Consequences When Merging Beliefs 137

interpretation w and a propositional formula ϕ, the distance d(w,ϕ) from w to
ϕ is defined as d(w,ϕ) = min{d(w, v) | v ∈ [ϕ]}. This makes it possible to order
interpretations w.r.t. bases: w1 ≤d

K w2 if d(w1,K) ≤ d(w2,K). For a profile
P = (K1, . . . ,Kn) and an aggregation function f , the distance df from w to
P is df (w,P) = f(d(w,K1), . . . , d(w,Kn)). That is, df (w,P) is the result of
aggregating, via f , the distances between w and each Ki ∈ P .

We assume that distances from interpretations to profiles can be compared
using an order ≤, such that, for any interpretations w1 and w2, we have either
df (w1, P) ≤ df (w2, P) or df (w2, P) ≤ df (w1, P). We say that w1 ≤d, f

P w2

if df (w1, P) ≤ df (w2, P). If d is a distance between interpretations and f is
an aggregation function, the propositional merging operator Δd, f is defined,
for any profile P and constraint μ, as [Δd, f

μ (P)] = min≤d, f
P

[μ]. The result of
aggregating the bases in P thus consists of the models of μ, also called the
winning interpretations, at minimum overall distance to the consistent bases in
P , with distances specified via d and aggregation function f .

We will focus on a sample of representative merging operators, constructed
using a set of common distance/aggregation functions. If w1 and w2 are interpre-
tations, the drastic and Hamming distances dD and dH , respectively, are defined
as follows:

dD(w1, w2) =

{
0, if w1 = w2,

1, otherwise,
dH(w1, w2) = |w1�w2|.

Table 1. Example of merging. Gray cells are the permitted models when integrity
constraint μ = (a ∨ b ∨ c). Column 1 contains all interpretations over the alphabet P =
{a, b, c}, columns 2–6 show the minimal (Hamming) distances between interpretations
and bases (see Example 1 for what the bases are). Columns 7–10 show the aggregated
distances under Σ and gmax with respect to the profiles PT and PF . Bold numbers
indicate models with minimum distance.

If X = (x1, . . . , xn) is an n-tuple of non-negative integers, the Σ, max and gmax
aggregation functions are defined as follows:

138 A. Haret and J. P. Wallner

– Σ(X) = Σn
i=1xi,

– max(X) = max({xi | 1 ≤ i ≤ n}), and
– gmax(X) is X in descending order.

For f ∈ {Σ, max} the aggregated value df (w,P) is an integer and thus interpre-
tations can be ordered w.r.t. their distance to P . For f = gmax, dgmax(v, P) is
an n-tuple made up of the numbers d(w,K1), . . . , d(w,Kn) ordered in descend-
ing order. To rank interpretations via gmax we order vectors lexicographi-
cally: (x1, . . . , xn) <lex (y1, . . . , yn) if xi < yi for the first i where xi and
yi differ. We recall that if X = (x1, . . . , xn) and Y = (y1, . . . , yn) are n-
tuples of non-negative integers, z ∈ N, π is a permutation of {1, . . . , n}
and f ∈ {Σ, max, gmax} is an aggregation function, the following properties
hold [21]: f(x1, . . . , xn) = f(xπ(1), . . . , xπ(2)) (symmetry); and if xi ≤ x′

i, then
f(x1, . . . , xi, . . . , xn) ≤ f(x1, . . . , x

′
i, . . . , xn) (monotony).

Example 2. The scenario described in Example 1 features two aggregation tasks:
one involving the profile PT = (K1,K2,K3,K

T
4), containing the true position

of agent 4; the other involving the profile PF = (K1,K2,K3,K
F
4), obtained

by agent 4 acting strategically. Both tasks occur under the same constraint
μ = a ∨ b ∨ c. Table 1 illustrates the results of aggregating profiles PT and
PF under constraint μ with operators ΔdH , Σ

μ and ΔdH , gmax
μ . The aggregation

result is computed by choosing, from the models of μ, the ones with minimum
aggregated distance. For instance, we have K2 = a ∧ (b ↔ ¬c). Further, we have
[K2] = {ab, ac} and dH(ab,K2) = min{dH(ab, ab), dH(ab, ac)} = min{0, 2} =
0. The following holds: dΣ

H(ab, PT) = dH(ab,K1) + dH(ab,K2) + dH(ab,K3) +
dH(ab,KT

4) = 3. The orders ≤dH ,f
PT and ≤dH ,f

PF , for f ∈ {Σ, gmax}, are obtained
by ordering interpretations according to their aggregated distances to PT and
PF , respectively. Finally, we get that [ΔdH , Σ

μ (PT)] = {b, ab}, [ΔdH , Σ
μ (PF)] =

{ac, abc}, [ΔdH , gmax
μ (PT)] = {ab} and [ΔdH , gmax

μ (PF)] = {abc}.

It is worth mentioning that ΔdD, Σ
μ and ΔdD, gmax

μ are equivalent, for any profile
P and constraint μ (i.e., [ΔdD, Σ

μ (P)] = [ΔdD, gmax
μ (P)]). Further, the operator

ΔdD, max
μ delivers [

∧
P ∧ μ], if consistent, and [μ] otherwise.

3 Acceptance and Satisfaction Notions

Merging operators output a set of interpretations, all of which can be seen as tied
for the winning position. In decision terms, this translates as inconclusiveness
with respect to the final verdict (see Example 1). To arrive at a definite opinion
on every issue we use well-established notions of acceptance with respect to a
formula. Further, in order to make sense of the way an agent can manipulate,
we need to be able to measure an agent’s satisfaction with respect to the result
of a merging operator. To this end we introduce a set of satisfaction indices that
build on the acceptance notions.

Acceptance. An acceptance function Acc : L → 2P maps propositional formulas
to sets of atoms in P. We say that Acc(ϕ) are the accepted atoms of ϕ. For a
formula ϕ, we define the following acceptance notions:

Manipulating Skeptical and Credulous Consequences When Merging Beliefs 139

Skept(ϕ) =
⋂

w∈[ϕ]

w, Cred(ϕ) =
⋃

w∈[ϕ]

w.

For a formula ϕ, an atom is skeptically accepted if it is true in all models of ϕ
(i.e., is in Skept(ϕ)); an atom is credulously accepted if it is true in at least one
model of ϕ (i.e., is in Cred(ϕ)).1 Skeptical acceptance is equivalent to atom-wise
logical entailment, and credulous acceptance indicates support of an atom in at
least one model.

Example 3. In Example 2 we obtain that [ΔdH , Σ
μ (PT)] = {b, ab}. For

the acceptance notions introduced, we have Skept(ΔdH , Σ
μ (PT)) = b and

Cred(ΔdH , Σ
μ (PT)) = ab.

These acceptance notions focus on positive literals. Thus, we say that p ∈
Skept(ϕ) if the atom p is in every model of ϕ, but we do not treat acceptance
of negative literals in a similar fashion: for instance, in Example 3 we do not
say something like ‘Skept(ΔdH , Σ

μ (PT)) = b¬c’, even though c is in none of (and
hence rejected by) all the models of ΔdH , Σ

μ (PT). This asymmetry is not unusual
in a Social Choice context, where rejection of a candidate is often assimilated to
non-acceptance, but would be worth looking at in a more extensive treatment
of acceptance notions.

Satisfaction. A satisfaction index i : L × L → N
+ is a function that maps a

pair of formulas to a non-negative integer [11]. If ϕ and ψ are two propositional
formulas and Acc is an acceptance notion, the satisfaction index iAcc is defined
as iAcc(ϕ,ψ) = |Acc(ϕ)�Acc(ψ)|. For the two acceptance notions introduced
above, this gives us the satisfaction indices iSkept and iCred.

Example 4. For KT
4 from Example 2 we have [KT

4] = {a} and [ΔdH , Σ
μ (PT)] =

{b, ab}. With the indices we can measure agent 4’s satisfaction regarding the
truthful aggregation result: we have iSkept(KT

4 ,ΔdH , Σ
μ (PT)) = |Skept(KT

4)�
Skept(ΔdH , Σ

μ (PT))| = |a�b| = 2. Analogously, iCred(KT
4 ,ΔdH , Σ

μ (PT)) =
|a�ab| = 1.

For arbitrary formulas the numeric results given by the indices iSkept and iCred
are generally not directly correlated, in that each may be higher or lower than
the other. However, there is a duality relation between the indices and aggre-
gation operators defined via skeptical and credulous acceptance. The dual ϕ
of a formula ϕ is obtained by replacing every literal in ϕ with its negation. If
P = (K1, . . . ,Km) is a profile, then the dual P of P is the profile defined as

1 We note that the notions of skeptical (cautious) and credulous (brave) consequences
are not uniformly used throughout the literature. For instance, skeptical conse-
quences may be defined as those consequences that follow (e.g., by classical logic)
from all formulas in a set of formulas, and skeptical acceptance may refer to mem-
bership of an object in all sets of a given set of sets. We make use of the latter
interpretation.

140 A. Haret and J. P. Wallner

P = (K1, . . . ,Km). If w is an interpretation, the dual w of w is the comple-
ment of w, i.e., the interpretation P \ w. If W is a set of interpretations, the
dual W of W is the set of interpretations defined as W = {w | w ∈ W}. For a
propositional formula ϕ we have [ϕ] = [ϕ]. This transfers to the indices: it holds
that iSkept(ϕ,ψ) = iCred(ϕ,ψ). Intuitively, this is because an atom p being in the
symmetric difference of the skeptical consequences is equivalent to there being a
model of one of the formulas not containing p, with the dual having p in at least
one model. Interestingly, a duality also holds with respect to merging operators.

Proposition 1. If P is a profile, μ is a constraint, d ∈ {dH , dD} is a
distance function, and f ∈ {Σ, max, gmax} is an aggregation function, then
Skept(Δd, f

μ (P)) ≡ Cred(Δd, f
μ (P)).

Proposition 1 builds on an interesting symmetry exhibited by the merging oper-
ators we work with: the result of merging a profile P under a constraint μ and
the result of merging P under constraint μ turn out to be themselves duals of
each other. This allows us, once we have found some instance related to the
skeptical index, to automatically adapt it to the credulous index.

Example 5. For the alphabet P = {a, b}, take a profile P = (K1,K2), with
K1 = a → b, K2 = ¬a and μ = a. We get [ΔdH , Σ

μ (P)] = {ab}, and
Skept(ΔdH , Σ

μ (P)) = ab. Taking the duals, we have K1 = ¬a → ¬b, K2 = a and
μ = ¬a. Notice that [K1] = {∅, b, ab} and [K1] = {ab, a, ∅} = {∅, b, ab} = [K1],
i.e., the models of the dual of K1 are the duals of the models of K1. We get that
[ΔdH , Σ

μ (P)] = {∅}, which is the same as [ΔdH , Σ
μ (P)] (this equality also holds

more generally). Lastly, Skept(ΔdH , Σ
μ (P)) = Cred(ΔdH , Σ

μ (P)).

4 Manipulability and Strategyproofness

Manipulation occurs when an agent, called the strategic agent, can influence
the merging result in its favor by submitting a base different from its truthful
one. Unless otherwise stated, the agent’s truthful position is the base KT , and
the base with which it manipulates as KF . We represent the strategic agent’s
contribution by appending its submitted base to a pre-existing profile P (e.g.,
P + KT): intuitively, it is as if the strategic agent joins the aggregation process
after everyone else has submitted their positions. This is merely a notational
choice, meant to improve readability, and no generality is lost in this way: all
aggregation functions used here satisfy the symmetry property (see Sect. 2) and
the result never depends on the merging order.

A profile P , constraint μ, distance d, aggregation function f and acceptance
notion Acc are assumed in most definitions, but, in the interest of concision, are
explicitly referred to only under pain of ambiguity. Unless otherwise stated, d
ranges over {dD, dH} and f over {Σ, gmax, max}.

Manipulating Skeptical and Credulous Consequences When Merging Beliefs 141

4.1 Constructive and Destructive Manipulation with Respect to an
Atom

One of the most basic forms of manipulation is one in which the strategic
agent has a specific atom p that it targets for acceptance: the strategic agent
may want to see p get accepted (or rejected) in the final result. This sets
up the stage for what we call, along the lines of similar concepts from Social
Choice [6], constructive and destructive manipulation. The strategic agent con-
structively Acc-manipulates P w.r.t. p using KF if p /∈ Acc(Δμ(P + KT)) and
p ∈ Acc(Δμ(P + KF)), and destructively Acc-manipulates P w.r.t. p using KF

if p ∈ Acc(Δμ(P + KT)) and p /∈ Acc(Δμ(P + KF)). Intuitively, an agent con-
structively Acc-manipulates w.r.t. p if it can make p be in the accepted atoms
of the aggregation result by submitting KF instead of KT ; similarly, an agent
destructively manipulates w.r.t. p if it can kick p out of the accepted atoms of the
result. We say that an operator Δ is Acc-strategyproof if there is no profile P ,
constraint μ, atom p and bases KT and KF s.t. the strategic agent, having KT as
its truthful position, Acc-manipulates P , either constructively or destructively,
w.r.t. p using KF .

We first note that, if KT is the strategic agent’s truthful position, any
instance of constructive manipulation with respect to p using KF is also an
instance of destructive manipulation with respect to p, obtained by swapping KT

and KF as the truthful and manipulating bases, respectively. Next, our results
regarding duality (see Proposition 1) imply the following duality for manipula-
tion.

Proposition 2. A strategic agent constructively (destructively) Skept-
manipulates P with respect to p iff it destructively (constructively) Cred-
manipulates P with respect to p using KF , with KT as its truthful position
and μ as the constraint.

In other words, an instance of constructive Skept-manipulation has a direct
counterpart, via the duals, in an instance of destructive Cred-manipulation,
and likewise for destructive Skept-manipulation and constructive Cred-
manipulation. This simplifies our study as we can focus on only one acceptance
notion, with results for the other notion following by Proposition 2.

Example 6. In Example 2 agent 4 constructively Skept-manipulates the pro-
file P = (K1,K2,K3) w.r.t the atom a (relative to the operator ΔdH , Σ

and constraint μ = a ∨ b ∨ c), in that a /∈ Skept(ΔdH , Σ
μ (PT)) but a ∈

Skept(ΔdH , Σ
μ (PF)). Consider, now, a merging scenario where every formula

is replaced by its dual. Thus, the truthful position of agent 4 is KT
4 : we

get that [KT
4] = {bc}, the constraint is μ = ¬a ∨ ¬b ∨ ¬c, with [μ] =

{∅, a, b, c, ab, ac, bc}, and the profile is P . We get that [ΔdH , Σ
μ (PT)] = {c, ac},

and a ∈ Cred(ΔdH , Σ
μ (PT)). However, if agent 4 now submits KF

4 , we get that

[ΔdH , Σ
μ (KF

4)] = {∅, b}, with a /∈ Cred(ΔdH , Σ
μ (KF

4)). Hence, if agent 4’s truthful

position is KT
4 , then it destructively Cred-manipulates P w.r.t a using KF

4 .

142 A. Haret and J. P. Wallner

Examples 2 and 6 already show that ΔdH , Σ is constructively Skept-manipulable
(and destructively Cred-manipulable). Indeed, this extends to all operators intro-
duced so far.

Theorem 1. For any n ∈ N and p ∈ P, there exists a profile P = (K1, . . . ,Kn)
and bases KT , KF such that the strategic agent constructively (and destructively,
respectively) Acc-manipulates P w.r.t p using KF , even if μ = � and all Ki, for
i ∈ {1, . . . , n}, as well as KT and KF , are complete.

Theorem 1 suggests that the situation with respect to constructive/destructive
manipulation is acute, for two reasons. Firstly, restrictions on the size of the pro-
file or on the specificity of the bases (e.g., requiring that all bases are complete),
which ensure strategyproofness in other contexts [11], turn out not to have any
effect in this case. Second, instances of manipulation exist for any size of the
profile P : this is best understood by consulting Example 7.

Example 7. To constructively Skept-manipulate a profile of size n = 4 w.r.t.
the atom a, relative to the constraint μ = � and f ∈ {Σ, gmax}, take Ki,
for i ∈ {1, 2, 3, 4}, KT and KF as in Table 2. It is straightforward to see that
[Δd, f

μ (PT)] = {∅} and [Δd, f
μ (PF)] = {a}, for d ∈ {dD, dH} and f ∈ {Σ, gmax}

(Table 2 shows results for dH , but the reasoning for dD is entirely similar). This
example easily generalizes to any even n. If n is odd, which we can write as
n = 2p + 1, for p ∈ N, we can take [K1] = · · · = [Kp] = {∅}, [Kp+1] = · · · =
[Kn] = {a}, and KT , KF as above.

Table 2. Constructive Skept-manipulation of a profile of size 4 w.r.t the atom a

If possible for an agent to constructively or destructively manipulate, it is appro-
priate to ask how it can do it: are intricate formulas needed to achieve the goal, or
can a ‘simple’ base work just as well? In Example 7 the strategic agent manip-
ulates using complete bases, suggesting that the answer lies with the second
option. Indeed we can show that, if manipulation is possible at all, then it can
be done with a complete base.

Theorem 2. If the strategic agent constructively/destructively Acc-manipulates
P w.r.t. p using KF , for Acc ∈ {Skept, Cred}, then there exists a complete
base KF

∗ such that KF
∗ |= KF and the agent constructively/destructively Skept-

manipulates P w.r.t. p using KF
∗ .

Manipulating Skeptical and Credulous Consequences When Merging Beliefs 143

We give here the intuition driving the proof for Skept-manipulation, adding
as well the fact that the base KF

∗ is found in the same way for constructive
and destructive manipulation: if manipulation is possible with KF , then pick a
model of KF that is closest to one of the models of μ crucial for the success of
manipulation. In the case of destructive Skept-manipulation, this would be an
interpretation v∗ that ends up being in [Δd, f

μ (P + KF)] and is such that p /∈ v∗:
v∗ must exist, under the assumption that KF successfully achieves destructive
Skept-manipulation. We can then replace KF with KF

∗ , where [KF
∗] = {v∗} and

still achieve destructive Skept-manipulation.
There is one thing that mitigates the acuteness of the manipulation results.

Note that we have not assumed so far that the strategic agent needs to have p
among its accepted atoms, i.e., we do not require the agent to actually believe
p in order to constructively/destructively manipulate with respect to it. Seeing
the merging process as aggregation of agents’ reported beliefs, stressed in Sect. 2,
comes into play, as it allows for agents to participate with bases that can reflect a
richer cognitive structure (e.g., the effects of bribery, or influence, motivating an
agent to alter its reported beliefs). Thus, here we operate under the assumption
that p (its acceptance, or otherwise) figures for the agent as a goal, regardless
of whether it is actually part of its beliefs (manipulation furthering the truthful
beliefs of the strategic agent is treated in Sect. 4.2).

Can an agent influence the acceptance of an atom it does not believe? We see
in Example 7 that the answer is yes: the strategic agent there is able to construc-
tively Skept-manipulate w.r.t. a even though a is not among the skeptical beliefs
of the agent itself. And, in fact, we are able to show that, when μ = � and all
bases are complete, Skept-manipulation is possible only under this assumption.

Proposition 3. If the strategic agent constructively Skept-manipulates P with
respect to an atom p, relative to the constraint μ = � and operator ΔdH , Σ, when
all bases are complete, then p /∈ Skept(KT).

Proposition 3 can be seen as a positive result, one way of reading it being that
if the strategic agent already accepts p (i.e., p ∈ Skept(KT)), then if it cannot
impose p by submitting KT itself, for the given parameters, then there is no other
way of doing it. As such, this is the closest we can come to a strategyproofness
result for constructive/destructive manipulation.

4.2 Manipulation with Respect to a Satisfaction Index

Constructive and destructive manipulation deals with the question of whether
an agent can affect the acceptance of an atom in the aggregated outcome,
regardless of the beliefs of the agent. In this section we look at the case when
the agent improves the outcome with respect to its beliefs, where improve-
ment is measured using the skeptical and credulous satisfaction indices iAcc,
for Acc ∈ {Skept, Cred}.

The strategic agent manipulates P with respect to iAcc using KF if it holds
that iAcc(KT ,Δμ(P + KF)) < iAcc(KT ,Δμ(P + KT)). In other words, an agent

144 A. Haret and J. P. Wallner

can improve its satisfaction index by submitting KF instead of KT . We say that
an operator Δ is strategy-proof with respect to a satisfaction index iAcc if there is
no profile P , constraint μ and bases KT and KF such that the strategic agent,
having KT as its truthful position, manipulates P with respect to iAcc using KF .

Our definition of manipulability based on satisfaction indices is inspired by
previous work on manipulation of propositional merging operators [11] but differs
from it in an important respect: we measure the distance between the accepted
atoms of the manipulating agent and the result, rather than between the sets of
models themselves. A more minor (technical) difference is that, in our case, an
agent is more satisfied when its index decreases.2 This reflects the fact that the
manipulated result gets closer to the agent’s beliefs.

Example 8. In Example 2, we have Skept(KT
4) = a and Skept(ΔdH , Σ

μ (PT)) =
b. Thus, iSkept(KT

4 ,ΔdH , Σ
μ (PT)) = |a�b| = 2. However, by agent 4 sub-

mitting KF
4 instead of KT

4 , we get that Skept(ΔdH , Σ
μ (PF)) = ac and

iSkept(KT
4 ,ΔdH , Σ

μ (PF)) = 1. Thus, by submitting a position different from its
truthful one, agent 4 is able to bring the (skeptically accepted atoms of) the
merging result closer to its own position.

Example 8 shows that manipulation is possible in the general case for the merging
operator ΔdH , Σ and the skeptical index. What is, now, the full picture with
respect to manipulability? As for constructive and destructive manipulation, we
first note that the identity iSkept(ϕ,ψ) = iCred(ϕ,ψ) (see Sect. 3) allows us to
turn a manipulation instance with respect to iSkept into a manipulation instance
with respect to iCred simply by replacing every formula involved with its dual.

For the operators Δd, gmax and Δd, max index manipulation turns out to be,
like atom manipulation, unavoidable. This stays so even under heavy restrictions
(i.e., complete bases and μ = �), and for any size n ≥ 2 of the profile.

Theorem 3. For d ∈ {dD, dH}, f ∈ {gmax, max} and any n ≥ 2 there exists a
profile P = (K1, . . . ,Kn) and bases KT and KF such that the strategic agent
manipulates P with respect to iAcc, even if μ = � and all bases Ki, for i ∈
{1, . . . , n}, as well as KT and KF , are complete.

The story is different for the operator ΔdH ,Σ : as seen in Proposition 3, con-
structive manipulation for skeptical acceptance, complete profiles, and μ = �
can only get an atom p into the result if the agent does not believe p. In other
words, the result can be affected for p, but it is worth noting that the skepti-
cal index does not increase by doing so. It turns out that this holds in general
for the operator ΔdH , Σ

� , i.e., this operator is strategy-proof with respect to a
satisfaction index iAcc, for Acc ∈ {Skept, Cred}.

Theorem 4. If all bases in the profile, as well as KT and KF , are complete
and μ = �, then the operator ΔdH , Σ

� is strategy-proof with respect to iSkept and
iCred.
2 As such, our indices can be interpreted as dissatisfaction indices; nevertheless we

stick to the term satisfaction index.

Manipulating Skeptical and Credulous Consequences When Merging Beliefs 145

Proof (sketch). For complete profiles, the operator ΔdH , Σ
� returns models v that

reflect majority opinion, i.e., if an atom p is true in a majority of bases, p is in v;
if p is false in a majority of bases, then p is not in v; and if there is no majority
(half of the bases have p in their model), then the result contains both a v with
p and a v′ without p in them. A strategic agent cannot increase its index: adding
something to its model can make this skeptically accepted, but this is not in the
agent’s belief (similarly for other cases).

The restrictions on ΔdH , Σ in Theorem 4 are essential: weakening any of them
results in the operator being manipulable.

Proposition 4. If it is does not hold that μ = � and all bases in P , as well as
the truthful position of the strategic agent, are complete, then ΔdH , Σ is manip-
ulable with respect to iAcc.

5 Influence of One Agent over the Outcome

Section 4 addresses the question of whether the strategic agent can modify the
merging result to its advantage. But it is useful to take a step back and ask
whether the strategic agent can modify the result in the first place, i.e., whether
it matters if the strategic agent takes part in the merging process at all and, if
yes, how exactly it can influence it. Given a profile P , an operator Δ, a constraint
μ and a base K, we say that Δμ(P) is the intermediary result, and Δμ(P + K)
is the final result.

There are, a priori, two ways in which the agent can change the intermediary
result: one is by removing interpretations from [Δμ(P)]; i.e., by turning winning
interpretations into non-winning interpretations; the other is by adding inter-
pretations to [Δμ(P)], i.e., by turning non-winning interpretations into winners.
If w is an interpretation, we say that the strategic agent demotes w from Δμ(P)
using K if w ∈ [Δμ(P)] and w /∈ [Δμ(P + K)], and that it promotes w with
respect to Δμ(P) using K if w /∈ [Δμ(P)] and w ∈ [Δμ(P + K)].

It turns out that for a significant proportion of the operators we are work-
ing with the strategic agent can demote any number of interpretations from the
intermediary result, using an easy strategy: focus on the wanted interpretations,
and submit a base with those interpretations as models; the unwanted inter-
pretations thus receive a penalty that renders them non-winning in the final
result.

Proposition 5. If P is a profile, μ is a constraint, d ∈ {dH , dD}, f ∈ {Σ, gmax}
and W ⊂ [Δd, f

μ (P)] is a set of interpretations, then a strategic agent can
demote all interpretations in [Δd, f

μ (P)] \ W from Δd, f
μ (P) by submitting KW

with [KW] = W .

On the other hand, promoting interpretations is more difficult: the strategic
agent’s ability to promote an interpretation w depends on the margin by which
w loses out to the winning interpretations. We show this here for the operator
ΔdH , Σ .

146 A. Haret and J. P. Wallner

Proposition 6. If w is an interpretation such that w ∈ [μ] and w /∈
[ΔdH , Σ

μ (P)], then the strategic agent can promote w with respect to ΔdH , Σ
μ (P)

iff dΣ
H(w,P) − dΣ

H(wi, P) ≤ dH(w,wi), for every wi ∈ [ΔdH , Σ
μ (P)].

Intuitively, dΣ
H(w,P)−dΣ

H(wi, P) is the margin by which w loses out to a winning
interpretation wi in ≤d, f

P . Proposition 6 then tells us that the strategic agent
can reverse the order between w and wi if and only if this margin is less than
the Hamming distance between w and wi. In general, the amount of support the
strategic agent can give to w relative to wi is at most dH(w,wi) and thus, if w
is trailing wi by more than this amount, there is nothing the strategic agent can
do for it. Using this result we note that, if possible for an agent to promote an
interpretation w, then it can do so using a complete base.

Corollary 1. If the strategic agent can promote an interpretation w with respect
to Δd, f

μ (P), then it can do so with a base Kw such that [Kw] = {w}.
This result is similar in spirit to Theorem 2, and suggests something like a best
strategy if the goal is to promote w: the strategic agent can always submit a
base Kw with w as the sole model, since if w can be promoted to the final result
then Kw is guaranteed to do it; otherwise, it does not matter what the agent
submits.

Example 9. Suppose [μ] = {w1, w2, w3, w4}, [Δd, Σ
μ (P)] = {w1, w2, w3}, for

d ∈ {dH , dD}. The strategic agent submits K with [K] = {w1, w2}. We
write dH(w1, P) = dH(w2, P) = dH(w3, P) = β, dH(w4, P) = β + ε4 and
δ3∗ = min{δ31, δ32}, δ4∗ = min{δ41, δ42} for the distance from w3 and w4, respec-
tively, to K (see Table 3). Notice now that [Δd, Σ

μ (P + K)] = {w1, w2}, i.e., the
strategic agent demotes w3 from Δd, Σ

μ (P). To promote w4 to the final result,
the obvious strategy is for the strategic agent to submit K ′, with [K ′] = {w4}.
In this case, promoting w4 is successful only if ε4 ≤ δi4, where δi4 = dH(wi, w4),
for i ∈ {1, 2, 3} (again, see Table 3). The same argument applies to the drastic
distance dD, the only difference being that δ3∗ = δ4∗ = δi4 = 1, for i ∈ {1, 2, 3}.

With respect to atoms, an analogous question regarding the influence of an agent
asks under what conditions a specific atom can be made part of the final result.
The idea here turns out to be that no single agent can overturn majorities w.r.t.
skeptical acceptances of the bases in the complete profile and μ ≡ �: if more than
half of the agents skeptically accept a, then no strategic agent can alter this. This
is the same fact that underwrites strategyproofness of ΔdH , Σ . For non-complete
profiles strategyproofness is lost, but a related result can be shown.

For a profile P , define agents’ support for acceptances as CredsuppP (a) =
|{K ∈ P | a ∈ Cred(K)}| and SkeptsuppP (a) = |{K ∈ P | a ∈ Skept(K)}|.
By generalizing a result from [7], we show that neither a majority of skeptical
support nor a majority of credulous non-support can be altered, for aggregation
under ΔdH , Σ

� .

Proposition 7. Let P = (K1, . . . ,Kn−1) be a profile, X = {x |
SkeptsuppP (x) > n

2 }, and Y = {x | CredsuppP (x) < n
2 }. For any base Kn and

M = ΔdH , Σ
� (P + Kn), it holds that X ⊆ Skept(M), and Y ⊆ (P \ Cred(M)).

Manipulating Skeptical and Credulous Consequences When Merging Beliefs 147

A similar result does not hold for operator ΔdH ,max
� , i.e., when using max instead

of Σ. Thus, for max majorities may be overturned, as illustrated in the next
example.

Table 3. The agent penalizes w3 by not including it in the models of its submitted base,
and can only promote w4 if the margin ε4 by which it trails the other interpretations
is sufficiently small.

Example 10. Take [K1] = {b}, [K2] = {c}, and [KT
3] = {abc}. With ΔdH ,max

�
the result is {bc}. When agent 3 reports [KF

3] = {ab} instead, the result is
{∅, a, b, bc, abc}. Thus, agent 3 can get a to be true in a model of the output,
even if less than half of the agents have a in some model of their base (in fact
only agent 3 accepts a credulously).

6 Complexity of Constructive and Destructive
Manipulation

By our results, if an agent can constructively or destructively Skept-manipulate
the aggregation process, then it can do so by submitting a complete base (see
Theorem 2). By Proposition 2, Cred-manipulation can always be achieved by
the dual of a complete base (again a complete base), if manipulation is possible.
By these results, for both constructive and destructive manipulation, deciding
whether a profile is manipulable is in ΣP

2 . To see this, we first recall that com-
puting the result of the merging process, i.e., whether Δd, f

μ (P) |= ϕ holds, is a
problem that can be solved via a deterministic polynomial time algorithm with
access to an NP oracle, for all operators considered in this paper [19,20]. This
implies that one can check whether an unmodified (non-altered) profile already
returns the desired atom skeptically (credulously). If not, a non-deterministic
construction (“guess”) of a complete base with a subsequent new check of the
result decides whether the constructed base results in a manipulation. For oper-
ator ΔdH , Σ

μ and destructive Skept-manipulation, we also can show hardness for
this class.

Theorem 5. Deciding whether a profile can be destructively Skept-manipulated
w.r.t. an atom and μ for operator ΔdH , Σ

μ by submitting a complete base is ΣP
2 -

complete.

148 A. Haret and J. P. Wallner

7 Related Work

Existing work on manipulation of belief merging operators [9,11] differs from
ours in that satisfaction indices in [11] are not based on skeptical or credulous
acceptance but on the models that the strategic agent and the result have in
common. To highlight this difference, note that under the indices in [11] the
strategic agent in Example 2 would be equally unsatisfied with both the truthful
result ΔdH , Σ

μ (PT) and ΔdH , Σ
μ (PF), since KT shares no model with either. Under

our interpretation of the indices, ΔdH , Σ
μ (PF) ends up delivering a better result

for the strategic agent than ΔdH , Σ
μ (PT), as under ΔdH , Σ

μ (PF) the atom a is
guaranteed to be in the result, and there is a sense in which this is satisfactory
for the strategic agent, as a is an atom that it skeptically accepts. Then, different
to both [9,11], we also show results for acceptance manipulation (not based on
indices), i.e., for constructive and destructive manipulation.

Belief merging invites comparison to multi-winner elections [1,2,14,23], com-
binatorial voting [22], and Judgment Aggregation [3,4,10]. We mention here that
our use of acceptance notions and satisfaction indices, the compact encoding of
sets of interpretations (agents’ “top candidates”) as propositional formulas, and
the fact that we do not require the output to be of a specific size suggest that
existing results in this area are not directly applicable to our setting. Our work
intersects with social choice in the special case when the profile is complete and
the number of bases is odd. In this case the aggregation problem corresponds to
a Judgment Aggregation problem, with ΔdH , Σ

� delivering the majority opinion
on the atoms (considered as issues): this corresponds to the observation made in
the Social Choice literature [5] that the majority opinion minimizes the sum of
the Hamming distances to voters’ approval ballots. Our strategy-proofness result
for ΔdH , Σ

� dovetails neatly with a similar result in Judgment Aggregation [4,10],
though our treatment is slightly more general, as it accommodates both an even
and an odd number of bases.

8 Conclusions

We have looked at the potential for manipulation in a belief merging frame-
work [19,21], when results are obtained considering skeptical or credulous con-
sequences. We have shown that manipulation is not only possible for well-known
aggregation operators, but also that manipulation can be achieved by semanti-
cally simple (i.e., complete) bases, even if the complexity of doing so is in general
high.

For future work, our aim is to extend these results to more merging oper-
ators, study best responses (strategies) by agents, manipulability in settings
with incomplete information, and to consider extended settings of manipulation
studied in Social Choice, e.g., bribery [3], where sets of agents can be “bribed”
to form a joint manipulating coalition. We also want to look at properties from
Social Choice used to understand strategyproofness at a more abstract level (e.g.,
monotonicity), and at how to adapt these properties to the merging framework.

Manipulating Skeptical and Credulous Consequences When Merging Beliefs 149

This topic has received some attention [9,16], but more work is needed to estab-
lish connections to manipulation and strategyproofness.

Acknowledgements. We thank the anonymous reviewers for their helpful comments
on an earlier version of the paper. This work was supported by the Austrian Science
Fund (FWF): P30168-N31 and W1255-N23.

References

1. Amanatidis, G., Barrot, N., Lang, J., Markakis, E., Ries, B.: Multiple referenda and
multiwinner elections using Hamming distances: complexity and manipulability. In:
Weiss, G., Yolum, P., Bordini, R.H., Elkind, E. (eds.) Proceedings of the AAMAS
2015, pp. 715–723. ACM (2015)

2. Barrot, N., Lang, J., Yokoo, M.: Manipulation of Hamming-based approval voting
for multiple referenda and committee elections. In: Larson, K., Winikoff, M., Das,
S., Durfee, E.H. (eds.) Proceedings of the AAMAS 2017, pp. 597–605. ACM (2017)

3. Baumeister, D., Erdélyi, G., Erdélyi, O.J., Rothe, J.: Complexity of manipulation
and bribery in judgment aggregation for uniform premise-based quota rules. Math.
Soc. Sci. 76, 19–30 (2015)

4. Baumeister, D., Rothe, J., Selker, A.K.: Strategic behavior in judgment aggrega-
tion. In: Endriss, U. (ed.) Trends in Computational Social Choice, pp. 145–168. AI
Access (2017)

5. Brams, S.J., Kilgour, D.M., Sanver, M.R.: A minimax procedure for electing com-
mittees. Public Choice 132(3), 401–420 (2007)

6. Conitzer, V., Walsh, T.: Barriers to manipulation in voting. In: Brandt, F.,
Conitzer, V., Endriss, U., Lang, J., Procaccia, A.D. (eds.) Handbook of Com-
putational Social Choice, pp. 127–145. Cambridge University Press, Cambridge
(2016)

7. Delobelle, J., Haret, A., Konieczny, S., Mailly, J., Rossit, J., Woltran, S.: Merging
of abstract argumentation frameworks. In: Baral, C., Delgrande, J.P., Wolter, F.
(eds.) Proceedings of the KR 2016, pp. 33–42. AAAI Press (2016)

8. Dı́az, A.M., Pérez, R.P.: Impossibility in belief merging. Artif. Intell. 251, 1–34
(2017)

9. Diaz, A.M., Perez, R.P.: Epistemic states, fusion and strategy-proofness. In: Ferme,
E., Villata, S. (eds.) Proceedings of the NMR, pp. 176–185 (2018)

10. Endriss, U.: Judgment aggregation. In: Brandt, F., Conitzer, V., Endriss, U., Lang,
J., Procaccia, A.D. (eds.) Handbook of Computational Social Choice, pp. 399–426.
Cambridge University Press, Cambridge (2016)

11. Everaere, P., Konieczny, S., Marquis, P.: The strategy-proofness landscape of merg-
ing. J. Artif. Intell. Res. 28, 49–105 (2007)

12. Everaere, P., Konieczny, S., Marquis, P.: Belief merging versus judgment aggrega-
tion. In: Weiss, G., Yolum, P., Bordini, R.H., Elkind, E. (eds.) Proceedings of the
AAMAS 2015, pp. 999–1007. ACM (2015)

13. Faliszewski, P., Procaccia, A.D.: AI’s war on manipulation: are we winning? AI
Mag. 31(4), 53–64 (2010)

14. Faliszewski, P., Skowron, P., Slinko, A., Talmon, N.: Multiwinner voting: a new
challenge for social choice theory. In: Endriss, U. (ed.) Trends in Computational
Social Choice, pp. 27–47. AI Access (2017)

150 A. Haret and J. P. Wallner

15. Gabbay, D.M., Rodrigues, O., Pigozzi, G.: Connections between belief revision,
belief merging and social choice. J. Log. Comput. 19(3), 445–446 (2009)

16. Haret, A., Pfandler, A., Woltran, S.: Beyond IC postulates: classification criteria
for merging operators. In: Kaminka, G.A., et al. (eds.) Proceedings of the ECAI
2016, pp. 372–380 (2016)

17. Haret, A., Wallner, J.P.: Manipulation of semantic aggregation procedures for
propositional knowledge bases and argumentation frameworks. In: Ferme, E., Vil-
lata, S. (eds.) Proceedings of the NMR, pp. 146–155 (2018)

18. Haret, A., Wallner, J.P.: Manipulating skeptical and credulous consequences when
merging beliefs. Technical report DBAI-TR-2019-114, TU Wien (2019). https://
www.dbai.tuwien.ac.at/research/report/dbai-tr-2019-114.pdf

19. Konieczny, S., Lang, J., Marquis, P.: Distance based merging: a general framework
and some complexity results. In: Fensel, D., Giunchiglia, F., McGuinness, D.L.,
Williams, M. (eds.) Proceedings of the KR 2002, pp. 97–108. Morgan Kaufmann
(2002)

20. Konieczny, S., Lang, J., Marquis, P.: DA2 merging operators. Artif. Intell. 157(1–
2), 49–79 (2004)

21. Konieczny, S., Pérez, R.P.: Logic based merging. J. Philosop. Log. 40(2), 239–270
(2011)

22. Lang, J., Xia, L.: Voting in combinatorial domains. In: Brandt, F., Conitzer, V.,
Endriss, U., Lang, J., Procaccia, A.D. (eds.) Handbook of Computational Social
Choice, pp. 197–222. Cambridge University Press, Cambridge (2016)

23. Meir, R., Procaccia, A.D., Rosenschein, J.S., Zohar, A.: Complexity of strategic
behavior in multi-winner elections. J. Artif. Intell. Res. 33, 149–178 (2008)

24. Strasser, C., Antonelli, G.A.: Non-monotonic logic. In: Zalta, E.N. (ed.) The Stan-
ford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University,
summer 2018 edn. (2018)

25. Zwicker, W.S.: Introduction to the theory of voting. In: Brandt, F., Conitzer, V.,
Endriss, U., Lang, J., Procaccia, A.D. (eds.) Handbook of Computational Social
Choice, pp. 23–56. Cambridge University Press, Cambridge (2016)

https://www.dbai.tuwien.ac.at/research/report/dbai-tr-2019-114.pdf
https://www.dbai.tuwien.ac.at/research/report/dbai-tr-2019-114.pdf

Repairing Non-monotonic Knowledge
Bases

Markus Ulbricht(B)

Department of Computer Science, Leipzig University, Leipzig, Germany
mulbricht@informatik.uni-leipzig.de

Abstract. Minimal inconsistent subsets of knowledge bases in mono-
tonic logics play an important role when investigating the reasons for
conflicts and trying to handle them. In the context of non-monotonic rea-
soning this notion is not as meaningful due to the possibility of resolving
conflicts by adding information. In this paper we investigate inconsis-
tency in non-monotonic logics while taking this issue into account. In
particular, we show that the well-known classical duality between hit-
ting sets of minimal inconsistent subsets and maximal consistent subsets
generalizes to arbitrary logics even if we allow adding novel information
to a given knowledge base. We illustrate the versatility of the main theo-
rems by covering more sophisticated situations and demonstrate how to
utilize our results to analyze inconsistency in abstract argumentation.

Keywords: Non-monotonic reasoning · Inconsistency ·
Abstract argumentation

1 Introduction

Inconsistency is an omnipresent phenomenon in logical accounts of knowledge
representation and reasoning (KR) [7,12,13,18,19]. Classical logics usually suffer
from the principle of explosion which renders reasoning meaningless, as every-
thing can be derived from inconsistent theories. Therefore, reasoning under
inconsistency [4,23,25] is an important research area in KR. In general, one
can distinguish two paradigms in handling inconsistent information. The first
paradigm advocates living with inconsistency but providing non-classical seman-
tics that allow the derivation of non-trivial information, such as using paracon-
sistent reasoning [6], reasoning with possibilistic logic [13], or formal argumen-
tation [2]. The second paradigm is about explicitly restoring consistency, thus
changing the theory itself, as it is done in e.g. belief revision [19] or belief merg-
ing [24].

In a seminal paper belonging to the latter category Reiter [26] proves that
consistency of K can be restored by computing a minimal hitting set of the

This work was funded by Deutsche Forschungsgemeinschaft DFG (Research Training
Group 1763; project BR 1817/7-2).

c© Springer Nature Switzerland AG 2019
F. Calimeri et al. (Eds.): JELIA 2019, LNAI 11468, pp. 151–167, 2019.
https://doi.org/10.1007/978-3-030-19570-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19570-0_10&domain=pdf
http://orcid.org/0000-0002-0773-7510
https://doi.org/10.1007/978-3-030-19570-0_10

152 M. Ulbricht

minimal inconsistent subsets of K and eliminating the elements of the hitting
set. Based on a strengthening of the notion of consistency this result general-
izes to arbitrary, possibly non-monotonic logics [10]. Although appealing, this
result neglects an important opportunity provided by non-monotonic logics: here
consistencies cannot only be resolved by deleting formulas, but also by adding
formulas. In fact, adding information to a knowledge base in order to repre-
sent additional assumptions might in some cases even be easier to justify than
e.g. removing constraints. The main goal of this paper is thus to give duality
characterizations for repairs while taking this into account.

The paper is organized as follows: we give necessary background in Sect. 2.
Sections 3 and 4 investigate repairs based on addition as well as deletion of
formulas and give characterizations in terms of hitting set dualities. Further
aspects are investigated, in particular connections between the different notions.
Section 5 discusses more sophisticated situations, namely forbidding removal of
certain subsets of a knowledge base as well as modifying instead of deleting and
adding formulas. Section 6 is a short case study demonstrating how our results
and notions can be used to analyze inconsistency in abstract argumentation, that
is, a given framework does not possess accepted arguments. Section 7 concludes.

2 Background

Hitting Sets and Tuples. In the present paper, minimality and maximality
are to be understood with respect to the ⊆-relation. So, if a set M is minimal
with a certain property, this means there is no set M ′ � M satisfying it. Now let
M be a set of sets. We call S a hitting set of M if S ∩ M �= ∅ for each M ∈ M.
In this work, consideration of tuples of sets will be crucial. So given four sets
X1, Y1,X2, Y2, we extend the basic set operations naturally by letting (X1, Y1) ⊆
(X2, Y2) iff ⊆ holds component wise. This definition also induces minimality and
maximality for tuples. We let (X1, Y1)∩ (X2, Y2) = (X1 ∩X2, Y1 ∩Y2). We write
(X1, Y1) ∩ (X2, Y2) = ∅ iff X1 ∩ Y1 = ∅ and X2 ∩ Y2 = ∅. Now the definition of a
hitting set applies to a set M of sets of tuples in the natural way.

Answer Set Programming (ASP). Throughout the paper we use examples
based on logic programs with disjunction in the head and two kinds of negation,
classical negation ¬ and default negation not, under answer set semantics. Such
programs consist of rules of the form

l0 ← l1, . . . , lm,not lm+1, . . . ,not ln. (1)

where 0 ≤ m ≤ n and the li are ordinary literals. For programs without default
negation (m = n) the unique answer set is the smallest set of literals closed
under all rules, where a set M is closed under a rule of form (1) without default
negation iff l0 ∈ M whenever the body literals l1, . . . , lm are. If the answer
set contains two complementary literals, then it is the set of all literals. For a
program P with default negation, a set M of literals is an answer set iff M is
the answer set of the reduced program PM (without default negation) obtained

Repairing Non-monotonic Knowledge Bases 153

from P by (i) deleting rules with “not lj” in the body for some lj ∈ M , and (ii)
deleting default negated literals from the remaining rules. P is inconsistent iff
all of its answer sets contain a complementary pair of literals. This includes the
case where P has no answer sets at all. See [9] for more details.

Logics. Since we are going to consider arbitrary (non-monotonic) frameworks,
we start by giving an abstract definition of a logic. We do so as in [11]. In a
nutshell, a logic L consists of syntax and semantics of formulas. To model the
syntax properly, we stipulate a set WF of so-called well-formed formulas. Any
knowledge base K consists of a subset of WF. To model the semantics, we let BS
be a set of so-called belief sets. Intuitively, given a knowledge base K, the set of
all that can be inferred from K is B ⊆ BS. To formalize this, a mapping ACC
assigns the set B of corresponding belief sets to each knowledge base K. Finally,
some belief sets are considered inconsistent. We call the set of all inconsistent
belief sets INC. Hence, our definition of a logic is as follows.

Definition 1. A logic L is a tuple L = (WF,BS, INC,ACC) where WF is a set of
well-formed formulas, BS is the set of belief sets, INC ⊆ BS is an upward closed1

set of inconsistent belief sets, and ACC : 2WF → 2BS is a mapping. A knowledge
base K of L is a finite subset of WF.

Observe that our definition of a logic is general enough to capture various mono-
tonic and non-monotonic frameworks like propositional logic, ASP [17], abstract
argumentation frameworks [14] etc.

Example 1. Let A be a set of propositional atoms. A propositional logic LP can
be defined as LP = (WFP,BSP, INCP,ACCP) where WFP are the well-formed
formulas over A, BSP are the deductively closed sets of formulas and since any
formula can be derived from a contradiction, INCP = {WF}. The mapping ACCP

assigns to each K ⊆ WFP the set containing its unique set of theorems.

Example 2. Let A be a set of propositional atoms. Extended logic programs
under answer set semantics over A is LASP = (WFASP,BSASP, INCASP,ACCASP)
where WFASP is the set of all rules of the form (1) over A, BSASP = 2A, INCASP is
the set containing all literals, and ACCASP assigns to a logic program P ⊆ WFASP

the set of all answer sets of P .

Definition 2. Let L be a logic. A knowledge base K is called inconsistent iff
ACC(K) ⊆ INC. Let I (K) and Imin(K) denote the inconsistent and minimal
inconsistent subsets of K, respectively.

All notions in this paper depend on the underlying logic L, so e.g. I (K) should
more precisely be called I (K)L. We will omit these superscripts since there will
be no risk of confusion. The only exception is Sect. 5.

Observe that Definition 2 captures cases where K has no belief sets at all.

1 S is upward closed if B ∈ S, B ⊆ B′ implies B′ ∈ S.

154 M. Ulbricht

Example 3. Consider the logic program P given as follows.

P : a ← not a. a ← not b. b.

The reader may verify that the subprogram H = {a ← not a.} is inconsistent
since there is no answer set. Formally, ACC(H) = ACCASP(H) = ∅ ⊆ INC. In
contrast, H ′ = H ∪{a ← not b.} is consistent as it possesses the answer set {a}.
P itself is inconsistent.

Definition 3 [11]. A logic L = (WF,BS, INC,ACC) is sceptically monotonic
whenever K′ ⊇ K implies: if B′ ∈ ACC(K′) then B′ ⊇ B for some B ∈ ACC(K).
We call such L monotonic for short.

Note that in a monotonic logic conflicts cannot be resolved, i.e., if K ⊆ K′ holds
for two knowledge bases K and K′ where K is inconsistent, then so is K′.

Example 4. Recall P and H ′ ⊆ P from Example 3. We found ACC(H) = ∅
and ACC(H ′) = {{a}}. So, there is a set B′ ∈ ACC(H ′), namely {a}. However,
there is no B ∈ ACC(H) since the latter set is empty. In particular, there is no
B ∈ ACC(H) satisfying B ⊆ B′. Hence, ASP is non-monotonic.

Strong Inconsistency. Let us now discuss the notion of strong inconsistency
and how it induces a hitting set duality for non-monotonic logics. As we do this
quite briefly, we refer the reader to [11] for a more thorough discussion of strong
inconsistency.

Definition 4. For H,K ⊆ WF with H ⊆ K, H is called strongly K-inconsistent
if H ⊆ H′ ⊆ K implies H′ is inconsistent. We call H simply strongly inconsistent
when there is no risk of confusion. Let SI (K) and SImin(K) denote the strongly
inconsistent and minimal strongly inconsistent subsets of K, respectively.

Example 5. Consider again H ⊆ H ′ ⊆ P from Example 3. We already found
the inconsistent subset H which is however not strongly inconsistent due to
the consistent superset H ′. The reader may verify that SImin(P) = {{a ←
not a., b.}}.

We proceed with the well-known concept of (maximal) consistent subsets.

Definition 5. We say H ⊆ K is a maximal consistent subset of K if H is
consistent and H � H′ ⊆ K implies H′ is inconsistent. We denote the set of all
maximal consistent subsets of K by Cmax (K).

Now we are ready to phrase the duality result from [11].

Theorem 1. Let K be a knowledge base. Then, S is a minimal hitting set of
SImin(K) if and only if K\S ∈ Cmax (K).

Example 6. One can turn P from above into a consistent program by removing
either {a ← not a.} or {b.}. They are indeed the minimal hitting sets of SImin(P).

Repairing Non-monotonic Knowledge Bases 155

3 Addition-Based Repairs

Let us now consider repairs based on additional information. In general, it is not
quite clear which information might be appropriate, especially when investigat-
ing a general logic as in the present paper. Moreover, it appears to be hard to
give meaningful results when allowing an arbitrary superset of a knowledge base
K. We thus assume the set of potential additional information is given.

More precisely, we consider knowledge bases K (as usual) and G (of poten-
tial additional assumptions). The set G itself is not necessarily consistent. For
technical convenience we assume K and G to be disjoint. This assumption also
matches the intuitive meaning of G as a set of potential additional information.
The following definition formally introduces repairs wrt. G.

Definition 6. Let K and G be disjoint knowledge bases. If for A ⊆ G, K ∪ A
is consistent, then we call A a repairing subset of G wrt. K. Let Rep(K,G) =
{A ⊆ G | K ∪ A is consistent}. We denote the minimal repairing subset of G
wrt. K by Repmin(K,G).

Example 7. Consider again the program P from Example 3. Assume we are given

G : a. c.

d. a ← d.

We see that P ∪ {a.} and P ∪ {d., a ← d.} are already consistent and thus

Repmin(P,G) = {{a.}, {d., a ← d.}}
Our goal is to characterize the minimal repairing subsets for a given knowledge
base K in terms of a hitting set duality, similar in spirit to Theorem 1. There
the required notion was strong inconsistency, i.e., subsets H of a knowledge base
K such that each set H′ with H ⊆ H′ ⊆ K is inconsistent. For addition-based
repairs, our notion is a natural counterpart thereto, taking supersets of K into
account rather than subsets.

Definition 7. Let K and G be disjoint knowledge bases. If for A ⊆ G, K is
strongly (K∪A)-inconsistent, i.e., K ∈ SI (K∪A), then we call A a non-repairing
subset of G wrt. K. Let Nrep(K,G) = {A ⊆ G | K ∈ SI (K ∪ A)}. We denote
the set of maximal non-repairing subsets of G wrt. K by Nrepmax (K,G).

Example 8. Consider again P and G from Examples 3 and 7. The maximal non-
repairing subsets of G are A1 and a2 where

A1 : c. a ← d. A2 : c. d.

Intuitively, in both cases we removed from G the sets of rules that could repair
P . Neither Ai contains “a.” or both “d.” and “a ← d.” to render P consistent.

Now, we are almost ready to phrase a duality result similar in spirit to
Theorem 1. We need one more auxiliary definition.

156 M. Ulbricht

Definition 8. Let K and G be disjoint knowledge bases. A set A ⊆ G is in
co-Nrepmax (K,G) if G\A is in Nrepmax (K,G).

As desired, the following theorem gives a characterization of Repmin(K,G) in
terms of a hitting set duality.

Theorem 2 (Superset Duality). Let K and G be disjoint knowledge bases.
Then, S is a minimal hitting set of co-Nrepmax (K,G) if and only if S ∈
Repmin(K,G).

Example 9. For our programs P and G recall

Repmin(P,G) = {{a.}, {d., a ← d.}},
Nrepmax (P,G) = {{c., a ← d.}, {c., d.}}.

In particular, co-Nrepmax (P,G) = {{a., d.}, {a., a ← d.}}. Indeed, Repmin

(P,G) consists of the minimal hitting sets of co-Nrepmax (P,G).

4 Arbitrary Repairs

Please observe that Theorem 2 is only meaningful whenever K is not strongly
(K ∪ G)-inconsistent, i.e., whenever G /∈ Nrepmax (K,G). For example, this is
naturally violated whenever the underlying logic is monotonic, but also when
G is inappropriate when it comes to providing repair options for K. This is an
advantage of Theorem 1: Usually, a knowledge base contains consistent subsets
and thus the theorem yields non-trivial results. Clearly, the finest solution would
be combining the benefits of both Theorems 1 and 2. As it turns out, this can
be achieved in a smooth and natural way.

Definition 9. Let K and G be disjoint knowledge bases. We call (D,A) a bidi-
rectional repair for K with respect to G if

– D ⊆ K and A ⊆ G,
– K\D ∪ A is consistent.

By bi-Rep(K,G) we denote the set of all bidirectional repairs for K with respect
to G. Let bi-Repmin(K,G) be the set of all minimal ones, i.e., if (D,A) ∈
bi-Repmin(K,G), then (D′,A′) ∈ bi-Rep(K,G) and A′ ⊆ A and D′ ⊆ D implies
(D′,A′) = (D,A).

Example 10. For our programs P and G we already noticed that P can be
repaired by removing either the rule “a ← not a.” or “b.”. Moreover, one might
also add the repairing subsets of G. So,

bi-Repmin(P,G) = {({a ← not a.}, ∅), ({b.}, ∅), (∅, {a.}), (∅, {d., a ← d.})}.

Repairing Non-monotonic Knowledge Bases 157

Example 11. In the previous example, one of the sets in (D,A) was always empty
for (D,A) ∈ bi-Repmin(P,G). We want to illustrate that this is not necessarily
the case in general. Consider P ′ given via

P ′ : a ← not a. b ← not b.

and G as before. Note that “b ← not b.” will cause inconsistency no matter
which rules from G are added. We thus find

bi-Repmin(P ′, G) = {(P, ∅), ({b ← not b.}, {a.}), ({b ← not b.}, {d., a ← d.})}.

Let us mention that bidirectional repairs generalize the notion of consistent
subsets as well as repairing sets.

Proposition 1. Let K and G be disjoint knowledge bases. Then,

– (D, ∅) ∈ bi-Repmin(K,G) if and only if H = K\D ∈ Cmax (K),
– (∅,A) ∈ bi-Repmin(K,G) if and only if A ∈ Repmin(K,G).

Example 12. Consider once more our running example P,G. Recall Cmax (P) =
{P\{a ← not a.}, P\{b.}}. Indeed, corresponding tuples as claimed in Proposi-
tion 1 occur in bi-Repmin(P,G) (see Example 10). Similarly, Repmin(P,G) =
{{a.}, {d., a ← d.}}. Again, bi-Repmin(P,G) contains the corresponding tuples.

Now let us reconsider the notions which led to the hitting set dualities in the
previous theorems. In Theorem 1 the solution is the notion of strong inconsis-
tency. Recall that H is minimal strongly K-inconsistent if H is minimal such that
H ⊆ H′ ⊆ K implies inconsistency of H′. To put it another way, D is maximal
such that K\D ⊆ H′ ⊆ K implies inconsistency of H′ Analogously, Theorem 2
was based on the notion of maximal non-repairing subsets of G. Here, a similar
property is required considering K ∪ A rather than K\D. So, roughly speaking,
we always face a situation where K is surrounded by inconsistent sets. Hence,
the following comes natural.

Definition 10. Let K and G be disjoint knowledge bases. We call (D,A) a bidi-
rectional non-repair for K with respect to G if

– D ⊆ K and A ⊆ G,
– K\D is strongly (K ∪ A)-inconsistent, i.e., K\D ∈ SI (K ∪ A).

Denote by bi-Nrep(K,G) the set of all bidirectional non-repair for K with respect
to G and by bi-Nrepmax (K,G) the maximal ones.

Example 13. Recall our running example. Observe that removal of “a ← not b.”
from P is not beneficial in order to restore consistency. Moreover, the two maxi-
mal subsets of G which do not repair P are A1 = {c., a ← d.} and A2 = {c., d.}
as found in Example 8. So, P\{a ← not b.} ∈ SI (P ∪ Ai) for i = 1, 2. Hence

bi-Nrepmax (P,G) = {({a ← not b.}, {c, a ← d.}), ({a ← not b.}, {c., d.})}.

158 M. Ulbricht

We make the following observations to emphasize how bi-Nrepmax (K,G) gen-
eralizes minimal (strong) inconsistency. First let us consider a monotonic logic.
In this case, we do not expect G to play any role. Indeed, we find the following.

Proposition 2. Let K and G be disjoint knowledge bases of a monotonic logic.
Then, (D,G) ∈ bi-Nrepmax (K,G) if and only if H = K\D ∈ SImin(K).

In the previous proposition G was irrelevant as the underlying logic was assumed
to be monotonic. Clearly, a similar result holds whenever there is no set G at all.

Proposition 3. Let K be a knowledge base and G = ∅. Then, it holds that
(D, ∅) ∈ bi-Nrepmax (K,G) if and only if H = K\D ∈ SImin(K).

A more advanced version of this result without restricting G is the following.

Proposition 4. Let K and G be disjoint knowledge bases.

– If (D,A) ∈ bi-Nrepmax (K,G) then H = K\D ∈ SI (K). In particular, there
is a set D′ with D ⊆ D′ such that K\D′ ∈ SImin(K).

– If H = K\D ∈ SImin(K), then there is a (not necessarily uniquely defined)
A ⊆ G such that (D,A) ∈ bi-Nrepmax (K,G).

Example 14. Example 13 shows that bi-Nrepmax (P,G) contains two distinct
tuples (D,A) with D = {a ← not b.}. We already have H = P\D = {a ←
not a., b.} ∈ SImin(P), so we can choose D′ for the first item in Proposition 4.
Since there are two tuples of this form in Example 13, it illustrates in particular
that A in the second item in Proposition 4 is not uniquely defined in general.

Now let us compare bi-Nrepmax (K,G) to the non-repairing subsets of G from
Definition 7. Considering cases where the underlying logic is monotonic or G is
empty will clearly not yield insightful results when investigating Nrep(K,G).
However, we find a counterpart to Proposition 4.

Proposition 5. Let K and G be disjoint knowledge bases.

– If (D,A) ∈ bi-Nrepmax (K,G) then A ∈ Nrep(K,G). In particular, there is
a set A′ with A ⊆ A′ such that A′ ∈ Nrepmax (K).

– If A ∈ Nrepmax (K,G), then there is a (not necessarily uniquely defined)
D ⊆ K such that (D,A) ∈ bi-Nrepmax (K,G).

The duality result we aim at is similar to the previous ones. It is thus no surprise
that we require a notion of co-bi-Nrepmax (K,G). The following is natural and
well-behaving, extending the previous one component-wise.

Definition 11. Let K and G be disjoint knowledge bases. A tuple (A,D) is in
co-bi-Nrepmax (K,G) if (G\A,K\D) is in bi-Nrepmax (K,G).

Example 15. In order to summarize the relevant sets for our programs P and G,
set H = P\{a ← not b.}.

bi-Nrepmax (P,G) = {({a ← not b.}, {c, a ← d.}), ({a ← not b.}, {c., d.})}
co-bi-Nrepmax (P,G) = {(H, {a, d}), (H, {a, a ← d.})}. (2)

bi-Repmin(P,G) = {({a ← not a.}, ∅), ({b.}, ∅), (∅, {a.}), (∅, {d., a ← d.})}

Repairing Non-monotonic Knowledge Bases 159

The following theorem states that the desired duality result is indeed obtained.
Theorem 3 (Subset-Superset Duality). Let K and G be disjoint knowledge
bases. Then, S is a minimal hitting set of co-bi-Nrepmax (K,G) if and only if
S ∈ bi-Repmin(K,G).

Proof. We give the main idea for the proof, but some steps are just sketched. In
principle, we prove a “dual” version of this theorem. Our first step is a lemma
from [5]: Given a set X = {X1, . . . , Xn} of sets with Xi �⊆ Xj for i �= j. Then,
minHS(minHS(X)) = X , where minHS assigns the set of minimal hitting sets
to a set. Moreover, the following technical, but intuitively clear lemma will be
convenient: Let K and G be disjoint knowledge bases. Let A ⊆ G and D ⊆ K. Any
set H with K\D ⊆ H ⊆ K ∪ A can be written as H = (K\D′) ∪ A′ with D′ ⊆ D
and A′ ⊆ A. Due to the lemma about hitting sets, one may show that proving the
following statement suffices: Let K and G be disjoint knowledge bases. Then, S is
a minimal hitting set of bi-Repmin(K,G) if and only if S ∈ co-bi-Nrepmax (K,G).
This is done in a straight fashion, we demonstrate the direction “⇒”:

Let S = (SA,SD) be a minimal hitting set of bi-Repmin(K,G). For the sake
of contradiction assume that (K\SA,G\SD) /∈ bi-Nrepmax (K,G).

First assume (G\SA,K\SD) /∈ bi-Nrep(K,G). Then, by definition,

K\(K\SD) /∈ SI (K ∪ G\SA),

and thus, SD /∈ SI (K ∪ G\SA). So, there is a consistent set H with SD ⊆
H ⊆ K ∪ (G\SA). Due to our lemma, we find D ⊆ K\SD and A ⊆ G\SA with
H = K\D ∪ A. Due to finiteness of both knowledge bases we might assume
(D,A) ∈ bi-Repmin(K,G). Now, SA ∩ A = ∅ as well as SD ∩ D = ∅ implies that
S = (SA,SD) is no hitting set of bi-Repmin(K,G), a contradiction.

Now assume (G\SA,K\SD) ∈ Nrep(K,G), but the tuple is not maximal. We
thus find a tuple S ′ = (SA′ ,SD′) ⊆ (SA,SD) = S such that (G\SA′ ,K\SD′) ∈
Nrepmax (K,G). We claim that S ′ is a hitting set of bi-Repmin(K,G) as well.
This can bee seen as follows: Assume this is not the case, i.e., there is a tuple
(D,A) ∈ bi-Repmin(K,G) with SA′ ∩ A = ∅ as well as SD′ ∩ D = ∅. By assump-
tion,

K\D ∪ A
is consistent. Due to SA′ ∩ A = ∅ as well as SD′ ∩ D = ∅ we obtain SD′ ⊆ K\D
and A ⊆ G\SA′ . So,

SD′ ⊆ (K\D) ⊆ (K ∪ A)\D ⊆ (K ∪ (G\SA′))\D ⊆ (K ∪ (G\SA′)).

In particular,
SD′ ⊆ (K ∪ A)\D ⊆ (K ∪ (G\SA′)).

Due to consistency of (K ∪ A)\D we infer that SD′ /∈ SI (K ∪ (G\SA′)). So, by
definition, (G\SA′ ,K\SD′) /∈ Nrep(K,G) which is a contradiction. So, S ′ must
be a hitting set of bi-Repmin(K,G) which contradicts minimality of S. �

160 M. Ulbricht

Example 16. Recall (2) from Example 15. Again set H = P\{a ← not b.} and
take ({a ← not a.}, ∅) ∈ bi-Repmin(P,G). Indeed, this is a minimal hitting set
of co-bi-Nrepmax (P,G) since

({a ← not a.}, ∅) ∩ (H, {a, d}) = ({a ← not a.}, ∅),
({a ← not a.}, ∅) ∩ (H, {a, a ← d.}) = ({a ← not a.}, ∅).

We want to make a few more observations in order to investigate the structural
properties of hitting sets as well as the connections between the different cases
we considered. Our first one is that hitting sets of SImin(K) can easily be turned
into hitting sets of co-bi-Nrepmax (K,G).

Proposition 6. Let K and G be disjoint knowledge bases. If Cmax (K) �= ∅, i.e.,
K possesses consistent subsets, then a set SD is a minimal hitting set of SImin(K)
if and only if (SD, ∅) is a minimal hitting set of co-bi-Nrepmax (K,G).

Note in particular that SD in Proposition 6 is independent of G. So, once calcu-
lated for K, it can be re-used for any G. Similarly, we have:

Proposition 7. Let K and G be disjoint knowledge bases. If Repmin(K,G) �=
∅, i.e., there are repairing subsets of G wrt. K, then a set SA is a minimal
hitting set of co-Nrepmax (K,G) if and only if (∅,SA) is a minimal hitting set
of co-bi-Nrepmax (K,G).

We want to emphasize that Proposition 6 in particular implies the following: If
(D,A) ∈ co-bi-Nrepmax (K,G), then D �= ∅. Otherwise, (SD, ∅) could not be a
hitting set of co-bi-Nrepmax (K,G). The same is true regarding Proposition 7.

Proposition 8. Let K and G be disjoint knowledge bases.

– Let Cmax (K) �= ∅. If (D,A) ∈ co-bi-Nrepmax (K,G), then D �= ∅.
– Let Repmin(K,G) �= ∅. If (D,A) ∈ co-bi-Nrepmax (K,G), then A �= ∅.
We believe that the results of this section are not only interesting regarding a
generalized hitting set duality, but also point out quite encouraging structural
properties of knowledge bases. The investigated notions which induce the duality
results are symmetric in their spirit and generalize each other in a natural way.
We are thus convinced that the properties we acquired in Propositions 1–8 are
pleasant on their own, in addition to the main theorems.

5 Preferences and Refinements

The aim of this section is to investigate two further aspects that are of interest
when dealing with inconsistent knowledge bases. First, we assume that certain
information are undisputed due to their reliability, so we want repairs not to
allow for removal of certain formulas in B ⊆ K. Then, we investigate refining
instead of deleting and adding formulas, a more general approach. Our goal is
again to characterize the minimal modifications in terms of a hitting set duality.
Interestingly, we do not rely on novel proofs due to the versatility of Theorem 3.
So let us start with a notion of repairs which insists on B ⊆ K.

Repairing Non-monotonic Knowledge Bases 161

Definition 12. Let K and G be disjoint knowledge bases. Let B ⊆ K. Set
bi-Repmin(K,G,B) = {(D,A) ∈ bi-Repmin(K,G) | D ∩ B = ∅}.
In order to apply Theorem 3, we redefine ACC to render subsets of K inconsistent
whenever a formula in B is deleted. So let LB = (WF,BS, INC,ACCB) where
ACCB(K) = ∅ whenever B � K and otherwise it coincides with ACC(K). For this
auxiliary logic LB we obtain:

Lemma 1. If L is a logic and K and G are disjoint knowledge bases, then

– bi-Repmin(K,G)LB = bi-Repmin(K,G,B)L,
– bi-Nrepmax (K,G)LB = {(D ∪ B,A) | (D,A) ∈ bi-Nrepmax (K,G)L}.
Hence, set bi-Nrepmax (K,G,B) := {(D ∪ B,A) | (D,A) ∈ bi-Nrepmax (K,G)}
and co-bi-Nrepmax (K,G,B) as expected. Now apply Theorem 3 to the logic LB:

Corollary 1. Let K and G be disjoint knowledge bases. Let B ⊆ K. Then, S is
a minimal hitting set of co-bi-Nrepmax (K,G,B) iff S ∈ bi-Repmin(K,G,B).

Example 17. For our running example, assume that B = {a ← not a.} ⊆ P is a
rule in P that shall not be removed. Recalling (2) from Example 15, we find

bi-Repmin(P,G,B) = {({b.}, ∅), (∅, {a.}), (∅, {d., a ← d.})}
co-bi-Nrepmax (P,G,B) = {({b.}, {a, d}), ({b.}, {a, a ← d.})}.

Indeed, the duality claimed in Corollary 1 holds.

Let us continue with a more fine-grained modification to knowledge bases,
namely weakening and strengthening instead of deleting and adding formulas.
For that, we need a general notion for α1 being a “stronger” formula than α2:

Definition 13. Let L be a logic. We say α1 entails α2, denoted by α1 �L α2,
iff for all knowledge bases K, α1 ∈ K implies ACC(K) = ACC(K ∪ {α2}).

To model modifications to formulas, let w, s (weaker, stronger) be mappings
w, s : K → WF\K with s(α) �L α �L w(α). For technical reasons we assume
the sets K, w(K) and s(K) to be pairwise disjoint. We consider the knowledge
base K after applying w and s to two disjoint subsets Hw,Hs ⊆ K, i.e., we let
K[w(Hw), s(Hs)] = (K\(Hw ∪ Hs)) ∪ (w(Hw) ∪ s(Hs)).

Definition 14. Let K be a knowledge base. If Hw,Hs ⊆ K are disjoint and
K[w(Hw), s(Hs)] is consistent, then we call (Hw, s(Hs)) a consistency-restoring
modification of K wrt. w, s. Let Modmin(K) denote the set of all minimal
consistency-restoring modifications of K wrt. w, s.

Note the intended asymmetry in the tuple (Hw, s(Hs)), which is chosen to
conveniently phrase Lemmas 2 and 3 below. Again, we want to characterize
Modmin(K) in terms of a hitting set duality. For this, consider K̃ and G̃ given as
K̃ = K∪w(K), i.e., K̃ contains in addition the weakened formulas and G̃ = s(K),

162 M. Ulbricht

i.e., G̃ consists of the strengthened formulas. Please note that ACC(K̃) = ACC(K).
In particular, if we remove α ∈ K from K̃, then the latter still contains w(α), i.e.,
ACC(K̃\{α}) = ACC(K[w({α}), s(∅)]). Hence, this corresponds to weakening α.
Similarly, adding a formula s(α) ∈ G̃ to K̃ corresponds to strengthening α. Now
we can almost capture Modmin(K).

Lemma 2. Let K be a knowledge base. Then, bi-Repmin(K̃, G̃) = Modmin(K)∪
{(D,A) ∈ bi-Repmin(K̃, G̃) | w(K) ∩ D �= ∅}.
The difference is that one may in particular delete and not only weaken formulas.
Depending on the desired outcome, one could either accept this or apply the
technique from above in order to forbid removal of B := w(K) ⊆ K̃. If we define
LB as above, Lemma 2 yields a characterization of Modmin(K).

Lemma 3. If K be a knowledge base, then bi-Repmin(K̃, G̃)LB = Modmin(K)L.

By applying Theorem 3 we find a duality in terms of bi-Nrepmax (K̃, G̃)LB . So
we are interested in the nature of this set.

Lemma 4. Let K be a knowledge base. Then, bi-Nrepmax (K̃, G̃)LB is the col-
lection of all maximal tuples (D,A) = (Hw, s(Hs)) such that (i) the knowl-
edge base K[w(H′

w), s(H′
s)] is inconsistent for all (H′

w,H′
s) ⊆ (Hw,Hs) or (ii)

D ∩ B = D ∩ w(K) �= ∅.
Finally, applying Theorem 3 yields the desired duality.

Corollary 2. Let K be a knowledge base and K̃, G̃ and B as above. Then, S is
a minimal hitting set of co-bi-Nrepmax (K̃, G̃)LB iff S ∈ Modmin(K)L.

We want to mention that more sophisticated situations can be covered via
Theorem 3, for example consideration of more than one option to weaken and
strengthen formulas. Of course, one can also enforce that certain subsets of G
shall not be included. The two examples we have illustrated here are chosen since
they can be elegantly presented in a concise way.

6 Excursus: Inconsistency in Abstract Argumentation

The aim of this section is to illustrate how the previous analysis can help to
tackle situations where a given argumentation framework is inconsistent, i.e.,
it does not possess any accepted argument. In the original formulation [14], an
abstract argumentation framework is a directed graph F = (A,R) where nodes
in A represent arguments and the relation R models attack, i.e., for a, b ∈ A, if
(a, b) ∈ R we say that a attacks b. For a set E we use E+ for {b | (a, b) ∈ R, a ∈
E} and define E⊕ = E ∪ E+. A further essential notion in argumentation is
defense. Formally, an argument b is defended by a set A if each attacker of b is
counter-attacked by some a ∈ A.

An extension-based semantics σ is a function which assigns to any AF F =
(A,R) a set of sets of arguments σ(F) ⊆ 2A. Each one of them, so-called σ-
extension, is considered to be acceptable with respect to F . Besides conflict-free
and admissible sets (abbr. cf and ad) we consider stable, semi-stable, complete,
preferred and grounded (abbr. stb, ss, co, pr and gr).

Repairing Non-monotonic Knowledge Bases 163

b

(1)

a c b

(2)

a c b

(3)

a c

Fig. 1. The AFs from Example 18 (1), Example 19 (2) and Example 20 (3)

Definition 15. Let F = (A,R) be an AF and E ⊆ A.

1. E ∈ cf (F) iff for no a, b ∈ E, (a, b) ∈ R,
2. E ∈ad(F) iff E ∈cf (F) and E defends all its elements,
3. E ∈stb(F) iff E ∈cf (F) and E⊕ = A,
4. E ∈ss(F) iff E ∈ad(F) and for no I ∈ad(F), E⊕ ⊂I⊕,
5. E ∈co(F) iff E ∈ad(F) and for any a ∈ A defended by E, a ∈ E,
6. E ∈pr(F) iff E ∈co(F) and for no I ∈co(F), E ⊂I,
7. E ∈gr(F) iff E ∈co(F) and for any I ∈co(F), E ⊆I,

We demonstrate how to model argumentation frameworks under given semantics
σ as a logic according to Definition 1. We assume a set A of arguments is fixed. We
define a logic LA

AF,σ = (WFA
AF,BSA

AF, INCA
AF,ACCA

AF,σ). For ease of presentation,
we omit the superscript A whenever it is implicitly clear. The set WFAF is the
set of all possible attacks, i.e., WFAF = (A × A). Belief sets are arbitrary sets of
arguments, i.e., BSAF = 2A and INCAF = ∅ (there is no inconsistent extension).
Now we define the acceptability function. Following [3], we consider one for
both credulous as well as sceptical reasoning: Let ACCcred

AF,σ(F) =
⋃

σ(F) and
ACCscep

AF,σ(F) =
⋂

σ(F) (where we stipulate
⋂ ∅ = ∅). This yields different logics

for each semantics and each reasoning mode (where we again omit the sub- and
superscripts whenever the context is clear).

Example 18. The AF depicted in Fig. 1(1) can be represented as knowledge
base F = {(a, b), (b, c), (c, a)} over A = {a, b, c}. Note that F is inconsistent
wrt. preferred semantics for both reasoning modes since pr(F) = ∅ and hence
ACCscep

AF (F) = ACCcred
AF (F) = ∅ ⊆ INCAF (recall Definition 2).

Please observe that the results from Sects. 3 and 4 hold for any semantics σ and
both reasoning modes since we modeled AFs as a logic according to Definition 1.

Example 19. Consider A = {a, b, c} and the AF F from above as well as G =
{(c, b)}. The AF F ∪ G is depicted in Fig. 1(2). Consider preferred semantics
and credulous reasoning. Observe pr(F ∪ G) = {{c}}. So, F ∪ G is consistent
and thus (D,A) = (∅,G) = (∅, {(c, b)}) ∈ bi-Repmin(F ,G). Moreover, removal
of any attack turns F into a consistent AF. So,

bi-Repmin(F ,G) = {{(∅, {(c, b)})}, {({(a, b)}, ∅)}, {({(b, c)}, ∅)}, {({(c, a)}, ∅)}}.

Now, by Theorem 3 we find that co-bi-Nrepmax (F ,G) contains only the tuple
(F ,G). Consequently, bi-Nrepmax (F ,G) consists of {(∅, ∅)}. This is indeed true
since any modification to F yields a consistent AF.

164 M. Ulbricht

In [3] it has been noticed that deciding whether an AF H ⊆ F is maximal consis-
tent is computational demanding for most of the semantics from Definition 15.
However, there is also good news: for grounded semantics, computing repairs
is tractable and due to relations between repairs wrt. different semantics, the
grounded case is a promising starting point when looking for consistent subsets
of an AF. We are thus interested in extending the results from [3]. We find:

Proposition 9. Let F and G be AFs with F ∩ G = ∅. Let σ ∈ {ss, pr , co}. If
(D,A) ∈ bi-Rep(F ,G) wrt. gr semantics, then there is a tuple (D′,A′) ⊆ (D,A)
with (D′,A′) ∈ bi-Repmin(F ,G) wrt. σ. This holds for both reasoning modes.

Example 20. Consider again F and G from Examples 18 and 19. A bidirectional
repair for F wrt. grounded semantics is (D,A) = ({(c, a)}, {(c, b)}). The frame-
work F\{(c, a)} ∪ {(c, b)} is depicted in Fig. 1(3). Indeed, two of the minimal
bidirectional repairs for F wrt. preferred semantics and credulous reasoning we
found in Example 19 are (∅, {(c, b)}) ⊆ (D,A) and ({(c, a)}, ∅) ⊆ (D,A).

Regarding stable semantics, we find a slightly weaker version of Proposition 9.
Note that here, we have (D,A) ⊆ (D′,A′) and no minimality for (D′,A′).

Proposition 10. Let F and G be AFs with F ∩ G = ∅. If (D,A) ∈
bi-Rep(F ,G) wrt. gr semantics, then there is a tuple (D,A) ⊆ (D′,A′) with
(D′,A′) ∈ bi-Rep(F ,G) wrt. stb semantics. This holds for both reasoning modes.

There is, however, a practical problem regarding Propositions 9 and 10. Note
that there is a non-empty grounded extension if and only if there is an argument
which is not attacked. This means there is never a reason to add attacks to
obtain a framework which possesses a non-empty grounded extension.

Proposition 11. Let F and G be AFs with F ∩ G = ∅. If (D,A) ∈
bi-Rep(F ,G) wrt. gr semantics, then the same is true for (D, ∅).

Hence, even though one might start with a repair option (D,A) for grounded
semantics, one can always ignore D. For the semantics we investigate here, one
could use stable semantics, as long as credulous reasoning is considered.

Proposition 12. Let F and G be AFs with F ∩ G = ∅. Let σ ∈ {ss, pr , co}. If
(D,A) ∈ bi-Rep(F ,G) wrt. stb semantics and credulous reasoning, then there is
(D′,A′)⊆(D,A) s.t. (D′,A′)∈bi-Repmin(F ,G) wrt. σ and credulous reasoning.

Proposition 12 is not as appealing as Proposition 9 though, since checking
whether an AF possesses a stable extension is known to be NP-complete in
contrast to the tractability of the same problem for grounded semantics. More-
over, Proposition 12 does not work for sceptical reasoning. Finding relations that
are similarly useful for the notions investigated here is left for future work.

7 Conclusions

In this paper we studied inconsistency in an abstract setting covering arbitrary
logics, including non-monotonic ones. We extended the duality result from [11]

Repairing Non-monotonic Knowledge Bases 165

to a setting which also allows for adding information to a given knowledge base
and demonstrated relations between the different notions. We demonstrated the
versatility of our results by applying them to more sophisticated situations.
Moreover, we discussed our results in the context of abstract argumentation
frameworks.

We are not aware of any work extending the well known hitting set duality
to situations including adding new formulas to a knowledge base as we did in
this paper. The closest to our work is probably [15]. The investigation in this
paper is, however, restricted to multi-context systems [8]. They focus on the case
where the source of inconsistency can be attributed to so-called bridge rules and
consider modifying them rather than adding new rules. The paper [16] considers
the problem of belief revision in ASP and analyzes, similar to the present paper,
a setting where restoring consistency may be obtained due to additional rules.

We are convinced that an investigation of the computational complexity of
the notions we considered in the present paper would be appealing. Indeed,
they possess similar properties as the deletion-based ones discussed in [11]. A
thorough discussion is, however, beyond the scope of this paper. In future work,
one might also be interested in investigating specific frameworks similar in spirit
to Sect. 6, including algorithms. Moreover, the present paper contributes to a
thorough understanding of inconsistency in non-monotonic logics, which might
help the research area of measuring inconsistency [1,20–22,27,28].

References

1. Amgoud, L., Ben-Naim, J.: Measuring disagreement in argumentation graphs. In:
Moral, S., Pivert, O., Sánchez, D., Maŕın, N. (eds.) SUM 2017. LNCS (LNAI), vol.
10564, pp. 208–222. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
67582-4 15

2. Baroni, P., Caminada, M., Giacomin, M.: An introduction to argumentation
semantics. Knowl. Eng. Rev. 26(4), 365–410 (2011)

3. Baumann, R., Ulbricht, M.: If nothing is accepted - repairing argumentation frame-
works. In: Principles of Knowledge Representation and Reasoning: Proceedings of
the Sixteenth International Conference, KR 2018, Tempe, Arizona, 30 October–2
November 2018, pp. 108–117 (2018). https://aaai.org/ocs/index.php/KR/KR18/
paper/view/17979

4. Benferhat, S., Dubois, D., Prade, H.: A local approach to reasoning under inconsis-
tency in stratified knowledge bases. In: Froidevaux, C., Kohlas, J. (eds.) ECSQARU
1995. LNCS, vol. 946, pp. 36–43. Springer, Heidelberg (1995). https://doi.org/10.
1007/3-540-60112-0 5

5. Berge, C.: Hypergraphs: Combinatorics of Finite Sets, vol. 45. North-Holland, Ams-
terdam (1989)

6. Béziau, J.Y., Carnielli, W., Gabbay, D. (eds.): Handbook of Paraconsistency. Col-
lege Publications, London (2007)

7. Brachman, R.J., Levesque, H.J.: Knowledge Representation and Reasoning. The
Morgan Kaufmann Series in Artificial Intelligence. Morgan Kaufmann Publishers,
San Francisco (2004)

https://doi.org/10.1007/978-3-319-67582-4_15
https://doi.org/10.1007/978-3-319-67582-4_15
https://aaai.org/ocs/index.php/KR/KR18/paper/view/17979
https://aaai.org/ocs/index.php/KR/KR18/paper/view/17979
https://doi.org/10.1007/3-540-60112-0_5
https://doi.org/10.1007/3-540-60112-0_5

166 M. Ulbricht

8. Brewka, G., Eiter, T.: Equilibria in heterogeneous nonmonotonic multi-context
systems. In: Proceedings of the Twenty-Second AAAI Conference on Artificial
Intelligence, Vancouver, British Columbia, Canada, 22–26 July 2007, pp. 385–390
(2007)

9. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011). https://doi.org/10.1145/2043174.2043195

10. Brewka, G., Thimm, M., Ulbricht, M.: Strong inconsistency in nonmonotonic rea-
soning. In: Proceedings of the Twenty-Sixth International Joint Conference on
Artificial Intelligence, IJCAI 2017, pp. 901–907 (2017)

11. Brewka, G., Thimm, M., Ulbricht, M.: Strong inconsistency. Artif. Intell. 267,
78–117 (2019)

12. Cholvy, L., Hunter, A.: Information fusion in logic: a brief overview. In: Gabbay,
D.M., Kruse, R., Nonnengart, A., Ohlbach, H.J. (eds.) ECSQARU/FAPR -1997.
LNCS, vol. 1244, pp. 86–95. Springer, Heidelberg (1997). https://doi.org/10.1007/
BFb0035614

13. Dubois, D., Lang, J., Prade, H.: Inconsistency in possibilistic knowledge bases: to
live with it or not live with it. In: Zadeh, L., Kacprzyk, J. (eds.) Fuzzy Logic for
the Management of Uncertainty, pp. 335–351. Wiley, New York (1992)

14. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2),
321–358 (1995)

15. Eiter, T., Fink, M., Schüller, P., Weinzierl, A.: Finding explanations of inconsis-
tency in multi-context systems. Artif. Intell. 216, 233–274 (2014). https://doi.org/
10.1016/j.artint.2014.07.008

16. Garcia, L., Lefèvre, C., Papini, O., Stéphan, I., Würbel, É.: A semantic charac-
terization for ASP base revision. In: Moral, S., Pivert, O., Sánchez, D., Maŕın, N.
(eds.) SUM 2017. LNCS (LNAI), vol. 10564, pp. 334–347. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-67582-4 24

17. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
ICLP/SLP, vol. 88, pp. 1070–1080 (1988)

18. Grant, J.: Classifications for inconsistent theories. Notre Dame J. Formal Log.
19(3), 435–444 (1978)

19. Hansson, S.O.: A Textbook of Belief Dynamics. Kluwer Academic Publishers, Nor-
well (2001)

20. Hunter, A., Konieczny, S.: Approaches to measuring inconsistent information. In:
Bertossi, L., Hunter, A., Schaub, T. (eds.) Inconsistency Tolerance. LNCS, vol.
3300, pp. 191–236. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-
540-30597-2 7

21. Hunter, A.: Measuring inconsistency in argument graphs. Technical report.
arXiv:1708.02851 (2017)

22. Hunter, A.: Measuring inconsistency in argument graphs. In: Grant, J., Martinez,
M.V. (eds.) Measuring Inconsistency in Information. College Publications (2018)

23. Konieczny, S., Lang, J., Marquis, P.: Reasoning under inconsistency: the forgotten
connective. In: Proceedings of IJCAI 2005, pp. 484–489 (2005)

24. Konieczny, S., Perez, R.P.: Logic based merging. J. Philos. Log. 40, 239–270 (2011)
25. Lang, J., Marquis, P.: Reasoning under inconsistency: a forgetting-based approach.

Artif. Intell. 174(12–13), 799–823 (2010)
26. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95

(1987). https://doi.org/10.1016/0004-3702(87)90062-2

https://doi.org/10.1145/2043174.2043195
https://doi.org/10.1007/BFb0035614
https://doi.org/10.1007/BFb0035614
https://doi.org/10.1016/j.artint.2014.07.008
https://doi.org/10.1016/j.artint.2014.07.008
https://doi.org/10.1007/978-3-319-67582-4_24
https://doi.org/10.1007/978-3-540-30597-2_7
https://doi.org/10.1007/978-3-540-30597-2_7
http://arxiv.org/abs/1708.02851
https://doi.org/10.1016/0004-3702(87)90062-2

Repairing Non-monotonic Knowledge Bases 167

27. Ulbricht, M., Thimm, M., Brewka, G.: Inconsistency measures for disjunctive logic
programs under answer set semantics. In: Grant, J., Martinez, M.V. (eds.) Measur-
ing Inconsistency in Information, Studies in Logic, vol. 73. College Publications,
February 2018

28. Ulbricht, M., Thimm, M., Brewka, G.: Measuring strong inconsistency. In: Proceed-
ings of the 32nd AAAI Conference on Artificial Intelligence, AAAI 2018, February
2018

Causal, Defeasible and Inductive
Reasoning

ACUOS2: A High-Performance System
for Modular ACU Generalization
with Subtyping and Inheritance

Maŕıa Alpuente1, Demis Ballis2, Angel Cuenca-Ortega1,3,
Santiago Escobar1(B), and José Meseguer4

1 DSIC -ELP, Universitat Politècnica de València,
Valencia, Spain

{alpuente,acuenca,sescobar}@dsic.upv.es
2 DMIF, University of Udine,

Udine, Italy
demis.ballis@uniud.it

3 Universidad de Guayaquil,
Guayaquil, Ecuador

angel.cuencao@ug.edu.ec
4 University of Illinois at Urbana-Champaign,

Urbana, IL, USA
meseguer@illinois.edu

Abstract. Generalization in order-sorted theories with any combination
of associativity (A), commutativity (C), and unity (U) algebraic axioms
is finitary. However, existing tools for computing generalizers (also called
“anti-unifiers”) of two typed structures in such theories do not currently
scale to real size problems. This paper describes the ACUOS2 system that
achieves high performance when computing a complete and minimal set
of least general generalizations in these theories. We discuss how it can be
used to address artificial intelligence (AI) problems that are representable
as order-sorted ACU generalization, e.g., generalization in lists, trees,
(multi-)sets, and typical hierarchical/structural relations. Experimental
results demonstrate that ACUOS2 greatly outperforms the predecessor
tool ACUOS by running up to five orders of magnitude faster.

1 Introduction

Computing generalizations is relevant in a wide spectrum of automated reason-
ing areas where analogical reasoning and inductive inference are needed, such
as analogy making, case-based reasoning, web and data mining, ontology learn-
ing, machine learning, theorem proving, program derivation, and inductive logic
programming, among others [5,13,14].

This work has been partially supported by the EU (FEDER) and the Spanish MINECO
under grant TIN 2015-69175-C4-1-R, by Generalitat Valenciana under grants PROM-
ETEOII/2015/013 and PROMETEO/2019/098, and by NRL under contract num-
ber N00173-17-1-G002. Angel Cuenca-Ortega has been supported by the SENESCYT,
Ecuador (scholarship program 2013).

c© Springer Nature Switzerland AG 2019
F. Calimeri et al. (Eds.): JELIA 2019, LNAI 11468, pp. 171–181, 2019.
https://doi.org/10.1007/978-3-030-19570-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19570-0_11&domain=pdf
https://doi.org/10.1007/978-3-030-19570-0_11

172 M. Alpuente et al.

This work presents ACUOS2, a highly optimized implementation of the order-
sorted ACU least general generalization algorithm formalized in [3]. ACUOS2

is a new, high-performance version of a previous prototype called ACUOS [4].
ACUOS2 runs up to five orders of magnitude faster than ACUOS and is able to
solve complex generalization problems in which ACUOS fails to give a response.
Both systems are written in Maude [10], a programming language and system
that implements rewriting logic [12] and supports reasoning modulo algebraic
properties, subtype polimorphism, and reflection. However, ACUOS was devel-
oped with a strong concern for simplicity and does not scale to real-life problem
sizes, such as the biomedical domains often addressed in inductive logic program-
ming and other AI applications, with a substantial number of variables, predi-
cates and/or operators per problem instance. Scalability issues were not really
unexpected since other equational problems (such as equational matching, equa-
tional unification, or equational embedding) are typically much more involved
and costly than their corresponding “syntactic” counterparts, and achieving effi-
cient implementations has required years of significant investigation effort.

Section 2 briefly summarizes the problem of generalizing two (typed) expres-
sions in theories that satisfy any combination of associativity (A), commutativity
(C) and unity axioms (U). In Sect. 3, we explain the main functionality of the
ACUOS2 system and describe the novel implementation ideas and optimizations
that have boosted the tool performance. A nontrivial application of equational
generalization to a biological domain is described in Sect. 4. An in-depth exper-
imental evaluation of ACUOS2 is given in Sect. 5. In Sect. 6 we briefly discuss
some related work.

2 Least General Generalization Modulo A, C, and U

Computing a least general generalization (lgg) for two expressions t1 and t2
means finding the least general expression t such that both t1 and t2 are instances
of t under appropriate substitutions. For instance, the expression olympics(X,Y)
is a generalizer of both olympics(1900,paris) and olympics(2024, paris)
but their least general generalizer, also known as most specific generalizer (msg)
and least common anti-instance (lcai), is olympics(X,paris).

Syntactic generalization has two important limitations. First, it cannot gen-
eralize common data structures such as records, lists, trees, or (multi-)sets, which
satisfy specific premises such as, e.g., the order among the elements in a set being
irrelevant. Second, it does not cope with types and subtypes, which can lead to
more specific generalizers.

Consider the predicates connected, flights, visited, and alliance
among cities, and let us introduce the constants rome, paris, nyc, bonn,
oslo, rio, and ulm. Assume that the predicate connected is used to state
that a pair of cities C1;C2 are connected by transportation, with “;” being
the unordered pair constructor operator so that the expressions connected-
(nyc;paris) and connected(paris;nyc) are considered to be equivalent mod-
ulo the commutativity of “;”. The expressions connected(nyc;paris) and

ACUOS2: A High-Performance System for Modular ACU Generalization 173

connected(paris;bonn) can be generalized to connected(C;paris), whereas
the syntactic least general (or most specific) generalizer of these two expressions
is connected(C1;C2).

Similarly, assume that the predicate flights(C,L) is used to state that the
city C has direct flights to all of the cities in the list L. The list concatenation
operator “.” records the cities1 in the order given by the travel distance from
C. Due to the associativity of list concatenation, i.e., (X.Y).Z = X.(Y.Z), we
can use the flattened list rio.paris.oslo.nyc as a very compact and con-
venient representation of the congruence class (modulo associativity) whose
members are the different parenthesized list expressions ((rio.paris).oslo).
nyc, (rio.(paris.oslo)).nyc, rio.(paris.(oslo.nyc)), etc. Then, for
the expressions flights(rome,paris.oslo.nyc.rio) and flights(bonn,ulm.
oslo.rome), the least general generalizer is flights(C,L1.oslo.L2), which
reveals that oslo is the only common city that has a direct flight from rome and
bonn. Note that flights(C,L1.oslo.L2) is more general (modulo associativ-
ity) than flights(rome,paris.oslo.nyc.rio) by the substitution {C/rome,
L1/paris, L2/(nyc.rio)} and more general than flights(bonn,ulm.oslo.
rome) by the substitution {C/bonn, L1/ulm, L2/rome}.

Due to the equational axioms ACU, in general there can be more than one
least general generalizer of two expressions. As a simple example, let us record
the travel history of a person using a list that is ordered by the chronology in
which the visits were made; e.g., visited(paris.paris.bonn.nyc) denotes that
paris has been visited twice before visiting bonn and then nyc. The travel his-
tories visited(paris.paris.bonn.nyc) and visited(bonn.bonn.rome) have
two incomparable least general generalizers: (a) visited(L1.bonn.L2) and (b)
visited(C.C.L), meaning that (a) the two travelers visited bonn, and (b) they
consecutively repeated a visit to their own first visited city. Note that the two
generalizers are least general and incomparable, since neither of them is an
instance (modulo associativity) of the other.

Furthermore, consider the predicate alliance(S) that checks whether the
cities in the set S have established an alliance. We introduce a new operator “&”
that satisfies associativity, commutativity, and unit element ∅; i.e., X & ∅ = X
and ∅ & X = X. We can use the flattened, multi-set notation alliance(nyc
& oslo & paris & rome) as a very compact and convenient representation
(with a total order on elements given by the lexicographic order) for the con-
gruence class modulo ACU whose members are all of the different parenthe-
sized permutations of the considered cities. Such permutations include as many
occurrences of ∅ as needed, due to unity [10]. In this scenario, the expres-
sions (i) alliance(nyc & oslo & paris & rome) and (ii) alliance(bonn &
paris & rio & rome) have an infinite set of ACU generalizers of the form
alliance(paris & rome & S1 & · · · & Sn) yet they are all equivalent modulo

1 A single city is automatically coerced into a singleton list.

174 M. Alpuente et al.

ACU-renaming2 so that we can choose one of them, typically the smallest one,
as the class representative.

Regarding the handling of types and subtypes, let us assume that the con-
stants rome, paris, oslo, ulm, and bonn belong to type European and that nyc
and rio belong to type American. Furthermore, let us suppose that European
and American are subtypes of a common type City that, in turn, is a subtype
of the type Cities that can be used to model the typed version of the previous
ACU (multi-)set structure. Subtyping implies automatic coercion: for instance,
a European city also belongs to the type City and Cities. Note that the empty
set, denoted by the unity ∅, only belongs to Cities.

In this typed environment, the above expressions (i) and (ii) have only one
typed ACU least general generalizer alliance(paris & rome & C1:American
& C2:European) that we choose as the representative of its infinite ACU con-
gruence class. Note that alliance(paris & rome & S:Cities) is not a least
general generalizer since it is strictly more general; it suffices to see that the typed
ACU-lgg above is an instance of it modulo ACU with substitution {S:Cities/
(C1:American & C2:European)}.

For a discussion on how to achieve higher-order generalization in Maude we
refer to [4].

3 ACUOS2: A High Performance Generalization System

ACUOS2 is a new, totally redesigned implementation of the ACUOS system pre-
sented in [4] that provides a remarkably faster and more optimized computation
of least general generalizations. Generalizers are computed in an order-sorted,
typed environment where inheritance and subtype relations are supported mod-
ulo any combination of associativity, commutativity, and unity axioms.

Both ACUOS and ACUOS2 implement the generalization calculus of [3] but
with remarkable differences concerning how they deal with the combinatorial
explosion of different alternative possibilities; see [15] for some theoretical results
on the complexity of generalization. Consider the generalization problem

connected(paris; bonn)
�
= connected(bonn; paris)

that is written using the syntax of [3]. ACUOS already includes some optimiza-
tions but follows [3] straightforwardly and decomposes this problem (modulo
commutativity of “;”) into two simpler subproblems:

(P1) paris
�
= bonn ∧ bonn

�
= paris (P2) paris

�
= paris ∧ bonn

�
= bonn

According to [3], both are explored non-deterministically even if only the last
subproblem would lead to the least general generalization. Much worse, due to
axioms and types, a post-generation, time-expensive filtering phase is necessary
2 i.e., the equivalence relation ≈ACU induced by the relative generality (subsumption)

preorder ≤ACU , i.e., s ≈ACU t iff s ≤ACU t and t ≤ACU s.

ACUOS2: A High-Performance System for Modular ACU Generalization 175

to get rid of non-minimal generalizers. We have derived four groups of opti-
mizations: (a) avoid non-deterministic exploration; (b) reduce the number of
subproblems; (c) prune non-minimal paths to anticipate failure; and (d) filter
out non-minimal solutions more efficiently.

(a) While ACUOS directly encoded the inference rules of [3] as rewrite rules that
non-deterministically compute generalizers by exploring all branches of the
search tree in a don’t-know manner, i.e., each branch potentially leads to a
different solution, ACUOS2 smartly avoids non-deterministic exploration by
using synchronous rewriting [7], also called maximal parallel rewriting, that
allows ACUOS2 to keep all current subproblems in a single data structure,
e.g. P1 | P2 | · · · | Pn, where all subproblems are simultaneously executed,
avoiding any non-deterministic exploration at all. Synchronous rewriting is
achieved in Maude by reformulating rewrite rules as oriented equations and,
thanks to the different treatment of rules and equations in Maude [10], the
deterministic encoding of the inference rules significantly reduces execution
time and memory consumption. Also, built-in Maude memoization tech-
niques are applied to speed up the evaluation of common subproblems, which
can appear several times during the generalization process.

(b) Enumeration of all possible terms in a congruence class is extremely ineffi-
cient, and even nonterminating when the U axiom is considered. Therefore,
it should not be used to effectively solve generalization problems when A,
AC, or ACU axiom combinations are involved. For instance, if f is AC, the
term f(a1, f(a2, . . . , f(an−1, an), . . .)) has (2n− 2)!/(n− 1)! equivalent com-
binations; this number may grow exponentially for generalization problems
that contain several symbols obeying distinct combinations of axioms.
ACUOS2 avoids class element enumeration (specifically the expensive compu-
tation of argument permutations for AC operators). Instead, it relies on the
extremely efficient Maude built-in support for equational matching to decom-
pose generalization problems into simpler subproblems, thereby achieving a
dramatic improvement in performance.

(c) It is extremely convenient to discard as early as possible any generaliza-
tion subproblem that will not lead to a least general generalization. For
example, trivial generalization problems such as paris

�
= paris are imme-

diately solved once and for all without any further synchronous rewrite.
Similarly, dummy generalization problems with single variable generaliz-
ers such as nyc

�
= paris are solved immediately. However, note that

paris.oslo
�
= nyc.oslo is not a dummy problem. ACUOS2 also checks

whether a subproblem is more general than another during the whole pro-
cess, discarding the more general one. For instance, P1 above contains two
dummy subproblems and P2 above contains two trivial subproblems, which
safely allows ACUOS2 to discard P1 as being more general than P2.

(d) Getting rid of non-minimal generalizers commonly implies too many pairwise
comparisons, i.e., whether a generalizer l1 is an instance modulo axioms of a
generalizer l2, or viceversa. Term size is a very convenient ally here since a
term t′ being bigger than another term t prevents t from being an instance

176 M. Alpuente et al.

of t′. Note that this property is no longer true when there is a unit element.
For instance, alliance(nyc & rome & S1:Cities & S2:Cities) is bigger
(modulo ACU) than alliance(nyc & rome & S:Cities); but the latter is
an instance of the former by the substitution {S1/S, S2/∅}. Term size can
reduce the number of matching comparisons by half.

The ACUOS2 backend has been implemented in Maude and consists of about
2300 lines of code. It can be directly invoked in the Maude environment by call-
ing the generalization routine lggs(M,t1,t2), which facilitates ACUOS2 being
integrated with third-party software. Furthermore, ACUOS2 functionality can be
accessed through an intuitive web interface that is publicly available at [1].

4 ACU Generalization in a Biological Domain

In this section, we show how ACUOS2 can be used to analyze biological systems,
e.g., to extract similarities and pinpoint discrepancies between two cell models
that express distinct cellular states. We consider cell states that appear in the
MAPK (Mitogen-Activated Protein Kinase) metabolic pathway that regulates
growth, survival, proliferation, and differentiation of mammalian cells. Our cell
formalization is inspired by and slightly modifies the data structures used in
Pathway Logic (PL) [16]—a symbolic approach to the modeling and analysis of
biological systems that is implemented in Maude. Specifically, a cell state can
be specified as a typed term as follows.

We use sorts to classify cell entities. The main sorts are Chemical, Protein,
and Complex, which are all subsorts of sort Thing, which specifies a generic entity.
Cellular compartments are identified by sort Location, while Modification is
a sort that is used to identify post-transactional protein modifications, which
are defined by the operator “[-]” (e.g., the term [EgfR - act] represents the
Egf (epidermal growth factor) receptor in an active state). A complex is a com-
pound element that is specified by means of the associative ad commutative
(AC) operator “<=>”, which combines generic entities together.

A cell state is represented by a term of the form [cellType | locs], where
cellType specifies the cell type3 and locs is a list (i.e., an associative data
structure whose constructor symbol is “,”) of cellular compartments (or loca-
tions). Each location is modeled by a term of the form { locName | comp },
where locName is a name identifying the location (e.g., CLm represents the cell
membrane location), and comp is a soup (i.e., an associative and commutative
data structure with unity element empty) that specifies the entities included in
that location. Note that cell states are built by means of a combination of A,
AC, and ACU operators. The full formalization of the cell model is as follows.

fmod CELL-STRUCTURE is

sorts Protein Thing Complex Chemical .

subsorts Protein Complex Chemical < Thing .

3 For simplicity, we only consider mammalian cells denoted by the constant mcell.

ACUOS2: A High-Performance System for Modular ACU Generalization 177

op _<=>_ : Thing Thing -> Complex [assoc comm] .

ops Egf EgfR Pi3k Gab1 Grb2 Hras Plcg Sos1 Src : -> Protein .

ops PIP2 PIP3 : -> Chemical .

sort Soup . subsort Thing < Soup .

op empty : -> Soup .

op __ : Soup Soup -> Soup [assoc comm id: empty] .

sort Modification .

ops act GTP GDP : -> Modification .

op [_-_] : Protein Modification -> Protein .

sort Location LocName Locations . subsort Location < Locations .

op {_|_} : LocName Soup -> Location .

ops CLc CLm CLi : -> LocName .

op _,_ : Locations Locations -> Locations [assoc] .

sorts Cell CellType .

op [_|_] : CellType Locations -> Cell .

op mcell : -> CellType .

endfm

Example 1. The term c1

[mcell | { Clc | Gab1 Grb2 Plcg Sos1 },

{ CLm | EgfR PIP2},

{ CLi | [Hras - GDP] Src }]

models a cell state of the MAPK pathway with three locations: the cytoplasm
(CLc) includes five proteins Gab1, Grb2, Pi3k, Plcg, and Sos1; the membrane
(CLm) includes the protein EgfR and the chemical PIP2; the membrane interior
(CLi) includes the proteins Hras (modified by GDP) and Src.

In this scenario, ACUOS2 can be used to compare two cell states, c1 and
c2. Indeed, any ACUOS2 solution is a term whose non-variable part represents
the common cell structure shared by c1 and c2, while its variables highlight
discrepancy points where the two cell states differ.

Example 2. Consider the problem of generalizing the cell state of Example 1
plus the following MAPK cell state c2

[mcell | { CLc | Gab1 Plcg Sos1 },

{ CLm | PIP2 Egf <=> [EgfR - act] },

{ CLi | Grb2 Src [Hras - GDP] }]

For instance, ACUOS2 computes (in 4 ms) the following least general generalizer

[mcell | { CLc | Gab1 Plcg Sos1 X1:Soup },

{ CLm | PIP2 X2:Thing },

{ CLi | Src X3:Soup [Hras - GDP] }]

178 M. Alpuente et al.

where X1:Soup, X2:Thing, and X3:Soup are typed variables. Each variable in
the computed lgg detects a discrepancy between the two cell states. The vari-
able X2:Thing represents a generic entity that abstracts two distinct elements
in the membrane location CLm of the two cell states. In fact, c1’s membrane
includes the (inactive) receptor EgfR, whereas c2’s membrane contains the com-
plex Egf <=> [EgfR - act] that activates the receptor EgfR and binds it to
the ligand Egf to start the metabolic process. Variables X1:Soup and X3:Soup
indicate a protein relocation for Grb2, which appears in the location CLc in c1
and in the membrane interior CLi in c2. Note that the computed sort Soup is
key in modeling the absence of Grb2 in a location, since it allows X1:Soup and
X3:Soup to be bound to the empty soup.

5 Experimental Evaluation

To empirically evaluate the performance of ACUOS2 we have considered the same
generalization problems that were used to benchmark ACUOS in [4], together
with some additional problems that deal with complex ACU structures such as
graphs and biological models. All of the problems are available online at the
tool web site [1] where the reader can also reproduce all of the experiments
we conducted through the ACUOS2 web interface. Specifically, the benchmarks
used for the analysis are: (i) incompatible types, a problem without any gen-
eralizers; (ii) twins, ancestors, spouses, siblings, and children, some prob-
lems borrowed from the logic programming domain which are described in [4];
(iii) only-U, a generalization problem modulo (just) unity axioms, i.e., without
A and C; (iv) synthetic, an involved example mixing A, C, and U axioms for
different symbols; (v) multiple inheritance, which uses a classic example of
multiple subtyping from [10] to illustrate the interaction of advanced type hier-
archies with order-sorted generalization; (vi) rutherford, the classical analogy-
making example that recognizes the duality between Rutherford’s atom model
and the solar system [11]; (vii) chemical, a variant of the case-based reason-
ing problem for chemical compounds discussed in [5]; (viii) alliance, the ACU
example of Sect. 2; (ix) graph, the leading example of [9]; and (x) biological,
the cell model discussed in Sect. 4.

We tested our implementations on a 3.30 GHz Intel(R) Xeon(R) E5-1660 with
64 Gb of RAM memory running Maude v2.7.1, and we considered the average
of ten executions for each test. Table 1 shows our experimental results. For each
problem, we show the size (i.e., number of operators) of the input terms, the
computation time (ms.) until the first generalization is found4, and the number
#S of different subproblems that were generated so far, as a measure of how
much the complexity of the problem has been simplified (before the optimiza-
tions, the number of produced subproblems was typically in the thousands for
a term size of 100). In many cases, we cannot compare the time taken by each
system to compute the set of all lggs, since the previous prototype ACUOS times
4 The computation time for the incompatible types benchmark is the same for any

input term since we provide two input terms of incompatible sorts.

ACUOS2: A High-Performance System for Modular ACU Generalization 179

Table 1. Experimental results

Benchmark #S Size ACUOS ACUOS2 Speedup × (T1/T2)

T1 (ms) T2 (ms)

incompatible types 0 20 30 1 30

0 100 30 1 30

twins (C) 16 20 70 8 9

42 100 23934 70 340

ancestors (A) 10 20 48 1 48

31 100 TO 48 >105

spouses (A) 10 20 49 1 49

31 100 TO 50 >105

spouses (AU) 10 20 531747 5 ∼105

61 100 TO 30 >105

siblings (AC) 16 20 TO 1 >105

23 100 TO 150 >105

children (ACU) 12 20 TO 2 >105

29 100 TO 3451 >105

only-U (U) 9 20 24 2 12

9 100 TO 630 >105

synthetic (C+AU) 5 20 55 1 55

5 100 31916 50 638

multiple inheritance (AC) 17 20 TO 10 >105

31 100 TO 11067 >105

rutherford (AC+A+C) 5 20 48 1 48

42 100 TO 320 >105

chemical (AU) 15 20 112 1 112

31 100 TO 10 >105

graph (ACU+AU) 11 20 TO 1 >105

31 100 TO 1002 >105

biological (ACU+AC+A) 22 20 TO 4 >105

71 100 TO 50 >105

alliance (ACU) 11 20 TO 1 >105

31 100 TO 9159 >105

out (for a generous timeout that we set to 60 min). Indeed, when we increase
the size of the input terms from 20 to 100, the generalization process in ACUOS
stops for most of the benchmarks due to timeout.

Considering the high combinatorial complexity of the ACU generalization
problem, our implementation is highly efficient. All of the examples discussed

180 M. Alpuente et al.

in [4], except for incompatible types, twins (C), and synthetic (C + AU),
fail to produce a generalization in ACUOS when the problem size is 100, whereas
the time taken in ACUOS2 is in the range from 1 to 11067 ms (∼11 s). In all of
the benchmarks, our figures demonstrate an impressive performance boost w.r.t.
[4]: a speed up of five orders of magnitude for all of the ACU benchmarks.

6 Related Work

Related (but essentially different) problems of anti-unification for feature terms
have been studied by [2,5,6]. The minimal and complete unranked anti-
unification of [8] and the term graph anti-unification of [9] (together with
the commutative extension) are also related to our work. The unranked anti-
unification problems of [8,9] can be directly solved by using our techniques for
associative anti-unification with the unit element by simply introducing sorts
to distinguish between term variables and hedge variables (and their instan-
tiations) [8]. Conversely, it is possible to simulate our calculus for associative
least general generalization with the unit element in the minimal and complete
unranked anti-unification algorithm of [8], but not the rules for associative-
commutative least general generalization with the unit element.

As for the generalization of feature terms, this problem has two main similar-
ities with computing (least general) generalizations modulo combinations of A,
C, and U axioms: (1) feature terms are order-sorted (in contrast to the unsorted
setting of unranked term anti-unification); and (2) there is no fixed order for
arguments. However, the capability to deal with recursive, possibly cyclic data
structures such as graphs in ACU anti-unification does not seem to have its
counterpart in feature term anti-unification. Moreover, to generalize theories
with a different number of clauses/equations (or a different number of atoms per
clause), feature generalization algorithms resort to ad hoc mechanisms such as
background theories and projections [11], whereas our approach naturally handles
these kinds of generalizations by defining operators that obey the unity axiom.

References

1. The ACUOS2 Website (2018). http://safe-tools.dsic.upv.es/acuos2
2. Aı̈t-Kaci, H., Sasaki, Y.: An axiomatic approach to feature term generalization.

In: De Raedt, L., Flach, P. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, pp. 1–12.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44795-4 1

3. Alpuente, M., Escobar, S., Espert, J., Meseguer, J.: A modular order-sorted equa-
tional generalization algorithm. Inf. Comput. 235, 98–136 (2014)

4. Alpuente, M., Escobar, S., Espert, J., Meseguer, J.: ACUOS: a system for mod-
ular ACU generalization with subtyping and inheritance. In: Fermé, E., Leite, J.
(eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp. 573–581. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-11558-0 40

5. Armengol, E.: Usages of generalization in case-based reasoning. In: Weber, R.O.,
Richter, M.M. (eds.) ICCBR 2007. LNCS (LNAI), vol. 4626, pp. 31–45. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74141-1 3

http://safe-tools.dsic.upv.es/acuos2
https://doi.org/10.1007/3-540-44795-4_1
https://doi.org/10.1007/978-3-319-11558-0_40
https://doi.org/10.1007/978-3-540-74141-1_3

ACUOS2: A High-Performance System for Modular ACU Generalization 181

6. Armengol, E., Plaza, E.: Symbolic explanation of similarities in case-based reason-
ing. Comput. Artif. Intell. 25(2–3), 153–171 (2006)

7. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

8. Baumgartner, A., Kutsia, T., Levy, J., Villaret, M.: A variant of higher-order anti-
unification. In: Proceedings of RTA 2013. LIPIcs, vol. 21, pp. 113–127 (2013)

9. Baumgartner, A., Kutsia, T., Levy, J., Villaret, M.: Term-graph anti-unification.
In: Proceedings of FSCD 2018. LIPIcs, vol. 108, pp. 9:1–9:17 (2018)

10. Clavel, M., et al.: All About Maude - A High-Performance Logical Framework.
LNCS, vol. 4350. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
71999-1

11. Gentner, D.: Structure-mapping: a theoretical framework for analogy*. Cogn. Sci.
7(2), 155–170 (1983)

12. Meseguer, J.: Conditioned rewriting logic as a united model of concurrency. Theort.
Comput. Sci. 96(1), 73–155 (1992)

13. Muggleton, S.: Inductive logic programming: issues, results and the challenge of
learning language in logic. Artif. Intell. 114(1–2), 283–296 (1999)

14. Ontañón, S., Plaza, E.: Similarity measures over refinement graphs. Mach. Learn.
87(1), 57–92 (2012)

15. Pottier, L.: Generalisation de termes en theorie equationelle: Cas associatif-
commutatif. Technical report, Inria 1056, Norwegian Computing Center (1989)

16. Talcott, C.: Pathway logic. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM
2008. LNCS, vol. 5016, pp. 21–53. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-68894-5 2

https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-68894-5_2
https://doi.org/10.1007/978-3-540-68894-5_2

Taking Defeasible Entailment Beyond
Rational Closure

Giovanni Casini1(B) , Thomas Meyer2 , and Ivan Varzinczak3

1 CSC, Université du Luxembourg, Esch-sur-Alzette, Luxembourg
giovanni.casini@uni.lu

2 CAIR, University of Cape Town, Cape Town, South Africa
tmeyer@cs.uct.ac.za

3 CRIL, Univ. Artois & CNRS, Lens, France
varzinczak@cril.fr

Abstract. We present a systematic approach for extending the KLM
framework for defeasible entailment. We first present a class of basic
defeasible entailment relations, characterise it in three distinct ways and
provide a high-level algorithm for computing it. This framework is then
refined, with the refined version being characterised in a similar manner.
We show that the two well-known forms of defeasible entailment, rational
closure and lexicographic closure, fall within our refined framework, that
rational closure is the most conservative of the defeasible entailment
relations within the framework (with respect to subset inclusion), but
that there are forms of defeasible entailment within our framework that
are more “adventurous” than lexicographic closure.

1 Introduction

The approach by Kraus, Lehmann and Magidor [23] (a.k.a. KLM) is a well-
known framework for defeasible reasoning. The KLM properties can be viewed
as constraints on appropriate forms of defeasible entailment. We present what we
believe to be the first systematic approach for extending the KLM framework.
Our first proposal, basic defeasible entailment, strengthens the KLM framework
by adding additional properties to it. We provide both a semantic character-
isation in terms of a class of ranked interpretations, and a characterisation in
terms of a class of functions that rank propositional (and defeasible) statements
in a knowledge base according to their level of typicality. We also provide an
algorithm for computing the framework. Next, we identify a crucial shortcom-
ing in basic defeasible entailment, and propose a further strengthening, rational
defeasible entailment, via an additional property. We prove that rational defea-
sible entailment can be characterised both semantically and in terms of ranks,
and show that the algorithm is also applicable for computing rational defeasible
entailment.

Currently there are two well-known forms of defeasible entailment satisfying
those properties: rational closure (RC) [25] and lexicographic closure (LC) [24].
We show that both are rational (and basic) defeasible entailment relations, that
c© Springer Nature Switzerland AG 2019
F. Calimeri et al. (Eds.): JELIA 2019, LNAI 11468, pp. 182–197, 2019.
https://doi.org/10.1007/978-3-030-19570-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19570-0_12&domain=pdf
http://orcid.org/0000-0002-4267-4447
http://orcid.org/0000-0003-2204-6969
http://orcid.org/0000-0002-0025-9632
https://doi.org/10.1007/978-3-030-19570-0_12

Taking Defeasible Entailment Beyond Rational Closure 183

RC is the most conservative form of rational defeasible entailment, but there
are forms of rational defeasible entailment that are “bolder” than LC. We argue
that the framework for rational defeasible entailment is reminiscent of the AGM
framework for belief change [1].

In the next section we provide the relevant background material, after which
we present our work on basic defeasible entailment, rational defeasible entail-
ment, and a discussion on the relation between lexicographic closure and rational
defeasible entailment. We conclude with a discussion of related work, a summary,
and suggestions for future work.

2 Background

For P being a finite set of propositional atoms, we use p, q, . . . as meta-variables
for atoms. Propositional sentences are denoted by α, β, . . ., and are recursively
defined in the usual way: α ::= � | ⊥ | p | ¬α | α ∧ α | α ∨ α | α → α | α ↔ α.
With L we denote the set of all propositional sentences. With U ≡def {0, 1}P we
denote the set of all propositional valuations, with 1 representing truth and 0
representing falsity. We use u, v . . . to denote valuations. Sometimes we represent
valuations as sequences of atoms (e.g., p) and barred atoms (e.g., p̄), with the
understanding that the presence of a non-barred atom indicates that the atom
is true in the valuation, while the presence of a barred atom indicates that the
atom is false in the valuation. Satisfaction of a sentence α ∈ L by v ∈ U is
defined in the usual truth-functional way and is denoted by v � α. The models
of a set of sentences X is: �X� ≡def {v ∈ U | v � α for every α ∈ X}.

2.1 KLM-Style Defeasible Implication

In the logic proposed by Kraus et al. [23], often referred to as the KLM app-
roach, we are interested in defeasible implications (or DIs) of the form α |∼ β,
read as “typically, if α, then β”. The semantics of KLM-style rational defeasible
implications is given by structures referred to as ranked interpretations [25]. In
this work we adopt the following alternative representation thereof:

Definition 1. A ranked interpretation R is a function from U to N ∪ {∞} s.t.
R(u) = 0 for some u ∈ U , and satisfying the following convexity property: for
every i ∈ N, if R(v) = i, then, for every j s.t. 0 ≤ j < i, there is a u ∈ U for
which R(u) = j.

Given R, we call R(v) the rank of v w.r.t. R. Valuations with a lower rank
are deemed more normal (or typical) than those with a higher rank, while those
with an infinite rank are regarded as so atypical as to be impossible. With
UR ≡def {v ∈ U | R(v) < ∞} we denote the possible valuations in R. Given
α ∈ L, we let �α�R ≡def {v ∈ UR | v � α}. R satisfies (is a ranked model of) α
(denoted R � α) if UR ⊆ �α�R .

Note that R generates a total preorder �R on U as follows: v �R u iff
R(v) ≤ R(u). Given any total preorder � on V ⊆ U , we can use its strict

184 G. Casini et al.

version ≺ to generate a ranked interpretation as follows. Let the height h(v) of
v ∈ V be the length of the ≺-path between any one of the ≺-minimal elements
of V and v (the length of the ≺-path between any of the ≺-minimal elements
and a ≺-minimal element is 0). For V ⊆ U and a total preorder � on V, the
ranked interpretation R� generated from � is defined as follows: for every v ∈ U ,
R�(v) = h(v) if v ∈ V, and R�(v) = ∞ otherwise.

Given a ranked interpretation R and α, β ∈ L, R satisfies (is a ranked
model of) the conditional α |∼ β (denoted R � α |∼ β) if all the possible ≺-
minimal α-valuations also satisfy β, i.e., if min≺�α�R ⊆ �β�R . R satisfies a set
of conditionals K if R � α |∼ β for every α |∼ β ∈ K.

Figure 1 depicts an example of a ranked interpretation for P = {b, f, p} sat-
isfying K = {p → b, b |∼ f, p |∼ ¬f}. For brevity, we omit the valuations with
rank ∞ in our graphical representations of ranked interpretations.

2 pbf

1 pbf pbf

0 pbf pbf pbf

Fig. 1. A ranked interpretation for P = {b, f, p}.

Observe that all classical propositional sentences can be expressed as DIs:
R � α iff R � ¬α |∼ ⊥. The logic of defeasible implications can therefore be
viewed as an extension of propositional logic.

2.2 Defeasible Entailment

Let a knowledge base K be a finite set of defeasible implications. The main ques-
tion in this paper is to analyse defeasible entailment (denoted by |≈): what it
means for a defeasible implication to be entailed by a fixed knowledge K. It
is well-accepted that defeasible entailment (unlike classical entailment) is not
unique. For example, Lehmann and Magidor [25] put forward rational closure
as an appropriate form of defeasible entailment, while Lehmann [24] proposed
lexicographic closure as an alternative. We consider both of these in more detail
below. In studying different forms of defeasible entailment, the position advo-
cated by Lehmann and Magidor [25], and one we adopt here as well, is to consider
a number of rationality properties, referred to as the KLM properties, for defea-
sible entailment.

(Ref) K |≈ α |∼ α (LLE)
α ≡ β, K |≈ α |∼ γ

K |≈ β |∼ γ
(RW)

K |≈ α |∼ β, β |= γ

K |≈ α |∼ γ

(And)
K |≈ α |∼ β, K |≈ α |∼ γ

K |≈ α |∼ β ∧ γ
(Or)

K |≈ α |∼ γ, K |≈ β |∼ γ

K |≈ α ∨ β |∼ γ
(CM)

K |≈ α |∼ β, K |≈ α |∼ γ

K |≈ α ∧ β |∼ γ

(RM)
K |≈ α |∼ γ, K �|≈ α |∼ ¬β

K |≈ α ∧ β |∼ γ

(1)

Taking Defeasible Entailment Beyond Rational Closure 185

Lehmann and Magidor argue that defeasible entailment ought to satisfy all
the above KLM properties. We refer to this as LM-rationality.

Definition 2. A ranked interpretation R is said to generate a defeasible
K-entailment relation |≈R by setting K |≈R α |∼ β iff R � α |∼ β. (If there
isn’t any ambiguity, we drop the subscript R).

Lehmann and Magidor proved the following useful result.

Observation 1 (Lehman and Magidor [25]). A defeasible entailment rela-
tion is LM-rational iff it can be generated from a ranked interpretation.

It is easy to see that rank entailment, defined next, is not LM-rational [25,
Sect. 4.2].

Definition 3. A defeasible implication α |∼ β is rank entailed by a knowledge
base K (denoted as K |≈R α |∼ β) if every ranked model of K satisfies α |∼ β.

But rank entailment plays an important part in defining acceptable versions
of defeasible entailment, since it can be viewed as the monotonic core of any
appropriate form of defeasible entailment [16].

2.3 Rational Closure

The first version of defeasible entailment satisfying LM-rationality we consider
is rational closure [25]. Consider the ordering �K on all ranked models of a
knowledge base K, which is defined as follows: R1 �K R2 if for every v ∈ U ,
R1(v) ≤ R2(v). Intuitively, ranked models lower down in the ordering are more
typical. Giordano et al. [21] showed that there is a unique �K-minimal element.

Definition 4. Let RRC
K be the minimum element of the ordering �K on ranked

models of K. A defeasible implication α |∼ β is in the rational closure of K
(denoted as K |≈RC α |∼ β) if RRC

K � α |∼ β.

Observe that there are two levels of typicality at work for rational closure, namely
within ranked models of K, where valuations lower down are viewed as more
typical, and between ranked models of K, where ranked models lower down in
the ordering are viewed as more typical. The most typical ranked model RRC

K
is the one in which valuations are as typical as K allows them to be.

Since rational closure can be defined in terms of a single ranked interpreta-
tion, it follows from Observation 1 that it is LM-rational (it satisfies all the KLM
properties).

It will be useful to be able to refer to the possible valuations w.r.t. a knowl-
edge base. We refer to UK

R ≡def U\{u ∈ �α� | K |≈R ¬α |∼ ⊥} as the set
of possible valuations w.r.t. K. So UK

R refers to all the valuations not in con-
flict with rank entailment w.r.t. K. From results by Lehmann and Magidor [25]
(Lemmas 24 and 30) it follows that the possible valuations in the minimal model
RRC

K are precisely the possible valuations w.r.t. K: UK
R = URRC

K .

186 G. Casini et al.

Rational closure can also be defined in terms of the base rank of a statement.
A propositional sentence α is said to be exceptional w.r.t. K if K |≈R � |∼ ¬α
(i.e., α is false in all the most typical valuations in every ranked model of K).
Let ε(K) = {α |∼ β | K |≈R � |∼ ¬α}. Define a sequence of knowledge bases
EK
0 , . . . , EK

∞ as follows: EK
0 ≡def K, EK

i ≡def ε(EK
i−1), for 0 < i < n, and E∞ ≡def

EK
n , where n is the smallest k for which EK

k = EK
k+1 (since K is finite, n must

exist). The base rank brK(α) of a propositional statement α w.r.t. a knowledge
base K is defined to be the smallest r for which α is not exceptional w.r.t. EK

r .
brK(α) ≡def min{r | EK

r �|≈R � |∼ ¬α}.

Observation 2 (Giordano et al. [21]). K |≈RC α |∼ β iff brK(α) < brK(α ∧
¬β) or brK(α) = ∞.

There is a fundamental connection between the base ranks of propositional state-
ments w.r.t. K and the ranks of valuations in the minimal ranked model RRC

K .

Observation 3 (Giordano et al. [21]). For every knowledge base K and α ∈
L, brK(α) = min{i | there is a v ∈ �α� s.t. RRC

K (v) = i}.
From Observation 3 it follows that a classical statement α (or its defeasible rep-
resentation ¬α |∼ ⊥) is in the rational closure of K iff the base rank of ¬α w.r.t.
K is ∞. The definition of base rank can be extended to defeasible implications as
follows: brK(α |∼ β) ≡def brK(α). Assigning base ranks to defeasible implications
in this way forms the basis of an algorithm for computing rational closure; an
algorithm that can be reduced to a number of classical entailment checks. Define
the materialisation of a knowledge base K as

−→K ≡def {α → β | α |∼ β ∈ K}.
It can be shown [25] that a sentence α is exceptional w.r.t. K iff

−→K |= ¬α.
From this we can define a procedure BaseRank which partitions the materi-
alisation of K into n + 1 classes according to base rank: i = 0, . . . n − 1,∞,
Ri ≡def {α → β | α |∼ β ∈ K, brK(α) = i}.

We use BaseRank to describe an algorithm originally proposed by Fre-
und [18] for computing rational closure. It takes as input K and α |∼ β, and
returns true iff α |∼ β is in the rational closure of K.

The algorithm keeps on removing (materialisations of) defeasible implica-
tions from (the materialisation of) K, starting with the lowest base rank, and
proceeding base rank by base rank, until it finds the first R which is classically
consistent with α (and therefore α is not exceptional w.r.t. the defeasible version
of R). α |∼ β is then taken to be in the rational closure of K iff R classically
entails the materialisation of α |∼ β.

Observation 4 (Freund [18]). Given K and α |∼ β, RationalClosure
returns true iff K |≈RC α |∼ β.

Observe that RationalClosure involves a number of calls to a classical-
entailment checker that is polynomial in the size of K. Computing rational clo-
sure is therefore no harder than checking classical entailment.

Taking Defeasible Entailment Beyond Rational Closure 187

Algorithm 1. BaseRank
Input: A knowledge base K
Output: An ordered tuple (R0, . . . ,Rn−1,R∞, n)

1 i := 0;

2 E0 :=
−→K ;

3 repeat
4 Ei+1 := {α → β ∈ Ei | Ei |= ¬α};
5 Ri := Ei \ Ei+1;
6 i := i + 1;

7 until Ei−1 = Ei;
8 R∞ := Ei−1;
9 if Ei−1 = ∅ then

10 n := i − 1;

11 else
12 n := i;

13 return (R0, . . . ,Rn−1,R∞, n)

Algorithm 2. RationalClosure
Input: A knowledge base K and a DI α |∼ β
Output: true, if K |≈ α |∼ β, and false, otherwise

1 (R0, . . . ,Rn−1,R∞, n) := BaseRank(K);
2 i := 0;

3 R :=
⋃j<n

i=0 Rj ;
4 while R∞ ∪ R |= ¬α and R �= ∅ do
5 R := R \ Ri;
6 i := i + 1;

7 return R∞ ∪ R |= α → β;

3 Basic Defeasible Entailment

Our departure point for defining defeasible entailment is that it ought to be LM-
rational. The central question we address in this paper is whether LM-rationality
is sufficient. The immediate answer is that it is not. For starters, we also require
|≈ to satisfy Inclusion (all elements of K should be defeasibly entailed by K):

(Inclusion) K |≈ α |∼ β for every α |∼ β ∈ K

and Classic Preservation—the classical defeasible implications (those corre-
sponding to classical sentences) defeasibly entailed by K should correspond
exactly to those in the monotonic core of K (i.e., those that are rank entailed
by K:

188 G. Casini et al.

(Classic Preservation) K |≈ α |∼ ⊥ iff K |≈R α |∼ ⊥

An easy corollary of Classic Preservation is Classic Consistency, requiring that
a knowledge base is consistent iff it is consistent w.r.t. rank entailment.

(Classic Consistency) K |≈ � |∼ ⊥ iff K |≈R � |∼ ⊥

We refer to a defeasible entailment relation satisfying LM-rationality, Inclusion,
and Classic Preservation as a basic defeasible entailment relation.

We shall see below (using Theorem 1) that rational closure is a basic defeasi-
ble entailment relation. However, since ranked entailment does not satisfy RM,
it is not LM-rational, and is therefore not a basic defeasible entailment relation.

Definition 5. A ranked model R of K is said to be K-faithful if the possible
valuations in R are precisely the possible valuations w.r.t. K: UR = UK

R .

Note that the minimal model RRC
K is K-faithful.

Our first fundamental result (using points 1 and 2b of Theorem1 below)
is a semantic characterisation of basic defeasible entailment in terms of the
K-faithful ranked models. From this it also follows immediately that basic defea-
sible entailment satisfies the following property.

(Rank Extension) If K |≈R α |∼ β, then K |≈ α |∼ β

Rank Extension requires |≈ to extend its monotonic core.
We can also characterise basic defeasible entailment by generalising the

notion of base rank.

Definition 6. Let r : L −→ N∪{∞} be a rank function s.t. r(�) = 0, satisfying
the following convexity property: for every i ∈ N, if r(α) = i then, for every j
such that 0 ≤ j < i, there is a β ∈ L for which r(β) = j. r is entailment
preserving if α |= β implies r(α) ≥ r(β). r is K-faithful if (i) it is entailment
preserving; (ii) r(α) < r(α ∧ ¬β) or r(α) = ∞, for every α |∼ β ∈ K, and
(iii) r(α) = ∞ iff K |≈R α |∼ ⊥.

Observe that the base rank brK(·) is K-faithful.

Definition 7. A rank function r generates a defeasible entailment relation |≈
whenever K |≈ α |∼ β if r(α) < r(α ∧ ¬β) or r(α) = ∞.

It follows (using points 1 and 2c of Theorem1 below), that basic defeasible
entailment can be characterised using the K-faithful rank functions.

Next, we present an algorithm that computes the defeasible entailment
relation generated by a K-faithful rank function. It is a modified version of
RationalClosure, differing from it in that the call to BaseRank is replaced
with a call to the Rank algorithm described below. It receives as input a
knowledge base K and a K-faithful rank function r. It produces as output a
sequence (R0, . . . ,Rn−1,R∞, n) where the Ris are sentences, unlike BaseRank,

Taking Defeasible Entailment Beyond Rational Closure 189

which produces sets of sentences. DefeasibleEntailment is then adjusted
accordingly.

DefeasibleEntailment removes statements, starting with the lowest
rank, and proceeding rank by rank, until it finds the first R which is classi-
cally consistent with α. α |∼ β is then taken to be defeasibly entailed by K iff
R classically entails the materialisation of α |∼ β. The Ris correspond to clas-
sical representations of defeasible information, with different Ris representing
information with different levels of typicality, and with R∞ corresponding to
information that is classical. In fact, the set containing all the Ris is equivalent
to the materialisation of K.

Algorithm 3. DefeasibleEntailment
Input: A knowledge base K, a K-faithful rank function r, and a DI α |∼ β
Output: true, if K |≈ α |∼ β, and false, otherwise

1 (R0, . . . ,Rn−1,R∞, n) := Rank(K,r);
2 i := 0;

3 R :=
⋃j<n

i=0 {Rj};
4 while {R∞} ∪ R |= ¬α and R �= ∅ do
5 R := R \ {Ri};
6 i := i + 1;

7 return {R∞} ∪ R |= α → β;

Algorithm 4. Rank
Input: A knowledge base K and a K-faithful rank function r
Output: An ordered tuple (R0, . . . ,Rn−1,R∞, n)

1 R∞ := ¬
(∨

r([α]=∞)[α]
)
;

2 n := max{i ∈ N | there is an α ∈ L s.t. r(α) = i};
3 if n = 0 then
4 R0 := 	; n := 1;

5 else
6 for i := 0 to n − 1 do

7 Ri ≡def ¬
(∨

r([α])=i+1[α]
)

8 return (R0, . . . ,Rn−1,R∞, n)

For α ∈ L, let [α] be a canonical representative of the set {β | β ≡ α}.
Rank receives as input a knowledge base K and a K-faithful rank function r
and, as mentioned above, produces as output an ordered tuple of sentences
(R0, . . . ,Rn−1,R∞, n).

If there is no α such that r(α) = ∞, then R∞ will be set to �. This corre-
sponds to the case where all information is defeasible. If n = 0, it corresponds
to the case where there is no defeasible information. In this case we set n to 1
and set R0 to �.

190 G. Casini et al.

Proposition 1. Let (R0, . . . ,Rn−1,R∞, n) be the output obtained from the
Rank algorithm, given a knowledge base K and a K-faithful ranking function
r. Then {R∞} ∪ ⋃j<n

i=0 {Rj} ≡ −→K .

Example 1. Let K = {p → b, b |∼ f, p |∼ ¬f}. One can see there is only one
ranking function r for which r((b → f) → p) = 1, r(p ∧ (b → f)) = 2, and
r(¬(p → b)) = ∞. Moreover, for every α ∈ L, r(α) = ∞ or r(α) ≤ 2. Given K
and r, Rank will output the ordered tuple (R0,R1,R∞, 2), where R∞ ≡ p → b,
R1 ≡ ¬(p ∧ (b → f)) ≡ p → (b ∧ ¬f), and R0 ≡ ¬((b → f) → p) ≡ (b → f) ∧ ¬p.
Given K, r, and (p ↔ b)∧ (b ↔ f) |∼ ¬f, DefeasibleEntailment will return
true. It will do so by first verifying that {R0,R1,R∞} �|= ¬((p ↔ b) ∧ (b ↔ f))
and then checking whether {R0,R1,R∞} |= ((p ↔ b)∧ (b ↔ f)) → ¬f (which it
does). Note that, given this r, DefeasibleEntailment computes the rational
closure of K. ��
Example 2. Let K be as in Example 1. It can be shown that there is only one
ranking function r s.t. r(f → p) = 1, r((b∨ f) → (p∧ f)) = 2, and r(¬(p → b)) =
∞, and that r is K-faithful. Moreover, for r it will be the case that for every
α ∈ L, r(α) = ∞ or r(α) ≤ 2. Given K and r, the Rank algorithm will output
the ordered tuple (R0,R1,R∞, 2) where R∞ ≡ p → b, R1 ≡ ¬((b∨f) → (p∧f)) ≡
(¬b → f) ∧ (p → ¬f), and R0 ≡ ¬(f → p) ≡ f ∧ ¬p. Given K, r, and the DI
(p ↔ b)∧ (b ↔ f) |∼ ¬f, algorithm DefeasibleEntailment will return false.
It will do so by first removing R0 (since {R0,R1,R∞} |= ¬((p ↔ b)∧ (b ↔ f))),
then removing R1 (since {R1,R∞} |= ¬((p ↔ b) ∧ (b ↔ f))), and then, since
{R∞} �|= ¬((p ↔ b) ∧ (b ↔ f)), it will check whether {R∞} |= ((p ↔ b) ∧ (b ↔
f)) → ¬f (which it does not). ��
Definition 8. DefeasibleEntailment computes a defeasible entailment
relation |≈ for a knowledge base K and a rank function r if Defeasible-
Entailment, when presented with K, r, and α |∼ β, returns true if and only
if K |≈ α |∼ β.

It follows (using points 1 and 2d of Theorem1) that Defeasible-
Entailment computes exactly basic defeasible entailment.

Theorem 1. The following statements are equivalent: (1) |≈ is a basic defeasi-
ble K-entailment relation, and (2) there is a K-faithful ranked model R and a
K-faithful rank function r such that:

a. r(α) = min{i | there is a v ∈ �α� s.t. R(v) = i};
b. |≈ can be generated from R;
c. |≈ can be generated from r;
d. |≈ can be computed by Defeasible Entailment, given K and r as input.

Note that points 1 and 2 in Theorem1 establish a connection between R
and r via a result that is a generalisation of Observation 3. And observe that
DefeasibleEntailment involves a number of calls to a classic entailment
checker that is linear in n times the size of K (where n is the number returned
by the Rank algorithm). But note also that n may be exponential in the size
of K.

Taking Defeasible Entailment Beyond Rational Closure 191

4 Rational Defeasible Entailment

We now proceed by suggesting that basic defeasible entailment is too permissive.
We first show that it does not satisfy RC Extension:

(RC Extension) If K |≈RC α |∼ β, then K |≈ α |∼ β

To see that basic defeasible entailment does not satisfy RC Extension, consider
the following example.

Example 3. Figure 2(a) depicts the (K-faithful) minimal ranked model RRC
K of

K = {p → b, b |∼ f, p |∼ ¬f}. Note that RRC
K � ¬p ∧ ¬f |∼ ¬b and (from

Definition 4) that K |≈RC ¬p ∧ ¬f |∼ ¬b. But for the K-faithful ranked model
R in Fig. 2(b) below it follows that R �� ¬p ∧ ¬f |∼ ¬b. And from Theorem1 it
follows that for the basic defeasible K-entailment relation |≈ generated from R,
K �|≈ ¬p ∧ ¬f |∼ ¬b. So RC Extension does not hold. ��

2 pbf

1 pbf pbf

0 pbf pbf pbf

(a)

2 pbf

1 pbf pbf pbf

0 pbf pbf

(b)

Fig. 2. Ranked models of the knowledge base in Example 3. (a) Shows the minimal
K-faithful ranked model RRC

K , while (b) depicts the K-faithful ranked model R.

If a basic defeasible entailment relation also satisfies RC Extension, we refer
to it as rational defeasible entailment. We propose the class of rational defeasible
entailment relations as those worthy of the term rational and analyse them
further in the remainder of this section. We start by showing (points 1 and 2b
of Theorem 2) that rational defeasible entailment can be characterised in terms
of a subset of the K-faithful ranked models, referred to as rank preserving.

Definition 9. A K-faithful ranked model R is said to be rank preserving if the
following condition holds: for all v, u ∈ U , if RRC

K (v) < RRC
K (u), then R(v) <

R(u).

Informally, rank preservation requires the total preorder �R generated from R
to respect the relative positions assigned to valuations in the minimal model
RRC

K of K.
We can also characterise rational defeasible entailment (points 1 and 2c of

Theorem 2) using a subclass of K-faithful rank functions referred to as base rank
preserving.

192 G. Casini et al.

Definition 10. A K-faithful rank function r is said to be base rank preserving
if the following condition holds: for all α, β ∈ L, if brK(α) < brK(β), then
r(α) < r(β).

Base rank preserving rank functions (or, the relations < derivable from base
rank preserving rank functions) respect the base rank (or rather, the relation
< derivable from the base rank). We show (points 1 and 2d of Theorem2) that
DefeasibleEntailment described in the previous section can also be used to
compute rational defeasible entailment, provided it receives base rank preserving
rank functions as input.

Theorem 2. The following statements are equivalent: (1) |≈ is a rational defea-
sible K-entailment relation, and (2) there is a rank preserving K-faithful ranked
model R and a K-faithful base rank preserving rank function r s.t.:

a. r(α) = min{i | v ∈ �α� and R(v) = i};
b. |≈ can be generated from R;
c. |≈ can be generated from r;
d. |≈ can be computed from Defeasible Entailment, given K and r as input.

Analogous to basic defeasible entailment, Points 1 and 2 of Theorem2 establish a
connection between R and r via a result that is a generalisation of Observation 3.

5 Lexicographic Closure

We now turn our attention to lexicographic closure, a second form of defeasible
entailment that has been studied in the literature [24]. Our central result is
that lexicographic closure is a rational defeasible entailment relation. We also
show that lexicographic closure can be characterised in three different ways:
semantically via a rank preserving K-faithful ranked model, in terms of a base
preserving K-faithful rank function r, and via DefeasibleEntailment when
it is presented with r (and a knowledge base K) as input. While the semantic
construction of lexicographic closure is known [24], the other two constructions
are new. We also show that there are rational defeasible entailment relations
that extend lexicographic closure, which means that lexicographic closure is not
the “boldest” form of rational defeasible entailment, as has been the conjecture
in the literature.

Let CK be a function from U to N s.t. CK(v) = #{α |∼ β ∈ K | v � α → β}
(where #X denotes the cardinality of the set X). The goal is to refine the
ordering on U obtained from the minimal model RRC

K with CK: in comparing
two valuations with the same rank w.r.t. RRC

K , the one with a higher number
will be viewed as more typical.

We define an ordering �K
LC on U : v �K

LC u if RRC
K (u) = ∞, or RRC

K (v) <
RRC

K (u), or RRC
K (v) = RRC

K (u) and CK(v) ≥ CK(u). Then let RLC
K be the ranked

interpretation obtained from �K
LC , which we call the lexicographic ranked model

of K.

Taking Defeasible Entailment Beyond Rational Closure 193

Definition 11. The lexicographic closure |≈LC of K is defined as follows:
K |≈LC α |∼ β if RLC

K � α |∼ β.

Proposition 2. RLC
K is a K-faithful and rank preserving ranked model.

From this result it follows from Theorems 1 and 2 that lexicographic closure
is a rational and basic defeasible entailment relation. Lehmann [24, Theorem 3]
already showed that lexicographic closure satisfies RC Extension.

Example 4. Figure 3(a) depicts the minimal ranked model RRC
K of K = {p →

b, b |∼ f, p |∼ ¬f, b |∼ w}, while Fig. 3(b) depicts the lexicographic ranked model
RLC

K of K. From these two models we can see that p |∼ w (penguins usually
have wings) is not in the rational closure of K, but is in the lexicographic closure
of K. This is indicative of the difference between, what Lehmann refers to as
Prototypical Reasoning and Presumptive Reasoning [24]. Presumptive Reason-
ing states that properties of a class are presumed to hold for all members of
that class unless we have knowledge to the contrary. Because birds usually have
wings we assume that penguins, being birds, usually have wings as well. Con-
trast this with Prototypical Reasoning which states that, while typical members
of a class are presumed to inherit the properties of that class, the same does not
hold for atypical members. According to Prototypical Reasoning, since penguins
are atypical members of the class of birds, they do not inherit the property of
having wings. Rational closure operates according to Prototypical Reasoning,
while lexicographic closure adheres to Presumptive Reasoning. ��

2 pbfw pbfw

1 pbfw pbfw pbfw pbfw

0 pbfw pbfw pbfw pbfw pbfw pbfw

(a)

5 pbfw

4 pbfw

3 pbfw pbfw

2 pbfw pbfw

1 pbfw

0 pbfw pbfw pbfw pbfw pbfw

(b)

Fig. 3. Ranked models of the knowledge base in Example 4. (a) Shows the minimal
model K-faithful ranked model RRC

K , while (b) depicts the lexicographic ranked model
RLC

K .

We have seen that lexicographic closure (|≈LC) can be generated from a
K-faithful rank preserving model. From Theorem2 it then follows that there is
a K-faithful base rank preserving rank function r from which |≈LC can be gen-
erated. Furthermore, it can be generated by DefeasibleEntailment, given
K and r as input. We now show how to construct the K-faithful base rank pre-
serving rank function r mentioned above.

194 G. Casini et al.

Definition 12. The lexicographic rank w.r.t. a knowledge base K is defined as
rLC
K (α) ≡def min{RLC

K (v) | v ∈ �α�}.
Proposition 3. The lexicographic rank rLC

K w.r.t. a knowledge base K is
K-faithful and base rank preserving.

Now we show rLC
K generates the same rational defeasible entailment relation as

RLC
K .

Proposition 4. RLC
K � α |∼ β iff rLC

K (α) < rLC
K (α ∧ ¬β) or rLC

K (α) = ∞.

Finally, DefeasibleEntailment computes the same (rational) defeasible
entailment relation as RLC

K does when given the input K and rLC
K .

Proposition 5. DefeasibleEntailment returns true when given the input
K, rLC

K , and α |∼ β iff rLC
K (α) < rLC

K (α ∧ ¬β), or rLC
K (α) = ∞.

We conclude this section with an example which shows that lexicographic
closure is not (always) the “boldest” form of rational defeasible entailment.

Example 5. Consider the knowledge base K in Example 4 and let a K-faithful
ranked model R be as depicted in Fig. 4 below. R is a refinement of the lexi-
cographic ranked model RLC

K in Fig. 3(b). It can be shown that R is rank base
preserving, and therefore it generates a rational defeasible K-entailment rela-
tion |≈, and that |≈ strictly extends lexicographic closure: If K |≈LC α |∼ β, then
K |≈ α |∼ β, and there is at least one defeasible implication α |∼ β such that
K |≈ α |∼ β, but K �|≈LC α |∼ β. For example, observe that K |≈ b∧¬f∧w |∼ ¬p,
but K �|≈LC b ∧ ¬f ∧ w |∼ ¬p. ��

7 pbfw

6 pbfw

5 pbfw

4 pbfw

3 pbfw

2 pbfw

1 pbfw

0 pbfw pbfw pbfw pbfw pbfw

Fig. 4. The ranked model R of Example 5.

Taking Defeasible Entailment Beyond Rational Closure 195

6 Related Work

The original work in the KLM style [23] was inspired by the work of Shoham [28],
and investigated a class of non-monotonic consequence relations, where defeasible
implication was viewed as a (non-monotonic) form of entailment. This approach
was subsequently adapted by Lehmann and Magidor [25] to the case where |∼
is viewed as an object-level connective for defeasible implication, and where
the focus then shifts to defeasible entailment (i.e., |≈) for a logic language that
extends propositional logic with the defeasible implication connective |∼.

We are aware of four instances of defeasible entailment that have been stud-
ied: ranked entailment [25] which is not LM-rational, rational closure [4,7,21,25],
and lexicographic closure [24] which are both regarded as appropriate forms of
defeasible entailment, and relevant closure [17] which is also not LM-rational.

Our investigation here is reminiscent of the AGM framework for belief change
[1,19], where classes of belief change operators are studied. Rational closure can
be viewed as the defeasible entailment equivalent of full-meet belief contraction
or revision since, by virtue of the property of RC Extension, it is the most
conservative of those defeasible entailment relations regarded as appropriate.
The boldest forms of rational defeasible entailment can be seen as analogous to
maxichoice belief contraction and revision: maxichoice operators are obtained
by imposing a linear ordering on the propositional valuations that are counter-
models of a belief set, while the boldest forms of rational defeasible entailment
are obtained by imposing a linear ordering on UK

R , the set of possible valuations
w.r.t. a knowledge base K and then considering the defeasible entailment rela-
tions generated from the base rank preserving K-faithful ranked models obtained
from such linear orderings.

Studies of defeasible entailment beyond the propositional case include ver-
sions of defeasible implication in more expressive languages, most notably
description logics [2,3,10,14,15,20,26,27] and modal logics [8,9,11]. A differ-
ent type of extension is one in which defeasible implication is enriched by either
introducing a notion of typicality in propositional logic [4–6] or a notion of defea-
sible modality [12,13].

7 Conclusion

The central focus of this paper is the question of determining what (defeasible)
entailment means for propositional logic enriched with a defeasible implication
connective. The short answer is that a defeasible entailment relation needs to
be rational in a technical sense provided above. In arriving at this conclusion
we have made a detour through the more permissive class of basic defeasible
entailment relations.

There are at least three lines of research to which the work in this paper
can lead. First is an analysis of concrete forms of rational defeasible entailment
other than rational and lexicographic closure. Secondly, both basic and rational
defeasible entailment is on the knowledge level [19] in the sense that the syntactic

196 G. Casini et al.

form of knowledge bases are, for the most part, irrelevant. But there is a strong
case to be made for defining defeasible implication where syntax matters. This is
analogous to the distinction between belief change on sets closed under classical
consequence and base change [22], where the structure of the set of beliefs of an
agent plays a role. And although lexicographic closure is an instance of rational
defeasible entailment, it is an example of a form of entailment where the struc-
ture of the knowledge base matters. We conjecture that a syntax-based class of
defeasible entailment will form a strict subclass of the class of rational defea-
sible entailment relations, and that lexicographic closure will be the strongest
form of syntax-based rational defeasible entailment. Finally, we have presented
an algorithm for computing any rational defeasible entailment relation, but the
algorithm depends on the provision of a knowledge base K, as well as a function
that ranks all statements. With a syntax-based approach, it may be possible
to use the structure of K to rank statements, in the way that the BaseRank
algorithm does in the process of computing rational closure.

Acknowledgments. Giovanni Casini and Thomas Meyer have received funding from
the EU Horizon 2020 research and innovation programme under the Marie Sk�ldowska-
Curie grant agr. No. 690974 (MIREL). The work of Thomas Meyer has been supported
in part by the National Research Foundation of South Africa (grant No. UID 98019).

References

1. Alchourrón, C., Gärdenfors, P., Makinson, D.: On the logic of theory change: partial
meet contraction and revision functions. J. Symb. Log. 50, 510–530 (1985)

2. Bonatti, P., Faella, M., Petrova, I., Sauro, L.: A new semantics for overriding in
description logics. Artif. Intell. 222, 1–48 (2015)

3. Bonatti, P., Sauro, L.: On the logical properties of the nonmonotonic description
logic DLN . Artif. Intell. 248, 85–111 (2017)

4. Booth, R., Casini, G., Meyer, T., Varzinczak, I.: On the entailment problem for a
logic of typicality. In: IJCAI 2015, pp. 2805–2811 (2015)

5. Booth, R., Meyer, T., Varzinczak, I.: PTL: a propositional typicality logic. In: del
Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS (LNAI), vol. 7519, pp.
107–119. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33353-
8 9

6. Booth, R., Meyer, T., Varzinczak, I.: A propositional typicality logic for extending
rational consequence. In: Fermé, E., Gabbay, D., Simari, G. (eds.) Trends in Belief
Revision and Argumentation Dynamics, Studies in Logic - Logic and Cognitive
Systems, vol. 48, pp. 123–154. King’s College Publications (2013)

7. Booth, R., Paris, J.: A note on the rational closure of knowledge bases with both
positive and negative knowledge. J. Log. Lang. Inf. 7(2), 165–190 (1998)

8. Boutilier, C.: Conditional logics of normality: a modal approach. Artif. Intell.
68(1), 87–154 (1994)

9. Britz, K., Meyer, T., Varzinczak, I.: Preferential reasoning for modal logics. Elec-
tron. Notes Theor. Comput. Sci. 278, 55–69 (2011)

10. Britz, K., Meyer, T., Varzinczak, I.: Semantic foundation for preferential descrip-
tion logics. In: Wang, D., Reynolds, M. (eds.) AI 2011. LNCS (LNAI), vol. 7106, pp.
491–500. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25832-
9 50

https://doi.org/10.1007/978-3-642-33353-8_9
https://doi.org/10.1007/978-3-642-33353-8_9
https://doi.org/10.1007/978-3-642-25832-9_50
https://doi.org/10.1007/978-3-642-25832-9_50

Taking Defeasible Entailment Beyond Rational Closure 197

11. Britz, K., Meyer, T., Varzinczak, I.: Normal modal preferential consequence. In:
Thielscher, M., Zhang, D. (eds.) AI 2012. LNCS (LNAI), vol. 7691, pp. 505–516.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35101-3 43

12. Britz, K., Varzinczak, I.: From KLM-style conditionals to defeasible modalities,
and back. J. Appl. Non-Class. Log. (JANCL) 28, 92–121 (2018)

13. Britz, K., Varzinczak, I.: Preferential accessibility and preferred worlds. J. Log.
Lang. Inf. (JoLLI) 27(2), 133–155 (2018)

14. Britz, K., Varzinczak, I.: Rationality and context in defeasible subsumption. In:
Ferrarotti, F., Woltran, S. (eds.) FoIKS 2018. LNCS, vol. 10833, pp. 114–132.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-90050-6 7

15. Casini, G., Straccia, U.: Defeasible inheritance-based description logics. JAIR 48,
415–473 (2013)

16. Casini, G., Meyer, T.: Belief change in a preferential non-monotonic framework.
In: IJCAI 2017, pp. 929–935 (2017)

17. Casini, G., Meyer, T., Moodley, K., Nortjé, R.: Relevant closure: a new form of
defeasible reasoning for description logics. In: Fermé, E., Leite, J. (eds.) JELIA
2014. LNCS (LNAI), vol. 8761, pp. 92–106. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-11558-0 7

18. Freund, M.: Preferential reasoning in the perspective of Poole default logic.
Artif. Intell. 98, 209–235 (1998). http://www.sciencedirect.com/science/article/
pii/S0004370297000532

19. Gärdenfors, P.: Knowledge in Flux: Modeling the Dynamics of Epistemic States.
MIT Press, Cambridge (1988)

20. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.: A non-monotonic description
logic for reasoning about typicality. Artif. Intell. 195, 165–202 (2013)

21. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.: Semantic characterization of
rational closure: from propositional logic to description logics. Artif. Intell. 226,
1–33 (2015)

22. Hansson, S.: A Textbook of Belief Dynamics: Theory Change and Database Updat-
ing. Kluwer, Boston (1999)

23. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential mod-
els and cumulative logics. Artif. Intell. 44, 167–207 (1990)

24. Lehmann, D.: Another perspective on default reasoning. Ann. Math. Artif. Intell.
15(1), 61–82 (1995)

25. Lehmann, D., Magidor, M.: What does a conditional knowledge base entail? Artif.
Intell. 55, 1–60 (1992)

26. Pensel, M., Turhan, A.-Y.: Including quantification in defeasible reasoning for the
description logic EL⊥. In: Balduccini, M., Janhunen, T. (eds.) LPNMR 2017. LNCS
(LNAI), vol. 10377, pp. 78–84. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-61660-5 9

27. Quantz, J., Royer, V.: A preference semantics for defaults in terminological logics.
In: KR 1992, pp. 294–305 (1992)

28. Shoham, Y.: Reasoning About Change: Time and Causation from the Standpoint
of Artificial Intelligence. MIT Press, Cambridge (1988)

https://doi.org/10.1007/978-3-642-35101-3_43
https://doi.org/10.1007/978-3-319-90050-6_7
https://doi.org/10.1007/978-3-319-11558-0_7
https://doi.org/10.1007/978-3-319-11558-0_7
http://www.sciencedirect.com/science/article/pii/S0004370297000532
http://www.sciencedirect.com/science/article/pii/S0004370297000532
https://doi.org/10.1007/978-3-319-61660-5_9
https://doi.org/10.1007/978-3-319-61660-5_9

Typed Meta-interpretive Learning
of Logic Programs

Rolf Morel(B), Andrew Cropper, and C.-H. Luke Ong

University of Oxford, Oxford, UK
{rolf.morel,andrew.cropper,luke.ong}@cs.ox.ac.uk

Abstract. Meta-interpretive learning (MIL) is a form of inductive logic
programming that learns logic programs from background knowledge
and examples. We claim that adding types to MIL can improve learning
performance. We show that type checking can reduce the MIL hypothesis
space by a cubic factor. We introduce two typed MIL systems: MetagolT
and HEXMILT , implemented in Prolog and Answer Set Programming
(ASP), respectively. Both systems support polymorphic types and can
infer the types of invented predicates. Our experimental results show
that types can substantially reduce learning times.

1 Introduction

Meta-interpretive learning (MIL) [8,22,23] is a form of inductive logic program-
ming (ILP) [20]. MIL learns logic programs from examples and background
knowledge (BK) by instantiating metarules, second-order Horn clauses with exis-
tentially quantified predicate variables. Metarules are a form of declarative bias
[28] that define the structure of learnable programs. For instance, to learn the
grandparent/2 relation given the parent/2 relation, the chain metarule would
be suitable:

P (A,B) ← Q(A,C), R(C,B)

In this metarule1 the letters P , Q, and R denote existentially quantified second-
order variables (variables that can be bound to predicate symbols) and the letters
A, B and C denote universally quantified first-order variables (variables that
can be bound to constant symbols). Given the chain metarule, the background
parent/2 relation, and examples of the grandparent/2 relation, a MIL learner
will try to find the correct predicate substitutions, such as:

{P/grandparent ,Q/parent ,R/parent}

When applied to the chain metarule, these substitutions result in the theory:

grandparent(A,B) ← parent(A,C), parent(C,B)
1 The fully quantified rule is ∃P∃Q∃R∀A∀B∀C P (A,B) ← Q(A,C), R(C,B).

R. Morel—Supported by Engineering and Physical Sciences Research Council [grant
number EP/N509711/1].

c© Springer Nature Switzerland AG 2019
F. Calimeri et al. (Eds.): JELIA 2019, LNAI 11468, pp. 198–213, 2019.
https://doi.org/10.1007/978-3-030-19570-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19570-0_13&domain=pdf
https://doi.org/10.1007/978-3-030-19570-0_13

Typed Meta-interpretive Learning of Logic Programs 199

The MIL hypothesis space grows quickly given more background relations [6,11].
For instance, suppose that when learning the grandparent/2 relation we have an
additional k background relations, such as head/2, tail/2, length/2, etc. Then
for the chain metarule, there are k + 2 substitutions for each predicate variable
and thus (k +2)3 total substitutions. Existing MIL systems, such as Metagol [9]
and HEXMIL [16], would potentially consider all these possible substitutions.

We claim that considering the types of predicates can significantly improve
learning performance by reducing the number of predicate substitutions. For
instance, suppose that when learning the grandparent/2 relation we add types
to the relations, such as (person, person) to parent/2, (list(T), int) to length/2,
etc. Then given an example of the grandparent/2 relation with the type
(person, person), only the parent/2 relation (and grandparent/2 itself) matches
the example’s type, and so the number of substitutions is reduced from (k + 2)3

to 23.
Our main contributions are:

– We extend the MIL framework to support polymorphic types (Sect. 3.3).
– We show that type checking can reduce the MIL hypothesis space by a cubic

factor (Sect. 3.4).
– We introduce MetagolT and HEXMILT which extend Metagol and HEXMIL

respectively. Both support polymorphic types and both can infer types for
invented predicates (Sect. 4).

– We conduct experiments which show that types can substantially reduce
learning times when there are irrelevant background relations (Sect. 5).

2 Related Work

Program Induction. Program synthesis is the automatic generation of a com-
puter program from a specification. Deductive approaches [19] deduce a program
from a full specification that precisely states the requirements and behaviour of
the desired program. By contrast, program induction approaches induce (learn)
a program from an incomplete specification, typically input/output examples.
Many program induction approaches learn specific classes of programs, such
as string transformations [33]. By contrast, MIL is general-purpose, and is, for
instance, capable of grammar induction [22], learning robot strategies [7], and
learning efficient algorithms [10].

Types in Program Induction. Functional program induction approaches often use
types. For instance, bidirectional type checking is the foundation of the MYTH
systems [26], where MYTH2 [14] supports polymorphic types. SYNQUID [27]
forgoes input/output examples and only uses refinement types as its specifica-
tion. The authors argue that refinement specifications are terser than examples.
However, because of the need to supply correct and informative refinement types,
SYNQUID is more similar to deductive synthesis approaches. In contrast to these
inductive approaches, we focus on learning logic programs, including support for
predicate invention, i.e. the introduction of new predicate symbols [36].

200 R. Morel et al.

Inductive Logic Programming. ILP is a form of program induction which learns
logic programs. ILP systems are typically untyped. The use of types in ILP
is mostly restricted to mode declarations [21], which are used by many sys-
tems [17,21,29,31,35]. Mode declarations define what literals can appear in a
program. In the mode language, modeh are declarations for head literals and
modeb are declarations for body literals, where + and − are followed by the type
of each argument and represent input and output arguments respectively, e.g.
:-modeh(1,mult(+int,+int,-int)). Mode declarations are metalogical state-
ments. By contrast, we introduce typed atoms (Definition 4) which are logical
statements. As far as we are aware, our work is the first to declaratively represent
types. In addition, in contrast to the existing approaches in ILP, our approach
supports polymorphic types and we can also infer the types of invented pred-
icates. Finally, to our best knowledge, we are the first to provide theoretical
results that show that types can improve learning performance (Theorem1).

MIL is a form of ILP that supports predicate invention and learning recursive
programs. MIL is typically based on a Prolog meta-interpreter [9] but has also
been encoded as SMT [1] and ASP problems [16]. We extend MIL to support
learning with types. We demonstrate the approach in both Prolog and ASP
settings. Farquhar et al. [13] considered adding types to MIL. However, their
work is mainly concerned with applying MIL to learn strategies for interactive
theorem proving and their work on types is minimal with only two simple types
considered.

Types in Logic Programming. The main Prolog [5,38] and ASP [15] implementa-
tions do not explicitly support types. There are, however, typed Prolog-like lan-
guages, such as the functional-logic language Mercury [34] and the higher-order
logic language λProlog [25]. Most work on adding types to logic programming
[24,30] is motivated by reducing runtime errors by restricting the range of vari-
ables. By contrast, we are motivated by reducing learning times by restricting
the range of variables.

3 Framework

3.1 Preliminaries

We assume familiarity with logic programming. We do, however, restate key
terminology. We denote the predicate, constant, and function signatures as P,
C, and F respectively. A variable is first-order if it can be bound to a constant
symbol, a function symbol, or another first-order variable. A variable is second-
order if it can be bound to a predicate symbol or another second-order variable.
We denote the sets of first-order and second-order variables as V1 and V2 respec-
tively. A term is a variable, a constant symbol, or a function symbol of arity
n immediately followed by a bracketed n-tuple of terms. A term is ground if it
contains no variables. An atom is a formula p(t1, . . . , tn), where p is a predicate
symbol of arity n and each ti is a term. An atom is ground if all of its terms

Typed Meta-interpretive Learning of Logic Programs 201

are ground. We denote as p/n a predicate or function symbol p with arity n. A
second-order term is a second-order variable or a predicate symbol. An atom is
second-order if it has at least one second-order term. A literal is an atom A (a
positive literal) or its negation ¬A (a negative literal). A clause is a disjunction
of literals. The variables in a clause are implicitly universally quantified. A Horn
clause is a clause with at most one positive literal. A definite clause is a Horn
clause with exactly one positive literal. A clause is second-order if it contains
a second-order atom. A logic program is a set of Horn clauses. The constant
symbols are distinct from the functional symbols, as the latter all have non-
zero arity. We call a logic program without proper functional symbols a datalog
program.

3.2 Meta-interpretive Learning

MIL was originally based on a Prolog meta-interpreter. The key difference
between a MIL learner and a standard Prolog meta-interpreter is that whereas a
standard Prolog meta-interpreter attempts to prove a goal by repeatedly fetching
first-order clauses whose heads unify with a given goal, a MIL learner addition-
ally attempts to prove a goal by fetching second-order metarules, supplied as
BK, whose heads unify with the goal. The resulting predicate substitutions are
saved and can be reused later in the proof. Following the proof of a set of goals,
a logic program is induced by projecting the predicate substitutions onto their
corresponding metarules.

We formally define the MIL setting, which we then extend with types. We
first define metarules [6]:

Definition 1 (Metarule). A metarule is a second-order formula of the form:

∃π∀μ A0 ← A1, . . . , Am

where π ⊆ V1 ∪ V2, μ ⊆ V1 ∪ V2, π and μ are disjoint, and each Ai is an atom
of the form p(t1, . . . , tn) such that p/n ∈ P ∪ π ∪ μ and each ti ∈ C ∪ P ∪ π ∪ μ.

When describing metarules, we typically omit the quantifiers and use the
more terse notation shown in Fig. 1.

Fig. 1. Example metarules. The letters P , Q, and R denote existentially quantified
second-order variables. The letters A, B, and C denote universally quantified first-
order variables.

202 R. Morel et al.

We define the standard MIL input:

Definition 2 (MIL input). The MIL input is a triple (B,E+, E−) where:

– B = BC ∪ M where BC is a logic program representing BK and M is a set
of metarules

– E+ and E− are disjoint sets of ground atoms representing positive and neg-
ative examples respectively

We now define the hypotheses that MIL will consider. Given a set of metarules
M , a logic program H is a hypothesis if each clause of H can be obtained
by grounding the existentially quantified variables of a metarule in M . This
hypothesis space definition enforces a strong inductive bias in MIL.

We define the standard MIL problem:

Definition 3 (MIL problem). Given a MIL input (BC ∪ M,E+, E−), the
MIL problem is to find a logic program hypothesis H such that H ∪ BC |= E+

and H ∪ BC �|= E−. We call H a solution to the MIL problem.

3.3 Typed Meta-interpretive Learning

We extend MIL to support types. We assume a finite set Tb ⊆ C of base types
(e.g. int , bool), a finite set Tc ⊆ F of polymorphic type constructors (e.g. list/1,
array/1), and a set of type variables Vt. We inductively define a set T of types:

– if τ ∈ Tb ∪ Vt then τ ∈ T
– if c/n ∈ Tc and τ1, . . . , τn ∈ T then c(τ1, . . . , τn) ∈ T
– if τ1, . . . , τn ∈ T then (τ1, . . . , τn) ∈ T

The last case concerns types for predicates. For instance (list(S), list(T), (S, T))
is the type for the map/3 predicate. We introduce typed atoms:

Definition 4 (Typed atom). A typed atom is a formula p(τ1, . . . , τm,
t1, . . . , tm), where p is a predicate symbol of arity n, m+m = n, τ1, . . . , τm ∈ T ,
and each ti is a first-order or second-order term.

We can extend this notion to logic programs:

Definition 5 (Typed logic program). A typed logic program is a logic pro-
gram with typed atoms in place of atoms.

To aid readability, in the rest of this paper we label each atom with its
type. For instance we denote succ(int , int , A,B) as succ(A,B):(int , int), and
head(list(T), T, [H|],H) as head([H|],H):(list(T), T). Note that the definition
of typed logic programs also applies to metarules. For instance, the typed chain
metarule is:

P (A,B):(Ta, Tb) ← Q(A,C):(Ta, Tc), R(C,B):(Tc, T b)

We define the typed MIL input :

Typed Meta-interpretive Learning of Logic Programs 203

Definition 6 (Typed MIL input). A typed MIL input is a triple (B,E+, E−)
where:

– B = BC ∪ M where BC is a typed logic program and M is a set of typed
metarules

– E+ and E− are disjoint sets of typed ground atoms representing positive and
negative examples respectively

The typed MIL problem easily follows:

Definition 7 (Typed MIL problem). Given a typed MIL input (BC ∪
M,E+, E−), the typed MIL problem is to find a typed logic program hypothe-
sis H such that H ∪ BC |= E+ and H ∪ BC �|= E−.

3.4 Hypothesis Space Reduction

We now show that types can improve learning performance by reducing the
size of the MIL hypothesis space which in turn reduces sample complexity and
expected error. Note that in this section any reference to MIL typically also
refers to typed MIL. In MIL, the size of the hypothesis space is a function of the
number of metarules m, the number of predicate symbols p, and the maximum
program size n. We typically restrict metarules by their body size and literal
arity. For instance, the chain metarule is restricted to two body literals of arity
two. We say that a metarule is in the fragment Mi

j if it has at most j literals
in the body and each literal has arity at most i. By restricting the form of
metarules, we can calculate the size of a MIL hypothesis space:

Proposition 1 (MIL hypothesis space [11]). Given a MIL input with p
predicate symbols and m metarules in Mi

j, the number of programs expressible
with at most n clauses is O((mpj+1)n).

Proposition 1 shows the MIL hypothesis space grows exponentially both in the
size of the target program and the number of body literals in a clause. For
simplicity, let us only consider metarules in M2

2, such as the chain metarule.
Then the corresponding MIL hypothesis space’s size is O((mp3)n).

We now consider the advantages of adding types, which we show can improve
learning performance when they allow us to ignore irrelevant BK predicates.
Informally, given a typed MIL input, a predicate symbol is type relevant when it
can be used in a hypothesis that is type consistent with the BK and the examples.
We define the relevant ratio to characterise the reduction of the hypothesis space:

Definition 8 (Relevant ratio). Given a typed MIL input with p predicate
symbols where only p′ are type relevant, the relevant ratio is r = p′/p.

The relevant ratio will always be between 0 and 1 with lower values indicating
a greater reduction in the hypothesis space. We characterise this reduction:

204 R. Morel et al.

Theorem 1 (Hypothesis space reduction). Given a typed MIL input with
p predicate symbols, m metarules in M2

2, a maximum program size n, and a
relevant ratio r, typing reduces the size of the MIL hypothesis space by a factor
of r3n.

Proof. Replacing p with rp in Proposition 1 and rearranging terms leads to
O(r3n(mp3)n).

Theorem 1 shows that types can considerably reduce the size of hypothesis
spaces2. The Blumer bound [2] says that given two hypothesis spaces of different
sizes, searching the smaller space will result in less error and lower learning times
compared to the larger space, assuming the target hypothesis is in both spaces.
This result implies that types should improve learning performance, so long as
they do not exclude the target hypothesis from the hypothesis space. In this
next section we introduce MetagolT and HEXMILT which implement this idea.

4 MetagolT and HEXMILT

We present two typed MIL systems: MetagolT and HEXMILT , which extend
Metagol and HEXMIL respectively.

4.1 MetagolT

MetagolT is based on an adapted Prolog meta-interpreter. Figure 2 shows the
MetagolT algorithm described as Prolog code. Given a set of atoms representing
positive examples, MetagolT tries to prove each atom in turn. MetagolT first
tries to prove an atom using BK by delegating the proof to Prolog (line 9).
Failing this, MetagolT tries to unify the atom with the head of a metarule (line
16) and to bind the existentially quantified variables in a metarule to symbols
in the signature. MetagolT saves the resulting predicate substitution and tries
to prove the body of the metarule. The predicate substitutions can be reused
to prove atoms later on (line 11). After proving all atoms, MetagolT induces a
logic program by projecting the predicate substitutions onto their corresponding
metarules. MetagolT checks the consistency of the induced program with the
negative examples. If the program is inconsistent, then MetagolT backtracks to
explore different branches of the SLD-tree. Metagol uses iterative deepening to
ensure that the first consistent hypothesis returned has the minimal number of
clauses. At each depth d, MetagolT searches for a consistent hypothesis with at
most d clauses. At each depth d, MetagolT introduces d-1 new predicate symbols,
formed by taking the name of the task and adding underscores and numbers.

MetagolT extends Metagol to support types. We annotate each atom with its
type using the syntax described in Sect. 3.3. For instance, the following Prolog
code denotes an atom with (list(char), int) as its type:

2 It is not hard too see that Theorem 1 generalizes to a reduction factor of r(j+1)n for
any hypothesis space Mi

j .

Typed Meta-interpretive Learning of Logic Programs 205

Fig. 2. The MetagolT algorithm.

f([a,b,c],5):(list(char),int)

In Fig. 2, each atom and its type is denoted by the variables Atom:DT . The
variable DT represents the derivation type of an atom. The derivation type is
the type of the values of that atom. When trying to prove an atom, MetagolT
ignores predicates whose derivation types do not match, which allows it to prune
the hypothesis space (relative to untyped Metagol). This type check is done
through unification. For instance, when trying to prove an atom using BK (line
9), unification ensures that MetagolT will only call a predicate in the BK if its
derivation type matches the derivation type of the atom it is trying to prove.
For invented predicate symbols, the derivation type is inferred from the type of
the values used to induce that symbol. For instance, suppose we have induced
the following theory to explain the above f/2 atom:

f(A,B):(list(char), int) ← f1(A,C):(list(char), int), succ(C,B):(int , int)
f1(A,B):(list(char), int) ← length(A,C):(list(char), int), succ(C,B):(int , int)

In this theory the derivation type of the invented predicate symbol f1/2 is
(list(char), int). Because f1/2 is sufficiently general to be applied to lists of
any type, we want to assign it a general type that will allow it to be poly-
morphically reused. For instance, we want the theory to also entail the atom
f([1, 2, 3, 4], 6):(list(int), int). To support polymorphic reuse, we annotate each
atom with a second type that denotes the general type of its predicate symbol.
The general type is the least general generalisation of the derivation types for
an atom. For instance, given the atoms:

206 R. Morel et al.

f([a, b, c], 5) : (list(char), int)
f([1, 2, 3, 4], 6) : (list(int), int)

We say that (list(T), int) is the general type of f/2. When trying to prove an
atom using an already invented predicate, line 12 in Fig. 2 checks that the deriva-
tion type of atom is an instance of the general type of the invented predicate.

4.2 HEXMILT

HEXMILT extends the forward-chained state-based encoding of HEXMIL [16].
Forward-chained refers to a restricted class of metarules. For brevity we refer
the reader to [16] for a full description of HEXMIL. Our main contribution is to
extend HEXMIL with types. We do so by augmenting every atom in the ASP
encoding with an additional argument that represents the type of that atom.
For instance, the untyped successor relation

binary bg(succ,A,B):-B=A+1,state(A).

becomes:

binary bg(succ,(int,int),A,B):-B=A+1,state(A,int).

We likewise augment all the deduction rules with types.
Our second contribution is to extend the HEXMIL encoding to support learn-

ing second-order programs. However, as this extension is not crucial to the claims
of this paper we leave a description to future work.

The full typed encoding is available as an online appendix3.

5 Experiments

We now experimentally4 examine the effect of adding types to MIL. We test the
null hypothesis:

Null Hypothesis 1. Adding types to MIL cannot reduce learning times.

To test this null hypothesis we compare the learning times of the typed versus the
untyped systems, i.e. MetagolT versus Metagol, and HEXMILT versus HEXMIL.

5.1 Experiment 1: Ratio Influence

Theorem 1 shows that types can reduce the MIL hypothesis by a cubic factor
depending on the relevant ratio (Definition 8), where a lower ratio indicates a
greater reduction in the hypothesis space. In this experiment we vary the relevant
ratio and measure the effect on learning times. In this experiment there is no
solution to the MIL problem. The purpose of the experiment is to measure the
time it takes to search the entire hypothesis space.

3 HEXMILT encoding file on https://github.com/rolfmorel/jelia19-typedmil.
4 Experimental data available at https://github.com/rolfmorel/jelia19-typedmil.

https://github.com/rolfmorel/jelia19-typedmil
https://github.com/rolfmorel/jelia19-typedmil

Typed Meta-interpretive Learning of Logic Programs 207

Materials. We use a single positive example p(1, 0) : (int , int). We use 20 BK
predicates, each a uniquely named copy of the succ/2 relation, e.g. succ1/2 ,
succ2/2 , . . . , succ20/2 . The type of each predicate is either (int , int) or (⊥,⊥),
where ⊥ is a dummy type. We use the chain metarule.

Methods. For each relevant ratio rp in {0, 0.05, 0.1, . . . , 1.0} we set the proportion
of types (int , int) versus (⊥,⊥) to rp. We consider program hypotheses with at
most 3 clauses. We measure mean learning times and standard errors over 10
repetitions. For the HEXMIL experiments, we bound integers to the range 0 to
5000 to ensure the grounding is finite and tractable.

Results. Figure 3 shows that varying the relevant ratio (rp) does not affect the
learning times of the untyped systems. By contrast, varying rp affects the learn-
ing times of the typed systems. Specifically, types reduce learning times for both
typed systems when rp ≤ 0.95. When rp is 0 the typed systems almost instantly
determine that there is no solution. When rp is 0.5, types reduce learning time
by approximately 500% with MetagolT and 300% with HEXMILT . When rp is 1
the typed systems take slightly longer than their untyped versions because of the
small overhead in handling types. The flatter curve of HEXMILT compared to
MetagolT is because of implementation differences. The main cost of MetagolT is
trying different predicate substitutions. By contrast, the main cost of HEXMILT

is grounding the succi/2 predicates. Overall these results suggest that we can
reject the null hypothesis.

Fig. 3. Relevant ratio experiment results.

5.2 Experiment 2: Droplasts

In this experiment we learn a droplasts program that takes lists of lists and drops
the last element of each sublist. Figure 4 shows examples of this problem. We
investigate how varying the amount of BK affects learning time.

208 R. Morel et al.

Fig. 4. Example droplasts/2 atoms.

Materials. We provide each system with two positive droplasts(x, y) examples
where x is the input list and y is the output list. To generate an example, for
the input list we select a random integer k between 2 and 5 that represents the
number of sublists. We then randomly generate k sublists, where each sublist
contains between three and five lowercase characters. The output list is the input
list excluding the last element of each sublist. We use small list lengths because
of grounding issues with the ASP systems. The Prolog systems can handle much
larger values, as previously demonstrated [8]. Figure 5 shows the BK available
in the experiments. We always use the map/3, tail/2, and reverse/2 predicates,
and sample others to include. We use the chain and curry metarules.

Fig. 5. BK predicates used in the droplasts experiment. We omit definitions for brevity.

Methods. For each k in {0, 1, . . . , 25}, we uniformly sample with replacement k
predicates from those shown in Fig. 5 and generate 2 positive training examples.
For each learning system, we learn a droplasts/2 program using the training
examples and BK augmented with the k sampled predicates. We measure mean
learning times and standard errors over 10 repetitions.

Results. Figure 6 shows that types reduce learning times in almost all cases. The
high variance in the ASP results is mainly because of predicates that operate
over integers (e.g. length/2), which greatly increase grounding complexity. In
all cases both the typed and untyped approaches learn programs with 100%
accuracy (plot omitted for brevity). Figure 7 shows an example program learned
by MetagolT . The Metagol systems show a clear distinction in the learning times
that they require. For the HEXMIL systems intractability prohibits us from
running the experiment with the full 25 predicates, though the greater variance
and higher mean learning times for the untyped system are already apparent in
Fig. 6. These results suggest that we can reject the null hypothesis.

Typed Meta-interpretive Learning of Logic Programs 209

Fig. 6. Droplasts experiment results.

Fig. 7. An example droplasts/2 program learned by MetagolT . The predicate symbols
droplasts 1/2 and droplasts 2/2 are invented by MetagolT .

5.3 Experiment 3: More Problems

To further demonstrate that types can improve learning performance, we evalu-
ate the untyped and typed systems on four additional problems:

– filtercapslower/2 takes a list of characters, discards the lowercase characters,
and makes the remaining letters lowercase

– filterevendbl/2 takes a list of integers, discards the odd numbers, and doubles
the even numbers

– nestedincr/2 takes lists of lists of integers and increments each integer by two
– finddups/2 takes a list of characters and returns the duplicate character

Materials. As with the previous experiment, we randomly generate examples of
varying lengths. We omit full details for brevity. We use the BK from Experiment
2 (Fig. 5) augmented with 14 predicates (Fig. 8), i.e. a total of 24 background
predicates. We use the chain, curry, dident, and tailrec metarules.

210 R. Morel et al.

Fig. 8. Additional BK predicates used in Experiment 3. We omit definitions for brevity.

Methods. For each problem, we supply each system with all 24 BK predicates and
5 positive and 5 negative examples of each problem. We measure mean learning
times and standard errors over 10 repetitions. We set a maximum learning time
of 10 min.

Results. Figure 9 shows that types can significantly reduce learning times. The
accuracy of the Prolog systems is identical in all cases, and is only less than 100%
for the finddups/2 program (4 out of 10 trials learned an erroneous hypothesis).
The ASP timeouts are because the grounding is too large when using nested lists,
integers, or recursive metarules. Again, the clear distinction in performance of
the typed and untyped systems is evidence for rejecting the null hypothesis.

Fig. 9. Experiment 3 results that show mean learning times and standard error.

6 Conclusions

We have extended MIL to support types. We have shown that types can reduce
the MIL hypothesis space by a cubic factor (Theorem 1). We have introduced two
typed MIL systems: MetagolT , which extends Metagol, and HEXMILT which
extends HEXMIL. Both systems support polymorphic types and the inference of
types for invented predicates. We have experimentally demonstrated that types
can significantly reduce learning times for both systems.

Typed Meta-interpretive Learning of Logic Programs 211

Limitations and Future Work. Although we have focused on extending MIL with
types, our results and techniques should be applicable to other areas of ILP and
program induction. Because we declaratively represent types, our techniques
should be directly transferable to other forms of ILP that use metarules [1,4,12,
32,37]. Future work should study the advantages of using types in these other
approaches.

The MIL problem is decidable in the datalog setting [23]. However, because
typed MIL supports polymorphic types, which are represented as function sym-
bols, the decidability of the typed MIL problem is unclear. Future work should
address this issue. A possible solution involves bounding the function application
depth in the type terms while all relevant types for a hypothesis space remain
expressible.

We have focused on polymorphic types. A natural extension, which has not
been explored in ILP, is to support more complex types, such as refinement
types [18].

MIL supports predicate invention so it is sensible to ask whether it can
also support type invention. For instance, rather than treating strings as list
of characters, it would be advantageous to ascribe more precise types, such as
postcode or email. This idea is closely related to the idea of learning declarative
bias [3].

References

1. Albarghouthi, A., Koutris, P., Naik, M., Smith, C.: Constraint-based synthesis of
datalog programs. In: Beck, J.C. (ed.) CP 2017. LNCS, vol. 10416, pp. 689–706.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66158-2 44

2. Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.: Learnability and the
Vapnik-Chervonenkis dimension. J. ACM 36(4), 929–965 (1989)

3. Bridewell, W., Todorovski, L.: Learning declarative bias. In: Blockeel, H., Ramon,
J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS, vol. 4894, pp. 63–77. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78469-2 10

4. Campero, A., Pareja, A., Klinger, T., Tenenbaum, J., Riedel, S.: Logical rule induc-
tion and theory learning using neural theorem proving. ArXiv e-prints, September
2018

5. Costa, V.S., Rocha, R., Damas, L.: The YAP Prolog system. TPLP 12(1–2), 5–34
(2012)

6. Cropper, A.: Efficiently learning efficient programs. Ph.D. thesis. Imperial College
London, UK (2017)

7. Cropper, A., Muggleton, S.H.: Learning efficient logical robot strategies involv-
ing composable objects. In: Yang, Q., Wooldridge, M. (eds.) Proceedings of the
Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI
2015, Buenos Aires, Argentina, 25–31 July 2015, pp. 3423–3429. AAAI Press (2015)

8. Cropper, A., Muggleton, S.H.: Learning higher-order logic programs through
abstraction and invention. In: Kambhampati, S. (ed.) Proceedings of the Twenty-
Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016, New
York, NY, USA, 9–15 July 2016, pp. 1418–1424. IJCAI/AAAI Press (2016)

9. Cropper, A., Muggleton, S.H.: Metagol system (2016). https://github.com/
metagol/metagol

https://doi.org/10.1007/978-3-319-66158-2_44
https://doi.org/10.1007/978-3-540-78469-2_10
https://github.com/metagol/metagol
https://github.com/metagol/metagol

212 R. Morel et al.

10. Cropper, A., Muggleton, S.H.: Learning efficient logic programs. Mach. Learn. 1–21
(2018)

11. Cropper, A., Tourret, S.: Derivation reduction of metarules in meta-interpretive
learning. In: Riguzzi, F., Bellodi, E., Zese, R. (eds.) ILP 2018. LNCS, vol. 11105,
pp. 1–21. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99960-9 1

12. Evans, R., Grefenstette, E.: Learning explanatory rules from noisy data. J. Artif.
Intell. Res. 61, 1–64 (2018)

13. Farquhar, C., Grov, G., Cropper, A., Muggleton, S., Bundy, A.: Typed meta-
interpretive learning for proof strategies. In: CEUR Workshop Proceedings, vol.
1636, pp. 17–32 (2015)

14. Frankle, J., Osera, P., Walker, D., Zdancewic, S.: Example-directed synthesis: a
type-theoretic interpretation. In: Bod́ık, R., Majumdar, R. (ed.) Proceedings of the
43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2016, St. Petersburg, FL, USA, 20–22 January 2016, pp. 802–
815. ACM (2016)

15. Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider,
M.T.: Potassco: the Potsdam answer set solving collection. AI Commun. 24(2),
107–124 (2011)

16. Kaminski, T., Eiter, T., Inoue, K.: Exploiting answer set programming with exter-
nal sources for meta-interpretive learning. TPLP 18(3–4), 571–588 (2018)

17. Law, M., Russo, A., Broda, K.: Inductive learning of answer set programs. In:
Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS, vol. 8761, pp. 311–325. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-11558-0 22

18. Lovas, W., Pfenning, F.: Refinement types for logical frameworks and their inter-
pretation as proof irrelevance. Log. Methods Comput. Sci. 6(4) (2010)

19. Manna, Z., Waldinger, R.J.: A deductive approach to program synthesis. ACM
Trans. Program. Lang. Syst. 2(1), 90–121 (1980)

20. Muggleton, S.: Inductive logic programming. New Gener. Comput. 8(4), 295–318
(1991)

21. Muggleton, S.: Inverse entailment and Progol. New Gener. Comput. 13(3&4), 245–
286 (1995)

22. Muggleton, S.H., Lin, D., Pahlavi, N., Tamaddoni-Nezhad, A.: Meta-interpretive
learning: application to grammatical inference. Mach. Learn. 94(1), 25–49 (2014)

23. Muggleton, S.H., Lin, D., Tamaddoni-Nezhad, A.: Meta-interpretive learning of
higher-order dyadic datalog: predicate invention revisited. Mach. Learn. 100(1),
49–73 (2015)

24. Mycroft, A., O’Keefe, R.A.: A polymorphic type system for Prolog. Artif. Intell.
23(3), 295–307 (1984)

25. Nadathur, G., Miller, D.: An overview of lambda-PROLOG. In: Kowalski, R.A.,
Bowen, K.A. (eds.) Logic Programming, Proceedings of the Fifth International
Conference and Symposium, Seattle, Washington, USA, 15–19 August 1988, vol.
2, pp. 810–827. MIT Press (1988)

26. Osera, P., Zdancewic, S.: Type-and-example-directed program synthesis. In: Grove,
D., Blackburn, S. (eds.) Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation, Portland, OR, USA, 15–17
June 2015, pp. 619–630. ACM (2015)

27. Polikarpova, N., Kuraj, I., Solar-Lezama, A.: Program synthesis from polymor-
phic refinement types. In: Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2016, New York, NY,
USA, pp. 522–538. ACM (2016)

https://doi.org/10.1007/978-3-319-99960-9_1
https://doi.org/10.1007/978-3-319-11558-0_22

Typed Meta-interpretive Learning of Logic Programs 213

28. Raedt, L.: Declarative modeling for machine learning and data mining. In: Bshouty,
N.H., Stoltz, G., Vayatis, N., Zeugmann, T. (eds.) ALT 2012. LNCS, vol. 7568, pp.
12–12. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34106-9 2

29. Ray, O.: Nonmonotonic abductive inductive learning. J. Appl. Log. 7(3), 329–340
(2009)

30. Schrijvers, T., Costa, V.S., Wielemaker, J., Demoen, B.: Towards typed Prolog.
In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp.
693–697. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89982-
2 59

31. Schüller, P., Benz, M.: Best-effort inductive logic programming via fine-grained
cost-based hypothesis generation - the inspire system at the inductive logic pro-
gramming competition. Mach. Learn. 107(7), 1141–1169 (2018)

32. Si, X., Lee, W., Zhang, R., Albarghouthi, A., Koutris, P., Naik, M.: Syntax-guided
synthesis of datalog programs. In: Leavens, G.T., Garcia, A., Pasareanu, C.S.
(eds.) Proceedings of the 2018 ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering,
ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, 04–09 November 2018,
pp. 515–527. ACM (2018)

33. Singh, R., Gulwani, S.: Synthesizing number transformations from input-output
examples. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp.
634–651. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-
7 44

34. Somogyi, Z., Henderson, F.J., Conway, T.C.: Mercury, an efficient purely declara-
tive logic programming language. Aust. Comput. Sci. Commun. 17, 499–512 (1995)

35. Srinivasan, A.: The ALEPH manual. Machine Learning at the Computing Labo-
ratory, Oxford University (2001)

36. Stahl, I.: The appropriateness of predicate invention as bias shift operation in ILP.
Mach. Learn. 20(1–2), 95–117 (1995)

37. Wang, W.Y., Mazaitis, K., Cohen, W.W.: Structure learning via parameter learn-
ing. In: Li, J., Wang, X.S., Garofalakis, M.N., Soboroff, I., Suel, T., Wang, M. (eds.)
Proceedings of the 23rd ACM International Conference on Conference on Informa-
tion and Knowledge Management, CIKM 2014, Shanghai, China, 3–7 November
2014, pp. 1199–1208. ACM (2014)

38. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-Prolog. TPLP 12(1–2),
67–96 (2012)

https://doi.org/10.1007/978-3-642-34106-9_2
https://doi.org/10.1007/978-3-540-89982-2_59
https://doi.org/10.1007/978-3-540-89982-2_59
https://doi.org/10.1007/978-3-642-31424-7_44
https://doi.org/10.1007/978-3-642-31424-7_44

Explaining Actual Causation in Terms
of Possible Causal Processes

Marc Denecker1(B), Bart Bogaerts1,2, and Joost Vennekens1,3

1 Department of Computer Science, KU Leuven, Leuven, Belgium
{marc.denecker,bart.bogaerts,joost.vennekens}@cs.kuleuven.be
2 Department of Computer Science, Vrije Universiteit Brussel (VUB),

Brussels, Belgium
3 Department of Computer Science, KU Leuven, Campus De Nayer,

Sint-Katelijne-Waver, Belgium

Abstract. We point to several kinds of knowledge that play an impor-
tant role in controversial examples of actual causation. One is knowledge
about the causal mechanisms in the domain and the causal processes
that result from them. Another is knowledge of what conditions trigger
such mechanisms and what conditions can make them fail.

We argue that to solve questions of actual causation, such knowledge
needs to be made explicit. To this end, we develop a new language in the
family of CP-logic, in which causal mechanisms and causal processes are
formal objects. We then build a framework for actual causation in which
various “production” notions of actual causation are defined. Contrary
to counterfactual definitions, these notions are defined directly in terms
of the (formal) causal process that causes the possible world.

1 Introduction

Since the days of Hume [21], causal reasoning has been an active research domain
in philosophy and (later) knowledge representation. With the groundbreaking
work of Lewis [22] and Pearl [25], the structural equations and counterfactual
reasoning approach became mainstream [9,10,14,15]. But the debate remains
intense [11]. The counterfactual approach is contested by some [1,5,13]. In many
scenarios, there is no agreement of what the actual causes are, and all definitions
of actual causation have scenarios where they have been criticized. It shows
that the informal notion of actual causation is vague and overloaded with many
intuitions; it also show that many sorts of knowledge influence our judgment of
actual causation. Science is not ready yet with unraveling all this.

Among the most striking examples are those where for the same formal causal
model, different informal interpretations can be proposed that lead to different
actual causes. Indeed, such examples are particularly interesting, because they
demonstrate that some relevant knowledge is missing from the causal model. A
powerful illustration is given by Halpern [16], who discusses 6 causal examples

Bart Bogaerts is a postdoctoral fellow of the Research Foundation – Flanders (FWO).

c© Springer Nature Switzerland AG 2019
F. Calimeri et al. (Eds.): JELIA 2019, LNAI 11468, pp. 214–230, 2019.
https://doi.org/10.1007/978-3-030-19570-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19570-0_14&domain=pdf
https://doi.org/10.1007/978-3-030-19570-0_14

Explaining Actual Causation in Terms of Possible Causal Processes 215

from the literature in which authors showed (often convincingly) that the actual
causation definition of Halpern and Pearl [15], henceforth called HP, failed to
predict the actual causes. He responds by proposing for each example an alter-
native informal interpretation leading to the same structural equation model but
to intuitively different actual causes which, moreover, are those derived by HP!
Halpern concludes that, as far as actual causation goes, the structural equation
models are ambiguous. As for what knowledge is missing, he claims:

“what turns out to arguably be the best way to do the disambiguation
is to add [. . .] extra variables, which [. . .] capture the mechanism of
causality” and “But all this talk of mechanisms [. . .] suggests that the
mechanism should be part of the model.”

That is, he argues that we should make knowledge of causal mechanisms explicit.
That such information is relevant for causal reasoning is not surprising. Many

causal scenarios in the literature comes with an informal specification of causal
mechanisms and, often, a sometimes partial story specifying which mechanisms
are active and how they are rigged together in a causal process. As observed
before [11,27], most of this information is abstracted away in structural equation
models. We illustrate to what problems this may lead with a simple example, an
ambiguity of the same sort as tackled by Halpern [16]. Consider two scenarios
involving two deadly poisons, arsenic and strychnine. In the first scenario, intake
of any of these poisons triggers a deadly biochemical process. The corresponding
structural equation is

Dead := Arsenic intake ∨ Strychnine intake

If both poisons are taken, this is an instance of overdetermination; HP derives
that both poisons are actual causes of death.

The second scenario is similar, except that arsenic, in addition to poisoning
the victim, also preempts the chemical process by which strychnine poisons the
victim. Now, the structural equation remains the same (i.e., the victim dies
as soon as at least one poison is ingested) and so do the possible worlds (i.e.,
in both cases, there are 4 possible worlds: {D,A, S}, {D,A,¬S}, {D,¬A,S}
and {¬D,¬A,¬S})! However, the judgments of actual causation differ: when
both poisons are ingested, only arsenic is a cause of death, since the effects of
the strychnine are preempted. The conclusion is that the structural equation
correctly predicts the possible worlds but does not contain enough information
to explain the actual causes. What is missing is more detailed information about
the causal processes that generate the possible worlds and about the individual
causal mechanisms that constitute these processes.1

1 A more intuitive structural equation for the second scenario is Arsenic∨(¬Arsenic∧
Strychnine). It is equivalent under standard semantics to the original equation.
Nevertheless, it suggests an alternative way to resolve the ambiguity: developing a
more refined semantics that distinguishes between the two equations. We suspect
that structural equations under such a refined semantics might turn out to be quite
similar to the logic we develop in this paper.

216 M. Denecker et al.

The following scenario, simplified from Assassin [20], illustrates another
relevant sort of knowledge that is not expressed in structural equation models.
An assassin may kill a victim by administering deadly poison. A bodyguard may
rescue the victim by administering an antidote. The structural equation:

Dead := Poison intake ∧ No antidote intake

correctly characterizes the possible worlds. However, there is again a problem on
the level of actual causes. When only poison is ingested, there is a strong intuition
that it is the ingestion of poison that is the actual cause of death, not the absence
of antidote. After all, it is the poison that activates the poisoning mechanism,
not the absence of antidote. Yet, by the symmetry of the formal model, HP
nor any other mathematical method can discover this from the above structural
equation. The asymmetry here is that poison triggers the causal mechanism,
while antidote preempts it, i.e., absence of antidote is only a condition to not
preempt the mechanism. As we argue below, this distinction plays a role in many
controversial causal examples and should be added to the causal model.

Halpern’s solution to the first type of ambiguities is to reify the different
causal mechanisms by auxiliary variables and structural equations representing
when the mechanism fires. He applies this methodology to explicate the causal
mechanisms in the different interpretations of each of the 6 cases. The causal
models of the refined theories then not only encode the actual world, but also
(part of) the causal process that creates it. For all 2× 6 cases, HP was able to
detect the intuitively expected actual causes using the refined theories.

These are great results, but they also raise some fundamental questions. First,
Halpern’s approach is to refine existing structural equation models to resolve
reported ambiguities on them. What guarantee is there that all ambiguities are
resolved now? To eradicate the problem of such ambiguities, we need a mod-
elling language that supports expression of individual causal mechanisms. This
is the first topic on which our paper contributes. Second, his analysis shows that
knowledge of individual causal mechanisms and which of them fire influences
our judgment of actual causation. But this does not explain how this works.
Sure, HP was powerful enough to produce the expected answers, but HP is not
based on causal mechanisms and processes, hence this method cannot explain
why and how causal processes determine the actual causes. What is missing is
a principled explanation of actual causation in terms of the causal process and
the causal mechanisms. This is the second topic on which our paper contributes.
Third, the second ambiguity, the one that appears in Assassin, is not a prob-
lem of discerning different causal mechanisms and Halpern’s methodology is not
applicable to this case. We argue that to resolve this type of ambiguities, it is
necessary to express the distinction between conditions that trigger the causal
process and conditions that, if false, preempt the causal mechanism. We propose
a modelling language for this and we argue that making this distinction explains
a number of controversies in causal reasoning, such as the difference between
early preemption and switch scenarios.

Explaining Actual Causation in Terms of Possible Causal Processes 217

2 The Causal Logic: Syntax and Informal Semantics

We propose a propositional causal modelling language to resolve the reported
ambiguities. It can be lifted easily to the predicate level but this would merely
increase the formal complexity without contributing to the essence of the paper.

To represent a causal domain, a vocabulary Σ of propositional symbols is
chosen; each symbol expresses an atomic proposition in the domain. Literals
are formulas of the form P or ¬P , with P ∈ Σ; slightly abusing notation, we
use ¬L to denote P if L = ¬P and to denote ¬P if L = P . As usual, we
distinguish between endogenous symbols, for which the mechanisms that cause
them are expressed in the theory, and exogenous symbols, for which no causal
mechanisms are expressed.

A causal theory is a set of causal mechanisms. Each mechanism has trig-
gering conditions, which set the mechanism in operation; enabling conditions,
which if false, preempt the mechanism; and an effect. This leads to the following
definition.

Definition 1. A causal mechanism is a statement of the form

L ← T ||C

where

– ← is the causal operator (not material implication),
– L is a literal of an endogenous symbol, called the effect,
– T is a sequence of literals called triggering conditions,
– C is a sequence of literals called enabling conditions.

The causal mechanism L ← || represents the unconditional causal mechanism
causing L. Elements of T ∪ C are called conditions of the causal mechanism.

A causal theory Δ is a set of causal mechanisms that contains at least one
mechanism for each endogenous symbol and such that:

– Δ is acyclic, i.e., there exists a strict well-founded order on symbols such that
for each causal mechanism, the symbol in the effect is strictly larger than the
symbols of the conditions.

– Δ does not contain mechanisms with contradictory effects P ← . . . and ¬P ←
. . . .

The logic imposes two main constraints on causal theories: acyclicity and
absence of contradictory effects. In many causal domains, cycles in causal mech-
anisms exist. Cycles are allowed in several causal rule formalisms [5–7,28]. Fol-
lowing [28], the logic proposed here can easily be extended with cycles. We do
not implement it since the greater complexity would detract attention from the
essence of this paper: the resolution of ambiguities. The absence of contradictory
effects is an inherent aspect of the language and is explained below.

218 M. Denecker et al.

Example 1 Arsenic and Strychnine. The two causal scenarios mentioned in
the introduction are represented as

{
Dead ← Arsenic intake ||
Dead ← Strychnine intake ||

}
, and

{
Dead ← Arsenic intake ||
Dead ← Strychnine intake || ¬Arsenic intake

}

x respectively. Three of these rules have the empty sequence of enabling con-
ditions. In the last rule, strychnine poisoning is triggered by strychnine but
preempted by arsenic.

We now describe the informal semantics of the language. A causal theory
does not impose constraints on the exogenous symbols and makes abstraction
of causal mechanisms affecting them. For the endogenous symbols, the causal
theory is assumed to contain all causal mechanisms affecting them. Each endoge-
nous proposition has a default state L and a deviant state ¬L. The effect of a
causal mechanism is always the deviant literal. A causal process starts in a state
where endogenous properties are in their default state, and proceeds by firing
applicable but unsatisfied causal mechanisms: mechanisms with true conditions
but false effect. Firing a causal mechanism switches the effect on, moving the
included proposition from its default to its deviant state. Once a deviant literal
is true, it remains true. As such, with each endogenous proposition zero or one
event is associated: zero if it stays in its default state, one if it switches. Such a
switch event may be caused by multiple causal mechanisms causing L simulta-
neously. The process stops when all applicable causal mechanisms are satisfied.
The resulting state is a possible causal world of the theory.

It can be seen that a form of the law of inertia is present in the logic: an
endogenous symbol remains in the same state unless it is affected by some causal
mechanism. Also, endogenous properties have a fixed default and deviant state
and causal mechanisms cause deviant literals; hence, mechanisms have no con-
tradictory effects.

The causal processes considered here are clearly of a limited kind. In many
causal domains, endogenous properties evolve from true to false and back again,
caused by mechanisms with contradictory effects. E.g., flipping a switch causes
the light to be on if the light is not on and vice versa. Such domains, interesting
as they are, fall outside the scope of this paper. First of all, the causal ambiguities
studied here arise in causal domains modelled in non-temporal causal languages
(structural equations, causal neuron diagrams, causal calculus, CP-logic, . . .).
We argue that in the majority of such applications, the causal processes are of
the simple kind considered here. Also, building a language for modelling causal
worlds that are the result of complex dynamic causal processes is conceptually,
mathematically, and computationally complex (e.g., causal processes may not
terminate). This is outside the scope of this paper.

In worlds caused by causal processes of the sort we consider here, every
deviant literal L has a causal explanation, namely the causal mechanism(s) that

Explaining Actual Causation in Terms of Possible Causal Processes 219

caused it. On the other hand, a default literal L that holds in the world is not
caused by a specific causal mechanism; it is true by inertia. Nevertheless it has
a causal explanation as well, namely, that every causal mechanism for ¬L is
blocked. Either way, the language implements Leibniz’s principle of sufficient
reason—that every true fact has a reason—(but only for endogenous facts).

Definition 2. A world W is a complete and consistent set of literals, i.e., a set
of literals such that for each P ∈ Σ, either P ∈ W or ¬P ∈ W , but not both.
The exogenous state of W is the set of its exogenous literals, denoted Exo(W).
As usual, an exogenous state is called a context. A symbol P is in its deviant
state in W if its deviant literal holds in W , and in its default state otherwise.

Definition 3. A causal mechanism r of the form L ← A || B is blocked by a
condition K ∈ A∪B in world W if ¬K ∈ W . The mechanism r is active in world
W if A ⊆ W , that is, if all its triggering conditions hold in W ; otherwise it is
inactive. A causal mechanism is applicable in W if A∪B ⊆ W . The mechanism
r fails in W if it is active but is blocked by an enabling condition in W . A causal
mechanism is satisfied in W if it is blocked, or if its effect holds in W .

Triggering Conditions Versus Enabling Conditions. The distinction between
triggering and enabling conditions of causal mechanisms is a new feature of our
language. Often, a natural distinction can be made between the conditions that
set the mechanism in operation and conditions that are necessary for the mech-
anism to succeed. E.g., to obtain a forest fire, at least two conditions are needed:
a spark igniting a hotbed in the forest and absence of extinction operations.
There is no difference between the two conditions on the level of counterfac-
tual dependence. Nevertheless, it is the spark (in the form of a lightning or an
unsafe camp fire) that triggers the causal mechanism; the condition of absence
of extinction operations is there only because such operations would make the
causal mechanism fail in achieving its effect. We argue that this explains the
strong intuition shared by many that it is the spark that is the actual cause of
the fire, and not the absence of fire extinction. Our goal here is to propose a
formalization of this notion of actual causation. To define it, the nature of the
conditions must be clear from the causal theory.

Example 2 (Hitchcock’s Assassin, [20, p. 504]). Drinking coffee poisoned by
Assassin causes Victim to die unless an antidote is administered by Bodyguard.
We discuss three conditions here: presence of poison in the coffee (Poison),
drinking the coffee (Drink), and absence of antidote (¬Antidote). The poisoning
process is physically triggered by the event of drinking the coffee. However, it
is the intake of poison that triggers the poisoning process. Thus, the triggering
conditions are Drink and Poison. Intake of an antidote causes the process to
fail in achieving its effect. So, we argue for the following representation:

¬Alive ← Drink, Poison || ¬Antidote

220 M. Denecker et al.

Hitchcock pointed at the different “strengths” of the first conditions versus the
third condition as causes for death. When the three conditions are true and
Victim dies, drinking poisoned coffee seems to be a “stronger” cause of this than
the absence of antidote. He argues that this is because absence of antidote is
an omission, in particular, of the event of administering antidote. However, this
cannot be the explanation. First, omissions are frequently perceived as strong
causes [26]. Second (and illustrating the first point), if there is no poisoning or
no drinking but antidote is administered, the omission of one or both of the first
conditions seems to be the “stronger” actual cause for survival than the presence
of antidote. The explanation we propose is in terms of triggering versus enabling
conditions. When triggering and enabling conditions are true, we perceive the
triggering conditions as “stronger” actual causes for the deviant effect than the
enabling conditions. When triggering conditions and enabling conditions are
both false, we see the omission of triggering conditions as the “stronger” actual
causes for the absence of the effect; after all, if the causal mechanism is not even
triggered, the falsity of its enabling conditions does not seem to matter. The only
situation where an enabling condition plays a role as an actual cause is when
the mechanism is active (its triggering conditions hold) but fails due to falsity
of the enabling condition.

Even now, before having defined a formal semantics, it is intuitively clear
how to transform causal theories to structural equations, namely by predicate
completion [8]. E.g., the completion of the first causal theory of Arsenic and
Strychnine is the propositional logic representation of the structural equation:

Dead := Arsenic intake ∨ Strychnine intake

The completion of the second theory is syntactically different but logically equiv-
alent.

Dead := Arsenic intake∨
(Strychnine intake ∧ ¬Arsenic intake)

The transformation abstracts away the causal mechanisms and the distinction
between triggering and enabling conditions.

3 Formal Semantics: Causal Processes and Possible
Worlds

The formal semantics specifies for each causal theory Δ its causal processes
and the world that each process leads to. Causal processes can be formalized
in multiple ways. Vennekens et al. [28] formalize them as sequences of states in
which at every state one causal mechanism is applied until all causal mechanisms
are satisfied. This representation is precise and gives an account of, e.g., the
“stories” in many causal examples. However, its high level of detail is not actually
required for dealing with actual causation, e.g., it fixes the order of application
of causal mechanisms which is largely irrelevant for determining actual causes.
So, we opt to formalize a process as an acyclic dependency graph of the firing
causal mechanisms. Let Δ be a causal theory throughout the rest of the paper.

Explaining Actual Causation in Terms of Possible Causal Processes 221

Definition 4. A possible causal process for Δ is a directed labeled graph P whose
set of nodes is a world, denoted World(P). Each arc from literal K to literal L is
labeled with a mechanism r or ¬r. The graph satisfies the following conditions:

– For each deviant endogenous literal L ∈ World(P), there exists a nonempty
set FL of applicable mechanisms with head L, called the firing set of L, such
that for each condition K of each r ∈ FL, there is an arc L

r← K. There are
no other arcs to L.

– For each default endogenous literal L ∈ World(P), for each mechanism r =
¬L ← . . . , the set Br of conditions of r that are false in World(P) is non-
empty and there is an arc L

¬r← ¬K ∈ P for each K ∈ Br. There are no other
arcs to L.

When the causal process in the real world leading up to the current world
can be observed, the corresponding formal process can be extracted along the
following lines. At each time the state changes during the process, one or more
deviant literals L become true. For each, one detects the mechanisms that caused
it and adds arcs from its conditions to L. When a default literal L remains true,
one investigates why the mechanisms that could cause ¬L did not fire, and adds
arcs from the negation of all their false conditions to L.

Definition 5. We call arcs L
r← K active arcs and distinguish between trigger

arcs and enabling arcs depending on the type of the condition K is in r. We call
arcs L

¬r← ¬K ∈ P blocking arcs and we distinguish between nontrigger arcs and
failure arcs depending on the type of condition K is in r.

The causal process semantics induces a possible world semantics.

Definition 6. A causal process P realizes the world World(P). We call W a
possible world of causal theory Δ if it is realized by some causal process for Δ.

The leafs of a causal process are the true exogenous literals of the world; the
non-leafs are the true endogenous literals.

Definition 4 treats triggering and enabling conditions symmetrically, except
for the names of arcs. As a consequence, the classification of the conditions in
causal mechanisms has no impact on the possible causal worlds. However, it will
play a key role in the definition(s) of actual causation.

Proposition 1. A world W is a possible causal world of causal theory Δ iff W
is a model of the completion of Δ.

As such, the extra information2 available in a causal theory Δ compared to its
corresponding structural model (i.e., its completion) does not affect the possible
worlds nor does it affect the answer to any inference problem that can be resolved
by reasoning on possible worlds. However, it does affect the actual causation
question. This was shown by the ambiguities.
2 Information on different mechanisms, and triggering conditions versus enabling con-

ditions.

222 M. Denecker et al.

Example 3 (Drinking poisoned coffee, cont.). Each of the eight exogenous
states of this causal theory determines a unique process. E.g., the context
{Drink, Poison, ¬Antidote} is the only context in which the victim dies.
The causal mechanism is active and fires and ¬Alive has incoming trigger
arcs from Poison and Drink and an enabling arc from ¬Antidote. In con-
text {Drink, Poison,Antidote}, the mechanism is active but fails; Alive has an
incoming failure arc from Antidote. In {¬Drink,¬Poison,Antidote}, the mech-
anism is inactive and Alive has nontrigger arcs from ¬Drink,¬Poison and a
failure arc from Antidote. The latter context corresponds to Bogus Prevention
[12,18].

The firing set FL of a deviant literal L may contain more than one mechanism,
in which case L is overdetermined.

In our framework, three sorts of preemption of causal mechanisms can be
distinguished. The first one is that the causal mechanism is blocked by some
triggering condition and is inactive. The second is that the mechanism is active
but blocked by an enabling condition and thus fails. The third sort of preemption
occurs when a causal mechanism r with effect L is applicable in world W (all
its conditions hold) but L was caused by other mechanisms. This corresponds
to late preemption.

Example 4 (Window, see [13]). Suzy and Billy throw rocks at a window. Each
throw is a separate causal mechanism causing the same deviant state.

{
Broken ← SuzyT ||
Broken ← BillyT ||

}

Assume that both throw. In the overdetermination scenario, they hit the win-
dow simultaneously. It corresponds to the causal process in which the fire set
of Broken contains both laws. In the late preemption scenario, Suzy’s throw
arrives first and smashes the window. It corresponds to the process in which
only the first law belongs to the fire set of Broken. For the resulting world, this
does not matter: the window is broken. Stated precisely, in the exogenous state
{SuzyT,BillyT}, there are multiple possible causal processes. However, they
are confluent: they lead to the same possible world.

4 Definitions of Actual Causation

The informal notion of actual causation is vague and overloaded with many
different intuitions. It is the role of science to unravel these. Below, we propose
several distinguished notions in the context of possible process semantics. A
causal process P realizing world W provides a precise causal explanation of W .
We define several notions of causation that can be “read off” from the actual
causal process. They are objective notions in the sense that they are defined in
terms of the actual causal process that shaped the actual world. In this respect,
they are similar to the notion of production in [13] in the context of causal neuron

Explaining Actual Causation in Terms of Possible Causal Processes 223

diagrams, and they can be contrasted with counterfactual notions of causation
such as HP which are defined in terms of a class of hypothetical worlds. Generally
stated, we interpret a notion of actual causation as a “production” notion if it
can be derived from the actual causal process only. The different notions of
causation below are defined in terms of different sorts of causal paths in the
causal process.

Definition 7. Given a causal process P for a causal theory Δ, a literal K is an
influence of literal L in P if there is a path from K to L in P.

An influence of a literal L in a process P is any fact that has influenced the
causal process causing L. We view the notion of influence as a “lower bound” for
causation: in any reasonable notion of actual causation, an actual cause should
be at least an influence. Stricter notions can be defined by limiting the paths
that are considered: for instance, we call an influence active if the path contains
only active arcs, i.e., if there is a chain of firing mechanisms between K and L.
Active influences are similar to the notion of actual causation defined in [17] in
the context of neuron diagrams.

The notion of influence is defined in terms of the causal process, whereas in
most approaches actual causes are defined in the context of a possible world. As
pointed out by Vennekens [27], even when we know the world, we may not know
how it was caused and therefore, we may not be sure about the actual causes.
This emerged in the different possible causal processes of Window when both
Suzy and Billy throw. This uncertainty is reflected in the definition below.

Definition 8. A literal K is a possible influence of L in a possible world W of
Δ if there is a possible causal process P realizing W such that K is an influence
of L in P. We call K a definite influence of L in W if it is an influence in every
causal process realizing W .

The notion of influence does not distinguish between triggers and enabling
conditions. As we argued in the introduction and in Example 2, this sometimes
leads to counterintuitive results. We now examine how the distinction between
triggers and enabling conditions affects our judgment of causation. This will
lead us to further refine the notion of influence. We consider three variants of
the poisoned coffee example. (1) Victim drinks poisoned coffee without having
received the antidote. In this case, ¬Antidote is an influence of ¬Alive. Yet,
the intuition, originally expressed by Hitchcock, is that it is the poison that
caused his death, not the absence of antidote. In general, when L is caused by
a mechanism r, the triggering conditions of r are actual causes for L, while its
enabling conditions are not. (2) Victim is given an antidote, but the coffee is
not poisoned. Here, both ¬Poison and Antidote are influences. However, only
the absence of poison should be counted as an actual cause for his survival, not
the antidote, since one cannot preempt an inactive mechanism. In general, if a
mechanism r for ¬L is inactive, the actual causes of L are the false triggering
conditions of r, not its false enabling conditions. (3) Victim is poisoned and

224 M. Denecker et al.

receives an antidote. Here, the antidote is an influence, and it is a cause for his
survival. In general, if r fails, its false enabling conditions are causes.

These intuitions are implemented in the following definition.

Definition 9. A literal L is an actual P-cause of literal K in process P if there
is a path K → . . . → L in P without enabling arcs and without failure arcs of
non-active causal mechanisms. Such a path consists of trigger and nontrigger
arcs, and failure arcs of active causal mechanisms. We say that L is a direct
actual P-cause of K if the length of the path is 1, and an indirect actual P-cause
otherwise.

The “P” stands for “production”, the basic “material” sort of causation of this
causal language, similar to production in [3,13]. This concept can be further
constrained, e.g., to the notion of active actual P-cause.

The notion of actual P-cause is extended from processes to worlds in exactly
the same way as was done for the notion of influence in Definition 8.

Proposition 2. The notions of influence and actual P-cause in processes and
worlds are transitive.

All examples seen so far (Arsenic and Strychnine, Drinking poisoning
coffee and Window) are modelled by simple causal theories which in every con-
text has causal processes of length 1. As can be seen in the discussion preceding
Definition 9, the actual P-causes of the endogenous literal match the intuitions
expressed in the introduction.

Example 5. Assume in Assassin, that a crime syndicate ordered the murder. In
this scenario, the following causal mechanism is in operation.

Poison ← CS Order

In the context {CS Order,Drink,¬Antidote}, Poison is a direct actual P-cause
of ¬Alive while CS Order is an indirect actual P-cause of ¬Alive.

Example 6 Double Preemption [13]. Double preemption occurs when a
potential preempter is preempted. It occurs in the following scenario. Suzy fires
a missile (SF) to bomb target (B); enemy fires a missile (EF) to hit Suzy’s
missile (SMH) and Billy fires a missile (BF) to hit Enemy’s missile (EMH).
We see three causal mechanisms (annotated with names r1, r2, r3).

⎧⎨
⎩

B ← SF || ¬SMH (r1)
SMH ← EF || ¬EMH (r2)
EMH ← BF || (r3)

⎫⎬
⎭

In Fig. 1, three causal processes are graphically displayed. Red nodes are
deviants, green nodes are defaults and grey nodes are exogenous. Full black
arcs leave from trigger conditions; dotted purple arcs from enabling conditions.
The arc is active if it ends in a red deviant node, it is blocking if it ends in a

Explaining Actual Causation in Terms of Possible Causal Processes 225

¬B

SF SMH

EF ¬EMH

¬BF

¬r1 ¬r1

r2
r2

¬r3

¬B

¬SF SMH

EF ¬EMH

¬BF

¬r1 ¬r1

r2
r2

¬r3

B

SF ¬SMH

EF EMH

BF

r1 r1

¬r2¬r2

r3

Fig. 1. Graphical representation of three causal processes. (Color figure online)

green default node. A third type of green arc leaves from a trigger condition in
an active but failing mechanism that is preempted by an enabling condition.

The left process shows the causal process of context {SF,EF,¬BF} where
Suzy’s missile is destroyed by enemy fire and target is not bombed. The actual
P-causes of ¬B are SMH, EF . The middle shows the process in context
{¬SF,EF,¬BF} where the actual P-cause for ¬B is false trigger ¬SF but
where SMH is another influence of ¬B. The right shows the causal process of
context {SF,EF,BF}, where everyone fires, enemy’s antimissile is destroyed
by Billy’s and the target is bombed. The actual P-cause of B is SF while
¬SMH,EMH,BF are influences. The causal path BF → EMH → ¬SMH →
B shows in the two last edges display a double preemption: the hit on enemy’s
missile preempts enemy’s attempt at preempting Suzy’s bombing. Some view
that Billy’s fire BF is an actual cause of B by double preemption. While this
is not derived in our definition of actual P-cause, this kind of pattern can be
read off from the causal process and is not difficult to formally define in the
framework.

4.1 Early Preemption Versus Switch

A well-known issue in the actual causation literature concerns the relation
between Early Preemption and Switching examples. Let us illustrate this by
means of the following example of Early Preemption.

Example 7 (Backup [20]). An assassin-in-training is on his first mission.
Trainee is an excellent shot: if he shoots, the bullet will fell Victim. Supervisor
is also present, in case Trainee has a last minute loss of nerve (a common afflic-
tion among student assassins) and fails to pull the trigger. If Trainee does not
shoot, Supervisor will shoot Victim herself. In fact, Trainee performs admirably,
firing his gun and killing Victim. The following is the standard structural equa-
tion model used in the literature for this story, where the context is such that
Trainee is true.

V ictim := Trainee ∨ Supervisor

Supervisor := ¬Trainee

226 M. Denecker et al.

A standard example of Switching is the following example.

Example 8 (Dog Bite [24]). Terrorist, who is right-handed, must push a det-
onator button at noon to set off a bomb. Shortly before noon, she is bitten by
a dog on her right hand. Unable to use her right hand, she pushes the detona-
tor with her left hand at noon. The bomb duly explodes. A standard structural
equation model of this example is as follows, where the context is {Bite}.

Bomb := LH ∨ RH

LH := Bite

RH := ¬Bite

Let us now compare these two examples. The role of Trainee and Bite
in the formal models of both examples are remarkably similar. Nevertheless,
the common opinion is that in cases of Early Preemption, there is causation
(i.e., Trainee caused Victim’s death), whereas in cases of Switching, there is no
causation (i.e., dog’s bite did not cause the bomb to go off, even though it did
cause Terrorist to push the detonator with her left hand).

The similarity between both causal models becomes even more striking when
we extend the first example by an intermediate variable Bullet, that represents
the fact that a bullet leaves Trainee’s gun. In this case, we obtain:

V ictim := Bullet ∨ Supervisor

Bullet := Trainee

Supervisor := ¬Trainee

This model is now formally identical to the model for Dog Bite. However, the
addition of the intermediate variable Bullet seems like it should not affect our
causal judgments. Therefore, we now essentially have one formal model, from
which we nevertheless would expect different actual causation answers depending
on the informal interpretation. This is an ambiguity.

In the literature, several solutions have been proposed for this problem.
According to Weslake [29], it is precisely the addition of the intermediate vari-
able Bullet that turns this example from an instance of Early Preemption into
an instance of Switching and he therefore does not agree with our intuition
that adding this variable should preserve our causal judgments. Becker and Ven-
nekens [4] and Hall [12] argue that an action such as shooting a victim can never
be completely deterministic and that it is therefore necessary to change to a
non-deterministic (or probabilistic) representation in order to correctly handle
the examples. Hitchcock [19] and Halpern and Pearl [15] argue that the formal
model we presented is not suitable for Switching examples, based on an analysis
of the counterfactual interventions admitted by the model.

We offer a different explanation which we believe goes more to the heart of the
difference between the two kinds of examples. Our opinion is that the ambiguity
is of the same type as the second ambiguity in the introduction, the ambiguity in
the context of Assassin: the difference between early preemption and switching

Explaining Actual Causation in Terms of Possible Causal Processes 227

is located in the subtle but important difference between triggering and enabling
conditions.

If we now re-examine the two above examples, we see that, first of all, Trainee
is obviously a triggering condition for Bullet, since it is Trainee’s pulling of the
literal trigger that sets in motion the causal mechanism that leads to the bullet’s
exiting the gun. The relevant causal mechanisms are therefore:

⎧⎪⎪⎨
⎪⎪⎩

V ictim ← Bullet ||
V ictim ← Supervisor ||
Bullet ← Trainee ||
Supervisor ← ¬Trainee ||

⎫⎪⎪⎬
⎪⎪⎭

However, analyzing the Dog Bite example, we notice that neither the dog
bite nor its absence is actually a trigger for the causal mechanism that leads to
the detonator being pushed. Indeed, for all we know, the dog bite could have
happened (or failed to happen) a long time before the detonator was actually
pushed, giving Terrorist plenty of time to have a change of heart in between.
The real trigger for the mechanism is Terrorist deciding to detonate the bomb.
In our language, this example is therefore more appropriately modelled as:

⎧⎪⎪⎨
⎪⎪⎩

Bomb ← LH ||
Bomb ← RH ||
LH ← DecideToDetonate || Bite
RH ← DecideToDetonate || ¬Bite

⎫⎪⎪⎬
⎪⎪⎭

(Here, we introduced the new variable DecideToDenote for clarity, but noth-
ing changes in our analysis if we do not do this and leave the set of triggers
empty).

By making the distinction between triggering conditions and enabling con-
ditions, we believe to have a convincing answer to the question of what really
distinguishes early preemption from switching. Indeed, our definitions now yield
that Trainee is a actual P-cause of Dead, while Bite is not.

5 Related Work and Conclusions

We studied several sorts of knowledge that are important for actual causation:
knowledge of causal mechanisms and which of them fire, and the distinction
between triggering and enabling conditions. Causal mechanisms with enabling
conditions can be considered as mechanisms with a failure option: a false enabling
condition leads to failure of the mechanism. The relevance of these concepts
was brought to light by ambiguities. We proposed a language to express them
and defined a possible causal process semantics, which induces a possible world
semantics. Using causal processes as an explanation of the world, we provided
definitions for several notions of actual “production” causation. The notion
of (active) influence is independent of the distinction between triggering and

228 M. Denecker et al.

enabling conditions, while (active) actual P-cause takes them into account. We
argued that the distinction explains the difference between early preemption and
switching.

We evaluated these ideas in a range of examples. Our test set includes those
of [11], where the definitions of Woodward [30] and HP [15] are put to the test.
The notion of actual P-cause correctly derives the expected actual causes in most
cases, including some where Woodwards and HP failed. In cases where actual P-
cause fails, counterfactual reasoning is essential. Several examples can be tested
at http://adams.cs.kuleuven.be/idp/server.html?chapter=intro/11-AC.

The aim to study actual causation in the context of causal processes is present
in neuron diagrams approaches [23]. However, neuron diagrams do not represent
individual mechanisms (similar to a structural equation) and do not distinguish
between triggering and enabling conditions, and hence fall short for the sort of
examples that motivated this paper. There exist other languages with a syntactic
rule notation to express causal knowledge [5–7,28]. However, it is not clear to us
whether our view of causal mechanisms matches with the view of causal rules
in some of these formalisms. The only causal reasoning study that accounts for
causal mechanisms, processes and worlds that we are aware of is the work on CP-
logic [28]. CP-logic was used for various forms of reasoning such as probabilistic
reasoning, interventions, and actual causation. The logic defined here is related in
spirit to CP-logic but differs from it quite considerably. E.g., causal processes are
formalized differently, and there is no distinction between triggering and enabling
conditions in CP-logic. The actual causation method for CP-logic proposed by
Vennekens [27] and refined by Beckers and Vennekens [2] is based on causal
processes as well, but it is intuitively and mathematically completely different.
It is a counterfactual method based on analysis of alternative causal processes, in
a way related to the approaches of Hall [12,13]. The relation with our approach
is not obvious and we leave a further analysis of this for future work.

Several other topics for future research exist. One is to determine the com-
plexity of key computational problems, such as computing different notions of
actual causation. Useful extensions of the language include non-deterministic,
probabilistic and cyclic causation, first order features (e.g., quantification), and
dynamic mechanisms that initiate some property at one time and terminate it at
another. This we plan to do following CP-logic, which supports several of these
extensions. Another challenge is to develop a proof-theoretical account of the
logic.

Acknowledgements. We thank Alexander Bochman, Sander Beckers, Jorge
Fandinno, Mathieu Beirlaen, and anonymous reviewers for many discussions and valu-
able feedback.

http://adams.cs.kuleuven.be/idp/server.html?chapter=intro/11-AC

Explaining Actual Causation in Terms of Possible Causal Processes 229

References

1. Baumgartner, M.: A regularity theoretic approach to actual causation. Erkenn
78(Suppl), 1:85 (2013). https://doi.org/10.1007/s10670-013-9438-3

2. Beckers, S., Vennekens, J.: Counterfactual dependency and actual causation in CP-
logic and structural models: a comparison. In: Proceedings of STAIRS, pp. 35–46
(2012)

3. Beckers, S., Vennekens, J.: A general framework for defining and extending actual
causation using CP-logic. Int. J. Approx. Reason. 77, 105–126 (2016)

4. Beckers, S., Vennekens, J.: A principled approach to defining actual causation.
Synthese 195(2), 835–862 (2018). https://doi.org/10.1007/s11229-016-1247-1

5. Bochman, A.: Actual causality in a logical setting. In: IJCAI (2018)
6. Bochman, A., Lifschitz, V.: Pearl’s causality in a logical setting. In: Bonet, B.,

Koenig, S. (eds.) Proceedings of the Twenty-Ninth AAAI Conference on Artificial
Intelligence, Austin, Texas, USA, 25–30 January 2015, pp. 1446–1452. AAAI Press
(2015). http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9686

7. Cabalar, P., Fandinno, J.: Enablers and inhibitors in causal justifica-
tions of logic programs. TPLP 17(1), 49–74 (2017). https://doi.org/10.1017/
S1471068416000107

8. Clark, K.L.: Negation as failure. In: Logic and Data Bases, pp. 293–322. Plenum
Press (1978)

9. Fenton-Glynn, L.: A proposed probabilistic extension of the Halpern and Pearl
definition of ‘actual cause’. Br. J. Philos. Sci. 68(4), 1061–1124 (2015)

10. Gerstenberg, T., Goodman, N.D., Lagnado, D.A., Tenenbaum, J.B.: How, whether,
why: causal judgments as counterfactual contrasts. In: Proceedings of the 37th
Annual Conference of the Cognitive Science Society, pp. 782–787 (2015)

11. Glymour, C., et al.: Actual causation: a stone soup essay. Synthese 175(2), 169–192
(2010)

12. Hall, N.: Structural equations and causation. Philos. Stud. 132(1), 109–136 (2007)
13. Hall, N.: Two concepts of causation. In: Causation and Counterfactuals (2004)
14. Halpern, J.: Actual Causality. MIT Press, Cambridge (2016)
15. Halpern, J., Pearl, J.: Causes and explanations: a structural-model approach. Part

I: causes. Br. J. Philos. Sci. 56, 843–887 (2005)
16. Halpern, J.Y.: Appropriate causal models and the stability of causation. Rew.

Symb. Log. 9(1), 76–102 (2016)
17. Hiddleston, E.: Causal powers. Br. J. Philos. Sci. 56(1), 27–59 (2005)
18. Hiddleston, E.: A causal theory of counterfactuals. Noûs 39(4), 632–657 (2005)
19. Hitchcock, C.: The intransitivity of causation revealed in equations and graphs. J.

Philos. 98, 273–299 (2001)
20. Hitchcock, C.: Prevention, preemption, and the principle of sufficient reason. Phi-

los. Rev. 116(4), 495–532 (2007)
21. Hume, D.: A Treatise of Human Nature. John Noon, London (1739)
22. Lewis, D.: Causation. J. Philos. 70, 113–126 (1973)
23. Lewis, D.: Postscripts to ‘causation’. In: Lewis, D. (ed.) Philosophical Papers, vol.

Ii. Oxford University Press (1986)
24. McDermott, M.: Redundant causation. Br. J. Philos. Sci. XLVI, 523–544 (1995)
25. Pearl, J.: Causality: Models, Reasoning, and Inference. Cambridge University

Press, Cambridge (2000)
26. Schaffer, J.: Causes need not be physically connected to their effects: the case for

negative causation. In: Hitchcock, C.R. (ed.) Contemporary Debates in Philosophy
of Science, pp. 197–216. Blackwell (2004)

https://doi.org/10.1007/s10670-013-9438-3
https://doi.org/10.1007/s11229-016-1247-1
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9686
https://doi.org/10.1017/S1471068416000107
https://doi.org/10.1017/S1471068416000107

230 M. Denecker et al.

27. Vennekens, J.: Actual causation in CP-logic. Theory Pract. Log. Program. 11,
647–662 (2011)

28. Vennekens, J., Denecker, M., Bruynooghe, M.: CP-logic: a language of causal prob-
abilistic events and its relation to logic programming. TPLP 9(3), 245–308 (2009)

29. Weslake, B.: A partial theory of actual causation. Br. J. Philos. Sci. (2015)
30. Woodward, J.: Making Things Happen: A Theory of Causal Explana-

tion. Oxford University Press, Oxford (2003). Oxford scholarship online.
https://books.google.be/books?id=LrAbrrj5te8C

https://books.google.be/books?id=LrAbrrj5te8C

Explaining Actual Causation
via Reasoning About Actions and Change

Emily LeBlanc1(B) , Marcello Balduccini2 , and Joost Vennekens3

1 Drexel University, Philadelphia, PA 19104, USA
leblanc@drexel.edu

2 Saint Joseph’s University, Philadelphia, PA 19131, USA
marcello.balduccini@sju.edu

3 KU Leuven, 2860 Sint-Katelijne-Waver, Belgium
joost.vennekens@cs.kuleuven.be

Abstract. The study of actual causation concerns reasoning about
events that have been instrumental in bringing about a particular out-
come. Although the subject has long been studied in a number of fields
including artificial intelligence, existing approaches have not yet reached
the point where their results can be directly applied to explain causation
in certain advanced scenarios, such as pin-pointing causes and responsi-
bilities for the behavior of a complex cyber-physical system. We believe
that this is due, at least in part, to a lack of distinction between the laws
that govern individual states of the world and events whose occurrence
cause state to evolve. In this paper, we present a novel approach to rea-
soning about actual causation that leverages techniques from Reasoning
about Actions and Change to identify detailed causal explanations for
how an outcome of interest came to be. We also present an implementa-
tion of the approach that leverages Answer Set Programming.

Keywords: Causal reasoning ·
Reasoning about Actions and Change ·
Knowledge representation and reasoning

1 Introduction

Actual causation concerns determining how a specified outcome came to be in a
given scenario and has long been studied in numerous fields including law, philos-
ophy, and, more recently, computer science and artificial intelligence (AI). Also
referred to as causation in fact, actual causation is a broad term that encom-
passes all possible antecedents that have played a meaningful role in producing a
consequence [8]. Sophisticated actual causal reasoning has long been prevalent in
human society and continues to have an undeniable impact on the advancement
of science, technology, medicine, and other important fields. From the develop-
ment of ancient tools to modern root cause analysis in business and industry,
reasoning about causeal influence over time in a sequence of events enables us
c© Springer Nature Switzerland AG 2019
F. Calimeri et al. (Eds.): JELIA 2019, LNAI 11468, pp. 231–246, 2019.
https://doi.org/10.1007/978-3-030-19570-0_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19570-0_15&domain=pdf
http://orcid.org/0000-0003-1447-412X
http://orcid.org/0000-0001-5445-3054
http://orcid.org/0000-0002-0791-0176
https://doi.org/10.1007/978-3-030-19570-0_15

232 E. LeBlanc et al.

to diagnose the cause of an outcome of interest and gives us insight into how to
bring about, or even prevent, similar outcomes in future scenarios.

The ability to automate this kind of reasoning will likely become even more
important in the near future due to the ongoing advancement of deep learning.
Indeed, entrusting important decisions to black-box machine learning algorithms
brings with it significant societal risks. To counter these risks, there is a need
for Artificial Intelligence systems that are able to explain their behavior in an
intuitive way. This is recognized within the scientific community, as witnessed by
the emergence of the explainable AI domain, and also by the measures enacted
by policy makers. For instance, the General Data Protection Regulation (GDPR)
has recently come into force in the European Union, a requirement of which is
that companies must be able to provide their customers with explanations of
algorithmic decisions that affect them.

Explaining the conclusions reached by a single neural network may perhaps
not require sophisticated causal reasoning. However, if we consider the behavior
of an advanced cyber-physical system, such as a self-driving car, reasoning about
causation (e.g. blame or praise) becomes significantly more complex – the car
typically contains a large number of software and hardware modules (possibly
from different vendors), there may be other cars and pedestrians involved in
the scenario of interest, and there may have been wireless communication with
other vehicles or a central server, all of which may influence the actions taken
by the car’s control module over the course of its drive. To reach an intuitively
satisfactory explanation of why some outcome of interest came to be in such
a domain, the insights that have been produced by the decades-long study of
actual causation seem indispensable.

Modern work on actual causation originated in philosophy with the seminal
paper by Lewis [27]. His work, like that of other philosophers following him, was
of course mainly theoretical and not intended to be put to practical use. The
famous Halpern-Pearl (HP) paper [22] initiated interest in this concept within
the field of AI and it constitutes a first milestone on the way towards applications
of the concept of actual causation. However, neither the HP paper nor the many
that have followed it (see also Sect. 6) have yet reached the point where their
results could be directly applied, for example, in the context of a self-driving
car as sketched above. We believe that this is due, at least in part, to a lack
of distinction between the laws that govern individual states of the world and
events whose occurrence cause state to evolve.

The goal of this work is to research and investigate the suitability of tech-
niques from Reasoning about Actions and Change (RAC) for reasoning about
and explaining actual causation in domains for which the evolution of the state
of the world over time plays a critical role. We utilize the action language AL
[2] to define the constructs of our theoretical framework. While our framework
is not strongly tied to this choice of representation language, in this paper we
adopt AL because the language enables us to represent the direct and indi-
rect effects of events on the state of the world, as well as the evolution of state
over time in response to their occurrence. AL also lends itself quite naturally

Explaining Actual Causation via Reasoning About Actions and Change 233

to an automated translation to Answer Set Programming [15,17], using which,
reasoning tasks of considerable complexity can be specified and automated.

The organization of the paper is as follows. In the following section, we pro-
vide background for the formalization of knowledge and events. Next, we present
the technical details of the theoretical framework. Following that, we offer an
approach to implementing the framework using Answer Set Programming. We
then present an empirical study of the implementation’s performance on a num-
ber of problem instances. Next, we present a summary of related work, and
finally we draw conclusions and discuss directions for future research.

2 Preliminaries

For the representation of the domain and of its evolution over time we rely on
action language AL [2]. AL is centered around a discrete-state-based representa-
tion of the evolution of a domain in response to events. The language AL builds
upon an alphabet consisting of a set F of fluents and a set E of elementary
events1. Fluents are boolean properties of the domain, whose truth value may
change over time. A (fluent) literal is a fluent f or its negation ¬f . Additionally,
we define f = ¬f and ¬f = f . If f ∈ σ, we say that f holds in σ. A single
elementary event is denoted by its element e in E . A compound event is a set of
elementary events ε = {e1, . . . , en}. A statement of the form

e causes l0 if l1, . . . , ln (1)

is a called a dynamic (causal) law. Intuitively, a law of form (1) says that if
elementary event e2 occurs in a state where literals l1, . . . , ln hold, then literal
l0 will hold in the next state. A statement

l0 if l1, . . . , ln (2)

is called a state constraint and says that in any state in which literals l1, . . . , ln
hold, l0 also holds. We say that l0 is the consequence of the law. A statement
of form (2) allows for an elegant and concise representation of indirect effects of
events which enhances the expressive power of the language. Finally, a statement
of the form

e impossible if l1, . . . , ln (3)

is called an executability condition and states that an elementary event e can-
not occur when l1, . . . , ln hold. A set of statements of AL is called an action
description.

A set S of literals is closed under a state constraint (2) if {l1, . . . , ln} �⊆ S
or l0 ∈ S. Set S is consistent if, for every f ∈ F , at most one of {f,¬f} is
1 For convenience and compatibility with the terminology from RAC, in this paper we

use action and event as synonyms.
2 We focus on elementary actions for simplicity of presentation. It is straightforward

to expand the statements to allow non-elementary actions.

234 E. LeBlanc et al.

in S. It is complete if at least one of {f,¬f} is in S. A state σ of an action
description AD is a complete and consistent set of fluent literals closed under
the state constraints of AD.

Given an elementary event e and a state σ, the set of (direct) effects of e in σ,
denoted by E(e, σ), is the set that contains a literal l0 for every dynamic law (1)
such that {l1, . . . , ln} ⊆ σ. Given a compound event ε = {e1, . . . , en}, the set of
direct effects of ε in σ, therefore, is given by E(ε, σ) = E(e1, σ) ∪ . . . ∪ E(en, σ).
Given a set S of literals and a set Z of state constraints, the set CnZ(S) of
consequences of S under Z is the smallest set of literals that contains S and is
closed under every state constraint in Z. Finally, an event e is non-executable in
a state σ if there exists an executability condition (3) such that {l1, . . . , ln} ⊆ σ.
Otherwise, the event is executable3 in σ.

The semantics of an action description AD is defined by its transition diagram
τ(AD), a directed graph 〈N,A〉 such that N is the collection of all states of AD;
A is the set of all triples 〈σ, ε, σ′〉 where σ, σ′ are states, ε is an event executable
in σ, and σ′ satisfies the successor state equation:

σ′ = CnZ(E(ε, σ) ∪ (σ ∩ σ′)) (4)

where Z is the set of all state constraints of AD.
The argument of CnZ in (4) is the union of the set of direct effects E(e, σ) for

all e ∈ ε with the set σ∩σ′ of the literals “preserved by inertia”. The application
of CnZ adds the “indirect effects” to this union. A triple 〈σ, ε, σ′〉 ∈ E is called
a transition of τ(AD) and σ′ is a successor state of σ (under ε). A sequence
〈σ1, ε1, σ2, . . . , εk, σk+1〉 is a path of τ(AD) of length k if every 〈σi, εi, σi+1〉 is
a transition in τ(AD). We denote the initial state of a path ρ by σ1.

3 Theoretical Framework

In this section we present the constructs of the causal reasoning framework and
use them to characterize causal explanations. We then apply the framework to
a variant of the well-known Yale Shooting Problem [23].

3.1 Definitions

A problem is a tuple ψ = 〈θ, ρ,AD〉 where θ is a consistent set of literals we
want to explain called an outcome and ρ is a path of τ(AD). We will leverage
the framework to identify causal explanations for a problem ψ. The first step
to explain how an outcome θ came to be in path ρ is to identify the transition
states of θ in ρ. A transition state indicates the “appearance” of θ in the ρ.

Definition 1. Given a problem ψ = 〈θ, ρ,AD〉, a state σj in ρ is a transition
state of θ if θ �⊆ σj−1 and θ ⊆ σj.

3 Note that an event may occur without having an effect on the state of the world,
commonly referred to in the literature as a NOP action.

Explaining Actual Causation via Reasoning About Actions and Change 235

We denote by T (ψ) = {σj1 , . . . , σjm
} the set of transition states with respect

to the problem ψ. Intuitively, state σj is a transition state of θ if the outcome
is satisfied in σj but not in the immediately previous state σj−1. A causing
compound event εi of literal l for a transition state σj of θ is the most recent
compound event to σj to result in a transition state σi+1 in ρ.

Definition 2. Given a problem ψ = 〈θ, ρ,AD〉, a state σj in ρ, and a literal
l ∈ σj, εi is a causing compound event of l holding in σj if σi+1 is a transition
state of {l} in ρ, i < j, and j − (i + 1) is minimal.

Both direct and indirect causes of a literal l holding in a given state σj are
members of the causing compound event εi of l holding in σj . A direct cause
e ∈ εi of l is an elementary event in εi whose occurrence causes l to hold in the
subsequent state.

Definition 3. Given a problem ψ = 〈θ, ρ,AD〉, a literal l ∈ σj of ρ, and a
causing compound event εi of l, the elementary event e′ ∈ εi is a direct cause of
l for σj if l is in the set E(e′, σi).

We denote by D(σj) the set containing a tuple 〈εi, e
′, l〉 for every elementary

event e′ in each εi such that e′ is a direct cause of a literal l ∈ θ for σj . Note
that direct cause is defined so that multiple events in εi can be direct causes as
long as l is in the corresponding sets of direct effects. An indirect cause of literal
l is a subset4 of a causing compound event of l.

Definition 4. Given a problem ψ = 〈θ, ρ,AD〉, state σj in ρ, a literal l ∈ σj,
and a causing compound event εi of l, the compound event ε′ ⊆ εi is an indirect
cause of l for σj if it is a smallest subset of εi such that the following conditions
are satisfied:

1. l �∈ E(ε′, σi)
2. There exists a transition t = 〈σi, ε

′, σ′
i+i〉 in τ(AD) such that σ′

i+1 is a tran-
sition state of {l} in t

We denote by I(σj) a set containing a tuple 〈εi, ε
′, l〉 for every compound event

ε′ in every εi in ρ such that ε′ is a indirect cause of l for σj in ρ.
Condition 1 ensures that l is not a direct effect of ε′. Condition 2 states

that if ε′ were to hypothetically occur by itself in state σi, then it would have
caused l. In other words, we know that l does not hold in σi and that l is not
a direct effect of ε′. Therefore, if ε′ occurs by itself and l holds in the resulting
state σ′

i+1, then it must be the case that l is an indirect effect of ε′. Finally,
we require that ε′ is a smallest subset of εi because we want to rule out any
subsets including extraneous elementary events. For example, if ε′ contains three
events and only two are needed to indirectly cause l, then there would indeed

4 In AL, it is possible that a set of literals must hold simultaneously in order to
cause a literal to hold. Consider AD = {a causes b; c causes d; e if b, d} of a causing
compound event εi of l.

236 E. LeBlanc et al.

1= {loads(suzy, gun)}

isAlive(turkey) isAlive(turkey) ¬isAlive(turkey)
¬isLoaded(gun) isLoaded(gun) isLoaded(gun)

1 2 3

2= {shoots(suzy, turkey)}

Fig. 1. Path ρY is a representation of the Yale shooting scenario.

be transition t = 〈σi, ε
′, σ′

i+1〉 in τ(AD) as required by condition 2. However, we
want subsets containing only those events that have contributed to causing l.

By now we have defined direct and indirect causation of literals, however,
these definitions alone do not provide a comprehensive explanation for an appear-
ance of θ in ρ. Therefore, we define a causal explanation, which is a tuple con-
taining the sets of direct and indirect causes of literals in θ in their respective
transition state, given by D(σj) and I(σj).

Definition 5. Given a problem ψ = 〈θ, ρ,AD〉, a path ρ ∈ τ(AD), and a tran-
sition state σj of θ in ρ, a causal explanation of θ being satisfied in σj in path ρ
is the tuple C(ψ, σj) = 〈D(σj), I(σj)〉.

Literals that were not caused by any event in ρ are omitted from the causal
explanation. This choice is motivated by the idea that no cause can be identified
for literals that were not caused.

3.2 Yale Shooting Problem

Here we use the framework defined above to solve a variant of the well-known
Yale shooting problem (YSP) from [23]. The scenario is as follows:

Shooting a turkey with a loaded gun will kill it. Suzy shoots the turkey.
What is the cause of the turkey’s death?

The YSP problem is formalized by ΨY = 〈θY , vY , ADY 〉. The outcome of
interest is θY = {¬isAlive(turkey)}. The sequence of events is given by vY =
{ε1, ε2} where ε1 = {loads(suzy, gun)} and ε2 = {shoots(suzy, turkey)}. The
action description ADY characterizes the events of the YSP domain:

⎧
⎨

⎩

shoots(X, turkey) causes¬isAlive(turkey) if isAlive(turkey) (a)
shoots(X, turkey) impossible if¬isLoaded(gun) (b)

loads(X, gun) causes isLoaded(gun) if¬isLoaded(gun) (c)
(5)

Laws (5a) and (5c) are straightforward dynamic laws describing the effects
of the events in the YSP domain. Law (5b) states that the turkey cannot be
shot if the gun is not loaded. Consider the path ρY , represented in Fig. 1. In
the initial state of ρY , the turkey is alive, and the turkey is dead in the final
state of the path after the occurrence of ε1 = {loads(suzy, gun)} and ε2 =
{shoots(suzy, turkey)}.

Explaining Actual Causation via Reasoning About Actions and Change 237

It is straightforward to verify for the problem ψY = 〈θY , ρY , ADY 〉 that σ3

is the only transition state of θY and that ε2 is the causing compound event of
¬isAlive(turkey). The elementary event shoots(suzy, turkey) in ε2 is a direct
cause of ¬isAlive(turkey) as per rule (5a). The causal explanation for ΨY is
therefore C(ΨY , σ3) = 〈{〈ε2, shoots(suzy, turkey),¬isAlive(turkey)〉}, {}〉. We
have used the framework to identify only Suzy’s shooting of the turkey as a
direct cause of its death, which corresponds to the intuition about the prob-
lem. Moreover, we did not any identify indirect causes of the turkey’s death,
denoted in the explanation by the empty set for I(σ3). If we want to know why
the gun was loaded so that Suzy could kill the turkey, we use rule (5b) to for-
mulate the subproblem ψ′

Y = 〈{isLoaded(gun)}, ρY , ADY 〉 to determine that
loads(suzy, gun) directly caused the gun to be loaded. Appendix 2.1 of [26] of
this paper presents a novel adaptation of YSP to demonstrate explaining the
indirect causation of the turkey’s death. Note that it is straightforward to repre-
sent and reason about other examples from the causality literature, such as the
bottle-shattering example from [18].

4 ASP Implementation of the Framework

In this section, we present an approach to computing causal explanations via
Answer Set Programming (ASP) [16,18], a form of declarative programming that
is useful in knowledge-intensive applications. In the ASP methodology, problem-
solving tasks are reduced to computing answer sets of suitable logic programs.
As demonstrated by a substantial body of literature (see, e.g., [1]), AL lends
itself quite naturally to an automated translation to Answer Set Programming
[15,17], using which, reasoning tasks of considerable complexity can be specified
and executed (see, e.g., [9,11,12]). As such, ASP is well suited to the task of
computing causal explanations. We begin this section with a discussion of the
syntax and semantics of Answer Set Programming.

4.1 Answer Set Programming

Let Σ be a signature containing constant, function and predicate symbols. Terms
and atoms are formed as in first-order logic. A literal is an atom a or its strong
negation ¬a. Literals are combined to form rules that represent both domain
knowledge and events in our approach. A rule in ASP is a statement of the
form:

h ← l1, . . . , lm,not lm+1, . . . ,not ln

where hi’s (the head) and li’s (the body) are literals and not is the so-called
default negation. Intuitively, the meaning of default negation is the following: “if
you believe {l1, . . . , lm} and have no reason to believe {lm+1, . . . , ln}, then you
must believe h”. An ASP rule with an empty body is called a fact. In writing
facts, the ← connective is dropped. Rules of the form ⊥ ← l1, . . . ,not ln are
abbreviated ← l1, . . . ,not ln, and called constraints, intuitively meaning that
{l1, . . . ,not ln} must not be satisfied. A rule with variables (denoted by an

238 E. LeBlanc et al.

uppercase initial) is interpreted as a shorthand for the set of rules obtained by
replacing the variables with all possible variable-free terms. A program Π is a
set of rules over Σ.

A consistent set S of domain literals is closed under a rule if h ∈ S whenever
{l1, . . . , lm} ⊆ S and {lm+1, . . . , ln} ∩ S = ∅. Set S is an answer set of a not-free
program Π if S is the minimal set closed under its rules. The reduct, ΠS , of a
program Π w.r.t. S is obtained from Π by removing every rule containing an
expression “not l” s.t. l ∈ S and by removing every other occurrence of not l.
Finally, set S is an answer set of a program Π if S is the answer set of ΠS .

For a convenient representation of choices, in this paper we also use constraint
literals, which are expressions of the form m{l1, l2, . . . , lk}n, where m, n are arith-
metic expressions and li’s are basic literals. A constraint literal is satisfied w.r.t.
S whenever m ≤ |{l1, . . . , lk}∩S| ≤ n. Constraint literals are especially useful to
reason about available choices. For example, a rule 1{p, q, r}1. intuitively states
that exactly one of {p, q, r} should occur in every answer set.

4.2 Framework Implementation

We begin our approach to computing causal explanations by encoding the ele-
ments of a problem Ψ = 〈θ, ρ,AD〉.
Problem Translation. For an outcome θ, set α(θ) contains a fact
outcome(l, theta) as well as facts inOutcome(l, theta), olit(l), and inOutcome
(l, olit(l)) for every l ∈ θ. We use the olit(l) notation to denote the outcome
coinciding with the singleton {l}.

The elements of a path ρ are given by the sets α(ρ1), α(ρ2), and α(ρ3). The
set α(ρ1) contains a fact occurs(e, i) for every e ∈ εi and a fact holds(l, i) for
each literal l ∈ σi where 1 < i < k + 1. The set also contains facts event(e) and
fluent(f) for each e ∈ E and f ∈ F , respectively. Next, the set α(ρ2) contains
the facts subset(λ), where λ is a unique identifier for C, and inSubset(e, λ) for
every e ∈ C for every subset C of E . The subsets of E will be useful later to
identify indirect causation, and are included as elements of ρ because they are
specific to the path. The set α(ρ3) characterizes the transitions of ρ as sequence
of steps.

We refer to the steps of a path as concrete steps, or c-steps, to differentiate
them from hypothetical steps, which will be discussed later in connection with
indirect causes. For related reasons, we also represent the sequence of c-steps
cstep(1), cstep(2), . . . , cstep(k + 1), where k is the length of the path, by means
of the rule:

next(I1, I2) ← cstep(I1), cstep(I2), I2 = I1 + 1. (6)

Finally, α(ρ3) includes the rule step(I) ← cstep(I) which states that c-steps
are types of steps. The set α(ρ) = {α(ρ1)∪α(ρ2)∪α(ρ3)} represents the path ρ.

We translate laws of AL to ASP as follows. For dynamic laws, the transla-
tion α(e causes l0 if l1, . . . , ln) is the collection of atoms d law(d), head(d, l0),
event(d, e), prec(d, 1, l1), . . . , prec(d, n, ln), and prec(d, n + 1, nil). For state

Explaining Actual Causation via Reasoning About Actions and Change 239

constraints, α(l0 if l1, . . . , ln) is the collection of atoms s law(s), head(s, l0),
prec(s, 1, l1), . . . , prec(s, n, ln), and prec(s, n + 1, nil). Finally, for executabil-
ity conditions, α(e impossible if l1, . . . , ln) is the collection of atoms i law(ι),
event(ι, e), prec(ι, 1, l1), . . . , prec(ι, n, ln), and prec(ι, n + 1, nil).

The semantics of AL are captured by the rules of program Π, an approach
is adapted from [1]. The program describes the effects of dynamic laws and
state constraints and enforces executability conditions. It also defines when the
preconditions of a translated law are satisfied (i.e. prec(X,Y) atoms from the
translation of AL laws to ASP), denoted by the predicate prech(R, I) where R
is the identifier of a translated AL law and I is a step in the ASP representation
of ρ5. Finally, Π contains rules describing inertia [24] (i.e. things usually stay as
they are) and consistency. See Appendix 1.2 of [26] for an expanded description
of Π and a full listing of its rules.

Transition and Causing Steps. The rules in set Πσj
characterize a transition

state σj of θ in path ρ. We use the term transition step in accordance with our
representation of states in ρ as c-steps, a type of step.

Πσj

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

transitionStep(OC, J2) ← step(J1), step(J2), next(J1, J2), (a)
next(J1, J2), outcome(OC),
ocSat(OC, J2),¬ocSat(OC, J1).

¬ocSat(OC, J) ← step(J), inOutcome(OC,L), (b)
not holds(L, J).

ocSat(OC, J) ← step(J),not ¬ocSat(OC, J). (c)

(7)

Rule (7a) states that J2 is a transition step of outcome OC if it is satisfied
in step J2 and not J1. (7b) and (7c) tell us when OC is or is not satisfied in
a given step J , respectively. Note that transition steps leverage as steps rather
than c-steps, allowing flexibility to reason about other types. The rules of Πεi

describe causing steps of a literal holding at step I.

Πεi

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

possCausingStep(I, L, J) ← cstep(I), cstep(J), I < J, (a)
transitionStep(olit(L), I + 1),
transitionStep(theta, J).

¬causingStep(I, L, J) ← possCausingStep(I, L, J), (b)
possCausingStep(I ′, L, J),
I < I ′, I ′ < J.

causingStep(I, L, J) ← possCausingStep(I, L, J), (c)
not ¬causingStep(I, L, J).

(8)

Rule (8a) states that a c-step I is a possible causing step of L holding in J if
it occurs prior to c-step J , I + 1 is a transition step of outcome(olit(L)), and J
is a transition step for the main outcome theta. It is easy to see that rule (8b)
corresponds to the conditions of Definition 2 for compound causing events. Rule
5 We will use the predicate prech when computing both direct and indirect causes.

240 E. LeBlanc et al.

(8b) corresponds to condition 3 of Definition 2 by stating that c-step I cannot
be a causing step of J if there is another possible causing step I ′ that closer
to J . Again we can use inequalities to determine relative position, this time for
two earlier c-steps. Finally, (8c) is a straightforward rule stating that a possible
causing step I of L in c-step J is a causing step if we have no reason to believe
that it is not a causing step.

Direct and Indirect Causes. Here we present ASP translations of the defini-
tions of direct and indirect cause. The rules of ΠDθ

describe when an event that
occurred at causing step I has directly caused L to hold in c-step I.

ΠDθ

⎧
⎪⎪⎨

⎪⎪⎩

directEffect(L, E, I) ← cstep(I), d law(D), event(D, E), (a)
occurs(E, I), prec h(D, I), head(D, L).

directCause(E, I, L, J) ← causingStep(I, L, J), (b)
directEffect(L, E, I).

(9)

Rule (9a) states that L is a direct effect of event E occurring at I when all
of the preconditions of the dynamic law D are satisfied at I. Rule (9b) states
that E occurring at I is a direct cause of L holding at c-step J if I is a causing
step of L in J and L is a direct effect of E as per rule (9a).

Finally, the program ΠIθ
contains rules used to identify indirect causation. In

the interest of space, we favor discussing the approach at a high level, presenting
only the most significant rules of the program to facilitate the presentation.
However, the full specification of ΠIθ

is given in Appendix 1.3 of [26]. Given a
causing step I, we want to know if any subset of events that occurred at I caused
the literal under consideration to hold indirectly. Program ΠIθ

states that an
event subset C (i.e. subset(C)) occurring at step I is a possible indirect cause of
L holding at step J if I is a causing step for L and we have no reason to believe
that the event(s) in C (i.e. all inSubset(E,C) atoms) caused L directly.

Recall that condition 2 of Definition 4 states that if ε′ ∈ εi is an indirect
cause of l, then a transition t′ must exist in τ(AD) such that if ε′ occurring by
itself in σi results in a transition step of {l}. Given a possible indirect causing
subset C occurring at step I, we accomplish this reasoning in ASP by creating a
sequence of two hypothetical steps, given by hstep(μ(C, I)) and hstep(μ′(C, I)),
whose initial state is identical to I and testing to see if L holds after the occur-
rence of C’s events. Once C has passed the hypothetical reasoning step, we
are ready to determine indirect causation. With the use of a rule whose head
¬smallest(C,L, I) becomes true when it is proven that C is a smallest possibly
indirectly causing subset, the following rule describes when a subset C is an
actual cause:

indirectCause(C, I, L, J) ← hypotheticalPass(C, I, L, J), (10)
not ¬smallest(C,L, I).

In short, C occurring at c-step I is an indirect cause of L holding at c-step
J if C passes the hypothetical step and there is no reason to believe that it

Explaining Actual Causation via Reasoning About Actions and Change 241

is not a smallest possible causing subset of L at I. Note that this implemen-
tation returns information about direct and indirect causes of literals of trans-
lated θ, but no comprehensive causal explanation. A causal explanation can be
easily extracted from an answer set through the literals formed by relations
directCause(E, I, L, J) and indirectCause(C, I, L, J). See Appendices 2.2 and
2.3 [26] for ASP encodings of the direct and indirect Yale Shooting Problem
adaptations from Sect. 3.

5 Empirical Study of the Implementation

Although an exhaustive experimental evaluation is beyond the scope of this
paper, we present results from a preliminary evaluation aiming to assess the
feasibility of the approach. To the best of our knowledge, there is no established
set of benchmarks for the type of reasoning presented in this paper and so we
have generated a set of novel problem instances that allow us to evaluate the
framework’s performance with respect to a number of problem features.

Problem instances are defined as follows. Given a number of literals L to
explain and an allowed number of events per step EPS, the resulting problem
instance’s outcome contains L literals caused by E events distributed over S =
 L

E � steps of the instance’s path. The transition step of the outcome is always
S + 1. When S = 1, we say that the causes are fully concurrent. When S = L,
on the other hand, we say that the causes occur in a strict sequence. We use the
abbreviations FCDC and FCIC to denote full concurrency for direct causation
and indirect causation, respectively. Similarly, we use SSDC and SSIC to denote
strict sequences for direct and indirect causation.

Fig. 2. Relating the explanation of literals and time (direct and indirect causation).

Explaining Cases of Full Concurrency and Strict Sequences. We first
compared runtime needed to compute full concurrency and strict sequences for

242 E. LeBlanc et al.

direct and indirect causes. In this experiment, we varied L from 1 to 10, allowed
10 events per step (EPS) for the fully concurrent cases, and allowed 1 event per
step for the strict sequence cases.

The computation times are shown in Fig. 2. FCIC is the most challenging
type of problem, taking approximately 300 s to compute 10 simultaneous indirect
causes, overtaking computation of the other cases by a factor6 of approximately
450. This can be explained by noticing that increasing the number of events
occurring in a single step requires the program to perform exhaustive hypothet-
ical reasoning for more and more subsets. Note that at 10 literals to explain
there is little discernible difference in the time needed to compute explanations
for SSDC, FCDC, and SSIC cases.

We also measured the framework’s performance on greater values of L (i.e.
larger outcomes). At 50 literals to explain, we found that SSIC overtakes both
FCDC and SSDC by a factor of 240, with SSIC taking approximately 190 s
and SSDC taking approximately 0.8 s (see Appendix 3 Fig. 2 of [26]). A possible
explanation for this is that that the program must initially rule out the possibility
that a subset is a direct cause and then perform the hypothetical step to confirm
indirect causation.

Extending Fully Concurrent Causes Towards a Strict Sequence. Note
that in the previous experiment, we were unable to see a significant difference
in performance in direct cases for 50 literals. Here, we explore how L causes
distributed over L

EPS � steps affects the performance of the framework for a
subset of values for E between 1 and L for direct causes and indirect causes. In
the direct causation case, we varied L between 1 and 50 and allowed EPS to
take on the values between 1 and 50. The times for this experiment are shown in
Fig. 3. SSDC, or EPS = 1, is the most challenging problem, overtaking EPS = 2

Fig. 3. Varying the number of events per step (EPS) for direct causes.

6 The strict sequence indirect cause (SSIC) case takes the second to longest time to
explain 10 literals at 0.67 s.

Explaining Actual Causation via Reasoning About Actions and Change 243

by a factor7 of approximately 6.25. This can be explained by the fact that the
program has to reason backward over the path to identify the causing event for
all 50 literals in the outcome. In the FCIC case, the program only reasons back
over one step for each literal. For the remaining values of EPS > 2, explaining
50 literals takes less than 0.25 s to compute.

In the case of indirect causation, we varied both L and EPS between 1 and
10. As we saw in Fig. 2, FCIC for 10 indirect causes takes approximately 300 s
to compute (see Appendix 3 Fig. 3 of [26]). We observed that FCIC overtakes
the second longest computation by a factor of approximately 2.6. While the
computation time is large for EPS = 8, 9, 10, Fig. 3 shows little difference in
performance for smaller values of EPS. In order to gain insight into the rela-
tionships among times to compute explanations for smaller values of EPS, Fig. 4
in Appendix 3 of [26] shows the performance for EPS ≤ 9, showing that explain-
ing 10 literals that were caused over 10/9� = 2 steps takes approximately 100 s,
overtaking EPS = 8 by a factor of 5. For smaller values of EPS, the time is at
most 5 s.

Overall Considerations. A comprehensive evaluation is needed before general
claims can be made, but we believe these experiments show that the approach is
promising. As we have already stated, the most challenging problem appears to
be fully concurrent indirect causes due to an increasing number of event subsets
to reason about for each literal that must be explained. However, when the value
of EPS is closer to 1 for the indirect case, the literals can be explained in under
5 s. The best performance is seen for larger values of EPS nearing L for direct
causation, requiring on average less than half a second to explain 50 directly
caused literals.

6 Overview of Related Work

Attempts to mathematically characterize actual causation have largely pursued
counterfactual analysis of structural equations [20,22,29,33], neuron diagrams
[19], and other logical formalisms [5,25]. Counterfactual accounts of actual cau-
sation are typically inspired by the human intuition that if X caused Y , then
not Y if not X [27]. It has been widely documented, however, that the counter-
factual criteria alone is problematic and fails to recognize causation in a number
of common cases such as overdetermination, preemption, and joint causation
[10,17,28]. In cases of overdetermination, for example, removing one of the mul-
tiple sufficient causes from the scenario will not prevent the outcome from occur-
ring. Therefore, if X and Y are both sufficient to cause Z, the counterfactual
definition of cause may not identify X or Y as an actual cause because removing
one or the other will not prevent Z. Similarly, it is straightforward to verify that
the counterfactual approach may fail to identify causation in cases of preemption
and joint causation.

7 The SSDC case takes the second longest time to explain 50 literals at approximately
0.4 s.

244 E. LeBlanc et al.

More recent approaches such as [21,25,32] have addressed some of the short-
comings associated with the counterfacual criterion by modifying the existing
definitions of actual cause or by modeling change over time with some improved
results. However, there is still no widely agreed upon counterfactual definition
of actual cause in spite of a considerably large body of work aiming to find one.
This suggests that alternate approaches should be explored to explain why an
outcome of interest has come to be in a scenario.

In [4], the authors depart from the counterfactual approach, using a similar
insight to our own that actual causation can be determined by inspecting a
specific scenario rather than hypothesizing strictly about counterfactual worlds.
Although the conceptual approach is similar, the technical approaches differ
significantly. Leveraging the Situation Calculus (SC) to formalize knowledge,
the approach identifies a sequence of event(s) that caused an SC formula φ
to become true in a scenario. Our framework is capable of explaining a set of
causal explanations for an outcome identifying not only causing events (or a
sequence of events using multiple problems on the same path), but details about
how each event influenced the outcome. There are also ramifications due to the
choices for the formalization of the domain. Compared to AL formalizations, SC
formalizations incur limitations when it comes to the representations of indirect
effects of actions, which play an important role in our work, and the elaboration
tolerance of the formalization. Additionally, SC relies on First-Order Logic, while
AL features an independent and arguably simpler semantics.

A number of other interesting approaches exist linking causality and logic
programming (LP) with varying goals (e.g. encoding the HP approach for LP
[3,6], explaining answer sets of ASP programs [7,31], reasoning about causal
information [13,14,30]). Research relating these topics is steadily advancing,
prompting interdisciplinary discussion and exploration of the role and placement
of causal reasoning and LP in the landscape of modern computer theory and the
software industry.

7 Conclusions and Future Work

The aim of the work presented here is to lay the foundations of actual causal
explanation from a representation and reasoning standpoint, leveraging tech-
niques from Reasoning about Actions and Change to represent scenarios and
identify actual causal explanations for an outcome of interest. We believe that
we have demonstrated that our approach to representing and reasoning about
actual causation is promising and practically feasible. In addition to further eval-
uating the implementation, an important next step will be to conduct a com-
parative analysis with related approaches to reasoning about actual causation.
Another open problem is to investigate extensions of the framework to support
the representation of time-delayed effects, probabilities, and triggered events.

Explaining Actual Causation via Reasoning About Actions and Change 245

References

1. Balduccini, M., Gelfond, M.: Diagnostic reasoning with A-Prolog. J. Theory Pract.
Log. Program. (TPLP) 3(4–5), 425–461 (2003)

2. Baral, C., Gelfond, M.: Reasoning agents in dynamic domains. In: Minker, J. (ed.)
Logic-Based Artificial Intelligence. SECS, vol. 597, pp. 257–279. Springer, Boston
(2000). https://doi.org/10.1007/978-1-4615-1567-8 12

3. Baral, C., Hunsaker, M.: Using the probabilistic logic programming language P-log
for causal and counterfactual reasoning and non-naive conditioning. In: IJCAI, pp.
243–249 (2007)

4. Batusov, V., Soutchanski, M.: Situation calculus semantics for actual causality.
In: 13th International Symposium on Commonsense Reasoning, vol. 6, University
College London, UK, Monday, November 2017

5. Beckers, S., Vennekens, J.: A general framework for defining and extending actual
causation using CP-logic. Int. J. Approximate Reasoning 77, 105–126 (2016)

6. Bochman, A., Lifschitz, V.: Pearl’s causality in a logical setting. In: AAAI, pp.
1446–1452 (2015)

7. Cabalar, P., Fandinno, J., Fink, M.: Causal graph justifications of logic programs.
Theory Pract. Log. Program. 14(4–5), 603–618 (2014)

8. Carpenter, C.E.: Concurrent causation. Univ. Pennsylvania Law Rev. Am. Law
Reg. 83(8), 941–952 (1935)

9. Dix, J., Kuter, U., Nau, D.: Planning in answer set programming using ordered
task decomposition. In: Günter, A., Kruse, R., Neumann, B. (eds.) KI 2003. LNCS
(LNAI), vol. 2821, pp. 490–504. Springer, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-39451-8 36

10. Dobbs, D.B.: Rethinking actual causation in tort law (2017)
11. Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: Answer set planning under

action costs. J. Artif. Intell. Res. 19, 25–71 (2003)
12. Erdem, E., Gelfond, M., Leone, N.: Applications of answer set programming. AI

Mag. 37(3), 53–63 (2016)
13. Fandinno, J.: Deriving conclusions from non-monotonic cause-effect relations. The-

ory Pract. Log. Program. 16(5–6), 670–687 (2016)
14. Fandinno, J.: Towards deriving conclusions from cause-effect relations. Funda-

menta Informaticae 147(1), 93–131 (2016)
15. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:

ICLP/SLP, vol. 88, pp. 1070–1080 (1988)
16. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive

databases. New Gener. Comput. 9, 365–385 (1991)
17. Glymour, C., Danks, D.: Actual causation: a stone soup essay. Synthese 175(2),

169–192 (2010)
18. Hall, N.: Two concepts of causation. In: Causation and counterfactuals, pp. 225–

276 (2004)
19. Hall, N.: Structural equations and causation. Philos. Stud. 132(1), 109–136 (2007)
20. Halpern, J.Y.: Axiomatizing causal reasoning. J. Artif. Intell. Res. 12, 317–337

(2000)
21. Halpern, J.Y.: Actual Causality. MIT Press, Cambridge (2016)
22. Halpern, J.Y., Pearl, J.: Causes and explanations: a structural-model approach.

part I: causes. Br. J. Philos. Sci. 56(4), 843–887 (2005)
23. Hanks, S., McDermott, D.: Nonmonotonic logic and temporal projection. Artif.

intell. 33(3), 379–412 (1987)

https://doi.org/10.1007/978-1-4615-1567-8_12
https://doi.org/10.1007/978-3-540-39451-8_36
https://doi.org/10.1007/978-3-540-39451-8_36

246 E. LeBlanc et al.

24. Hayes, P.J., McCarthy, J.: Some philosophical problems from the standpoint of
artificial intelligence. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence, vol.
4, pp. 463–502. Edinburgh University Press, Edinburgh (1969)

25. Hopkins, M., Pearl, J.: Causality and counterfactuals in the situation calculus. J.
Log. Comput. 17(5), 939–953 (2007)

26. LeBlanc, E., Balduccini, M., Vennekens, J.: Appendices of explaining actual cau-
sation via reasoning about actions and change, JELIA (2019). http://eleblanc.ai/
files/lbv-jelia2019-appendices.pdf

27. Lewis, D.: Causation. J. Philos. 70(17), 556–567 (1973)
28. Menzies, P.: Counterfactual theories of causation. The Stanford Encyclopedia of

Philosophy (2001)
29. Pearl, J.: On the definition of actual cause. Technical report, University of Cali-

fornia (1998)
30. Pereira, L.M., Saptawijaya, A.: Counterfactuals, logic programming and agent

morality. In: Urbaniak, R., Payette, G. (eds.) Applications of Formal Philosophy:
The Road Less Travelled. LARI, vol. 14. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-58507-9 3

31. Pontelli, E., Son, T.C., Elkhatib, O.: Justifications for logic programs under answer
set semantics. Theory Pract. Log. Program. 9(1), 1–56 (2009)

32. Vennekens, J.: Actual causation in cp-logic. Theory Pract. Log. Program. 11(4–5),
647–662 (2011)

33. Weslake, B.: A partial theory of actual causation. Br. J. Philos. Sci. (2015)

http://eleblanc.ai/files/lbv-jelia2019-appendices.pdf
http://eleblanc.ai/files/lbv-jelia2019-appendices.pdf
https://doi.org/10.1007/978-3-319-58507-9_3
https://doi.org/10.1007/978-3-319-58507-9_3

Advancements in Resource-Driven
Substructural Defeasible Logic

Francesco Olivieri1(B) , Guido Governatori1 , and Matteo Cristani2

1 Data61, CSIRO, Brisbane, Australia
{francesco.olivieri,guido.governatori}@data61.csiro.au

2 University of Verona, Strada Le Grazie 15, 37135 Verona, VR, Italy
matteo.cristani@univr.it

Abstract. Linear Logic and Defeasible Logic have been adopted to
formalise different features of knowledge representation: consumption
of resources and reasoning with exceptions. We propose a framework
to combine sub-structural features, corresponding to the consumption
of resources, with defeasibility aspects to handle potentially conflicting
information, and we discuss the design choices.

1 Introduction

Logic is often described as the “art” of reasoning or, in other terms, its subject
matter is how to derive conclusions from given premises. Under this perspective
we can distinguish rules (or sequents) and inference (or derivation) rules. A rule
specifies that some consequences follow from some premises, while a derivation
rule provides a recipe to determine the valid steps in a proof, or derivation. A
classical example of a derivation rule is Modus Ponens (i.e., from ‘α → β’ and
α to derive β). A rule can be understood as a pair “Γ � Θ”, where Γ and Θ are
collections of formulas in an underlying language.

In Classical Logic, Γ and Θ are sets of formulas, and in Intuitionistic Logic
Θ is a singleton. Thus, the Classical Logic rules ‘α, β � γ, δ’ and ‘β, α � δ, γ’ are
the same rule. Here ‘,’ is understood as conjunction in the antecedent Γ, and
disjunction in the consequent Θ. In substructural logics (e.g., Lambek Calculus,
and the family of Linear Logics), Γ and Θ are assumed to have an internal
structure, and they are considered as multi-sets or sequences. An interpretation
of a rule is how to transform the premises into the conclusion. Therefore, the
rule ‘α, β, α � γ’ can be taken to mean that we need two instances of α with one
instance of β in between to produce an instance of γ. Derivation rules, on the
other hand, tell us how to combine rules to obtain new rules. For example, the
derivation rule

Γ � α Θ � α → β

Γ,Θ � α, α → β, β

establishes that if we have a derivation of α from Γ and a derivation of α → β
from Θ, then we can combine the Γ and Θ to obtain a new derivation, where
we have α followed by α → β and then β. If the formulae denote activities
c© Springer Nature Switzerland AG 2019
F. Calimeri et al. (Eds.): JELIA 2019, LNAI 11468, pp. 247–258, 2019.
https://doi.org/10.1007/978-3-030-19570-0_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19570-0_16&domain=pdf
http://orcid.org/0000-0003-0838-9850
http://orcid.org/0000-0002-9878-2762
http://orcid.org/0000-0001-5680-0080
https://doi.org/10.1007/978-3-030-19570-0_16

248 F. Olivieri et al.

(or tasks) and resources, then the consequent is a sequence of tasks describing
the activities to be done (and the order in which they have to be executed) to
produce an outcome (and also, what resources are needed). Hence, we can use
the rules to model transformation in a business process, and derivations as the
process traces (or the ways in which the process can be executed).

A formalism that properly models processes should feature some key charac-
teristics, and one of the most important ones is to identify which resources are
consumed after a task has finished its execution. Consider a vending machine
scenario, where the dollar resource is spent to produce the can of cola. Trivially,
once we get the cola, the dollar resource is no longer spendable (unless it can
be, somehow, replenished). However, the specifications of a process may include
thousands of rules to represent, at their best, all the various situations that may
occur during the execution of the process itself: situations where the informa-
tion at hand may be incomplete and, sometimes, even contradictory, and rules
encoding possible exceptions. This means that we have to adopt a formalism
that is able to represent and reason with exceptions, and partial information.

Defeasible Logic (DL) [11] is a non-monotonic rule based formalism, that has
been used to model exceptions and processes. We chose DL as base for its ability
in managing non-monotonic aspects of logical conclusion/derivation mechanisms;
most importantly, very efficient implementations have been developed capable
to handle very large knowledge bases [10]. The starting point here is that, while
rules define a relation between premises and conclusion, DL takes the stance
that multiple relations are possible, and it focuses on the “strength” of the
relationships (i.e., rules can be prevented to draw conclusions). An example of
rules with a baseline condition and exception is the scenario of the vending
machine: the outcome is that we get a cola, unless the machine is out of order
or switched off. We can thus represent this scenario with the rules (see Sect. 2):

r1 : 1$ ⇒ cola r2 : OutOfOrder ⇒ ¬cola r3 : Off ⇒ ¬cola.

The motivation of the paper is to combine, from a logic perspective, mechanisms
of defeasibility with mechanisms from substructural logic in order to capture:

1. Ordered list of antecedents: sometimes it is meaningful to consider an
ordered sequence of atoms in the head of a rule, instead of an unordered set
of antecedents (hence rules ‘r : a, b ⇒ c’ and ‘r : b, a ⇒ c’ are semantically
different).

2. Multi-occurrence/repetitions of literals: literals may appear in multiple
instances (again, rules ‘r : a; a; b ⇒ c’ and ‘s : a; b; a ⇒ c’ are semantically
different).

3. Resources consumption: some literals represent resources that are con-
sumed during the derivation process, if they appear in the antecedent of a
rule and such a rule produces its conclusion, then the other rules with the
same literals in their antecedent can no longer fire (unless there are multiple
occurrences).

4. Concurrent production: symmetrically, consider two rules with the same
conclusion: ‘r : a ⇒ c’ and ‘s : b ⇒ c’. It now seems reasonable that, if both
a and b are derived, then we conclude two instances of c.

Advancements in Resource-Driven Substructural Defeasible Logic 249

5. Team defeater and resource consumption: when two rules for opposite
conclusions may fire, in sceptical formalisms typically only one produces its
conclusion. Thus the question is whether defeated rules consume resources,
or not.

6. Multiple conclusions: rules can produce more than one conclusion at a time
(like ‘r : a, b ⇒ c, d’). This cannot be obtained by the two rules ‘t : a, b ⇒ c’
and ‘s : a, b ⇒ d’ since, due to resource consumption, only one of them would
fire.

7. Loops: play a fundamental role in many real life applications, like business
processes.

For a more comprehensive discussion, the reader is referred to [13], where they
can find real-life examples for each item. It is clear that the resulting combination
of logical machinery could provide a much better formalism for the representation
of processes.

2 Language and Logical Formalisation of RSDL

The logics presented here considers consumable literals only: the formalisation
of non-consumable literals is the same of that in Standard DL (SDL) [1], and
thus the process would not add any value to this contribution. Also we will have
either multi-sets or sequences of literals, but not combinations of those: again
this is trivial and left out due to space limits.

Our logics deals with two types of derivations: strict and defeasible. Strict
rules derive indisputable conclusions, i.e., conclusions that which are always true.
Thus, if two strict rules have opposite conclusions, then the resulting logic is
inconsistent. On the contrary, defeasible rules are to derive pieces of information
that can be defeated by contrary evidence. Finally, defeaters are special type of
rules whose purpose is to block/prevent contrary evidence: they cannot be used
to directly derive conclusions.

We now introduce the language of Resource-driven Substructural Defeasible
Logic (RSDL). PROP is the set of propositional atoms, the set Lit = PROP ∪
{¬p|p ∈ PROP} is the set of literals. The complement of a literal p is denoted
by ∼q; if q is a positive literal p, then ¬q is ¬p, and if q is a negative literal ¬p,
then ∼q is p.

Definition 1. Let Lab be a set of arbitrary labels. Rules have form “r : A(r) ↪→
C(r)”: (1) r ∈ Lab is a unique name; (2) A(r) is the antecedent, or body, of
the rule. A(r) can either have the form A(r) = a1, . . . , an to denote a multi-set,
or A(r) = a1; . . . ; an to denote a sequence; (3) ↪→∈ {→,⇒,�} denotes a strict
rule, a defeasible rule, and a defeater, respectively; (4) C(r) is the consequent,
or head, of the rule. For the head, we consider three options: (i) The head is a
single literal ‘p’, (ii) The head is a multi-set ‘p1, . . . , pm’, or (iii) the head is a
sequence ‘p1; . . . ; pm’.

250 F. Olivieri et al.

With abuse of notation, we will often refer to p1, . . . , pm as a set, and overload
standard set theoretic notation. Given a set of rules R and a rule r : A(r) ↪→
C(r), we use the following abbreviations: (i) Rs is the subset of strict rules, (ii)
Rsd is the set of strict and defeasible rules, (iii) R[p; i] is the set of rules where
p appears at index i in the consequent where the consequent is a sequence, (iv)
R[p, i] when the consequent is a multi-set containing p.

Definition 2. A resource-driven substructural defeasible theory is a tuple
(F,R,�) where: (i) F ⊆ Lit are pieces of information denoting the resources
available at the beginning of the computation. This differs strikingly from SDL,
where facts denote always-true statements; (ii) R is the set of rules; (iii) �: R×R
is the superiority relation.

A theory is finite if the sets of facts and rules are finite. In SDL, a proof P of
length n is a finite sequence P (1), . . . , P (n) of tagged literals of the type ±Δp,
±∂p. The idea is that, at every step of the derivation, a literal is either proven
or disproven.

In our logic, we must be able to derive multiple conclusions in a single deriva-
tion step, and hence we require a mechanism to determine when premises have
been used to derive a conclusion. Accordingly, we modify the definition of proof
to be a matrix.

Definition 3. A proof P in RSDL is a finite matrix P (1, 1), . . . , P (l, c) of
tagged literals of the type ±Δp, ±∂p, +σp, +Δp�, and +∂p�.

We assume that facts are simultaneously true at the beginning of the compu-
tation. Notation +#p�, # ∈ {Δ, ∂} denotes that p has been consumed. The
distinctive notation for when a literal is proven and when it is consumed will
play a key role to determine which rules are applicable. The tagged literal ±Δp
means that p is strictly proved/refuted in D, and, symmetrically, ±∂p means
that p is defeasibly proven/refuted, +σp indicates that there are applicable rules
for p, but some of their resources have already been used.

The set of positive and negative conclusions is called extension. In SDL, given
a set of facts, a set of rules, and a superiority relation, the extension is unique.
It is clear that this is not the case when resource consumption and ordered
sequences are to be taken into account: depending on the order in which the
rules are applied, different extensions can be obtained. In RSDL every distinct
derivation corresponds to an extension.

In SDL, derivations are based on the notions of a rule being applicable or
discarded. Intuitively, a rule is applicable when every literal in the antecedent
has been proven at a previous step. We report hereafter the defeasible proof tag
in SDL to give the reader a better understanding of how defeasible conclusions
can be drawn.

If P (n + 1) = +∂p then
(1) ∃r ∈ Rsd[p]: r is applicable and
(2) ∀s ∈ R[∼p] either (1) s is discarded or (2) ∃t ∈ R[p]: t is applicable and t � s.

Advancements in Resource-Driven Substructural Defeasible Logic 251

A literal is defeasibly proven when there exists an applicable rule for such a
conclusion and all the rules of the opposite are either discarded, or defeated by
stronger rules. (Strict derivations only differ in that, when a rule is applicable,
we do not care about contrary evidence, and the rule will always produce its
conclusion nonetheless).

As for SDL, we obtain variants of the logic by providing different definitions
of being applicable and discarded. More specifically, for RSDL, definitions of
applicability and discardability need to take into account (i) the number of
times a literal appears in the body of a rule, (ii) how many times they have been
derived1, (iii) the order in which the literals occur in the body of a rule and in a
derivation. In addition, we have to extend the structure of the proof conditions
to include mechanisms or conditions to determine when literals/resources have
been used to derive new literals/resources.

We shall proceed incrementally. First, we provide definitions for multi-sets.
We then provide definitions for sequences. In both cases, we consider rules with
a single literal for conclusion. Only after those concepts will be clear, we move
forward and propose definitions to describe rules with multiple conclusions.

Definition 4. A rule r is #-applicable, # ∈ {Δ, ∂, σ}, at P (l + 1, c + 1) iff ∀
ai ∈ A(r) then +#ai ∈ P [(1, 1)..(l, c)]. Moreover, we say that r is #-consumable
iff r is #-applicable and ∃ l′ ≤ l such that P (l′, c) = +#ai.

A rule is consumable if it is applicable and, for every literal in its antecedent,
there is an unused occurrence. Discardability is the strong negation of applica-
bility.

Definition 5. A rule r is #-discarded, # ∈ {Δ, ∂}, at P (l + 1, c + 1) iff ∃
ai ∈ A(r) such that −#ai ∈ P [(1, 1)..(l, c)]. Moreover, we say that r is #-non–
consumable iff either r is discarded, or ∀ l′ ≤ l, P (l′, c) = +∂ai.

Lastly, we define the conditions describing when a literal is consumed.

Definition 6. Given rule r, a literal a ∈ A(r) is #-consumed, # ∈ {Δ, ∂}, at
P (l+1, c+1), iff 1. ∃ l′ ≤ l such that P (l′, c) = +#a, and 2. P (l′, c+1) = +#a�.

Example 1 illustrates how we use +∂p� within the resource consumption mech-
anism.

Example 1. Consider D = ({a}, R, ∅), where R = {r0 : a ⇒ b, r1 : b ⇒ c, r2 :
b → d} and (one of) the corresponding proof table(s):

P 1 2 3 4

1 +Δa +Δa� +Δa� +Δa�

2 +∂b +∂b� +∂b�

3 +∂c +∂c
4 −∂d

1 Trivially, e.g., if literal a has been derived twice, but it appears in the antecedent of
three rules, only two of such rules can produce their conclusions.

252 F. Olivieri et al.

Naturally, two mutually exclusive extensions are possible, based on whether +∂b
is used by r1 to derive +∂c, or by r2 to derive +∂d. Table 1 shows the former
case. At P (1, 1) we obtain +Δa, instance that is consumed in deriving +∂b at
P (2, 2). Thus, P (1, 2) = +Δa�. Symmetric situation for activating r1 at the
third derivation step, which results in P (2, 3) = +∂b� and P (3, 3) = +∂c. Now,
at P (4, 4), r2 is applicable but non-consumable, and hence P (4, 4) = −∂d. Note
that if r2 instead of r1 is activated, we would have had P (3, 3) = +∂d.

Proof Tags for Multi-sets in the Antecedent and Single Conclusion

We begin with: (1) the antecedent is a multi-set, (2) single literal in the conclu-
sion.

+Δ: If P (l + 1, c + 1) = +Δp then
(1) p ∈ F , or (2) ∃r ∈ Rs[p] s.t. r is Δ-consumable and ∀aj ∈ A(r), aj is Δ-consumed.

Literal q is definitely provable if either is a fact, or there is a strict consumable
rule for p. Condition (2) actually consumes the literals by replacing +Δaj with
+Δa�

j .

−Δ: If P (l + 1, c + 1) = −Δp then
(1) p /∈ F and (2) ∀r ∈ Rs[p], r is Δ-non-consumable.

Literal q is definitely refuted if p is not a fact, and every rule for p is non-
consumable.

+∂: If P (l + 1, c + 1) = +∂p, then
(1) +Δp ∈ P (l, c) or
(2) (1) −Δ∼p ∈ P (l, c) and

(2) ∃r ∈ Rsd[p] ∂-consumable and
(3) ∀s ∈ R[∼p] either (1) s is ∂-discarded, or

(2) ∃t ∈ R[p] ∂-consumable, t � s, and
if ∃w ∈ R[∼p] ∂-applicable, t � w, then
∀aj ∈ A(t), aj is ∂-consumed, otherwise ∀ak ∈A(r), ak is ∂-consumed.

Condition (1) is to inherit a defeasible derivation from a definite one. Con-
dition (2.1) ensures that the logic is sound. Condition (2.2) requires that there
is a rule r that is triggered by literals that have been previously proven but not
consumed. Clause (2.3) is that, to rebut an attacking argument, either we show
that some of its premises have been refuted, or is defeated by stronger, consum-
able rules. The final part is to determine which resources are consumed during
the derivation of p. This variant assumes that only the rules in the winning team
defeater consume resources, whilst the ‘defeated rules’ do not.

For −∂, we use the strategy similar to that used in [1] to provide proof
conditions for the ambiguity propagating variant of SDL, that is, we make it
easier to attack a rule (2.2.2). In line with above, literals tagged with −∂ do not
consume of resources.

Advancements in Resource-Driven Substructural Defeasible Logic 253

−∂: If P (l + 1, c + 1) = −∂p, then
(1) −Δp ∈ P [l, c] and
(2) (1) +Δ∼p ∈ P [l, c] or

(2) ∀r ∈ Rsd[p] either r is ∂-discarded or
(1) ∃s ∈ R[∼p] s.t. s is σ-applicable and
(2) ∀t ∈ R[p] either t is ∂-discarded or t �� s.

The idea behind +σ is that there are applicable, non-defeated rules for the
consequent, irrespective whether the premises have been used or not.
+σ: If P (l + 1, c + 1) = +σp then

(1) Δp ∈ P [l, c] or

(2) ∃r ∈ Rsd[p] s.t. (1) r is σ-applicable and (2) ∀s ∈ R[∼p] either s is ∂-discarded or s �	 r.

Example 2. Consider D = ({a, b, c}, R = {r0 : a ⇒ d, r1 : a ⇒ e, r2 : b ⇒ d, r3 :
c ⇒ ∼d}, �= {(r2, r3)}) and the corresponding proof table:

P 1 2 3 4 5

1 +Δa +Δa +Δa +Δa +Δa�

2 +Δb +Δb +Δb� +Δb�

3 +Δc +Δc +Δc
4 +∂d +∂d
5 +∂e

Assume that, at P (4, 4), r0 is taken into consideration; r0 is consumable, but so
is r3, and no superiority is given between r0 and r3. Actually, r2 is consumable
and stronger than r3. Accordingly, the team defeater allows us to prove +∂d,
and only b is consumed in this process. Thus a is still available, and can be used
at P (5, 5) to get +∂e, via r1. Note that we do not consume resource +Δc, since
r2 � r3.

Proof Tags for Sequences in the Antecedent and Single Conclusion

When considering sequences in the antecedent, definitions of applicable, dis-
carded, and consumable must be revised. A rule is sequence applicable when the
derivation order reflects the order in which the literals appear in the antecedent.

Definition 7. A rule r ∈ R[p] is #-sequence applicable, # ∈ {Δ, ∂}, at P (l +
1, c + 1) iff for all ai ∈ A(r) there exists ci ≤ c such that P (li, ci) = +#ai,
li ≤ l, and for all aj ∈ A(r) such that i < j, then for all cj ≤ c such that
P (lj , cj) = +#aj, lj ≤ l then li < lj and ci < cj. We say that r is #-sequence
consumable iff is #-applicable and 4. P (li, c) = +#ai.

A rule is sequence discarded if there exists a literal in the antecedent which has
been disproven, or there are two proven literals in the antecedent, say a and b,
with a before b, and one proof for b is before every proof for a.

Definition 8. A rule r ∈ R[p] is #-sequence discarded, # ∈ {Δ, ∂}, at P (l +
1, c + 1) iff for there exists ai ∈ A(r) such that either −#ai ∈ P (l − 1, c − 1),
or for all ci ≤ c such that P (lj , ci) = +#ai, li ≤ l, then there exists aj ∈ A(r),
with i < j, such that there exists cj ≤ c such that P (lj , cj) = +#aj, lj ≤ l, and
ci > cj, li > lj.

254 F. Olivieri et al.

The definition of being #-consumed remains the same. The proof tags for strict
and defeasible conclusions with sequences in the antecedent and a single con-
clusion can be obtained by simply replacing: (a) #-applicable with #-sequence
applicable, (b) #-consumable with #-sequence consumable, and (c) #-discarded
with #-sequence discarded.

Example 3. Consider D = ({c, d, e}, R,�= ∅), where R = {r0 : a, b, a ⇒ f , r1 :
c ⇒ a, r2 : d ⇒ a, r3 : e ⇒ b}.

Assume the rules are activated in this order: first r1, then r2, last r3. Thus,
P (4, 4) = +∂a, P (5, 5) = +∂a, and P (6, 6) = +∂b. The derivation order between
b and the second occurrence of a has not been complied with, and r0 is sequence
discarded. Same if the order is ‘r3, r1, r2’, whilst ‘r2, r3, r1’ is a legit order to
let r0 be sequence applicable.

Proof Tags for Sequences in Both the Antecedent and Conclusion

Even when we consider sequences in the consequent, a literal’s strict provabil-
ity or refutability depends only upon whether the strict rule (where the literal
occurs) is sequence consumable or not. As such, given a strict rule r ∈ Rs[p; j],
still p’s strict provability/refutability depends only upon whether r is strictly
sequence consumable or not. However, now we also have to verify that, if
r ∈ Rs[q; j − 1], we prove p immediately after q. The resulting new formali-
sations of +Δ and +∂ are as follows (negative proof tags are trivial and thus
omitted):

+Δ: If P (l + 1, c + 1) = +Δp then

(1) p ∈ F , or

(2) (1) ∃r ∈ Rs[p; j] r is Δ-sequence-consumable, r ∈ Rs[q; j − 1], P (l + i − 1, c + 1) = +Δq,

(2) ∀aj ∈ A(r), aj is Δ-consumed.

+∂: If P (l + i, c + 1) = +∂p, then

(1) +Δp ∈ P (l, c) or

(2) (1) −Δ∼p ∈ P (l, c) and

(2) (1) ∃r ∈ Rsd[p; j] ∂-sequence-consumable and

(2) ∃r ∈ R[q; j − 1] and P (l + i − 1, c + 1) = +∂q, and

(3) ∀s ∈ R[∼p] either s is ∂-sequence-discarded, or

(1) ∃t ∈ R[p] ∂-sequence-consumable, t 	 s, and

(2) if ∃w ∈ R[∼p] ∂-sequence-applicable, t 	 w, then

(1) ∀aj ∈ A(t), aj is ∂-consumed, otherwise (2) ∀ak ∈ A(r), ak is ∂-consumed.

Example 4. Consider D = ({a, b}, R = {r0 : a ⇒ c; d ; e and r1 : b ⇒ ∼d},�=
∅). We obtain +∂c and −∂d since r1 is sequence-applicable and r0 � r1. Thus,
we prove −∂e.

Proof Tags for Sequences in the Antecedent and Multi-sets in the
Conclusion

We now consider multi-sets in the conclusion. Strict provability does not change
with respect to the one described in the previous section, and is therefore omit-
ted. When considering a ‘team defeater fight’, two variants are possible. In this

Advancements in Resource-Driven Substructural Defeasible Logic 255

first variant, we draw a conclusion only if there is a winning team defeater for
each literal in the conclusion.

+∂: If P (l + i, c + 1) = +∂p, then

(1) +Δp ∈ P (l, c) or

(2) (1) −Δ∼p ∈ P (l, c) and

(2) ∃r ∈ Rsd[p, j] ∂-sequence-consumable and

(3) ∀s ∈ R[∼q] such that q ∈ C(r) either s is ∂-sequence-discarded, or

(1) ∃t ∈ R[q] ∂-sequence-consumable, t 	 s, and

(2) if ∃w ∈ R[∼p] ∂-sequence-applicable, t 	 w, then

(1) ∀aj ∈ A(t), aj is ∂-consumed, otherwise (2) ∀ak ∈ A(r), ak is ∂-consumed.

Consider D of Example 4, with C(r0) = {c, d, e} (now multi-set). Here, even if
C(r1) = ∼d, since there is no stronger rule, r1 prevents r0 to derive +∂c, as well
as +∂d and +∂e.

In this latter variant, we limit the comparison on the individual literal.

+∂: If P (l + i, c + 1) = +∂p, then

(1) +Δp ∈ P (l, c) or

(2) (1) −Δ∼p ∈ P (l, c) and

(2) ∃r ∈ Rsd[p, j] ∂-sequence-consumable and

(3) ∀s ∈ R[∼p] either s is ∂-sequence-discarded, or

(1) ∃t ∈ R[p] ∂-sequence-consumable, t 	 s, and

(2) if ∃w ∈ R[∼p] ∂-sequence-applicable, t 	 w, then

(1) ∀aj ∈ A(t), aj is ∂-consumed, otherwise (2) ∀ak ∈ A(r), ak is ∂-consumed.

Consider D of Example 4, again with C(r0) = {c, d, e}. Now r1 can prevent r0

only to prove +∂d. Since there are no stronger rules for ∼c nor ∼e, we now prove
+∂c and +∂e.

3 Results

A logical system enjoys the Finite Model Property (FMP) when for every set of
formulae, the associated meaning to each formula requires a finite set of elements
in the semantics for every model of that set. In the case of RSDL, the semantics is
determined by the derivations that are possible given a theory. As a consequence
of the aforementioned notions we shall prove one property that regards acyclic
RSDL. The Atom Dependency Graph (ADG)2 of a defeasible theory has been
defined in many different contexts, specifically in the analysis of preferences, as
in [6]. Acyclic RSDLs are theories in which no cycle appears in the ADG. This
means that when a rule is used to produce a conclusion, the resources in the
antecedent of the rules cannot be replenished, and we reach nodes, literals, that
can be produced by the theory only if they are given (node, with no incoming
edges in the ADG).

Theorem 1. Acyclic finite RSDL theories enjoy the FMP.

2 The atomic propositions are the nodes, and there is a directed edge between nodes
if there is a rule containing the source or its negation in the body, and the target or
its negation in the head.

256 F. Olivieri et al.

Proof. With no cycles in the ADG, every time a rule is used to derive a positive
conclusion, the number of available resources decreases. Thus, the maximum
number of literals that can appear in a proof is bound and proportional to the
number of literals occurring in the rule heads. Hence, every derivation is finite,
and the theory has the FMP.

Note that the theory with a as a fact and the rule a ⇒ a can generate a deriva-
tion with infinitely many occurrences of a. The acyclicity condition allows us
to compute in finite time the extension of a theory. However, this is not the
case for cyclic theory, where the computation is not guaranteed to terminate.
Accordingly:

Theorem 2. Computing extensions of cyclic RSDL theories is semi-decidable.

For acyclic theories, we have the FMP. Thus, since acyclic theories can be checked
for model existence in finite time, when the model does not exist, and by brute
force methods, we can trivially claim the following result.

Theorem 3. The problem of computing extensions of acyclic RSDL theories is
decidable.

SDL is efficient in terms of time and space, since the extension can be com-
puted in linear time in the number of literals. This property, however, cannot
be claimed for RSDL. In particular, we can show that RSDL can be used to
represent a classical 3-SAT problem, and thus prove that the complexity cannot
be polynomial on deterministic machines.

The basic idea of reducing to 3-SAT is as follows. A 3-SAT problem P is
a clause representing a finite conjunction of triplets (ti), each formed by three
literals (t1i , t

2
i , t

3
i), that we assume to be conjuncted in the sub-clause, where we

ask whether the clause is satisfiable, or not. We map each literal appearing in the
clause in a positive literal ̂txi (with x = 1, 2, 3), not appearing in the clause, and
add one positive literal ̂ti for every triplet, again not appearing in the triplets.
Subsequently, we add one rule ̂ti ⇒ ̂txi for each of the three values x = 1, 2, 3
and three rules ̂txi ⇒ txi for each of the values x = 1, 2, 3. Finally, we add one
fact for every literal ̂ti. Conclusively, we have mapped every triplet in six RSDL
rules. The resulting RSDL theory has a derivation containing at least one literal
for each clause if and only if the original problem P is a satisfiable clause. For
example, consider the clause (α ∨ β ∨ γ) ∧ (¬α ∨ ¬β ∨ δ). Using c1 and c2 for
the triplets, and c1

1, c
2
1, c

3
1, c

1
2, c

2
2, c

3
2 for the elements in the triplets, the theory

encoding the clause is:

Advancements in Resource-Driven Substructural Defeasible Logic 257

c1

c2

c1 ⇒ c11

c1 ⇒ c21

c1 ⇒ c31

c2 ⇒ c12

c2 ⇒ c22

c2 ⇒ c32

c11 ⇒ α

c21 ⇒ β

c31 ⇒ γ

c12 ⇒ ∼α.

c22 ⇒ ∼β

c32 ⇒ δ

4 Conclusions and Related Work

We proposed a fresh logical apparatus that deals with the problem of manip-
ulating resource consumption in non-monotonic reasoning. The combination of
linear with defeasible features is a complete novelty and we believe that it can be
useful in several areas of AI and knowledge representation, like agent modelling
and business processes.

Studies on light linear logic versions, with specific aspects of linearity related
to resource consumption have been devised such as light and soft linear logic
[3,5]. Both SDL and Linear Logic (for different reasons and techniques) have
been used for modelling business processes [2,4,8,12,14,17,18]. Applications of
linear logic to problems indirectly related to business processes such as Petri
Nets can be found in [2,8,18]. However, such approaches are not able to handle
in a natural fashion the aspect of exceptions. In [9,15,16], the authors propose
the use of Linear Logic to generate which plans the agent adopts to achieve its
goals. In the same spirit, [7] addresses the problem of agents that have to take
decisions from partial, and possibly inconsistent, information.

References

1. Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: Representation results
for defeasible logic. ACM Trans. Comput. Logic 2(2), 255–287 (2001)

2. Engberg, U., Winskel, G.: Completeness results for linear logic on Petri nets. Ann.
Pure Appl. Logic 86(2), 101–135 (1997)

3. Gaboardi, M., Marion, J.Y., Ronchi Della Rocca, S.: Soft linear logic and poly-
nomial complexity classes. Electron. Notes Theoret. Comput. Sci. 205(C), 67–87
(2008)

4. Ghooshchi, N.G., van Beest, N., Governatori, G., Olivieri, F., Sattar, A.: Visu-
alisation of compliant declarative business processes. In: EDOC 2017, pp. 89–94.
IEEE (2017)

5. Girard, J.Y.: Light linear logic. Inf. Comput. 143(2), 175–204 (1998)
6. Governatori, G., Olivieri, F., Cristani, M., Scannapieco, S.: Revision of defeasible

preferences. Int. J. Approx. Reasoning 104, 205–230 (2019)
7. Governatori, G., Olivieri, F., Scannapieco, S., Rotolo, A., Cristani, M.: The ratio-

nale behind the concept of goal. Theory Pract. Log. Program. 16(3), 296–324
(2016)

8. Kanovich, M., Ito, T.: Temporal linear logic specifications for concurrent processes.
In: LICS 1997, pp. 48–57. IEEE Computer Society (1997)

9. Küngas, P., Matskin, M.: Linear logic, partial deduction and cooperative problem
solving. In: Leite, J., Omicini, A., Sterling, L., Torroni, P. (eds.) DALT 2003. LNCS
(LNAI), vol. 2990, pp. 263–279. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-25932-9 14

https://doi.org/10.1007/978-3-540-25932-9_14
https://doi.org/10.1007/978-3-540-25932-9_14

258 F. Olivieri et al.

10. Lam, H.-P., Governatori, G.: The making of SPINdle. In: Governatori, G., Hall,
J., Paschke, A. (eds.) RuleML 2009. LNCS, vol. 5858, pp. 315–322. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-3-642-04985-9 29

11. Nute, D.: Defeasible logic. In: Handbook of Logic in Artificial Intelligence and
Logic Programming, vol. 3. Oxford University Press (1987)

12. Olivieri, F., Cristani, M., Governatori, G.: Compliant business processes with
exclusive choices from agent specification. In: Chen, Q., Torroni, P., Villata, S.,
Hsu, J., Omicini, A. (eds.) PRIMA 2015. LNCS (LNAI), vol. 9387, pp. 603–612.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25524-8 43

13. Olivieri, F., Governatori, G., Cristani, M., van Beest, N., Colombo-Tosatto, S.:
Resource-driven substructural defeasible logic. In: Miller, T., Oren, N., Sakurai, Y.,
Noda, I., Savarimuthu, B.T.R., Cao Son, T. (eds.) PRIMA 2018. LNCS (LNAI),
vol. 11224, pp. 594–602. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-03098-8 46

14. Olivieri, F., Governatori, G., Scannapieco, S., Cristani, M.: Compliant business pro-
cess design by declarative specifications. In: Boella, G., Elkind, E., Savarimuthu,
B.T.R., Dignum, F., Purvis, M.K. (eds.) PRIMA 2013. LNCS (LNAI), vol.
8291, pp. 213–228. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-44927-7 15

15. Pham, D.Q., Harland, J.: Temporal linear logic as a basis for flexible agent inter-
actions. In: AAMAS 2007, pp. 28:1–28:8. ACM (2007)

16. Pham, D.Q., Harland, J., Winikoff, M.: Modeling agents’ choices in temporal linear
logic. In: Baldoni, M., Son, T.C., van Riemsdijk, M.B., Winikoff, M. (eds.) DALT
2007. LNCS (LNAI), vol. 4897, pp. 140–157. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-77564-5 9

17. Rao, J., Küngas, P., Matskin, M.: Composition of semantic web services using
linear logic theorem proving. Inf. Syst. 31(4–5), 340–360 (2006)

18. Tanabe, M.: Timed Petri nets and temporal linear logic. In: Azéma, P., Balbo, G.
(eds.) ICATPN 1997. LNCS, vol. 1248, pp. 156–174. Springer, Heidelberg (1997).
https://doi.org/10.1007/3-540-63139-9 35

https://doi.org/10.1007/978-3-642-04985-9_29
https://doi.org/10.1007/978-3-319-25524-8_43
https://doi.org/10.1007/978-3-030-03098-8_46
https://doi.org/10.1007/978-3-030-03098-8_46
https://doi.org/10.1007/978-3-642-44927-7_15
https://doi.org/10.1007/978-3-642-44927-7_15
https://doi.org/10.1007/978-3-540-77564-5_9
https://doi.org/10.1007/978-3-540-77564-5_9
https://doi.org/10.1007/3-540-63139-9_35

SLD-Resolution Reduction
of Second-Order Horn Fragments

Sophie Tourret1(B) and Andrew Cropper2

1 Max Planck Institute for Informatics, Saarland Informatics Campus,
Saarbrücken, Germany

sophie.tourret@mpi-inf.mpg.de
2 University of Oxford, Oxford, UK

andrew.cropper@cs.ox.ac.uk

Abstract. We present the derivation reduction problem for SLD-
resolution, the undecidable problem of finding a finite subset of a set
of clauses from which the whole set can be derived using SLD-resolution.
We study the reducibility of various fragments of second-order Horn logic
with particular applications in Inductive Logic Programming. We also
discuss how these results extend to standard resolution.

1 Introduction

Detecting and eliminating redundancy in a clausal theory (a set of clauses) is
useful in many areas of computer science [3,19]. Eliminating redundancy can
make a theory easier to understand and may also have computational efficiency
advantages [9]. The two standard criteria for redundancy are entailment [28,29,
34] and subsumption [5,16,38]. In the case of entailment, a clause C is redundant
in a clausal theory T ∪ {C} when T |= C. In the case of subsumption, a clause
C is redundant in a clausal theory T ∪ {C} when there exists a clause D ∈ T
such that D subsumes C. For instance, consider the clausal theory T1:

C1 = p(x) ← q(x)
C2 = p(x) ← q(x), r(x)

The clause C2 is entailment and subsumption redundant because it is a logical
consequence of C1 (and is also subsumed by C1). However, as we will soon show,
entailment and subsumption redundancy can be too strong for some applications.
To overcome this issue, we introduce a new form of redundancy based on whether
a clause is derivable from a clausal theory using SLD-resolution [26]. Let �∗

represent derivability in SLD-resolution. Then a Horn clause C is derivationally
redundant in a Horn theory T ∪{C} when T �∗ C. For instance, in T1, although
C1 entails C2, we cannot derive C2 from C1 using SLD-resolution because it is
impossible to derive a clause with three literals from a clause with two literals.

We focus on whether theories formed of second-order function-free Horn
clauses can be derivationally reduced to minimal (i.e. irreducible) finite theories
c© Springer Nature Switzerland AG 2019
F. Calimeri et al. (Eds.): JELIA 2019, LNAI 11468, pp. 259–276, 2019.
https://doi.org/10.1007/978-3-030-19570-0_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19570-0_17&domain=pdf
http://orcid.org/0000-0002-6070-796X
http://orcid.org/0000-0002-4543-7199
https://doi.org/10.1007/978-3-030-19570-0_17

260 S. Tourret and A. Cropper

from which the original theory can be derived using SLD-resolution. For instance,
consider the following theory T2, where the symbols Pi represent second-order
variables (i.e. variables that can be substituted by predicate symbols):

C1 = P0(x) ← P1(x)
C2 = P0(x) ← P1(x), P2(x)
C3 = P0(x) ← P1(x), P2(x), P3(x)

Although C1 subsumes C2 and C3, the two clauses cannot be derived from C1

for the same reason as in the previous example. However, C3 is derivationally
redundant because it can be derived by self-resolving C2. A minimal derivation
reduction of T2 is the theory {C1, C2} because C2 cannot be derived from C1

and vice versa.

1.1 Motivation

Our interest in this form of redundancy comes from Inductive Logic Program-
ming (ILP) [33], a form of machine learning which induces hypotheses from
examples and background knowledge, where the hypotheses, examples, and
background knowledge are represented as logic programs. Many forms of ILP
[1,10,25,35,40,44] and ILP variants [6,15,42,47] use second-order Horn clauses
as templates to denote the form of programs that may be induced. For instance,
consider the father kinship relation:

father(A,B) ← parent(A,B),male(A).

A suitable clause template to induce this relation is:

P0(A,B) ← P1(A,B), P2(A).

Determining which clauses to use for a given learning task is a major open
problem in ILP [8,9,35], and most approaches uses clauses provided by the
designers of the systems without any theoretical justifications [1,6,10,25,42,44,
47]. The problem is challenging because on the one hand, you want to provide
clauses sufficiently expressive to solve the given learning problem. For instance, it
is impossible to learn the father relation using only monadic clauses. On the other
hand, you want to remove redundant clauses to improve learning efficiency [9].

To illustrate this point, suppose you have the theory T3:

C1 = P0(A,B) ← P1(A,B)
C2 = P0(A,B) ← P1(A,B), P2(A)
C3 = P0(A,B) ← P1(A,B), P2(A,B)
C4 = P0(A,B) ← P1(A,B), P2(A,B), P3(A,B)

Running entailment reduction on T3 would remove C2, C3, and C4 because
they are logical consequence of C1. But it is impossible to learn the intended
father relation given only C1. By contrast, running derivation reduction on T3

SLD-Resolution Reduction of Second-Order Horn Fragments 261

would only remove C4 because it can be derived by self-resolving C3. As this
example illustrates, any clause removed by derivation reduction can be recov-
ered by derivation if necessary, while entailment reduction can be too strong and
remove important clauses with no way to get them back using SLD-resolution.
In this paper, we address this issue by studying the derivation reducibility of
fragments of second-order Horn logic relevant to ILP. Although our notion of
derivation reduction can be defined for any proof system, we initially focus on
SLD-resolution because (1) most forms of ILP learn definite logic programs (typ-
ically Prolog programs), and (2) we want to reduce sets of metarules, which are
themselves definite clauses (although second-order rather than first-order). The
logic fragments we consider here also correspond to the search spaces typically
targeted by ILP systems.

1.2 Contributions

Our main contributions are:

– We state the derivation reduction problem for SLD-resolution (Sect. 3) that
we originally introduced in [12].

– We describe fragments of second-order Horn logic particularly relevant for
ILP (Sect. 4).

– We show that, by constraining the arity of the predicates, an infinite fragment
of connected Horn clauses can be derivationally reduced to a finite fragment
made of clauses that contain at most two literals in the body (Sect. 5).

– We show that an infinite fragment of 2-connected (i.e. connected and with-
out singleton occurrences of variables) Horn clauses cannot be derivationally
reduced to any finite fragments (Sect. 6).

– We show similar but incomplete negative results for a more expressive 2-
connected fragment (Sect. 7).

– We extend the reducibility results to standard resolution (Sect. 8).

A technical report including detailed proofs of all the results (including the ones
only sketched in this paper) has been created as a separate document [46].

2 Related Work

In clausal logic there are two main forms of redundancy: (1) a literal may be
redundant in a clause, and (2) a clause may be redundant in a clausal theory.

Literal Redundancy. Plotkin [38] used subsumption to decide whether a literal
is redundant in a first-order clause. Joyner [24] independently studied the same
problem, which he called clause condensation, where a condensation of a clause
C is a minimum cardinality subset C ′ of C such that C ′ |= C. Gottlob and
Fermüller [16] showed that determining whether a clause is condensed is coNP-
complete. In contrast to eliminating literals from clauses, we focus on removing
clauses from theories.

262 S. Tourret and A. Cropper

Clause Redundancy. Plotkin [38] also introduced methods to decide whether
a clause is subsumption redundant in a first-order clausal theory. The same
problem, and slight variants, has been extensively studied in the propositional
logic [28,29] and has numerous applications, such as to improve the efficiency of
SAT solving [19]. This problem has also been extensively studied in the context
of first-order logic with equality due to its application in superposition-based
theorem proving [20,48]. Langlois et al. [27] studied combinatorial problems for
propositional Horn clauses. Their results include bounds on entailment reduced
sets of propositional Horn fragments. In contrast to these works, we focus on
removing second-order Horn clauses (without equality) that are derivationally
redundant.

Much closer to this paper is the work of Cropper and Muggleton [9]. They
used entailment reduction [34] on sets of second-order Horn clauses to identify
theories that are (1) entailment complete for certain fragments of second-order
Horn logic, and (2) minimal or irreducible, in that no further reductions are
possible. They demonstrate that in some cases as few as two clauses are sufficient
to entail an infinite language.

In contrast to all these works, we go beyond entailment reduction and intro-
duce derivation reduction because, as stated in the previous section, the former
can be too strong to be of use in ILP. Thus our focus is on derivationally reducing
sets of second-order Horn clauses.

Theory Minimisation and Program Transformation. In theory minimi-
sation [18] the goal is to find a minimum equivalent formula to a given input
formula. The fold/unfold transformations of first-order rules are used, e.g. to
improve the efficiency of logic programs or to synthesise definite programs from
arbitrary specifications [43]. Both allow for the introduction of new formulæ.
By contrast, the derivation reduction problem only allows for the removal of
redundant clauses.

Prime Implicates. Implicates of a theory T are the clauses entailed by T .
They are called prime when they do not themselves entail other implicates of T .
This notion differs from the redundancy elimination in this paper because (1) the
notion of a prime implicate has been studied only in propositional, first-order,
and some modal logics [4,14,31], and (2) implicates are defined using entailment,
which as already stated is too strong for our purpose.

Descriptive Complexity. Second-order Horn logic is often the focus in
descriptive complexity [23], which studies how expressive a logic must be to
describe a given formal language. For instance, Grädel showed that existential
second-order Horn logic can describe all polynomial-time algorithms [17]. In this
paper, we do not study the expressiveness of the logic but whether the logic can
be logically reduced.

Higher-Order Calculi. SLD-resolution on second-order clauses, as used in
this paper, supports the unification of predicate variables. By contrast, there
are extensions of SLD-resolution and standard resolution that handle the full
expressivity of higher-order logic [7,22]. These richer extensions handle more

SLD-Resolution Reduction of Second-Order Horn Fragments 263

complex clauses, e.g. clauses including function symbols and λ-terms. We do not
consider such complex clauses because most ILP approaches use second-order
Horn clauses to learn function-free first-order Horn programs [1,10,15,25,35].
Extending our results to full higher-order logic is left for future work.

Second-Order Logic Templates. McCarthy [32] and Lloyd [30] advocated
using second-order logic to represent knowledge. Similarly, in [36], the authors
argued for using second-order representations in ILP to represent knowledge.
As mentioned in the introduction, many forms of ILP use second-order Horn
clauses as a form of declarative bias [39] to denote the structure of rules that
may be induced. However, most approaches either (1) assume correct templates
as input, or (2) use clauses without any theoretical justifications. Recent work
[9] has attempted to address this issue by reasoning about the completeness of
these templates, where the goal is to identify finite sets of templates sufficiently
expressive to induce all logic programs in a given fragment. Our work contributes
to this goal by exploring the derivation redundancy of sets of templates.

Derivation Reduction. In earlier work [12] we introduced the derivation
reduction problem and a simple algorithm to compute reduction cores. We also
experimentally studied the effect of using derivationally reduced templates on
ILP benchmarks. Whereas our earlier paper mainly focuses on the application of
derivation reduction to ILP, the current paper investigates derivation reduction
itself in a broader perspective, with more emphasis on whether infinite frag-
ments can be reduced to finite subsets. Another main distinction between the
two papers is that here we focus on derivation reduction modulo first-order vari-
able unification. The overlap includes the definition of derivation reduction and
Sect. 4.2 in [12] which covers in less detail the same topic as our Sect. 6.

3 Problem Statement and Decidability

We now define the derivation reduction problem, i.e. the problem of removing
derivationally redundant clauses from a clausal theory.

3.1 Preliminaries

We focus on function-free second-order Horn logic. We assume infinite enumer-
able sets of term variables {x1, x2, . . .} and predicate variables {P , P0, P1, . . .}.
An atom P (xk1 , . . . , xka

) consists of a predicate variable P of arity a followed
by a term variables. A literal is an atom (positive literal) or the negation of an
atom (negative literal). A clause is a finite disjunction of literals. A Horn clause
is a clause with at most one positive literal. From this point on, we omit the
term Horn because all clauses in the rest of the paper are Horn clauses (λ-free
function-free second-order Horn clauses to be precise). The positive literal of a
clause C, when it exists, is its head and is denoted as h(C). The set of negative
literals of C is called its body and is denoted as b(C). The clause C is written
as h(C) ← b(C). We denote the empty clause as �. We denote the number of

264 S. Tourret and A. Cropper

literals occurring in b(C) as |b(C)|, i.e. the body size of C. A theory T is a set
of clauses.

A substitution σ is a function mapping term variables to term variables, and
predicate variables to predicate variables with the same arity. The application
of a substitution σ to a clause C is written Cσ. A substitution σ is a unifier of
two literals when they are equal after substitution. A substitution σ is a most
general unifier of two literals, denoted as m.g.u., when no smaller substitution
is also a unifier of the two literals, i.e. there exist no σ′ and γ such that σ′

unifies the two literals and σ = σ′ ◦ γ. The variables in a clause are implicitly
universally quantified. In practice, ILP approaches typically use existentially
quantified predicate variables [1,9,15,35]. However, we ignore the quantification
of the predicate variables because we are not concerned with the semantics of
the clauses, only their syntactic form.

3.2 Derivation Reduction

The derivation reduction problem can be defined for any proof system but we
focus on SLD-resolution [26] because of the direct application to ILP. SLD-
resolution is a restricted form of resolution [41] based on linear resolution with
two main additional constraints (1) it is restricted to Horn clauses, and (2) it
does not use factors, where factoring unifies two literals in the same clause during
the application of the resolution inference rule (this implies that all resolvents
are binary resolvents). SLD-resolution is usually defined for first-order logic. To
apply it to the second-order clauses in this paper, we replace the standard notion
of a m.g.u. with the one defined in the previous paragraph that also handles
predicate variables. An SLD-resolution inference is denoted as C1, C2 � C where
the necessary m.g.u. is implicitly applied on C. The clauses C1 and C2 are the
premises and C is the resolvent of the inference. The literal being resolved upon
in C1 and C2 is called the pivot of the resolution. We define a function Sn(T) of
a theory T as:

S0(T) = T
Sn(T) = {C|C1 ∈ Sn−1(T), C2 ∈ T, s.t. C1, C2 � C}

The SLD-closure of a theory T is defined as:

S∗(T) =
⋃

n∈N

Sn(T)

A clause C is derivable from the theory T , written T �∗ C, if and only if C ∈
S∗(T). Given a theory T , a clause C ∈ T is reducible if it is the resolvent of
an inference whose premises all belong to T and have a body size smaller than
|b(C)|. A clause C is redundant in the theory T ∪ {C} if and only if T �∗ C. By
extension, a theory T is redundant to another theory T ′ ⊆ T if for all C ∈ T ,
T ′ �∗ C. A theory is reduced if and only if it does not contain any redundant
clauses. We state the reduction problem:

SLD-Resolution Reduction of Second-Order Horn Fragments 265

Definition 1 (Reduction Problem). Given a possibly infinite theory T , the
reduction problem is to find a finite theory T ′ ⊆ T such that (1) T is redundant
to T ′, and (2) T ′ is reduced. In this case, we say that T ′ is a reduction core
of T .

Note that in the case of a finite theory T , the existence of a reduction core is
obvious since at worst it is T itself. However, for arbitrary theories it is impossible
to compute or a reduction core because the derivation reduction problem is
undecidable [12].

4 Fragments of Interest in H
From Sect. 5 onwards we study whether derivationally reduced theories exist
for various fragments of Horn logic. Horn logic with function symbols has the
expressive power of Turing machines and is consequently undecidable [45], hence
ILP approaches typically learn programs without function symbols [37], which
are decidable [13]. We therefore focus on function-free Horn clauses. We denote
the set of all second-order function-free Horn clauses as H.

We further impose syntactic restrictions on clauses in H principally on the
arity of the literals and on the number of literals in the clauses. Let us consider
a fragment F of H. We write Fa,b to denote clauses in F that contain literals
of arity at most a and clauses of body size at most b. For example, the clause
P0(x1) ← P1(x2, x3, x4) is in H3,1. When one of these restrictions is not imposed,
the symbol ∞ replaces the corresponding number. When restrictions are imposed
on a fragment that is already restricted, the stricter restrictions are kept. For
example, (H4,1)3,∞ = H3,1 = H4,1 ∩ H3,∞. We rely on the body size restriction
to bound the reduction cores of the studied fragments.

We also constrain the fragments so that they are defined modulo variable
renaming and so that only the most general clauses up to variable unification
are considered. Let C be a clause verifying the syntactic restrictions of a given
fragment F . Then there exists a clause CF ∈ F such that CFσ = C for some
substitution σ. The motivation behind this restriction is that SLD-resolution
only applies m.g.u.s and not any unifiers but some clauses like C ′ may need
more specific unifiers to be generated and can thus be unreachable by SLD-
resolution. This is not restrictive because up to variable renaming any such C ′

can be obtained from C by renaming and unifying variables.

Definition 2 (Reducible fragment). A fragment F of H is reducible to F∞,b

when, for all C ∈ F such that b < |b(C)|, there exists b′ < |b(C)| such that
F∞,b′ � C, i.e. C is the resolvent of an inference with premises in F∞,b′ .

The following results are consequences of this definition and of the reduction
problem statement.

Proposition 3 (Reduciblility). If a fragment F is reducible to F∞,b then F
is redundant to F∞,b.

266 S. Tourret and A. Cropper

Theorem 4 (Cores of Reducible Fragments). If a fragment F is reducible
to F∞,b then the solutions of the reduction problem for F and F∞,b are the same,
i.e. the reduction cores of F and F∞,b are the same.

Because we are motivated by applications in ILP, we focus on connected
clauses [1,9,15,25,37]:

Definition 5 (Connected Fragment). A clause is connected if the literals in
the clause cannot be partitioned into two non-empty sets such that the variables
appearing in the literals of one set are disjoint from the variables appearing in
the literals of the other set. The connected fragment, denoted as Hc, is the subset
of H where all clauses are connected.

Example 6. The clause C1 = P0(x1, x2) ← P1(x3, x1), P2(x2), P3(x3) is in Hc,
but the clause C2 = P0(x1, x2) ← P1(x3, x4), P2(x2), P3(x3) is not because none
of the variables in P0 and P2 (x1 and x2) appear in P1 and P3 and vice versa.

A stricter version of connectedness, denoted here as 2-connectedness,
describes the fragment that is used the most in ILP [9]. It essentially eliminates
singleton variables.

Definition 7 (2-Connected Fragment). The 2-connected fragment, denoted
as H2c, is the subset of Hc such that all the term variables occur at least twice
in distinct literals. In this context, a term variable that does not follow this
restriction is denoted as pending.

Example 8. The clause C1 from Example 6 is in H2c because x1 is in P0 and
P1, x2 is in P0 and P2, and x3 is in P1 and P3. By contrast, the clause C3 =
P0(x1, x2) ← P1(x3, x1), P2(x1), P3(x3) is in Hc but not in H2c because x2 only
occurs once and is thus pending.

Note that the simple syntactic restrictions can be combined with both connect-
edness and 2-connectedness. In the following sections we consider the reduction
problem for Hc (Sect. 5), H2c

2,∞ (Sect. 6), and H2c
3,∞ (Sect. 7).

5 The Fragment Hc Is Reducible to Hc
∞,2

We now study whether certain fragments can be reduced. Our first focus is on the
fragment Hcwhich contains all connected clauses. We are primarily interested
in whether this fragment can be reduced using SLD-resolution to a minimal
fragment, preferably with only two literals in the body (Hc

∞,2).

5.1 Graph Encoding

To prove the reducibility of Hc we consider Hc
a,∞ for any a ∈ N

∗ and show that
it can be reduced to Hc

a,2. To reduce all clauses in Hc
a,∞ of body size greater

than two, we rely on the following graph encoding to create connected premises
to infer C. We assume reader familiarity with basic notions of graph theory,
in particular, notions of spanning trees, connected graphs, degree of vertices and
outgoing edges (from a set of vertices).

SLD-Resolution Reduction of Second-Order Horn Fragments 267

P0P2P3 P4 P1
x1 x2 x5x4

Fig. 1. Encoding of C = P0(x1, x2) ← P2(x1, x3, x4), P3(x4), P4(x2, x5), P1(x5, x6)
where vertices correspond to literals and edges represent variables shared by two literals

Definition 9 (Graph Encoding). Let C be a clause in Hc
m,∞. The undirected

graph GC is such that:

– There is a bijection between the vertices of GC and the predicate variable
occurrences in C (head and body).

– There is an edge in GC between each pair of vertices for each corresponding
pair of literals that share a common term variable. The edge is labeled with
the corresponding variable.

Example 10. C = P0(x1, x2) ← P2(x1, x3, x4), P3(x4), P4(x2, x5), P1(x5, x6)
is mapped to GC as illustrated in Fig. 1. Note that since the variables x3

and x6 occur only in P2 and P1 respectively, they are not present in GC .
In fact GC also represents many other clauses, e.g. P1(x5, x5) ← P0(x2, x1),
P2(x4, x3, x1), P3(x4), P4(x2, x5).

This graph encoding allows us to focus on connectivity, as stated in the
following proposition.

Proposition 11. Let C ∈ H. The graph GC is connected if and only if C ∈ Hc.

In other words, the notion of connectedness that we introduced for clauses in Def-
inition 5 is equivalent to graph connectedness when encoding the clauses in graph
form using Definition 9. Because we are only interested in connected clauses, we
only handle connected graphs.

5.2 Reducibility of Hc

Proposition 12 is the main intermediary step in the proof of reducibility of the
connected fragment (Theorem 13). A detailed proof of this result is available in
the technical report version of this paper [46].

Proposition 12 (Spanning Tree). For any clause C ∈ Hc
a,∞, a ∈ N

∗, there
exists a spanning tree of GC in which there exist two adjacent vertices such that
the number of edges outgoing from this pair of vertices is at most a.

Proof sketch. Assuming no such pair of vertices exists in any spanning tree of
GC , we show in a case analysis that it is always possible to transform a spanning
tree into another one where such a pair exists, a contradiction.

The main result of this section is the next theorem stating that any connected
fragment of constrained arity has a reduction core containing clauses of body
size at most two.

268 S. Tourret and A. Cropper

Theorem 13 (Reducibility of Hc
a,∞). For any a ∈ N

∗, Hc
a,∞ is reducible to

Hc
a,2.

Proof. Let a ∈ N
∗ be fixed and C = P0(..) ← P1(..), .., Pk(..) ∈ Hc

a,∞ (k ≥ 3).
By applying Proposition 12, it is possible to identify two adjacent vertices v
and v′ in GC such that there exists a spanning tree S of GC where the number
of edges outgoing from the pair v, v′ is less than or equal to a. Let Pv and
Pv′ be the predicate variables respectively corresponding to v and v′ in C. Let
x1, .., xa′ (a′ ≤ a) be the variables corresponding to the edges outgoing from
the pair of vertices v, v′. Let P ′

0 be an unused predicate variable of arity a′. We
define: C1 = P0(..) ← P ′

0(x1, .., xa′), P1(..), .., Pk(..)\{Pv(..), Pv′(..)} and C2 =
P ′
0(x1, .., xa′) ← Pv(..), Pv′(..). These clauses are such that C1, C2 ∈ Hc

a′,∞ and
C1, C2 � C modulo variable unification.1 Thus, C is reducible.

We extend this result to the whole connected fragment.

Theorem 14 (Reducibility of Hc). The fragment Hc is reducible to Hc
∞,2.

Note that Theorem 14 does not imply that Hc has a reduction core because
Hc

∞,2 is also infinite. In fact, since it is not possible to increase the arity of
literals through SLD-resolution, any fragment where this arity is not constrained
is guaranteed to have no reduction core since at least one literal of each arity
must occur in it and the number of literals that occur in a clause is finite.

6 Reducibility of H2c
2,∞

We now consider the reducibility of H2c
2,∞. The restriction to monadic and dyadic

literals is common not only in ILP [1,6,15,35] but also in description logics [2]
and in ontology reasoning [21]. Although this fragment is only slightly more
constrained than Hc

2,∞, itself reducible to Hc
2,2, we show that it is impossible to

reduce H2c
2,∞ to any size-constrained sub-fragment. To do so we exhibit a subset

Hnr in H2c
2,∞ that cannot be reduced. This set contains clauses of arbitrary size.

In practice, this means that in H2c
2,∞ given any integer k it is possible to exhibit a

clause of body size superior or equal to k that cannot be reduced, thus preventing
H2c

2,∞ itself to be reducible to H2c
2,k no matter how big k is. We start by defining

the clause Cbase ∈ Hnr.

Definition 15 (Cbase).

Cbase = P0(x1, x2) ← P1(x1, x3), P2(x1, x4), P3(x2, x3), P4(x2, x4), P5(x3, x4).

In Cbase all the literals are symmetrical to each other. Each literal (vertex) has
(1) two neighbours connected by their first variable, (2) two other neighbours
connected by their second variable, and (3) another literal that it is not con-
nected to but which all the other literals are. This symmetry is better seen on

SLD-Resolution Reduction of Second-Order Horn Fragments 269

P0

P1

P2

P3

P4

P5

x1

x1

x1

x2

x2

x2

x3

x3
x3

x4

x4 x4

(a) Graph encoding of Cbase,
GCbase

P1 P2x1

x1 x1

x2 x3

x2 x3

P1 P2

P3

P4 P5

x1

x4

x4

x4

x5

x5

x5

x1 x1

x2 x3

x2 x3

(b) Partial graph encoding of a clause before and after a non-red
preserving transformation

Fig. 2. Graph encoding of Hnr base and construction rule (Color figure online)

the graphical representation of Cbase in Fig. 2a. For example P0 does not share
literals with P5 but does with all other predicates.

Proposition 16 (Non-reducibility of Cbase). Cbase is irreducible.

Proof. To derive Cbase from two smaller clauses, these two smaller clauses C1

and C2 must form a partition of the literals in Cbase if one excludes the pivot. To
solve this problem, we partition the vertices of GCbase

in two sets and count the
number of edges with distinct labels that link vertices from the two sets. These
edges correspond to pending variables in one of the sets, i.e. to the variables that
must occur in the pivot that will be added in both sets to form C1 and C2. If there
are more than two of these variables, the pivot cannot contain all of them, thus at
least one of C1 and C2 is not in H2c

2,∞ for lack of 2-connectivity. Each of the two
sets in the partition must contain at least two elements, otherwise one of C1, C2

is as big as Cbase which does not make Cbase reducible even though it is derivable
from C1, C2. The symmetries in GCbase

are exploited to reduce the number of
cases to consider to only four that vary along two dimensions: the cardinalities
of the two subsets, either 2-4 or 3-3 respectively; and the connectedness of the
subsets. In the 2-4 partition, only the following cases or symmetric ones are
possible:

– if {P0, P5} is the subset of cardinality 2 in a 2-4 partition, then the edges
outgoing from this subset, connecting the two subsets and that correspond
to pending variables, are labeled with x1, x2, x3 and x4;

– if {P0, P1} is the subset of cardinality 2 in a 2-4 partition, then the outgoing
edges are labeled with x1, x2 and x3.

All the remaining 2-4 cases where P0 is in the subset of cardinality 2 are sym-
metric to this case. The other 2-4 cases are symmetric to either one of these two
cases. Similarly, all the 3-3 partition are symmetric to one of the following cases:
1 Some connections may be lost between variables in C1 and C2 since only the ones

occurring in the spanning tree S are preserved. However, they can be recovered by
unifying the disconnected variables together in the resolvent.

270 S. Tourret and A. Cropper

– if {P0, P1, P2} is one of the subsets in a 3-3 partition then the outgoing edges
are labeled with x2, x3 and x4;

– if {P0, P1, P4} is one of the subsets in a 3-3 partition then the outgoing edges
are labeled with x1, x2, x3 and x4.

In all cases, there are 3 or more distinct labels on the edges between the two
subsets, corresponding to pending variables, thus Cbase is irreducible. Note that
this proof works because there are exactly three occurrences of each variable in
Cbase. Otherwise it would not be possible to match the labels with the pending
variables.

We define a transformation that turns a clause into a bigger clause (Defini-
tion 17) such that when applied to an irreducible clause verifying some syntactic
property, the resulting clause is also irreducible (Proposition 18).

Definition 17 (Non-red Preserving Extension). Let the body of a clause
C ∈ H2c

2,∞ contain two dyadic literals sharing a common variable, e.g. P1(x1, x2)
and P2(x1, x3), without loss of generality. A non-red preserving extension of C is
any transformation which replaces two such literals in C by the following set of
literals: P1(x1, x4), P2(x1, x5), P3(x4, x5), P4(x4, x2), P5(x5, x3) where P3, P4,
P5, x4 and x5 are new predicate and term variables.

Proposition 18 (Non-red Preserving Extension). If a clause C is irre-
ducible and all the term variables it contains occur three times then any non-red
preserving extension of C is also irreducible.

Proof sketch. We assume that a non-red preserving extension of C is reducible
and we use a case analysis to show that this implies that C is also reducible,
a contradiction. This proof heavily exploits the symmetry that can be seen on
Fig. 2b to reduce the number of cases to consider.

Starting from Cbase and using this extension, we define Hnr formally (Defi-
nition 19) and, as a consequence of Proposition 18, Hnr contains only irreducible
clauses (Proposition 20).

Definition 19 (Non-reducible Fragment). The subset Hnrof H2c
2,∞ contains

Cbase and all the clauses that can be obtained by applying a non-red extension to
another clause in Hnr.

Proposition 20 (Non-reducibility of Hnr). For all C ∈ Hnr, C is
irreducible.

The non-reducibility of Hnr ensures that the body size of the clauses in a hypo-
thetical reduction core of H2c

2,∞ cannot be bounded, which in turn prevents the
existence of this reduction core. This result has negative consequences on ILP
approaches that use second-order templates. We discuss these consequences in
the conclusion.

SLD-Resolution Reduction of Second-Order Horn Fragments 271

P0

P1

P2

P3

x1

x2

x3

x5

x4

x6

Fig. 3. GC for C = P0(x1, x2, x3) ← P1(x1, x4, x5), P2(x2, x5, x6), P3(x3, x4, x6)

7 Reducibility of H2c
3,∞

The reducibility of H2c
3,∞ is still an open problem. However, we know that it

cannot be reduced to H2c
3,2.

Theorem 21 (Non-reducibility of H2c
3,2). H2c

3,∞ cannot be reduced to H2c
3,2

Proof. The clause C = P0(x1, x2, x3) ← P1(x1, x4, x5), P2(x2, x5, x6), P3(x3,
x4, x6), shown in graph form in Fig. 3, is a counter-example because any pair
of literals in it contain exactly four pending variables. For example, consider
the following pair of literals: (P1(x1, x4, x5), P0(x1, x2, x3)) leaves x2, x3, x4, x5

pending. By symmetry the same holds for all the other pairs of literals. Thus
none of these pairs can be completed by a triadic (or less) pivot. In addition, the
removal of any single literal from C does not lead to a reduction of the clause
since all the variables occurring in the literal then occur only once in each subset
of the clause. For example, to replace P1(x1, x4, x5), a triadic literal containing
x1, x4 and x5 needs to be added, creating a clause identical to C up to the name
of one predicate variable and the order of the term variables in it. Therefore C
is irreducible in H2c

3,∞, thus H2c
3,∞ cannot be reduced to H2c

3,2.

In addition to this result, for lack of finding a reduction to P0(x1, x2, x3) ←
P1(x1, x5, x6), P2(x2, x4, x8), P3(x6, x7, x8), P4(x4, x5, x7), P5(x3, x4, x7) (not
formally proved) we conjecture that H2c

3,∞ cannot be reduced to H2c
3,4. Clarifying

this situation and that of any H2c
a,∞ with a ≥ 3 is left as future work.

8 Extension to Standard Resolution

Although we introduced the derivation reduction problem for SLD-resolution,
the principle applies to any standard deductive proof system, and in particular,
it can be applied to standard resolution, extended from first to second-order logic
in the same way that was used for SLD-resolution. Given that SLD-resolution is
but a restriction of resolution, the positive reducibility result for Hc

2,∞ is directly
transferable to standard resolution. On the contrary, the fragment H2c

2,∞, that we
proved irreducible with SLD-resolution, can be reduced to H2c

2,2 with standard
resolution.

Theorem 22 (ReducibilityR of H2c
2,∞). H2c

2,∞ is reducibleR to H2c
2,2

272 S. Tourret and A. Cropper

Proof sketch. We first analyse the structure of C and show how to reduce C in
the simple cases where it is also possible to reduce C using SLD-resolution. We
are then left to consider clauses where C contains only dyadic predicates, no two
predicates in C have the same pair of variables and all variables occur exactly
three times in C. An example of such clauses is the Hnr family from Sect. 6.
Then we present a method to reduceR such a clause C. The key point that
justifies Theorem 22 is that in standard resolution, factorisation is allowed and
thus allows inferences that remove duplicate literals. The removal of duplicate
literals would be also possible with SLD-resolution but only when the fragment
contains bodyless clauses which is prevented by 2-connectedness.

Let us consider an example of additional inferences allowed with resolution
but not with SLD-resolution in the H2c

2,∞ fragment, that make the Cbase clause
redundant:

P0(x1, x2) ← P1(x1, x3), P2(x1, x4), P3(x2, x3),H(x2, x4)
H ′(x′

2, x
′
4) ← P ′

3(x
′
2, x

′
3), P

′
4(x

′
2, x

′
4), P

′
5(x

′
3, x

′
4)

P0(x1, x2) ← P1(x1, x3), P2(x1, x4), P3(x2, x3), P ′
3(x2, x

′
3), P

′
4(x2, x4), P ′

5(x
′
3, x4)

P0(x1, x2) ← P1(x1, x3), P2(x1, x4), P3(x2, x3), P ′
4(x2, x4), P ′

5(x3, x4)

The first step is a resolution that unifies H ′ with H, x′
2 with x2 and x′

4 with
x4 and uses H(x2, x4) as pivot. The second step is a factorisation that unifies
P ′
3 with P3, and x′

3 with x3. The result is Cbase up to variable renaming.
Finally, the result that we presented for H2c

3,∞ is also transferable from SLD-
to standard resolution since the proof of Theorem21 remains the same. This is
because the size of the considered clauses does not allow for the kind of resolution
inferences that make Theorem 22 possible. Table 1 summarises our findings and
their extension to standard resolution.

9 Conclusion

We have introduced the derivation reduction problem for second-order Horn
clauses (H), i.e. the undecidable problem of finding a finite subset of a set
of clauses from which the whole set can be derived using SLD-resolution. We
have considered the derivation reducibility of several fragments of H, for which
the results are summarised in Table 1. We have also extended the results from
SLD-resolution to standard resolution. Further work is necessary to clarify the
situation for H2c

3,∞ and for fragments with higher arity constraints.
Although we have positive results regarding the reducibility of certain frag-

ments, we have not identified the reductions of those fragments, nor have
we provided any results regarding the cardinality of the reductions. Future
work should address this limitation by introducing algorithms to compute the
reductions.

Our results have direct implications in ILP. As described in the introduction,
many ILP systems use second-order Horn clauses as templates to define the
hypothesis space. An open question [8,9,35] is whether there exists finite sets of

SLD-Resolution Reduction of Second-Order Horn Fragments 273

Table 1. Summary of the results. When a fragment is preceded with > the entry must
be read as “no reduction up to this fragment”. The word possibly precedes results that
have not been proved and are only conjectured.

Fragment Reducibility

SLD-resolution Standard resolution

Hc Hc
∞,2 Hc

∞,2

H2c
2,∞ no H2c

2,2

H2c
3,∞ > H2c

3,2 > H2c
3,2

possibly > H2c
3,4 possibly > H2c

3,4

such clauses from which these systems could induce any logic program in a spe-
cific fragment of logic. Proposition 20 shows that for the H2c

2,∞ fragment, which
is often the focus of ILP, the answer is no. This result implies that ILP systems,
such as Metagol [11] and HEXMIL [25], are incomplete in that they cannot learn
all programs in this fragment without being given an infinite set of clauses (these
approaches require a finite set of such clauses hence the incompleteness).

Our work now opens up a new challenge of overcoming this negative result
for H2c

2,∞ (and negative conjectures for H2c
3,∞). One possible solution would be

to allow the use of triadic literals as pivot in inferences in specific cases where
SLD-resolution fails to derive the desired clause, but this idea requires further
investigation.

Acknowledgements. The authors thank Katsumi Inoue and Stephen Muggleton for
discussions on this work.

References

1. Albarghouthi, A., Koutris, P., Naik, M., Smith, C.: Constraint-based synthesis of
datalog programs. In: Beck, J.C. (ed.) CP 2017. LNCS, vol. 10416, pp. 689–706.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66158-2 44

2. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description
Logic. Cambridge University Press, Cambridge (2017)

3. Balcázar, J.L.: Redundancy, deduction schemes, and minimum-size bases for asso-
ciation rules. Log. Methods Comput. Sci. 6(2), 1–33 (2010)

4. Bienvenu, M.: Prime implicates and prime implicants in modal logic. In: Proceed-
ings of the National Conference on Artificial Intelligence, vol. 22, p. 379. AAAI
Press/MIT Press, Menlo Park/Cambridge (2007)

5. Buntine, W.: Generalized subsumption and its applications to induction and
redundancy. Artif. Intell. 36(2), 149–176 (1988). https://doi.org/10.1016/0004-
3702(88)90001-X

6. Campero, A., Pareja, A., Klinger, T., Tenenbaum, J., Riedel, S.: Logical rule induc-
tion and theory learning using neural theorem proving. ArXiv e-prints, September
2018

https://doi.org/10.1007/978-3-319-66158-2_44
https://doi.org/10.1016/0004-3702(88)90001-X
https://doi.org/10.1016/0004-3702(88)90001-X

274 S. Tourret and A. Cropper

7. Charalambidis, A., Handjopoulos, K., Rondogiannis, P., Wadge, W.W.: Exten-
sional higher-order logic programming. ACM Trans. Comput. Log. 14(3), 21:1–
21:40 (2013). https://doi.org/10.1145/2499937.2499942

8. Cropper, A.: Efficiently learning efficient programs. Ph.D. thesis, Imperial College
London, UK (2017)

9. Cropper, A., Muggleton, S.H.: Logical minimisation of meta-rules within meta-
interpretive learning. In: Davis, J., Ramon, J. (eds.) ILP 2014. LNCS (LNAI),
vol. 9046, pp. 62–75. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
23708-4 5

10. Cropper, A., Muggleton, S.H.: Learning higher-order logic programs through
abstraction and invention. In: Kambhampati, S. (ed.) Proceedings of the Twenty-
Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016, 9–15
July 2016, New York, pp. 1418–1424. IJCAI/AAAI Press (2016)

11. Cropper, A., Muggleton, S.H.: Metagol system (2016). https://github.com/
metagol/metagol

12. Cropper, A., Tourret, S.: Derivation reduction of metarules in meta-interpretive
learning. In: Proceedings of Inductive Logic Programming - 28th International
Conference, ILP 2018, 2–4 September 2018, Ferrara, Italy, pp. 1–21 (2018). https://
doi.org/10.1007/978-3-319-99960-9 1

13. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power
of logic programming. ACM Comput. Surv. 33(3), 374–425 (2001). https://doi.
org/10.1145/502807.502810

14. Echenim, M., Peltier, N., Tourret, S.: Quantifier-free equational logic and prime
implicate generation. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS
(LNAI), vol. 9195, pp. 311–325. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-21401-6 21

15. Evans, R., Grefenstette, E.: Learning explanatory rules from noisy data. J. Artif.
Intell. Res. 61, 1–64 (2018). https://doi.org/10.1613/jair.5714

16. Gottlob, G., Fermüller, C.G.: Removing redundancy from a clause. Artif. Intell.
61(2), 263–289 (1993)

17. Grädel, E.: The expressive power of second order Horn logic. In: Choffrut, C.,
Jantzen, M. (eds.) STACS 1991. LNCS, vol. 480, pp. 466–477. Springer, Heidelberg
(1991). https://doi.org/10.1007/BFb0020821

18. Hemaspaandra, E., Schnoor, H.: Minimization for generalized Boolean formulas.
In: IJCAI Proceedings-International Joint Conference on Artificial Intelligence, vol.
22, p. 566 (2011)

19. Heule, M., Järvisalo, M., Lonsing, F., Seidl, M., Biere, A.: Clause elimination for
SAT and QSAT. J. Artif. Intell. Res. 53, 127–168 (2015)

20. Hillenbrand, T., Piskac, R., Waldmann, U., Weidenbach, C.: From search to com-
putation: redundancy criteria and simplification at work. In: Voronkov, A., Wei-
denbach, C. (eds.) Programming Logics. LNCS, vol. 7797, pp. 169–193. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-37651-1 7

21. Hohenecker, P., Lukasiewicz, T.: Deep learning for ontology reasoning. CoRR
abs/1705.10342 (2017)

22. Huet, G.P.: A mechanization of type theory. In: Proceedings of the 3rd Interna-
tional Joint Conference on Artificial Intelligence, pp. 139–146 (1973)

23. Immerman, N.: Descriptive Complexity. Springer, New York (2012). https://doi.
org/10.1007/978-1-4612-0539-5

24. Joyner Jr., W.H.: Resolution strategies as decision procedures. J. ACM 23(3),
398–417 (1976). https://doi.org/10.1145/321958.321960

https://doi.org/10.1145/2499937.2499942
https://doi.org/10.1007/978-3-319-23708-4_5
https://doi.org/10.1007/978-3-319-23708-4_5
https://github.com/metagol/metagol
https://github.com/metagol/metagol
https://doi.org/10.1007/978-3-319-99960-9_1
https://doi.org/10.1007/978-3-319-99960-9_1
https://doi.org/10.1145/502807.502810
https://doi.org/10.1145/502807.502810
https://doi.org/10.1007/978-3-319-21401-6_21
https://doi.org/10.1007/978-3-319-21401-6_21
https://doi.org/10.1613/jair.5714
https://doi.org/10.1007/BFb0020821
https://doi.org/10.1007/978-3-642-37651-1_7
https://doi.org/10.1007/978-1-4612-0539-5
https://doi.org/10.1007/978-1-4612-0539-5
https://doi.org/10.1145/321958.321960

SLD-Resolution Reduction of Second-Order Horn Fragments 275

25. Kaminski, T., Eiter, T., Inoue, K.: Exploiting answer set programming with exter-
nal sources for meta-interpretive learning. In: 34th International Conference on
Logic Programming (2018)

26. Kowalski, R.A.: Predicate logic as programming language. In: IFIP Congress, pp.
569–574 (1974)

27. Langlois, M., Mubayi, D., Sloan, R.H., Turán, G.: Combinatorial problems for Horn
clauses. In: Lipshteyn, M., Levit, V.E., McConnell, R.M. (eds.) Graph Theory,
Computational Intelligence and Thought. LNCS, vol. 5420, pp. 54–65. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02029-2 6

28. Liberatore, P.: Redundancy in logic I: CNF propositional formulae. Artif. Intell.
163(2), 203–232 (2005). https://doi.org/10.1016/j.artint.2004.11.002

29. Liberatore, P.: Redundancy in logic II: 2CNF and Horn propositional formulae.
Artif. Intell. 172(2–3), 265–299 (2008). https://doi.org/10.1016/j.artint.2007.06.
003

30. Lloyd, J.: Logic for Learning. COGTECH. Springer, Heidelberg (2003). https://
doi.org/10.1007/978-3-662-08406-9

31. Marquis, P.: Consequence finding algorithms. In: Kohlas, J., Moral, S. (eds.) Hand-
book of Defeasible Reasoning and Uncertainty Management Systems, pp. 41–145.
Springer, Dordrecht (2000). https://doi.org/10.1007/978-94-017-1737-3

32. McCarthy, J.: Making robots conscious of their mental states. In: Machine Intelli-
gence 15, Intelligent Agents, July 1995, pp. 3–17. St. Catherine’s College, Oxford
(1995)

33. Muggleton, S.: Inductive logic programming. New Gener. Comput. 8(4), 295–318
(1991)

34. Muggleton, S.: Inverse entailment and Progol. New Gener. Comput. 13, 245–286
(1995)

35. Muggleton, S., Lin, D., Tamaddoni-Nezhad, A.: Meta-interpretive learning of
higher-order dyadic datalog: predicate invention revisited. Mach. Learn. 100(1),
49–73 (2015)

36. Muggleton, S., et al.: ILP turns 20 - biography and future challenges. Mach. Learn.
86(1), 3–23 (2012). https://doi.org/10.1007/s10994-011-5259-2

37. Nienhuys-Cheng, S.H., De Wolf, R.: Foundations of Inductive Logic Programming.
Springer, New York (1997). https://doi.org/10.1007/3-540-62927-0

38. Plotkin, G.: Automatic methods of inductive inference. Ph.D. thesis, Edinburgh
University, August 1971

39. Raedt, L.D.: Declarative modeling for machine learning and data mining. In: Pro-
ceedings of Algorithmic Learning Theory - 23rd International Conference, ALT, p.
12 (2012). https://doi.org/10.1007/978-3-642-34106-9 2

40. Raedt, L.D., Bruynooghe, M.: Interactive concept-learning and constructive
induction by analogy. Mach. Learn. 8, 107–150 (1992). https://doi.org/10.1007/
BF00992861

41. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM
12(1), 23–41 (1965). https://doi.org/10.1145/321250.321253

42. Rocktäschel, T., Riedel, S.: End-to-end differentiable proving. In: Guyon, I., et al.
(eds.) Advances in Neural Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, pp. 3791–3803 (2017)

43. Sato, T.: Equivalence-preserving first-order unfold/fold transformation sys-
tems. Theor. Comput. Sci. 105(1), 57–84 (1992). https://doi.org/10.1016/0304-
3975(92)90287-P

https://doi.org/10.1007/978-3-642-02029-2_6
https://doi.org/10.1016/j.artint.2004.11.002
https://doi.org/10.1016/j.artint.2007.06.003
https://doi.org/10.1016/j.artint.2007.06.003
https://doi.org/10.1007/978-3-662-08406-9
https://doi.org/10.1007/978-3-662-08406-9
https://doi.org/10.1007/978-94-017-1737-3
https://doi.org/10.1007/s10994-011-5259-2
https://doi.org/10.1007/3-540-62927-0
https://doi.org/10.1007/978-3-642-34106-9_2
https://doi.org/10.1007/BF00992861
https://doi.org/10.1007/BF00992861
https://doi.org/10.1145/321250.321253
https://doi.org/10.1016/0304-3975(92)90287-P
https://doi.org/10.1016/0304-3975(92)90287-P

276 S. Tourret and A. Cropper

44. Si, X., Lee, W., Zhang, R., Albarghouthi, A., Koutris, P., Naik, M.: Syntax-guided
synthesis of datalog programs. In: Leavens, G.T., Garcia, A., Pasareanu, C.S.
(eds.) Proceedings of the 2018 ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering,
ESEC/SIGSOFT FSE 2018, pp. 515–527. ACM (2018). https://doi.org/10.1145/
3236024.3236034

45. Tärnlund, S.: Horn clause computability. BIT 17(2), 215–226 (1977)
46. Tourret, S., Cropper, A.: SLD-resolution reduction of second-order Horn fragments.

Technical report (2018). https://arxiv.org/abs/1902.09900
47. Wang, W.Y., Mazaitis, K., Cohen, W.W.: Structure learning via parameter learn-

ing. In: Proceedings of the 23rd ACM International Conference on Conference on
Information and Knowledge Management, pp. 1199–1208. ACM (2014)

48. Weidenbach, C., Wischnewski, P.: Subterm contextual rewriting. AI Commun.
23(2–3), 97–109 (2010). https://doi.org/10.3233/AIC-2010-0459

https://doi.org/10.1145/3236024.3236034
https://doi.org/10.1145/3236024.3236034
https://arxiv.org/abs/1902.09900
https://doi.org/10.3233/AIC-2010-0459

Conditional, Probabilistic and
Propositional Logic

Systematic Generation of Conditional
Knowledge Bases up to Renaming

and Equivalence

Christoph Beierle(B) and Steven Kutsch

Faculty of Mathematics and Computer Science, FernUniversität in Hagen,
58084 Hagen, Germany

beierle@fernuni-hagen.de

Abstract. A conditional of the form “If A then usually B” establishes
a plausible connection between A and B, while still allowing for excep-
tions. A conditional knowledge base consists of a finite set of condition-
als, inducing various nonmonotonic inference relations. Sets of knowledge
bases are of interest for, e.g., experimenting with systems implementing
conditional reasoning and for empirically evaluating them. In this paper,
we present an approach for systematically generating knowledge bases
over a given signature. The approach is minimal in the sense that no two
knowledge bases are generated that can be transformed into each other
by a syntactic renaming or that are elementwise equivalent. Further-
more, the approach is complete in the sense that, taking renamings and
equivalences into account, every consistent knowledge base is generated.

Keywords: Conditional · Normal form conditional ·
Canonical normal form conditional · Conditional knowledge base ·
Equivalence · Elementwise equivalence · Renaming · Isomorphism ·
Generation of knowledge bases

1 Introduction

A conditional “if A then usually B”, denoted by (B|A), establishes a plausi-
ble connection between the antecedent A and the consequence B partitions the
set of possible worlds in three parts: those worlds satisfying AB, thus verifying
the conditional, those worlds satisfying AB, thus falsifying the conditional, and
those worlds not fulfilling the premise A and so which the conditional may not
be applied to at all [7]. To give appropriate semantics to conditionals, they are
usually considered within structures providing some kind of ordering on pos-
sible worlds. Examples are Lewis’ system of spheres [13], conditional objects
evaluated using boolean intervals [8], possibility distributions [6], ranking func-
tions [15,16], or special classes of ranking functions like c-representations [10].
A common feature of these semantics is that (B|A) is accepted if its verifica-
tion is considered more plausible, more possible, less surprising, etc. than its

c© Springer Nature Switzerland AG 2019
F. Calimeri et al. (Eds.): JELIA 2019, LNAI 11468, pp. 279–286, 2019.
https://doi.org/10.1007/978-3-030-19570-0_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19570-0_18&domain=pdf
https://doi.org/10.1007/978-3-030-19570-0_18

280 C. Beierle and S. Kutsch

falsification. For a knowledge base R consisting of a set of conditionals, vari-
ous nonmonotonic inference relations induced by R have been proposed, e.g.,
[3,11,12,14]. For their empirical comparison and evaluation, for instance with
the help of implemented reasoning systems like [4], sets of different knowledge
bases are needed. In this paper, we develop an approach for the systematic gen-
eration of conditional knowledge bases. The algorithm we present will generate
precisely all consistent knowledge bases while taking both syntactic renamings
and semantic elementwise equivalence into account.

2 Background: Conditional Logic

Let L be a propositional language over a finite set Σ of atoms a, b, c, The
formulas of L will be denoted by letters A,B,C, We write AB for A∧B and
A for ¬A. We identify the set of all complete conjunctions over Σ with the set
Ω of possible worlds over L. For ω ∈ Ω, ω |= A means that A ∈ L holds in ω. By
introducing a new binary operator |, we obtain the set (L | L) = {(B|A) | A,B ∈
L} of conditionals over L. The counter conditional of a conditional r = (B|A)
is r = (B|A). As an example of semantics for conditionals, consider ordinal
conditional functions, OCFs [16]. An OCF is a function κ : Ω → N expressing
degrees of plausibility of possible worlds where a lower degree denotes “less
surprising”. At least one world must be regarded as being normal; therefore,
κ(ω) = 0 for at least one ω ∈ Ω. Each κ uniquely extends to a function mapping
sentences to N∪{∞} given by κ(A) = min{κ(ω) | ω |= A} where min ∅ = ∞. An
OCF κ accepts a conditional (B|A) if the verification of the conditional is less
surprising than its falsification, i.e., if κ(AB) < κ(AB). A finite set R ⊆ (L|L)
of conditionals is called a knowledge base. An OCF κ accepts R if κ accepts all
conditionals in R, and R is consistent if an OCF accepting R exists [9].

3 Orderings and Normal Forms for Conditionals

Under all semantics for conditionals mentioned above, two conditionals are equiv-
alent if they partition the set of worlds in the same way; thus, (B|A) ≡ (B′|A′)
if A ≡ A′ and AB ≡ A′B′. Furthermore, conditionals that are self-fulfilling
(A |= B) or contradictory (A |= B), called trivial conditionals in the following,
are of little interest because they can not be falsified or verified, respectively.

Definition 1 (�lex , �set induced ordering on strings and sets). For an
ordering relation � on a set M , its lexicographic extension to strings over M
is denoted by �lex . For ordered sets S, S′ ⊆ M with S = {e1, . . . , en} and S′ =
{e′

1, . . . , e
′
n′} where ei � ei+1 and e′

j � e′
j+1 its extension �set to sets is:

S �set S′ iff n < n′, or n = n′ and e1 . . . en �lex e′
1 . . . e′

n′ (1)

As a running example, we will use the signature Σab = {a, b} with the linear
ordering � given by a � b. For Σab we have {a} �.

set{b} and {b} �.
set{a, b}. For

Systematic Generation of Conditional Knowledge Bases 281

any set M with an ordering relation �, as usual, the induced ordering relation
< is defined by m < m′ iff both m � m′ and m′
� m.

For defining a normal form for conditionals, we will use the representation of
a propositional formula F by its set of possible worlds

ΩF = {ω | ω |= F}.

For instance, given Σab, we have Ωa∨b = {ab, ab, ab}. Furthermore, for each
possible world ω over Σ with ordering relation �, [[ω]]

�
denotes the usual inter-

pretation of ω as a binary number; e.g., [[ab]]
�

= 3, [[ab]]
�

= 2, [[ab]]
�

= 1, and
[[ab]]

�
= 0.

Definition 2 (induced ordering on formulas and conditionals). Let Σ
be a signature with linear ordering �. The orderings induced by � on worlds
ω, ω′ and conditionals (B|A), (B′|A′) over Σ are given by:

ω
w
�. ω′ iff [[ω]]

�
� [[ω′]]

�
(2)

(B|A)
c
�. (B′|A′) iff ΩA

w
�set ΩA′ , or ΩA = ΩA′ and ΩB

w
�.

set ΩB′ (3)

In order to ease our notation, we will omit the upper symbol in
w
� and

c
�, and

write just � instead, and analogously �. for the non-strict variants. For instance,
for Σab we have ab � ab � ab � ab for worlds, and (ab|ab ∨ ab) � (ab|ab ∨ ab)
and (ab ∨ ab|ab ∨ ab ∨ ab) � (ab|ab ∨ ab ∨ ab ∨ ab) for conditionals.

We may also use the set ΩF instead of F within a conditional. Using this
notation, in [5] conditionals of the form (B|A) are generated where the conditions
B � A and B
= ∅ ensure the falsifiability and the verifiability of (B|A). This
leads to the following proposition providing an effective characterization of a
complete and minimal set of all nontrivial conditionals over a given signature.

Proposition 1 (NFC (Σ)). For the set of conditionals

NFC (Σ) = {(B|A) | A ⊆ ΩA, B � A, B
= ∅},
called the set of normal form conditionals over a signature Σ, the following
holds:

(nontrivial) NFC (Σ) does not contain any trivial conditional.
(complete) For every nontrivial conditional over Σ there is an equivalent con-

ditional in NFC (Σ).
(minimal) All conditional in NFC (Σ) are pairwise non-equivalent.

For instance, we have ({ab, ab}|{ab, ab}) ≡ ({ab}|{ab, ab}) ∈ NFC (Σab).
Note that the normal form of the counter conditional of ({ab}|{ab, ab}) is
({ab}|{ab, ab}) and not ({ab, ab, ab}|{ab, ab}) since the latter is not in NFC (Σab).
Using sets of worlds as formulas yields 22

|Σ|
different formulas and thus 22

|Σ|×2

different conditionals over Σ. Out of the 256 conditionals over Σab only 50 are
in NFC (Σab); a complete listing of these 50 conditionals is given in Table 1. The
following observation will be exploited for equivalences respecting isomorphisms.

282 C. Beierle and S. Kutsch

Proposition 2 (NFC (Σ)). For every linear ordering � on a signature Σ, the
induced ordering ≺· on conditionals according to Definition 2 is a linear ordering
on NFC (Σ).

4 Knowledge Base Equivalences and Isomorphisms

When systematically generating knowledge bases, we are not interested in merely
syntactic variants. The following notion of equivalence, presented in [2] and gen-
eralized in [1], employs the idea that each piece of knowledge in one knowledge
base directly corresponds to a piece of knowledge in the other knowledge base.

Definition 3 ([2] equivalence ≡ee). Let R, R′ be knowledge bases.

– R is an elementwise equivalent sub-knowledge base of R′, denoted by R ee

R′, if for every conditional (B′|A′) ∈ R′ that is not self-fulfilling there is a
conditional (B|A) ∈ R such that (B|A) ≡ (B′|A′).

– R and R′ are strictly elementwise equivalent if R ee R′ and R′ ee R.
– R and R′ are elementwise equivalent, denoted by R ≡ee R′, if either both

are inconsistent, or both are consistent and strictly elementwise equivalent.

Apart from avoiding to generate elementwise equivalent knowledge bases,
we also want to take isomorphisms into account. For a signature Σ, a function
ρ : Σ → Σ′ is a renaming if ρ is a bijection. For instance, the function ρab with
ρab(a) = b and ρab(b) = a is a renaming for Σab. As usual, ρ is extended canoni-
cally to worlds, formulas, conditionals, knowledge bases, and to sets thereof. For
a set M , m ∈ M , and an equivalence relation ≡ on M , the set of equivalence
classes induced by ≡ is denoted by [M]/≡, and the unique equivalence class
containing m is denoted by [m]≡.

Definition 4 (�). Let X,X ′ be two signatures, worlds, formulas, knowledge
bases, or sets over one of these items. We say that X and X ′ are isomorphic,
denoted by X � X ′, if there exists a renaming ρ such that ρ(X) = X ′.

For instance, [ΩΣab
]/� = {[ab], [ab, ab], [ab]} are the three equivalence classes

of worlds over Σab, and we have [(ab|ab ∨ ab)]� = [(ab|ab ∨ ab)]�.
Given the ordering � on NFC (Σ) from Proposition 2, we will now define a

new ordering ≺· on these conditionals that takes isomorphisms into account and
prioritizes the �-minimal elements in each equivalence class in [NFC (Σ)]/�.

Definition 5 (cNFC (Σ), ≺·). Given a signature Σ with linear ordering �, let
[NFC (Σ)]/� = {[r1]�, . . . , [rm]�} be the equivalence classes of NFC (Σ) induced
by isomorphisms such that for each i ∈ {1, . . . ,m}, the conditional ri is the
minimal element in [ri]� with respect to �, and r1 � . . . � rm.

1. The canonical normal form conditionals over Σ are

cNFC (Σ) = {r1, . . . , rm}.

Systematic Generation of Conditional Knowledge Bases 283

2. The canonical ordering on NFC (Σ), denoted by ≺·, is given by the schema

r1 ≺· . . . ≺· rm ≺· [r1]� \ {r1} ≺· . . . ≺· [rm]� \ {rm}

where r ≺· r′ iff r � r′ for all i ∈ {1, . . . , m} and all r, r′ ∈ [ri]� \ {ri}.

Table 1. Conditionals r01 ≺· . . . ≺· r50 in NFC (Σab) with cNFC (Σ) = {r01, . . . , r31}
for Σab = {a, b},their counter conditionals ri, and their isomorphisms induced equiv-
alence classes [01], . . . , [31]. Formulas in conditionals are given by sets of worlds, and
worlds are represented by their binary number interpretation; e.g., r03: ({3}|{3, 0})
stands for ({ab}|{ab, ab}).

Class First conditional Second conditional Counter conditionals

[01] r01: ({3}|{3, 2}) r32: ({3}|{3, 1}) r01 : r02, r32 : r33

[02] r02: ({2}|{3, 2}) r33: ({1}|{3, 1}) r02 : r01, r33 : r32

[03] r03: ({3}|{3, 0}) r03 : r04

[04] r04: ({0}|{3, 0}) r04 : r03

[05] r05: ({2}|{2, 1}) r34: ({1}|{2, 1}) r05 : r34, r34 : r05

[06] r06: ({2}|{2, 0}) r35: ({1}|{1, 0}) r06 : r07, r35 : r36

[07] r07: ({0}|{2, 0}) r36: ({0}|{1, 0}) r07 : r06, r36 : r35

[08] r08: ({3}|{3, 2, 1}) r08 : r16

[09] r09: ({2}|{3, 2, 1}) r37: ({1}|{3, 2, 1}) r09 : r42, r37 : r15

[10] r10: ({3}|{3, 2, 0}) r38: ({3}|{3, 1, 0}) r10 : r19, r38 : r45

[11] r11: ({2}|{3, 2, 0}) r39: ({1}|{3, 1, 0}) r11 : r18, r39 : r44

[12] r12: ({0}|{3, 2, 0}) r40: ({0}|{3, 1, 0}) r12 : r17, r40 : r43

[13] r13: ({2}|{2, 1, 0}) r41: ({1}|{2, 1, 0}) r13 : r46, r41 : r21

[14] r14: ({0}|{2, 1, 0}) r14 : r20

[15] r15: ({3, 2}|{3, 2, 1}) r42: ({3, 1}|{3, 2, 1}) r15 : r37, r42 : r09

[16] r16: ({2, 1}|{3, 2, 1}) r16 : r08

[17] r17: ({3, 2}|{3, 2, 0}) r43: ({3, 1}|{3, 1, 0}) r17 : r12, r43 : r40

[18] r18: ({3, 0}|{3, 2, 0}) r44: ({3, 0}|{3, 1, 0}) r18 : r11, r44 : r39

[19] r19: ({2, 0}|{3, 2, 0}) r45: ({1, 0}|{3, 1, 0}) r19 : r10, r45 : r38

[20] r20: ({2, 1}|{2, 1, 0}) r20 : r14

[21] r21: ({2, 0}|{2, 1, 0}) r46: ({1, 0}|{2, 1, 0}) r21 : r41, r46 : r13

[22] r22: ({3}|{3, 2, 1, 0}) r22 : r31

[23] r23: ({2}|{3, 2, 1, 0}) r47: ({1}|{3, 2, 1, 0}) r23 : r50, r47 : r30

[24] r24: ({0}|{3, 2, 1, 0}) r24 : r29

[25] r25: ({3, 2}|{3, 2, 1, 0}) r48: ({3, 1}|{3, 2, 1, 0}) r25 : r49, r48 : r28

[26] r26: ({3, 0}|{3, 2, 1, 0}) r26 : r27

[27] r27: ({2, 1}|{3, 2, 1, 0}) r27 : r26

[28] r28: ({2, 0}|{3, 2, 1, 0}) r49: ({1, 0}|{3, 2, 1, 0}) r28 : r48, r49 : r25

[29] r29: ({3, 2, 1}|{3, 2, 1, 0}) r29 : r24

[30] r30: ({3, 2, 0}|{3, 2, 1, 0}) r50: ({3, 1, 0}|{3, 2, 1, 0}) r30 : r47, r50 : r23

[31] r31: ({2, 1, 0}|{3, 2, 1, 0}) r31 : r22

284 C. Beierle and S. Kutsch

Whereas NFC (Σab) contains 50 conditionals, cNFC (Σab) has only 31 ele-
ments, labelled r01, . . . , r31 in Table 1. The ordering ≺· on NFC (Σab) is given by
r01 ≺· . . . ≺· r50 (cf. Table 1), and in general we have:

Algorithm 1. GenKB – Generate all knowledge bases over Σ

Input: signature Σ with linear ordering �

Output: set of all consistent, pairwise elementwise non-equivalent and non-isomorphic
knowledge bases KB over Σ

1: L1 ← ∅
2: k ← 1
3: for r ∈ cNFC (Σ) do � only canonical conditionals for initialization
4: D ← {d | d ∈ NFC (Σ), d �· r} � conditionals D can not extend {r}
5: L1 ← L1 ∪ {〈{r}, NFC (Σ) \ ({r} ∪ D})〉} � r can not extend {r}
6: while Lk 	= ∅ do
7: Lk+1 ← ∅
8: for 〈R, C〉 ∈ Lk do � R knowledge base, C candidates for extending R
9: for r ∈ C do
10: if R ∪ {r} is consistent then � extend R with conditional r
11: D ← {d | d ∈ C, d �· r} � conditionals D can not extend R ∪ {r}
12: Lk+1 ← Lk+1 ∪ {〈R ∪ {r}, C \ ({r} ∪ D})〉} � r can not extend R ∪ {r}
13: k ← k + 1

14: return KB = {R | 〈R, C〉 ∈ Li, i ∈ {1, . . . , k}}

Proposition 3 (cNFC (Σ), ≺·). For every linear ordering � on a signature
Σ, the induced ordering ≺· on conditionals according to Definition 2 is a linear
ordering on cNFC (Σ).

5 Systematic Generation of Knowledge Bases

The algorithm GenKB (Algorithm 1) generates all consistent knowledge bases
up to elementwise equivalence and up to isomorphisms. It uses pairs 〈R, C〉
where R is a knowledge base and C is a set of conditionals that are candidates
to be used to extend R to obtain a new knowledge base. For systematically
extending a knowledge base, the ordering ≺· is taking into account. Note that
in Lines 3–5, only the canonical conditionals (which are minimal with respect
≺·) are used for initializing the set of one-element knowledge bases. In Lines 4
and 11, the set D collects those conditionals that are smaller (with respect to
�·) than the conditional r selected for extending the current knowledge base
since these do not have to be taken into account for extending R. Similarly, the
counter conditional r can be removed form the set of remaining candidates since
any knowledge base containing both r and r is inconsistent. The consistency test
used in Line 10 can easily be implemented by the well-known tolerance test for
conditional knowledge bases [9].

Systematic Generation of Conditional Knowledge Bases 285

Proposition 4 (GenKB). Let Σ be a signature with linear ordering �. Then
applying GenKB to it terminates and returns KB for which the following holds:

(correctness) KB is a set of knowledge bases over Σ.
(≡ee minimality) All knowledge bases in KB are pairwise not elementwise equiv-

alent.
(� minimality) All knowledge bases in KB are pairwise not isomorphic.
(consistency) KB does not contain any inconsistent knowledge base.
(completeness) For every consistent R over Σ there is a knowledge base R′ in

KB and an isomorphism ρ such that R and ρ(R′) are elementwise equivalent.

Proof (Sketch). The proof is obtained by formalizing the description of GenKB
given above and the following observations. Note that GenKB exploits the fact
that every subset of a consistent knowledge base is again a consistent knowledge
base. Thus building up knowledge bases by systematically adding remaining
conditionals according to their linear ordering ensures completeness. Checking
consistency when adding a new conditional ensures consistency of the result-
ing knowledge bases. ≡ee-Minimality is guaranteed because all conditionals in
NFC (Σ) are pairwise non-equivalent (Proposition 1), and �-minimality can be
shown by induction on the number of conditionals in a knowledge base. ��

For instance, GenKB(Σab) will generate

{r01: ({ab}|{ab, ab}), r03: ({ab}|{ab, ab})}
but not the isomorphic knowledge base

{r03: ({ab}|{ab, ab}), r32: ({ab}|{ab, ab})}.

6 Conclusions and Further Work

Based on a notion of normal forms for conditionals, we presented an algorithm
GenKB for systematically generating all consistent knowledge bases over a given
signature while taking both syntactic renamings and semantic elementwise equiv-
alence into account. In our current work, we are working with GenKB and the
reasoning system InfOCF [4] for empirically investigating various nonmonotonic
inference relations induced by a conditional knowledge base.

References

1. Beierle, C.: Inferential equivalence, normal forms, and isomorphisms of knowledge
bases in institutions of conditional logics. In: The 34th ACM/SIGAPP Symposium
on Applied Computing (SAC 2019) 8–12 April 2019, Limassol, Cyprus. ACM, New
York (2019, to appear). https://doi.org/10.1145/3297280.3297391

2. Beierle, C., Eichhorn, C., Kern-Isberner, G.: A transformation system for unique
minimal normal forms of conditional knowledge bases. In: Antonucci, A., Cholvy,
L., Papini, O. (eds.) ECSQARU 2017. LNCS (LNAI), vol. 10369, pp. 236–245.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61581-3 22

https://doi.org/10.1145/3297280.3297391
https://doi.org/10.1007/978-3-319-61581-3_22

286 C. Beierle and S. Kutsch

3. Beierle, C., Eichhorn, C., Kern-Isberner, G., Kutsch, S.: Skeptical, weakly skep-
tical, and credulous inference based on preferred ranking functions. In: Kaminka,
G.A., et al. (eds.) Proceedings 22nd European Conference on Artificial Intelligence,
ECAI-2016, vol. 285, pp. 1149–1157. IOS Press, Amsterdam (2016)

4. Beierle, C., Eichhorn, C., Kutsch, S.: A practical comparison of qualitative infer-
ences with preferred ranking models. KI - Künstliche Intell. 31(1), 41–52 (2017)

5. Beierle, C., Kutsch, S.: Computation and comparison of nonmonotonic skeptical
inference relations induced by sets of ranking models for the realization of intelli-
gent agents. Appl. Intell. 49(1), 28–43 (2019)

6. Benferhat, S., Dubois, D., Prade, H.: Possibilistic and standard probabilistic
semantics of conditional knowledge bases. J. Log. Comput. 9(6), 873–895 (1999)

7. de Finetti, B.: La prévision, ses lois logiques et ses sources subjectives. Ann. Inst.
H. Poincaré 7(1), 1–68 (1937). Engl. transl. Theory of Probability, J. Wiley & Sons
(1974)

8. Dubois, D., Prade, H.: Conditional objects as nonmonotonic consequence relations:
main results. In: Proceedings of the KR 1994, pp. 170–177. Morgan Kaufmann
Publishers (1994)

9. Goldszmidt, M., Pearl, J.: Qualitative probabilities for default reasoning, belief
revision, and causal modeling. Artif. Intell. 84, 57–112 (1996)

10. Kern-Isberner, G.: Conditionals in Nonmonotonic Reasoning and Belief Revision.
LNCS (LNAI), vol. 2087. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44600-1

11. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential mod-
els and cumulative logics. Artif. Intell. 44, 167–207 (1990)

12. Lehmann, D.J., Magidor, M.: What does a conditional knowledge base entail?
Artif. Intell. 55(1), 1–60 (1992)

13. Lewis, D.: Counterfactuals. Harvard University Press, Cambridge (1973)
14. Paris, J.: The Uncertain Reasoner’s Companion - A Mathematical Perspective.

Cambridge University Press, Cambridge (1994)
15. Spohn, W.: Ordinal conditional functions: a dynamic theory of epistemic states. In:

Harper, W., Skyrms, B. (eds.) Causation in Decision, Belief Change, and Statistics,
vol. 2, pp. 105–134. Kluwer Academic Publishers, Dordrecht (1988)

16. Spohn, W.: The Laws of Belief: Ranking Theory and Its Philosophical Applications.
Oxford University Press, Oxford (2012)

https://doi.org/10.1007/3-540-44600-1
https://doi.org/10.1007/3-540-44600-1

Unifying Reasoning and Core-Guided
Search for Maximum Satisfiability

Jeremias Berg and Matti Järvisalo(B)

HIIT, Department of Computer Science, University of Helsinki, Helsinki, Finland
{jeremias.berg,matti.jarvisalo}@helsinki.fi

Abstract. A central algorithmic paradigm in maximum satisfiability
solving geared towards real-world optimization problems is the core-
guided approach. Furthermore, recent progress on preprocessing tech-
niques is bringing in additional reasoning techniques to MaxSAT solv-
ing. Towards realizing their combined potential, understanding formal
underpinnings of interleavings of preprocessing-style reasoning and core-
guided algorithms is important. It turns out that earlier proposed notions
for establishing correctness of core-guided algorithms and preprocessing,
respectively, are not enough for capturing correctness of interleavings
of the techniques. We provide an in-depth analysis of these and related
MaxSAT instance transformations, and propose correction set reducibil-
ity as a notion that captures inprocessing MaxSAT solving within a
state-transition style abstract MaxSAT solving framework. Furthermore,
we establish a general theorem of correctness for applications of SAT-
based preprocessing techniques in MaxSAT. The results pave way for
generic techniques for arguing about the formal correctness of MaxSAT
algorithms.

Keywords: Maximum satisfiability · Core-guided reasoning ·
Preprocessing · Instance transformations · Inprocessing

1 Introduction

Maximum satisfiability (MaxSAT), the optimization variant of Boolean satisfi-
ability (SAT), provides a competitive approach to various real-world optimiza-
tion problems arising from AI and industrial applications, see e.g. [6,7,14,18,
25,33,34]. Most of the modern MaxSAT solvers are based on iteratively trans-
forming an input problem instance in specific ways towards a representation
from which an optimal solution is in some sense “easy” to compute. In particu-
lar, a central algorithmic paradigm in modern MaxSAT solving geared towards
real-world optimization problems is the so-called core-guided approach [2,27].
Core-guided MaxSAT solvers reduce the search for an optimal solution to a
sequence of SAT instances, forming the next instance in the sequence by trans-
forming the current one based on an unsatisfiable core reported by a SAT solver
until a solution is found. In addition to the core-guided approach, MaxSAT pre-
processing [4,5,8,19] also iteratively applies instance transformations through
c© Springer Nature Switzerland AG 2019
F. Calimeri et al. (Eds.): JELIA 2019, LNAI 11468, pp. 287–303, 2019.
https://doi.org/10.1007/978-3-030-19570-0_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19570-0_19&domain=pdf
http://orcid.org/0000-0001-7660-8061
http://orcid.org/0000-0003-2572-063X
https://doi.org/10.1007/978-3-030-19570-0_19

288 J. Berg and M. Järvisalo

simplification (or reasoning) techniques which, however, significantly differ from
core-guided transformations.

The formal underpinning of inprocessing SAT solving [17], a popular app-
roach to modern SAT solving based on interleaving preprocessing techniques
with conflict-driven clause learning search, is today well-understood. In con-
trast, preprocessing for MaxSAT, including the realization of liftings of SAT
preprocessing to MaxSAT [5], is a more recent line of development. In fact, so
far only a few specific liftings of SAT preprocessing techniques have been shown
to be correct for MaxSAT [5]. Furthermore, towards lifting the inprocessing SAT
solving paradigm to the realm of MaxSAT, understanding how to interleave core-
guided MaxSAT inferences and inference steps made by MaxSAT preprocessing
techniques is important. While formal notions of instance transformations have
been proposed for establishing correctness of core-guided algorithms and prepro-
cessing, respectively, these notions in themselves are not expressive enough for
capturing correctness of interleavings of the two types of transformations.

To address these shortcomings, we focus in this paper on providing further
understanding of correct instance transformations for generic MaxSAT solving.
To this end, we analyze both earlier proposed formal notions of instance trans-
formations [2,5], and explain why they are fundamentally different and therefore
individually not enough to capture interleaving of core-guided and preprocessing-
style instance transformations; both types of transformations are required in
order to obtain a framework capable of modelling MaxSAT solving without rely-
ing on the correctness of SAT solvers. We propose correction set reducibility as a
general notion of instance transformations that captures to a far extent transfor-
mations applied in both core-guided solvers and MaxSAT preprocessing. We base
our analysis on a formal framework as an abstract state transition system based
on different sets of sequences of MaxSAT instances. This allows for reasoning
about correctness of core-guided solving and MaxSAT preprocessing in a uni-
fied manner which can ease the development of new MaxSAT solving methods,
including inprocessing. Furthermore, as a further form of instance transforma-
tion, we lift the notion of resolution asymmetric tautologies (RAT clauses), a
simple yet powerful notion capturing SAT preprocessing techniques at large in
a unified way [17], to MaxSAT. By doing so, we establish a general proof of
correctness for natural liftings of SAT preprocessing techniques to MaxSAT,
thereby significantly generalizing the correctness proofs earlier presented for
MaxSAT liftings of specific SAT preprocessing techniques [5]. The results pave
way for generic techniques for arguing about the formal correctness of MaxSAT
algorithms.

2 Maximum Satisfiability, MaxSAT Solving and
Preprocessing

A literal l is a Boolean variable x or its negation ¬x. For a set L of literals, the
set ¬L contains the negations of the literals in L; L is consistent if L and ¬L are
disjoint. A clause is a disjunction (logical OR) of literals (represented as a set

Unifying Reasoning and Core-Guided Search for Maximum Satisfiability 289

of its literals) and a CNF formula F is a conjunction (logical AND) of clauses
(represented as a set of its clauses). A clause C is a tautology if {x,¬x} ⊂ C
for some variable x. The set Var(C) contains all variables x for which x ∈ C
or ¬x ∈ C. The set Var(F) of the variables of F is ∪C∈FVar(C) and the set
Lit(F) is ∪C∈F C (each C seen as a set of literals). For a literal l ∈ Lit(F)
we use ClF (l) to denote the set of clauses in F which contain l, dropping the
subscript when clear from context.

A (truth) assignment τ is a consistent set of literals. A literal l is true under
τ (τ(l) = 1) if l ∈ τ and false (τ(l) = 0) if ¬l ∈ τ . A literal l true or false under
τ is assigned in (or assigned by) τ , and unassigned otherwise. An assignment τ
satisfies a clause C (τ(C) = 1) if τ(l) = 1 for some literal l in C, i.e., if τ ∩C �= ∅.
τ satisfies a formula F (τ(F) = 1) if it satisfies all clauses in it. A formula is
satisfiable if there is an assignment that satisfies it, and else unsatisfiable. An
assignment τ is a complete assignment to a CNF formula F if every literal
l ∈ Lit(F) is assigned in τ , else it is partial. The restriction F

∣
∣
τ

of a formula F
under an assignment τ is the CNF formula F ∧ ∧

l∈τ (l).
A (weighted partial) MaxSAT instance is a triplet F = (Fh, Fs, w) consisting

of a set Fh of hard clauses, a set Fs of soft clauses and a weight function w :
Fs → N. The instance is partial if Fh �= ∅ and unweighted if w(C) = k for
some constant k ∈ N and all C ∈ Fs. The core-guided MaxSAT algorithms we
focus on in this work solve the most general case of weighted partial MaxSAT
and do not treat any variant of it any differently (cf. Sect. 2.2). Hence we will
refer to weighted partial MaxSAT simply by MaxSAT. The cost COST(F , τ)
of a complete assignment to Fh ∧ Fs is ∞ if τ(Fh) = 0 and

∑

C∈Fs
(1 − τ(C)) ·

w(C) otherwise. We say that τ is a solution to F if τ(Fh) = 1 and optimal if
COST(F , τ) ≤ COST(F , τ�) for all compete truth assignments τ� to Fh ∧ Fs.
We denote the cost of the optimal solutions to F by COST(F). The cost of
a partial assignment τp to Fh ∧ Fs is the cost of an “optimal extension” of τp

into a complete assignment, i.e., COST(F , τp) = COST(Fτp

), where Fτp

=
(Fh

∣
∣
τp , Fs, w).

A subset κ ⊂ Fs is an unsatisfiable subset (or core) of F if Fh ∧ κ is unsat-
isfiable and a minimal unsatisfiable subset (MUS) if Fh ∧ κs is satisfiable for all
κs � κ. A set H is a correction set (CS) if Fh ∧ (Fs \H) is satisfiable and a min-
imal correction set (an MCS) if Fh ∧ (Fs \ Hs) is unsatisfiable for all Hs � H.
The sets of MUSes and MCSes of F are denoted by MUS(F) and MCS(F),
respectively. For a solution τ to F the set U(F , τ) = {C | τ(C) = 0} contains
the soft clauses falsified by τ . We say that the solution τ corresponds to the
correction set U(F , τ). Similarly, a correction set H corresponds to a solution τ
if H = U(F , τ). A correction set H is optimal if it corresponds to an optimal
solution τ to F . It is easy to show that every solution corresponds to a correction
set and every correction set corresponds to some solution.

2.1 Core-Guided MaxSAT Solving and MaxSAT-Reducibility

When solving a MaxSAT instance F , a core-guided MaxSAT algorithm main-
tains a working instance F i = (F i

h, F i
s , w

i), initialized to F . During each iteration

290 J. Berg and M. Järvisalo

of the search, a SAT solver is queried for the satisfiability of F i
h ∧ F i

s . If the for-
mula is satisfiable, i.e., if COST(F i) = 0, any assignment τo satisfying F i

h ∧ F i
s

is an optimal solution to F . Otherwise, the SAT solver returns a core κi of F i.
The next working instance F i+1 is then formed by transforming F i in a way
that rules out κi as a source of unsatisfiability and lowers the optimal cost of F i

by min{wi(C) | C ∈ κi}. Many existing core-guided algorithms fit this high-level
description and differ mainly in the the specific transformation used to form the
next working instance [1,3,15,26,29]. The correctness of such solvers, i.e., that
the final assignment returned will indeed be an optimal solution to the input
instance, is often established by proving that F i is MaxSAT-reducible [2] to
F i+1.

Definition 1. An instance F is MaxSAT-reducible (or k-reducible) to the
instance FR if COST(F , τ) = COST(FR, τ) + k for some integer k and for
all complete assignments τ to F . The constant k can depend on F but not on
the assignment τ .

An important motivation for the abstract model of MaxSAT solving we detail
in Sect. 3 relates to the specifics of how cores are extracted with SAT solvers. In
practice, a core κ of an instance F = (Fh, Fs, w) is extracted by extending each
soft clause Ci ∈ Fs with an unique assumption variable ai to form the clause
Ci ∨ ai. Afterwards the so-called assumption interface of the SAT solver [28] is
used to query the satisfiability of (Fh ∧ FA

s)
∣
∣
¬A, where FA

s is the set of extended
soft clauses and A the set of all assumption variables. If the result is satisfiable,
the obtained assignment satisfies (Fh ∧ FA

s) ∧ ∧

a∈A(¬a) and hence also (Fh ∧
Fs). If the formula is unsatisfiable, the SAT solver instead returns a subset
As ⊂ A for which Fh ∧ Fs

∣
∣
¬As

is unsatisfiable as well. Indeed, as we illustrate in
Example 1, modern core-guided solvers represent cores in terms of the variables
in As [1,26,29].

2.2 MaxSAT Preprocessing and MCS-Equivalence

MaxSAT preprocessing refers to the application of different simplification and
deduction rules to an instance F = (Fh, Fs, w), resulting in another instance
Fp. A simple example is the so-called subsumption rule which allows removing
a clause D ∈ (Fh ∧ Fs) if there is a clause C ∈ Fh for which C ⊂ D. The goal of
correct and effective preprocessing for MaxSAT is to make the time required to
transform F , solve Fp and reconstruct an optimal solution to F lower than the
time required to solve F directly. The previously proposed notion for proving
correctness of MaxSAT preprocessing requires the use of the following literal-
based definition of MaxSAT [5]. In particular, for the remainder of this paper,
we will apply the following literal-based definitions of MaxSAT.

A MaxSAT instance F consists of a CNF formula Clauses(F) and a weight
function wF : Var(Clauses(F)) → N, assigning a weight to each variable of
F . Whenever clear from context, we use F and Clauses(F) interchangeably. A
variable x ∈ Var(F) is soft in F if wF (x) > 0. The set S(F) contains all soft
variables of F . The complement Sc of a S ⊂ S(F) is S(F) \ S.

Unifying Reasoning and Core-Guided Search for Maximum Satisfiability 291

The other concepts related to MaxSAT discussed earlier are lifted from soft
clauses to soft variables in a natural way. An assignment τ is a solution to F if
τ(F) = 1 and has cost COST(F , τ) =

∑

x∈Var(F) τ(x) · w(x). A set κ ⊂ S(F)
is a a core of F if F∣

∣
¬κ

is unsatisfiable. Similarly H ⊂ S(F) is a CS of F if
F∣

∣
¬(Hc)

is satisfiable and an MCS if no Hs � H is a CS of F . Notice that under
the literal-based definitions, the set U(F , τ) is simply τ ∩ S(F). Using these
definitions, the notion of MCS-equivalence has been used as a basis for showing
correctness of the liftings of four specific preprocessing rules proposed for SAT
solving to MaxSAT [5].

Definition 2. The instance F is MCS-equivalent with the instance FR (and
vice-versa) if MCS(F) = MCS(FR) and wF (x) = wFR

(x) for all x ∈ Var(F)∩
Var(FR).

As we will demonstrate, defining MaxSAT based on soft variables instead
of soft clauses allows reasoning about core-guided solving and MaxSAT prepro-
cessing in a unified manner. We emphasize that the literal-based definition is
equivalent to the clause-based one. Furthermore, the literal-based definitions
correspond more closely with the representation of MaxSAT instances that
core-guided solvers and MaxSAT preprocessors actually operate on. Given any
MaxSAT instance (partial or not), a core-guided solver and similarly a MaxSAT
preprocessor will add an explicit variable ai to each soft clause. During solv-
ing and preprocessing, the extended soft clauses and hard clauses are treated
equally. Instead, special treatment is given to the added variables; for correct-
ness, a preprocessor is restricted from resolving on them, and a core-guided
solver extracts cores and applies transformations in terms of the ai’s, instead of
in terms of the soft clauses directly. The concept of a soft variable makes the role
of these “special” variables explicit, highlighting the similarities of core-guided
solving and preprocessing. Furthermore, applications of specific preprocessing
techniques such as bounded variable elimination will result in clauses with several
soft variables; the literal-based view also uniformly covers this. The literal-based
definitions also allow describing the transformations used by modern core-guided
solvers in a succinct manner.

Example 1. Let F be a MaxSAT instance, κ = {l1, . . . , ln} a core of F , and
wκ = minl∈κ{wF (l)}. The instance transformation used by the PMRES core-
guided algorithm [29] forms the instance FR = F ∧ ∧n−1

i=1 (ci ↔ (ci+1 ∨ li+1)) ∧
∧n−1

i=1 ((¬ci ∨ ¬li ∨ ri)) ∧ (¬cn) with the equivalence expressed as clauses in the
standard way. Each ci and ri are new variables that do not appear in Var(F).
The weights of the variables FR are modified by (i) decreasing the weight of
each l ∈ κ by wκ, (ii) setting the weight of each ci to 0, (iii) setting the weight
of each ri to wκ and (iv) keeping the weights of all other variables the same as
in F . The fact that F is MaxSAT-reducible to FR was first shown in [29].

292 J. Berg and M. Järvisalo

3 An Abstract MaxSAT Solving Framework

In the rest of this work we study MaxSAT-reducibility, MCS-equivalence and
other notions of transformation properties in an abstract framework based on
sequences of MaxSAT instances (or sequences for short). For example, solv-
ing an instance F with a core-guided MaxSAT solver is identified with a
sequence 〈F = F1, . . . ,Fn〉, where each instance Fi is MaxSAT-reducible to Fi+1

and COST(Fn) = 0. Similarly, preprocessing F is identified with a sequence
〈F = F1, . . . ,Fn〉, where each Fi is MCS-equivalent with Fi+1. The notion of
MaxSAT-reducibility (MCS-equivalence) is lifted to sequences of instances by
the set MSRED (MCSEQ) containing all sequences 〈F1, . . . ,Fn〉 for which Fi

is MaxSAT-reducible to (MCS-equivalent with) Fi+1 for all i = 1, . . . , n − 1.
More generally, the framework captures MaxSAT solving techniques that

iteratively transform an input MaxSAT instance toward a specific final instance,
from which an optimal solution to the input instance can then be obtained
based on an optimal solution to the final instance. As the final instance we use
the (unique) MaxSAT instance FF = ∅ that contains no clauses and to which
any assignment τ is an optimal solution to. The following notion of a terminating
sequence represents MaxSAT solving within the general framework.

Definition 3. A sequence 〈F , . . . ,Fn〉 is terminating if Fn = FF .

An important observation to make regarding the sets of sequences that we
work with is that the membership of a sequence 〈F1, . . . ,Fn〉 in each set can be
determined “locally” by checking if some property holds between Fi and Fi+1

for all i = 1, . . . , n − 1. For example, 〈F1, . . . ,Fn〉 ∈ MSRED can be checked
by verifying that Fi is MaxSAT-reducible to Fi+1 for all i. More formally, we
say that a set S of sequences is decomposable if 〈F1, . . . ,Fn〉 ∈ S if and only if
〈Fi,Fi+1〉 ∈ S for all i = 1, . . . , n − 1. All sets of sequences that we consider in
this work with are decomposable, including the already defined MSRED and
MCSEQ.

The following notion of allows for combining sets of sequences for modelling
interleavings of different types of instance transformations.

Definition 4. The combination S1 ◦ S2 of two sets S1 and S2 of sequences
contains all sequences 〈F1, . . . ,Fn〉 for which 〈Fi,Fi+1〉 ∈ S1 ∪ S2.

For example, the set MCSEQ ◦ MSRED contains all sequences 〈F1, . . . ,Fn〉
where Fi is either MaxSAT-reducible to, or MCS equivalent with, Fi+1 for all i.
Informally speaking, MCSEQ ◦ MSRED models inprocessing MaxSAT solving,
interleaving preprocessing and core-guided search.

When analyzing a set S of sequences, we focus on three central properties
that are interesting in the context of MaxSAT solving. The first property is
sufficiency : that for any instance F there is a terminating sequence in S that
starts from F .

Definition 5. Let F be a MaxSAT instance. A set S of sequences is sufficient
(for reaching the final state) if there is a terminating sequence 〈F , . . . ,FF 〉 ∈ S.

Unifying Reasoning and Core-Guided Search for Maximum Satisfiability 293

The second property, effectiveness, captures the idea that for practical appli-
cability, an optimal solution τn to the last instance Fn in a sequence 〈F , . . . ,Fn〉
should be applicable or “useful” for obtaining an optimal solution τ to F . In the
following, we say that a function that on input 〈F , . . . ,Fn〉 and τn computes τ
is a reconstruction function for 〈F , . . . ,Fn〉.
Definition 6. Let S be a set of sequences and 〈F ,FT 〉 ∈ S any sequence of
length two in S. The set S is effective (for MaxSAT solving) if there is a recon-
struction function for 〈F ,FT 〉 computable in polynomial time with respect to
|F|.
If the set S is decomposable, as all of the sets we work with are, the ability to
reconstruct optimal solutions is extended to sequences of arbitrary lengths.

Observation 1. Let S be an effective decomposable set of sequences and con-
sider a sequence 〈F1, . . . ,Fn〉 ∈ S. Assume that |Fi| is polynomial in |F1| for all
i. Then there is a reconstruction function for 〈F1, . . . ,Fn〉 computable in time
O(n × g(|F1|)) for some polynomial g.

An alternative view of effectiveness is hence that a sequence 〈F1, . . . ,Fn〉 ∈
S of an effective decomposable set S is one where each Fi+1 is formed from
Fi by a transformation that preserves enough information to allow effective
reconstruction of an optimal solution. For example, a set containing 〈F ,FF 〉 for
all instances F is clearly sufficient. However, it is not effective as no “useful”
information is preserved when transforming F to FF (in most cases).

Finally, generality allows for comparing sets of sequences in a natural way.

Definition 7. Let S1 and S2 be two sets of sequences of instances. We say that

(i) S1 is at least as general as S2 if S2 ⊂ S1;
(ii) S2 is not as general as S1 if S1 \ S2 �= ∅; and
(iii) S1 is more general than S2 if S1 is at least as general and S2 is not as

general.

4 Overview of Results

Figure 1 gives an overview of our main results. Considering previously pro-
posed types of instance transformations, we establish that the sets MSRED
and MCSEQ are individually not expressive enough to be sufficient within our
generic framework, while their combination MSRED ◦ MCSEQ is. Indeed,
MSRED and MCSEQ are orthogonal in the sense that neither one is as
general as the other; we will give concrete examples of sequences 〈F ,FR〉 ∈
MSRED \ MCSEQ and 〈F ,FR〉 ∈ MCSEQ \ MSRED. Thus, neither one of
these previously proposed formalisms for MaxSAT solving techniques is expres-
sive enough to capture hybrid forms of MaxSAT solving that combine the core-
guided approach with preprocessing-style reasoning.

294 J. Berg and M. Järvisalo

In addition to MSRED and MCSEQ, we will also consider several other
sets of sequences. The set MSEQUIV in Fig. 1 contains sequences where subse-
quent instances are MaxSAT-equivalent with each other. MaxSAT-equivalence
has previously been shown to be a special case of MaxSAT resolution [2,10] and
included in this work mainly for completeness. We also propose two new sets
of sequences, MAX-RAT and CSRED, with different motivations. As detailed
in Sect. 6, we propose MAX-RAT as a natural lifting of the notion of resolu-
tion asymmetric tautology, which has been shown to give a basis for formalizing
inprocessing SAT solving [17], to the context of MaxSAT. As a main result, we
show that MAX-RAT yields a general proof of correctness of liftings of SAT
preprocessing techniques to MaxSAT, noticeably generalizing earlier correctness
proofs of liftings of specific SAT preprocessing techniques [5]. Towards more
general instance transformations, we also propose the notion of correction-set
reducibility, CSRED containing sequences in which each instance is correction-
set reducible to the next one. We show that CSRED surpasses the combina-
tion of MSRED and MCSEQ; even its effective subset CSRED-E captures
essentially all current core-guided and preprocessing-style transformations we
are aware of.

5 Analysis of Known Transformations

We begin the detailed analysis with MaxSAT-reducibility and MCS-equivalence,
their combination, and MaxSAT-equivalence.

5.1 MaxSAT-Reducibility

First, we show that MSRED is not sufficient for reaching the final state. Infor-
mally, the result follows from the fact that MaxSAT-reducibility requires pre-
serving all of the solutions to an instance while not being expressive enough
to affect the cost of different solutions in different ways. Hence any instance F
which has two solutions τ1 and τ2 such that COST(F , τ1) �= COST(F , τ2) is
not MaxSAT-reducible to the final instance FF to which all solutions have the
same cost. We generalize this argument to sequences to establish the following.

Proposition 1. MSRED is not sufficient for reaching the final state.

Note that in practice core-guided solvers that use MaxSAT-reducible transfor-
mations terminate once the cost of the working instance becomes 0, which is not
the same as the working instance being FF . This “contrast” arises from the fact
that core-guided solvers rely on a SAT solver for termination.

The effectiveness of MSRED follows by showing that τ2, an optimal solution
to F2 in 〈F1,F2〉 ∈ MSRED satisfies F1 and assigns all variables in S(F1). Thus
an optimal solution to F1 can be obtained by (i) restricting τ2 to Lit(F1) and
(ii) assigning any unassigned variables of Var(F1) arbitrarily.

Proposition 2. MSRED is effective.

Unifying Reasoning and Core-Guided Search for Maximum Satisfiability 295

CSREDCSRED-E

MCSEQ ◦ MSRED

MSRED

MSEQUIV

MCSEQ

MAX-RATProp. 7

Theorem 5

Theorem 5Theorem 5
Theorem 6

TrivialProp. 6

Trivial

Prop. 4 [2] Prop. 4 [2] Theorem 2Theorem 2

Prop. 2

Theorem 5
Theorem 6

Pro
p. 3

Triv
ial

Fig. 1. Relationships between sets of sequences. Here S1 → S2 denotes that S1 is at
least as general as S2, S1 �→ S2 that S1 is not as general as S2. Transitive edges are not
shown. The types of transformations that are sufficient for reaching the final state are
coloured green, and effective transformations are drawn with continuous lines. (Color
figure online)

The next proposition implies that MaxSAT-reducibility can not be used as
basis for reasoning about the correctness of MaxSAT preprocessing.

Proposition 3. MSRED is not as general as MCSEQ.

Proof. Consider the sequence 〈F ,FF 〉, where F = {(l ∨ x)} with wF (l) = 1 and
wF (x) = 0. Since COST(F) = 0 it follows that MCS(F) = {∅} = MCS(FF).
This implies that 〈F ,FF 〉 ∈ MCSEQ. To see that 〈F ,FF 〉 /∈ MSRED, consider
the solutions τ1 = {l,¬x} and τ2 = {¬l, x} to F . Since COST(F , τ1) = 1 = 0 +
1 = COST(FF , τ1)+1 while COST(F , τ2) = 0 = 0 + 0 = COST(FF , τ2) + 0,
it follows that F is not MaxSAT-reducible (for any k) to FF . ��

Finally, MaxSAT-equivalence is a special case of MaxSAT-reducibility [2,10].

Definition 8. The instance F is MaxSAT equivalent to the instance FR if
COST(F , τ) = COST(FR, τ) + k for some positive integer k and all complete
truth assignments τ for both F and FR.

Again, the constant k may depend on F but not on the particular assign-
ment τ . The set MSEQUIV contains all sequences of MaxSAT instances where
subsequent instances are MaxSAT equivalent. MaxSAT-reducibility subsumes
MaxSAT-equivalence in terms of the generality of MSRED and MSEQUIV,
which follows from comparing the definitions. The following result was first
shown in [2] and included here for completeness.

296 J. Berg and M. Järvisalo

Proposition 4 (Restated from [2]). The set MSRED is more general than
the set MSEQUIV.

5.2 MCS-Equivalence

Similarly to MSRED, MCSEQ is not sufficient for reaching the final state. The
result follows by noting that any terminating sequence 〈F , . . . ,FF 〉 containing
an instance Fi for which MCS(Fi) �= {∅} = MCS(FF) can not be in MCSEQ.

Proposition 5. MCSEQ is not sufficient for reaching the final state.

We expect MCSEQ not to be effective. For some intuition, consider a
sequence 〈F ,F2〉 ∈ MCSEQ. In the general case, the only information obtain-
able from an optimal solution τ2 to F2 is an optimal MCS H ∈ MCS(F). In this
case, reconstructing an optimal solution to F requires computing a satisfying
assignment to F∣

∣
¬(Hc)

.
We show that MCS-equivalence can not be used in order to reason about

the correctness of core-guided solving, i.e., that MCSEQ is not as general as
MSRED. Informally, the result follows by noting that COST(F) = COST(F2)
for any MCS-equivalent instances F1 and F2. In contrast, there are sequences
〈F1, . . . ,Fn〉 ∈ MSRED for which COST(F1) > COST(Fn).

Proposition 6. MCSEQ is not as general as MSRED.

5.3 Combining MSRED and MCSEQ

So far, we have established that neither MSRED nor MCSEQ is individu-
ally sufficient for reaching the final state, and that neither one is as general
as the other. The reasons for insufficiency, however, are in a sense orthogo-
nal. While there are sequences 〈F1, . . . ,Fn〉 ∈ MSRED for which COST(F1) >
COST(Fn), any solution to F1 is also a solution to Fn. In other words, MaxSAT-
reducibility can lower the optimal cost of instances but not rule out non-optimal
solutions. In contrast, while COST(Fi) = COST(Fj) for any two instances
in a sequence〈F1, . . . ,Fn〉 ∈ MCSEQ, there can be solutions to F1 that are
not solutions to Fn. More informally, MCS-equivalence can be used to rule out
non-optimal solutions, but not to lower the optimal cost of instances. Since a
terminating sequence starting from an arbitrary instance F requires both lower-
ing the optimal cost of F to 0 and ruling out non-optimal solutions, using both
MSRED and MCSEQ obtains a sufficient set of sequences.

Theorem 1. MSRED ◦ MCSEQ is sufficient for reaching the final state.

Proof. (Sketch) Let F be a MaxSAT instance. By correctness of the PMRES
algorithm discussed in Example 1 [29], there is a sequence 〈F , . . . ,FS〉 ∈
MSRED for which COST(FS) = 0 and hence MCS(FS) = {∅}. The termi-
nating sequence 〈F , . . . ,FS ,FF 〉 ∈ MSRED ◦ MCSEQ witnesses the claim.
��

Unifying Reasoning and Core-Guided Search for Maximum Satisfiability 297

6 RAT Clauses in MaxSAT

We propose and analyze two novel notions for transforming MaxSAT instances
and their corresponding sets of sequences, MAX-RAT and CSRED. First we
adapt the idea of resolution asymmetric tautologies (RAT) to MaxSAT to obtain
MAX-RAT, an effective subset of MCSEQ. RAT is a simple yet powerful notion
for characterizing preprocessing and inprocessing in SAT solving [17] which pro-
vides a basis for a general proof of correctness for natural liftings of SAT pre-
processing techniques that can be expressed as sequences adding and removing
RAT clauses.

Given two clauses C = l∨C ′ and D = ¬l∨D′, the resolvent C ��l D = C ′∨D′

of C and D is obtained by resolving them on l. Resolution is extended to sets
of clauses by Cl(l) ��l Cl(¬l) = {C ��l D | C ∈ Cl(l),D ∈ Cl(¬l)}. Let
F be a MaxSAT instance and C a clause. Denote by ALA(F , C) (asymmetric
literal addition) the unique clause resulting from repeating the following until
fixpoint: if l1, . . . , lk ∈ C and there is a clause (l1 ∨ · · · ∨ lk ∨ l) ∈ F \ {C},
set C := C ∪ {¬l}. We say that C has solution resolution asymmetric tautology
(SRAT) with respect to F if either C = (x ∨ ¬x) for some variable x or there is
a literal l ∈ C \ S(F) such that ALA(F , C ��l D) is a tautology for all clauses
D ∈ Cl(¬l). In the second case, we say that C has SRAT on l. When F is clear
from context, we say that C is an SRAT clause. We emphasize that the only
restriction put on l is that it is not a soft variable. Specifically, l can still be the
negation of a soft variable. Notice also that any clause C that has SRAT with
respect to to an instance F also has RAT as defined in [17] with respect to to the
CNF formula Clauses(F) but the converse is not true. We use the terms SRAT
clause to refer to the concept for MaxSAT as defined here, and RAT clause to
refer to the SAT-specific concept from [17].

Given a MaxSAT instance F and an SRAT clause C, the instance
ADD(F , C) is obtained by (i) adding C to F and (ii) extending wF by set-
ting the weight of each variable (if any) in Var(C) \ Var(F) arbitrarily. Sim-
ilarly, the instance REMOVE(F , C) is obtained by (i) removing C from F
and (ii) restricting wF onto Var(F \ {C}). These transformations are lifted to
sequences of instances by the set MAX-RAT.

Definition 9. The set MAX-RAT contains all sequences 〈F1, . . . ,Fn〉, where
Fi+1 = ADD(Fi, C) or Fi+1 = REMOVE(Fi, C) for all i = 1, . . . , n − 1.

While simple, the sequences in MAX-RAT are fairly expressive. As discussed
in [17], SAT solving techniques, including forms of preprocessing, can very gen-
erally be viewed as sequences of adding and removing RAT clauses and can thus
be easily lifted to MaxSAT with SRAT.

Example 2. Let F be an instance, x ∈ Var(F) \ S(F), Cl(x) ∪ Cl(¬x) =
{C1, . . . , Cn} and Cl(x) ��x Cl(¬x) = {D1, . . . , Dt}. The well-known variable
elimination rule allows eliminating x from F by transforming it to FR = F \
(Cl(x)∪Cl(¬x))∪ (Cl(x) ��x Cl(¬x)). This corresponds to the sequence 〈F =
F0,F1, . . . ,Ft, . . . ,Ft+n〉 with Fi = ADD(Fi−1,Di) for i = 1, . . . , t and Fi =
REMOVE(Fi−1, Ci−t) for i = t + 1, . . . , t + n. This sequence is in MAX-RAT.

298 J. Berg and M. Järvisalo

Both ADD(F , C) and REMOVE(F , C) are MCS-equivalent with F ; this is
because soft variables of F contained only in C are not members of any MCSes
of F .

Theorem 2. MCSEQ is more general than MAX-RAT.

In addition, generalizing results from [17], we show that MAX-RAT is effec-
tive. Given an instance F and a clause C that has SRAT with respect to
a literal l, we show that if τ is a solution to F but not ADD(F , C), then
τR = τ \ {¬l} ∪ {l} is a solution to both F and ADD(F , C). While this also
holds for RAT clauses [17], the added assumption l /∈ S(F) of SRAT is needed
to show COST(F , τ) ≥ COST(F , τR) = COST(ADD(F , C), τR), which in
turn implies the existence of effective reconstruction functions for sequences in
MAX-RAT.

Proposition 7. MAX-RAT is effective.

More generally, MAX-RAT provides a natural way of correctly lifting all
of the preprocessing rules proposed for SAT solving that can be modelled with
RAT based transformations to MaxSAT; this noticeably generalizes correctness
proofs of the four particular liftings considered in [5].

Theorem 3. Let F be a MaxSAT instance and FR the instance obtained
by applying a SAT preprocessing technique that can be viewed as a sequence
〈F , . . . ,FR〉 of RAT clause additions and deletions. Assume that all of the added
and removed clauses also have SRAT. Then an optimal solution to F can be
effectively computed based on an optimal solution to FR.

RAT and, by extension, SRAT are very powerful concepts, allowing for simulat-
ing essentially all SAT preprocessing techniques, including both resolution-based
and clause elimination techniques [17]. Hence Theorem 3 gives a very general
proof of correctness for natural liftings of SAT-based preprocessing techniques
to MaxSAT.

The MAX-RAT sequences also detail the relationship between core-guided
MaxSAT solvers and the abstract model of MaxSAT solving that we work
with. Since the transformations in MAX-RAT can model SAT solving [17],
the abstract state transition system models both the transformations employed
by the outer core-guided MaxSAT algorithm, and the internal SAT solver used
by it to extract cores and compute satisfying assignments. For example, the
soundness of keeping learned clauses of the internal SAT solver between iter-
ations follows easily from the fact that a SAT solver only learns clauses that
have SRAT with respect to the current instance. Therefore the combination of
MAX-RAT and MSRED captures the correctness of core-guided algorithms
and their interleavings with liftings of SAT-based preprocessing techniques.

Theorem 4. MSRED ◦ MAX-RAT is effective and sufficient for reaching the
final state.

Unifying Reasoning and Core-Guided Search for Maximum Satisfiability 299

However, as we will discuss next, there are instance transformations, some
of which arise from MaxSAT-specific preprocessing techniques without counter-
parts in SAT preprocessing, that are not captured by MSRED ◦ MAX-RAT.
This motivates the study of more expressive instance transformations.

7 Correction Set Reducible Transformations

The second novel notion for transforming MaxSAT instances that we propose
is correction set reducibility (CS-reducibility). CS-reducibility is a more gen-
eral form of instance transformations, surpassing the combination of MaxSAT-
reducibility and MCS-equivalence, and thereby providing a wide basis for rea-
soning about the correctness of MaxSAT solving.

Definition 10. The instance F is correction set reducible (CS-reducible) to the
instance FR if U(F , τR) = τR ∩ S(F) is an optimal MCS of F whenever τR is
an optimal solution to FR

Example 3. Let F = {(l1 ∨ l2)} and FR = {(l1 ∨ l2), (¬l2)} be two instances
with wF (l1) = wFR

(l1) = 1 and wF (l2) = wFR

(l2) = 2. Then F is CS reducible
to FR which follows from τR = {l1,¬l2} being the only optimal solution of FR

and τR ∩ S(F) = {l1} being an optimal MCS of F .

Similarly to other transformations, let CSRED be the set of sequences that
contains all sequences 〈F1, . . . ,Fn〉 for which Fi is CS-reducible to Fi+1 for i =
1, . . . , n−1. In contrast to MaxSAT-reducibility, CS-reducibility does not require
uniformly changing costs of all assignments. This allows transformations that
rule out non-optimal solutions. In contrast to MCS-equivalence, CS-reducibility
only requires that an optimal solution to the transformed instance corresponds
to an optimal MCS of the original instance; an optimal MCS of the original
instance does not have to be an MCS of the transformed instance nor do all
MCSes of the instance need to be preserved. This allows transformations that
lower the optimal cost of instances.

Theorem 5. CSRED is more general than MSRED ◦ MCSEQ.

Notice that Theorem 5 also implies that CSRED is sufficient for reaching the
final state.

As CSRED is at least as general as MCSEQ we do not expect it to be effec-
tive. However, CSRED-E, the effective subset of CSRED, is in itself relatively
expressive.

Theorem 6. CSRED-E is sufficient for reaching the final state. Furthermore,
MSRED ◦ MCSEQ, is not as general as CSRED-E.

Proof. The first claim follows directly from Theorems 4 and 5. For the second
claim, consider the sequence 〈F ,FR〉 formed by the instances defined in Exam-
ple 3. The claim 〈F ,FR〉 ∈ CSRED-E follows from the fact that the sets of

300 J. Berg and M. Järvisalo

optimal solutions of F and FR are equal. To show that 〈F ,FR〉 /∈ MSRED ◦
MCSEQ we demonstrate that F is neither MaxSAT-reducible to, or MCS-
equivalent with, FR. The former follows by considering the solution τ = {l2,¬l1}
to F and the latter from MCS(F) = {{l1}, {l2}} �= {{l1}} = MCS(FR). ��

Note that Theorem 6 implies that MSRED ◦ MAX-RAT is not as general as
CSRED-E and that the sequence 〈F ,FR〉 corresponds to applying the MaxSAT-
specific preprocessing of subsumed label elimination [8] on F . Thus effective CS-
reducibility captures existing MaxSAT preprocessing techniques not captured
by MSRED ◦ MAX-RAT.

8 Related Work

In terms of previously proposed formal systems for MaxSAT, MaxSAT resolu-
tion [10,20] was proposed as a generalization of the resolution proof system. It
is a complete rule for MaxSAT in that iteratively applying MaxSAT resolution
to the clauses of a MaxSAT instance F gives another instance FRES such that
COST(FRES) = 0 and any satisfying assignment to FS

∣
∣
¬S(FS)

is an optimal
solution to F . The correctness of MaxSAT resolution was shown by establish-
ing that F is MaxSAT-equivalent to FRES. As implied by our analysis, this
means that MaxSAT resolution can be used to determine the optimal cost of an
instance, but finding an optimal solution requires computing a satisfying assign-
ment to a satisfiable CNF formula. While MaxSAT resolution and its restric-
tions give rise to simplification rules used in conjunction with branch-and-bound
MaxSAT solvers [4,16,21,22] (and also yields a proof system for SAT [9]), we
focus on the current state-of-the-art core-guided approaches and central SAT-
based preprocessing techniques. (The recent clause tableaux proof system for
MaxSAT [23] does not capture core-guided transformations or MaxSAT prepro-
cessing, either.) The recent formalization of implicit hitting set (IHS) algorithms
for optimization modulo theories of [13] captures solely extensions of the IHS
approach [12,32], extending the DPLL(T) framework [31] which has also earlier
been extended to optimization modulo theories [30] and adapted for formalizing
answer set solvers [11,24] (without optimization statements).

9 Conclusions

We studied the formal underpinnings of unifying preprocessing-style reasoning
and core-guided transformations for MaxSAT. To this end, we formalized a
generic framework for MaxSAT solving based on sequences of MaxSAT instances,
and analyzed previously proposed notions of instance transformations underlying
core-guided search and SAT-based preprocessing for MaxSAT within the frame-
work. We showed that these notions individually do not capture each other (i.e.,
inprocessing core-guided MaxSAT solving), and therefore neither can be used for
arguing about the correctness of the other. We proposed correction set reducibil-
ity as a new type of MaxSAT instance transformation which unifies core-guided

Unifying Reasoning and Core-Guided Search for Maximum Satisfiability 301

MaxSAT solving and MaxSAT preprocessing, including SAT-based preprocess-
ing lifted to MaxSAT. Furthermore, we generalized the concept of resolution
asymmetric tautologies from SAT solving to MaxSAT solving, thereby obtain-
ing a very general proof of correctness for lifting SAT preprocessing techniques
to MaxSAT. All in all, the results build ground for generic techniques for arguing
about the formal correctness of MaxSAT algorithms.

Acknowledgments. The work has been financially supported by Academy of Fin-
land (grants 276412 and 312662) and University of Helsinki Doctoral Programme in
Computer Science.

References

1. Alviano, M., Dodaro, C., Ricca, F.: A MaxSAT algorithm using cardinality con-
straints of bounded size. In: Proceedings of IJCAI, pp. 2677–2683. AAAI Press
(2015)

2. Ansótegui, C., Bonet, M., Levy, J.: SAT-based MaxSAT algorithms. Artif. Intell.
196, 77–105 (2013)

3. Ansótegui, C., Didier, F., Gabàs, J.: Exploiting the structure of unsatisfiable cores
in MaxSAT. In: Proceedings of IJCAI, pp. 283–289. AAAI Press (2015)

4. Argelich, J., Li, C.M., Manyà, F.: A preprocessor for Max-SAT solvers. In: Kleine
Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 15–20. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-79719-7 2

5. Belov, A., Morgado, A., Marques-Silva, J.: SAT-based preprocessing for MaxSAT.
In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol.
8312, pp. 96–111. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
45221-5 7

6. Benedetti, M., Mori, M.: Parametric RBAC maintenance via Max-SAT. In: Pro-
ceedings of SACMAT, pp. 15–25. ACM (2018)

7. Berg, J., Järvisalo, M.: Cost-optimal constrained correlation clustering via
weighted partial maximum satisfiability. Artif. Intell. 244, 110–143 (2017)

8. Berg, J., Saikko, P., Järvisalo, M.: Subsumed label elimination for maximum sat-
isfiability. In: Proceedings of ECAI, Frontiers in Artificial Intelligence and Appli-
cations, vol. 285, pp. 630–638. IOS Press (2016)

9. Bonet, M.L., Buss, S., Ignatiev, A., Marques-Silva, J., Morgado, A.: MaxSAT res-
olution with the dual rail encoding. In: Proceedings of AAAI. AAAI Press (2018)

10. Bonet, M.L., Levy, J., Manyà, F.: Resolution for Max-SAT. Artif. Intell. 171(8–9),
606–618 (2007)

11. Brochenin, R., Maratea, M., Lierler, Y.: Disjunctive answer set solvers via tem-
plates. Theory Pract. Logic Program. 16(4), 465–497 (2016)

12. Davies, J., Bacchus, F.: Exploiting the power of mip solvers in maxsat. In:
Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 166–181.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39071-5 13

13. Fazekas, K., Bacchus, F., Biere, A.: Implicit hitting set algorithms for maximum
satisfiability modulo theories. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.)
IJCAR 2018. LNCS (LNAI), vol. 10900, pp. 134–151. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-94205-6 10

https://doi.org/10.1007/978-3-540-79719-7_2
https://doi.org/10.1007/978-3-642-45221-5_7
https://doi.org/10.1007/978-3-642-45221-5_7
https://doi.org/10.1007/978-3-642-39071-5_13
https://doi.org/10.1007/978-3-319-94205-6_10

302 J. Berg and M. Järvisalo

14. Feng, Y., Bastani, O., Martins, R., Dillig, I., Anand, S.: Automated synthesis
of semantic malware signatures using maximum satisfiability. In: Proceedings of
NDSS. The Internet Society (2017)

15. Heras, F., Morgado, A., Marques-Silva, J.: Core-guided binary search algorithms
for maximum satisfiability. In: Proceedings of AAAI. AAAI Press (2011)

16. Heras, F., Larrosa, J., Oliveras, A.: MiniMaxSAT: an efficient weighted Max-SAT
solver. J. Artif. Intell. Res. 31, 1–32 (2008)

17. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 355–370. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3 28

18. Jose, M., Majumdar, R.: Cause clue clauses: error localization using maximum
satisfiability. In: Proceedings of PLDI, pp. 437–446. ACM (2011)

19. Korhonen, T., Berg, J., Saikko, P., Järvisalo, M.: MaxPre: an extended MaxSAT
preprocessor. In: Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp.
449–456. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66263-3 28

20. Larrosa, J., Heras, F.: Resolution in Max-SAT and its relation to local consistency
in weighted CSPs. In: Proceedings of IJCAI, pp. 193–198. Professional Book Center
(2005)

21. Larrosa, J., Heras, F., de Givry, S.: A logical approach to efficient Max-SAT solving.
Artif. Intell. 172(2–3), 204–233 (2008)

22. Li, C.M., Manyà, F., Mohamedou, N.O., Planes, J.: Resolution-based lower bounds
in MaxSAT. Constraints 15(4), 456–484 (2010)

23. Li, C.M., Manyà, F., Soler, J.R.: A clause tableau calculus for MinSAT. In: Pro-
ceedings of CCIA, Frontiers in Artificial Intelligence and Applications, vol. 288,
pp. 88–97. IOS Press (2016)

24. Lierler, Y., Truszczynski, M.: On abstract modular inference systems and solvers.
Artif. Intell. 236, 65–89 (2016)

25. Marques-Silva, J., Janota, M., Ignatiev, A., Morgado, A.: Efficient model based
diagnosis with maximum satisfiability. In: Proceedings of IJCAI, pp. 1966–1972.
AAAI Press (2015)

26. Morgado, A., Dodaro, C., Marques-Silva, J.: Core-guided MaxSAT with soft cardi-
nality constraints. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 564–573.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10428-7 41

27. Morgado, A., Heras, F., Liffiton, M., Planes, J., Marques-Silva, J.: Iterative and
core-guided MaxSAT solving: a survey and assessment. Constraints 18(4), 478–534
(2013)

28. Nadel, A., Ryvchin, V.: Efficient SAT solving under assumptions. In: Cimatti, A.,
Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 242–255. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31612-8 19

29. Narodytska, N., Bacchus, F.: Maximum satisfiability using core-guided MaxSAT
resolution. In: Proceedings of AAAI, pp. 2717–2723. AAAI Press (2014)

30. Nieuwenhuis, R., Oliveras, A.: On SAT modulo theories and optimization problems.
In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 156–169. Springer,
Heidelberg (2006). https://doi.org/10.1007/11814948 18

31. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories:
from an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J.
ACM 53, 2006 (2006)

32. Saikko, P., Berg, J., Järvisalo, M.: LMHS: a SAT-IP hybrid MaxSAT solver.
In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 539–546.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2 34

https://doi.org/10.1007/978-3-642-31365-3_28
https://doi.org/10.1007/978-3-319-66263-3_28
https://doi.org/10.1007/978-3-319-10428-7_41
https://doi.org/10.1007/978-3-642-31612-8_19
https://doi.org/10.1007/11814948_18
https://doi.org/10.1007/978-3-319-40970-2_34

Unifying Reasoning and Core-Guided Search for Maximum Satisfiability 303

33. Wallner, J.P., Niskanen, A., Järvisalo, M.: Complexity results and algorithms for
extension enforcement in abstract argumentation. J. Artif. Intel. Res. 60, 1–40
(2017)

34. Zhu, C., Weissenbacher, G., Malik, S.: Post-silicon fault localisation using maxi-
mum satisfiability and backbones. In: Proceedings of FMCAD, pp. 63–66. FMCAD
Inc. (2011)

Facets of Distribution Identities
in Probabilistic Team Semantics

Miika Hannula1 , Åsa Hirvonen1 , Juha Kontinen1 , Vadim Kulikov1,2,
and Jonni Virtema3(B)

1 University of Helsinki, Helsinki, Finland
{miika.hannula,asa.hirvonen,juha.kontinen}@helsinki.fi

2 Aalto University, Espoo, Finland
vadim.kulikov@iki.fi

3 Hasselt University, Hasselt, Belgium
jonni.virtema@uhasselt.be

Abstract. We study probabilistic team semantics which is a semanti-
cal framework allowing the study of logical and probabilistic dependen-
cies simultaneously. We examine and classify the expressive power of
logical formalisms arising by different probabilistic atoms such as condi-
tional independence and different variants of marginal distribution equiv-
alences. We also relate the framework to the first-order theory of the reals
and apply our methods to the open question on the complexity of the
implication problem of conditional independence.

Keywords: Team semantics · Probabilistic logic ·
Conditional independence

1 Introduction

Team semantics, introduced by Hodges [21] and popularised by Väänänen [26],
shifts the focus of logics away from assignments as the primitive notion connected
to satisfaction. In team semantics formulae are evaluated with respect to sets of
assignments (i.e., teams) as opposed to single assignments of Tarskian semantics.
During the last decade the research on team semantics has flourished, many
logical formalisms have been defined, and surprising connections to other fields
identified. In particular, several promising application areas of team semantics
have been identified recently. Krebs et al. [23] developed a team based approach
to linear temporal logic for the verification of information flow properties. In
applications to database theory, a team corresponds exactly to a database table
(see, e.g., [17]). Hannula et al. [19] introduced a framework that extends the
connection of team semantics and database theory to polyrelational databases
and data exchange.

The first and the third author were supported by grant 308712, the fourth by grant
285203 of the Academy of Finland.

c© Springer Nature Switzerland AG 2019
F. Calimeri et al. (Eds.): JELIA 2019, LNAI 11468, pp. 304–320, 2019.
https://doi.org/10.1007/978-3-030-19570-0_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19570-0_20&domain=pdf
http://orcid.org/0000-0002-9637-6664
http://orcid.org/0000-0003-2149-4153
http://orcid.org/0000-0003-0115-5154
http://orcid.org/0000-0002-1582-3718
https://doi.org/10.1007/978-3-030-19570-0_20

Facets of Distribution Identities in Probabilistic Team Semantics 305

The focus of this article is probabilistic team semantics which connects team
based logics to probabilistic dependency notions. Probabilistic team semantics is
built compositionally upon the notion of a probabilistic team, that is, a probabil-
ity distribution over variable assignments. While the first ideas of probabilistic
teams trace back to the works of Galliani [11] and Hyttinen et al. [22], the sys-
tematic study of the topic was initiated and further continued by Durand et al.
in [8,9]. It is worth noting that in [2] so-called causal teams have been introduced
to logically model causality and interventions. Probabilistic team semantics has
also a close connection to the area of metafinite model theory [14]. In metafinite
model theory, finite structures are extended with an another (infinite) domain
sort such as the real numbers (often with arithmetic) and with weight functions
that work as a bridge between the two sorts. This approach provides an elegant
way to model weighted graphs and other structures that refer to infinite struc-
tures. The exact relationship between probabilistic team semantics and logics
over metafinite models as well as with probabilistic databases of [6] will be a
topic of future research.

The starting point of this work comes from [9] in which probabilistic team
semantics was defined following the lines of [11]. The main theme in [9] was to
characterize logical formalisms in this framework in terms of existential second-
order logic. Two main probabilistic dependency atoms were examined. The prob-
abilistic conditional independence atom y ⊥⊥x z states that the two variable
tuples y and z are independent given the third tuple x. The marginal iden-
tity atom x ≈ y states that the marginal distributions induced from the two
tuples x and y (of the same length) are identical. The extension of first-order
logic with these atoms (FO(⊥⊥c,≈)) was then shown to correspond to a two-
sorted variant of existential second-order logic that allows a restricted access to
arithmetical operations for numerical function terms. What was left unexamined
were the relationships between different logical formalisms in probabilistic team
semantics. In fact, it was unknown whether there are any meaningful probabilis-
tic dependency notions such that the properties definable with one notion are
comparable to those definable with another.

In this article we study the relative expressivity of first-order logic with prob-
abilistic conditional independence atoms (FO(⊥⊥c)) and with marginal identity
atoms (FO(≈)). The logic FO(≈) is a probabilistic variant of inclusion logic that
is strictly less expressive than independence logic, after which FO(⊥⊥c) is mod-
elled [12,15]. In addition, we examine FO(≈∗) which is another extension defined
in terms of so-called marginal distribution equivalence. The marginal distribu-
tion equivalence atom x ≈∗ y for two variable tuples x and y (not necessarily
of the same length) relaxes the truth condition of the marginal identity atom
in that the two distributions induced from x and y are required to determine
the same multisets of probabilities. The aforementioned open question is now
answered in the positive. The logics mentioned above are not only comparable,
but they form a linear expressivity hierarchy: FO(≈) < FO(≈∗) ≤ FO(⊥⊥c). We
also show that FO(≈) enjoys a union closure property that is a generalization of
the union closure property of inclusion logic, and that conditional independence

306 M. Hannula et al.

atoms y ⊥⊥x z can be defined with an access to only marginal independence
atoms x ⊥⊥ y between two variable tuples. Furthermore, we show that, surpris-
ingly, FO(≈∗) corresponds to FO(≈,=(·)), where =(·) refers to the dependence
atom defined as a declaration of functional dependence over the support of the
probabilistic team. The question whether FO(≈,=(·)) is strictly less expressive
than FO(⊥⊥c) is left as an open question; in team semantics the corresponding
logics are known to be equivalent. The above findings look outwardly very sim-
ilar to many results in team semantics. However, it is important to note that,
apart perhaps from the union closure property, the results of this paper base on
entirely new ideas and do not recycle old arguments from the team semantics
context.

We also investigate (quantified) propositional logics with probabilistic team
semantics. By connecting these logics to the arithmetic of the reals we show
upper bounds for their associated computational problems. Our results suggest
that the addition of probabilities to team semantics entails an increase in the
complexity. Satisfiability of propositional team logic (PL(∼)), i.e., propositional
logic with classical negation is in team semantics known to be complete for alter-
nating exponential time with polynomially many alternations [20]. Shifting to
probabilistic team semantics analogous problems are here shown to enjoy double
exponential space upper bound. This is still lower than the complexity of satisfi-
ability for modal team logic (ML(∼)) in team semantics, known to be complete
for the non-elementary complexity class TOWER(poly) which consists of prob-
lems solvable in time restricted by some tower of exponentials of polynomial
height [24]. One intriguing consequence of our translation to real arithmetic is
that the implication problem of conditional independence statements over binary
distributions is decidable in exponential space. The decidability of this problem
is open relative to all discrete probability distributions [25].

2 Preliminaries

First-order variables are denoted by x, y, z and tuples of first-order variables by
x,y,z. By Var(x) we denote the set of variables that appear in the variable
sequence x. The length of the tuple x is denoted by |x|. A vocabulary τ is a
set of relation symbols and function symbols with prescribed arities. We mostly
denote relation symbols by R and function symbols by f , and the related arities
by ar(R) and ar(f), respectively. The closed interval of real numbers between 0
and 1 is denoted by [0, 1]. Given a finite set A, a function f : A → [0, 1] is called
a (probability) distribution if

∑
s∈A f(s) = 1. In addition, the empty function is

a distribution.
The probabilistic logics investigated in this paper are extensions of first-order

logic FO over a vocabulary τ given by the grammar rules:

φ ::= x = y | x �= y | R(x) | ¬R(x) | (φ ∧ φ) | (φ ∨ φ) | ∃xφ | ∀xφ,

where x is a tuple of first-order variables and R a relation symbol from τ .

Facets of Distribution Identities in Probabilistic Team Semantics 307

Let D be a finite set of first-order variables and A be a nonempty set. A func-
tion s : D → A is called an assignment. For a variable x and a ∈ A, the assign-
ment s(a/x) : D ∪ {x} → A is equal to s with the exception that s(a/x)(x) = a.
A team X is a finite set of assignments from D to A. The set D is called the
domain of X (written Dom(X)) and the set A the range of X (written Ran(X)).
Let X be a team with range A, and let F : X → P(A) \ {∅} be a function. We
denote by X[A/x] the modified team {s(a/x) | s ∈ X, a ∈ A}, and by X[F/x]
the team {s(a/x) | s ∈ X, a ∈ F (s)}. A probabilistic team X is a distribution
X : X → [0, 1]. Let A be a τ -structure and X : X → [0, 1] a probabilistic team
such that the domain of A is the range of X. Then we say that X is a probabilis-
tic team of A. In the following, we will define two notations X[A/x] and X[F/x].
Let X : X → [0, 1] be a probabilistic team, A a finite non-empty set, pA the set
of all probability distributions d : A → [0, 1], and F : X → pA a function. We
denote by X[A/x] the probabilistic team X[A/x] → [0,1] such that

X[A/x](s(a/x)) =
∑

t∈X
t(a/x)=s(a/x)

X(t) · 1
|A| ,

for each a ∈ A and s ∈ X. Note that if x does not belong to the domain of X
then the righthand side of the above equation is simply X(s) · 1

|A| . By X[F/x] we
denote the probabilistic team X[A/x] → [0, 1] defined such that

X[F/x](s(a/x)) =
∑

t∈X
t(a/x)=s(a/x)

X(t) · F (t)(a),

for each a ∈ A and s ∈ X. Again if x does not belong to the domain of X,
∑

can be dropped from the above equation.
If Y : X → [0, 1] and Z : X → [0, 1] are probabilistic teams and k ∈ [0, 1],

then we write Y�k Z for the k-scaled union of Y and Z, that is, the probabilistic
team Y�k Z : X → [0, 1] defined such that (Y�k Z)(s) = k ·Y(s) + (1 − k) ·Z(s)
for each s ∈ X.

We may now define probabilistic team semantics for first-order formulae. The
definition is the same as in [9]. The only exception is that it is here applied to
probabilistic teams that have real probabilities, whereas in [9] rational probabil-
ities were used.

Definition 1. Let A be a probabilistic τ -structure over a finite domain A, and
X : X → [0, 1] a probabilistic team of A. The satisfaction relation |=X for first-
order logic is defined as follows:

A |=X x = y ⇔ for all s ∈ X : if X(s) > 0, then s(x) = s(y)
A |=X x �= y ⇔ for all s ∈ X : if X(s) > 0, then s(x) �= s(y)
A |=X R(x) ⇔ for all s ∈ X : if X(s) > 0, then s(x) ∈ RA

A |=X ¬R(x) ⇔ for all s ∈ X : if X(s) > 0, then s(x) �∈ RA

A |=X (ψ ∧ θ) ⇔ A |=X ψ and A |=X θ
A |=X (ψ ∨ θ) ⇔ A |=Y ψ and A |=Z θ for some Y,Z, k s.t. Y �k Z = X

308 M. Hannula et al.

A |=X ∀xψ ⇔ A |=X[A/x] ψ
A |=X ∃xψ ⇔ A |=X[F/x] ψ holds for some F : X → pA.

Probabilistic team semantics is in line with Tarski-semantics of first-order
formulae (|=s):

A |=X ψ ⇔ ∀s ∈ X such that X(s) > 0 : A |=s ψ.

In particular the non-classical semantics for negation is required for the above
equivalence to hold.

In this paper we consider three probabilistic atoms: marginal identity,
probabilistic independence, and marginal distribution equivalence atom. The
first two were first introduced in the context of multiteam semantics in [8],
and they extend the notions of inclusion and independence atoms from team
semantics [12].

We define |Xx=a | where x is a tuple of variables and a a tuple of values, as

|Xx=a | :=
∑

s(x)=a
s∈X

X(s).

If φ is some first-order formula, then |Xφ| is defined analogously as the total sum
of weights of those assignments in X that satisfy φ.

If x,y are variable sequences of length k, then x ≈ y is a marginal identity
atom with the following semantics:

A |=X x ≈ y ⇔ |Xx=a | = |Xy=a | for each a ∈ Ak. (1)

Note that the equality |Xx=a | = |Xy=a | in (1) can be equivalently replaced with
|Xx=a | ≤ |Xy=a | since the tuples a range over Ak for a finite A (see [8, Definition
7] for details). Due to this alternative formulation, marginal identity atoms were
in [8] called probabilistic inclusion atoms. Intuitively, the atom x ≈ y states that
the distributions induced from x and y are identical.

The marginal distribution equivalence atom is defined in terms of multisets
of assignment weights. We distinguish multisets from sets by using double wave
brackets, e.g., {{a, a, b}} denotes the multiset ({a, b},m) where a and b are given
multiplicities m(a) = 2 and m(b) = 1. If x,y are variable sequences, then x ≈∗ y
is a marginal distribution equivalence atom with the following semantics:

A |=X x ≈∗ y ⇔ {{|Xx=a | > 0 | a ∈ A|x|}} = {{|Xy=b | > 0 | b ∈ A|y |}}.

The next example illustrates the relationships between marginal distribution
equivalence and marginal identity atoms; the latter implies the former, but not
vice versa.

Example 2. Let X be the probabilistic team depicted in Fig. 1. The team X

satisfies the atoms xy ≈∗ y, x ≈∗ y, y ≈∗ z, and y ≈ z. The team X falsies the
atom x ≈ y, whereas xy ≈ y is not a well formed formula.

Facets of Distribution Identities in Probabilistic Team Semantics 309

X

x y z P

a b c 1/2
b c b 1/2

Fig. 1. A representation of a probabilistic team X, for Example 2, with domain {x, y, z}
that consists of two assignments whose probabilities are 1/2.

If x,y,z are variable sequences, then y ⊥⊥x z is a probabilistic conditional
independence atom with the satisfaction relation defined as

A |=X y ⊥⊥x z

if for all s : Var(xyz) → A it holds that

|Xxy=s(xy)| · |Xxz=s(xz)| = |Xxyz=s(xyz)| · |Xx=s(x)|.

Furthermore, we define probabilistic marginal independence atom x ⊥⊥ y as
x ⊥⊥∅ y, i.e., probabilistic independence conditioned by the empty tuple.

In addition to atoms based on counting or arithmetic operations, we may
also include all dependency atoms from the team semantics literature. Let α be
an atom that is interpreted in team semantics, let A be a finite structure, and
X : X → [0, 1] a probabilistic team. We define A |=X α if A |=X+ α, where X+

consists of those assignments of X that are given positive weight by X. In this
paper we will discuss dependence atoms also in the context of probabilistic team
semantics. If x,y are two variable sequences, then =(x,y) is a dependence atom
with team semantics:

A |=X =(x,y) ⇔ s(x) = s′(x) implies s(y) = s′(y) for all s, s′ ∈ X.

A dependence atom of the form =(∅,x) is called a constancy atom, written =(x)
in shorthand notation. Dependence atoms can be expressed by using probabilistic
independence atoms. This has been shown for multiteams in [8], and the proof
applies to probabilistic teams.

Proposition 3 ([8]). Let A be a structure, X : X → [0, 1] a probabilistic team
of A, and x and y two sequences of variables. Then A |=X =(x,y) ⇔ A |=X

y ⊥⊥x y.

Given a collection C of atoms from {⊥⊥c,⊥⊥,≈,≈∗,=(·)}, we write FO(C) for
the logic that extends FO with the atoms in C.

Example 4. Let f1, . . . , fn, g be univariate distributions. Then g is a finite mix-
ture of f1, . . . , fn if it can be expressed as a convex combination of f1, . . . , fn,
i.e., if there are non-negative real numbers r1, . . . , rn such that r1 + . . . + rn = 1
and g(a) =

∑n
i=1 rifi(a). A probabilistic team X : X → [0, 1] gives rise to a

310 M. Hannula et al.

univariate distribution fx(a) := |Xx=a| for each variable x from the domain of
X. The next formula expresses that the distribution fy is a finite mixture of the
distributions fx1 , . . . , fxn

:

∃qr
[
x1 . . . xn ⊥⊥ r∧

n∨

i=1

r = i∧
n∧

i=1

∃x′r′(xir ≈ x′r′∧[(q = i∨r′ = i) → yq = x′r′]
)]

,

where the indices 1, . . . , n are also thought of as distinct constants, and (q =
i∨ r′ = i) → yq = x′r′ stands for ¬(q �= i∧ r′ �= i)∨ yq = x′r′. The non-negative
real numbers ri are represented by the weights of r = i where r is distributed
independently of each xi. The summand rifxi

(a) is then represented by the
weight of xir = ai and fy(a) by the weight of y = a. The quantified subformula
expresses that the former weight matches the weight of yq = ai, which implies
that fy(a) is r1fx1(a) + . . . + rnfxn

(a).

Example 5. Probabilistic team semantics can be also used to model properties of
data obtained from a quantum experiment (adapting the approach of [1]). Con-
sider a probabilistic team X over variables m1, . . . ,mn, o1, . . . , on. The intended
interpretation of X(s) = r is that the joint probability that s(mi) was measured
with outcome s(oi), for 1 ≤ i ≤ m, is r. In this setting many important prop-
erties of the experiment can be expressed using our formalism. For example the
formula

oi ⊥⊥m (o1, . . . , oi−1, oi+1, . . . , om)

expresses a property called Outcome-Independence; given the measurements m,
the outcome at i is independent of the outcomes at other positions. The depen-
dence atom =(m,o) on the other hand corresponds to a property called Weak-
Determinism. Moreover, if φ describes some property of hidden-variable models
(Outcome-Independence, etc.), then the formula ∃λφ expresses that the experi-
ment can be explained by a hidden-variable model satisfying that property.

The next example relates probabilistic team semantics to Bayesian networks.
The example is an adaptation of an example discussed also in [8].

Example 6. Consider the Bayesian network G in Fig. 2 that models beliefs about
house safety using four Boolean random variables thief, cat, guard and alarm.
We refer to these variables by t, c, g, a. The dependence structure of a Bayesian
network is characterized by the so-called local directed Markov property stating
that each variable is conditionally independent of its non-descendants given its
parents. For our network G the only non-trivial independence given by this
property is g ⊥⊥tc a. Hence a joint distribution P over t, c, g, a factorizes according
to G if X satisfies g ⊥⊥tc a. In this case P can be factorized by

P (t, c, g, a) = P (t) · P (c | t) · P (g | t, c) · P (a | t, c)

where, for instance, t abbreviates either thief = T or thief = F , and P (c | t) is
the probability of c given t. The joint probability distribution (i.e., the team X)
can hence be stored as in Fig. 2. Note that while G expresses the independence

Facets of Distribution Identities in Probabilistic Team Semantics 311

statement g ⊥⊥tc a, FO(⊥⊥c,≈)-formulas can be used to further refine the joint
probability distribution as follows. Assume we have information suggesting that
we may safely assume an FO(⊥⊥c,≈) formula φ on X:

– φ := t = F → g = F indicates that guard never raises alarm in absence
of thief. In this case the two bottom rows of the conditional probability
distribution for guard become superfluous.

– the assumption that φ is satisfied also exemplifies an interesting form of
contex-specific independence (CSI) that cannot be formalized by the usual
Bayesian networks (see, e.g., [7]). Namely, φ implies that guard is indepen-
dent of cat in the context thief = F . Interestingly such CSI statements can
be formalized utilizing the disjunction of FO(⊥⊥c,≈):

t = T ∨ (t = F ∧ g ⊥⊥ c).

– satisfaction of φ := tca ≈ tcg would imply that alarm and guard have the
same reliability for any given value of thief and cat. Consequently, the
conditional distributions for alarm and guard are equal and one of the them
could be removed.

Fig. 2. Bayesian network G and its related conditional distributions.

The following locality property dictates that satisfaction of a formula φ in
probabilistic team semantics depends only on the free variables of φ. For this,
we define the restriction of a team X to V as X � V = {s � V | s ∈ X}
where s � V denotes the restriction of the assignment s to V . The restriction
of a probabilistic team X : X → [0, 1] to V is then defined as the probabilistic
team Y : X � V → [0, 1] where Y(s) =

∑
s′�V =s X(s′). The set of free variables

Fr(φ) of a formula over probabilistic team semantics is defined recursively as in
first-order logic; note that for any atom φ, Fr(φ) consists of all variables that
appear in φ.

312 M. Hannula et al.

Proposition 7 (Locality, [9]). Let φ(x) ∈ FO(⊥⊥c,≈,≈∗,= (·)) be a for-
mula with free variables from x = (x1, . . . , xn). Then for all structures A
and probabilistic teams X : X → [0, 1] where {x1, . . . , xn} ⊆ V ⊆ Dom(X),
A |=X φ ⇐⇒ A |=X�V φ.

Given two logics L and L′ over probabilistic team semantics, we write L ≤ L′

if for all open formulae φ(x) ∈ L there is a formula ψ(x) ∈ L′ such that A |=X

φ ⇔ A |=X ψ, for all structures A and probabilistic teams X. The equality “≡”
and strict inequality “<” relations between L and L′ are defined from “≤” in
the standard way.

Alternative Definition. Probabilistic teams can also be defined as mappings
X : X → R≥0 that have no restriction for the total sum of assignment weights,
R≥0 being the set of all non-negative reals. Probabilistic team semantics with
respect to such real weighted teams is then given exactly as in Definition 1,
except that we define disjunction without scaling:

A |=X (ψ ∨ θ) ⇔ A |=Y ψ and A |=Z θ for some Y,Z s.t. Y � Z = X,

where the union Y � Z is defined such that (Y � Z)(s) = Y(s) + Z(s) for each
s. Whether interpreting probabilistic teams as probability distributions or just
mappings from assignments to non-negative reals does not make any difference
in our framework. Hence we write X : X → [0, 1] for a probabilistic team that is a
distribution such that

∑
s∈X X(s) = 1, and X : X → R≥0 for a probabilistic team

that is any mapping from assignments to non-negative reals. A probabilistic team
of the former type is then a special case of that of the latter. We will use both
notions and their associated semantics interchangeably. If we need to distinguish
between the two semantics, we write |=[0,1] and |=≥0 respectively for the scaled
(i.e., Definition 1) and non-scaled variants. Given X : X → R≥0 and r ∈ R≥0,
we write |X| for the total weight

∑
s∈X X(s) of X, and r ·X for the probabilistic

team Y : X → R≥0 such that Y(s) = r · X(s) for all s ∈ X. The proposition
below follows from a straightforward induction (see the full version [16] of this
paper in ArXiv).

Proposition 8. Let A be a structure, X : X → R≥0 a probabilistic team of A,
and φ ∈ FO(⊥⊥c,≈,≈∗,=(·)). Then A |=≥0

X
φ ⇔ A |=[0,1]

1
|X| ·X φ.

3 Expressiveness of FO(⊥⊥)

Let X : X → [0, 1] be a probabilistic team where X is a finite set of assignments
from a finite set D of variables. A variable x ∈ D is uniformly distributed in X

over a set of values S, if

Xx=a =
1

|S| for all a ∈ S and Xx=a = 0 otherwise.

The following lemma says essentially that if we can express constancy and
independence for a uniform distribution, then we can express ≈. Note that it

Facets of Distribution Identities in Probabilistic Team Semantics 313

may happen that we can express “x uniformly distributed and independent of y”
even when we cannot express “x is independent of y” in general. For a proof of
the lemma, see the full ArXiv version [16] of this paper.

Lemma 9. Let A be a structure with at least two elements and z an n-tuple
of variables. Let φ(z, d, c1, c2) be a formula s.t. for all probabilistic teams X,
whose variable domain includes z, d, c1, c2 and for which A |=X c1 �= c2 and
A |=X =(c1)∧ =(c2), it holds that

M |=X φ ⇔ d is uniformly distributed over the two values of c1, c2
(2)

and d is independent of z.

Then x ≈ y can be expressed for n-tuples x and y using φ and the constancy
atom.

Theorem 10. FO(≈) ≤ FO(⊥⊥).

Proof. Proposition 3 established that the constancy atom =(x) can be equiva-
lently expressed by the independence atom x ⊥⊥ x. Hence it is enough to show
that we can define the formula φ of Lemma 9 by using ⊥⊥.

Let A and X be as assumed in Lemma 9. We use below ∃b ∈ {c1, c2} θ as an
abbreviation for ∃b(b = c1 ∨ b = c2) ∧ θ, and ∀b ∈ {c1, c2} θ for ∀b(b �= c1 ∧ b �=
c2) ∨ (

(b = c1 ∨ b = c2) ∧ θ
)
. Define φ(z, d, c1, c2) as

(z ⊥⊥ d)∧∀a ∈ {c1, c2}∃b ∈ {c1, c2}
[
(a ⊥⊥ b)∧(

(a = b∧d = c1)∨(a �= b∧d = c2)
)]

.

It suffices to prove (2). The formula φ clearly states that z and d are independent.
The formula also states that the values of d range over the values of c1 and c2.
It remains to be shown, conditioned on that z and d are independent, that

A |=X φ if and only if d is uniformly distributed over c1 and c2.

Note that, by assumption of Lemma 9, c1 and c2 are distinct constants. Let X1

be a team obtained from X by the quantification of a and b. By the definition
of universal quantification, in X1 a is uniformly distributed and independent of
everything else except maybe b. Note that d is uniformly distributed over the
values of c1 and c2 in X if and only if it is in X1.

If d is uniformly distributed over the values of c1 and c2, then picking values
of b with a uniform probability such that the right conjunct in

[
(a ⊥⊥ b) ∧ (

(a = b ∧ d = c1) ∨ (a �= b ∧ d = c2)
)]

(3)

holds clearly yields a team in which the left conjunct also holds. However, if d
is not uniformly distributed over c1 and c2, then picking values for b such that
the right conjunct of (3) holds will yield b that is not independent on a. ��

We also note that conditional independence is definable using marginal inde-
pendence. The proof applies ideas from [9] and can be found in the full ArXiv
version [16].

Theorem 11. FO(⊥⊥) ≡ FO(⊥⊥c).

314 M. Hannula et al.

4 Expressiveness of FO(≈∗) and FO(≈)

Initially it may seem that first-order logic with marginal distribution equivalence
atoms is less expressive than that with marginal identity atoms, as the former
atoms are given a strictly weaker truth condition. Contrary to this intuition,
however, we will in this section show that FO(≈∗) is actually strictly more
expressive than FO(≈). The result is proven in two phases. First, in Sect. 4.1
we show that dependence and marginal identity can be defined in FO(≈∗), the
former by a single marginal distribution equivalence atom and the latter by
a more complex formula. Second, in Sect. 4.2 we show that the expressiveness
of FO(≈) is restricted by a union closure property which is similar to that of
inclusion logic in team semantics. Since dependence atoms lack this property,
the strict inequality between FO(≈) and FO(≈∗) follows.

4.1 Translations of Dependence and Marginal Identity to FO(≈∗)

We observe first that dependence atoms can be expressed in terms of marginal
distribution equivalence atoms, which in turn are definable using marginal iden-
tity and dependence atoms.

Proposition 12. The following equivalences hold:

1. =(x, y) ≡ xy ≈∗ x,
2. x ≈∗ y ≡ ∃z(=(y,z)∧ =(z,y) ∧ x ≈ z).

Defining marginal identity atoms in FO(≈∗) is more cumbersome. Let X :
X → R≥0 be a probabilistic team, and φ a quantifier-free first-order formula
over the empty vocabulary (i.e., such that its satisfaction depends only on the
variable assignment). We define Xφ : X → R≥0 as the probabilistic team such
that Xφ(s) = X(s) if s satisfies φ, and Xφ(s) = 0 otherwise. Given two sequences
of variables x = (x1, . . . , xn) and y = (y1, . . . , yn), we write x �= y as a shorthand
for

∨n
i=1 ¬xi = yi.

Theorem 13. x ≈ y is equivalent to φ ∈ FO(≈∗) where

φ := ∀z(
(z �= x ∧ z �= y) ∨ ((z = x ∨ z = y) ∧ z ≈∗ x ∧ z ≈∗ y)

)
.

Proof. Assume that x,y,z are all m-ary. Let A be a structure with domain
A = {1, . . . , n}, and let X : X → R≥0 a probabilistic team. Assume first that
A |=X x ≈ y, that is, for all i ∈ Am, the weights |Xx=i | and |Xy=i | coincide. It
suffices to show that A |=Y z ≈∗ x∧z ≈∗ y for Y := X

′
θ where θ is z = x∨z = y

and X
′ = X[Am/z] is the probabilistic team obtained from X by distributing Am

to z uniformly. For each i ∈ Am we consider three weight measures, obtained
by dividing assignments associated with i into three parts, li := |Xx=i∧x 	=y |,
ri := |Xy=i∧x 	=y |, and ci := |Xx=i∧y=i |. Then

|Yx=i | = |X′
θ∧x=i | = |X′

θ∧x=i∧x 	=y | + |X′
θ∧x=i∧y=i | =

2li + ci
nm

.

Facets of Distribution Identities in Probabilistic Team Semantics 315

Observe that for X
′
θ∧x=i∧x 	=y we first partition each assignment in Xx=i∧x 	=y

uniformly to nm parts in terms of the value of z and then keep only those parts
where θ holds. Since x and y disagree for every assignment in X

′
x=i∧x 	=y , the total

weight of X′
θ∧x=i∧x 	=y is obtained by multiplying li with 2

nm . For X
′
θ∧x=i∧y=i

we have identical x and y, and hence its weight is obtained by multiplying ci
with 1

nm . By analogous reasoning we obtain that

|Yy=i | =
2ri + ci

nm
and |Yz=i | =

ri + li + ci
nm

.

Since our assumption implies li = ri for all i, the claim now follows from the
observation that {{|Yu=i | | i ∈ Am}} are identical multisets for u ∈ {x,y,z}.

Vice versa, assuming A |=X φ we show A |=X x ≈ y. Let the weights li , ri , ci
and the probabilistic team Y be as above. By assumption we have A |=Y z ≈∗

x ∧ z ≈∗ y, and thus the following multisets are identical:

Wx := {{2l1 + c1, . . . , 2ln + cn}},
Wy := {{2r1 + c1, . . . , 2rn + cn}},
Wz := {{l1 + r1 + c1, . . . , ln + rn + cn}},

where 1 = (1, . . . , 1) and n = (n, . . . , n). Assume to the contrary that A �|=X

x ≈ y, that is, li �= ri for some i. Observe that whenever lj = rj agree, then j
contributes the same weight to all Wx , Wy , and Wz . Therefore, we may assume
without loss of generality that li �= ri for all i. Assume that 2lj+cj is the smallest
element from Wx . Since Wx = Wz , it follows that 2lj +cj = lk +rk +ck for some
k. If lk < rk , then 2lk + ck < lk + rk + ck which contradicts the assumption that
2lj + cj is smallest. Since Wx = Wy , similar contradiction follows from rk < lk ,
too. Hence, A |=X x ≈ y which concludes the proof. ��

The following theorem now combines the results of this section. Note that
the translations to both directions are of linear size.

Theorem 14. FO(≈∗) ≡ FO(≈,=(·)).

4.2 Scaled Union Closure of FO(≈)

Inclusion logic is known to be union closed over teams. This means that for all
structures A, teams X, and inclusion logic formulae φ: if A |=X φ and A |=Y φ,
then A |=X∪Y φ. The following proposition, proven in the full ArXiv version [16]
of this paper, demonstrates that FO(≈) is endowed with an analogous closure
property, namely, that all formulae of FO(≈) are closed under all k-scaled unions
of probabilistic teams.

Proposition 15. Let A be a model, φ ∈ FO(≈) a formula, and X : X → [0, 1]
and Y : X → [0, 1] two probabilistic teams. Then for all k ∈ [0, 1]:

if A |=X φ and A |=Y φ, then A |=X�kY
φ.

316 M. Hannula et al.

As a corollary we observe that FO(≈) is strictly weaker than FO(≈∗). Recall
from Proposition 12 that the constancy atom =(x) is definable in FO(≈∗). How-
ever, constancy is clearly not preserved under k-scaled unions, therefore falling
outside the scope of FO(≈). Furthermore, by Theorem 13 FO(≈∗) is at least as
expressive as FO(≈).

Corollary 16. FO(≈) < FO(≈∗).

5 Binary Probabilistic Teams

In this section we restrict attention to binary probabilistic teams and proposi-
tional logic extended with quantifiers (see [18] for related work). We define the
syntax of quantified propositional logic QPL by the following grammar

φ ::= p | ¬p | φ ∨ φ | φ ∧ φ | ∃pφ | ∀pφ, (4)

where p is a proposition variable. The probabilistic team semantics of QPL is
defined analogously to that of first-order formulae. We say that a probabilistic
team X : X → [0, 1] is binary if X assigns variables into {0, 1}. For a QPL formula
φ and a binary probabilistic team X : X → [0, 1], we write X |= φ iff A |=X φ∗,
where φ∗ is the first-order formula obtained from φ by substituting P (p) for p
and ¬P (p) for ¬p, and letting A := ({0, 1}, PA := {1}). Furthermore, we denote
classical negation by “∼”. That is, we write X |=∼φ if X �|= φ. We let QPL(∼)
denote the logic obtained by the grammar (4) extended with ∼φ, and denote by
QPL(∼, C) the extension of QPL(∼) by any collection of dependencies C.

We observe that QPL(∼,⊥⊥c,≈) can be interpreted as statements of real
arithmetic. As truth in real arithmetic is decidable, this gives us some fairly
conservative upper bounds with respect to the complexity of satisfiability and
validity of QPL(∼,⊥⊥c,≈). We say that φ ∈ QPL(∼,⊥⊥c,≈) is satisfiable if φ
is satisfied by some non-empty binary probabilistic team.1 Also, φ is valid is φ
is satisfied by all binary probabilistic teams. Note that the free variables of a
QPL(∼, C) formula are defined analogously to the first-order case.

Theorem 17. For each φ ∈ QPL(∼,⊥⊥c) (φ ∈ QPL(∼,≈), resp.) there exists a
first-order sentence ψ over vocabulary {+,×,≤, 0, 1} ({+,≤, 0}, resp.) such that
φ is satisfiable iff (R,+,×,≤, 0, 1) |= ψ ((R,+,≤, 0) |= ψ, resp.).

Proof. We show that satisfiability of a formula φ ∈ QPL(∼,⊥⊥c) is definable in
real arithmetic in terms of the non-scaled variant of probabilistic team semantics.
For a given tuple p = (p1, . . . , pn) of proposition variables, we introduce fresh
first-order variables sp=i for each propositional assignment s(p) = i, where i is
a binary string of length n. We write s to denote the complete tuple of these
variables. For a p listing the free variables of φ, we define

1 Empty team satisfies every formula without ∼; with ∼ it is a non-interesting special
case [20].

Facets of Distribution Identities in Probabilistic Team Semantics 317

ψ := ∃sp=0 . . . sp=1

(∧

i

0 ≤ sp=i ∧ ¬0 =
∑

i

sp=i ∧ φ∗(s)
)

where the mapping φ(p) �→ φ∗(s) is defined recursively as follows:

– If φ(p) is a propositional literal, then φ∗(s) :=
∧

s 	|=φ s = 0.
– If φ(p) is b ⊥⊥a c, where p = abcd for some d, then φ∗(s) is defined as

∧

ijk

(
∑

l′
sabcd=ijkl′ ×

∑

j ′k′l′
sabcd=ij ′k′l′ =

∑

k′l′
sabcd=ijk′l′ ×

∑

j ′l′
sabcd=ij ′kl′).

– If φ(p) is a ≈ b, where p = abc for some c, then

φ∗(s) :=
∧

i

∑

j ′k′
sabc=ij ′k′ =

∑

j ′k′
sabc=j ′ik′ .

– If φ(p) is ∼η(p), then φ∗(s) := ¬η∗(s).
– If φ(p) is η(p) ∧ χ(p), then φ∗(s) := η∗(s) ∧ χ∗(s).
– If φ(p) is η(p) ∨ χ(p), then

φ∗(s) := ∃tp=0rp=0 . . . tp=1rp=1

(∧

i

(0 ≤ tp=i ∧ 0 ≤ rp=i∧

sp=i = tp=i + rp=i) ∧ η∗(t) ∧ χ∗(r)
)
.

– If φ(p) is ∃qη(p, q), then

φ∗(s) := ∃tpq=00 . . . tpq=11

(∧

ij

(0 ≤ tpq=ij ∧ sp=i = tp=i0 + tp=i1) ∧ η(t)
)
.

– If φ(p) is ∀yη(p, q), then

φ∗(s) := ∃tpq=00 . . . tpq=11

(∧

ij

(0 ≤ tpq=ij ∧ sp=i = tp=i0 + tp=i1∧

tp=i0 = tp=i1) ∧ η(t)
)
.

It is straightforward to check that the claim follows. ��
From the translation above we immediately obtain some complexity bounds

for the satisfiability and validity problems of quantified propositional logics over
probabilistic team semantics. We write 2-EXPSPACE for the class of problems
solvable in space O(22

p(n)
), and AEXPTIME(f(n)) (2-AEXPTIME(f(n)), resp.)

for the class of problems solvable by alternating Turing machine in time O(2p(n))
(O(22

p(n)
), resp.) with f(n) many alternations, where p is a polynomial.

Theorem 18. The satisfiability/validity problems for QPL(⊥⊥c,∼) and QPL
(≈,∼) are in 2-EXPSPACE and 2-AEXPTIME(2O(n)), respectively.

318 M. Hannula et al.

Proof. By the proof of Theorem 17, satisfiability and validity of quantified propo-
sitional formulae can be reduced to truth of a real arithmetic sentence of size
2O(n). The stated upper bounds for QPL(∼,⊥⊥c) and QPL(∼,≈) then follow
because the theory of real-closed fields, Th(R,+,×,≤, 0, 1), is in EXPSPACE [3],
and the theory of real addition, Th(R,+,≤, 0), is in AEXPTIME(n) [4,10]. ��

We also obtain an upper bound for the implication problem of conditional
independence over binary probability distributions. The implication problem for
conditional independence is given as a finite set Σ ∪ {σ} of conditional indepen-
dence statements, and the problem is to decide whether all probability distri-
butions that satisfy Σ satisfy also σ. It is a famous open problem to determine
whether implication of conditional independence is decidable over discrete dis-
tributions. Since binary probabilistic teams can be interpreted as discrete dis-
tributions of binary random variables, we obtain that the implication problem
for conditional independence statements is decidable in exponential space over
binary distributions. The result follows since any instance of such an implication
problem can be expressed as an existential formula of exponential size (Theo-
rem 17), and since the existential theory of real-closed fields is in PSPACE [5].

Corollary 19. The implication problem for conditional independence over
binary probability distributions is in EXPSPACE.

It may be conjectured that the obtained complexity bounds are not opti-
mal. The first-order translations provide only access to a very restricted type of
arithmetic expressions. For instance, real multiplication is only available between
sums of reals from the unit interval. We leave it as an open problem to deter-
mine whether the results of this section can be optimized using more refined
arguments.

Table 1. Relative expressivity in probabilistic team semantics (PTS) and team seman-
tics (TS)

PTS: FO(≈) < FO(≈,=(·)) ≡ FO(≈∗) ≤ FO(⊥⊥) ≡ FO(⊥⊥c)

TS: FO(⊆) < FO(⊆,=(·)) ≡ FO(⊥) ≡ FO(⊥c) [12,13]

6 Conclusions and Further Directions

We have studied probabilistic team semantics in association with three notions of
dependency atoms: probabilistic independence, marginal identity, and marginal
distribution equivalence atoms. Our investigations give rise to an overall classi-
fication that is already familiar from the team semantics context (see Table 1).
Similar to inclusion logic (FO(⊆)) in team semantics, we observed that FO(≈)

Facets of Distribution Identities in Probabilistic Team Semantics 319

enjoys a union closure property which renders it strictly less expressive than
FO(≈,=(·)). A further analogous fact is that both dependence and marginal
identity are definable with conditional independence, which in turn is definable
using only marginal independence. An interesting open question is to determine
the relationship between FO(≈,=(·)) (or equivalently FO(≈∗)) and FO(⊥⊥c).
Contrary to the picture arising from team semantics, we conjecture that the
latter is strictly more expressive.

One motivation behind our marginal distribution equivalence atom was that
it seemed to be weaker than marginal identity but still enough to guarantee
the same entropy of two distributions. A natural next step would be to consider
some form of entropy atom/atoms and study the expressive power of the resulting
logics. The exact formulation of such atoms will make all the difference, as one
can detect both functional dependencies and marginal independence if one has
full access to the conditional entropy as a function.

We also studied (quantified) propositional logics with probabilistic team
semantics. By connecting real-valued probabilistic teams to real arithmetic we
showed upper bounds for computational problems associated with these log-
ics. As a consequence of our translation to real arithmetic we also obtained an
EXPSPACE upper bound for the implication problem of conditional indepen-
dence statements over binary distributions.

References

1. Abramsky, S.: Relational hidden variables and non-locality. Studia Logica 101(2),
411–452 (2013)

2. Barbero, F., Sandu, G.: Interventionist counterfactuals on causal teams. In:
Finkbeiner, B., Kleinberg, S. (eds.) Proceedings 3rd Workshop on Formal Reason-
ing About Causation, Responsibility, and Explanations in Science and Technology,
Thessaloniki, Greece, 21st April 2018. Electronic Proceedings in Theoretical Com-
puter Science, vol. 286, pp. 16–30. Open Publishing Association (2019). https://
doi.org/10.4204/EPTCS.286.2

3. Ben-Or, M., Kozen, D., Reif, J.: The complexity of elementary algebra and geom-
etry. J. Comput. Syst. Sci. 32(2), 251–264 (1986)

4. Berman, L.: The complexity of logical theories. Theoret. Comput. Sci. 11(1), 71–77
(1980)

5. Canny, J.: Some algebraic and geometric computations in PSPACE. In: Proceed-
ings of the Twentieth Annual ACM Symposium on Theory of Computing, STOC
1988, pp. 460–467. ACM, New York (1988)

6. Cavallo, R., Pittarelli, M.: The theory of probabilistic databases. In: Proceedings
of the 13th International Conference on Very Large Data Bases, VLDB 1987, pp.
71–81. Morgan Kaufmann Publishers Inc., San Francisco (1987)

7. Corander, J., Hyttinen, A., Kontinen, J., Pensar, J., Väänänen, J.: A logical app-
roach to context-specific independence. In: Väänänen, J., Hirvonen, Å., de Queiroz,
R. (eds.) WoLLIC 2016. LNCS, vol. 9803, pp. 165–182. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-52921-8 11

8. Durand, A., Hannula, M., Kontinen, J., Meier, A., Virtema, J.: Approximation and
dependence via multiteam semantics. Ann. Math. Artif. Intell. 83(3–4), 297–320
(2018). https://doi.org/10.1007/s10472-017-9568-4

https://doi.org/10.4204/EPTCS.286.2
https://doi.org/10.4204/EPTCS.286.2
https://doi.org/10.1007/978-3-662-52921-8_11
https://doi.org/10.1007/s10472-017-9568-4

320 M. Hannula et al.

9. Durand, A., Hannula, M., Kontinen, J., Meier, A., Virtema, J.: Probabilistic team
semantics. In: Ferrarotti, F., Woltran, S. (eds.) FoIKS 2018. LNCS, vol. 10833, pp.
186–206. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-90050-6 11

10. Ferrante, J., Rackoff, C.: A decision procedure for the first order theory of real
addition with order. SIAM J. Comput. 4(1), 69–76 (1975). https://doi.org/10.
1137/0204006

11. Galliani, P.: Game values and equilibria for undetermined sentences of dependence
logic. MSc thesis. ILLC Publications, MoL-2008-08 (2008)

12. Galliani, P.: Inclusion and exclusion dependencies in team semantics: on some
logics of imperfect information. Ann. Pure Appl. Logic 163(1), 68–84 (2012)

13. Galliani, P., Väänänen, J.: On dependence logic. In: Baltag, A., Smets, S. (eds.)
Johan van Benthem on Logic and Information Dynamics. OCL, vol. 5, pp. 101–119.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06025-5 4

14. Grädel, E., Gurevich, Y.: Metafinite model theory. Inf. Comput. 140(1), 26–81
(1998). https://doi.org/10.1006/inco.1997.2675

15. Grädel, E., Väänänen, J.: Dependence and independence. Studia Logica 101(2),
399–410 (2013). https://doi.org/10.1007/s11225-013-9479-2

16. Hannula, M., Hirvonen, Å., Kontinen, J., Kulikov, V., Virtema, J.: Facets of dis-
tribution identities in probabilistic team semantics. CoRR abs/1812.05873 (2018).
http://arxiv.org/abs/1812.05873

17. Hannula, M., Kontinen, J.: A finite axiomatization of conditional independence
and inclusion dependencies. Inf. Comput. 249, 121–137 (2016). https://doi.org/
10.1016/j.ic.2016.04.001

18. Hannula, M., Kontinen, J., Lück, M., Virtema, J.: On quantified propositional
logics and the exponential time hierarchy. In: GandALF. EPTCS, vol. 226, pp.
198–212 (2016)

19. Hannula, M., Kontinen, J., Virtema, J.: Polyteam semantics. In: Artemov, S.,
Nerode, A. (eds.) LFCS 2018. LNCS, vol. 10703, pp. 190–210. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-72056-2 12

20. Hannula, M., Kontinen, J., Virtema, J., Vollmer, H.: Complexity of propositional
logics in team semantic. ACM Trans. Comput. Log. 19(1), 2:1–2:14 (2018). https://
doi.org/10.1145/3157054

21. Hodges, W.: Compositional semantics for a language of imperfect information. J.
Interest Group Pure Appl. Logics 5(4), 539–563 (1997)

22. Hyttinen, T., Paolini, G., Väänänen, J.: A logic for arguing about probabilities
in measure teams. Arch. Math. Logic 56(5-6), 475–489 (2017). https://doi.org/10.
1007/s00153-017-0535-x

23. Krebs, A., Meier, A., Virtema, J., Zimmermann, M.: Team semantics for the spec-
ification and verification of hyperproperties. In: Potapov, I., Spirakis, P., Wor-
rell, J. (eds.) 43rd International Symposium on Mathematical Foundations of
Computer Science (MFCS 2018). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 117, pp. 10:1–10:16. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, Dagstuhl (2018). https://doi.org/10.4230/LIPIcs.MFCS.2018.10

24. Lück, M.: Canonical models and the complexity of modal team logic. In: 27th
EACSL Annual Conference on Computer Science Logic, CSL 2018, 4–7 September
2018, Birmingham, UK, pp. 30:1–30:23 (2018). https://doi.org/10.4230/LIPIcs.
CSL.2018.30

25. Niepert, M., Gyssens, M., Sayrafi, B., Gucht, D.V.: On the conditional indepen-
dence implication problem: a lattice-theoretic approach. Artif. Intell. 202, 29–51
(2013). https://doi.org/10.1016/j.artint.2013.06.005

26. Väänänen, J.: Dependence Logic. Cambridge University Press, Cambridge (2007)

https://doi.org/10.1007/978-3-319-90050-6_11
https://doi.org/10.1137/0204006
https://doi.org/10.1137/0204006
https://doi.org/10.1007/978-3-319-06025-5_4
https://doi.org/10.1006/inco.1997.2675
https://doi.org/10.1007/s11225-013-9479-2
http://arxiv.org/abs/1812.05873
https://doi.org/10.1016/j.ic.2016.04.001
https://doi.org/10.1016/j.ic.2016.04.001
https://doi.org/10.1007/978-3-319-72056-2_12
https://doi.org/10.1145/3157054
https://doi.org/10.1145/3157054
https://doi.org/10.1007/s00153-017-0535-x
https://doi.org/10.1007/s00153-017-0535-x
https://doi.org/10.4230/LIPIcs.MFCS.2018.10
https://doi.org/10.4230/LIPIcs.CSL.2018.30
https://doi.org/10.4230/LIPIcs.CSL.2018.30
https://doi.org/10.1016/j.artint.2013.06.005

Description Logics

Privacy-Preserving Ontology Publishing
for EL Instance Stores

Franz Baader , Francesco Kriegel , and Adrian Nuradiansyah(B)

Theoretical Computer Science, TU Dresden, Dresden, Germany
{franz.baader,francesco.kriegel,adrian.nuradiansyah}@tu-dresden.de

Abstract. We make a first step towards adapting an existing approach
for privacy-preserving publishing of linked data to Description Logic
(DL) ontologies. We consider the case where both the knowledge about
individuals and the privacy policies are expressed using concepts of the
DL EL, which corresponds to the setting where the ontology is an EL
instance store. We introduce the notions of compliance of a concept with
a policy and of safety of a concept for a policy, and show how optimal
compliant (safe) generalizations of a given EL concept can be computed.
In addition, we investigate the complexity of the optimality problem.

1 Introduction

When publishing information about individuals, one needs to ensure that cer-
tain privacy constraints are fulfilled. These constraints are encoded as privacy
policies, and before publishing the information one needs to check whether the
information is compliant with these policies [10]. We illustrate this setting using
an example from [10]: when publishing information about hospitals, doctors, and
patients, the policy may require that one should not be able to find out who are
the cancer patients. In case the information to be published is not policy compli-
ant, it first needs to be modified in a minimal way to make it compliant. However,
compliance per se is not enough if a possible attacker can also obtain relevant
information from other sources, which together with the published information
might violate the privacy policy. Safety requires that the combination of the
published information with any other compliant information is again compliant
[10]. More information on privacy-preserving data publishing can be found in
the survey [13].

In [10], privacy-preserving data publishing was investigated in a setting where
the information to be published is given as a relational dataset with (labeled)
null values, and the policy is given by a conjunctive query. In order to make
a given dataset compliant or safe, one is basically allowed to replace constants
(or null values) by new null values. The paper investigates the complexity of
deciding compliance (Is a given modification of a dataset policy compliant?),

F. Baader—Partially funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) – Projektnummer 389792660 – TRR 248.
A. Nuradiansyah—Funded by DFG within the Research Training Group 1907 “RoSI”.

c© Springer Nature Switzerland AG 2019
F. Calimeri et al. (Eds.): JELIA 2019, LNAI 11468, pp. 323–338, 2019.
https://doi.org/10.1007/978-3-030-19570-0_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19570-0_21&domain=pdf
http://orcid.org/0000-0002-4049-221X
http://orcid.org/0000-0003-0219-0330
http://orcid.org/0000-0002-9047-7624
https://doi.org/10.1007/978-3-030-19570-0_21

324 F. Baader et al.

safety (Is a given modification of a dataset safe w.r.t. a policy?), and optimality
(Is a given modification of a dataset safe w.r.t. a policy and does it change the
dataset in a minimal way?). The obtained complexity results depend on whether
combined or data complexity is considered, and whether closed- or open-world
semantics are used. For combined complexity, they lie on the second and third
level of the polynomial hierarchy. The paper does not consider the case where
the information in the dataset is augmented by ontological knowledge. In [8],
ontologies are used to formulate privacy policies, but the policies considered
there are concerned with meta-information like location and duration of data
storage, intended use of data, etc. In contrast, the policies considered in [10] and
in the present paper specify what information needs to be hidden.

In the present paper, we make a first step towards handling ontologies in the
context of privacy-preserving data publishing, but consider a quite restricted
setting, where information about an individual is given by a concept of the
inexpressive Description Logic (DL) EL. Basically, this is the setting where the
ontology consists of an ABox containing only concept assertions of the form C(a)
for possibly complex concepts C, but no role assertion. In [15], such an ABox
was called an instance store. In addition, we assume that there is no TBox, i.e.,
all the information about the individual a is given by the concept C.1 A policy is
then given by an instance query, i.e., by an EL concept D. A concept C (giving
information about some individual a) is compliant with this policy, if it is not
subsumed by D, i.e., if C(a) does not imply D(a). In our example, the policy
could be formalized as the EL concept

D = Patient � ∃seen by .(Doctor � ∃works in.Oncology),

which says that one should not be able to find out who are the patients that are
seen by a doctor that works for the oncology department. The concept

C = Patient � Male � ∃seen by .(Doctor � Female � ∃works in.Oncology)

is not compliant with the policy D since C � D. The concept

C ′ = Male � ∃seen by .(Doctor � Female � ∃works in.Oncology)

is a compliant generalization of C, i.e., C � C ′ and C ′ �� D. However, it is not
safe since C ′ �Patient � D, i.e., if the attacker already knows that a is a patient
then together with C ′(a) the hidden information D is revealed. In contrast,

C ′′ = Male � ∃seen by .(Doctor � Female � ∃works in.�),

is a safe generalization of C, though it is less obvious to see this. This concept
is, however, not optimal since more information than necessary is removed. In
fact, the concept

C ′′′ = Male � ∃seen by .(Doctor � Female � ∃works in.�) �
∃seen by .(Female � ∃works in.Oncology)

1 Since EL concepts are closed under conjunction, we can assume that the ABox
contains only one assertion for each individual a.

Privacy-Preserving Ontology Publishing for EL Instance Stores 325

is a safe generalization of C that is more specific than C ′′, i.e., C � C ′′′ � C ′′.
We will show how to compute optimal compliant and optimal safe generaliza-

tions of EL concepts C with EL policies, but instead of only one policy concept
we allow for a finite set of EL concepts as policy, where a concept C ′ is compliant
with the policy {D1, . . . , Dp} iff it is compliant with each element of this set, i.e.,
C �� Di holds for all i = 1, . . . , p. In addition, following [10], we will also view
optimality as a decision problem, and investigate its complexity. A short version
of this paper, without the results of Sect. 5, was presented at DL 2018 [7]. Due
to space restrictions, we cannot give detailed proofs of all our results. They can
be found in [3].

2 Preliminaries

A wide range of DLs of different expressive power has been investigated in the lit-
erature [2]. Here, we only introduce the DL EL, for which reasoning is tractable
[1,5,9]. Let NC and NR be mutually disjoint sets of concept and role names,
respectively. Then EL concepts over these names are constructed from concept
names using the constructors top concept (�), conjunction (C �D), and existen-
tial restriction (∃r.C). The size of an EL concept C is the number of occurrences
of � as well as concept and role names in C, its role depth is the maximal nesting
of existential restrictions, and its signature sig(C) is the set of all concept and
role names occurring in C.

The semantics of EL is defined through interpretations I = (ΔI , ·I), where
ΔI is a non-empty set, called the domain, and ·I is the interpretation function,
which maps every A ∈ NC to a set AI ⊆ ΔI and every r ∈ NR to a binary
relation rI ⊆ ΔI × ΔI . This function ·I is extended to arbitrary EL concepts
by setting �I := ΔI , (C � D)I := CI ∩ DI , and (∃r.C)I := {δ ∈ ΔI | ∃η ∈
CI .(δ, η) ∈ rI}.

The EL concept C is subsumed by the EL concept D (written C � D) if
CI ⊆ DI holds for all interpretations I. Strict subsumption (written C � D)
holds if C � D and D �� C, and we say that C is equivalent to D (written
C ≡ D) if C � D and D � C.

Subsumption between EL concepts can be decided in polynomial time. In
[5], this was shown using a homomorphism characterization of subsumption, but
it is also an easy consequence of the following result of Küsters. Given an EL
concept C, we reduce it by exhaustively replacing subconcepts of the form E �F
with E � F by E (modulo associativity and commutativity of �). As shown in
[17], this can be done in polynomial time, and two concepts C,D are equivalent
iff their reduced forms are equal up to associativity and commutativity of �.

We are now ready to define the important notions regarding privacy-
preserving publishing of ontological information that will be investigated in this
paper. As mentioned in the introduction, policies are finite sets of EL concepts.
We assume in the following, that the concepts occurring in the policy are not
equivalent to top since otherwise there would not be compliant concepts.

326 F. Baader et al.

Definition 1. A policy is a finite set P = {D1, . . . , Dp} of EL concepts
such that � �≡ Di for i = 1, . . . , p. Given an EL concept C and a policy
P = {D1, . . . , Dp}, the EL concept C ′ is

– compliant with P if C ′ �� Di holds for all i = 1, . . . , p;
– safe for P if C ′ � C ′′ is compliant with P for all EL concepts C ′′ that are

compliant with P;
– a P-compliant generalization of C if C � C ′ and C ′ is compliant with P;
– an optimal P-compliant generalization of C if it is a P-compliant general-

ization of C and there is no P-compliant generalization C ′′ of C such that
C ′′ � C ′;

– a P-safe generalization of C if C � C ′ and C ′ is safe for P;
– an optimal P -safe generalization of C if it is a P-safe generalization of C

and there is no P-safe generalization C ′′ of C such that C ′′ � C ′.

It is easy to see that safety implies compliance since the top concept is always
compliant: if C ′ is safe for P, then � � C ′ ≡ C ′ is compliant.

3 Computing Optimal Compliant Generalizations

In this section, we characterize the concepts that are compliant with a given
policy P, and use this to develop an algorithm that computes all optimal P-
compliant generalizations of a given EL concept C.

But first, we recall the recursive characterization of subsumption in EL given
in [6]. We call an EL concept an atom if it is a concept name or an existential
restriction. Given an EL concept C, we denote the set of atoms occurring in
its top-level conjunction with con(C). For example, if C = A � ∃r.(B � ∃s.A),
then con(C) = {A,∃r.(B � ∃s.A)}. Subsumption between atoms E,F can be
characterized as follows: E � F iff

– E = F ∈ NC or
– there is r ∈ NR such that E = ∃r.E′, F = ∃r.F ′ and E′ � F ′.

Definition 2. Let S, T be sets of atoms. Then we say that S covers T if for
every F ∈ T there is E ∈ S such that E � F .

With this notation, subsumption in EL can be characterized as follows.

Proposition 1. Let C,D be EL concepts. Then C � D iff con(C) covers
con(D).

The following (polynomial-time decidable) characterization of compliance is
an immediate consequence of this proposition.

Proposition 2. The EL concept C ′ is compliant with the policy P = {D1, . . . ,
Dp} iff con(C ′) does not cover con(Di) for any i = 1, . . . , p, i.e., for every
i = 1, . . . , p, at least one of the following two properties holds:

Privacy-Preserving Ontology Publishing for EL Instance Stores 327

– there is a concept name A ∈ con(Di) such that A �∈ con(C ′); or
– there is an existential restriction ∃r.D ∈ con(Di) such that C �� D for all

existential restrictions of the form ∃r.C ∈ con(C ′).

Now assume that we are given an EL concept C and a policy P = {D1, . . . , Dp},
and we want to construct a P-compliant generalization C ′ of C. For C ′ to satisfy
the condition of Proposition 2, there needs to exist for every i = 1, . . . , p an
element of con(Di) that is not covered by any element of con(C ′). In case con(C)
contains elements covering such an atom, we need to remove or generalize them
appropriately.

Definition 3. We say that H ⊆ con(D1) ∪ . . . ∪ con(Dp) is a hitting set of
con(D1), . . . , con(Dp) if H ∩ con(Di) �= ∅ for every i = 1, . . . , p. This hitting set
is minimal if there is no other hitting set strictly contained in it.

Basically, the idea is now to choose a hitting set H of con(D1), . . . , con(Dp)
and use H to guide the construction of a compliant generalization of C. In order
to make this generalization as specific as possible, we use minimal hitting sets.
In case the policy contains concepts Di with which C is already compliant (i.e.,
C �� Di holds), nothing needs to be done w.r.t. these concepts. This is why, in
the following definition, con(Di) does not take part in the construction of the
hitting set if C �� Di.

Definition 4. Let C be an EL-concept and P = {D1, . . . , Dp} a policy. The set
SCG(C,P) of specific compliant generalizations of C w.r.t. P consists of the
concepts that can be constructed from C as follows:

– If C is compliant with P, then SCG(C,P) = {C}.
– Otherwise, choose a minimal hitting set H of con(Di1), . . . , con(Diq) where

i1, . . . , iq are exactly the indices i for which C � Di. Note that q ≥ 1 since we
are in the case where C is not compliant with P. In addition, according to our
definition of a policy, none of the concepts Di is equivalent to �, and thus the
sets con(Dij) are non-empty. Consequently, at least one minimal hitting set
exists. Each minimal hitting set H yields a concept in SCG(C,P) by removing
or modifying atoms in the top-level conjunction of C in the following way:

• For every concept name A ∈ con(C), remove A from the top-level con-
junction of C if A ∈ H;

• For every existential restriction ∃ri.Ci ∈ con(C), consider the set

Pi := {G | there is ∃ri.G ∈ H such that Ci � G}.

∗ If Pi = ∅, then leave ∃ri.Ci as it is.
∗ If � ∈ Pi, then remove ∃ri.Ci.
∗ Otherwise, replace ∃ri.Ci with

�
F∈SCG(Ci,Pi)

∃ri.F.

First, we show that every element of SCG(C,P) is indeed a compliant gen-
eralization of C.

328 F. Baader et al.

Proposition 3. Let C be an EL-concept and P = {D1, . . . , Dp} a policy. If
C ′ ∈ SCG(C,P), then C ′ is a P-compliant generalization of C.

Proof. In case C is already compliant with P, then C = C ′ and we are done.
Thus, assume that C is not compliant with P. We show that C ′ is a compliant
generalization of C by induction on the role depth of C.

First, we show that C ′ is a generalization of C, i.e., C � C ′. This is an
easy consequence of the fact that, when constructing C ′ from C, atoms from the
top-level conjunction of C are left unchanged, are removed, or are replaced by a
conjunction of more general atoms. The only non-trivial case is where we replace
an existential restriction ∃ri.Ci with the conjunction

�
F∈SCG(Ci,Pi)

∃ri.F . By
induction, we know that Ci � F for all F ∈ SCG(Ci,Pi), and thus ∃ri.Ci ��

F∈SCG(Ci,Pi)
∃ri.F .

Second, we show that C ′ is compliant with P, i.e., C ′ �� Di holds for i =
1, . . . , p. For the indices i with C �� Di, we clearly also have C ′ �� Di since C �
C ′. Now, consider one of the remaining indices ij ∈ {i1, . . . , iq}, where i1, . . . , iq
are exactly the indices for which C � Di. The concept C ′ was constructed by
taking some minimal hitting set H of con(Di1), . . . , con(Diq). If the element in
H hitting con(Dij) is a concept name, then this concept name does not occur
in con(C ′), and thus C ′ �� Dij . Thus, assume that it is an existential restriction
∃ri.G. But then each existential restriction ∃ri.Ci in con(C) with Ci � G is
either removed or replaced by a conjunction of existential restrictions ∃ri.F such
that (by induction) F �� G. In addition, other existential restrictions are either
removed or generalized. This clearly implies C ′ �� Dij since ∃ri.G in con(Dij) is
not covered by any element of con(C ′). ��

However, SCG(C,P) may also contain compliant generalizations of C that
are not optimal, as illustrated by the following example.

Example 1. Let C = ∃r.(A1 � A2 � A3 � A4) and P = {D1,D2}, where

D1 = ∃r.A1 � ∃r.(A2 � A3) and D2 = ∃r.A2 � ∃r.A4.

We have C � D1 and C � D2, and thus C is not compliant with P. Consequently,
the elements of SCG(C,P) are obtained by considering the minimal hitting sets
of {∃r.A1,∃r.(A2 � A3)} and {∃r.A2,∃r.A4}.

If we take the minimal hitting set H = {∃r.(A2 � A3),∃r.A2} and consider
the only existential restriction in con(C), the corresponding set Pi consists of
A2�A3 and A2. It is easy to see that SCG(A1�A2�A3�A4,Pi) = {A1�A3�A4}
since the only minimal hitting set of {A1, A2} and {A2} is {A2}. Thus, we obtain
C ′ := ∃r.(A1 � A3 � A4) as an element of SCG(C,P).

However, if we take the minimal hitting set H′ = {∃r.A1,∃r.A2} instead,
then the set P ′

i corresponding to the only existential restriction in con(C) is
{A1, A2}. Consequently, in this case SCG(A1 � A2 � A3 � A4,P ′

i) = {A3 � A4}
since the only minimal hitting set of {A1} and {A2} is {A1, A2}. This yields
C ′′ := ∃r.(A3 � A4) as another element of SCG(C,P). Since C ′ � C ′′, the
element C ′′ cannot be optimal.

Privacy-Preserving Ontology Publishing for EL Instance Stores 329

The next lemma states that every compliant generalization of C subsumes
some element of SCG(C,P).

Lemma 1. Let C be an EL-concept and P = {D1, . . . , Dp} a policy. If C ′′

is a P-compliant generalization of C, then there is C ′ ∈ SCG(C,P) such that
C ′ � C ′′.

Proof. If C is compliant with P, then we have C ∈ SCG(C,P) and C � C ′′

since C ′′ is a generalization of C. Thus, assume that C is not compliant with P,
and let i1, . . . , iq be exactly the indices for which C � Di.

Now, let ij be such an index. We have C � C ′′ �� Dij and C � Dij .
Since C ′′ �� Dij , there is an element Ej ∈ con(Dij) that is not covered by
any element of con(C ′′). Obviously, H ′′ := {E1, . . . , Eq} is a hitting set of
con(Di1), . . . , con(Diq). Thus, there is a minimal hitting set H of con(Di1), . . . ,
con(Diq) such that H ⊆ H ′′. Let C ′ be the element of SCG(C,P) that was con-
structed using this hitting set H. We claim that C ′ � C ′′. For this, it is sufficient
to show that con(C ′) covers con(C ′′).

First, consider a concept name A ∈ con(C ′′). Since C � C ′′, we also have
A ∈ con(C). If A �∈ H ′′, then A �∈ H, and thus A is not removed in the
construction of C ′. Consequently, A ∈ con(C ′) covers A ∈ con(C ′′). If A ∈ H ′′,
then A is not covered by any element of con(C ′′) according to our definition of
H ′′, which contradicts our assumption that A ∈ con(C ′′).

Second, consider an existential restriction ∃ri.E ∈ con(C ′′). Since C � C ′′,
there is an existential restriction ∃ri.Ci in con(C) such that Ci � E. If this
restriction is not removed or generalized when constructing C ′, then we are
done since this restriction then belongs to con(C ′) and covers ∃ri.E. Otherwise,
Pi = {G | there is ∃ri.G ∈ H such that Ci � G} is non-empty.

If � ∈ Pi, then ∃ri.� ∈ H ⊆ H ′′. However, then ∃ri.E ∈ con(C ′′) covers an
element of H ′′, which is a contradiction.

Consequently, � �∈ Pi, and thus ∃ri.Ci is replaced with
�

F∈SCG(Ci,Pi)
∃ri.F

when constructing C ′ from C. According to our definition of H ′′ and the fact that
H ⊆ H ′′, none of the existential restrictions ∃ri.G considered in the definition
of Pi is covered by ∃ri.E ∈ con(C ′′). This implies that E is a Pi-compliant
generalization of Ci. By induction (on the role depth) we can thus assume that
there is an F ∈ SCG(Ci,Pi) such that F � E. This shows that ∃ri.E ∈ con(C ′′)
is covered by ∃ri.F ∈ con(C ′). ��

As an easy consequence of this lemma, we obtain that all optimal compliant
generalizations of C must belong to SCG(C,P).

Proposition 4. Let C be an EL-concept and P = {D1, . . . , Dp} a policy. If C ′′

is an optimal P-compliant generalization of C, then C ′′ ∈ SCG(C,P) (up to
equivalence of concepts).

Proof. Let C ′′ be an optimal P-compliant generalization of C. By Lemma 1,
there is an element C ′ ∈ SCG(C,P) such that C ′ � C ′′. In addition, by Propo-
sition 3, C ′ is a P-compliant generalization of C. Thus, optimality of C ′′ implies
C ′′ ≡ C ′. ��

330 F. Baader et al.

We are now ready to formulate and prove the main result of this section.

Theorem 1. Let C be an EL-concept and P = {D1, . . . , Dp} a policy. Then
the set of all optimal P-compliant generalizations of C can be computed in time
exponential in the size of C and D1, . . . , Dp.

Proof. It is sufficient to show that the set SCG(C,P) can be computed in expo-
nential time. In fact, given SCG(C,P), we can compute the set of all optimal
P-compliant generalizations of C by removing elements that are not minimal
w.r.t. subsumption, which requires at most exponentially many subsumption
tests. Each subsumption test takes at most exponential time since subsumption
in EL is in P , and the elements of SCG(C,P) have at most exponential size, as
shown below.

We show by induction on the role depth that SCG(C,P) consists of at most
exponentially many elements of at most exponential size. The at most exponen-
tial cardinality of SCG(C,P) is an immediate consequence of the fact that there
are at most exponentially many hitting sets of con(Di1), . . . , con(Diq), and each
yields exactly one element of SCG(C,P) (see Definition 4). Regarding the size of
these elements, note that we may assume by induction that an existential restric-
tion may be replaced by a conjunction of at most exponentially many existential
restrictions, where each is of at most exponential size. The overall size of the
concept description obtained this way is thus also of at most exponential size.
Given this, it is easy to see that the computation of these elements also takes at
most exponential time. ��

The following example shows that the exponential upper bounds can indeed
by reached.

Example 2. Let C = P1�Q1� . . .�Pn �Qn and P = {Pi �Qi | 1 ≤ i ≤ n}. Then
SCG(C,P) contains 2n elements since the sets {P1, Q1}, . . . , {Pn, Qn} obviously
have exponentially many hitting sets. To be more precise,

SCG(C,P) = {X1 � . . . � Xn | Xi ∈ {Pi, Qi} for i = 1, . . . , n}.

This example can easily be modified to enforce an element of exponential size.
Consider ̂C = ∃r.C and ̂P = {∃r.(Pi � Qi) | 1 ≤ i ≤ n}. Then SCG(̂C, ̂P) =
{�

F∈SCG(C,P) ∃r.F}. We leave it to the reader to further modify the example
in order to obtain exponentially many elements of exponential size.

4 Computing Optimal Safe Generalizations

Before we can characterize safety, we need to remove redundant elements from
P. We say that Di ∈ P is redundant if there is a different element Dj ∈ P such
that Di � Dj . The following lemma is easy to prove.

Lemma 2. Let P be a policy and assume that Di ∈ P is redundant. Then the
following holds for all EL concepts C,C ′:

Privacy-Preserving Ontology Publishing for EL Instance Stores 331

– C ′ is compliant with P iff C ′ is compliant with P \ {Di};
– C is safe for P iff C is safe for P \ {Di}.

This lemma shows that we can assume without loss of generality that our
policies do not contain redundant concepts. However, elements of Di of P may
also contain redundant atoms. This can be avoided by reducing the policy con-
cepts. We call a policy redundancy-free if it does not contain redundant elements
and every element is reduced.

The following proposition characterizes safety for redundancy-free policies.

Proposition 5. Let P = {D1, . . . , Dp} be a redundancy-free policy. The EL
concept C ′ is safe for P iff there is no pair of atoms (E,F) such that E ∈
con(C ′), F ∈ con(D1) ∪ . . . ∪ con(Dp), and E � F .

Proof. First, assume that C ′ is not safe for P, i.e., there is an EL concept C ′′

that is compliant with P, but for which C ′ � C ′′ is not compliant with P. The
latter implies that there is Di ∈ P such that C ′ � C ′′ � Di, which is equivalent
to saying that con(C ′) ∪ con(C ′′) covers con(Di). On the other hand, we know
that con(C ′′) does not cover con(Di) since C ′′ is compliant with P. Thus, there
is an element F ∈ con(Di) that is covered by an element E of con(C ′). This
yields (E,F) such that E ∈ con(C ′), F ∈ con(D1) ∪ . . . ∪ con(Dp), and E � F .

Conversely, assume that there is a pair of atoms (E,F) such that E ∈
con(C ′), F ∈ con(Di), and E � F . Let C ′′ be the concept obtained from
Di by removing F from the top-level conjunction of Di. Then we clearly have
Di � C ′′. In addition, since Di is reduced, we also have C ′′ �� Di. Consider
Dj ∈ P different from Di, and assume that C ′′ � Dj . But then Di � C ′′ � Dj

contradicts our assumption that P does not contain redundant elements. Thus,
we have shown that C ′′ is compliant with P. In addition, con(C ′)∪ con(C ′′) cov-
ers con(Di). In fact, the elements of con(Di) \ {F} belong to con(C ′′), and thus
cover themselves. In addition, F is covered by E ∈ con(C ′). Thus C ′ �C ′′ � Di,
which shows that C ′ is not safe for P. ��

Clearly, the necessary and sufficient condition for safety stated in this propo-
sition can be decided in polynomial time. If needed, the policy can first be made
redundancy-free, which can also be done in polynomial time.

Corollary 1. Safety of an EL concept for an EL policy is in P .

We now consider the problem of computing optimal P-safe generalizations
of a given EL concept C. First note that, up to equivalence, there can be only
one optimal P-safe generalization of C. This is an immediate consequence of the
fact that the conjunction of safe concepts is again safe.

Lemma 3. Let C ′
1, C

′
2 be two EL concepts that are P-safe generalizations of C,

where P is redundancy-free. Then C ′
1 � C ′

2 is also a P-safe generalization of C.

Thus there cannot be non-equivalent optimal P-safe generalizations of a
given EL concept C since their conjunction would then be more specific, contra-
dicting their optimality. This property is independent of whether the policy is

332 F. Baader et al.

redundancy-free or not since turning a policy into one that is redundancy-free
preserves the set of concepts that are compliant with (safe for) the policy.

Proposition 6. If C ′
1, C

′
2 are optimal P-safe generalizations of the EL concept

C, then C ′
1 ≡ C ′

2.

The following theorem, whose proof can be found in [3], shows how an optimal
safe generalization of C can be constructed.

Theorem 2. Let C be an EL concept and P = {D1, . . . , Dp} a redundancy-free
policy. We construct the concept C ′ from C by removing or modifying atoms in
the top-level conjunction of C in the following way:

– For every concept name A ∈ con(C), remove A from the top-level conjunction
of C if A ∈ con(D1) ∪ . . . ∪ con(Dp);

– For every existential restriction ∃ri.Ci ∈ con(C), consider the set of concepts

Pi := {G | there is ∃ri.G ∈ con(D1) ∪ . . . ∪ con(Dp) such that Ci � G}.

• If Pi = ∅, then leave ∃ri.Ci as it is.
• If � ∈ Pi, then remove ∃ri.Ci.
• Otherwise, replace ∃ri.Ci with

�
F∈OCG(Ci,Pi)

∃ri.F, where OCG(Ci,Pi)
is the set of all optimal Pi-compliant generalizations of Ci.

Then C ′ is an optimal P-safe generalization of C.

Since, by Theorem 1, OCG(Ci,Pi) can be computed in exponential time, the
construction described in Theorem 2 can also be performed in exponential time.

Corollary 2. Let C be an EL concept and P = {D1, . . . , Dp} a redundancy-
free policy. Then an optimal P-safe generalization of C can be computed in
exponential time.

Example 2 can easily be modified to provide an example that shows that this
exponential bound can actually not be improved since there are cases where the
safe generalization is of exponential size.

5 The Complexity of Deciding Optimality

In this section, we consider optimality as a decision problem, i.e., given EL con-
cepts C,C ′ such that C � C ′ and a policy P, decide whether C ′ is an optimal
P-compliant (P-safe) generalization of C.

Theorem 1 and Corollary 2 show that the optimality problem is in ExpTime
both for compliance and for safety. In fact, according to Theorem1, given C
and P, we can compute the set of all optimal P-compliant generalizations of C
(up to equivalence) in exponential time. Consequently, this set contains at most
exponentially many elements and each element has at most exponential size.
This implies that we can test, in exponential time, whether a given concept C ′

Privacy-Preserving Ontology Publishing for EL Instance Stores 333

is equivalent to one of the elements of this set. If this is the case, then C ′ is an
optimal P-compliant generalization of C, and otherwise not. The case of safety
can be treated similarly, using Corollary 2 instead of Theorem 1.

In the following, we show that this complexity upper bound can be improved
to coNP. Actually, we will prove this upper bound not just for compliance and
safety, but for a whole class of properties.

Definition 5. Let F be a function that assigns a set of EL concepts to every
input consisting of an EL concept C and a policy P. We say that the function
F defines a polynomial, upward-closed property if the following holds for every
input C,P:

– for every EL concept C ′, we can decide C ′ ∈ F (C,P) in time polynomial in
C,C ′,P (polynomiality);

– if C ′ ∈ F (C,P) and C ′ � C ′′, then C ′′ ∈ F (C,P) (upward-closedness).

We say that C ′ is an optimal F -generalization of C w.r.t. P if C � C ′, C ′ ∈
F (C,P), and there is no C � C ′′ � C ′ such that C ′′ ∈ F (C,P).

It is easy to see that compliance and safety are polynomial, upward-closed
properties. In fact, upward-closedness is an obvious consequence of the definition
of compliance (safety). For compliance, polynomiality follows from the fact that
subsumption in EL can be decided in polynomial time. For safety, it is stated
in Corollary 1. In addition, the notion of optimality introduced in the above
definition coincides with the notion of optimality introduced in Definition 1 for
compliance and safety.

We will show that, for polynomial, upward-closed properties, the optimality
problem is in coNP, i.e., there is an NP-algorithm that, on input C � C ′ and P,
succeeds iff C ′ is not an optimal F -generalization of C w.r.t. P. Basically, this
algorithm proceeds as follows. It guesses a lower neighbor C ′′ of C ′ subsuming
C, i.e., a concept C ′′ such that (i) C � C ′′ � C ′ and (ii) there is no concept
C ′′′ with C ′′ � C ′′′ � C ′. If C ′′ ∈ F (C,P), then the algorithm succeeds, and
otherwise it fails.

To make this algorithm more concrete, we need to investigate the strict sub-
sumption relation � on EL concepts in more detail. Following [4], we define the
one-step relation �1 induced by � as

�1 := {(C ′′, C ′) ∈ � | there is no C ′′′ such that C ′′ � C ′′′ � C ′}.

If C ′′ �1 C ′ then we call C ′ an upper neighbor of C ′′ and C ′′ a lower neighbor of
C ′. In [4] it was shown that the relation � on EL concepts is one-step generated,
i.e., the transitive closure of �1 is again �. In the context of the optimality
problem for polynomial, upward-closed properties, this implies the following:
whenever there is a counterexample to the optimality of C ′ (i.e., a concept C ′′

such that C � C ′′ � C ′ and C ′′ ∈ F (C,P)), then there is a lower neighbor of
C ′ that provides such a counterexample. To see this, just note that C ′′ � C ′

implies that C ′ can be reached by a �1-chain from C ′′. The last element in this

334 F. Baader et al.

chain before C ′ is a lower neighbor of C ′, and it belongs to F (C,P) since F is
upward-closed.

Another interesting result in [4] is the following characterization of upper
neighbors: for a given reduced EL concept C, the set of upper neighbors of C
consists (up to equivalence) of the concepts D obtained from C as follows:

– Remove a concept name A from the top-level conjunction of C.
– Remove an existential restriction ∃r.E from the top-level conjunction of C,

and replace it by the conjunction of all existential restrictions ∃r.F where F
ranges over all upper neighbors of E.

Note that a special case of the second item is the removal of an existential
restriction of the form ∃r.� since � does not have any upper neighbors. As
shown in [16], this characterization implies that a given concept has only poly-
nomially many upper neighbors, each of which is of polynomial size. As an easy
consequence, we obtain the following lemma:

Lemma 4. The one-step relation �1 induced by � on EL concepts is decidable
in polynomial time.

Regarding lower neighbors, it is sufficient for our purposes to show that they
can be guessed in non-deterministic polynomial time. Thus, we are looking for
an NP-algorithm that, given input concepts C � C ′, generates exactly the lower
neighbors of C ′ that subsume C. Below, we sketch how an appropriate NP-
algorithm can be obtained. A more detailed description as well as proofs can be
found in [16]. First, note that the lower neighbors C ′′ of C ′ can be obtained by
conjoining an atom not implied by C ′ to C ′. In addition, C � C ′′ implies that
sig(C ′′) ⊆ sig(C). Given an EL concept C ′ and a finite set Σ as names, the set
of lowering atoms for C ′ w.r.t. Σ is defined as

LAΣ(C ′) := {A ∈ Σ ∩ NC | A �∈ con(C ′)} ∪ {∃r.D | r ∈ Σ ∩ NR, sig(D) ⊆ Σ,
C ′ �� ∃r.D, and C ′ � ∃r.E for all E with D �1 E}.

Lemma 5. Let C ′ be an EL concept and Σ a finite set of concept and role
names with sig(C ′) ⊆ Σ. Then C ′′ is a lower neighbor of C ′ with sig(C ′′) ⊆ Σ
iff there is an atom At ∈ LAΣ(C ′) such that C ′′ ≡ C ′ � At.

Intuitively, adding a single atom to the top-level conjunction of C ′ is sufficient
to obtain a lower neighbor since adding two (non-redundant) atoms would step
too far down in the subsumption hierarchy. The same is true for adding an
existential restriction ∃r.D for which ∃r.E with D �1 E does not subsume C ′

since then C ′ � ∃r.D � C ′ � ∃r.E � C ′ would hold.

Example 3. Let Σ := {r,A1, A2, B1, B2, C1, C2} and

C ′ := ∃r.(A1 � A2 � B1 � B2) � ∃r.(A1 � A2 � C1 � C2) � ∃r.(B1 � B2 � C1 � C2).

Then, for all i, j, k ∈ {1, 2}, the existential restriction ∃r.D with D := Ai�Bj�Ck

belongs to LAΣ(C ′). In fact, C ′ �� ∃r.D is obviously true, and since the upper

Privacy-Preserving Ontology Publishing for EL Instance Stores 335

neighbors of D are Ai � Bj , Bj � Ck, and Ai � Ck, we also have C ′ � ∃r.E
for all E with D �1 E. Obviously, by using n instead of three pairs of concept
names, we can produce a generalized version of this example that shows that
the cardinality of LAΣ(C ′) can be exponential in the size of C ′ and Σ.

In order to obtain an NP-algorithm that generates exactly the lower neigh-
bors of C ′ that subsume C, it is sufficient to generate all lowering atoms for C ′

w.r.t. Σ := sig(C), and then remove the ones that do not subsume C. Unfor-
tunately, the definition of lowering atoms given above Lemma5 does not tell
us directly how appropriate existential restrictions ∃r.D can be found. The fol-
lowing necessary conditions follows from the characterization of lower neighbors
given in [16].

Lemma 6. Let C ′ be reduced. If ∃r.D ∈ LAΣ(C ′), then there is a set of exis-
tential restrictions {∃r.F ′

1, . . . ,∃r.F ′
k} ⊆ con(C ′) and F1 ∈ LAΣ(F ′

1), . . . , Fk ∈
LAΣ(F ′

k) such that D ≡ F1 � . . . � Fk.

We illustrate this lemma using the lowering atom D = Ai � Bj � Ck in
Example 3. Here we take the set of all existential restrictions in con(C ′) and
choose Ck ∈ LAΣ(A1 � A2 � B1 � B2), Bj ∈ LAΣ(A1 � A2 � C1 � C2), and
Ai ∈ LAΣ(B1�B2�C1�C2). Obviously, D is indeed equivalent to the conjunction
of these three atoms.

In general, not all choices of subsets and lower neighbors yields an appro-
priate existential restriction. For instance, if we take a smaller set of existential
restrictions in our example (e.g., {∃r.(A1�A2�C1�C2),∃r.(B1�B2�C1�C2)}),
then the obtained conjunction of lowering atoms (e.g., B1�A2) is not appropriate
since the corresponding existential restriction (e.g., ∃r.(B1 � A2)) is subsumed
by C ′.

The NP-algorithm generating exactly the elements of LAΣ(C ′) works as fol-
lows: given a reduced concept C ′ and a finite set Σ of concept and role names
such that sig(C ′) ⊆ Σ, it non-deterministically chooses one of the following two
alternatives:

1. Choose a concept name A ∈ Σ \ con(C ′), and output A. If there is no such
concept name, fail.

2. Choose r ∈ Σ ∩ NR, a set of existential restrictions {∃r.F ′
1, . . . ,∃r.F ′

k} ⊆
con(C ′), and recursively guess elements F1 ∈ LAΣ(F ′

1), . . . , Fk ∈ LAΣ(F ′
k).

If for some i, 1 ≤ i ≤ k, the attempt to produce the atom Fi ∈ LAΣ(F ′
i) fails,

or if C ′ � ∃r.(F1 � . . . � Fk), or if F1 � . . . � Fk has an upper neighbor E such
that C ′ �� ∃r.E, then fail. Otherwise, output ∃r.(F1 � . . . � Fk).

Lemma 7. The algorithm described above runs in non-deterministic polynomial
time, and its non-failing runs produce exactly the elements of LAΣ(C ′).

Proof. Soundness of the algorithm is an immediate consequence of the fact that,
in the second case, we explicitly test whether the conditions in the definition of
lowering atoms are satisfied. Completeness is an easy consequence of Lemma 6.
Finally, the choice of a concept name, a role name, and a subset of the existential

336 F. Baader et al.

restrictions in con(C ′), can clearly be achieved by making polynomially many
binary choices. By induction on the role depth, we can assume that the algorithm
can produce the elements Fi ∈ LAΣ(F ′

i) in non-deterministic polynomial time,
which shows that the overall algorithm runs in non-deterministic polynomial
time. ��

With this lemma in place, we can now show that the optimality problem for
polynomial, upward-closed properties is in coNP.

Theorem 3. Let F be a polynomial, upward-closed property. The problem of
deciding, for a given input C,C ′,P, whether C ′ is an optimal F -generalization
of C w.r.t. P is in coNP.

Proof. We show that non-optimality can be decided by an NP-algorithm, i.e., we
describe an NP-algorithm that, given C,C ′,P, succeeds iff C ′ is not an optimal
F -generalization of C w.r.t. P.

1. Check whether C � C ′ and C ′ ∈ F (C,P). If this is not the case, then
succeed. Otherwise, continue with the next step. Polynomiality of F and of
subsumption in EL implies that this test can be done in polynomial time.

2. Set Σ := sig(C) and guess a lowering atom At ∈ LAΣ(C ′). If C �� At,
then fail. Otherwise, we know that C ′′ := C ′ � At is a lower neighbor of C ′

that subsumes C, and we continue with the next step. As shown above, the
elements of LAΣ(C ′) can be generated by an NP-algorithm.

3. Check whether C ′′ ∈ F (C,P). If this is the case, then succeed, and otherwise
fail.

It is easy to see that this algorithm is correct and runs in non-deterministic
polynomial time. ��

Since compliance and safety are polynomial, upward-closed properties, the
following corollary is an immediate consequence of this theorem.

Corollary 3. The optimality problem is in coNP for compliance and for safety.

At the moment, we do not know whether these problems are also coNP-hard.
We can show, however, that the Hypergraph Duality Problem [11] can be reduced
to them. Note that this problem is in coNP, but conjectured to be neither in P
nor coNP-hard [12,14]. Given two finite families of inclusion-incomparable sets G
and H, the Hypergraph Duality Problem (Dual) asks whether H consists exactly
of the minimal hitting sets of G.

Proposition 7. There is a polynomial reduction of Dual to the optimality prob-
lem that works both for compliance and for safety.

Proof. Let G = {G1, . . . , Gg},H = {H1, . . . , Hh} be finite families of inclusion-
incomparable sets and G := G1 ∪ . . .∪Gg. Since it can be checked in polynomial
time whether a given set H is a minimal hitting set of G, we can assume without
loss of generality that all sets Hi are indeed minimal hitting sets of G. The
problem to be decided by our reduction is thus whether H really contains all
minimal hitting sets of G. We view the elements of G as concept names, for
S ⊆ G write

�
S for the conjunction of the concept names in S, and define

Privacy-Preserving Ontology Publishing for EL Instance Stores 337

– C := ∃r1.
�

G and P := {D1 := ∃r1.
�

G1, . . . , Dg := ∃r1.
�

Gg};
– C ′ := ∃r1.

�
(G \ H1) � . . . � ∃r1.

�
(G \ Hh).

It is easy to see that C ′ is a P-compliant and P-safe generalization of C.
According to Definition 4 and the proof of Theorem1, C has exactly one opti-

mal P-compliant generalization, which is obtained as follows. First, note that
the top-level conjunctions of C and D1, . . . , Dg respectively consist of a single
existential restriction for the same role r1, and that the concepts Di are pairwise
incomparable. This implies that on this level only one hitting set is considered,
which is P. On the next role level, we have P1 = {�

G1, . . . ,
�

Gg}. The optimal
P1-compliant generalizations of C1 :=

�
G are obtained by considering all min-

imal hitting sets of G1, . . . , Gg, and removing their elements from the top-level
conjunction of C1. Consequently, the optimal P-compliant generalization of C
is given as

C ′′ :=
�

H minimal hitting set of G
∃r1.

�
(G \ H).

A close look at Theorem 2 reveals that C ′′ is also the optimal P-safe generaliza-
tion of C. This shows that C ′ is optimal for compliance (safety) iff H contains
all minimal hitting sets of G. ��

6 Conclusion

We have introduced the notions of compliance with and safety for a policy in
the simple setting where both the knowledge about individuals and the policy
are given by EL concepts. In this setting, we were able to characterize compliant
(safe) generalization of a given concept w.r.t. a policy, and have used these char-
acterizations to obtain algorithms for computing optimal generalizations. These
algorithms need exponential time, which is optimal since the generalizations may
be of exponential size. For the optimality problems, we have provided a coNP
upper bound, and have shown by a reduction from Dual that they are unlikely
to be in P since this would show Dual ∈ P, a problem that has been open for
a long time.

In the future, we intend to extend this work in two directions. On the one
hand, we will consider EL concepts w.r.t. a background ontology. On the other
hand, we will consider a setting where the ABox contains not just concept asser-
tions, but also role assertions. In the latter case, one can use not just general-
ization of concepts, but also renaming of individuals as operations for achieving
compliance (safety). Finally, of course, these two extensions should be combined.

References

1. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Proceedings of the
Nineteenth International Joint Conference on Artificial Intelligence, IJCAI 2005,
Edinburgh, UK. Morgan-Kaufmann Publishers (2005)

338 F. Baader et al.

2. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press, New York (2003)

3. Baader, F., Kriegel, F., Nuradiansyah, A.: Privacy-preserving ontology publishing
for EL instance stores (extended version). LTCS-Report 19–01, Chair of Automata
Theory, Institute of Theoretical Computer Science, TU Dresden, Dresden, Ger-
many (2019). https://tu-dresden.de/inf/lat/reports#BaKrNu-LTCS-19-01

4. Baader, F., Kriegel, F., Nuradiansyah, A., Peñaloza, R.: Making repairs in descrip-
tion logics more gentle. In: Principles of Knowledge Representation and Reasoning:
Proceedings of the Sixteenth International Conference, KR 2018, Tempe, Arizona,
30 October–2 November 2018, pp. 319–328 (2018)

5. Baader, F., Küsters, R., Molitor, R.: Computing least common subsumers in
description logics with existential restrictions. In: Proceedings of the 16th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI 1999), pp. 96–101 (1999)

6. Baader, F., Morawska, B.: Unification in the description logic EL. Logical Methods
Comput. Sci. 6(3), 31 p. (2010)

7. Baader, F., Nuradiansyah, A.: Towards privacy-preserving ontology publishing. In:
Ortiz, M., Schneider, T. (eds.) Proceedings of the 31st International Workshop on
Description Logics (DL 2018). CEUR Workshop Proceedings (2018)

8. Bonatti, P.A.: Fast compliance checking in an OWL2 fragment. In: Lang, J. (ed.)
Proceedings of the Twenty-Seventh International Joint Conference on Artificial
Intelligence (IJCAI 2018), pp. 1746–1752. ijcai.org (2018)

9. Brandt, S.: Polynomial time reasoning in a description logic with existential restric-
tions, GCI axioms, and—what else? In: de Mántaras, R.L., Saitta, L. (eds.) Pro-
ceedings of the 16th European Conference on Artificial Intelligence (ECAI 2004),
pp. 298–302 (2004)

10. Cuenca Grau, B., Kostylev, E.V.: Logical foundations of privacy-preserving pub-
lishing of linked data. In: Proceedings of the Thirtieth AAAI Conference on Artifi-
cial Intelligence, Phoenix, Arizona, USA, 12–17 February 2016, pp. 943–949 (2016)

11. Eiter, T., Gottlob, G.: Hypergraph transversal computation and related problems
in logic and AI. In: Flesca, S., Greco, S., Ianni, G., Leone, N. (eds.) JELIA 2002.
LNCS (LNAI), vol. 2424, pp. 549–564. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45757-7 53

12. Fredman, M.L., Khachiyan, L.: On the complexity of dualization of monotone
disjunctive normal forms. J. Algorithms 21(3), 618–628 (1996)

13. Fung, B.C.M., Wang, K., Chen, R., Yu, P.S.: Privacy-preserving data publishing:
a survey of recent developments. ACM Comput. Surv. 42(4), 14:1–14:53 (2010)

14. Gottlob, G., Malizia, E.: Achieving new upper bounds for the hypergraph duality
problem through logic. SIAM J. Comput. 47(2), 456–492 (2018)

15. Horrocks, I., Li, L., Turi, D., Bechhofer, S.: The instance store: DL reasoning with
large numbers of individuals. In: Proceedings of the 2004 International Workshop
on Description Logics (DL 2004), Whistler, British Columbia, Canada, 6–8 June
2004 (2004)

16. Kriegel, F.: The distributive, graded lattice of EL concept descriptions and its
neighborhood relation (extended version). LTCS-Report 18–10, Chair of Automata
Theory, Institute of Theoretical Computer Science, TU Dresden, Dresden, Ger-
many (2018). https://tu-dresden.de/inf/lat/reports#Kr-LTCS-18-10

17. Küsters, R.: Non-standard Inferences in Description Logics. Lecture Notes in Arti-
ficial Intelligence, vol. 2100. Springer, Heidelberg (2001). https://doi.org/10.1007/
3-540-44613-3

https://tu-dresden.de/inf/lat/reports#BaKrNu-LTCS-19-01
https://doi.org/10.1007/3-540-45757-7_53
https://doi.org/10.1007/3-540-45757-7_53
https://tu-dresden.de/inf/lat/reports#Kr-LTCS-18-10
https://doi.org/10.1007/3-540-44613-3
https://doi.org/10.1007/3-540-44613-3

A Bayesian Extension of the Description
Logic ALC

Leonard Botha1 , Thomas Meyer1 , and Rafael Peñaloza2(B)

1 University of Cape Town and CAIR, Cape Town, South Africa
leonardzbotha@gmail.com, tmeyer@cs.uct.ac.za

2 University of Milano-Bicocca, Milano, Italy
rafael.penaloza@unibz.it

Abstract. Description logics (DLs) are well-known knowledge represen-
tation formalisms focused on the representation of terminological knowl-
edge. A probabilistic extension of a light-weight DL was recently pro-
posed for dealing with certain knowledge occurring in uncertain con-
texts. In this paper, we continue that line of research by introducing the
Bayesian extension BALC of the DL ALC. We present a tableau-based
procedure for deciding consistency, and adapt it to solve other probabilis-
tic, contextual, and general inferences in this logic. We also show that
all these problems remain ExpTime-complete, the same as reasoning in
the underlying classical ALC.

1 Introduction

Description logics (DLs) [1] are a family of logic-based knowledge representation
formalisms designed to describe the terminological knowledge of an application
domain. Due to their clear syntax, formal semantics, and the existence of effi-
cient reasoners alongside their expressivity, they have been successfully applied
to model several domains, especially from the biomedical sciences. However, in
their classical form, these logics are not capable of dealing with uncertainty,
which is an unavoidable staple in real-world knowledge. To overcome this limi-
tation, several probabilistic extensions of DLs have been suggested in the litera-
ture. The landscape of probabilistic extensions of DLs is too large to be covered
in detail in this work. These logics differentiate themselves according to their
underlying logical formalism, their interpretation of probabilities, and the kind
of uncertainty that they are able to express. For a relevant, although slightly
outdated survey, where all these differences are showcased, see [16].

A recently proposed probabilistic DL is the Bayesian extension BEL of the
light-weight EL. This logic focuses on modelling certain knowledge that holds
only in some contexts, together with uncertainty about the current context. One
advantage of the formalism underlying BEL is that it separates the contextual

R. Peñaloza—This work was carried out while the third author was at the Free Uni-
versity of Bozen-Bolzano, Italy.

c© Springer Nature Switzerland AG 2019
F. Calimeri et al. (Eds.): JELIA 2019, LNAI 11468, pp. 339–354, 2019.
https://doi.org/10.1007/978-3-030-19570-0_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19570-0_22&domain=pdf
http://orcid.org/0000-0001-9236-9873
http://orcid.org/0000-0003-2204-6969
http://orcid.org/0000-0002-2693-5790
https://doi.org/10.1007/978-3-030-19570-0_22

340 L. Botha et al.

knowledge, which is de facto a classical ontology, from the likelihood of observ-
ing this context. As a simple example of the importance of contextual knowl-
edge, consider the knowledge of construction techniques and materials that vary
through time. In the context of a modern house, asbestos and modern pipes are
not observable, while some classes of houses built during the 1970s do contain
both. However, in all contexts we know that asbestos and lead in drinking water
have grave health effects. Still, when confronted with a random house, one might
not know to which of these contexts it belongs, and by extension whether it is
safe to live in. But construction data may be used to derive the probabilities of
these contexts.

To allow for complex probabilistic relationships between the contexts, their
joint probability distribution is encoded via a Bayesian network (BN) [18]. This
logic is closely related to the probabilistic extension of DL-Lite proposed in [12],
but uses a less restrictive semantics (for a discussion on the differences between
these logics, see [11]). Another similar proposal is Probabilistic Datalog± [13],
with the difference that uncertainty is represented via a Markov Logic Network,
instead of a BN. Since the introduction of BEL, the main notions behind it
have been generalised to arbitrary ontology languages [8]. However, it has also
been shown that efficient and complexity-optimal reasoning methods can only be
achieved by studying the properties of each underlying ontology language [11].

In this paper, we continue with that line of research and study the Bayesian
extension of the propositionally closed DL ALC. As our main result, we present
an algorithm, based on a glass-box modification of the classical tableaux method
for reasoning in ALC, that outputs a description of all the contexts encoding
inconsistent knowledge. Using this algorithm, we describe an effective method
for deciding consistency of a BALC knowledge base. We also provide a tight
ExpTime complexity bound for this problem.

This is followed by a study of several crisp and probabilistic variants of
the standard DL decision problems; namely, concept satisfiability, subsumption,
and instance checking. Interestingly, our work shows that all our problems can
be reduced to some basic computations over a context describing inconsistency,
and hence are ExpTime-complete as well. These complexity bounds are not com-
pletely surprising, given the high complexity of the classical ALC. However, our
tableaux-based algorithm has the potential to behave better in practical scenar-
ios. This work details and deepens results that have previously been presented
in [5,6].

2 Preliminaries

We start by briefly introducing Bayesian networks and the description logic (DL)
ALC, which form the basis for BALC.

Bayesian networks (BNs) are graphical models capable of representing the joint
probability distribution (JPD) of several discrete random variables in a compact
manner [18]. Given a random variable X, val(X) denotes the set of values that

A Bayesian Extension of the Description Logic ALC 341

X

Y

Z

X

0.7
Y

X 0.1
¬X 0.7

Z

X Y 0
X ¬Y 0
¬X Y 0
¬X ¬Y 0.6

Fig. 1. A Bayesian network with three Boolean variables.

X can take. For x ∈ val(X), X = x is the valuation of X taking the value x.
This notation is extended to sets of variables in the obvious way. Given a set
of random variables V, a world ω is a set of valuations containing exactly one
valuation for every random variable X ∈ V. A V -literal is an ordered pair of
the form (Xi, x), where Xi ∈ V and x ∈ val(Xi). V -literals generalise Boolean
literals denoted as x or ¬x for the random variable X. For simplicity, in this paper
we will often use the notation X for (X,T) and ¬X for (X,F). A V -context is
any set of V -literals. It is consistent if it contains at most one literal for each
random variable. We will often call V -contexts primitive contexts.

A Bayesian network is a pair B = (G,Θ) where G = (V,E) is a directed
acyclic graph (DAG) and Θ is a set of conditional probability distributions for
every variable X ∈ V given its parents π(X) on the DAG G; more precisely,
Θ = {P (X = x|π(X) = x′) | X ∈ V }. B encodes the JPD of V through the
chain rule P (X = x) =

∏
Xi∈V P (Xi = xi | π(Xi) = xj).

Figure 1 depicts a BN with three random variables denoting the likelihood
of different characteristics of a construction: X stands for a post-1986 building,
Y for a renovated building, and Z for the presence of lead pipes. In this case,
P (X,Y,Z) = 0.7 ·0.1 ·0 = 0; i.e., a renovated post-1986 house has no lead pipes.
The description logic ALC is the smallest propositionally closed DL [1,20]. It is
based on concepts which correspond to unary predicates of first-order logic, and
roles corresponding to binary predicates. Formally, given the mutually disjoint
sets NI , NC , and NR of individual, concept, and role names, respectively, ALC
concepts are built by the grammar rule C ::= A | ¬C | C�C | C�C | ∃r.C | ∀r.C,
where A ∈ NC and r ∈ NR. ALC axioms are either general concept inclusions
(GCIs) of the form C � D, concept assertions C(a), or role assertions r(a, b)
where a, b ∈ NI , r ∈ NR, and C,D are concepts. An ontology is a finite set
of axioms. We sometimes partition an ontology into the TBox T composed
exclusively of GCIs, and the ABox A containing all concept and role assertions.

The semantics of ALC is defined by interpretations, which are pairs of the
form I = (ΔI , ·I) where ΔI is a non-empty set called the domain and ·I is the
interpretation function that maps every a ∈ NI to an element aI ∈ ΔI , every
A ∈ NC to a set AI ⊆ ΔI and every r ∈ NR to a binary relation rI ⊆ ΔI×ΔI .
The interpretation function is extended to arbitrary concepts by defining for any
two concepts C,D:

342 L. Botha et al.

– (¬C)I := ΔI \ CI ,
– (C � D)I := CI ∩ DI ,
– (C � D)I := CI ∪ DI ,
– (∃r.C)I := {δ ∈ ΔI | ∃η ∈ CI .(δ, η) ∈ rI}, and
– (∀r.C)I := {δ ∈ ΔI | ∀η ∈ ΔI .(δ, η) ∈ rI ⇒ η ∈ CI}.

This interpretation satisfies the GCI C � D iff CI ⊆ DI , the concept assertion
C(a) iff aI ∈ CI and the role assertion r(a, b) iff (aI , bI) ∈ rI . I is a model
of the ontology O iff it satisfies all axioms in O. An important abbreviation in
ALC is the bottom concept ⊥ := A�¬A, where A is any concept name. For any
interpretation I, ⊥I = ∅.

As a simple example, one can express the notion that water pipes do not
contain lead through the GCI Pipe � ∀contains.¬Lead.

3 BALC
BALC is a probabilistic extension of ALC, in which axioms are considered to
hold only in a given (possibly uncertain) context expressed through annotations.

Definition 1 (KB). Let V be a finite set of discrete random variables. A
V -restricted axiom (V -axiom) is an expression of the form ακ, where α is an
ALC axiom and κ is a V -context. A V -ontology is a finite set of V -axioms. A
BALC knowledge base (KB) over V is a pair K = (O,B) where B is a BN over
V , and O is a V -ontology.

To define the semantics of BALC, we extend the notion of an interpreta-
tion to also take contexts into account, and interpret the probabilities based
on a multiple-world approach. Formally, a V -interpretation is a tuple V =
(ΔV , ·V , vV) where (ΔV , ·V) is an ALC interpretation and vV : V → ∪X∈V val(X)
is a valuation function such that vV(X) ∈ val(X).

Given a valuation function vV , a Bayesian world ω, and a context κ we denote
vV = ω when vV assigns to each random variable the same value as it has in ω;
vV |= κ when vV(X) = x for all (X,x) ∈ κ; and ω |= κ when there is ω = vV

such that vV |= κ.

Definition 2 (Model). The V -interpretation V is a model of the V -axiom ακ,
(V |= ακ), iff (i) vV �|= κ, or (ii) (ΔV , ·V) satisfies α. It is a model of the ontology
O iff it is a model of all axioms in O.

Notice that BALC is a generalisation of ALC. The axiom α∅ holds in all contexts,
and hence every ALC ontology is also a V -ontology from BALC. In particular,
this means that reasoning in BALC should be at least as hard as doing so in
ALC. For brevity, for the rest of this paper we will abbreviate axioms of the form
α∅ simply as α. When it is clear from the context, we will omit the V prefix and
refer only to e.g., contexts, GCIs, or ontologies.

V -interpretations focus on only a single world, but KBs have information
about the uncertainty of being in one world or another. Probabilistic interpreta-
tions combine multiple V -interpretations and the probability distribution from
the BN to give information about the uncertainty of some consequences.

A Bayesian Extension of the Description Logic ALC 343

Definition 3 (Probabilistic model). A probabilistic interpretation is a pair
of the form P = (J ,PJ), where J is a finite set of V -interpretations and PJ
is a probability distribution over J such that PJ (V) > 0 for all V ∈ J . The
probabilistic interpretation P is a model of the axiom ακ (P |= ακ) iff every
V ∈ J is a model of ακ. P is a model of the ontology O iff every V ∈ J is a
model of O.

The distribution PJ is consistent with the BN B if for every possible world
ω of the variables in V it holds that

∑

V∈J ,vV=ω

PJ (V) = PB(ω),

where PB is the joint probability distribution defined by the BN B. The probabilis-
tic interpretation P is a model of the KB K = (O,B) iff it is a (probabilistic)
model of O, and is consistent with B.

Consider for example the KB K = (O,B) where B is the BN from Fig. 1, and
O contains the axioms

Pipe � ∀contains.¬LeadX Pipe � ∀contains.¬LeadY

Pipe � ∃contains.LeadZ Water � ∃hasAlkalinity.Low � ¬DrinkableZ .

The axioms in the first row express that pipes in post-1986 (context X) and in
renovated buildings (context Y) do not contain lead. The axioms in the second
row refer exclusively to the context of lead pipes (Z). In this case, our knowledge
is that pipes do contain lead, and that water with low alkalinity is not drinkable,
as it absorbs the lead from the pipes it travels on. Notice that the first two axioms
contradict the third one. This is not a problem because they are required to hold
in different contexts. Indeed, notice that any context that makes Z, and either
X or Y true has probability 0, and hence can be ignored in the construction of
a model.

A complex context φ is a finite non-empty set of primitive contexts. Note
that primitive contexts can be seen as complex ones; e.g., the primitive context
κ corresponds to the complex context {κ}. Given a valuation function vV and a
complex context φ = {α1, . . . , αn} we say that vV satisfies φ (written as vV |= φ)
iff vV satisfies at least one αi ∈ φ; in particular, if vV |= κ then vV |= {κ}. Thus,
in the following we assume that all contexts are in complex form unless explicitly
stated otherwise. Finally we say that φ entails ψ (φ |= ψ) iff for all vV such that
vV |= φ it follows that vV |= ψ. Or alternatively φ |= ψ iff for all Bayesian worlds
ω such that ω |= φ it follows that ω |= ψ.

Given complex contexts φ = {α1, . . . , αn} and ψ = {β1, . . . , βm} we define
the operations

φ ∨ ψ := φ ∪ ψ, and

φ ∧ ψ :=
⋃

α∈φ,β∈ψ

{α ∪ β} = {α ∪ β | α ∈ φ, β ∈ ψ}.

344 L. Botha et al.

These operations generalise propositional disjunction (∨) and propositional con-
junction (∧), where disjunction has the property that either one of the two
contexts holds and conjunction requires that both hold. It is easy to see that for
all worlds ω and complex contexts φ, ψ it holds that (i) ω |= φ ∨ ψ iff ω |= φ or
ω |= ψ, and (ii) ω |= φ∧ψ iff ω |= φ and ω |= ψ. Two important special complex
contexts are top (�) and bottom (⊥), which are satisfied by all or no world,
respectively. If there are n consistent primitive contexts and κ is an inconsistent
context, these are defined as � := {α1, . . . , αn} and ⊥:= κ.

In the next section, we study the problem of consistency of a BALC KB, and
its relation to other reasoning problems.

4 Consistency

The most basic decision problem one can consider is consistency. That is, decid-
ing whether a given BALC KB K has a probabilistic model or not. To deal
with this problem, it is convenient to consider the classical ALC ontologies that
should hold at each specific world. Formally, given the BALC KB K = (O,B)
and the world ω, the restriction of O to ω is

Oω := {α | ακ ∈ O, ω |= κ}.

Recall that a probabilistic model P = (J ,PJ) of K is a class of classical interpre-
tations associated to worlds (ΔV , ·V , ω), such that (ΔV , ·V) is a classical model
of Oω. Moreover, all the interpretations associated with the world ω must add to
the probability PB(ω) specified by B. Using this insight, we obtain the following
result.

Theorem 4. The BALC KB K = (O,B) is consistent iff for every world ω with
PB(ω) > 0 Oω is consistent.

Based on this result, we can derive a process for deciding consistency that pro-
vides a tight complexity bound for this problem.

Corollary 5. BALC KB consistency is ExpTime-complete.

Proof. There are exponentially many worlds ω. For each of them, we have to
check (classical) consistency of Oω (in exponential time) and that PB(ω) > 0,
which is linear in the size of B. ��

The algorithm described in the proof of this corollary is optimal in terms of
worst-case complexity, but it also runs in exponential time in the best case.
Indeed, it enumerates all the (exponentially many) Bayesian worlds. In prac-
tice, it is infeasible to use an algorithm that requires exponential time on every
instance. For that reason, we present a new algorithm based on the tableau
method originally developed for ALC. To describe this algorithm, we need to
introduce some additional notation.

A Bayesian Extension of the Description Logic ALC 345

�-rule if (C1 � C2)(x)φ ∈ A, and either C1(x)φ or C2(x)φ is A-insertable
then A′ := (A ⊕ C1(x)φ) ⊕ C2(x)φ

�-rule if (C1 � C2)(x)φ ∈ A, and both C1(x)φ and C2(x)φ are A-insertable
then A′ := A ⊕ C1(x)φ, A′′ := A ⊕ C2(x)φ

∃-rule if (∃R.C)(x)φ ∈ A, there is no z such that neither R(x, z)φ nor C(z)φ is
A-insertable, and x is not blocked

then A′ := (A ⊕ R(x, y)φ) ⊕ C(y)φ, where y is a new individual name
∀-rule if {(∀R.C)(x)φ, R(x, y)ψ} ⊆ A, and C(y)φ∧ψ is A-insertable

then A′ := A ⊕ C(y)φ∧ψ

	-rule if (C 	 D)φ ∈ O, x appears in A, and (¬C � D)(x)φ is A-insertable
then A′ := A ⊕ (¬C � D)(x)φ

Fig. 2. Expansion rules for constructing φ⊥
K

We denote the context that describes all worlds ω such that Oω is inconsistent
as φ⊥

K. That is ω |= φ⊥
K iff Oω is inconsistent. Moreover, φB is a context such

that ω |= φB iff P (ω) = 0. Theorem 4 states that K is inconsistent whenever
there is a world that models both φ⊥

K and φB. This is formalized in the following
result.

Theorem 6. The KB K is inconsistent iff φ⊥
K ∧ ¬φB is satisfiable.

To decide consistency, it then suffices to find a method for deriving the contexts
φ⊥

K and φB. For the former, we present a variant of the glass-box approach for
so-called axiom pinpointing [4,15,17], originally based on the ideas from [2].
This approach modifies the standard tableaux algorithm for ALC to keep track
of the contexts in which the derived elements in the tableau hold. In a nutshell,
whenever a rule application requires the use of an axiom from the ontology,
this fact is registered as part of a propositional formula. In our case, we need a
context, rather than a propositional formula, to take care of the multiple values
that the random variables take.

The algorithm starts with the ABox A from O. Recall that all the axioms in
A are labeled with a context. The algorithm then creates a set of ABoxes A fol-
lowing the rules from Fig. 2. As a pre-requisite for the execution of the algorithm,
we assume that all concepts appearing in the ontology are in negation normal
form (NNF); that is, only concept names can appear in the scope of a negation
operator. This assumption is w.l.o.g. because every concept can be transformed
into NNF in linear time by applying the De Morgan laws, the duality of the
quantifiers, and eliminating double negations. Each rule application chooses an
ABox A ∈ A and replaces it by one or two new ABoxes that expand A. We
explain the details of these rule applications next.

An assertion αφ is A-insertable to A iff for all ψ such that αψ ∈ A, φ �|= ψ.
In the expansion rules ⊕ is used as shorthand for A⊕αφ := (A\{αψ})∪{αφ∨ψ}
if αψ ∈ A and A ∪ {αφ} otherwise. The individual x is an ancestor of y if there
is a chain of role assertions connecting x to y; x blocks y iff x is an ancestor of
y and for every C(y)ψ ∈ A, there is a φ such that C(x)φ ∈ A and ψ |= φ; y is
blocked if there is a node that block it.

346 L. Botha et al.

The algorithm applies the expansion rules until A is saturated ; i.e., until no
rule is applicable to any A ∈ A. A contains a clash if {A(x)φ,¬A(x)ψ} ⊆ A for
some individual x and concept name A. We define the context

φA :=
∨

A(x)φ,¬A(x)ψ∈A
φ ∧ ψ,

which intuitively describes all the clashes that appear in A. When A is saturated,
we return the context φ⊥

K =
∧

A∈A φA expressing the need of having clashes in
every ABox A for inconsistency to follow. It is important to notice that the
definition of a clash does not impose any constraints on the contexts φ and ψ
labelling the assertions A(x) and ¬A(x), respectively. Indeed, A(x) and ¬A(x)
could hold in contradictory contexts. In that case, the conjunction appearing in
φA would not be affected; i.e., this clash will not provide any new information
about inconsistency.

Informally, the formula φ⊥
K corresponds to the clash formula (or pinpointing

formula) for explaining inconsistency of an ALC ontology [4,15]. The main differ-
ences are that the variables appearing in a context are not necessarily Boolean,
but multi-valued, and that the axioms in O are not labelled with unique vari-
ables, but rather with contexts already. Notice that the expansion rules in Fig. 2
generalise the expansion rules for ALC, but may require new rule applications
to guarantee that all possible derivations of a clash are detected. As observed
in [3,4], one has to be careful with termination of the modified method. How-
ever, since all the assertions used are unary and binary, the sufficient termination
conditions from [4,19] are satisfied. Hence we obtain the following result.

Theorem 7. The modified tableau algorithm terminates, and the context φ⊥
K is

such that for every world ω, ω |= φ⊥
K iff Kω is inconsistent.

We now turn our attention to the computation of the formula φB. Recall that
in a BN, the joint probability distribution is the product of the conditional
probabilities of each variable given its parents. Hence a world ω can only have
probability 0 if it evaluates some variable in X ∈ V and its parents π(X) to
values x and x, respectively, such that P (X = x | π(X) = x) = 0. Thus, to
compute φB it suffices to find out the cells in the conditional probability tables
in Θ with value 0.

Theorem 8. Let B = (V,Θ) be a BN, and define

φB :=
∨

P (X=x|π(X)=x)=0

⎛

⎝(X,x) ∧
∧

Y ∈π(X)

(Y, y)

⎞

⎠ .

Then for every world ω, ω |= φB iff PB(ω) = 0.

Notice that, in general, the context φB can be computed faster than simply enu-
merating all possible worlds. In particular, if the conditional probability tables
in Θ contain no 0-valued cell, then φB = ⊥; i.e., it is satisfied by no world.

A Bayesian Extension of the Description Logic ALC 347

Although consistency is a very important problem to be studied, we are inter-
ested also in other reasoning tasks. In particular, we should also take into account
the contexts and the probabilities provided by the BN beyond the question of
whether they are positive or not. In the next section we study variants of sat-
isfiability and subsumption problems, before turning our attention to instance
checking.

5 Satisfiability and Subsumption

In this section, we focus on two problems that depend only on the TBox part
of an ontology, and hence assume for the sake of simplicity that the ABox is
empty. Thus, we will write a BALC KB as a pair (T ,B) where T is a TBox
and B is a BN. We are in general interested in understanding the properties and
relationships of concepts.

Given two concepts C,D and a BALC KB K, we say that C is satisfiable
w.r.t. K iff there exists a probabilistic model P = (J ,PJ) of K s.t. CV �= ∅ for
all V ∈ J . C is subsumed by D w.r.t. K iff for all models P = (J ,PJ) of K and
all V ∈ J CV ⊆ DV . It is possible to adapt the well known reductions from the
classical case to show that these two problems are ExpTime-complete.

Theorem 9. Satisfiability and subsumption w.r.t. BALC KBs are ExpTime-
complete.

Proof. Let K = (T ,B) and C,D be concepts. It is easy to see that C is subsumed
by D w.r.t. K iff K′ = (T ∪ {(C � ¬D)(a)∅},B) is inconsistent, where a is an
arbitrary individual name. Similarly, C is satisfiable iff K′′ = (T ∪ {C(a)∅},B)
is consistent. ��

In the following, we study variants of these problems. For a more concise presen-
tation, we will present only the cases for subsumption. Analogous results hold
for satisfiability based on the fact that for every ALC interpretation I, it holds
that CI = ∅ iff CI ⊆ ⊥I . First we consider additional information about con-
texts; afterwards we compute the probability of an entailment, and then the
combination of both.

Definition 10 (contextual subsumption). Let K = (T ,B) be a BALC KB,
C,D concepts, and κ a context. C is subsumed in context κ w.r.t. K, denoted
as K |= (C � D)κ if every probabilistic model of K is also a model of (C � D)κ.

This is the natural extension of entailment to consider also the contexts. In our
setting, however, contexts provide a means to express and reason with probabil-
ities.

Definition 11 (subsumption probability). Let P = (J , PJ) be a proba-
bilistic model of the KB K, κ a context, and C,D two concepts. The probability
of (C � D)κ w.r.t. P is

PP((C � D)κ) =
∑

V∈J ,V|=(C�D)κ

PJ (V).

348 L. Botha et al.

The probability of (C � D)κ w.r.t. K is

PK((C � D)κ) = inf
P|=K

PP((C � D)κ).

C is positively subsumed by D in κ iff PK((C � D)κ) > 0; it is p-subsumed iff
PK((C � D)κ) ≥ p; it is exactly p-subsumed iff PK((C � D)κ) = p, and it is
almost certainly subsumed iff PK((C � D)κ) = 1.

That is, the probability of a subsumption in a specific model is the sum of the
probabilities of the worlds in which C is subsumed by D in context κ; notice
that this trivially includes all worlds where κ does not hold. In the case where K
is inconsistent we define the probability of all subsumptions as 1 to ensure our
definition is consistent with general probability theory (recall that inf(∅) = ∞
in general).

Contextual subsumption is related to subsumption probability in the obvious
way. Namely, a KB K entails a contextual subsumption iff the probability of the
subsumption in K is 1.

Theorem 12. Given a KB K, concepts C and D, and a context κ, it holds that:

K |= (C � D)κ iff PK((C � D)κ) = 1.

This is convenient as it provides a method of reusing our results from Sect. 4 to
compute subsumption probabilities.

Theorem 13. Let K = (T ,B) be a consistent KB, C,D two concepts, and κ a
context. For the KB K′ = (T ∪ {C(a)κ,¬D(a)κ},B) it holds that

PK((C � D)κ) =
∑

ω|=φ⊥
K′

PB(ω) + 1 − PB(κ).

Notice that the formula φ⊥
K′ requires at most exponential space on the size of

T to be encoded. For each of the exponentially many worlds, computing PB(ω)
requires polynomial time due to the chain rule. Hence, overall, the computation
of the subsumption probabilities requires exponential time. Importantly, this
bound does not depend on how φ⊥

K′ was computed. This provides an exponential
upper bound for computing the probability of a subsumption.

Corollary 14. The probability of a subsumption w.r.t. a KB can be computed
in exponential time on the size of the KB.

Obviously, an exponential-time upper bound for computing the exact probability
of a subsumption relation immediately yields an ExpTime upper bound for
deciding the other problems introduced in Definition 11. All these problems are
also generalisations of the subsumption problem in ALC. More precisely, given
an ALC TBox T , we can create the BALC KB K = (T ′,B) where T ′ contains
all the axioms in T labelled with the context x and B contains only one Boolean
node x that holds with probability 1. Given two concepts C,D T |= C � D iff

A Bayesian Extension of the Description Logic ALC 349

C is almost certainly subsumed by D in context x. Since subsumption in ALC is
already ExpTime-hard, we get that all these problems are ExpTime-complete.

In practice, however, it may be too expensive to compute the exact probabil-
ity when we are only interested in determining lower bounds, or the possibility
of observing an entailment; for instance, when considering positive subsumption.
Notice that, according to our semantics, a contextual GCI (C � D)κ will hold
in any world ω such that ω �|= κ. Thus, if the probability of this world is positive
(PB(ω) > 0), we can immediately guarantee that PK((C � D)κ) > 0. Thus,
positive subsumption can be decided without any ontological reasoning for any
context that is not almost certain. In all other cases, the problem can still be
reduced to inconsistency.

Theorem 15. The concept C is positively subsumed by D in context κ w.r.t.
K = (T ,B) iff K′ = (T ∪ {C(a)κ,¬D(a)κ},B) is inconsistent or PB(κ) < 1.

Assuming that the KB K is consistent, the inconsistency in the KB K′ from
this theorem can only arise from the inclusion of the two assertions which are
required to hold in context κ. If the context κ is not known before hand, it is
also possible to leverage the inconsistency decision process, which is the most
expensive part of this method. Let K∅ := (T ∪ {C(a)∅,¬D(a)∅},B). That is, we
extend K with assertions negating the subsumption relation, which should hold
in all contexts. From Theorem 7 we conclude that φ⊥

K∅ encodes all the contexts
in which C � D must hold. Notice that the computation of φ⊥

K∅ does not depend
on the context κ but can be used to decide positive subsumption for any context.

Corollary 16. The concept C is positively subsumed by D in context κ w.r.t.
K = (T ,B) iff κ entails φ⊥

K∅ or PB(κ) < 1.

Considering the probabilities of contextual subsumption relations may lead
to unexpected results arising from the contextual semantics. Indeed, it always
holds (see Theorem 15) that PK((C � D)κ) ≥ 1 − PB(κ). In other words, the
probability of a subsumption in a very unlikely context will always be very
high, regardless of the KB and concepts used. In some cases, it may be more
meaningful to consider a conditional probability under the assumption that the
context κ holds.

Definition 17 (conditional subsumption). Let P = (J , PJ) be a proba-
bilistic model of the KB K, κ, λ two contexts with PB(λ) > 0, and C,D two
concepts. The conditional probability of (C � D)κ given λ w.r.t. P is

PP((C � D)κ | λ) =

∑
V∈J ,vV |=λ,V|=(C�D)κ PJ (V)

PB(λ)
.

The conditional probability of (C � D)κ given λ w.r.t. K is

PK((C � D)κ | λ) = inf
P|=K

PP((C � D)κ | λ).

350 L. Botha et al.

This definition follows the same principles of conditioning in probability the-
ory, but extended to the open world interpretation provided by our model-based
semantics. Notice that, in addition to the scaling factor PB(λ) in the denomina-
tor, the nominator is also differentiated from Definition 11 by considering only
the worlds that satisfy the context λ already.

Consider the numerator in the definition of conditional probabilities. Notice
that it is pretty similar to Definition 11, except that the sum restricts to only
the worlds that satisfy the context λ. Thus, the numerator can be obtained from
the contextual probability in the context κ∧λ excluding the worlds that violate
λ. More formally, we have that

∑

V∈J ,vV |=λ,V|=(C�D)κ

PJ (V) =
∑

vV |=λ,vV 	|=κ

PJ (V) +
∑

vV |=λ∧κ,V|=C�D

PJ (V)

= PB(λ) − PB(λ ∧ κ) + PP((C � D)λ∧κ) − 1 + PB(λ ∧ κ)

= PP((C � D)λ∧κ) + PB(λ) − 1.

Thus we get the following result.

Theorem 18. PK((C � D)κ | λ) = PP((C�D)λ∧κ)+PB(λ)−1
PB(λ) .

In particular, this means that also conditional probabilities can be computed
through contextual probabilities, with a small overhead of computing the prob-
ability (on the BN B) of the conditioning context λ.

As in the contextual case, if one is only interested in knowing that the sub-
sumption is possible (that is, that it has a positive probability), then one can
exploit the complex context describing the inconsistent contexts which, as men-
tioned before, can be precompiled to obtain the contexts in which a subsump-
tion relation must be satisfied. However, in this case, entailment between con-
texts is not sufficient; one must still compute the probability of the contextual
subsumption.

Corollary 19. Let K = (T ,B) be a consistent KB, C,D concepts, and κ, λ
contexts s.t. PB(λ) > 0. PK((C � D)κ | λ) > 0 iff PP((C � D)λ∧κ) > 1−PB(λ).

In other words, P ((C � D)κ | λ) > 0 iff C is p-subsumed by D in κ ∧ λ with
p = 1 − PB(λ).

Analogously to Definitions 10, 11, and 17, it is possible to define the notions
of consistency of a concept C to hold in only some contexts, and based on it, the
(potentially conditional) probability of such a contextual consistency problem.
As mentioned already, it is well known that for every ALC interpretation I it
holds that CI = ∅ iff CI ⊆ ⊥I . Hence, all these problems can be solved through
a direct reduction to their related subsumption problem.

We now turn our attention to the problem of instance checking. In this prob-
lem, the ABox also plays a role. Hence, we consider once again ontologies O that
can have in addition to GCIs, concept and role assertions.

A Bayesian Extension of the Description Logic ALC 351

6 Instance Checking

We consider a probabilistic extension to the classical instance checking problem.
In BALC we call this problem probabilistic instance checking and we define both
a decision problem and probability calculation for it next.

Given a KB K and a context κ, the individual name a is an instance of
the concept C in κ w.r.t. K, written K |= C(a)κ, iff for all probabilistic models
P = (J , PJ) of K and for all V ∈ J it holds that V |= C(a)κ. That is, if every
interpretation in P satisfies the assertion C(a)κ. Note that as before, instance
checking in ALC is a special case of this definition, that can be obtained by
considering a BN with only one variable that is true with probability 1. Notice
that, contrary to the case of satisfiability studied at the end of the last section,
it is not possible to reduce instance checking to subsumption since an instance
may be caused by ABox assertions. However, it may be reduced to consistency.

Theorem 20. Given a ∈ NI , a concept C, a context κ, and a KB K = (O,B),
K |= C(a)κ iff the KB K′ = (O ∪ {(¬C(a))κ},B) is inconsistent.

In particular, this means that instance checking is at most as hard as deciding
consistency. As mentioned already, it is also at least as hard as instance checking
in the classical ALC. Hence we get the following result.

Lemma 21. Instance checking in a BALC KB is ExpTime-complete.

Let us now consider the probabilistic entailments related to instance checking.

Definition 22 (instance probability). The probability of an instance in a
probabilistic model P = (J , PJ) of the KB K is

PP(C(x)κ) =
∑

V∈J ,V|=C(x)κ

PJ (V).

The instance probability w.r.t. a KB K is

PK(C(x)κ) = inf
P|=K

PP(C(x)κ).

The conditional probability of an instance in a particular probabilistic model
P = (J , PJ) is

PP(C(x)κ | λ) =

∑
V∈J ,vV |=λ,V|=C(x)κ PJ (V)

PB(λ)
,

The probability of the conditional instance in K is:

PK(C(x)κ | λ) = inf
P|=K

PP(C(x)κ | λ)

352 L. Botha et al.

The probability of all instance checks for an inconsistent KB is always 1 to keep
our definitions consistent with probability theory.

As we did for subsumption, we can exploit the reasoning techniques for decid-
ing inconsistency of a BALC KB to find out the contextual and conditional prob-
abilities of an instance. Moreover, the method can be further optimised in the
cases where we are only interested in probabilistic bounds. In particular, we can
adapt Theorem 18 to this case.

Theorem 23. PK(C(x)κ | λ) = PK(C(x)κ∧λ)+PB(λ)−1
P (λ) .

7 Conclusions

We have presented a new probabilistic extension of the DL ALC based on the
ideas of Bayesian ontology languages, in which certain knowledge is dependent on
the uncertain context where it holds. Our work extends the results on BEL [9,10]
to a propositionally closed ontology language. The main notions follow the basic
ideas of Bayesian ontology languages [11]; however, by focusing on a specific
logic, we are able to produce a tableaux-based decision algorithm for KB consis-
tency, in contrast to the generic black-box algorithms proposed in the literature.
Our algorithm extends the classical tableau algorithm for ALC with techniques
originally developed for axiom pinpointing. The main differences are the use of
multi-valued variables in the definition of the contexts, and the possibility of
having complex contexts (not only unique variables) labeling individual axioms.
In general, we have shown that adding context-based uncertainty to an ontology
does not increase the complexity of reasoning in this logic: all (probabilistic)
reasoning problems can still be solved in exponential time.

Theorems 6, 7 and 8 yield an effective decision method BALC KB consistency,
through the computation and handling of two complex contexts. Notice that φB
can be computed in linear time on the size of B, and satisfiability of the context
φ⊥

K ∧ φB can be checked in non-deterministic polynomial time in the size of this
context. However, the tableau algorithm for computing φ⊥

K is not optimal w.r.t.
worst-case complexity. In fact, in the worst case it requires double exponential
time, although the formula itself is only of exponential size. The benefit of this
method, as in the classical case, is that it provides a better behaviour in the
average case. To further improve the efficiency of our approach, one can think
of adapting the methods from [21] to construct a compact representation of
the context—akin to a binary decision diagram (BDD) [7,14] for multi-valued
variables—allowing for efficient weighted model counting. A task for future work
is to exploit these data structures for practical development of our methods.

Recall that the most expensive part of our approach is the computation of
the context φ⊥

K. By slightly modifying the KB, we have shown that one compu-
tation of this context suffices to solve different problems of interest; in partic-
ular, contextual and conditional entailments—being subsumption, satisfiability,
or instance checking—can be solved using φ⊥

K′ , for an adequately constructed
K′, regardless of the contexts under consideration.

A Bayesian Extension of the Description Logic ALC 353

An important next step will be to implement the methods described here,
and compare the efficiency of our system to other probabilistic DL reasoners
based on similar semantics. In particular, we would like to compare against the
tools from [21]. Even though this latter system is also based on an extension of
the tableaux algorithm for DLs, and use multiple-world semantics closely related
to ours, a direct comparison would be unfair. Indeed, [21] makes use of stronger
independence assumptions than ours. However, a well-designed experiment can
shed light on the advantages and disadvantages of each method.

Another interesting problem for future work is to extend the query language
beyond instance queries. To maintain some efficiency, this may require some
additional restrictions on the language or the probabilistic structure. A more
detailed study of this issue is needed.

References

1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.):
The Description Logic Handbook: Theory, Implementation, and Applications, 2nd
edn. Cambridge University Press, Cambridge (2007)

2. Baader, F., Hollunder, B.: Embedding defaults into terminological knowledge rep-
resentation formalisms. J. Autom. Reasoning 14(1), 149–180 (1995). https://doi.
org/10.1007/BF00883932

3. Baader, F., Peñaloza, R.: Axiom pinpointing in general tableaux. In: Olivetti, N.
(ed.) TABLEAUX 2007. LNCS (LNAI), vol. 4548, pp. 11–27. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73099-6 4

4. Baader, F., Peñaloza, R.: Axiom pinpointing in general tableaux. J. Logic Com-
put. 20(1), 5–34 (2010). https://doi.org/10.1093/logcom/exn058. Special issue:
Tableaux and analytic proof methods

5. Botha, L.: The Bayesian description logic ALC. Master’s thesis, University of Cape
Town, South Africa (2018)

6. Botha, L., Meyer, T., Peñaloza, R.: The Bayesian description logic BALC. In:
Ortiz, M., Schneider, T. (eds.) Proceedings of the 31st International Workshop on
Description Logics (DL 2018), CEUR Workshop Proceedings, vol. 2211. CEUR-
WS.org (2018). http://ceur-ws.org/Vol-2211/paper-09.pdf

7. Brace, K.S., Rudell, R.L., Bryant, R.E.: Efficient implementation of a BDD pack-
age. In: Proceedings of the 27th ACM/IEEE Design Automation Conference, DAC
1990, pp. 40–45. ACM, New York (1990). https://doi.org/10.1145/123186.123222

8. Ceylan, İ.İ.: Query answering in probabilistic data and knowledge bases. Ph.D.
thesis, Dresden University of Technology, Germany (2018)

9. Ceylan, İ.İ., Peñaloza, R.: The Bayesian description logic BEL. In: Demri, S.,
Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562, pp. 480–
494. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08587-6 37

10. Ceylan, İ.İ., Peñaloza, R.: Tight complexity bounds for reasoning in the description
logic BEL. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761,
pp. 77–91. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11558-0 6

11. Ceylan, İ.İ., Peñaloza, R.: The Bayesian ontology language BEL. J. Autom. Rea-
soning 58(1), 67–95 (2017). https://doi.org/10.1007/s10817-016-9386-0

https://doi.org/10.1007/BF00883932
https://doi.org/10.1007/BF00883932
https://doi.org/10.1007/978-3-540-73099-6_4
https://doi.org/10.1093/logcom/exn058
http://ceur-ws.org/Vol-2211/paper-09.pdf
https://doi.org/10.1145/123186.123222
https://doi.org/10.1007/978-3-319-08587-6_37
https://doi.org/10.1007/978-3-319-11558-0_6
https://doi.org/10.1007/s10817-016-9386-0

354 L. Botha et al.

12. d’Amato, C., Fanizzi, N., Lukasiewicz, T.: Tractable reasoning with bayesian
description logics. In: Greco, S., Lukasiewicz, T. (eds.) SUM 2008. LNCS (LNAI),
vol. 5291, pp. 146–159. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-87993-0 13

13. Gottlob, G., Lukasiewicz, T., Simari, G.I.: Answering threshold queries in proba-
bilistic datalog+/– ontologies. In: Benferhat, S., Grant, J. (eds.) SUM 2011. LNCS
(LNAI), vol. 6929, pp. 401–414. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-23963-2 31

14. Lee, C.Y.: Representation of switching circuits by binary-decision programs. Bell
Syst. Tech. J. 38, 985–999 (1959)

15. Lee, K., Meyer, T.A., Pan, J.Z., Booth, R.: Computing maximally satisfiable termi-
nologies for the description logic ALC with cyclic definitions. In: Parsia, B., Sattler,
U., Toman, D. (eds.) Proceedings of the 2006 International Workshop on Descrip-
tion Logics (DL 2006), CEUR Workshop Proceedings, vol. 189. CEUR-WS.org
(2006). http://ceur-ws.org/Vol-189/submission 29.pdf

16. Lukasiewicz, T., Straccia, U.: Managing uncertainty and vagueness in description
logics for the semantic web. J. Web Semant. 6(4), 291–308 (2008). https://doi.org/
10.1016/j.websem.2008.04.001

17. Meyer, T.A., Lee, K., Booth, R., Pan, J.Z.: Finding maximally satisfiable ter-
minologies for the description logic ALC. In: Proceedings of the Twenty-First
National Conference on Artificial Intelligence and the Eighteenth Innovative Appli-
cations of Artificial Intelligence Conference, pp. 269–274. AAAI Press (2006).
http://www.aaai.org/Library/AAAI/2006/aaai06-043.php

18. Pearl, J.: Bayesian networks: a model of self-activated memory for evidential rea-
soning. In: Proceedings of Cognitive Science Society (CSS-7), pp. 329–334 (1985)

19. Peñaloza, R.: Axiom-pinpointing in description logics and beyond. Ph.D. thesis,
Dresden University of Technology, Germany (2009)

20. Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with com-
plements. Artif. Intell. 48(1), 1–26 (1991). https://doi.org/10.1016/0004-
3702(91)90078-X

21. Zese, R., Bellodi, E., Riguzzi, F., Cota, G., Lamma, E.: Tableau reasoning for
description logics and its extension to probabilities. Ann. Math. Artif. Intell. 82(1–
3), 101–130 (2018). https://doi.org/10.1007/s10472-016-9529-3

https://doi.org/10.1007/978-3-540-87993-0_13
https://doi.org/10.1007/978-3-540-87993-0_13
https://doi.org/10.1007/978-3-642-23963-2_31
https://doi.org/10.1007/978-3-642-23963-2_31
http://ceur-ws.org/Vol-189/submission_29.pdf
https://doi.org/10.1016/j.websem.2008.04.001
https://doi.org/10.1016/j.websem.2008.04.001
http://www.aaai.org/Library/AAAI/2006/aaai06-043.php
https://doi.org/10.1016/0004-3702(91)90078-X
https://doi.org/10.1016/0004-3702(91)90078-X
https://doi.org/10.1007/s10472-016-9529-3

Computing Minimal Projection Modules
for ELHr-Terminologies

Jieying Chen1(B) , Michel Ludwig2 , Yue Ma1 , and Dirk Walther3

1 Laboratoire de Recherche en Informatique, Université Paris-Saclay, Paris, France
{jieying.chen,yue.ma}@lri.fr

2 Beaufort, Luxembourg
michel.ludwig@gmail.com

3 Fraunhofer IVI, Dresden, Germany
dirk.walther@ivi.fraunhofer.de

Abstract. For the development of large-scale representations of knowl-
edge, the application of methodologies and design principles becomes
relevant. The knowledge may be organized in ontologies in a modular
and hierarchical fashion. An upper-level (reference) ontology typically
provides specifications of requirements, functions, design or standards
that are to be complied with by domain ontologies for a specific task
on a lower level (task ontology) in the hierarchy. Verifying whether and
how specifications have been implemented by a task ontology becomes
a challenge when relevant axioms of the domain ontology need to be
inspected. We consider specifications to be defined using entailments of
certain queries over a given vocabulary. For selecting the relevant axioms
from task ontologies, we propose a novel module notion called projection
module that entails the queries that follow from a reference ontology.
We develop algorithms for computing minimal projection modules of
Description Logic terminologies for subsumption, instance and conjunc-
tive queries.

1 Introduction

A common practice in the area of the Semantic Web is to reuse and extend exist-
ing ontologies for a specific task. Therefore, an approach to comparing multiple
ontologies is often desired. In this paper, we propose the notion of projection mod-
ule which characterizes the relative knowledge of an ontology, say, an ontology
developed for a specific task (called task ontology), by taking another ontology
as a reference (called reference ontology), e.g. an upper-level ontology. This can
thus lead to (1) a method for comparing the entailment capacities of any two
ontologies about a given vocabulary of interest, and (2) a fine-grained ontology
comparison measurement between two ontologies.

As illustrated in Fig. 1, for a user interest expressed as a set Σ of concept
and role names, the reference ontology T1 (resp. task ontology T2) contains

This work is partially funded by the ANR project GoAsQ (ANR-15-CE23-0022).

c© Springer Nature Switzerland AG 2019
F. Calimeri et al. (Eds.): JELIA 2019, LNAI 11468, pp. 355–370, 2019.
https://doi.org/10.1007/978-3-030-19570-0_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19570-0_23&domain=pdf
http://orcid.org/0000-0002-2497-645X
http://orcid.org/0000-0002-1899-5777
http://orcid.org/0000-0002-2805-2473
http://orcid.org/0000-0002-5509-8899
https://doi.org/10.1007/978-3-030-19570-0_23

356 J. Chen et al.

Fig. 1. Projection module

T1 = {α1}, T2 = {β1, β2, β3, β4}

α1 : Professor � Faculty � ∃has.PhD � ∃teach.Course

β1 : Professor � Faculty � ∃has.PhD �
∃teach.Master Course �
∃teach.Bachelor Course

β2 : Faculty � ∃has.PhD
β3 : Bachelor Course � Course

β4 : Master Course � Course

Fig. 2. Example: minimal projection modules

S1 (resp. S2) as a sub-ontology, e.g., a minimal module [9,10], that provides
a minimal number of axioms entailing all Σ-consequences. A projection mod-
ule, on the other hand, additionally takes a reference ontology into account
as to preserve the relevant Σ-knowledge only, which can yield an even smaller
module S3 of T2. Figure 2 shows a concrete example with T1 being the upper-
level (reference) ontology modelling aspects of a university domain, and a task
ontology T2 as an extended and modified version of T1. Consider the signa-
ture Σ = {Professor, Faculty, has, PhD, teach, Course} (consisting of the sym-
bols marked in blue in Fig. 2). Then T1 has merely one module S1 = {α1} that
preserves T1’s knowledge about Σ. When extracting modules of T2 for Σ, we
obtain T2 itself using existent module notions such as modules based on local-
ity [14] or the module extracted by MEX [20]. Here we have two candidates for
a minimal module S2 of T2 that each preserve all inclusions over Σ: {β1, β2, β3}
and {β1, β2, β4} [9]. The projection modules of T2, however, preserving the Σ-
inclusions entailed by T1 are even smaller with S3 = {β1, β3} or S3 = {β1, β4}.
Every projection module S3 is a strict subset of a minimal module of T2, which
is in line with the fact that the task ontology T2 has extended the reference
ontology T1 with new Σ-consequences, e.g., Faculty � ∃has.PhD.

Various approaches to comparing ontologies have been suggested, includ-
ing ontology matching [13] and logical difference [22–24,26]. Ontology matching
is the process of determining correspondences, e.g., the subsumption relations
between two concept or role names from different ontologies, for which a good
concept similarity [1,25] is often helpful. In contrast, logical difference focuses on
the comparison of entailed logical consequences from each ontology and returns
difference witnesses if differences are present. When an ontology has no logical
difference compared to another one, our approach further extracts sub-ontologies
of the first that contain the knowledge as represented by the second ontology.

Ontology modularity [9,18,22,24,27,28] is about the extraction of sub-
ontologies that preserve all logical consequences over a signature. The proposed
projection module is different from modules of a single ontology, as illustrated by
the example in Fig. 2. To compute projection modules, in this paper, we general-
ize the notion of justification to the notion of subsumption justification as a mini-
mal set of axioms that maintains the entailment of a consequence. Our algorithm

Computing Minimal Projection Modules for ELHr-Terminologies 357

employs the classical notion of justification to compute subsumption justifica-
tions. Currently, the approaches for computing all justifications of an ontology
for a consequence can be classified into two categories: “glass-box” [2,5,16,17]
and “black-box” [11,16,29].

We proceed as follows. After reviewing some preliminaries in Sect. 2, the
notion of a minimal project module for subsumption, instance and conjunc-
tive queries is introduced in Sect. 3. In Sect. 4, we introduce the algorithm for
computing minimal projection modules. In Sect. 5, two applications of minimal
projection modules are presented. Finally, we close the paper with a conclusion
in Sect. 6.

2 Preliminaries

We start by reviewing the description logic EL and several of its extensions.
Let NC, NR and NI be mutually disjoint and countably infinite sets of concept

names, role names and instance names. The signature sig(ξ) is the set of concept
and role names occurring in ξ, where ξ ranges over any syntactic object. The sets
of EL -concepts C, ELran -concepts D, EL� -concepts E, and EL�,u -concepts F ,
and the sets of ELHr-inclusions α, ELran-inclusions β and ELran,�,u-inclusions γ
are built according to the grammar rules:

C ::= A | C � C | ∃r.C | dom(r)
D ::= A | D � D | ∃r.D | dom(r) | ran(r)
E ::= A | E � E | ∃R.E
F ::= A | F � F | ∃R.F | ∃u.F
α ::= C � C | ran(r) � C | ran(r) � C � C | C ≡ C | r � s
β ::= D � C | r � s
γ ::= D � F | r � s

where A ∈ NC, r, s ∈ NR, u is a fresh logical symbol (the universal role) and
R = r1 � . . . � rn with r1, ..., rn ∈ NR, for n ≥ 1. We refer to inclusions also as
axioms. A Γ -TBox is a finite set of Γ -inclusions, where Γ ranges over the sets
of ELHr- and ELran,�,u-inclusions. We use lhs(α) (resp. rhs(α)) to represent the
left-hand side (resp. right-hand side) of an inclusion α.

The semantics is defined as usual in terms of interpretations interpreting
concept/role names as unary/binary relations and are then inductively extended
to complex concepts. The notions of satisfaction of a concept, axiom and TBox
as well as the notions of a model and the logical consequence relation are defined
as usual [4].

An ELHr -terminology T is an ELHr-TBox consisting of axioms α of the form
A � C, A ≡ C, r � s, ran(r) � C or dom(r) � C, where A is a concept name,
C an EL-concept and no concept name occurs more than once on the left-hand
side of an axiom. To simplify the presentation we assume that terminologies do
not contain axioms of the form A ≡ B or A ≡ � (after having removed multiple
�-conjuncts) for concept names A and B. For a terminology T , let ≺T be a
binary relation over NC satisfying that A ≺T B iff there is an axiom of the form

358 J. Chen et al.

A � C or A ≡ C in T such that B ∈ sig(C). A terminology T is acyclic if the
transitive closure ≺+

T of ≺T is irreflexive; otherwise T is cyclic. We say that a
concept name A is conjunctive in T iff there exist concept names B1, . . . , Bn,
n > 0, such that A ≡ B1�. . .�Bn ∈ T ; otherwise A is said to be non-conjunctive
in T . An ELHr-terminology T is normalised iff it only contains axioms of the
forms

– r � s, ϕ � B1 � . . . � Bn, A � ∃r.B, A � dom(r), and
– A ≡ B1 � . . . � Bm, A ≡ ∃r.B,

where ϕ ∈ {A, dom(s), ran(s)}, n ≥ 1, m ≥ 2, A,B,Bi ∈ NC, r, s ∈ NR, and
each conjunct Bi is non-conjunctive in T . Every ELHr-terminology T can be
normalised in polynomial time such that the resulting terminology is a conser-
vative extension of T [19]. A subset M ⊆ T is called a justification for an ELH
-concept inclusion α from T iff M |= α and M ′ �|= α for every M ′ � M .

We denote the set of all justifications for an ELH-concept inclusion α from an
ELH-terminology T with JustT (α). The latter may contain exponentially many
justifications in the number of axioms in T . An ABox contains assertions of
the form �(a), A(a) and r(a, b), where a, b ∈ NI and r ∈ NR. An ABox consists
of finitely many ABox assertions.

Let NI and NV be disjoint sets of individual and variable names. A con-
junctive query is a first-order formula built according to the following format:
∃y1 . . . ∃yn.

∧
i∈I1

Ai(si) ∧
∧

j∈I2
rj(tj , t′j), where y1, . . . , yn ∈ NV for n ≥ 1 are

variable names, I1, I2 are finite sets of indices, and for i ∈ I1 and j ∈ I2, Ai

ranges over concept names in NC, rj ranges over role names in NR, and si, tj , t
′
j

range over individual and variable names in NI ∪ NV.
A signature Σ is a finite set of symbols from NC and NR. The symbol Σ

is used as a subscript to sets of concepts or inclusions to denote that the ele-
ments only use symbols from Σ, e.g., ELHr

Σ and ELran,�,u
Σ . For a signature Σ,

let Σdom = { dom(r) | r ∈ NR ∩Σ } and Σran = { ran(r) | r ∈ NR ∩Σ } be the sets
consisting of concepts of the form dom(r) and ran(r) for every role name r in
Σ, respectively. We recall the notion of logical difference for concept subsump-
tion queries, instance queries and conjunctive queries from [19,23]. For a more
detailed introduction to description logics, we refer to [3,4]. For latest results
on logical inseparability see [7,8,15], and for a survey on query inseparability,
see [6].

Definition 1 (Logical Difference). The L-subsumption query difference, for
some logic L, the instance and conjunctive query difference between T1 and T2

w.r.t. Σ are the sets cDiffL
Σ(T1, T2), iDiffΣ(T1, T2), and qDiffΣ(T1, T2), respec-

tively, where

– ϕ ∈ cDiffL
Σ(T1, T2) iff ϕ is an L-inclusion, T1 |= ϕ and T2 �|= ϕ;

– (A, λ) ∈ iDiffΣ(T1, T2) iff A is a Σ-ABox and λ a Σ-instance assertion such
that (T1,A) |= λ and (T2,A) �|= λ;

– (A, q(a)) ∈ qDiffΣ(T1, T2) iff A is a Σ-ABox and q(a) a Σ-conjunctive query
such that (T1,A) |= q(a) and (T2,A) �|= q(a).

Computing Minimal Projection Modules for ELHr-Terminologies 359

According to [19], L-subsumption queries for L = ELran and L = ELran,�,u are
sufficient to detect the absence of any instance query and conjunctive query dif-
ferences, respectively. Therefore, we only consider how to detect L-subsumption
queries for L = {ELHr, ELran, ELran,�,u}. Let αL

Σ be an L-inclusion that only
uses symbols in Σ. We organise the Σ-symbols (and the domain and range con-
cepts over role names from Σ) that occur as “witnesses” of a L-subsumption
query difference between T1 and T2 as follows:

WtnL
Σ(T1, T2) := (roleWtnL

Σ(T1, T2), lhsWtnL
Σ(T1, T2), rhsWtnL

Σ(T1, T2)),

where roleWtnL
Σ(T1, T2) = { r ∈ Σ ∩ NR | r � s or s � r ∈ cDiffL

Σ(T1, T2) },
lhsWtnL

Σ(T1, T2) = {ϕ ∈ (Σ ∩ NC) ∪ Σdom ∪ Σran | ϕ � rhs(αL
Σ) and α is a

LΣ − inclusion} and rhsWtnL
Σ(T1, T2) = {A ∈ Σ ∩ NC | lhs(αL

Σ) � A ∈
cDiffQ

Σ(T1, T2) }. The set WtnL
Σ(T1, T2) can be seen as a finite representation

of the set cDiffL
Σ(T1, T2), which is typically infinite when it is not empty. It fol-

lows from the “primitive witnesses” theorems in [19] that cDiffL
Σ(T1, T2) = ∅ iff

WtnL
Σ(T1, T2) = (∅, ∅, ∅). Thus, deciding the existence of logical differences is

equivalent to decide non-emptiness of the three witness sets.

3 Projection Modules

To understand the relations among different ontologies, we introduce the notion
of projection module, as a way to explain how the knowledge that is encoded
in a reference ontology is implemented in a task ontology. We are interested
in computing all projection modules, since it provides a complete list of all
implementations of an ontology regarding a reference, each of which may be
necessary to be checked. To enable a manual validation by domain experts, we
need to present only necessary information, so we focus on computing minimal
projection modules.

A terminology T1 together with a signature Σ and a type of query Q deter-
mine a set Φ of queries from Q formulated using only symbols from Σ that follow
from T1. A projection module of another terminology T2 is a subset of T2 that
entails the queries in Φ. For convenience, we bundle the parameters together in
a tuple ρ = 〈T1, Σ, T2〉, which we call a projection setting.

Definition 2 (Projection Module). Let ρ = 〈T1, Σ, T2〉 be a projection set-
ting, A be a Σ-ABox. A subset M ⊆ T2 is a subsumption (resp. instance, con-
junctive) query projection module under projection setting ρ, denoted as Mc

ρ

(resp. Mi
ρ, Mq

ρ) iff:

– Mc
ρ: for each ELHr

Σ-inclusion α, if T1 |= α, then M |= α;
– Mi

ρ: for each Σ-instance assertion λ, if (T1,A) |= λ, then (M,A) |= λ;
– Mq

ρ: for each q(a), if (T1,A) |= q(a), then (M,A) |= q(a), where a is a tuple
of individual names from A and q(a) is a Σ-conjunctive query.

360 J. Chen et al.

A minimal subsumption (resp. instance, conjunctive) query projection module is
a projection module Mc

ρ (resp. Mi
ρ,Mq

ρ) minimal w.r.t. �.

Note that there may exist several, even exponentially many minimal projection
modules. It can readily be checked that cDiffL

Σ(T1,Mc
ρ) = ∅, for L = ELHr,

iDiffΣ(T1,Mi
ρ) = ∅ and qDiffΣ(T1,Mq

ρ) = ∅ (cf. Definition 1).

Example 1. Suppose T1 = {A1 � A2, A2 � A3}, T2 = {A1 � A3 � B1, B1 �
∃r.A3}, and the interested vocabulary Σ = {A1, A3, r}. T2 has no logical dif-
ference from T1. However, the concept project module of T2 with respect to T1

and Σ is {A1 � A3 � B1} � T2. This means that a strict sub-ontology of T2 is
sufficient to capture all the information of T1 about Σ. Moreover, T2 also entails
a consequence A1 � ∃r.A3, which is not the case for T1.

The following example shows that the three notions of projection modules
based on different query languages are distinct.

Example 2. Let T = {X � Y, Y � ∃t.Z, ran(r) � A1, ran(s) � A2, B ≡ A1�A2},
Σ = {X,Y,Z,B, r, s}, and ρ = 〈T , σ, T 〉. We have that Mc

ρ = {X � Y },
Mi

ρ = Mc
ρ ∪ {ran(r) � A1, ran(s) � A2, B ≡ A1 � A2} and Mq

ρ = T .

Definition 3. Let Q ∈ {c, i, q}. The relationship between T1 and T2 is a 〈Σ,Q〉-
implementation, denoted T1 �Q

Σ T2, iff there exists a projection module MQ
ρ

under the setting ρ = 〈T1, Σ, T2〉.

If T1 �Q
Σ T2, we also say that T2 〈Σ,Q〉-implements T1. In case T1 and T2 〈Σ,Q〉-

implement each other, they cannot be separated using the query language Q.

Proposition 1. Let T1 �Q
Σ T2 and T2 �Q

Σ T1. Then:

– Q = c: cDiffL
Σ(T1, T2) = cDiffL

Σ(T2, T1) = ∅, for L = ELHr;
– Q = i: iDiffΣ(T1, T2) = iDiffΣ(T2, T1) = ∅; and
– Q = q: qDiffΣ(T1, T2) = qDiffΣ(T2, T1) = ∅.

We obtain the following monotonicity properties of the 〈Σ,Q〉-implementation
relation.

Proposition 2 (Implementation Monotonicity).

(i) If T2 ⊆ T3 and T1 �Q
Σ T2, then T1 �Q

Σ T3;
(ii) If T1 ⊆ T2 and T2 �Q

Σ T3, then T1 �Q
Σ T3.

Property (i) states that if a terminology T3 is obtained from T2 by adding further
axioms to it, then it 〈Σ,Q〉-implements all the terminologies T1 that T2 〈Σ,Q〉-
implements. Property (ii) states T3 〈Σ,Q〉-implements all subsets T1 of T2 pro-
vided that T3 〈Σ,Q〉-implements T2. We leave investigating certain robustness
properties of �Q

Σ regarding signature extensions and varying query languages
for future work; see, e.g., [21].

Computing Minimal Projection Modules for ELHr-Terminologies 361

4 Computing Minimal Projection Modules

It is shown in [19] that detecting concept inclusion differences formulated in
ELran and ELran,�,u is equivalent to detecting a difference with instance and con-
junctive queries, respectively. We therefore consider subsumption queries from
ELran and ELran,�,u to compute minimal projection justifications for instance
and conjunctive queries, respectively.

4.1 Definition of Subsumption Projection Justifications

For computing minimal subsumption projection modules for subsumption
queries, we introduce the notion of a subsumption projection justifica-
tion between two terminologies. As the notion depends on several param-
eters, we organise them for better readability in a tuple χ of the form
〈T1,X1, Σ, T2,X2,L〉, where T1 and T2 are normalised ELHr-terminologies,
Σ is a signature, X1,X2 ∈ NC ∪ { dom(r), ran(r) | r ∈ NR }, and L ∈
{ELHr, ELran, ELran,�,u}.

To obtain subsumption modules, we use an operator ‘⊗’ to combine sets of
role, subsumee and subsumer projection justifications. Given a set S and sets
of sets S1, S2 ⊆ 2S , we define S1 ⊗ S2 := {S1 ∪ S2 | S1 ∈ S1, S2 ∈ S2 }. For
instance, if S1 = {{α1, α2}, {α3}} and S2 = {{α1, α3}, {α4, α5}}, then S1 ⊗ S2 =
{{α1, α2, α3}, {α1, α2, α4, α5}, {α3, α4, α5}, {α1, α3}}. For a set M of sets, we
define a function Minimise⊆(M) as follows: M ∈ Minimise⊆(M) iff M ∈ M and
there does not exist a set M′ ∈ M such that M′ � M. Continuing with the
example, Minimise⊆(S1 ⊗ S2) = {{α1, α3}, {α1, α2, α4, α5}, {α3, α4, α5}}.

Definition 4 (Subsumption Projection Justification). Let χ = 〈T1,X1,
Σ, T2,X2,L〉. A set M is a subsumee module under χ iff M ⊆ T2 and for
every LΣ-inclusion α: T1 |= lhs(α) � X1 implies M |= lhs(α) � X2; and M is
a subsumer module under χ iff M ⊆ T2 and for every LΣ-inclusion α: T1 |=
X1 � rhs(α) implies M |= X2 � rhs(α).

M is called a subsumption projection module under χ iff M is a subsumee
and a subsumer projection module under χ. A subsumee (subsumer, subsump-
tion) projection justification under χ is a subsumee (resp. subsumer, subsump-
tion) projection module under χ that is minimal w.r.t. �.

We denote the set of all subsumee (resp. subsumer, subsumption) justifications
under χ as J←

χ (resp. J→
χ , Jχ), where χ = 〈T1, ϕ1, Σ, T2, ϕ2,L〉, and ϕ1, ϕ2 ∈

(NC ∩ Σ) ∪ Σdom ∪ Σran.

Definition 5 (Role Subsumption Projection Justification). Let ρ = 〈T1,
Σ, T2〉 be a projection setting. A set M is called a role subsumption module
under ρ iff M ⊆ T2 and for every r, s ∈ NR ∩ Σ, T1 |= r � s implies M |=
r � s. A minimal role subsumption projection justification under ρ is the role
subsumption module under ρ that is minimal w.r.t. �.

362 J. Chen et al.

We denote the set of all role subsumption projection justifications under ρ as
JR

ρ . The following lemma states how role subsumption projection justifications
can be computed. The lemma can be shown using Definition 5 and the notion of
justification.

Lemma 1. Let ρ = 〈T1, Σ, T2〉 be a projection setting.

JR
ρ = Minimize⊆

(⊗

r,s∈Σ∩NR,T1|=r
s

JustT2(r � s)
)

Using Definitions 1 and 4, we obtain the following lemma stating the absence
of certain concept names, and domain and range concepts over role names as left-
hand and right-hand difference witnesses between two terminologies T1 and T2.

Lemma 2. Let ϕ ∈ (NC ∩ Σ) ∪ Σdom ∪ Σran and let A ∈ Σ ∩ NC. Addi-
tionally, let χ = 〈T1, ϕ,Σ, T2, ϕ,L〉, χ′ = 〈T1, A,Σ, T2, A,L〉 and L ∈
{ELHr, ELran, ELran,�,u}. Then:

– ϕ �∈ lhsWtnL
Σ(T1, Jϕ) for every Jϕ ∈ J→

χ ;
– A �∈ rhsWtnL

Σ(T1, JA) for every JA ∈ J←
χ′ ;

– roleWtnL
Σ(T1, J) = ∅ for every J ∈ JR

ρ .

We need at least one subsumption justification, for every potential difference
witness, to be contained in a projection module in order to prevent the witness;
cf. Lemma 2. This is made precise in the following theorem.

Theorem 1. Let ρ = 〈T1, Σ, T2〉 be a projection setting and let Q ∈ {c, i, q}.
Additionally, let MQ

ρ be the set of all minimal projection modules under ρ for
query type Q. Finally, let

SL
ρ = Minimize⊆

(
JR

ρ ⊗
⊗

ϕ∈(Σ∩NC)∪Σdom∪Σran

J→
χ(ϕ,L) ⊗

⊗

A∈Σ∩NC

J←
χ(A,L)

)

where χ(ψ,L) = 〈T1, ψ,Σ, T2, ψ,L〉, and L = ELHr if Q = c, L = ELran if
Q = i, and L = ELran,�,u if Q = q. Then it holds that MQ

ρ = SL
ρ .

In this paper, we present an algorithm for computing subsumee projec-
tion justifications for subsumption queries of ELran,�,u. Recall that ELran,�,u-
inclusions are sufficient to detect any difference that is detectable with conjunc-
tive queries. The algorithm for computing subsumer projection justifications,
and the algorithms for the other query languages are similar.

4.2 Computing Subsumee Projection Justifications

We now present the algorithm for computing subsumee projection justifications
(Fig. 3). The basic idea of the algorithm is to collect as few axioms from a
terminology T2 as possible while ensuring the existence of a so-called subsumee
simulation between another terminology T1 and T2 [12,26].

Computing Minimal Projection Modules for ELHr-Terminologies 363

Algorithm 1: Computing all Subsumee Pro-
jection Justifications

1 function Cover← (T1, X1, Σ, T2, X2, ζ)
2 if X1 is not Σ-entailed w.r.t. T1 then

3 return {∅}
4 M

←
(X1,X2)

:= CoverNC← (T1, X1, Σ, T2, X2, ζ)
5 if X1 is not complex Σ-entailed in T1 then

6 return M
←
(X1,X2)

7 if X1 ≡ ∃r.Y ∈ T1, and r, Y are Σ-entailed

w.r.t. T1 then

8 M
←
(X1,X2)

:=
M

←
(X1,X2)

⊗ Cover∃
←(T1, X1, Σ, T2, X2, ζ)

9 else if X1 ≡ Y1 � . . . � Ym ∈ T1 then

10 M
←
(X1,X2)

:=
M

←
(X1,X2)

⊗ Cover�
←(T1, X1, Σ, T2, X2, ζ)

11 return Minimise⊆(M←
(X1,X2)

)

Algorithm 2: Computing all Subsumee Pro-
jection Justifications (S←

∃)

1 function Cover∃
← (T1, X1, Σ, T2, X2, ζ)

2 let αX1 := X1 ≡ ∃r.Y1 ∈ T1

3 M
←
(X1,X2)

:= {max-tree �
T2(X2)}

4 for every s ∈ NR ∩ Σ such that T1 |= s 	 r
do

5 for every X ′
2 ∈ non-conjT2

(X2) such that
ζ
= ε implies T2
|= ran(ζ) 	 X ′

2 and
T2
|= dom(s) 	 X ′

2 do
6 let αX′

2
:= X ′

2 ≡ ∃r′.Y ′
2 ∈ T2

M
←
Y ′
2
:= Cover←(T1, Y1, Σ, T2, Y

′
2 , s)

M
←
(X1,X2)

:= M
←
(X1,X2)

⊗ {{αX′
2
}} ⊗ JustT2(s 	 r) ⊗ M

←
Y ′
2

)

7 return M
←
(X1,X2)

Algorithm 3: Computing all Subsumee Pro-
jection Justifications (S←

NC
)

1 function CoverNC← (T1, X1, Σ, T2, X2, ζ)
2 M

←
(X1,X2)

:= {∅}
3 for every B ∈ Σζ such that T1 |= B 	 X1 do
4 for every X2 ∈ non-conjT2

(X1) such that

ζ = ε or T2 |= ran(ζ) 	 X2 do
5 M

←
(X1,X2)

:= M
←
(X1,X2)

⊗ JustT2(B 	 X2)
6 return M

←
(X1,X2)

Algorithm 4: Computing all Subsumee Pro-
jection Justifications (S←

�)

1 function Cover�
← (T1, X1, Σ, T2, X2, ζ)

2 let αX1 := X1 ≡ Y1 � . . . � Ym ∈ T1

3 M
←
(X1,X2)

:= ∅
4 for every Γ ∈ DefForest�

T2(X2) do
5 let δΓ := { def �

T2(X
′) | X ′ ∈

leaves(Γ) ∩ def �
T2 }

6 M
←
Γ := {Γ}

7 for every X ′
2 ∈ leaves(Γ) such that ζ = ε

or T2
|= ran(ζ) 	 X ′
2 do

8 M
←
X′

2
:= ∅

9 for every X ′
1 ∈ non-conjT1

(X1) such
that ζ = ε or T2
|= ran(ζ) 	 X ′

1 do

10 if 〈T1, X
′
1〉 ∼←

Σ,ζ 〈T2 \ δΓ , X ′
2〉 then

11 M
←
X′

2
:= M

←
X′

2
∪

Cover←(T1, X
′
1, Σ, T2 \ δΓ , X ′

2, ε)
12 M

←
Γ := M

←
Γ ⊗ M

←
X′

2

13 M
←
(X1,X2)

:= M
←
(X1,X2)

∪ M
←
Γ

14 return M
←
(X1,X2)

Fig. 3. Algorithms for computing all subsumee justifications

Inclusions of the form ran(r) � X might cause non-trivial entailments. For
example, let T1 = {X ≡ ∃r.Y, Y ≡ A1 � A2} and Σ = {X,A1, A2, r}. Then T1

entails that X is subsumed by the Σ-concepts ∃r.� and ∃r.(A1 � A2) (modulo
equivalence). For T2 = T1∪{ran(r) � A1}, however, we additionally obtain T2 |=
∃r.A2 � X. Hence, when formulating the algorithms for computing subsumee
simulations, an additional parameter ζ ∈ {ε} ∪ (NR ∩ Σ) is needed which is used
in range concepts of the form ran(ζ). We call this parameter context of a role.
We treat ε as a special role name and set ran(ε) = �. The set of all role contexts,
in symbols CΣ , is defined as CΣ = {ε} ∪ (NR ∩ Σ).

To identify concept and role names that are relevant for a subsumee simula-
tion that we propose later, we first use the following notion of Σ-entailment:

– A ∈ NC is Σ-entailed in T iff there is an ELran
Σ -concept C such that T |= C �

A;
– s ∈ NR is Σ-entailed in T iff there exists s′ ∈ NR ∩ Σ such that T |= s′ � s;
– A ∈ NC is (Σ, s)-entailed in T iff there is an ELran

Σ -concept C such that
T |= C � ran(s) � A.

364 J. Chen et al.

Moreover, we say that X ∈ NC is complex Σ-entailed w.r.t. T iff for every
Y ∈ non-conjT (X) one of the following conditions holds:

– there exists B ∈ Σ such that T |= B � Y and T �|= B � X;
– there exists Y ≡ ∃r.Z ∈ T and r, Z are Σ-entailed in T .

X is said to be simply Σ-entailed if X is Σ-entailed but not complex Σ-entailed.
For example, let T = {X ≡ X1 � X2, B1 � X1, X2 ≡ ∃r.Z, B2 � Z, s � r}.
We have that non-conjT (X) = {X1,X2}, then r is Σ-entailed w.r.t. T ; X is
complex Σ-entailed w.r.t. T for Σ = {B1, B2, s}; but X is not complex Σ′-
entailed w.r.t. T , where Σ′ ranges over {B1, B2}, {B1, s}, {B2, s}. Additionally,
X is not complex Σ-entailed w.r.t. T ∪ {B1 � X}.

We now define the notion of a subsumee simulation from T1 to T2 as a subset
of (NC ∩ sig(T1)) × (NC ∩ sig(T2)) × CΣ

T1
, where CΣ

T1
:= {ε} ∪ (NR ∩ (Σ ∪ sig(T1)))

is the range of role contexts.

Definition 6 (Subsumee Simulation). A relation S ⊆ sigNC(T1)×sigNC(T2)×
CΣ

T1
is a Σ-subsumee simulation from T1 to T2 iff the following conditions hold:

(S←
NC

) if (X1,X2, ζ) ∈ S, then for every ϕ ∈ Σζ and for every X ′
2 ∈

non-conjT2
(X2) with T2 �|= ran(ζ) � X ′

2, T1 |= ϕ � X1 implies T2 |=
ϕ � X ′

2;
(S←

∃) if (X1,X2, ζ) ∈ S and X1 ≡ ∃r.Y1 ∈ T1 such that T1 |= s � r for s ∈ Σ
and Y1 is (Σ, s)-entailed in T1, then for every X ′

2 ∈ non-conjT2
(X2) not

entailed by dom(s) or ran(ζ) w.r.t. T2, there exists X ′
2 ≡ ∃r′.Y2 ∈ T2 such

that T2 |= s � r′ and (Y1, Y2, s) ∈ S;
(S←

�) if (X1,X2, ζ) ∈ S and X1 ≡ Y1 � Y2 � . . . � Yn ∈ T1, then for every
Y2 ∈ non-conjT2

(X2) not entailed by ran(ζ) w.r.t. T2, there exists Y1 ∈
non-conjT1

(X1) not entailed by ran(ζ) w.r.t. T2 with (Y1, Y2, ε) ∈ S.

We write T1 ∼←
Σ T2 iff there is a Σ-subsumee simulation S from T1 to T2 such

that for every A ∈ NC ∩ Σ: (A,A, ε) ∈ S.
For ζ ∈ Σ ∩ NR, we write 〈T1,X1〉 ∼←

Σ,ζ 〈T2,X2〉 iff there is a Σ-subsumee
simulation S from T1 to T2 with (X1,X2, ζ) ∈ S for which T1 ∼←

Σ T2.

A subsumee simulation captures the set of subsumees in the sense that T1 ∼←
Σ

T2 iff rhsWtnΣ(T1, T2) = ∅. Moreover, if a concept name X2 in T2 Σ-subsumee
simulates a concept name X1 in T1, then X2 subsumes all Σ-concepts w.r.t. T2

that are subsumed by X1 w.r.t. T1. Formally: 〈T1,X1〉 ∼←
Σ,ζ 〈T2,X2〉 iff for every

C ∈ ELran
Σ : T1 |= C � X1 implies T2 |= C � X2 [26].

Algorithm 1 provides the function Cover← for computing the set of all
subsumee justifications. The algorithm recursively computes sets of axioms suf-
ficient to construct a subsumee simulation. For better readability, the algorithm
is structured into several parts, one for each condition of a subsumee simula-
tion, cf. Definition 6. Algorithm 3 handles Case (S←

NC
), Algorithm 2 takes care of

Case (S←
∃) and Algorithm 4 is responsible for Case (S←

�). Note that each of these
algorithms requires a role context ζ as an input parameter. The notion of com-
plex Σ-entailment is employed in Algorithm 1. If X is not complex Σ-entailment,

Computing Minimal Projection Modules for ELHr-Terminologies 365

then neither the existential nor the conjunctive case need to be considered, and
Algorithm 1 terminates in Line 6.

Compared with computing subsumer projection justifications, the challenge
of computing subsumee projection justifications is to handle conjunctions on the
left-hand side of subsumptions. Concept names defined as conjunctions in T2

use conjuncts which in turn may also be defined as conjunctions. Such axioms
form tree structures. When selecting axioms, all minimal subsets of T2, i.e., all
sub-trees, that maintain a subsumee simulation need to be considered. To this
end, we define for each concept name X a so-called definitorial forest consisting
of sets of axioms of the form Y ≡ Y1 � . . . � Yn which can be thought of as
forming trees. Any 〈X,Σ〉-subsumee projection justification contains the axioms
of a selection of these trees, i.e., one tree for every conjunction formulated over
Σ that entails X w.r.t. T . Formally, we define a set of a DefForest�

T (X) ⊆ 2T

to be the smallest set closed under the following conditions:

– ∅ ∈ DefForest�
T (X);

– {α} ∈ DefForest�
T (X) for α := X ≡ X1 � . . . � Xn ∈ T ; and

– Γ ∪{α} ∈ DefForest�
T (X) for Γ ∈ DefForest�

T (X) with Z ≡ Z1 � . . .�Zk ∈ Γ
and α := Zi ≡ Z1

i � . . . � Zn
i ∈ T .

Given a tree Γ ∈ DefForest�
T (X) rooted at X, we use leaves(Γ) to denote

the set sig(Γ) \ {X ∈ sig(C) | X ≡ C ∈ Γ } of leaves if Γ �= ∅; and {X}
otherwise. We denote with max-tree �

T (X) the set in DefForest�
T (X) that is

maximal w.r.t. ⊆. Finally, we set non-conjT (X) := leaves(max-tree �
T (X)) to

be the set of leaves of the maximal tree. For example, for T = {α1, α2, α3}
with α1 := X ≡ Y � Z, α2 := Y ≡ Y1 � Y2, and α3 := Z ≡ Z1 � Z2, we
obtain DefForest�

T (X) = {∅, {α1}, {α1, α2}, {α1, α3}, {α1, α2, α3}}. Moreover,
we have that leaves({α1, α3}) = {Y,Z1, Z2}, max-tree �

T (X) = {α1, α2, α3}, and
non-conjT (X) = {Y1, Y2, Z1, Z2}.

The definitorial forest is used to enumerate and find all trees for which
Case (S←

�) holds, which is done in Algorithm 4. The set non-conjT (X), how-
ever, is also used in Algorithm 2, which we discuss next. The existence of axiom
αX1 := X1 ≡ ∃r.Y1 ∈ T1 in Line 2 of Algorithm 2 is guaranteed by Line 7 of
Algorithm 1. The axiom αX′

2
:= X ′

2 ≡ ∃r′.Y ′
2 ∈ T2 in Line 6 of Algorithm 2

exists as we assume that T2,X2 subsumee-simulates T1,X1 w.r.t. Σ. Moreover,
there is at most one axiom αX1 ∈ T1 and at most one αX′

2
∈ T2 as T1 and T2

are terminologies. The concept name X2 may be defined as a conjunction in T2

whose conjuncts in turn may also be defined as a conjunction in T2 and so forth.
In Line 3 all axioms forming the maximal resulting definitorial conjunctive tree
are collected.

For the next algorithm, we define def �
T := {X ∈ sigNC(T) | X ≡ Y1�. . .�Yn ∈

T } to be the set of concept names that are conjunctively defined in T . For every
X ∈ def �

T , we set def �
T (X) := α, where α = X ≡ Y1 � . . . � Yn ∈ T .

The axiom αX1 := X1 ≡ Y1 � . . . � Ym ∈ T1 in Line 2 of Algorithm 4
is guaranteed to exist by Line 9 of Algorithm 4. In case X2 is defined as a
conjunction in T2, the pair consisting of T2 containing only a partial conjunctive
tree rooted at X2 and X2 needs to be considered to be sufficient to subsumee

366 J. Chen et al.

simulate T1,X1. Therefore Algorithm 4 considers every partial conjunctive tree Γ
from DefForest�

T2
(X2) in Line 4 and removes the axioms in δΓ connecting the

leaves of Γ with the remaining conjunctive tree from T2 in lines 10 and 11.
The following theorem states that Algorithm 1 indeed computes the set of

subsumee projection justifications. The proof establishes that Algorithm 1 com-
putes all possible subsets of T2 that are minimal w.r.t. � while preserving one
of the considered Σ-subsumee simulations from T1 to T2.

Theorem 2. Let χ = 〈T1, ϕ1, Σ, T2, ϕ2, ELran,�,u〉, and ϕ1, ϕ2 ∈ (NC ∩
Σ) ∪ { dom(r), ran(r) | r ∈ NR ∩ Σ }. Additionally, let M :=
Cover←(T1, ϕ1, Σ, T2, ϕ2, ε) using Algorithm 1. Then M is the set of all sub-
sumee justifications under χ.

Algorithm 1 runs in exponential time in the number of axioms contained in
the input terminologies, in the worst case. On the one hand, the algorithm uses
justifications (see Line 6 of Alg. 2 and Line 5 of Alg. 3) whose number grows
exponentially for role inclusions as well as concept name inclusions. The different
justifications are each incorporated using the operator ⊗ resulting in possibly dif-
ferent subsumption justifications. The majority of the running time will be spent
on computing justifications. Another source of exponential blowup is contained
in Line 4 of Algorithm 4. The number of elements in the set DefForest�

T (X)
grows exponentially in |T |. According to our experience so far, however, it seems
plausible to assume that definitorial forests in practical ontologies remain rather
small and, thus, they do not cause a serious slowdown of the algorithm.

5 Application of Minimal Projection Modules

In this section, we discuss two applications of minimal projection modules.

5.1 Computing Minimal Query Modules

We first define the minimal query modules for different queries.

Definition 7 (Query Module). A set M ⊆ T is a subsumption (resp.
instance, conjunctive) query module of T , denoted as M c

Σ (resp. M i
Σ, Mq

Σ).

– M c
Σ: for each ELHr

Σ-inclusion α, if T |= α, then M |= α;
– M i

Σ: for each Σ-instance assertion λ, if (T ,A) |= λ, then (M,A) |= λ;
– Mq

Σ: for each q(a), if (T ,A) |= q(a), then (M,A) |= q(a), where a is a tuple
of individual names from A and q(a) is a Σ-conjunctive query.

A subsumption (resp. instance, conjunctive) query module is called a minimal
subsumption (resp. instance, conjunctive) query module iff it is minimal w.r.t. �.

In general, the reference and the implementing/task ontologies do not coin-
cide. Intuitively, the task ontology T2 might contain more knowledge about Σ
than the reference ontology T1. The following lemma illustrates the relationship
between minimal projection modules and minimal query modules.

Computing Minimal Projection Modules for ELHr-Terminologies 367

Lemma 3. Let Q ∈ {c, i, q} and ρ = {T1, Σ, T2}. Then: for every minimal
projection module MQ

ρ for a query type Q and under a projection setting ρ,
there exists a minimal Q-query module MQ

Σ of T2 such that MQ
ρ ⊆ MQ

Σ .

Example 3 (Fig. 2 contd.). The minimal projection module of T2 under ρ =
{T1, Σ, T2} is {{β1, β3}, {β1, β4}}, for any query type Q ∈ {c, i, q}. The minimal
Q-query module of T2 w.r.t. Σ is {{β1, β2, β3}, {β1, β2, β4}}. The minimal Q-
query module of T1 is {α1}.

One solution for importing Σ-knowledge of a reference ontology to a task
ontology is to import a minimal Q-query module of the reference ontology. How-
ever, one can see that if we include α1 to T2, then α1 repeats the Σ-knowledge
that is already represented by β1. Besides, the resulting ontology would not be
a terminology anymore.

Consider a special projection setting of the form 〈T , Σ, T 〉, where the ref-
erence ontology T is also the implementing ontology. We denote such reflexive
projection settings with ρ�. A projection module M of T under ρ� for sub-
sumption (resp. instance, conjunctive) queries is a subset of T that preserves
the answers to Σ-concept subsumption (resp. instance, conjunctive) queries as
given by T . It can readily be verified that a minimal projection module under
a reflexive projection setting coincides with a minimal module for the type of
queries considered.

5.2 Ontology Comparison Measure

In existent methods for measuring the entailment capacity of a terminology
about a signature Σ for a query language, one can use logical difference. However,
the following example shows that using logical difference can be not sufficient in
some case.

Example 4. Let α1 := A � B1�B2�B3�B4, α2 := B1 � B2�B3, α3 := B2 � B4,
α4 := B3 � B4. Let T1 = {α1}, T2 = {α1, α2}, T3 = {α1, α2, α3, α4} and
Σ = {A,B1, B2, B3, B4}. We have that WtnL

Σ(T1, T2) = WtnL
Σ(T1, T3) = (∅, ∅, ∅),

for L ∈ {ELHr, ELran, ELran,�,u}.

In Example 4, the notion of logical difference cannot be used to distinguish
between T2 and T3 w.r.t. Σ as T2 and T3 preserve the Σ-knowledge w.r.t. T1. How-
ever, intuitively, T2 and T3 each contain more information about the Σ-concept
names B1, B2 and B4 than T1. We therefore propose a new measure based on
the notions of minimal projection module and query module for different query
languages.

Definition 8 (Projection Rate). Let Q ∈ {c, i, q} and let MQ
ρ range over

minimal projection modules under ρ = 〈T1, Σ, T2〉 and the query type Q. Addi-
tionally, let MQ

Σ range over minimal modules of T2 for the query type Q. The
projection rate PQ of T1 over T2 is defined as:

PQ =
|
⋃

MQ
ρ |

|
⋃

MQ
Σ |

368 J. Chen et al.

Note that p ≤ 1 always holds by Lemma 3. Intuitively, the lower the projec-
tion rate, the more Σ-knowledge is contained in T2 compared with T1.

Example 5 (Example 4 contd.). Considering when Q = c, we have that
Mc

ρ=Mc
ρ′={α1} under ρ = 〈T1, Σ, T2〉 and ρ′ = 〈T1, Σ, T3〉. The minimal sub-

sumption query module of T2 w.r.t. Σ is {α1, α2}. But there exists two min-
imal subsumption query module of T3 w.r.t. Σ, which are {α1, α2, α3} and
{α1, α2, α4}. So the union of minimal subsumption query module of T3 w.r.t.
Σ is T3 that contains four axioms. Therefore, the projection rate P c of T1 over
T2 is P c = 1/2 and the projection rate P c of T1 over T3 is P c = 1/4. So T3

contains more Σ-knowledge compared with T2 as 1/4 < 1/2.

6 Conclusion

We proposed a novel module notion called projection module that entails the
queries that follow from a reference ontology. We presented an algorithm for
computing all minimal projection modules of acyclic ELHr-terminologies and
two applications of minimal projection modules. We expect that the algorithms
can be extended to deal with cyclic terminologies and possibly general ELHr-
TBoxes, and to yield a ranking between different projection modules, e.g., via
weighted signatures.

References

1. Alsubait, T., Parsia, B., Sattler, U.: Measuring similarity in ontologies: a new
family of measures. In: Janowicz, K., Schlobach, S., Lambrix, P., Hyvönen, E.
(eds.) EKAW 2014. LNCS (LNAI), vol. 8876, pp. 13–25. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-13704-9 2

2. Arif, M.F., Menćıa, C., Ignatiev, A., Manthey, N., Peñaloza, R., Marques-Silva, J.:
BEACON: an efficient SAT-based tool for debugging EL+ ontologies. In: Creignou,
N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 521–530. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-40970-2 32

3. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions, 2 edn. Cambridge University Press, June 2010

4. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description
Logic. Cambridge University Press, Cambridge (2017)

5. Baader, F., Peñaloza, R., Suntisrivaraporn, B.: Pinpointing in the description logic
EL. In: Proceedings of DL 2007: The 20th International Workshop on Description
Logics (2007)

6. Botoeva, E., Konev, B., Lutz, C., Ryzhikov, V., Wolter, F., Zakharyaschev, M.:
Inseparability and conservative extensions of description logic ontologies: a sur-
vey. In: Pan, J.Z., et al. (eds.) Reasoning Web 2016. LNCS, vol. 9885, pp. 27–89.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-49493-7 2

7. Botoeva, E., Kontchakov, R., Ryzhikov, V., Wolter, F., Zakharyaschev, M.: Games
for query inseparability of description logic knowledge bases. Artif. Intell. 234, 78–
119 (2016)

https://doi.org/10.1007/978-3-319-13704-9_2
https://doi.org/10.1007/978-3-319-40970-2_32
https://doi.org/10.1007/978-3-319-49493-7_2

Computing Minimal Projection Modules for ELHr-Terminologies 369

8. Botoeva, E., Lutz, C., Ryzhikov, V., Wolter, F., Zakharyaschev, M.: Query-based
entailment and inseparability for ALC ontologies. In: Proceedings of IJCAI 2016:
The 25th International Joint Conference on Artificial Intelligence, pp. 1001–1007.
AAAI Press (2016)

9. Chen, J., Ludwig, M., Ma, Y., Walther, D.: Zooming in on ontologies: minimal
modules and best excerpts. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol.
10587, pp. 173–189. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
68288-4 11

10. Chen, J., Ludwig, M., Walther, D.: Computing minimal subsumption modules of
ontologies. In: Proceedings of GCAI 2018: The 4th Global Conference on Artificial
Intelligence, pp. 41–53 (2018)

11. Domingue, J., Anutariya, C. (eds.): ASWC 2008. LNCS, vol. 5367. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-89704-0

12. Ecke, A., Ludwig, M., Walther, D.: The concept difference for EL-terminologies
using hypergraphs. In: Proceedings of DChanges 2013: The International workshop
on (Document) Changes: Modeling, Detection, Storage and Visualization (2013)

13. Euzenat, J., Shvaiko, P.: Ontology Matching, 2nd edn. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38721-0

14. Grau, B.C., Horrocks, I., Kazakov, Y., Sattler, U.: Modular reuse of ontologies:
theory and practice. J. Artif. Intell. Res. 31(1), 273–318 (2008)

15. Jung, J.C., Lutz, C., Martel, M., Schneider, T.: Query conservative extensions
in horn description logics with inverse roles. In: Proceedings of IJCAI 2017: The
26th International Joint Conference on Artificial Intelligence, pp. 1116–1122. AAAI
Press (2017)

16. Kalyanpur, A., Parsia, B., Sirin, E., Hendler, J.A.: Debugging unsatisfiable classes
in OWL ontologies. J. Web Semant. 3(4), 268–293 (2005)

17. Kazakov, Y., Skocovsky, P.: Enumerating justifications using resolution. In: Pro-
ceedings of DL 2017: The 30th International Workshop on Description Logics
(2017)

18. Konev, B., Kontchakov, R., Ludwig, M., Schneider, T., Wolter, F., Zakharyaschev,
M.: Conjunctive query inseparability of OWL 2 QL TBoxes. In: Proceedings of
AAAI 2011: The 25th Conference on Artificial Intelligence. AAAI Press (2011)

19. Konev, B., Ludwig, M., Walther, D., Wolter, F.: The logical difference for the
lightweight description logic EL. J. Artif. Intell. Res. 44, 633–708 (2012)

20. Konev, B., Lutz, C., Walther, D., Wolter, F.: Semantic modularity and module
extraction in description logics. In: Proceedings of ECAI 2008: The 18th European
Conference on Artificial Intelligence, pp. 55–59. IOS Press (2008)

21. Konev, B., Lutz, C., Walther, D., Wolter, F.: Formal properties of modularisation.
In: Stuckenschmidt, H., Parent, C., Spaccapietra, S. (eds.) Modular Ontologies.
LNCS, vol. 5445, pp. 25–66. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-01907-4 3

22. Konev, B., Lutz, C., Walther, D., Wolter, F.: Model-theoretic inseparability and
modularity of description logic ontologies. Artif. Intell. 203, 66–103 (2013)

23. Konev, B., Walther, D., Wolter, F.: The logical difference problem for description
logic terminologies. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 259–274. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-71070-7 21

24. Kontchakov, R., Wolter, F., Zakharyaschev, M.: Logic-based ontology comparison
and module extraction, with an application to DL-Lite. Artif. Intell. 174(15), 1093–
1141 (2010)

https://doi.org/10.1007/978-3-319-68288-4_11
https://doi.org/10.1007/978-3-319-68288-4_11
https://doi.org/10.1007/978-3-540-89704-0
https://doi.org/10.1007/978-3-642-38721-0
https://doi.org/10.1007/978-3-642-01907-4_3
https://doi.org/10.1007/978-3-642-01907-4_3
https://doi.org/10.1007/978-3-540-71070-7_21
https://doi.org/10.1007/978-3-540-71070-7_21

370 J. Chen et al.

25. Lehmann, K., Turhan, A.-Y.: A framework for semantic-based similarity measures
for ELH-concepts. In: del Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012.
LNCS (LNAI), vol. 7519, pp. 307–319. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-33353-8 24

26. Ludwig, M., Walther, D.: The logical difference for ELHr-terminologies using
hypergraphs. In: Proceedings of ECAI 2014: The 21st European Conference on
Artificial Intelligence, pp. 555–560 (2014)

27. Romero, A.A., Kaminski, M., Grau, B.C., Horrocks, I.: Module extraction in
expressive ontology languages via datalog reasoning. J. Artif. Intell. Res. 55, 499–
564 (2016)

28. Sattler, U., Schneider, T., Zakharyaschev, M.: Which kind of module should I
extract? In: Proceedings of DL 2009. CEUR Workshop Proceedings, vol. 477.
CEUR-WS.org (2009)

29. Zhou, Z., Qi, G., Suntisrivaraporn, B.: A new method of finding all justifications
in OWL 2 EL. In: Proceedings of WI 2013: IEEE/WIC/ACM International Con-
ferences on Web Intelligence, pp. 213–220 (2013)

https://doi.org/10.1007/978-3-642-33353-8_24
https://doi.org/10.1007/978-3-642-33353-8_24

Closed-World Semantics for Conjunctive
Queries with Negation over ELH⊥

Ontologies

Stefan Borgwardt(B) and Walter Forkel

Chair for Automata Theory, Technische Universität Dresden, Dresden, Germany
{stefan.borgwardt,walter.forkel}@tu-dresden.de

Abstract. Ontology-mediated query answering is a popular paradigm
for enriching answers to user queries with background knowledge.
For querying the absence of information, however, there exist only
few ontology-based approaches. Moreover, these proposals conflate the
closed-domain and closed-world assumption, and therefore are not suited
to deal with the anonymous objects that are common in ontological rea-
soning. We propose a new closed-world semantics for answering conjunc-
tive queries with negation over ontologies formulated in the description
logic ELH⊥, which is based on the minimal canonical model. We propose
a rewriting strategy for dealing with negated query atoms, which shows
that query answering is possible in polynomial time in data complexity.

1 Introduction

Ontology-mediated query answering (OMQA) allows using background knowl-
edge for answering user queries, supporting data-focused applications offering
search, analytics, or data integration functionality. An ontology is a logical theory
formulated in a decidable fragment of first-order logic, with a trade-off between
the expressivity of the ontology and the efficiency of query answering. Rewritabil-
ity is a popular topic of research, the idea being to reformulate ontological queries
into database queries that can be answered by traditional database management
systems [8,10,15,21,27].

Ontology-based systems do not use the closed-domain and closed-world
semantics of databases. Instead, they acknowledge that unknown (anonymous)
objects may exist (open domain) and that facts that are not explicitly stated
may still be true (open world). Anonymous objects are related to null values
in databases, but are not used explicitly; for example, if we know that every
person has a mother, then first-order models include all mothers, even though
they may not be mentioned in the input dataset. The open-world assumption
ensures that, if the dataset does not contain an entry on, e.g. whether a person is

This work was supported by the DFG grant BA 1122/19-1 (GOASQ) and grant
389792660 (TRR 248) (see https://perspicuous-computing.science).

c© Springer Nature Switzerland AG 2019
F. Calimeri et al. (Eds.): JELIA 2019, LNAI 11468, pp. 371–386, 2019.
https://doi.org/10.1007/978-3-030-19570-0_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19570-0_24&domain=pdf
http://orcid.org/0000-0003-0924-8478
http://orcid.org/0000-0002-0343-5136
https://perspicuous-computing.science
https://doi.org/10.1007/978-3-030-19570-0_24

372 S. Borgwardt and W. Forkel

male or female, then we do not infer that this person is neither male nor female,
but rather consider all possibilities.

The biomedical domain is a fruitful area for OMQA methods, due to the
availability of large ontologies covering a multitude of topics1 and the demand
for managing large amounts of patient data, in the form of electronic health
records (EHRs) [12]. For example, for the preparation of clinical trials2 a large
number of patients need to be screened for eligibility, and an important area of
current research is how to automate this process [7,23,28,29,31].3

However, ontologies and EHRs mostly contain positive information, while
clinical trials also require certain exclusion criteria to be absent in the patients.
For example, we may want to select only patients that have not been diagnosed
with cancer,4 but such information cannot be entailed from the given knowledge.
The culprit for this problem is the open-world semantics, which considers a
cancer diagnosis possible unless it has been explicitly ruled out.

One possibility is to introduce (partial) closed-world semantics to ontol-
ogy languages [1,24]. For example, one can declare the predicate human to
be “closed”, i.e. if an object is not explicitly listed as human in the dataset,
then it is considered to be not human. However, such approaches fail to deal
with anonymous objects; indeed, they conflate the open-world and open-domain
assumptions by requiring that all closed information is restricted to the known
objects. For example, even if we don’t know the mother of a person, we still
know that she is human, even though this may not be explicitly stated in the
ontology (but entailed by it). Using the semantics of [1,24] would hence enforce
a partial closed-domain assumption as well, in that A’s mother would have to
be a known object from the dataset.

Epistemic logics are another way to give a closed-world-like semantics to
negated formulas; e.g. one can formulate queries like “no cancer diagnosis is
known” using the epistemic knowledge modality K. Such formalisms are also
unable to deal with closed-world knowledge over anonymous objects [11,32].
Most closely related to our proposal are Datalog-based semantics for negation,
based on the (Skolem) chase construction [2,18]. We compare all these existing
semantics in detail in Sect. 3.

The contribution of this paper is a new closed-world semantics to answer con-
junctive queries with (guarded) negation [6] over ontologies formulated in ELH⊥,
an ontology language that covers many biomedical ontologies. Our semantics is
based on the minimal canonical model, which encodes all inferences of the ontol-
ogy in the most concise way possible. As a side effect, this means that standard
CQs without negation are interpreted under the standard open-world seman-
tics. In order to properly handle negative knowledge about anonymous objects,
however, we have to be careful in the construction of the canonical model, in
particular about the number and type of anonymous objects that are introduced.

1 https://bioportal.bioontology.org.
2 https://clinicaltrials.gov.
3 https://n2c2.dbmi.hms.harvard.edu.
4 An exclusion criterion in https://clinicaltrials.gov/ct2/show/NCT01463215.

https://bioportal.bioontology.org
https://clinicaltrials.gov
https://n2c2.dbmi.hms.harvard.edu
https://clinicaltrials.gov/ct2/show/NCT01463215

Closed-World Semantics for ELH⊥ Ontologies 373

Since in general the minimal canonical model is infinite, we develop a rewriting
technique, in the spirit of the combined approach of [22,25], and most closely
inspired by [8,15], which allows us to evaluate conjunctive queries with negation
over a finite part of the canonical model, using traditional database techniques.

An extended version of this paper, including an appendix with full proofs,
can be found at https://tu-dresden.de/inf/lat/papers.

2 Preliminaries

We recall the definitions of ELH⊥ and first-order queries, which are needed for
our rewriting of conjunctive queries with negation.

The Description Logic ELH⊥. Let NC , NR, NI be countably infinite sets of
concept, role, and individual names, respectively. A concept is built according to
the syntax rule C ::= A | � | ⊥ | C � C | ∃r.C, where A ∈ NC and r ∈ NR. An
ABox is a finite set of concept assertions A(a) and role assertions r(a, b), where
a, b ∈ NI . A TBox is a finite set of concept inclusions C � D and role inclusions
r � s, where C,D are concepts and r, s are roles. In the following we assume the
TBox to be in normal form, i.e. that it contains only inclusions of the form

A1 � · · · � An � B, A � ∃r.B, ∃r.A � B, r � s

where A(i) ∈ NC ∪ {�}, B ∈ NC ∪ {⊥}, r, s ∈ NR, and n ≥ 1. A knowledge base
(KB) (or ontology) K = (T ,A) is a pair of a TBox T and an ABox A. We refer
to the set of individual names occurring in K by Ind(K). We write C ≡ D to
abbreviate the two inclusions C � D, D � C, and similarly for role inclusions.

The semantics of ELH⊥ is defined in terms of interpretations I = (ΔI , ·I)
as usual [5]. In the following, we assume all KBs to be consistent and make
the standard name assumption, i.e. that for every individual name a in any
interpretation I we have aI = a. An axiom α is entailed by K (written K |= α)
if α is satisfied in all models of K. We abbreviate K |= C � D to C �T D, and
similarly for role inclusions; note that the ABox does not influence the entailment
of inclusions. Entailment in ELH⊥ can be decided in polynomial time [4].

Query Answering. Let NV be a countably infinite set of variables. The set
of terms is NT := NV ∪ NI . A first-order query φ(x) is a first-order formula
built from concept atoms A(t) and role atoms r(t, t′) with A ∈ NC , r ∈ NR, and
ti ∈ NT , using the boolean connectives (∧,∨,¬,→) and universal and existential
quantifiers (∀x,∃x). The free variables x of φ(x) are called answer variables and
we say that φ is k-ary if there are k answer variables. The remaining variables
are the quantified variables. We use Var(φ) to denote the set of all variables in
φ. A query without any answer variables is called a Boolean query.

Let I = (Δ, ·I) be an interpretation. An assignment π : Var(φ) → Δ satisfies
φ in I, if I, π |= φ under the standard semantics of first-order logic. We write
I |= φ if there is a satisfying assignment for φ in I. Let K be a KB. A k-tuple a
of individual names from Ind(K) is an answer to φ in I if φ has a satisfying
assignment π in I with π(x) = a; it is a certain answer to q over K if it is an

https://tu-dresden.de/inf/lat/papers

374 S. Borgwardt and W. Forkel

answer to q in all models of K. We denote the set of all answers to φ in I by
ans(φ, I), and the set of all certain answers to φ over K by cert(φ,K).

A conjunctive query (CQ) q(x) is a first-order query of the form ∃y. ϕ(x,y),
where ϕ is a conjunction of atoms. Abusing notation, we write α ∈ q if the atom α
occurs in q, and conversely may treat a set of atoms as a conjunction. The leaf
variables x in q are those that do not occur in any atoms of the form r(x, y).
Clearly, q is satisfied in an interpretation if there is a satisfying assignment for
ϕ(x,y), which is often called a match for q. A CQ is rooted if all variables are
connected to an answer variable through role atoms.

CQ answering over ELH⊥ KBs is combined first-order rewritable [25]: For
any CQ q and consistent KB K = (T ,A) we can find a first-order query qT
and a finite interpretation IK such that cert(q,K) = ans(qT , IK). Importantly,
IK is independent of q, i.e. can be reused to answer many different queries,
while qT is independent of A, i.e. each query can be rewritten without using
the (possibly large) dataset. The rewritability results are based crucially on the
canonical model property of ELH⊥: For any consistent KB K one can construct
a model IK that is homomorphically contained in any other model. This is a very
useful property since any match in the canonical model corresponds to matches
in all other models of K, and therefore cert(q,K) = ans(q, IK) holds for all CQs q.

3 Conjunctive Queries with Negation

We are interested in answering queries of the following form.

Definition 1. Conjunctive queries with (guarded) negation (NCQs) are con-
structed by extending CQs with negated concept atoms ¬A(t) and negated role
atoms ¬r(t, t′), such that, for any negated atom over terms t (and t′) the query
contains at least one positive atom over t (and t′).

We first discuss different ways of handling the negated atoms, and then pro-
pose a new semantics that is based on a particular kind of minimal canonical
model. For this, we consider an example based on real EHRs (ABoxes) from the
MIMIC-III database [20], criteria (NCQs) from clinicaltrials.gov, and the large
medical ontology SNOMED CT5 (the TBox). We omit here the “role groups”
used in SNOMED CT, which do not affect the example. We also simplify the
concept names and their definitions for ease of presentation. We assume that
the ABoxes have been extracted from EHRs by a natural language processing
tool based, e.g. on existing concept taggers like [3,30]; of course, this extraction
is an entire research field in itself, which we do not attempt to tackle in this
paper.

Example 2. We consider three patients. Patient p1 (patient 2693 in the MIMIC-
III dataset) is diagnosed with breast cancer and an unspecified form of cancer
(this often occurs when there are multiple mentions of cancer in a patient’s EHR,

5 https://www.snomed.org/snomed-ct.

https://www.snomed.org/snomed-ct

Closed-World Semantics for ELH⊥ Ontologies 375

which cannot be resolved to be the same entity). Patient p2 (patient 32304 in
the MIMIC-III dataset) suffers from breast cancer and skin cancer (“[S]tage IV
breast cancer with mets to skin, bone, and liver”.) For p3 (patient 88432 in the
MIMIC-III dataset), we know that p3 has breast cancer that involves the skin
(“Skin, left breast, punch biopsy: Poorly differentiated carcinoma”).

Since SNOMED CT does not model patients, we add a special role name
diagnosedWith that connects patients with their diagnoses. One can use this
to express diagnoses in two ways. First, one can explicitly introduce individual
names for diagnoses in assertions like diagnosedWith(p1, d1), BreastCancer(d1),
diagnosedWith(p1, d2), Cancer(d2), implying that these diagnoses are treated as
distinct entities under the standard name assumption. Alternatively, one can
use complex assertions like ∃diagnosedWith.Cancer(p1), which allows the logical
semantics to resolve whether two diagnoses actually refer to the same object.
Since ABoxes only contain concept names, in this case one has to introduce aux-
iliary definitions like CancerPatient ≡ ∃diagnosedWith.Cancer into the TBox.
We use both variants in our example, to illustrate their different behaviours.

We obtain the KB KC , containing knowledge about different kinds of cancers
and cancer patients, together with information about the three patients. The
information about cancers is taken from SNOMED CT (in simplified form):

SkinCancer ≡ Cancer � ∃findingSite.SkinStructure
BreastCancer ≡ Cancer � ∃findingSite.BreastStructure

SkinOfBreastCancer ≡ Cancer � ∃findingSite.SkinOfBreastStructure
SkinOfBreastStructure � BreastStructure � SkinStructure

The EHRs are compiled into several assertions per patient:

Patient p1 : BreastCancerPatient(p1), CancerPatient(p1)
Patient p2 : SkinCancerPatient(p2), BreastCancerPatient(p2)
Patient p3 : diagnosedWith(p3, c3), SkinOfBreastCancer(c3)

Additionally, we add the following auxiliary definitions to the TBox:

CancerPatient ≡ ∃diagnosedWith.Cancer
SkinCancerPatient ≡ ∃diagnosedWith.SkinCancer

BreastCancerPatient ≡ ∃diagnosedWith.BreastCancer

For example, skin cancers and breast cancers are cancers occurring at specific
parts of the body (“body structure” in SNOMED CT), and a breast cancer
patient is someone who is diagnosed with breast cancer. This means that, in every
model of KC , every object that satisfies BreastCancerPatient (in particular p2)
must have a diagnosedWith-connected object that satisfies BreastCancer, and
so on.

376 S. Borgwardt and W. Forkel

For a clinical trial,6 we want to find patients that have “breast cancer”, but
not “breast cancer that involves the skin.” This can be translated into an NCQ:

qB(x) := ∃y, z. diagnosedWith(x, y) ∧ Cancer(y) ∧ findingSite(y, z) ∧
BreastStructure(z) ∧ ¬SkinStructure(z)

Fig. 1. The minimal canonical model IKC . Named individuals are depicted by squares,
anonymous objects by stars.

We know that p1 is diagnosed with BreastCancer as well as Cancer. Since the
former is more specific, we assume that the latter refers to the same Breast-
Cancer. However, since we have no information about an involvement of the
skin, p1 should be returned as an answer to qB .

We know that p2 suffers from cancer in the skin and the breast, but not if
the skin of the breast is also affected. Since neither location is implied by the
other, we assume that they refer to distinct areas. p2 should thus be an answer
to qB .

In the case of p3, it is explicitly stated that it is the same cancer that is
occurring (not necessarily exclusively) at the skin of the breast. In this case, the
ABox assertions override the distinctness assumption we made for p2. Thus, p3
should not be an answer to qB . �

In practice, more complicated cases than in our example can occur: The
nesting of anonymous objects will be deeper and more branched when using large
biomedical ontologies. For example, in SNOMED CT it is possible to describe
many details of a cancer, such as the kind of cancer, whether it is a primary
or secondary cancer, and in which part of the body it is found. This means
6 https://clinicaltrials.gov/ct2/show/NCT01960803.

https://clinicaltrials.gov/ct2/show/NCT01960803

Closed-World Semantics for ELH⊥ Ontologies 377

that even a single assertion can lead to the introduction of multiple levels of
anonymous objects in the canonical model. In some ontologies there are even
cyclic concept inclusions, which lead to infinitely many anonymous individuals,
e.g. in the GALEN ontology7. We focus on Example 2 in this paper, to illustrate
the relevant issues in a clear and easy to follow manner.

We now evaluate existing semantics on this example.

Standard Certain Answer Semantics as defined in Sect. 2 is clearly not
suited here, because one can easily construct a model of KC in which c1 is
also a skin cancer, and hence p1 is not an element of cert(qB ,KC). Moreover,
under certain answer semantics answering CQs with guarded negation is already
coNP-complete [17], and hence not (combined) rewritable.

Epistemic Logic allows us to selectively apply closed-world reasoning using
the modal knowledge operator K. For a formula Kϕ to be true, it has to hold in
all “connected worlds”, which is often considered to mean all possible models of
the KB, adopting an S5-like view [11]. For qB , we could read ¬SkinStructure(z)
as “not known to be a skin structure”, i.e. ¬KSkinStructure(z). Consider the
model IKC

in Fig. 1 and the assignment π = {x �→ p3, y �→ c3, z �→ f3}, for
which we want to check whether it is a match for qB . Under epistemic semantics,
¬KSkinStructure(z) is considered true if K has a (different) model in which f3
does not belong to SkinStructure. However, f3 is an anonymous object, and
hence its name is not fixed. For example, we can easily obtain another model by
renaming f3 to f1 and vice versa. Then f3 would not be a skin structure, which
means that ¬KSkinStructure(z) is true in the original model IKC

, which is not
what we expected. This is a known problem with epistemic first-order logics [32].

Skolemization can enforce a stricter comparison of anonymous objects between
models. The inclusion SkinOfBreastCancer � ∃findingSite.SkinOfBreast could
be rewritten as the first-order sentence

∀x.
(
SkinOfBreastCancer(x) → findingSite

(
x, f(x)

)
∧ SkinOfBreast

(
f(x)

))
,

where f is a fresh function symbol. This means that c3 would be connected to
a finding site that has the unique name f(c3) in every model. Queries would be
evaluated over Herbrand models only. Hence, for evaluating ¬KSkinStructure(z)
when z is mapped to f(c3), we would only be allowed to compare the behavior
of f(c3) in other Herbrand models. The general behavior of this anonymous
individual is fixed, however, since in all Herbrand models it is the finding site
of c3. While this improves the comparison by introducing pseudo-names for all
anonymous individuals, it limits us in different ways: Since p3 is inferred to
be a BreastCancerPatient, the Skolemized version of BreastCancerPatient �
∃diagnosedWith.BreastCancer introduces a new successor g(p3) of p3 satisfying
BreastCancer, which, together with the definition of BreastCancer, means that
p3 is an answer to qB since there is an additional breast cancer diagnosis that
does not involve the skin.
7 http://www.opengalen.org/.

http://www.opengalen.org/

378 S. Borgwardt and W. Forkel

Datalog-Based Ontology Languages with negation [2,18] are closely related
to Skolemized ontologies, since their semantics is often based on the so-called
Skolem chase [26]. This is closer to the semantics we propose in Sect. 3.1, in that
a single canonical model is used for all inferences. However, it suffers from the
same drawback of Skolemization described above, due to superfluous successors.
To avoid this, our semantics uses a special minimal canonical model (see Defi-
nition 4), which is similar to the restricted chase [16] or the core chase [14], but
always produces a unique model without having to merge domain elements. To
the best of our knowledge, there exist no complexity results for Datalog-based
languages with negation over the these other chase variants.

Closed Predicates are a way to declare, for example, the concept name Skin-
Structure as “closed”, which means that all skin structures must be declared
explicitly, and no other SkinStructure object can exist [1,24]. This provides a
way to give answers to negated atoms as in qB . However, as explained in the intro-
duction, this mechanism is not suitable for anonymous objects since it means
that only named individuals can satisfy SkinStructure. When applied to KC ,
the result is even worse: Since there is no (named) SkinStructure object, no skin
structures can exist at all and KC becomes inconsistent. Closed predicates are
appropriate in cases where the KB contains a full list of all instances of a certain
concept name, and no other objects should satisfy it; but they are not suitable to
infer negative information about anonymous objects. Moreover, CQ answering
with closed predicates in ELH⊥ is already coNP-hard [24].

3.1 Semantics for NCQs

We propose to answer NCQs over a special canonical model of the knowledge
base. On the one hand, this eliminates the problem of tracking anonymous
objects across different models, and on the other hand enables us to encode
our assumptions directly into the construction of the model. In particular, we
should only introduce the minimum necessary number of anonymous objects
since, unlike in standard CQ answering, the precise shape and number of anony-
mous objects has an impact on the semantics of negated atoms.

Given KC , in contrast to the Skolemized semantics, we will not create both
a generic “Cancer” and another “BreastCancer” successor for p1, because the
BreastCancer is also a Cancer, and hence the first object is redundant. Therefore,
in the minimal canonical model of KC depicted in Fig. 1, for patient p1 only one
successor is introduced to satisfy the definitions of both BreastCancerPatient
and CancerPatient at the same time. In contrast, p2 has two successors, because
BreastCancer and SkinCancer do not imply each other. Finally, for p3 the ABox
contains a single successor that is a SkinOfBreastCancer, which implies a single
findingSite-successor that satisfies both SkinStructure and BreastStructure.

To detect whether an object required by an existential restriction ∃r.A is
redundant, we use the following notion of minimality.

Closed-World Semantics for ELH⊥ Ontologies 379

Definition 3 (Structural Subsumption). Let ∃r.A, ∃t.B be concepts with
A,B ∈ NC and r, t ∈ NR. We say that ∃r.A is structurally subsumed by ∃t.B
(written ∃r.A �s

T ∃t.B) if r �T t and A �T B.
Given a set V of existential restrictions, we say that ∃r.A ∈ V is minimal

w.r.t. �s
T (in V) if there is no ∃t.B ∈ V such that ∃t.B �s

T ∃r.A.
A CQ q1(x) is structurally subsumed by a CQ q2(x) with the same answer

variables (written q1 �s
T q2) if, for all x, y ∈ x, it holds that

�

α(x)∈q1

α �T
�

α(x)∈q2

α, and
�

α(x,y)∈q1

α �T
�

α(x,y)∈q2

α,

where role conjunction is interpreted in the standard way [5].

In contrast to standard subsumption, ∃r.A is not structurally subsumed by ∃t.B
w.r.t. the TBox T = {∃r.A � ∃t.B}, as neither r �T t nor A �T B hold.
Similarly, structural subsumption for CQs considers all (pairs of) variables sep-
arately.

We use this notion to define the minimal canonical model.

Definition 4 (Minimal Canonical Model). Let K = (T ,A) be an ELH⊥
KB. We construct the minimal canonical model IK of K as follows:

1. Set ΔIK := NI and aIK := a for all a ∈ NI .
2. Define AIK := {a | K |= A(a)} for all A ∈ NC and rIK := {(a, b) | K |=

r(a, b)} for all r ∈ NR.
3. Repeat:

(a) Select an element d ∈ ΔIK that has not been selected before and let V :=
{∃r.B | d ∈ AIK and d �∈ (∃r.B)IK with A �T ∃r.B, A,B ∈ NC}.

(b) For each ∃r.B ∈ V that is minimal w.r.t. �s
T , add a fresh element e

to ΔIK , for each B �T A add e to AIK , and for each r �T s add (d, e)
to sIK .

By IA we denote the restriction of IK to named individuals, i.e. the result of
applying only Steps 1 and 2, but not Step 3.

If Step 3 is applied fairly, i.e. such that each new domain element that is
created in (b) is eventually also selected in (a), then IK is indeed a model of K
(if K is consistent at all). In particular, all required existential restrictions are
satisfied at each domain element, because the existential restrictions that are
minimal w.r.t. �s

T entail all others.
Moreover, IK satisfies the properties expected of a canonical model [15,25]:

it can be homomorphically embedded into any other model of K, and therefore
cert(q,K) = ans(q, IK) holds for all CQs q. We now define the semantics of
NCQs as described before, i.e. by evaluating them as first-order formulas over
the minimal canonical model IK, which ensures that our semantics is compatible
with the usual certain-answer semantics for CQs.

Definition 5 (Minimal-World Semantics). The (minimal-world) answers to
an NCQ q over a consistent ELH⊥ KB K are mwa(q,K) := ans(q, IK).

380 S. Borgwardt and W. Forkel

For Example 2, we get mwa(qB ,KC) = {p1, p2} (see Fig. 1), which is exactly
as intended. Unfortunately, in general the minimal canonical model is infinite,
and we cannot evaluate the answers directly. Hence, we employ a rewriting app-
roach to reduce NCQ answering over the minimal canonical model to (first-order)
query answering over IA only.

4 A Combined Rewriting for NCQs

We show that NCQ answering is combined first-order rewritable. As target rep-
resentation, we obtain first-order queries of a special form.
Definition 6 (Filtered query). Let K = (T ,A) be an ELH⊥ KB. A filter on
a variable z is a first-order expression ψ(z) of the form

(
∃z′.ψ+(z, z′)

)
→

(
∃z′.ψ+(z, z′) ∧ ψ−(z, z′) ∧ Ψ

)
(1)

where ψ+(z, z′) is a conjunction of atoms of the form A(z′) or r(z, z′), that
contains at least one role atom, ψ−(z, z′) is a conjunction of negated atoms
¬A(z′) or ¬r(z, z′), and Ψ is a (possibly empty) set of filters on z′.

A filtered query φ is of the form ∃y.
(
ϕ(x,y) ∧ Ψ

)
where ∃y.ϕ(x,y) is an

NCQ and Ψ is a set of filters on leaf variables in ϕ. It is rooted if ∃y.ϕ(x,y) is
rooted.
Note that every NCQ is a filtered query where the set of filters Ψ is empty.

We will use filters to check for the existence of “typical” successors, i.e.
role successors that behave like the ones that are introduced by the canonical
model construction to satisfy an existential restriction. In particular, a typical
successor does not satisfy any superfluous concept or role atoms. For exam-
ple, in Fig. 1 the element c1 introduced to satisfy ∃diagnosedWith.BreastCancer
for p1 is a typical successor, because it satisfies only BreastCancer and Can-
cer and not, e.g. SkinCancer. In contrast, the diagnosedWith-successor c3
of p3 is atypical, since the ontology does not contain an existential restriction
∃diagnosedWith.SkinOfBreastCancer that could have introduced such a succes-
sor in the canonical model.

The idea of the rewriting procedure is to not only rewrite the positive part
of the query, as in [8,15], but to also ensure that no critical information is lost.
This is accomplished by rewriting the negative parts and by saving the structure
of the eliminated part of the query in the filter. A filter on z ensures that the
rewritten query can only be satisfied by mapping z to an anonymous individual
in the canonical model, or to a named individual that behaves in a similar way.

Definition 7 (Rewriting). Let K = (T ,A) be a KB and φ = ∃y.ϕ(x,y) ∧ Ψ
be a rooted filtered query. We write φ →T φ′ if φ′ can be obtained from φ by
applying the following steps:
(S1) Select a quantified leaf variable x̂ in ϕ. Let ŷ be a fresh variable and select

Pred := {y | r(y, x̂) ∈ ϕ} ∪ {y | ¬r(y, x̂) ∈ ϕ} (predecessors of x̂),
Pos := {A(x̂) ∈ ϕ} ∪ {r(ŷ, x̂) | r(y, x̂) ∈ ϕ} (positive atoms for x̂),
Neg := {¬A(x̂) ∈ ϕ} ∪ {¬r(ŷ, x̂) | ¬r(y, x̂) ∈ ϕ} (negative atoms for x̂).

Closed-World Semantics for ELH⊥ Ontologies 381

(S2) Select some M �T ∃s.N with M,N ∈ NC that satisfies all of the following:
(a) s(ŷ, x̂) ∧ N(x̂) �s

T Pos, and
(b) s(ŷ, x̂) ∧ N(x̂) ��s

T α for all ¬α ∈ Neg.
(S3) Let M′ be the set of all M ′ ∈ NC such that M ′ �T ∃s′.N ′ with N ′ ∈ NC ,

(a) ∃s′.N ′ �s
T ∃s.N (where ∃s.N was chosen in (S2)), and

(b) s′(ŷ, x̂) ∧ N ′(x̂) �s
T α for some ¬α ∈ Neg.

(S4) Drop from ϕ every atom that contains x̂.
(S5) Replace all variables y ∈ Pred in ϕ with ŷ.
(S6) Add the atoms M(ŷ) and {¬M ′(ŷ) | M ′ ∈ M′} to ϕ.
(S7) Set the new filters to Ψ′ := Ψ ∪ {ψ∗(ŷ)} \ Ψx̂, where Ψx̂ := {ψ(x̂) ∈ Ψ} and

ψ∗(ŷ) :=
(
∃x̂. s(ŷ, x̂) ∧ N(x̂)

)
→

(
∃x̂. s(ŷ, x̂) ∧ N(x̂) ∧ Neg∧Ψx̂

)
.

We write φ →∗
T φ′ if there exists a finite sequence φ →T · · · →T φ′. Furthermore,

let rewT (φ) := {φ′ | φ →∗
T φ′} denote the finite set of all rewritings of φ.

There can only be a finite number of rewritings for a given query since there
is only a finite number of possible subsumptions M �T ∃s.N that can be used
for rewriting steps. Additionally, in every step one variable (x̂) is eliminated
from the NCQ part of the filtered query. Since the query is rooted, there always
exists at least one predecessor that is renamed to ŷ, hence the introduction of ŷ
never increases the number of variables. Finally, it is easy to see that rewriting
a rooted query always yields a rooted query.

The rewriting of Neg to the new negated atoms (via M′ in (S6)) ensures
that we do not lose important exclusion criteria, which may result in too many
answers. Similarly, the filters exclude atypical successors in the ABox that may
result in spurious answers. Both of these constructions are necessary.

Example 8. Consider the query qB from Example 2. Using Definition 7, we obtain
the first-order queries φB = qB , φ′

B , and φ′′
B, where

φ′
B = ∃y.diagnosedWith(x, y) ∧ BreastCancer(y) ∧ ¬SkinOfBreastCancer(y) ∧((

∃z.findingSite(y, z) ∧ BreastStructure(z)
)

→
(
∃z.findingSite(y, z) ∧ BreastStructure(z) ∧ ¬SkinStructure(z)

))

results from choosing z in (S1), BreastCancer �KC
∃findingSite.BreastStructure

in (S2), and computing M′ = {SkinOfBreastCancer} in (S3), and

φ′′
B = BreastCancerPatient(x) ∧(

(∃y.diagnosedWith(x, y) ∧ BreastCancer(y)) →

(∃y.diagnosedWith(x, y) ∧ BreastCancer(y) ∧ ¬SkinOfBreastCancer(y)) ∧(
(∃z.findingSite(y, z) ∧ BreastStructure(z)) →

(∃z.findingSite(y, z) ∧ BreastStructure(z) ∧ ¬SkinStructure(z))
))

382 S. Borgwardt and W. Forkel

is obtained due to BreastCancerPatient �KC
∃diagnosedWith.BreastCancer. We

omitted the redundant atoms Cancer(y) for clarity.
The finite interpretation IAC

can be seen in Fig. 1 by ignoring all star-shaped
nodes. When computing the answers over IAC

, we obtain

ans(φB , IAC
) = ∅, ans(φ′

B , IAC
) = ∅, and ans(φ′′

B , IAC
) = {p1, p2}.

For φ′
B , the conjunct ¬SkinOfBreastCancer(y) is necessary to exclude p3 as

an answer. In φ′′
B, p3 is excluded due to the filter that detects c3 as an atypical

successor, because it satisfies not only BreastCancer, but also SkinOfBreast-
Cancer. Hence, both (S6) and (S7) are necessary steps in our rewriting. �

4.1 Correctness

In Definition 7, the new filter ψ∗(ŷ) may end up inside another filter expression
after applying subsequent rewriting steps, i.e. by rewriting w.r.t. ŷ. In this case,
however, the original structure of the rewriting is preserved, including all internal
filters as well as the atoms M(ŷ), which are included implicitly by ∃s.N � M ,
and {¬M ′(ŷ) | M ′ ∈ M′}, which are included in Neg. We exploit this behavior to
show that, whenever a rewritten query is satisfied in the finite interpretation IA,
then it is also satisfied in IK. This is the most interesting part of the correctness
proof, because it differs from the known constructions for ordinary CQs, for
which this step is trivial.

Lemma 9. Let K = (T ,A) be a consistent ELH⊥ KB and φ be a rooted NCQ.
Then, for all φ′ ∈ rewT (φ),

ans(φ′, IA) ⊆ mwa(φ′,K).

Proof. Let φ′ = ∃y.(ϕ(x,y) ∧ Ψ) and π be an assignment of x,y to NI such
that IA, π |= ϕ(x,y). Since IA and IK coincide on the domain NI , we also have
IK, π |= ϕ(x,y). Consider any filter ψ(z) = ∃z′.ψ+(z, z′) → ∃z′.(β(z, z′) ∧ Ψ∗)
in Ψ, where β(z, z′) := ψ+(z, z′) ∧ ψ−(z, z′). Then ψ(z) was introduced at some
point during the rewriting, suppose by selecting M �T ∃s.N in (S2). This means
that ϕ contains the atom M(z), and hence d := π(z) is a named individual that
is contained in M IA ⊆ M IK . By (S2), this means that IK, π |= ∃z′.ψ+(z, z′),
and we have to show that IK, π |= ∃z′.(β(z, z′) ∧ Ψ∗):

1. If IA, π |= ∃z′.β(z, z′), then IK, π |= ∃z′.β(z, z′) by the same argument as for
ϕ(x,y) above, and we can proceed by induction on the structure of the filters
to show that the inner filters Ψ∗ are satisfied by the assignment π (extended
appropriately for z′).

2. If IA, π �|= ∃z′.β(z, z′), then we cannot use a named individual to satisfy
the filter ψ(z) in IK. Moreover, since IA satisfies ψ(z), we also know that
IA, π �|= ∃z′.ψ+(z, z′). Since ψ+(z, z′) = s(z, z′) ∧ N(z′), this implies that
d /∈ (∃s.N)IA . Hence, ∃s.N is included in the set V constructed in Step 3(a) of
the canonical model construction for the element d = π(z). Thus, there exists

Closed-World Semantics for ELH⊥ Ontologies 383

M ′ �T ∃s′.N ′ such that d ∈ (M ′)IA , d /∈ (∃s′.N ′)IA , and ∃s′.N ′ �s
T ∃s.N .

By Step 3(b), IK must contain an element d′ such that d′ ∈ AIK iff N ′ �T A
and (d, d′) ∈ rIK iff s′ �T r. Since N ′ �T N and s′ �T s, we obtain that
IK, π ∪ {z′ �→ d′} |= ψ+(z, z′).
We show that the assignment π ∪ {z′ �→ d′} also satisfies ψ−(z, z′) = Neg.
Assume to the contrary that there is ¬A(z′) ∈ Neg such that d′ ∈ AIK (the
case of negated role atoms is again analogous). Then we have N ′ �T A, which
shows that all conditions of (S3) are satisfied, and hence M ′ must be included
in M′. Since the atoms {¬M ′(ŷ) | M ′ ∈ M′} are contained in ϕ, we know
that they are satisfied by π in IK, i.e. d /∈ (M ′)IK and hence also d /∈ (M ′)IA ,
which is a contradiction.
It remains to show that the inner filters Ψ∗ are satisfied by the assignment
π ∪ {z′ �→ d′} in IK. Since we are now dealing with an anonymous domain
element d′, we can use similar, but simpler, arguments as above to prove
this by induction on the structure of the filters. This is possible because the
atoms s(ŷ, x̂), N(x̂) implied by M(ŷ) and the negated atoms induced by M′

are present in the query even if the filter is integrated into another filter
during a subsequent rewriting step. ��

We can use this lemma to show correctness of our approach, i.e. the answers
returned for the union of queries given by rewT (φ) over IA are exactly the
answers of the original NCQ φ over IK. The proof, which can be found in the
extended version, is based on existing proofs for ordinary CQs [8,15], extended
appropriately to deal with the filters.

Lemma 10. Let K = (T ,A) be a consistent ELH⊥ KB and let φ(x) be a rooted
NCQ. Then, for all φ′ ∈ rewT (φ),

mwa(φ,K) =
⋃

φ′∈rewT (φ)

ans(φ′, IA).

We obtain the claimed complexity result.

Theorem 11. Checking whether a given tuple a is a closed-world answer to an
NCQ φ over a consistent ELH⊥ KB K can be done in polynomial time in data
complexity.

Under data complexity assumptions, φ and T , and hence rewT (φ), are fixed,
and IA is of polynomial size in the size of A. However, if we want to use complex
assertions in A, as in Example 2, this leads to the introduction of additional
acyclic definitions T ′, which are not fixed. The complexity nevertheless remains
the same: Since T does not use the new concept names in T ′, we can apply the
rewriting only w.r.t. T , and extend IA by a polynomial number of new elements
that result from applying Definition 4 only w.r.t. T ′.

What is more important than the complexity result is that this approach can
be used to evaluate NCQs using standard database methods, e.g. using views to
define the finite interpretation IA based on the input data given in A, and SQL
queries to evaluate the elements of rewT (φ) over these views [22].

384 S. Borgwardt and W. Forkel

5 Conclusion

Dealing with the absence of information is an important and at the same time
challenging task. In many real-world scenarios, it is not clear whether a piece of
information is missing because it is unknown or because it is false. EHRs mostly
talk about positive diagnoses and it would be impossible to list all the negative
diagnoses, i.e. the diseases a patient does not suffer from. We showed that such a
setting cannot be handled adequately by existing logic-based approaches, mostly
because they do not deal with closed-world negation over anonymous objects.
We introduced a novel semantics for answering conjunctive queries with negation
and showed that it is well-behaved also for anonymous objects. Moreover, we
demonstrated combined first-order rewritability, which allows us to answer NCQs
by using conventional relational database technologies.

We are working on an optimized implementation of this method with the
aim to deal with queries over large ontologies such as SNOMED CT. On the
theoretical side, we will further develop our approach to also represent temporal
and numeric information, such as the precise order and duration of a patient’s
illnesses and treatments, and the dosage of medications. Such information is
important for evaluating the eligibility criteria of clinical trials [9,13,19].

References

1. Ahmetaj, S., Ortiz, M., Simkus, M.: Polynomial datalog rewritings for expressive
description logics with closed predicates. In: Kambhampati, S. (ed.) Proceedings
of the 25th International Joint Conference on Artificial Intelligence (IJCAI 2016),
pp. 878–885. AAAI Press (2016). https://www.ijcai.org/Abstract/16/129

2. Arenas, M., Gottlob, G., Pieris, A.: Expressive languages for querying the semantic
web. In: Hull, R., Grohe, M. (eds.) Proceedings of the 33rd Symposium on Princi-
ples of Database Systems (PODS 2014), pp. 14–26. ACM (2014). https://doi.org/
10.1145/2594538.2594555

3. Aronson, A.R.: Effective mapping of biomedical text to the UMLS Metathesaurus:
the MetaMap program. In: Proceedings of the AMIA Symposium, pp. 17–21. Amer-
ican Medical Informatics Association (2001)

4. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Kaelbling, L.P.,
Saffiotti, A. (eds.) Proceedings of the 19th International Joint Conference on Arti-
ficial Intelligence (IJCAI 2005), pp. 364–369. Professional Book Center (2005).
http://ijcai.org/Proceedings/09/Papers/053.pdf

5. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions, 2nd edn. Cambridge University Press, Cambridge (2007)

6. Bárány, V., ten Cate, B., Otto, M.: Queries with guarded negation. Proc. VLDB
Endow. 5(11), 1328–1339 (2012). https://doi.org/10.14778/2350229.2350250

7. Besana, P., Cuggia, M., Zekri, O., Bourde, A., Burgun, A.: Using semantic web
technologies for clinical trial recruitment. In: Patel-Schneider, P.F., et al. (eds.)
ISWC 2010. LNCS, vol. 6497, pp. 34–49. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-17749-1 3

https://www.ijcai.org/Abstract/16/129
https://doi.org/10.1145/2594538.2594555
https://doi.org/10.1145/2594538.2594555
http://ijcai.org/Proceedings/09/Papers/053.pdf
https://doi.org/10.14778/2350229.2350250
https://doi.org/10.1007/978-3-642-17749-1_3
https://doi.org/10.1007/978-3-642-17749-1_3

Closed-World Semantics for ELH⊥ Ontologies 385

8. Bienvenu, M., Ortiz, M.: Ontology-mediated query answering with data-tractable
description logics. In: Faber, W., Paschke, A. (eds.) Reasoning Web 2015. LNCS,
vol. 9203, pp. 218–307. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21768-0 9

9. Bonomi, L., Jiang, X.: Patient ranking with temporally annotated data. J. Biomed.
Inform. 78, 43–53 (2018). https://doi.org/10.1016/j.jbi.2017.12.007

10. Calvanese, D., et al.: Ontop: answering SPARQL queries over relational databases.
Semant. Web 8, 471–487 (2017)

11. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Epistemic
first-order queries over description logic knowledge bases. In: Parsia, B., Sattler, U.,
Toman, D. (eds.) Proceedings of the 19th International Workshop on Description
Logics (DL 2006). CEUR Workshop Proceedings, vol. 189, pp. 51–61 (2006)

12. Cresswell, K.M., Sheikh, A.: Inpatient clinical information systems. In: Sheikh,
A., Cresswell, K.M., Wright, A., Bates, D.W. (eds.) Key Advances in Clinical
Informatics, Chap. 2, pp. 13–29. Academic Press (2017). https://doi.org/10.1016/
B978-0-12-809523-2.00002-9

13. Crowe, C.L., Tao, C.: Designing ontology-based patterns for the representation
of the time-relevant eligibility criteria of clinical protocols. AMIA Joint Sum-
mits Transl. Sci. Proc. 2015, 173–177 (2015). https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC4525239/

14. Deutsch, A., Nash, A., Remmel, J.B.: The chase revisited. In: Lenzerini, M., Lembo,
D. (eds.) Proceedings of the 27th ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems (PODS 2008), pp. 149–158. ACM (2008).
https://doi.org/10.1145/1376916.1376938

15. Eiter, T., Ortiz, M., Šimkus, M., Tran, T.K., Xiao, G.: Query rewriting for horn-
SHIQ plus rules. In: Hoffmann, J., Selman, B. (eds.) Proceedings of the 26th
AAAI Conference on Artificial Intelligence (AAAI 2012), pp. 726–733. AAAI Press
(2012). http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/4931

16. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and
query answering. Theor. Comput. Sci. 336(1), 89–124 (2005). https://doi.org/10.
1016/j.tcs.2004.10.033

17. Gutiérrez-Basulto, V., Ibáñez-Garćıa, Y., Kontchakov, R., Kostylev, E.V.: Queries
with negation and inequalities over lightweight ontologies. J. Web Semant. 35,
184–202 (2015). https://doi.org/10.1016/j.websem.2015.06.002

18. Hernich, A., Kupke, C., Lukasiewicz, T., Gottlob, G.: Well-founded semantics for
extended datalog and ontological reasoning. In: Hull, R., Fan, W. (eds.) Proceed-
ings of the 32nd Symposium on Principles of Database Systems (PODS 2013), pp.
225–236. ACM (2013). https://doi.org/10.1145/2463664.2465229

19. Hripcsak, G., Zhou, L., Parsons, S., Das, A.K., Johnson, S.B.: Modeling electronic
discharge summaries as a simple temporal constraint satisfaction problem. J. Am.
Med. Inform. Assoc. 12(1), 55–63 (2005). https://doi.org/10.1197/jamia.m1623

20. Johnson, A.E.W., et al.: MIMIC-III, a freely accessible critical care database. Sci.
Data 3(160035), 1–9 (2016). https://doi.org/10.1038/sdata.2016.35

21. Kharlamov, E., et al.: Ontology based data access in Statoil. Web Semant. 44,
3–36 (2017). https://doi.org/10.1016/j.websem.2017.05.005

22. Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The com-
bined approach to ontology-based data access. In: Walsh, T. (ed.) Proceedings of
the 22nd International Joint Conference on Artificial Intelligence (IJCAI 2011),
pp. 2656–2661. AAAI Press (2011). https://doi.org/10.5591/978-1-57735-516-8/
IJCAI11-442

https://doi.org/10.1007/978-3-319-21768-0_9
https://doi.org/10.1007/978-3-319-21768-0_9
https://doi.org/10.1016/j.jbi.2017.12.007
https://doi.org/10.1016/B978-0-12-809523-2.00002-9
https://doi.org/10.1016/B978-0-12-809523-2.00002-9
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4525239/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4525239/
https://doi.org/10.1145/1376916.1376938
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/4931
https://doi.org/10.1016/j.tcs.2004.10.033
https://doi.org/10.1016/j.tcs.2004.10.033
https://doi.org/10.1016/j.websem.2015.06.002
https://doi.org/10.1145/2463664.2465229
https://doi.org/10.1197/jamia.m1623
https://doi.org/10.1038/sdata.2016.35
https://doi.org/10.1016/j.websem.2017.05.005
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-442
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-442

386 S. Borgwardt and W. Forkel

23. Köpcke, F., Prokosch, H.U.: Employing computers for the recruitment into clinical
trials: a comprehensive systematic review. J. Med. Internet Res. 16(7), e161 (2014).
https://doi.org/10.2196/jmir.3446

24. Lutz, C., Seylan, I., Wolter, F.: Ontology-based data access with closed predicates
is inherently intractable (sometimes). In: Rossi, F. (ed.) Proceedings of the 23rd
International Joint Conference on Artificial Intelligence (IJCAI 2013), pp. 1024–
1030. AAAI Press (2013). https://www.ijcai.org/Abstract/13/156

25. Lutz, C., Toman, D., Wolter, F.: Conjunctive query answering in the description
logic EL using a relational database system. In: Boutilier, C. (ed.) Proceedings of
the 21st International Joint Conference on Artificial Intelligence (IJCAI 2009), pp.
2070–2075. AAAI Press (2009)

26. Marnette, B.: Generalized schema mappings: from termination to tractability. In:
Paredaens, J., Su, J. (eds.) Proceedings of the 28th Symposium on Principles of
Database Systems (PODS 2009), pp. 13–22. ACM (2009). https://doi.org/10.1145/
1559795.1559799

27. Mugnier, M.-L., Thomazo, M.: An introduction to ontology-based query answering
with existential rules. In: Koubarakis, M., et al. (eds.) Reasoning Web 2014. LNCS,
vol. 8714, pp. 245–278. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10587-1 6

28. Ni, Y., et al.: Increasing the efficiency of trial-patient matching: Automated clinical
trial eligibility pre-screening for pediatric oncology patients. BMC Med. Inform.
Decis. Making 15, 1–10 (2015). https://doi.org/10.1186/s12911-015-0149-3

29. Patel, C., et al.: Matching patient records to clinical trials using ontologies.
In: Aberer, K., et al. (eds.) ASWC/ISWC 2007. LNCS, vol. 4825, pp. 816–829.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0 59

30. Savova, G.K., et al.: Mayo clinical text analysis and knowledge extraction sys-
tem (cTAKES): architecture, component evaluation and applications. J. Am. Med.
Inform. Assoc. 17(5), 507–513 (2010)

31. Tagaris, A., et al.: Exploiting ontology based search and EHR interoperability
to facilitate clinical trial design. In: Koutsouris, D.-D., Lazakidou, A.A. (eds.)
Concepts and Trends in Healthcare Information Systems. AIS, vol. 16, pp. 21–42.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06844-2 3

32. Wolter, F.: First order common knowledge logics. Studia Logica 65(2), 249–271
(2000). https://doi.org/10.1023/A:1005271815356

https://doi.org/10.2196/jmir.3446
https://www.ijcai.org/Abstract/13/156
https://doi.org/10.1145/1559795.1559799
https://doi.org/10.1145/1559795.1559799
https://doi.org/10.1007/978-3-319-10587-1_6
https://doi.org/10.1007/978-3-319-10587-1_6
https://doi.org/10.1186/s12911-015-0149-3
https://doi.org/10.1007/978-3-540-76298-0_59
https://doi.org/10.1007/978-3-319-06844-2_3
https://doi.org/10.1023/A:1005271815356

Extending ALC with the Power-Set
Construct

Laura Giordano1(B) and Alberto Policriti2

1 DISIT - Università del Piemonte Orientale, Alessandria, Italy
laura.giordano@uniupo.it

2 Dipartimento di Scienze Matematiche, Informatiche e Fisiche,
Università di Udine, Udine, Italy
alberto.policriti@uniud.it

Abstract. We continue our exploration of the relationships between
Description Logics and Set Theory, which started with the definition of
the description logic ALCΩ . We develop a set-theoretic translation of
the description logic ALCΩ in the set theory Ω, exploiting a technique
originally proposed for translating normal modal and polymodal logics
into Ω.

We first define a set-theoretic translation of ALC based on Schild’s
correspondence with polymodal logics. Then we propose a translation
of the fragment LCΩ of ALCΩ without roles and individual names. In
this—simple—case the power-set concept is mapped, as expected, to the
set-theoretic power-set, making clearer the real nature of the power-set
concept in ALCΩ . Finally, we encode the whole language of ALCΩ into
its fragment without roles, showing that such a fragment is as expres-
sive as ALCΩ . The encoding provides, as a by-product, a set-theoretic
translation of ALCΩ into the theory Ω, which can be used as basis for
extending other, more expressive, DLs with the power-set construct.

1 Introduction

In this paper we continue our investigation of the relationships between Descrip-
tion Logics and Set Theory, starting from the description logic ALCΩ , introduced
in [5], which extends the language of ALC with the power set concept and with
membership axioms. In ALCΩ concepts are interpreted as sets living in a model
of a simple theory Ω, a very rudimentary axiomatic set theory (introduced in
Sect. 2.2), consisting of only four axioms characterizing binary union, set differ-
ence, inclusion, and the power-set. Hence, concepts are interpreted as sets of sets
(which are not necessarily well-founded), and membership among concepts has
the obvious semantic interpretation as a natural generalization of DL assertions
C(a).

The idea of enhancing the language of description logics with statements of
the form C ∈ D, with C and D concepts is not new, as assertions of the form
D(A), with A a concept name, are allowed in OWL-Full [15], and, starting from
[11], where two alternative semantics (the Contextual π-semantics and the Hilog
c© Springer Nature Switzerland AG 2019
F. Calimeri et al. (Eds.): JELIA 2019, LNAI 11468, pp. 387–398, 2019.
https://doi.org/10.1007/978-3-030-19570-0_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19570-0_25&domain=pdf
https://doi.org/10.1007/978-3-030-19570-0_25

388 L. Giordano and A. Policriti

ν-semantics) are proposed for metamodeling, many approaches to metamodel-
ing have been proposed in the literature including membership among concepts.
Most of them [4,8–10] are based on a Hilog semantics, while [12,14] define exten-
sions of OWL DL and of SHIQ (respectively), based on semantics interpreting
concepts as well-founded sets. None of these proposals includes the power-set
concept in the language.

Considering an example taken from [11,17], using membership axioms,
we can represent the fact that eagles are in the red list of endan-
gered species, by the axiom Eagle ∈ RedListSpecies and that Harry is an
eagle, by the assertion Eagle(harry). We could further consider a concept
NotModifiableList , consisting of those lists that cannot be modified (if not by,
say, a specifically enforced law) and, for example, it would be reasonable to
ask RedListSpecies ∈ NotModifiableList . However, much more interestingly, we
would also clearly want NotModifiableList ∈ NotModifiableList .

The power-set concept, Pow(C), allows to capture in a natural way the inter-
actions between concepts and metaconcepts. Considering again the example
above, the statement “all the instances of species in the Red List are not allowed
to be hunted”, observe that it can be naturally represented by the concept inclu-
sion axiom: RedListSpecies � Pow(CannotHunt), meaning that all the instances
in the RedListSpecies (as the class Eagle) are collections of individuals of the
class CannotHunt . Notice, however, that Pow(CannotHunt) is not limited to
include RedListSpecies but can include a much larger universe of sets (e.g. any-
thing belonging to Pow(Humans)).

In [5] we proved that ALCΩ is decidable by defining, for any ALCΩ knowl-
edge base K, a polynomial translation KT into ALCOI, exploiting a technique—
originally proposed and studied in [3]—consisting in identifying the membership
relation ∈ with the accessibility relation of a normal modality. Such an identifi-
cation naturally leads to a correspondence between the power-set operator and
the modal necessity operator �. We showed that the translation has the finite
model property and concept satisfiability in ALCΩ is in ExpTime.

In this paper we exploit the correspondence between ∈ and the accessibility
relation of a normal modality in another direction, to provide a polynomial set-
theoretic translation of ALCΩ in the set theory Ω. Our aim is to understand
the real nature of the power-set concept in ALCΩ , as well as showing that a
description logic with just the power-set concept, but no roles and no individual
names, is as expressive as ALCΩ .

We proceed step by step by first defining a set-theoretic translation of ALC
based on Schild’s correspondence result [16] and on the set-theoretic translation
for normal polymodal logics in [3]. Then, we consider the fragment of ALCΩ

containing union, intersection, (set-)difference, complement, and power-set (but
neither roles nor named individuals) and we show that this fragment, that we
call LCΩ , has an immediate set-theoretic translation into Ω, where the power-set
concept is translated as the power-set in Ω. Finally, we provide an encoding of
the whole ALCΩ into LCΩ . This encoding shows that LCΩ is as expressive as
ALCΩ . The full path leads to a set-theoretic translation of both the universal

Extending ALC with the Power-Set Construct 389

restriction and power-set concept of ALCΩ in the theory Ω using the single
relational symbol ∈. We refer to [6] for the proofs of the results.

2 Preliminaries

2.1 The Description Logic ALC
Let NC be a set of concept names, NR a set of role names and NI a set of
individual names. The set C of ALC concepts can be inductively defined as
follows:
– A ∈ NC , � and ⊥ are concepts in C;
– if C,D ∈ C and R ∈ NR, then C � D,C � D,¬C,∀R.C,∃R.C are concepts in

C.

A knowledge base (KB) K is a pair (T ,A), where T is a TBox and A is an
ABox. The TBox T is a set of concept inclusions (or subsumptions) C � D,
where C,D are concepts in C. The ABox A is a set of assertions of the form
C(a) and R(a, b) where C is a concept, R ∈ NR, and a, b ∈ NI .
An interpretation for ALC (see [2]) is a pair I = 〈Δ, ·I〉 where:

– Δ is a domain—a set whose elements are denoted by x, y, z, . . . —and
– ·I is an extension function that maps each concept name C ∈ NC to a set

CI ⊆ Δ, each role name R ∈ NR to a binary relation RI ⊆ Δ × Δ, and each
individual name a ∈ NI to an element aI ∈ Δ.

The function ·I is extended to complex concepts as follows: �I = Δ, ⊥I = ∅,
(¬C)I = Δ\CI , (C � D)I = CI ∩ DI , (C � D)I = CI ∪ DI , and

(∀R.C)I = {x ∈ Δ | ∀y.(x, y) ∈ RI → y ∈ CI},
(∃R.C)I = {x ∈ Δ | ∃y.(x, y) ∈ RI & y ∈ CI}.

The notion of satisfiability of a KB in an interpretation is defined as follows:
Definition 1 (Satisfiability and entailment). Given an ALC interpretation
I = 〈Δ, ·I〉:
– I satisfies an inclusion C � D if CI ⊆ DI ;
– I satisfies an assertion C(a) if aI ∈ CI and an assertion R(a, b) if (aI , bI) ∈

RI .

Given a KB K = (T ,A), an interpretation I satisfies T (resp. A) if I satisfies
all inclusions in T (resp. all assertions in A); I is a model of K if I satisfies
T and A.

Letting a query F be either an inclusion C � D (where C and D are concepts)
or an assertion C(a), F is entailed by K, written K |= F , if for all models
I = 〈Δ, ·I〉 of K, I satisfies F .

Given a KB K, the subsumption problem is the problem of deciding whether
an inclusion C � D is entailed by K. The instance checking problem is the
problem of deciding whether an assertion C(a) is entailed by K. The concept
satisfiability problem is the problem of deciding, for a concept C, whether C
is consistent with K, that is, whether there exists a model I of K, such that
CI �= ∅.

390 L. Giordano and A. Policriti

2.2 The Theory Ω

The first-order theory Ω consists of the following four axioms in the language
with relational symbols ∈ and ⊆, and functional symbols ∪, \, Pow :

x ∈ y ∪ z ↔ x ∈ y ∨ x ∈ z;
x ∈ y\z ↔ x ∈ y ∧ x �∈ z;

x ⊆ y ↔ ∀z(z ∈ x → z ∈ y);
x ∈ Pow(y) ↔ x ⊆ y.

In an Ω-model everything is supposed to be a set. Hence, a set will have (only)
sets as its elements and circular definition of sets are allowed (such as a set
admitting itself as one of its elements). Moreover, not postulating in Ω any link
between membership ∈ and equality—in axiomatic terms, having no extension-
ality (axiom)—Ω-models in which there are different sets with equal collection
of elements, are admissible.

The most natural Ω-model—in which different sets are, in fact, always exten-
sionally different—is the collection of well-founded sets HF = HF0 =

⋃
n∈N

HFn,
where: HF0 = ∅ and HFn+1 = Pow(HFn). A close relative of HF0, in which sets
are not required to be well-founded, goes under the name of HF1/2 (see [1,13]).
HF0 or HF1/2 can be seen as the collection of finite (either acyclic or cyclic)
graphs where sets are represented by nodes and arcs depict the membership
relation among sets (see [13]).

A further enrichment of both HF0 and HF1/2 is obtained by adding atoms,
that is copies of the empty-set, to be denoted by a1,a2, . . . and collectively
represented by A = {a1,a2, . . .}. The resulting universes will be denoted by
HF0(A) and HF1/2(A).

We will regard the domain Δ of an ALCΩ interpretation as a fragment of
the universe of an Ω-model, i.e. as a set of sets of the theory Ω rather than as
a set of individuals, as customary in description logics.

2.3 The Description Logic ALCΩ

In [5] ALC has been extended by allowing concepts to be interpreted as sets
in a universe of the set theory Ω, introducing the power-set as a new concept
constructor, and admitting membership relations among concepts to occur in
the knowledge base. The resulting extension of ALC has been called ALCΩ . We
recap its definition.

Let NI , NC , and NR be as in Sect. 2.1. We extend the language of ALC by
allowing, for all ALCΩ concepts C,D:

– the difference concept C\D and
– the power-set concept Pow(C).

While the concept C\D can be easily defined in ALC as C � ¬D, this is not
the case for the concept Pow(C). Informally, the instances of concept Pow(C) are

Extending ALC with the Power-Set Construct 391

all the subsets of the instances of concept C, which are “visible” in (i.e. which
belong to) Δ.

Besides usual assertions of the forms C(a) and R(a, b) with a, b ∈ NI , ALCΩ

allows in the ABox concept membership axioms and role membership axioms
of the forms C ∈ D and (C,D) ∈ R, respectively, where C and D are ALCΩ

concepts and R is a role name.
Considering again the example from the Introduction, the additional expres-

sivity of the language allows for instance to represent the fact that polar bears
are in the red list of endangered species, by the axiom Polar � Bear ∈
RedListSpecies . We can further represent the fact the polar bears are more
endangered than eagles by the role membership axiom (Polar � Bear ,Eagle) ∈
moreEndangered .

We define a semantics for ALCΩ extending the ALC semantics in Sect. 2.1 to
capture the meaning of concepts (including concept Pow(C)) as elements (sets) of
the domain Δ, chosen as a transitive set (i.e. a set x satisfying (∀y ∈ x)(y ⊆ x))
in a model of Ω. Individual names are (essentially) interpreted as elements of
a set of atoms A, i.e. pairwise distinct copies of the empty-set from which the
remaining sets in Δ are built.

Definition 2. An interpretation for ALCΩ is a pair I = 〈Δ, ·I〉 over a set of
atoms A where: (i) the non-empty domain Δ is a transitive set chosen in the
universe U of a model M of Ω over the atoms in A;1 (ii) the extension function ·I
maps each concept name A ∈ NC to an element AI ∈ Δ; each role name R ∈ NR

to a binary relation RI ⊆ Δ×Δ; and each individual name a ∈ NI to an element
aI ∈ A ⊆ Δ. The function ·I is extended to complex concepts of ALCΩ, as in
Sect. 2.1 for ALC, but for the two additional cases: (Pow(C))I = Pow(CI) ∩ Δ
and (C\D)I = (CI\DI).

Observe that A ⊆ Δ ∈ U . As Δ is not guaranteed to be closed under union,
intersection, etc., the interpretation CI of a concept C is a set in U but not
necessarily an element of Δ. However, given the interpretation of the power-set
concept as the portion of the (set-theoretic) power-set visible in Δ, it easy to see
by induction that, for each C, the extension of CI is a subset of Δ.

Given an interpretation I, the satisfiability of inclusions and assertions is
defined as in ALC interpretations (Definition 1). Satisfiability of (concept and
role) membership axioms in an interpretation I is defined as follows: I satisfies
C ∈ D if CI ∈ DI ; I satisfies (C,D) ∈ R if (CI ,DI) ∈ RI . With this addition,
the notions of satisfiability of a KB and of entailment in ALCΩ (denoted |=ALCΩ)
can be defined as in Sect. 2.1.

The problem of instance checking in ALCΩ includes both the problem of
verifying whether an assertion C(a) is a logical consequence of the KB and the
problem of verifying whether a membership C ∈ D is a logical consequence of
the KB (i.e., whether C is an instance of D).

1 In the following, for readability, we will denote by ∈, Pow , ∪, \ (rather than PowM,
∪M, \M) the interpretation in a model M of the predicate and function symbols ∈,
Pow , ∪, \.

392 L. Giordano and A. Policriti

A translation of the logic ALCΩ into the description logic ALCOI, including
inverse roles and nominals, has been defined in [5], based on the correspondence
between ∈ and the accessibility relation of a modality explored in [3]. There,
the membership relation ∈ is used to represent a normal modality R. In [5],
vice-versa, a new (reserved) role e in NR is introduced to represent the inverse
of the membership relation, restricted to the sets in Δ: in any interpretation
I, (x, y) ∈ eI will stand for y ∈ x. The idea underlying the translation is that
each element u of the domain Δ in an ALCOI interpretation I = 〈Δ, ·I〉 can be
regarded as the set of all the elements v such that (u, v) ∈ eI .

Soundness and completeness of this polynomial translation (see [5,6]) pro-
vide, besides decidability, an ExpTime upper bound for satisfiability in ALCΩ .
In [5] it was also proved that if the translation KT has a model in ALCOI, then
it has a finite model. From the soundness and completeness of the translation,
it follows that ALCΩ has the finite model property.

3 A Set Theoretic Translation of ALCΩ

We define a set-theoretic translation of ALCΩ in the set theory Ω, exploiting the
correspondence between ∈ and the accessibility relation of a normal modality
studied in [3]. In Sect. 3.1, we define a set-theoretic translation of ALC, based
on the translation introduced by D’Agostino et al. for normal, complete finitely
axiomatizable polymodal logics [3]. Here, according to the well known corre-
spondence between description logics and modal logics studied by Schild [16],
concepts (sets of elements) play the role of propositions (sets of worlds) in the
polymodal logic, while universal and existential restrictions ∀R and ∃R play the
role of universal and existential modalities �i and ♦i.

In Sect. 3.2 we focus on the fragment of ALCΩ admitting no roles, no indi-
vidual names and no existential and universal restrictions, that we call LCΩ . We
show that LCΩ can be given a simple set-theoretic translation in Ω. Finally, in
Sect. 3.3, we see that this set-theoretic translation can be naturally extended to
the full ALCΩ . In particular, we encode ALCΩ into its fragment LCΩ , showing
that LCΩ is as expressive as ALCΩ and providing a set-theoretic translation
of ALCΩ in which ∀Ri.C and the power-set concept Pow(C) are encoded in a
uniform way.

3.1 A Set Theoretic Translation of ALC with Empty ABox

Let R1, . . . , Rk be the roles occurring in the knowledge base K = (T ,A) and let
A1, . . . , An be the concept names occurring in K. Given a concept C of ALC,
built from the concept names and role names in K, its set-theoretic translation is
a set-theoretic term CS(x, y1, . . . , yk, x1, . . . , xn), where x, y1, . . . , yk, x1, . . . , xn

are set-theoretic variables, inductively defined as follows:

Extending ALC with the Power-Set Construct 393

�S = x; ⊥S = ∅;

AS
i = xi, forAi inK; (¬C)S = x\CS ;

(C � D)S = CS ∩ DS ; (C � D)S = CS ∪ DS ;

(∀Ri.C)S = Pow(((x ∪ y1 ∪ . . . ∪ yk)\yi) ∪ Pow(CS)), for Ri inK;

(∃Ri.C)S is translated to the set-theoretic term (¬∀Ri.¬C)S . Each ALC concept
C is represented by a set-theoretic term CS and interpreted as a set in each model
of Ω. Membership is used to give an interpretation of roles, as for modalities in
the polymodal logics in [3].

For a single role R, by imitating the relation RI with ∈ (where v ∈ u cor-
responds to (u, v) ∈ RI), we naturally obtain that Pow(C) corresponds to the
universal restriction ∀R.C. For multiple roles, in order to encode the different
relations R1, . . . , Rk, k sets Ui are considered. Informally, each set Ui (repre-
sented by the variable yi) is such that (v, v′) ∈ RI

i iff there is some ui ∈ Ui such
that ui ∈ v and v′ ∈ ui.

Given an ALC knowledge base K = (T ,A) with A = ∅, we define the
translation of the TBox axioms as follows:

TBoxT (x, y1, . . . , yk, x1, . . . , xk) = {CS
1 ∩ x ⊆ CS

2 | C1 � C2 ∈ T }

We can then establish a correspondence between subsumption in ALCΩ and
derivability in the set theory Ω, instantiating the result of Theorem 5 in [3] as
follows:

Proposition 1. For all concepts C and D on the language of the theory K:

K |=ALC C � D if and only if

Ω � ∀x∀y1 . . . ∀yk(Trans2(x) ∧ AxiomH(x, y1, . . . , yk)

→ ∀x1, . . . ,∀xn(
∧

TBoxT → CS ∩ x ⊆ DS))

where Trans2(x) stands for ∀y∀z(y ∈ z ∧ z ∈ x → y ⊆ x), that is, x ⊆
Pow(Pow(x)).

The property Trans2(x) on the set x, which here represents the domain Δ
of an ALCΩ interpretation (a transitive set), is needed, as in the polymodal
case in [3], to guarantee that elements accessible through Ri turn out to be in
x. The set AxiomH(x, y1, . . . , yk), which in [3] contains the translation of the
specific axioms of a polymodal logic, here is empty, as in ALCΩ roles do not
have any specific additional properties, and they correspond to the modalities
of the normal polymodal logic Km.

Roughly speaking, the meaning of Proposition 1 is that, for all the instances of
x representing the domain Δ, for all the instances U1, . . . , Uk of the set variables
y1, . . . , yk, any choice for the interpretation x1, . . . , xn of the atomic concepts
A1, . . . , An in K which satisfies the TBox axioms over the elements in x (i.e.,
over the domain Δ), also satisfies the inclusion CS ⊆ DS over Δ.

394 L. Giordano and A. Policriti

From the correspondence of the logic ALC with the normal polymodal logic
Km in [16] and from the soundness and completeness of the set-theoretic trans-
lation for normal polymodal logics (Theorems 17 and 18 in [3]), we can conclude
that, for ALC, the set-theoretic translation above is sound and complete.

This set-theoretic translation can be naturally extended to more expres-
sive description logics adding in AxiomH(x, y) the set-theoretic encoding of the
semantic properties of the DL constructs. For instance, role hierarchy axioms,
Rj � Ri, with semantic condition RI

j ⊆ RI
i , can be simply captured by adding

in AxiomH(x, y1, . . . , yk) the condition yj ⊆ yi. The inverse role Rj of a role Ri

(i.e., Rj = R−
i) can be captured by encoding the semantic condition (v, y) ∈ Rj

if and only if (y, v) ∈ Ri by the axiom: ∀y, v(y ∈ x ∧ v ∈ x → (∃u(u ∈ y ∧ u ∈
yj ∧ v ∈ u) ↔ ∃u′(u′ ∈ v ∧ u′ ∈ yi ∧ y ∈ u′))).

3.2 Translating the Fragment LCΩ

In this section we focus on the fragment LCΩ of ALCΩ without roles, individual
names, universal and existential restrictions and role assertions, and we show
that it can be given a simple set-theoretic translation in the set theory Ω. This
translation provides some insight in the nature of the power-set construct in
ALCΩ .

Let us consider a fragment of ALCΩ which does neither allow existential and
universal restrictions nor role assertions. We call LCΩ such a fragment, whose
concepts are defined inductively as follows:

– A ∈ NC , � and ⊥ are LCΩ concepts;
– if C,D are LCΩ concepts, then the following are LCΩ concepts:

C � D,C � D,¬C,C\D, Pow(C)

An LCΩ knowledge base K is a pair (T ,A), where the TBox T is a set
of concept inclusions C � D, and the ABox A is a set of membership axioms
C ∈ D.

Given an LCΩ knowledge base K = (T ,A), let A1, . . . , An be the concept
names occurring in K. We define a translation of an LCΩ concept C over the
language of K to a set-theoretic term CS(x, x1, . . . , xn), where x, x1, . . . , xn are
set-theoretic variables, by induction on the structure of concepts, as follows:

�S = x; ⊥S = ∅; AS
i = xi, for i = 1, . . . , n; (¬C)S = x\CS ;

(¬C)S = x\CS ; (C � D)S = CS ∩ DS ; (C � D)S = CS ∪ DS ;

(C\D)S = CS\DS ; (Pow(C))S = Pow(CS).

Given a knowledge base K = (T ,A), the translation for the TBox T and
ABox A is defined as follows:

TBoxT (x, x1, . . . , xn) = {CS
1 ∩x ⊆ CS

2 | C1 � C2 ∈ T } ∪ {AS
i ∈ x | i = 1, . . . , n}

ABoxA(x, x1, . . . , xn) = {CS
1 ∈ CS

2 ∩ x | (C1 ∈ C2) ∈ A}

Extending ALC with the Power-Set Construct 395

We can now establish a correspondence between subsumption in LCΩ and deriv-
ability in the set theory Ω.

Proposition 2 (Soundness and Completeness of the Translation of
LCΩ). For all concepts C and D on the language of the knowledge base K:

K |=LCΩ C � D if and only if

Ω |= ∀x(Trans(x) → ∀x1, . . . ,∀xn(
∧

ABoxA ∧
∧

TBoxT → CS ∩ x ⊆ DS))

where Trans(x) stands for ∀y(y ∈ x → y ⊆ x), that is, x ⊆ Pow(x), and
AxiomH(x, y1, . . . , yk) has been omitted as it is empty.

We refer to [6] for the proof. A similar correspondence result can be proved for
instance checking, by replacing the inclusion CS ∩ x ∈ DS in Proposition 2 with
CS ∈ DS ∩ x.

As we can see from the translation above, the power-set construct in LCΩ is
defined precisely as the set-theoretic power-set. From the translation it is clear
that only the part of the power-set which is in x (the domain Δ) is relevant when
evaluating the axioms in K or a query, as all the axioms in the knowledge base
are only required to be satisfied over the elements of the transitive set x. Notice
that it is the same as in the set-theoretic translation of ALC. Observe also that,
in both ALC and LCΩ , � is interpreted as the transitive set x. It would not be
correct to interpret � as the universe U of a model of Ω, as U might not be a
set. Furthermore, Pow(�) is in the language of concepts and the interpretation
of Pow(�) must be larger than the interpretation of �.

3.3 Translating ALCΩ by Encoding into LCΩ

It can be shown that LCΩ has the same expressive power as ALCΩ , as universal
and existential restrictions of the language ALCΩ (as well as role assertions) can
be encoded into LCΩ . The encoding, together with the set-theoretic translation
of LCΩ given in the previous section, determines a set-theoretic translation for
ALCΩ , in which both the roles and the power-set construct are translated in a
similar fashion, according to the polymodal translation in [3]. For space limita-
tions, here we omit the treatment of role assertions and role membership axioms
in the translation, and refer to [6].

Given an ALCΩ knowledge base K = (T ,A), let R1, . . . , Rk be the role names
occurring in K, A1, . . . , An the concept names occurring in K, and a1, . . . , ar the
individual names occurring in K. We introduce k new concept names U1, . . . , Uk

in the language, one for each role Ri. These concepts (that are not in NC) will
be used to encode universal restrictions ∀Ri.C as well as the power-set concept
Pow(C) of ALCΩ into LCΩ . We further introduce a new concept name Bi for
each individual name ai occurring in K2.

For an ALCΩ concept C, the encoding CE in LCΩ can be defined by recur-
sively replacing: every named individual ai with the new concept name Bi, every
2 Further concept names would be needed to translate role assertions.

396 L. Giordano and A. Policriti

subconcept ∀Ri.C with (∀Ri.C)E and every subconcept Pow(C) with (Pow(C))E ,
as defined below, while the encoding E commutes with concept constructors in
all other cases:

aE
i = Bi

(∀Ri.C)E = Pow(¬Ui � Pow(CE))
(Pow(C))E = Pow(U1 � . . . � Uk � CE)

For the encoding of the power-set, the idea is the same underlying the encoding
of ∀Ri.C, as described in Sect. 3.1. For each (Pow(C))E-element y, we require
that all its elements y′ ∈ y, which are not U1 � . . . � Uk-elements, are CE-
elements. This is needed to keep the encoding of ∀Ri.C and Pow(C) (both based
on the set-theoretic power-set) independent of each other.

Given an ALCΩ knowledge base K, and a query F (over the language of
K), the encoding KE of K, and the encoding FE of the query F in LCΩ are
defined as follows. KE contains: an inclusion axiom CE �¬(U1 � . . .�Uk) � DE

for each C � D ∈ K; a membership axiom CE ∈ DE � ¬(U1 � . . . � Uk) for
each C ∈ D in K; an axiom aE

i ∈ CE � ¬(U1 � . . . � Uk) for each C(ai) in
K; an axioms Ai ∈ ¬(U1 � . . . � Uk), for all Ai in K. Finally, axiom ¬(U1 �
. . . � Uk) � Pow(Pow(¬(U1 � . . . � Uk))). The last one enforces the property
Trans2(Δ\(U1 � . . . � Uk)I .

For a query F , if F is an inclusion C � D, its translation is CE � DE ; if F
is an assertion C(ai), its translation is aE

i ∈ CE ; if F is a membership axioms
C ∈ D, its translation is CE ∈ DE . It can be proved that the encoding above is
sound and complete, that is: K |=ALCΩ F if and only if KE |=LCΩ FE .

Combining this encoding with the set-theoretic translation for LCΩ of
Sect. 3.2, a set-theoretic translation for ALCΩ can be obtained which extends the
translation of ALC in Sect. 3.1 to the power-set concept. Given a concept C of
ALCΩ on the language of K, its set-theoretic translation (CE)S is a set-theoretic
term C∗:

�∗ = x; ⊥∗ = ∅;
A∗

i = xi, for Ai in K; (¬C)∗ = x\C∗;
(C � D)∗ = C∗ ∩ D∗; (C � D)∗ = C∗ ∪ D∗;
(∀Ri.C)∗ = Pow(((x ∪ y1 ∪ . . . ∪ yk)\yi) ∪ Pow(C∗)), for Ri in K;
Pow(C)∗ = Pow((y1 ∪ . . . ∪ yk ∪ C∗).

The translation of an ALCΩ knowledge base K can be defined accordingly, and
a correspondence result follows from Propositions 2.

4 Conclusions and Related Work

The similarities between Description Logics and Set Theory have led to the def-
inition of an extension of ALC, called ALCΩ , with a power-set construct and
membership relationships among arbitrary concepts [5]. It was shown that an

Extending ALC with the Power-Set Construct 397

ALCΩ knowledge base can be polynomially translated into an ALCOI knowl-
edge base, providing an ExpTime upper bound for satisfiability in ALCΩ . In
this paper, we have developed a set-theoretic translation for the description logic
ALCΩ into the set theory Ω exploiting a technique, originally proposed in [3], for
translating normal modal and polymodal logics into Ω. The translation has been
defined step by step, first translating ALC with empty ABox, then translating
the fragment of ALCΩ without roles and individual names and, finally, providing
an encoding of ALCΩ into this fragment. The translation of role assertions and
role membership is omitted for space limitations and can be found in [6].

The set-theoretic translation allows, on the one hand, to shed some light on
the nature of the power-set concept (which indeed corresponds to the set the-
oretic power-set) and, on the other hand, to show that the fragment of ALCΩ

without roles and individual names is as expressive as whole ALCΩ . The cor-
respondence among fragments of set-theory and description logics opens to the
possibility of transferring proof methods and decidability results across the two
formalisms.

Up to our knowledge, the power-set construct has not been considered for
DLs before. However, the issue of metamodelling, and the extension of DLs
with membership among concept, have been widely studied in DLs [4,7–10,12],
starting with the work by Motik [11], and we refer to [5] for comparisons.

Acknowledgement. This research is partially supported by INDAM-GNCS Project
2019: Metodi di prova orientati al ragionamento automatico per logiche non-classiche.

References

1. Aczel, P.: Non-Well-Founded Sets, vol. 14. CSLI Lecture Notes, Stanford (1988)
2. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.:

The Description Logic Handbook - Theory, Implementation, and Applications.
Cambridge University Press, Cambridge (2007)

3. D’Agostino, G., Montanari, A., Policriti, A.: A set-theoretic translation method
for polymodal logics. J. Autom. Reasoning 15(3), 317–337 (1995)

4. De Giacomo, G., Lenzerini, M., Rosati, R.: Higher-order description logics for
domain metamodeling. In: Proceedings of AAAI 2011, San Francisco, California,
USA, 7–11 August 2011

5. Giordano, L., Policriti, A.: Power(Set) ALC. In ICTCS, 19th Italian Conference
on Theoretical Computer Science, Urbino, Italy, 18–20 September 2018

6. Giordano, L., Policriti, A.: Adding the Power-Set to Description Logics. CoRR
abs/1902.09844, February 2019

7. Glimm, B., Rudolph, S., Völker, J.: Integrated metamodeling and diagnosis in
OWL 2. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan,
J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010. LNCS, vol. 6496, pp. 257–272.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17746-0 17

8. Gu, Z.: Meta-modeling extension of Horn-SROIQ and query answering. In: Pro-
ceedings of the 29th International Workshop on Description Logics, Cape Town,
South Africa, 22–25 April 2016

https://doi.org/10.1007/978-3-642-17746-0_17

398 L. Giordano and A. Policriti

9. Homola, M., Kluka, J., Svátek, V., Vacura, M.: Typed higher-order variant of
SROIQ - why not? In: Proceedings 27th International Workshop on Description
Logics, Vienna, Austria, 17–20 July, pp. 567–578 (2014)

10. Kubincová, P., Kluka, J., Homola, M.: Towards expressive metamodelling with
instantiation. In: Proceedings of the 28th International Workshop on Description
Logics, Athens, 7–10 June 2015

11. Motik, B.: On the Properties of Metamodeling in OWL. In: Gil, Y., Motta, E.,
Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 548–562.
Springer, Heidelberg (2005). https://doi.org/10.1007/11574620 40

12. Motz, R., Rohrer, E., Severi, P.: The description logic SHIQ with a flexible meta-
modelling hierarchy. J. Web Sem. 35, 214–234 (2015)

13. Omodeo, E.G., Policriti, A., Tomescu, A.I.: Perspectives Logic Combinatorics.
On Sets and Graphs. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
54981-1

14. Pan, J.Z., Horrocks, I., Schreiber, G.: OWL FA: A metamodeling extension of OWL
DL. In Proceedings of OWLED 2005 Workshop, Galway, Ireland, 11–12 November
2005

15. Patel-Schneider, P.F., Hayes, P.H., Horrocks. I.: OWL Web Ontology Language;
Semantics and Abstract Syntax (2002). http://www.w3.org/TR/owl-semantics/

16. Schild, K.: A correspondence theory for terminological logics: preliminary report.
In: Proceedings IJCAI 1991, Sydney, Australia, 24–30 August 1991, pp. 466–471
(1991)

17. Welty, C., Ferrucci, D.: What’s in an instance? Technical report, pp. 94–18, Max-
Plank-Institut, RPI computer Science (1994)

https://doi.org/10.1007/11574620_40
https://doi.org/10.1007/978-3-319-54981-1
https://doi.org/10.1007/978-3-319-54981-1
http://www.w3.org/TR/owl-semantics/

Learning Description Logic Axioms
from Discrete Probability Distributions

over Description Graphs

Francesco Kriegel(B)

Institute of Theoretical Computer Science, Technische Universität Dresden,
Dresden, Germany

francesco.kriegel@tu-dresden.de

Abstract. Description logics in their standard setting only allow for
representing and reasoning with crisp knowledge without any degree of
uncertainty. Of course, this is a serious shortcoming for use cases where
it is impossible to perfectly determine the truth of a statement. For
resolving this expressivity restriction, probabilistic variants of descrip-
tion logics have been introduced. Their model-theoretic semantics is built
upon so-called probabilistic interpretations, that is, families of directed
graphs the vertices and edges of which are labeled and for which there
exists a probability measure on this graph family. Results of scientific
experiments, e.g., in medicine, psychology, or biology, that are repeated
several times can induce probabilistic interpretations in a natural way.
In this document, we shall develop a suitable axiomatization technique
for deducing terminological knowledge from the assertional data given in
such probabilistic interpretations. More specifically, we consider a prob-
abilistic variant of the description logic EL⊥, and provide a method for
constructing a set of rules, so-called concept inclusions, from probabilistic
interpretations in a sound and complete manner.

Keywords: Data mining · Knowledge acquisition ·
Probabilistic description logic · Knowledge base ·
Probabilistic interpretation · Concept inclusion

1 Introduction

Description Logics (abbrv.DLs) [2] are frequently used knowledge representation
and reasoning formalisms with a strong logical foundation. In particular, these
provide their users with automated inference services that can derive implicit
knowledge from the explicitly represented knowledge. Decidability and compu-
tational complexity of common reasoning tasks have been widely explored for
most DLs. Besides being used in various application domains, their most notable
success is the fact that DLs constitute the logical underpinning of the Web Ontol-
ogy Language (abbrv.OWL) and its profiles.

c© Springer Nature Switzerland AG 2019
F. Calimeri et al. (Eds.): JELIA 2019, LNAI 11468, pp. 399–417, 2019.
https://doi.org/10.1007/978-3-030-19570-0_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19570-0_26&domain=pdf
http://orcid.org/0000-0003-0219-0330
https://doi.org/10.1007/978-3-030-19570-0_26

400 F. Kriegel

Logics in their standard form only allow for representing and reasoning with
crisp knowledge without any degree of uncertainty. Of course, this is a serious
shortcoming for use cases where it is impossible to perfectly determine the truth
of a statement or where there exist degrees of truth. For resolving this expressiv-
ity restriction, probabilistic variants of logics have been introduced. A thorough
article on extending first-order logics with means for representing and reason-
ing with probabilistic knowledge was published by Halpern [12]. In particular,
Halpern explains why it is important to distinguish between two contrary types
of probabilities: statistical information (type 1) and degrees of belief (type 2).
The crucial difference between both types is that type-1 probabilities represent
information about one particular world, the real world, and assume that there
is a probability distribution on the objects, while type-2 probabilities represent
information about a multi-world view such that there is a probability distri-
bution on the set of possible worlds. Following his arguments and citing two
of his examples, the first following statement can only be expressed in type-1
probabilistic logics and the second one is only expressible in type-2 probabilistic
logics.

1. “The probability that a randomly chosen bird will fly is greater than 0.9.”
2. “The probability that Tweety (a particular bird) flies is greater than 0.9.”

Bacchus has published a further early work on probabilistic logics [3]. In par-
ticular, he defined the probabilistic first-order logic Lp, which allows to express
various kinds of probabilistic/statistical knowledge: relative, interval, functional,
conditional, independence. It is of type 1, since its semantics is based on prob-
ability measures over the domain of discourse (the objects). However, it also
supports the deduction of degrees of belief (type 2) from given knowledge by
means of an inference mechanism that is called belief formation and is based on
an inductive assumption of randomization.

In [13], Heinsohn introduced the probabilistic description logic ALCP as an
extension of ALC. An ALCP ontology is a union of some acyclic ALC TBox
and a finite set of so-called p-conditionings, which are expressions of the form

C
[p,q]→ D where C and D are Boolean combinations of concept names and where

p and q are real numbers from the unit interval [0, 1]. ALCP allows for expressing

type-1 probabilities only, since a p-conditioning C
[p,q]→ D is defined to be valid

in an interpretation I if it holds true that p ≤ |CI ∩ DI |/|CI | ≤ q, that is, a
uniform distribution on the domain of I is assumed and it is measured which
percentage of the objects satisfying the premise C also satisfies the conclusion D.
In particular, this means that only finite models are considered, which is a major
restriction. Heinsohn shows how important reasoning problems (consistency and
determining minimal p-conditionings) can be translated into problems of linear
algebra. Please note that there is a strong correspondence with the notion of
confidence of a concept inclusion as utilized by Borchmann in [4], cf. Sect. 2.

Another probabilistic extension of ALC was devised by Jaeger [14]: the
description logic PALC. Probabilities can be assigned to both terminological
information and assertional information, rendering it a mixture of means for

Learning Description Logic Axioms from Discrete Probability Distributions 401

expressing type-1 and type-2 probabilities. A PALC ontology is a union of an
acyclic ALC TBox, a finite set of probabilistic terminological axioms of the
form P (C | D) = p, and a finite set of probabilistic assertions of the form
P (a ∈ C) = p. The model-theoretic semantics are defined by extending the
usual notion of a model with a probability measures: one measure μ dedicated
to the probabilistic terminological axioms, and one measure νa dedicated to
the probabilistic assertions for each individual a. Furthermore, these probability
measures are defined on some finite subalgebra of the Lindenbaum-Tarski alge-
bra of ALC concept descriptions that is generated by the concept descriptions
occurring in the ontology, and it is further required that each ABox measure νa

has minimal cross entropy to the TBox measure μ.
Lukasiewicz introduced in [23] the description logics P-DL-Lite,

P-SHIF(D), and P-SHOIN (D) that are probabilistic extensions of DL-Lite
and of the DLs underlying OWL Lite and OWL DL, respectively. We shall now
briefly explain P-SHOIN (D), the others are analogous. It allows for express-
ing conditional constraints of the form (φ|ψ)[l, u] where φ and ψ are elements
from some fixed, finite set C of SHOIN (D) concept descriptions, so-called
basic classification concepts, and where l and u are real numbers from the unit
interval [0, 1]. Similar to PALC, P-SHOIN (D) ontologies are unions of some
SHOIN (D) ontology, a finite set of conditional constraints (PTBox) as prob-
abilistic terminological knowledge, and a finite set of conditional constraints
(PABox) as probabilistic assertional knowledge for each probabilistic individ-
ual. The semantics are then defined using interpretations that are additionally
equipped with a discrete probability measure on the Lindenbaum-Tarski algebra
generated by C. Note that, in contrast to PALC, there is only one probability
measure available in each interpretation. While the terminological knowledge is,
just like for PALC, the default knowledge from which we only differ for a partic-
ular individual if the corresponding knowledge requires us to do so, the inference
process is different, i.e., cross entropy is not utilized in any way. In order to allow
for drawing inferences from a P-SHOIN (D) ontology, lexicographic entailment
is defined for deciding whether a conditional constraint follows from the termi-
nological part or for a certain individual. A thorough complexity analysis shows
that the decision problems in these three logics are NP-complete, EXP-complete,
and NEXP-complete, respectively.

Gutiérrez-Basulto, Jung, Lutz, and Schröder consider in [11] the probabilistic
description logics Prob-ALC and Prob-EL where probabilities are always inter-
preted as degrees of belief (type 2). Among other language constructs, a new con-
cept constructor is introduced that allows to probabilistically quantify a concept
description. The semantics are based on multi-world interpretations where a dis-
crete probability measure on the set of worlds is defined. Consistency and entail-
ment is then defined just as usual, but using such probabilistic interpretations.
A thorough investigation of computational complexity for various probabilistic
extensions of DLs is provided: for instance, the common reasoning problems in
Prob-EL and in Prob-ALC are EXP-complete, that is, not more expensive than
the same problems in ALC.

402 F. Kriegel

One should never mix up probabilistic and fuzzy variants of (description)
logics. Although at first sight one could get the impression that both are suitable
for any use cases where imprecise knowledge is to be represented and reasoned
with, this is definitely not the case. A very simple argument against this is that in
fuzzy logics we can easily evaluate conjunctions by means of the underlying fixed
triangular norm (abbrv. t-norm), while it is not (always) possible to deduce the
probability of a conjunction given the probabilities of the conjuncts. For instance,
consider statements α and β. If both have fuzzy truth degree 1/2 and the t-norm
is Gödel’s minimum, then α∧β has the fuzzy truth degree 1/2 as well. In contrast,
if both have probabilistic truth degree 1/2, then the probability of α∧β might be
any value in the interval [0, 1/2], but without additional information we cannot
bound it further or even determine it exactly.

Within this document, we make use of the syntax and semantics of [11]. It
is easy to see that the probabilistic multi-world interpretations can be repre-
sented as families of directed graphs the vertices and edges of which are labeled
and for which there exists a probability measure on this graph family. More
specifically, we shall develop a suitable axiomatization technique for deducing
terminological knowledge from the assertional data given in such probabilistic
interpretations. In order to prevent the generated ontology from overfitting, a
description logic that is not closed under Boolean operations is chosen. Since con-
junction is essential, this implies that we leave out disjunction and negation. We
consider a probabilistic variant Prob>EL⊥ of the description logic EL⊥, show that
reasoning in Prob>EL⊥ is EXP-complete, and provide a method for constructing
a set of rules, so-called concept inclusions, from probabilistic interpretations in
a sound and complete manner. Within this document, the usage of probability
restrictions is only allowed for lower probability bounds. This choice shall ease
readability; it is not hard to verify that similar results can be obtained when
additionally allowing for upper probability bounds.

Results of scientific experiments, e.g., in medicine, psychology, biology,
finance, or economy, that are repeated several times can induce probabilistic
interpretations in a natural way. Each repetition corresponds to a world, and
the results of a particular repetition are encoded in the graph structure of that
world. For instance, a researcher could collect data on consumption of the drugs
ethanol and nicotine as well as on occurrence of serious health effects, e.g., can-
cer, psychological disorders, pneumonia, etc., such that a world corresponds to a
single person and all worlds are equally likely. Then, the resulting probabilistic
interpretation could be analyzed with the procedure described in the sequel of
this document, which produces a sound and complete axiomatization of it. In
particular, the outcome would then be a logical-statistical evaluation of the input
data, and could include concept inclusions like the following.1

1 Please note that, although similar statements with adjusted probability bounds do
hold true in real world, the mentioned statements are not taken from any publica-
tions in the medical or psychological domain. The author has simply read according
Wikipedia articles and then wrote down the statements.

Learning Description Logic Axioms from Discrete Probability Distributions 403

E

drinks. (Alcohol � E

frequency. TwiceAWeek)
� P≥ 1/10.

E

suffersFrom. Cancer � P≥ 1/5.

E

develops. PsychologicalDisorder

E

smokes. Tobacco

� P≥ 1/4.

E

suffersFrom. Cancer � P≥ 1/3.

E

suffersFrom. Pneumonia

The first one states that any person who drinks alcohol twice a week suffers
from cancer with a probability of at least 10% and develops some psychological
disorder with a probability of at least 20%; the second one expresses that each
person smoking tobacco suffers from cancer with a probability of at least 25%
and suffers from pneumonia with a probability of at least 331/3%.

However, one should be cautious when interpreting the results, since the
procedure, like any other existing statistical evaluation techniques, cannot dis-
tinguish between causality and correlation. It might as well be the case that an
application of our procedure yields concept inclusions of the following type.

P≥ 1/2.

E

develops. PsychologicalDisorder

� P≥ 1/3.

E

drinks. (Alcohol � E

frequency. Daily)

The above concept inclusion reads as follows: any person who develops a
psychological disorder with a probability of at least 50% drinks alcohol on a
daily basis with a probability of at least 331/3%.

It should further be mentioned that for evaluating observations by means
of the proposed technique no hypotheses are necessary. Instead, the procedure
simply provides a sound and complete axiomatization of the observations, and
the output is, on the one hand, not too hard to be understood by humans (at
least if, the probability depth is not set too high) and, on the other hand, well-
suited to be further processed by a computer.

This document also resolves an issue found by Franz Baader with the tech-
niques described by the author in [15, Sections 5 and 6]. In particular, the concept
inclusion base proposed therein in Proposition 2 is only complete with respect to
those probabilistic interpretations that are also quasi-uniform with a probability
ε of each world. Herein, we describe a more sophisticated axiomatization tech-
nique of not necessarily quasi-uniform probabilistic interpretations that ensures
completeness of the constructed concept inclusion base with respect to all prob-
abilistic interpretations, but which, however, only allows for bounded nesting
of probability restrictions. It is not hard to generalize the following results to
a more expressive probabilistic description logic, for example to a probabilistic
variant Prob>M of the description logic M, for which an axiomatization tech-
nique is available [17]. That way, we can regain the same, or even a greater,
expressivity as the author has tried to tackle in [15], but without the possibility
to nest probability restrictions arbitrarily deep. A first step for resolving this
issue has already been made in [20] where a nesting of probability restrictions is
not supported. As a follow-up, we now expand on these results in [20] with the
goal to allow for nesting of probabilistically quantified concept descriptions.

Due to space constraints, no proofs could be included here, but have rather
been moved to a corresponding technical report [21].

404 F. Kriegel

2 Related Work

So far, several approaches for axiomatizing concept inclusions (abbrv.CIs) in dif-
ferent description logics have been developed, and many of these utilize sophis-
ticated techniques from Formal Concept Analysis [8,9]: on the one hand, there
is the so-called canonical base, cf. Guigues and Duquenne in [10], that provides
a concise representation of the implicative theory of a formal context in a sound
and complete manner and, on the other hand, the interactive algorithm attribute
exploration exists, which guides an expert through the process of axiomatizing
the theory of implications that are valid in a domain of interest, cf. Ganter in
[7]. In particular, attribute exploration is an interactive variant of an algorithm
for computing canonical bases [7], and it works as follows: the input is a formal
context that only partially describes the domain of interest (that is, there may
be implications that are not valid, but for which this partial description does
not provide a counterexample), and during the run of the exploration process
a minimal number of questions is enumerated and posed to the expert (such a
question is an implication for which no counterexample has been explored, and
the expert can either confirm its validity or provide a suitable counterexample).
On termination, a minimal sound and complete representation of the theory of
implications that are valid in the considered domain has been generated.

A first pioneering work on axiomatizing CIs in the description logic FLE
has been developed by Rudolph [24], which allows for the exploration of a CI
base for a given interpretation in a multi-step approach such that each step
increases the role depth of concept descriptions occurring in the CIs. Later, a
refined approach has been developed by Baader and Distel [1,6] for axiomatizing
CI bases in the description logic EL⊥. They found techniques for computing and
for exploring such bases that contain a minimal number of CIs and that are
both sound and complete not only for those valid CIs up to certain role depth
but instead for all valid ones. However, due to possible presence of cycles in the
input interpretation they need to apply greatest fixed-point semantics; luckily,
there is a finite closure ordinal for any finitely representable interpretation, that
is, there is a certain role depth up to which the concept descriptions in the
base can be unraveled to obtain a base for all valid CIs with respect to the
standard semantics. Borchmann, Distel, and the author devised a variant of
these techniques in [5] that circumvents the use of greatest fixed-point semantics,
but which can only compute minimal CI bases that are sound and complete
for all concept inclusions up to a set role depth—of course, if one chooses the
closure ordinal as role-depth bound, then also these bases are sound and complete
for all valid CIs w.r.t. standard semantics. Further variants that allow for the
incorporation of background knowledge or allow for a more expressive description
logic can be found in [16,17,22].

However, all of the mentioned approaches have in common that they heavily
rely on the assumption that the given input interpretation to be axiomatized does
not contain errors—otherwise these errors would be reflected in the constructed
CI base. A reasonable solution avoiding this assumption has been proposed by
Borchmann in [4]. He defined the notion of confidence as a statistical measure

Learning Description Logic Axioms from Discrete Probability Distributions 405

of validity of a CI in a given interpretation, and developed means for the com-
putation and exploration of CI bases in EL⊥ that are sound and complete for
those CIs the confidence of which exceeds a pre-defined threshold. Furthermore,
in [19] the author defined the notion of probability of a CI in a probabilistic inter-
pretation, and showed how corresponding bases of CIs exceeding a probability
threshold can be constructed in a sound and complete manner. Both works have
in common that they only allow for a statistical or probabilistic quantification
of CIs, that is, it is only possible to assign a degree of truth to whole CIs, and
not to concept descriptions occurring in these. For instance, one can express
that A � E

r. B has a confidence or probability of 2/3, but one cannot write
that every object which satisfies A with a probability of 5/6 also satisfies

E

r. B
with a probability of 1/3. As a solution to this, the author first considered in [18]
implications over so-called probabilistic attributes in Formal Concept Analysis
and showed how these can be axiomatized from a probabilistic formal context.
Then in [20], his results have been extended to the probabilistic description logic
Prob>

1 EL⊥, a sublogic of Prob>EL⊥ that does not allow for nesting of probabilis-
tically quantified concept descriptions. In Sect. 5 we shall expand on the results
from [20] with the goal to constitute an effective procedure for axiomatizing CI
bases in Prob>EL⊥, that is, we extend the procedure in [20] to allow for nesting
of probabilistically quantified concept descriptions.

3 The Probabilistic Description Logic Prob>EL⊥

The probabilistic description logic Prob>EL⊥ constitutes an extension of the
tractable description logic EL⊥ [2] that allows for expressing and reasoning
with probabilities. More specifically, it is a sublogic of Prob-EL introduced by
Gutiérrez-Basulto, Jung, Lutz, and Schröder in [11] in which only the relation
symbols > and ≥ are available for the probability restrictions, and in which
the bottom concept description ⊥ is present.2 In the sequel of this section, we
shall introduce the syntax and semantics of Prob>EL⊥. Furthermore, we will show
that a common inference problem in Prob>EL⊥ is EXP-complete and, thus, more
expensive than in EL⊥ where the same problem is P-complete.

Throughout the whole document, assume that Σ is an arbitrary but fixed
signature, that is, Σ is a disjoint union of a set ΣC of concept names and a
set ΣR of role names. Then, Prob>EL⊥ concept descriptions C over Σ may be
inductively constructed by means of the following grammar rule (where A ∈ ΣC,
r ∈ ΣR, � ∈ {≥, >} and p ∈ [0, 1] ∩ Q).

C ::= ⊥ (bottom concept description/contradiction)
| � (top concept description/tautology)
| A (concept name)
| C � C (conjunction)

2 We merely introduce ⊥ as syntactic sugar; of course, it is semantically equivalent to
the unsatisfiable probabilistic restriction

P

> 1. �.

406 F. Kriegel

| E

r. C (existential restriction)

| P

� p. C (probability restriction)

Within this document, we stick to the default conventions and denote con-
cept names by letters A or B, denote concept descriptions by letters C, D, E,
etc., and denote role names by letters r, s, t, etc., each possibly with sub- or
superscripts. Furthermore, we write Prob>EL⊥(Σ) for the set of all Prob>EL⊥

concept descriptions over Σ. An EL⊥ concept description is a Prob>EL⊥ concept
description not containing any subconcept of the form

P

� p. C,3 and we shall
write EL⊥(Σ) for the set of all EL⊥ concept descriptions over Σ. If both C and
D are concept descriptions, then the expression C � D is a concept inclusion
(abbrv.CI), and the expression C ≡ D is a concept equivalence (abbrv.CE). A
terminological box (abbrv.TBox) is a finite set of CIs and CEs.

An example of a Prob>EL⊥ concept description is the following; it describes
cats that are both alive and dead with a respective probability of at least 50%.
In particular, we could consider the below concept description as a formalization
of the famous thought experiment Schrödinger’s Cat.

Cat � P≥ 1/2.

E

hasPhysicalCondition. Alive

� P≥ 1/2.

E

hasPhysicalCondition. Dead (1)

The probability depth pd(C) of a Prob>EL⊥ concept description C is defined as
the maximal nesting depth of probability restrictions within C, and we formally
define it as follows: pd(A) := 0 for each A ∈ ΣC ∪ {⊥,�}, pd(C � D) := pd(C) ∨
pd(D),4 pd(

E

r. C) := pd(C), and pd(

P

� p. C) := 1+pd(C). Then, Prob>
n EL⊥(Σ)

denotes the set of all Prob>EL⊥ concept descriptions over Σ the probability depth
of which does not exceed n.

Our considered logic Prob>EL⊥ possesses a model-theoretic semantics; so-
called probabilistic interpretations function as models. Such a probabilistic inter-
pretation over Σ is a tuple I := (ΔI , ΩI , ·I ,PI) that consists of a non-empty
set ΔI of objects, called the domain, a non-empty, countable set ΩI of worlds,
a discrete probability measure PI on ΩI , and an extension function ·I such
that, for each world ω ∈ ΩI , any concept name A ∈ ΣC is mapped to a sub-
set AI(ω) ⊆ ΔI and each role name r ∈ ΣR is mapped to a binary relation
rI(ω) ⊆ ΔI ×ΔI . We remark that the discrete probability measure is a mapping
PI : ℘(ΩI) → [0, 1] which satisfies PI(∅) = 0 and PI(ΩI) = 1, and which is
σ-additive, that is, for all countable families (Un |n ∈ N) of pairwise disjoint
sets Un ⊆ ΩI it holds true that PI(

⋃
{Un |n ∈ N }) =

∑
(PI(Un) |n ∈ N).

We shall follow the assumption in [11, Section 2.6] and consider only proba-
bilistic interpretations without any infinitely improbable worlds, i.e., which do

3 The author does not use the denotation P�pC for probability restrictions as in [11],
since quantifiers are usually single letters rotated by 180◦.

4 Note that ∨ denotes the binary supremum operator for numbers, which here coincides
with the maximum operator, since there are only finitely many arguments.

Learning Description Logic Axioms from Discrete Probability Distributions 407

not contain any world ω ∈ ΩI with PI{ω} = 0. Furthermore, a probabilistic
interpretation I is finitely representable if ΔI is finite, ΩI is finite, the active
signature

ΣI := {σ |σ ∈ Σ and σI(ω) �= ∅ for some ω ∈ ΩI }

is finite, and if PI has only rational values.
It is easy to see that, for any probabilistic interpretation I, each world ω ∈ ΩI

can be represented as a labeled, directed graph: the node set is the domain ΔI ,
the edge set is

⋃
{ rI(ω) | r ∈ ΣR }, any node δ is labeled with all those concept

names A that satisfy δ ∈ AI(ω), and any edge (δ, ε) has a role name r as a label
if (δ, ε) ∈ rI(ω) holds true. That way, we can regard probabilistic interpretations
also as discrete probability distributions over description graphs.

Later, we will also use the notion of interpretations, which are the models
upon which the semantics of EL⊥ is built. Put simply, these are probabilistic
interpretations with only one world, that is, these are tuples I := (ΔI , ·I) where
ΔI is a non-empty set of objects, called domain, and where ·I is an extension
function that maps concept names A ∈ ΣC to subsets AI ⊆ ΔI and maps role
names r ∈ ΣR to binary relations rI ⊆ ΔI × ΔI .

Let I be a probabilistic interpretation. Then, the extension CI(ω) of a
Prob>EL⊥ concept description C in a world ω of I is recursively defined as
follows.

⊥I(ω) := ∅ �I(ω) := ΔI (C � D)I(ω) := CI(ω) ∩ DI(ω)

(

E

r. C)I(ω) := { δ | δ ∈ ΔI , (δ, ε) ∈ rI(ω), and ε ∈ CI(ω) for some ε ∈ ΔI }
(

P

� p. C)I(ω) := { δ | δ ∈ ΔI and PI{δ ∈ CI} � p }

In the last of the above definitions we use the abbreviation

{δ ∈ CI} := {ω |ω ∈ ΩI and δ ∈ CI(ω) }.

All but the last formula can be used in a similar manner to define the exten-
sion CI of an EL⊥ concept description C in an interpretation I. Please note
that, in accordance with [11], there is nothing wrong with the above definition
of extensions; in particular, it is true that the extension (

P

� p. C)I(ω) of a prob-
abilistic restriction

P

� p. C is indeed independent of the concrete world ω, i.e., it
holds true that (

P

� p.C)I(ω) = (

P

� p. C)I(ψ) whenever ω and ψ are arbitrary
worlds in ΩI . This is due to the intended meaning of

P

� p. C: it describes the
class of objects for which the probability of being a C is � p. As a probabilistic
interpretation I provides a multi-world view where probabilities can be assigned
to sets of worlds, the probability of an object δ ∈ ΔI being a C is defined as
the probability of the set of all those worlds in which δ is some C, just like
we have defined it above. We shall elaborate on this again as soon as we have
defined validity of concept inclusions in probabilistic interpretations, and mind
that extensions of a fixed probabilistic quantification are equal in all worlds.

408 F. Kriegel

Fig. 1. An exemplary probabilistic interpretation

A toy example of a probabilistic interpretation is ICat shown in Fig. 1. As
one quickly verifies, only the object SchrödingersCat belongs to the extension of
the concept description from Eq. (1).

A concept inclusion C � D or a concept equivalence C ≡ D is valid in I
if, for each world ω ∈ ΩI , it holds true that CI(ω) ⊆ DI(ω) or CI(ω) = DI(ω),
respectively, and we shall then write I |= C � D or I |= C ≡ D, respectively.
Furthermore, I is a model of a TBox T , denoted as I |= T , if every concept
inclusion or concept equivalence in T is valid in I. A TBox T entails a concept
inclusion or concept equivalence α, symbolized by T |= α, if α is valid in every
model of T . In case T |= C � D we say that C is subsumed by D with respect
to T , and if T |= C ≡ D, then we call C and D equivalent to each other with
respect to T .

If Y is either an interpretation or a terminological box and ≤ is a suitable
relation symbol, e.g., one of �, ≡, �, then we may also use the denotation
C ≤Y D instead of Y |= C ≤ D and, analogously, we may write C �≤Y D for
Y �|= C ≤ D.

Considering again the above definition of extensions of concept descriptions
together with the just defined validity of concept inclusions, we can also justify
the independence of (

P

� p. C)I(ω) from world ω in the following way. Fix some
probabilistic interpretation as well as some concept inclusion C � D. Since
concept inclusions are terminological axioms, and as such represent knowledge
that globally holds true, it is only natural to say that C � D is valid in I
if, and only if, C � D is valid in each slice I(ω) for any world ω ∈ ΩI—
apparently, this is what we have defined above. If C =

P≥ p. C ′ and D =

P≥ q. D′ are probabilistic restrictions, then the intended meaning of the concept
inclusion

P≥ p. C ′ � P≥ q. D′ is that any object being a C ′ with probability at
least p is also a D′ with probability q or greater. Of course, this is equivalent
to (

P≥ p. C ′)I(ω) ⊆ (

P≥ q. D′)I(ω) for each world ω ∈ ΩI , that is, to I |=

Learning Description Logic Axioms from Discrete Probability Distributions 409

P≥ p. C ′ � P≥ q.D′. This argumentation can now be extended to the general
case where C and D are arbitrary Prob>EL⊥ concept descriptions.

For a complexity analysis, we consider the following subsumption problem.

Instance: Let T be a TBox and let C � D be a concept inclusion.
Question: Is C subsumed by D w.r.t. T , i.e., does C �T D hold true?

The next proposition shows that this problem is EXP-complete and, conse-
quently, more expensive than deciding subsumption w.r.t. a TBox in its non-
probabilistic sibling EL⊥—a problem which is well-known to be P-complete. We
conclude that reasoning in Prob>EL⊥ is worst-case intractable, while reasoning
in EL⊥ is always tractable.

Proposition 1. In Prob>EL⊥, the subsumption problem is EXP-complete.

4 Concept Inclusion Bases in EL⊥

When developing a method for axiomatizing Prob>EL⊥ concept inclusions valid
in a given probabilistic interpretation in the next section, we will use techniques
for axiomatizing EL⊥ CIs valid in an interpretation as developed by Baader and
Distel in [1,6] for greatest fixed-point semantics, and as adjusted by Borchmann,
Distel, and the author in [5] for the role-depth-bounded case. A brief introduction
is as follows. A concept inclusion base for an interpretation I is a TBox T such
that, for each CI C � D, it holds true that C �I D if, and only if, C �T D. For
each finite interpretation I with finite active signature, there is a canonical base
Can(I) with respect to greatest fixed-point semantics, which contains a minimal
number of CIs among all concept inclusion bases for I, cf. [6, Corollary 5.13 and
Theorem 5.18], and similarly there is a minimal canonical base Can(I, d) with
respect to an upper bound d ∈ N on the role depths, cf. [5, Theorem 4.32]. The
construction of both canonical bases is built upon the notion of a model-based
most specific concept description (abbrv.MMSC), which, for an interpretation I
and some subset Ξ ⊆ ΔI , is a concept description C such that Ξ ⊆ CI and,
for each concept description D, it holds true that Ξ ⊆ DI implies C �∅ D.
These exist either if greatest fixed-point semantics is applied (in order to be
able to express cycles present in I) or if the role depth of C is bounded by
some d ∈ N, and these are then denoted as ΞI or ΞId , respectively. These
mappings ·I : ℘(ΔI) → EL⊥

gfp(Σ) and ·Id : ℘(ΔI) → EL⊥
d (Σ) are the adjoints

of the respective extension functions ·I : EL⊥
gfp(Σ) → ℘(ΔI) and ·I : EL⊥

d (Σ) →
℘(ΔI), and the pair of both constitutes a Galois connection, cf. [6, Lemma 4.1]
and [5, Lemmas 4.3 and 4.4], respectively.

As a variant of these two approaches, the author presented in [16] a method
for constructing canonical bases relative to an existing TBox. If I is an inter-
pretation and B is a TBox such that I |= B, then a concept inclusion base for
I relative to B is a TBox T such that, for each CI C � D, it holds true that
C �I D if, and only if, C �T ∪B D. The corresponding canonical base is denoted
as Can(I,B), cf. [16, Theorem 1].

410 F. Kriegel

So far, the complexity of computing CI bases in the description logic EL⊥

has not been determined. Using simple arguments, one could only infer that the
canonical base Can(I) can be computed in double exponential time with respect
to the cardinality of the domain ΔI . However, since we want to determine the
computational complexity of the task of constructing CI bases in the probabilistic
description logic Prob>EL⊥, which we will describe and prove in the next section
and which we will build on top of means for computing such bases in EL⊥,
we cite a recent answer from the author to this open question in the following
proposition.

[22, Proposition 2]. For each finitely representable interpretation I, its canon-
ical base Can(I) can be computed in deterministic exponential time with respect
to the cardinality of the domain ΔI . Furthermore, there are finitely representable
interpretations I for which a concept inclusion base cannot be encoded in poly-
nomial space w.r.t. |ΔI |.

It is not hard to adapt this result to the role-depth-bounded case; one can
show that computing Can(I, d) can be done in deterministic exponential time
w.r.t. |ΔI | and d.

5 Axiomatization of Concept Inclusions in Prob>
n EL⊥

In this section, we shall develop an effective method for axiomatizing Prob>
n EL⊥

concept inclusions which are valid in a given finitely representable probabilistic
interpretation. After defining the appropriate notion of a concept inclusion base,
we show how this problem can be tackled using the aforementioned existing
results on computing concept inclusion bases in EL⊥ from Sect. 4. More specif-
ically, we devise an extension of the given signature by finitely many probabil-
ity restrictions

P

� p. C that are treated as additional concept names, and we
define so-called scalings In of the input probabilistic interpretation I which are
(single-world) interpretations that suitably interpret these new concept names
and, furthermore, such that there is a correspondence between Prob>

n EL⊥ CIs
valid in I and CIs valid in In. This very correspondence makes it possible to
utilize the above mentioned techniques for axiomatizing CIs in EL⊥.

Definition 2. A Prob>
n EL⊥ concept inclusion base for a probabilistic interpreta-

tion I is a Prob>
n EL⊥ terminological box T which is sound for I, that is, C �T D

implies C �I D for each Prob>
n EL⊥ concept inclusion C � D,5 and complete for

I, that is, C �I D only if C �T D for any Prob>
n EL⊥ concept inclusion C � D.

The following definition is to be read inductively, that is, initially some
objects are defined for the probability depth n = 0, and if the objects are defined
for the probability depth n, then these are used to define the next objects for
the probability depth n + 1.

A first important step is to significantly reduce the possibilities of concept
descriptions occurring as a filler in the probability restrictions, that is, of fillers
5 Of course, soundness is equivalent to I |= T .

Learning Description Logic Axioms from Discrete Probability Distributions 411

C in expressions

P

� p. C. As it turns out, it suffices to consider only those
fillers that are model-based most specific concept descriptions of some suitable
scaling of the given probabilistic interpretation I. We shall demonstrate that
there are only finitely many such fillers—provided that the given probabilistic
interpretation I is finitely representable.

As next step, we restrict the probability bounds p occurring in probability
restrictions

P

� p. C. Apparently, it is sufficient to consider only those values p
that can occur when evaluating the extension of Prob>

n+1EL⊥ concept descriptions
in I, which, obviously, are the values PI{δ ∈ CI} for any δ ∈ ΔI and any
C ∈ Prob>

n EL⊥(Σ). In the sequel of this section we will see that there are only
finitely many such probability bounds if I is finitely representable.

Having found a finite number of representatives for probability bounds as
well as a finite number of fillers to be used in probability restrictions for each
probability depth n, we now show that we can treat these finitely many concept
descriptions as concept names of a signature Γn extending Σ in a way such
that any Prob>

n EL⊥ concept inclusion is valid in I if, and only if, that concept
inclusion projected onto the extended signature Γn is valid in a suitable scaling
of I that interprets Γn.

Definition 3. Fix some probabilistic interpretation I over a signature Σ. Then,
we define the following objects Γn, In, and PI,n by simultaneous induction over
n ∈ N.

1. The nth signature Γn is inductively defined as follows. We set (Γ0)C := ΣC

and (Γ0)R := ΣR. The subsequent signatures are then obtained in the following
way.6

(Γn+1)C := (Γn)C ∪
{

P≥ p. XIn

∣
∣
∣
∣
∣

p ∈ PI,n \ {0}, X ⊆ ΔI × ΩI ,
and ⊥ �≡∅ XIn �≡∅ �

}

(Γn+1)R := ΣR

2. The nth scaling of I is defined as the interpretation In over Γn that has the
following components.

ΔIn := ΔI × ΩI

·In :

{
A �→ { (δ, ω) | δ ∈ AI(ω) } for each A ∈ (Γn)C

r �→ { ((δ, ω), (ε, ω)) | (δ, ε) ∈ rI(ω) } for each r ∈ (Γn)R

3. The nth set PI,n of probability values for I is given as follows.

PI,n := {PI{δ ∈ CI} | δ ∈ ΔI and C ∈ Prob>
n EL⊥(Σ) }

Furthermore, for each p ∈ [0, 1), we define (p)+I,n as the next value in PI,n

above p, that is, we set

(p)+I,n :=
∧

{ q | q ∈ PI,n and q > p }.

6 The mapping ·I : ℘(ΔI) → EL⊥(Σ) for some (non-probabilistic) interpretation I
has been introduced in Sect. 4.

412 F. Kriegel

Of course, we have that {0, 1} ⊆ PI,n for each n ∈ N. Note that In+1 extends
In by also interpreting the additional concept names in (Γn+1)C \ (Γn)C, that is,
the restriction In+1�Γn

equals In. Similarly, In�Γm
and Im are equal if m ≤ n.

As explained earlier, it suffices to only consider fillers in probabilistic restric-
tions that are model-based most specific concept descriptions. More specifically,
the following holds true.

Lemma 4. Consider a probabilistic interpretation I and a concept description

P

� p. C such that C ∈ EL⊥(Γn) for some n ∈ N. Then, the concept equivalence

P

� p. C ≡ P

� p.CInIn is valid in I.

The above lemma does not hold true for arbitrary fillers C, but only for
fillers that can (syntactically) also be seen as EL⊥ concept descriptions over
Γn. However, this does not cause any problems, since we can simply project
any other filler onto this signature Γn. In particular, we define projections of
arbitrary Prob>

n EL⊥ concept descriptions onto the signature Γn in the following
manner.

Definition 5. Fix some n ∈ N as well as a probabilistic interpretation I. The
nth projection πI,n(C) of a Prob>

n EL⊥ concept description C with respect to I
is obtained from C by replacing subconcepts of the form

P

� p. D with suitable
elements from (Γn)C and, more specifically, we recursively define it as follows.
We set πI,0(C) := C for each concept description C ∈ EL⊥(Σ). The subsequent
projections are then given in the following manner.

πI,n+1(A) := A if A ∈ ΣC ∪ {⊥,�}
πI,n+1(C � D) := πI,n+1(C) � πI,n+1(D)

πI,n+1(

E

r. C) :=

E

r. πI,n+1(C)

πI,n+1(

P

� p.C) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⊥ if � p = > 1
� else if � p = ≥ 0
⊥ else if (πI,n(C))In+1In+1 ≡∅ ⊥
� else if (πI,n(C))In+1In+1 ≡∅ �

P≥ p.(πI,n(C))In+1In+1 else if � = ≥ and p ∈ PI,n+1

P≥ (p)+I,n+1.(πI,n(C))In+1In+1 else

Usually, projection mappings in mathematics are idempotent. It is easy to
verify by induction over n that this also holds true for our projection map-
pings πI,n which we have just defined. This justifies the naming choice. Further-
more, we can show that the mappings πI,n are intensive, i.e., projecting some
Prob>

n EL⊥ concept description C onto the nth signature Γn yields a more spe-
cific concept description, cf. the next lemma. Furthermore, the mappings πI,n

are monotonic—a fact that can be proven by induction over n as well. As a
corollary, it follows that each mapping πI,n is a kernel operator. However, please
just take this as a side note, since we do not need the two additional properties
of idempotency and monotonicity within this document.

Learning Description Logic Axioms from Discrete Probability Distributions 413

Lemma 6. Assume that I is a probabilistic interpretation, let n ∈ N, and fix
some Prob>

n EL⊥ concept description C. Then, it holds true that πI,n(C) �∅ C.

As a crucial observation regarding projections, we see that—within our
given probabilistic interpretation I—we do not have to distinguish between
any Prob>

n EL⊥ concept description C and its nth projection πI,n(C), since the
upcoming lemma shows that both always possess the same extension in each
world of I. Simply speaking, the signatures Γn contain enough building bricks
to describe anything that happens within I up to a probability depth of n.

Lemma 7. Assume that I is a probabilistic interpretation, let n ∈ N, and con-
sider some Prob>

n EL⊥ concept description C. Then, C and its nth projection
πI,n(C) have the same extension in any world of I.

As a last important statement on the properties of the projection mappings,
we now demonstrate that validity of some concept inclusion C � D with a prob-
ability depth not exceeding n is equivalent to validity of the projected concept
inclusion πI,n(C) � πI,n(D) in the scaling In. This is a key lemma for the
upcoming construction of a concept inclusion base for I.

Lemma 8. Let n ∈ N, and consider a probabilistic interpretation I as well as
some Prob>

n EL⊥ concept inclusion C � D. Then, C � D is valid in I if, and
only if, the nth projected concept inclusion πI,n(C) � πI,n(D) is valid in the nth
scaling In.

Now we go on to considering the sets PI,n of essential probability values. As
we have already claimed, these sets are always finite—provided that the fixed
probabilistic interpretation is finitely representable. In order to prove this, we
need the following statement.

Lemma 9. For each probabilistic interpretation I and any n ∈ N, the following
equation is satisfied.

PI,n = {PI{δ ∈ XInI} | δ ∈ ΔI and X ⊆ ΔI × ΩI }

For most, if not all, practical use case we can argue that the given proba-
bilistic interpretation I can be assumed as finitely representable. Utilizing some
of our previous results then implies that each nth scaling of I is finitely repre-
sentable as well. More specifically, the following is satisfied.

Corollary 10. If I is a finitely representable probabilistic interpretation, then
it holds true that, for each n ∈ N, the subset Γn \Σ of the nth signature is finite,
the nth scaling In is finite and has a finite active signature, and the nth set PI,n

of probability values is finite and satisfies PI,n ⊆ Q.

As already mentioned in Sects. 2 and 4, we want to make use of existing tech-
niques that allow for axiomatizing interpretations in the description logic EL⊥.
In order to do so, we need to be sure that the semantics of EL⊥ and its prob-
abilistic sibling Prob>EL⊥ are not too different, or expressed alternatively, that

414 F. Kriegel

there is a suitable correspondence between (non-probabilistic) entailment in EL⊥

and (probabilistic) entailment in Prob>EL⊥. A more sophisticated formulation
is presented in the following lemma.

Lemma 11. Let T be a Prob>EL⊥ TBox, and assume that B is a set that con-
sists of tautological Prob>EL⊥ concept inclusions, i.e., ∅ |= B. If C � D is
a Prob>EL⊥ concept inclusion that is entailed by T ∪ B with respect to non-
probabilistic entailment, then C � D is also entailed by T with respect to proba-
bilistic entailment.

As final step, we show that each concept inclusion base of the probabilistic
scaling In induces a Prob>

n EL⊥ concept inclusion base of I. While soundness
is easily verified, completeness follows from the fact that C �T πI,n(C) �T
πI,n(D) �∅ D holds true for every valid Prob>

n EL⊥ concept inclusion C � D
of I.

Theorem 12. Fix a number n ∈ N and some finitely representable probabilistic
interpretation I. If Tn is a concept inclusion base for the nth scaling In with
respect to some set Bn of tautological Prob>

n EL⊥ concept inclusions used as back-
ground knowledge, then the following terminological box T is a Prob>

n EL⊥ concept
inclusion base for I.

T := Tn ∪
⋃

{UI,� | � ∈ {1, . . . , n} } where

UI,� := { P

>p.XI�I� � P≥ (p)+I,�. X
I�I� | p ∈ PI,� \ {1} and X ⊆ ΔI × ΩI }

As already mentioned in Sect. 4 and according to [16], a suitable such concept
inclusion base Tn for the nth scaling In with respect to background knowledge Bn

exists and can be computed effectively, namely the canonical base Can(In,Bn).
This enables us to immediately draw the following conclusion.

Corollary 13. Let I be a finitely representable probabilistic interpretation, fix
some n ∈ N, and let Bn denote the set of all EL⊥ concept inclusions over Γn that
are tautological with respect to probabilistic entailment, i.e., are valid in every
probabilistic interpretation. Then, the canonical base for I and probability depth
n that is defined as

Can(I, n) := Can(In,Bn) ∪
⋃

{UI,� | � ∈ {1, . . . , n} }

is a Prob>
n EL⊥ concept inclusion base for I, and it can be computed effectively.

Eventually, we close our investigations with a complexity analysis of the
problem of actually computing the canonical base Can(I, n). As it turns out,
this computation is—in terms of computational complexity—not more expen-
sive than the corresponding axiomatization task in EL⊥, cf. [22, Proposition 2].
However, this result only holds true if we dispense with the pre-computation
of the tautological background knowledge Bn at all, and instead consider

Learning Description Logic Axioms from Discrete Probability Distributions 415

Can∗(I, n) := Can(In) ∪
⋃

{UI,� | � ∈ {1, . . . , n} }, which is still a Prob>
n EL⊥ con-

cept inclusion base for I but, as a drawback, might contain tautological axioms.
More details can be found in the technical report [21].

Proposition 14. For any finitely representable probabilistic interpretation I
and any n ∈ N, the canonical base Can∗(I, n) can be computed in deterministic
time that is exponential in |ΔI |·|ΩI | and polynomial in n. Furthermore, there are
finitely representable probabilistic interpretations I for which a concept inclusion
base cannot be encoded in polynomial space with respect to |ΔI | · |ΩI | · n.

6 Conclusion

We have devised an effective procedure for computing finite axiomatizations of
observations that are represented as probabilistic interpretations. More specifi-
cally, we have shown how concept inclusion bases—TBoxes that are sound and
complete for the input data set—can be constructed in the probabilistic descrip-
tion logic Prob>EL⊥. In a complexity analysis we found that we can always
compute a canonical base in exponential time.

Future research is possible in various directions. One could extend the results
to a more expressive probabilistic DL, e.g., to Prob>M, or one could include
upper probability bounds. Furthermore, for increasing the practicability of the
approach, it could be investigated how the construction of a concept inclusion
base can be made incremental or interactive. It might be the case that there
already exists a TBox and there are new observations in form of a probabilistic
interpretation; the goal is then to construct a TBox being a base for the CIs that
are entailed by the existing knowledge as well as hold true in the new observa-
tions. While this would represent a push approach of learning, future research
could tackle the pull approach as well, i.e., equip the procedure with expert
interaction such that an exploration of partial observations is made possible.

Additionally, it is worth investigating whether the proposed approach could
be optimized; for instance, one could check if equivalent results can be obtained
with a subset of Γn or with another extended signature. Currently, it is also
unknown whether, for each finitely representable probabilistic interpretation I,
there is some finite bound n on the probability depth such that each Prob>

n EL⊥

concept inclusion base for I is also sound and complete for all Prob>EL⊥ concept
inclusions that are valid in I—much like this is the case for the role depth in EL⊥.

Acknowledgments. The author gratefully thanks Franz Baader for drawing atten-
tion to the issue in [15], and furthermore thanks the reviewers for their constructive
remarks.

References

1. Baader, F., Distel, F.: A finite basis for the set of EL-implications holding in a
finite model. In: Medina, R., Obiedkov, S. (eds.) ICFCA 2008. LNCS (LNAI), vol.
4933, pp. 46–61. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
78137-0 4

https://doi.org/10.1007/978-3-540-78137-0_4
https://doi.org/10.1007/978-3-540-78137-0_4

416 F. Kriegel

2. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description
Logic. Cambridge University Press, Cambridge (2017)

3. Bacchus, F.: Representing and reasoning with probabilistic knowledge. Ph.D. the-
sis, The University of Alberta, Edmonton, Alberta (1988)

4. Borchmann, D.: Learning terminological knowledge with high confidence from erro-
neous data. Doctoral thesis, Technische Universität Dresden, Dresden, Germany
(2014)

5. Borchmann, D., Distel, F., Kriegel, F.: Axiomatisation of general concept inclusions
from finite interpretations. J. Appl. Non-Class. Log. 26(1), 1–46 (2016)

6. Distel, F.: Learning description logic knowledge bases from data using methods
from formal concept analysis. Doctoral thesis, Technische Universität Dresden,
Dresden, Germany (2011)

7. Ganter, B.: Two Basic Algorithms in Concept Analysis. FB4-Preprint 831, Tech-
nische Hochschule Darmstadt, Darmstadt, Germany (1984)

8. Ganter, B., Obiedkov, S.A.: Conceptual Exploration. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49291-8

9. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-642-59830-2

10. Guigues, J.L., Duquenne, V.: Famille minimale d’implications informatives
résultant d’un tableau de données binaires. Mathématiques et Sciences Humaines
95, 5–18 (1986)

11. Gutiérrez-Basulto, V., Jung, J.C., Lutz, C., Schröder, L.: Probabilistic description
logics for subjective uncertainty. J. Artif. Intell. Res. 58, 1–66 (2017)

12. Halpern, J.Y.: An analysis of first-order logics of probability. Artif. Intell. 46(3),
311–350 (1990)

13. Heinsohn, J.: Probabilistic description logics. In: López de Mántaras, R., Poole,
D. (eds.) UAI 1994: Proceedings of the Tenth Annual Conference on Uncertainty
in Artificial Intelligence, Seattle, Washington, USA, 29–31 July 1994, pp. 311–318.
Morgan Kaufmann (1994)

14. Jaeger, M.: Probabilistic reasoning in terminological logics. In: Doyle, J., Sande-
wall, E., Torasso, P. (eds.) Proceedings of the 4th International Conference on
Principles of Knowledge Representation and Reasoning (KR 1994), Bonn, Ger-
many, 24–27 May 1994, pp. 305–316. Morgan Kaufmann (1994)

15. Kriegel, F.: Axiomatization of general concept inclusions in probabilistic descrip-
tion logics. In: Hölldobler, S., Krötzsch, M., Peñaloza, R., Rudolph, S. (eds.) KI
2015. LNCS (LNAI), vol. 9324, pp. 124–136. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-24489-1 10

16. Kriegel, F.: Incremental learning of TBoxes from interpretation sequences with
methods of formal concept analysis. In: Calvanese, D., Konev, B. (eds.) Proceedings
of the 28th International Workshop on Description Logics, Athens, Greece, 7–10
June 2015. CEUR Workshop Proceedings, vol. 1350. CEUR-WS.org (2015)

17. Kriegel, F.: Acquisition of terminological knowledge from social networks in
description logic. In: Missaoui, R., Kuznetsov, S.O., Obiedkov, S. (eds.) Formal
Concept Analysis of Social Networks. LNSN, pp. 97–142. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-64167-6 5

18. Kriegel, F.: Implications over probabilistic attributes. In: Bertet, K., Borchmann,
D., Cellier, P., Ferré, S. (eds.) ICFCA 2017. LNCS (LNAI), vol. 10308, pp. 168–183.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59271-8 11

19. Kriegel, F.: Probabilistic implication bases in FCA and probabilistic bases of GCIs
in EL⊥. Int. J. Gen. Syst. 46(5), 511–546 (2017)

https://doi.org/10.1007/978-3-662-49291-8
https://doi.org/10.1007/978-3-642-59830-2
https://doi.org/10.1007/978-3-319-24489-1_10
https://doi.org/10.1007/978-3-319-24489-1_10
https://doi.org/10.1007/978-3-319-64167-6_5
https://doi.org/10.1007/978-3-319-59271-8_11

Learning Description Logic Axioms from Discrete Probability Distributions 417

20. Kriegel, F.: Acquisition of terminological knowledge in probabilistic description
logic. In: Trollmann, F., Turhan, A.-Y. (eds.) KI 2018. LNCS (LNAI), vol. 11117,
pp. 46–53. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00111-7 5

21. Kriegel, F.: Learning description logic axioms from discrete probability distribu-
tions over description graphs (extended version). LTCS-Report 18–12, Chair of
Automata Theory, Institute of Theoretical Computer Science, Technische Univer-
sität Dresden, Dresden, Germany (2018). https://tu-dresden.de/inf/lat/reports#
Kr-LTCS-18-12

22. Kriegel, F.: Most specific consequences in the description logic EL. LTCS-Report
18–11, Chair of Automata Theory, Institute of Theoretical Computer Science,
Technische Universität Dresden, Dresden, Germany (2018). https://tu-dresden.
de/inf/lat/reports#Kr-LTCS-18-11, accepted for publication in Discrete Applied
Mathematics

23. Lukasiewicz, T.: Expressive probabilistic description logics. Artif. Intell. 172(6–7),
852–883 (2008)

24. Rudolph, S.: Relational exploration: combining description logics and formal con-
cept analysis for knowledge specification. Doctoral thesis, Technische Universität
Dresden, Dresden, Germany (2006)

https://doi.org/10.1007/978-3-030-00111-7_5
https://tu-dresden.de/inf/lat/reports#Kr-LTCS-18-12
https://tu-dresden.de/inf/lat/reports#Kr-LTCS-18-12
https://tu-dresden.de/inf/lat/reports#Kr-LTCS-18-11
https://tu-dresden.de/inf/lat/reports#Kr-LTCS-18-11

Learning Ontologies with Epistemic
Reasoning: The EL Case

Ana Ozaki(B) and Nicolas Troquard

KRDB Research Centre, Free University of Bozen-Bolzano, Bolzano, Italy
{ana.ozaki,nicolas.troquard}@unibz.it

Abstract. We investigate the problem of learning description logic
ontologies from entailments via queries, using epistemic reasoning. We
introduce a new learning model consisting of epistemic membership and
example queries and show that polynomial learnability in this model
coincides with polynomial learnability in Angluin’s exact learning model
with membership and equivalence queries. We then instantiate our learn-
ing framework to EL and show some complexity results for an epis-
temic extension of EL where epistemic operators can be applied over
the axioms. Finally, we transfer known results for EL ontologies and its
fragments to our learning model based on epistemic reasoning.

Keywords: Exact learning · Epistemic logic · Description logic

1 Introduction

Description logics (DL) balance expressivity and complexity of reasoning, result-
ing in a family of formalisms which can capture conceptual knowledge in various
domains [3].1 One of the most popular ontology languages, featuring polynomial
time complexity of reasoning tasks such as entailment, is EL [2], which allows
conjunctions (�) and existential restrictions (∃) in its concept expressions but
disallows negations of concepts. The following example illustrates EL ontologies
(Sect. 4) representing knowledge of experts in different domains.

Example 1. Ana knows about Brazilian music (BM) and Nicolas is an expert in
French cuisine (FC). We can represent some parts of their knowledge as follows.

OBM
Ana = {BrazilianSinger(Caetano) OFC

Nicolas = {FrenchChef(Soyer)
BossaNova � BrazilianMusicStyle Crepe � ∃contains.Flour
ViolaBuriti � ∃madeFrom.Buriti} Crepe � ∃contains.Sugar � Dessert}

Naturally, domain experts—humans, or artificial entities with complex neu-
ral networks—cannot be expected to be able to easily transfer their knowledge.
However, when specific questions about the domain are posed, e.g., ‘is Bossa

1 The technical report [17] is a more complete version of this paper.

c© Springer Nature Switzerland AG 2019
F. Calimeri et al. (Eds.): JELIA 2019, LNAI 11468, pp. 418–433, 2019.
https://doi.org/10.1007/978-3-030-19570-0_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19570-0_27&domain=pdf
http://orcid.org/0000-0002-3889-6207
http://orcid.org/0000-0002-5763-6080
https://doi.org/10.1007/978-3-030-19570-0_27

Learning Ontologies with Epistemic Reasoning: The EL Case 419

Nova a Brazilian music style?’, an expert in the domain of Brazilian music can
accurately decide whether such statement holds or not. So the ontology rep-
resentation of the knowledge of an expert, even though not directly accessible,
can be learned via a trial and error process in which individuals or machines,
generically called agents, communicate with each other, in order to learn from
the other agents. We assume that the target domain of interest to be learned is
represented by a logical theory formulated in an ontology language.

In computational learning theory, a classical communication protocol coming
from the exact learning model [1] is based on questions of two types: member-
ship and equivalence queries. In a learning from entailments setting [11], these
questions can be described as follows. Membership queries correspond to ask-
ing whether a certain statement formulated as a logical sentence follows from
the target. Equivalence queries correspond to asking whether a certain logical
theory, called hypothesis, precisely describes the target. If there are wrong or
missing statements in the hypothesis, a statement illustrating the imprecision
should be returned to the agent playing the role of the learner.

Example 2. Assume Ana wants to learn about French cuisine. She asks Nicolas
whether it follows from his knowledge that ‘every crepe is a dessert’, in symbols,
‘does OFC

Nicolas |= Crepe � Dessert?’, which the answer in this case is ‘no’, since
only those which contain sugar are considered desserts. To receive new state-
ments about French cuisine from Nicolas, Ana needs to pose equivalence queries,
in symbols ‘does OFC

Ana ≡ OFC
Nicolas?’. Each time she poses this type of questions,

her best interest is to tell him everything she knows about French cuisine.

One of the main difficulties in implementing this protocol in practice [16, p.
297] comes from the putative unreasonableness of equivalence queries. Whenever
a learner poses an equivalence query, the expert playing the role of an oracle
needs to evaluate the whole hypothesis and decide whether or not it is equivalent
to the target. If not, then the oracle returns a statement in the logical difference
between the hypothesis and the target. One way out of this difficulty is hinted
to us by a simple observation: during interactive communication among agents,
not only domain knowledge is exchanged and acquired but also second-order
knowledge, which is the knowledge of what is known by the other agents.

Example 3. When Ana and Nicolas communicate, they know what they have
already told to each other. If Ana tells Nicolas that ‘Buriti is a Brazilian tree’
(Nicolas now knows this statement, in symbols, KNicolas(Buriti � BrazilianTree))
and that ‘Viola de Buriti is made from Buriti’ (KNicolas(ViolaBuriti �
∃madeFrom.Buriti)) she does not need to tell him that ‘Viola de Buriti
is made from a Brazilian tree’ (as it follows that KNicolas(ViolaBuriti �
∃madeFrom.BrazilianTree), see Sect. 4).

In this paper, we thus propose a new and more realistic learning model. It
is based on a protocol which takes into account what is known by the agents,
either because a statement was explicitly communicated or because it is a logical
consequence of previous statements given during their interaction. Our protocol

420 A. Ozaki and N. Troquard

Fig. 1. Polynomial learnability. Each class denotes the set of frameworks that are
polynomial query learnable in the corresponding learning model. MEM, EQ and EX
stand for membership, equivalence, and example queries respectively.

is based on queries of two types. The first is an epistemic version of membership
queries where the oracle ‘remembers’ those membership queries whose reply was
‘yes’. We call the second type example queries. When asked an example query, the
oracle answers a statement which follows from its knowledge but does not follow
from its knowledge about what the learner knows. The oracle also ‘remembers’
that the statements given are now known by the learner.

The first contribution of this work is the introduction of the learning model
based on epistemic reasoning, which we call epistemic learning model, and an
analysis of its ‘power’ in comparison with the exact learning model (Fig. 1).
The second is an instantiation to the EL ontology language, whose polynomial
learnability has been investigated in the exact learning model [10,14,15].

In more details, the epistemic learning model is introduced in Sect. 2. We
then establish in Sect. 3 that polynomial learnability is strictly harder in the
epistemic model without (an epistemic version of) membership queries (Theo-
rems 1 and 2). Nonetheless, it coincides with polynomial learnability in the exact
learning model if both types of queries are allowed (Theorem3). Since it is known
that polynomial learnability in the exact learning model with only equivalence
queries implies polynomial learnability in the classical probably approximately
correct learning model (PAC) [1,18], it follows that polynomial learnability in the
epistemic learning model with only example queries implies polynomial learn-
ability in the PAC learning model. The same relationship holds for the case where
we have (an epistemic version of) membership queries in the epistemic model
and the PAC model also allows membership queries. We also show in Sect. 4
some complexity results for an epistemic extension of EL, which we call ELK.
In particular, we show that satisfiability in ELK, which includes Boolean com-
binations of EL axioms, does not increase the NP-completeness of propositional
logic (Theorem 4). We then show that a fragment of ELK features PTime com-
plexity for the satisfiability and entailment problems (Theorem5), as in EL [2].
Crucially, it captures the epistemic reasoning that the agent playing the role of
the oracle needs to perform. Finally, in Sect. 5 we transfer known results [10,14]
for EL in the exact learning model to the epistemic learning model.

2 Learning with Epistemic Reasoning

We first define the epistemic extension of a description logic L, which is often
a notation variant of a fragment of first-order logic or propositional logic. The

Learning Ontologies with Epistemic Reasoning: The EL Case 421

epistemic extension of L allows expressions of the form ‘agent i knows some
axiom of L’. We then use the epistemic extension of a logic to define a learning
framework based on epistemic reasoning.

2.1 The Epistemic Extension of L
In the following, we formalise the epistemic extension LK of a description logic L.
Our notation and definitions can be easily adapted to the case L is a (fragment
of) first-order or propositional logic. Assume symbols of L are taken from pair-
wise disjoint and countably infinite sets of concept, role and individual names
NC, NR and NI, respectively. Let A be a set of agents. An LK axiom is an expres-
sion of the form: β ::= α | Kiβ where α is an L formula and i ∈ A. LK formulas
ϕ,ψ are expressions of the form: ϕ ::= β | ¬ϕ | ϕ ∧ ψ where β is an LK axiom.

An L interpretation I = (ΔI , ·I) over a non-empty set ΔI , called the domain,
defines an interpretation function ·I that maps each concept name A ∈ NC to a
subset AI of ΔI , each role name r ∈ NR to a binary relation rI on ΔI , and each
individual name a ∈ NI to an element aI ∈ ΔI . The extension of the mapping ·I
from concept names to L complex concept expressions depends on the precise
definition of L. We write |=L and ≡L to denote the entailment and equivalence
relations for L formulas, respectively.

An LK interpretation I = (W, {Ri}i∈A) consists of a set W of L inter-
pretations and a set of accessibility relations Ri on W, one for each agent
i ∈ A. We assume that the relations Ri are equivalence relations. A pointed
LK interpretation is a pair (I, I) where I = (W, {Ri}i∈A) is an LK interpreta-
tion and I is an element of W. The entailment relation |=LK of an LK formula ϕ
in I = (W, {Ri}i∈A) pointed at I ∈ W is inductively defined (for simplicity, we
may omit the subscript LK from |=LK):

I, I |= α iff I |=L α I, I |= φ ∧ ψ iff I, I |= φ and I, I |= ψ
I, I |= ¬φ iff not I, I |= φ I, I |= Kiβ iff ∀(I,J) ∈ Ri, J |= β.

An LK formula ϕ entails an LK formula ψ, written ϕ |= ψ, iff for all pointed
LK interpretations (I, I), I, I |= ϕ implies I, I |= ψ. An LK formula ϕ is
equivalent to an LK formula ψ, written ϕ ≡ ψ (we may omit LK from ≡LK), iff
ϕ |= ψ and ψ |= ϕ. We use the notion of a set of formulas and the conjunction
of its elements interchangeably. The size of a formula or an interpretation X,
denoted |X|, is the length of the string that represents it, where concept, role
and individual names and domain elements are considered to be of length 1.

2.2 A Learning Model Based on Epistemic Reasoning

We first adapt the exact learning model with membership and equivalence
queries to a multi-agent setting. We then introduce the epistemic learning model
in a multi-agent setting and provide complexity notions for these models.

We introduce basic notions for the definition of a learning framework and
the learning problem via queries [1], adapted to a learning from entailments

422 A. Ozaki and N. Troquard

setting [11] with multiple agents. A learning (from entailments) framework F
is a pair (X,L), where X is a set of examples (also called domain or instance
space), and L is a set of formulas of a description logic L. We say that x ∈ X is
a positive example for l ∈ L if l |=L x and a negative example for l if l 	|=L x. A
counterexample x for l ∈ L and h ∈ L is either a positive example for l such that
h 	|=L x or a negative example for l such that h |=L x. A multi-agent learning
framework F(A) is a set {Fi = (Xi, Li) | i ∈ A} of learning frameworks.

We first provide a formal definition of the exact learning model, based on
membership and equivalence queries, and then we introduce the epistemic learn-
ing model, with example and epistemic membership queries. Let F(A) be a
multi-agent learning framework. Each i ∈ A aims at learning a target formula
lj ∈ Lj of a description logic L of each other agent j 	= i ∈ A by posing them
queries.

Definition 1 (Membership query). For every i ∈ A and every li ∈ Li, let
MEMF(A),li be an oracle that takes as input x ∈ Xi and outputs ‘yes’ if li |=L x
and ‘no’ otherwise. A membership query to agent i ∈ A is a call to MEMF(A),li .

Definition 2 (Equivalence query). For every i ∈ A and every li ∈ Li, we
denote by EQF(A),li an oracle that takes as input a hypothesis formula of a
description logic h ∈ Li and returns ‘yes’ if h ≡L li and a counterexample for
li and h otherwise. An equivalence query to agent i ∈ A is a call to EQF(A),li .
There is no assumption about which counterexample is returned by EQF(A),li .

In this work, we introduce example queries, where an agent i ∈ A can ask
an agent j ∈ A to only provide examples which are not logical consequences of
what they have already communicated. Intuitively, if agent j returns x to agent i
in a language L and x |=L y then agent i knows y, in symbols, Kiy. Since agent
j returned this example to agent i, the axiom Kiy is part of the logical theory
representing the knowledge of agent j, so agent j acquires knowledge of what is
known by agent i as they communicate. We use example queries in combination
with an epistemic version of membership queries, called K-membership queries.
Given i ∈ A, assume that Li is a set of formulas of the logic L and denote by
LK

i the set of all formulas in the epistemic extension of L, which, by definition of
LK, includes all L formulas. The target formula li is an element of Li, however,
the oracles for the example and K-membership queries may add LK formulas to
li. We denote by lk+1

i the result of updating lki upon receiving the k-th query,
where l1i = li. At all times Xi is a set of examples in L (not in LK).

Definition 3 (K-membership query). For every i ∈ A and every lki ∈ LK
i ,

let MEMK
F(A),lki

be an oracle that takes as input x ∈ Xi and j ∈ A, and, if

l1i |=L x, it outputs ‘yes’ and define lk+1
i := lki ∧ Kjx

2.
Otherwise it returns ‘no’ and defines lk+1

i := lki . The k-th K-membership
query to agent i ∈ A is a call to MEMK

F(A),lki
.

2 We may write lki for the conjunction of its elements.

Learning Ontologies with Epistemic Reasoning: The EL Case 423

Definition 4 (Example query). For every i ∈ A and every lki ∈ LK
i , let

EXF(A),lki
be an oracle that takes as input some j ∈ A and outputs x ∈ Xi such

that l1i |=L x but lki 	|=LK Kj x if such x exists; or ‘you finished’, otherwise.
Upon returning x ∈ Xi such that l1i |=L x the oracle EXF(A),lki

defines lk+1
i :=

lki ∧ Kjx. The k-th example query to agent i ∈ A is a call to EXF(A),lki
.

An exact learning algorithm Ai for Fi ∈ F(A) is a deterministic algorithm
that takes no input, is allowed to make queries to MEMF(A),li and EQF(A),li

(without knowing what the target li to be learned is), and eventually halts and
outputs some h ∈ Li with h ≡L li. An epistemic learning algorithm for Fi ∈ F(A)
is a deterministic algorithm that takes no input, is allowed to make queries to
MEMK

F(A),lki
and EXF(A),lki

(without knowing what the target l1i to be learned
is), and eventually halts after receiving ‘you finished’ from EXF(A),lki

.
We say that F(A) is exactly learnable if there is an exact learning algorithm

Ai for each Fi ∈ F(A) and that F(A) is polynomial query exactly learnable if
each Fi ∈ F(A) is exactly learnable by an algorithm Ai such that at every step
the sum of the sizes of the inputs to queries made by Ai up to that step is
bounded by a polynomial p(|li|, |x|), where li is the target and x ∈ Xi is the
largest example seen so far by Ai. F(A) is polynomial time exactly learnable if
each Fi ∈ F(A) is exactly learnable by an algorithm Ai such that at every step
(we count each call to an oracle as one step of computation) of computation
the time used by Ai up to that step is bounded by a polynomial p(|li|, |x|),
where li ∈ Li is the target and x ∈ X is the largest counterexample seen so far.
We may also say that F(A) is learnable in O(|li|, |x|) many steps, following the
same notion of polynomial time learnability, except that the number of steps is
bounded by O(|li|, |x|).

We say that F(A) is epistemically learnable if there is an epistemic learning
algorithm for each Fi ∈ F(A). Polynomial query/time epistemic learnability is
defined analogously, with p(|l1i |, |x|) defined in terms of |l1i | and |x|. Clearly, if
a learning framework F(A) is polynomial time exactly/epistemically learnable
then it is also polynomial query exactly/epistemically learnable.

3 Epistemic and Exact Polynomial Learnability

In this section we confront polynomial query and polynomial time learnability
in the exact and epistemic learning models. We start by considering the case
where the learner is only allowed to pose one type of query. Clearly, polyno-
mial (query/time) exact learnability with only membership queries coincides
with polynomial epistemic learnability with only K-membership queries. We
now analyse polynomial learnability with equivalence queries only and exam-
ple queries only. Our first result is that polynomial (query/time) learnability in
the epistemic learning model implies polynomial learnability in exact learning
model.

424 A. Ozaki and N. Troquard

Theorem 1. If a multi-agent learning framework is polynomial query (resp.
time) epistemically learnable with only example queries then it is polynomial
query (resp. time) exactly learnable with only equivalence queries.

Proof. Assume F(A) is polynomial query epistemically learnable with only
example queries (the case of polynomial time epistemic learnability with only
example queries can be similarly proved). For each Fi ∈ F(A) there is an epis-
temic learning algorithm Ai for Fi with polynomial query complexity which only
asks example queries. To construct an exact learning algorithm A′

i for Fi which
only asks equivalence queries using Ai, we define auxiliary sets sK

i (k) and sL
i (k)

which will keep the information returned by EQF(A),li up to the k-th query posed
by a fixed but arbitrary agent in A \ {i} and agent i. We define sK

i (1) = ∅ and
sL

i (1) = ∅.

– Whenever Ai poses an example query to agent i ∈ A (assume it is the k-th
query), A′

i calls the oracle EQF(A),li with sL
i (k) as input. The oracle either

returns ‘yes’ if sL
i is equivalent to li or it returns some counterexample for li

and sL
i (k) (we may write sL

i (k) to denote
∧

β∈sL
i (k) β). Then A′

i adds Kjx to
sK

i (k) and x to sL
i (k).

If EQF(A),li returns ‘yes’ then algorithm A′
i converts it into ‘you finished’, as

expected by algorithm Ai. We now argue that, for all x ∈ Xi and all k ≥ 0 such
that li |=L x, we have that x is a (positive) counterexample for li and sL

i (k)
iff li ∧ sK

i (k) 	|=LK Kj x. By definition of sK
i (k) and sL

i (k) and since li does not
contain LK axioms, for all x ∈ Xi and all k ≥ 0, we have that li ∧ sK

i (k) |=LK
Kjx iff sL

i (k) |=L x. By definition and construction of sL
i (k), it follows that

li |=L sL
i (k). So sL

i (k) 	|=L x iff li ∧ sK
i (k) 	|=LK Kj x. Hence EQF(A),li can

simulate EXF(A),lki
, where k represents the number of calls to EXF(A),lki

posed so
far by Ai. By definition of Ai, at every step, the sum of the sizes of the inputs
to queries made by Ai up to that step is bounded by a polynomial p(|li|, |x|),
where li is the target and x ∈ Xi is the largest counterexample seen so far by
Ai.Then, for all k ≥ 0, we have that |sL

i (k)| ≤ |sK
i (k)| ≤ p(|li|, |x|). Since all

responses to queries are as required by Ai, if Ai halts after polynomially many
polynomial size queries, the same happens with A′

i, which returns a hypothesis
sL

i (k) equivalent to the target li, for some k ≤ p(|li|, |x|). �
The converse of Theorem 1 does not hold, as we show in the next theorem.

Theorem 2. There is a multi-agent learning framework F(A) such that F(A) is
polynomial time exactly learnable with only equivalence queries but not polyno-
mial query (so, not polynomial time) epistemically learnable with only example
queries.

Proof. Consider the learning framework F = (X,L) where X is the set of
propositional formulas over the variables Prop = {q, p, p01, . . . , p

0
n, p11, . . . , p

1
n} and

L = {ϕ | ϕ ∈ X,ϕ ≡ (p → q)} (where ≡ denotes logical equivalence in proposi-
tional logic). So the target can only be a formula equivalent to p → q. Now let

Learning Ontologies with Epistemic Reasoning: The EL Case 425

F(A) be the set {Fi = (X,L) | i ∈ A}, with all learning frameworks are equal to
F (this does not mean that the target is the same for all agents but that they are
taken from the same set L). If L is a language which only contains propositional
formulas equivalent to p → q, an exact learning algorithm can learn the target
with only one equivalence query, passing the hypothesis {p → q} as input. How-
ever, EXF(A),{p→q} can return any of the exponentially many examples of the
form p ∧ (p�1

1 ∧ . . . ∧ p�n
n) → q, with �j ∈ {0, 1} and j ∈ {1, . . . , n}. The example

oracle can always provide an example which does not follow from its knowledge
of what is known by the learner by taking a fresh binary sequence. Thus, there
is no epistemic algorithm which can learn the target with polynomially many
queries. �

Interestingly, if we consider both types of queries then polynomial exact
learnability coincides with polynomial epistemic learnability.

Theorem 3. Let F(A) be a multi-agent learning framework. F(A) is polynomial
query (resp. time) exactly learnable if, and only if, F(A) is polynomial query
(resp. time) epistemically learnable.

Proof. (⇒) In our proof we use polynomial query exact learnability, the argu-
ment for polynomial time exact learnability is analogous. Assume F(A) is poly-
nomial query exactly learnable. Then, for each Fi ∈ F(A) there is an exact
learning algorithm Ai for Fi. We construct an epistemic learning algorithm A′

i

for Fi using Ai as follows. Recall that we write lki to denote the target lki after
the k-th query (Sect. 2.2).

– Whenever Ai poses a membership query to agent i ∈ A with x ∈ Xi as
input, A′

i calls MEMK
F(A),lki

with x as input, where k represents the number
of queries posed so far by A′

i.
– Whenever Ai poses an equivalence query to agent i ∈ A with a hypothesis h

as input, we have that, for each x ∈ h, A′
i calls MEMK

F(A),lki
with x as input

(and k is incremented). Then, the algorithm calls the oracle EXF(A),lki
.

MEMK
F(A),li behaves as it is required by algorithm Ai to learn Fi. We show that

whenever EXF(A),lki
returns some x ∈ Xi we have that x is a counterexample for

l1i and h, where h is the input of the equivalence query posed by Ai. By definition
of Ai, at every step, the sum of the sizes of the inputs to queries made by Ai

up to that step is bounded by a polynomial p(|l1i |, |x|), where l1i is the target and
x ∈ Xi is the largest example seen so far by Ai. Let h� denote the input to the
�-th equivalence query posed by Ai. For all � > 0, we have that |h�| ≤ p(|l1i |, |x|).
The fact that x is a counterexample for l1i and h� follows from the definition of
A′

i, which poses membership queries for each x ∈ h�, ensuring that lki is updated
with Kjx after each query. Hence EXF(A),lki

returns counterexamples for l1i and
h� (if they exist), as EQF(A),l1i

. Since Ai poses only polynomially many queries,
� is bounded by p(|l1i |, |x|). So the sum of the sizes of the inputs to queries made
by the epistemic learning algorithm A′

i simulating Ai is quadratic in p(|l1i |, |x|).

426 A. Ozaki and N. Troquard

All in all, since all responses to queries are as required by Ai, if Ai halts and
outputs some h ∈ Li with h ≡L l1i (with h the input to the last equivalence
query) after polynomially many polynomial size queries, we have that EXF(A),l1i
is forced to return ‘you finished’ and so A′

i also halts after polynomially many
polynomial size queries. The (⇐) direction is similar to the proof of Theorem1,
except that we now also have (K-)membership queries. �

4 The Epistemic EL Description Logic

To instantiate the multi-agent epistemic learning problem to the EL case, in
Sect. 5, we define and study in this section the epistemic extension of EL, called
ELK. We present EL [3] in Sect. 4.1. ELK is the instantiation of LK presented
in Sect. 2.1 with the logic EL. We establish the complexity of the satisfiability
problem for ELK in Sect. 4.2 and of one of its fragments in Sect. 4.3.

We showed in Sect. 3 that example queries give strictly less power to the
learner than equivalence queries. We also argued, quite informally so far, that
example queries are less demanding on the oracle than equivalence queries.
Instead of deciding whether two ontologies are equivalent, and then providing a
counterexample when it is not the case, the oracle only needs to reason about
what they know about the knowledge of the learner. Yet, we did not say any-
thing about the actual complexity of the epistemic reasoning involved in example
queries. If reasoning about the knowledge of the learner is harder than evaluat-
ing the equivalence of two ontologies, then the advantage of example queries for
the oracle would be moot. We show that indeed the epistemic reasoning that the
oracle needs to perform is in PTime (Theorem 5). So, the oracle’s benefit from
example queries over equivalence queries is a net benefit.

4.1 EL: Syntax, Semantics, and Complexity

EL concepts C,D are expressions of the form: C,D ::= � | A | ∃r.C | C�D where
A ∈ NC and r ∈ NR. An inclusion is an expression of the form C � D where
C,D are EL concept expressions; and an assertion is of the form A(a) or r(a, b)
with a, b ∈ NI, A ∈ NC, and r ∈ NR. An EL axiom is an inclusion or an assertion.
An EL formula3 is an expression of the form α ::= a | ¬α | α∧α where a is an EL
axiom. An EL literal is an EL axiom or its negation. The semantics of EL is given
by L interpretations I = (ΔI , ·I) as defined in Sect. 2.1, considering L = EL.
We extend the mapping ·I for EL complex concept expressions as follows:

�I := ΔI , (C � D)I := CI ∩ DI ,

(∃r.C)I := {d ∈ ΔI | ∃e ∈ CI : (d, e) ∈ rI}.

3 Typically an EL ontology is a set of EL axioms [3], and can also be seen as a con-
junction of positive EL axioms. Here we also consider EL formulas, where we allow
negations and conjunctions over the axioms.

Learning Ontologies with Epistemic Reasoning: The EL Case 427

We now define the entailment relation |=EL for EL formulas. Given an EL inter-
pretation I and an EL axiom (which can be an inclusion or an assertion, as
above) we define: I |=EL C � D iff CI ⊆ DI ; I |=EL A(a) iff aI ∈ AI ;
and I |=EL r(a, b) iff (aI , bI) ∈ rI . We inductively extend the relation |=EL
to EL formulas as in Sect. 2.1: I |=EL ϕ ∧ ψ iff I |=EL ϕ and I |=EL ψ; and
I |=EL ¬ϕ iff not I |=EL ϕ. In our proofs, we use the following result.

Lemma 1. Satisfiability of a conjunction of EL literals is PTime-complete [6].

We establish in Sect. 4.2 that reasoning about ELK formulas is NP-complete,
just like reasoning about EL formulas. We note that EL(K) formulas allow
arbitrary Boolean combinations of EL(K) axioms, hence the contrast with the
PTime complexity of entailment from an EL ontology [2]. In Sect. 4.3 we show
that reasoning about ELK restricted to conjunctions of literals is in PTime.

4.2 Reasoning in ELK
Here we study the complexity of the satisfiability problem in ELK. Our combi-
nation of epistemic logic and description logic is orthogonal to the work by De
Giacomo et al. [8]: while our epistemic operators are over EL formulas, the epis-
temic operators of the mentioned work are over concepts and roles. For instance,
there, K FrenchChef denotes the concept of known French chefs. Here, ELK con-
tains formulas such as Ki(FrenchChef(Soyer)) ∧ ¬KiKj(Crepe � ∃contains.Egg)
indicating that agent i knows that Soyer is a French chef, but i does not know
that j knows that crepes contain egg.

From the definition of the language of LK in Sect. 2.1, remember that the
language of ELK does not admit alternating modalities; E.g., Ki¬KjA(a) is not
a formula of ELK. It is rather easy to see that if there were no such syntactic
restrictions, the satisfiability problem would turn out to be PSpace-complete.
(We could reduce satisfiability and adapt the tableaus method of propositional
S5n [12].) Instead, we establish that satisfiability in ELK is NP-complete.

The lower bound follows from NP-hardness for propositional logic. The fol-
lowing lemma is central for showing membership in NP. It is a consequence of
the fact that EL and propositional logic have the polynomial size model property
and that in ELK the satisfiability test can be separated into two independent
tests: one for the DL dimension and one for the epistemic dimension (see [4,6]).

Lemma 2. ELK enjoys the polynomial size model property.

Since ELK formulas can be translated into first-order logic, for a fixed ELK
formula ϕ, checking whether a polynomial size interpretation is a model of ϕ can
be performed in NLogSpace. Thus, membership in NP is by the fact that, by
Lemma 2, one can guess a polynomial size model (if one exists) and check that
it is a model in NLogSpace ⊆ PTime.

Theorem 4. Satisfiability in ELK is NP-complete.

428 A. Ozaki and N. Troquard

4.3 Reasoning in Conjunctive ELK
We conclude this section considering the satisfiability problem for conjunctive
ELK, defined as the fragment of ELK which only allows negations in front of
EL axioms or in front of ELK axioms of the form Kα, with α a conjunction
of EL literals and K a non-empty sequence of epistemic operators. Formally,
conjunctive ELK formulas ϕ are expressions of the form: ϕ ::= α | β | ¬β | ϕ ∧ ϕ
with β ::=Kiα | Kiβ, and α ::= a | ¬a | α ∧ α, where a is an EL axiom.

Algorithm 1. SAT (ϕ), deciding the satisfiability of conjunctive ELK formulas
Input: A conjunctive ELK formula ϕ
Output: TRUE if ϕ is satisfiable, and FALSE otherwise
1: if ω0 ∧ ∧{ω | Kσω ∈ ϕ�} is not EL satisfiable then
2: return FALSE
3: end if
4: for ¬Kσω ∈ ϕ� do
5: ψ = � ∧ ∧{ω′ | Kσ′ω′ ∈ ϕ�, and σ is a subword of σ′}
6: MS = {ψ ∧ ¬β | β is an EL literal in ω}
7: if all conjunctions of EL literals in MS are not EL satisfiable then
8: return FALSE
9: end if

10: end for
11: return TRUE

To establish the complexity of reasoning in conjunctive ELK, we use the
following notation. For every non-empty sequence σ = a1 . . . ak ∈ A+ of agents,
we associate a sequence Kσ = Ka1 . . .Kak

of epistemic operators. We write
β ∈ ψ if β is a conjunct occurring in ψ. We say that σ′ ∈ A+ is a subword of
σ ∈ A+ when σ′ is the result of removing zero or more elements from σ (at any
position of the sequence). Given a conjunctive ELK formula

ϕ = ω0 ∧ Kσ1ωσ1 ∧ . . . ∧ Kσn
ωσn

∧ ¬Kσn+1ωσn+1 ∧ . . . ∧ ¬Kσm
ωσm

where σi ∈ A+, for every 1 ≤ i ≤ m, and each ωi, with 0 ≤ i ≤ m, is a con-
junction of EL literals, we denote by ϕ� the formula resulting from exhaustively
substituting in ϕ every adjacent repetitions a . . . a of an agent a occurring in σi,
1 ≤ i ≤ m, with a. (E.g., a1a2a2a3a2 becomes a1a2a3a2.)

The following proposition is central to the correctness of Algorithm 1.

Proposition 1. A conjunctive ELK formula ϕ is unsatisfiable iff at least one
of the following properties holds:

1. ω0 ∧ ∧{ω | Kσω ∈ ϕ�} is not EL satisfiable;
2. there is ¬Kσω ∈ ϕ� such that ¬ω ∧ ∧{ω′ | Kσ′ω′ ∈ ϕ�, and σ

is a subword of σ′} is not EL satisfiable.

Learning Ontologies with Epistemic Reasoning: The EL Case 429

Proof. For convenience, we introduce some additional notation. For every σ =
a1 . . . ak ∈ A∗ we note Rσ = Ra1 ◦ . . . ◦ Rak

and Kσ = Ka1 . . .Kak
. The empty

sequence is noted ε, and we have Rε = Id, where Id is the identity relation, and
Kεω = ω.

The two following properties, which are instrumental in the proof of the
proposition, are simple consequences of well-known properties of the modal sys-
tem S5 [13, p. 58]. We state them without proof.

Claim. The following holds.

i. If ϕ� is an ELK formula, ϕ and ϕ� are equivalent.
ii. Let (W, {Ri}i∈A) be an ELK interpretation. For all σ ∈ A∗ and σ′ ∈ A∗, if

σ is a subword of σ′ then Rσ ⊆ Rσ′ .

We are ready to prove the proposition. Since, by Point (i) of the Claim, ϕ�

and ϕ are equisatisfiable (in fact equivalent), w.l.o.g., we prove it for ϕ�.
(⇐) Suppose (1) holds. Since Ri is reflexive for all i ∈ A, every model

satisfying ϕ� must satisfy ω0 ∧ ∧{ω | Kσω ∈ ϕ�}. Since it is not EL sat-
isfiable, there cannot be an ELK interpretation satisfying ϕ� either. Suppose
(2) holds. For some ¬Kσω ∈ ϕ�, we have that ψ = ¬ω ∧ ∧{ω′ | Kσ′ω′ ∈
ϕ�, and σ is a subword of σ′} is not EL satisfiable. Suppose towards contradic-
tion that there exist an ELK interpretation I = (W, {Ri}i∈A) and an EL inter-
pretation J ∈ W such that I,J |= ϕ�. It means that I,J |= ¬Kσω, that
is, there is an EL interpretation J such that (J ,J ′) ∈ Rσ and I,J ′ |= ¬ω.
By Point (ii) of the Claim, for every Kσ′ω′ ∈ ϕ�, if σ is a subword of σ′, then
Rσ ⊆ Rσ′ . Hence, I,J ′ |= ψ, which is a contradiction as ψ is not EL satisfiable.

(⇒) Assume that none of (1) and (2) hold. We must show that ϕ� is sat-
isfiable. It suffices to build an ELK interpretation I = (W, {Ri}i∈A) for ϕ�.
W contains an EL interpretation J0 satisfying ω0 ∧ ∧{ω | Kσω ∈ ϕ�}. Such
an interpretation exists because (1) does not hold. For each ¬Kσω ∈ ϕ�, where
σ = a1 . . . ak, W also contains an interpretation J σ

k satisfying ¬ω ∧ ∧{ω′ |
Kσ′ω′ ∈ ϕ�, and σ is a subword of σ′}. Such an interpretation exists because
(2) does not hold. Still for each ¬Kσω ∈ ϕ�, W, where σ = a1 . . . ak, for
each 1 ≤ i < k, W also contains an interpretation J σ

i satisfying
∧{ω′ | Kσ′ω′ ∈

ϕ�, and a1 . . . ai is a subword of σ′}. Such interpretations exist because (1) does
not hold. W does not contain any more EL interpretations. We turn to the con-
struction of R. For every ¬Kσω ∈ ϕ�, where σ = a1 . . . ak, for every 1 ≤ i ≤ k,
let (J σ

i−1,J σ
i) ∈ R′

ai
, where J σ

0 = J0. For every i ∈ A, let Ri be the equivalence
closure of R′

i. It is routine to check that I,J0 |= ϕ�. �
Proposition 1 suggests that the satisfiability of conjunctive ELK formulas can

be reduced to checking the satisfiability of a few conjunctions of EL literals. We
are finally ready to prove the complexity of deciding whether a conjunctive ELK
formula is satisfiable.

Theorem 5. Satisfiability in conjunctive ELK is PTime-complete.

Proof. Consider Algorithm 1. The conjunctive ELK formula ϕ is satisfiable iff
SAT (ϕ) returns TRUE. The correctness of the algorithm follows immediately

430 A. Ozaki and N. Troquard

from Proposition 1. It suffices to observe that Lines 5–9 check the unsatisfiability
of an EL formula ¬ω ∧ ψ where ω and ψ are two of conjunctions of EL literals
(¬ω ∧ ψ is not a conjunction of EL literals, unless ω contains only one literal)
by checking the unsatisfiability of as many conjunctions of EL literals ¬β ∧ ψ as
there are literals β in ω. A simple analysis shows that the algorithm runs in
time polynomial in the size of ϕ, with a polynomial number of calls to a
procedure for checking the unsatisfiability of conjunctions of EL literals. By
Lemma 1, each of these checks can be done in polynomial time. Membership
in PTime follows. �

Algorithm 2. Adaptation of the learning algorithm for ELlhs,rhs [10]
Input: An EL terminology O given to the oracle; ΣO given to the learner
Output: An EL terminology H computed by the learner such that O ≡EL H
1: H := {a | MEMK

F,Ok(a)=‘yes’, a is a ΣO-assertion or a = A � B, A, B ∈ ΣO}
2: while EXF,Ok �= ‘you finished’ do
3: Let C � D be the returned positive example for O
4: Compute, with MEMK

F,Ok , C′ � D′ such that C′ or D′ in ΣO ∩ NC

5: if C′ ∈ ΣO ∩ NC then
6: Compute with MEMK

F,Ok a right O-essential a from C′ � D′ 	 �

C′�F ′∈H
F ′

7: else
8: Compute with MEMK

F,Ok a left O-essential a from C′ � D′

9: end if
10: Add a to H
11: end while
12: return H

5 Learning EL with Epistemic Reasoning

It is known that EL ontologies are not polynomial query exactly learnable, while
the fragments of EL restricting one of the sides of inclusions to be a concept
name, namely ELlhs and ELrhs, are exactly learnable in polynomial time [14]. In
this section, we transfer results known for EL and its fragments to our learning
model. Our results are for learning frameworks where the learning language is
the same for all agents. That is, we deal with the special case of a multi-agent
learning framework F(A) = {Fi = (Xi, Li) | i ∈ A} where all formulas in all
Li are from a DL L, denoted F(L,A). Theorem 6 is a consequence of Theorem 3
and complexity results for EL and its fragments in the exact learning model [14].

Theorem 6. The learning framework F(EL,A) is not polynomial query epis-
temically learnable. The learning frameworks F(ELlhs,A) and F(ELrhs,A) are
polynomial time epistemically learnable.

The hardness result for EL holds even for the fragment of EL ontologies
defined as the union of ELlhs and ELrhs, that is, in a named form where at least
one of the sides of concept inclusions is a concept name, which we call ELlhs,rhs.

Learning Ontologies with Epistemic Reasoning: The EL Case 431

An implementation of a learning algorithm for EL ontologies in this named form
was presented by Duarte et al. [9,10]. The algorithm is exponential in the size
of the vocabulary ΣO of the ontology O (which is the set of concept/role and
individual names occurring in O) and the largest concept expression CO4, but
it is not exponential in the size of the whole ontology.

Theorem 3 is not directly applicable in this case, however, we observe that if
the exact learning algorithm uses the epistemic learning model, then the outcome
of each example query will be a counterexample, and so, the complexity result
obtained with that algorithm is transferable to the epistemic setting. To see this,
consider Algorithm 2, which is an adaptation of the exact learning algorithm for
ELlhs,rhs [9,10]. Assume F in Algorithm 2 is F(ELlhs,rhs,A). The number of ΣO-
assertions (defined as assertions with only symbols from ΣO) is polynomial in
the size of O, so, in Line 1, Algorithm 2 identifies those that occur in O using
K-membership queries. It follows that all examples returned by the oracle in
the ‘while’ loop are concept inclusions. In each iteration of the ‘while’ loop, the
algorithm uses the examples returned by the EXF(ELlhs,rhs,A),Ok oracle to compute
what is called ‘left O-essential’ and ‘right O-essential’ concept inclusions using K-
membership queries, and then updates the hypothesis with such inclusions. We
do not go into details of the algorithm, which is fully presented in the mentioned
reference, but point out that it only adds to its hypothesis concept inclusions
that follow from the target ontology O.

Since we use K-membership queries, the oracle is aware of the knowledge
obtained by the learner in this way and does not return examples which follow
from such entailments. With an inductive argument on the number of iterations
of the main loop of the algorithm one can show that, at each iteration, if the
learner asks for an example query instead of an equivalence query, the outcome
will indeed be a counterexample for O and H. So the number of membership and
equivalence queries is the same as the number of K-membership and example
queries. Moreover, the hypothesis H computed by Algorithm 2 is equivalent to
the target O (where O = O1, so without epistemic axioms). Our next theorem
formalises the fact that the number of queries performed by the exact learning
algorithm has the same bound in the epistemic learning framework.

Theorem 7. F(ELlhs,rhs,A) is epistemically learnable in O(|ΣO|�O · (|C � D|)2)
many steps, where �O = 2 · |CO| · |ΣO| + 2, CO is the largest concept expression
in O and C � D is the largest counterexample given by the oracle.

6 Discussion

We introduced the epistemic learning model and investigated polynomial learn-
ability in our model, establishing that it coincides with polynomial learnability
in the exact learning model, and as a consequence, we can also transfer results
in our model to the PAC learning model extended with membership queries.

4 ‘The largest’ concept expression (and, later, counterexample) refers to the maximum
of the sizes of counterexamples/concept expressions.

432 A. Ozaki and N. Troquard

When the learner is only allowed to pose example queries, we showed that poly-
nomial learnability in our model in strictly harder than in the exact learning
model with only equivalence queries. This suggests that example queries are less
demanding for the oracle than equivalence queries. We showed that, in the EL
case, the epistemic reasoning that the oracle needs to perform features PTime
complexity. Our results complement previous research on polynomial learnabil-
ity in the exact and PAC learning models [7], where the authors analyse models
between the exact and PAC learning models, in a learning from interpretations
setting. As future work, we plan to investigate whether the implementation for
ELlhs,rhs [10] could benefit from our approach, where the oracle keeps track of the
knowledge passed to the learner, instead of processing the hypothesis at each
iteration.

References

1. Angluin, D.: Queries and concept learning. Mach. Learn. 2(4), 319–342 (1988)
2. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Kaelbling, L., Saf-

fiotti, A. (eds.) Proceedings of the 19th International Joint Conference on Artificial
Intelligence (IJCAI), pp. 364–369. Professional Book Center (2005)

3. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.):
The Description Logic Handbook: Theory, Implementation, and Applications, 2nd
edn. Cambridge University Press, Cambridge (2007)

4. Baader, F., Ghilardi, S., Lutz, C.: LTL over description logic axioms. ACM Trans.
Comput. Logic 13(3), 21:1–21:32 (2012)

5. Blum, A.L.: Separating distribution-free and mistake-bound learning models over
the Boolean domain. SIAM J. Comput. 23(5), 900–1000 (1994)

6. Borgwardt, S., Thost, V.: Temporal query answering in the description logic EL.
In: Proceedings of the Twenty-Fourth International Joint Conference on Artificial
Intelligence, IJCAI, pp. 2819–2825 (2015)

7. Bshouty, N.H., Jackson, J.C., Tamon, C.: Exploring learnability between exact and
PAC. J. Comput. Syst. Sci. 70(4), 471–484 (2005)

8. De Giacomo, G., Iocchi, L., Nardi, D., Rosati, R.: Moving a robot: the KR&R
approach at work. In: Aiello, L.C., Doyle, J., Shapiro, S.C. (eds.) Proceedings of
the Fifth International Conference on Principles of Knowledge Representation and
Reasoning (KR), pp. 198–209. Morgan Kaufmann (1996)

9. Duarte, M.R.C., Konev, B., Ozaki, A.: Exact learning of EL ontologies. In: Pro-
ceedings of the 31st International Workshop on Description Logics co-located with
16th International Conference on Principles of Knowledge Representation and Rea-
soning (KR) (2018)

10. Duarte, M.R.C., Konev, B., Ozaki, A.: Exactlearner: a tool for exact learning of EL
ontologies. In: Principles of Knowledge Representation and Reasoning: Proceedings
of the Sixteenth International Conference, KR, pp. 409–414 (2018)

11. Frazier, M., Pitt, L.: Learning from entailment: an application to propositional
Horn sentences. In: International Conference on Machine Learning, ICML, pp.
120–127 (1993)

12. Halpern, J.Y., Moses, Y.: A guide to completeness and complexity for modal logics
of knowledge and belief. Artif. Intell. 54(3), 319–379 (1992). https://doi.org/10.
1016/0004-3702(92)90049-4

https://doi.org/10.1016/0004-3702(92)90049-4
https://doi.org/10.1016/0004-3702(92)90049-4

Learning Ontologies with Epistemic Reasoning: The EL Case 433

13. Hughes, G., Cresswell, M.: A New Introduction to Modal Logic. Routledge, London
and New York (1996)

14. Konev, B., Lutz, C., Ozaki, A., Wolter, F.: Exact learning of lightweight description
logic ontologies. J. Mach. Learn. Res. 18(201), 1–63 (2018)

15. Konev, B., Ozaki, A., Wolter, F.: A model for learning description logic ontologies
based on exact learning. In: Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence, pp. 1008–1015 (2016)

16. Mohri, M., Rostamizadeh, A., Talwalkar, A.: Foundations of Machine Learning.
The MIT Press, Cambridge (2012)

17. Ozaki, A., Troquard, N.: Learning ontologies with epistemic reasoning: the EL
case. CoRR (2019). https://arxiv.org/abs/1902.03273

18. Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)

https://arxiv.org/abs/1902.03273

Counting Strategies for the Probabilistic
Description Logic ALCME Under the

Principle of Maximum Entropy

Marco Wilhelm1(B) , Gabriele Kern-Isberner1 , Andreas Ecke2 ,
and Franz Baader2

1 Department of Computer Science, TU Dortmund, Dortmund, Germany
marco.wilhelm@tu-dortmund.de

2 Department of Computer Science, TU Dresden, Dresden, Germany

Abstract. We present ALCME, a probabilistic variant of the Descrip-
tion Logic ALC that allows for representing and processing conditional
statements of the form “if E holds, then F follows with probability p”
under the principle of maximum entropy. Probabilities are understood
as degrees of belief and formally interpreted by the aggregating seman-
tics. We prove that both checking consistency and drawing inferences
based on approximations of the maximum entropy distribution is pos-
sible in ALCME in time polynomial in the domain size. A major prob-
lem for probabilistic reasoning from such conditional knowledge bases is
to count models and individuals. To achieve our complexity results, we
develop sophisticated counting strategies on interpretations aggregated
with respect to the so-called conditional impacts of types, which refine
their conditional structure.

Keywords: Probabilistic description logics · Aggregating semantics ·
Principle of maximum entropy · Domain-lifted inference

1 Introduction

Description Logics [1] are a well-investigated family of logic-based knowledge
representation languages that are tailored towards representing terminological
knowledge, i.e. knowledge about concepts, which can then be used to state
facts about individuals and objects in a concrete situation. In many applica-
tion domains, like medicine, knowledge is, however, not always certain, which
motivates the development of extensions that can deal with uncertainty. In this
paper, we present the probabilistic Description Logic ALCME, which allows to
represent and process uncertain knowledge using conditional statements of the
form “if E holds, then F follows with probability p”. Probabilities are understood

This work was supported by the German Research Foundation (DFG) within the
Research Unit FOR 1513 “Hybrid Reasoning for Intelligent Systems”.

c© Springer Nature Switzerland AG 2019
F. Calimeri et al. (Eds.): JELIA 2019, LNAI 11468, pp. 434–449, 2019.
https://doi.org/10.1007/978-3-030-19570-0_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19570-0_28&domain=pdf
http://orcid.org/0000-0003-0266-2334
http://orcid.org/0000-0001-8689-5391
http://orcid.org/0000-0001-9971-8925
http://orcid.org/0000-0002-4049-221X
https://doi.org/10.1007/978-3-030-19570-0_28

Counting Strategies for the Probabilistic Description Logic ALCME 435

as degrees of belief based on the aggregating semantics [9]. This semantic gen-
eralizes the statistical interpretation of conditional probabilities by combining
it with subjective probabilities based on probability distributions over possible
worlds. Basically, in a fixed world I, the conditional (F |E) can be evaluated
statistically by considering the number of individuals that verify the conditional
(i.e., belong to E and F) and dividing this number by the number of individuals
to which the conditional applies (i.e., the elements of E). In the aggregation
semantics, this is not done independently for each world. Instead, one first sums
up these numbers over all possible worlds, weighted with the probability of the
respective world, both in the numerator and in the denominator, and only then
divides the resulting sums by each other. The semantics obtained this way there-
fore mimics statistical probabilities from a subjective point of view. This is in
contrast to other approaches for probabilistic Description Logics, which handle
either subjective [10] or statistical probabilities [13], or are essentially classical
terminologies over probabilistic databases [4].

Due to this combination of statistical and subjective probabilities, the models
of ALCME-knowledge bases are probability distributions over a set of interpre-
tations that serve as possible worlds. In order to ensure that the possible worlds
have the same scope and that counting elements with certain properties leads
to well-defined natural numbers, we assume that all the interpretations have
the same fixed finite domain. However, reasoning on all models of an ALCME-
knowledge base is not productive due to the vast number of such models. Thus,
for reasoning purposes, we select among all models of the knowledge base the
distinct model with maximum entropy [12]. This MaxEnt distribution is known
to be the only model fulfilling some evident common sense principles that can
be summarized by the main idea that “essentially similar problems should have
essentially similar solutions” [11]. In general, however, the MaxEnt distribution
is a real-valued function without a finite, closed-form representation. In fact,
from a computational point of view, it is the solution of a nonlinear optimiza-
tion problem, and thus approximations with values in the rational numbers must
be used.

The main result shown in this paper is that all required computations can be
done in time polynomial in the chosen domain size. First, we show that check-
ing consistency of ALCME-knowledge bases is possible in time polynomial in the
domain size. A consistent ALCME-knowledge base always has a MaxEnt model.
Second, we prove that, once an approximation of this distribution is determined,
inferences can be drawn exactly from this approximation, and these inferences
can again be computed in time polynomial in the domain size. Investigating the
complexity with respect to the domain size is a fundamental problem in proba-
bilistic reasoning as the domain size is usually the crucial quantity in application
domains. Inferences that can be drawn in time polynomial in the domain size
are known as domain-lifted inferences [6]. The problem of drawing inferences in
a domain-lifted manner is non-trivial since probability distributions are defined
over possible worlds, the number of which is exponential in the domain size.
Thus, our complexity results require sophisticated strategies of aggregating and

436 M. Wilhelm et al.

counting interpretations. More precisely, we capture the fact that interpretations
with the same conditional structure [8] have the same impact on the aggregat-
ing semantics and the MaxEnt distribution, and we refine the notion of condi-
tional structures of interpretations to conditional impacts of types [14,15], which
enables the use of efficient counting strategies.

The rest of the paper is organized as follows. In Sect. 2, we introduce syntax
and semantic of the Description Logic ALCME. We prove that checking con-
sistency and drawing inferences from approximations of the maximum entropy
distribution are possible in ALCME in time polynomial in the domain size in
Sect. 5. For this, we first discuss how interpretations can be aggregated into
equivalence classes based on conditional structures and types (Sect. 3), and then
show how these equivalence classes and their cardinalities can be determined
efficiently (Sect. 4).

2 The Description Logic ALCME

We present ALCME, a probabilistic conditional extension of the terminological
part of the Description Logic ALC. The semantics of ALCME is based on the
aggregating semantics [16] and the principle of maximum entropy [12].

Let NC and NR be disjoint finite sets of concept and role names, respectively.
A concept is either a concept name or of the form

�, ⊥, ¬C, C � D, C � D, ∃r.C, ∀r.C,

where C and D are concepts and r is a role name. The set of all subconcepts of
a concept C, i.e. the concepts C is built of, is denoted by sub(C).

An interpretation I = (ΔI , ·I) is a tuple consisting of a non-empty set ΔI

called domain and an interpretation function ·I that maps every C ∈ NC to a
subset CI ⊆ ΔI and every r ∈ NR to a binary relation rI ⊆ ΔI × ΔI . The
interpretation of arbitrary concepts is recursively defined as

– �I = ΔI and ⊥I = ∅,
– (¬C)I = ΔI \ CI , (C � D)I = CI ∩ DI , and (C � D)I = CI ∩ DI ,
– (∃r.C)I = {a ∈ ΔI | ∃b ∈ ΔI : (a, b) ∈ rI ∧ b ∈ CI}, and
– (∀r.C)I = {a ∈ ΔI | ∀b ∈ ΔI : (a, b) ∈ rI → b ∈ CI}.

Let C,D,E, F be concepts and let p ∈ [0, 1]. An expression of the form
C � D is called a concept inclusion, and an expression of the form (F |E)[p] is
called a (probabilistic) conditional. For computational issues, we assume p to be
a rational number. Concept inclusions C � D represent strict knowledge (“every
individual that has property C must also have property D”) while conditionals
(F |E)[p] act as uncertain beliefs (“if E holds for an individual, then F follows
with probability p”).

An interpretation I is a model of a concept inclusion, written I |= C � D,
iff CI ⊆ DI . The semantics of conditionals is based on probability distributions
over possible worlds. For this, we require a fixed finite domain Δ = ΔI for all

Counting Strategies for the Probabilistic Description Logic ALCME 437

interpretations as part of the input. The interpretations serve as possible worlds,
thus the fixed finite domain guarantees that all possible worlds have the same
scope. We denote the set of all interpretations I = (Δ, ·I) with IΔ and the set
of all probability distributions P : IΔ → [0, 1] with PΔ.

Definition 1 (Aggregating Semantics). A probability distribution P ∈ PΔ

is a (probabilistic) model of a concept inclusion C � D, written P |= C � D, iff

I �|= C � D ⇒ P(I) = 0 ∀I ∈ IΔ,

and of a conditional (F |E)[p], written P |= (F |E)[p], iff
∑

I∈IΔ |EI ∩ F I | · P(I)
∑

I∈IΔ |EI | · P(I)
= p. (1)

Concept inclusions are interpreted as hard constraints in the obvious manner:
if a concept inclusion does not hold in an interpretation I, then I has probability
zero. Whether a concept inclusion holds in I can be decided independently of
the probability distribution. The interpretation of conditionals is an adaption
of the aggregating semantics [16] and needs more explanation. The core idea is
to capture the definition of conditional probabilities by a probability-weighted
sum of the number of individuals b for which the conditional (F |E) is verified
(i.e., b ∈ |EI ∩ F I |) divided by a probability-weighted sum of the number of
individuals a for which the conditional is applicable (i.e., a ∈ |EI |). Hence, the
aggregating semantics mimics statistical probabilities from a subjective point of
view, and probabilities can be understood as degrees of belief in accordance with
type 2 probabilities in the classification of Halpern [7].

The aggregating semantics constitutes the main difference to the approaches
in [10] and [13]: while there is no probabilistic semantics for terminological knowl-
edge in [10], conditionals are interpreted in [13] purely statistically by the relative
frequencies |EI ∩ F I |/|EI | in every single interpretation I.

A knowledge base R = (T , C) consists of a finite set of concept inclusions T
and a finite set of conditionals C = {(F1|E1)[p1], . . . , (Fn|En)[pn]}. Without loss
of generality, we make the following assumptions:

1. Knowledge bases contain concepts that are built using the constructors nega-
tion (¬C), conjunction (C � D), and existential restriction (∃r.C) only. In
addition, we disallow double negation. For the rest of the paper, whenever
the negation of an already negated concept is mentioned, we mean the concept
itself.

2. Concepts in existential restrictions ∃r.C are concept names. Otherwise,
replace C by a fresh concept name A and add C � A and A � C to T .

3. Probabilities of conditionals (F |E)[p] ∈ C satisfy 0 < p < 1. This is with-
out loss of generality, because (F |E)[1] and E � F as well as (F |E)[p] and
(¬F |E)[1−p] (and hence (F |E)[0] and E � ¬F) are semantically equivalent.

We also require the notion of the signature of a knowledge base R. In particular,
we denote the set of all concept names that are mentioned in R with sigC(R),
and the set of all role names that are mentioned in R with sigR(R).

438 M. Wilhelm et al.

A probability distribution P ∈ PΔ is a model of a knowledge base R = (T , C),
written P |= R, iff it is a model of every concept inclusion in T and of every
conditional in C. A knowledge base with at least one model is called consistent.
Knowledge bases with C = ∅ are equivalent to ALC-TBoxes (cf. [3]) and allow for
classical entailment. In particular, our probabilistic notion of consistency then
coincides with the classical one.

Example 1. Consider the following knowledge of an agent. Every person that
is generous certainly is wealthy. Otherwise, she would not have anything to
spend. And every wealthy person most likely is successful in her career or has a
generous patron. Of course, the latter is uncertain as, for example, persons could
also become wealthy because of luck in a lottery, etc. Further, wealthy persons
typically are not generous. We represent this knowledge by the concept inclusion

c1 : Generous � Wealthy

and the conditionals

r1 : (¬Successful � ¬∃patron.Generous|Wealthy)[0.1],
r2 : (¬Generous|Wealthy)[0.8],

and consider the knowledge base RW = ({c1}, {r1, r2}) later on. Note that r1 is
equivalent to the conditional (Successful � ∃patron.Generous|Wealthy)[0.9].

Consistent probabilistic knowledge bases typically have infinitely many mod-
els even for a fixed finite domain. Instead of reasoning w.r.t. all models, it is often
more useful to reason w.r.t. a fixed model since reasoning based on the whole set
of models leads to monotonic and often uninformative inferences. Any selected
model P yields the inference relation

R |=P

{
C � D iff P |= C � D,

(F |E)[p] iff P |= (F |E)[p].
(2)

From a commonsense point of view, the maximum entropy distribution is the
most appropriate choice of model [11]. For every consistent knowledge base, the
maximum entropy distribution exists and is unique.

Definition 2 (Maximum Entropy Distribution). Let R be a consistent
knowledge base and Δ a fixed domain. The probability distribution

PME
R = arg max

P∈PΔ

P|=R

−
∑

I∈IΔ

P(I) · log P(I) (3)

is called the maximum entropy distribution (also MaxEnt distribution) of R.
In (3), the convention 0 · log 0 = 0 applies.

Counting Strategies for the Probabilistic Description Logic ALCME 439

Since it is the solution of a nonlinear optimization problem, the MaxEnt
distribution can only be calculated approximately in general. This is typically
done by solving the dual optimization problem (cf. [5]), which leads to

PME
R (I) =

{
α0 ·

∏n
i=1 α

fi(I)
i I |= T ,

0 otherwise,
(4)

where, for i = 1, . . . , n, the index i refers to the i-th conditional (Fi|Ei)[pi] in
C, the feature function fi is defined as fi(I) = |EI

i ∩ F I
i | − pi · |EI

i |, α0 is a
normalizing constant, and the vector αME

R = (α1, . . . , αn) ∈ R
n
>0 is a solution of

the system of equations

∑

I∈IΔ

I|=T

fi(I) ·
n∏

j=1

α
fj(I)
j = 0, i = 1, . . . , n. (5)

Given α1, . . . , αn and the feature functions, the normalization constant α0 is
defined as

α0 =
(∑

I∈IΔ

I|=T

n∏

i=1

α
fi(I)
i

)−1

. (6)

Its rôle is to ensure that a probability distribution is obtained, i.e., that summing
up the probabilities of the elements of IΔ yields 1.

The system (5) can, for instance, be solved using Newton’s method. Here, we
do not investigate this approximation process, but assume that an approximation
β ∈ Q

n
>0 of αME

R is given. Then, β defines an approximation of PME
R via

Pβ
R(I) =

{
β0 ·

∏n
i=1 β

fi(I)
i I |= T ,

0 otherwise,
(7)

where β0 is a normalizing constant that is defined analogously to (6). It is easy
to see that Pβ

R indeed is a probability distribution. In particular, Pβ
R is an

exact model of T and of C up to a deviation depending on the precision of the
approximation β.

3 Conditional Structures and Types for ALCME

All kinds of maximum entropy calculations involve sums over interpretations.
As the number of interpretations is exponential in |Δ|, evaluating these sums in
the näıve way is intractable. In this section, we aggregate interpretations into
equivalence classes such that equivalent interpretations have the same impact on
the calculations (basically, they have the same MaxEnt probability), while the
number of equivalence classes is bounded polynomially in |Δ|.

440 M. Wilhelm et al.

The conditional structure σR(I) of an interpretation I with respect to a
knowledge base R = (T , C) is a formal representation of how often the condi-
tionals in C are verified and falsified in I [8]. Mathematically, the conditional
structure

σR(I) =
n∏

i=1

(a+i)|EI
i ∩F I

i | · (a−
i)|EI

i ∩(¬Fi)
I | (8)

is an element of the free Abelian group that is generated by G = {a±
i | i =

1, . . . , n, ± ∈ {+,−}}. The elements in G indicate whether the i-th conditional
is verified (a+i) or falsified (a−

i). The frequencies of verification and falsification
in I are respectively indicated by the exponents of a+i and a−

i .

Example 2. Recall RW from Example 1 and consider the interpretation I in
which each d ∈ Δ is wealthy (d ∈ WealthyI), successful (d ∈ SuccessfulI), but
not generous (d /∈ GenerousI). Then, σRW

(I) = (a−
1)|Δ| · (a+2)|Δ|.

Conditional structures are important for maximum entropy reasoning as the
MaxEnt distribution PME

R assigns the same probability to interpretations that
are models of T and have the same conditional structure. The same holds for
all approximations of PME

R defined by (7) since σR(I) = σR(I ′) implies fi(I) =
fi(I ′) for all i = 1, . . . , n. We now refine conditional structures with respect to
the so-called conditional impacts of types.

Definition 3 (Type [2]). Let M be a set of concepts such that for every con-
cept C ∈ M its negation is also in M (modulo removal of double negation). A
subset τ of M is a type for M iff

– for every C ∈ M, either C or ¬C belongs to τ , and
– for every C � D ∈ M it holds that C � D ∈ τ iff C,D ∈ τ .

The set of all types for M is denoted by T(M).

In particular, we are interested in types for a knowledge base R = (T , C),
i.e. types for TR = T(MR) where MR is the closure under negation of the set
of subconcepts of concepts occurring in R, i.e.,

M+
R =

⋃

C�D∈T

(
sub(C) ∪ sub(D)

)
∪

⋃

(F |E)[p]∈C

(
sub(E) ∪ sub(F)

)
,

and MR = M+
R ∪ {¬C | C ∈ M+

R}.

Example 3. There are 16 different types for RW from Example 1 (cf. Table 1).

A type τ can be understood as the concept Cτ that is the conjunction of
all concepts in τ . If τ �= τ ′ are different types, then Cτ and Cτ ′ are disjoint,
i.e. CI

τ ∩ CI
τ ′ = ∅ for all I ∈ IΔ. Every concept D ∈ M can be expressed as a

disjunction of such disjoint type concepts [2]:

D ≡
⊔

τ∈T(M)
D∈τ

Cτ and |DI | =
∑

τ∈T(M)
D∈τ

|CI
τ |. (9)

Counting Strategies for the Probabilistic Description Logic ALCME 441

Table 1. Types, their conditional impacts w.r.t. the conditionals in RW (cf. Exam-
ple 1), and their satisfaction behavior w.r.t. the concept inclusion c1 in RW . Concept
and role names are abbreviated by their first letter.

τ ρRW
(τ) τ |= c1?

τ1 = { S, W, G, ∃p.G, ¬(¬S � ¬∃p.G)} a−
1 a−

2 Yes

τ2 = { S, W, G, ¬∃p.G, ¬(¬S � ¬∃p.G)} a−
1 a−

2 Yes

τ3 = { S, W, ¬G, ∃p.G, ¬(¬S � ¬∃p.G)} a−
1 a+

2 Yes

τ4 = { S, W, ¬G, ¬∃p.G, ¬(¬S � ¬∃p.G)} a−
1 a+

2 Yes

τ5 = { S, ¬W, G, ∃p.G, ¬(¬S � ¬∃p.G)} 1 No

τ6 = { S, ¬W, G, ¬∃p.G, ¬(¬S � ¬∃p.G)} 1 No

τ7 = { S, ¬W, ¬G, ∃p.G, ¬(¬S � ¬∃p.G)} 1 Yes

τ8 = { S, ¬W, ¬G, ¬∃p.G, ¬(¬S � ¬∃p.G)} 1 Yes

τ9 = {¬S, W, G, ∃p.G, ¬(¬S � ¬∃p.G)} a−
1 a−

2 Yes

τ10 = {¬S, W, G, ¬∃p.G, ¬(¬S � ¬∃p.G)} a+
1 a−

2 Yes

τ11 = {¬S, W, ¬G, ∃p.G, ¬(¬S � ¬∃p.G)} a−
1 a+

2 Yes

τ12 = {¬S, W, ¬G, ¬∃p.G, ¬(¬S � ¬∃p.G)} a+
1 a+

2 Yes

τ13 = {¬S, ¬W, G, ∃p.G, ¬(¬S � ¬∃p.G)} 1 No

τ14 = {¬S, ¬W, G, ¬∃p.G, ¬S � ¬∃p.G } 1 No

τ15 = {¬S, ¬W, ¬G, ∃p.G, ¬S � ¬∃p.G } 1 Yes

τ16 = {¬S, ¬W, ¬G, ¬∃p.G, ¬S � ¬∃p.G } 1 Yes

Additionally, the cardinalities |CI
τ | of all type concepts τ ∈ T(M) sum up to |Δ|:

⊔

τ∈T(M)

Cτ ≡ � and
∑

τ∈T(M)

|CI
τ | = |Δ|. (10)

To prove this, let I ∈ IΔ and consider d ∈ Δ. If we define τ = {D ∈ M | d ∈
DI}, then it is easy to see that τ is a type and that d ∈ CI

τ . This shows that⋃
τ∈T(M) CI

τ ≡ Δ, and thus also |Δ| =
∑

τ∈T(M) |CI
τ | due to the fact that the

type concepts are pairwise disjoint.
As a consequence of (10), types can be seen as characterizations of individuals

through the concepts they belong to. Hence, we may say that an individual d ∈ Δ
is of type τ in the interpretation I ∈ IΔ iff d ∈ CI

τ , and two individuals are
equivalent iff they are of the same type. With this, the conditional structure of
interpretations (8) can be broken down to the conditional impact of types. We
define the conditional impact of a type τ for a knowledge base R by

ρR(τ) =
n∏

i=1

⎧
⎪⎨

⎪⎩

a+i iff Ei, Fi ∈ τ

a−
i iff Ei,¬Fi ∈ τ

1 iff ¬Ei ∈ τ

.

Example 4. The conditional impacts of the types for RW from Example 1 are
shown in Table 1.

442 M. Wilhelm et al.

Analogously to the conditional impact of a type, we define the feature

fi(τ) =

⎧
⎪⎨

⎪⎩

1 − pi iff Ei, Fi ∈ τ

−pi iff Ei,¬Fi ∈ τ

0 iff ¬Ei ∈ τ

(11)

of τ for i = 1, . . . , n.

Proposition 1. Let R = (T , C) be a knowledge base. Then, for all I ∈ IΔ,

1. σR(I) =
∏

τ∈TR ρR(τ)|CI
τ |,

2. fi(I) =
∑

τ∈TR |CI
τ | · fi(τ) for i = 1, . . . , n.

Proof. To see that 1. holds, note that we have

σR(I) =
n∏

i=1

(a+i)|EI
i ∩F I

i | · (a−
i)|EI

i ∩(¬Fi)
I |

=
n∏

i=1

(a+i)
|(� τ∈TR

Ei,Fi∈τ

Cτ)
I |

· (a−
i)

|(� τ∈TR
Ei,¬Fi∈τ

Cτ)
I |

=
n∏

i=1

(a+i)

∑
τ∈TR

Ei,Fi∈τ

|CI
τ |

· (a−
i)

∑
τ∈TR

Ei,¬Fi∈τ

|CI
τ |

=
n∏

i=1

∏

τ∈TR

{
(a+i)|CI

τ | iff Ei, Fi ∈ τ

(a−
i)|CI

τ | iff Ei,¬Fi ∈ τ

=
∏

τ∈TR

ρR(τ)|CI
τ |.

The equations in 2. can be shown using the same arguments. �

Proposition 1 advises one to consolidate interpretations with the same counts
|CI

τ | for τ ∈ TR to equivalence classes. We define I ∼R I ′ iff |CI
τ | = |CI′

τ | for
all τ ∈ TR, and obtain the following corollary.

Corollary 1. Let R be a knowledge base, and let I, I ′ ∈ IΔ with I ∼R I ′.

1. Then, σR(I) = σR(I ′) and fi(I) = fi(I ′) for i = 1, . . . , n.
2. If R is consistent and additionally I and I ′ are models of T , then

(a) PME
R (I) = PME

R (I ′),
(b) Pβ

R(I) = Pβ
R(I ′) for any approximation Pβ

R of PME
R defined by (7).

We close this section with a rough estimation of the number of equivalence
classes in IΔ/∼R. These equivalence classes [I]∼R can differ in the numbers
|CI

τ | for τ ∈ TR, all of which can vary between zero and |Δ|. Hence, |IΔ/∼R| is
bounded by (|Δ| + 1)|TR|, which is polynomial in |Δ|. Note that this bound is
not sharp.

Counting Strategies for the Probabilistic Description Logic ALCME 443

4 Counting Strategies for ALCME

We give combinatorial arguments that allow us to compute the equivalence
classes in IΔ/∼R as well as their cardinalities in time polynomial in |Δ|.

By definition, the equivalence classes [I]∼R ∈ IΔ/∼R differ in the number of
individuals from Δ that have the types τ ∈ TR, i.e., that belong to CI

τ . No other
properties of these individuals are relevant. Hence, specifying all equivalence
classes in IΔ/∼R is related to the combinatorial problem of classifying |Δ|-
many elements into |TR|-many categories. For the rest of the paper let k = |Δ|,
TR = {τ1, . . . , τm}, and ki = k(τi) = |CI

τi
|, if it is clear from the context which

interpretation I is considered. Then, [I]∼R is in a one-to-one correspondence
with the vector k = (k1, . . . , km) ∈ N

m
0 , and we may define [I]k as the unique

equivalence class corresponding to k. Due to (10), for all [I]k we have that

m∑

i=1

ki = k (12)

holds. However, not every vector k ∈ N
m
0 that satisfies (12) leads to an equiva-

lence class in IΔ/∼R. This is due to the fact that existential restrictions relate
individuals to each other and may force the existence of further individuals of a
certain type.

Example 5. Consider the knowledge base

Rsmk = (∅, {(∃friend.Smoker|Smoker)[0.9]}

stating that smokers typically have at least one friend that is a smoker, too.
There are four types for Rsmk (concept and role names are abbreviated by their
first letter):

t1 = { S,∃f.S}, t2 = { S,¬∃f.S},

t3 = {¬S,∃f.S}, t4 = {¬S,¬∃f.S}.

If there is an individual of type t3, i.e. a non-smoker who has a friend that
smokes, then there must be a second person who is a smoker, i.e., an individual
of type t1 or t2. Hence, k3 > 0 enforces k1 + k2 > 0.

To deal with this phenomenon, we adopt the following definition from [2].

Definition 4. Let τ be a type that contains an existential restriction ∃r.A, and
let ¬∃r.B1, . . . ,¬∃r.Bl be all the negated existential restrictions for the role r in
τ . A type τ ′ satisfies ∃r.A in τ iff A,¬B1, . . . ,¬Bl ∈ τ ′.

It is now easy to see that, for every type τ ∈ TR and for every existential
restriction ∃r.A ∈ τ ,

k(τ) = 0 or
∑

τ ′∈TR
τ ′ satisfies ∃r.A in τ

k(τ ′) > 0 (13)

444 M. Wilhelm et al.

must hold. Conversely, using ideas from [2], it is not hard to show that any
vector k satisfying

∑m
i=1 ki = k and (13) is realized by an interpretation. Thus,

we have

IΔ/∼R = {[I]k | k ∈ N
m
0 ,

m∑

i=1

ki = k, and (13) holds}. (14)

Equation (14) allows us to enumerate the equivalence classes in IΔ/∼R in time
polynomial in |Δ|, as Condition (13) is independent of Δ and iterating through
all k ∈ N

m
0 that satisfy

∑m
i=1 ki = k is possible in time polynomial in |Δ|.

Furthermore, note that we are interested in only those interpretations that satisfy
all concept inclusions in T . In these interpretations there must not exist an
individual d ∈ Δ with d ∈ CI and d �∈ DI for any C � D ∈ T . Due to (9) and
(10), this constraint is equivalent to

C,¬D ∈ τ ⇒ k(τ) = 0 ∀τ ∈ TR, C � D ∈ T . (15)

We say that a type τ ∈ TR for which C ∈ τ implies D ∈ τ for all C � D ∈ T
satisfies T , written τ |= T . Hence, (15) states that k(τ) > 0 holds for only
those types that satisfy T . Consequently, the set of all equivalence classes of
those interpretations that satisfy T is

IΔ
T/∼R = {[I]k ∈ IΔ/∼R | (15) holds}

and can be determined in time polynomial in |Δ|, too.

Example 6. Recall RW from Example 1. All types τ ∈ TRW
satisfy TW except

for τ5, τ6, τ13, and τ14 (cf. Table 1).

It still remains to determine the cardinalities |[I]k |. These cardinalities
depend on two factors. First, the k individuals in Δ have to be allocated to
the types for R. This is the combinatorial problem of classifying elements into
categories mentioned at the beginning of this section, and for which there are

(
k

k1, . . . , km

)

=
k!

k1! · · · km!

many possibilities if ki = |τi| for every τi ∈ TR. Put differently, one can also say
that this is the task of specifying CI

τ for every τ ∈ TR when previously only the
cardinalities |CI

τ | were known.
Second, once this allocation is given, the sets CI

τ for every τ ∈ TR still do not
determine a unique interpretation. There remains some degree of freedom when
picking a single interpretation from [I]k . To see this, recall that an interpretation
I ∈ IΔ is fully specified iff for all concept names C ∈ NC and for all role names
r ∈ NR the sets CI and rI are fixed. As every concept name A that is mentioned
in R also occurs in every single type for R as either A or ¬A, the sets AI for
these concept names are uniquely determined by the types. However, this does
not hold for concept names that are not mentioned in R. Actually, given a

Counting Strategies for the Probabilistic Description Logic ALCME 445

concept name in NC \ sigC(R), one can choose freely for every individual in
Δ whether it belongs to this concept name or not. There are 2k·|NC\sigC(R)|

possibilities of allocating the k individuals in Δ to the concepts in NC \ sigC(R).
Determining the degree of freedom that arises from role memberships is more
difficult. Again, for the roles that are not mentioned in R, there is free choice
such that there are 2k2·|NR\sigR(R)| possible combinations of allocating k2 many
tuples of individuals to them. For the membership to roles that are mentioned
in R, we first define the degree of freedom of a role and discuss it afterwards.

Definition 5. Let R = (T , C) be a knowledge base, and let τ ∈ TR be a type.
Further let ∃r.A1, . . ., ∃r.Al be all the existential restrictions and let ¬∃r.B1, . . .,
¬∃r.Bh be all the negated existential restrictions for the role r in τ . We define
the degree of freedom of r in τ with respect to [I]k ∈ IΔ/∼R as

φk(τ, r) =
(∑

I⊆{1,...,l}
(−1)|I| ·

∏

j=1,...,m,
¬B1,...,¬Bh∈τj ,

¬Ai∈τj ∀i∈I

2kj

)k(τ)

. (16)

Definition 5 is a generalization of Definition 4 that takes counting aspects
into account by making use of the well-known inclusion-exclusion principle. In
this way, it keeps track of which individual guarantees that a certain existential
restriction holds. To understand the good behavior of Definition 5, assume that
there is no positive existential restriction ∃r.A for r in τ . Then, for every d ∈
AI

τ and for every individual d′ in any AI
τ ′ with ¬B1, . . . ,¬Bh ∈ τ ′, whether

(d, d′) ∈ rI or not can be chosen freely, which results in the factor (2k(τ ′))k(τ) in
φk(τ, r). Now, assume there is one (positive) existential restriction ∃r.A in τ . For
individuals d′ ∈ τ ′ with τ ′ such that ¬A,¬B1, . . . ,¬Bh ∈ τ ′, again the belonging
of (d, d′) to rI is optional. However, there must be at least one individual d′′

among the individuals of a type τ ′′ with A,¬B1, . . . ,¬Bh ∈ τ ′′ such that (d, d′′) ∈
rI . This results in the degree of freedom

φk(τ, r) =
(∏

τ ′∈TR
¬B1,...,¬Bh∈τ ′

2k(τ ′) −
∏

τ ′∈TR
¬B1,...,¬Bh,¬A∈τ ′

2k(τ ′)
)k(τ)

=
(
(

∏

τ ′∈TR
¬B1,...,¬Bh,¬A∈τ ′

2k(τ ′)) · (
∏

τ ′∈TR
¬B1,...,¬Bh,A∈τ ′

2k(τ ′) − 1)
)k(τ)

.

If there are more than one (positive) existential restrictions, then all of them
could be satisfied by the same tuple of individuals. Alternatively, there may exist
several tuples of individuals each satisfying only some of the restrictions. Then,
a combination of tuples is needed to satisfy all of the existential restrictions.
This makes the application of the inclusion-exclusion principle necessary.

446 M. Wilhelm et al.

Altogether, for every [I]k ∈ IΔ/∼R, one has

|[I]k | =
(

k

k1, . . . , km

)

·
(m∏

j=1

∏

r∈sigR(R)

φk(τj , r)
)

· 2(|NC\sigC(R)|)·k · 2(|NR\sigR(R)|)·k2
, (17)

which can be calculated in time polynomial in |Δ|.

5 Consistency Check and Drawing Inferences in ALCME

We build upon the results from Sects. 3 and 4 and prove that both checking con-
sistency and drawing inferences from approximations of the MaxEnt distribution
is possible in ALCME in time polynomial in |Δ|.

Proposition 2. Let R be a knowledge base and Δ a finite domain. Then, con-
sistency of R in a probabilistic model with domain Δ can be checked in time
polynomial in |Δ|.

Proof. The knowledge base R = (T , C) is consistent iff there is a probability
distribution P ∈ PΔ such that I �|= T implies P(I) = 0 for all I ∈ IΔ, and

∑
I∈IΔ |EI

i ∩ F I
i | · P(I)

∑
I∈IΔ |EI

i | · P(I)
= pi, i = 1, . . . , n.

Alternatively, R is consistent iff the MaxEnt distribution PME
R exists. Hence, it

is legitimate to limit the search space to any subset of PΔ that contains PME
R

when searching for a model of R. Thus, it is sufficient to search for a model of
R that satisfies P(I) = P(I ′) if I ∼R I ′ and I, I ′ |= T , like PME

R does. In other
words, it is sufficient to find a probability distribution P : IΔ

T/∼R → [0, 1] that
satisfies

∑
[I]k ∈IΔ

T/∼R

(∑
τ∈TR

Ei,Fi∈τ
k(τ)

)
· P([I]k)

∑
[I]k ∈IΔ

T/∼R

(∑
τ∈TR
Ei∈τ

k(τ)
)

· P([I]k)
= pi, i = 1, . . . , n. (18)

Then, P can be extended to a probability distribution on IΔ and thereby to a
model of R by defining for all I ∈ IΔ

P(I) =

{
P([I]k) · (|[I]k |)−1 [I]k ∈ IΔ

T/∼R

0 otherwise.
,

The equations in (18) and the conditions 0 ≤ P([I]k) ≤ 1 for all [I]k ∈ IΔ
T/∼R

can easily be transformed into a system of linear inequalities with integer coef-
ficients. Both the number of inequalities and the number of variables of this
system is in O(|IΔ

T/∼R|) and, hence, polynomially bounded in |Δ|. It follows,
that satisfiability of this system can be decided in time polynomial in |Δ|. �

Counting Strategies for the Probabilistic Description Logic ALCME 447

Proposition 3. Let R be a consistent knowledge base, β ∈ Q
n
>0, and let C, D,

E, F be concepts.

1. Calculating the probability p for which Pβ
R |= (F |E)[p] holds, and

2. deciding whether Pβ
R |= C � D holds

is possible in time polynomial in |Δ|.

Proof. As Pβ
R |= C � D iff Pβ

R |= (D|C)[1], the second statement of the
proposition follows from the first. To prove the first statement, we write pi = si

ti

with si, ti ∈ N>0 for i = 1, . . . , n, and q = (F |E)[p]. Then,

p =
∑

I∈IΔ |EI ∩ F I | · Pβ
R(I)

∑
I∈IΔ |EI | · Pβ

R(I)
=

∑
I∈IΔ

I|=T
|EI ∩ F I | · β0 ·

∏n
i=1 β

fi(I)
i

∑
I∈IΔ

I|=T
|EI | · β0 ·

∏n
i=1 β

fi(I)
i

=

∑
I∈IΔ

I|=T
|EI ∩ F I | ·

∏n
i=1 β

|EI∩F I |− si
ti

·|EI |
i

∑
I∈IΔ

I|=T
|EI | ·

∏n
i=1 β

|EI∩F I |− si
ti

·|EI |
i

=

∑
I∈IΔ

I|=T
|EI ∩ F I | ·

∏n
i=1 β

ti·|EI∩F I |−si·|EI |+si·|Δ|
i

∑
I∈IΔ

I|=T
|EI | ·

∏n
i=1 β

ti·|EI∩F I |−si·|EI |+si·|Δ|
i

. (19)

Note that

ti · |EI
i ∩ F I

i | − si · |EI
i | + si · |Δ| ≥ 0 ∀I ∈ IΔ, i = 1, . . . , n.

Hence, the last fraction in (19) mentions sums over products of integers (|EI∩F I |
and |EI |, respectively) and rational numbers (βi) with integer exponents only
and can be computed exactly.

It remains to show that (19) can be calculated in time polynomial in |Δ|. To
prove this, we aggregate interpretations into equivalence classes as discussed in
Sect. 3. However, we have to modify the set of types the equivalence classes are
based on since the query conditional q may mention additional subconcepts that
are not considered by the types in TR. Let M+

q = {C | C ∈ sub(E) ∪ sub(F)},
Mq = M+

q ∪ {¬C | C ∈ M+
q }, and Tq

R = T(MR ∪ Mq). For interpretations
I, I ′ ∈ IΔ, we define the equivalence relation I ∼q

R I ′ iff CI
τ = CI′

τ for all
τ ∈ Tq

R in analogy to ∼R. Every type τ ∈ Tq
R is a refinement of a unique type

τ ′ ∈ TR, i.e. τ ′ ⊆ τ , and we may define ρR(τ ′) = ρR(τ). In plain words, τ ′

inherits its conditional impact from τ . Accordingly, we define fi(τ ′) = fi(τ) for
i = 1, . . . , n. Then Proposition 1 as well as Corollary 1 still hold when replacing
the underlying set of types TR by Tq

R. Also, the counting strategies and the
complexity results for IΔ/∼q

R are the same as for IΔ/∼R. Hence, (19) can be

448 M. Wilhelm et al.

simplified to

p =

∑
[I]k ∈IΔ

T/∼q
R

k+
i ·

∏n
i=1 β

ti·k+
i −si·ko

i +si·|Δ|
i

∑
I∈IΔ

I|=T
ko

i ·
∏n

i=1 β
ti·k+

i −si·ko
i +si·|Δ|

i

where k+
i =

∑
τ∈Tq

R
Ei,Fi∈τ

k(τ) and ko
i =

∑
τ∈Tq

R
Ei∈τ

k(τ). This fraction can clearly be

calculated in time polynomial in |Δ|. �

Proposition 3 states that inferences in Pβ
R are domain-lifted (cf. [6]). Hence,

the message of Proposition 3 is that the crucial part of drawing inferences at
maximum entropy from R according to (2) is the approximation of PME

R by
Pβ

R. Once this approximation is given, all further calculations can be performed
exactly without additional inaccuracies and in time polynomial in |Δ|.

6 Conclusion and Future Work

We have presented ALCME, a probabilistic variant of the Description Logic ALC,
which allows one to express uncertain knowledge by probabilistic conditional
statements of the form “if E holds, then F is true with probability p”. Proba-
bilities are understood as degrees of beliefs and a reasoner’s belief state is estab-
lished by the principle of maximum entropy based on the aggregating semantics.
We have proved that both checking consistency and drawing inferences from
approximations of the maximum entropy distribution is possible in ALCME in
time polynomial in the domain size |Δ|.

In future work, we want to investigate, on the one hand, complexity results
for approximate inference at maximum entropy in ALCME. For this, we need
error estimations and complexity results for calculating approximations Pβ

R of
the maximum entropy distribution PME

R in addition to the results presented
here. Note that the size of the equation system that is generated as input for the
methods used to approximate PME

R by Pβ
R (cf. (5)) can be bounded polynomially

in |Δ|, using the same counting strategies as presented in Sect. 4.
On the other hand, we want to extend our complexity results to more general

ALCME-knowledge bases containing also assertional knowledge, and to Descrip-
tion Logics that are more expressive than ALC.

Finally, we intend to make a more fine-grained complexity analysis that inves-
tigates the complexity of reasoning not only w.r.t. the domain size, but also in
terms of the size of the knowledge base.

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press, Cambridge (2003)

Counting Strategies for the Probabilistic Description Logic ALCME 449

2. Baader, F., Ecke, A.: Extending the description logic ALC with more expressive
cardinality constraints on concepts. In: Proceedings of the 3rd Global Conference
on Artificial Intelligence (GCAI), pp. 6–19. EasyChair (2017)

3. Baader, F., Horrocks, I., Sattler, U.: Description logics. In: van Harmelen, F.,
Lifschitz, V., Porter, B. (eds.) Handbook of Knowledge Representation. Elsevier,
Amsterdam (2007)

4. Baader, F., Koopmann, P., Turhan, A.-Y.: Using ontologies to query probabilistic
numerical data. In: Dixon, C., Finger, M. (eds.) FroCoS 2017. LNCS (LNAI),
vol. 10483, pp. 77–94. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
66167-4 5

5. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press,
Cambridge (2004)

6. Van den Broeck, G., Taghipour, N., Meert, W., Davis, J., De Raedt, L.: Lifted
probabilistic inference by first-order knowledge compilation. In: Proceedings of the
22th International Joint Conference on Artificial Intelligence (IJCAI), pp. 2178–
2185. AAAI Press (2011)

7. Halpern, J.Y.: An analysis of first-order logics of probability. Artif. Intell. 46(3),
311–350 (1990)

8. Kern-Isberner, G.: Conditionals in Nonmonotonic Reasoning and Belief Revision.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44600-1

9. Kern-Isberner, G., Thimm, M.: Novel semantical approaches to relational proba-
bilistic conditionals. In: Proceedings of the 12th International Conference on the
Principles of Knowledge Representation and Reasoning (KR), pp. 382–392. AAAI
Press (2010)

10. Lutz, C., Schröder, L.: Probabilistic description logics for subjective uncertainty.
In: Proceedings of the 12th International Conference on Principles of Knowledge
Representation and Reasoning (KR), pp. 393–403. AAAI Press (2010)

11. Paris, J.B.: Common sense and maximum entropy. Synthese 117(1), 75–93 (1999)
12. Paris, J.B.: The Uncertain Reasoner’s Companion: A Mathematical Perspective.

Cambridge University Press, Cambridge (2006)
13. Peñaloza, R., Potyka, N.: Towards statistical reasoning in description logics over

finite domains. In: Moral, S., Pivert, O., Sánchez, D., Maŕın, N. (eds.) SUM 2017.
LNCS (LNAI), vol. 10564, pp. 280–294. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-67582-4 20

14. Pratt, V.R.: Models of program logics. In: Proceedings of the 20th Annual Sympo-
sium on Foundations of Computer Science (FOCS), pp. 115–122. IEEE Computer
Society (1979)

15. Rudolph, S., Krötzsch, M., Hitzler, P.: Type-elimination-based reasoning for the
description logic SHIQbs using decision diagrams and disjunctive datalog. Logical
Methods Comput. Sci. 8(1), 38 (2012)

16. Thimm, M., Kern-Isberner, G.: On probabilistic inference in relational conditional
logics. Logic J. IGPL 20(5), 872–908 (2012)

https://doi.org/10.1007/978-3-319-66167-4_5
https://doi.org/10.1007/978-3-319-66167-4_5
https://doi.org/10.1007/3-540-44600-1
https://doi.org/10.1007/978-3-319-67582-4_20
https://doi.org/10.1007/978-3-319-67582-4_20

Logic Programming

Memory-Saving Evaluation Plans
for Datalog

Carlo Allocca2 , Roberta Costabile1 , Alessio Fiorentino1 ,
Simona Perri1 , and Jessica Zangari1(B)

1 Department of Mathematics and Computer Science,
University of Calabria, Rende, Italy

{r.costabile,fiorentino,perri,zangari}@mat.unical.it
2 Samsung Research, Staines-upon-Thames, UK

c.allocca@samsung.com

Abstract. Ontology-based query answering (OBQA), without any
doubt, represents one of the fundamental reasoning services in Seman-
tic Web applications. Specifically, OBQA is the task of evaluating a
(conjunctive) query over a knowledge base (KB) consisting of an exten-
sional dataset paired with an ontology. A number of effective practical
approaches proposed in the literature rewrite the query and the ontol-
ogy into an equivalent Datalog program. In case of very large datasets,
however, classical approaches for evaluating such programs tend to be
memory consuming, and may even slow down the computation. In this
paper, we explain how to compute a memory-saving evaluation plan con-
sisting of an optimal indexing schema for the dataset together with a
suitable body-ordering for each Datalog rule. To evaluate the quality of
our approach, we compare our plans with the classical approach used by
DLV over widely used ontological benchmarks. The results confirm the
memory usage can be significantly reduced without paying any cost in
efficiency.

Keywords: Datalog · Query answering · Ontologies · Query-plan ·
Data indexing

1 Introduction

Ontological reasoning services represent fundamental features in the develop-
ment of the Semantic Web. Among them, scientists are focusing their atten-
tion on so-called ontology-based query answering, OBQA [6–8,10,25], for short,

This work has been partially supported by Samsung under project “Enhancing the
DLV system for large-scale ontology reasoning”, by MISE under project “S2BDW”
(F/050389/01-03/X32)-“Horizon2020” PON I&C2014-20, by Regione Calabria under
project “DLV LargeScale” (CUP J28C17000220006) - POR Calabria 2014-20, and by
the European Union’s Horizon 2020 research and innovation programme under the
Marie Skodowska-Curie grant agreement No. 690974 for the project “MIREL: MIning
and REasoning with Legal texts”.

c© Springer Nature Switzerland AG 2019
F. Calimeri et al. (Eds.): JELIA 2019, LNAI 11468, pp. 453–461, 2019.
https://doi.org/10.1007/978-3-030-19570-0_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19570-0_29&domain=pdf
http://orcid.org/0000-0002-7305-3790
http://orcid.org/0000-0002-3285-8621
http://orcid.org/0000-0002-3298-0256
http://orcid.org/0000-0002-8036-5709
http://orcid.org/0000-0002-6418-7711
https://doi.org/10.1007/978-3-030-19570-0_29

454 C. Allocca et al.

where a Boolean query has to be evaluated against a logical theory (knowledge
base) consisting of an extensional database paired with an ontology. A number
of effective practical approaches proposed in the literature rewrite the query
and the ontology into an equivalent Datalog program [16]. DLV [19] is an in-
memory system for the evaluation of logic programs (Datalog programs possibly
extended with disjunction, negation, aggregate functions, constraints, arithmetic
operators, and many more constructs) can be successfully used in such a con-
text. More precisely, DLV is a reasoner for Answer Set Programming (ASP)
[9,14,15,17,22,24], a declarative programming paradigm evolved from logic pro-
gramming, deductive databases, knowledge representation, and nonmonotonic
reasoning, with several applications in Artificial Intelligence [1–5,20,21,26,27].
Its sub-system I-DLV [12,13] is endowed with explicit means for interoperabil-
ity with external databases and incorporates a number of ad-hoc techniques for
handling advanced database applications, such as magic-sets, indexing and join-
orderings that make DLV a full-fledged deductive database system. However, in
case of very large datasets, internal deductive database optimizations like those
used in DLV can be extremely memory consuming as they require to compute
extra information on the data for fine-tuning the heuristics or, in general, for opti-
mizing execution times. For instance, DLV uses a join ordering policy that before
instantiating a rule, reorders its body for enabling efficient join evaluations; it
acts on the basis of statistics over the extensions of involved predicates that
may require a considerable amount of memory. Moreover, DLV adopts ad-hoc
indexed structures (i.e. indices) over predicate extensions: indices are computed
on demand according to the positions of literals in the rule and their bindings.
Hence, the indexing schema of each rule, i.e. the set of indices adopted to instan-
tiate it, is chosen according to the body ordering strategy and created indices
are strictly related to the way in which literals are rearranged. This ensures fast
evaluation at the expense of higher memory consumption. Thus, when memory
is an issue, parsimonious strategies that minimize the index occupation, without
paying in efficiency, are preferable. In this paper, we explain how to compute a
memory-saving evaluation plan for a Datalog program P, consisting of an opti-
mal indexing schema for the dataset together with a suitable body-ordering for
each rule in P. The approach makes use of ASP program for computing such
plan before the actual evaluation of P, in a pre-processing phase, and then forces
DLV computation to follow the plan. This can be done by adding annotations
in the Datalog program [12], i.e. explicit directions on the internal computa-
tion process of DLV specifying ordering/indexing criteria that override default
strategies. In order to assess the effectiveness of the approach for ontology-based
query answering, we conduct an experimental evaluation over popular ontolog-
ical benchmarks widely used for testing both capabilities and performance of
OBQA systems. We compared performance in terms of time and memory usage
of DLV when the classical computation is performed, and when computation is
driven by the planner. Results confirm that the planner reduces memory usage
without worsening times.

Memory-Saving Evaluation Plans for Datalog 455

2 An ASP-Based Evaluation Planner

In its computational process, for optimizing the evaluation of each rule, DLV on
demand determines body orderings and indices, according to strategies taking
into account only local information for the rule at hand. More in details, before
instantiating a rule r ∈ P, DLV reorders the body literals on the basis of some
join-ordering heuristics [12]; then, according to the chosen ordering, it deter-
mines and creates needed indices. However, when memory consumption must be
limited, an approach based on a global view over all rules, allowing for a more
parsimonious creation of indices, is preferable.

In this section, we describe our approach for computing a memory-saving
evaluation plan for a set P of positive Datalog rules to be evaluated over an
extensional dataset D. We define an evaluation plan of P as an indexing schema
over P∪D together with a suitable body-ordering for each rule of P. An indexing
schema consists of the set of indices adopted to instantiate all rules in P over
D. Our approach makes use of an ASP program for computing a memory-saving
evaluation plan E of P in a pre-processing phase; then P is annotated with
directions that force DLV computation to follow E when evaluating P.

In the following, after a formal definition of memory-saving evaluation plan,
we describe the ASP code devised in order to compute such plans. For space rea-
sons, we assume the reader is familiar with the ASP language and computation.
For a complete reference to ASP, we refer the reader to [11].

2.1 Evaluation Plans

Let P be a set of positive Datalog rules with non-empty body and let D be a
database. We indicate with pred(P ∪ D) the set of all predicates occurring in
P ∪ D and with rel(p) the set {α ∈ D : pred(α) = p} of the elements of D
sharing the predicate name p. We write p[i] to indicate the i-th argument of
the predicate p. In the following we provide some formal definitions in order to
introduce the notion of optimal evaluation plan.

Definition 1. Let r be a rule in P and B(r) be the set of the atoms appearing
in the body of r. Let Fa be a (possibly empty) subset of atoms in B(r) and Fp

be a subset of {1, · · · , |B(r)|}. A position assignment on r is a one-to-one map
pr : Fa → Fp. A pair (α, p) such that pr(α) = p is called a fixed position w.r.t.
pr. An ordering on r is a bijective function pos(r, ·) : B(r) → {1, · · · , |B(r)|}.
Having fixed a position assignment pr on r, we define a pr-ordering on r as an
ordering on r such that pos(r, α) = pr(α) for each α ∈ Fa.

The definition above presents a body ordering as a rearrangement of the
literals in the body, but notably, allows for having a certain number of atoms in
the body in some prefixed positions. This is because, according to the knowledge
of the domain at hand, if one is aware that a particular choice for the orderings
is convenient, the planner can be driven so that only plans complying with this
choice are identified.

456 C. Allocca et al.

Definition 2. Let U := {p[i] : p ∈ pred(P ∪ D), 1 ≤ i ≤ a(p)}, where a(p)
represents the arity of the predicate p. An indexing schema S over P ∪ D is a
subset of U . Given a subset I ⊆ U , we say that S fixes I if I ⊆ S.

Intuitively, an indexing schema is a subset of the arguments of all predicates
in pred(P ∪ D). Furthermore, similarly to the definition of ordering that may
allow for fixed positions, we give the possibility to fix also a set of indices.

With a rule r ∈ P we can associate a hypergraph H(r) = (V,E) whose vertex
set V is the set of all terms appearing in B(r) and the edges in E are the term
sets of each atom in B(r). Given a rule r of P, a connected component of r is a
set of atoms in B(r) that define a connected component in H(r).

Let us introduce now the notions of separation between two connected com-
ponents and well ordering of a component of a rule.
Definition 3. Let r be a rule of P and pos(r, ·) be an ordering on r. Two con-
nected components C1 and C2 of r are separated w.r.t. pos(r, ·) if max{pos(r, α) :
α ∈ C1} < min{pos(r, β) : β ∈ C2} or vice versa.

Definition 4. Let r be a rule of P, S be an indexing schema and pos(r, ·) be an
ordering on r. A connected component C of r is well ordered w.r.t. S and pos(r, ·)
if, assuming m = min{pos(r, α) : α ∈ C}, for each β ∈ C with pos(r, β) = j and
j > m, it holds that there exists an argument of β belonging to S which is either
a constant or a variable occurring in an atom γ ∈ C, with pos(r, γ) < j.

The notion of separation among connected components is needed for iden-
tifying, within rule bodies, clusters of literals that do not share variables. The
idea is that the ordering computed by the planner should keep separated these
clusters in order to avoid, as much as possible, the computation of Cartesian
products during the instantiation; at the same time, literals within the clusters
are properly rearranged in order to comply with the selected indexing schema,
thus avoiding the creation of further indices.

Next, we provide the admissibility property which, in turn, characterizes the
evaluation plans.

Definition 5. Given a rule r ∈ P and an indexing schema S, we say that an
ordering pos(r, ·) is admissible w.r.t. S if the connected components of r are well
ordered (w.r.t. pos(r, ·) and S) and mutually separated (w.r.t. pos(r, ·)).
We define below an optimal evaluation plan.
Definition 6. Let (i) {pr ; r ∈ P} be a given set of position assignment, and
(ii) I be a given subset of {p[i] : p ∈ pred(P ∪ D), 1 ≤ i ≤ a(p)}. An evaluation
plan E of P consists of an indexing schema S that fixes I together with a pr-
ordering of each rule r of P being admissible w.r.t. S. We say that P enjoys an
efficient evaluation if it is associated to an evaluation plan. Assuming c(p, i) is
the cost of building an index over p[i], we say that an evaluation plan is optimal
if the overall cost

∑
p[i]∈S c(p, i) is minimal.

Note that the definition of optimal plan presupposes the knowledge of c(p, i) val-
ues. Such costs can be estimated via heuristics or actually computed, depending
on the application domain at hand.

Memory-Saving Evaluation Plans for Datalog 457

2.2 Computing Evaluation Plans via ASP

We provide next an ASP program for computing optimal evaluation plans for
P. The program is based on the classical “Guess/Check/Optimize” paradigm
and combines: (i) choice and disjunctive rules to guess an indexing schema S
over P ∪D and, for each rule r in P, an ordering ord(r, ·); (ii) strong constraints
to guarantee, for each rule r, the admissibility of ord(r, ·) w.r.t. S; (iii) weak
constraints to find out, among all the evaluation plans of P, the one with the
lowest memory consumption.

The program takes as input a set of facts representing P and the dataset D.
In particular, each rule of P is represented by means of facts of the form:

rule(RuleId,Description,NumberOfBodyAtoms).
headAtom(RuleId,Atom,PredName).
bodyAtom(RuleId,Atom,PredName).
sameVariable(RuleId,Atom1,Arg1,Atom2,Arg2).
constant(RuleId,Atom,Arg).
relation(PredicateName,Arity).

Facts over predicate rule associate each rule r to an identifier and pro-
vide |B(r)|. The sets B(r) and H(r), for each r, are represented by bodyAtom
and headAtom predicates respectively. The predicate sameVariable provides
the common variables related to any pair of atoms appearing in r, whereas
constant states that a constant term occurs in the argument of an atom of
r. The database D is represented by means of facts over predicate relation.
Furthermore, according to the formal definitions of Sect. 2.1, an optimal plan is
defined on the basis of the cost c(p, i) of building an index over rel(p) on its i-th
attribute, and possibly fixing some positions for the ordering, and some indices.
Such information are given in input to the ASP planner by means of facts of the
form:

index(PredicateName,Arg,MemoryConsumption).
fixedPosition(RuleId,Atom,Pos).
fixedIndex(PredicateName,Arg).

The ASP program computing the plans is rather long and involved, thus, we
report here only some key parts; the full program is available on the online web
page https://www.mat.unical.it/perri/planner.zip.

The following rule guesses an indexing schema S for P. Notably, the argu-
ments to be indexed are chosen among a restricted set of arguments, called
indexable, in order to keep the search space smaller. For instance arguments
that are not involved in joins are not indexable.

{setIndex(PredName,Arg)}:-indexable(PredName,Arg).

Beside this choice rule, the guess part contains also a number of disjunctive
rules for guessing the ordering. The following constraint checks one of the condi-
tions of admissibility for evaluation plans. In particular, it checks that connected
components are separated.

https://www.mat.unical.it/perri/planner.zip

458 C. Allocca et al.

:-pos(Atom1,RuleId,Pos1),pos(Atom2,RuleId,Pos2),
sameComponent(RuleId,Atom1,Atom2),pos(Atom3,RuleId,Pos3),
not sameComponent(RuleId,Atom1,Atom3),Pos1<Pos3,Pos3<Pos2.

Here, the predicate pos represents the position of a body atom in a rule, while
the predicate sameComponent identifies connected components. The checking
part contains a number of further constraints, some ensuring that the other
admissibility conditions are respected and some verifying that guessed plans are
correctly determined. Eventually, the following weak constraint constitutes the
optimize part and is used for minimizing the memory consumption.

:~setIndex(X,Y),index(X,Y,Cost). [Cost@1, X,Y,Cost]

3 Experimental Evaluation

Hereafter we report the results of an experimental activity carried out to assess
the effectiveness of using the ASP-based evaluation planner. Our experimen-
tal analysis relies on three benchmarks: LUBM, Stock Exchange and Vicodi.
LUBM (Lehigh University BenchMark) is one of the most popular ontologies for
testing both capabilities and performance of OBQA systems. LUBM has been
specifically developed to facilitate the evaluation of Semantic Web reasoners in a
standard and systematic way. In fact, the benchmark is intended to evaluate per-
formance of those reasoners with respect to extensional queries over large data
sets that refer to a single realistic ontology. The LUBM benchmark consists of a
university domain OWL 2 ontology with customizable and repeatable synthetic
data and a set of 14 input SPARQL queries. We used the standard LUBM data
generator to produce three datasets consisting of 500, 1000 and 4000 universi-
ties. Stock Exchange and Vicodi are two real world ontologies widely used in
literature for the evaluation of query rewriting systems [23]. For each of these
two ontologies, we considered 5 queries and we used the SyGENiA generator [18]
to produce five datasets having from 1, 000 to 40, 0000 tuples and a number of
individuals varying from 100 to 4, 000.

Experiments have been performed on a NUMA machine equipped with two
2.8 GHz AMD Opteron 6320 processors and 128 GB RAM. Unlimited time and
memory were granted to running processes. Benchmarks and executables used
for the experiments are available at https://www.mat.unical.it/perri/planner.
zip.

First of all, since DLV makes use magic sets for evaluating these programs, we
precomputed (running DLV) the magic rewritings for each query, so that plans
can be computed over the rewritten programs. Then, two different executions
have been performed: (i) a classical execution of DLV which, given as input the
so generated encodings, chooses body orderings and indexing strategies with its
default policies, and (ii) an execution driven by the planner in which DLV is
forced to follow the precomputed evaluation plan that decided body orderings
and indices in order to reduce memory consumption. These constraints have
been defined via DLV annotations, that represent specific means for specifying

https://www.mat.unical.it/perri/planner.zip
https://www.mat.unical.it/perri/planner.zip

Memory-Saving Evaluation Plans for Datalog 459

Table 1. Effectiveness of the ASP-based evaluation planner. Time are in seconds,
memory in MB.

Query No planner Planner

Time Memory Time Memory Planning time

LUBM

q01 1738.34 16887.97 1210.12 16891.87 0

q02 1880.47 18607.13 1335.18 17127.20 0.07

q03 1773.22 17474.40 1185.46 16891.77 0.01

q04 5944.26 41770.97 1574.18 33237.33 0.13

q05 1714.40 28217.20 1320.03 18483.63 0.08

q06 1511.81 20319.40 1549.19 19034.50 0.04

q07 2684.68 31848.20 1309.80 20910.20 0.09

q08 1970.73 32287.87 1346.23 22393.43 0.11

q09 1635.46 21632.13 1586.10 21616.00 0.07

q10 2034.92 31503.53 1306.76 20558.07 0.08

q11 1175.12 16892.27 1158.14 16889.50 0

q12 1462.17 22252.30 1287.47 18345.27 0.11

q13 1610.07 29931.10 1301.00 18378.77 0.08

q14 1210.43 16888.23 1178.08 16890.07 0.04

Stock exchange

q01 0.83 11.98 0.82 11.72 0

q02 1.10 23.48 1.21 20.70 0.02

q03 2.06 39.64 2.39 37.04 0.03

q04 1.31 29.04 1.32 25.26 0.04

q05 2.35 46.40 2.57 41.28 0.09

Vicodi

q01 0.83 9.88 0.83 10.04 0.01

q02 0.93 20.56 0.83 11.34 0.01

q03 0.82 11.38 0.78 10.16 0.02

q04 0.70 12.88 0.70 9.62 0.02

q05 0.78 12.54 0.83 12.82 0.08

preferences over its internal computational process [12]. Furthermore, in this
latter execution scenario, as input for the planner we used the effective costs in
memory for holding all possible indices and we choose an ordering policy which
fixes magic literals in the last position; for LUBM these heuristic values have
been extracted over the dataset featuring 100 universities, while for both Stock
Exchange and Vicodi we relied the greatest generated dataset. Table 1 shows
performance in terms of average running time and memory usage of DLV over

460 C. Allocca et al.

all considered datasets when the classical computation is performed (columns 2
and 3) and when computation is driven by the planner (columns 4 and 5). In
the 6th column, we reported the time spent to compute the optimal plan. As
it can be seen, we obtained an average saving on memory of 16%, 9% and 15%
on LUBM, Stock Exchange and Vicodi, respectively, with peaks among 30–45%
in cases of queries 5, 7, 10, 13 of LUBM and query 2 of Vicodi. No significant
increase of computation time is observable. In some cases, we obtained also some
improvements in terms of time. This can be explained considering that indices
selected by the planner, being, on the overall, less memory expensive are more
efficiently computable.

4 Conclusion

In this work we introduced a memory-saving evaluation planner for Datalog pro-
grams. The planner has been conceived to be applied to ontology-based query
answering contexts, where often, in case of large datasets, standard approaches
are not convenient/applicable due to memory consumption. It relies on an ASP
program that computes the plan, intended as an indexing schema for the dataset
together with a body-ordering for each rule in the program. The computed plan
minimizes the overall cost (in term of memory consumption) of indices; more-
over, the usage of the plan with the DLV system allows to further reduce mem-
ory usage since some expensive internal optimizations of DLV can be disabled.
Results of the experiments conducted on popular ontological benchmarks con-
firm the effectiveness of the approach. Future work concerns the development of
a pre-processing tool for the automatic integration of the planner into DLV , as
well as the experimental evaluation in further domains.

References

1. Adrian, W.T., Manna, M., Leone, N., Amendola, G., Adrian, M.: Entity set expan-
sion from the web via ASP. In: ICLP (Technical Communications). OASICS, vol.
58, pp. 1:1–1:5. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)

2. Amendola, G.: Preliminary results on modeling interdependent scheduling games
via answer set programming. In: Proceedings of RCRA. CEUR-WS.org (2018, to
appear)

3. Amendola, G.: Solving the stable roommates problem using incoherent answer set
programs. In: Proceedings of RCRA. CEUR-WS.org (2018, to appear)

4. Amendola, G., Dodaro, C., Leone, N., Ricca, F.: On the application of answer
set programming to the conference paper assignment problem. In: Adorni, G.,
Cagnoni, S., Gori, M., Maratea, M. (eds.) AI*IA 2016. LNCS (LNAI), vol. 10037,
pp. 164–178. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49130-
1 13

5. Amendola, G., Greco, G., Leone, N., Veltri, P.: Modeling and reasoning about NTU
games via answer set programming. In: IJCAI, pp. 38–45 (2016)

6. Amendola, G., Leone, N., Manna, M.: Finite model reasoning over existential rules.
TPLP 17(5–6), 726–743 (2017)

https://doi.org/10.1007/978-3-319-49130-1_13
https://doi.org/10.1007/978-3-319-49130-1_13

Memory-Saving Evaluation Plans for Datalog 461

7. Amendola, G., Leone, N., Manna, M.: Finite controllability of conjunctive query
answering with existential : Two steps forward. In: IJCAI, pp. 5189–5193 (2018)

8. Amendola, G., Leone, N., Manna, M., Veltri, P.: Enhancing existential rules by
closed-world variables. In: IJCAI, pp. 1676–1682 (2018)

9. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011)

10. Cal̀ı, A., Gottlob, G., Lukasiewicz, T.: Tractable query answering over ontologies
with datalog+/-. In: Proceedings of DL 2009 (2009)

11. Calimeri, F., et al.: ASP-core-2: Input language format (2012). https://www.mat.
unical.it/aspcomp2013/files/ASP-CORE-2.03b.pdf

12. Calimeri, F., Fuscà, D., Perri, S., Zangari, J.: I-DLV: the new intelligent grounder
of DLV. Intelligenza Artificiale 11(1), 5–20 (2017)

13. Calimeri, F., Perri, S., Zangari, J.: Optimizing answer set computation via
heuristic-based decomposition. In: TPLP, pp. 1–26 (2019)

14. Eiter, T., Faber, W., Leone, N., Pfeifer, G.: Declarative problem-solving using the
DLV system. In: Minker, J. (ed.) Logic-Based Artificial Intelligence. SECS, vol. 597,
pp. 79–103. Springer, Boston (2000). https://doi.org/10.1007/978-1-4615-1567-8 4

15. Eiter, T., Ianni, G., Krennwallner, T.: Answer set programming: a primer. In: Tes-
saris, S., et al. (eds.) Reasoning Web 2009. LNCS, vol. 5689, pp. 40–110. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03754-2 2

16. Eiter, T., Ortiz, M., Simkus, M., Tran, T., Xiao, G.: Query rewriting for Horn-
SHIQ plus rules. In: Proceedings of AAAI (2012)

17. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Gener. Comput. 9(3/4), 365–385 (1991)

18. Grau, B.C., Motik, B., Stoilos, G., Horrocks, I.: Completeness guarantees for
incomplete ontology reasoners: theory and practice. J. Artif. Intell. Res. 43, 419–
476 (2012)

19. Leone, N., et al.: The DLV system for knowledge representation and reasoning.
ACM Trans. Comput. Logic 7(3), 499–562 (2006)

20. Manna, M., Ricca, F., Terracina, G.: Consistent query answering via ASP from
different perspectives: theory and practice. TPLP 13(2), 227–252 (2013)

21. Manna, M., Ricca, F., Terracina, G.: Taming primary key violations to query large
inconsistent data via ASP. TPLP 15(4–5), 696–710 (2015)

22. Marek, V.W., Truszczyński, M.: Stable models and an alternative logic program-
ming paradigm. In: Apt, K.R., Marek, V.W., Truszczyński, M., Warren, D.S.
(eds.) The Logic Programming Paradigm - A 25-Year Perspective. AI, pp. 375–398.
Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-642-60085-2 17

23. Mora, J., Corcho, O.: Towards a systematic benchmarking of ontology-based query
rewriting systems. In: Alani, H., et al. (eds.) ISWC 2013. LNCS, vol. 8219, pp. 376–
391. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41338-4 24

24. Niemelä, I.: Logic programming with stable model semantics as constraint pro-
gramming paradigm. Ann. Math. Artif. Intell. 25(3–4), 241–273 (1999)

25. Ortiz, M.: Ontology based query answering: the story so far. In: AMW. CEUR
Workshop Proceedings, vol. 1087. CEUR-WS.org (2013)

26. Ricca, F., et al.: A logic-based system for e-tourism. Fundam. Inform. 105(1–2),
35–55 (2010)

27. Ricca, F., et al.: Team-building with answer set programming in the Gioia-Tauro
seaport. TPLP 12(3), 361–381 (2012)

https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.03b.pdf
https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.03b.pdf
https://doi.org/10.1007/978-1-4615-1567-8_4
https://doi.org/10.1007/978-3-642-03754-2_2
https://doi.org/10.1007/978-3-642-60085-2_17
https://doi.org/10.1007/978-3-642-41338-4_24

Chain Answer Sets for Logic Programs
with Generalized Atoms

Mario Alviano1 and Wolfgang Faber2(B)

1 University of Calabria, Rende, Italy
alviano@mat.unical.it

2 Alpen-Adria-Universität Klagenfurt, Klagenfurt, Austria
wf@wfaber.com

Abstract. Answer Set Programming (ASP) has seen several extensions
by generalizing the notion of atom used in these programs, for exam-
ple dl-atoms, aggregate atoms, HEX atoms, generalized quantifiers, and
abstract constraints, referred to collectively as generalized atoms in this
paper. The idea common to all of these constructs is that their satis-
faction depends on the truth values of a set of (non-generalized) atoms,
rather than the truth value of a single (non-generalized) atom. In a pre-
vious work, it was argued that for some of the more intricate generalized
atoms, the previously suggested semantics provide unintuitive results,
and an alternative semantics called supportedly stable was suggested.
Unfortunately, this semantics had a few issues on its own and also did not
have a particularly natural definition. In this paper, we present a family
of semantics called Chain Answer Sets, which has a simple, but some-
what unusual definition. We show several properties of the new seman-
tics, including the computational complexity of the associated reasoning
tasks.

1 Introduction

The basic language of Answer Set Programming (ASP) relies on Datalog with
negation in rule bodies and possibly disjunction in rule heads. When actually
using the language for representing practical knowledge, it became apparent
that generalizations of the basic language are necessary for usability. Among the
suggested extensions are aggregate atoms (similar to aggregations in database
queries) [8,15,19,20] and atoms that rely on external truth valuations [7,9–12].
These extensions are characterized by the fact that deciding the truth values of
the new kinds of atoms depends on the truth values of a set of traditional atoms
rather than a single traditional atom. We will refer to such atoms as generalized
atoms, which cover also several other extensions such as abstract constraints,
generalized quantifiers, and HEX atoms.

Concerning semantics for programs containing generalized atoms, there have
been several different proposals. All of these appear to coincide for programs

This paper is an extended version of [5].

c© Springer Nature Switzerland AG 2019
F. Calimeri et al. (Eds.): JELIA 2019, LNAI 11468, pp. 462–478, 2019.
https://doi.org/10.1007/978-3-030-19570-0_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19570-0_30&domain=pdf
http://orcid.org/0000-0002-2052-2063
http://orcid.org/0000-0002-0330-5868
https://doi.org/10.1007/978-3-030-19570-0_30

Chain Answer Sets for Logic Programs with Generalized Atoms 463

Fig. 1. Interpretations, supported (solid) and unsupported models (dashed) of the
prisoners’ dilemma example, where p1 and p2 are the propositions “the first player
confesses” and “the second player confesses”, respectively.

that do not contain generalized atoms in recursive definitions. The two main
semantics that emerged as standards are the PSP semantics [21,22,24], and the
FLP semantics [13,14] (the latter coinciding with Ferraris stable models [16] for
the language considered in this paper). In [3] it was shown that the semantics
coincide up to convex generalized atoms. It was already established earlier that
each PSP answer set is also an FLP answer set, but not vice versa. So for
programs containing non-convex generalized atoms, some FLP answer sets are
not PSP answer sets. In particular, there are programs that have FLP answer
sets but no PSP answer sets. In [4] it was argued that the FLP semantics is still
too restrictive, and an attempt to improve the situation was made, defining the
supportedly stable or SFLP (supportedly FLP) semantics. However, while SFLP
solves some issues, it also introduces new ones.

Let us first review the reason why FLP is too restrictive. Consider a coordi-
nation game that is remotely inspired by the prisoners’ dilemma. There are two
players, each of which has the option to confess or defect. Let us also assume
that both players have a fixed strategy already, which however still depends on
the choice of the other player as well. In particular, each player will confess
exactly if both players choose the same option, that is, if both players confess
or both defect. This situation can be represented using two propositional atoms
for “the first player confesses” and “the second player confesses”, which must be
derived true when “both players choose the same option”, a composed proposi-
tion encoded by a generalized atom. A program encoding this scenario will not
permit any answer set under the FLP, PSP, or any other semantics that we are
aware of, except for SFLP. Also the more recent well-justified FLP [23] selects
among the FLP answer sets and hence will have no answer set for this program
either.

We point out that this is peculiar, as the scenario in which both players con-
fess is a reasonable one; indeed, even a simple inflationary operator would result
in this solution: starting from the empty set, the generalized atom associated
with “both players choose the same option” is true; therefore, the atoms asso-
ciated with “the first player confesses” and “the second player confesses” are
derived true on the first application of the operator, which is also its fixpoint.

Looking at the reason why this is not an FLP answer set, we observe that it
has two countermodels that prevent it from being an answer set, one in which

464 M. Alviano and W. Faber

only the first player confesses, and another one in which only the second player
confesses (see Fig. 1). Both of these countermodels are models in the classical
sense, but they are weak in the sense that they are not supported, meaning that
there is no rule justifying their truth. In [4], the attempt to rectify this was
by requiring countermodels to be supported as well (yielding SFLP), but it has
clear weaknesses, most prominently that adding “tautological” rules like p ← p
can change the semantics of the program.

In this paper, we first define an even stronger version of this semantics, called
Chain Answer Set Semantics (CHAS), which requires that countermodels are
themselves answer sets of the reduct program. While at first sight it resolves the
issues of SFLP, it turns out that it does not guarantee supportedness, prompt-
ing us to define two more variants, Chain Answer Set Semantics with Support
(CHASS) and Supported Chain Answer Set Semantics (SCHAS), which require
support in two different ways. We provide a complete analysis of the relation-
ships among these semantics, as illustrated in Fig. 2, and show that deciding the
existence of CHAS, CHASS, and SCHAS is PSPACE-complete, well above the
complexity for deciding the existence of SFLP, FLP, PSP, and all other existing
semantics known to us. Given the results, we believe that Chain Answer Set
Semantics with Support (CHASS) is a good candidate for being the intended
semantics for the class of programs considered in this paper.

Fig. 2. Hasse diagram of subset-containment relationships between sets of answer sets
(all containments are strict; FLP ⊂ SFLP proved in [4]).

2 Background

In this section we present the notation used in this paper and present the FLP
semantics [13,14]. To ease the presentation, we will directly describe a proposi-
tional language here. This can be easily extended to the more usual ASP nota-
tions of programs involving variables, which stand for their ground versions (that
are equivalent to a propositional program).

2.1 Notation

Let B be a countable set of propositional atoms. A generalized atom A on B is
a pair (DA, fA), where DA ⊆ B is the domain of A, and fA is a mapping from

Chain Answer Sets for Logic Programs with Generalized Atoms 465

2DA to Boolean truth values {T,F}. To ease the presentation, we assume that
the domain of each generalized atom is a finite set.

Example 1. Let p1 represent the proposition “the first player confesses”, and p2
represent the proposition “the second player confesses.” A generalized atom A
representing the composed proposition “both players choose the same option”
is such that DA = {p1, p2}, fA({}) = fA({p1, p2}) = T, and fA({p1}) =
fA({p2}) = F.

A general rule r is of the following form:

H(r) ← B(r) (1)

where H(r) is a disjunction a1 ∨ · · · ∨ an (n ≥ 0) of propositional atoms in B
referred to as the head of r, and B(r) is a generalized atom on B called the
body of r. For convenience, H(r) is sometimes considered a set of propositional
atoms. A general program P is a set of general rules. Let At(P) denote the set
of propositional atoms occurring in P .

It should be noted that this is a very abstract notation, aiming to be general
enough to encompass many concrete languages. Languages adopted in practical
systems will feature concrete syntax in place of generalized atoms, for example
aggregate atoms or dl-atoms. In the sequel, we will at times also use more con-
crete notation in examples to ease reading. We will also frequently omit the term
“general” when referring to general rules and general programs for simplicity.

2.2 FLP Semantics

An interpretation I is a subset of B. I is a model for a generalized atom A,
denoted I |= A, if fA(I ∩ DA) = T. Otherwise, if fA(I ∩ DA) = F, I is not a
model of A, denoted I �|= A. I is a model of a rule r of the form (1), denoted
I |= r, if H(r) ∩ I �= ∅ whenever I |= B(r). I is a model of a program P ,
denoted I |= P , if I |= r for every rule r ∈ P .

Note that the fact that rule bodies are forced to be a single generalized atom
is not really a limitation, and will ease the presentation of the results in the
paper. In fact, a single generalized atom is sufficient for modeling conjunctions,
default negation, aggregates and similar constructs.

Example 2. A conjunction p1 ∧ · · · ∧ pn of n ≥ 1 propositional atoms is equiv-
alently represented by a generalized atom A such that DA = {p1, . . . , pn}, and
fA(B) = T if and only if B = {p1, . . . , pn}.

A conjunction p1, . . . , pm, ∼pm+1, . . . , ∼pn of literals, where n ≥ m ≥ 0,
p1, . . . , pn are propositional atoms and ∼ denotes negation as failure, is equiv-
alently represented by a generalized atom A such that DA = {p1, . . . , pn}, and
fA(B) = T if and only if {p1, . . . , pm} ⊆ B and B ∩ {pm+1, . . . , pn} = ∅.

An aggregate COUNT ({p1, . . . , pn}) �= k, where n ≥ k ≥ 0, and p1, . . . , pn

are propositional atoms, is equivalently represented by a generalized atom A
such that DA = {p1, . . . , pn}, and fA(B) = T if and only if |B ∩ DA| �= k.

466 M. Alviano and W. Faber

In the following, when convenient, we will represent generalized atoms as
conjunctions of literals or aggregate atoms. Subsets of B mapped to true by such
generalized atoms will be those satisfying the associated conjunction.

Example 3. Consider the following rules:

r1 : a ← COUNT ({a, b}) �= 1 r2 : b ← COUNT ({a, b}) �= 1

The following two programs show issues with FLP and later SFLP.

P1 := {r1; r2} P2 := {r1; r2; a ← a}
Note that if a and b are replaced by p1 and p2, the aggregate COUNT ({a, b}) �= 1
is equivalent to the generalized atom A from Example 1, and therefore program
P1 encodes the coordination game depicted in the introduction.

We now describe the FLP semantics, introduced and analyzed in [13,14].

Definition 1 (FLP Reduct). The FLP reduct P I of a program P with respect
to an interpretation I is defined as the set {r ∈ P | I |= B(r)}.
Definition 2 (FLP Answer Sets). An interpretation I is an FLP answer set
of a program P if I |= P and for each J ⊂ I it holds that J �|= P I . Let FLP(P)
denote the set of FLP answer sets of P .

Example 4. Consider the programs from Example 3:

– The models of P1 are {a}, {b} and {a, b}, none of which is an FLP answer
set. Indeed, P

{a}
1 = P

{b}
1 = ∅, which have the trivial model ∅, which is of

course a subset of {a} and {b}. On the other hand P
{a,b}
1 = P1, and so

{a} |= P
{a,b}
1 , where {a} ⊂ {a, b}. We will discuss in the next section why

this is a questionable situation.
– P2 has the same models as P1 and also no FLP answer set.

2.3 SFLP Semantics

Let us now review the SFLP semantics of [4]. As noted in the introduction, the
fact that P1 has no FLP answer sets is striking. If we first assume that both a and
b are false (interpretation ∅), and then apply a generalization of the well-known
one-step derivability operator, we obtain truth of both a and b (interpretation
{a, b}). Applying this operator once more again yields the same interpretation,
a fix-point. Interpretation {a, b} is also a supported model, that is, for all true
atoms there exists a rule in which this atom is the only true head atom, and in
which the body is true.

It is instructive to examine why this seemingly robust model is not an FLP
answer set. Its reduct is equal to the original program, P

{a,b}
1 = P1. There are

therefore two models of P1, {a} and {b}, that are subsets of {a, b} and therefore
inhibit {a, b} from being an FLP answer set. The problem is that, contrary to

Chain Answer Sets for Logic Programs with Generalized Atoms 467

{a, b}, these two models are rather weak, in the sense that they are not supported.
Indeed, when considering {a}, there is no rule in P1 such that a is the only true
atom in the rule head and the body is true in {a}: The only available rule with
a in the head has a false body. The situation for {b} is symmetric.

SFLP stipulates that one should only consider supported models for finding
inhibitors of answer sets. In other words, one does not need to worry about
unsupported models of the reduct, even if they are subsets of the candidate.
First, define supported models.

Definition 3 (Supportedness). A model I of a program P is supported if for
each a ∈ I there is a rule r ∈ P such that I ∩ H(r) = {a} and I |= B(r). In
this case we will write I |=s P .

Example 5. Continuing Example 4, program P1 has one supported model,
namely {a, b}. The model {a} of P1 is not supported because the body of the
rule with a in the head has a false body with respect to {a}. For a symmetric
argument, model {b} of P1 is not supported either. The supported models of P2

are {a} and {a, b}.

Now let us recall SFLP answer sets from [4].

Definition 4 (SFLP Answer Sets). An interpretation I is an SFLP answer
set of a program P if I |=s P and for each J ⊂ I it holds that J �|=s P I . Let
SFLP(P) denote the set of SFLP answer sets of P .

Example 6. Consider again the programs from Example 3.

– Recall that P1 has only one supported model, namely {a, b}, and P
{a,b}
1 = P1,

but ∅ �|=s P
{a,b}
1 , {a} �|=s P

{a,b}
1 , and {b} �|=s P

{a,b}
1 , therefore no proper subset

of {a, b} is a supported model. Hence, it is an SFLP answer set.
– Finally, P2 has no SFLP answer set. {a} and {a, b} are supported models.

P
{a,b}
2 = P2, so {a} prevents {a, b} from being an SFLP answer set. P

{a}
2 =

{a ← a}, so ∅ |= P
{a}
2 and so trivially also ∅ |=s P

{a}
2 , preventing also {a}

from being an SFLP answer set.

3 Chain Answer Set Semantics

Considering P1 and P2 of the previous section, it is clear that SFLP answer sets
have a problem. Adding a tautological rule, which should intuitively not have
any effect, causes an SFLP answer set to be invalidated. In [4] we had suggested
to consider “stronger notions of supportedness” for countermodels to possibly
overcome this. We next try this with a radical step: requiring countermodels to
be answer sets of the reduct.

Definition 5 (Chain Answer Sets). An interpretation I is a Chain Answer
Set of a program P if I |= P and no J ⊂ I is a Chain Answer Set of P I . Let
CHAS (P) denote the set of Chain Answer Sets of P .

468 M. Alviano and W. Faber

Example 7. Reconsider the programs from Example 3.

– We get CHAS (P1) = {{a, b}}. Indeed, for {a, b} we have {a, b} |= P1 and
P

{a,b}
1 = P1. None of the subsets of {a, b} ({a}, {b}, ∅) is in CHAS (P {a,b}

1).
∅ �|= P1, as the body of both rules is true, but their heads are false. Further,
while {a} |= P1 and {b} |= P1, we observe that the bodies of both rules
are false for these interpretations, so P

{a}
1 = P

{b}
1 = ∅, of which ∅ (a subset

of both {a} and {b}) is a trivial answer set. So {a} �∈ CHAS (P {a,b}
1) and

{b} �∈ CHAS (P {a,b}
1).

– P2 has the same three models {a}, {b}, {a, b}. P
{a}
2 = {a ← a}, so of course

∅ |= P
{a}
2 , so {a} �∈ CHAS (P2). P

{b}
2 = ∅, so of course again ∅ |= P

{b}
2 , so

{b} �∈ CHAS (P2). P
{a,b}
2 = P2, so we have already established that no subset

of {a, b} is in CHAS (P {a,b}
2), and hence CHAS (P2) = {{a, b}}.

3.1 Supportedness, Anti-chain Property, Relationship to FLP

Chain Answer Sets are not necessarily supported, as the following example
shows.

Example 8. Consider P3 = {rα; rβ}, where

rα : a ← COUNT ({a, b}) �= 1 rβ : b ← COUNT ({a, b}) < 2.

We have {a, b} |= P3, and P
{a,b}
3 = {rα} consists only of the first rule. Again,

∅ �|= P
{a,b}
3 , so ∅ �∈ CHAS (P {a,b}

3). While {a} |= P
{a,b}
3 and {b} |= P

{a,b}
3 ,

P
{a,b}{a}

3 and P
{a,b}{b}

3 are both empty, hence ∅ is a Chain Answer Set of both,
and thus {a} �∈ CHAS (P {a,b}

3) and {b} �∈ CHAS (P {a,b}
3), which in turn implies

{a, b} ∈ CHAS (P3).
However, {a, b} �|=s P3, as for b, while {a, b} ∩ H(rβ) = {b}, clearly {a, b} �|=

B(rβ).

The same example shows that Chain Answer Sets do not guarantee the anti-
chain property (that for any program, no Chain Answer Set is a subset of another
Chain Answer Set).

Example 9. Reconsider P3 from Example 8 and let us determine CHAS (P3). In
Example 8 we have already shown that {a, b} ∈ CHAS (P3). Clearly, ∅ �|= P3 and
{a} �|= P3, therefore ∅ �∈ CHAS (P3) and {a} �∈ CHAS (P3).

For the remaining interpretation {b}, we observe {b} |= P3, and P
{b}
3 consists

only of the second rule. But then ∅ �|= P
{b}
3 , so ∅ �∈ CHAS (P {b}

3), and {b} ∈
CHAS (P3).

We therefore obtain CHAS (P3) = {{b}, {a, b}}, showing that Chain Answer
Sets do not guarantee the anti-chain property.

Chain Answer Sets for Logic Programs with Generalized Atoms 469

The fact that the definition of Chain Answer Sets does not guarantee sup-
portedness is quite disappointing. The absence of the anti-chain property is also
not nice, but seems better motivated (also SFLP does not guarantee the anti-
chain property), as we shall discuss in Sect. 6.

As suggested by the programs of Example 3, FLP answer sets are Chain
Answer Sets, but the inverse does not necessarily hold.

Proposition 1. For any program P , FLP(P) ⊆ CHAS (P).

Proof. By Definition 2, if I ∈ FLP(P) then I |= P and for each J ⊂ I it holds
that J �|= P I . But then no such J can be in CHAS (P I), and hence according to
Definition 5, I ∈ CHAS (P). �

There are programs for which the inclusion is proper, as witnessed by P1 and
P2 of Example 3.

Concerning the relationship to SFLP, the examples considered so far may
suggest that SFLP answer sets are Chain Answer Sets as well, but we will show
in the next section that this is not the case. As witnessed by P2 of Example 3,
there are programs that have Chain Answer Sets that are not SFLP answer sets.

4 Integrating Support with Chain Answer Sets

Since in the previous section we have seen that CHAS can be unsupported
models, we now proceed with explicitly requiring support. We see two basic
options, one is requiring support both for the answer set and countermodels
(SCHAS), the other one is to require support for the answer set only (CHASS).

Definition 6 (Supported Chain Answer Sets). An interpretation I is a
Supported Chain Answer Set of a program P if I |=s P and no J ⊂ I is a
Supported Chain Answer Set of P I . Let SCHAS (P) denote the set of Supported
Chain Answer Sets of P .

Definition 7 (Chain Answer Sets with Support). An interpretation I is
a Chain Answer Set with Support of a program P if I |=s P and no J ⊂ I is a
Chain Answer Set of P I . Let CHASS (P) denote the set of Chain Answer Sets
with Support of P .

While at the first glance these two concepts appear to be very similar or even
equivalent, it turns out that they are not. But let us first briefly revisit P1 and
P2 of Example 3.

Example 10. Reconsider P1 and P2 of Example 3. Since CHAS (P1) =
CHAS (P2) = {{a, b}}, and {a, b} |=s P1 and {a, b} |=s P2, it follows that
CHASS (P1) = CHASS (P2) = {{a, b}}.

Concerning SCHAS, {a, b} is the only supported model for P1, and P
{a,b}
1 =

P1, so none of its subsets is in SCHAS (P {a,b}
1 = P1), hence SCHAS (P1) =

{{a, b}}. For P2, both {a} and {a, b} are supported models. Here, P {a}
2 = {a ← a},

470 M. Alviano and W. Faber

so ∅ |=s P
{a}
2 , hence ∅ ∈ SCHAS (P {a}

2) and {a} �∈ SCHAS (P2). Also here
P

{a,b}
2 = P2, so neither ∅ nor {b} are in SCHAS (P {a,b}

2 = P2) as they are not
models, and we have just shown {a} �∈ SCHAS (P {a,b}

2 = P2), so SCHAS (P2) =
{{a, b}}.

From this we can immediately read off a few counterexamples for set inclu-
sion.

Proposition 2. There is a program P (for example P2 of Example 3) such that
all of the following hold:

CHAS (P) � FLP(P) CHAS (P) � SFLP(P)
SCHAS (P) � FLP(P) SCHAS (P) � SFLP(P)
CHASS (P) � FLP(P) CHASS (P) � SFLP(P)

Now let us turn to P3 from Example 8, for which CHASS and SCHAS elim-
inate the anomaly of CHAS by definition.

Example 11. Reconsider P3 of Example 8. The only supported model of P3 is
{b}. P

{b}
3 = {rβ}, and ∅ �|= P

{b}
3 , so ∅ �∈ CHAS (P {b}

3) and ∅ �∈ SCHAS (P {b}
3),

therefore CHASS (P3) = SCHAS (P3) = {{b}}.

These examples might lead one to think that CHASS and SCHAS might be
equivalent. However, this is not the case, as the following example shows.

Example 12. Consider P4 = {rI ; rII ; rIII}, where

rI : a ← a, b, c rII : b ← [a ∨ ∼b] rIII : c ← a, b, c

We first observe that the only supported model of P4 is {a, b, c}, while {b},
{a, b}, {b, c} are additional unsupported models. The reduct P

{a,b,c}
4 is equal to

P4, so it immediately follows that SFLP(P4) = SCHAS (P4) = {{a, b, c}} and
that {a, b, c} �∈ FLP(P4)). The reducts P

{b}
4 and P

{b,c}
4 are both empty, so ∅ is

a (supported) model and hence also CHAS of both, so {b} �∈ CHAS (P4) and
{b, c} �∈ CHAS (P4). But P

{a,b}
4 = {rII}, and among the subsets of {a, b}, only

{b} is a model of P
{a,b}
4 . But since (P {a,b}

4){b} is empty, ∅ ∈ CHAS ((P {a,b}
4){b}),

hence {b} �∈ CHAS (P {a,b}
4) and therefore {a, b} ∈ CHAS (P4). Since P

{a,b,c}
4 =

P4, this also shows that {a, b, c} �∈ CHAS (P4) and {a, b, c} �∈ CHASS (P4). We
therefore get CHAS (P4) = {{a, b}} and CHASS (P4) = ∅, as {a, b, c} is the only
supported model of P4.

In total we have FLP(P4) = ∅, SFLP(P4) = {{a, b, c}}, CHAS (P4) =
{{a, b}}, CHASS (P4) = ∅, SCHAS (P4) = {{a, b, c}}.

Looking at P4, we would argue that it should not have any answer sets, as
starting from everything false, one would derive b from rII , which immediately
annihilates the reason for b to be true, and there is no reason for a or c to become
true.

From Example 12 we directly obtain a number of counterexamples for set
inclusion.

Chain Answer Sets for Logic Programs with Generalized Atoms 471

Proposition 3. There is a program P (for example P4 of Example 12) such
that all of the following hold:

SFLP(P) � CHAS (P) CHAS (P) � SFLP(P)
SCHAS (P) � CHAS (P) CHAS (P) � SCHAS (P)
SFLP(P) � CHASS (P)
CHAS (P) � CHASS (P)
SCHAS (P) � CHASS (P)

Let us consider one more example.

Example 13. Consider P5 = {ra; rb}, where

ra : a ← COUNT ({a, b}) > 0 rb : b ← COUNT ({a, b}) �= 1

P5 has two models, {a} and {a, b}, both supported. P
{a,b}
5 = P5 and

P
{a}
5 = {ra}. ∅ |= P

{a}
5 , so {a} is not in any of FLP(P5), SFLP(P5),

CHAS (P5), CHASS (P5), or SCHAS (P5). From this, it easily follows that
FLP(P5) = ∅, SFLP(P5) = ∅, CHAS (P5) = {{a, b}}, CHASS (P5) = {{a, b}},
and SCHAS (P5) = {{a, b}}.

From Example 13 we directly obtain some more counterexamples for set
inclusion.

Table 1. Chain Answer Sets and (S)FLP answer sets of example programs, where
A is the generalized atom COUNT ({a, b}) �= 1, B is COUNT ({a, b}) < 2, and C is
COUNT ({a, b}) > 0.

Rules Models FLP SFLP CHAS SCHAS CHASS

P1 a ← A b ← A {a}, {b}, {a, b} — {a, b} {a, b} {a, b} {a, b}
P2 a ← A b ← A {a}, {b}, {a, b} — — {a, b} {a, b} {a, b}

a ← a

P3 a ← A b ← B {b}, {a, b} {b} {b} {b}, {a, b} {b} {b}
P4 a ← a, b, c {b}, {a, b}, — {a, b, c} {a, b} {a, b, c} —

b ← [a ∨ ∼b]

c ← a, b, c {b, c}, {a, b, c}
P5 a ← C b ← A {a}, {a, b} — — {a, b} {a, b} {a, b}

Proposition 4. There is a program P (for example P5 of Example 13) such
that all of the following hold:

CHASS (P) � SFLP(P)
SCHAS (P) � SFLP(P)

472 M. Alviano and W. Faber

Some set inclusions do hold, however, and a few are quite easy to prove.

Proposition 5. ∀P : FLP(P) ⊆ CHASS (P)

Proof. From Theorem 1 in [4] (∀P : FLP(P) ⊆ SFLP(P)) it follows that if
M ∈ FLP(P) then M |=s P , Moreover, if M ∈ FLP(P) then ∀I � M : I �|= PM

and hence ∀I � M : I �∈ CHAS (PM).

Proposition 6. ∀P : CHASS (P) ⊆ CHAS (P)

Proof. By definition, for M ∈ CHASS (P) we have M |=s P and ∀I � M : I �∈
CHAS (PM), therefore also M |= P , hence M ∈ CHAS (P).

Proposition 7. ∀P : SFLP(P) ⊆ SCHAS (P)

Proof. From the definition, M ∈ SFLP(P) if and only if M |=s P and ∀I �
M : I �|=s PM . The latter implies ∀I � M : I �∈ SCHAS (PM) and hence
M ∈ SCHAS (P).

For completing the relationships in Fig. 2, we only miss one result, whose
proof is a bit more involved.

Theorem 1. ∀P : CHASS (P) ⊆ SCHAS (P)

Proof. Given any program P , we show by induction on interpretations that
∀M : M ∈ CHASS (P) ⇒ M ∈ SCHAS (P).

Base case (M = ∅): ∅ ∈ CHASS (P) ⇔ ∅ |=s P ⇔ ∅ ∈ SCHAS (P) as
∀I � ∅ : J �∈ CHAS (P ∅) and ∀I � ∅ : J �∈ SCHAS (P ∅) are trivially true.

Let us now assume M � ∅, with the hypothesis that ∀I � M : I ∈
CHASS (P) ⇒ I ∈ SCHAS (P). M ∈ CHASS (P) ⇔ M |=s P ∧ ∀I � M :
I �∈ CHAS (PM). By Proposition 6 this implies M |=s P ∧ ∀I � M : I �∈
CHASS (PM). Using the hypothesis, this implies M |=s P ∧ ∀I � M : I �∈
SCHAS (PM), hence M ∈ SCHAS (P).

Looking at Table 1 and coming back to the argument that P4 really should
have no answer sets at all, we would argue that CHASS is the only semantics
that handles all our examples as desired, and it is therefore our candidate for
the intended semantics for general programs. Also looking at Fig. 2, it seems to
sit in a “sweet spot” among the other semantics, allowing for more answer sets
than FLP , but not too many (as CHAS and SCHAS) and different ones than
the ill-fated SFLP .

5 Computational Complexity

In this section we assume that all generalized atoms are polynomial time com-
putable, that is, given an interpretation I and a generalized atom (DA, fA), the
computation of fA(I ∩ DA) takes time O(|DA|). Our aim is to show that for

Chain Answer Sets for Logic Programs with Generalized Atoms 473

the new semantics checking the existence of an answer set of a given program is
PSPACE-complete.

As for the membership, we can show that checking the existence of chain
answer set for a program P belong to the complexity class ΣP

n , where n is
|At(P)|. The following lemma is functional to the membership result.

Lemma 1. Let I be a set of atoms, and P be a program. Checking the
existence of J ⊂ I such that J ∈ X(P) belongs to ΣP

|I|−1, for X ∈
{CHAS ,CHASS ,SCHAS}.
Proof. By induction on n ≥ 1. For n = 1, the only candidate is ∅, and can be
checked in polynomial time. As for the general case, if X = CHAS , then we can
guess J ⊂ I such that J |= P and check whether there is no K ⊂ J such that
K ∈ CHAS (P J); since |J | < |I|, the induction hypothesis tells us that the latter
check can be done in ΠP

|J|. Similarly, if X = CHASS , then we can guess J ⊂ I

such that J |=s P and check (in ΠP
|J|) whether there is no K ⊂ J such that

K ∈ CHAS (P J). Finally, if X = SCHAS , then we can guess J ⊂ I such that
J |=s P and check whether there is no K ⊂ J such that K ∈ SCHAS (P J); since
|J | < |I|, the induction hypothesis tells us that the latter check can be done in
ΠP

|J|. �

Theorem 2. Let P be a program, and n be |At(P)|. Checking X(P) �= ∅ belongs
to ΣP

n , for X ∈ {CHAS ,CHASS ,SCHAS}.
Proof. From Lemma 1 by noting that any I ∈ X(P) is such that I ⊆ At(P). �

As for the hardness, we show a reduction from Quantified Boolean Formula
(QBF) validity. Let ψ be

�x1 · · · �xm φ(x0, . . . , xm) (2)

(m ≥ 1), where φ is quantifier-free, and xi (i ∈ [0..m]) are distinct sets of
variables; specifically, x0 are the free variables of ψ. For a given assignment νx0

for the variables in x0, checking νx0(ψ) = 1 is PSPACE-complete.
We define the following program pr(ψ):

xt
i ∨ xf

i ← ∀i ∈ [0..m], xi ∈ xi

xt
i ← sat i ∀i ∈ [1..m], xi ∈ xi

xf
i ← sat i ∀i ∈ [1..m], xi ∈ xi

sat i ← [sat i−1 ∨ ∼sat i] ∀i ∈ [1..m]
satm ← (Dφ, fφ)

where (Dφ, fφ) is a generalized atom with domain Dφ := {xt
i, x

f
i | i ∈ [0..m], xi ∈

xi} ∪ {sati | i ∈ [0..m]}, and such that fφ(I) = T if and only if some of the
following conditions are satisfied: (i) sat i ∈ I and |{xt

i, x
f
i } ∩ I| �= 1 for some

i ∈ [0..m] and xi ∈ xi; (ii) |{xt
i, x

f
i } ∩ I| = 1 for all i ∈ [0..m] and xi ∈ xi, and

let νI be such that νI(xi) is 1 if xt
i ∈ I, and 0 otherwise; then, νI(φ) = 0.

474 M. Alviano and W. Faber

Moreover, we define the following mapping int(ψ, νx0) from assignments for
x0 to interpretations:

{xt
0 | x0 ∈ x0, ν(x0) = 1} ∪

{xf
0 | x0 ∈ x0, ν(x0) = 0} ∪

{xt
i, x

f
i | i ∈ [1..m], xi ∈ xi}

{sat i | i ∈ [1..m]}.

We can establish the following link between countermodels.

Lemma 2. If m ≥ 2, then for any J ⊂ int(ψ, νx0), J ∈ X(pr(ψ)int(ψ,νx0)) if
and only if J ∈ X(pr(�x2 · · · �xm φ)), for X ∈ {CHAS ,SCHAS}.
Proof. Since sat0 /∈ int(ψ, νx0) and sat1 ∈ int(ψ, νx0) by construction, sat1 ←
[sat0 ∨ ∼sat1] is not in the reduct pr(ψ)int(ψ,νx0), which is therefore equal to
the program pr(�x2 · · · �xm φ) ∪ {xα

1 ← sat1 | x1 ∈ x1, α ∈ {t, f}}. Note
that J ⊂ int(ψ, νx0) implies sat1 /∈ J , and therefore (pr(ψ)int(ψ,νx0))J =
pr(�x2 · · · �xm φ)J , from which the claim follows. �

We can now establish the link between QBF validity and existence of answer
sets.

Lemma 3. For any ψ and νx0 , νx0(ψ) = 1 if and only if int(ψ, νx0) ∈ X(pr(ψ)),
for X ∈ {CHAS ,CHASS ,SCHAS}.
Proof. Let ψ be �x1 · · · �xm φ(x0, . . . , xm), and let us use induction on m. The
base case for m = 1 is as follows.
(⇒) Let νx0(ψ) be 1. Hence, there is no νx1 such that νx0 ◦ νx0(φ) = 1. It turns
out that sat1 must belong to any answer set in X(pr(ψI)), from which we have
that I ∈ X(pr(ψ)).
(⇐) Let νx0(ψ) be 0. Hence, there is νx1 such that νx0 ◦ νx1(φ) = 1. Let J be
int(ψ, νx0 ◦ νx1). Thus, J ⊂ I by construction, and J belongs to CHAS (pr(ψ)I)
and SCHAS (pr(ψ)I). Hence, I /∈ X(pr(ψ)).

As for the general case, let us assume the claim for some m ≥ 1 and consider
the case m + 1. Let I be int(ψ, νx0).
(⇒) Let νx0(ψ) be 1. Assume, by contradiction, that I /∈ X(pr(ψ)). If
X ∈ {CHAS , SCHAS}, then there is J ⊂ I such that J ∈ X(pr(ψ)I).
By Lemma 2, J ∈ X(pr(�x2 · · · �xm φ)). Hence, we can apply the induction
hypothesis: Let νx1(x1) be 1 if xt

1 ∈ J , and 0 otherwise, for all x1 ∈ x1;
νx0 ◦ νx1(�x2 · · · �xm φ) = 1, a contradiction. As for the remaining case, that is,
X = CHASS , there is J ⊂ I such that J ∈ CHAS (pr(ψ)I), and Lemma 2
implies J ∈ CHAS (pr(�x2 · · · �xm φ)); hence, also in this case we have a
contradiction.
(⇐) Let νx0(ψ) be 0. Hence, there is νx1 such that νx0 ◦ νx1(�x2 · · · �xm φ) = 1.
Let J be int(ψ, νx0◦νx1). Thus, J ⊂ I by construction. If X ∈ {CHAS ,SCHAS},
by combining the induction hypothesis and Lemma 2 we have that J ∈
X(pr(ψ)I); that is, I /∈ X(pr(ψ)). As for the remaining, that is, X = CHASS ,
we have just shown that J ∈ CHAS (pr(ψ)I), and therefore I /∈ CHASS (pr(ψ))
holds. �

Chain Answer Sets for Logic Programs with Generalized Atoms 475

Moreover, any answer set of pr(ψ) must be the image of some assignment.

Lemma 4. I ∈ X(pr(ψ)) implies the existence of νx0 such that int(ψ, νx0) = I,
for X ∈ {CHAS ,CHASS ,SCHAS}.
Theorem 3. Let P be a program, and X ∈ {CHAS ,CHASS ,SCHAS}. Check-
ing X(P) �= ∅ is PSPACE-complete.

Proof. Theorem 2 gives membership. Lemma 3 and 4 give hardness. �

6 Conclusion and Discussion

In this paper, we have first motivated why existing semantics for logic programs
with generalized atoms do not seem satisfactory for all programs. An existing
proposal to amend the issues, SFLP answer sets, introduces unintuitive results
while fixing the highlighted issues. In this paper, we presented another attempt
at defining semantics that repair the issues, named Chain Answer Sets (CHAS).
The definition of CHAS looks a bit striking at first, as it refers to the defined
concept itself. It is however well-defined, as the definition descends along the
subset relation (even if for infinite Herbrand bases this may cause practical
problems for computation).

However, it turns out that also CHAS has some peculiar properties. Most
importantly, Chain Answer Sets are not necessarily supported, which is quite
problematic. We then introduced two more attempts by explicitly requiring sup-
portedness, in one case only for the answer sets (CHASS), in the other also for
the countermodels (SCHAS). All versions of Chain Answer Sets (and SFLP) also
do not guarantee the anti-chain property, which seems to be more of a feature
than a problem, as general programs may stabilize in different ways.

Looking at Table 1, and especially at P1 of Example 3 and P4 of Example 12,
we would argue that CHASS is the only semantics that assigns a reasonable
semantics to all programs. It seems to be a good balance between extending
FLP (by avoiding bogus countermodels) and overcompensating the extension in
ways like SFLP, CHAS, and SCHAS do.

An interesting property is that for all versions of Chain Answer Sets the
answer set existence problem is PSPACE-complete. This result suggests that
the problem is most likely computationally more complex than for all the other
existing semantics (being located on at most the second level of the polyno-
mial hierarchy), and that implementations are likewise most likely to be more
resource-intensive as well. However, also this might be a feature and could open
an avenue for modelling more complex problems.

As future work, implementing reasoners supporting the new semantics would
be of interest, for example by compiling the new semantics to FLP, so to use
current ASP solvers such as dlv [6], cmodels [18], clasp [17], and wasp [1,2].
For Chain Answer Sets, this would lead to excessive space requirements, though,
so for these a simple one-shot transformation is not likely to be viable. An

476 M. Alviano and W. Faber

application area would be systems that loosely couple OWL ontologies with rule
bases, for instance by means of HEX programs.

That written, there seems to be a lack of applications involving non-convex
generalized atoms that appear nonrecursively. We have experimented with a few
simple domains stemming from game theory (as outlined in the introduction),
but we are not aware of many other attempts. Our intuition is that such pro-
grams would be written in several domains that describe features with feedback
loops, which applies to many so-called complex systems, which include models
of biochemical systems.

Acknowledgments. Mario Alviano was partially supported by the European Union’s
Horizon 2020 research and innovation programme under the Marie Skodowska-Curie
grant agreement No. 690974 for the project “MIREL: MIning and REasoning with
Legal texts”, by the POR CALABRIA FESR 2014–2020 projects “DLV Large Scale”
(CUP J28C17000220006) and “Explora Process” (CUP J88C17000140006), by the
EU H2020 PON I&C 2014–2020 project “S2BDW” (CUP B28I17000250008), and by
GNCS-INdAM. Wolfgang Faber was partially supported by the S&T Cooperation CZ
05/2019 “Identifying Undoable Actions and Events in Automated Planning by Means
of Answer Set Programming”.

References

1. Alviano, M., Dodaro, C., Faber, W., Leone, N., Ricca, F.: WASP: a native ASP
solver based on constraint learning. In: Cabalar, P., Son, T.C. (eds.) LPNMR 2013.
LNCS (LNAI), vol. 8148, pp. 54–66. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-40564-8 6

2. Alviano, M., Dodaro, C., Ricca, F.: Anytime computation of cautious consequences
in answer set programming. TPLP 14(4–5), 755–770 (2014). https://doi.org/10.
1017/S1471068414000325

3. Alviano, M., Faber, W.: The complexity boundary of answer set programming
with generalized atoms under the FLP semantics. In: Cabalar, P., Son, T.C. (eds.)
LPNMR 2013. LNCS (LNAI), vol. 8148, pp. 67–72. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40564-8 7

4. Alviano, M., Faber, W.: Supportedly stable answer sets for logic programs with
generalized atoms. In: ten Cate, B., Mileo, A. (eds.) RR 2015. LNCS, vol. 9209,
pp. 30–44. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22002-4 4

5. Alviano, M., Faber, W.: Chain answer sets for logic programs with generalized
atoms - how not to fix a semantic problem. In: Proceedings of the Second Workshop
on Answer Set Programming and Other Computing Paradigms (TAASP 2018)
(2018)

6. Alviano, M., Faber, W., Leone, N., Perri, S., Pfeifer, G., Terracina, G.: The dis-
junctive datalog system DLV. In: de Moor, O., Gottlob, G., Furche, T., Sellers,
A. (eds.) Datalog 2.0 2010. LNCS, vol. 6702, pp. 282–301. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-24206-9 17

7. Calimeri, F., Cozza, S., Ianni, G.: External sources of knowledge and value inven-
tion in logic programming. Ann. Math. Artif. Intell. 50(3–4), 333–361 (2007)

https://doi.org/10.1007/978-3-642-40564-8_6
https://doi.org/10.1007/978-3-642-40564-8_6
https://doi.org/10.1017/S1471068414000325
https://doi.org/10.1017/S1471068414000325
https://doi.org/10.1007/978-3-642-40564-8_7
https://doi.org/10.1007/978-3-319-22002-4_4
https://doi.org/10.1007/978-3-642-24206-9_17

Chain Answer Sets for Logic Programs with Generalized Atoms 477

8. Dell’Armi, T., Faber, W., Ielpa, G., Leone, N., Pfeifer, G.: Aggregate functions in
disjunctive logic programming: semantics, complexity, and implementation in DLV.
In: Proceedings of the 18th International Joint Conference on Artificial Intelligence,
IJCAI 2003, pp. 847–852. Morgan Kaufmann Publishers, Acapulco, August 2003

9. Eiter, T., Fink, M., Ianni, G., Krennwallner, T., Redl, C., Schüller, P.: A model
building framework for answer set programming with external computations.
TPLP 16(4), 418–464 (2016). https://doi.org/10.1017/S1471068415000113

10. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining
answer set programming with description logics for the semantic web. Artif. Intell.
172(12–13), 1495–1539 (2008). https://doi.org/10.1016/j.artint.2008.04.002

11. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-
order reasoning and external evaluations in answer set programming. In: Interna-
tional Joint Conference on Artificial Intelligence, IJCAI 2005, Edinburgh, UK, pp.
90–96, August 2005

12. Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set pro-
gramming with description logics for the semantic web. In: Principles of Knowledge
Representation and Reasoning: Proceedings of the Ninth International Conference
(KR 2004), Whistler, Canada, pp. 141–151 (2004). Extended Report RR-1843-03-
13. Institut für Informationssysteme, TU Wien (2003)

13. Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic pro-
grams: semantics and complexity. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004.
LNCS (LNAI), vol. 3229, pp. 200–212. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-30227-8 19

14. Faber, W., Leone, N., Pfeifer, G.: Semantics and complexity of recursive aggregates
in answer set programming. Artif. Intell. 175(1), 278–298 (2011). https://doi.org/
10.1016/j.artint.2010.04.002. Special Issue: John McCarthy’s Legacy

15. Faber, W., Pfeifer, G., Leone, N., Dell’Armi, T., Ielpa, G.: Design and implemen-
tation of aggregate functions in the DLV system. Theory Practice Logic Program.
8(5–6), 545–580 (2008). https://doi.org/10.1017/S1471068408003323

16. Ferraris, P.: Logic programs with propositional connectives and aggregates. ACM
Trans. Comput. Log. 12(4), 25 (2011). https://doi.org/10.1145/1970398.1970401

17. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: from
theory to practice. Artif. Intell. 187, 52–89 (2012)

18. Lierler, Y., Maratea, M.: Cmodels-2: SAT-based answer set solver enhanced to non-
tight programs. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI),
vol. 2923, pp. 346–350. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
3-540-24609-1 32

19. Niemelä, I., Simons, P.: Extending the Smodels system with cardinality and
weight constraints. In: Minker, J. (ed.) Logic-Based Artificial Intelligence, pp.
491–521. Kluwer Academic Publishers, Dordrecht (2000). citeseer.ist.psu.edu/
niemel00extending.html

20. Niemelä, I., Simons, P., Soininen, T.: Stable model semantics of weight constraint
rules. In: Gelfond, M., Leone, N., Pfeifer, G. (eds.) LPNMR 1999. LNCS (LNAI),
vol. 1730, pp. 317–331. Springer, Heidelberg (1999). https://doi.org/10.1007/3-
540-46767-X 23

21. Pelov, N.: Semantics of logic programs with aggregates. Ph.D. thesis, Katholieke
Universiteit Leuven, Leuven, Belgium, April 2004

22. Pelov, N., Denecker, M., Bruynooghe, M.: Well-founded and stable semantics of
logic programs with aggregates. Theory Practice Logic Program. 7(3), 301–353
(2007)

https://doi.org/10.1017/S1471068415000113
https://doi.org/10.1016/j.artint.2008.04.002
https://doi.org/10.1007/978-3-540-30227-8_19
https://doi.org/10.1007/978-3-540-30227-8_19
https://doi.org/10.1016/j.artint.2010.04.002
https://doi.org/10.1016/j.artint.2010.04.002
https://doi.org/10.1017/S1471068408003323
https://doi.org/10.1145/1970398.1970401
https://doi.org/10.1007/978-3-540-24609-1_32
https://doi.org/10.1007/978-3-540-24609-1_32
http://citeseer.ist.psu.edu/niemel00extending.html
http://citeseer.ist.psu.edu/niemel00extending.html
https://doi.org/10.1007/3-540-46767-X_23
https://doi.org/10.1007/3-540-46767-X_23

478 M. Alviano and W. Faber

23. Shen, Y., et al.: FLP answer set semantics without circular justifications for general
logic programs. Artif. Intell. 213, 1–41 (2014). https://doi.org/10.1016/j.artint.
2014.05.001

24. Son, T.C., Pontelli, E.: A constructive semantic characterization of aggregates in
ASP. Theory Practice Logic Program. 7, 355–375 (2007)

https://doi.org/10.1016/j.artint.2014.05.001
https://doi.org/10.1016/j.artint.2014.05.001

Algorithm Selection for Paracoherent
Answer Set Computation

Giovanni Amendola1(B) , Carmine Dodaro2 , Wolfgang Faber3 ,
Luca Pulina4 , and Francesco Ricca1

1 University of Calabria, Rende, Italy
{amendola,ricca}@mat.unical.it
2 University of Genoa, Genoa, Italy

dodaro@dibris.unige.it
3 University of Klagenfurt, Klagenfurt, Austria

wf@wfaber.com
4 University of Sassari, Sassari, Italy

lpulina@uniss.it

Abstract. Answer Set Programming (ASP) is a well-established AI for-
malism rooted in nonmonotonic reasoning. Paracoherent semantics for
ASP have been proposed to derive useful conclusions also in the absence
of answer sets caused by cyclic default negation. Recently, several differ-
ent algorithms have been proposed to implement them, but no algorithm
is always preferable to the others in all instances. In this paper, we apply
algorithm selection techniques to devise a more efficient paracoherent
answer set solver combining existing algorithms. The effectiveness of the
approach is demonstrated empirically running our system on existing
benchmarks.

1 Introduction

Answer Set Programming (ASP) [20,21] is a powerful rule-based language for
knowledge representation and reasoning that has been developed in the field of
logic programming and nonmonotonic reasoning. ASP is based on the stable
model (or answer set) semantics introduced in [28], and became a mainstream
formalism of logic-based AI [4,26]. To solve a computational problem with ASP,
one has to model it by a logic program such that its answer sets correspond to
solutions; then the solutions are computed in practice by running an answer set
system [21]. ASP solving technology has become mature [8,12,17,27,33,38]; and
allowed for the development of practical applications in several areas [1], such
as Artificial Intelligence [11,16,18,29,30], Bioinformatics [24], Databases [34,35],
Game Theory [6,15], Information Extraction [2], E-learning [25].

However, a logic program may admit no answer sets due to cyclic default
negation. In this case, it is not possible to draw any conclusion, even if this is
not intended. To draw meaningful conclusions also from incoherent programs,
paracoherent semantics based on answer sets have been proposed [13,14,40]. The

c© Springer Nature Switzerland AG 2019
F. Calimeri et al. (Eds.): JELIA 2019, LNAI 11468, pp. 479–489, 2019.
https://doi.org/10.1007/978-3-030-19570-0_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19570-0_31&domain=pdf
http://orcid.org/0000-0002-2111-9671
http://orcid.org/0000-0002-5617-5286
http://orcid.org/0000-0002-0330-5868
http://orcid.org/0000-0003-0258-3222
http://orcid.org/0000-0001-8218-3178
https://doi.org/10.1007/978-3-030-19570-0_31

480 G. Amendola et al.

term paracoherent has been chosen to highlight both similarities and differences
to paraconsistent semantics: their goal is similar, but the latter addresses classi-
cal logical contradictions, while the former addresses contradictions due to cyclic
negation. Practical applications of these paracoherent semantics hinge on the
availability of efficient algorithms and implementations. There is a vast potential
of applications [7,13], the most immediate one being debugging of ASP, but also
applications in diagnosis, planning, and reasoning about actions are conceivable.
The concrete use of these paracoherent semantics depends on the availability
of efficient implementations. This observation motivated the recent development
of efficient evaluation techniques, including several algorithms and their imple-
mentation [9,10]. However, there is no algorithm that is always preferable to the
others in all instances.

This observation can be turned into an advantage by applying algorithm
selection techniques, which allow to select automatically the most promising
algorithm for the instance at hand [39]. Algorithm selection techniques proved
to be particularly effective when applied to ASP solvers [19,31,32,37]. Actu-
ally, ASP solvers based on these techniques have been dominating the last four
editions of the ASP competition [27].

In this paper, we follow this approach and experiment with the application of
algorithm selection techniques to devise a more efficient paracoherent answer set
solver. The effectiveness of the approach is demonstrated empirically running our
system on benchmarks from ASP competitions that have been already employed
for assessing paracoherent ASP implementations [9,10].

2 Preliminaries

We start with recalling some basic notions of answer set semantics [21], paraco-
herent semantics [13], extended externally supported atoms [10] and the evalu-
ation algorithms from [9].

2.1 Syntax of ASP

Given a propositional signature Σ, a (disjunctive) rule r is of the form

a1 ∨ · · · ∨ al ← b1, ..., bm, not c1, ..., not cn, (1)

where all ai, bj , and ck are atoms (from Σ); l,m, n ≥ 0, and l + m + n > 0;
not represents negation-as-failure (sometimes also called default negation). The
set H(r) = {a1, ..., al} is the head of r, while B+(r) = {b1, ..., bm} and B−(r) =
{c1, . . . , cn} are the positive and the negative body of r, respectively; the body of r
is B(r) = B+(r)∪B−(r). We denote by At(r) = H(r)∪B(r) the set of all atoms
occurring in r. A rule r is a fact, if B(r) = ∅ (we then omit ←); a constraint, if
H(r) = ∅. Each constraint c is seen as shorthand for a rule rc having in the head
a fresh atom γ (not occurring elsewhere in the program) (i.e., H(rc) = {γ}) and
for the body B+(rc) = B+(c) and B−(rc) = B−(c) ∪ {γ}. A rule is normal, if

Algorithm Selection for Paracoherent Answer Set Computation 481

|H(r)| ≤ 1 and positive, if B−(r) = ∅. A (disjunctive logic) program P is a finite
set of rules. P is called normal [resp. positive] if each r ∈ P is normal [resp.
positive]. We set At(P) =

⋃
r∈P At(r), that is the set of all atoms in P . In the

following, we will also use choice rules [41] of the form {a}, where a ∈ Σ. A
choice rule {a} can be viewed as a syntactic shortcut for the rule a ∨ aF , where
aF is a fresh new atom not appearing elsewhere in the program, meaning that
the atom a can be set to true.

2.2 Standard Semantics

Any set I ⊆ Σ is an interpretation; it is a model of a program P (denoted I |= P)
if and only if for each rule r ∈ P , I ∩ H(r) �= ∅ if B+(r) ⊆ I and B−(r) ∩ I = ∅
(denoted I |= r). A model M of P is minimal, if no model M ′ ⊂ M of P exists.
We denote by MM (P) the set of all minimal models of P and by AS(P) the set
of all answer sets (or stable models) of P , i.e., the set of all interpretations I
such that I ∈ MM (P I), where P I is the Gelfond-Lifschitz reduct [28] of P w.r.t.
I, i.e., the set of rules a1 ∨ ...∨al ← b1, ..., bm, obtained from rules r ∈ P of form
(1), such that B−(r) ∩ I = ∅. We say that a program P is coherent, if it admits
some answer set, otherwise, it is incoherent [5].

Now, we recall the notion of weak constraint [22]. A weak constraint ω is
of the form �b1, . . . , bm, not c1, . . . , not cn. Given a program P and a set of
weak constraints W , a constraint ω ∈ W is violated by an interpretation I if
all positive atoms in ω are true, and all negated atoms are false w.r.t. I. An
optimum answer set for P ∪W is an answer set of P that minimizes the number
of the violated weak constraints.

2.3 Paracoherent Semantics

Semi-stable semantics was introduced in [40]. Consider an extended signature
Σκ = Σ ∪ {Ka | a ∈ Σ}. Intuitively, Ka can be read as a is believed to hold.
Semantically, we resort to subsets of Σκ as interpretations Iκ and the truth
values false ⊥, believed true bt, and true t. The truth value assigned by Iκ to
an atom a is defined by Iκ(a) = t, if a ∈ Iκ; Iκ(a) = bt, if Ka ∈ Iκ and a �∈ Iκ;
and Iκ(a) = ⊥, otherwise.

Definition 1 (Epistemic κ-transformation Pκ). Let P be a program. Then
its epistemic κ-transformation is defined as the program Pκ obtained from P by
replacing each rule r of the form (1) in P , such that B−(r) �= ∅, with:

λr,1 ∨ . . . ∨ λr,l ∨ Kc1 ∨ . . . ∨ Kcn ← b1, . . . , bm (2)
ai ← λr,i (3)

← λr,i, cj (4)
λr,i ← ai, λr,k (5)

for 1 ≤ i, k ≤ l and 1 ≤ j ≤ n, where the λr,i, λr,k are fresh atoms.

482 G. Amendola et al.

For every interpretation Iκ over Σ′ ⊇ Σκ, let G(Iκ) = {Ka ∈ Iκ | a �∈ Iκ}
denote the atoms believed true but not assigned true, also referred to as the
gap of Iκ. Given a set F of interpretations over Σ′, an interpretation Iκ ∈ F
is maximal canonical in F , if no Jκ ∈ F exists such that G(Iκ) ⊃ G(Jκ). By
mc(F) we denote the set of maximal canonical interpretations in F . Semi-stable
models are then defined as maximal canonical interpretations among the answer
sets of Pκ. More recently, in [10] it was identified an alternative transformation
to Pκ, named the externally supported program of P , where a believed true atom
is interpreted as an externally supported atom.

Definition 2 (Externally supported program P s). Let P be a program.
Then its externally supported program is defined as the program P s formed by

a1 ∨ . . . ∨ al ← b1, . . . , bm, not c1, . . . , not cn, not Kc1, . . . , not Kcn, (6)
{Ka}, (7)

for each rule r of the form (1) in P , and for each Ka ∈ Σκ, respectively.

This transformation leads to define the minimal externally supported seman-
tics that is equivalent in spirit to the semi-stable semantics. More specifically,
given a semi-stable model, there is a minimal externally supported model that
has the same true and false atoms, and the same gap; and vice versa.

Semi-equilibrium Semantics. It was introduced in [13] to avoid some anoma-
lies in semi-stable model semantics. Semi-equilibrium ones may be computed as
maximal canonical answer sets of an extension of the epistemic κ-transformation.

Definition 3 (Epistemic HT -transformation PHT). Let P be a program
over Σ. Then its epistemic HT -transformation PHT is defined as the union of
Pκ with the set of rules:

Ka ← a, (8)
Ka1 ∨ . . . ∨ Kal ∨ Kc1 ∨ . . . ∨ Kcn ← Kb1, . . . ,Kbm, (9)

for a ∈ Σ, respectively for every rule r ∈ P of the form (1).

Semi-equilibrium models are then defined as maximal canonical interpreta-
tions among the answer sets of PHT . Amendola et al. [10] have defined an alter-
native transformation to PHT , named externally extended supported program.

Definition 4 (Externally extended supported program P es). Let P be a
program over Σ. Then its externally extended supported program P es is defined
as the union of P s with the set of rules:

Ka1 ∨ . . . ∨ Kal ∨ Kc1 ∨ . . . ∨ Kcn ←
Kb1, . . . ,Kbm, not a1, . . . , not al, not c1, . . . , not cn.

(10)

for each rule r ∈ P of the form (1).

Algorithm Selection for Paracoherent Answer Set Computation 483

This transformation leads to define the minimal externally extended sup-
ported semantics that is equivalent in spirit to the semi-equilibrium semantics.
More specifically, given a semi-equilibrium model, there is a minimal externally
extended supported model that has the same true and false atoms, and the
same gap; and vice versa (for more details see [10]). In the following, we refer to
semi-stable or semi-equilibrium models as paracoherent answer sets.

2.4 Evaluation Algorithms

In this section we list the state of the art algorithms to compute one paracoherent
answer set, and the development of we refer the reader to [9] for more details.

First of all, we define the program Π = Pχ ∪ Pg, where Pg contains the
following rules that capture the notion of gap: gap(Ka) ← Ka, not a ∀a ∈ At(P),
and Pχ denotes one of the transformations Pκ, PHT , P s, and P es. By gap(X)
we denote the set of atoms in X over the predicate gap. An answer set M of Π is
a paracoherent answer set of Pχ, if, and only if, there exists no answer set M1 of
Π such that gap(M1) ⊂ gap(M). In this way, the computation of a paracoherent
answer set is reduced to find an answer set M of Π that is subset-minimal w.r.t.
to atoms over the predicate gap. In the following, without loss of generality we
assume that Π admits at least one paracoherent answer set. In fact, by properties
of semi-stable and semi-equilibrium models, this kind of programs admit always
a paracoherent answer set [13]. The minimization of gap(X) was implemented
using the following five strategies:

Guess&Check (G&C). It enumerates answer sets of Π, until one that is gap
minimal is found, i.e., a candidate answer set is discarded by running a check
that searches for one having a smaller gap.

Minimize. First searching for an answer set M of Π, and then checks whether
it is gap-minimal, by adding a constraint enforcing that at least one atom in the
gap of M should be false. This is repeated on the same candidate answer set
until no answer sets can be found.

Split. First computes an answer set M of Π and creates a set C of gap atoms
that are included in M . Then it checks for each atom in the gap of M whether
it can be removed from the set to obtain a better solution.

Based on Opt. Intuitively, given the set of gap atoms A, the branching heuristic
of the solver is forced to select not p for p ∈ A, before any other unassigned literal.
When all atoms in A are assigned, standard stable model search procedure is
applied without further modifications to the branching heuristic. Whenever a
stable model is found, it is guaranteed to be minimal with respect to the set of
objective atoms as in the algorithm opt of [23].

484 G. Amendola et al.

Based on Weak Constraints. The gap minimality can be obtained adding to Π
the following set of weak constraints, say W : �gap(Ka); ∀a ∈ At(P). The
answer set of the extended program is then an answer set of Π such that a
minimal number of weak constraints in W is violated; therefore, it is also subset
minimal with respect to the gap atoms, and so, it is a paracoherent answer set
of P .

3 Classification Models and Experiments

In this work we leverage on an algorithm selection framework for attempting to
select the best algorithm among the ones reported in the previous section.

Table 1. Selected instances from the ASP Competition 2017. In the first column we
report the domain name, in the second the number of instances in each domain.

Domain Instances

GraphColouring 42

KnightTourWithHoles 26

MinimalDiagnosis 64

QualitativeSpatialReasoning 76

StableMarriage 1

Visit-all 5

Table 2. Results of the considered paracoherent answer set solvers (computation of
semi-stable models). The table is organized as follows. The first column shows the
instance domain name, the remaining ones the considered algorithms. Each of latter
columns is divided into two cells, one (“#”) for the total amount of solved instances
and one (“T”) for the average CPU time (in seconds) on solved instances.

Domain G&C Minimize Split Pref Weak MESS VBS

T # T # T # T # T # T # T

GraphCol 0 – 0 – 42 0.20 0 – 0 – 42 0.20 42 0.20

KnightTour 0 – 0 – 3 437.84 2 148.77 1 25.95 5 322.21 5 322.21

MinDiagn 64 243.56 64 59.20 64 67.77 64 70.42 64 204.49 64 66.95 64 53.24

QSR 28 216.22 45 298.47 46 181.59 55 243.40 38 315.49 57 230.71 59 222.15

StableMarr 0 – 0 – 0 – 0 – 0 – 0 – 0 –

Visit-all 5 52.27 5 110.00 5 0.66 5 19.58 5 20.69 5 0.66 5 0.66

Total 97 225.81 114 155.88 160 87.60 126 145.16 108 233.39 173 105.49 175 103.64

In our case, this selection is possible because we represent a ground ASP pro-
gram as a set of features, i.e., numeric values representing particular character-
istics of a given instance. The selection is automated by modeling the algorithm
selection problem as a multinomial classification problem, where is given a set of
patterns, i.e., input vectors X = {x1, . . . xk} with xi ∈ R

n, and a corresponding

Algorithm Selection for Paracoherent Answer Set Computation 485

set of labels, i.e., output values Y ∈ {1, . . . , m}, where Y is composed of values
representing the m classes of the multinomial classification problem.

In our model, the m classes are m systems implementing the algorithms
previously described. We think of the labels as generated by some unknown
function f : Rn → {1, . . . , m} applied to the patterns, i.e., f(xi) = yi for i ∈
{1, . . . , k} and yi ∈ {1, . . . , m}. Given a set of patterns X and a corresponding
set of labels Y , the task of a multinomial classifier c is to extrapolate f given X
and Y , i.e., construct c from X and Y so that when we are given some x� ∈ X
we should ensure that c(x�) is equal to f(x�). This task is called training, and
the pair (X,Y) is called the training set.

In order to implement the framework mentioned above and apply it in our
case, the first step consists in designing a set of (cheap-to-compute) features that
are significant for classifying the instances. To do that, as a starting point we
considered the set used in the multi-engine solver me-asp and we extended it
with features that can be relevant for this application. In detail:

– Problem size features: number of rules r, number of atoms a, ratios r/a,
(r/a)2, (r/a)3 and ratios reciprocal a/r, (a/r)2 and (a/r)3;

– Balance features: fraction of unary, binary and ternary rules;
– “Proximity to horn” features: fraction of horn rules;
– ASP specific features: number of true and disjunctive facts, fraction of

normal rules and constraints c, number of choice rules, number of aggregates
and number of weak constraints.

– Paracoherent ASP specific features: number of atoms to minimize (i.e.,
atoms over the predicate gap), number of negative literals, number of combi-
nations of these with problem size features.

This final choice of features, together with some of their combinations, amounts
to a total of 49 features. Note that the number of atoms to minimize and number
of negative literals are strongly related to the size of the search space for the
minimization algorithms. Indeed, the presence (and thus the number) of negative
literals affects both indirectly (since paracoherent answer sets are caused by odd
negative ciclyes) and directly (since the program produced by applying the tech-
niques from [10] introduces many additional negative literals) the computation
of paracoherent answer sets in all the proposed algorithms.

In order to train the classifiers, we have to select a pool of instances for
training purpose. In particular, from the last ASP competition we selected a
total amount of 214 instances comprised of the domains listed in Table 1. We
selected all the incoherent instances that do not feature in the encoding neither
aggregates, nor choice rules, nor weak constraints, since such features are not
currently supported by the paracoherent semantics [13]. Note that we consider
the same benchmarks used in [9,10].

Concerning the choice of a multinomial classifier algorithm, we considered
a classifier able to deal with numerical features and multinomial class labels
(the solvers). According to the study on multi-engine ASP solving [36,37], we
selected k-Nearest-Neighbor, nn in the following. nn is a classifier yielding the

486 G. Amendola et al.

label of the training instance which is closer to the given test instance, whereby
closeness is evaluated using some proximity measure, e.g., Euclidean distance,
and training instances are stored in order to have fast look-up, see, e.g., [3].

To deal with the proper algorithm selection related to the two semantics, we
built two different classification models and we implement them in two different
tools. In the following, MESE and MESS will denote the system related to the
computation of semi-stable and semi-equilibrium models, respectively, and in
Tables 2 and 3 we report the related results.

Table 3. Results of the considered paracoherent answer set solvers (computation of
semi-equilibrium models). The table is organized like Table 2.

Domain G&C Minimize Split Pref Weak MESE VBS

T # T # T # T # T # T # T

GraphCol 0 – 0 – 42 1.06 0 – 0 – 42 1.06 42 1.06

KnightTour 0 – 0 – 3 49.71 2 83.97 2 129.76 4 73.27 5 63.41

MinDiagn 0 – 8 809.64 8 908.01 58 74.74 58 214.94 58 74.74 58 74.74

QSR 0 – 0 – 0 – 0 – 0 – 0 – 0 –

StableMarr 0 – 0 – 0 – 0 – 0 – 0 – 0 –

Visit-all 5 29.21 5 40.19 5 1.67 5 22.89 5 17.47 5 2.32 5 1.60

Total 5 29.21 13 513.70 58 128.73 65 71.04 65 197.12 109 43.36 110 42.77

MESS and MESE have been compared with the algorithms used, as well as
with the Virtual Best Solver (VBS), i.e., considering a problem instance, the
oracle that always fares the best among available solvers. To do that, for the
proposed systems we report the cumulative results of a stratified 10-times 10-
fold cross validation. Given a training set (X,Y), we partition X in subsets Xi

with i ∈ {1, . . . 10} such that X =
⋃10

i=1 Xi and Xi ∩ Xj = ∅ whenever i �= j;
we then train c(i) on the patterns X(i) = X \ Xi and corresponding labels Y(i).
We repeat the process 10 times, to yield 10 different c and we obtain the global
performance. The considered value of k in the nn algorithm was 1.

Looking at the tables, we can see that, in general, the proposed systems
are able to solve more instances with respect to their components, and their
performance is very close to the one reported for the VBS.

Concerning Table 2, MESS returned a bad prediction only for 2 instances
out of 76 in the QualitativeSpatialReasoning (QSR), while considering the
remaining domains, it replicates the performance of VBS with the exception of
what happened in MinimalDiagnosis (MinDiag), where we report for MESS

an average CPU time about 20% higher than the time reported for the VBS.
Finally, looking at Table 3, we report that MESE emulates the behaviour of

the VBS in all domains but KnightTourWithHoles and Visit-all. Considering
the former, it was able to solve 1 instance less, while in the case of the latter,
the predicted solver was slightly slower than the best one.

Algorithm Selection for Paracoherent Answer Set Computation 487

4 Conclusion

In this paper we studied whether it is possible to take advantage of algorithm
selection techniques based on classification algorithms to select the best algo-
rithm for computing paracoherent answer sets. The conducted experiments pro-
vided an empirical positive answer to this question. We want to emphasise here
that the selection of appropriate features is not an easy task, in general. Among
the set of all possible features, one has to select a suitable subset of them to max-
imise the performance of the classifier. This requires deep knowledge of standard
ASP, paracoherent semantics, and machine learning techniques, so it might have
an impact of on other researchers that have to deal with similar problems.

Acknowledgments. This work has been supported by the European Union’s Hori-
zon 2020 research and innovation programme under the Marie Skodowska-Curie grant
agreement No. 690974 for the project “MIREL: MIning and REasoning with Legal
texts”.

References

1. Adrian, W.T., et al.: The ASP system DLV: advancements and applications. KI
32(2–3), 177–179 (2018)

2. Adrian, W.T., Manna, M., Leone, N., Amendola, G., Adrian, M.: Entity set expan-
sion from the web via ASP. In: ICLP (Technical Communications). OASICS, vol.
58, pp. 1:1–1:5. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)

3. Aha, D., Kibler, D., Albert, M.: Instance-based learning algorithms. Mach. Learn.
6(1), 37–66 (1991)

4. Alviano, M., Amendola, G., Peñaloza, R.: Minimal undefinedness for fuzzy answer
sets. In: AAAI 2017, pp. 3694–3700 (2017)

5. Amendola, G.: Dealing with incoherence in ASP: split semi-equilibrium semantics.
In: DWAI@AI*IA. CEUR Workshop Proceedings, vol. 1334, pp. 23–32 (2014)

6. Amendola, G.: Preliminary results on modeling interdependent scheduling games
via answer set programming. In: RiCeRcA@AI*IA. CEUR Workshop Proceedings,
vol. 2272. CEUR-WS.org (2018)

7. Amendola, G.: Solving the stable roommates problem using incoherent answer set
programs. In: RiCeRcA@AI*IA. CEUR Workshop Proceedings, vol. 2272 (2018)

8. Amendola, G.: Towards quantified answer set programming. In: RCRA@FLoC.
CEUR Workshop Proceedings, vol. 2271. CEUR-WS.org (2018)

9. Amendola, G., Dodaro, C., Faber, W., Leone, N., Ricca, F.: On the computation
of paracoherent answer sets. In: AAAI, pp. 1034–1040 (2017)

10. Amendola, G., Dodaro, C., Faber, W., Ricca, F.: Externally supported models for
efficient computation of paracoherent answer sets. In: AAAI 2018, pp. 1034–1040
(2018)

11. Amendola, G., Dodaro, C., Leone, N., Ricca, F.: On the application of answer
set programming to the conference paper assignment problem. In: Adorni, G.,
Cagnoni, S., Gori, M., Maratea, M. (eds.) AI*IA 2016. LNCS (LNAI), vol. 10037,
pp. 164–178. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49130-
1 13

https://doi.org/10.1007/978-3-319-49130-1_13
https://doi.org/10.1007/978-3-319-49130-1_13

488 G. Amendola et al.

12. Amendola, G., Dodaro, C., Ricca, F.: ASPQ: an ASP-based 2QBF solver. In:
QBF@SAT. CEUR Workshop Proceedings, vol. 1719, pp. 49–54 (2016)

13. Amendola, G., Eiter, T., Fink, M., Leone, N., Moura, J.: Semi-equilibrium models
for paracoherent answer set programs. Artif. Intell. 234, 219–271 (2016)

14. Amendola, G., Eiter, T., Leone, N.: Modular paracoherent answer sets. In: Fermé,
E., Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp. 457–471. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-11558-0 32

15. Amendola, G., Greco, G., Leone, N., Veltri, P.: Modeling and reasoning about NTU
games via answer set programming. In: IJCAI 2016, pp. 38–45 (2016)

16. Amendola, G., Ricca, F., Truszczynski, M.: Generating hard random Boolean for-
mulas and disjunctive logic programs. In: IJCAI, pp. 532–538 (2017)

17. Amendola, G., Ricca, F., Truszczynski, M.: A generator of hard 2QBF formulas
and ASP programs. In: KR. AAAI Press (2018)

18. Amendola, G., Ricca, F., Truszczynski, M.: Random models of very hard 2QBF
and disjunctive programs: an overview. In: ICTCS. CEUR Workshop Proceedings,
CEUR-WS.org (2018)

19. Balduccini, M.: Learning and using domain-specific heuristics in ASP solvers.
AICOM 24(2), 147–164 (2011)

20. Bonatti, P., Calimeri, F., Leone, N., Ricca, F.: Answer set programming. In: Dovier,
A., Pontelli, E. (eds.) A 25-Year Perspective on Logic Programming. LNCS, vol.
6125, pp. 159–182. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14309-0 8

21. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011)

22. Buccafurri, F., Leone, N., Rullo, P.: Enhancing disjunctive datalog by constraints.
IEEE Trans. Knowl. Data Eng. 12(5), 845–860 (2000)

23. Di Rosa, E., Giunchiglia, E., Maratea, M.: Solving satisfiability problems with
preferences. Constraints 15(4), 485–515 (2010)

24. Erdem, E., Öztok, U.: Generating explanations for biomedical queries. TPLP
15(1), 35–78 (2015). https://doi.org/10.1017/S1471068413000598

25. Garro, A., Palopoli, L., Ricca, F.: Exploiting agents in e-learning and skills man-
agement context. AI Commun. 19(2), 137–154 (2006)

26. Gebser, M., Leone, N., Maratea, M., Perri, S., Ricca, F., Schaub, T.: Evaluation
techniques and systems for answer set programming: a survey. In: IJCAI, pp. 5450–
5456 (2018)

27. Gebser, M., Maratea, M., Ricca, F.: The sixth answer set programming competi-
tion. J. Artif. Intell. Res. 60, 41–95 (2017)

28. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Gener. Comput. 9(3/4), 365–386 (1991)

29. Grasso, G., Iiritano, S., Leone, N., Lio, V., Ricca, F., Scalise, F.: An ASP-based
system for team-building in the gioia-tauro seaport. In: Carro, M., Peña, R. (eds.)
PADL 2010. LNCS, vol. 5937, pp. 40–42. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-11503-5 5

30. Grasso, G., Iiritano, S., Leone, N., Ricca, F.: Some DLV applications for knowl-
edge management. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS
(LNAI), vol. 5753, pp. 591–597. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-04238-6 63

31. Hoos, H., Kaminski, R., Schaub, T., Schneider, M.T.: ASPeed: ASP-based solver
scheduling. In: Technical Communications of ICLP 2012. LIPIcs, vol. 17, pp. 176–
187 (2012)

https://doi.org/10.1007/978-3-319-11558-0_32
https://doi.org/10.1007/978-3-642-14309-0_8
https://doi.org/10.1007/978-3-642-14309-0_8
https://doi.org/10.1017/S1471068413000598
https://doi.org/10.1007/978-3-642-11503-5_5
https://doi.org/10.1007/978-3-642-11503-5_5
https://doi.org/10.1007/978-3-642-04238-6_63
https://doi.org/10.1007/978-3-642-04238-6_63

Algorithm Selection for Paracoherent Answer Set Computation 489

32. Hoos, H., Lindauer, M.T., Schaub, T.: Claspfolio 2: advances in algorithm selection
for answer set programming. TPLP 14(4–5), 569–585 (2014)

33. Lierler, Y., Maratea, M., Ricca, F.: Systems, engineering environments, and com-
petitions. AI Mag. 37(3), 45–52 (2016)

34. Manna, M., Ricca, F., Terracina, G.: Consistent query answering via ASP from
different perspectives: theory and practice. TPLP 13(2), 227–252 (2013)

35. Manna, M., Ricca, F., Terracina, G.: Taming primary key violations to query large
inconsistent data via ASP. TPLP 15(4–5), 696–710 (2015)

36. Maratea, M., Pulina, L., Ricca, F.: Applying machine learning techniques to ASP
solving. In: Technical Communications of ICLP 2012. LIPIcs, vol. 17, pp. 37–48
(2012)

37. Maratea, M., Pulina, L., Ricca, F.: A multi-engine approach to answer-set pro-
gramming. TPLP 14(6), 841–868 (2014)

38. Maratea, M., Ricca, F., Faber, W., Leone, N.: Look-back techniques and heuristics
in DLV: implementation, evaluation, and comparison to QBF solvers. J. Algorithms
63(1–3), 70–89 (2008)

39. Rice, J.R.: The algorithm selection problem. Adv. Comput. 15, 65–118 (1976)
40. Sakama, C., Inoue, K.: Paraconsistent stable semantics for extended disjunctive

programs. J. Log. Comput. 5(3), 265–285 (1995)
41. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model

semantics. Artif. Intell. 138(1–2), 181–234 (2002)

Extending Bell Numbers
for Parsimonious Chase Estimation

Giovanni Amendola and Cinzia Marte(B)

University of Calabria, Rende, Italy
{amendola,marte}@mat.unical.it

Abstract. Ontology-Based Query Answering (OBQA) consists in
querying databases by taking ontological knowledge into account. We
focus on a logical framework based on existential rules or tuple gener-
ating dependencies (TGDs), also known as Datalog±, which collects the
basic decidable classes of TGDs, and generalizes several ontology speci-
fication languages, such as Description Logics. A fundamental notion to
find certain answers to a query is the chase. This tool has been widely
used to deal with different problems in databases, as it has the funda-
mental property of constructing a universal model. Recently, the so-called
“parsimonious” chase procedure has been introduced. For some classes,
it is sound and complete, and the termination is always guaranteed. How-
ever, no precise bound has been provided so far. To this end, we exploit
the Bell number definition to count the exact maximal number of atoms
generating by the parsimonious chase procedure.

Keywords: OBQA · Existential rules · Parsimonious chase ·
Bell numbers

1 Introduction

Ontology-Based Query Answering (OBQA) consists in querying databases by
taking ontological knowledge into account. It is a fascinating research topic
deeply studied not only in database theory [1,12], but also in artificial intel-
ligence [5,6,10] and in logic [2,3,11]. Moreover, OBQA is strictly related to oth-
ers important application areas such as data integration [20], data exchange [8],
and consistent query answering [22,23]. In particular, OBQA is the problem of
answering a query q against a logical theory consisting of an extensional database
D paired with an ontology Σ. The goal is to find certain answers to q, i.e. the
query must be true in every possible model of the theory [7,19]. Here, we focus
on ontologies expressed via existential rules, also known as tuple generating
dependencies (TGDs) or datalog∃ rules. They are at the core of Datalog± [13],
an emerging family of ontology languages, which collects the basic decidable
classes of TGDs, and generalizes several ontology specification languages such
as Description Logics (DLs) [9]. Indeed, datalog∃ generalizes the well-known lan-
guage Datalog [15] with existential quantification in the head.
c© Springer Nature Switzerland AG 2019
F. Calimeri et al. (Eds.): JELIA 2019, LNAI 11468, pp. 490–497, 2019.
https://doi.org/10.1007/978-3-030-19570-0_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19570-0_32&domain=pdf
http://orcid.org/0000-0002-2111-9671
http://orcid.org/0000-0003-3920-8186
https://doi.org/10.1007/978-3-030-19570-0_32

Extending Bell Numbers for Parsimonious Chase Estimation 491

OBQA can be reduced to the problem of answering q over a universal model
U that can be homomorphically embedded into every other model of the logical
theory. A way to compute a universal model is to employ the so called chase
procedure. Starting from D, the chase “repairs” violations of rules by repeatedly
adding new atoms–introducing fresh values, called nulls, whenever required by an
existential variable–until a fixed point satisfying all rules is reached. Therefore,
in the classical setting, the chase is sound and complete. But, unfortunately, the
chase does not always terminates [16,17].

Recently, in [21] a new class of datalog∃ ontologies, called Shy, has been sin-
gled out for existential rules. It enjoys a new semantic property called parsimony
and results in a powerful and decidable class that combines positive aspects of
different Datalog± classes [4]. The parsimony property is based on the parsi-
monious chase (pchase) procedure that repairs violations of rules only if the
(inferred) head atom can not be homomorphically mapped to any atom previ-
ously produced. For some classes of Datalog±, the parsimony property is sound
and complete with respect to atomic query answering. Moreover, the termina-
tion of the pchase is always guaranteed, and computational complexity has been
studied [21]. However, to understand the nature of the pchase procedure, we
need to understand what kind of atoms belong to the pchase. This has as side
effect and it is strictly related to count the number of atoms generated by the
pchase. An immediate consequence of this better understanding of the chase
leads to re-prove computational complexity results, as we improve the upper
bounds previously identified in [21]. Indeed, these are very large, as they are
aimed at demonstrating computational complexity, and not how many atoms
can be produced by the chase.

In this paper, to the best of our knowledge, we present the first study in
OBQA that goes on this direction by providing an exact upper bound for the
pchase. To this end, we exploit the notion of “equality type” defined in [18],
which we show to be strictly related to the form of non-isomorphic atoms of a
given predicate. Then, by exploiting the notion of Bell numbers, counting the
number of distinct partitions of a finite set, we compute an upper bound for the
number of atoms generating by the pchase procedure. Finally, we show that there
exists a family of ontologies for which the pchase can produce exactly the upper
bound previously computed, so that it corresponds to the maximal number of
atoms effectively generated by the pchase procedure.

2 Preliminaries

Throughout this paper we use the following notation. Let Δ = ΔC ∪ ΔN ∪ ΔV

the domain of the terms, consisting of the union of the three countably infinite
domains of constants, nulls and variables, respectively. We write ϕ to denote
a null; X a variable; a an atom, that is an expression of the form p(t), where
p = pred(a) is a predicate, t = t1, . . . , tk is a tuple of terms, k = arity(a) is
the arity of a or p, and a[i] is the i-th term of a. Moreover, const(a) (resp.,
vars(a)) is the set of constants (resp., variables) occurring in a. The set of

492 G. Amendola and C. Marte

predicates is denoted by R. Let T ⊆ Δ a nonempty subset, then the set of all
atoms that can be formed with predicates of R and terms from T is denoted
by base(T). Moreover, any subset of base(ΔC ∪ ΔN) constitutes an instance
I, and whenever I ⊆ base(ΔC), then it is also called database. A substitution
is a total mapping s : Δ → Δ. Let χ1 and χ2 be two structures containing
atoms. An homomorphism h : χ1 → χ2 is a substitution such that: (i) if c ∈
ΔC , then h(c) = c; (ii) if ϕ ∈ ΔN , then h(ϕ) ∈ ΔC ∪ ΔN ; (iii) h(χ1) is a
substructure of χ2. An existential rule r is a logical implication of the form
∀X∀Y(∃Z a(X,Z) ← φ(X,Y)), where X, Y, and Z denote sets of variables;
head(r) = a(X,Z), while body(r) = φ(X,Y) is a conjunction of atoms and can
also be empty. We define a datalog∃ program P as a finite set of existential
rules, called ontology and denoted by dep(P) (dependencies of P), paired with
a database instance, denoted by data(P). Moreover, pred(P) (resp., const(P))
represents the set of predicates (resp., constants) occurring in (P) and arity(P)
is the maximum arity over pred(P).

Given an instance I, we say that a rule r is satisfied by I if whenever there is
a homomorphism h : body(r) → I, there is a homomorphism h′ ⊃ h|vars(body(r))

s.t. h′ : head(r) → I. An instance I is a model of a program P if each rule of
dep(P) is satisfied by I, and data(P) ⊆ I. A firing homomorphism for r and
I is any homomorphism h : body(r) → I s.t. h = h|vars(body(r)). The fire of r
via h produces the atom fire(r, h) = σ(h(head(r))), where σ = σ|vars(h(head(r)))

(i.e., it replaces each existential variable of r with a different fresh null). Given a
firing homomorphism h for a rule r and an instance I, we say that the pair 〈r, h〉
satisfies the parsimonious fire condition w.r.t. an instance I ′ ⊇ I if there is no
homomorphism from {h(head(r))} to I ′. Finally, given a datalog∃ program P ,
the parsimonious chase (pchase) of P (pchase(P)) is constructed as follows. We
start from I ′ = data(P) and create a copy of it in I. Then, for each r in dep(P),
for each unspent firing homomorphism h for the pair 〈r, I〉 we add the fire(r, h)
to I ′ if 〈r, h〉 satisfies the parsimonious fire condition w.r.t. I ′. If I = I ′, we
create a new copy of I ′ and repeat the previous steps. Otherwise, we return I.

3 Parsimonious Chase Estimation

In this section, we introduce some basic notions that will help us to find a tight
upper bound for the pchase. We highlight a main property of the pchase, based
on isomorphic atoms, a crucial notion in several Datalog± classes [14].

Theorem 1. Given a program P , pchase(P) does not contain isomorphic
atoms.

Proof. Assume, by contradiction, that there are two isomorphic atoms a and
a′ in pchase(P). Thus, there is a homomorphism h from {a} to {a′} s.t. h−1

is a homomorphism from {a′} to {a}. W.l.o.g. assume that a ∈ I, for some
I generated during the pchase procedure. As a′ ∈ pchase(P), then there is a
rule r, an instance I ′ ⊇ I, and an unspent firing homomorphism h′ for 〈r, I ′〉,
s.t. fire(r, h′) = a′, against the fact that h−1 ◦ σ is a homomorphism from

Extending Bell Numbers for Parsimonious Chase Estimation 493

{h′(head(r))} to I ′. Indeed, (h−1 ◦ σ)(h′(head(r))) = h−1(σ(h′(head(r)))) =
h−1(fire(r, h′)) = h−1(a′) = a ∈ I ⊆ I ′. ��

To provide a precise upper bound for the number of steps execute by the
pchase, we introduce the concept of type that is equivalent to the notion of
equality type defined in [18].

Definition 1 (Type). Let m be a positive integer, S an arbitrary partition of
{1, . . . , m}, C a set with |C| ≤ |S|, and f : C → S an injective map. We define
the type of S,C and f as the family of sets T (S,C, f) =

{
s ∪ f−1(s) | s ∈ S

}
.

Example 1. Let m = 6, C = {c1, c2}, and let S =
{
{1, 2}, {3, 6}, {4}, {5}

}
be a

partition of {1, . . . , 6}. Consider the injective map f : C → S such that f(c1) =
{3, 6} and f(c2) = {5}. Then, T (S,C, f) =

{
{1, 2}, {3, 6, c1}, {4}, {5, c2}

}
.

Fixed an integer m, our aim is to count the number of all possible types that
can be generated from any partition of the set {1, . . . , m}, by varying C on a
superset D of a fixed size d. In order to do this, we resort to the Bell number
Bn, that is the number of ways to partition a set of n labeled elements.

Theorem 2. Let m ∈ N, D a finite set of size d > 0, and Bn the n-th Bell
number. Hence, the number of all possible types generated from all the partitions
of the set {1, . . . , m} and all subsets of D is given by γd

m =
∑m

h=0

(
m
h

)
dhBm−h.

Proof Sketch. Recall that, given two sets A and B with |A| = α ≤ |B| = β, the
number of injective maps from A to B is β!

(β−α)! . Then, fixed a partition S of
{1, ...,m} with |S| = s, the number of injective maps from any subset C ⊆ D to
S, with |C| = c ≤ s, is s!

(s−c)! , while the number of subsets of size c is
(
d
c

)
. Thus,

the number of all possible types for the fixed partition S is
∑min{s,d}

c=0

(
d
c

)
· s!
(s−c)! .

Hence, the number of types generated from all the partitions of the set {1, . . . , m}
and all subsets of D is given by

∑m
s=1 S(m, s)·

∑min{s,d}
c=0

(
d
c

)
· s!
(s−c)! , where S(m, s)

is the Stirling number counting the number of partitions of size s on m elements.
It can be shown that it is equivalent to γd

m. ��

Taking advantage of the notion of type, we can provide a new representation of
an arbitrary atom.

Definition 2 (Atom Type). Given an atom a = p(t) of arity m, we define the
type of the atom a as Ta = T (S,C, f), where C = const(a); S =

{
{n | a[n] =

ti} | i = 1, . . . , m
}
; and f : C → S such that f(c) = {n | a[n] = c}.

Hence, the type of an atom a has the form Ta = {σ(t1), . . . , σ(tm)}, where σ
is such that σ(ti) = {n | n ∈ {1, . . . , m} ∧ a[n] = ti} ∪ {ti} if ti is a constant,
and σ(ti) = {n | n ∈ {1, . . . , m} ∧ a[n] = ti} otherwise. Intuitively, the type of
an atom is formed by the sets of positions where a term occurs, by highlighting
positions where constants occur.

494 G. Amendola and C. Marte

Example 2. Let a = p1(ϕ1, ϕ3, ϕ2, ϕ1) and b = p2(c, ϕ1, d, c, ϕ2, ϕ2, ϕ1). Then,
Ta =

{
{1, 4}, {2}, {3}

}
and Tb =

{
{1, 4, c}, {2, 7}, {3, d}, {5, 6}

}
.

Theorem 3. Let a = p(t1, . . . , tk) and a′ = p(t′1, . . . , t
′
k) be two atoms. Then, a

and a′ are isomorphic if, and only if, pred(a) = pred(a′) and Ta = Ta′ .

Proof. Let us consider two atoms a and a′. If pred(a) = pred(a′) or arity(a) =
arity(a′), then of course can not exists an isomorphism between them. Hence,
we can take for granted that the two atoms have same predicate and arity.
[⇒] Assume that there is an isomorphism between a and a′, i.e., there is a homo-
morphism h : {a} → {a′} s.t. h(ti) = t′i, i = 1, . . . , k and s.t. h−1 : {a′} → {a}
is a homomorphism. Let Ta = {σ(t1), . . . , σ(tk)} and Ta′ = {σ′(t1), . . . , σ′(tk)}.
We claim that σ(ti) = σ(t′i), for i = 1, . . . , k. Assume that σ(ti) ⊆ σ(t′i), and let
n ∈ σ(ti) ∩ N, so that a[n] = ti. Therefore, we have that t′i = h(ti) = h(a[n]) =
h(a)[n] = a′[n]. Hence, n ∈ σ(t′i). Moreover, if n = c is a constant, by definition
of homomorphism, we have c ∈ σ(ti) ⇒ ti = c ⇒ t′i = h(ti) = ti = c ⇒ c ∈ σ(t′i).
The reverse inclusion can be easily proved by replacing h by h−1. [⇐] Let us
assume that Ta = Ta′ . Let h : {a} → {a′} be s.t. h(ti) = t′i. First, we prove that
h is a homomorphism. Let ti = c be a constant. Suppose that c ∈ σ(ti), then
by assumption c ∈ σ(t′i), hence t′i = c. It remains to be shown that h is also
injective. Let t′i = t′j . Then, σ(t′i) = σ(t′j) ⇒ σ(ti) = σ(tj) ⇒ ti = tj . ��

Now, we are able to provide an upper bound for the maximum number of
atoms generating by the pchase procedure.

Theorem 4. Let P be a program with arity(P) = w, |const(P)| = d, and lm the
number of predicates in pred(P) of arity m. Then, |pchase(P)| ≤

∑w
m=0 lmγd

m.

Proof. By Theorems 2 and 3, the total number of non isomorphic atoms over
pred(P) and const(P)∪ΔN is given by

∑w
m=0 lmγd

m. Moreover, by Theorem1, we
know that pchase(P) does not contain isomorphic atoms. Hence, |pchase(P)| ≤∑w

m=0 lmγd
m. ��

Let Γ d
w be the upper bound in Theorem4. To show that it is also tight, we

introduce an ordering on types that will allow us to build a program with a
sequence of firing homomorphisms generating a pchase of size exactly Γ d

w.

Definition 3 (Type ordering). Let T = T (S,C, f) and T ′ = T (S′, C ′, f ′).
Then, T precedes T ′, if (i) |C| < |C ′|, or (ii) |C| = |C ′| and |S| > |S′|.

Intuitively, such a program should have a rule for each possible atom tag, when-
ever constants are allowed in the rules. Otherwise, we need a predicate to collect
all constants of the database. To better understand our idea, we give an example
of such a program before we provide the formal result.

Example 3. Let C be a finite set of constant, and P be a program such that
data(P) = {t(c1), t(c2)}, and dep(P) is given by

Extending Bell Numbers for Parsimonious Chase Estimation 495

∃X,Y, Zp(X,Y, Z) ∃X,Y p(Z,X, Y) ← t(Z) ∃Xp(X,Y, Z) ← t(Y), t(Z)
∃X,Y p(X,X, Y) ∃X,Y p(X,Z, Y) ← t(Z) ∃Xp(Y,X,Z) ← t(Y), t(Z)
∃X,Y p(X,Y,X) ∃X, Y p(X, Y, Z) ← t(Z) ∃Xp(Y, Z,X) ← t(Y), t(Z)
∃X,Y p(X,Y, Y) ∃Xp(X,X, Y) ← t(Y) p(X,Y, Z) ← t(X), t(Y), t(Z)

∃Xp(X,X,X) ∃Xp(X,Y,X) ← t(Y)
∃Xp(Y,X,X) ← t(Y) ∃Xt(X)

We build pchase(P) by starting from rules in the first column from top to bot-
tom. For each rule r in this ordering, we consider all firing homomorphism h for
r. E.g., the rule in bold produces the atoms {p(ϕ1, ϕ2, c1), p(ϕ3, ϕ4, c2)}. Thus,
the number of atoms with predicate p generated by the pchase will be 37 = γ2

3 ,
and |pchase(P)| = 40 = γ2

3 + γ2
1 .

Theorem 5. Let w be a positive integer, D a set of constants of size d, and Γ d
w

as above. Then, there is a family Pw of programs s.t. |pchase(Pw)| = Γ d
w.

Proof Sketch. We build a program Pw having two predicates p (of arity w) and
t (of arity 1). We set data(Pw) = {t(c) | c ∈ D}, and define dep(Pw) as follows.
Given a partition Si = {Λ1, . . . , Λn} of w, where n = |Si|, we construct a rule
ri with an empty body, by adding X1, . . . , Xn existential variables so that Λj =
{k | p[k] = Xj , k ∈ [w]}. Now, fixed a rule ri with n > 1 existential variables,
we produce n − 1 blocks of rules as follows. We translate j existential variables
into universal ones, by adding j atoms over predicate t in the body. Hence, we
construct

(
n
j

)
rules. Then, we add the rules p(X1, . . . , Xw) = t(X1), . . . , t(Xw),

and ∃Xt(X). Finally, we remove all rules having in the head more than one
repeated universal variable. To prove that |pchase(Pw)| = Γ d

w, we provide a
sequence of Γ d

w −d firing homomorphisms. To each rule r in dep(Pw) we associate
uniquely an atom g(head(r)), where g maps existential variables to fresh nulls,
and universal variables to a fixed constant. The type ordering on the atoms gives
an ordering on the rules, and so to the sequence of firing homomorphisms. ��

4 Discussion and Future Work

In this work, we identified the maximal number of distinct atoms generable
by the pchase procedure. In particular, γd

m improves the bound given in [21],
that is (d + m)m. In particular, dm ≤ γd

m ≤ (d + m)m. Since in the OBQA
context, normally, d is much bigger than m, it could seem that the effort to
find such a precise upper bound can be useless for practical purposes. However,
this is not the case, as shown in the paper. Indeed, the search for a precise
upper bound led to identify the fundamental notions of type and type ordering
that highlighted some qualitative characteristics of the pchase. Moreover, there
could be other contexts where m is much bigger than d (think for example to
scenarios where tuples encode strings over a certain alphabet, as in complexity
proofs based on Turing Machine simulation). In this cases, our bound represents
a concrete improvement. As future work, we plan to extend the pchase condition
to rules with a complex head, and to compute the maximal number of distinct
atoms generable in this case. Then, we will try to analyze the orderings of fire

496 G. Amendola and C. Marte

homomorphisms in the generation of the pchase to understand if we can identify
a sort of best ordering that minimizes the number of atoms produced. Finally,
we will try to apply this methodology to give exact estimations of others chase
versions.

Acknowledgments. This work has been partially supported by the European Union’s
Horizon 2020 research and innovation programme under the Marie Skodowska-Curie
grant agreement No. 690974 for the project “MIREL: MIning and REasoning with
Legal texts”.

References

1. Alviano, M., Pieris, A.: Default negation for non-guarded existential rules. In: Proc
of PODS (2015)

2. Amendola, G., Leone, N., Manna, M.: Finite model reasoning over existential rules.
TPLP 17(5–6), 726–743 (2017)

3. Amendola, G., Leone, N., Manna, M.: Querying finite or arbitrary models? No
matter! existential rules may rely on both once again (discussion paper). In: SEBD,
CEUR Workshop Proceedings, vol. 2037, p. 218. CEUR-WS.org (2017)

4. Amendola, G., Leone, N., Manna, M.: Finite controllability of conjunctive query
answering with existential rules: two steps forward. In: IJCAI, pp. 5189–5193.
ijcai.org (2018)

5. Amendola, G., Leone, N., Manna, M., Veltri, P.: Reasoning on anonymity in
datalog+/-. In: ICLP (Technical Communications), OASICS, vol. 58, pp. 3:1–3:5.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)

6. Amendola, G., Leone, N., Manna, M., Veltri, P.: Enhancing existential rules by
closed-world variables. In: IJCAI, pp. 1676–1682. ijcai.org (2018)

7. Amendola, G., Libkin, L.: Explainable certain answers. In: IJCAI, pp. 1683–1690.
ijcai.org (2018)

8. Arenas, M., Barceló, P., Libkin, L., Murlak, F.: Foundations of Data Exchange.
Cambridge University Press, Cambridge (2014)

9. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook. Cambridge University Press, Cambridge
(2003)

10. Baget, J., Leclère, M., Mugnier, M., Salvat, E.: On rules with existential variables:
walking the decidability line. Artif. Intell. 175(9–10), 1620–1654 (2011)

11. Bárány, V., Gottlob, G., Otto, M.: Querying the guarded fragment. LMCS 10(2)
(2014)

12. Bourhis, P., Manna, M., Morak, M., Pieris, A.: Guarded-based disjunctive tuple-
generating dependencies. ACM TODS 41(4), 27 (2016)

13. Cal̀ı, A., Gottlob, G., Lukasiewicz, T.: Datalog±: a unified approach to ontologies
and integrity constraints. In: Proceedings of ICDT (2009)

14. Cal̀ı, A., Gottlob, G., Lukasiewicz, T.: A general datalog-based framework for
tractable query answering over ontologies. In: PODS, pp. 77–86. ACM (2009)

15. Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about datalog
(and never dared to ask). IEEE Trans. Knowl. Data Eng. 1(1), 146–166 (1989)

16. Deutsch, A., Nash, A., Remmel, J.B.: The chase revisited. In: Proceedings of PODS
(2008)

Extending Bell Numbers for Parsimonious Chase Estimation 497

17. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and
query answering. TCS 336(1), 89–124 (2005)

18. Gottlob, G., Orsi, G., Pieris, A.: Ontological queries: rewriting and optimization.
In: ICDE, pp. 2–13. IEEE Computer Society (2011)

19. Imielinski, T., Lipski, W.: Incomplete information in relational databases. J. ACM
31(4), 761–791 (1984)

20. Lenzerini, M.: Data integration: a theoretical perspective. In: PODS, pp. 233–246.
ACM (2002)

21. Leone, N., Manna, M., Terracina, G., Veltri, P.: Efficiently computable Datalog∃

programs. In: Proceedings of KR (2012)
22. Manna, M., Ricca, F., Terracina, G.: Consistent query answering via ASP from

different perspectives: theory and practice. TPLP 13(2), 227–252 (2013)
23. Manna, M., Ricca, F., Terracina, G.: Taming primary key violations to query large

inconsistent data via ASP. TPLP 15(4–5), 696–710 (2015)

The Weak Completion Semantics Can
Model Inferences of Individual

Human Reasoners

Christian Breu , Axel Ind , Julia Mertesdorf , and Marco Ragni(B)

Cognitive Computation Lab, Technische Fakultät, Universität Freiburg,
Georges-Köhler-Allee 52, 79110 Freiburg, Germany

christian.breu@mars.uni-freiburg.de, axeltind@gmail.com,

{mertesdj,ragni}@informatik.uni-freiburg.de

Abstract. The weak completion semantics (WCS) based on three-
valued �Lukasiewicz logic has been demonstrated to be an adequate model
for general human reasoning in a variety of different domains. Among the
many experimental paradigms in cognitive psychology, the Wason Selec-
tion Task (WST) is a core problem with more than 200 publications
demonstrating key factors of the systematic deviation of human reason-
ing from classical logic. Previous attempts were able to model general
response patterns, but not the individual responses of participants. This
paper provides a novel generalization of the weak completion seman-
tics by using two additional principles, abduction and contraposition:
This extension can model the four canonical cases of the WST for the
Abstract, Everyday, and Deontic problem domain. Finally, a quantita-
tive comparison between the WCS predictions of the extended model and
the individual participants’ responses in the three problem domains is
performed. It demonstrates the power of the WCS to adequately model
human reasoning on an individual human reasoner level.

Keywords: Logic programming · Weak completion semantics ·
�Lukasiewicz logic · Non-monotonic logic · WST · Cognitive modelling

1 Introduction

The Wason Selection Task (WST) is one of the most commonly studied prob-
lems in cognitive psychology [6]. It provides a simple example of the disparity
between human logical selection and logically valid conclusions. The task con-
tains (at least) three logically identical problems, called the Abstract, Everyday,
and Deontic cases. Despite their logical equivalence, subjects are more likely to
derive the classical logic solution in the Everyday and Deontic cases than in

Supported by the DFG within grants RA 1934/3-1 and RA 1934/4-1.
Authors appear alphabetically.

c© Springer Nature Switzerland AG 2019
F. Calimeri et al. (Eds.): JELIA 2019, LNAI 11468, pp. 498–508, 2019.
https://doi.org/10.1007/978-3-030-19570-0_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19570-0_33&domain=pdf
http://orcid.org/0000-0002-6931-1064
http://orcid.org/0000-0002-7836-1952
http://orcid.org/0000-0002-9750-4285
http://orcid.org/0000-0003-2661-2470
https://doi.org/10.1007/978-3-030-19570-0_33

Weak Completion Semantics Models Individual Reasoner 499

Fig. 1. The four cards D, K, 3, and 7 participants are presented with to check if the
rule X holds “If a card has a D on one side it has a 3 on the other side”. The percentages
show, how many reasoners select the respective card combinations (see, [6]).

the Abstract case. Thus, the WST provides an illustration of the unsuitability
of classical logic for cognitive modelling. The task is also of interest because it
shows the human tendency to interpret logically equivalent data differently based
on contextual knowledge of the problem domain [6]. In the abstract formulation
of the task, a participant is shown four cards (Fig. 1) and learns that every card
has a number on one side and a letter on the other side. The participant is asked
to decide for each card if it needs to be turned over to test the conditional: ‘If
a card has a D on one side, it has a 3 on the other side.’ 1 The conditional of
the WST translates into the proposition: 3 ← D. Using propositional logic it is
easy to derive the two cards that would contradict this conditional. If the card
D did not have a 3 on its other side, the proposition would be shown to be
false (modus ponens). Similarly, if card 7 was shown to have a D on the other
side, the proposition would be violated (modus tollens). Thus, the two cards
that should be turned over are D and 7. Despite the validity of its conclusions,
propositional logic provides a poor model for the human conclusions drawn for
the WST [6]. In reality, humans tend overwhelmingly to choose the cards D, or
D and 3 (see Table in Sect. 5). These seemingly illogical choices are the reason
for the significance of the task in cognitive modelling. A variety of cognitive
modelling frameworks have been applied to the task in order to formalize the
disparity between logical deduction and experimental reality [6].

The Weak Completion Semantics (WCS) has been shown to provide a suit-
able cognitive model for predictive modelling in many human reasoning domains,
such as reasoning with conditionals [2] and syllogistic reasoning [1] among oth-
ers. Furthermore, the WCS were successfully applied to model the WST [6], as
shown by [3] (see the Experiment in [3]). The previous WCS model was, however,
limited to explaining which cards are selected by the whole experimental group.
This paper proposes and introduces two extensions to the existing WCS frame-
work in order to facilitate WST modelling on an individual reasoner level. This
represents for the first time that the WST has been modelled on an individual

1 Note for a better readability, the cards are referred to by their face value. Specifically:
D ↔ p, p̄ ↔ K, q ↔ 3, q̄ ↔ 7.

500 C. Breu et al.

human reasoner level and allows for stochastic modelling techniques to predict
individual selections.

This paper focuses on the Abstract case of the WST, but the approaches
we propose will also be shown to be applicable in the Deontic and Everyday
cases. These cases have equivalent classical logic formulations, but human selec-
tions vary widely between them [6]. Section 2 provides the basic mathematical
concepts upon which both the WCS and the proposed extensions are modelled.
Section 3 discusses the WCS and their application to the WST. Section 4 intro-
duces two new extensions to the basic WCS model: Abduction and Contraposi-
tion. Section 5 provides the logical conclusion each extension draws to the task
and a probabilistic testing procedure to evaluate the strength of the derived con-
clusion. Finally, the paper concludes with a discussion of the suitability of the
extended WCS model for modelling the WST.

2 Mathematical Preliminaries

We expect the reader to be familiar with some logic and logic programming. We
introduce the necessary definitions upon which the WCS is built and follow the
notation in [3]. A logic program P is a finite set of clauses of the form

A ← A1 ∧ · · · ∧ Ak ∧ ¬B1 ∧ · · · ∧ ¬Bl (1)

with propositional atoms Ai for 1 ≤ i ≤ k and Bj for 1 ≤ j ≤ l. There are two
distinct atoms � and ⊥, where A ← � represents that A is true and A ← ⊥
that A is false. The first type of clauses are called positive facts and the latter
type negative facts. The propositional atom A in the clause above is called the
head and A1 ∧ · · · ∧ Ak ∧ ¬B1 ∧ · · · ∧ ¬Bl the body of the clause. We consider
only cases where the bodies of clauses are not empty. An atom A is called
defined in a logic program P, if there is a clause with head A; otherwise it is
undefined. An interpretation I is a mapping from formulae to one of the three
truth values �,⊥,U, with � being true, ⊥ being false and U being unknown.
The truth value of a given formula under a given interpretation is determined
by the �Lukasiewicz interpretation. We write following [3] an interpretation as
a pair I = 〈I�, I⊥〉 of disjoint sets of atoms where I� is the set of all atoms
that are mapped by I to � and I⊥ is the set of all atoms that are mapped
by I to ⊥. Please note that atoms mapped to U are neither in I� nor in I⊥. A
model of a formula F is an interpretation I such that I(F) = �. Table 1 shows
the truth tables for the operators NOT, AND, OR, Implication and Equivalence
of the three-valued �Lukasiewicz logic. The least model of a given logic program
is the model where positive and negative information is minimized: suppose
that I = 〈I�, I⊥〉 is a model of P. The least model l of a logic program P is a
model for which for all other models J = 〈J�, J⊥〉 of P holds that I� ⊆ J�

and I⊥ ⊆ J⊥. The weak completion transformation (wcL) [4] for a given logic
program P is:

Weak Completion Semantics Models Individual Reasoner 501

1. Disjunct all clauses with the same head, i.e., replace
A ← body1, . . . , A ← bodyl by the disjunction A ← body1 ∨ . . . ∨ bodyl.

2. Replace all occurrences of ← by ↔.2

Table 1. Truth-tables for logical operators for the �Lukasiewicz logic (cp. [3]).

F ¬F
� ⊥
⊥ �
U U

∧ � U ⊥
� � U ⊥
U U U ⊥
⊥ ⊥ ⊥ ⊥

∨ � U ⊥
� � � �
U � U U
⊥ � U ⊥

←L � U ⊥
� � � �
U U � �
⊥ ⊥ U �

↔L � U ⊥
� � U ⊥
U U � U
⊥ ⊥ U �

The least model can be computed as the least fixed point of an appropri-
ate semantic operator for logic programs, which was proposed by Stenning and
Lambalgen in [7]. Let I be an interpretation in ΦP(I) = 〈J�, J⊥〉, where

J� = {A | there exists A ← body ∈ P with I(body) = �},

J⊥ = {A | there exists A ← body ∈ P and
for all A ← body ∈ P we find I(body) = ⊥}.

Hölldobler and Kencana Ramli [4] showed that the least fixed point of ΦP is
identical to the least model of the weak completion of P (lmwcP). It is started
by the empty interpretation I = 〈∅, ∅〉, lmwcP and iterating ΦP and the model
intersection property holds for weakly completed programs [4] which guarantees
the existence of least models.

In the following paragraph, we will define backward reasoning in the context
of the WCS [3], which is called abduction and represents the opposing process
to forward reasoning and deduction. Abduction is applied in order to find an
appropriate explanation E for an observation O, which consists of a non-empty
set of literals. For explanations, the set of abducibles AP with regards to the
logic program P is considered, where

AP = {A ← �| A is undefined or ¬A is assumed in P}
∪ {A ← ⊥| A is undefined in P}

Moreover, integrity constraints (IC) can be considered when searching for expla-
nations. These are expressions of the form U ← body, where body denotes
a conjunction of literals and U the unknown, according to the three-valued
�Lukasiewiczs logic. An integrity constraint is mapped to True by an Interpre-
tation I if all literals in the body are either mapped to False or Unknown:
I(body) ⊆ {⊥, U}. Given a finite set of integrity constrains IC and an Interpre-
tation I, IC is satisfied by I if all clauses that are contained in IC are mapped

2 Human reasoners can assume a biconditional interpretation of a conditional [6].

502 C. Breu et al.

to True under I. The complete abductive framework 〈P, IC,AP , |=wcs〉 for mod-
elling abduction consists of a logic program P, a finite set of abducibles AP with
regards to P, a finite set of integrity constraints IC and an entailment relation
|=wcs. An observation O = {o1, o2, . . . , on} is explained by an explanation E ⊆ A
given P and IC if and only if P ∪E |=wcs o1 ∧o2 ∧ . . .∧on and P ∪E |=wcs IC.
As in the case of computing least models, minimal explanations are preferred,
meaning there exists no other explanation E ‘ for O such that E ‘ ⊂ E .

Fig. 2. The basic model for WCS prediction in the WST.

3 Modelling the WST with the WCS

The WST can be modelled under the Weak Completion Semantics. As in [3],
conditionals can be represented by licenses for implications by adding a negated
abnormality-predicate to the body of the implication. The rule of the WST
3 ← D can be transformed to 3 ← D∧¬ab1, meaning that D implies 3, provided
that nothing abnormal is known. After creating a new an empty logic program,
the transformed rule 3 ← D∧¬ab1 is added. Since nothing abnormal is known at
this point, the fact ab1 ← ⊥ is added. After creating the basic logic program, the
implementation needs to consider each of the four cards individually and decide,
whether the card should be turned over. Since subjects directly observe a card
with a letter or a number in front of them, they know that this letter or number
is True, so the according atom encoding that letter or number has to hold in
the logic program. This can be established by adding a positive fact of the form
card ← � with regards to the currently observed card to the logic program. The
next step is to apply the semantic operator (also called the SvL operator) which
was introduced by Stenning and Lambalgen [7]. The result is the least model
of the weak completion of the logic program, incorporating two lists, one list
containing all positive and one containing all negative atoms. Depending on the
computed atom assignments, a function deciding whether the currently observed
card should be turned over or not can determine the result for the current card.
A card is turned over, iff the given rule 3 ← D evaluates to � in the least model.
The intuition behind this decision function is that if the main rule of the WST

Weak Completion Semantics Models Individual Reasoner 503

should hold (according to the conclusion of the reasoner with regards to the
observed card), the reasoner verifies whether the rule actually holds by turning
the observed card. We evaluate this rule with regular, two-valued logic to prevent
turning the card when both atoms of the rule, D and 3, are unknown. When
nothing about either of the atoms is known for the current card, there can be no
information derived by turning it, which would be the case if the three-valued
�Lukasiewicz Logic were used instead. The process of observing a card, adding
the according positive fact to the logic program, computing the least model and
deciding whether to turn the card, is repeated for all remaining cards. The first
step of creating the logic program and adding the main rule 3 ← D ∧ ¬ab1 and
fact ab1 ← ⊥ is only done once for every simulated subject. The flowchart in
Fig. 2 illustrates the problem solving process.

Example of the Basic Model. In the following, we provide an example to
depict the problem solving process under the WCS as described in the previous
section. The current observed card in this example is the card D. In the first
step, the given rule of the WST, encoded as a license for an implication, is
added to the logic program together with the according negative abnormality-
fact: P = {3 ← D∧¬ab1, ab1 ← ⊥}. Since the currently observed card is card D,
the fact D ← � is added to P, hence: P = {3 ← D ∧ ¬ab1, ab1 ← ⊥,D ← �}.
After adding all necessary rules and facts to the logic program, the semantic
operator is applied. In the first iteration, D is set to � and ab1 is set to ⊥. In
the next iteration, 3 is set to � since the body of the rule 3 ← D∧¬ab1 evaluates
to � as a result of the first iteration. No new truth assignments follow after this
iteration, so the resulting least model of the logic program is: 〈{3,D}, {ab1}〉.
The model will then proceed with the turn-decision-function. The initial given
rule 3 ← D evaluates to �. Therefore, the card D is turned.

4 Extending the WCS for the Individual Case

Using only the basic model we introduced in the previous section, our model
would always conclude that D should be turned, which corresponds to the canon-
ical case p. However, this is not sufficient to model the WST for individual rea-
soners, as there is no variation in the results and none of the other three canonical
cases can be derived. Therefore, this paper introduces two extensions to model
the WST more precisely. These extensions can be enabled or disabled for each
subject. The question of which extensions to enable will be discussed later.

Applying Abduction. When observing card 3, we generate the following logic
program before applying the semantic operator:

P = {3 ← D ∧ ¬ab1, ab1 ← ⊥, 3 ← �}

Whilst computing the least model, atom D cannot be assigned � or ⊥ since D
does not occur in the head of any rule, so the decision-turn-function will always
derive not to turn card 3 since nothing is known about D. However, people might

504 C. Breu et al.

come to the conclusion that D has to be � in order for 3 to be � which results
in turning 3. This thinking-process can be accurately modelled by abduction,
which was explained in Sect. 2 in more detail. Applying abduction as a result
of misinterpreting the given implication as an equivalence might be one of the
major reasons many people chose the cards D and 3 in the abstract problem
domain. This new extension of the basic model allows deriving the canonical
case pq. If abduction is enabled for a subject, then our model will try to apply it
to every observed card. However, only certain facts can be used as observations
in the abductive framework and only if one such fact exists, an explanation
can be found and with that, change the decision whether the observed card is
turned or not. In order for a fact to be considered as an observation, the atom
in the head of this fact needs to be in the head of another rule, which is not a
fact. That means, abduction is only applicable for card 3, since then the fact
3 ← � is added to the logic program and atom 3 is also the head of the rule
3 ← D∧¬ab. For all other cards, the abduction process will stop after not finding
a fact which can be used as an observation. When an observation is found, an
appropriate explanation needs to be computed. An explanation consists of a
(sub)set of the abducibles. If a (sub)set of the abducibles, together with the logic
program, leads to a least model which includes the atom in the observation-
fact as a true atom, then this (sub)set of abducibles is an explanation for the
observation. To compute the explanation, the observation-fact is first deleted
from the logic program. Afterwards, the implementation computes the set of
abducibles. All atoms, that are either undefined in the logic program or that are
assumed to be False, are used as the heads of the abducibles. In case the atom
is undefined, a positive and negative fact with the atom as its head is added to
the list of abducibles. If the atom is assumed to be False, only a positive fact is
added. After computing the abducibles, the implementation iterates trough the
set of abducibles, adding one of the facts, computing the least model with this
additional fact and checking whether the atom in the observation-fact is True in
the resulting least model. If no fitting explanation is found, the implementation
will iterate trough the abducibles again, this time adding two abducible-facts
to the logic program before calculating the least model again. If a (sub)set of
the abducibles is found which leads to a least model comprising the atom in
the observation fact as a true atom, then this (sub)set is our explanation. The
least model of the logic program conjoined with the computed explanation is our
new least model. The turn-decision-function is executed on the atom assignment
according to the new least model and derives a different conclusion for card 3.

Abduction Example. As abduction is only applicable for card 3, the following
example illustrates the problem solving process for observing card 3. The first
step, like in the example above, comprises adding the rule of the WST with the
negated abnormality predicate in the body and the according negative abnor-
mality fact to the logic program.

P = {3 ← D ∧ ¬ab1, ab1 ← ⊥}

Weak Completion Semantics Models Individual Reasoner 505

Next, the currently observed card 3 is added to the logic program.

P = {3 ← D ∧ ¬ab1, ab1 ← ⊥, 3 ← �}
Iterating the Semantic Operator leads to the least model: 〈{3}, {ab1}〉. The
atom 3 of the positive fact 3 ← � is also head of the rule 3 ← D ∧ ¬ab1.
Therefore, this fact can be used as an observation. The set of abducibles is
{ab1 ← �,D ← �,D ← ⊥} since atom D was undefined and ab1 was assumed to
be ⊥ in the logic program. The only explanation for the observation is {D ← �}.
Adding this fact to the logic program, we obtain:

P = {3 ← D ∧ ¬ab1, ab1 ← ⊥, 3 ← �,D ← �}
The new computed least model is: 〈{3,D}, {ab1}〉. With this atom assignment,
the main rule 3 ← D evaluates to �, since both D and 3 are True in the least
model. Therefore, the card 3 is turned.

Contraposition. By adding more rules to the logic program, we can introduce
new mechanisms to decide whether a card should be turned or not. Adding
the contraposition rule ¬D ← 7 to the logic program allows our model to
apply modus tollens. Since there is a restriction on logic programs, that no
negated atoms are allowed in the heads of the rules, we transform the contra-
position rule according to a common approach in logic programming (see, [1]):
Adding the rules D′ ← 7 and D ← ¬D′ encodes the contraposition rule while
avoiding negated atoms in the rule heads. Furthermore, as in the case of the
given main rule 3 ← D, an according negated abnormality predicate is added
to the body of the rule. Nothing abnormal is known in the usual case, so an
according negative abnormality fact is added as well. The set of new rules is:
{D′ ← 7∧¬ab2,D ← ¬D′, ab2 ← ⊥}. Applying our second extension, adding the
contraposition rule to the logic program after the first step of our basic model
(Fig. 2), the implementation is now able to derive the canonical case pq̄, which
corresponds to the correct solution of the WST.

Contraposition Example. The next example shows the problem solving process
with the Contraposition-extension for card 7. The initial logic program contains
the given rule of the WST and the matching abnormality fact, like in the exam-
ples before.

P = {3 ← D ∧ ¬ab1, ab1 ← ⊥}
The newly introduced step adds Contraposition in the form of the two rules and
the corresponding abnormality fact, as explained above.

P = {3 ← D ∧ ¬ab1,D
′ ← 7 ∧ ¬ab2,D ← ¬D′, ab1 ← ⊥, ab2 ← ⊥}

In the third step, the model adds the observed card 7 to the logic program.

P = {3 ← D ∧ ¬ab1,D
′ ← 7 ∧ ¬ab2,D ← ¬D′, ab1 ← ⊥, ab2 ← ⊥, 7 ← �}

506 C. Breu et al.

Iterating the semantic operator sets ab1 to ⊥, ab2 to ⊥ and 7 to � in the first
iteration. In the next iteration, D′ is set to � since 7 ∧ ¬ab2 evaluates to �
after the first iteration. The third iteration sets D to ⊥, since ¬D′ is ⊥ due to
the last iteration. Finally, atom 3 is set to ⊥ as well, since the body of the rule
3 ← D ∧ ¬ab1 evaluates to ⊥ with atom D being ⊥. The least model is:

〈{7,D′}, {D, 3, ab1, ab2}〉
Since both D and 3 are ⊥ in the least model, the turn-decision-function is eval-
uated to � and card 7 is turned.

(a) Extension for individual patterns (b) Flowchart of the extended model

Fig. 3. Both extensions combined (Color figure online)

Combining the Extensions. Above, we introduced two new extensions to model
the WST in a more accurate manner. The Abduction extension allowed us to
turn card q. The Contraposition extension allows us to model the classical logic
solution to the WST, pq̄. By applying both extensions, the last canonical case,
pqq̄, can be derived. The extended model is now able to derive all four canonical
cases (see Fig. 3a) by selective application of the extensions. The steps in this
combined model are shown in Fig. 3b. White blocks depict the basic WCS model
and green blocks illustrate the two new extensions.

5 Results, Conclusion, and Future Work

In the absence of the two extensions only the canonical case {D} is derivable
(Sect. 3). As shown in Sect. 4, applying the Abduction and Contraposition exten-
sions in conjunction with the basic WCS model allows the derivation of the

Weak Completion Semantics Models Individual Reasoner 507

other three cases3. Cases derived by the combined model of the WST under the
assumption that all abnormalities are set to ⊥.

Abduction = True Abduction = False

Contraposition = True {D, 3, 7} {D, 7}
Contraposition = False {D, 3} {D}

Following the procedure in Fig. 3a, the parameters combinations required to
model all four canonical cases on the WST in our framework are shown in the
table above. In order to test how accurately our model is capable of predicting
individual responses to the Abstract, Everyday, and Deontic cases of the task, a
stochastic model that pseudo-randomly determined the probability of applying
Abduction and/or Contraposition rules was generated. These probabilities were
optimized using the COBYLA numerical optimization tool [5]. The following
table shows a comparison between the generated results against those achieved
in reality and indicates that all three cases are closely approximated by the
extended model.

{D} {D, 3} {D, 3, 7} {D, 7} p(Abduction) p(Contraposition)

Abstract 39/36 37/39 12/5 13/19 0.475 0.256

Everyday 29/23 31/37 21/11 20/29 0.49 0.424

Deontic 19/13 4/19 12/4 65/64 0.151 0.785

The above table shows the predicted answers and empirical results (in bold)
of the WST and predicted probabilities of applying each extension to the WCS
Framework to model the aggregated results of each WST case. This paper has
served to show the suitability of the proposed extensions to the WCS for cognitive
modeling of the WST. It has been demonstrated that all four canonical cases of
the task can be accurately modelled at the level of individual reasoners in each
of the three experimental cases (Abstract, Social and Deontic). The value of
this work is two-fold. First, it has provided a novel framework for modelling the
individual-level results of a problem that has previously been primarily concerned
with approximating the properties of groups as whole. Second, it has shown that
using suitable stochastic modelling techniques, it is possible to estimate group
responses by considering multiple instances of the individual reasoner. It has
been shown to approximate experimental, quantitative data over multiple trials
when properly optimized. Exact interpretation of the value of such parameter
data in cross-validation with other cognitive modelling tasks, and the possible
addition of other well-founded logical extensions is a topic for future work.
3 For the purposes of this experiment, only results relating to the four canonical cases

({D}, {D, 3}, {D, 3, 7}, {D, 7}) are presented. Other possible combinations were
found to be quite rare and are not considered relevant to the task.

508 C. Breu et al.

References

1. Costa, A., Dietz, E.A., Hölldobler, S., Ragni, M.: Syllogistic reasoning under the
weak completion semantics. In: Bridging@ IJCAI, pp. 5–19 (2016)

2. Dietz, E.-A., Hölldobler, S.: A new computational logic approach to reason with
conditionals. In: Calimeri, F., Ianni, G., Truszczynski, M. (eds.) LPNMR 2015.
LNCS, vol. 9345, pp. 265–278. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-23264-5 23

3. Dietz, E.A., Hölldobler, S., Ragni, M.: A computational logic approach to the
abstract and the social case of the selection task. In: Proceedings of the 11th Inter-
national Symposium on Logical Formalizations of Commonsense Reasoning, COM-
MONSENSE (2013)

4. Hölldobler, S., Kencana Ramli, C.D.P.: Logics and networks for human reasoning.
In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds.) ICANN 2009.
LNCS, vol. 5769, pp. 85–94. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-04277-5 9

5. Powell, M.J.: A direct search optimization method that models the objective and
constraint functions by linear interpolation. In: Gomez, S., Hennart, J.P. (eds.)
Advances in Optimization and Numerical Analysis. MAIA, vol. 275, pp. 51–67.
Springer, Dordrecht (1994). https://doi.org/10.1007/978-94-015-8330-5 4

6. Ragni, M., Kola, I., Johnson-Laird, P.N.: On selecting evidence to test hypotheses:
a theory of selection tasks. Psychol. Bull. 144(8), 779–796 (2018)

7. Stenning, K., Van Lambalgen, M.: Human Reasoning and Cognitive Science. MIT
Press, Cambridge (2008)

https://doi.org/10.1007/978-3-319-23264-5_23
https://doi.org/10.1007/978-3-319-23264-5_23
https://doi.org/10.1007/978-3-642-04277-5_9
https://doi.org/10.1007/978-3-642-04277-5_9
https://doi.org/10.1007/978-94-015-8330-5_4

Lower Bound Founded Logic of
Here-and-There

Pedro Cabalar1 , Jorge Fandinno2 , Torsten Schaub3(B) ,
and Sebastian Schellhorn3

1 University of Corunna, A Coruña, Spain
2 University of Toulouse, Toulouse, France

3 University of Potsdam, Potsdam, Germany
torsten@cs.uni-potsdam.de

Abstract. A distinguishing feature of Answer Set Programming is that
all atoms belonging to a stable model must be founded. That is, an atom
must not only be true but provably true. This can be made precise by
means of the constructive logic of Here-and-There, whose equilibrium
models correspond to stable models. One way of looking at foundedness
is to regard Boolean truth values as ordered by letting true be greater
than false. Then, each Boolean variable takes the smallest truth value
that can be proven for it. This idea was generalized by Aziz to ordered
domains and applied to constraint satisfaction problems. As before, the
idea is that a, say integer, variable gets only assigned to the smallest
integer that can be justified. In this paper, we present a logical recon-
struction of Aziz’ idea in the setting of the logic of Here-and-There.
More precisely, we start by defining the logic of Here-and-There with
lower bound founded variables along with its equilibrium models and
elaborate upon its formal properties. Finally, we compare our approach
with related ones and sketch future work.

1 Motivation

A distinguishing feature of Answer Set Programming (ASP; [5]) is that all atoms
belonging to a stable model must be founded. That is, an atom must not only be
true but provably true. This can be made precise by means of the constructive
logic of Here-and-There (HT; [17]), whose equilibrium models correspond to sta-
ble models [23]. One way of looking at foundedness is to regard Boolean truth
values as ordered by letting true be greater than false. Then, each Boolean vari-
able takes the smallest truth value that can be proven for it. Thus, in analogy to
[20,25] foundedness in ASP can be understood by minimizing values of Boolean
variables. This idea was generalized in [1] to ordered domains and applied to
constraint satisfaction problems. As before, the idea is that a, say integer, vari-
able gets only assigned to the smallest integer that can be justified. In fact, ASP
follows the rationality principle, which says that we shall only believe in things,
we are forced to [15]. While this principle amounts to foundedness in the propo-
sitional case, there are at least two views of statements such as x ≥ 42. First,
c© Springer Nature Switzerland AG 2019
F. Calimeri et al. (Eds.): JELIA 2019, LNAI 11468, pp. 509–525, 2019.
https://doi.org/10.1007/978-3-030-19570-0_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19570-0_34&domain=pdf
http://orcid.org/0000-0001-7440-0953
http://orcid.org/0000-0002-3917-8717
http://orcid.org/0000-0002-7456-041X
http://orcid.org/0000-0003-4928-2515
https://doi.org/10.1007/978-3-030-19570-0_34

510 P. Cabalar et al.

we may accept any value greater or equal than 42 for x. Second, we may only
consider value 42 for x, unless there is a reason for a greater value. Arguably,
the latter corresponds to the idea of foundedness in ASP.

The ASP literature contains several approaches dealing with atoms contain-
ing variables over non-Boolean domains [7,8,18] but these approaches do not
comply with foundedness in our sense. For instance, approaches to Constraint
ASP (CASP) like [7] only allow for atoms with variables over non-Boolean
domains in the body of a rule. Thus, these atoms and the values of non-Boolean
variables cannot be founded in terms of ASP.

Approaches like [8,18] focus on foundedness on an atom level and allow for
almost any kind of atoms in heads and bodies. They match the view of the
rationality principle that accepts any value satisfying a statement like x ≥ 42.
This permits assignments over non-Boolean domains to be founded but the vari-
ables are not necessarily assigned to the smallest value that can be justified. The
following examples point out the difference of the two views of the rationality
principle. Moreover, we show that taking any value satisfying a statement as a
rational choice together with separate minimization will not yield foundedness
in terms of ASP. Consider the rules

x ≥ 0 y ≥ 0 x ≥ 42 ← y < 42 (1)

The approach presented in [8] produces the following result. The first two rules
alone would generate any arbitrary pair of positive values for x and y, but the
last rule further restricts x ≥ 42 when the choice for y satisfies y < 42. It
is clear that this last rule causes the range of x to depend on the value of y.
Unfortunately, this dependence disappears if we try to minimize variable values
a posteriori by imposing a Pareto minimality criterion on the solutions. If we
do so, we get a first minimal solution with y �→ 0 and x �→ 42 which somehow
captures the expected intuition: we first decide the minimal value of y (which
does not depend on x) assigning 0 to y and then apply the third rule to conclude
x ≥ 42 obtaining the minimal value 42 for x. However, among the solutions of
(1), we also get those in which we chose y ≥ 42, so the third rule is not applicable
and x ≥ 0. Therefore, we get a second Pareto-minimal solution with y �→ 42 and
x �→ 0 that seems counter intuitive: as y does not depend on x there seems to
be no reason to assign a minimal value other than 0 to y. To show that separate
minimization on solutions does not always yield all (and possibly more) solutions
as expected by foundedness, consider the rules

x ≥ 1 x ≥ 42 ← ¬(x ≤ 1) (2)

In this case, depending on whether we assume ¬(x ≤ 1) or not, we may get two
founded solutions. By assuming x ≤ 1, the second rule is disabled and the first
rule x ≥ 1 determines the founded minimal value 1 for x, still compatible with
the assumption x ≤ 1. If, on the contrary, we assume ¬(x ≤ 1), then the second
rule imposes x ≥ 42 determining the minimal value 42 for x that, again, confirms
the assumption ¬(x ≤ 1). In other words, we expect two founded solutions with
x �→ 1 and x �→ 42, respectively. In contrast, if we first apply [8] and then a

Lower Bound Founded Logic of Here-and-There 511

Pareto minimization, we lose the solution with x �→ 42. This is because when
assuming x ≤ 1, we get x ≥ 1 as before, and the only compatible solution assigns
1 to x, whereas if we assume ¬(x ≤ 1), we obtain infinitely many values x ≥ 42
compatible with the assumption. The solutions are then x �→ 1 plus the infinite
sequence x �→ 42, x �→ 43 and so on. Thus, the unique Pareto minimal solution
assigns 1 to x.

On the other hand, Aziz’ original approach to foundedness [1] has some
counter intuitive behavior. In this approach, p ← ¬p alone yields a solution with
p, unlike in traditional ASP. In view of this, we present in the following a logical
reconstruction of Aziz’ idea of foundedness in the setting of the logic of Here-and-
There. More precisely, we start by defining the logic of Here-and-There with lower
bound founded variables (HTLB for short) along with its equilibrium models.1

We elaborate upon the formal properties of HTLB like persistence, negation and
strong equivalence.2 Furthermore, we point out the relation of HTLB to HT,
and show that our approach can alternatively be captured via a Ferraris-style
definition of stable models [11] adapted to our setting. Finally, we compare our
approach with related work and point out the benefits of HTLB.

2 Background

Let A be a set of propositional atoms. A formula ϕ is a combination of atoms
by logical connectives ⊥, ∧, ∨, and ←. As usual, we define
 def= ⊥ → ⊥ and
¬ϕ def= ϕ → ⊥. A theory is a set of formulas.

We denote an interpretation over A by I ⊆ A and an HT-interpretation
over A by 〈H ,T 〉 where H ⊆ T ⊆ A are interpretations. Since we want to
abstract from the specific form of atoms, we rely upon denotations for fixing their
semantics. A denotation of atoms in A is a function � · �A : A → 22

A
mapping

atoms in A to sets of interpretations over A. Accordingly, � p �A def= {I | p ∈ I }
represents the set of interpretations where atom p holds.

With it, we next define satisfaction of formulas in HT.

Definition 1. Let 〈H ,T 〉 be an HT-interpretation over A and ϕ a propositional
formula over A. Then, 〈H ,T 〉 satisfies ϕ, written 〈H ,T 〉 |= ϕ, if the following
conditions hold:

1. 〈H ,T 〉 �|= ⊥
2. 〈H ,T 〉 |= p iff H ∈ � p �A for propositional atom p ∈ A
3. 〈H ,T 〉 |= ϕ1 ∧ ϕ2 iff 〈H ,T 〉 |= ϕ1 and 〈H ,T 〉 |= ϕ2

4. 〈H ,T 〉 |= ϕ1 ∨ ϕ2 iff 〈H ,T 〉 |= ϕ1 or 〈H ,T 〉 |= ϕ2

5. 〈H ,T 〉 |= ϕ1 → ϕ2 iff 〈I ,T 〉 �|= ϕ1 or 〈I ,T 〉 |= ϕ2 for both I ∈ {H ,T}
As usual, we call 〈H ,T 〉 an HT-model of a theory Γ , if 〈H ,T 〉 |= ϕ for all ϕ
in Γ . The usual definition of HT satisfaction (cf. [23]) is obtained by replacing
Condition 2 above by
1 Upper bound founded variables are treated analogously.
2 We provide an extended version including all proofs at: www.cs.uni-potsdam.de/

∼seschell/JELIA19-paper-proofs.pdf.

www.cs.uni-potsdam.de/{~}seschell/JELIA19-paper-proofs.pdf
www.cs.uni-potsdam.de/{~}seschell/JELIA19-paper-proofs.pdf

512 P. Cabalar et al.

2’. 〈H ,T 〉 |= p iff p ∈ H for propositional atom p ∈ A

It is easy to see that both definitions of HT satisfaction coincide.

Proposition 1. Let 〈H ,T 〉 be an HT-interpretation and ϕ a formula over A.
Then, 〈H ,T 〉 |= ϕ iff 〈H ,T 〉 |= ϕ by replacing Condition 2 by 2’.

As usual, an equilibrium model of a theory Γ is a (total) HT-interpretation
〈T ,T 〉 such that 〈T ,T 〉 |= Γ and there is no H ⊂ T such that 〈H ,T 〉 |= Γ .
Then, T is also called a stable model of Γ .

Let us recall some characteristic properties of HT. For HT-interpretations
〈H ,T 〉 and 〈T ,T 〉 and formula ϕ over A both 〈H ,T 〉 |= ϕ implies 〈T ,T 〉 |= ϕ
(persistence) and 〈H ,T 〉 |= ϕ → ⊥ iff 〈T ,T 〉 �|= ϕ (negation) holds. Further-
more, Γ1 ∪ Γ and Γ2 ∪ Γ have the same stable models for theories Γ1 and
Γ2 and any theory Γ over A iff Γ1 and Γ2 have the same HT-models (strong
equivalence).

3 Lower Bound Founded Logic of Here-and-There

In what follows, we introduce the logic of Here-and-There with lower bound
founded variables, short HTLB, and elaborate on its formal properties.

3.1 HTLB Properties

The language of HTLB is defined over a set of atoms AX comprising variables,
X , and constants over an ordered domain (D,�). For simplicity, we assume
that each element of D is uniquely represented by a constant and abuse nota-
tion by using elements from D to refer to constants. Similarly, we identify �
with its syntactic representative. The specific syntax of atoms is left open but
assumed to refer to elements of X and D. The only requirement is that we
assume that an atom depends on a subset of variables in X . An atom can be
understood to hold or not once all variables in it are substituted by domain
elements. Clearly, variables not occurring in an atom are understood as irrel-
evant for its evaluation. Examples of ordered domains are ({0, 1, 2, 3},≥) and
(Z,≥), respectively; corresponding atoms are x = y and x ≥ 42. An example of
a formula is ‘y < 42 ∧ ¬(x = y) → x ≥ 42’. We let vars(ϕ) ⊆ X be the set of
variables and atoms(ϕ) ⊆ AX the atoms occurring in a formula ϕ.

For capturing partiality, we introduce a special domain element u, standing
for undefined, and extend (D,�) to (Du ,�u) where Du

def= D ∪ {u} and �u
def=

� ∪{(c,u) | c ∈ Du}. With it, we define a (partial) valuation over X ,D as a
function v : X → Du mapping each variable to a domain value or undefined.
For comparing valuations by set-based means, we alternatively represent them
by subsets of X × D. Basically, any function v is a set of pairs (x, c) such that
v(x) = c for c ∈ D. In addition, we view a pair (x, c) as x � c and add its
downward closure (x ↓ c) def= {(x, d) | c, d ∈ D, c � d}. Given this, a valuation v

Lower Bound Founded Logic of Here-and-There 513

is represented by the set
⋃

v(x)=c,x∈X (x↓c).3 As an example, consider variables
x and y over domain ({0, 1, 2, 3},≥). The valuation v = {x �→ 2, y �→ 0} can
be represented by v = (x ↓ 2) ∪ (y ↓ 0) = {(x, 0), (x, 1), (x, 2), (y, 0)}. Then,
v ′ = {x �→ 1, y �→ u}, viz. {(x, 0), (x, 1)} in set notation, can be regarded as
“smaller” than v because v ′ ⊆ v . The comparison of two valuations v and v ′ by
set-inclusion ⊆ amounts to a twofold comparison. That is, v and v ′ are compared
regarding the occurrence of variables and their particular values wrt �. We let
VX ,D stand for the set of valuations over X and D.

We define the satisfaction of formulas over AX wrt atom denotations over
X ,D, which are functions � · �X ,D : AX → 2VX ,D mapping atoms to sets of
valuations. Let a be an atom of AX and � a �X ,D its denotation. Then, � a �X ,D
is the set of valuations making a true. Since a depends on variables vars(a) ⊆ X ,
we have for each v ∈ � a �X ,D and valuation v ′ with v(x) = v ′(x) for x ∈ vars(a)
that v ′ ∈ � a �X ,D. Intuitively, values of X \ vars(a) may vary freely without
changing the membership of a valuation to � a �X ,D. For simplicity, we drop
indices X ,D whenever clear from context.

For instance, interpreting the atoms x ≥ 42, 42 ≥ 0 and 0 ≥ 42 over (Z,≥)
yields the following denotations:

�x ≥ 42 � def= {v | v(x) ≥ 42} � 42 ≥ 0 � def= V � 0 ≥ 42 � def= ∅.

�x ≥ 42 � is the set of valuations assigning x to values greater or equal than 42
and all variables in X \{x} take any value in Du , eg (x↓45) and (x↓45)∪ (y↓0)
for y ∈ X \ {x} are possible valuations. Interestingly, atoms like x � x with
�x � x � = {v | v(x) �= u} force variables to be defined over D per definition
of �. A valuation v is defined for a set of variables Y ⊆ X if v(x) �= u for all
x ∈ Y.

We define an HTLB-valuation over X ,D as a pair 〈h, t〉 of valuations over
X ,D with h ⊆ t . We define satisfaction of formulas in HTLB as follows.

Definition 2. Let 〈h, t〉 be an HTLB-valuation over X ,D and ϕ be a formula
over AX . Then, 〈h, t〉 satisfies ϕ, written 〈h, t〉 |= ϕ, if the following holds:

1. 〈h, t〉 �|= ⊥
2. 〈h, t〉 |= a iff v ∈ � a �X ,D for atom a ∈ AX and for both v ∈ {h, t}
3. 〈h, t〉 |= ϕ1 ∧ ϕ2 iff 〈h, t〉 |= ϕ1 and 〈h, t〉 |= ϕ2

4. 〈h, t〉 |= ϕ1 ∨ ϕ2 iff 〈h, t〉 |= ϕ1 or 〈h, t〉 |= ϕ2

5. 〈h, t〉 |= ϕ1 → ϕ2 iff 〈v , t〉 �|= ϕ1 or 〈v , t〉 |= ϕ2 for both v ∈ {h, t}
As usual, we call 〈h, t〉 an HTLB-model of a theory Γ , if 〈h, t〉 |= ϕ for all ϕ in Γ .
For a simple example, consider the theory containing atom x ≥ 42 only. Then,
every HTLB-valuation 〈h, t〉 with h, t ∈ �x ≥ 42 � is an HTLB-model of x ≥ 42.
Note that, different to HT, satisfaction of atoms in HTLB forces satisfaction in
both h and t , instead of h only. We discuss this in detail below when comparing
to a Ferraris-like stable model semantics.

Our first result shows that the characteristic properties of persistence and
negation hold as well when basing satisfaction on valuations and denotations.
3 Note that (x↓u) = ∅, since u �∈ D.

514 P. Cabalar et al.

Proposition 2. Let 〈h, t〉 and 〈t , t〉 be HTLB-valuations over X ,D, and ϕ be a
formula over AX . Then,

1. 〈h, t〉 |= ϕ implies 〈t , t〉 |= ϕ, and
2. 〈h, t〉 |= ϕ → ⊥ iff 〈t , t〉 �|= ϕ.

Persistence implies that all atoms satisfied by 〈h, t〉 are also satisfied by 〈t , t〉.
To make this precise, let At(〈h, t〉) def= {a ∈ AX | h ∈ � a � and t ∈ � a �} be the
set of atoms satisfied by 〈h, t〉.
Corollary 1. Let 〈h, t〉 and 〈t , t〉 be HTLB-valuations over X ,D. Then,
At(〈h, t〉) ⊆ At(〈t , t〉).

Finally, we define an equilibrium model in HTLB.

Definition 3. An HTLB-valuation 〈t , t〉 over X ,D is an HTLB-equilibrium model
of a theory Γ iff 〈t , t〉 |= Γ and there is no h ⊂ t such that 〈h, t〉 |= Γ .

We refer to an HTLB-equilibrium model 〈t , t〉 of Γ as an HTLB-stable model t of
Γ . Let us reconsider the theory containing atom x ≥ 42 only. Then, t = (x↓42)
is an HTLB-stable model of x ≥ 42, since t ∈ �x ≥ 42 � and there is no h ⊂ t with
h ∈ �x ≥ 42 �. In contrast, neither HTLB-model 〈t ′, t ′〉 with t ′ = (x↓42) ∪ (y↓0)
nor 〈t ′′, t ′′〉 with t ′′ = (x↓53) are HTLB-stable models since t is a proper subset
of both and 〈t , t ′〉 |= x ≥ 42 as well as 〈t , t ′′〉 |= x ≥ 42 holds. Hence, HTLB-
stable models make sure that each variable is assigned to its smallest founded
value.

Note that HTLB-equilibrium models induce the non-monotonic counterpart
of the monotonic logic of HTLB. Following well-known patterns, we show that
HTLB allows us to decide strong equivalence wrt HTLB-equilibrium models.

Proposition 3 (Strong Equivalence). Let Γ1, Γ2 and Γ be theories over AX .
Then, theories Γ1 ∪ Γ and Γ2 ∪ Γ have the same HTLB-stable models for

every theory Γ iff Γ1 and Γ2 have the same HTLB-models.

The idea is to prove the only if direction via contraposition, and the if direc-
tion by proving its direct implication. The contraposition assumes that there
exists an HTLB-valuation that satisfies Γ1 but not Γ2 which implies that the
stable models of Γ1 ∪ Γ and Γ2 ∪ Γ do not coincide. There are two cases to
construct Γ in a way that Γ1 ∪ Γ has a stable model which is not a stable
model of Γ2 ∪ Γ and the other way around. Consider an example to illustrate
the idea of the construction of Γ . Let h = (x ↓ 0) and t = (x ↓ 2) ∪ (y ↓ 0)
be HTLB-valuation over {x, y}, {0, 1, 2, 3} with 〈h, t〉 |= Γ1 and 〈h, t〉 �|= Γ2. For
the first case, assume that 〈t , t〉 �|= Γ2. Since t cannot be a model of Γ2 ∪ Γ
by assumption, we construct Γ in a way that t is a stable model of Γ1 ∪ Γ .
Hence, let Γ = {z � c | (z, c) ∈ t} = {x � 0, x � 1, x � 2, y � 0} be the
theory with the only stable model t . By persistence of 〈h, t〉 wrt Γ1 and con-
struction of Γ , we get that t is a stable model of Γ1 ∪ Γ but not of Γ2 ∪ Γ .
For the second case, we assume 〈t , t〉 |= Γ2. Now, we construct Γ in a way that

Lower Bound Founded Logic of Here-and-There 515

t is a stable model of Γ2 ∪ Γ but not of Γ1 ∪ Γ . By assumption, we have that
〈h, t〉 |= Γ1 and 〈h, t〉 �|= Γ2 as well as 〈t , t〉 |= Γ2, thus we want to have 〈h, t〉
and 〈v , v ′〉 with t ⊆ v ⊆ v ′ as the only models of Γ . Hence, let Γ = Γ ′ ∪ Γ ′′

with Γ ′ = {z � c | (z, c) ∈ h} = {x � 0} be the theory satisfied by everything
greater or equal than h, and Γ ′′ = {z � t(z) → z′ � t(z′), z � c → z � t(z) |
(z, c), (z, t(z)), (z′, t(z′)) ∈ t \h, z �= z′} = {x � 2 → y � 0, y � 0 → x � 2, x �
1 → x � 2, x � 2 → x � 2} the theory deriving values of t for each v ′′ with
h ⊂ v ′′ ⊂ t . Since 〈h, t〉 �|= Γ2 and by construction of Γ , we get that t is a stable
model of Γ2 ∪ Γ but not of Γ1 ∪ Γ .

The following result shows that a formula a ← ¬a has no stable model if a
cannot be derived by some other formula.

Proposition 4. Let Γ be a theory over AX containing a formula of form a ←
¬a and for each HTLB-stable model v of Γ \ {a ← ¬a} over X ,D we have that
〈v , v〉 �|= a.

Then, Γ has no HTLB-stable model.

This proposition may seem to be trivial but we show in Sect. 4 that Aziz’ original
approach does not satisfy this property.

3.2 Negation in HTLB

In the following, we elaborate on complements of atoms and their relation to
negation, since AX may contain atoms like x ≥ 42 and x < 42. Intuitively, the
complement of an atom holds whenever the atom itself does not hold. This can
be easily expressed by using atom denotations. More formally, the complement
a of atom a is defined by its denotation � a �X ,D

def= 2VX ,D \ � a �X ,D.
To illustrate that the simple complement of an atom is insufficient to yield

something similar to strong negation let us take a closer look at propositional
atoms in HTLB. For mimicking Boolean truth values, we consider the domain
({t, f}, {t � f}). Then, the denotation of propositional atoms in HTLB can be
defined as follows: � p = t �A,{t,f}

def= {v | v(p) = t} and � p = f �A,{t,f}
def= {v |

v(p) = f}. Note that p = t and p = f are regarded as strong negations of each
other, as in the standard case [16]; their weak negations are given by ¬(p = t)
and ¬(p = f), respectively. For instance, the complement p = t is characterized
by denotation � p = t �A,{t,f} = 2VA,{t,f} \ � p = t �A,{t,f} = {v | v(p) �= t}.
However, this complement allows for valuations v with v(p) = u which are not
in � p = f �A,{t,f}.

Let us define another complement to exclude assigning undefined to variables
of an atom. First, we define a denotation � a �X ,D of an atom a as strict if each
v ∈ � a �X ,D is defined for vars(a). Then, we characterize the strict complement
as of atom a by the strict denotation � as �X ,D def= 2VX ,D \ (� a �X ,D ∪{v | v(x) =
u for some x ∈ vars(a)}). Informally, the strict complement of an atom holds
whenever all variables are defined and the atom itself does not hold. That is,
atoms p = f and p = t are strict complements of each other.

More generally, an atom with a strict denotation and its strict complement
can be regarded as being strongly negated to each other. For instance, consider

516 P. Cabalar et al.

atom x ≥ 42 and its strict denotation �x ≥ 42 �X ,D = {v | v(x) ≥ 42}. Then, its
strict complement x ≥ 42s is defined by �x ≥ 42s �X ,D = {v | u �= v(x) < 42}.
As in the Boolean case, the strict complement x ≥ 42s can be seen as the strong
negation of x ≥ 42.

For making the relation of complements and negation precise, we define
entailment : A theory Γ over AX entails a formula ϕ over AX , written Γ |= ϕ, if
all HTLB-models of Γ are HTLB-models of ϕ. Then, we have the following result.

Proposition 5. Let a be an atom over AX , and a and as its complement and
its strict complement over AX , respectively.

Then, {as} |= a and {a} |= ¬a.

This implies that the strict complement as of an atom a implies its negation
¬a, just as strong negation implies weak negation in the standard case [23]. To
illustrate that in general the negation of an atom does not entail its complement,
viz {¬a} �|= a, consider atom x ≤ 42 with strict denotation �x ≤ 42 �X ,D = {v |
u �= v(x) ≤ 42}. Then, its complement x ≤ 42 is defined by �x ≤ 42 �X ,D =
2VX ,D \ �x ≤ 42 �X ,D = {v | v(x) = u or v(x) > 42}. For valuations h = (x↓42)
and t = (x ↓ 50), we have 〈h, t〉 |= ¬(x ≤ 42) since (x ↓ 50) �∈ �x ≤ 42 �X ,D. In
contrast, 〈h, t〉 �|= x ≤ 42, since (x ↓ 42) �∈ �x ≤ 42 �X ,D. Thus, the complement
a can be seen as a kind of negation in between strong and weak negation.

3.3 HTLB versus HT

Analogously to [8], we next show that HT can be seen as a special case of HTLB.
Note that both types of denotations � p �A in HT and � p = t �A,{t} in HTLB of

a propositional atom p collect interpretations and valuations assigning true to p.
To begin with, we define a transformation τ relating each propositional atom p
with corresponding atom p = t by τ(p) def= p = t. Let Γ be a propositional theory,
then τ(Γ) is obtained by substituting each p ∈ atoms(Γ) by τ(p). Moreover, we
extend τ to interpretations I by τ(I) def= {(p, t) | p ∈ I } to obtain a corresponding
valuation over A, {t}. The next proposition establishes that HT can be seen as
a special case of HTLB.

Proposition 6. Let Γ be a theory over propositional atoms A and 〈H ,T 〉 an
HT-interpretation over A. Let τ(Γ) be a theory over atoms {p = t | p ∈ A} and
〈τ(H), τ(T)〉 an HTLB-valuation over A, {t}.

Then, 〈H ,T 〉 |= Γ iff 〈τ(H), τ(T)〉 |= τ(Γ).

This can be generalized to any arbitrary singleton domain {d} and corresponding
atoms p = d and the relationship still holds.

We obtain the following result relating HTLB and HT:

Proposition 7. Let Γ be a theory over AX and 〈h, t〉 an HTLB-model of Γ over
X ,D.

Then, 〈At(〈h, t〉),At(〈t , t〉)〉 is an HT-model of Γ over AX .

Lower Bound Founded Logic of Here-and-There 517

That is, the collected atoms satisfied by an HTLB-model of Γ can be seen as
an HT-model of Γ by interpreting AX as propositional atoms. For instance,
consider the theory containing only atom x �= y and its denotation �x �= y � def=
{v | u �= v(x) �= v(y) �= u}. Let h = (x↓0) ∪ (y ↓4) and t = (x↓0) ∪ (y ↓42) be
valuations and hence At(〈h, t〉) = At(〈t , t〉) = {x �= y} interpretations. Then,
〈h, t〉 |= x �= y in HTLB and 〈At(〈h, t〉),At(〈t , t〉)〉 |= x �= y in HT.

Furthermore, we relate tautologies in HT and HTLB.

Proposition 8. Let ϕ be a tautology in HT over A and ϕ′ a formula over AX
obtained by replacing each atom in ϕ by an atom of AX .

Then, ϕ′ is a tautology in HTLB.

That is, tautologies in HT are independent of the form of atoms. For example,
consider the well known tautology p → p over A. Then, x ≥ 42 → x ≥ 42 over
AX is a tautology as well. Note that the other direction of the implication does
not hold, since x ≥ 42 → y ≥ 42 over AX with domain {42} is a tautology, but
p → q over A is not.

3.4 HTLB-stable versus Ferraris-style stable models

As mentioned, in Definition 2 satisfaction of atoms differs from HT by forcing
satisfaction in both h and t , instead of h only. This is necessary to guarantee
persistence in HTLB. To see this, consider an HTLB-valuation 〈h, t〉 satisfying
atom a in AX . Hence, by persistence, HTLB-valuation 〈t , t〉 satisfies a as well.
However, this does not necessarily mean that HTLB-valuations 〈v , t〉 with h ⊂
v ⊂ t satisfy a. For instance, consider atom x �= 42 with �x �= 42 � def= {v | u �=
v(x) �= 42} and valuations h = (x ↓ 0) and t = (x ↓ 53). Then, 〈h, t〉 |= x �= 42
and 〈t , t〉 |= x �= 42, but 〈v , t〉 �|= x �= 42 for v = (x↓42) with h ⊂ v ⊂ t .

A question that arises now is whether HTLB behaves in accord with stable
models semantics. To this end, we give straightforward definitions of classical
satisfaction and the reduct by Ferraris [11] in our setting and show that equilib-
rium models correspond to stable models according to the resulting Ferraris-like
stable model semantics.

We define the counterpart of classical satisfaction as follows.

Definition 4. Let t be a valuation over X ,D and ϕ a formula over AX . Then,
t satisfies ϕ, written t |=cl ϕ, if the following holds:

1. t �|=cl ⊥
2. t |=cl a iff t ∈ � a �X ,D for atom a ∈ AX
3. t |=cl ϕ1 ∧ ϕ2 iff t |=cl ϕ1 and t |=cl ϕ2

4. t |=cl ϕ1 ∨ ϕ2 iff t |=cl ϕ1 or t |=cl ϕ2

5. t |=cl ϕ1 → ϕ2 iff t �|=cl ϕ1 or t |=cl ϕ2.

We call t a classical model of a theory Γ , if t |=cl ϕ for all ϕ in Γ .
Then, we define a Ferraris-like reduct for formulas over AX as follows.

518 P. Cabalar et al.

Definition 5. Let ϕ be a formula over AX and t a valuation over X ,D. Then,
the reduct of ϕ wrt t, written ϕt , is defined as

ϕt def=

⎧
⎪⎨

⎪⎩

⊥ if t �|=cl ϕ

a if t |=cl ϕ and ϕ = a is an atom in AX
ϕ1

t ⊗ ϕ2
t if t |=cl ϕ and ϕ = (ϕ1 ⊗ ϕ2) for ⊗ ∈ {∧,∨,→}

For theory Γ and HTLB-valuation t , we define Γ t def= {ϕt | ϕ ∈ Γ}. Note that in
case of propositional formulas our reduct corresponds to Ferraris’ original [11].

With it, we define a Ferraris-like stable model as expected.

Definition 6. A valuation t over X ,D is a Ferraris-like stable model of theory
Γ over AX iff t |=cl Γ t and there is no h ⊂ t such that h |=cl Γ t .

In analogy to the standard case [11], the next proposition shows that models
in HTLB can be alternatively characterized in the style of Ferraris:

Proposition 9. Let 〈h, t〉 be an HTLB-valuation over X ,D and Γ a theory over
AX .

Then, h |=cl Γ t iff 〈h, t〉 |= Γ .

As a special case, we obtain that every HTLB-stable model corresponds to a
Ferraris-like stable model and vice versa.

Corollary 2. Let t be a valuation over X ,D and Γ a theory over AX .
Then, t is an HTLB-stable model of Γ iff t is a Ferraris-like stable model of

Γ .

The last two results show that our logic follows well known patterns wrt different
representations of stable models.

3.5 Modeling with Bound Founded Programs

In what follows, we define logic programs over linear constraint atoms to illus-
trate the modeling capabilities of HTLB on an example.

We define linear constraint atoms over the integers (Z,≥) as
∑m

i=1 wixi ≺ k

where wi, k ∈ Z are constants, xi ∈ X are distinct variables, and ≺∈ {≥,
≤, �=,=}4 is a binary relation. The denotation of a linear constraint atom is
given by �

∑m
i=1 wixi ≺ k � def= {v | ∑m

i=1 wiv(xi) ≺ k, v(xi) �= u}. We denote
the set of linear constraint atoms over variables X and domain (Z,≥) by LX .

4 As usual, w1x1,+ · · · + wnxn < k and w1x1,+ · · · + wnxn > k can be expressed by
w1x1,+ · · · + wnxn ≤ k − 1 and w1x1,+ · · · + wnxn ≥ k + 1, respectively.

Lower Bound Founded Logic of Here-and-There 519

A linear constraint atom a and its negation ¬a over LX are called literals.
A rule is a formula over LX of form

a1 ∨ · · · ∨ an ← l1 ∧ · · · ∧ ln′ (3)

where ai is a linear constraint atom for 1 ≤ i ≤ n and lj is a literal for 1 ≤ j ≤ n′.
A logic program is a theory over LX of rules of form (3).

As an example, consider the dependency of the revolutions per minute (rpm)
of the engine of our car to its maximal range. The maximal range of a car
decreases with higher rpm; we need more fuel when choosing a smaller gear
which increases the rpm assuming the same conditions like speed. For simplicity,
we do not model gears, fuel or speed. Assume that our car needs at least 2000
rpm. Moreover, we know that our car has a range of at least 100 km. If we go
by less than 4000 rpm, then our range is at least 200 km. Then, the following
program P models the dependency of rpm and range without explicitly using
negation or minimization:

rpm ≥ 2000
range ≥ 100
range ≥ 200 ← rpm < 4000

The HTLB-stable model of P is (range ↓ 200) ∪ (rpm ↓ 2000), since 2000 is the
minimal value satisfying rpm ≥ 2000 and thus rpm < 4000 holds and yields
range ≥ 200. For instance, if we extend P by the new statement rpm ≥ 4000,
then we get the HTLB-stable model (range ↓ 100) ∪ (rpm ↓ 4000), since the
minimal value derived by rpm ≥ 4000 does not produce range ≥ 200 any more.
Thus, 100 is the minimal value for range derived by range ≥ 100. Intuitively, it
makes no sense to go by higher rpm and thus decrease the range if one is not
forced to.

This example behaves similar to the example in (1). The intuition is to min-
imize the value of rpm first since it does not depend on range. Afterwards, we
derive the minimal value of range out of the obtained consequences. Note that
this example can also be modeled by other approaches like [1,8], but those may
not provide the same intuitive modeling to achieve a bound founded semantics or
behave counter intuitive on some well known modeling techniques like integrity
constraints. For instance, the approach of [8] yields solutions for P consisting
of any arbitrary pair of values with rpm ≥ 2000 and range ≥ 100 where range
is further restricted to values greater or equal to 200 if the choice of rpm is
smaller than 4000. To achieve the same bound founded intuition as in HTLB

with approaches like [8] we need to rewrite the rpm example in a less intuitive
way. This is similar to representing formula p ← q under stable models semantics
in propositional logic.

4 Related Work

We start by comparing our approach to Aziz’ Bound Founded ASP (BFASP;
[1]). Both aim at generalizing foundedness to ordered domains. In BFASP, an

520 P. Cabalar et al.

arbitrary formula is called constraint and a rule is defined as a pair of a constraint
and a variable called head. The constraint needs to be increasing wrt its head
variable. Informally, a constraint is increasing in a variable if the constraint is
monotonic in this variable. Note that increasing is defined on constraints instead
of atoms. For an example, the constraint x ≤ 42 is not increasing in x, but the
constraint x ≤ 42 ← y < 0 is increasing in x over domain N. Stable models are
defined in BFASP via a reduct depending on the monotonicity of constraints wrt
their variables and by applying a fix point operation.

Both, BFASP and HTLB assign variables to their smallest domain value by
default. Interestingly, they differ in their understanding of smallest domain val-
ues. In HTLB, the smallest domain value is always the value ‘undefined’ to cap-
ture partiality, whereas in BFASP partiality is not considered if undefined is not
explicitly part of the domain.

The value of a head variable is derived by the constraint even if it contains no
implication. For instance, consider rule (x + y ≥ 42, x) over N in BFASP. Then,
BFASP yields one stable model with x �→ 42 and y �→ 0. By default the value
of y is 0, since y appears nowhere as a head. The value of x is derived from the
value of 42−y. In contrast, HTLB results in 43 stable models from (x↓0)∪(y↓42)
to (x↓42) ∪ (y ↓0) for theory {x + y ≥ 42}. In HTLB, the variables of an (head)
atom are treated in an equal way instead of an implicatory way by declaring one
of them as head.

As already mentioned, BFASP does not satisfy Proposition 4. Rule p ←
¬p has no stable model in ASP and HTLB, but BFASP yields a stable model
containing p, since the BFASP reduct never replaces head variables and produces
the rule as is and yields p as the minimal (and only) model of the rule. This means
that BFASP provides a bound founded semantics but behaves unexpectedly on
rules representing integrity constraints.

Next, we compare HTLB to the logic of HT with constraints (HTC; [8]). First,
note that both are based on HT and capture theories over (constraint) atoms in
a non-monotonic setting and can thus express default values. The difference is
that HTC follows the rationality principle by accepting any value satisfying an
atom and thus foundedness is focused on atom level. Unlike this, foundedness
in HTLB is focused on variable level by following the rationality principle in
accepting minimal values only. The latter is achieved by additionally comparing
models wrt the values assigned to variables to determine equilibrium models.
For instance, reconsider the fact x ≥ 42 over {x},N and valuations v and v ′

with v(x) = 42 and v ′(x) = 43. Then, in HTC we have v �= v ′, whereas in HTLB

we have v ⊂ v ′. Hence, v and v ′ are solutions in HTC but only v is a solution in
HTLB. The theories in (1) and (2) show that the semantics of HTLB cannot be
obtained by adding separate minimization to HTC.

On the other hand, both HTLB and HTC define atomic satisfaction in terms
of atom denotations. A difference is that in HTC denotations need to be closed.
Informally, a denotation is (upwards) closed if it is closed under the superset
relation. For HTLB, this cannot be maintained, due to the additional comparison
of valuations regarding values. The closure of denotations is significant to satisfy

Lower Bound Founded Logic of Here-and-There 521

persistence in HTC. In contrast, in HTLB persistence is established by forcing
atomic satisfaction in both h and t , instead of h only as in HTC. The corre-
sponding benefit is that this allows us to consider denotations of atoms in HTLB

which are not allowed in HTC, like x
.= y with �x

.= y � def= {v | v(x) = v(y)}
which is not closed in HTC.

The integration of non-Boolean variables into ASP is also studied in ASP
modulo Theories [2–4,6,7,10,13,14,18,19,21,22]. The common idea of these
hybrid approaches is to integrate monotone theories, like constraint or linear
programming, into the non-monotonic setting of ASP. Similar to HTC, found-
edness is only achieved at the atomic level—if at all. In fact, many approaches
avoid this entirely by limiting the occurrence of theory atoms to rule bodies.

Finally, logic programs with linear constraints under HTLB’s semantics
amount to a non-monotonic counterpart of Integer Linear Programming
(ILP; [24]). As a matter of fact, the monotonicity of ILP makes it hard to model
default values and recursive concepts like reachability. It will be interesting future
work to see whether HTLB can provide a non-monotonic alternative to ILP.

5 Conclusion

We presented a logical reconstruction of the idea of foundedness over ordered
domains in the setting of the logic of Here-and-There. We have shown that
important properties like persistence, negation and strong equivalence hold in
our approach. Also, we showed that HT is a special case of HTLB, and that HTLB-
stable models correspond to stable models according to a Ferraris’-like stable
model semantics. We instantiated HTLB with linear constraints to illustrate its
modeling capabilities by means of an example representing the dependency of
the rpm of a car and its range. Finally, we compared our approach to related
work to point out that foundedness is a non-trivial key feature of HTLB. Although
HTLB and BFASP share the same motivation, they differ in their treatment of
partiality. Furthermore, we indicated that HTLB can be seen as a non-monotonic
counterpart of monotonic theories such as ILP.

Interestingly, HTLB offers a new view of aggregates under Ferraris’ semantics
as atoms. In fact, sum aggregates are related to linear constraint atoms in HTLB.
As we will show in a follow-up work, aggregates under Ferraris’ semantics [12] can
be represented by atoms in HTLB. This is interesting since then aggregates are no
longer an extension of an existing approach, but rather an integral atomic parts of
HTLB. Hence, results shown in this work also apply to aggregates (under Ferraris’
semantics) and provide a way to elaborate upon properties and relationships
to other conceptions of aggregates. The view on aggregates as atoms provided
by HTLB may thus help us to better understand the differences among various
aggregate semantics.

522 P. Cabalar et al.

Appendix of Proofs

Proof of Proposition 2. It is enough to prove the proposition for the base
case, since the rest follows directly by structural induction for each formula over
AX . Let 〈h, t〉 an HTLB-valuation over X ,D and a atom of AX .

First, we prove persistence, represented by 1 of the proposition. We have

〈h, t〉 |= a ⇔ h ∈ � a � and t ∈ � a � ⇒ t ∈ � a � ⇔ 〈t , t〉 |= a

Subsequently, we prove negation, represented by 2 of the proposition. We
have

〈h, t〉 |= a → ⊥
⇔ (〈h, t〉 |= ⊥ or 〈h, t〉 �|= a) and (〈t , t〉 |= ⊥ or 〈t , t〉 �|= a)
⇔ 〈h, t〉 �|= a and 〈t , t〉 �|= a
⇔ (h �∈ � a � or t �∈ � a �) and (t �∈ � a �)
⇔ 〈t , t〉 �|= a ��

Proof of Proposition 4. We analyze what is needed to satisfy rule r of form
a ← ¬a and then derive from the fact that 〈v , v〉 �|= a for each HTLB-stable
model v of Γ \ {a ← ¬a} over X ,D, that there exists no stable model for Γ .

Note that the following holds

〈h, t〉 |= a ← ¬a
⇔(〈h, t〉 |= a or 〈h, t〉 �|= ¬a) and (〈t , t〉 |= a or 〈t , t〉 �|= ¬a)
⇔(〈h, t〉 |= a or 〈t , t〉 |= a) and (〈t , t〉 |= a)
⇔t ∈ � a �

This implies that 〈v , v ∪ {a}〉 |= Γ for each stable model v of Γ \ {a ← ¬a}.
Furthermore, note that v ⊂ v ∪ {a}, since 〈v , v〉 �|= a. Hence, Γ has no HTLB-
stable model. ��
Proof of Proposition 5. Let a be an atom over AX , and a and as its comple-
ment and its strict complement over AX , respectively.

First, we prove as |= a. For any HTLB-valuation 〈h, t〉 over X ,D we have

〈h, t〉 |= as

⇔ h ∈ � as � and t ∈ � as � with � as � = 2V \ (� a � ∪ {v | v(x) = u for some x ∈ vars(a)})
⇒ h ∈ 2V \ � a � and t ∈ 2V \ � a �

⇔ 〈h, t〉 |= a

Lower Bound Founded Logic of Here-and-There 523

Secondly, we prove a |= ¬a. For any HTLB-valuation 〈h, t〉 over X ,D we have

〈h, t〉 |= a
⇔ h ∈ � a � and t ∈ � a � with � a � = 2V \ � a �

⇔ h �∈ � a � and t �∈ � a �

⇒ t �∈ � a �
Proposition 2 ⇔ 〈h, t〉 |= ¬a

��
Proof of Proposition 6. It is enough to prove the proposition for the base
case, since the rest follows directly by structural induction for each theory over
A.

Let Γ be a theory over propositional atoms A and 〈H ,T 〉 an HT-
interpretation over A. Let τ(Γ) be a theory over atoms {p = t | p ∈ A} and
〈τ(H), τ(T)〉 an HTLB-valuation over A, {t}. Then we have

〈H ,T 〉 |= p

⇔ H ∈ � p �A
H⊆T ⇔ H ∈ � p �A and T ∈ � p �A
⇔ τ(H) ∈ � p = t �A,{t} and τ(T) ∈ � p = t �A,{t}
⇔ 〈τ(H), τ(T)〉 |= p = t

��
Proof of Proposition 7. It is enough to prove the proposition for the base
case, since the rest follows directly by structural induction for each theory over
AX .

First, note that the pair 〈H ,T 〉 over AX with H = At(〈h, t〉) and T =
At(〈t , t〉) is a well formed HT-interpretation, since H ⊆ T holds by h ⊆ t and
Proposition 1. Then we have

〈h, t〉 |= a
⇔ h ∈ � a �X ,D and t ∈ � a �X ,D
⇒ H ∈ � a �AX and T ∈ � a �AX

⇒ 〈H ,T 〉 |= a

��
Proof of Proposition 9. It is enough to prove the proposition for the base
case, since the rest follows directly by structural induction for each theory
over AX .

524 P. Cabalar et al.

Let Γ be a theory over AX and 〈h, t〉 an HTLB-valuation over X ,D. Then,
we have

h |=cl at

⇔ h |=cl a and t |=cl a
⇔ h ∈ � a � and t ∈ � a �

⇔ 〈h, t〉 |= a

��
References

1. Aziz, R.: Answer set programming: founded bounds and model counting. Ph.D.
thesis, University of Melbourne (2015)

2. Balduccini, M.: Representing constraint satisfaction problems in answer set pro-
gramming. In: Faber, W., Lee, J. (eds.) Proceedings of the Second Workshop on
Answer Set Programming and Other Computing Paradigms (ASPOCP 2009), pp.
16–30 (2009)

3. Banbara, M., et al.: aspartame: solving constraint satisfaction problems with
answer set programming. In: Calimeri, F., Ianni, G., Truszczynski, M. (eds.)
LPNMR 2015. LNCS (LNAI), vol. 9345, pp. 112–126. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-23264-5 10

4. Banbara, M., Kaufmann, B., Ostrowski, M., Schaub, T.: Clingcon: the next gen-
eration. Theory Pract. Log. Program. 17(4), 408–461 (2017)

5. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, Cambridge (2003)

6. Bartholomew, M., Lee, J.: System aspmt2smt: computing ASPMT theories by SMT
solvers. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp.
529–542. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11558-0 37

7. Baselice, S., Bonatti, P.A., Gelfond, M.: Towards an integration of answer set and
constraint solving. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol.
3668, pp. 52–66. Springer, Heidelberg (2005). https://doi.org/10.1007/11562931 7

8. Cabalar, P., Kaminski, R., Ostrowski, M., Schaub, T.: An ASP semantics for
default reasoning with constraints. In: Kambhampati, R. (ed.) Proceedings of the
Twenty-fifth International Joint Conference on Artificial Intelligence (IJCAI 2016),
pp. 1015–1021. IJCAI/AAAI Press (2016)

9. Carro, M., King, A. (eds.): Technical Communications of the Thirty-second Inter-
national Conference on Logic Programming (ICLP 2016), vol. 52. Open Access
Series in Informatics (OASIcs) (2016)

10. Drescher, C., Walsh, T.: A translational approach to constraint answer set solving.
Theory Pract. Log. Program. 10(4–6), 465–480 (2010)

11. Ferraris, P.: Answer sets for propositional theories. In: Baral, C., Greco, G., Leone,
N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 119–131.
Springer, Heidelberg (2005). https://doi.org/10.1007/11546207 10

12. Ferraris, P.: Logic programs with propositional connectives and aggregates. ACM
Trans. Comput. Log. 12(4), 25 (2011)

13. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Wanko, P.:
Theory solving made easy with clingo 5. In: Carro, M., King, A. (eds.) [9], pp.
2:1–2:15 (2016)

https://doi.org/10.1007/978-3-319-23264-5_10
https://doi.org/10.1007/978-3-319-11558-0_37
https://doi.org/10.1007/11562931_7
https://doi.org/10.1007/11546207_10

Lower Bound Founded Logic of Here-and-There 525

14. Gebser, M., Ostrowski, M., Schaub, T.: Constraint answer set solving. In: Hill,
P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 235–249. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02846-5 22

15. Gelfond, M., Kahl, Y.: Knowledge Representation, Reasoning, and the Design of
Intelligent Agents: The Answer-Set Programming Approach. Cambridge University
Press, Cambridge (2014)

16. Gelfond, M., Lifschitz, V.: Logic programs with classical negation. In: Warren, D.,
Szeredi, P. (eds.) Proceedings of the Seventh International Conference on Logic
Programming (ICLP 1990), pp. 579–597. MIT Press (1990)

17. Heyting, A.: Die formalen Regeln der intuitionistischen Logik. In: Sitzungsberichte
der Preussischen Akademie der Wissenschaften, p. 42–56. Deutsche Akademie der
Wissenschaften zu Berlin (1930). Reprint in Logik-Texte: Kommentierte Auswahl
zur Geschichte der Modernen Logik, Akademie-Verlag (1986)

18. Janhunen, T., Kaminski, R., Ostrowski, M., Schaub, T., Schellhorn, S., Wanko, P.:
Clingo goes linear constraints over reals and integers. Theory Pract. Log. Program.
17(5–6), 872–888 (2017)

19. Janhunen, T., Liu, G., Niemelä, I.: Tight integration of non-ground answer set pro-
gramming and satisfiability modulo theories. In: Cabalar, P., Mitchell, D., Pearce,
D., Ternovska, E. (eds.) Proceedings of the First Workshop on Grounding and
Transformation for Theories with Variables (GTTV 2011), pp. 1–13 (2011)

20. Leone, N., Rullo, P., Scarcello, F.: Disjunctive stable models: unfounded sets, fix-
point semantics, and computation. Inf. Comput. 135(2), 69–112 (1997)

21. Lierler, Y., Susman, B.: SMT-based constraint answer set solver EZSMT (system
description). In: Carro, M., King, A. (eds.) [9], pp. 1:1–1:15 (2016)

22. Liu, G., Janhunen, T., Niemelä, I.: Answer set programming via mixed integer
programming. In: Brewka, G., Eiter, T., McIlraith, S. (eds.) Proceedings of the
Thirteenth International Conference on Principles of Knowledge Representation
and Reasoning (KR 2012), pp. 32–42. AAAI Press (2012)

23. Pearce, D.: Equilibrium logic. Ann. Math. Artif. Intell. 47(1–2), 3–41 (2006)
24. Schrijver, A.: Theory of linear and integer programming. Discrete mathematics

and optimization. Wiley, Hoboken (1999)
25. Van Gelder, A., Ross, K., Schlipf, J.: The well-founded semantics for general logic

programs. J. ACM 38(3), 620–650 (1991)

https://doi.org/10.1007/978-3-642-02846-5_22

A Logic-Based Question Answering
System for Cultural Heritage

Bernardo Cuteri(B) , Kristian Reale , and Francesco Ricca

Department of Mathematics and Computer Science,
University of Calabria, Rende, Italy

{cuteri,reale,ricca}@mat.unical.it

Abstract. Question Answering (QA) systems attempt to find direct
answers to user questions posed in natural language. This work presents
a QA system for the closed domain of Cultural Heritage. Our solu-
tion gradually transforms input questions into queries that are executed
on a CIDOC-compliant ontological knowledge base. Questions are pro-
cessed by means of a rule-based syntactic classification module running
an Answer Set Programming system. The proposed solution is being
integrated into a fully-fledged commercial system developed within the
PIUCULTURA project, funded by the Italian Ministry for Economic
Development.

Keywords: Question Answering · Answer Set Programming ·
Cultural heritage

1 Introduction

Question Answering (QA) attempts to find answers to the most (human) com-
mon form of expressing an information need: natural language questions. Histor-
ically, QA is classified either as Open Domain QA when there is no restriction on
the domain of the questions; and closed domain QA when questions are bound
to a specific domain [2]. In open domain QA, most systems are based on a com-
bination of Information Retrieval (IR) and Natural Language Processing (NLP)
techniques [30]. Such techniques are applied to a large corpus of documents.
They first attempt to retrieve the best documents to look into for the answer,
then selecting the paragraphs which are more likely to bear the desired answer
and finally processing the extracted paragraphs by means of NLP. IR techniques
have proven to be successful at locating relevant documents to user queries into
large collections [10], but the effort of looking for a specific desired information
into such documents is left to the user. A QA system, in addition, provides direct
answers to users questions. In closed domain QA, the questions are posed on the
entities of a well-defined specific domain of discourse. This additional hypoth-
esis makes possible to exploit more specific techniques that are tailored to the
domain of interest. Importantly, in closed domain QA, one can likely resort to
structured (or semi-structured) knowledge sources, that are rich in details, and
c© Springer Nature Switzerland AG 2019
F. Calimeri et al. (Eds.): JELIA 2019, LNAI 11468, pp. 526–541, 2019.
https://doi.org/10.1007/978-3-030-19570-0_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19570-0_35&domain=pdf
http://orcid.org/0000-0001-5164-9123
http://orcid.org/0000-0002-5988-2429
http://orcid.org/0000-0001-8218-3178
https://doi.org/10.1007/978-3-030-19570-0_35

A Logic-Based Question Answering System for Cultural Heritage 527

contain precise, trustable, certified and identifiable data. Moreover, the structure
and the vocabulary used in user questions is more limited and specific.

In this work, we present a closed domain QA system tailored to the cultural
heritage domain, which has been developed within the PIUCULTURA project.
The PIUCULTURA project, funded by the Italian Ministry for Economic Devel-
opment, has the goal of devising a multi-paradigm platform that facilitates the
fruition of cultural heritage sites in Italy. The QA system described in this work
is one of the core components of the platform, that answers to the need of pro-
viding a more natural way of obtaining information from the system.

It is worth noting that a system working on the domain of Cultural Heritage
can benefit from many existing structured data sources that adhere to interna-
tional standards. One of the most successful standards is the CIDOC Conceptual
Reference Model [19]. CIDOC-crm provides a common semantic framework for
the mapping of cultural heritage information and has been already adopted as
a base interchange format by museums, libraries, online data collections and
archives all over the world [19,20]. For this reason, CIDOC-crm has been iden-
tified as the knowledge reference model for PIUCULTURA. Thus, our Question
Answering prototype is applicable to query both general (e.g., online data col-
lections) and specific (e.g., museums databases) CIDOC-compliant knowledge
sources.

Our QA approach can be described as a waterfall-like process in which a user
question is first processed from a syntactic point of view and then from a seman-
tic point of view. Syntactic processing is based on the concept of template. A
template represents a category of syntactically homogeneous sentence patterns.
Templates are encoded in terms of Answer Set Programming (ASP) [14,15,25]
rules. ASP is a well-established formalism for nonmonotonic reasoning, and com-
bines a comparatively high knowledge-modeling power with a robust solving
technology [23,35]. For these reasons ASP has become an established logic-
based programming paradigm with successful applications to complex problems
in Artificial Intelligence [3,5–8,26], Databases [37,38], Game Theory [4,9] and
more. By using ASP we can work in a declarative fashion and avoid implementing
(and re-engineering) the template matching procedure from scratch every time a
new set of templates is added to the system. The semantic processing is instead
based on the concept of intent. By intent we mean the purpose (i.e., the intent)
of the question: two questions can belong to two disjoint syntactic categories but
have the same intent and vice versa. To give an example: who created Guernica?
and who is the author of Guernica? have a quite different syntactic structure,
but have the same intent, i.e., know who made the work Guernica. On the other
hand, if we consider who created Guernica? and who restored Guernica? we can
say that they are syntactically similar (or homogeneous), but semantically dif-
ferent: the purpose of the two questions is different. Semantic disambiguation, in
which intents are mapped to a set of predefined queries on the knowledge base,
is done by resorting to the multilingual BabelNet [41] dictionary. Finally, the
result of the execution of the query on the knowledge base is converted into a
natural language form by using a simple expansion metalanguage.

528 B. Cuteri et al.

In the remainder of this paper, we first briefly recall the ASP language, then
we provide a more detailed overview of the problem we have approached; next,
we present all the components of our QA system, focusing on the details of the
ASP-based component. Finally, after presenting an experiment that assesses the
performance of the template matching on a real-world knowledge base, we draw
the conclusion of the paper.

2 Answer Set Programming

In this section, we briefly overview Answer Set Programming (ASP) [15,25],
which is a declarative programming paradigm proposed in the area of non-
monotonic reasoning and logic programming. Syntactically, a rule r is of the
form:

a1| . . . |an :- b1, · · · , bk, not bk+1, · · · , not bm.

where a1, . . . , an, b1, . . . , bm are atoms. The disjunction of atoms a1, . . . , an is the
head of r, while the conjunction of literals b1, . . . , bk, not bk+1, . . . , not bm is the
body of r, where a literal is either an atom (positive literal) l or its negation
not l (negative literal). Atoms might contain constants, variables and function
symbols. A rule r is safe if each variable appearing in r appears also in some
positive body literal of r1. A rule with empty body (m = k = 0) is called fact. An
ASP program P is a finite set of safe rules. The meaning of an ASP program is
defined in terms of its answer sets (or stable models) [25]. Roughly, an answer set
A is a minimal set of variable-free atoms that are interpreted to be true, satisfies
all the rules of the program (i.e., at least one atom in the head is in A whenever
all positive literals in the body are in A, and no atom occurring in a negative
literal is in A) and is also stable w.r.t the definition of Gelfond-Lifschitz [25].
For example, the following ASP solves the well-known 3-Colorability problem on
graphs.

color(red,X) | color(yellow, X) | color(blue,X) :- node(X).
:- color(C,X), col(C,Y), edge(X,Y).

The input to the program is given as a set of facts containing node(x) for
each node x, and edge(x, y) for each edge (x, y) of the input graph. Intuitively,
the rules can be read as follows: color node X either in red, yellow, or blue, and
ensure that no adjacent node have the same colors.

Hereafter, we assume the reader is familiar with ASP and refer to [12,21,
22,24] for complementary introductory material on the topic.

3 Overview of the Problem

The goal of our approach is to answer questions on cultural heritage facts stored
in a repository modeled according to a standard model of this domain. In par-
ticular, the target knowledge base model of the project is the CIDOC concep-
tual reference model [19]. The CIDOC-crm is a standardized maintained model
1 The safety is in the folklore of logic-based languages [12].

A Logic-Based Question Answering System for Cultural Heritage 529

that has been designed as a common language for the exchange and sharing of
data on cultural heritage without loss of meaning, supporting the implementa-
tion of local data transformation algorithms towards this model. This standard
has been adopted worldwide by a growing number of institutions and provides
a more trustable, structured and complete source w.r.t. freely available (often
unstructured and non-certified) web resources. Indeed, museums and institutions
typically have structured sources in which they store information about their
artifacts that can be mapped to CIDOC-crm rather easily (actually, this was
one of the main goals of the promoters of CIDOC-crm). On the other hand, the
availability of documentary sources is limited. If we take into consideration freely
available documentary sources such as Wikipedia, we realize that the percentage
coverage of works and authors is low. For example, a museum like the British
Museum has about 8 million artifacts (made available in CIDOC-compliant for-
mat) while on Wikipedia there are in total about 500 thousand articles about
works of art from all over the world. The CIDOC-crm is periodically released in
RDFs format [16], thus our Question Answering system has to answer questions
by finding the information required on an RDF knowledge base that follows the
CIDOC-crm model. The reference query language of RDF is SPARQL [29]. So,
in basic terms, the Question Answering system has to map natural language
questions into SPARQL queries and produce answers in natural language from
query results. A requirement of the project was to target the Italian language,
together with the more diffused English language. We ended up devising and
implementing an approach that can deal with both languages and can be easily
adapted also to handle other languages.

4 ASP-based System for Question Answering

In this section we present step-by-step our question answering system for cul-
tural heritage. The entire QA process is exemplified in Fig. 1, which shows the
interaction among the various modules of the system. In particular, the question
answering process is split into the following phases:

1. Question NL Processing: The input question is transformed into a three-
level syntactic representation;

2. Template Matching: The representation is categorized by a template sys-
tem that is implemented by means of logical rules;

3. Intent Determination: The identified template is mapped to an intent,
where the intent identifies precisely the intent (or purpose) of the question;

4. Query Generation: An intent becomes a query on the knowledge base;
5. Query Execution: The Query is executed on the knowledge base;
6. Answer Generation: The result produced by the query is transformed into

a natural language answer.

Splitting the QA process into distinct phases allowed us to implement a
system by connecting loosely-coupled modules dedicated to each phase. In this
way we also achieved better maintainability, and extensibility. In the following
sections, we analyze in detail the 6 phases just listed.

530 B. Cuteri et al.

Fig. 1. Scenario of interaction with the Question Answering System

4.1 Question NL Processing

The NL processing phase deals with building a formal and therefore tractable
representation of the input question. The question is decomposed and analyzed
by highlighting both the atomic components that compose it, and the morpho-
logical properties of the components and the relationships that bind them. In
particular, in this phase we perform the following NLP steps: (i) Named entities
recognition; (ii) Tokenization and Part-of-speech tagging; and, (iii) Dependency
parsing.

Named Entities Recognition. The recognition of named entities is an NLP
task that deals with the identification and categorization of the entities that
appear in a text. The named entities are portions of text that identify the names
of people, organizations, places or other elements that are referenced by a proper
name. For example, in the phrase Michelangelo has painted the Last Judgment,
we can recognize two entities: Michelangelo, that could belong to a Person cate-
gory, and the Last Judgment that could belong to an Artwork category. When the
entities of the text have been recognized, they can be replaced with placeholders
that are easier to manage in the subsequent stages of processing of natural lan-
guage. For example, it is possible to replace long and decomposed names with
atomic names (that is, composed of a single word) that are more easily handled
during tokenization, Parts-of-speech tagging, and Dependency Parsing.

A Logic-Based Question Answering System for Cultural Heritage 531

In our implementation we use CRF++ [31] that implements a supervised
model based on conditional random fields that are probabilistic models for seg-
menting and labeling sequence data [32]. To train the CRF model, we generated
a training set built from a database of 57 question patterns built from a database
of possible questions provided by a partner of the PIUCULTURA project. Ques-
tion patterns were specified by using a metalanguage and are expansible into a
set of training questions. An example of question patterns is the following:

who {painted,created} [the work,the artwork] <W>.

The pattern is expanded by using, for each expansion, exactly one word from
curly brackets sets, at most one word from square brackets set, and one available
values from a predefined entities set identified with the id in angle brackets. The
above pattern can generate four times the number of elements in the dictionary of
words used to expand the placeholder <W>. So, if W = {Guernica, the Rosetta
Stone, the Monalisa}, the resulting patterns expansion are 18 of the form:

who painted Guernica.
who created Guernica.
who painted the work Guernica.
...

The expansion of patterns has been down-sampled (i.e., we selected a subset)
randomly by using a fixed maximum number of instances for each question
pattern (set to 20 in our experiments).

After applying Named Entities Recognition (NER) the entities recognized
in the text are replaced by placeholders that are easier to be processed by the
subsequent NLP phases. At the end of the NLP phase, placeholders are then
replaced back by the original entities of the text.

Tokenization and Parts-Of-Speech Tagging. Tokenization consists of split-
ting text into words (called tokens). A token is an indivisible unit of text. Tokens
are separated by spaces or punctuation marks. In Italian, as in other western lan-
guages, the tokenization phase turns out to be rather simple, as these languages
place quite clear word demarcations. In fact, the approaches used for natural lan-
guage tokenization are based on simple regular expressions. Tokenization is the
first phase of lexical analysis and creates the input for the next Part-of-Speech
Tagging phase.

The part-of-speech tagging phase assigns to each word the corresponding
part of the speech. Common examples of parts-of-speech are adjectives, nouns,
pronouns, verbs, or articles. The part-of-speech assignment is typically imple-
mented with supervised statistical methods. There are, for several languages,
large manually annotated corpora that can be used as training sets to train a
statistical system. Among the best performing approaches are those based on
Maximum Entropy [6]. The set of possible parts of the speech (called tag-set)
is not fixed, and above all, it can present substantial differences depending on

532 B. Cuteri et al.

the language taken into consideration. For Italian, a reference tag-set is the Tanl
tag-set,2 that was adopted in our system.

For tokenization and POS-tagging we used the Apache OpenNLP library3

with pretrained models.4

Dependency Parsing. Dependency Parsing is the identification of lexical
dependencies of the words of a text according to a grammar of dependencies.
The dependency grammar (DG) is a class of syntactic theories that are all based
on the dependency relationship (as opposed to the circumscription relation).
Dependency is the notion that linguistic units, e.g., words, are connected to one
another by directed connections (or dependencies). A dependency is determined
by the relationship between a word (a head) and its dependencies. The methods
for extracting grammar dependencies are typically supervised and use a refer-
ence tag-set and a standard input representation format known as the CoNLL
standard developed and updated within the CoNLL scientific conference (Con-
ference on Computational Natural Language Learning). In our implementation
we used MaltParser5 that is a system for data-driven dependency parsing [42].

4.2 Template Matching

Once the NLP phases are completed we perform one of the core phases of the
system, that is the template matching phase. Template matching is in charge of
classifying question from the syntactic point of view and extract the question
terms that are needed to instantiate the query for retrieving the answer. Basi-
cally, a template represents a category of syntactically homogeneous questions.
In our system, templates are encoded in terms of ASP rules. By using ASP we
can work in a declarative fashion and avoid implementing the template matching
procedure from scratch.

To this end, the output of the NLP phase is modeled by using ASP facts
that constitute the input of the template matching module. In particular, words
are indexed by their position in the sentence and they are associated with their
morphological feature by using facts of the following forms:

word(pst,wrd). pos(pst,pos tag). gr(pst1,pst2,rel tag).

the first kind of fact associates position of words (pst) in a sentence to the word
itself (wrd); the second associates words (pst) with their POS tags (pos tag),
and the latter models grammatical relations (a.k.a. typed dependencies) speci-
fying the type of grammatical relation (rel tag) holding among pair of words
(pst1,pst2). The possible tags and relations terms are constants representing
the labels produced by the NLP tools mentioned in the previous subsection.

2 http://medialab.di.unipi.it/wiki/Tanl POS Tagset.
3 https://opennlp.apache.org.
4 https://github.com/aciapetti/opennlp-italian-models.
5 http://www.maltparser.org/.

http://medialab.di.unipi.it/wiki/Tanl_POS_Tagset
https://opennlp.apache.org
https://github.com/aciapetti/opennlp-italian-models
http://www.maltparser.org/

A Logic-Based Question Answering System for Cultural Heritage 533

Consider, for example, the question who painted Guernica?, the output of
the NLP phase would result in the following facts (cfr., Fig. 1 for a graphical
representation of this NLP output).

word(1, "who"), word(2, "painted").
word(3, "Guernica"). word(4, "?").
pos(1, pr), pos(2, vb). pos(3, np). pos(4, f).
gr(2, 1, nsubj), gr(2, 3, dobj). gr(2, 4, punct).

We denote with FQ the set of facts produced by the application of mentioned
NLP phases and transformations to an input question Q.

In the template matching phase, questions are matched against question
templates. Templates identify categories of questions that are uniform from the
syntactic point of view and we express them in the form of ASP rules.

Definition 1. A template rule R is a rule having in the head an ASP atom of
the form

template(ID , terms K(V1, . . . , VK),W)

where template is a constant predicate name (that is the same for all templates),
ID is an ASP constant that identifies the template, K is an integer that we call
template arity, V1, . . . , VK are ASP variables and W is an integer that defines
the template rule weight.

Basically, each template rule models a condition under which we identified a
possible syntactic question pattern for a template. The function terms K conve-
niently groups the terms that are extracted from the match. Finally the weight
is numerical value that expresses the importance of a pattern. By using weights
one can freely express preferences among patterns; for instance in our implemen-
tation we set this number to the size of the body to favor more specific templates
rules over more generic ones. An example of template rule that matches questions
of the form who action object? is the following:

template(who action object, terms 2(V, O), 8) :-
word (1, "who"),
word(2, V), word(3, O), word(4, "?"),
pos(1, pr), pos(2, vb), pos(3, np), pos(4, f),
gr(2, 1, nsubj), gr(2, 3, dobj), gr(2, 4, punct).

In the example, who action object is a constant that identifies the template,
while terms(V,W) is a function symbol that allows extracting the terms of the
input question, respectively the verb V and the object O. The weight of the
template rule is 8, which corresponds to the body size as described above.

Definition 2. A template T is a set of template rules having the same ID and
arity.

Basically, a template collects a number of possible syntactic patterns (one
per template rule), roughly corresponding to different ways of formulating a kind
of question.

534 B. Cuteri et al.

Definition 3. A template matching program P is an ASP program that contains
at least one template, and the following rule, defining the best matches (i.e., the
ones with highest weight):

bestMatch(T,R) :- template(T,R,M), #max{W: template(, ,W)} = M.

Definition 4. Given a template matching program P and the set of facts FQ

coming from the NLP phase w.r.t. a question Q, we say that (T,R) is a best
match for Q iff bestMatch(T,R) ∈ A where A is the answer set of FQ ∪ P .
In such case, T identifies a best matching template and R defines the terms
extracted from the match.

Note that, it was by design that one can retrieve more than one best match, to
give more freedom to the design of the interaction with the user. Pragmatically,
in the first prototypical implementation, we simply select the first best-match
assuming that all best-matches represent the question equally good.

Question templates are intended to be defined by the application designer,
which is a reasonable choice in applications like the one we considered, where the
number of templates to produce is limited. Nonetheless, to assist the definition
of templates we developed a graphical user interface. Such interface helps the
user at building template rules by working and generalizing examples, and does
not require any previous knowledge of ASP or specific knowledge of NLP tools.
The template editing interface is not described in this paper for space reasons.

In our prototype, we used DLV [33] as the ASP solver that computes the
answer sets (thus the best matches) of the template matching phase, and the
DLV Wrapper library [43] to programmatically manage DLV invocations from
Java code.

The intent determination process is based on the lexical expansion of question
terms extracted in the template matching phase.

4.3 Intent Determination

The identification of a question by templates is typically not sufficient to identify
its intent or purpose. For example, who painted Guernica? and who killed Cae-
sar? have a very similar syntactic structure and may fall into the same template,
but they have two different purposes. The intent determination process is based
on the lexical expansion of question terms extracted in the template matching
phase and has the role of identifying what the question asks (i.e., its intent),
starting from the result of the template matching phase. In other words, it dis-
ambiguates the intent of questions that fall into the same syntactic category (and
that therefore have a match on the same template). In the previous example,
painting is hyponym (i.e., a specific instance) of creating and this fact allows us
to understand that the intent is to determine the creator of a work, while killing
does not have such relationships and we should, therefore, instantiate a different
intent. In the same way, who painted Guernica?, who made Guernica? or who
created Guernica? are all questions that can be correctly mapped with a single

A Logic-Based Question Answering System for Cultural Heritage 535

template and can be correctly recognized by the same intent thanks to the fact
that all three verbs are hyponyms or synonyms of the verb create. Words seman-
tic relations can be obtained by using dedicated dictionaries, like wordnet [39] or
BabelNet [41]. In our system we used BabelNet and we implemented the intent
determination module in Java and used the BabelNet API library for accessing
word relations. In particular, intent determination is implemented as a series
of Java conditional checks (possibly nested) on word relations. Such conditional
checks are expressed as a question term Q, a word relation R and a target word
T . The BabelNet service receives such triple and returns true/false depending on
whether Q is in relation R w.r.t. T , R is either synonymy, hyponymy or hyper-
onymy. Algorithm 1 presents a pseudo-code of the intent determination process
for the who action object template with one verb and one object as terms.

The implementation of intent determination is done by the designer as tem-
plate definition. Our system implements a set of intents that were identified
during the analysis by a partner of the project.

Note that intent determination could also be easily encoded by means of ASP
rules, which would have allowed having a single ASP program for handling both
template matching and intent determination. However, the access to external
dictionaries was not efficient in practice, and we decided to go for a straight
implementation with imperative code.

Algorithm 1. Determine intent for who action object template
Input: matched terms: verb, object
Output: intent of question
1: if inDictionary(verb, “synonym”, “created”) then
2: return AUTHOR OF WORK
3: end if
4: if inDictionary(verb, “synonym”, “found”) then
5: return FOUNDER OF WORK
6: end if
7: if inDictionary(verb, “synonym”, “married”) then
8: return SPOUSE OF PERSON
9: end if

10: if inDictionary(verb, “hyponym”, “created”) then
11: return AUTHOR OF WORK
12: end if
13: ...
14: return FAIL

4.4 Query Execution

The intents identified in the previous phase are mapped one to one with template
queries, called prepared statements in programming jargon. In the Query Exe-
cution phase, the query template corresponding to the identified event is filled
with the slots with terms extracted from the template matching phase and exe-
cuted over the knowledge base. The CIDOC-crm specification is, by definition,

536 B. Cuteri et al.

an RDF knowledge base [16], thus we implemented the queries corresponding to
intents in the SPARQL language [29]. The problem of programmatically running
a query on an RDF knowledge base is a problem for which there are already sev-
eral solutions. Among the many, we mention Apache Jena for Java and Rasqal
for C/C++. In our prototype, we store our data and run our queries using
Apache Jena, as programmatic query API, and Virtuoso Open-Source Edition
as knowledge base service.

4.5 Answer Generation

Finally, the latest phase of a typical user interaction with the QA system is
the so-called Answer Generation. In this phase, the results produced by the
execution of the query on the knowledge base are transformed into a natural
language answer that is finally returned to the user. To implement this phase we
have designed answer templates that are in some ways similar to the one seen
for generating the test set for the NER phase. In this case, the idea is to have
natural language patterns with parameterized slots that are filled according to
the question intent and the terms extracted from the database. These answer
templates can be expressed in a compact way through a metalanguage that
allows expressing sentences with variations according to the subjects of question
or answer. The example below presents a possible answer template for questions
concerning the materials of a work.

The material{s:s}[R] of <Q> {s:is,p:are}[R] <R>.

The curly brackets denote a sequence of variants and the square brackets denote
the term (or terms) with respect to which the block preceding it refers: R stands
for answer (or response) and Q stands for question. A variant consists of a prop-
erty and a value separated by a colon symbol. The block delimited by the braces
is replaced by the value of the variant appropriate to the term enclosed between
square brackets that follows the block. The determination of the appropriate
variant can be implemented within the system using, for example, a dictionary
of terms. In the example, the s variant is for singular forms and the p variant is
for plural forms. The variants may possibly be extended into more complex types
(possibly organized in hierarchies) and take into consideration other characteris-
tics of the terms of answer and question extracted from appropriate dictionaries
of terms or explicitly represented in the knowledge base. Finally, the 〈Q〉 tag
is replaced by the question terms and the 〈R〉 tag from the answer terms. So,
suppose we want to apply the answer template from the previous example to the
fact that the Rosetta Stone is made of granodiorite we would get the answer:
The material of the Rosetta Stone is granodiorite.

5 System Performance on Real-World Data

In this section, we report on the results of an experimental analysis conducted to
assess the performance of the system, and in particular, we have checked whether

A Logic-Based Question Answering System for Cultural Heritage 537

Table 1. Template matching time (average times on a sample of 167 questions)

Number of templates 20 30 40 50 60

Average matching time (milliseconds) 30 30 31 33 34

it scales well w.r.t the number of template rules present in a use case developed
in the PIUCULTURA project.

We devised 60 template rules, which are able to handle basic question forms
and types for the cultural heritage domain distributed in 20 different intents
(e.g., authors, materials, dimensions, techniques of artworks, dates/locations of
birth and death of artists, and so on). The queries have been executed on a
dump of the British Museum6 Knowledge-Base that consists of more than 200
million RDF triples. The hardware used is an Intel i7-7700HQ CPU with 16 GB
of ram running a Linux operating system. The knowledge base was handled by
Virtuoso ver. 7.2.4, connected to our system with JENA ver. 3.6.0. The ASP
system we have used is DLV build BEN/Dec 17 2012.

The average execution times of the template matching phase measured on
a sample of 167 questions and on an increasing number of template rules are
reported in Table 1. Execution times are in the order of some milliseconds and
seems to scale well w.r.t the number of templates. The DLV system performs
well on the template programs we have implemented, which by design fall in
the stratified [12] syntactic subclass of ASP, which is computationally cheap and
efficiently handled by the ASP system we employ [33,34]. For what concerns
the other phases of the QA system, we report that, on the same sample of 167
questions, the NL phase average execution time is of 30 ms and is at most 50 ms,
the intent determination phase average execution time is of 50 ms and is at most
580 ms and the average query execution time is of 8 ms and is at most 32 ms.
Overall the system presents good execution times, which are acceptable for a
real-time QA system.

6 Related Work

This work is mostly related to other approaches and forms of QA. Most QA
systems in the literature are concerned with retrieving answers from collections
of documents, or on the Web, also thanks to the work developed in the context of
the Text Retrieval Conference (TREC) that popularized and promoted this form
of QA [46]. Systems that fall in this category are mainly based on information
retrieval techniques. The most prominent differences to our approach are that we
are collecting data from a structured knowledge base, instead of text collections.

For what concerns closed-domain QA, early examples are Baseball [28] and
Lunar [47], they were essentially natural language interfaces to relational data-
bases. Lunar allowed asking geologist questions about rocks, while Baseball

6 http://www.britishmuseum.org/.

http://www.britishmuseum.org/

538 B. Cuteri et al.

answered questions about data collected from a baseball season. AquaLog [36] is
an ontology-portable Question Answering system that tries to map input ques-
tions into linguistic triples and then into ontology triples by mainly using simi-
larity services. In our approach, there is no triple representation of questions and
we implemented an intent layer that separates the NL and the ontology world.
The intent layer allows implementing intents in actions/queries that are not
SPARQL queries. Our approach is less general to be ported to other ontologies,
but we provide more control to the developer to create precise NL-to-ontology
mappings.

WEBCOOP [13] is a QA system for the tourism domain and implements
a cooperative QA on unstructured data. WEBCOOP works on text collections
instead of a structured knowledge base. In [44] input questions are transformed
into SPARQL templates that mirror the internal structure of the question and
are then filled with question terms. As for AcquaLog, the system is domain-
independent and in contrast to AcquaLog, they capture questions that are not
fully represented by triple clauses, but also those that need filtering and aggre-
gations functions to be handled. Again, our approach is less general and less
automatic, but also more controllable and less dependent on the data represen-
tation formalism that can vary independently from the question templates.

There are some systems that approach questions by transforming them into
logic forms so as to be able to perform reasoning tasks [11,27,40], both in open
and closed domains. This is particularly useful for difficult questions that need
advanced reasoning capabilities to be answered. Our approach also uses logic, but
for the different task of expressing question patterns matching input questions.
Also related is NL2KR [45], that is a system that attempts to create direct
translations from NL to knowledge representation languages. It takes examples
of sentences and their translations together with a base lexicon, and constructs
a translation system from NL to the desired target language.

7 Conclusion

In this work, we tackled the problem of Question Answering in the Cultural Her-
itage domain. The presented solution transforms input questions into SPARQL
queries that are executed on an ontological knowledge base. It integrates in a
non-trivial original way state-of-the-art NLP tools and models in a modular
architecture, featuring a template matching module based on ASP. The system
is designed for fast integration of new question forms (by adding templates) and
new question intents (by adding intents) and it suits the need of closed domains
that are characterized by a limited number of intents and question forms. We
have instantiated our approach to answer questions posed in the Italian language
to a CIDOC-compliant knowledge base, and we presented an assessment experi-
ment that shows that the presented approach provides a performance acceptable
for implementing a real-time QA system. The proposed solution is being inte-
grated into a fully-fledged commercial system developed within the PIUCUL-
TURA project, funded by the Italian Ministry for Economic Development.

A Logic-Based Question Answering System for Cultural Heritage 539

As for future works, it would be interesting to: compare and possibly integrate
the presented approach with other techniques for question answering, as the ones
only based on machine learning; investigate the possible efficiency enhancements
that can be obtained using a compiler for logic programs [17,18]; enhance the
entity recognition by integrating the techniques of [1].

Acknowledgments. This work was partially supported by the Italian Ministry
of Economic Development under project “PIUCultura (Paradigmi Innovativi per
l’Utilizzo della Cultura)” n.F/020016/01-02/X27.

References

1. Adrian, W.T., Manna, M., Leone, N., Amendola, G., Adrian, M.: Entity set expan-
sion from the web via ASP. In: ICLP (Technical Communications), OASICS, vol.
58, pp. 1:1–1:5. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)

2. Allam, A.M.N., Haggag, M.H.: The question answering systems: a survey. Int. J.
Res. Rev. Inf. Sci. (IJRRIS) 2(3), 211–221 (2012)

3. Alviano, M., Amendola, G., Peñaloza, R.: Minimal undefinedness for fuzzy answer
sets. In: AAAI, pp. 3694–3700. AAAI Press (2017)

4. Amendola, G.: Preliminary results on modeling interdependent scheduling games
via answer set programming. In: RiCeRcA@AI*IA, CEUR Workshop Proceedings,
vol. 2272. CEUR-WS.org (2018)

5. Amendola, G.: Solving the stable roommates problem using incoherent answer set
programs. In: RiCeRcA@AI*IA, CEUR Workshop Proceedings, vol. 2272. CEUR-
WS.org (2018)

6. Amendola, G., Dodaro, C., Leone, N., Ricca, F.: On the application of answer
set programming to the conference paper assignment problem. In: Adorni, G.,
Cagnoni, S., Gori, M., Maratea, M. (eds.) AI*IA 2016. LNCS (LNAI), vol. 10037,
pp. 164–178. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49130-
1 13

7. Amendola, G., Eiter, T., Fink, M., Leone, N., Moura, J.: Semi-equilibrium models
for paracoherent answer set programs. Artif. Intell. 234, 219–271 (2016)

8. Amendola, G., Eiter, T., Leone, N.: Modular paracoherent answer sets. In: Fermé,
E., Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp. 457–471. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-11558-0 32

9. Amendola, G., Greco, G., Leone, N., Veltri, P.: Modeling and reasoning about NTU
games via answer set programming. In: IJCAI 2016, pp. 38–45 (2016)

10. Baeza-Yates, R., Ribeiro-Neto, B., et al.: Modern Information Retrieval, vol. 463.
ACM Press, New York (1999)

11. Balduccini, M., Baral, C., Lierler, Y.: Knowledge representation and question
answering. Found. Artif. Intell. 3, 779–819 (2008)

12. Baral, C.: Knowledge Representation: Reasoning and Declarative Problem Solving.
Cambridge University Press, Cambridge (2010)

13. Benamara, F.: Cooperative question answering in restricted domains: the WEB-
COOP experiment. In: Proceedings of the Conference on Question Answering in
Restricted Domains (2004)

14. Bonatti, P., Calimeri, F., Leone, N., Ricca, F.: Answer set programming. In: Dovier,
A., Pontelli, E. (eds.) A 25-Year Perspective on Logic Programming. LNCS, vol.
6125, pp. 159–182. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14309-0 8

https://doi.org/10.1007/978-3-319-49130-1_13
https://doi.org/10.1007/978-3-319-49130-1_13
https://doi.org/10.1007/978-3-319-11558-0_32
https://doi.org/10.1007/978-3-642-14309-0_8
https://doi.org/10.1007/978-3-642-14309-0_8

540 B. Cuteri et al.

15. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011)

16. Consortium, W.W.W., et al.: RDF 1.1 concepts and abstract syntax (2014)
17. Cuteri, B., Ricca, F.: A compiler for stratified datalog programs: preliminary

results. In: SEBD, CEUR Workshop Proceedings, vol. 2037, p. 158. CEUR-WS.org
(2017)

18. Cuteri, B., Rosis, A.F.D., Ricca, F.: lp2cpp: a tool for compiling stratified logic
programs. In: Esposito, F., Basili, R., Ferilli, S., Lisi, F. (eds.) AI*IA. LNCS, vol.
10640, pp. 200–212. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70169-1 15

19. Doerr, M.: The CIDOC conceptual reference module: an ontological approach to
semantic interoperability of metadata. AI Mag. 24(3), 75 (2003)

20. Doerr, M., Gradmann, S., Hennicke, S., Isaac, A., Meghini, C., Van de Sompel, H.:
The Europeana data model (EDM). In: World Library and Information Congress:
76th IFLA General Conference and Assembly, pp. 10–15 (2010)

21. Eiter, T., Ianni, G., Krennwallner, T.: Answer set programming: a primer. In: Tes-
saris, T., et al. (eds.) Reasoning Web 2009. LNCS, vol. 5689, pp. 40–110. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03754-2 2

22. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Prac-
tice. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan
& Claypool Publishers, San Rafael (2012)

23. Gebser, M., Leone, N., Maratea, M., Perri, S., Ricca, F., Schaub, T.: Evaluation
techniques and systems for answer set programming: a survey. In: IJCAI, pp. 5450–
5456. ijcai.org (2018)

24. Gelfond, M., Kahl, Y.: Knowledge Representation, Reasoning, and the Design of
Intelligent Agents: The Answer-set Programming Approach. Cambridge University
Press, Cambridge (2014)

25. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Gener. Comput. 9(3–4), 365–385 (1991)

26. Grasso, G., Iiritano, S., Leone, N., Ricca, F.: Some DLV applications for knowl-
edge management. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS
(LNAI), vol. 5753, pp. 591–597. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-04238-6 63

27. Green, C.: Theorem proving by resolution as a basis for question-answering sys-
tems. Mach. Intell. 4, 183–205 (1969)

28. Green Jr, B.F., Wolf, A.K., Chomsky, C., Laughery, K.: Baseball: an auto-
matic question-answerer. In: Western Joint IRE-AIEE-ACM Computer Confer-
ence, Papers Presented at 9–11 May 1961, pp. 219–224. ACM (1961)

29. Harris, S., Seaborne, A., Prud’hommeaux, E.: SPARQL 1.1 query language. W3C
Recommendation 21(10) (2013)

30. Hirschman, L., Gaizauskas, R.: Natural language question answering: the view from
here. Nat. Lang. Eng. 7(4), 275–300 (2001)

31. Kudo, T.: CRF++ (2013). http://crfpp.sourceforge.net/
32. Lafferty, J., McCallum, A., Pereira, F.C.: Conditional random fields: probabilistic

models for segmenting and labeling sequence data (2001)
33. Leone, N., et al.: The DLV system for knowledge representation and reasoning.

ACM Trans. Comput. Logic (TOCL) 7(3), 499–562 (2006)
34. Liang, S., Fodor, P., Wan, H., Kifer, M.: OpenRuleBench: an analysis of the per-

formance of rule engines. In: WWW, pp. 601–610. ACM (2009)
35. Lierler, Y., Maratea, M., Ricca, F.: Systems, engineering environments, and com-

petitions. AI Mag. 37(3), 45–52 (2016)

https://doi.org/10.1007/978-3-319-70169-1_15
https://doi.org/10.1007/978-3-319-70169-1_15
https://doi.org/10.1007/978-3-642-03754-2_2
https://doi.org/10.1007/978-3-642-04238-6_63
https://doi.org/10.1007/978-3-642-04238-6_63
http://crfpp.sourceforge.net/

A Logic-Based Question Answering System for Cultural Heritage 541

36. Lopez, V., Pasin, M., Motta, E.: AquaLog: an ontology-portable question answering
system for the semantic web. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005.
LNCS, vol. 3532, pp. 546–562. Springer, Heidelberg (2005). https://doi.org/10.
1007/11431053 37

37. Manna, M., Ricca, F., Terracina, G.: Consistent query answering via ASP from
different perspectives: theory and practice. TPLP 13(2), 227–252 (2013)

38. Manna, M., Ricca, F., Terracina, G.: Taming primary key violations to query large
inconsistent data via ASP. TPLP 15(4–5), 696–710 (2015)

39. Miller, G.: WordNet: An Electronic Lexical Database. MIT Press, Cambridge
(1998)

40. Moldovan, D., Clark, C., Harabagiu, S., Maiorano, S.: COGEX: a logic prover for
question answering. In: Proceedings of the 2003 Conference of the North American
Chapter of the Association for Computational Linguistics on Human Language
Technology, vol. 1, pp. 87–93. Association for Computational Linguistics (2003)

41. Navigli, R., Ponzetto, S.P.: Babelnet: the automatic construction, evaluation and
application of a wide-coverage multilingual semantic network. Artif. Intell. 193,
217–250 (2012)

42. Nivre, J., et al.: MaltParser: a language-independent system for data-driven depen-
dency parsing. Nat. Lang. Eng. 13(2), 95–135 (2007)

43. Ricca, F.: A Java wrapper for DLV. In: Answer Set Programming, CEUR Workshop
Proceedings, vol. 78. CEUR-WS.org (2003)

44. Unger, C., Bühmann, L., Lehmann, J., Ngonga Ngomo, A.C., Gerber, D., Cimiano,
P.: Template-based question answering over RDF data. In: Proceedings of the 21st
International Conference on World Wide Web, pp. 639–648. ACM (2012)

45. Vo, N.H., Mitra, A., Baral, C.: The NL2KR platform for building natural language
translation systems. In: ACL (1), pp. 899–908. The Association for Computer Lin-
guistics (2015)

46. Voorhees, E.M., Dang, H.T.: Overview of the TREC 2003 question answering track.
In: TREC, vol. 2003, pp. 54–68 (2003)

47. Woods, W.A.: Semantics and quantification in natural language question answer-
ing. In: Advances in Computers, vol. 17, pp. 1–87. Elsevier (1978)

https://doi.org/10.1007/11431053_37
https://doi.org/10.1007/11431053_37

Characterising Relativised Strong
Equivalence with Projection for

Non-ground Answer-Set Programs

Tobias Geibinger1(B) and Hans Tompits2

1 Christian Doppler Laboratory for Artificial Intelligence and Optimization
for Planning and Scheduling, Databases and Artificial Intelligence Group,

Institute of Logic and Computation, Technische Universität Wien,
Favoritenstraße 9-11, 1040 Vienna, Austria

tgeibing@dbai.tuwien.ac.at
2 Knowledge-Based Systems Group, Institute of Logic and Computation,
Technische Universität Wien, Favoritenstraße 9-11, 1040 Vienna, Austria

tompits@kr.tuwien.ac.at

Abstract. Starting with the seminal work on strong equivalence by Lifs-
chitz, Pearce, and Valverde, many different advanced notions of program
equivalence have been studied in the area of answer-set programming
(ASP). In particular, relativised strong equivalence with projection has
been introduced as a generalisation of strong equivalence by parameter-
ising, on the one hand, the alphabet of the context programs used for
checking program equivalence as well as, on the other hand, allowing
the filtering of auxiliary atoms. Like many other advanced equivalence
notions, it was introduced originally for propositional programs, along
with model-theoretic concepts providing characterisations when equiva-
lence between two programs hold. In this paper, we extend these concepts
and characterisations to the general case of non-ground programs.

Keywords: Answer-set programming · Program equivalence ·
Model-theoretic characterisations

1 Introduction

The notion of equivalence is fundamental in programming and logic and lies
at the heart of computability theory, as deciding whether two Turing machines
compute the same function is well-known to be undecidable in general. While
in classical logic (as well as in many others), the equivalence of two formulas
in the sense of that they both possess the same models yields a replacement
theorem which allows to interchange equivalent formulas in theories resulting in

This work was partially supported by the Austrian Federal Ministry for Digital and
Economic Affairs and the National Foundation for Research, Technology, and Devel-
opment.

c© Springer Nature Switzerland AG 2019
F. Calimeri et al. (Eds.): JELIA 2019, LNAI 11468, pp. 542–558, 2019.
https://doi.org/10.1007/978-3-030-19570-0_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19570-0_36&domain=pdf
http://orcid.org/0000-0002-0856-7162
http://orcid.org/0000-0001-5673-2460
https://doi.org/10.1007/978-3-030-19570-0_36

Characterising Relativised Strong Equivalence with Projection 543

equivalent theories, such a property does not hold in answer-set programming
(ASP) or nonmonotonic logics in general. That is, although even if P and Q
have the same answer sets, it may hold that P ∪ R and Q ∪ R do not have the
same answer sets, for some programs P , Q, and R.

Starting with the seminal work on strong equivalence by Lifschitz, Pearce,
and Valverde [12], which yields a replacement property essentially by definition,
as two programs P and Q are strongly equivalent if P ∪ R and Q ∪ R have the
same answer sets, for any program R (referred to as a context program), many
different notions of program equivalence have been studied in ASP. Notably,
uniform equivalence [2], which restricts the condition of strong equivalence in
that the context programs contain facts only, and relativised notions thereof [18]
which specifies the admitted alphabet of the context programs.

However, both notions do not take standard programming techniques like
the use of local predicates into account, which may occur in subprograms but
which are ignored in the final computation. Thus, these notions do not admit
the projection of answer sets to a set of designated output letters. This led to
the definition of relativised strong equivalence with projection [4] as well as of
relativised uniform equivalence with projection [13,14]. More specifically, for two
programs P and Q and sets A and B of atoms, P and Q are strongly equivalent
relative to A projected to B if, for any context program R defined over A,
the collection of all sets of form I ∩ B, where I is an answer set of P ∪ R,
coincides with the collection of all sets of form J ∩ B, where J is an answer set
of Q∪R, and relativised uniform equivalence with projection is defined similarly
with R containing facts over A only. These and analogously defined fine-grained
equivalence notions are relevant for different programming aspects like modular
programming [11] and program simplification [1,16].

Both relativised strong equivalence with projection [4] as well as without
projection [18] have been analysed for propositional programs only so far. In
this paper, we consider the general case of non-ground programs and study these
notions by lifting the corresponding definitions and characterisations to the non-
ground case. In particular, we give a model-based characterisation for relativised
strong equivalence in terms of RSE-models (“relativised SE-models”). That is,
two programs are strongly equivalent relative to an alphabet A iff they have
the same RSE-models relative to A. Afterwards, we generalise the notion of a
spoiler whose existence disproves program correspondence in the sense of rel-
ativised strong equivalence with projection. Then, we introduce a model-based
characterisation for relativised strong equivalence with projection in terms of
certificates. More specifically, two programs P and Q are strongly equivalent
relative to A with projection to B (where A and B are alphabets) iff P and Q
have the same minimal (A,B)-certificates. Finally, we discuss some computabil-
ity issues of the introduced non-ground equivalence notions.

544 T. Geibinger and H. Tompits

2 Preliminaries

2.1 Logic Programs

Logic programs are defined over a vocabulary V = (P,D), where P is a set of
predicates and D is a set of constants (also referred to as the domain of V). Each
predicate in P has an arity n ≥ 0. We also assume a set A of variables.

An atom is defined as p(t1, . . . , tn), where p ∈ P and ti ∈ D∪A, for 1 ≤ i ≤ n.
We call an atom ground if no variable occurs in it.

The set of all ground atoms of a vocabulary V is called the Herbrand base of
V, denoted by HBV . For a set P ⊆ P of predicates and a set C ⊆ D of constants,
the set of all ground atoms constructed by replacing the variables in P with
constants of C is denoted by HBP,C .

A (disjunctive) rule, r, is an ordered pair of form

a1 ∨ · · · ∨ an ← b1, . . . , bk,not bk+1, . . . ,not bm, (1)

where a1, . . . , an, b1, . . . , bm are atoms, n,m, k ≥ 0, and n+m > 0. Furthermore,
“not” denotes default negation. The left-hand side of r is the head and the right-
hand side is the body of r. We accordingly define the sets H(r) = {a1, . . . , an}
and B(r) = {b1, . . . , bk, not bk+1, . . . , not bm}, as well as B+(r) = {b1, . . . , bk}
and B−(r) = {bk+1, . . . , bm}.

A rule r of form (1) is called (i) a fact, if m = 0 and n = 1; (ii) unary, if
n = 1 and k = m ≤ 1; (iii) safe, if each variable occurring in H(r) ∪ B−(r) also
occurs in B+(r); and (iv) ground, if all atoms in r are ground.

A program is a set of safe rules. We call a program ground if all of its rules are
ground. For a program P , we define H(P) =

⋃
r∈P H(r) and B(P) =

⋃
r∈P B(r).

Furthermore, for any program P , a predicate symbol p
∈ H(P) is extensional
(in P), and intensional otherwise.

The set of all constants appearing in a program P is called the Herbrand uni-
verse of P , symbolically HU P . If no constant appears in P , then HU P contains
an arbitrary constant. Furthermore, the set of all predicates of P is denoted by
AP . We define HBP := HBAP ,HUP

and HBP,C := HBAP ,C .
Given a rule r and a set C of constants, we define grd(r, C) as the set of

all rules generated by replacing all variables of r with elements of C. For any
program P , the grounding of P with respect to C is given by grd(P,C) :=⋃

r∈P grd(r, C). If P is a ground program, then P = grd(P,C) for any C.
A set of ground atoms is called an interpretation. Following the answer-set

semantics for logic programs as defined by Gelfond and Lifschitz [8], a ground
rule r is satisfied by an interpretation I, denoted by I |= r, iff H(r) ∩ I
= ∅
whenever B+(r) ⊆ I and B−(r) ∩ I = ∅. For a ground program P , I |= P iff
each r ∈ P is satisfied by I. The Gelfond-Lifschitz reduct [7] of a ground program
P with respect to the interpretation I is given by

P I := {H(r) ← B+(r) | r ∈ P, I ∩ B−(r) = ∅}.

An interpretation I is an answer set of a non-ground program P iff I is a subset-
minimal set satisfying grd(P,HU P)I . An alternate definition of answer sets is

Characterising Relativised Strong Equivalence with Projection 545

given the following way: An interpretation I is an answer set of a non-ground
program P iff I |= grd(P,HU P) and J
|= grd(P,HU P)I for any J ⊂ I. We
define AS (P) as the set of all answer sets of P . Note that safety of rules ensures
that if I ∈ AS (P) then I ⊆ HBP .

By PA
V , we denote the set of all programs over V that contain only predicates

of A. Similarly, by FA
V we denote the set of all sets of facts over V that consist

only of predicates of A. If A = P, we write PV and FV .

2.2 Notions of Equivalence

In this work, we deal with a generalisation of strong equivalence [12] allowing for
a parameterisation along two dimensions: one for specifying the alphabet of the
context programs which are used in the definition of strong equivalence, and one
for filtering the compared output, i.e., the answer sets, in terms of a specified
set of predicates (which can be seen as the “output atoms” one is interested in).

Strong equivalence was originally introduced for propositional programs by
Lifschitz, Pearce, and Valverde [12] and subsequently studied for the non-ground
case by Eiter, Fink, Tompits, and Woltran [3].

Formally, two programs P and Q are strongly equivalent iff AS (P ∪ R) =
AS (Q ∪ R), for any program R (we generally refer to such an R as a context
program). Weaker forms of equivalence are ordinary equivalence, which holds
between P and Q iff AS (P) = AS (Q), and uniform equivalence [2], which holds
between P and Q iff AS (P ∪F) = AS (Q∪F), for any set F of facts. Obviously,
strong equivalence implies uniform equivalence, which in turn implies ordinary
equivalence, but in general not vice versa. As shown by Lifschitz, Pearce, and
Valverde [12], strong equivalence corresponds to equivalence in Heyting’s logic
of here-and-there [10], which is equivalent to Gödel’s three valued logic [9], when
programs are interpreted as logical formulas.

An alternative characterisation of strong equivalence in the propositional
case in terms of so-called SE-models was introduced by Turner [17], which has
subsequently been extended to non-ground programs by Eiter, Fink, Tompits,
and Woltran [3] as follows: Let V = (P,D) be a vocabulary, P a program over V,
C ⊆ D, and X,Y ⊆ HBP,C sets of ground atoms. Then, an SE-interpretation is
a triple (X,Y)C such that X ⊆ Y . Furthermore, (X,Y)C is an SE-model of P iff
Y |= grd(P,C) and X |= grd(P,C)Y . The set of all SE-models of P is denoted
by SE (P). As shown by Eiter, Fink, Tompits, and Woltran [3], generalising
Turner’s corresponding result for propositional programs [17], two (non-ground)
logic programs P and Q are strongly equivalent iff SE (P) = SE (Q).

The following notation is convenient for our purposes: For an interpreta-
tion Y , we define Y |A := Y ∩ A and, for an SE-interpretation (I, J)C , we
define (I, J)C |A := (I|A, J |A)C , where A is a set. Furthermore, we define
S|A := {Y |A | Y ∈ S}, where A again is a set and S is a set of interpreta-
tions or of SE-interpretations.

The generalised form of strong equivalence admitting parameterisation along
two dimensions we deal with in this paper for non-ground programs was intro-
duced in the propositional case by Eiter, Tompits, and Woltran [4] as follows: Let

546 T. Geibinger and H. Tompits

P and Q be propositional programs, and A and B sets of propositional atoms.
Then, P and Q are strongly equivalent relative to A under projection to B iff
AS (P ∪ R)|B = AS (Q ∪ R)|B , for each program R containing only atoms from
A. If B coincides with the set of all propositional atoms (effectively, perform-
ing no projection), then strong equivalence relative to A under projection to B
is referred to as strong equivalence relative to A simpliciter, which was studied
prior to the work of Eiter, Tompits, and Woltran [4] by Woltran [18]. Similar
notions for uniform equivalence have also been studied by Oetsch, Tompits, and
Woltran [14] for the propositional case and by Oetsch and Tompits [13] for the
general non-ground case.

Further generalised notions of equivalence are hyperequivalence [19], studied
for propositional programs only thus far, which is relativised strong equivalence
where for the context programs the head and body atoms are parameterised
separately, and the following notions coming from the realm of datalog: Suppose
P and Q are (non-ground) programs, and ε is the set of all their extensional
predicates. Then, P and Q are query equivalent with respect to a predicate
p iff, for any set F ∈ Fε

V of facts, AS (P ∪ F)|HB{p},D
= AS (Q ∪ F)|HB{p},D

.
Furthermore, P and Q are program equivalent iff AS (P ∪ F) = AS (Q ∪ F), for
any set of facts F ∈ Fε

V .

3 Program Correspondence

We now define our central notions of equivalence, lifting the concept of relativised
strong equivalence with projection to the non-ground case. We start with some
additional auxiliary notation, which will be used throughout this paper.

For interpretations Y and X, we use Y ≡A
V X to stand for Y |HBA,D

=
X|HBA,D

, where V = (P,D) and A ⊆ P. Furthermore, we write Y �B
V X as

a shorthand for Y |HBB,D
⊆ X|HBB,D

.
Our central equivalence notion is defined as follows, generalising its propo-

sitional pendants as introduced by Eiter, Tompits, and Woltran [4] and
Woltran [18]:

Definition 1. Let P and Q be logic programs over V = (P,D) and let A,B ⊆ P

be sets of predicates. Then, P and Q are strongly equivalent relative to A under
projection to B if AS (P ∪ R) ≡B

V AS (Q ∪ R), for any program R ∈ PA
V . If

B = P, then P and Q are simply called strongly equivalent relative to A.

It is convenient to weaken equivalence in order to express it in terms of two
set-inclusion relations:

Definition 2. Under the conditions of Definition 1, we write P |=B
A,V Q if

AS (P ∪ R) �B
V AS (Q ∪ R), for any program R ∈ PA

V .

If B = P, then P |=B
A,V Q is abbreviated by P |=A,V Q, and if V is clear from

the context, we may drop V from |=B
A,V and simply write |=B

A .
We therefore have the following relation:

Characterising Relativised Strong Equivalence with Projection 547

Theorem 1. For all programs P and Q over V = (P,D) and each A,B ⊆ P,
P and Q are strongly equivalent relative to A under projection to B iff both
P |=B

A,V Q and Q |=B
A,V P hold.

Eiter, Tompits, and Woltran [4] introduced the notion of a correspondence
frame in order to have a general framework for expressing different forms of
equivalence in a uniform manner, which was subsequently extended to the non-
ground case by Oetsch and Tompits [13]. Like all other notions of equivalence
studied in the literature, relativised strong equivalence with projection, as well
as the relation defined in Definition 2, can also be expressed in terms of this
framework and we will make use of this fact later on.

Following Oetsch and Tompits [13], by a correspondence frame, or simply a
frame, F , we understand a triple (V, C, ρ), where V is a vocabulary, C ⊆ PV ,
called the context class of F , and ρ ⊆ 22

HBV × 22
HBV . For every program P,Q

over V, we say that P and Q are F -corresponding, symbolically P �F Q, iff, for
all R ∈ C, (AS(P ∪ R), AS(Q ∪ R)) ∈ ρ.

A correspondence problem, Π, over a vocabulary V is a tuple (P,Q, C, ρ),
where P and Q are programs over V and (V, C, ρ) is a frame. We say that
(P,Q, C, ρ) holds iff P �(V,C,ρ) Q. Furthermore, a correspondence problem
of the form (P,Q,PA

V ,�B
V) is called an inclusion problem whilst one of the

form (P,Q,PA
V ,≡B

V) an equivalence problem. Clearly, (P,Q,PA
V ,≡B

V) holds iff
iff (P,Q,PA

V ,�B
V) and (Q,P,PA

V ,�B
V) jointly hold.

We then obtain the following straightforward characterisations:

Theorem 2. Let P and Q be programs over V = (P,D) and A,B ⊆ P be sets
of predicates.

Then:

(i) P and Q are strongly equivalent relative to A under projection to B iff the
equivalence problem (P,Q,PA

V ,≡B
V) holds.

(ii) P and Q are strongly equivalent relative to A iff (P,Q,PA
V ,=) holds.

(iii) P |=B
A,V Q iff (P,Q,PA

V ,�B
V) holds.

As for other equivalence notions, they can be expressed as follows: Let P and
Q be programs over V = (P,D) and ε the set of all their extensional predicates.
Then, P and Q are

– (ordinarily) equivalent iff (P,Q, {∅},=) holds,
– uniformly equivalent iff (P,Q,FV ,=) holds,
– strongly equivalent iff (P,Q,PV ,=) holds,
– query equivalent with respect to p iff (P,Q,Fε

V ,≡{p}
V) holds, and

– program equivalent iff (P,Q,Fε
V ,=) holds.

Furthermore, defining P and Q to be hyperequivalent with respect to 〈H,B〉
(thus, extending this notion from the propositional case), where H,B ⊆ P, iff
AS (P ∪ R) = AS (Q ∪ R), for any program R ∈ P〈H,B〉

V , where P〈H,B〉
V is the set

of all P ∈ PV such that
⋃

r∈P H(r) ⊆ HBH,D and
⋃

r∈P B(r) ⊆ HBB,D, where
V = (P,D). It holds that P and Q are hyperequivalent with respect to 〈H,B〉 iff
(P,Q,P〈H,B〉

V ,=) holds.

548 T. Geibinger and H. Tompits

4 Characterising Relativised Strong Equivalence
Without Projection

We now provide semantic characterisations of relativised strong equivalence. The
case of adding projection will be dealt with in the next section.

We start with the following lemma which is needed subsequently and which
is a slight adaption of a similar characterisation by Eiter et al. [3].

Lemma 1. Let P be a program over V = (P,D), C,C ′ ⊆ D sets of constants
such that C ⊆ C ′, and Y ⊆ HBP,C . Then, Y |= grd(P,C) iff Y |= grd(P,C ′).

Next, we lift a lemma from the propositional case [18] which lays the
groundwork for the following model-based characterisations of relativised strong
equivalence.

Lemma 2. For programs P and Q over a vocabulary V = (P,D) and a set A ⊆ P

of predicates, the following conditions are equivalent:

(i) AS (P ∪ R)
⊆ AS (Q ∪ R), for some program R ∈ PA
V ;

(ii) there exists a unary program U ∈ PA
V such that AS(P ∪ U)
⊆ AS (Q ∪ U);

(iii) there exists an interpretation Y ⊆ (HBP,CP
∩ HBQ,CQ

) and sets HU P ⊆
CP ⊆ D and HU Q ⊆ CQ ⊆ D of constants such that:
(a) Y |= grd(P,CP),
(b) for each Y ′ ⊂ Y with Y ′ ≡A

V Y , Y ′
|= grd(P,CP)Y holds, and
(c) Y |= grd(Q,CQ) implies the existence of an X ⊂ Y such that X |=

grd(Q,CQ)Y and for each X ′ ⊂ Y with X ′ ≡A
V X, X ′
|= grd(P,CP)Y

holds.

The proof of this lemma is somewhat technical and follows the general argumen-
tation of the one for the propositional case (for a full proof, cf. the thesis of the
first author [6]).

Following Woltran’s [18] model-theoretic approach for relativised strong
equivalence of propositional programs, we now introduce a similar characteri-
sation in the non-ground setting.

Definition 3. Let V = (P,D) be a vocabulary, C ⊆ D a set of constants, P
a logic program over V, and X,Y ⊆ HBP,C interpretations. Furthermore, let
A ⊆ P be a set of predicates.

Then:

(i) (X,Y)C is an RSE-interpretation of P relative to A if either X = Y or
X ⊂ Y |HBA,C

.
(ii) An RSE-interpretation (X,Y)C of P relative to A is an RSE-model of P

relative to A if
(a) Y |= grd(P,C),
(b) for all Y ′ ⊂ Y with Y ′ ≡A

V Y , Y ′
|= grd(P,C)Y , and
(c) X ⊂ Y implies the existence of an X ′ ⊆ Y with X ′ ≡A

V X such that
X ′ |= grd(P,C)Y .

Characterising Relativised Strong Equivalence with Projection 549

The set of all RSE-models of P relative to A is denoted by RSEA(P).1

From here on we might drop the explicit mentioning of the set A an RSE-model
is relative to, if it is clear from the context.

The next lemma is an adaption of the one given by Eiter et al. [3] and follows
directly from Lemma 1.

Lemma 3. Let P be a program, C,C ′ ⊆ D sets of constants such that C ⊆ C ′,
and X ⊆ Y ⊆ HBP,C . Then, (X,Y)C ∈ RSEA(P) iff (X,Y)C′ ∈ RSEA(P).

Now that we have laid down the necessary groundwork, we can introduce the
main theorem of this chapter.

Theorem 3. Two logic programs P and Q are strongly equivalent relative to A
iff RSEA(P) = RSEA(Q).

Proof. The proof proceeds analogously to the propositional case as laid down by
Woltran [18].

First, suppose P and Q are not strongly equivalent relative to A. Without
loss of generality, according to Lemma 2, there has to be some Y ⊆ (HBP,CP

∩
HBQ,CQ

) and sets of constants CP ⊇ HU P and CQ ⊇ HU Q such that

(α) Y |= grd(P,CP),
(β) for each Y ′ ⊂ Y with Y ′ ≡A

V Y , Y ′
|= grd(P,CP)Y holds, and
(γ) Y |= grd(Q,CQ) implies the existence of an X ⊂ Y such that X |=

grd(Q,CQ)Y and for each X ′ ⊂ Y with X ′ ≡A
V X, X ′
|= grd(P,CP)Y

holds.

What we now want to show is that there exists at least one RSE-model which
is in SEA(P) but not in SEA(Q) or vice versa.

Set CP∪Q := CP ∪ CQ. By Definition 3, (Y, Y)CP∪Q
is an RSE-model of P

relative to A iff

(i) Y |= grd(P,CP∪Q); and
(ii) Y ′
|= grd(P,CP∪Q)Y , for each Y ′ ⊂ Y with Y ′ ≡A

V Y .

We know from (α) that Y |= grd(P,CP) holds and since CP ⊆ CP∪Q, (i) holds
by Lemma 1. From (β) we know that Y ′
|= grd(P,CP)Y holds for each Y ′ ⊂ Y
with Y ′ ≡A

V Y . Again by Lemma 1, we obtain Y ′
|= grd(P,CP∪Q)Y and therefore
(ii) holds. Hence (Y, Y)CP∪Q

is an RSE-model of P .
Condition (γ) gives us three cases we need to explore, viz. either

(1) Y
|= grd(Q,CQ);
(2) Y |= grd(Q,CQ) and X ≡A

V Y ; or
(3) Y |= grd(Q,CQ) and (X ∩ HBA,D) ⊂ (Y ∩ HBA,D).

1 Woltran called his structures A-SE-interpretations and A-SE-models, respectively,
and denoted the set of A-SE-models of a program by SEA(P).

550 T. Geibinger and H. Tompits

If (1), then (Y, Y)CP∪Q
cannot be an RSE-model of Q, since by Lemma 1

and CQ ⊆ CP∪Q, Y
|= grd(Q,CQ) implies Y
|= grd(Q,CP∪Q).
If (2), then, according to (γ), X ⊂ Y and X |= grd(Q,CQ)Y , which, by

Lemma 1, implies X |= grd(Q,CP∪Q)Y . Thus, condition (b) of item (ii) of
Definition 3 is violated (just set X = Y ′). Hence,(Y, Y)P∪Q is not an RSE-model
of Q.

If (3), then (X ∩ HBA,D, Y)CP∪Q
satisfies conditions (a), (b), and (c) of

item (ii) of Definition 3 and is therefore an RSE-model of Q. But, by condi-
tion (γ), for every Z with (Z ∩ HBA,D) = (X ∩ HBA,D), Z
|= grd(P,CP)Y holds
and, by Lemma 1, Z
|= grd(P,CP∪Q)Y holds. This means that condition (c) of
item (iii) of Definition 3 cannot be fulfilled and thus ((X ∩ HBA,D), Y)CP∪Q

is
not an RSE-Model of P .

Now we proceed with the other direction of the theorem. Suppose (Z, Y)C

is an RSE-model of P relative to A but not of Q. By Definition 3, C ⊆ D

and thus, according to Lemma 3, (Z, Y)D ∈ SEA(P) and (Z, Y)D
∈ SEA(Q).
Since HU P∪Q ⊆ D obviously holds, we obtain (Z, Y)HUP∪Q

∈ SEA(P) and
(Z, Y)HUP∪Q

∈ SEA(Q) by applying Lemma 3. Now consider CP∪Q ⊇ HU P∪Q.
Again by Lemma 3, (Z, Y)CP∪Q

∈ SEA(P) and (Z, Y)CP∪Q

∈ SEA(Q) hold.

If Z = Y , then, from Definition 3, it follows that Y |= grd(P,CP∪Q) and,
for each Y ′ ⊂ Y with Y ′ ≡A

V Y , Y ′
|= grd(P,CP∪Q). Thus, (a) and (b) of
item (iii) from Lemma 2 hold. Since (Y, Y) is not an RSE-model of Q we get by
Definition 3 that either Y
|= grd(Q,CP∪Q) or there is an Y ′ ⊂ Y with Y ′ ≡A

V Y
such that Y ′ |= grd(Q,CP∪Q). In the case of Y
|= grd(Q,CP∪Q), condition (c)
of item (iii) of Lemma 2 is obviously satisfied. Otherwise, if Y |= grd(Q,CP∪Q),
condition (c) of item (iii) is satisfied by setting X = Y ′. Hence, P and Q are not
strongly equivalent relative to A.

If Z
= Y , then whenever (Z, Y)CP∪Q
is an RSE-model of P , (Y, Y)CP∪Q

is
an RSE-model as well. The case with (Y, Y)CP∪Q

not being an RSE-model of Q
was shown above, so we only need to prove the case with (Y, Y)CP∪Q

being an
RSE-model of Q. Supposing this, we get that Y |= grd(Q,CP∪Q) and, for each
Y ′ ⊂ Y with Y ′ ≡A

V Y , Y ′
|= grd(Q,CP∪Q)Y . Obviously, conditions (a) and (b)
of item (iii) from Lemma 2 are satisfied for Y and Q. Since (Z, Y)CP∪Q

is not
an RSE-model of Q we get the following from (b) of item (ii) of Definition 3:
for each (X ′ ∩ HBA,D) = Z, X ′
|= grd(Q,CP∪Q)Y . Also, because (Z, Y)CP∪Q

is an RSE-model of P , there is an X ′′ ⊂ Y with (X ′′ ∩ HBA,D) = Z such that
X ′′ |= grd(Q,CP∪Q)Y (condition (c) of item (ii) of Definition 3). Those two
observations imply that condition (c) of item (iii) of Lemma 2 is satisfied for Y
and Q and therefore P and Q are not strongly equivalent relative to A. ��
Example 1. Consider the program M consisting of the following rules:

accepted(x) ← applicant(x),not rejected(x),
rejected(x) ← applicant(x),not accepted(x),

applicant(x) ← person(x),not hired(x),
person(jane) ← ,
person(bob) ← .

Characterising Relativised Strong Equivalence with Projection 551

Furthermore, consider the following subprograms of M :

P = {accepted(x) ← applicant(x),not rejected(x),
rejected(x) ← applicant(x),not accepted(x)};

R = {applicant(x) ← person(x),not hired(x),
person(jane) ← ,
person(bob) ← }.

Obviously, M = P ∪ R.
Now, assume we want to replace the subprogram P with Q = {accepted(x)∨

rejected(x) ← applicant(x)}.
We use the following shorthands: ap(·) for applicant(·), ac(·) for accepted(·),

re(·) for rejected(·), hi(·) for hired(·), j for jane, and b for bob. Furthermore, we
have the vocabulary V = (D,P), where D = {jane, bob} and P = {applicant(·),
accepted(·), rejected(·), person(·), hired(·)}.

From AS (P) = AS (Q) = ∅ it obviously follows that P and Q are ordinar-
ily equivalent, but they are not strongly equivalent because (X,Y)C , for X =
{ap(j), ap(b)}, Y = {ap(j), ap(b), ac(j), ac(b), re(j), re(b)}, and C = {j , b}, is
an SE-model of P but not of Q.

Let us now take a look at their RSE-models relative to A = {ap(·), pe(·),
hi(·)}. Then, we have that RSEA(P) = RSEA(Q) and thus we can replace P
with Q in M as AS (P ∪ R) = AS (Q ∪ R). ��

5 Characterising Relativised Strong Equivalence with
Projection

In order to introduce model-theoretic characterisations for strong equivalence
with projection, we first have to introduce a structure which disproves the equiv-
alence. This concept was introduced by Eiter et al. [4] for the ground case.

We start with some basic definitions and properties.
Eiter et al. [4] define a useful property for sets of SE-models. The following

definition is a generalisation of that property.

Definition 4. A set S of (R)SE-interpretations is complete, if (X,Y)C ∈ S
implies both (Y, Y)C ∈ S as well as (X,Z)C ∈ S, for any Z ⊇ Y with (Z,Z)C ∈
S.

It can be shown that the set RSE (P) of a program P is always complete [4].
Furthermore, we introduce the following definition.

Definition 5. A set S of (R)SE-interpretations is called over C if for each
(X,Y)C′ ∈ S, C ′ = C.

That definition enables us to restrict a set of SE-models to a particular set of
grounding constants. Think of a complete set of SE-models S over C. Then, the
grounding of a program P with respect to C is semantically given by S.

In order to show the relationship between our structures and correspondence
problems we need some auxiliary results. Those results are adapted from the
previously established propositional case [4].

552 T. Geibinger and H. Tompits

Definition 6. For a set S of (R)SE-interpretations, a vocabulary V, and an
interpretation Y , the set σA

Y,V(S) is given by {(X,Z)C ∈ S | Z ≡A
V Y }.

The next proposition is not really a lifting to the non-ground setting because
reconstructing a non-ground program from a set of SE-models is not trivial. Our
generalised approach takes a complete set of SE-models over a certain set of
constants and computes a ground program which is semantically equal to the
original non-ground program for the given constants. Nonetheless, the construc-
tion of the program is very similar to the one given by Eiter et al. [4].

Proposition 1. Let V = (P,D) be a vocabulary, A ⊆ P a set of predicates,
C ⊆ D a set of constants, and S a complete set of SE-models over C. Then,
there exists a program PS,A,C ∈ PA

V such that SE (PS,A,C) ≡A
V S.

Proof (Sketch). Consider the program

PS,A,C = {← Y,not(HBA,D \ Y) | Y ⊆ HBA,D, (Y, Y)C
∈ S|HBA,D
}∪

{∨
a∈(Y \X) a ← X,not(HBA,D \ Y) | X ⊂ Y, (Y, Y)C ∈ S|HBA,D

,

(X,Y)C
∈ S|HBA,D
}.

It can be shown that S ≡A
V SE (PS,A,C) for any complete set S of SE-models

over C. ��
Now we come to the generalisation of a spoiler. This structure was introduced

by Eiter et al. [4] in the propositional case and its existence for a certain inclusion
problem disproves the correspondence.

Let us call an SE-interpretation (I, J)C total if I = J and non-total other-
wise. A set S of SE-interpretations is non-total if for each total (J, J)C ∈ S there
exists a non-total (I, J)C ∈ S.

Definition 7. Let P and Q be programs over V = (P,D), Y ⊆ HBP,C an
interpretation, C ⊆ D a set of constants, and S ⊆ σA∪B

Y,V (RSEA(Q)). Then, the
pair (Y, S)C is a spoiler for the correspondence problem Π = (P,Q,PA

V ,�B
V) iff

(i) (Y, Y)C ∈ RSEA(P),
(ii) for each (Z,Z)C ∈ S, some non-total (X,Z)C ∈ S exists,
(iii) (Z,Z)C ∈ S iff (Z,Z)C ∈ σA∪B

Y,V (RSEA(Q)), and
(iv) (X,Z)C ∈ S implies (X,Y)C /∈ RSEA(P).

Intuitively, the interpretation Y in a spoiler (Y, S)C is an answer set of P ∪ R
but not of Q ∪ R, where R is semantically given by S.

The following theorem forms the link between correspondence problems and
spoilers.

Theorem 4. Let P and Q be programs over V = (P,D), and A,B ⊆ P sets of
predicates. Then, P |=B

A,V Q iff there is no spoiler for (P,Q,PA
V ,�B

V).

Example 2. Let us again consider the programs from Example 1:

Characterising Relativised Strong Equivalence with Projection 553

P ={accepted(x) ← applicant(x),not rejected(x),
rejected(x) ← applicant(x),not accepted(x),

applicant(x) ← person(x),not hired(x),
person(jane) ← ,
person(bob) ← }.

Q = {accepted(x) ∨ rejected(x) ← applicant(x),
applicant(x) ← person(x),not hired(x),
person(jane) ← ,
person(bob) ← }.

Furthermore, consider the sets A = B = {accepted(·), rejected(·)}. The corre-
spondence problem Π = (Q,P,PA

V ,�B
V) does not hold because there exists a

spoiler (Y, S)C for Π, where Y = {ac(j), re(j), ap(j), pe(j), ac(b), re(b), ap(b),
pe(b)}, and S is given by

S = {(∅, {ap(j), ap(b), re(j), ac(j), re(b), ac(b)}),
({ac(j)}, {ap(j), ap(b), re(j), ac(j), re(b), ac(b)}),
({ac(b)}, {ap(j), ap(b), re(j), ac(j), re(b), ac(b)}),
({re(j)}, {ap(j), ap(b), re(j), ac(j), re(b), ac(b)}),
({re(b)}, {ap(j), ap(b), re(j), ac(j), re(b), ac(b)}),
({ac(j), re(j)}, {ap(j), ap(b), re(j), ac(j), re(b), ac(b)}),
({ac(b), re(b)}, {ap(j), ap(b), re(j), ac(j), re(b), ac(b)}),
({ap(j), ap(b), re(j), ac(j), re(b), ac(b)},
{ap(j), ap(b), re(j), ac(j), re(b), ac(b)})},

with C = {j , b}. ��
An intermediate consequence of the theorem above is the next result:

Corollary 1. Let Π = (P,Q,PA
V ,≡B

V) be an equivalence problem. Then, Π
holds iff neither (P,Q,PA

V ,�B
V) nor (Q,P,PA

V ,�B
V) has a spoiler.

Now that we have introduced structures which disprove correspondence, we can
next introduce one that does the opposite. These concepts were again already
introduced for the propositional setting [4].

Definition 8. Let P be a program over a vocabulary V = (P,D), and A,B ∈ P

sets of predicates. Then, a triple (X , Y)C , where Y ⊆ HBA∪B,C and C ⊆ D, is
an (A,B)-certificate of P iff there exists a Z such that

(i) (Z,Z)C ∈ RSEA(P),
(ii) Z ≡A∪B

V Y , and
(iii) X = {X | (X,Z)C ∈ RSEA(P),X ⊂ Z}.

An (A,B)-certificate (X , Y)C of a program P is minimal iff, for any (A,B)-
certificate (Z, Y)C of P , Z ⊆ X implies Z = X .

The following lemma links certificates to program correspondence and can
be shown using spoilers.

554 T. Geibinger and H. Tompits

Lemma 4. P |=B
A,V Q iff for each (A,B)-certificate (X , Y)C of P there is an

(A,B)-certificate (X ′, Y)C of Q such that X ′ ⊆ X .

Now, the corresponding theorem follows quite naturally.

Theorem 5. Two programs P and Q are strongly equivalent relative to A with
projection to B iff P and Q have the same minimal (A,B)-certificates.

Proof. We start by showing that if the equivalence problem Π = (P,Q,PA
V ,≡B

V)
holds, then the minimal (A,B)-certificates of P and Q coincide. Since Π holds, it
follows that Π ′ = (P,Q,PA

V ,�B
V) and Π ′′ = (Q,P,PA

V ,�B
V) both hold. Suppose

that (X , Y)C is a minimal (A,B)-certificate of P . By Lemma 4 and since Π ′

holds, there has to be an (A,B)-certificate (X ′, Y)C of Q such that X ′ ⊆ X .
Towards a contradiction, suppose that (X ′, Y)C is not minimal. Thus, there
has to be an (A,B)-certificate (Z, Y)C of Q such that Z ⊂ X ′. Now, again by
Lemma 4 and since Π ′′ holds, there has to be an (A,B)-certificate (Z ′, Y)C of
P such that Z ′ ⊆ Z. But since Z ′ ⊂ X ′ ⊆ X obviously implies Z ′ ⊂ X , that
would mean (X , Y)C is not a minimal (A,B)-certificate of P . Hence, we have a
contradiction and (X ′, Y)C is a minimal (A,B)-certificate of Q.

Now, with the same reasoning, the latter implies, again by Lemma 4, that
there is some X ′′ ⊆ X ′ such that (X ′′, Y)C is a minimal (A,B)-certificate of
P . But (X , Y)C is a minimal (A,B)-certificate of P , and hence X ′′ = X and
thus X ′ = X . Consequently, (X , Y)C is a minimal (A,B)-certificate of Q. So,
each minimal (A,B)-certificate of P is also a minimal (A,B)-certificate of Q.
By analogous arguments we have that the other inclusion also holds, hence the
minimal (A,B)-certificates of P and Q coincide.

For the other direction of the theorem, suppose towards a contradiction that
it does not hold. So, the minimal (A,B)-certificates of P and Q coincide but
the equivalence problem Π = (P,Q,PA

V ,≡B
V) does not hold. Without loss of

generality, suppose (P,Q,PA
V ,�B

V) does not hold (the case with (Q,P,PA
V ,�B

V)
is analogous). Then, by Lemma 4, there is an (A,B)-certificate (X , Y)C of P
such that for each (A,B)-certificate (X ′, Y)C of Q, X ′
⊆ X holds. If (X , Y)C

is minimal we immediately have a contradiction since then it would also be an
(A,B)-certificate of Q and clearly X ⊆ X . On the other hand, if (X , Y)C is not
minimal then there has to be an (A,B)-certificate (Z, Y)C with Z ⊂ X . But
then (Z, Y)C is also an (A,B)-certificate of Q and since Z ⊂ X holds we again
have a contradiction. ��
Example 3. Consider the subprograms from Example 1:

P = {accepted(x) ← applicant(x),not rejected(x),
rejected(x) ← applicant(x),not accepted(x)}.

Q = {accepted(x) ∨ rejected(x) ← applicant(x)}.

Furthermore, consider the sets A = {ap(·), pe(·), hi(·)} and B = {ac(·), re(·)}.
Then, the minimal (A,B)-certificates of both programs are given by the following
set:

Characterising Relativised Strong Equivalence with Projection 555

{(∅, ∅){j,b}, ({∅}, {ap(b), ac(b)}){j,b}, ({∅}, {ap(j), re(j)}){j,b},
({∅}, {ap(j), ac(j)}){j,b}, ({∅}, {ap(b), re(b)}){j,b},
({∅, {ap(j)}, {ap(b)}}, {ap(j), ap(b), ac(j), ac(b)}){j,b},
({∅, {ap(j)}, {ap(b)}}, {ap(j), ap(b), re(j), re(b)}){j,b},
({∅, {ap(j)}, {ap(b)}}, {ap(j), ap(b), ac(b), re(j)}){j,b},
(∅, ∅){j}, ({∅}, {ap(j), ac(j)}){j}, ({∅}, {ap(j), re(j)}){j},
(∅, ∅){b}, ({∅}, {ap(b), ac(b)}){b}, ({∅}, {ap(b), re(b)}){b}}.

Therefore, according to Theorem 5, we get that P and Q are strongly equivalent
relative to A with projection to B. ��

Another structure disproving correspondence is that of a counterexample [4],
which follows more or less naturally from the definition of relativised strong
equivalence.

Definition 9. Let P and Q be programs over V = (P,D), R ∈ PA
V a program,

and M ∈ AS (P ∪ R) an answer set. Then, the pair (R,M) is a counterexample
for the correspondence problem Π = (P,Q,PA

V ,�B
V) iff

(i) M ∈ AS (P ∪ R),
(ii) M |HBB,D

∈ AS (Q ∪ R)|HBB,D
, and

(iii) AS (P ∪ R)
�B
V AS (Q ∪ R).

The following theorem shows the connection between spoilers and counterexam-
ples and follows directly from Theorem 4, Proposition 1, and Definition 7.

Theorem 6. Suppose (Y, S)C is a spoiler with S
= ∅. Then, (PS,A,C , Y) is a
counterexample for Π = (P,Q, PA

V ,�B
V), where PS,A,C is defined as in Proposi-

tion 1.

Example 4. Recall the spoiler (Y, S)C and the correspondence problem Π =
(Q,P, PA

V ,�B
V) from Example 2. Let PS,A,C be the program constructed as

described in Proposition 1. Appending PS,A,C to the programs P and Q,
we obtain the answer sets AS (P ∪ PS,A,C) = ∅ and AS (Q ∪ PS,A,C) =
{{ap(j), ap(b), ac(j), re(j), ac(b), re(b)}}. Obviously, Y ∈ AS (Q ∪ PS,A,C) and
Y |HBB,D

∈ AS (P ∪ PS,A,C)|HBB,D
both hold. Therefore, (PS,A,C , Y) is a coun-

terexample for Π. ��

6 Computability Issues

We now discuss computability aspects of different instances of the correspon-
dence framework.

We start with uniform equivalence. Eiter, Fink, Tompits, and Woltran [3]
showed that while uniform equivalence in the non-ground case is decidable for
finite domains, it is undecidable in general. Since uniform equivalence is an
instance of the framework, we get the following result:

556 T. Geibinger and H. Tompits

Proposition 2. The problem of determining whether a given correspondence
problem of form (P,Q,FV ,=) over some vocabulary V is co-NEXPTIMENP-
complete for finite domains and undecidable in general.

When Oetsch and Tompits [13] generalised the correspondence framework of
Eiter et al. [4], they also lifted a refinement of uniform equivalence to the non-
ground case. That refinement can be seen as relativised uniform equivalence
with projection. They showed that checking this notion is decidable for finite
domains, but the known undecidability of query equivalence immediately yields
the following result:

Proposition 3. The problem of determining whether a given correspon-
dence problem of form (P,Q,FA

V ,≡B
V) over some vocabulary V holds is co-

NEXPTIMEΣP
2 -complete for finite domains and undecidable in general.

Eiter et al. [3] showed that, in contrast to uniform equivalence, strong equivalence
is decidable even for infinite domains:

Proposition 4. The problem of determining whether a given correspondence
problem of form (P,Q,PV ,=) over some vocabulary V is co-NEXPTIME-
complete for finite domains and in general.

As for relativised strong equivalence, Oetsch and Tompits [13] obtained:

Proposition 5. The problem of determining whether a given correspon-
dence problem of form (P,Q,PA

V ,≡B
V) over some vocabulary V holds is co-

NEXPTIMEΣP
3 -complete for finite domains and undecidable in general.

This stems from the undecidability of program equivalence and the following
fact [13]:

Proposition 6. Let P and Q be programs over V and ε the set of all their
extensional predicates, then (P,Q,Fε

V ,=) holds iff (P,Q,Pε
V ,=) holds.

The undecidability of relativised strong equivalence with projection is partic-
ularly interesting, because Oetsch et al. [13] showed that adding projection to
unrelativised strong equivalence adds no significant complexity and unrelativised
strong equivalence is decidable. In fact, we can even express unrelativised strong
equivalence as the following correspondence problem.

Theorem 7. Two programs P and Q over V = (P,D) are strongly equivalent
iff the equivalence problem (P,Q,PP

V ,=) holds.

So, a correspondence frame of form (P,Q,PA
V ,=) is decidable when A = P but

is known to be undecidable in the case of A = ε. The exact lower bound on A for
the decidability of such correspondence problems would be an interesting topic
for future work.

The general undecideability of relativised strong equivalence with projection
is of course rather bad news for its practical applications. For example, the
elimination of disjunctions in programs as described by Pührer et al. [16] for the
propositional case is most likely undecidable as well.

Characterising Relativised Strong Equivalence with Projection 557

7 Conclusion

We generalised the concepts of relativised strong equivalence and relativised
strong equivalence with projection to the non-ground setting by lifting the exist-
ing semantic characterisations for the propositional case to the non-ground set-
ting and discussed some computability aspects.

There are multiple topics left for future work. For example, similarly to
Oetsch and Tompits [13], we plan to provide an axiomatisation of our model-
theoretic characterisations in terms of second-order logic. It would be interesting
to investigate whenever or not there exist certain classes of programs were such
a translation to second-order logic collapses to a first-order formula. Further-
more, studying the connection between those axiomatisations and the gener-
alised answer-set semantics introduced by Ferraris et al. [5] would also be an
interesting point, since their approach is actually based on second-order logic.

Work can also be done in the context of equilibrium logic and hyperequiva-
lence. Equilibirium logic was recently generalised for a subset of first-order logic
by Pearce and Valverde [15]. An interesting task would be the introduction of
relativised strong equivalence with projection to the so-called quantified equilib-
rium logic. As for hyperequivalence, so far it only exists in the realm of ground
programs. A lifting of its concepts to the non-ground setting—analogous to this
work—would be a worthwhile endeavour.

References

1. Eiter, T., Fink, M., Tompits, H., Woltran, S.: Simplifying logic programs under
uniform and strong equivalence. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004.
LNCS (LNAI), vol. 2923, pp. 87–99. Springer, Heidelberg (2003). https://doi.org/
10.1007/978-3-540-24609-1 10

2. Eiter, T., Fink, M.: Uniform equivalence of logic programs under the stable model
semantics. In: Palamidessi, C. (ed.) ICLP 2003. LNCS, vol. 2916, pp. 224–238.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-24599-5 16

3. Eiter, T., Fink, M., Tompits, H., Woltran, S.: Strong and uniform equivalence in
answer-set programming: Characterizations and complexity results for the non-
ground case. In: Proceedings of the 20th National Conference on Artificial Intelli-
gence (AAAI 2005), pp. 695–700. AAAI Press (2005)

4. Eiter, T., Tompits, H., Woltran, S.: On solution correspondences in answer set pro-
gramming. In: Proceedings of the 19th International Joint Conference on Artificial
Intelligence (IJCAI 2005), pp. 97–102. Professional Book (2005)

5. Ferraris, P., Lee, J., Lifschitz, V.: Stable models and circumscription. Artif. Intel.
175(1), 236–263 (2011)

6. Geibinger, T.: Characterising relativised strong equivalence with projection for
non-ground logic programs. Bachelor’s thesis, Technische Universität Wien, Insti-
tute of Logic and Computation, E193–03 (2018)

7. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Proceedings of the 5th International Conference and Symposium on Logic Pro-
gramming (ICLP/SLP 1988), pp. 1070–1080. MIT Press (1988)

8. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Gener. Comput. 9, 365–385 (1991)

https://doi.org/10.1007/978-3-540-24609-1_10
https://doi.org/10.1007/978-3-540-24609-1_10
https://doi.org/10.1007/978-3-540-24599-5_16

558 T. Geibinger and H. Tompits

9. Gödel, K.: Zum intuitionistischen Aussagenkalkül. Anzeiger der Akademie der Wis-
senschaften in Wien, pp. 65–66 (1932)

10. Heyting, A.: Die formalen Regeln der intuitionistischen Logik. Sitzungsberichte der
Preußischen Akademie der Wissenschaften. Physikalisch-mathematische Klasse,
pp. 42–56 (1930)

11. Janhunen, T., Oikarinen, E., Tompits, H., Woltran, S.: Modularity aspects of dis-
junctive stable models. J. Artif. Intel. Res. 35, 813–857 (2009)

12. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM
Trans. Comput. Logic 2, 526–541 (2001)

13. Oetsch, J., Tompits, H.: Program correspondence under the answer-set semantics:
the non-ground case. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008.
LNCS, vol. 5366, pp. 591–605. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-89982-2 49

14. Oetsch, J., Tompits, H., Woltran, S.: Facts do not cease to exist because they are
ignored: relativised uniform equivalence with answer-set projection. In: Proceed-
ings of the 22nd National Conference on Artificial Intelligence (AAAI 2007), pp.
458–464. AAAI Press (2007)

15. Pearce, D., Valverde, A.: Quantified equilibrium logic and foundations for answer
set programs. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS,
vol. 5366, pp. 546–560. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-89982-2 46

16. Pührer, J., Tompits, H.: Casting away disjunction and negation under a general-
isation of strong equivalence with projection. In: Erdem, E., Lin, F., Schaub, T.
(eds.) LPNMR 2009. LNCS (LNAI), vol. 5753, pp. 264–276. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-04238-6 23

17. Turner, H.: Strong equivalence made easy: Nested expressions and weight con-
straints. Theory Pract. Logic Prog. 3, 602–622 (2003)

18. Woltran, S.: Characterizations for relativized notions of equivalence in answer set
programming. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol.
3229, pp. 161–173. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-30227-8 16

19. Woltran, S.: A common view on strong, uniform, and other notions of equivalence
in answer-set programming. Theory Pract. Logic Prog. 8, 217–234 (2008)

https://doi.org/10.1007/978-3-540-89982-2_49
https://doi.org/10.1007/978-3-540-89982-2_49
https://doi.org/10.1007/978-3-540-89982-2_46
https://doi.org/10.1007/978-3-540-89982-2_46
https://doi.org/10.1007/978-3-642-04238-6_23
https://doi.org/10.1007/978-3-540-30227-8_16
https://doi.org/10.1007/978-3-540-30227-8_16

Uhura: An Authoring Tool for Specifying
Answer-Set Programs Using Controlled

Natural Language

Tobias Kain(B) and Hans Tompits

Institute of Logic and Computation, Knowledge-Based Systems Group,
Technische Universität Wien, Favoritenstraße 9-11, 1040 Vienna, Austria

{kain,tompits}@kr.tuwien.ac.at

Abstract. In this paper, we present the tool Uhura for developing
answer-set programs by means of specifying problem descriptions in
a controlled natural language which then are translated into answer-
set programming (ASP) rules. The tool is aimed for supporting users
not familiar with answer-set programming—or logic-based approaches
in general—for developing programs. Uhura is based on a new controlled
natural language called LU, which is in turn an adaption of PENGASP, a
controlled natural language employed in the PENG ASP system, devel-
oped by Guy and Schwitter, for solving computational problems by trans-
lating PENGASP statements into answer-set programs. In contrast to
PENGASP, LU allows for a more natural translation into ASP rules and
provides also a broader set of pre-defined sentence patterns. Uhura is
implemented in Java and employs DLV as backend answer-set solver.

Keywords: Answer-set programming · Program development ·
Controlled natural language

1 Introduction

In the past couple of years, answer-set programming (ASP), i.e., logic program-
ming under the answer-set semantics [15], has evolved into a viable approach
for declarative problem solving. Although applications in many diverse fields
using ASP have been developed, ASP is rarely used by developers who do not
work in an academic environment. This is attributable, among other things, to
a lack of support tools designed for ASP novices, although work on integrated
development environments for ASP [2,9], as well as methods for debugging and
testing answer-set programs are available [5,10,16,20,25]. Especially those who
have never before used any logical programming languages have a hard time
getting acquainted with ASP.

In this paper, we present a tool which addresses this issue. Our tool, Uhura,
supports ASP novices as well as professional ASP developers in developing
answer-set programs by providing an editor in which a problem description can

c© Springer Nature Switzerland AG 2019
F. Calimeri et al. (Eds.): JELIA 2019, LNAI 11468, pp. 559–575, 2019.
https://doi.org/10.1007/978-3-030-19570-0_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19570-0_37&domain=pdf
http://orcid.org/0000-0003-2694-6999
http://orcid.org/0000-0001-5673-2460
https://doi.org/10.1007/978-3-030-19570-0_37

560 T. Kain and H. Tompits

be specified by means of a controlled natural language (CNL) which is then trans-
lated into an answer-set program which is displayed vis-à-vis the CNL specifi-
cation. The obtained ASP code can be executed using the solver DLV [23] and
the computed answer sets can accordingly be displayed in a tab of Uhura as
well. Uhura employs the ASP-Core-2 [3] syntax, which is supported by DLV as
well as other ASP solvers. The name of our tool derives from the fictional Star
Trek character Lieutenant Nyota Uhura, who serves as communication officer at
the Starship Enterprise, because our tool and Lt. Uhura have somewhat similar
tasks, viz. acting as a facilitator between a familiar and an unfamiliar language.

The CNL employed in Uhura, called LU, is a novel CNL which is based
on PENGASP [30], a CNL whose primary purpose is to be a CNL which can
unambiguously be translated into ASP. However, compared to PENGASP, the
translation of LU sentences into ASP is more direct and LU offers a broader set
of predefined sentence patterns. Following Kuhn [22], a CNL is a constructed
language resembling a natural language but being more restrictive concerning
lexicon, syntax, and/or semantics while preserving most of its natural proper-
ties. In effect, it is essentially a formal language and is often used as a bridge
between a highly ambiguous natural language and a less human-readable formal
language.

The idea of building a tool for translating a problem description expressed
in a (controlled) natural language into an answer-set program is not a new
one. For example, the system based on PENGASP [17,18], as well as LOGICIA
[24] and BioQuery-ASP [6,7] are systems that translate a CNL into ASP in
order to achieve various goals. Furthermore, there is also an approach [8] to
translate answer sets in more human-readable form based on a CNL using the
ASP annotation language Lana [4].

However, what makes our approach unique is that the aim of Uhura is not
only to translate CNL sentences into ASP rules but to perform the translation in
such a way that the user can learn how to write answer-set programs. To increase
the learning progress, we decided to design LU in such a way that correspondence
between the CNL sentences and the ASP rules is clearly evident. While most of
the other available tools primarily focus on solving the described problem, the
goal of translating a CNL problem description into an intuitive-to-read answer-
set program comes at the expense of expressibility. Moreover, our tool does not
aim for an optimised translation (concerning time resources). Uhura can also help
to improve the communication between those people who provide the required
knowledge to solve a certain problem (i.e., the domain experts) and those who
put the knowledge into code (i.e., the knowledge engineers), since the domain
expert can read and understand the CNL sentences the knowledge engineer has
provided.

Our paper is organised as follows: Sect. 2 provides background information
about answer-set programming and PENGASP, the CNL our language is based
upon. Section 3 gives an overview of the system Uhura, including a description of
a typical workflow in Uhura, details about LU, the CNL underlying our system,

Uhura: An Authoring Tool for Specifying Answer-Set Programs Using CNL 561

and some implementational details. The paper concludes with Sect. 4, containing
a discussion on related approaches and future work.

2 Preliminaries

2.1 Answer-Set Semantics

We assume the reader familiar with the basic elements of answer-set program-
ming (ASP) [1,12,13]. To briefly recapitulate the relevant elements of ASP, by
an answer-set program (or program for short) we understand a set of rules of
form

a1 ∨ · · · ∨ am :− b1, . . . , bk,not bk+1, . . . ,not bn, (1)

where a1, . . . , am and b1, . . . , bn are literals over a first-order vocabulary, i.e.,
atoms possibly preceded by the strong negation symbol “−”, “∨” denotes dis-
junction, and “not” stands for default negation. The intuitive meaning of rule (1)
is that if b1, . . . , bk are derivable and bk+1, . . . , bn are not derivable, then at least
one of a1, . . . , am is asserted.

We refer to a1∨· · ·∨am as the head of (1) and b1, . . . , bk, not bk+1, . . . , not bn
as the body. The latter in turn is subdivided into the positive and the negative
body, given by b1, . . . , bk and not bk+1, . . . , not bn, respectively.

Both the head and the body of a rule might be empty. In the former case,
the resulting rule is referred to as a fact, whilst in the latter case, the rule is
called a constraint.

The semantics of a program, P , is given in terms of answer sets, which
are defined as minimal models of the usual Gelfond-Lifschitz reduct [14,15].
Prominent solvers for computing answer sets are, e.g., clasp [26] and DLV [23].
We also employ the aggregate function #count as used in DLV for counting
elements satisfying certain properties.

2.2 The Controlled Natural Language PENGASP

The controlled natural language (CNL) underlying Uhura, LU, is based on the
CNL PENGASP [30], which itself is based on PENG Light [29] which in turn is the

Table 1. Word categories of PENGASP.

Word category Example

PNoun (proper noun) Vienna, Roberta, Spock

CNoun (common noun) person, animal, university

Adjective female, male, mortal

Verb do, work, play

OrdNumber (order number) first, second, third

CardRest (cardinality restriction) exactly, at most, at least

562 T. Kain and H. Tompits

Table 2. Simple sentences of PENGASP.

Pattern Example

PNoun is a CNoun. Roberta is a person.

PNoun is Adjective. Roberta is female.

There is a CNoun. There is a job.

A CNoun is Adjective. A person is female.

A OrdNumber CNoun is a CNoun of a
OrdNumber CNoun.

A first person is a husband of
a second person.

A CNoun Verb a CNoun as PNoun. A person holds a job as
nurse.

CardRest CNoun Verb a CNoun. Exactly one person holds a
job.

A CNoun Verb CardRest CNoun. A person holds exactly two
jobs.

successor of PENG [28], a computer-oriented controlled natural language similar
to Attempto Controlled English [11]. The goal of PENG Light is to provide a CNL
that can be translated unambiguously into first-order logic. In contrast to its
predecessor, PENG Light can be processed by a bidirectional grammar, meaning
that first-order translations of sentences expressed in PENG Light can be used
to create answers to these sentences. In what follows, we give a brief overview
about PENGASP.

Like PENG Light, PENGASP differentiates between simple and complex sen-
tences. Simple sentences are built on six word categories, which are given in
Table 1 along with corresponding examples. A simple sentence, then, is one of
the eight patterns depicted in Table 2 (similar to Table 1, each pattern is adjoined
by a corresponding example). Depending on the application, more sentence pat-
terns and word categories can be added.

Note that not all simple sentences listed in Table 2 can be translated imme-
diately into ASP. Indeed, only the first two sentences of Table 2 are factual
statements, meaning that they can be translated into an ASP rule. All the other
simple sentences contained in Table 2 can only be used as part of a complex
sentence, which are defined in PENGASP as follows:

If SimpleSentence1 {and SimpleSentenceN} then SimpleSentenceM. (2)
Exclude that SimpleSentence1 {and that SimpleSentenceN}. (3)

Here, “{. . . }” means that the argument surrounded by the curly brackets can
be used 0 to n times, where n ∈ N.

A sentence that fulfills pattern (2) corresponds to an ASP rule which has
a non-empty head and a non-empty body. On the other hand, a sentence that
matches pattern (3) corresponds to an ASP constraint.

Uhura: An Authoring Tool for Specifying Answer-Set Programs Using CNL 563

For illustration of the translation of PENGASP into ASP, consider the fol-
lowing two complex sentences and their respective ASP representations (for a
detailed description of the translation process, cf. Schwitter [30]):

– “If a person holds a job as teacher then the person is educated”:

educated(X) :− person(X), job(teacher), hold(X , teacher). (4)

– “Exclude that Roberta is female and that Roberta is a man”:

:− female(roberta),man(roberta). (5)

Sentence (4) shows that PENGASP allows that the simple sentences which are
part of a complex sentence can depend on each other. Therefore, it is not possible
in general to translate the simple sentences of a complex sentence individually.

3 The System Uhura

Uhura is a tool for translating a problem definition expressed in the CNL LU

(to be detailed below) into an answer-set program. The development of Uhura
was driven by the motivation to provide a system which supports ASP novices
doing their first steps in answer-set programming. By specifying a problem in
a language similar to English, but influenced by the syntax of ASP, users can
learn how to express domain knowledge declaratively. As well, Uhura makes it
possible to directly see how domain knowledge is translated into ASP rules, by
observing the generated ASP rules from the specified CNL sentences. Indeed,
Uhura converts CNL sentences in such a way that the user recognises which
sentence is translated into which ASP rule(s). Our aim was also to keep the
ASP rules as natural as possible, meaning that the resulting answer-set program
should be easy to understand by developers unexperienced in ASP.

Uhura, as well as its source code, is available for download at: https://github.
com/TobiasKain/uhura.

In what follows, we first describe a typical workflow when using Uhura. After-
wards, we give details about LU, the CNL underlying Uhura. Finally, we briefly
discuss aspects of the implementation of Uhura.

3.1 Workflow in Uhura

The Jobs Puzzle. To demonstrate how a typical workflow in Uhura looks like
and how the system works, we use the following puzzle:

1. There are four people: Roberta, Thelma, Steve, and Pete.
2. Among them, they hold eight different jobs.
3. Each holds exactly two jobs.
4. The jobs are chef, guard, nurse, clerk, police officer (gender not implied),

teacher, actor, and boxer.
5. The job of nurse is held by a male.

https://github.com/TobiasKain/uhura
https://github.com/TobiasKain/uhura

564 T. Kain and H. Tompits

6. The husband of the chef is the clerk.
7. Roberta is not a boxer.
8. Pete has no education past the ninth grade.
9. Roberta, the chef, and the police officer went golfing together.

This puzzle is the so-called jobs puzzle, which was first introduced in 1984 along
with other puzzles designed for automated reasoning [31].

The goal of this puzzle is to find out which person holds which jobs. Clearly,
the solution to this puzzle cannot be found only by analysing the explicit infor-
mation stated in the puzzle. Instead, we have to extract the implicit information
of the puzzle and use this knowledge together with the explicit information to
solve the puzzle.

Controlled Natural Language Problem Description. In order to solve
the jobs puzzle using Uhura, the user has to phrase the implicit and explicit
knowledge of the puzzle in the controlled natural language LU, which is similar
to PENGASP. However, compared to PENGASP, the controlled natural language
we are working with comprises slightly different sentence patterns from those in
PENGASP as well as additional ones. Furthermore, Uhura also allows to define
individual sentence patterns. We give more details about LU below; a full descrip-
tion of the language can be found in the thesis of the first author [21].

The first sentence of the jobs puzzle states that our problem domain contains
four different people. We express this fact by using the pattern

PNoun is a CNoun.

In our case, we instantiate PNoun, referring to a proper noun, with Roberta,
Thelma, Steve, and Pete, and CNoun (common noun) with person, obtaining
the following sentences:

Roberta is a person. Thelma is a person. Steve is a person. Pete is a person.

Furthermore, we have to express that a person cannot be both male and female
simultaneously. This means we drop all solutions which contain both genders for
some person. We do this by using the following pattern:

Exclude that SimpleSentence {and that SimpleSentence}.

Since we want that this constraint is applied to every person in our problem
domain, we use a variable instead of proper nouns.

Exclude that person X is male and that person X is female.

Next, we guess all the possible solution candidates. In order to do that, we use
the following sentence pattern:

If SimpleSentence {and SimpleSentence} then SimpleSentence.

Uhura: An Authoring Tool for Specifying Answer-Set Programs Using CNL 565

To guess whether a person holds a specific job or not, we use a disjunctive
sentence:

If there is a person X and there is a job Y then person X holds job Y
or person X does not hold job Y.

The second sentence of the jobs puzzle tells us that our problem domain includes
eight different jobs and that every job is held by exactly one person. To formulate
this, we use the following pattern as part of a constraint:

CNoun V ariable V erb (more/less) than Number CNoun V ariable.

Since we want to express that a job is held by exactly one person, we have to
use this pattern twice:

Exclude that there is a job Y and that person X holds more than one job Y.

Exclude that there is a job Y and that person X holds less than one job Y.

The third sentence of the job puzzle states that each person holds exactly two
jobs. As before, we use the cardinality pattern twice to formulate this statement:

Exclude that there is a person X and that person X holds more than two jobs Y.

Exclude that there is a person X and that person X holds less than two jobs Y.

The next sentence of the jobs puzzle enumerates all jobs our problem domain
refers to. We formulate these facts using the same pattern we applied to phrase
the first sentence:

Chef is a job. Guard is a job. Nurse is a job. Clerk is a job.
Police officer is a job. Teacher is a job. Actor is a job. Boxer is a job.

Chef, guard, nurse, clerk, police officer, teacher, and boxer are gender neutral
jobs, meaning that they can be held by both genders. However, the job of an
actor can only be done by a male, since a female actor is called an actress.

Furthermore, due to the fifth sentence of the jobs puzzle, we know that the
job of a nurse is held by a male:

If a person X holds a job as actor then person X is male.
If a person X holds a job as nurse then person X is male.

According to the sixth sentence of the jobs puzzle, the husband of the chef is
the clerk:

If a person X holds a job as chef and a person Y holds a job as clerk then
person Y is a husband of person X.

The previous sentence implies that the clerk is male since he is the husband of
another person and that the chef is female since she has a husband:

If a person X is a husband of a person Y then person X is male.
If a person X is a husband of a person Y then person Y is female.

566 T. Kain and H. Tompits

Fig. 1. The user interface of Uhura for the jobs puzzle.

Since the seventh sentence of the jobs puzzle states that Roberta is not a boxer,
we exclude all solutions which claim that Roberta is a boxer:

Exclude that Roberta holds a job as boxer.

The eighth sentence of the jobs puzzle specifies that Pete is not educated past the
ninth grade. Therefore, we drop all solutions that assert that Pete is educated
past the ninth grade:1

Exclude that Pete is educated.

Furthermore, we can assume that a person has to be educated past the ninth
grade to hold a job as a nurse, police officer, or teacher:

If a person X holds a job as nurse then person X is educated.
If a person X holds a job as police officer then person X is educated.
If a person X holds a job as teacher then person X is educated.

The last sentence of the jobs puzzle contains the implicit information that
Roberta is neither a chef nor a police officer. Furthermore, this sentence also
1 Here, and henceforth, in CNL sentences, we simply write “educated” to refer to the
property of being educated past the ninth grade.

Uhura: An Authoring Tool for Specifying Answer-Set Programs Using CNL 567

Fig. 2. ASP translation of the jobs puzzle LU specification.

568 T. Kain and H. Tompits

implies that the person who works as a chef and the person who works as a
police officer are two different individuals:

Exclude that Roberta holds a job as chef.
Exclude that Roberta holds a job as police officer.
Exclude that a person X holds a job as chef and that person X
holds a job as police officer.

Composing the CNL Problem Description Using Uhura. As the previous
discussion illustrates, the user has to work precisely to extract all the implicit
information contained in the puzzle. Especially for inexperienced users, the task
of extracting such implicit information is arguably one of the most demanding
tasks in this context. Now, to support the user as good as possible during the
process of composing the problem description, our tool provides a separate text
field where the user writes down the domain knowledge (see Fig. 1). Alternatively,
our tool also allows importing text files composed in a different text editor.

Since remembering all the different sentence patterns is unrewarding, the user
can look them up by switching in the lower tab pane to the tab called Sentence
Patterns.

In case the user enters a sentence that does not match any pattern, Uhura
responds with an error message that explains where exactly in the sentence an
error occurred. For example, assume the user types in the sentence “Roberta
is not a lovely”. Then, the system responds with the following error message,
which tells the user which sentence pattern was detected and which word caused
the error:

Error in sentence "Roberta is not a lovely.":
"lovely" is not a common noun.
(detected sentence-pattern: ’PNoun is [not] a CNoun.’)

ASP Translation and Solving. Once the user clicks the Translation but-
ton, the system starts translating the entered CNL problem description into
ASP rules. The answer-set program resulting from translating the CNL problem
description for the jobs puzzle given above is depicted in Fig. 2. Note that the
syntax used by Uhura is the ASP-Core-2 syntax, which is supported by DLV as
well as other ASP solvers.

As can be seen in Fig. 1, the result of the translation process is displayed in
the text editor next to the CNL problem description. Also, the (single) solution
of the problem is shown in the Solver tab of the editor, which is situated in
the bottom bar. Since the goal of the jobs puzzle is to find out which person
holds which job, we are only interested in the predicate hold and therefore the
resulting model is filtered by this predicate.

3.2 The Controlled Natural Language LU of Uhura

We now describe the CNL of Uhura, LU, in more detail.

Uhura: An Authoring Tool for Specifying Answer-Set Programs Using CNL 569

Table 3. Word categories supported by LU.

Word category Example

PNoun (Proper Noun) Vienna, Roberta, Spock

CNoun (Common Noun) person, animal, university

Adjective female, male, mortal

Verb do, work, play

Variable X, Y, Z

Preposition at, to, in

Number one, two, three

Table 4. Examples of default sentences which are supported by LU.

Sentence Translation

Birds normally fly. fly(X) :− bird(X), not −fly(X)

Dogs normally do not fly. −fly(X) :− dog(X), not fly(X)

Birds normally are beautiful. beautiful(X) :− bird(X), not −beautiful(X)

Birds normally are not ugly. −ugly(X) :− bird(X), not ugly(X)

Students normally are afraid of exams.
afraid of (X , exam) :− student(X),

not −afraid of (X , exam)

Students normally are not afraid of
homework.

−afraid of (X , homework) :− student(X),

not afraid of (X , homework)

To begin with, the word categories of LU, which are slightly different from
PENGASP, are given in Table 3. Furthermore, LU comprises, besides simple and
complex sentences, also some other groups of sentence patterns. The set of sen-
tence patterns supported by LU comprises:

– simple sentences (divided into factual simple sentences and non-factual sim-
ple sentences),

– complex sentences,
– default sentences, and
– categorical propositions.

Another difference between LU and PENGASP is that LU does not allow cross
references between the simple sentences used in a complex sentence. Therefore,
simple sentences can be translated individually, which makes it easier to translate
sentences expressed in LU. A full listing of all sentence patterns of LU, along with
their ASP translations, can be found in the thesis of the first author [21]; here,
we describe only some key aspects.

Simple Sentences. The group of simple sentences is divided into factual simple
sentences and non-factual simple sentences. The difference between those two

570 T. Kain and H. Tompits

Table 5. Examples of categorical propositions which are supported by LU.

Sentence Translation

All humans are mortal. mortal(X) :− human(X)

No humans are perfect. −perfect(X) :− human(X)

Some humans are bad. :− #count{X : human(X), bad(X)} = 0

Some humans are not bad. :− #count{X : human(X),not bad(X)} = 0

sentence types is that factual simple sentences can be directly transformed into
an ASP rule, where, on the other hand, non-factual simple sentences can only
be used as part of complex sentences.

For example, the factual simple sentence “Roberta is a person” can be directly
transformed into the fact:

person(roberta) :− .

On the other hand, a non-factual simple sentence like “X is a person” cannot
be directly transformed into an meaningful ASP rule. However, this non-factual
simple sentence can be used, e.g., as part of a conditional sentence like “If X is
a person then X is mortal”, which can be translated into the ASP rule:

mortal(X) :− person(X).

The reason why LU separates the group of simple sentences is because of the
following complex sentence, which also serves as a factual simple sentence:

FactualSimpleSentence { or FactualSimpleSentence}. (6)

Complex Sentences. LU supports the same complex sentences that are defined
by PENGASP, as well as complex sentences of form (6). A sentence of the latter
form, like, e.g., “Roberta is a person or Roberta is a dog”, can either be used as
a factual simple sentence, which leads to the translation

person(roberta) ∨ dog(roberta) :− ,

or as part of a complex sentence, like, e.g.:

If Roberta is mortal then Roberta is a person or Roberta is a dog.

This, in turn, corresponds to the ASP rule

person(roberta) ∨ dog(roberta) :− mortal(X).

Default Sentences. Default sentences are used to describe circumstances that
hold typically. LU supports the following three default sentences as well as their
negations:

Uhura: An Authoring Tool for Specifying Answer-Set Programs Using CNL 571

Fig. 3. The system architecture of Uhura.

– CNoun normally V erb.
– CNoun normally not V erb.
– CNoun normally are Adjective.
– CNoun normally are not Adjective.
– CNoun normally are Adjective Preposition CNoun.
– CNoun normally are not Adjective Preposition CNoun.

Table 4 shows an example sentence for each sentence pattern as well as its ASP
translation.

Categorical Propositions. LU also supports the four categorical propositions
as used in Aristotle’s system of syllogisms:

– All A are B.
– No A are B.
– Some A are B.
– Some A are not B.

An A has to be replaced by a CNoun and a B either by a CNoun or an Adjec-
tive. Table 5 illustrates each categorical proposition along with its translation.
Note that the last two propositions (referred to as particular statements in the
terminology of the syllogistic) employ the count aggregate of DLV.

3.3 Implementation

Uhura is implemented in Java. One of the main reasons why we chose Java is
the availability of DLVWrapper [27], which is a Java library that provides all
the functionalities of DLV. Another reason why we decided to implement our
tool using Java is that we want to keep the option to integrate our tool into
SeaLion [2], which is an integrated development environment for ASP.

Basically, Uhura consists of four different components:

– the user interface,

572 T. Kain and H. Tompits

– a sentence-type detector,
– the CNL-to-ASP translator, and
– DLV (as underlying ASP solver).

Figure 3 shows how these components are connected to each other.
In what follows, we provide brief descriptions of these components.

User Interface. To design and create the user interface (UI) of Uhura, we
used JavaFX. Since one of our goals was to provide an intuitive graphical user
interface, we decided to design the UI of Uhura similar to the user interfaces of
popular IDEs, like, e.g., IntelliJ, Eclipse, or VisualStudio.

Sentence-Type Detector. Once the user has typed in a sentence and clicked
the Translate button, the sentence-type detector tries to find out which sentence
pattern the entered sentence fulfills. Therefore, the sentence-type detector con-
tains for each sentence pattern a regular expression (“regex”) pattern. For exam-
ple, the regex pattern of the sentence pattern “PNoun is a CNoun” is defined as
follows:

.* is(n’t | not |)(a|an) .*\\.$.

Note that also the negated sentence pattern (“PNoun is not a CNoun.”)
matches this regex pattern. Furthermore, note that there is no space
between the two alternations because the options of the first alternation (i.e.,
“(n’t | not |)”) end with a space.

To find out of which type the entered sentence is, the sentence-type detector
sequentially checks if the sentence matches one of the regex patterns. In case a
match is found, the sentence-type detector initiates the CNL-to-ASP translation
of the sentence.

CNL-to-ASP Translator. The CNL-to-ASP translator is the heart of Uhura.
It is responsible for translating the CNL sentences entered by the user into ASP
rules. The basic idea of the CNL-to-ASP translator is to filter out the key words
of a sentence and remove those words that are not used to put together the
ASP rule. The CNL-to-ASP translator also checks if the words are of the correct
category (e.g., PNoun, CNoun, adjective, verb, etc.). To do so, the translator
makes use of the Stanford Parser2, a natural-language parser that uses statistical
data to parse sentences. In case a word is of a different type than expected, an
exception is thrown, which tells the sentence-type detector to try if the sentence
matches one of the remaining sentence patterns.

4 Conclusion and Discussion

In this paper, we presented the tool Uhura for translating sentences expressed in a
controlled natural language into an answer-set program. Rather than aiming for
2 https://nlp.stanford.edu/software/lex-parser.html.

https://nlp.stanford.edu/software/lex-parser.html

Uhura: An Authoring Tool for Specifying Answer-Set Programs Using CNL 573

a maximally expressive CNL and optimised ASP encodings, our goal was to have
a system which helps users inexperienced in ASP or logical formalisms in general
for developing programs by specifying problems in a language which is close to
a natural one. Therefore, we introduced a new CNL, called LU, which allows the
user to unambiguously specify a problem. Furthermore, LU is designed in such a
way that the correspondence between the CNL sentences and the resulting ASP
rules is clearly evident.

The idea of building a tool for translating a problem description expressed
in a (controlled) natural language into an answer-set program is not a new one.
For example, Schwitter and Guy presented a web-based predictive editor for
PENGASP [17,18]. The editor suggests for every word that is typed in a selection
of words from which the user can choose. Thus, sentences entered by the user are
always valid PENGASP sentences. Compared to Uhura, this system can handle
more complicated sentences but its focus lies more on problem solving rather
than on obtaining natural-looking ASP encodings.

Furthermore, Baral and Mitra [24] developed the system LOGICIA for solv-
ing logic grid puzzles. To solve those puzzles, LOGICIA translates the puzzles,
described in natural language, into ASP which is then solved by an answer-set
solver. The system automatically learns how to translate the information given
by the puzzle description. Obviously, the aim of LOGICIA differs from the goal of
Uhura quite strongly. While our tool focuses on generating answer-set programs
that can be easily understood by developers inexperienced in ASP, LOGICIA
deals with translating sentences expressed in natural language. To do so, this
tool represents answer-set rules in a more complicated and unintuitive way.

Other approaches in the context of ASP using CNLs is the BioQuery-ASP
system [6,7] for expressing biomedical queries over predefined ontologies and
translating them into ASP. Moreover, Min and Tompits [8] provided an approach
to translate answer sets into natural language which is also based on a CNL using
the annotation language Lana [4] for ASP.

As regards future work, one possibility would be to incorporate the approach
mentioned last into Uhura such that not only the programs can be specified in
a natural-language-looking way, but also the output of the programs, i.e., the
answer sets.

Another possible enhancement of Uhura would be to integrate the system
into SeaLion [2], which is an integrated development environment for answer-
set programming. In this case, the only unit that has to be changed is the
user interface. Furthermore, this integration would also allow providing a second
ASP solver to solve the answer-set programs generated by Uhura since SeaLion
supports two answer-set solvers, viz. DLV and clingo.

Another promising future work would be to use Uhura for specifying test cases
for software projects. In particular, based on previous work [6,19], in which ASP
is used to specify sequence-covering arrays, the idea would be to use Uhura to
allow the user to specify a sequence-covering array in the controlled natural
language offered by our system and then to translate this definition into ASP.

574 T. Kain and H. Tompits

References

1. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, Cambridge (2003)

2. Busoniu, P., Oetsch, J., Pührer, J., Skocovsky, P., Tompits, H.: SeaLion: An
Eclipse-based IDE for answer-set programming with advanced debugging support.
Theory Pract. Log. Program. 13(4–5), 657–673 (2013)

3. Calimeri, F., et al.: ASP-Core-2: Input language format. ASP Standardization
Working Group (2012)

4. De Vos, M., Kisa, D.G., Oetsch, J., Pührer, J., Tompits, H.: Annotating answer-set
programs in Lana. Theory Pract. Log. Program. 12(4–5), 619–637 (2012)

5. Dodaro, C., Gasteiger, P., Musitsch, B., Ricca, F., Shchekotykhin, K.: Interactive
debugging of non-ground ASP programs. In: Calimeri, F., Ianni, G., Truszczynski,
M. (eds.) LPNMR 2015. LNCS (LNAI), vol. 9345, pp. 279–293. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-23264-5 24

6. Erdem, E., Erdogan, H., Öztok, U.: BioQuery-ASP: Querying biomedical ontolo-
gies using answer set programming. In: Proceedings of the 5th International
RuleML2011@BRF Challenge. CEUR Workshop Proceedings, vol. 799. CEUR-
WS.org (2011)

7. Erdem, E., Öztok, U.: Generating explanations for biomedical queries. Theory
Pract. Log. Program. 15(1), 35–78 (2015)

8. Fang, M., Tompits, H.: An approach for representing answer sets in natural lan-
guage. In: Seipel, D., Hanus, M., Abreu, S. (eds.) WFLP/WLP/INAP 2017. LNCS
(LNAI), vol. 10997, pp. 115–131. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-00801-7 8

9. Febbraro, O., Reale, K., Ricca, F.: ASPIDE: Integrated development environment
for answer set programming. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011.
LNCS (LNAI), vol. 6645, pp. 317–330. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-20895-9 37

10. Febbraro, O., Leone, N., Reale, K., Ricca, F.: Unit testing in ASPIDE. In: Tompits,
H., et al. (eds.) INAP/WLP 2011. LNCS (LNAI), vol. 7773, pp. 345–364. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-41524-1 21

11. Fuchs, N.E., Schwitter, R.: Attempto Controlled English (ACE). In: Proceedings
of the First International Workshop on Controlled Language Applications (CLAW
1996). University of Leuven (1996)

12. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Prac-
tice. Synthesis Lectures on Artificial Intelligence and Machine Learning, Morgan
& Claypool Publishers (2012)

13. Gelfond, M., Kahl, Y.: Knowledge Representation, Reasoning, and the Design of
Intelligent Agents: The Answer-Set Programming Approach. Cambridge University
Press, Cambridge (2014)

14. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Proceedings of the 5th International Conference and Symposium on Logic Pro-
gramming (ICLP/SLP), pp. 1070–1080. MIT Press (1988)

15. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Gener. Comput. 9, 365–385 (1991)

16. Greßler, A., Oetsch, J., Tompits, H.: Harvey: A system for random testing in ASP.
In: Balduccini, M., Janhunen, T. (eds.) LPNMR 2017. LNCS (LNAI), vol. 10377,
pp. 229–235. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61660-
5 21

https://doi.org/10.1007/978-3-319-23264-5_24
https://doi.org/10.1007/978-3-030-00801-7_8
https://doi.org/10.1007/978-3-030-00801-7_8
https://doi.org/10.1007/978-3-642-20895-9_37
https://doi.org/10.1007/978-3-642-20895-9_37
https://doi.org/10.1007/978-3-642-41524-1_21
https://doi.org/10.1007/978-3-319-61660-5_21
https://doi.org/10.1007/978-3-319-61660-5_21

Uhura: An Authoring Tool for Specifying Answer-Set Programs Using CNL 575

17. Guy, S., Schwitter, R.: Architecture of a web-based predictive editor for controlled
natural language processing. In: Davis, B., Kaljurand, K., Kuhn, T. (eds.) CNL
2014. LNCS (LNAI), vol. 8625, pp. 167–178. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-10223-8 16

18. Guy, S.C., Schwitter, R.: The PENGASP system: Architecture, language and
authoring tool. Lang. Resour. Eval. 51(1), 67–92 (2017)

19. Irlinger, M.: Combinatorial testing using answer-set programming. Bachelor’s the-
sis, Technische Universität Wien, Institute of Information Systems, E184/3 (2017)

20. Janhunen, T., Niemelä, I., Oetsch, J., Pührer, J., Tompits, H.: On testing answer-
set programs. In: Proceedings of the 19th European Conference on Artificial Intel-
ligence (ECAI 2010), pp. 951–956. IOS Press (2010)

21. Kain, T.: Uhura: an authoring tool for translating controlled natural language into
answer-set programs. Bachelor’s thesis, Technische Universität Wien, Institute of
Information Systems, E184/3 (2017)

22. Kuhn, T.: A survey and classification of controlled natural languages. Comput.
Linguist. 40(1), 121–170 (2014)

23. Leone, et al.: The DLV system for knowledge representation and reasoning. ACM
Trans. Comput. Log. 7(3), 499–562 (2006)

24. Mitra, A., Baral, C.: Learning to automatically solve logic grid puzzles. In: Proceed-
ings of the 2015 Conference on Empirical Methods in Natural Language Processing
(EMNLP 2015), pp. 1023–1033. The Association for Computational Linguistics
(2015)

25. Oetsch, J., Pührer, J., Tompits, H.: Stepwise debugging of answer-set programs.
Theory Pract. Log. Program. 18(1), 30–80 (2018)

26. Potassco. http://potassco.sourceforge.net
27. Ricca, F.: The DLV Java wrapper. In: Proceedings of the 8th Joint Conference on

Declarative Programming (AGP 2003), pp. 263–274 (2003)
28. Schwitter, R.: English as a formal specification language. In: Proceedings of

the 13th International Workshop on Database and Expert Systems Applications
(DEXA 2002), pp. 228–232. IEEE (2002)

29. Schwitter, R.: Working for two: A bidirectional grammar for a controlled natural
language. In: Wobcke, W., Zhang, M. (eds.) AI 2008. LNCS (LNAI), vol. 5360, pp.
168–179. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89378-
3 17

30. Schwitter, R.: The jobs puzzle: Taking on the challenge via controlled natural
language processing. Theory Pract. Log. Program. 13(4–5), 487–501 (2013)

31. Wos, L., Overbeck, R., Lusk, E., Boyle, J.: Automated reasoning: Introduction and
applications. Prentice Hall Inc., Upper Saddle River (1984)

https://doi.org/10.1007/978-3-319-10223-8_16
https://doi.org/10.1007/978-3-319-10223-8_16
http://potassco.sourceforge.net
https://doi.org/10.1007/978-3-540-89378-3_17
https://doi.org/10.1007/978-3-540-89378-3_17

Abstraction for Non-ground Answer Set
Programs

Zeynep G. Saribatur , Peter Schüller(B) , and Thomas Eiter

Institute of Logic and Computation, TU Wien, Vienna, Austria
{zeynep,ps}@kr.tuwien.ac.at

Abstract. We address the issue of abstraction, a widely used notion to
simplify problems, in the context of Answer Set Programming (ASP),
which is a highly expressive formalism and a convenient tool for declara-
tive problem solving. We introduce a method to automatically abstract
non-ground ASP programs given an abstraction over the domain, which
ensures that each original answer set is mapped to some abstract answer
set. We discuss abstraction possibilities on several examples and show the
use of abstraction to gain insight into problem instances, e.g., domain
details irrelevant for problem solving; this makes abstraction attractive
for getting to the essence of the problem. We also provide a tool imple-
menting automatic abstraction from an input program.

1 Introduction

Abstraction is an approach that is widely used in Computer Science and AI to
simplify problems [2,8,14,16,23]. By omitting details, scenarios are reduced to
ones that are easier to deal with and to understand; in fact, abstraction is ubiqui-
tous in building models of reality, which approximate the latter to meet specific
application purposes. Surprisingly, abstraction has not been considered much
in the context of nonmonotonic knowledge representation and reasoning, and
specifically not in Answer Set Programming (ASP) [7]. Simplification methods
such as equivalence-based rewriting [12,26], partial evaluation [6,21], or forget-
ting [24], have been extensively studied. However, they strive for preserving the
semantics, while abstraction may change it and lead to an over-approximation
of the models (answer sets) of a program, in a modified language.

Recently, such an approach was presented in [29] that omits atoms from an
ASP program, similar in spirit to abstraction in planning problems [18]. The
approach is propositional in nature and does not account for the fact that in
ASP, non-ground rules talk about a domain of discourse; e.g., a rule

col(X, r) ← node(X),not col(X, g),not col(X, b).

may express that node X must be red if it is neither green nor blue; or the rule

{moveToTable(B,A, T)} ← on(B,B1, T), free(B, T)

c© Springer Nature Switzerland AG 2019
F. Calimeri et al. (Eds.): JELIA 2019, LNAI 11468, pp. 576–592, 2019.
https://doi.org/10.1007/978-3-030-19570-0_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19570-0_38&domain=pdf
http://orcid.org/0000-0001-8690-5043
http://orcid.org/0000-0002-1837-126X
http://orcid.org/0000-0001-6003-6345
https://doi.org/10.1007/978-3-030-19570-0_38

Abstraction for Non-ground Answer Set Programs 577

....

Fig. 1. Initial state of a blocksworld with multiple tables (concrete
m→ abstract).

that the block B on top of a stack may at time T be moved to a table area A.
For the (non)existence of an answer set, the precise set of elements (nodes resp.
blocks and areas) may not matter, but rather how certain elements are related;
for that, some elements may be abstracted into single elements. Then, a coloring
of the abstracted graph, if one exists, may be refined to the original graph; if
not, the latter is not colorable. Similarly, a plan for a blocksworld problem with
abstract areas may be turned into a concrete one by instantiating them.

Example 1. Figure 1 depicts a generalized blocks world with multiple tables. The
(natural) encoding (cf. Appendix A1) contains the actions moveToT (B,Ta, T)
and moveToB(B,B′, T) that denote moving block B onto table Ta and onto
block B′, resp., at time T . Initially, blocks can be located anywhere; the goal is to
pile them up at a picked table, say t1. An abstraction that distinguishes table t1
and clusters all other tables, leads to a concrete abstract answer set containing
moveToT (b2, t̂2, 0),moveToT (b3, t̂1, 1),moveToB(b2, b3, 2),moveToB(b1, b2, 3).

The abstraction shows that, for solving the problem, it is essential to distin-
guish the picked table from all others and that the number of tables is irrelevant.

Although lots of advanced solving techniques are available for ASP, the support
for program analysis, especially in singling out relevant objects, is scarce. It is
unexplored how, for a non-ground ASP program Π, given an abstraction over
its domain, a suitable abstract program Π ′ can be automatically constructed
and evaluated. We tackle this issue and make the following contributions.

• We introduce the notion of domain abstraction for ASP programs. For that,
an abstraction of domain elements for a program Π is supplied with an
abstract program Π ′ so that each answer set of Π maps to an abstract answer
set of Π ′.

• We provide a method to automatically construct such an abstract program
Π ′. It works modularly on the syntactic level, by constructing for each rule
abstract rules with a similar structure, where uncertainty caused by the
abstracted domain is carefully respected.

• We show how abstract answer sets can be computed and further processed.
This includes a concreteness check, with possible output of an answer set of
the original program, and a refinement strategy to deal with spurious answer
sets using local search. The whole approach is implemented in a tool that
provides automatic abstraction from an input program.

1 http://www.kr.tuwien.ac.at/staff/zeynep/pub/jelia/SSE19appendix.pdf.

http://www.kr.tuwien.ac.at/staff/zeynep/pub/jelia/SSE19appendix.pdf

578 Z. G. Saribatur et al.

• We consider the domain abstraction approach for several examples, where we
also discuss how to use it for subdomains (sorts) such as time, and how to
compose sort abstractions. An experimental evaluation shows the potential
of the approach in finding non-trivial abstractions for various applications.

2 Domain Abstraction for ASP

ASP. We adopt as a function-free first order language, in which a logic program
Π is a finite set of rules r of the form α ←B(r) where α is an atom and the
body B(r) = l1, . . . , ln is a set of positive and negative literals li of the form β
or not β, respectively, where β is an atom and not is default negation; B+(r)
and B−(r) are the sets of all positive resp. negative literals in B(r). A rule r is a
constraint if α is falsity (⊥, then omitted). A rule r resp. program Π is ground,
if it is variable-free, and r is a fact if moreover n= 0. Rules r with variables
stand for the sets grd(r) of their ground instances, and semantically Π induces
a set AS (Π) of stable models (or answer sets) [15] which are Herbrand models
(i.e., sets I of ground atoms) of Π justified by the rules, in that I is a ⊆-minimal
model of fΠI = {r ∈ grd(Π) | I |= B(r)} [11], where grd(Π) =

⋃
r∈Π grd(r).

A program Π is unsatisfiable, if AS (Π) = ∅. A common syntactic extension are
choice rules of the form {α}← B, which stands for the rules α ← B,not α′ and
α′ ← B,not α, where α′ is a fresh atom.

To illustrate various challenges of abstraction we use the following example.

Example 2 (Running example). Consider the following example program Π
with domain predicate int/1 for an integer domain D = {0, . . . , 5}.

c(X) ← not d(X),X < 5, int(X). (1)
d(X) ← not c(X), int(X). (2)
b(X,Y) ← a(X), d(Y), int(X), int(Y). (3)
e(X) ← c(X), a(Y),X ≤ Y, int(X), int(Y). (4)
← b(X,Y), e(X), int(X), int(Y). (5)

We furthermore have facts a(1), a(3), int(0), . . . , int(5).

Abstraction. A generic notion of abstraction is as follows.

Definition 1. Given ground programs Π and Π ′ on sets A and A′ of atoms,
respectively, where |A| ≥ |A′|, Π ′ is an abstraction of Π, if a mapping m : A →
A′ exists s.t. for each I ∈AS (Π), I ′ = {m(a) | a∈ I} is an answer set of Π ′.

We refer to m as an abstraction mapping. This notion aims at the grounding
(propositional) view of programs. In this paper, we take a first-order view in
which A is the Herbrand base of Π, which results from the available predicate
symbols and the constants symbols (the domain D of discourse, i.e., the Her-
brand universe), which are by default those occurring in Π. Domain abstraction
induces abstraction mappings in which constants are merged.

Abstraction for Non-ground Answer Set Programs 579

Definition 2. Given a domain D of Π, a domain (abstraction) mapping is a
function m : D → D̂ for a set D̂ (the abstracted domain) with |D̂| ≤ |D|.

Thus, a domain mapping divides D into clusters of elements {d ∈ D |m(d)= d̂},
where d̂ ∈ D̂, seen as equal; if unambiguous, we also write d̂ for its cluster m−1(d̂).

Example 3 (ctd). A possible abstraction mapping for Π with D̂1 = {k1, k2, k3}
clusters 1, 2, 3 to the element k1 and 4 and 5 to singleton clusters, i.e., m1 = {{1,
2, 3}/k1, {4}/k2, {5}/k3}. A naive mapping is m2 = {{1, .., 5}/k} with D̂2={k}.

Each domain mapping m naturally extends to ground atoms a= p(v1, . . . , vn)
by m(a)= p(m(v1), . . . ,m(vn)). To obtain for a program Π and a Herbrand base
A, an induced abstraction mapping m : A → A′ where A′ = m(A) = {m(a) |
a ∈ A}, we need a program Π ′ as in Definition 1. However, simply applying m to
Π does not work. Moreover, we want domain abstraction for non-ground Π that
results in a non-ground Π ′. Building a suitable Π ′ turns out to be challenging
and needs to solve several issues, which we gradually address in the next section.

3 Towards an Abstract Program

Handling Built-ins and (In)equalities. Original rules may rely on certain
built-in relations involving variables, such as <,≤ in (1) and (4), or = and
=. The
idea is to lift the rules by lifting these relations and dealing with the uncertainty
caused by the domain clustering.

Example 4 (ctd). We abstract from Π using m2. The rule (3) has no built-in
relation and thus it is lifted with no change:

b(X,Y) ← a(X), d(Y), înt(X), înt(Y);

however, lifting rule (4) simply to

e(X) ← c(X), a(Y),X ≤ Y, înt(X), înt(Y).

does not work, as X ≤ Y behaves differently over the cluster k. As k ≤ k, when-
ever c(k) and a(k) holds the lifted rule derives e(k). This applies, e.g., to the
abstraction of I = {a(1), a(3), c(4), d(0), . . . , d(3)}, where (4) derives no e-atom
as 4 � 3 and 4 � 1. However, I is an answer set of Π and must not be lost in the
abstraction. Thus, when a cluster causes uncertainties over built-ins, we permit
e(k) to be false even if c(k) and a(k) holds by creating instead the following rule:

{e(X)} ← c(X), a(Y),X ≤ Y, înt(X), înt(Y).

Negation. A naive abstraction approach is to turn all rule heads into choices.
However, negative literals or certain built-ins (e.g.,
=, <) may cause a loss of
original answer sets in the abstraction.

580 Z. G. Saribatur et al.

Example 5 (ctd). We change in (4) the symbol ≤ to
= and consider

{e(X)} ← c(X), a(Y),X
= Y, înt(X), înt(Y).

As k = k, the abstract body is never satisfied and e(k) is never derived. However,
Π has answer sets containing c(2), a(3), and thus also e(2), as 2
= 3; they are
all lost. Adding a choice rule with a flipped relation, X = Y , catches such cases.

Similarly, let us change a(Y) in (4) to not a(Y). When the rule is lifted to

{e(X)} ← c(X),not a(Y),X ≤ Y, înt(X), înt(Y),

e(k) is not derived as a(k) holds and originally a holds only for 1 and 3. Thus,
original answer sets I may contain e(2) or e(4) but they are lost in the abstrac-
tion. Such cases are caught by additional rules with reversed negation for a(Y):

{e(X)} ← c(X), a(Y),X ≤ Y, înt(X), înt(Y).

Constraints. Naively lifting the constraints to the abstract rules would result
in losing answer sets for the non-singleton domain clusters. For example, if the
constraint (5) is lifted with no change, then b(k, k) and e(k) would never occur in
the abstract answer sets, while in the original program, answer sets can contain
b(x1, y) and c(x2) as long as x1
= x2.

In conclusion, only creating choices is not enough to preserve all orig-
inal answer sets; we need a fine-grained systematic approach to deal with
uncertainties.

3.1 Lifted Built-in Relations

As shown before, built-in relations need special treatment, and so do multiple
usages of a variable in a rule. To unify both issues, we focus on rules of form

r : l ← B(r), Γrel (r)

where the variables in B(r) are standardized apart and Γrel consists of built-in
atoms that constrain the variables in B(r). E.g., the rule (3) has Γrel(r)= �
while the rule (5) must be standardized apart into ← b(X,Y), e(X1), Γrel with
Γrel = (X = X1).

Uncertainty is caused by relation restrictions over non-singleton clusters (i.e.,
|d̂| > 1) or by negative literals mapped to non-singleton abstract literals. For
simplicity, we first focus on binary built-ins, e.g., =, <,≤,
=, and a Γrel(r) of
the form rel(X, c) or rel(X,Y). When the relation rel is lifted to the abstract
domain, the following cases τI–τIV for rel(d̂1, d̂2) occur in a mapping:

τ rel
I (d̂1, d̂2): rel(d̂1, d̂2)∧ ∀x1 ∈ d̂1,∀x2 ∈ d̂2. rel(x1, x2)

τ rel
II (d̂1, d̂2): ¬rel(d̂1, d̂2)∧ ∀x1 ∈ d̂1,∀x2 ∈ d̂2.¬rel(x1, x2)

τ rel
III (d̂1, d̂2): rel(d̂1, d̂2)∧ ∃x1 ∈ d̂1,∃x2 ∈ d̂2.¬rel(x1, x2)

τ rel
IV (d̂1, d̂2): ¬rel(d̂1, d̂2)∧ ∃x1 ∈ d̂1,∃x2 ∈ d̂2. rel(x1, x2)

Abstraction for Non-ground Answer Set Programs 581

If rel(d̂1, d̂2) holds for some d̂1, d̂2 ∈ D̂, type III is more common in domain
abstractions with clusters, while type I occurs for singleton mappings (i.e., |d̂1| =
|d̂2| = 1) or for relations such as
=, <.

Example 6. Consider a mapping m = {{1}/k1, {2, 3}/k2, {4, 5}/k3}. For the
relation “=”, k1 = k1 holds and for any x1, x2 ∈ k1 = {1}, x1 = x2 holds and type
I applies. In contrast, k2 = k2 holds while 2, 3 ∈ k2 and 2
= 3; so type III applies.
Further, k2 <k3 holds and for any x ∈ k2 = {2, 3} and y ∈ k3 = {4, 5}, we have
x<y and so type I applies.

If rel(d̂1, d̂2) does not hold for some d̂1, d̂2 ∈ D̂, type II is common, e.g., =,≤,
whereas type IV may occur for
=, <.

Example 7 (ctd). Reconsider m. Then k2
= k2 does not hold while k2 = {2, 3}
has different elements 2
= 3 (type IV). Moreover, k1 = k2 does not hold in D̂
nor does x= y for every x ∈ k1 = {1} and y ∈ k2 = {2, 3} (type II).

For an abstraction m, we let Tm be the set of all atoms τ rel
ι (d̂1, d̂2) where

ι ∈ {I, . . . , IV} is the type of the built-in instance rel(d̂1, d̂2) for m; note that Tm

is easily computed.

4 Abstract Program Construction

By our analysis, the basic idea to construct an abstract program for a program
Π with a domain mapping m is as follows. We either just abstract each atom in
a rule, or in case of uncertainty due to domain abstraction, we guess rule heads
to catch possible cases, or we treat negated literals by shifting their polarity
depending on the abstract domain clusters.

For ease of presentation, we first consider programs Π with rules having (i)
at most one negative body literal which shares an argument with the relation,
(ii) a single, binary built-in literal and (iii) no cyclic dependencies between non-
ground atoms. For any rule r and ∗ ∈ {+,−}, let the set S∗

rel(r) = {lj ∈ B∗(r) |
arg(lj)∩{t1, t2}
= ∅} be the positive and negative body literals, respectively, that
share an argument with rel(t1, t2). By assumption (i), we have B−(r) ⊆ S∗

rel(r).

Definition 3. Given a rule r : l ← B(r), rel(t1, t2) as above and a domain
mapping m, the set rm contains the following rules:

(a) m(l)← m(B(r)), rel(t̂1, t̂2), τ rel
I (t̂1, t̂2).

(b) {m(l)}← m(B(r)), rel(t̂1, t̂2), τ rel
III (t̂1, t̂2).

(c) {m(l)}← m(B(r)), rel(t̂1, t̂2), τ rel
IV (t̂1, t̂2).

(d) For li∈S−
rel(r):

(i) {m(l)}← m(Bsh
li

(r)), rel(t̂1, t̂2), τ rel
III (t̂1, t̂2).

(ii) {m(l)}← m(Bsh
li

(r)), rel(t̂1, t̂2), τ rel
IV (t̂1, t̂2).

(iii) {m(l)}← m(Bsh
li

(r)), rel(t̂1, t̂2), isCluster(li).
where Bsh

li
(r)=B+(r) ∪ {li},not B−(r)\{li}, rel denotes the complement of rel ,

and for j ∈{1, 2}, if tj is a constant then t̂j =m(tj), else t̂j = tj, i.e., variables
are not mapped. The auxiliary atom isCluster(li) holds true if a variable from
arg(li) is mapped to a non-singleton cluster.

582 Z. G. Saribatur et al.

In step (a), the case of having no uncertainty due to abstraction is applied.
Steps (b) and (c) are for the cases of uncertainty. The head becomes a choice,
and for case IV, we flip the relation, rel , to catch the case of the relation holding
true (which is causing the uncertainty). Constraints (e.g., (5)) are omitted in
the cases with uncertainty (i.e., all steps except (a)).

Example 8 (ctd). Consider Example 2 with domain mapping m = {{1}/k1,
{2, 3}/k2, {4, 5}/k3}. In rule (4), the relation X ≤ Y has S+

≤(r)= {c(X), a(Y)}.
We have τ≤

I (x, y) true for (x, y)∈ {(k1, k1), (k1, k2), (k1, k3), (k2, k3)}, and
τ≤
III(x, y) true for (x, y)∈ {(k2, k2), (k3, k3)}, and only type II for all other tuples

(x, y). The abstract rules for (4) are:

e(X) ← c(X), a(Y),X ≤ Y, τ≤
I (X,Y), înt(X), înt(Y).

{e(X)} ← c(X), a(Y),X ≤ Y, τ≤
III(X,Y), înt(X), înt(Y).

In step (d) of Definition 3, rel(t1, t2) shares arguments with a negative body
literal. We grasp the uncertainty arising from negation by adding rules where
the related literal is shifted to the positive body via Bsh

li
(r). (d-iii) shifts the

negative literal only if it shares arguments mapped to a non-singleton cluster.

Example 9 (ctd). Rule (1) has a negative literal, not d(X), and the relation
X < 5 with shared argument X. When it is lifted to X <k3, it has τ<

II (a, b) true
for (a, b)∈ {(k3, k1), (k3, k2)}, τ<

IV(k3, k3), and type I for all other tuples (a, b).
By case (1), it is abstracted without change for τI abstract values, while for

τIV specially treated rules are added:

c(X) ← not d(X),X < k3, τ
<
I (X, k3), înt(X).

{c(X)} ← not d(X),X ≥ k3, τ
<
IV(X, k3), înt(X).

{c(X)} ← d(X),X ≥ k3, τ
<
IV(X, k3), înt(X).

{c(X)} ← d(X),X < k3, isCluster(d(X)), înt(X).

The abstract program is now as follows.

Definition 4. Given a program Π as above and a domain abstraction m, the
abstract program for m consists of the rules

Πm =
⋃

r: l←B(r),rel(t1,t2)∈Π
rm ∪ {x. | x∈ Tm} ∪ {m(p(c)). | p(c). ∈ Π}.

Notably, the construction of Πm is modular, rule by rule.

Theorem 1. Let m be a domain mapping of a program Π under the above
assumptions (i)–(iii). Then for every I ∈ AS (Π), m(I) ∪ Tm ∈ AS (Πm).

Proof (sketch). The rules added in steps (a)-(b) are to ensure that m(I) is a
model of Πm, as either the original rule is kept or it is changed to a choice rule.
Steps (c)-(d) serve to catch the cases that may violate the minimality of the
model due to a negative literal or a relation over non-singleton clusters.

Abstraction for Non-ground Answer Set Programs 583

Abstract Program (General Case). We now describe how to remove the
restrictions (i)–(iii) on programs from above.

(i) Multiple Negative Literals. If rule r has |B−(r)|>1, we shift each neg-
ative literal that either (a) shares an argument with the abstracted relation rel ,
or (b) shares arguments mapped to a non-singleton cluster. Thus, instead of
having Bsh

l (r) for one literal, we consider the shifting of multiple literals at a
time Bsh

L (r)=B+(r) ∪ L,not B−(r)\L, and all combinations of (non-)shifting of
the literals in L ∈ B−(r).

(ii) Multiple Relation Literals. A simple approach to handle a built-in part
Γrel = rel(t1,1, t2,1), .. , rel(t1,k, t2,k), k > 1, is to view it as literal of an 2k-ary
built-in rel ′(X1,1,X2,1, .. ,X1,k,X2,k). The abstract version of such rel ′ and the
cases I-IV are lifted from x1, x2 to x1, .. , xn. E.g., for Γrel = (X1=X2, X3=X4),
we use a new relation rel ′(X1,X2,X3,X4). For abstract values d̂1, .. , d̂4 s.t.
d̂1 = d̂2 ∧ d̂3 = d̂4 holds, we have type τI if all d̂i are singleton clusters and τIII if
some d̂i is non-singleton; otherwise (i.e., rel ′(d̂1, d̂2, d̂3, d̂4) holds) type τII applies.

(iii) Cyclic Dependencies. Rules which are involved in a cyclic dependency
containing at least one negation between two literals need special consideration.

Example 10. Consider the rules (1)–(2) (Example 2) and the mapping
{{1, . . . ,5}/k}. The abstract rules for them are

{c(X)} ← not d(X),X ≥ k, τ<
IV(X, k), înt(X).

{c(X)} ← d(X),X ≥ k, τ<
IV(X, k), înt(X). (6)

{c(X)} ← d(X),X < k, isCluster(d(X)), înt(X). (7)

{d(X)} ← c(X), înt(X). (8)

in addition to the abstracted rules due to step (a). While {c(k), d(k)} is a
model of the rules, it is not minimal and hence not an answer set. However, the
original rules have “choice” answer sets with c- and d-atoms, e.g., I = {c(0),
d(1), c(2), d(3), c(4), d(5)}; they are lost by the abstraction.

To resolve this, we preprocess the program Π and mark atoms involved in a
negative cyclic dependency. Then, in step (3) of Definition 3, we modify Bsh

li
(r)

to eliminate marked literals li instead of shifting their polarity. For example, we
eliminate d(X) and c(X) from the bodies of abstract rules (6)–(8).

Let Πm denote the program obtained from a general program Π with the
generalized abstraction procedure. Then:

Theorem 2. Let m be a domain mapping of a program Π. Then for every
I ∈AS (Π), Î = m(I)∪ Tm is an answer set of Πm.

Proof (sketch). For (i) and (iii), shifting the polarity of each negative literal
related with a non-singleton cluster and omitting the ones that are involved in a
negative cycle with the head of the rule ensures that the minimality is preserved.
The approach in (ii) is a simple combination of the relations.

584 Z. G. Saribatur et al.

Over-approximation. The abstraction yields in general an over-approxima-
tion of the answer sets of a program. This motivates the following notion.

Definition 5. An abstract answer set Î ∈AS (Πm) is concrete, if Î = m(I)∪ Tm

for an I ∈AS (Π), else it is spurious.

A spurious abstract answer set has no corresponding concrete answer set.
(Non-)existing spurious answer sets allow us to infer properties of the original
program.

Proposition 3. For any program Π,

(i) AS (Πmid)= {I ∪Tmid
| I ∈AS (Π)} for identity mid = {{x}/x | x∈ D}.

(ii) AS (Πm)= ∅ implies that AS (Π)= ∅.
(iii) AS (Π)= ∅ iff some Πm has only spurious answer sets.

Checking spuriousness has the following complexity.

Theorem 4. Given a program Π, a domain mapping m and an abstract answer
set Î ∈ AS (Πm), deciding whether Î is not spurious is NEXP-complete in
general and Σp

2 -complete for bounded predicate arities.

That is, the worst case complexity is the one of answer set existence for non-
ground programs; the two problems can be reduced to each other in polyno-
mial time. However, it drops to Σp

2 if the domain size |D| is polynomial in the
abstracted domain size |D̂|; e.g., if each abstract cluster is small (and multiple
clusters exist). As for testing faithfulness, we note the following result:

Theorem 5. Given a program Π and a domain mapping m, deciding whether
Πm is faithful, i.e., has no spurious answer set, is co-NEXPNP-complete in
general and Πp

3 -complete for bounded predicate arities (i.e., by a constant).

Membership is shown by a guess & check algorithm resorting to answer set
existence, and hardness by encoding the evaluation of suitable second-order
formulas.

5 Abstract Answer Set Computation

After constructing the abstract program Πm, we can run an ASP solver to obtain
abstract answer sets Î for the program Π with the mapping m. We then need
to check its concreteness, which can be done as follows.

Concreteness Check. Let Qm
̂I

be the following constraints:

⊥ ← {α |m(α)= α̂} ≤ 0. α̂ ∈ Î \ Tm (9)

⊥← α. α̂ /∈ Î \ Tm,m(α)= α̂ (10)

Here (9) ensures that a witnessing answer set I of Π contains for every non-τι,
abstract atom in Î some atom that is mapped to it. The constraint (10) ensures
that I has no atom that is mapped to an abstract atom not in Î. We then obtain:

Abstraction for Non-ground Answer Set Programs 585

Proposition 6. Î is spurious iff Π ∪ Qm
̂I

is unsatisfiable.

Refining Abstractions. After checking an abstract answer set, one can either
continue finding other abstract answer sets and check their correctness, or refine
the abstraction to reach an abstraction where less spurious answer sets occur.

Definition 6. Given a domain mapping m : D → D′, a mapping m′ : D → D′′

is a refinement of m if for all x ∈ D, m′−1(m′(x)) ⊆ m−1(m(x)).

Refinement is on dividing the abstract clusters to a finer grained domain. As
an example, mapping m′ = {{1}/k1, {2}/k2,1, {3}/k2,2, {4, 5}/k3} is a refinement
of mapping m = {{1}/k1, {2, 3}/k2, {4, 5}/k3}.

5.1 Implementation

We have implemented the workflow described above in a tool2 that uses Python
and Clingo 5 [13]. We next discuss practical implementation issues.

Concreteness Check and Debugging. We use a non-ground version of Qm
̂I

:

⊥← in(α̂), {α : map(X1, X̂1), . . . ,map(Xk, X̂k)} ≤ 0.

⊥← α,not in(α̂),map(X1, X̂1), . . . ,map(Xk, X̂k)

where α = p(X1, ...,Xk) and α̂ = p(X̂1, ..., X̂k), and map(Xi, X̂i) expresses the
abstract mapping, with the set of facts {in(α̂). | α̂ ∈ Î}.

If an abstract answer set Î is spurious, Π∪Qm
̂I

is unsatisfiable; this gives us no
information on the reason of spuriousness. To overcome this, we add abnormality
atoms, ab, in the rules of Π that contain arguments from the domain. This
approach is inspired from [5] that introduces tagging atoms to the rules. We use
a simplified encoding by disregarding loop formulas (cf. Appendix B); thus, we
deal with tight programs only. E.g., in Example 2 rule (3) is converted to

b(X,Y)← a(X), d(Y), int(X), int(Y),not ab(r3,X, Y).

and new rules for a guess over ab at a cost for its existence in the answer set
are added. This extended program, Πab, gives us the possibility to catch the
rules that need to be deactivated in order to keep satisfiability while checking
the concreteness of an abstract answer set Î, in case it is spurious.

Refinement Search. We run a basic search among all possible refinements
of a given initial abstraction (by default, the mapping m = {D/k1}) until an
abstraction that gives a concrete answer set is reached. For a refinement m′ of
m, we check the first abstract answer set, Î, of Πm′

, using Πab, i.e., Πab ∪ Qm′
̂I

,

to see if Î is concrete. We then choose the answer set with the smallest number
of ab atoms in it; we call this number the cost of the refinement m′. Then, we

2 http://www.kr.tuwien.ac.at/research/systems/abstraction/.

http://www.kr.tuwien.ac.at/research/systems/abstraction/

586 Z. G. Saribatur et al.

1(blue) a1

3(red) a3 2 a2 (green) 4

5 6

a4 = {4, 5, 6}
(red)

Fig. 2. Graph 3-coloring instance and abstract solution

perform a local distance-based search, where the distance between an abstraction
and its refinement is the difference in the number of abstract clusters. We pick
the refinement with the least cost as the new abstraction until cost 0 is achieved.

Further Features. In our implementation, strong negated literals ¬α are
encoded, at a preprocessing step, as neg α and constraints of form ← α,neg α
are added to the encoding. Choice rules are treated specially by ensuring that
the abstraction is done on the body, and the choice over the head is kept. We
precompute the deterministic part of a program (i.e., not involved in unstrati-
fied negation resp. guesses) and encode it as facts which are then lifted without
introducing (unnecessary) nondeterminism.

6 Applications

Applications usually contain sorts that form subdomains of the Herbrand uni-
verse. For example, blocksworld contains sorts for blocks and time while in
scheduling there are sorts of tasks and time or in coloring there are sorts for
nodes and colors. We define an abstraction over a sort as follows.

Definition 7. An abstraction is limited to a sort Di ⊆ D, if all elements x∈ D\
Di form singleton clusters {x}/x.

For practical purposes, sorts can use overlapping elements of the domain, pro-
vided that all occurrences of the sort are guarded by domain predicates.

We next show our abstraction method on examples.

Example 11. Consider the following 3-coloring encoding:

col(X1, r)← not col(X1, g),not col(X2, b),X1 =X2.

col(X1, g)←not col(X1, r),not col(X2, b),X1 =X2.

col(X1, b)←not col(X1, g),not col(X2, r),X1 =X2.

hasEdgeTo(X,C)← edge(X,Y1), color(Y2, C), Y1=Y2.

← hasEdgeTo(X1, C), col(X2, C),X1 =X2.

←node(X),not colored(X).
colored(X)← col(X,C),node(X).

and the graph with 6 nodes in Fig. 2. The abstraction {{1}/a1, {2}/a2, {3}/a3,
{4, 5, 6}/a4}, which distinguishes the nodes in the clique 1-2-3 and clusters all
others, has only concrete abstract answer sets, one of them is Î = {col(a1, b),
col(a2, g), col(a3, r), col(a4, r)} where the nodes 4,5,6 clustered to a4 are red.

Abstraction for Non-ground Answer Set Programs 587

Abstraction over Time. In ASP, it is customary to represent time by an
additional argument in atoms. Abstraction over time is handled equivalently
as for other domains. This can be useful e.g. in scheduling for abstracting time
intervals where ‘nothing changes’ in a schedule into single time points. Moreover,
time is an ordered domain which must be respected by the refinements, e.g., by
splitting intervals.

Example 12. Consider the disjunctive scheduling problem of [1]: given tasks I
with fixed duration D (task(I,D)), earliest start time S (est(I, S)), latest end
time E (let(I, E)), and disjunctive constraints (disj (I, I ′)) for tasks that cannot
overlap, assign to each task a start time such that all constraints are satisfied. We
use the provided encoding (with variables standardized apart) and precomputed
deterministic part of the program. For an instance {task(a, 7), est(a, 1), let(a, 8),
task(b, 5), est(b, 3), let(b, 10), task(c, 2), est(c, 8), let(c, 10), disj (a, c), disj (b, c)},
we reach from {{1, . . . ,10}/k} the abstraction {{4, . . . , 7}/k1, {9, 10}/k2} where
only two abstract answer sets exist, and a concrete one is easily identified; it
yields a solution time(a, 1), time(b, 3), time(c, 8).

Abstraction over Multiple Sorts. While time is important in scheduling and
planning, abstracting only over time may not suffice for planning as spurious
abstract answer sets with an incorrect order of action execution may occur.
This can be countered by additional abstraction over other sorts in the agent
domain, which allows for more abstract instances of actions that abstract from
the concrete order of application as shown in Example 13 below. It is particularly
desirable that the individual abstractions fulfill the following property.

Definition 8. For a program Π and domain D, subdomains D1, . . . , Dn⊆D are
independent, if no rel-atom in Π shares arguments from Di and Dj, 1≤i<j≤n.

For independent sorts, abstractions can be composed.

Proposition 7. For domain mappings m1 and m2 over independent domains
D1 and D2, (Πm2)m1 = (Πm1)m2 .

This property readily extends to multiple sorts. Note that sorts in the problems
above mentioned are often independent; e.g., blocks, tables and time in Exam-
ple 1. However, if block number i can not be put on table number j if i= j, then
the above property can not hold.

Abstraction over time and the agent domain allows us to obtain abstract
plans representing sequences of concrete actions.

Example 13. Consider the blocksworld problem with a single table in Fig. 3.
The encoding of Example 1 is modified for a single table (table argument omitted
from moveToT/onT). The encoding gets standardized apart according to the block
sort and the time sort.

588 Z. G. Saribatur et al.

Fig. 3. Abstract and concrete plan of Example 13

Suppose further rules realize a policy that first puts all blocks on the table
and piles them up in a second phase. (heads of form 1{. . .} choose at least one
element and can here be treated like explained before):

existsOnBlock(T) ← onB(B,B1, T).

allOnTable(T) ← not existsOnBlock(T), time(T).

atPhase2 (T1) ← allOnTable(T), T < T1.

1{moveToT (B, T) : onB(B,B1, T)} ← T < tmax ,not atPhase2 (T),not allOnTable(T).

1{moveToB(B,B1, T) : onT (B, T), block(B1)} ← T < tmax , allOnTable(T).

1{moveToB(B,B1, T) : onT (B, T), onB(B1, B2, T)} ← T < tmax , atPhase2 (T).

Given the initial state {onT (b4, 1), onT (b3, 1), onB(b2, b3, 1), onB(b1, b2, 1)} and
the time domain {1, . . . , 6}, we abstract using the block mapping {{b1, . . . , b4}/b̂}
and the time mapping {{1, 2}/t̂, {3, . . . , 6}/t̂′}. The constructed abstract program
has 8 answer sets, including {onB(b̂, b̂, t̂), onT (b̂, t̂),moveToT (b̂, t̂), onB(b̂, b̂, t̂′),
onT (b̂, t̂′), moveToB(b̂, b̂, t̂′)} which contains the abstract actions moveToT (b̂, t̂)
and moveToB(b̂, t̂′) (see Fig. 3).

7 Experiments

To see whether our approach automatically finds non-trivial domain abstractions
that yield concrete answer sets, we conducted several experiments.

3-Coloring. We randomly generated 20 graphs on 10 nodes with edge probabil-
ity 0.1, 0.2, . . . , 0.5 each; out of the 100 graphs, 74 were 3-colorable. We evaluated
the abstraction m reached from the initial single-cluster abstraction, by checking
whether the corresponding abstract program has spurious answer sets (if not, m
is faithful). In addition, we considered a projected notion of concreteness that
limits the checking to a set of relevant atoms. E.g., only the colors of nodes
1-3 may be relevant, and an abstraction that assigns colors to them may be
sufficient. Table 1 shows the collected results. The left side shows the average
number of steps needed until a concrete answer was found, and the average of
the resulting abstract domain sizes. The right side shows the percentage of the
observed properties of the resulting abstractions. Trivial abstraction (id) corre-
sponds to the case where the abstraction is refined back to the original domain.
Observe that faithful and non-trivial abstractions were achieved, which shows
the potential of the approach in singling out relevant objects. In case of projec-
tion, the trivial abstraction is reached (in 9 steps) much less than in the full case;

Abstraction for Non-ground Answer Set Programs 589

Table 1. Experimental results for 3-coloring (above) and scheduling (below).

full projected full projected
number of steps 7.65 5.25 trivial abstractions (id) 47% 6%
abs domain size 8.65 6.19 faithful & non-trivial abs. 27% 43%
faithful abs domain size 7.42 6.32 non-faithful abstraction 26% 51%

t = 10: v1 v2 t = 20: v1 v2 t = 30: v1 v2
number of steps 7.25 3.7 14.6 5.2 22.6 7.4
abs domain size 8.25 8.6 15.6 13.9 23.6 20

moreover, more non-trivial faithful abstractions are reached, which is beneficial.
Furthermore, 80% of the non-colorable graphs were revealed by non-trivial full
abstractions, and 77% under projection; hence, abstraction may be useful to
catch and explain unsolvability.

Disjunctive Scheduling. For each t ∈{10, 20, 30}, we generated 20 instances
with 5 tasks over time {1, . . . , t}. Table 1 shows the collected results. For the
refinement search, we considered besides the one from above (v1) another one
that looks at the domain elements in the ab atoms and guides the refinement
either to not map these elements to the same cluster or to map them into single-
ton clusters (v2). Observe that in v2 the number of steps to obtain a solution is
greatly reduced which moreover has fewer clusters (except for t = 10 as creating
singleton clusters quickly ends up with the trivial abstraction). The results show
that with larger domains, the effect of the abstraction can be seen much better,
e.g., the average abstract domain size reached for t = 30 is 66.6% (=20/30) of
the original domain, while for t = 10, it shrinks to 86%. Note that with more
sophisticated refinement methods, better abstractions can be reached.

Multi-table Blocksworld. We considered varying numbers of blocks and
tables, starting with 5 each. Faithful abstractions readily resulted by 1-step
refinements which separated the chosen table from the rest. However, as the
abstraction is syntactic, other encodings may need more steps (e.g., bad auxil-
iary rules causing choices/spuriousness).

8 Conclusion

Related Work. Apart from simplification approaches to ASP we mentioned
earlier, abstraction has been studied in logic programming [9]. However, the
focus was on the use of abstract interpretations and termination analysis, and
stable semantics was not addressed. In planning, plan refinement [22,28] uses
abstract plans computed in an abstract space to find a concrete plan, while
abstraction-based heuristics [10,17] use the costs of abstract solutions to guide
the plan search. Pattern databases [10] project the state space to a set of vari-
ables (a ‘pattern’), while merge & shrink abstraction [17] starts with a suite
of single projections, and then computes an abstraction by merging them and

590 Z. G. Saribatur et al.

shrinking. In [19], abstraction for numeric planning problems by reduction to
classical planning is studied. Recently, the same authors used abstraction for
problems that contain quantifiable objects [20], e.g., some number of packages
to deliver to points A and B, to find generalized plans by abstracting away from
the quantification that works for multiple instances of the problem. For this,
they build a quantified planning problem by identifying sets of indistinguishable
objects using reformulation techniques [27] to reduce symmetry, and then use an
algorithm to compute a general policy. With our method, abstracting over the
packages and time is possible as done in Example 13. It constructs an abstract
program which contains a generalized plan (among possible spurious ones) for
all instances of the problem. Furthermore, if the package delivery problem is
extended with having a choice of points to pass through when moving from A to
B, then abstracting over the points passed to reach B from A is possible with our
method. Such a constraint is not representable by [20] due to the quantifiability
conditions. Nevertheless, our method has the orthogonal potential drawback of
producing spurious answers.

Abstraction was also studied for agent verification in situation calculus
action theory [2] and multi-agent systems against specifications in epistemic
logic [25] and temporal logic [3]. Lomuscio and Michaliszyn [25] present an
automated predicate abstraction method in 3-valued semantics, and interpolant-
based refinement [4]. All these works are quite different from ours; they address
specific applications and are based on different (monotonic) logic formalisms.

Outlook. This seminal work has room for improvement, especially in the search
for a refinement, where different heuristics may be employed. It can also be
made more sophisticated by using domain-specific knowledge. Furthermore, the
current quality assessment of refinements can be advanced by considering more
than one abstract answer set or making the largest cluster size a parameter in
determining the refinement quality. Predicate abstraction would be an interesting
extension of this work. Our aim was not to increase reasoning efficiency, but this
is an interesting future direction that needs significant follow-up work.

Acknowledgements. This work has been supported by Austrian Science Fund
(FWF) project W1255-N23 and Austrian Federal Ministry of Transport Innovation
and Technology (BMVIT) project 861263 (DynaCon).

References

1. ASPCOMP-11: Third (open) answer set programming competition: Disjunctive
scheduling (2011). www.mat.unical.it/aspcomp2011

2. Banihashemi, B., De Giacomo, G., Lespérance, Y.: Abstraction in situation calculus
action theories. In: Proceedings of AAAI, pp. 1048–1055 (2017)

3. Belardinelli, F., Lomuscio, A.: Abstraction-based verification of infinite-state reac-
tive modules. In: Proceedings of ECAI, pp. 725–733 (2016)

4. Belardinelli, F., Lomuscio, A., Michaliszyn, J.: Agent-based refinement for predi-
cate abstraction of multi-agent systems. In: ECAI, pp. 286–294 (2016)

www.mat.unical.it/aspcomp2011

Abstraction for Non-ground Answer Set Programs 591

5. Brain, M., Gebser, M., Pührer, J., Schaub, T., Tompits, H., Woltran, S.: Debugging
ASP programs by means of ASP. In: Baral, C., Brewka, G., Schlipf, J. (eds.)
LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 31–43. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-72200-7 5

6. Brass, S., Dix, J.: Characterizations of the disjunctive stable semantics by partial
evaluation. J. Log. Program. 32(3), 207–228 (1997)

7. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011)

8. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM
TOPLAS 16, 1512–1542 (1994)

9. Cousot, P., Cousot, R.: Abstract interpretation and application to logic programs.
J. Log. Program. 13(2), 103–179 (1992)

10. Edelkamp, S.: Planning with pattern databases. In: Sixth European Conference on
Planning (2001)

11. Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic pro-
grams: semantics and complexity. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004.
LNCS (LNAI), vol. 3229, pp. 200–212. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-30227-8 19

12. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.:
Engineering an incremental ASP solver. In: Garcia de la Banda, M., Pontelli, E.
(eds.) ICLP 2008. LNCS, vol. 5366, pp. 190–205. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-89982-2 23

13. Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider,
M.: Potassco: the potsdam answer set solving collection. AI Commun. 24(2), 107–
124 (2011)

14. Geißer, F., Keller, T., Mattmüller, R.: Abstractions for planning with state-
dependent action costs. In: ICAPS, pp. 140–148 (2016)

15. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
ICLP/SLP, pp. 1070–1080 (1988)

16. Giunchiglia, F., Walsh, T.: A theory of abstraction. AIJ 57(2–3), 323–389 (1992)
17. Helmert, M., Haslum, P., Hoffmann, J., Nissim, R.: Merge-and-shrink abstraction:

a method for generating lower bounds in factored state spaces. JACM 61(3), 16
(2014)

18. Hoffmann, J., Sabharwal, A., Domshlak, C.: Friends or Foes? An AI planning
perspective on abstraction and search. In: ICAPS, pp. 294–303 (2006)

19. Illanes, L., McIlraith, S.A.: Numeric planning via search space abstraction. In:
Proceedings of KnowProS@IJCAI (2016)

20. Illanes, L., McIlraith, S.A.: Generalized planning via abstraction: arbitrary num-
bers of objects. In: AAAI (2019)

21. Janhunen, T., Niemelä, I., Seipel, D., Simons, P., You, J.H.: Unfolding partiality
and disjunctions in stable model semantics. ACM TOCL 7(1), 1–37 (2006)

22. Knoblock, C.A.: Automatically generating abstractions for planning. Artif. Intell.
68(2), 243–302 (1994)

23. Kouvaros, P., Lomuscio, A.: A counter abstraction technique for the verification of
robot swarms. In: Proceedings of AAAI (2015)

24. Leite, J.: A bird’s-eye view of forgetting in answer-set programming. In: Balduc-
cini, M., Janhunen, T. (eds.) LPNMR 2017. LNCS (LNAI), vol. 10377, pp. 10–22.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61660-5 2

25. Lomuscio, A., Michaliszyn, J.: Verification of multi-agent systems via predicate
abstraction against ATLK specifications. In: Proceedings of AAMAS, pp. 662–670
(2016)

https://doi.org/10.1007/978-3-540-72200-7_5
https://doi.org/10.1007/978-3-540-30227-8_19
https://doi.org/10.1007/978-3-540-30227-8_19
https://doi.org/10.1007/978-3-540-89982-2_23
https://doi.org/10.1007/978-3-319-61660-5_2

592 Z. G. Saribatur et al.

26. Pearce, D.: Simplifying logic programs under answer set semantics. In: Demoen, B.,
Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 210–224. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-27775-0 15

27. Riddle, P., Douglas, J., Barley, M., Franco, S.: Improving performance by reformu-
lating PDDL into a bagged representation. In: HSDIP@ICAPS, pp. 28–36 (2016)

28. Sacerdoti, E.D.: Planning in a hierarchy of abstraction spaces. Artif. Intell. 5(2),
115–135 (1974)

29. Saribatur, Z.G., Eiter, T.: Omission-based abstraction for answer set programs. In:
Proceedings of KR, pp. 42–51 (2018)

https://doi.org/10.1007/978-3-540-27775-0_15

The Hexlite Solver
Lightweight and Efficient Evaluation of HEX Programs

Peter Schüller(B)

Institut für Logic and Computation, Knowledge-Based Systems Group,
Technische Universität Wien, Vienna, Austria

ps@kr.tuwien.ac.at

Abstract. hexlite is a lightweight solver for the hex formalism which
integrates Answer Set Programming (ASP) with external computations.
The main goal of hexlite is efficiency and simplicity, both in implemen-
tation as well as in installation of the system. We define the Pragmatic
hex Fragment which permits to partition external computations into
two kinds: those that can be evaluated during the program instantia-
tion phase, and those that need to be evaluated during the answer set
search phase. hexlite is written in python and suitable for evaluating
this fragment with external computations that are realized in python.
Most performance-critical tasks are delegated to the python module of
clingo. We demonstrate that the Pragmatic hex Fragment is sufficient
for many use cases and that it permits hexlite to have superior perfor-
mance compared to the dlvhex system in relevant application scenarios.

1 Introduction

The hex formalism [8] facilitates the combination of logic programming and
external computations in other programming paradigms, and facilitates the inte-
gration of logical reasoning with diverse other reasoning methods such as motion
planning [20], description logics [14], or sub-symbolic reasoning [17].

Differently from externals in gringo and the python interface of clingo,
the hex formalism provides uniform and generic syntax and semantics for exter-
nal computations that influence (a) the instantiation of the program (by per-
forming value invention), and (b) the solving process (by computing truth values
relative to interpretations).

Computing hex semantics requires the evaluation of external computations
both during grounding and during search, in an interleaved fashion. The main
solver implementation for the hex formalism is the dlvhex system [13]. While
dlvhex implements the full hex language, it performs a lot of analysis and
preprocessing to be able to deal with all eventualities of combinations of external
computations, which makes it unnecessarily slow in several relevant application
scenarios.

In order to obtain performance when evaluating hex programs, we here
present a new hex solver that is lightweight and efficient, at the cost of handling
only a fragment of hex, which is sufficient for many applications.
c© Springer Nature Switzerland AG 2019
F. Calimeri et al. (Eds.): JELIA 2019, LNAI 11468, pp. 593–607, 2019.
https://doi.org/10.1007/978-3-030-19570-0_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19570-0_39&domain=pdf
http://orcid.org/0000-0002-1837-126X
https://doi.org/10.1007/978-3-030-19570-0_39

594 P. Schüller

In this work, we make the following contributions.

• We define the Pragmatic hex Fragment (PHF) that permits to separate exter-
nal computations into those that can be evaluated completely during instan-
tiation and those that can be evaluated completely during search. We show
several application scenarios where the PHF is sufficient.

• We describe and provide the hexlite solver that provides lightweight and
efficient evaluation machinery for the PHF. The solver is implemented in
python and uses the clingo python API as a backend for ASP grounding
and search. hexlite rewrites both classes of external atoms in different ways
before passing the rules to clingo for evaluation. As a main benefit of this
architecture, hexlite supports the full ASP input language of clingo with-
out the need for dedicated code that supports weak constraints, choice rules,
aggregates, expansion terms, and builtin arithmetics.

• We experimentally compare the hexlite solver with dlvhex on two appli-
cation scenarios that gave rise to the development of hexlite: cost-based
abduction [30] and RDF processing [18]. Our experiments show, that hexlite
performs better than dlvhex in these applications. As hexlite uses the same
python API as dlvhex, we use the same plugin with both solvers, which
makes the comparison very realistic.

hexlite can be installed via conda or pip and is available as open source.1

2 Preliminaries

We give syntax and semantics of the HEX formalism [8,16] which generalizes
logic programs under answer set semantics [24] with external computations.

2.1 HEX Syntax

Let C, X , and G be mutually disjoint sets whose elements are called constant
names, variable names, and external predicate names, respectively. Usually, ele-
ments from X and C are denoted with first letter in upper case and lower case,
respectively; while elements from G are prefixed with ‘ & ’. Elements from C ∪ X
are called terms. An (ordinary) atom is a tuple p(Y1, . . . , Yn) where p∈ C is a
predicate name and Y1, . . . , Yn are terms and n ≥ 0 is the arity of the atom. An
atom is ground if all its terms are constants. An external atom is of the form
&g[Y1, . . . , Yn](X1, . . . , Xm), where Y1, . . . , Yn and X1, . . . , Xm are two lists of
terms, called input and output lists, respectively, and &g ∈ G is an external pred-
icate name. We assume that input and output lists have fixed lengths in(&g) = n
and out(&g) = m. With each term Yi in the input list, 1 ≤ i ≤ n, we associate
a type ti ∈ {cons} ∪N. We call the term constant input iff ti = cons, otherwise
we call it predicate input of arity ti.

1 https://github.com/hexhex/hexlite.

https://github.com/hexhex/hexlite

The Hexlite Solver 595

A rule r is of the form α1 ∨ · · · ∨αk ← β1, . . . , βn, not βn+1, . . . , not βm with
m, k ≥ 0 where all αi are atoms and all βj are either atoms or external atoms. We
let H(r) = {α1, . . . , αk} and B(r) = B+(r)∪B−(r), where B+(r) = {β1, . . . , βn}
and B−(r) = {βn+1, . . . , βm}. A rule r is a constraint if H(r) = ∅; a fact if
B(r) = ∅ and H(r) 	= ∅; and nondisjunctive if |H(r)| ≤ 1. We call r ordinary if
it contains only ordinary atoms.

A HEX program is a finite set P of rules. We call a program P ordinary
(resp., nondisjunctive) if all its rules are ordinary (resp., nondisjunctive). Note
that we here assume that programs have no higher-order atoms (i.e., atoms of
the form Y0(Y1, . . . , Yn) where Y0 ∈ X) because HEX-programs with higher-order
atoms can easily be rewritten to HEX-programs without higher-order atoms [8].

A comprehensive introduction to HEX is given in [18].

2.2 Semantics

Given a rule r, the grounding grnd(r) of r is obtained by systematically replacing
all variables with constants from C. Given a HEX-program P , the Herbrand
base HBP of P is the set of all possible ground versions of atoms and external
atoms occurring in P obtained by replacing variables with constants from C. The
grounding grnd(P) of P is given by grnd(P) =

⋃
r∈P grnd(r). Importantly, the

set of constants C that is used for grounding a program is only partially given by
the program itself: in hex, external computations may introduce new constants
that are relevant for the semantics of the program.

Extensional Semantics [8,16] of external atoms are defined as follows: we
associate a (n + 1)-ary extensional evaluation function F&g with every exter-
nal predicate name &g ∈ G. Given an interpretation I ⊆ HBP and a ground
input tuple (x1, . . . , xm), F&g(I, y1, . . . , yn) returns a set of ground output tuples
(x1, . . . , xm). The external computation is restricted to depend (a) for contant
inputs, i.e., ti = cons, only on the constant value of yi; and (b) for predicate
inputs, i.e., ti ∈ N, only on the extension of predicate yi of arity ti in I.2

An interpretation I ⊆ HBP is a model of an atom a, denoted I |= a if a
is an ordinary atom and a ∈ I. I is a model of a ground external atom a =
&g [y1, . . . , yn](x1, . . . , xm) if (x1, . . . , xm) ∈ F&g(I, y1, . . . , yn). Given a ground
rule r, I |= H(r) if I |= a for some a ∈ H(r); I |= B(r) if I |= a for all a ∈ B+(r)
and I 	|= a for all a ∈ B−(r); and I |= r if I |= H(r) whenever I |= B(r). Given
a hex-program P , I |= P if I |= r for all r ∈ grnd(P); the FLP-reduct [21] of P
with respect to I ⊆ HBP , denoted fP I , is the set of all r ∈ grnd(P) such that
I |= B(r); I ⊆ HBP is an answer set of P if I is a minimal model of fP I , and
we denote by AS(P) the set of all answer sets of P .

3 The Pragmatic HEX Fragment (PHF)

We next define a fragment of hex that permits to separate external computations
into two classes: grounding-relevant and solving-relevant.
2 Formally, this is the set {yi(v1, . . . , vti) ∈ I}.

596 P. Schüller

Definition 1. A hex-program P is in the Pragmatic hex Fragment (PHF) iff
each external atom of the form &g[Y1, . . . , Yn](X1, . . . , Xm) with type signature
t1, . . . , tn satisfies one of the following conditions:

(G) ti = cons for all i, 1≤ i≤ n; or
(S) m = 0 and there is at least one type ti, 1≤ i≤ n, such that ti ∈ N.

Type (G). External atoms that satisfy condition (G) can be evaluated during
instantiation of program P because their computation does not depend on I.
These external computations can perform value invention: they can produce
constants in the output tuple X1, . . . , Xm that do not exist in P . In particular,
output terms can recursively define input terms of the same external atom.

Example 1. We can use an external atom of the form &rdf [U](S, P,O) of type
(G) to accesses a RDF [26] triple stores [18]. The function F&rdf (I,U) returns
all tuples (S, P,O) that are obtained from the RDF graph accessible at URI U .
Intuitively, this external computation imports the RDF graph into the hex pro-
gram and provides all its constants to the instantiation process. The computation
does not depend on I and returns arbitrary strings (value invention).

Type (S). External atoms that satisfy condition (S) have an empty output
tuple and can therefore not produce any output apart from their own truth
value. This makes it possible to instantiate rules that contain such external
atoms, without performing the associated external computation; the external
computation needs to be performed only during the answer set search phase,
when the interpretation I is available.

Example 2. We can use external atoms of the form &transitive[p]() of type (S),
with t1 = 2 the arity of predicate p, to verify whether p/2 is transitive in the
interpretation [30]. The function F&transitive(I, p) returns the empty tuple if the
extension of p in I is a transitive relation. Otherwise, it returns no tuple.

External atoms of type (S) have the possibility to create nogoods that relate the
truth value of the ground external atom with parts of I that are relevant for
computing that truth value. This feature, which also exists in dlvhex, can be
used for increasing evaluation performance by guiding the solver towards answer
set candidates that are compatible with external computation results.

3.1 Properties

Clearly, the two classes (G) and (S) of external atoms are mutually exclusive.
Those external atoms of type (G) that have no output terms (i.e., m = 0) could
be evaluated during the solving process because their evaluation is not necessary
for instantiating the ground program. However, we found it useful to evaluate
(and therefore eliminate) as many external atoms as possible already during
program instantiation.

Moreover, there are external atoms that fall neither into class (G) nor into
class (S), for example an external atom &sum[pred](X) that has one predicate

The Hexlite Solver 597

input pred of arity 1 and realizes a summation aggregate with extensional eval-
uation function F&sum(I, pred) := {(X)} where X = Σ{x | p(x) ∈ I}.

External atoms of type (G) can be evaluated (and eliminated) during instan-
tiation of the program as shown in the following proposition.

Proposition 1. Given a ground hex-program P in PHF, an equivalent program
P ′ can be produced by (1) omitting rules that contain an external atom a of type
(G) where (i) a is in a positive literal and ∅ 	|= a; or (ii) a is in a negative literal
and ∅ |= a; and (2) omitting all other external atoms of type (G).

Proof (sketch). A ground external atom a of type (G) has only constant input,
therefore I |= a is independent from the value of I. Hence, rules where (1) applies
can never obtain a satisfied body due to a while rules where (2) applies can never
obtain a non-satisfied body due to a.

External atoms of type (S) can be handled the same way as in dlvhex [8,13],
therefore we here do not provide formal results about them.3

External atoms outside the PHF fragment can be processed with Liberal
Safety [10]: it permits automatic verification of finite instantiation of a hex pro-
gram in the presence of cyclic dependencies among external atoms that perform
value invention, depend on the answer set candidate, and have certain (seman-
tic) properties. Opposed to the methodology of Liberal Safety, hexlite delegates
finiteness of instantiation to the programmer (as also done, e.g., by gringo).

3.2 Amenable Application Scenarios

External computations of type (S) can pass nogoods to the solver that describe
how their truth value depends on the interpretation.

Constraint Answer Set Programming (CASP) [27] has been realized in hex
[29] using one external atom &check of type (S). Application scenarios in [29] use
external atoms of type (G) for SQL querying: &sql [Query](AnswerTuple), where
Query can be a fixed string or defined using external atoms. High-level planning
for robotics has been interleaved with low-level motion planning using hex [20],
where external atoms for motion planning are either of type (S) or of type (G)
and there is no value invention. hex-programs with existential quantification
(hex∃) [9] as well as hex-programs with function symbols use only external
atoms of type (G) to perform tasks related to Skolemization, similar to what is
presented in Sect. 5.1. The MCS-IE system for explaining inconsistency in Multi-
Context Systems [4] is implemented in hex and uses only external atoms of type
(S). Two further application scenarios are abduction and RDF processing, shown
in detail in Sects. 5.1 and 5.2.

3 dlvhex replaces them with an ordinary replacement atom, guesses truth of replace-
ment atoms with extra rules, and accepts only answer set candidates I where guessed
truth values correspond with external computations wrt. I, see Sect. 4.

598 P. Schüller

4 Hexlite Solver Design and Architecture

Principles. The design of hexlite followed several guiding principles.

– Delegation: delegate as much as possible to the backend solver (currently
clingo).

– Separation: deal with external atoms either during grounding or during solv-
ing in order to avoid multiple grounding passes.

– Programmer Responsibility: delegate the responsibility for finite instantiation
to the programmer (as in gringo).

Delegation reduces computational overhead and duplication of code that
already exists in the ASP backend. As the main consequence of this princi-
ple, hexlite performs no safety check and no syntax check, not even thorough
parsing of the input. Instead, a shallow representation of the input program is
created. This representation is sufficient for rewriting rules and external atoms
for subsequent evaluation. As a consequence of Delegation, unsafe variables are
detected only by gringo because safety checking is not required for hexlite
rewriting. A second consequence of Delegation is, that hexlite has no internal
representation of the current answer set candidate; instead, the clasp python
API is used to directly access the (partial) model within clasp. Moreover, opti-
mization is handled transparently within clasp.

Separation is the basis for defining the PHF and contributes to the small
implementation of hexlite, because evaluation follows the common structure
of ASP solvers with external atoms that are relevant either for grounding or
for solving. (Currently, hexlite is implemented using 3,300 lines of python
code, which includes the shallow parser, FLP checker, and code comments.) A
hex program can be split into Evaluation Units, i.e., non-ground program mod-
ules that never mutually depend on one another [8]. While dlvhex interleaves
grounding and search over multiple Evaluation Units, hexlite always uses a
single Evaluation Unit.

Programmer Responsibility is a principle from gringo: the burden of ensur-
ing a finite instantiation is put on the programmer and not verified by preprocess-
ing. This is the opposite of the philosophy followed in the dlvhex solver where
various safety notions such as Domain Expansion Safety and Liberal Domain
Expansion Safety [11] are defined and also checked by the solver, depending
on properties of external computations. The upside of not checking this in the
solver is decreased preprocessing effort, the downside is that hexlite (just like
gringo) will not complain about the program ‘p(0) ← . p(s(X)) ← p(X).’ but
starts to instantiate it and will exhaust the available memory due to its infi-
nite instantiation. In hex programs, external computations can cause infinite
instantiation, but the programmer of external computations might take specific
measures to prevent infinite instantiation (as shown in Sect. 5.1). Therefore, del-
egating responsibility to the user instead of performing costly verifications can
be an advantage.

The Hexlite Solver 599

Fig. 1. Architecture of the hexlite system and its interaction with the clingo Python
library and plugins for external computations.

Architecture. Figure 1 shows the architecture of hexlite. The input program
P is analyzed with a shallow parser, followed by the rewriter module that rewrites
only those parts of rules that contain external atoms. The rewriter accesses
external computations for obtaining their type and creates the following gringo-
compatible rules for each rule r ∈P .

(i) a rule r′ where each external atom a of the form &g[Y1,..., Yn](X1,...,Xm)
(a) is replaced by a gringo external of the form (X1,...,Xm) = @g(Y1,...,Yn)

if a is of type (G);
(b) is replaced by a replacement atom of the form e&g(Y1,..., Yn) if a is of

type (S); and4

(ii) for each replacement atom created in (b) above a rule r′′ of the form

e&g(Y1, . . . , Yn) ∨ e&g(Y1, . . . , Yn)← B′

where B′ = {β ∈ B(r) | β shares variables with Y1, . . . , Yn}.

(dlvhex uses a similar rewriting, see [15,19].) After rewriting, gringo is used
for instantiating the rewritten program with a python context that evalutes
external computations of the form (X1, . . . , Xm) = @g(Y1, . . . , Yn) by assigning
the tuple (X1, . . . , Xm) all values returned by the external computation. The
resulting ordinary ground program is passed to a clasp instance that has been
prepared with (i) a custom python propagator,5 (ii) a ground program observer
that collects the ground program for usage in the FLP checker, and (iii) an

4 In that case m = 0 so the replacement atom does not include X1, . . . , Xm.
5 A propagator is a program module that interfaces with the search process of clasp

and can (a) infer truth values and (b) add ground clauses based on a partial model.

600 P. Schüller

on model callback (not shown in the figure) which calls the FLP checker and,
after a successful check, outputs the answer set without auxiliary elements.

The custom python propagator compares truth values of replacement atoms
with the results of their corresponding external computations. For failed checks,
nogoods are created to prevent future failed checks. Moreover, user-defined
nogoods can be provided by plugins to further guide the search (see also the
description of external atoms in Sects. 5.1 and 5.2). The FLP checker is nec-
essary for hex programs with positive loops over external atoms and prevents
answer sets with self-founded truth values, see also [21]. It also ensures that
non-monotonic aggregates are evaluated correctly (clingo does not support
FLP semantics).6

hexlite uses the same python API as dlvhex, therefore migrating plugins
from one solver to the other is easy. None of the benchmarks we used in evalua-
tions has positive loops over external atoms of type (S), therefore we deactivated
the FLP checker for all experiments (both for dlvhex and for hexlite).

5 Experimental Evaluation

For experimental evaluation of hexlite, we tried it out with two application
domains: variants of cost-based abduction [30] and the RDF plugin [18].

We choose these domains because they both contain both types of external
atoms, and because they were part of the inspiration for developing hexlite.

5.1 Cost-Based Abduction Benchmark

Cost-based abduction consists of 50 instances over the accel natural language
story understanding benchmark [28]. The full benchmark is available online.7,8

accel uses two external predicates: &invent for flexible Skolemization, and
&transitive as described in Example 2 for ensuring transitivity of a guessed rela-
tion over many elements.

External predicate &invent is used for ensuring finite instantiation in the
presence of existential variables in rule heads.9 Given a rule R with an existential
variable B in the head and universal variables A1, . . . , Ak in the body, instead of
replacing B with Skolem term s(A1,..., Ak) we add &invent[R, cB , A1,..., Ak](B)
to the rule body and define F&invent such that a finite set of values for B is

6 The FLP check implemented in hexlite is described in Proposition 1 in [8]. The FLP
check can be deactivated if it is not required (this is another example of Programmer
Responsibility). The custom python propagator is re-used in the FLP checker.

7 https://bitbucket.org/knowlp/asp-fo-abduction.
8 To permit a fairer comparison, we used only objective functions card and coh

(dlvhex is incompatible with objective function wa) and we removed all facts of
the form comment(. . .). which served only an informational purpose (dlvhex is
significantly slower if these facts are included).

9 This generalizes the termination mechanism for reasoning as it was implemented in
the original accel reasoner [28].

https://bitbucket.org/knowlp/asp-fo-abduction

The Hexlite Solver 601

invented, independent from cycles in the program. For our evaluation, we used
two variants of this benchmark:

SK/P 1 variant. Value invention is blocked if at least one parent term is
invented: F&inventP1 (I,R, V,A1, . . . , Ak) returns the tuple (s(R, V,A1, . . . , Ak))
if no Ai, 1≤ i≤ k is of the form s(· · ·), otherwise it returns no tuple.

SK/G1 variant. Value invention is blocked if at least one parent term was
invented by the same ground external predicate: F&inventG1 (I,R, V,A1, . . . , Ak)
returns the tuple (s(R, V,A1, . . . , Ak)) if no Ai, 1≤ i≤ k has a sub-term of the
form s(R, V, · · ·), otherwise it returns no tuple.

Intuitively, SK/P1 invents only values that have non-invented parents, and
SK/G1 invents only a single generation of values in each rule. This method of
ensuring finite instantiation is orthogonal to guarding domains predicates that
ensure a finite chase in Datalog with existential quantifiers [5]: value invention
is forced to be finite independent from the structure of the program. For details
and examples of the finite instantiation property, we refer to Sect. 4.1 in [30].

External predicate &transitive appears in a single constraint of the form
← not &transitive[eq](). Each time this external computation evaluates to false,
it creates nogoods that provide the reason for intransitivity (i.e., a triple of
literals eq(A,B), eq(B,C), ¬eq(A,C)) to the solver to assist the search for a
transitive relation. For more details see Sect. 4.2 in [30].

Importantly, F&invent does not use I and therefore external atoms of the
form &invent· · · are of type (G). Moreover, external predicate &transitive
produces no values in output tuples (i.e., m = 0) and it has type t1 = 2 (it uses
the extension of a binary predicate p) therefore it is of type (S).

5.2 RDF Benchmark

The RDF plugin realizes the RDF triple external atom as described in Example 1.
We here extend the original application [18] with a second external atom of type
(S). We experiment with the colinda [31] knowledge graph which contains
150,000 triples about conferences.10 We perform the following three reasoning
problems.

Import. We simply import all triples using the program

explore(”. . . /colinda.rdf”) ← .

triple at(S, P,O) ← &rdf [What](S ,P ,O), explore(What).

which yields a single answer set with around 150,000 atoms.

Vegas. We are interested in names of all conferences in Las Vegas. The program

explore(”. . . /colinda.rdf”) ← . location(”http://sws.geonames.org/3635260/”) ← .

conference(Conf) ← explore(G), location(Loc),
&rdf [G](Conf , ”http://swrc.ontoware.org/ontology#location”,Loc).

10 Dataset retrieved from https://old.datahub.io/dataset/colinda.

https://old.datahub.io/dataset/colinda

602 P. Schüller

title(Title) ← explore(G), conference(Conf),
&rdf [G](Conf , ”http://swrc.ontoware.org/ontology#eventTitle”,Title).

yields a single answer set with 330 atoms, 164 of them containing the titles
conferences in colinda that took place in Las Vegas (encoded as ID 3635260).

Marathon. This is an optimization problem where we are interested in making
a conference marathon for visiting the maximum possible number of cities in
France over two weeks. This is encoded in the following hex program.

explore(”. . . /colinda.rdf”) ← . country(”France”) ← .

location(Loc) ← explore(G), country(C),
&rdf [G](Loc, ”http://www.geonames.org/ontology#countryName”,C).

conference(Conf ,Loc) ← explore(G), location(Loc),
&rdf [G](Conf , ”http://swrc.ontoware.org/ontology#location”,Loc).

in(Conf) ∨ out(Conf) ← conference(Conf ,Loc).
covered(Loc) ← conference(Conf ,Loc), in(Conf).

�location(Loc),not covered(Loc). [1 ,Loc]
date(Date) ← explore(G), in(Conf),

&rdf [G](Conf , ”http://swrc.ontoware.org/ontology#startDate”,Date).
← not &dates span days[date, 14].

This encoding represents locations in France in location, conferences and their
locations (if in France) in conference, and performs a guess (in) selecting relevant
conferences. Those conferences that are selected define which location is covered.
We maximize coverage by incurring a cost of 1 for each location that is not
covered by means of the weak constraint (�). Furthermore, we extract dates of
covered conferences in date and use an external atom to indicate whether the
dates lie within a 14 day period.

Function F&dates span days(I, p, d) is defined to return an empty tuple iff all
dates X with p(X) ∈ I are within d days of one another. The external compu-
tation of dates span days guides the search by providing nogoods for all pairs of
dates (X,X ′) with p(X), p(X ′) ∈ I and more than d days between X and X ′.

Evaluating this program yields an answer set with 29 locations and 404 con-
ferences in France, and an optimal selection of 6 conferences (in 6 distinct cities)
which start between the 12th and the 23rd of March 2012.

5.3 Experimental Setup

We performed experiments on a computer with an Intel(R) i5-3450 CPU with
4 cores and 16 GB RAM running Linux. For the Abduction Benchmark we lim-
ited memory consumption to 5 GB and execution time to 300 s (5 min). For the
RDF Benchmark we limited execution time to 1800 s (30 min). We never exe-
cuted more than 2 runs in parallel and we used non-parallel computation mode

The Hexlite Solver 603

Table 1. RDF benchmark: results of evaluating dlvhex and hexlite on the COLINDA
conference knowledge graph.

Problem Engine Time (s) Space (MB) Result External computations

Calls (#) Time (s) Learned (#)

Import dlvhex 1,800 4,321 TO 1 19 0

hexlite 31 254 OK 1 25 0

Vegas dlvhex 185 987 OK 2 38 0

hexlite 20 191 OK 1 17 0

Marathon dlvhex 1,127 2,462 OK 2,543 58 29,860

hexlite 28 199 OK 777 23 21,322

for solver settings. Time limits and reported times are CPU times. To make the
comparison fair, we used the same python plugin for dlvhex and hexlite (the
plugin API of hexlite is compatible with the one of dlvhex, including the API
for learning nogoods in external computations). We used the latest version of
dlvhex11 and the latest version of hexlite.12

5.4 Results

We will write TO (resp., MO) to indicate that the time (resp., memory) limit
was exceeded.

Figure 2 shows cactus plots of the experiments on the abduction benchmark.
For evaluation time (instantiation and search), for SK/P1, hexlite solves each
instance within at most 14 s while dlvhex fails to solves 20 instances (8 times
TO and 12 times MO). For SK/G1, hexlite fails to solve 32 instances because
of TO and dlvhex fails to solve 72 instances (46 times TO and 26 times MO).
hexlite solves all instances that dlvhex manages to solve within the timeout.
The corresponding plots of external computation times show, that dlvhex calls
the external computations more often than hexlite to solve the same instances.
The plots of memory consumption show, that memory consumption of dlvhex
rises steeper than the one of hexlite. Overall, hexlite shows a much bet-
ter performance than dlvhex on the abduction benchmark, and the difference
between the solvers is more striking for SK/G1 variant.

Table 1 shows results of running the RDF benchmark using dlvhex and
hexlite. Interestingly, the only timeout happens for Import where the whole
set of RDF triples is represented in the answer set. dlvhex cannot compute the
result within 30 min. For Vegas, where many triples can be ignored, both dlvhex
and hexlite are more efficient than for Import, however dlvhex requires 3 min
while hexlite requires 20 s to perform this (deterministic) computation. The
search/optimization problem Marathon shows a big gap between dlvhex and

11 We used git hash 5a1ee06d from git@github.com:hexhex/core.git because the
stable version 2.5.0 performed significantly worse.

12 Git hash d0e7896eb from git@github.com:hexhex/hexlite.git.

604 P. Schüller

0 20 40 60 80 100
0

20

40

ti
m
e
us
ag

e
(s
)

SK/P1

dlvhex2
hexlite

0 20 40 60 80 100
0

100

200

300

SK/G1

0 20 40 60 80 100
0

5

10

15

E
xt
er
na

l
ti
m
e
us
ag

e
(s
)

0 20 40 60 80 100
0

50

100

150

200

0 20 40 60 80 100
0

200

400

600

m
em

or
y
us
ag

e
(M

B
)

0 20 40 60 80 100
0

1,000

2,000

3,000

Fig. 2. Abduction benchmark: cactus plots for evaluation time, external computation
time, and memory usage with two different value invention limits (SK/P1 and SK/G1).

hexlite, both in terms of time and space. In particular, hexlite performs fewer
external atom calls and requires learning of fewer nogoods from the external
computation in order to find an optimal answer set and prove its optimality.
This can be explained by the lightweight usage of the clingo optimization
feature in hexlite, while dlvhex performs a lot of bookkeeping and additional
computation to perform optimization.

6 Discussion and Conclusion

Our experiments show, that hexlite has better performance than dlvhex in
two real-world applications of hex which are both in the Pragmatic hex Frag-
ment. Clearly, not all hex programs are in PHF and some problems will be

The Hexlite Solver 605

difficult to convert into PHF. Nevertheless, wherever hexlite can be applied it
can be a faster alternative to dlvhex that is also easier to install as it is fully
implemented in python. In cases where the program contains only external
atoms of type (S) and there is a loop over at least one such external atom in the
program, the FLP check becomes mandatory and the dlvhex system will most
likely have a better performance than hexlite because of its more advanced
method for performing the FLP check [12]. If only external atoms of type (G)
exist, hexlite will most likely perform better than dlvhex.

There are several reasons for the better performance of hexlite compared
with dlvhex. Firstly, hexlite can remove many external atoms during ground-
ing and they will not even be seen by the solver, while dlvhex creates guesses
for all external atoms, even those that do not depend on the interpretation, and
needs to verify their truth during the solving. This eliminates a lot of poten-
tial for backend solver preprocessing in dlvhex. Secondly, hexlite passes all
optimization tasks to the clingo solver backend and just checks during propaga-
tion whether the current assignment is in itself consistent (all interpretations are
checked against external atom semantics, non-partial interpretations are addi-
tionally checked against the FLP property). Opposed to that, dlvhex performs
a lot of internal bookkeeping related to optimization and maintains its own rep-
resentation of the interpretation and its own cost representation for answer sets,
which causes significant memory and computation overhead.

Performance issues of dlvhex were the original reason that the tool for cost-
based abduction described in [30] is formalized using the hex formalism but
implemented using a custom reasoner based on clingo. With hexlite, this
implementation could be realized with less effort and without a dedicated algo-
rithm just by using hexlite and implementations of two external computations.

hexlite uses many aspects of the clingo API, however it does not use
clingo Externals [23] which are truth values given ‘from the outside’ to the
solving process. Instead, the hex notion of external computation is in a tight
interaction with the answer set candidate and the results of other external
computations, and during hex evaluation, truth values of externals might be
reconsidered before finding an answer set. What we do use in the FLP checker
are clasp ‘assumptions’ to communicate the answer set candidate to the FLP
checker (which uses a single rewriting of the ground program for checking the
FLP property of all potential answer sets).

Related to this work is a study on lazy instantiation of constraints and an
alternative usage of propagators instead of constraints [7] using the wasp solver
[1,2]. In the future, wasp could be integrated into hexlite as an alternative
to the clingo backend, the python API of wasp could be used to deal with
external atoms of type (S). The new dlv grounder and its externals [6] could be
integrated to handle external atoms of type (G).

We are glad that a study on Inductive Logic Programming [25] was success-
fully realized using hexlite. A (pragmatic) fragment of the acthex extension
of hex [3,22] based on hexlite is available in the hexlite Git repository.

606 P. Schüller

Acknowledgements. We are grateful to Stefano Germano, Tobias Kaminski,
Christoph Redl, Antonius Weinzierl and the anonymous reviewers for feedback about
the hexlite system and this manuscript. This work has received funding from the Aus-
trian Federal Ministry of Transport, Innovation and Technology (BMVIT) under grant
agreement 861263 (DynaCon), and from the European Union’s Horizon 2020 research
and innovation programme under grant agreement 825619 (AI4EU).

References

1. Alviano, M., Dodaro, C., Faber, W., Leone, N., Ricca, F.: WASP: a native ASP
solver based on constraint learning. In: Cabalar, P., Son, T.C. (eds.) LPNMR 2013.
LNCS (LNAI), vol. 8148, pp. 54–66. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-40564-8 6

2. Alviano, M., Dodaro, C., Leone, N., Ricca, F.: Advances in WASP. In: Calimeri,
F., Ianni, G., Truszczynski, M. (eds.) LPNMR 2015. LNCS (LNAI), vol. 9345, pp.
40–54. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23264-5 5

3. Basol, S., Erdem, O., Fink, M., Ianni, G.: HEX programs with action atoms. In:
LIPIcs-Leibniz International Proceedings in Informatics, vol. 7. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik (2010)

4. Bögl, M., Eiter, T., Fink, M., Schüller, P.: The mcs-ie system for explaining incon-
sistency in multi-context systems. In: Janhunen, T., Niemelä, I. (eds.) JELIA 2010.
LNCS (LNAI), vol. 6341, pp. 356–359. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-15675-5 31

5. Cal̀ı, A., Gottlob, G., Kifer, M.: Taming the infinite chase: query answering under
expressive relational constraints. J. Artif. Intell. Res. 48, 115–174 (2013)

6. Calimeri, F., Fuscà, D., Perri, S., Zangari, J.: External computations and interop-
erability in the new DLV grounder. In: Esposito, F., Basili, R., Ferilli, S., Lisi, F.
(eds.) AI*IA 2017. LNCS, vol. 10640, pp. 172–185. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70169-1 13

7. Cuteri, B., Dodaro, C., Ricca, F., Schüller, P.: Constraints, lazy constraints, or
propagators in ASP solving: an empirical analysis. Theory Pract. Log. Program.
17(5–6), 780–799 (2017)

8. Eiter, T., Fink, M., Ianni, G., Krennwallner, T., Redl, C., Schüller, P.: A model
building framework for answer set programming with external computations. The-
ory Pract. Log. Program. 16(4), 418–464 (2016)

9. Eiter, T., Fink, M., Krennwallner, T., Redl, C.: HEX-programs with existential
quantification. In: Workshop on Logic Programming, pp. 99–117 (2013)

10. Eiter, T., Fink, M., Krennwallner, T., Redl, C.: Liberal safety for answer set pro-
grams with external sources. In: AAAI Conference on Artificial Intelligence, pp.
267–275 (2013)

11. Eiter, T., Fink, M., Krennwallner, T., Redl, C.: Domain expansion for ASP-
programs with external sources. Artif. Intell. 233, 84–121 (2016)

12. Eiter, T., Fink, M., Krennwallner, T., Redl, C., Schüller, P.: Efficient HEX-program
evaluation based on unfounded sets. J. Artif. Intell. Res. 49, 269–321 (2014)

13. Eiter, T., et al.: The DLVHEX system. KI - Künstliche Intelligenz 32(2), 187–189
(2018). http://www.kr.tuwien.ac.at/research/systems/dlvhex/

14. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining
answer set programming with description logics for the semantic web. Artif. Intell.
172(12–13), 1495–1539 (2008)

https://doi.org/10.1007/978-3-642-40564-8_6
https://doi.org/10.1007/978-3-642-40564-8_6
https://doi.org/10.1007/978-3-319-23264-5_5
https://doi.org/10.1007/978-3-642-15675-5_31
https://doi.org/10.1007/978-3-642-15675-5_31
https://doi.org/10.1007/978-3-319-70169-1_13
https://doi.org/10.1007/978-3-319-70169-1_13
http://www.kr.tuwien.ac.at/research/systems/dlvhex/

The Hexlite Solver 607

15. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-
order reasoning and external evaluations in answer-set programming. In: Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), pp. 90–96 (2005)

16. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: Effective integration of declar-
ative rules with external evaluations for semantic-web reasoning. In: Sure, Y.,
Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 273–287. Springer, Hei-
delberg (2006). https://doi.org/10.1007/11762256 22

17. Eiter, T., Kaminski, T.: Exploiting contextual knowledge for hybrid classification
of visual objects. In: Michael, L., Kakas, A. (eds.) JELIA 2016. LNCS (LNAI),
vol. 10021, pp. 223–239. Springer, Cham (2016). https://doi.org/10.1007/978-3-
319-48758-8 15

18. Eiter, T., Kaminski, T., Redl, C., Schüller, P., Weinzierl, A.: Answer set program-
ming with external source access. In: Ianni, G., et al. (eds.) Reasoning Web 2017.
LNCS, vol. 10370, pp. 204–275. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-61033-7 7

19. Eiter, T., Kaminski, T., Redl, C., Weinzierl, A.: Exploiting partial assignments for
efficient evaluation of answer set programs with external source access. J. Artif.
Intell. Res. 62, 665–727 (2018)

20. Erdem, E., Patoglu, V., Schüller, P.: A systematic analysis of levels of integration
between low-level reasoning and task planning. AI Commun. 29(2), 319–349 (2016)

21. Faber, W., Pfeifer, G., Leone, N.: Semantics and complexity of recursive aggregates
in answer set programming. Artif. Intell. 175(1), 278–298 (2011)

22. Fink, M., Germano, S., Ianni, G., Redl, C., Schüller, P.: ActHEX: implementing
HEX programs with action atoms. In: Cabalar, P., Son, T.C. (eds.) LPNMR 2013.
LNCS (LNAI), vol. 8148, pp. 317–322. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-40564-8 31

23. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving with
clingo. Theory Practi. Log. Program. 19, 1–56 (2018)

24. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and deductive
databases. New Gener. Comput. 9, 365–385 (1991)

25. Kaminski, T., Eiter, T., Inoue, K.: Exploiting answer set programming with exter-
nal sources for meta-interpretive learning. Theory Pract. Log. Program. 18(3–4),
571–588 (2018)

26. Lassila, O., Swick, R.: Resource description framework (RDF) model and syntax
specification (1999). www.w3.org/TR/1999/REC-rdf-syntax-19990222

27. Lierler, Y.: Relating constraint answer set programming languages and algorithms.
Artif. Intell. 207, 1–22 (2014)

28. Ng, H.T., Mooney, R.J.: Abductive plan recognition and diagnosis: a comprehen-
sive empirical evaluation. In: Knowledge Representation and Reasoning (KR), pp.
499–508 (1992)

29. Rosis, A.D., Eiter, T., Redl, C., Ricca, F.: Constraint answer set programming
based on HEX-programs. In: Proceedings of Workshop on Answer Set Program-
ming and Other Computing Paradigms (ASPOCP) (2015)

30. Schüller, P.: Modeling variations of first-order Horn abduction in answer set pro-
gramming. Fundamenta Informaticae 149(1–2), 159–207 (2016)

31. Softic, S.: Conference Linked Data (COLINDA), version 1.0, last updated 30 July
2016. 149020 triples. http://www.colinda.org

https://doi.org/10.1007/11762256_22
https://doi.org/10.1007/978-3-319-48758-8_15
https://doi.org/10.1007/978-3-319-48758-8_15
https://doi.org/10.1007/978-3-319-61033-7_7
https://doi.org/10.1007/978-3-319-61033-7_7
https://doi.org/10.1007/978-3-642-40564-8_31
https://doi.org/10.1007/978-3-642-40564-8_31
www.w3.org/TR/1999/REC-rdf-syntax-19990222
http://www.colinda.org

Epistemic Answer Set Programming

Ezgi Iraz Su1,2(B)

1 Department of Computer Engineering, Istinye University, Istanbul, Turkey
Ezgi-Iraz.Su@irit.fr

2 IRIT, University of Toulouse, Toulouse, France

Abstract. This paper introduces a new epistemic extension of answer
set programming (ASP) called epistemic ASP (E-ASP). Then, it com-
pares E-ASP with existing approaches, showing the advantages and the
novelties of the new semantics and discusses which formalisms provide
more intuitive results: compared to Gelfond’s epistemic specifications
(ES), E-ASP defines a simpler, but sufficiently strong language. Its epis-
temic view semantics is a natural and more standard generalisation of
ASP’s original answer set semantics, so it allows for ASP’s previous lan-
guage extensions. Moreover, compared to all semantics proposals in the
literature, epistemic view semantics facilitates understanding of the intu-
itive meaning of epistemic logic programs and solves unintended results
discussed in the literature, especially for epistemic logic programs includ-
ing constraints.

Keywords: Answer set programming · Epistemic specifications ·
Modal logic S5 · Stable models · Answer sets · World views ·
Autoepistemic equilibrium models

1 Introduction

Logic programming (LP) [21] unifies different areas of computation by exploiting
the greater generality of logic. Answer set programming (ASP) [13,14,24,25] is
an approach to declarative programming, and it relates LP to declarative prob-
lem solving by answer sets—consistent sets A of literals1 in which p /∈ A or
∼p /∈ A. In a sense, they are partial valuations. Some researchers prefer to call
them 3-valued. For instance, empty valuation assigns neither true nor false to
a propositional variable p, leaving it undetermined, which is characterised by
negation as failure (NAF) [6,7] in ASP. Answer set semantics [10] of ASP has

I want to thank Andreas Herzig, Luis Fariñas del Cerro, Michael Gelfond, Patrick
Thor Kahl, Thomas Eiter, Yi-Dong Shen, Pedro Cabalar, and Jorge Fandinno for their
research related to this paper and the anonymous reviewers for their valued comments
on the drafts of this work.
1 In ASP, a literal is a propositional variable p or a strongly-negated propositional

variable ∼p.

c© Springer Nature Switzerland AG 2019
F. Calimeri et al. (Eds.): JELIA 2019, LNAI 11468, pp. 608–626, 2019.
https://doi.org/10.1007/978-3-030-19570-0_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19570-0_40&domain=pdf
http://orcid.org/0000-0002-3447-8841
https://doi.org/10.1007/978-3-030-19570-0_40

Epistemic Answer Set Programming 609

provided a correct interpretation of NAF and related ASP to nonmonotonic rea-
soning [28,32]. ASP is currently central to various approaches in nonmonotonic
reasoning with a wide range of applications in science and technology.

Despite its successes, ASP has some drawbacks. Among others, ASP is not
powerful enough to correctly represent incomplete information, exactly in situ-
ations where there are multiple answer sets of an ASP program because NAF
performs locally (separately in each answer set) and cannot reason about over a
whole range of answer sets. Since 1991, a considerable amount of ASP research
has focused on the problem of incomplete information [3,5,8,9,11,17–20,22,29–
31,33–39], none of which however resulted in a fully satisfactory semantics. We
attack the same problem in order to overcome the obstacles of the previous
approaches towards a solution.

The first approach of this line of research is Gelfond’s epistemic specifications
(ES) [8]: he extended a special form of ASP called disjunctive logic programming
[14] by epistemic operators, able to quantify over belief set (which is, in structure,
analogous to an answer set) collections. The interpretation of this new language
is in terms of a world view—a maximal collection of belief sets about a world
reflected by an epistemic logic program Π. Hence, a world view is a kind of
3-valued S5 model (set of valuations). Similar to the answer set semantics, the
world view semantics is also reduct-based. However, different from the reduct
definition of the former where we only eliminate NAF, here the goal is, in princi-
ple, to remove epistemic modal operators. Thus, the reduct ΠA of an epistemic
logic program Π w.r.t. a world view candidate A is an ASP program which may
include NAF as well. In both semantics, the selection of these special models
from among all models of a program is in two steps (plus a fixed point check):
first, we compute the reduct of a program by a candidate model (a valuation or a
set of valuations, depending on the context); second, we construct the collection
A of all answer sets of this reduct. If the candidate model which is a (possibly
empty) set of literals in ASP, is an element of A, then we call it an answer set.
In ES, if the candidate model (which is similar to A in structure) equals A,
then we call it a world view of the original program. Thus, the ultimate decision
follows a sort of fixed point construction.

Since Gelfond’s first version [8], several semantics proposals have been sug-
gested for ES. The majority are reduct-based world view semantics: while some
offer a slightly different refinement of the preceding approach [9,11,17–20] in
order to correct unintended results, some others propose significantly different
definitions of reducts and world views [29,30]. There is also another kind of
approach, inspired by the Kripke semantics of modal logics over a more gen-
eral language [5,34]. The rest [4,33,35] are based on an epistemic extension of
equilibrium model approach [26,27]. As [35] embeds Gelfond’s obsolete previous
version [9], it is out of our consideration. [4] contains a refinement of [33], and
[4] is somewhat successful in providing intuitive results. To sum up, the (to a
certain extent) successful approaches of the day are [4,20,29].

In this paper, we propose a novel epistemic extension of ASP called epis-
temic ASP (E-ASP), which has a modest, but neat syntax character, compared

610 E. I. Su

to Gelfond’s ES. However, our language is expressive enough to formulate all
motivating examples of ES. The semantics of this new language is given by epis-
temic views, which are, in structure, similar to world views. The main advantage
of our approach over previous semantics is its simplicity and similarity to answer
set semantics of ASP. Moreover, it performs well both with cyclic and acyclic
programs, giving intuitive results. Especially, it offers a solution to the recent
constraint problem discussed in the literature [3,19].

The paper is organised as follows. The first 3 sections present related work:
Sect. 2 recalls ES and its world view semantics. Section 3 introduces autoepis-
temic equilibrium models as an alternative to world views. Section 4 defines
epistemic negation, with which suggests a new reduct and world view defini-
tion. Section 5 includes the main contribution of this paper, where we intro-
duce E-ASP. We propose epistemic view semantics and compare our results with
those of [4,19,29]. Section 6 recalls epistemic splitting property by Cabalar et al.
Section 7 concludes the paper with future work plan.

2 Epistemic Specifications (ES) and Its World View
Semantics

We here recall the recent versions of Gelfond’s ES, suggested by Kahl et al.
[18–20].

2.1 The Language of ES (LES)

The language LES extends that of ASP [1] by the modalities K (‘known’) and
M (‘may be true’). Literals of LES are divided into four kinds: objective literals
(l), extended objective literals (L), subjective literals (g) and extended subjective
literals (G).

l L g G
p | ∼p l | not l K l | M l g | not g

where p ranges over a set P of propositional variables2. LES has two negations;
strong negation ∼ and NAF (aka, default negation) not : notϕ is read “ϕ is
false by default”.

A rule is a logical statement of the form ‘head ← body’. In particu-
lar, a rule ρ of ES has the structure ‘l1 or . . . or lm ← e1, . . . , en’ in which
body(ρ) viz. ‘e1, . . . , en’ is made up of arbitrary ES literals whereas head(ρ)
viz. ‘l1 or . . . or lm’ is composed of only objective literals. When m = 0, we sup-
pose head(ρ) to be ⊥ and call the rule ρ a constraint. When n = 0, we suppose
body(ρ) to be � and call the rule ρ a fact.

2 The use of variables in ES is understood as abbreviations for the collection of their
ground instances. Thus, for simplicity, we restrict here the language LES to the propo-
sitional case.

Epistemic Answer Set Programming 611

An epistemic logic program is a finite collection of the rules of ES. Here is
Gelfond’s eligibility program ΠG, motivating us for the need of modal operators
in ASP3:

ΠG =
{

e ← h | e ← f,m | ∼e ← ∼h,∼f |h or f ← | i ← notK e, notK∼e (1)

in which h stands for highGPA; f for fairGPA; e for eligible; m for minority ; i for
interview. The first three rules of ΠG indicate the college rules to decide eligibility
for scholarship. When we consider these rules with a database, consisting of a
disjunctive information given by the fact ‘h or f ’ for a specific student, note
that NAF alone is not sufficient anymore to formalise the statement “a student
whose eligibility is not determined by the college rules should be interviewed”.
The correct representation is given by using modalities, able to quantify over
belief sets, viz. ‘i ← notK e, notK∼e’.

2.2 The Semantics of ES

Let A be a non-empty collection of consistent sets of objective literals, and let
A ∈ A. Satisfaction of literals is defined by: for an objective literal l and a
subjective literal g,

A, A |=ES l if l ∈ A; A, A |=ES not l if l /∈ A.
A, A |=ES K l if l ∈ A for every A ∈ A; A, A |=ES not g if A �|=ES g.
A, A |=ES M l if l ∈ A for some A ∈ A;

Note that satisfaction of an objective literal l is independent of A, while satis-
faction of a subjective literal g is independent of A. Thus, we sometimes write
A |=ES g or A |=ES l. Then, satisfaction of an epistemic logic program Π is
defined by: for every rule ρ ∈ Π,

A, A |=ES ρ viz. “A, A |=ES body(ρ) implies A, A |=ES head(ρ)”.

Finally, given an epistemic logic program Π, whether A is a world view of Π is
decided as follows: we first compute the reduct ΠA = {ρA : ρ ∈ Π} of Π with
respect to A, in which we eliminate K and M according to Table 1. Then, A is
a world view of Π (w.r.t. [18]) if A = AS(ΠA) where AS(ΠA) denotes the set of
all answer sets of ΠA.

For example, the only world view of ΠG (see (1)) is
{{h, e, i}, {f, i}}

. Table 2
contains more examples with focus on disjunctive information, among which the
ones emphasising the necessity for a refinement of Gelfond’s versions [8,9,11] are
given in bold.

Then, Kahl extended his version [18] to allow for expressions, formed from
objective literals being preceded by a sequence of not’s and a modal operator
(K or M). Major forms of such expressions are included in Tables 3, 4 and 5,
together with the equivalence relations they are involved in.

3 We use ‘|’ (a bit informally) to separate the rules of a program in this paper.

612 E. I. Su

Table 1. Kahl’s definition of reduct

Table 2. Epistemic logic programs and their world views

Table 3. Equivalence relations of multiply negated literals by NAF

Table 4. Equivalence relations of extended subjective literals

Table 5. Equivalences with modal operators and double not

Epistemic Answer Set Programming 613

Soon after, [4] pointed at another program, Π =
{
p ← M q, not q | q ←

M p, not p giving unintended world views under Kahl’s refined version. Indeed,
[18] proposes two world views {∅} and

{{p}, {q}}
, of which the former seems to

be unintended. Following this example, Kahl et al. [20] came up with another
update to address the issue, with semantics supporting only the latter: inspired
by [29] (see Sect. 4), they first define

Ep(Π) = {G : G = notKL for some extended objective literal L and G

appears in Π}.

Note that the set Ep(Π) checks all extended subjective literals occur-
ring in Π and by using the equivalences between notnotK p and K p,
as well as notKnotp and M p, picks the forms notKL (for an extended
objective literal L) in their structure. To illustrate this set, consider
the program Γ = {t ← K p,M q, notK r, notM s}. Thus, Ep(Γ) =
{notK p, notKnotq, notK r, notKnots}. Then, they take the subset ΦA = {G ∈
Ep(Π) : A |=ES G} w.r.t. a candidate model A. Finally, A is a world view of Π
if:

A = AS(ΠA), and there is no A′ such that A′ = AS(ΠA′
) and ΦA′ ⊃ ΦA.

On the one hand, as mentioned in [3,19], researchers have now discovered
another problem: different from their effect on answer sets in ASP4, in ES insert-
ing a constraint into a program may now bring out completely new world views.
The reason is because here constraints show their effect on its belief sets rather
than a world view as a whole. So, not only Kahl’s all versions, but also [4,29]
suffer from new counterintuitive results produced over acyclic programs while
they are trying to obtain the intuitive understanding of the behaviour of cycles.
Interestingly, only in Gelfond’s first version [8,9], and its generalisation [34] by
Truszczyński, constraints function to rule out world views, violating that con-
straint (as desired). To sum up, as a negative outcome of added complexity, the
recent semantics approaches seem to have lost this property. On the other hand,
as argued in [29], Kahl’s reduct definition offers a complex program transforma-
tion, lacking an intuitive explanation for the replacement of subjective literals.

Let us terminate our discussion with two examples: Π1 =
{
p ← K p | p ←

notK p and Π2 =
{
p ← M p | p ← notM p. As Kahl obtains no world view for

Π1, he gets a unique world view
{{p}}

for Π2. However, the body parts of these
programs produce a tautology (see the equivalence relations given in Table 5), so
it is strange to see two different solutions according to his semantics approach,
but not

{{p}}
only for both.

4 In ASP, constraints show their effect on programs by eliminating or keeping their
answer sets.

614 E. I. Su

3 Fariñas et al.’s Approach: Autoepistemic Equilibrium
Models

In 2015, Fariñas et al. [4] proposed the autoepistemic equilibrium models
(AEEMs) approach as an alternative semantics for ES. This section briefly recalls
their approach.

3.1 Epistemic Here-and-There Logic (EHT) and Its Equilibrium
Models

EHT extends the logic of here-and-there (HT) [15] by (nondual) epistemic modal
operators K and K̂, of which K is the same as K in ES, but [4] never explains the
meaning and reading of K̂. Note that as shown later via an example, the modal
operator M in ES is translated to ¬K¬ in EHT. An EHT model is a collection
of HT models. It can also be described as a refinement of S5 models (sets of
valuations) [2] in which valuations are replaced by HT models. Formally, an
EHT model is an ordered pair 〈T , �〉 in which

– T ⊆ 2P is a nonempty set of valuations (i.e., a classical S5 model);
– � : T → 2P is a map, assigning to each there-world T ∈ T a here-world

�(T) ⊆ T .

Epistemic equilibrium models (EEMs) of a formula ϕ ∈ LEHT are then defined
as particular S5 models satisfying a minimality condition [4] (similar to that of
[27])5:

EEM(ϕ) =
{
T ⊆ 2P : T ,T |=S5 ϕ and there is no h �= id such that 〈T , �〉,T |=EHT ϕ

}
.

A typical ES program Π is translated into an EHT theory Π∗ via a map (.)∗

as in:

Π =
{

p or∼q ← M r, not s | q ← notK p

Π∗ =
(
(¬K¬r ∧ ¬s) → (p ∨ q̃)

) ∧ (¬K p → q
) ∧ ¬(

q ∧ q̃
)
.

The EEM approach fails to give intuitive results, especially in the presence of
disjunction. Gelfond’s example ΠG (see (1)) immediately supports this fact (see
Table 6 for more examples): ΠG has a unique world view

{{h, e, i}, {f, i}}
, but

Π∗
G has three EEMs: T1 =

{{h, e, i}, {f, i}}
, T2 =

{{h, e}}
and T3 =

{{f, i}}
,

among which T2 is unintended. To overcome this problem, [4] uses a selection
process over EEMs and proposes autoepistemic equilibrium models (AEEMs)6.

5 For the truth conditions of EHT, you can refer to [4].
6 However, as in Kahl’s approach, adding a constraint into a program may also

give here unexpected results. For instance, take the eligibility program ΠG and
a constraint ← i. Then, the resulting EHT theory Π∗

G ∪ {¬i} has a unique AEEM
T2 =

{{h, e}}
, instead of having no AEEM.

Epistemic Answer Set Programming 615

The AEEM approach can handle a more general language, but its way of choos-
ing intuitive models is highly complex: the AEEM semantics depends on two
orderings, set inclusion ⊆ and a preference ordering ≤ϕ, which function simul-
taneously. So, it is possible in principle that two EEMs can eliminate each
other w.r.t. their different orderings. To spell it out, it could happen that
T1 ⊂ T2, but also T2 <ϕ T1 for T1,T2 ∈ EEM(ϕ). For instance, let ϕ =
p∨ r ∨K (p∨ q). Then, EEM(ϕ) =

{{{p}}
,
{{r}}

,
{{q}}

,
{{p}, {q}}

,
{{p}, {r}}}

,
among which there are two satisfying the condition above:

{{p}, {q}}
<ϕ

{{p}}
and

{{p}} ⊂ {{p}, {q}}
. Fortunately, in this case, AEEM(ϕ) =

{{{p}, {r}}}
since{{p}} ⊂ {{p}, {r}}

and
{{p}, {q}}

<ϕ

{{p}, {r}}
. One immediate question is

if
{{p}, {q}}

is indeed unintended. Briefly, this approach may be suffering from
such a clash in the selection process although none has been found so far.

4 Shen and Eiter’s Approach: Epistemic Negation

In 2016, Shen et al. [29,30] proposed a new semantics for ES. The idea is to use
notK (which they call epistemic negation) to minimise knowledge in the set of
all belief sets. Given an epistemic logic program Π and a nonempty collection
A ⊆ 2P of consistent sets of objective literals, let Ep(Π) (see Sect. 2.2) be the
set of all epistemic negations appearing in Π, and let Φ ⊆ Ep(Π) be its subset
(which they call a guess). Let ΦA = {G ∈ Ep(Π) : A |= G} be the set
of all epistemic negations in Π, satisfied by A. Then, we transform Π into an
epistemic reduct ΠΦ w.r.t. Φ by replacing every notKL ∈ Φ with � and every
notKL ∈ Ep(Π) \ Φ with notL. Finally, A is a world view of Π if

1. A = AS(ΠΦ) = {A : A is an answer set of ΠΦ};
2. ΦA agrees with Φ, i.e., ΦA = Φ;
3. Φ is maximal, i.e., there is no bigger guess Φ′ ⊃ Φ such that A′ = AS(ΠΦ′

)
and ΦA′ = Φ′ for some nonempty collection A′ of consistent sets of objective
literals.

Let us illustrate their approach by an important application and motivation of
ES: Closed Wold Assumption (CWA), which says that “p is assumed to be false
if there is no evidence to the contrary” and is expressed in ASP by ∼p ← notp7.
However, it is formalised more adequately in ES as ∼p ← notM p by [12] or ∼p ←
notK p by [29]. For instance, let Π =

{
p̃ ← notK p | ⊥ ← p, p̃. Then, take the

guess Φ = {notK p}. Thus, ΠΦ =
{
p̃ ← � | ⊥ ← p, p̃. Clearly, AS(ΠΦ) = {{p̃}}

and {{p̃}} |=ES Φ. Since Φ is the maximal guess possible (see item 3 above),
{{p̃}} is the unique world view of Π.

7 However, this formalisation was then discovered to cause problems [12]. Consider
Π =

{
p or q | ∼p ← notp. Then, AS(Π) =

{{p}, {q, ∼p}}
, and it answers the query

∼p? unknown (as it does not appear in both answer sets) while p is undetermined.
This result is unintended.

616 E. I. Su

5 Our Approach: Epistemic ASP (E-ASP) and Its
Epistemic Views

This section introduces an epistemic extension of ASP called epistemic ASP. We
begin with a discussion on our motivation and the main differences with other
approaches.

5.1 Motivation and Novelty

The problem of incomplete information in ASP still matters after more than
two decades of research on the subject. Despite their successes, the approaches
[4,20,29] are not fully satisfactory, and some of their seemingly intuitive results
are still under discussion.

Compared to Kahl’s language [18], we introduce a simpler language. We
propose a modest syntax character, allowing only one epistemic operator K.
However, different from ES, K may also appear in the head of a rule. We find our
language strong enough to solve the problem of incomplete information in ASP
because most of the critical examples in the literature, including Gelfond’s ΠG

(1) and the new formalisation of CWA, use notK only to solve the quantification
problem. Note that Kahl and others use also M as dual of K . Besides, we more
naturally extend the syntax of ASP through the same structure of program rules,
allowing not to appear only in front of literals. Note that Kahl and others use
it in a literal formation as notK , notKnot , Knot etc.

The semantics of the new language is via an epistemic view, which is a
straightforward generalisation of the answer set notion in ASP. Different from
world view semantics, our semantics approach exploits a two-fold computation
procedure, by splitting the program into two levels: we first look for if the can-
didate model, which is involved in the reduction process, is a maximal minimal
model of the first level. Our reduct definition is oriented to eliminate NAF in a
similar way with that of ASP. Existing reduct definitions simplify the program
by removing subjective literals in the form of Kl, Ml, notKl and notMl (but,
not ‘notl’) for an objective literal l. So, our reduct is always a positive program
containing no NAF in it. The minimality condition is understood in the sense of
set inclusion. It is given by checking the minimality of each set making up the
(biggest possible) collection. This is similar to the method, searching for answer
sets. Second, we check if such minimal models of the first level are compatible
with the second level, composed of only the constraints of the main program.
So, we aim to solve the recent constraint problem discussed in Sect. 2.2. We find
the semantics approaches of [18,29] a bit nonstandard: first, is it a right attitude
to eliminate the “positive” constructs in the form of K l and M l especially while
world views of ES are given as kind of S5 models? Second, why do we force each
valuation in such S5 models to be an answer set of the resulting program? In ES,
we ask the query to the collection as a whole rather than its elements separately.
At least, there is something going wrong in these approaches as always a new
unintended model is being discovered, and then the reduction definitions have
to be changed. To end with, our semantics approach can also be more smoothly

Epistemic Answer Set Programming 617

adapted to E-ASP programs with NAF in the head [16] and to E-ASP programs
with nested expressions [23], also including subjective literal K l.

5.2 The Language of Epistemic ASP (LE-ASP)

Literals (λ) of LE-ASP are of two types: objective literals (l) and subjective literals
(g).

l g
p | ∼p K p | K∼p

in which p ∈ P, and ∼ denotes strong negation. K l is read “l is known”. Different
from ES, we do not allow NAF to appear in a literal formation. However, NAF
can precede any literal λ in the body of a rule, and notλ means that: there is no
evidence for λ, and so, the query λ? is undetermined. Again, different from ES,
we allow K l to appear in the head of a rule. Thus, an E-ASP program is defined
as a finite collection of rules

λ1 or . . . orλk ← λk+1, . . . , λm, notλm+1, . . . , notλn

in which λi’s are arbitrary (objective or subjective) literals. When we restrict λi’s
to objective literals, the resulting program is a disjunctive logic program [14].
Hence, E-ASP rules are conservative extensions of ASP’s disjunctive rules. As we
follow the same structure, extensions to richer languages are straightforward via
the main ASP track.

5.3 The Semantics of Epistemic ASP

The semantics of E-ASP is given by an epistemic view. Similar to a world view,
it is a nonempty collection of consistent sets of objective literals. What we sub-
stantially differ is how we pick such intuitive models from among all models
of an epistemic program. Let Π be an E-ASP program. We first split Π into
two disjoint parts. The set of all constraints rc ∈ Π constitutes the upper layer
(‘top’), symbolised by Π. This is the part of the program where we decide the
ultimate epistemic views of Π through the process: refute, accept or reorganise.
The rest, i.e., the set Π \Π forms the lower layer (‘bottom’), where we determine
the collections of possible belief sets. We denote it by Π.

Example 1. Given a program

Σ =
{

p ← not∼q | ∼q ← not p | r ← notK p | ← not r (2)

we have Σ =
{
p ← not∼q | ∼q ← not p | r ← notK p and Σ =

{ ← not r.

We start by computing the epistemic views of Π, each of which are then involved
in an evaluation process carried out in Π. However, if Π = ∅, then EV(Π) =
EV(Π), where EV(Π) denotes the set of all epistemic views of Π. In this case, the

618 E. I. Su

epistemic view of the program is either {∅} or none. For instance, EV({← p}) ={{∅}}
. Recall that ←p has a unique answer set, namely ∅. If EV(Π) = ∅, then

EV(Π) = ∅. When Π = ∅, EV(Π) = EV(Π).
Our reduct based semantics is oriented to eliminate only NAF as in ASP.

Remember that NAF appears as part of a construct notλ in an E-ASP program
in which λ is an arbitrary literal. We here follow a “guess-and-check” method:
let A be a nonempty collection of consistent sets of objective literals, and let
A ∈ A. Then, 〈A, A〉 is a sort of pointed (3-valued) S5 model with A being the
actual world. In an explicit representation, we simply underline the actual world
A in a collection A. The partial valuation of A assigns true to p if p ∈ A and
false if ∼p ∈ A (undefined otherwise). The reduct Π〈A,A〉 of Π w.r.t. 〈A, A〉 is
given by replacing every occurrence of notλ with8

R.1 ⊥ if A, A |=E-ASP λ (simply, for λ= l if A |=E-ASP l; for λ=K l if A |=E-ASP K l);
R.2 � if A, A �|=E-ASP λ (simply, for λ = l if A�|=E-ASP l; for λ=K l if A�|=E-ASPK l).

Example 2. Given a pointed model
{{p}, {∼q}}

, consider (2) above. Then,

Σ{{p},{∼q}} =
{
p ← � | ∼q ← ⊥ | r ← � since {p} �|=E-ASP ∼q, {p} |=E-ASP p and

{{p}, {∼q}} �|=E-ASP K p. Now, we replace notK p by K p and notr by notK r in Σ
and call the resulting program Γ :

Γ =
{

p ← not∼q | ∼q ← not p | r ← K p | ← notK r. (3)

Then, Γ {{p},{∼q}} =
{
p ← ⊥ | ∼q ← � | r ← K p since {∼q} |=E-ASP ∼q, but

{∼q} �|=E-ASP p.

Thus, our reduct definition simplifies a program, removing only NAF w.r.t. R.1
and R.2.

First of all, we introduce a truth-minimality criterion, based on set inclusion
over each set A making up a collection A: let O-Lit be the set of all objective
literals of LE-ASP, and let s : A → 2O-Lit be a (subset) map such that s(A) ⊆ A
for every A ∈ A. (When s equals the identity map id, we obtain A itself.) Then,
a weakening of A at a point A ∈ A is identified with 〈s[A], s(A)〉 such that
s �= id and s|A\{A} = id, by which we take a strict subset of A ∈ A and do
not modify the rest. We say that 〈s[A], s(A)〉 is weaker than 〈A, A〉 and denote
it by 〈s[A], s(A)〉 � 〈A, A〉. For example, the weakenings of {{p,∼q}, {r}} are
{{p}, {r}}, {{∼q}, {r}} and {∅, {r}}. Finally, we define a nonmonotonic satis-
faction relation |=∗ for pointed (three-valued) S5 models: A, A |=∗ Π if and
only if

A, A |=E-ASP Π and s[A], s(A) �|=E-ASP Π for every s viz. 〈s[A], s(A)〉 � 〈A, A〉
where the latter condition says that none of the weakenings of 〈A, A〉 is a model
of Π.
8 The satisfaction relation |=E-ASP of E-ASP is the same as the relation |=ES (see

Sect. 2.2).

Epistemic Answer Set Programming 619

Definition 1. Let A ⊆ 2O-Lit be a nonempty set of consistent sets of objective
literals. Then, A is a minimal model of Π if A, A |=∗ Π〈A,A〉 for every A ∈ A.

Example 3. {{p}, {∼q}} is a minimal model of Γ (3): Γ {{p},{∼q}} =
{
p ← | r ←

K p and {{p}, {∼q}} |=E-ASP Γ {{p},{∼q}} while its weakening {∅, {∼q}} refutes it.

Likewise, Γ {{p},{∼q}} =
{∼q ← | r ← K p and {{p}, {∼q}} |=E-ASP Γ {{p},{∼q}}

while its only weakening {{p}, ∅} does not satisfy it. Clearly, {{p, r}} and {{∼q}}
are the other minimal models of Γ . Similarly, {{p, r}, {∼q, r}} is a minimal
model of Σ (2): indeed, Σ{{p,r},{∼q,r}} =

{
p ← | r ← and it is obvious

that {{p, r}, {∼q, r}} satisfies it while all its weakenings refute it. We also have

Σ{{p,r},{∼q,r}} =
{∼q ← | r ← and {{p, r}{∼q, r}} |=E-ASP Σ{{p,r},{∼q,r}}

while any of its weakenings violates it. The other two minimal models of Σ are
{{∼q, r}} and {{p}}. In each program, the last two minimal models (i.e., the
singleton models9) are unintended.

As seen above, minimality of truth does not always guarantee intuitive
results. Therefore, we will now introduce a criterion to choose intended mod-
els among all such minimal models. Given an E-ASP program Π, we first define
a Π-indexed partial preorder (denoted by �Π) over three-valued S5 models by:
A �Π A′ if and only if

A ∪ A′, A |=E-ASP Π for all A∈A implies A ∪ A′, A′ |=E-ASP Π for all A′ ∈ A′.
(4)

The strict version of �Π is given as usual: A ≺Π A′ iff A �Π A′ and A′ ��Π A.
If A �Π A′ and A′ �Π A, then A is equivalent to A′ w.r.t. �Π (denoted by
A ≈Π A′).

Example 4. The program Υ =
{
p or q | p ← notK q has two minimal mod-

els: {{p}} and {{q}}, among which {{q}}≺Υ {{p}} since {{p}, {q}} |=E-ASP Υ , but
{{p}, {q}} �|=E-ASP Υ .

Definition 2. A ⊆ 2O-Lit is an epistemic view of a “constraint-free” program
Π if

1. A is a minimal model of Π;
2. there is no minimal model A′ of Π such that A ≺Π A′;

9 Singleton minimal models of a program Π are sometimes source of a problem in
capturing intuitive results: for a singleton set, Kp and p are of no difference, as well
as notKp and notp. Thus, an E-ASP program performs like an ASP program, and
we may obtain “unjustified” minimal models. For instance, in Σ, if we replace notK
with not, the resulting ASP program has the answer sets {p} and {∼q, r}. Note
that {{p}} and {{∼q, r}} are minimal models of Σ. We get a similar result if we
change K p with p in Γ . Thus, singleton sets do not allow us to quantify over all
possible beliefs. In order to overcome this obstacle, we need to check the behaviour
of singletons in an interplay with other minimal models by using an ordering.

620 E. I. Su

Example 4, cont. Thus, EV(Υ) =
{{{p}}}

. Let Λ =
{
p ← not q | q ← notK p.

Clearly, {{p}} and {{q}} are the only minimal models of Λ. Recall that for
singletons, Λ behaves as an ASP program Λ′ =

{
p ← notq | q ← notp and Λ′ has

2 answer sets {p} and {q}. So, again we cannot quantify over all beliefs. Indeed,
{{p}, {q}} �|=E-ASP Λ, but {{p}, {q}} |=E-ASP Λ. Thus, we have {{p}} ≺Λ {{q}}.
Consequently, EV(Λ) =

{{{q}}}
.

Example 5. We have seen that Σ (2) and Γ (3) have 3 minimal models.
Among these, we have the order, {{p}} ≺Σ {{∼q, r}} ≈Σ {{p, r}, {∼q, r}} and
{{∼q}} ≈Γ {{p, r}} ≈Γ {{p}, {∼q}}. So, the ordering �Π is not strong enough
to rule out all unintended models. When this is the case, we need to apply a
third condition to compare equivalent models w.r.t. �Π .

We now introduce a knowledge-minimising condition: Let L(.) represent the
set of objective literals occurring in any syntactic construct (head, body, etc). We
first consider the set HΠ =

⋃
r∈Π L(head(r)) of all objective literals occurring

in the head parts of a program Π. For example, HΣ = HΣ = HΓ = HΓ =
{p,∼q, r} (see (2) and (3)). Note that belief sets A’s of an epistemic view A of
Π can only contain literals from HΠ

10. Inspired by [29] (but, in a different way),
we define the set of all unknowns among the literals in HΠ w.r.t. A and denote
it by ΦΠ

A = {l ∈ HΠ : A |=E-ASP notK l}.

Definition 2, cont.

3. ΦΠ
A is maximal, i.e., there is no minimal model A′ of Π such that ΦΠ

A ⊂ ΦΠ
A′ .

Intuitively, item 3 means A to answer maximum possible head-literals undeter-
mined.

Example 5, cont. If we reconsider the above �Σ-equivalent and �Γ -equivalent
minimal models, then we see that {p,∼q} = Φ

Σ
{{p,r},{∼q,r}} ⊃ Φ

Σ
{{∼q,r}} = {p}.

As a result, EV(Σ) =
{{{p, r}, {∼q, r}}}

. Similarly, Φ
Γ

{{p},{∼q}} = {p,∼q, r},

Φ
Γ

{{∼q}} = {p, r} and Φ
Γ

{{p,r}} = {∼q}. Then, we have: Φ
Γ

{{p},{∼q}} ⊃ Φ
Γ

{{∼q}} and

Φ
Γ

{{p},{∼q}} ⊃ Φ
Γ

{{p,r}}. Thus, EV(Γ) =
{{{p}, {∼q}}}

.

Remark 1. Note that there is also an order between the orders of item 2 and
item 3: we only use item 3 over minimal models of Π that are maximal, but
equivalent w.r.t. �Π .

Example 6. We now consider Gelfond’s program ΠG (1): ΠG has 3 minimal
models, namely A1 = {{f, i}}, A2 = {{h, e}} and A3 = {{f, i}, {h, e, i}}, among
which A2≺ΠA3≈ΠA1. Thus, we need to check the unknowns of A3 and A1. Since
{e,∼e, h, f} = ΦΠG

A3
⊃ ΦΠG

A1
= {e,∼e, h}, we have EV(ΠG) =

{
A3

}
. However,

we may not always compare maximal �Π-equivalent minimal models: let Ω ={
p ← notK q | q ← notK p. Ω has two minimal models {{p}} and {{q}} such that

10 Fact [in ASP]: if A ∈ AS(Π), then every l ∈ A belongs to the head of one of the rules
in Π.

Epistemic Answer Set Programming 621

{{p}} ≈Ω {{q}} since {{p}, {q}} �|=E-ASP Ω and {{p}, {q}} �|=E-ASP Ω. Moreover,
ΦΩ

{{p}} = {q} and ΦΩ
{{q}} = {p}. As a result, EV(Ω) =

{{{p}}, {{q}}}
.

When a program Π contains constraints, i.e, Π �= ∅, we first compute EV(Π)
as explained above. Then, we evaluate each A ∈ EV(Π) w.r.t. their behaviour on
Π: take ϕ =

∨
rc∈Π body(rc). For every A ∈ A, if A, A �|=E-ASP ϕ, then we accept

A and call it Aaccept; else if A, A |=E-ASP ϕ, then we eliminate A and call it
Arefute. Finally, we reorganise the rest in such a way that we take the biggest
possible subset Anew ⊆ A such that Anew is still a minimal model of Π and
Anew, A �|=E-ASP ϕ, for every A ∈ Anew. As a result, EV(Π) is the collection of
all Aaccept’s and Anew’s. Note that when Π exclusively contains the constraints
composed of only (negated) subjective literals, we either refute or accept the
epistemic views of Π.

Example 5, cont. We have seen that EV(Σ) =
{{{p, r}, {∼q, r}}}

and EV(Γ) ={{{p}, {∼q}}}
. As {{p}, {∼q}} violates ←notKr, it fails to be the epis-

temic view of the program Γ (refute!). Hence, EV(Γ) = ∅. However, as
{{p, r}, {∼q, r}} |=E-ASP r, it satisfies ←notr, and so, it passes the test (accept !).
Thus, EV(Σ) =

{{{p, r}, {∼q, r}}}
.

Example 7. Let Δ =
{
p or q ← | r or s ← notKp | ← r. It is easy to see that

EV(Δ) =
{{{p, r}, {q, r}, {p, s}, {q, s}}}

.

Then, since {{p, r}, {q, r}, {p, s}, {q, s}} |=E-ASP r, we have to remove the actual
worlds {p, r} and {q, r}, resulting in a new collection {{p, s}, {q, s}} (reorgan-
ise!). As a result, EV(Δ) =

{{{p, s}, {q, s}}}
. However, while EV(Δ ∪ {←Ks}) =

EV(Δ), EV(Δ ∪ {←Ks}) = ∅.

Example 8. Let Ψ1 = {←Kp, notq} and Ψ2 = {←notKp} be the one-rule (con-
straint) E-ASP programs. As mentioned above, the only candidate epistemic
view is {∅} for Ψ1 and Ψ2. Since {∅} �|=E-ASP q and {∅} �|=E-ASP K p, we have
Ψ

{∅}
1 = {←Kp,�} and Ψ

{∅}
2 = {←�}. Clearly, EV(Ψ1) =

{{∅}}
and EV(Ψ2) = ∅.

5.4 Comparison of Epistemic Views with World Views and AEEMs

We here compare epistemic views with world views and AEEMs over some
examples. Table 6 illustrates all these approaches. Overall, epistemic views of
an E-ASP program perform well, aligning with its world views and AEEMs.
However, one striking advantage of our method over existing semantics is its
reasonable behaviour with programs including constraints: we have seen that
EV(Γ) =

{{{p}, {∼q}}}
and EV(Γ) = ∅. However, while Γ has a unique world

view (AEEM) {{p}, {∼q}}, when we add a constraint ← notKr into Γ , the
resulting program Γ has another world view (AEEM) {{p, r}}, violating the
above property (see the last two examples of Table 6 as well).

To end with, Shen et al. [29] discuss that Pearce’s equilibrium semantics
suffers from circular justifications and relatedly claim that [4] inherits the same

622 E. I. Su

Table 6. World views by both [20] and [29], AEEMs (bold), and epistemic views
(bold)

circularity, leading to some undesired results. One supporting example is Π ={
p ← notKp | p ← p. [29] argues that Π has no AEEMs, but in fact,

{{p}}
is

expected to be its unique world view since notKp ∨ p constitutes a tautology.
However, for {{p}}, this formula is of no difference than notp ∨ p and it is hard
to believe that the latter is a tautology. Our approach agrees with [4]: since
{{p}} �|=E-ASP notK p, we have Π{{p}} =

{
p ← ⊥ | p ← p. Clearly, {∅} is the

unique minimal model of Π{{p}}. Thus, EV(Π) = ∅. Moreover, the first rule of
Π intuitively says that if there is no evidence for Kp, then p is always true,
so as already agreed by most of the approaches in the literature, this rule does

Epistemic Answer Set Programming 623

not have a world view in ES. The second rule is just a tautology, giving no
information. Under these conditions, Π cannot have a world view in ES.

6 Splitting Epistemic Logic Programs

Cabalar et al. [3] have recently established a formal property called epistemic
splitting, with which they test if a semantics proposal of ES has a reasonable
behaviour when subjective literals are stratified. The idea is to separate a pro-
gram Π into two disjoint subprograms (if possible), top and bottom, among which
top questions bottom via its subjective literals, and bottom never refers to head
literals of top. If splitting is the case w.r.t. a set of literals U , then we calculate
world views of Π in four steps: first we compute the world views Ab of bottom;
second for each Ab, we take kind of partial reduct ΠAb

U by replacing subjective
literals (whose literals are included in U) of top with their truth values in Ab;
third we find the world views At of ΠAb

U , and end with a solution 〈Ab,At〉 for
Π; finally we concatenate the elements of Ab and At, and result in new world
views Ab � At = {Ab ∪ At : Ab ∈ Ab and At ∈ At}, answering the queried
information.

All proposed semantics trials in the literature fail to satisfy this candidate
property, but Gelfond’s first version [8], which suffers most, among others, the
counterintuitive behaviour of cyclic programs. (Recall that [8] computes two
world views

{∅}
and

{{p}}
for both p ← Kp and p ← Mp. For the former rule,

while
{{p}}

is counterintuitive, for the latter,
{∅}

is counterintuitive, which has
been justified by almost all semantics proposals in the literature.) The other
semantics that passes epistemic splitting test is Truszczyński’s approach [34].
(Remember that [34] produces a world view

{∅}
for the program p ← p, notp,

which departs it even from ASP.) Our approach is also compatible with epis-
temic splitting property because first, in a splittable program we can always
put all (and only) constraints composed of just (negated) subjective literals into
topmost layer since they are headless, and they do not contain objective literal
conjuncts, and the rest of the constraints will appear in the below layers; second,
we can compute the epistemic views of the lower layers as defined in Sect. 2.2
by dividing each layer into two parts where constraints are located at the top;
finally, we evaluate the final epistemic views according to the truth values of
topmost subjective literals conjuncts in the candidate world view by keeping or
eliminating candidate epistemic views.

Example 9. We can split Γ (see (3)) into 3 layers: L0 =
{
p ← not∼q | ∼q ←

notp, L1 =
{
r ← Kp and L2 =

{ ← notKr. Then, EV(L0) =
{{{p}, {∼q}}}

and EV(L{{p},{∼q}}
1) = EV(r ← ⊥) =

{{∅}}
. Next, EV(L0∪L1) =

{{{p}, {∼q}}}
.

Finally, since EV(L{{p},{∼q}}
2) = EV(← �) = ∅, we have EV(Γ) = ∅.

7 Conclusion

In this paper, we propose a neat and more standard epistemic extension of ASP
(E-ASP). E-ASP is a strong rival to existing approaches in the sense that: we

624 E. I. Su

introduce a simpler and more intuitive semantics, which will be better suited for
knowledge representation, and the design of intelligent agents. The new reduct
definition, which is similar to that of ASP, will hopefully lead to an efficient
implementation of an E-ASP program solver, allowing the new language to be
of more practical use. We will search first if ASP technology can be exploited to
compute epistemic views. E-ASP provides a solid framework for further language
extensions of ASP. Therefore, we also plan to adapt previous language extensions
of ASP to E-ASP. Finally, we would like to propose a new epistemic extension of
equilibrium logic, embedding E-ASP as well.

References

1. Baral, C., Gelfond, M.: Logic programming and knowledge representation. J. Log.
Program. 19, 73–148 (1994)

2. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in The-
oretical Computer Science. Cambridge University Press, Cambridge (2001)

3. Cabalar, P., Fandinno, J., Fariñas del Cerro, L.: Splitting epistemic logic programs.
In: Proceedings of the 17th International Workshop on Nonmonotonic Reasoning,
NMR 2018, Tempe, Arizona, USA, 27–29 October 2018 (2018)

4. Fariñas del Cerro, L., Herzig, A., Su, E.I.: Epistemic equilibrium logic. In: Yang,
Q., Wooldridge, M. (eds.) Proceedings of the 24th International Joint Confer-
ence on Artificial Intelligence, pp. 2964–2970. AAAI Press (2015). http://ijcai.
org/papers15/Abstracts/IJCAI15-419.html

5. Chen, J.: The generalized logic of only knowing (GOL) that covers the notion of
epistemic specifications. J. Log. Comput. 7(2), 159–174 (1997)

6. Clark, K.L.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data
Bases, Symposium on Logic and Data Bases, Centre d’études et de recherches de
Toulouse, France. Advances in Data Base Theory, pp. 293–322. Plemum Press,
New York (1977)

7. Gabbay, D.M.: What is negation as failure? In: Artikis, A., Craven, R., Kesim
Çiçekli, N., Sadighi, B., Stathis, K. (eds.) Logic Programs, Norms and Action.
LNCS (LNAI), vol. 7360, pp. 52–78. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29414-3 5

8. Gelfond, M.: Strong introspection. In: Dean, T.L., McKeown, K. (eds.) Proceedings
of the 9th National Conference on Artificial Intelligence, Anaheim, CA, USA, 14–19
July 1991, vol, 1, pp. 386–391. AAAI Press/The MIT Press (1991)

9. Gelfond, M.: Logic programming and reasoning with incomplete information. Ann.
Math. Artif. Intell. 12(1–2), 89–116 (1994)

10. Gelfond, M.: Answer sets. In: Handbook of Knowledge Representation, vol. 1, p.
285 (2008)

11. Gelfond, M.: New semantics for epistemic specifications. In: Delgrande, J.P., Faber,
W. (eds.) LPNMR 2011. LNCS (LNAI), vol. 6645, pp. 260–265. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-20895-9 29

12. Gelfond, M.: New definition of epistemic specifications. In: KR Seminar. Texas
Tech University, 28 April 2011. (talk)

13. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming.
In: Kowalski, R.A., Bowen, K.A. (eds.) Logic Programming, Proceedings of the
Fifth International Conference and Symposium, Seattle, Washington, USA, 15–19
August 1988, vol. 2, pp. 1070–1080. MIT Press (1988)

http://ijcai.org/papers15/Abstracts/IJCAI15-419.html
http://ijcai.org/papers15/Abstracts/IJCAI15-419.html
https://doi.org/10.1007/978-3-642-29414-3_5
https://doi.org/10.1007/978-3-642-29414-3_5
https://doi.org/10.1007/978-3-642-20895-9_29

Epistemic Answer Set Programming 625

14. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Gener. Comput. 9(3/4), 365–386 (1991)

15. Heyting, A.: Die formalen Regeln der intuitionistischen Logik. Sitzungsber. Preuss.
Akad. Wiss. 42–71, 158–169 (1930)

16. Inoue, K., Sakama, C.: Negation as failure in the head. J. Log. Program. 35(1),
39–78 (1998)

17. Kahl, P., Watson, R., Balai, E., Gelfond, M., Zhang, Y.: The language of epistemic
specifications (refined) including a prototype solver. J. Log. Comput. (2015)

18. Kahl, P.T.: Refining the semantics for epistemic logic programs. Ph.D. thesis, Texas
Tech University, Department of Computer Science, Lubblock, TX, USA, May 2014

19. Kahl, P.T., Leclerc, A.P.: Epistemic logic programs with world view constraints.
In: Palù, A.D., Tarau, P., Saeedloei, N., Fodor, P. (eds.) Technical Communications
of the 34th International Conference on Logic Programming, ICLP 2018, Oxford,
United Kingdom, 14–17 July 2018. OpenAccess Series in Informatics OASICS,
vol. 64, pp. 1:1–1:17. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2018).
https://doi.org/10.4230/OASIcs.ICLP.2018.1

20. Kahl, P.T., Leclerc, A.P., Son, T.C.: A parallel memory-efficient epistemic logic
program solver: harder, better, faster. CoRR abs/1608.06910 (2016). http://arxiv.
org/abs/1608.06910

21. Kowalski, R.A.: Logic programming. In: Siekmann, J.H. (ed.) Computational
Logic, Handbook of the History of Logic, vol. 9, pp. 523–569. Elsevier (2014).
https://doi.org/10.1016/B978-0-444-51624-4.50012-5

22. Leclerc, A.P., Kahl, P.T.: A survey of advances in epistemic logic program solvers.
abs/1809.07141 (2018). http://arxiv.org/abs/1809.07141. (Also in the Proceedings
of the 11th International Workshop on Answer Set Programming and other Com-
puter Paradigms, ASPOCP 2018, Oxford, UK, 18 July 2018)

23. Lifschitz, V., Tang, L.R., Turner, H.: Nested expressions in logic programs. Ann.
Math. Artif. Intell. 25(3–4), 369–389 (1999)

24. Marek, V.W., Truszczynski, M.: Stable models and an alternative logic pro-
gramming paradigm. CoRR cs.LO/9809032 (1998). http://arxiv.org/abs/cs.LO/
9809032

25. Niemelä, I.: Logic programs with stable model semantics as a constraint program-
ming paradigm. Ann. Math. Artif. Intell. 25(3–4), 241–273 (1999). https://doi.
org/10.1023/A:1018930122475

26. Pearce, D.: A new logical characterisation of stable models and answer sets. In:
Dix, J., Pereira, L.M., Przymusinski, T.C. (eds.) NMELP 1996. LNCS, vol. 1216,
pp. 57–70. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0023801

27. Pearce, D.: Equilibrium logic. Ann. Math. Artif. Intell. 47(1–2), 3–41 (2006)
28. Przymusinski, T.C.: On the relationship between logic programming and nonmono-

tonic reasoning. In: Shrobe, H.E., Mitchell, T.M., Smith, R.G. (eds.) Proceedings
of the 7th National Conference on Artificial Intelligence, St. Paul, MN, USA, 21–26
August 1988, pp. 444–448. AAAI Press/The MIT Press (1988). http://www.aaai.
org/Library/AAAI/1988/aaai88-078.php

29. Shen, Y., Eiter, T.: Evaluating epistemic negation in answer set programming.
Artif. Intell. 237, 115–135 (2016). https://doi.org/10.1016/j.artint.2016.04.004

30. Shen, Y., Eiter, T.: Evaluating epistemic negation in answer set programming
(extended abstract). In: Sierra, C. (ed.) Proceedings of the 26th International
Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, 19–
25 August 2017, pp. 5060–5064. ijcai.org (2017). https://doi.org/10.24963/ijcai.
2017/722

https://doi.org/10.4230/OASIcs.ICLP.2018.1
http://arxiv.org/abs/1608.06910
http://arxiv.org/abs/1608.06910
https://doi.org/10.1016/B978-0-444-51624-4.50012-5
http://arxiv.org/abs/1809.07141
http://arxiv.org/abs/cs.LO/9809032
http://arxiv.org/abs/cs.LO/9809032
https://doi.org/10.1023/A:1018930122475
https://doi.org/10.1023/A:1018930122475
https://doi.org/10.1007/BFb0023801
http://www.aaai.org/Library/AAAI/1988/aaai88-078.php
http://www.aaai.org/Library/AAAI/1988/aaai88-078.php
https://doi.org/10.1016/j.artint.2016.04.004
https://doi.org/10.24963/ijcai.2017/722
https://doi.org/10.24963/ijcai.2017/722

626 E. I. Su

31. Son, T.C., Le, T., Kahl, P.T., Leclerc, A.P.: On computing world views of epis-
temic logic programs. In: Proceedings of the 26th International Joint Conference
on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, 19–25 August 2017,
pp. 1269–1275 (2017). https://doi.org/10.24963/ijcai.2017/176

32. Stalnaker, R.: What is a nonmonotonic consequence relation? Fundam. Inform.
21(1/2), 7–21 (1994)

33. Su, E.I.: Extensions of equilibrium logic by modal concepts. (Extensions de la
logique d’équilibre par des concepts modaux). Ph.D. thesis, Institut de Recherche
en Informatique de Toulouse, France (2015). https://tel.archives-ouvertes.fr/tel-
01636791

34. Truszczyński, M.: Revisiting epistemic specifications. In: Balduccini, M., Son, T.C.
(eds.) Logic Programming, Knowledge Representation, and Nonmonotonic Reason-
ing. LNCS (LNAI), vol. 6565, pp. 315–333. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-20832-4 20

35. Wang, K., Zhang, Y.: Nested epistemic logic programs. In: Baral, C., Greco, G.,
Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 279–
290. Springer, Heidelberg (2005). https://doi.org/10.1007/11546207 22

36. Watson, R.: A splitting set theorem for epistemic specifications. CoRR
cs.AI/0003038 (2000). http://arxiv.org/abs/cs.AI/0003038

37. Zhang, Y.: Updating epistemic logic programs. J. Log. Comput. 19(2), 405–423
(2009). https://doi.org/10.1093/logcom/exn100

38. Zhang, Y., Zhang, Y.: Epistemic specifications and conformant planning. In:
Barták, R., McCluskey, T.L., Pontelli, E. (eds.) Proceedings of the 2017 Workshop
on Knowledge-Based Techniques for Problem Solving and Reasoning (KnowProS
2017) (2017)

39. Zhang, Z.: Introspecting preferences in answer set programming. In: Palù, A.D.,
Tarau, P., Saeedloei, N., Fodor, P. (eds.) Technical Communications of the 34th
International Conference on Logic Programming, ICLP 2018, 14–17 July 2018,
Oxford, United Kingdom. OASICS, vol. 64, pp. 3:1–3:13. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik (2018). https://doi.org/10.4230/OASIcs.ICLP.
2018.3

https://doi.org/10.24963/ijcai.2017/176
https://tel.archives-ouvertes.fr/tel-01636791
https://tel.archives-ouvertes.fr/tel-01636791
https://doi.org/10.1007/978-3-642-20832-4_20
https://doi.org/10.1007/978-3-642-20832-4_20
https://doi.org/10.1007/11546207_22
http://arxiv.org/abs/cs.AI/0003038
https://doi.org/10.1093/logcom/exn100
https://doi.org/10.4230/OASIcs.ICLP.2018.3
https://doi.org/10.4230/OASIcs.ICLP.2018.3

Modal and Default Logic

A Logic of Objective and Subjective
Oughts

Aldo Iván Ramı́rez Abarca(B) and Jan Broersen

Utrecht University, 3512 JK Utrecht, The Netherlands
{a.i.ramirezabarca,J.M.broersen}@uu.nl

Abstract. The relation between agentive action, knowledge, and obli-
gation is central to the understanding of responsibility – a main topic
in Artificial Intelligence. Based on the view that an appropriate formal-
ization of said relation would contribute to the development of ethical
AI, we point out the main characteristics of a logic for objective and
subjective oughts that was recently introduced in the literature. This
logic extends the traditional stit paradigm with deontic and epistemic
operators, and provides a semantics that deals with Horty’s puzzles for
knowledge and obligation. We provide an axiomatization for this logic,
and address its soundness and completeness with respect to a class of
relevant models.

1 Introduction

AI developers face a big challenge in creating systems that are expected to
make ethically charged decisions. The field of machine ethics has seen a quick
growth in recent years, and questions regarding responsibility of autonomous
agents are very important. In our opinion, these questions can be categorized
in two main trends: (1) conceptual questions that deal with the ontology and
essential components of the notion of responsibility, and (2) technical questions
concerning the implementation of such notion in AI. This work attempts to make
a contribution in the technical category. We take part in a very specific line of
research, where proof systems of deontic logic are intended to help in the testing
of ethical behavior of AI through theorem proving [2,4,10]. That being said,
answers to the technical kind of questions typically presuppose a particular choice
of philosophical standpoint against questions of the first kind, the conceptual
one. Our philosophical standpoint comes from John Horty’s framework of act
utilitarian stit logic [9], extended with epistemic relations. As such, we make
explicit the goal of the present paper: to provide well-behaved formalizations of
3 essential components of responsibility of intelligent systems: agentive action,
knowledge, and obligation.

According to [2], having an expressive deontic logic with practical relevance
and an efficient algorithm for proving theorem-hood is highly applicable in the
construction of logic-based ethical robots.1 To support this statement, Arkoudas
1 See [11] for an overview of the advantages and disadvantages of doing machine ethics

via theorem proving.

c© Springer Nature Switzerland AG 2019
F. Calimeri et al. (Eds.): JELIA 2019, LNAI 11468, pp. 629–641, 2019.
https://doi.org/10.1007/978-3-030-19570-0_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19570-0_41&domain=pdf
https://doi.org/10.1007/978-3-030-19570-0_41

630 A. I. Ramı́rez Abarca and J. Broersen

et al. present in [2] a natural deduction calculus for a logic of ought-to-do that
was developed by Horty in [9] and axiomatised by Murakami in [10]. With an
interactive theorem proving system named Athena, they illustrate the fact that
we can mechanize deontic logic to do machine ethics.

The starting point of our work comes from a recent interest in enhancing both
the expressivity and practical relevance of Horty’s stit theory of ought-to-do in
order to deal with situations in which agents’ knowledge becomes significant.
Inspired by 3 puzzles for knowledge-dependent obligations that pose a problem
for merely extending his initial logic with epistemic operators, Horty presents in
[7] a novel semantics for epistemic oughts based on action types. Although the
approach is substantial, it comes with 3 disadvantages: (1) it diverges from his
work in [9], (2) there are semantic constraints that limit the expressivity of the
models, and (3) the use of action types precludes an efficient axiomatization.2

With similar motivations as Horty, the extended abstract [6] proposes an
alternative logic – where the main idea is to distinguish objective from subjective
obligations – that allegedly mitigates the disadvantages mentioned above. The
authors claim that this logic is simpler, more naturally connected to Horty’s work
in [9], and axiomatizable. Being very brief, [6] only deals with the conceptual
benefits of the proposal, and the proof of soundness and completeness of the
logic’s proof system is only mentioned. Here, we recover the definition of this
logic, address its benefits, and show that its proof system is indeed sound and
complete with respect to a class of relevant models. We do this hoping that the
results will give some background to new developments in the mechanization of
deontic logic for ethical AI, in the aforementioned tradition of [2,4].

The paper is structured as follows. After a short presentation of stit and its
applications in the modeling of action, knowledge, and obligation, we go through
Horty’s puzzles. We mention his solution to them and justify the claim that his
approach with action types comes with disadvantages. Afterwards, we present
the logic developed by [6], show how it solves Horty’s puzzles, and deal with its
axiomatizability.3

2 Action, Knowledge, and Obligation in Stit

We want to consider oughts from the perspective that an agent should be excused
for having failed at an obligation if it lacks the necessary knowledge to perform
a required task (doctors ought to stop the bleeding of the patient, but if they do
not know how to, they should be excused). A typical framework for expressing
statements that involve knowledge for required tasks as a component of respon-
sibility is stit logic [3]. Stit logic was created to formalize the concept of action,
so it naturally lent itself to the study of obligation [9] and of knowingly doing
[5], all important elements in the notion of responsibility. For a comprehensive
2 We will justify all these claims in the second section of this paper, after introducing

the 3 puzzles and addressing Horty’s solution.
3 The proof of completeness is dense and technical, so the full proofs of each statement

are provided in the extended version of the present work [1].

A Logic of Objective and Subjective Oughts 631

review of the interaction of these 3 concepts in the literature, we refer the reader
to [12].

The 3 puzzles of Horty that we mentioned in the introduction are actually
very good illustrations of how stit deals with action, knowledge, and obligation,
but in order to tackle them we need to recover basic definitions of the paradigm
known as act utilitarian stit logic. In this paradigm, obligation stems from a
dominance ordering over the set of available actions. The idea is that the effects
of the best actions in the ordering – the so-called optimal actions – are the
obligations of a given agent at a given moment. We proceed to introduce the basic
aspects of an extension of act utilitarian stit logic with epistemic modalities, and
leave its examples to the section where we present Horty’s puzzles.

Definition 1 (Syntax). Given a finite set Ags of agent names, a countable set
of propositions P such that p ∈ P and α ∈ Ags, the grammar for the formal
language LKO is given by:

ϕ := p | ¬ϕ | ϕ ∧ ψ | �ϕ | [α]ϕ | Kαϕ | �[α]ϕ

�ϕ is meant to express the ‘historical necessity’ of ϕ (♦ϕ abbreviates ¬�¬ϕ).
[α]ϕ stands for ‘agent α sees to it that ϕ’. Kα is the epistemic operator for α.
Finally, �[α]ϕ is meant to represent that α ought to see to it that ϕ.

As for the semantics, the structures in which we evaluate formulas of the
language LKO are based on what we call epistemic act utilitarian branching time
frames.

Definition 2 (Branching time (BT) frames). A finite-choice epistemic
act utilitarian BT -frame is a tuple 〈T,�,Choice, {∼α}α∈Ags,Value〉 such that:

– T is a non-empty set of moments and � is a strict partial ordering on T
satisfying ‘no backward branching’. Each maximal �-chain is called a history,
which represents a way in which time might evolve. H denotes the set of all
histories, and for each m ∈ T , Hm := {h ∈ H;m ∈ h}. Tuples 〈m,h〉
are called situations iff m ∈ T , h ∈ H, and m ∈ h. Choice is a function
that maps each agent α and moment m to a finite partition Choicem

α of
Hm, where the cells of such a partition represent α’s available actions at m.
Choice satisfies two constraints:

• (NC) or ‘no choice between undivided histories’. - For all h, h′ ∈ Hm,
if m′ ∈ h ∩ h′ for some m′ � m, then h ∈ L iff h′ ∈ L for every
L ∈ Choicem

α .
• (IA) or ‘independence of agency’. - A function s on Ags is called a selec-

tion function at m if it assigns to each α a member of Choicem
α . If we

denote by Selectm the set of all selection functions at m, then we have
that for every m ∈ T and s ∈ Selectm,

⋂
α∈Ags s(α) 	= ∅ (see [3] for a

discussion of the property).
– For α ∈ Ags, ∼α is the epistemic indistinguishability equivalence relation for

agent α.
– Value is a deontic function that assigns to each history h ∈ H a real number,

representing the utility of h.

632 A. I. Ramı́rez Abarca and J. Broersen

As mentioned before, the idea is that obligations come from the optimal
actions for a given agent. The optimality of such actions is relative to a dom-
inance ordering of the actions, and this ordering is given by the value of the
histories in those actions – itself provided by Value. In order to present the
semantics for formulas involving the ought-to-do operator, we therefore need
some previous definitions. For α ∈ Ags and m∗ ∈ T , we define a dominance
ordering � on Choicem∗

α such that for L,L′ ∈ Choicem∗
α , L � L′ iff Value(h) ≤

Value(h′) for every h ∈ L, h′ ∈ L′. We write L ≺ L′ iff L � L′ and
L′ � L. The optimal set of actions, then, is taken as Optimalm∗

α := {L ∈
Choicem∗

α ; there is no L′ ∈ Choicem∗
α such that L ≺ L′}. As is customary, the

models and the semantics for the formulas are defined by adding a valuation
function to the frames of Definition 2:

Definition 3. A BT-model M consists of the tuple that results from adding a
valuation function V to a BT-frame, where V : P → 2T×H assigns to each atomic
proposition a set of moment-history pairs. Relative to a model M, the semantics
for the formulas of LKO is defined recursively by the following truth conditions,
evaluated at a given situation 〈m,h〉:

〈m,h〉 |= p iff 〈m,h〉 ∈ V(p)
〈m,h〉 |= ¬ϕ iff 〈m,h〉 	|= ϕ
〈m,h〉 |= ϕ ∧ ψ iff 〈m,h〉 |= ϕ and 〈m,h〉 |= ψ
〈m,h〉 |= �ϕ iff ∀h′ ∈ Hm, 〈m,h′〉 |= ϕ
〈m,h〉 |= [α]ϕ iff ∀h′ ∈ Choicem

α (h), 〈m,h′〉 |= ϕ
〈m,h〉 |= Kαϕ iff ∀〈m′, h′〉 s.t. 〈m,h〉 ∼α 〈m′, h′〉, 〈m′, h′〉 |= ϕ
〈m,h〉 |= �[α]ϕ iff ∀L ∈ Optimalmα , h′ ∈ L implies that 〈m,h′〉 |= ϕ.

Satisfiability, validity on a frame, and general validity are defined as usual. We
write |ϕ|m to refer to the set {h ∈ Hm;M, 〈m,h〉 |= ϕ}.

2.1 Horty’s Puzzles

The 3 puzzles that we have mentioned since the beginning of the paper, and
that pose a problem for formalizing epistemic oughts just with the epistemic
extension of act utilitarian logic, can be summarized as follows.

Example 1. Agent β places a coin on top of a table – either heads up or tails up
– but hides it from agent α. Agent α can bet that the coin is heads up, that it
is tails up, or it can refrain from betting. If α bets and chooses correctly, it wins
e10. If it chooses incorrectly, it does not win anything, and if it refrains from
betting, it wins e5.

The stit diagram that represents Horty’s interpretation of the situation is
included in Fig. 1. In this diagram, we take H to denote the proposition ‘β
places the coin heads up’, T to denote ‘β places the coin tails up’, BH to denote
‘α bets heads’, BT to denote ‘α bets tails’, and G to denote ‘α gambles’. In
moment m1, β places the coin on top of the table, so that its available actions

A Logic of Objective and Subjective Oughts 633

L1 L2

m1

Choicem1
β

L6 L7 L8

m3

Choicem3
α

h6h5h4

L3 L4 L5

m2

Choicem2
α

h3h2h1

10
BH

H

0
BT
H

0
BH

T

5
¬G
H

5
¬G
T

10
BT
T

Fig. 1. Coin problem #1

are labeled by L1 (placing the coin heads up) and L2 (placing the coin tails
up). At moments m2 and m3, it is α’s turn to act, and the available actions are
clear from the picture. The blue dotted line represents the epistemic class of α:
since β is hiding the coin, α cannot distinguish whether it is at moment m2 or
m3.4 For such an interpretation regarding the epistemic structure of the agent,
a problem ensues due to the fact that for every i ∈ {2, 3} and h ∈ Hmi

, we have
that 〈mi, h〉 |= Kα � [α]G. This means that α knows that it ought to gamble,
even if this is a ‘risky’ move that could result in a payoff of 0. In this sense, we
could say that the agent’s knowledge of what is optimal would lead it into taking
a chance and gambling.

Example 2. With the same scheme as in the previous example, if α bets and
chooses correctly, it wins e10. If it refrains from betting, it also wins e10. If it
bets incorrectly, it does not win anything.

Intuitively, α ought to refrain from gambling in this scenario, for refraining
implies that it would win by the same amount as when betting correctly but
without engaging in an action that could possibly fail. In this case, the problem
is that for every i ∈ {2, 3} and h ∈ Hmi

, we have that 〈mi, h〉 	|= Kα � [α]¬G: α
does not know that it ought to refrain from gambling. Figure 2 includes the stit
diagram for this scenario.

Example 3. With the same scheme as in the previous examples, if α bets and
chooses correctly, it wins e10. If it bets incorrectly or refrains from betting, it
does not win anything.

The problem here is that for every i ∈ {2, 3} and h ∈ Hmi
, 〈mi, h〉 |=

Kα � [α]W , where W is the proposition that stands for ‘α wins’. This means
that α knows that it ought to win at any given situation, but such knowledge
is not action-guiding, meaning that it will not provide α with a choice to make.

4 Notice that Horty’s formalization also yields that in none of the situations will α
knowingly perform any of the available actions: it cannot epistemically distinguish
between the situations in which it is ‘betting heads’, ‘betting tails’, or ‘refraining’.

634 A. I. Ramı́rez Abarca and J. Broersen

L1 L2

m1

Choicem1
β

L6 L7 L8

m3

Choicem3
α

h6h5h4

L3 L4 L5

m2

Choicem2
α

h3h2h1

10
BH

H

0
BT
H

0
BH

T

10
¬G
H

10
¬G
T

10
BT
T

Fig. 2. Coin problem #2

Though the agent knowingly ought to win, it cannot knowingly do so – it simply
does not have the means due to a lack of knowledge. Thus, Kant’s principle of
‘ought implies can’ is not satisfied (〈mi, h〉 	|= Kα�[α]W → ♦Kα[α]W). Figure 3
includes the stit diagram for this scenario.

L1 L2

m1

Choicem1
β

L6 L7 L8

m3

Choicem3
α

h6h5h4

L3 L4 L5

m2

Choicem2
α

h3h2h1

10
W
H

0
BT
H

0
BH

T

0
¬G
H

0
¬G
T

10
W
T

Fig. 3. Coin problem #3

Horty solves these 3 puzzles by introducing both syntactic and semantic
addenda to epistemic act utilitarian stit logic. He extends the language with an
operator [... kstit] to encode the concept of ex interim knowledge (or knowingly
doing). The semantics for formulas involving this operator uses action types,
with the premise that actions of the same type may lead to different outcomes in
different moments (see [8]). Unfortunately, the introduction of the new operator
and of types comes with two unfavorable semantic constraints:

1. In order for [... kstit] to be an S5 operator, the epistemic relations must
ensue not between moment-history pairs but between moments. The problem
with this condition is that it limits the class of models to those in which

A Logic of Objective and Subjective Oughts 635

knowledge is moment-dependent (agents will not be able to know that they
perform a given action),5

2. Indistinguishable moments must offer the same available types. The problem
with this constraint is that it cannot be characterized syntactically without
producing an infinite axiomatization. This is due to the fact that performing
a certain action type can only be expressed syntactically with propositional
constants (again, see [8] for the details).6

As a solution to the stated puzzles, Horty’s approach is successful. However,
[6] claims that we can also be successful without using action types. The benefits
of the framework presented in [6], then, include technical characterizability of the
constraints imposed on the structures – which is important for axiomatization –
semantic simplicity, and enhanced expressivity. In the following section, all these
claims will be substantiated.

3 A Logic of Objective and Subjective Oughts

[6] proposes to disambiguate two senses of ought-to-do in order to produce a
system that solves Horty’s puzzles, avoids action types, and is axiomatizable.
The two senses are an objective one, which coincides with Horty’s act utilitarian
ought-to-do, and a subjective one, which arises from the epistemically best can-
didates in the set of available actions for a given agent. By ‘epistemically best’
we mean those actions that are undominated not only in the actual moment but
whose all epistemic equivalents across different indistinguishable situations are
also undominated.

Essentially, we are talking about an extension of the language in Definition 1
with a new operator �S [α], meant to build up formulas that would express
what α subjectively ought to do. As for the semantics of this new operator,
it involves a dominance ordering as well, but one different to that which is
used for objective ought-to-do’s. In order to define this subjective dominance
ordering, [6] introduces a new semantic concept known as epistemic clusters,
which are nothing more than a given action’s epistemic equivalents in situations
that are indistinguishable to the actual one. Formally, we have that for α ∈ Ags,
m∗,m ∈ T , and L ⊆ Hm∗ , L’s epistemic cluster at m is the set

[L]mα := {h ∈ Hm;∃h∗ ∈ L s.t. 〈m∗, h∗〉 ∼α 〈m,h〉}.
As a convention, we write m ∼α m′ if there exist h ∈ Hm, h′ ∈ Hm′ such
that 〈m,h〉 ∼α 〈m′, h′〉. The notion of epistemic clusters is used to define
a subjective dominance ordering �s on Choicem∗

α by the following rule: for
L,L′ ∈ Choicem∗

α , L �s L′ iff for every m such that m∗ ∼α m, Value(h) ≤
Value(h′) for every h ∈ [L]mα , h′ ∈ [L′]mα . Just as in the case of objective ought-
to-do’s, this ordering allows us to define a subjectively optimal set of actions
5 Horty’s models satisfy the following constraint: if 〈m, h〉 ∼α 〈m′, h′〉 then 〈m, h′〉 ∼α

〈m′, h′′〉 for every h′ ∈ Hm, h′′ ∈ Hm′ .
6 It is an open problem to determine whether there is a finite axiomatization of Horty’s

logic of epistemic action and obligation if the types were also included in the object
language.

636 A. I. Ramı́rez Abarca and J. Broersen

S − optimalm∗
α := {L ∈ Choicem∗

α ; there is no L′ ∈ Choicem∗
α s. t. L ≺s L′},

where we write L ≺s L′ iff L �s L′ and L′ �s L. The idea, then, is that some-
thing will be a subjective obligation of a given agent at a given moment if it is
an effect of all the subjectively optimal actions of that agent at that moment.

As established in [6], the models in which to evaluate the formulas of the
extended language need to satisfy extra constraints in order to capture an appro-
priate interaction of action, knowledge, and subjective obligation. By this we
mean to say that in these models (a) agents should be able to knowingly do
the same things across epistemically indistinguishable states, (b) the subjective
ought-to-do must conform to Kant’s directive of ‘ought implies can’ in its epis-
temic version of ‘subjectively ought-to-do implies ability of knowingly doing’,
and (c) if something is a subjective ought-to-do of a given agent, then the agent
should know that that is the case. Therefore, we focus on models that fulfill the
following requirements, which will grant the conditions mentioned above (as can
be seen from the proof of soundness):

– (OAC) For every situation 〈m∗, h∗〉, if 〈m∗, h∗〉 ∼α 〈m,h〉 for some 〈m,h〉, then
〈m∗, h

′
∗〉 ∼α 〈m,h〉 for every h′

∗ ∈ Choicem∗
α (h∗). We refer to this constraint

as the ‘own action condition’, since it implies that agents do not know more
than what they perform. Because of this constraint, the knowledge that we
are formalizing here is of a very particular kind: to know something is just
the same as to knowingly do it.

– (Unif − H) For every situation 〈m∗, h∗〉, if 〈m∗, h∗〉 ∼α 〈m,h〉 for some 〈m,h〉,
then for every h′

∗ ∈ Hm∗ , there exists h′ ∈ Hm such that 〈m∗, h
′
∗〉 ∼α 〈m,h′〉.

Combined with (OAC), this constraint is meant to capture a notion of uni-
formity of strategies, where epistemically indistinguishable situations should
offer similar actions for the agent to choose upon. We call this condition
‘uniformity of historical possibility’.

In finite-choice epistemic act utilitarian BT-models that satisfy these two con-
straints, then, the semantics for the formulas involving �S [α] is defined as
expected:

〈m,h〉 |= �S [α]ϕ iff ∀L ∈ S − optimalmα ,∀m′ s.t. m ∼α m′, [L]m
′

α ⊆ |ϕ|m′
.

3.1 Solution to Horty’s Puzzles

The semantics for subjective ought-to-do’s offers solutions to natural interpre-
tations of Horty’s puzzles, in which the assumption that the coin is hidden from
the betting agent is captured by taking ∼α to be defined by the following infor-
mation sets: {〈m2, h1〉, 〈m3, h4〉}, in which α bets heads; {〈m2, h2〉, 〈m3, h5〉}, in
which α bets tails; and {〈m2, h3〉, 〈m3, h6〉}, in which α refrains from betting.

A Logic of Objective and Subjective Oughts 637

For Example 1, the problem is solved because although 〈mi, hi〉 |= Kα �
[α]G, we consider this as the knowledge of an objective ought-to-do. Subjectively
speaking, we do not obtain that α knows that it ought to gamble: 〈mi, hi〉 	|=
�S [α]G and thus 〈mi, hi〉 	|= Kα �S [α]G. This can be seen by noticing that
S − Optimalm2

α = {L3, L4, L5} and S − Optimalm3
α = {L6, L7, L8}. Figure 4

provides a stit diagram for this scenario.

L1 L2

m1

Choicem1
β

L6 L7 L8

m3

Choicem3
α

h6h5h4

L3 L4 L5

m2

Choicem2
α

h3h2h1

10
BH

H

0
BT
H

0
BH

T

5
¬G
H

5
¬G
T

10
BT
T

Fig. 4. Coin problem #1, revisited

In Example 2, the problem is solved because 〈mi, hi〉 |= �S [α]¬G
and 〈mi, hi〉 |= Kα �S [α]¬G (notice that S − Optimalm2

α = {L5} and
S − Optimalm3

α = {L8}).
For Example 3, the problem is solved because we obtain that 〈mi, hi〉 	|=

�S [α]W , which in turn implies that 〈mi, hi〉 	|= Kα �S [α]W (notice that
S − Optimalm2

α = {L3, L4, L5} and S − Optimalm3
α = {L6, L7, L8}). There-

fore, although α knows that it objectively ought to win, it is not the case that
it subjectively ought to win.

When comparing these solutions to Horty’s, it is important to point out that
the formalization we are using is different from his, for it presupposes that the
indistinguishability relation for agent α ensues between situations. Regardless
of such difference, the solution is virtually the same: for Example 1, Horty gets
that for every h ∈ Hm2 〈m2, h〉 	|= �[α kstit]G. For Example 2, he gets that for
every h ∈ Hm2 〈m2, h〉 |= �[α kstit]¬G, and for Example 3, he gets that for
every h ∈ Hm2 〈m2, h〉 	|= �[α kstit]W . Therefore, we can see that the notion
of �S [α] works as an analog of �[... kstit].

4 Axiomatization and Some Logical Properties

In this section, we introduce a proof system for the logic presented, address its
soundness and completeness results, and mention a few interesting properties
of it.

638 A. I. Ramı́rez Abarca and J. Broersen

Definition 4 (Proof system). Let Λ be the proof system defined by the fol-
lowing axioms and rules of inference:
(Axioms)

– All classical tautologies from propositional logic.
– The S5 axiom schemata for �, [α], Kα,7

– The following axiom schemata for the interactions of formulas with the given
operators:

� [α](p → q) → (�[α]p → �[α]q) (A1)
�p → [α]p ∧ �[α]p (A2)
� � [α]p ∨ �¬ � [α]p (A3)
� [α]p → �[α]([α]p) (A4)
� [α]p → ♦[α]p (Oic)
For n ≥ 1 and pairwise different α1, . . . , αn,

∧

1≤k≤n

♦[αi]pi → ♦

⎛

⎝
∧

1≤k≤n

[αi]pi

⎞

⎠ (IA)

�S [α](p → q) → (�S [α]p → �S [α]q) (A5)
�S [α]p → �S [α](Kαp) (A6)
Kαp → [α]p (OAC)
♦Kαp → Kα♦p (Unif − H)
Kα�p → �S [α]p (s.N)
�S [α]p → ♦Kαp (s.Oic)
�S [α]p → Kα� �S [α]p (Cl)

(Rules of inference)

– Modus Ponens, Substitution, and Necessitation for the modal operators.

Schema (IA) encodes ‘independence of agency’. (OAC) encodes the ‘own
action condition’. (Unif − H) encodes the ‘uniformity of historical possibility’
constraint. (Oic) and (s.Oic) concern the objective, resp. subjective, versions of
Kant’s directive of ‘ought implies can’. (s.N) (standing for ‘subjective necessity’)
captures that all that is historically necessary at epistemically indistinguishable
situations must be a subjective obligation, and (Cl) (standing for ‘closure’) char-
acterizes a property that says that if one subjectively ought to do something,
then one knows that is settled.

The axiom system Λ turns out to be sound and complete with respect to
the class of epistemic act utilitarian bi-valued BT-models. Such models are
more general than the ones introduced in Definition 3. Instead of only one
value function, there are two: one for the objective ought-to-do’s, and the other
7 The S5 axiom schemata are standard from modal logic, and we include their names

here just for coherence. They are (K), (T), (4), and (5).

A Logic of Objective and Subjective Oughts 639

for the subjective ones.8 These models, then, are of the form 〈T,�,Choice,
{∼α}α∈Ags,ValueO,ValueS〉. As such, the models in Definition 3 are particu-
lar instances of bi-valued models, in which both value functions assign the same
value to each history of the tree.

Furthermore, our soundness and completeness results presuppose a logic of
ought-to-do that deals with the ‘sure-thing principle’, according to which the
ranking of the available actions of a given agent should take into consideration
what all the other agents choose concurrently. For a given agent, the action
profiles of the other agents are seen as the possible states in which the agent
will act (see [9], Chapter 4, subsection 4.1.2). We implement Horty’s approach
for dealing with the ‘sure-thing principle’ in the logic that we axiomatize, and
this means that the semantics that we use is in fact a generalization of the one
introduced before. In order to address such a generalization and the soundness
and completeness results, we need further definitions:

For m ∈ T and β ∈ Ags, we define

Statem
β = {S ⊆ Hm;S =

⋂

α∈Ags−{β}
s(α), where s ∈ Selectm}.

With this notion of states, we redefine the dominance orderings so that the
actions are measured taking into consideration the states which those actions are
facing. For α ∈ Ags and m∗ ∈ T , we first define a general ordering ≤ on P(Hm∗)
such that for X,Y ⊆ Hm∗ , X ≤ Y iff ValueO(h) ≤ ValueO(h′) for every h ∈
X,h′ ∈ Y . The objective dominance ordering � is now defined such that for
L,L′ ∈ Choicem∗

α , L � L′ iff ∀S ∈ Statem∗
α , L ∩ S ≤ L′ ∩ S. As for the

subjective ought-to-do’s, we first define a general ordering ≤s on P(Hm∗) such
that for X,Y ⊆ Hm∗ , X ≤s Y iff ValueS(h) ≤s ValueS(h′) forall h ∈ X,h′ ∈ Y.
The subjective dominance ordering �s is then defined such that for L,L′ ⊆ Hm∗ ,
L �s L′ iff ∀m such that m∗ ∼α m, ∀S ∈ Statem

α , [L]mα ∩ S ≤s [L′]mα ∩ S.

8 This extension is extremely useful for the proof of completeness, but neither its
conceptual reach nor its philosophical implications has been a subject of our inves-
tigation as of yet. There are more than a few reasons to entertain skepticism about
this technical decision, since it is not grounded philosophically. To have two deontic
functions instead of one lends itself to potentially having different values for histo-
ries according to whether their utility is objective or subjective. However, we must
observe that the notions of objective and subjective utility are not what drives the
disambiguation of ought-to-do into objective and subjective obligations. What drives
it is the epistemic structure of a given agent. Therefore, the use of two value func-
tions should not be taken as essential for the proposal of the logic presented here.
Moreover, the soundness result works for models in which there is only one deontic
function, and the solution to Horty’s puzzles does not rely on there being two. On a
related note, we make explicit that the focus of this work was to develop well-behaved
semantics for subjective ought-to-do’s in the stit tradition, so that if we presented a
language with only the subjective-ought operator and not the objective one, as well
as with the operators for knowledge, action, and historical necessity, then our proof
of completeness would in fact be enough to show completeness of this fragment with
respect to the class of single-valued epistemic act utilitarian BT-models.

640 A. I. Ramı́rez Abarca and J. Broersen

With these definitions, we adapt the semantics for the formulas involving
ought-to-do operators, making the logic strong enough to deal with the ‘sure-
thing principle’: we set 〈m,h〉 |= �[α]ϕ iff for every L ∈ Choicem

α such that
〈m,hL〉 � ϕ for some hL ∈ L, there exists L′ ∈ Choicem

α such that L ≺ L′

and if L′′ = L or L′ � L′′, then 〈m,h′〉 � ϕ for every h′ ∈ L′′. Similarly, we set
〈m,h〉 |= �S [α]ϕ iff for every L ∈ Choicem

α such that 〈m′, hL〉 � ϕ for some
hL ∈ [L]m

′
α (m ∼α m′), there exists L′ ∈ Choicem

α such that L ≺s L′ and if
L′′ = L′ or L′ �s L′′, then for every m′′ such that m ∼α m′′, 〈m′′, h′′〉 � ϕ for
every h′′ ∈ [L′′]m

′′
α .

4.1 Soundness

Proposition 1. The system Λ is sound with respect to the class of epistemic
act utilitarian bi-valued BT-models.

Proof. Standard. See [1] for details.

4.2 Completeness

For reasons of space, we can only summarize the proof here, leaving the full
detailed exposition in [1]. The proof of completeness of Λ with respect to the
class of epistemic act utilitarian bi-valued BT-models is a two-step process. First,
we introduce relational structures called Kripke-estit models for evaluating the
formulas of the language LKO under a semantics that mirrors the semantics of
Definition 3, and prove completeness of Λ with respect to these structures via
the technique of canonical models. Secondly, we provide a truth-preserving cor-
respondence between Kripke-estit models and certain epistemic act utilitarian
bi-valued BT-models, so that completeness with respect to Kripke-estit models
grants it with respect to bi-valued BT-models. Essential to the success of the
technique of canonical models is to prove the so-called existence and truth lem-
mas just as in modal logic. In the case of this particular proof system, these
lemmas are quite involved, and the reader is encouraged to go over them in [1],
which offers enough room to address all their features carefully and with preci-
sion. In our opinion, the results of soundness and completeness are significant,
all the more because we want to provide some theoretical foundations to the idea
– explored by [2] – that we can actually do machine ethics via theorem-proving
(or model-checking).

To end on a slightly less technical note, we finish this section by addressing
some interesting properties concerning interactions of certain operators in the
logic presented:

	|= �[α]ϕ → ♦Kα[α]ϕ.

‘It is not the case that if the agent objectively ought to do something, then it
can knowingly do it.’ Our solution to Example 3 poses a counterexample, because
〈m2, h1〉 is such that 〈m2, h1〉 |= �[α]W , but 〈m2, h1〉 	|= ♦Kα[α]W , as wit-
nessed by the facts that 〈m2, h2〉 	|= [α]W and that 〈m3, h4〉 	|= [α]W .

	|= �S [α]ϕ → �[α]ϕ.

A Logic of Objective and Subjective Oughts 641

‘It is not the case that if the agent subjectively ought to do something, then it
objectively ought to do it.’ Our solution to Example 2 poses a counterexample,
because 〈m2, h1〉 is such that 〈m2, h1〉 |= �S [α]¬G, but 〈m2, h1〉 	|= �[α]¬G.

	|= �[α]ϕ → �S [α]ϕ.

‘It is not the case that if the agent objectively ought to do something, then it
subjectively ought to do it.’ Our solution to Example 3 poses a counterexample,
because 〈m2, h1〉 is such that 〈m2, h1〉 |= �[α]W , but 〈m2, h1〉 	|= �S [α]W .

5 Conclusion

This work deals with important questions in the modeling of agency, knowledge,
and obligation. Formal depictions of such concepts are likely to be useful when it
comes to doing machine ethics based on deontic logic and its mechanization. The
approach discussed and analyzed here is based on a stit logic of utilitarian ‘ought-
to-do’ enriched with epistemic relations. We argue that to solve certain problems
in the treatment of knowledge and obligations within stit – namely Horty’s puz-
zles – one possibility is to distinguish between objective and subjective versions
of the ought-to-do modality. Moreover, we show that this possibility comes with
formal advantages such as simplicity of semantics and axiomatizability.

References

1. Abarca, A.I.R., Broersen, J.: A logic of objective and subjective oughts (full paper
with proofs). CoRR abs/1903.10577 (2019). https://arxiv.org/abs/1903.10577

2. Arkoudas, K., Bringsjord, S., Bello, P.: Toward ethical robots via mechanized deon-
tic logic. In: AAAI Fall Symposium on Machine Ethics, pp. 17–23 (2005)

3. Belnap, N., Perloff, M., Xu, M.: Facing the Future: Agents and Choices in Our
Indeterminist World. Oxford University Press, Oxford (2001)

4. Bringsjord, S., Arkoudas, K., Bello, P.: Toward a general logicist methodology for
engineering ethically correct robots. IEEE Intell. Syst. 21(4), 38–44 (2006)

5. Broersen, J.: Deontic epistemic stit logic distinguishing modes of mens rea. J. Appl.
Log. 9(2), 137–152 (2011)

6. Broersen, J., Ramı́rez Abarca, A.I.: Formalising oughts and practical knowledge
without resorting to action types. In: Proceedings of the 17th International Con-
ference on Autonomous Agents and MultiAgent Systems, pp. 1877–1879. Interna-
tional Foundation for Autonomous Agents and Multiagent Systems (2018)

7. Horty, J.: Epistemic oughts in stit semantics (2018)
8. Horty, J., Pacuit, E.: Action types in stit semantics. Rev. Symb. Log. 10, 617–637

(2017)
9. Horty, J.F.: Agency and Deontic Logic. Oxford University Press, Oxford (2001)

10. Murakami, Y.: Utilitarian deontic logic. In: AiML-2004: Advances in Modal Logic,
vol. 287 (2004)

11. Pereira, L.M., Saptawijaya, A., et al.: Programming Machine Ethics, vol. 26.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29354-7

12. Xu, M.: Combinations of stit with ought and know. J. Philos. Log. 44(6), 851–877
(2015). https://doi.org/10.1007/s10992-015-9365-7

https://arxiv.org/abs/1903.10577
https://doi.org/10.1007/978-3-319-29354-7
https://doi.org/10.1007/s10992-015-9365-7

On the Complexity of Graded Modal
Logics with Converse

Bartosz Bednarczyk(B) , Emanuel Kieroński(B) , and Piotr Witkowski(B)

Institute of Computer Science, University of Wroc�law, Wroc�law, Poland
{Bartosz.Bednarczyk,Emanuel.Kieronski,Piotr.Witkowski}@cs.uni.wroc.pl

Abstract. A complete classification of the complexity of the local and
global satisfiability problems for graded modal language over traditional
classes of frames has already been established. By “traditional” classes
of frames we mean those characterized by any positive combination of
reflexivity, seriality, symmetry, transitivity, and the Euclidean property.
In this paper we fill the gaps remaining in an analogous classification
of the graded modal language with graded converse modalities. In par-
ticular, we show its NExpTime-completeness over the class of Euclidean
frames, demonstrating this way that over this class the considered lan-
guage is harder than the language without graded modalities or without
converse modalities. We also consider its variation disallowing graded
converse modalities, but still admitting basic converse modalities. Our
most important result for this variation is confirming an earlier conjec-
ture that it is decidable over transitive frames. This contrasts with the
undecidability of the language with graded converse modalities.

1 Introduction

Since many years modal logic has been an active topic in many academic dis-
ciplines, including philosophy, mathematics, linguistics, and computer science.
Regarding applications in computer science, e.g., in knowledge representation or
verification, some important variations are those involving graded and converse
modalities. In this paper, we investigate their computational complexity.

By a modal logic we will mean a pair (L,F), represented usually as F(L∗),
where L is a modal language, F is a class of frames, and L∗ is a short symbolic
representation of L (see the next paragraph), characterizing the modalities of L.

While we are mostly interested in languages with graded and converse modal-
ities, to set the scene we need to mention languages without them. Overall,
the following five languages are relevant: the basic one-way modal language
(L∗ = ♦) containing only one, forward, modality ♦; graded one-way modal lan-
guage (L∗ = ♦≥) extending the previous one by graded forward modalities,
♦≥n, for all n ∈ N; two-way modal language (L∗ = ♦,♦−) containing basic for-
ward modality and the converse modality ♦−; graded two-way modal language
(L∗ = ♦≥,♦−≥) containing the forward modality, the converse modality and
their graded versions ♦≥n, ♦−≥n, for all n ∈ N ; and, additionally, a restriction of

c© Springer Nature Switzerland AG 2019
F. Calimeri et al. (Eds.): JELIA 2019, LNAI 11468, pp. 642–658, 2019.
https://doi.org/10.1007/978-3-030-19570-0_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19570-0_42&domain=pdf
http://orcid.org/0000-0002-8267-7554
http://orcid.org/0000-0002-8538-8221
http://orcid.org/0000-0002-1908-0827
https://doi.org/10.1007/978-3-030-19570-0_42

On the Complexity of Graded Modal Logics with Converse 643

the latter without graded converse modalities, but with basic converse modality
(L∗ = ♦≥,♦−).

The meaning of graded modalities is natural: ♦≥nϕ means “ϕ is true at no
fewer than n successors of the current world”, and ♦−≥ϕ means “ϕ is true at no
fewer than n predecessors of the current world”. We also recall that ♦ϕ means
“ϕ is true at some successor of the current world” and ♦−ϕ—“ϕ is true at some
predecessor of the current world”. Thus, e.g., ♦ is simply ♦≥1.

Our aim is to classify the complexity of the local (“in a world”) and global (“in
all worlds”) satisfiability problems for all the logics obtained by combining any
of the above languages with any class of frames from the so-called modal cube,
that is a class of frames characterized by any positive combination of reflexivity
(T), seriality (D), symmetry (B), transitivity (4), and the Euclidean property
(5). See Fig. 1 for a visualization of the modal cube. Nodes of the depicted graph
correspond to classes of frames and are labelled by letters denoting the above-
mentioned properties, with S used in S4 and S5 for some historical reasons to
denote reflexivity, and K denoting the class of all frames. Note that the modal
cube contains only 15 classes, since some different combinations of the relevant
properties lead to identical classes, e.g., seriality implies reflexivity, symmetry
and transitivity imply the Euclideaness, and so on. A lot of work has been already
done. The cases of basic one-way language and graded one-way language are
completely understood. See Fig. 1. The results for the former can be established
using some standard techniques, see, e.g., [3] and the classical paper [9]. The
local satisfiability of the latter is systematically analysed in [7], with complexities
turning out to lie between NP and NExpTime. As for its global satisfiability,
some of the results follow from [7], some are given in [15], and the other can be
easily obtained using again some standard techniques. In the case of non-graded
two-way modal language, over most relevant classes of frames, tight complexity

One-way MLs Graded One-way MLs

K

D

T

K4

D4

S4

KB

DB

TB

K45

D45

K5

D5

KB45

S5

L
:P

S
pa

c
e
,G

:E
x
p
T
im

e

L: PSpace, G: NP

NP

K

D

T

K4

D4

S4

KB

DB

TB

K45

D45

K5

D5

KB45

S5

L
: P

S
pa

c
e
,G

:E
x
p
T
im

e

L: NExpTime, G: NP

NP

Fig. 1. Complexity of one-way modal logics. All bounds are tight. If local and global
satisfiability differ in complexity then “L:” indicates the local and “G:”—the global
satisfiability.

644 B. Bednarczyk et al.

MLsTwo-WayGradedMLsTwo-way

K

D

T

K4

D4

S4

KB

DB

TB

K45

D45

K5

D5

KB45

S5

L
:P

S
pa

c
e
,G

:E
x
p
T
im

e

NP

ExpTime

K

D

T

K4

D4

S4

KB

DB

TB

K45

D45

K5

D5

KB45

S5

L
:P

S
pa

c
e
,G

:E
x
p
T
im

e

Undecidable

NP

NExpTime

Fig. 2. Complexities of two-way modal logics. All bounds are tight.

bounds for local and global satisfiability are also known. However, according to
the survey part of [15], for global satisfiability of the logics of transitive frames,
K4(♦,♦−), S4(♦,♦−), D4(♦,♦−), which is known to be in ExpTime (due to [5] or
due to a translation to description logic SI, whose satisfiability is in ExpTime
[14]), the corresponding lower bound is missing. In the literature we were also
not able find a tight lower bound for the logics of Euclidean frames, K5(♦,♦−),
D5(♦,♦−). We provide both missing bounds in the full version of this paper [2],
obtaining them by reductions from the acceptance problem for polynomially
space bounded alternating Turing machines.1 See the left part of Fig. 2 for a
complete complexity map in this case.

Let us now turn our attention to the most expressive two-way graded modal
language with both graded forward and graded converse modalities. Its local and
global satisfiability problems over the class of all frames (K) are known to be,
resp., PSpace-complete and ExpTime-complete (see the survey part of [15] and
references therein). In Sect. 2.2, we explain how to obtain these bounds, as well
as the same bounds in all cases involving neither transitivity nor Euclideaness.
For the ExpTime-bound, we employ the so-called standard translation. Over
K4, D4 and S4 the logics turn out to be undecidable [15]. We remark that
these are the only undecidable members of the whole family of logics considered
in this paper. What remains are the classes of frames involving the Euclidean
property. We solve them in Sect. 3. We prove that the logics K5(♦≥,♦−≥) and
D5(♦≥,♦−≥) are locally and globally NExpTime-complete. Interestingly, this
is a higher complexity than the ExpTime-complexity of the language without
graded modalities [5] and NP-complexity of the language without converse [7]
over the same classes of frames. We also show that, when additionally transitivity
is required, that is, for the logics K45(♦≥,♦−≥) and D45(♦≥,♦−≥), the complexity
drops down to NP.

1 As explained to the first author by Emil Jeřábek, the latter bound can be alterna-
tively proved by a reduction from TB, whose ExpTime-hardness follows from [4].

On the Complexity of Graded Modal Logics with Converse 645

Finally, we consider the above-mentioned intermediate language (♦−,♦≥) in
which we can count the successors, we have the basic converse modality, but
we cannot count the predecessors. Our main result here, presented in Sect. 4,
is the decidability of the corresponding logics of transitive frames K4, D4 and
S4. The result is obtained by showing the finite model property of the logics.
This way we confirm a conjecture stated in [8] (an analogous conjecture was also
formulated in the description logic setting [6,15]). The logics of the remaining
classes of frames retain their complexities from the graded two-way case.

Due to a large number of papers in which the complexity bounds from Figs. 1
and 2 are scattered, we have not referenced all of them in this introduction. A
reader willing to find an appropriate reference is asked to use an online tool
prepared by the first author (http://bartoszbednarczyk.com/mlnavigator). For
missing proofs see [2].

Related formalisms. Graded modalities are examples of counting quantifiers
which are present in various formalisms. In particular, counting quantifiers were
introduced for first-order logic: ∃≥nxϕ means: ”at least n elements x satisfy ϕ”.
The satisfiability problem for some fragments of first-order logic with counting
quantifiers was shown to be decidable. In particular, the two-variable fragment
is NExpTime-complete [11], the two-variable guarded fragment is ExpTime-
complete [12], and the one-variable fragment is NP-complete [13]. Counting
quantifiers are also present, in the form of the so-called number restrictions, in
some description logics, DLs. As some standard DLs embed modal logics, some
results on DLs with number restrictions may be used to infer upper bounds on
the complexity of some graded modal logics.

2 Preliminaries

2.1 Languages, Kripke Structures and Satisfiability

Let us fix a countably infinite set Π of propositional variables. The language of
graded two-way modal logic is defined inductively as the smallest set of formulas
containing Π, closed under Boolean connectives and, for any formula ϕ, contain-
ing ♦≥nϕ and ♦−≥nϕ, for all n ∈ N. Given a formula ϕ, we denote its length by
|ϕ|, and measure it as the number of symbols required to write ϕ, with numbers
in subscripts ≥n encoded in binary.

The basic modality ♦ can be defined in terms of graded modalities: ♦ϕ :=
♦≥1ϕ. Analogously, for the converse modality: ♦− := ♦−≥1. Keeping this in mind,
we may treat all languages mentioned in the introduction as fragments of the
above defined graded two-way modal language. We remark that we may also
introduce modalities ♦≤nϕ := ¬♦≥n+1ϕ, ♦−≤nϕ := ¬♦−≥n+1ϕ, �ϕ := ¬♦¬ϕ and
�ϕ := ¬♦−¬ϕ.

The semantics is defined with respect to Kripke structures, that is, structures
over the relational signature with unary predicates Π and a binary predicate R,
represented as triples A = 〈W,R, V 〉, where W is the universe, R is a binary
relation on W , and V is a function V : Π → P(W), called a valuation. The
satisfaction relation is defined inductively as follows:

http://bartoszbednarczyk.com/mlnavigator

646 B. Bednarczyk et al.

– A, w |= p iff w ∈ V (p), for p ∈ Π,
– A, w |= ¬ϕ iff A, w �|= ϕ and similarly for the other Boolean connectives,
– A, w |= ♦≥nϕ iff there is at least n worlds v ∈ W such that 〈w, v〉 ∈ R and
A, v |= ϕ,

– A, w |= ♦−≥nϕ iff there is at least n worlds v ∈ W such that 〈v, w〉 ∈ R and
A, v |= ϕ,

Given a structure A = 〈W,R, V 〉 as above, we call the pair 〈W,R〉 its frame.
For a class of frames F , we define the local (global) satisfiability problem of
a modal language L over F as follows. Given a formula ϕ of L verify if ϕ is
satisfied at some world (all worlds) w of some structure A whose frame belongs
to F . As said in the introduction, we are interested in all classes of frames char-
acterized by any positive combination of reflexivity (T), seriality (D), symmetry
(B), transitivity (4), and the Euclidean property (5).

2.2 Standard Translation

Modal logic can be seen as a fragment of first-order logic via the so-called stan-
dard translation (see, e.g., [3]). Here we present its variation suited for graded
and converse modalities. We define functions stz for z ∈ {x, y}. Let ϕ be a
graded two-way modal logic formula. Below we explicitly show the definition of
stx. The definition of sty is symmetric.

stx(p) = p(x) for p ∈ Π (1)

stx(ϕ ∧ ψ) = stx(ϕ) ∧ stx(ψ) similarly for ¬,∨, etc. (2)

stx(♦≥Cϕ) = ∃≥C .y(R(x, y) ∧ sty(ϕ)) (3)

stx(♦−≥Cϕ) = ∃≥C .y(R(y, x) ∧ sty(ϕ)) (4)

We note here that the obtained formula lies in the guarded two-variable fragment
with counting quantifiers, GC2, whose satisfiability is ExpTime-complete [12]. It
is not difficult to see that ϕ is locally (globally) satisfiable iff ∃xstx(ϕ) (∀xstx(ϕ))
is satisfiable.

Since symmetry, seriality and reflexivity are trivially definable in GC2, the
standard translation can be used to provide a generic upper bound for the logics
over all classes of frames from the modal cube involving neither transitivity nor
Euclideaness. The global satisfiability for basic language ♦ is already ExpTime-
hard [10] hence the following theorem holds.

Theorem 1. The global satisfiability problem for L(♦≥,♦−≥) where L is
any class of frames from the modal cube involving neither transitivity nor
Euclideaness, is ExpTime-complete.

In the case of local satisfiability, the complexity boils down to PSpace. For
two-way graded language over K, D and T, we can adapt an existing tableaux
algorithm by Tobies [14], yielding a tight PSpace bound. If the class of frames
is symmetric, then the forward and converse modalities coincide and thus we
may just apply the result for graded one-way language stated in [7]. Thus:

On the Complexity of Graded Modal Logics with Converse 647

Theorem 2. The local satisfiability problem for L(♦≥,♦−≥), where L is any class
of frames from the modal cube involving neither transitivity nor Euclideaness, is
PSpace-complete.

3 Euclidean Frames: Counting Successors and
Predecessors

In this section, we consider the two-way graded modal language over frames
from the modal cube satisfying the Euclidean property. We demonstrate an
exponential gap (NExpTime vs NP) between the logics of Euclidean frames
K5,D5 and the logics of transitive Euclidean frames K45,D45.

We note that for the two remaining Euclidean classes of frames, i.e., KB45
and S5, whose frames are additionally supposed to be symmetric, the obtained
logics may be seen as one-way and thus their NP-completeness follows immedi-
ately from [7].

3.1 The Shape of Euclidean Frames

We begin by describing the shape of frames under consideration. Let A =
〈W,R, V 〉 be a Kripke structure. A world w ∈ W is called a lantern if 〈w′, w〉 /∈ R,
for every w′ ∈ W . We say that lantern l ∈ W illuminates world w ∈ W if
〈l, w〉 ∈ R. We say that l illuminates a set of worlds I ⊆ W if l illuminates every
world w ∈ I. We say that w1, w2 ∈ W are R-equivalent (or simply equivalent if
R is known from a context), if both 〈w1, w2〉 ∈ R and 〈w2, w1〉 ∈ R. The R-clique
for w1 in A is the set QA(w1) ⊆ W consisting of w1 and all worlds R-equivalent
to w1. A world w ∈ W is reflexive if 〈w,w〉 ∈ R. We say that A is R-connected
if 〈W,R ∪ R−1〉 is a connected graph. By LA we denote the set of all lanterns in
A. By QA we denote W \ LA. See Fig. 3.

Lemma 1. Let A be an R-connected structure over a Euclidean frame 〈W,R〉.
All worlds in QA are reflexive and QA is an R-clique.

Before we start proving complexity results for some more specific classes, we
observe that global and local satisfiability are reducible to each other over any
class involving Euclideaness. It follows from the fact that, as it usually happens
for modal logics, we can restrict attention to R-connected frames and over such
frames we can define a universal modality U. Recall that Uϕ is true at a world
w of a Kripke structure A if and only if ϕ is true at all worlds of A. Once we
understand how connected Euclidean structures look like, it is not hard to see
that the universal modality can be defined by setting Uϕ := �� � ϕ and to
prove the following lemma:

648 B. Bednarczyk et al.

Fig. 3. A Euclidean structure A with LA = {l1, l2}

Lemma 2. The universal modality U is definable in two-way modal language
over connected Euclidean frames. Thus, for logics (L,F), where L contains the
two-way modal language and F involves Euclideaness, the local and global satis-
fiability problems are polynomially interreducible.

3.2 The Upper Bound for Graded Two-Way K5 and D5

Theorem 3. The local and global satisfiability problems for K5(♦≥,♦−≥) and
D5(♦≥,♦−≥) are in NExpTime.

Proof. We start with the case of the class of all Euclidean frames K5. We trans-
late a given modal formula ϕ to the two-variable logic with counting C2, in
which both graded modalities and the shape of connected Euclidean structures,
as defined in Lemma 1, can be expressed. Since satisfiability of C2 is in NExp-
Time [12], we obtain the desired conclusion. Recall the standard translation st
from Sect. 2.2. Let lantern(·) be a new unary predicate and define ϕtr as

stx(ϕ)∧∀x∀y. (¬lantern(x) ∧ ¬lantern(y) → R(x, y))∧(lantern(y) → ¬R(x, y)) .

Since stx(ϕ) belongs to GC2, ϕtr belongs to C2 (but not to GC2), Moreover,
it features one free variable x. Let B be a Kripke structure over a Euclidean
frame. Expand B to a structure B+ by setting lanternB+

= {w ∈ B | w ∈ LB}.
Taking into account Lemma 1 a structural induction on ϕ easily establishes the
following condition

B, w0 |= ϕ if and only if B+ |= ϕtr[w0/x] for every world w0 ∈ B.

Thus, a K5(♦≥,♦−≥) formula ϕ is locally satisfiable if and only if C2 formula
∃≥1x.ϕtr is satisfiable, yielding a NExpTime algorithm for K5(♦≥,♦−≥) local
satisfiability. Membership of global satisfiability in NExpTime is implied by
Lemma 2.

For the case of serial Euclidean frames, D5, it suffices to supplement the C2

formula defined in the case of K5 with a conjunct ∃x.(¬lantern(x)) expressing

On the Complexity of Graded Modal Logics with Converse 649

seriality. Correctness follows then from the simple observation that a Euclidean
frame is serial if and only if it contains at least one non-lantern world (recall
that all these worlds are reflexive).

3.3 Lower Bounds for Two-Way Graded K5 and D5

We now show a matching NExpTime-lower bound for the logics from the previ-
ous section. We concentrate on local satisfiability, but by Lemma 2 the results will
hold also for global satisfiability. Actually, we obtain a stronger result, namely,
we show that the two-way graded modal logics K5 and D5 remain NExpTime-
hard even if counting in one-way (either backward or forward) is forbidden. In
particular, we show hardness of the logics K5(♦≥,♦−) and D5(♦≥,♦−). We recall
that this gives a higher complexity than the ExpTime-complexity of language
♦,♦− [5] and NP-complexity of language ♦≥ [7] over the same classes of frames.
As a corollary, any adaptation of the translation to GF2 from [5] fails when
counting is allowed, unless ExpTime=NExpTime.

For proving our hardness result, we employ the torus tiling problem, where
the goal is to decide whether there is a solution of tilings of an exponential torus.

Definition 1 (5.16 from [1]). A torus tiling problem P is a tuple (T ,H,V),
where T is a finite set of tile types and H,V ⊆ T ×T represent the horizontal and
vertical matching conditions. Let P be a tilling problem and c = t0, t1, . . . , tn−1 ∈
T n an initial condition. A mapping τ : {0, 1, . . . , 2n −1}×{0, 1, . . . , 2n −1} → T
is a solution for P and c if and only if, for all i, j < 2n, the following holds
(τ(i, j), τ(i ⊕2n 1, j)) ∈ H, (τ(i, j), τ(i, j ⊕2n 1)) ∈ V and τ(0, i) = ti for all
i < n, where ⊕i denotes addition modulo i. It is well-known that there exists a
NExpTime-complete torus tiling problem.

Outline of the Proof. The proof is based on a polynomial time reduc-
tion from torus tiling problem as in Definition 1. Henceforward we assume
that a NExpTime-complete torus tiling problem P = (T ,H,V) is fixed. Let
c = t0, t1, . . . , tn−1 ∈ T n be its initial condition. We write a formula which is
(locally) satisfiable iff (P, c) has a solution. Each cell of the torus carries a posi-
tion (H,V) ∈ {0, 1, . . . , 2n−1}×{0, 1, . . . , 2n−1}, encoded in binary in a natural
way by means of propositional letters v0, v1, . . . , vn−1 and h0, h1, . . . , hn−1, with
h0 and v0 denoting the least significant bits. In the reduction, a single cell of
the torus corresponds to a unique inner, i.e., non-lantern, world. Since there are
exactly 2n ·2n cells, we enforce that also the total number of inner worlds is equal
to 2n · 2n. We make use of graded modalities to specify that every inner world
has exactly 2n · 2n successors. We stress here that this is the only place where
we employ counting. Thus the proof works in the case where graded converse
modalities are disallowed (but the basic converse modality will be necessary).
Alternatively we could equivalently write that every inner world have exactly
2n · 2n inner predecessors, and obtain hardness of the language with graded
converse modalities, but without graded forward modalities.

650 B. Bednarczyk et al.

Once we enforced a proper size of our torus, we must be sure that two distinct
inner worlds carry different positions. We do it in two steps. We first write that
a world with position (0, 0) occurs in a model. For the second step, we assume
that the grid is chessboard-like, i.e., all elements are coloured black or white in
the same way as a chessboard is. Then, we say that every world is illuminated
by four lanterns, where each of them propagates ⊕2n1 relation on the proper
axis (from a black node to a white one and vice versa). Finally, having the torus
prepared we encode a solution for a given tiling by simply labelling each inner
world with some tile letter t and ensure (from the vantage point of lanterns) that
any two horizontal or vertical neighbours do not violate the tiling constraints.

Encoding the Exponential Torus. Our goal is now to define a formula
describing the exponential torus. The shape of the formula is following:

ϕtorus
def= ϕfirstCell ∧ U (ϕpartition ∧ ϕchessboard ∧ ϕtorusSize ∧ ϕsucc)

where U is the universal modality as in Lemma 2. The formula is going to say
that: (i) the current world has position (0, 0); (ii) every world is either a lantern
or an inner world; (iii) the torus is chessboard-like, i.e., its cells are coloured
black and white exactly as a real chessboard is; (iv) the overall size of the torus
is equal to 2n · 2n; (v) each world of the torus has a proper vertical and a proper
horizontal successor. The first four properties are straightforward to define:

ϕfirstCell
def= inner ∧ white ∧

n−1∧

i=0

(¬vi ∧ ¬hi)

ϕpartition
def= (lantern ↔ ¬inner) ∧ (lantern ↔ ¬♦−�)

ϕchessboard
def= (white ↔ ¬black) ∧ (white ↔ (v0 ↔ h0))
ϕtorusSize

def= inner → ♦=2n·2n�

The formula ϕtorusSize is valid, since the set of all inner worlds form a clique. The
obtained formulae are of polynomial length since the number 2n · 2n is encoded
in binary.

What remains is to define ϕsucc. For this, for every inner world we ensure
that there exists a proper lantern responsible for establishing the appropriate
successor relation. There will be four different types of such lanterns, denoted
by propositional symbols: vbw , hbw , vwb, hwb. The intuition is the following: the
first letter h or v indicates whether a lantern is responsible for H or V relation.
The last two letters say whether a successor relation will be established between
black and white worlds, or in the opposite way.

ϕsucc
def= (lantern →

∨

♥∈{vbw ,hbw ,vwb,hwb}
(♥ ∧ ϕ♥))∧

(inner →
∧

♥∈{vbw ,hbw ,vwb,hwb}
♦−(lantern ∧ ϕ♥))

On the Complexity of Graded Modal Logics with Converse 651

Here we present ϕvbw only. The remaining formulas can be constructed in an
analogous way and are explicitly shown in [2]. The formula below, intended to be
interpreted at a lantern, consists of three parts: (i) the black and the white worlds
illuminated by a lantern are pseudo-unique, i.e., all white (respectively, black)
worlds illuminated by the same lantern carry the same position; uniqueness will
follow later from ϕtorusSize; (ii) all black worlds illuminated by a lantern have
the same H-position as all white worlds illuminated by this lantern; (iii) if Vw

(respectively, Vb) encodes a V -position of the white (respectively, black) worlds
illuminated by a lantern, then Vw = Vb ⊕2n 1. Put ϕvbw

def= ϕpseudoUniqueness ∧
ϕequalH ∧ ϕVw=Vb⊕2n1. The definitions of the first and the second part of ϕvbw

are simple:

ϕpseudoUniqueness
def=

∧

c∈{white,black}

∧

p∈{v,h}

n−1∧

i=0

♦(c ∧ pi) → �(c ∧ pi)

ϕequalH
def=

n−1∧

i=0

♦(black ∧ hi) ↔ ♦(white ∧ hi)

Finally, we need to encode the ⊕2n -operation as formula ϕVw=Vb⊕2n1, but it is a
standard implementation of binary addition. The following lemma says that the
formula ϕtorus indeed defines a proper torus. Its proof is routine.

Lemma 3. Assume that the the formula ϕtorus is locally satisfied at a world w
of a Euclidean structure A = 〈W,R, V 〉. Then, set QA(w), i.e., the R-clique for
w, contains exactly 2n ·2n elements and each of them carries a different position
(H,V), i.e., there are no two worlds v, v′ satisfying exactly the same hi- and
vi-predicates.

Having defined a proper torus, it is quite easy to encode a solution to the
torus tiling problem P with the initial condition c. Each inner node will be
labelled with a single tile from T and using appropriate lanterns we enforce that
two neighbouring worlds do not violate tiling rules H and V. The whole process
is again routine. Note that our intended modals are serial. Thus, the result holds
also for the logic D5.

Theorem 4. The local and global satisfiability problems for K5(♦≥,♦−) and
D5(♦≥,♦−) are NExpTime-hard.

Together with Theorem 3 this gives:

Theorem 5. The local and global satisfiability problems for logics K5(♦≥,♦−),
K5(♦≥,♦−≥), D5(♦≥,♦−) and D5(♦≥,♦−≥) are NExpTime-complete.

3.4 Transitive Euclidean Frames

It turns out that the logics of transitive Euclidean frames have lower computa-
tional complexity. This is due to the following lemma.

652 B. Bednarczyk et al.

Lemma 4. Let A be an R-connected structure over a transitive Euclidean frame
〈W,R〉. Then, every world l ∈ LA illuminates QA.

A first-order formula stating that all non-lanterns are R-successors of all
lanterns requires only two variables. Thus, as an immediate conclusion from
Lemma 4, we can extend translation developed in the previous section to han-
dle logic K45(♦≥,♦−≥), and obtain NExpTime upper bound for satisfiability
problem. In fact, the shape of transitive Euclidean structures is so simple that
two variable logic is no longer necessary. Below we translate K45(♦≥,♦−≥) and
D45(♦≥,♦−≥) to one-variable logic C1, which is NP-complete [13].

Theorem 6. The local and global satisfiability problems for K45(♦≥,♦−≥) and
D45(♦≥,♦−≥) are in NP.

Proof. The proof is similar in spirit to the proof of Lemma 3 in [7]. Let lantern(·)
be a new unary predicate. We first define translation function tr that, given
a K45(♦≥,♦−≥) formula ϕ, produces an equisatisfiable C1 formula tr(ϕ). We
assume that all counting subscripts ϕ are non-zero.

tr(p) = p(x) for all p ∈ Π (5)

tr(ϕ ∧ ψ) = tr(ϕ) ∧ tr(ψ) similarly for ¬,∨, etc. (6)

tr(♦≥Cϕ) = ∃≥C .x(¬lantern(x) ∧ tr(ϕ)) (7)

tr(♦≤Cϕ) = ∃≤C .x(¬lantern(x) ∧ tr(ϕ)) (8)

tr(♦−≥Cϕ) = ¬lantern(x) ∧ ∃≥C .x(tr(ϕ)) (9)

tr(♦−≤Cϕ) = lantern(x) ∨ ∃≤C .x(tr(ϕ)) (10)

Observe that tr(ϕ) is linear in the size of ϕ. Let B be a Kripke structure over a
transitive Euclidean frame. Expand B to a structure B+ by setting lanternB+

=
{w ∈ B | w ∈ LB}. Taking into account Lemma 1 and Lemma 4, a structural
induction on ϕ easily establishes the following condition

B, w0 |= ϕ if and only if B+ |= tr(ϕ)[w0/x] for every world w0.

Thus, a K45(♦≥,♦−≥) formula ϕ is locally satisfiable if and only if C1 formula
∃≥1.x(tr(x)) is satisfiable, yielding an NP algorithm for K45(♦≥,♦−≥) satisfia-
bility. The algorithm for D45(♦≥,♦−≥) is obtained by just a slight update to the
one given above. It suffices to supplement the C1 formula defined in the case
of K45 with a conjunct ∃x.(¬lantern(x)) expressing seriality (cf. the proof of
Theorem 3).

On the Complexity of Graded Modal Logics with Converse 653

4 Transitive Frames: Counting Successors, Accessing
Predecessors

In this section, we consider the language ♦≥,♦−, that is the modal language in
which we can count the successors, but cannot count the predecessors, having at
our disposal only the basic converse modality. Over all classes of frames involving
neither transitivity nor Euclideaness local satisfiability is PSpace-complete and
global satisfiability is ExpTime-complete, as the tight lower and upper bounds
can be transferred from, resp., the one-way non-graded language ♦ and the
full two-way graded language. Over the classes of Euclidean frames K5 and
D5, both problems are NExpTime-complete, as proved in Theorem 3. Over the
classes of transitive Euclidean frames KB45, K45, D45, and S5 the problems are
NP-complete, as the lower bound transfers from the language ♦, and the upper
bound from the full two-way graded language (Theorem6). So, over all the above-
discussed classes of frames the complexities of ♦≥,♦− and ♦≥,♦−≥ coincide. What
is left are the classes of transitive frames K4, D4, and S4.

Recall that, in contrast to their one-way counterparts, the two-way graded
logics of transitive frames K4(♦≥,♦−≥), D4(♦≥,♦−≥), and S4(♦≥,♦−≥) are unde-
cidable [15]. Several papers [8][15][6] conjectured that decidability may possibly
be regained if the restricted language ♦≥,♦− is considered. Here we confirm this
conjecture, demonstrating the finite model property for the obtained logics. We
remark that we do not obtain tight complexity bounds in this case: The decision
procedure arising is non-elementary, and the best lower bound is NExpTime.

In Lemma 5.5 from [15], it is shown that over the class of transitive structures
global satisfiability and local satisfiability problems for the considered language
are polynomially equivalent. The same can be easily shown when, additionally,
reflexivity or seriality of structures are required. Thus, while below we explicitly
deal with global satisfiability our results apply also to local satisfiability.

Let us concentrate on the class K4 of all transitive frames. The finite model
construction we are going to present is the most complicated part of this paper.
It begins similarly to the exponential model construction in the case of local sat-
isfiability of K4(♦≥) from [7]: we introduce a Scott-type normal form (Lemma 5),
and then generalize two pieces of model surgery used there (Lemma 6) to our
setting: starting from any model, we first obtain a model with short paths of
cliques and then we decrease the size of the cliques. Some adaptations of the
constructions from [7] are necessary to properly deal with the converse modal-
ity. Having a model with short paths of cliques and small cliques, we develop
some new machinery of clique profiles and clique types allowing us to decrease
the overall size of the structure.

654 B. Bednarczyk et al.

Lemma 5. Given a formula ϕ of the language (♦≥,♦−), we can compute in poly-
nomial time a formula ψ of the form

η ∧
∧

1≤i≤l

(pi → ♦≥Ci
πi) ∧

∧

1≤i≤m

(qi → ♦≤Di
χi)∧

∧

1≤i≤l′
(p′

i → ♦−π′
i) ∧

∧

1≤i≤m′
(q′

i → �¬χ′
i) (11)

where pi, qi, p′
i, q′

i are propositional variables, Ci, Di are natural numbers, and
η and πi, χi, π′

i, χ′
i are propositional formulas, such that ϕ and ψ are globally

satisfiable over exactly the same transitive frames.

Proof. A routine renaming process (cf. [7]).

Let us introduce some helpful terminology, copying it mostly from [7]. Let
A = 〈W,R, V 〉 be a transitive structure, and w1, w2 ∈ W . We say that w2 is an R-
successor of w1 if 〈w1, w2〉 ∈ R; w2 is a strict R-successor of w1 if 〈w1, w2〉 ∈ R,
but 〈w2, w1〉 �∈ R; w2 is a direct R-successor of w1 if w2 is a strict R-successor
of w1 and, for every w ∈ W such that 〈w1, w〉 ∈ R and 〈w,w2〉 ∈ R we have
either w ∈ QA(w1) or w ∈ QA(w2). Recall that QA(w) denotes the R-clique for
w in A.

The depth of a structure A is the maximum over all k ≥ 0 for which there
exists worlds w0, . . . , wk ∈ W such that wi is a strict R-successor of wi−1 for
every 1 ≤ i ≤ k, or ∞ if no such a maximum exists. The breadth of A is the
maximum over all k ≥ 0 for which there exists worlds w,w1, . . . , wk such that wi

is a direct R-successor of w for every 1 ≤ i ≤ k, and the sets QA(w1), . . . QA(wk)
are disjoint, or ∞ if no such a maximum exists. The width of A is the smallest
k such that k ≥ |QA(w)| for all w ∈ W , or ∞ if no such k exists.

Lemma 6. Let ϕ be a normal form formula. If ϕ is globally satisfied in a tran-
sitive model A then it is globally satisfied in a transitive model A′ with depth
d′ ≤ (

∑m
i=1 Di) + m + m′ + 1 and width c′ ≤ (

∑l
i=1 Ci) + l′ + 1.

The above lemma can be proved by a construction being a minor modification
of Stages 1 and 4 of the construction from the proof of Lemma 6 in [7], where
the language without backward modalities is considered. Our adaptation just
additionally takes care of backward witnesses and is rather straightforward. We
remark here that also Stage 2 of the above mentioned construction could be
adapted, giving a better bound on the depth of A′. We omit it here since such
an improvement would not be crucial for our purposes. Stage 3 cannot be directly
adapted.

To describe our next step, we need a few more definitions. Given a world w
of a structure A, we define its depth as the maximum over all k ≥ 0 for which
there exist worlds w = w0, . . . , wk ∈ W such that wi is a strict R-successor of
wi−1 for every 1 ≤ i ≤ k, or as ∞ if no such a maximum exists. For an R-clique
Q we define its depth as the depth of w for any w ∈ Q; this definition is sound
since for all w1 ∈ QA(w) the depth of w is equal to the depth of w1.

On the Complexity of Graded Modal Logics with Converse 655

From this point, we will mostly work on the level of cliques rather than
individual worlds. We may view any structure A as a partially ordered set of
cliques. We write 〈Q1, Q2〉 ∈ R, and say that a clique Q1 sends an edge to
a clique Q2 (or that Q2 receives an edge from Q1) if 〈w1, w2〉 ∈ R for any
(equivalently: for all) w1 ∈ Q1, w2 ∈ Q2.

A 1-type of a world w in A is the set of all propositional variables p such
that A |= p. We sometimes identify a 1-type with the conjunction of all its
elements and negations of variables it does not contain. Given a natural number
k, a structure A and a clique Q in this structure A, we define a k-profile of Q
(called just a profile if k is clear from the context) in A as the tuple profk

A(Q) =
(H,A,B), where H is the multiset of 1-types in which the number of copies of
each 1-type α equals min(k, |{w ∈ Q : A, w |= α}|), A is the multiset of 1-
types in which the number of copies of each 1-type α equals min(k, |{w : A, w |=
α and w is a strict R-successor of a world from Q}|), and B is the set of 1-types
of worlds for which a world from Q is its strict R-successor. Intuitively, H counts
(up to k) realizations of 1-types (H)ere in Q, A counts (up to k) realizations
1-types (A)bove Q, and B says which 1-types appear (B)elow Q. Usually, given a
normal form ϕ as in equation (11), we will be interested in Mϕ-profiles of cliques,
where Mϕ = max({Ci}l

i=1 ∪{Di +1}m
i=1). Note that, given the Mϕ-profiles of all

cliques in a structure we are able to determine whether this structure is a global
model of ϕ. The following observation is straightforward.

Lemma 7. If A |= ϕ for a normal form ϕ, and if in a structure A′ the Mϕ-
profile of every clique is equal to the Mϕ-profile of some clique from A, then
A′ |= ϕ.

We now prove the finite model property.

Lemma 8. Let ϕ be a normal form formula. If ϕ is globally satisfied in a tran-
sitive model A then it is globally satisfied in a finite transitive model A′.

We assume that ϕ is as in (11). By Lemma 6, we may assume that A =
〈W,R, V 〉 has depth d ≤ (

∑m
i=1 Di)+m+m′+1 and width c ≤ (

∑l
i=1 Ci)+l′+1.

Note that A may be infinite due to possibly infinite breadth.
Let us split W into sets U0, . . . , Ud with Ui consisting of all elements of W

of depth i in A (equivalently speaking: being the union of all cliques of depth i
in A). They are called layers. Note that cliques from Ui may send R-edges only
to cliques from Uj with j < i.

We now inductively define a sequence of models A = A−1,A0, . . . ,Ad = A′,
Ai = 〈Wi, Ri, Vi〉 such that

– Wi = U ′
0 ∪ . . . ∪ U ′

i ∪ Ui+1 ∪ . . . ∪ Ud, where each U ′
i is a finite union of some

cliques from U1,
– Vi = V �Wi

– Ai�(U ′
0 ∪ . . . ∪ U ′

i) = Ai−1�(U ′
0 ∪ . . . ∪ U ′

i),
– Ai�(U ′

0 ∪ . . .∪U ′
i−1 ∪Ui+1 ∪ . . .∪Ud) = Ai−1�(U ′

0 ∪ . . .∪U ′
i−1 ∪Ui+1 ∪ . . .∪Ud)

– in particular: Ai�(Ui+1 ∪ . . . ∪ Ud) = A�(Ui+1 ∪ . . . ∪ Ud).

656 B. Bednarczyk et al.

We obtain Ai from Ai−1 by distinguishing a fragment U ′
i of Ui, removing

Ui \ U ′
i and adding some edges from Ui+1 ∪ . . . ∪ Ud to U ′

i ; all the other edges
remain untouched. We do it carefully, to avoid modifications of the profiles of
the surviving cliques. Let us describe the process of constructing Ai in details.

Assume i ≥ 0. We first distinguish a finite subset U ′
i of Ui. We define a clique

type of every clique Q from Ui in Ai−1 as a triple (H,B, S), where H and B are
as in prof

Mϕ

Ai−1
(Q) and S is the subset of cliques from U ′

0 ∪ . . . ∪ U ′
i−1, consisting

of those cliques to which Q sends an Ri−1-edge (note that if i = 0, then this
subset is empty). We stress that during the construction of Ai, the clique types
of cliques are always computed in Ai−1.

For every clique type β realized in Ui, we mark Mϕ cliques of this type, or
all such cliques if there are less than Mϕ of them. Let U ′

i be the union of the
marked cliques. We fix some arbitrary numbering of the marked cliques.

Now we define the relation Ri. As said before, for any pair of cliques Q1, Q2

both of which are contained in U ′
0 ∪ . . .∪U ′

i−1 ∪Ui+1 ∪ . . .∪Ud or in U ′
0 ∪ . . .∪U ′

i ,
we set 〈Q1, Q2〉 ∈ Ri iff 〈Q1, Q2〉 ∈ Ri−1. It remains to define the Ri-edges
from Ui+1 ∪ . . . ∪ Ud to U ′

i . For every clique Q from Ui+1 ∪ . . . ∪ Ud and every
clique type β realized in U ′

i , let f(β) be the number of Ri−1-edges sent by Q to
cliques of type β in Ui, if this number is not greater than Mϕ, or, otherwise, let
f(β) = Mϕ. Let f ′(β) be the number of Ri−1-edges sent by Q to cliques of type
β in U ′

i (recall that this number is not greater than Mϕ). We take all Ri−1-edges
sent by Q to cliques of type β in U ′

i to Ri. We send in Ai f(β)−f ′(β) additional
Ri-edges from Q to cliques of type β in U ′

i using cliques to which Q does not
send Ri−1-edges with minimal numbers in the fixed numbering. By the choice
of U ′

i , we have enough such cliques in U ′
i . We finish the construction of Ai by

removing all cliques from Ui \ U ′
i .

Claim 7. Each of the Ai is a transitive structure.

Claim 8. The Mϕ-profiles of every clique in Ai is the same as its Mϕ-profiles
in A.

The above claim and Lemma 7 imply that A′ = Ad is indeed a model of ϕ.
As each of the U ′

i contains a finite number of cliques and each of the cliques is
finite, we get that A′ is finite. Let us estimate its size. To U ′

0 we take at most
Mϕ realizations of every clique type from U0. Mϕ is bounded exponentially, and
the number of possible clique types in U0 is bounded doubly exponentially in
|ϕ| (note that such cliques do not send any edges). Then, to construct U ′

i we
consider clique types distinguished, in particular, by the sets of cliques from
U ′
0 ∪ . . . U ′

i−1 to which a given clique sends edges. Thus, the number of cliques in
U ′

i may become exponentially larger than the number of cliques in U ′
i−1. Thus,

we can only estimate the number of cliques in our eventual finite model by a
tower of exponents of height d (recall that our bound on d is exponential in |ϕ|,
though a polynomial bound would not be difficult to obtain).

A careful inspection shows that our constructions respect reflexivity and
seriality. Thus:

On the Complexity of Graded Modal Logics with Converse 657

Theorem 9. The logics K4(♦≥,♦−), D4(♦≥,♦−), S4(♦≥,♦−) have the finite model
property. Their local and global satisfiability problems are decidable.

Acknowledgements. We thank Evgeny Zolin for providing us a comprehensive list
of gaps in the classification of the complexity of graded modal logics and for sharing
with us his tikz files with modal cubes. We also thank Emil Jeřábek for his explanations
concerning K5(♦,♦–). B.B. is supported by the Polish Ministry of Science and Higher
Education program “Diamentowy Grant” no. DI2017 006447. E.K. and P.W. are sup-
ported by Polish National Science Centre grant no. 2016/21/B/ST6/01444.

References

1. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description
Logic. Cambridge University Press, Cambridge (2017). https://doi.org/10.1017/
9781139025355

2. Bednarczyk, B., Kieronski, E., Witkowski, P.: On the complexity of graded modal
logics with converse. CoRR abs/1812.04413 (2018). http://arxiv.org/abs/1812.
04413

3. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press,
New York (2001). https://doi.org/10.1017/CBO9781107050884

4. Chen, C.-C., Lin, I.-P.: The complexity of propositional modal theories and the
complexity of consistency of propositional modal theories. In: Nerode, A., Matiya-
sevich, Y.V. (eds.) LFCS 1994. LNCS, vol. 813, pp. 69–80. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-58140-5 8

5. Demri, S., de Nivelle, H.: Deciding regular grammar logics with converse through
first-order logic. J. Logic Lang. Inf. 14(3), 289–329 (2005). https://doi.org/10.
1007/s10849-005-5788-9

6. Gutiérrez-Basulto, V., Ibáñez-Garćıa, Y.A., Jung, J.C.: Number restrictions on
transitive roles in description logics with nominals. In: Proceedings of the Thirty-
First AAAI Conference on Artificial Intelligence, San Francisco, California, USA,
4–9 February 2017, pp. 1121–1127 (2017)

7. Kazakov, Y., Pratt-Hartmann, I.: A note on the complexity of the satisfiability
problem for graded modal logics. In: Proceedings of the 24th Annual IEEE Sym-
posium on Logic in Computer Science, LICS 2009, Los Angeles, CA, USA, 11–14
August 2009, pp. 407–416 (2009). https://doi.org/10.1109/LICS.2009.17

8. Kazakov, Y., Sattler, U., Zolin, E.: How many legs do I have? Non-simple roles
in number restrictions revisited. In: 2007 Proceedings of 14th International Con-
ference on Logic for Programming, Artificial Intelligence, and Reasoning, LPAR
2007, Yerevan, Armenia, 15–19 October, pp. 303–317 (2007). https://doi.org/10.
1007/978-3-540-75560-9 23

9. Ladner, R.E.: The computational complexity of provability in systems of modal
propositional logic. SIAM J. Comput. 6(3), 467–480 (1977). https://doi.org/10.
1137/0206033

10. Blackburn, P., van Benthem, J.: Handbook of Modal Logic, chapter Modal Logic:
A Semantic Perspective, pp. 255–325. Elsevier (2006)

11. Pratt-Hartmann, I.: Complexity of the two-variable fragment with counting quan-
tifiers. J. Logic Lang. Inf. 14(3), 369–395 (2005). https://doi.org/10.1007/s10849-
005-5791-1

https://doi.org/10.1017/9781139025355
https://doi.org/10.1017/9781139025355
http://arxiv.org/abs/1812.04413
http://arxiv.org/abs/1812.04413
https://doi.org/10.1017/CBO9781107050884
https://doi.org/10.1007/3-540-58140-5_8
https://doi.org/10.1007/s10849-005-5788-9
https://doi.org/10.1007/s10849-005-5788-9
https://doi.org/10.1109/LICS.2009.17
https://doi.org/10.1007/978-3-540-75560-9_23
https://doi.org/10.1007/978-3-540-75560-9_23
https://doi.org/10.1137/0206033
https://doi.org/10.1137/0206033
https://doi.org/10.1007/s10849-005-5791-1
https://doi.org/10.1007/s10849-005-5791-1

658 B. Bednarczyk et al.

12. Pratt-Hartmann, I.: Complexity of the guarded two-variable fragment with count-
ing quantifiers. J. Log. Comput. 17(1), 133–155 (2007). https://doi.org/10.1093/
logcom/exl034

13. Pratt-Hartmann, I.: On the computational complexity of the numerically definite
syllogistic and related logics. Bull. Symbolic Logic 14(1), 1–28 (2008). https://doi.
org/10.2178/bsl/1208358842

14. Tobies, S.: PSPACE reasoning for graded modal logics. J. Log. Comput. 11(1),
85–106 (2001). https://doi.org/10.1093/logcom/11.1.85

15. Zolin, E.: Undecidability of the transitive graded modal logic with converse. J. Log.
Comput. 27(5), 1399–1420 (2017). https://doi.org/10.1093/logcom/exw026

https://doi.org/10.1093/logcom/exl034
https://doi.org/10.1093/logcom/exl034
https://doi.org/10.2178/bsl/1208358842
https://doi.org/10.2178/bsl/1208358842
https://doi.org/10.1093/logcom/11.1.85
https://doi.org/10.1093/logcom/exw026

The Dynamic Logic of Policies
and Contingent Planning

Thomas Bolander1 , Thorsten Engesser3 , Andreas Herzig2(B) ,
Robert Mattmüller3 , and Bernhard Nebel3

1 DTU Compute, Technical University of Denmark, Lyngby, Denmark
tobo@dtu.dk

2 IRIT, CNRS, University of Toulouse, Toulouse, France
herzig@irit.fr

3 Faculty of Engineering, University of Freiburg, Freiburg im Breisgau, Germany
{engesser,mattmuel,nebel}@cs.uni-freiburg.de

Abstract. In classical deterministic planning, solutions to planning
tasks are simply sequences of actions, but that is not sufficient for contin-
gent plans in non-deterministic environments. Contingent plans are often
expressed through policies that map states to actions. An alternative is to
specify contingent plans as programs, e.g. in the syntax of Propositional
Dynamic Logic (PDL). PDL is a logic for reasoning about programs with
sequential composition, test and non-deterministic choice. However, as
we show in the paper, none of the existing PDL modalities directly cap-
tures the notion of a solution to a planning task under non-determinism.
We add a new modality to star-free PDL correctly capturing this notion.
We prove the appropriateness of the new modality by showing how to
translate back and forth between policies and PDL programs under the
new modality. More precisely, we show how a policy solution to a plan-
ning task gives rise to a program solution expressed via the new modality,
and vice versa. We also provide an axiomatisation of our PDL extension
through reduction axioms into standard star-free PDL.

1 Introduction

Several authors have investigated how Propositional Dynamic Logic PDL can
account for conformant planning [2,5,11,12]. We here push this program further
and investigate how contingent planning can be captured in PDL. We argue
that the standard PDL operators [π] and 〈π〉 of necessity and possibility are
not well-suited to account for conditional plans and introduce a third modal
operator ([π])γ, read “π is strong for γ”. Such an operator was already proposed
for conformant planning in some of the above papers. Just as these proposals,
([a])ϕ will be equivalent to 〈a〉� ∧ [a]ϕ for atomic actions a. More generally, for
sequences of atomic actions a1; . . . ; an we have

([a1; . . . ; an])ϕ ↔ (〈a1〉� ∧ [a1](· · · (〈an〉� ∧ [an]ϕ)· · ·)).

c© Springer Nature Switzerland AG 2019
F. Calimeri et al. (Eds.): JELIA 2019, LNAI 11468, pp. 659–674, 2019.
https://doi.org/10.1007/978-3-030-19570-0_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19570-0_43&domain=pdf
http://orcid.org/0000-0003-1551-1703
http://orcid.org/0000-0002-2129-3207
http://orcid.org/0000-0003-0833-2782
http://orcid.org/0000-0002-1705-5476
http://orcid.org/0000-0002-6833-6323
https://doi.org/10.1007/978-3-030-19570-0_43

660 T. Bolander et al.

We here go beyond sequential compositions and integrate nondeterministic com-
position and test. We show that this accounts for contingent planning, in the
sense that there is a policy solving a contingent planning task 〈S, γ,MAct〉 with
initial states S, goal formula γ and set of actions Act if and only if there is a
program π such that MAct, S � ([π])γ, where MAct is the PDL Kripke model
that captures the semantics of the actions Act.

The paper is organised as follows. In the next section we briefly recall PDL
and define planning tasks and their sequential solutions. In Sect. 3 we define
policies and contingent planning. In Sect. 4 we extend PDL by the new operator
([·]). In Sect. 5 we associate to every program a policy and, the other way round,
we associate to every policy a program in Sect. 6.

2 Background: PDL and Sequential Plans

Propositional Dynamic Logic (PDL) is a modal logic that can immediately cap-
ture at least some forms of planning. Let us detail this for the case of sequential
plans under full observability. We start by a brief introduction of star-free PDL;
the reader is referred to [8,9] for more details.

Let Prp denote a finite set of propositional variables and Act a finite set of
actions. A Kripke model MAct = 〈W, {Ra}a∈Act, V 〉 then consists of a set W
of states (alias possible worlds), each action a ∈ Act is modelled by a binary
relation Ra on W , and V : W −→ 2Prp is a valuation associating to every state
the propositional variables that are true there. Given a state s ∈ W , the possible
outcomes of executing a at s is the set of states Ra(s) = {t ∈ W | 〈s, t〉 ∈ Ra}.
When Ra(s) 	= ∅ we say that a is applicable at s.

A set of states S ⊆ W is called valuation determined if for all distinct s, t ∈
S we have V (s) 	= V (t). So S is valuation determined if all states in S are
distinguishable via their valuation. In automated planning, the set of states of
a planning domain is often just taken to be a subset of 2Prp, and hence the
set of all states is trivially valuation determined. However, in PDL, models are
rarely restricted to only allow one state per valuation, so we will not make that
restriction here either. However, to ensure a match between PDL programs and
policies, we need at least to make the following weaker assumption.

We will assume all Kripke models to be locally valuation determined : For
all actions a ∈ Act and all states s ∈ W , Ra(s) is valuation determined. This
requirement ensures that distinct outcomes of nondeterministic actions are nec-
essarily distinguishable via their valuations. This requirement is necessary to
guarantee that every policy can be translated into a corresponding program.
Policies are going to be defined as relations between states and actions. A pol-
icy could for instance contain 〈s, a〉, 〈t1, b〉, 〈t2, c〉, assigning action a to state s,
action b to state t1 and action c to state t2. Suppose Ra(s) = {t1, t2}. Then the
policy specifies to execute a in s, and depending on the outcome, do either b or
c. If the two possible outcomes t1 and t2 of a are not distinguishable by their
valuation, there might not exist a formula distinguishing them, and hence there
can be no PDL program representing the policy.

The Dynamic Logic of Policies and Contingent Planning 661

Any model MAct can be unravelled to a bisimilar, and hence modally equiv-
alent, tree model [6,9]. It follows that we can assume all our Kripke models to be
acyclic. We recall that a PDL Kripke model is cyclic if there is a natural number
n ≥ 1 and sequence of states 〈s0, s1, . . . , sn〉 such that s0 = sn and for every
k ≥ 1, 〈sk−1, sk〉 ∈ Rak

for some ak. Unravelling a locally valuation determined
model will of course give a model that is also locally valuation determined.

h s0

bs1 t s2

w

s3 s4

ride ride

cab

bus tram

bus

cab

Fig. 1. A Kripke model.

Example 1. Consider the Kripke model given in Fig. 1. The story goes as follows:
Initially, we are at home (h) and our goal is to get to work (w). We can get a
lift by a friend who, depending on the traffic situation, will either drop us off
at the train station (t) or the nearby bus station (b). We can then continue via
multiple means of transportation, including the tram, the bus or a cab. At the
bus station, taking the tram is not possible. Also, while we can take a bus from
the train station, it will not get us to work.

Kripke models can interpret formulas and programs of PDL. We recall that
the syntax of these is defined by the grammar

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈π〉ϕ | [π]ϕ
π ::= a | π;π | π∪π | ϕ?

where a ranges over Act and p over the set of atomic propositions Prp. We use the
standard abbreviations; in particular, the programs skip and fail respectively
abbreviate �? and ⊥?. Furthermore, we use the notation

⋃
x∈X πx for finite

nondeterministic compositions, understanding that the latter equals fail when
X is empty. A sequential program is a PDL program of the form a1; . . . ; an, for
n ≥ 0. By convention, when n = 0 we identify such a program with skip.

Example 2. Intuitively, in Example 1, the programs π1 = ride; (tram ∪ cab) and
π2 = ride; ((b?; bus) ∪ (t?; tram)) successfully get us to work. Note that in π1,
after the application of ride, it becomes clear from the applicability of the actions
whether the action cab has to be taken or whether we can choose either of tram
or cab. In contrast, the program π2 relies on tests to ensure that we make a good
choice and, in particular, don’t take the bus from the train station.

662 T. Bolander et al.

The interpretation of formulas and programs is defined by mutual recursion
as follows:

Rπ1;π2 = Rπ1 ◦ Rπ2

Rπ1∪π2 = Rπ1 ∪ Rπ2

Rϕ? = {〈s, s〉 | MAct, s � ϕ}
MAct, s � p iff p ∈ V (s)

MAct, s � 〈π〉ϕ iff MAct, t � ϕ for some t ∈ Rπ(s)
MAct, s � [π]ϕ iff MAct, t � ϕ for every t ∈ Rπ(s)

The truth conditions for the boolean connectives are the standard ones. From
the provided abbrevations and semantics we get Rskip = idW = {〈s, s〉 | s ∈ W},
Rfail = ∅, and Ra1;...;an

= Ra1 ◦ . . . ◦ Ran
, with the standard convention that it

equals idW when n = 0 (which justifies our identification of the empty sequential
program with skip).

Before proceeding we generalise some semantic definitions from states to sets
of states S ⊆ W . First, a is applicable at S if a is applicable at every s ∈ S.
Second, Ra(S) =

⋃
s∈S Ra(s). Third, MAct, S � ϕ iff MAct, s � ϕ for every

s ∈ S. So MAct, ∅ � ϕ for all ϕ, and we can rewrite the last truth condition of
the semantics more compactly as: MAct, s � [π]ϕ iff MAct, Rπ(s) � ϕ.

A planning task is given by a triple 〈S, γ,MAct〉 with a valuation determined
set of initial states S ⊆ W , goal formula γ of PDL and set of actions Act whose
semantics is given by the Kripke model MAct. Traditionally, planning tasks have
a single initial state, but generalising to arbitrary (valuation determined) sets
makes the technicalities in the following cleaner. A sequential program a1; . . . ; an,
alias a sequential plan, is a solution of 〈S, γ,MAct〉 if and only if

– n = 0 implies MAct, S � γ;
– n > 0 implies a1 is applicable at S and a2; . . . ; an is a solution of

〈Ra1(S), γ,MAct〉.
Sequential solutions of planning tasks can immediately be characterised in

PDL when all actions are deterministic, i.e., when every Ra(s) is either empty
or a singleton: then the sequential plan a1; . . . ; an is a solution of 〈S, γ,MAct〉
iff MAct, S � 〈a1; . . . ; an〉γ. Things are less straightforward when actions can
be nondeterministic. We follow [1,2,5,12] and introduce a third modal operator
([a1; . . . ; an]) (noted �a1; . . . ; an� in [1] and ((a1; . . . ; an)) in [2,5]) whose semantics
is defined recursively by:

MAct, s � ([skip])ϕ iff MAct, s � ϕ
MAct, s � ([a;π])ϕ iff a is applicable at s and MAct, Ra(s) � ([π])ϕ

So ([a1; . . . ; an])ϕ is equivalent to 〈a1〉�∧[a1](· · · (〈an〉�∧[an]ϕ)· · ·). It was estab-
lished by several authors, e.g. [2,5,12], that a1; . . . ; an is a solution of 〈S, γ,MAct〉
iff MAct, S � ([a1; . . . ; an])γ.

In the rest of the paper we are going to extend the argument of this new
modal operator to arbitrary star-free PDL programs. We are going to show that
these programs capture policies, which means that our framework accounts for
contingent planning.

The Dynamic Logic of Policies and Contingent Planning 663

3 Policies and Strong Solutions to Planning Tasks

Policies relate states to actions and provide the solution concept for contingent
planning. We here introduce a slight generalisation of strong policies as defined
in [4]. Note that we have assumed our models MAct to be acyclic, and hence our
policies will also automatically be acyclic, consistent with the notion of a strong
policy in [4].

Given a model MAct, a policy (called state-action table in [4]) is a relation
Λ ⊆ W × (Act∪ {stop}). It is defined at a set of states S ⊆ W if for every s ∈ S
there is an x ∈ Act ∪ {stop} such that 〈s, x〉 ∈ Λ. It is strongly executable if for
every s ∈ W and a ∈ Act, 〈s, a〉 ∈ Λ implies a is applicable at s and Λ is defined
at Ra(s). Note that our policies can be nondeterministic, since Λ is any relation
between states and actions (instead of a partial function from states to actions).
So we can for instance have 〈s, a〉, 〈s, b〉 ∈ Λ, which means that the policy specifies
two actions a and b in s that nature will choose nondeterministically between.

The special symbol stop is a ‘license to stop’: the elements of the set

Stop(Λ) = {t ∈ W | 〈t, stop〉 ∈ Λ}

are the checkpoints of Λ where we are going to evaluate whether the goal is
fulfilled. Such an entity is not a standard ingredient of polices, but makes sense
in a nondeterministic setting: we can have policies such as Λ = {〈s, stop〉, 〈s, a〉}
which at s specifies a nondeterministic choice by nature between stoping to act
(terminating policy execution) and performing action a. If the model MAct is
such that some goal γ is true at s and at every outcome state Ra(s), then we
are entitled to say that Λ guarantees γ.

Given a finite policy Λ, the depth of Λ from a set of states S ⊆ W is recursively
defined by:

d(Λ, S) =

{
0 if Λ \ (S × {stop}) = ∅
1 + d(Λ,

⋃
〈s,a〉∈Λ\(S×{stop}) Ra(s)) otherwise

So when d(Λ, S) = 0, the only elements of Λ are of the form 〈s, stop〉. The
function d(Λ, S) is well-defined because Λ is finite and MAct is acyclic.

Example 3. Consider the following policies for the model from Example 1:

Λ1 = {〈s0, ride〉, 〈s1, cab〉, 〈s2, tram〉, 〈s2, cab〉, 〈s3, stop〉}
Λ2 = {〈s0, ride〉, 〈s1, bus〉, 〈s2, tram〉, 〈s3, stop〉}

Both policies are acyclic, finite, strongly executable, and have a depth of 2 from
{s0}. More importantly, we can see that following these policies will always lead
us to the goal w. Also, Λ1 and Λ2 intuitively correspond to the programs π1 and
π2 from Example 2. Note that Λ1 is a nondeterministic policy, which allows us
to take either the tram or the cab from s2.

664 T. Bolander et al.

In the following, we will define what it means for a policy to solve a planning task.
Later, we will also define the correspondence between policies and programs.

Definition 1. A policy Λ is a strong solution of a planning task 〈S, γ,MAct〉
iff all of the following hold:

1. Λ is finite and strongly executable;
2. Λ is defined at S;
3. MAct,Stop(Λ) � γ.

Lemma 1. The policy S × {stop} is a strong solution of a planning task
〈S, γ,MAct〉 iff MAct, S � γ.

Proof. The policy S × {stop} is strongly executable, and is defined at S. It is
also finite, since the set S of initial states of any planning task is valuation
determined, and hence finite (there is only a finite set of propositional variables
and hence only a finite set of possible valuations).

Lemma 2. If Λ is a strong solution of a planning task 〈S, γ,MAct〉 then Λ is a
strong solution of 〈Ra(s), γ,MAct〉 for every s ∈ S and 〈s, a〉 ∈ Λ.

Proof. Let Λ be a strong solution of 〈S, γ,MAct〉 and 〈s, a〉 ∈ Λ for some s ∈ S.
In order to establish that Λ is a strong solution of 〈Ra(s), γ,MAct〉 it is enough
to prove that Λ is defined at Ra(s). This holds because Λ is strongly executable.

Lemma 3. Suppose Λ1 and Λ2 are both strong solutions of the planning task
〈S, γ,MAct〉. Then Λ1 ∪ Λ2 is also a strong solution of 〈S, γ,MAct〉.
Proof. Condition 1 of Definition 1: We need to prove finiteness and strong
executability. Λ1 ∪ Λ2 is clearly finite, as both Λ1 and Λ2 are. For strong
executability, note that if 〈s, a〉 ∈ Λ1 ∪ Λ2 then 〈s, a〉 ∈ Λi for i = 1 or
i = 2. Strong executability of Λi implies that Ra(s) is non-empty and Λi is
defined at Ra(s). Therefore Λ1 ∪ Λ2 is defined at Ra(s), too. Condition 2: If
Λ1 is defined at S, then any extension of Λ1 is also defined at S, including
Λ1 ∪ Λ2. Condition 3: If MAct,Stop(Λ1) � γ and MAct,Stop(Λ2) � γ then
MAct,Stop(Λ1) ∪ Stop(Λ2) � γ, and Stop(Λ1) ∪ Stop(Λ2) = Stop(Λ1 ∪ Λ2).

Lemma 4. Suppose Λ1 is a strong solution of 〈S1, γ,MAct〉 and Λ2 is a strong
solution of 〈S2, γ,MAct〉. Then Λ1∪Λ2 is a strong solution of 〈S1∪S2, γ,MAct〉.
Proof. Condition 1: As in the proof of the previous lemma. Condition 2: Λ1 ∪Λ2

is clearly defined at S1 ∪S2. Condition 3: MAct,Stop(Λ1 ∪Λ2) � γ just as in the
proof of the previous lemma.

The policy Λ−stop is obtained from Λ by deleting all licenses to stop: Λ−stop =
Λ \ (W × {stop}). This definition is useful to combine policies sequentially.

Lemma 5. Suppose Λ1 is finite, strongly executable and defined at S, and sup-
pose Λ2 is a strong solution of 〈Stop(Λ1), γ,MAct〉. Then Λ−stop

1 ∪Λ2 is a strong
solution of 〈S, γ,MAct〉.

The Dynamic Logic of Policies and Contingent Planning 665

Proof. Condition 1: Λ−stop
1 ∪ Λ2 is clearly finite. Let us show that it is also

strongly executable. Suppose 〈s, a〉 ∈ Λ−stop
1 ∪ Λ2. If 〈s, a〉 ∈ Λ2 then, as Λ2 is

strongly executable, a is applicable at s and Λ2 is defined at Ra(s), and so is
Λ−stop
1 ∪ Λ2. Otherwise, if 〈s, a〉 ∈ Λ−stop

1 then, as Λ1 is strongly executable, a
is applicable at s and Λ1 is defined at Ra(s). The latter means that for every
t ∈ Ra(s) there is an xt ∈ Act∪{stop} such that 〈t, xt〉 ∈ Λ1. We distinguish two
cases: (1) when xt ∈ Act then 〈t, xt〉 ∈ Λ−stop

1 , and so Λ−stop
1 ∪ Λ2 is defined at t;

(2) when xt = stop then t ∈ Stop(Λ1), and as Λ2 is defined at Stop(Λ1) we have
that Λ−stop

1 ∪ Λ2 is defined at t. It follows that Λ−stop
1 ∪ Λ2 is defined at Ra(s).

Condition 2: let us show that Λ−stop
1 ∪ Λ2 is defined at S. Let s ∈ S be

chosen arbitrarily. As Λ1 is defined at S, either there is an a ∈ Act such that
〈s, a〉 ∈ Λ1, and hence 〈s, a〉 ∈ Λ−stop

1 ∪Λ2, as required. Otherwise, 〈s, stop〉 ∈ Λ1.
This implies s ∈ Stop(Λ1), and since Λ2 applies to Stop(Λ1), there must exist an
x ∈ Act∪{stop} such that 〈s, x〉 ∈ Λ2, implying 〈s, x〉 ∈ Λ−stop

1 ∪Λ2, as required.
Condition 3: As Stop(Λ−stop

1 ∪ Λ2) = Stop(Λ2) and Λ2 is a strong solution of
〈Stop(Λ1), γ,MAct〉, we must have MAct,Stop(Λ

−stop
1 ∪ Λ2) � γ.

The above lemmas basically show that union and sequential composition of two
policies preserve strong solutions.

The sequential policy associated to a sequential program a1; . . . ; an and a set
of states S ⊆ W is

SPol
(
a1; . . . ; an, S

)
=

{
∅ if n = 0
(S × {a1}) ∪ SPol

(
a2; . . . ; an, Ra1(S)

)
otherwise

It is then straightforward to prove that the sequential program a1; . . . ; an

is a solution of the planning task 〈S, γ,MAct〉 if and only if the policy
SPol

(
a1; . . . ; an, S

)
is a strong solution of 〈S, γ,MAct〉. The other way round, it

is clearly not the case that any policy can be mapped to a sequential program.
For example, consider the policy Λ2 from Example 3. This policy assigns the
action bus to s1 and tram to s2. Since the action ride executed in s0 can either
result in s1 or s2, the policy specifies distinct actions depending on the outcome
of ride. This policy can hence not be represented as a sequential program, as after
the execution of ride, the choice of action to follow is conditional on the outcome
of ride. This is also why the PDL program π2 of Example 2 corresponding to Λ2

includes tests on the outcome of ride: π2 = ride; ((b?; bus) ∪ (t?; tram)).

4 Extending PDL by the Modal Operator ([π])

As announced, we extend the language of PDL by a third modal operator on
programs ([π]). The interpretation of ([π]) is defined inductively:

MAct, s � ([a])ϕ iff a is applicable at s and MAct, Ra(s) � ϕ
MAct, s � ([π1;π2])ϕ iff MAct, s � ([π1])([π2])ϕ
MAct, s � ([π1∪π2])ϕ iff MAct, s � (([π1])� ∨ ([π2])�) ∧

(([π1])� → ([π1])ϕ) ∧
(([π2])� → ([π2])ϕ)

MAct, s � ([ψ?])ϕ iff MAct, s � ψ and MAct, s � ϕ

666 T. Bolander et al.

Satisfiability and validity are defined in the standard way. For example, the
equivalence ([π])ϕ ↔ ([π;ϕ?])� is easily seen to be valid. Furthermore, it can be
checked that the equivalences ([a])ϕ ↔ 〈a〉� ∧ [a]ϕ and ([a])� ↔ 〈a〉� are valid.
These equivalences however do not generalise to arbitrary programs.

For the model from Example 1, one can easily verify that MAct, s0 � ([π1])w
and MAct, s0 � ([π2])w.

Remark 1. Programs that are equivalent in PDL are no longer necessarily equiv-
alent under the new modality. To witness, consider the programs ride and
(ride; b?) ∪ (ride;¬b?), which have the same interpretation in PDL. In our run-
ning example, ride is applicable at s0 and nondeterministically produces either
b or ¬b. Thus MAct, s0 � ([ride])�, while MAct, s0 	� ([(ride; b?) ∪ (ride;¬b?)])�
because MAct, s0 	� ([ride; b?])� and MAct, s0 	� ([ride;¬b?])�.

Remark 2. Our semantics has two kinds of nondeterminism. The nondetermin-
ism of atomic programs is demonic: it is the environment who chooses for exam-
ple the outcome of the nondeterministic ride action. The nondeterminism of the
choice-operator ∪ has an angelic component: while all applicable actions have to
be successful, it is not required that all actions are applicable. Let us illustrate
this by a couple of examples.

The choice operator necessarily has to be given a semantics that has such an
angelic flavour if we want to account for nondeterministic policies. In our running
example, the policy Λ3 = {〈s2, tram〉, 〈s2, cab〉, 〈s3, stop〉} is a strong solution of
the planning problem of getting from the train station to work. So MAct, s2 �
([tram])w ∧ ([cab])w. The only reasonable description of Λ as a PDL program is
tram∪cab, and indeed, MAct, s � ([tram∪cab])w. Now let us contrast this with
states s1 and s2 where MAct, s1 � b∧ ([bus])w and MAct, s2 � ¬b∧ ([tram])w. The
policy Λ4 = {〈s1, bus〉, 〈s2, tram〉, 〈s3, stop〉} is a strong solution of the planning
problem 〈{s1, s2}, w,MAct〉. The only reasonable description of Λ4 seems to be
the PDL counterpart of the conditional program “if b then bus else tram”,
namely (b?; bus)∪(¬b?; tram); and indeed, we have MAct, {s1, s2} � ([(b?; bus)∪
(¬b?; tram)])w.

Note that we cannot have a purely angelic semantics where ∪ is interpreted
as disjunction, that is, where ([a1 ∪ a2])ϕ ↔ (([a1])ϕ ∨ ([a2])ϕ). To see this, first
note that we have MAct, s2 � ([tram])w ∧ ([bus])� ∧ ([bus])¬w. A purely angelic
semantics would hence give us MAct, s2 � ([tram ∪ bus])w, something we would
not like to assert: the agent does not have a free choice between tram and bus
to guarantee w (if taking the bus, the agent will not end up at the workplace).
Contrast with the fact that MAct, s1 � ([bus])w ∧ ¬([tram])�. According to our
semantics, we actually get MAct, s1 � ([bus ∪ tram])w. This is OK, since tram
is not even applicable at s1, so the only possible execution of bus ∪ tram in
s1 is to execute bus. One can think of ∪ as giving a demonic nondeterministic
choice where nature chooses which action will be executed, but only among the
applicable ones. From the perspective of the acting agent, we can think of it
as the agent choosing an arbitrary action, but again only among the applicable
ones.

The Dynamic Logic of Policies and Contingent Planning 667

An axiomatisation of the validities of our language is obtained by adding the
following to the axiomatisation of PDL:

([a])ϕ ↔ 〈a〉� ∧ [a]ϕ (Atom)
([π1;π2])ϕ ↔ ([π1])([π2])ϕ (Seq)

([π1∪π2])ϕ ↔ (([π1])� ∨ ([π2])�) ∧ (([π1])�→([π1])ϕ) ∧ (([π2])�→([π2])ϕ) (NDet)
([ψ?])ϕ ↔ ψ ∧ ϕ (Test)

The first four axioms are reduction axioms for program operators. They can
be used from the left to the right to eliminate complex programs, applying
the rule of replacement of equivalents (that can be derived without the rule of
equivalents for ([π])) to subformulas that are not in the scope of any ([π]). This
results in formulas where all programs are of the form a.

Soundness of our axioms can be proved straightforwardly, given that the
axioms closely match the truth conditions for ([π]). Completeness of the axioma-
tisation can be proved by eliminating all ([π]) from formulas via the above reduc-
tion axioms. If all ([π]) are eliminated from a formula, what remains is a formula
in the language of standard PDL whose satisfiability can be checked by solvers
for PDL [7,10]. It follows that satisfiability and validity in our augmented PDL
are both decidable.

We note that

([π1∪π2])ϕ ↔ (([π1])ϕ∧([π2])ϕ) ∨ (([π1])ϕ∧¬([π2])�) ∨ (¬([π1])�∧([π2])ϕ)

is a propositionally equivalent formulation of the axiom for nondeterministic
composition. In the rest of the section we provide some properties of our logic.

The modal operator ([π]) has almost all the properties of a normal modal
operator: it satisfies the rule of monotony and the axiom of conjunction, and
therefore also the K-axiom [3]. However, the rule of necessitation does not pre-
serve validity.

Proposition 1. The following rule of monotony for ([π]) is derivable:

if ϕ → ϕ′ then ([π])ϕ → ([π])ϕ′ (RM([.]))

Proof. By induction on the form of π. We only give the case of nondeterministic
composition. Suppose ϕ → ϕ′. ([π1∪π2])ϕ is logically equivalent to

(([π1])� ∨ ([π2])�) ∧ (([π1])�→([π1])ϕ) ∧ (([π2])�→([π2])ϕ).

Applying to the latter the induction hypothesis that ϕ → ϕ′ implies
([π1])ϕ → ([π1])ϕ′ and ([π2])ϕ → ([π2])ϕ′ (twice), we obtain

([π1∪π2])ϕ → (([π1])� ∨ ([π2])�) ∧ (([π1])�→([π1])ϕ′) ∧ (([π2])�→([π2])ϕ′),

which is equivalent to ([π1∪π2])ϕ → ([π1∪π2])ϕ′.

668 T. Bolander et al.

Given that we have rules of equivalence for the other PDL connectives, it
follows from the above that the rule of replacement of equivalents is derivable.
Note that the theorem ([π])ϕ → ([π])� directly follows from RM([.]).

Proposition 2. The following axiom of conjunction is a theorem:

(([π])ϕ ∧ ([π])ϕ′) → ([π])(ϕ ∧ ϕ′) (C([.]))

Proof. The proof is by induction on the form of the program. The base cases use
axioms Atom and Test and PDL theorems. The induction step uses the above
rule of monotony RM([.]). For sequential composition we have:

1. (([π1])([π2])ϕ ∧ ([π1])([π2])ϕ′) → ([π1])(([π2])ϕ ∧ ([π2])ϕ′) (by IH)
2. (([π2])ϕ ∧ ([π2])ϕ′) → ([π2])(ϕ ∧ ϕ′) (by IH)
3. ([π1])(([π2])ϕ ∧ ([π2])ϕ′) → ([π1])([π2])(ϕ ∧ ϕ′) (from 2 by RM([.]))
4. (([π1])([π2])ϕ ∧ ([π1])([π2])ϕ′) → ([π1])([π2])(ϕ ∧ ϕ′) (from 1 and 3)
5. (([π1;π2])ϕ ∧ ([π1;π2])ϕ′) → ([π1;π2])(ϕ ∧ ϕ′) (from 4 by Axiom Seq)

The case of nondeterministic composition is similar but a bit lengthy due to the
size of Axiom NDet.

The equivalence (([π])ϕ ∧ ([π])ϕ′) ↔ ([π])(ϕ ∧ ϕ′) can be proved from Axiom
C([.]) and the derived inference rule RM([.]).

Altogether, it looks like ([·]) is a normal modal operator. However, the rule
of necessitation ‘from ϕ infer ([π])ϕ’ fails to preserve validity. Indeed, ([π])� fails
to be valid. To see this, consider a model where Ra is empty: then 〈a〉� is false
at any state s, and therefore ([a])� is false everywhere, too. This is as it should
be: if 〈a〉� was valid then any action a would be applicable. Worse, validity of
〈π〉� for any program π would mean that e.g. the ‘fail’ program ⊥? would be
applicable.

The following theorems can be proved by induction on the form of programs,
except item (7).

Proposition 3. The following are theorems.

([π])⊥ ↔ ⊥ (1)
([π])ϕ → 〈π〉ϕ (2)

[π]ϕ ∧ ([π])� → ([π])ϕ (3)
([π∪⊥?])ϕ ↔ ([π])ϕ (4)
([π1∪π2])� ↔ (([π1])� ∨ ([π2])�) (5)

([(π1;π2)∪(π1;π′
2)])ϕ → ([π1; (π2∪π′

2)])ϕ (6)
([ψ1? ∪ ψ2?])ϕ ↔ (ψ1 ∨ ψ2) ∧ ϕ (7)

None of the implications in Proposition 3 can be extended into equivalences.
To see this for item (2), it suffices to consider a nondeterministic atomic action a
with two possible outcomes p and ¬p: then 〈a〉p holds but ([a])p does not. For item
(3), this follows from the falsifiability of ([π])ϕ → [π]ϕ. To see this, consider the

The Dynamic Logic of Policies and Contingent Planning 669

program π = p? ∪ (a;¬p?) and a model MAct with a state s where p is true and
where a nondeterministically produces outcome p or ¬p. Then MAct, s � ([π])p,
in particular because MAct, s � ¬([a;¬p?])�. On the other hand, MAct, s 	� [π]p
because MAct, s 	� [a;¬p?]p. For item (6), this can be seen from from the example
that we have given in Remark 1.

5 From Programs to Policies

In this section we associate a policy to a given program. Recall that models MAct

are assumed to be acyclic (without loss of generality). We recursively associate
to every program π and set of states S a policy Pol(π, S) as follows:

– If MAct, S 	� ([π])� then Pol(π, S) = ∅;
– If MAct, S � ([π])� then, depending on the form of π:

Pol(ψ?, S) = S × {stop}
Pol(a, S) =

(
S × {a}) ∪ (

Ra(S) × {stop})

Pol(π1;π2, S) =
(
Pol(π1, S)

)−stop ∪ Pol(π2,Stop(Pol(π1, S)))

Pol(π1∪π2, S) =
⋃

s∈S

(
Pol(π1, {s}) ∪ Pol(π2, {s})

)

Example 4. Suppose MAct is such that Ra1 = {〈s1, t1〉} and Ra2 = {〈s2, t2〉}.
Then Pol(a1∪a2, {s1, s2}) = {〈s1, a1〉, 〈s2, a2〉, 〈t1, stop〉, 〈t2, stop〉}. This justifies
the case of nondeterministic composition: Pol(a1∪a2, {s1, s2}) would be empty
had we defined Pol(π1 ∪π2, S) as Pol(π2, S)∪Pol(π2, S) (plus Pol(a, S) as empty
if a is inapplicable at some s ∈ S).

Example 5. Suppose MAct is the model from our running example (Fig. 1). For
the program h? we have Pol(h?, {s0}) = {〈s0, stop〉}. Consider the program
ride; b?. Then MAct, s0 	� ([ride; b?])�, and therefore Pol(ride; b?, {s0}) = ∅. Con-
sider the program π = h? ∪ (ride; b?). Then MAct, s0 � ([h?])� and MAct, s0 	�
([ride; b?])�, and therefore Pol(π, {s0}) = {〈s0, stop〉}.

While Rπ(S) contains Stop(Pol(π, S)) for every set of states S (the proof is
by induction on the form of π), the converse fails to hold. This can be seen from
the above example: s1 is not in Stop(Pol(π, S)), although it is in Rride(s).

Example 6. For the model from our running example and the program consisting
of the single action ride, we obtain the following policy:

Pol(ride, {s0}) = ({s0} × {ride}) ∪ ({s1, s2} × {stop})
= {〈s0, ride〉, 〈s1, stop〉, 〈s2, stop〉}

670 T. Bolander et al.

For the program π1 = ride; (tram ∪ cab) we then obtain the following policy:

Pol(π1, {s0})

= Pol(ride, {s0})−stop ∪ Pol(tram ∪ cab,Stop(Pol(ride, {s0})))

= {〈s0, ride〉} ∪ Pol(tram ∪ cab, {s1, s2})

= {〈s0, ride〉} ∪
⋃

{Pol(tram, {s1}) ∪ Pol(cab, {s1}),

Pol(tram, {s2}) ∪ Pol(cab, {s2})}
= {〈s0, ride〉} ∪ ∅ ∪ {〈s1, cab〉, 〈s3, stop〉}

∪ {〈s2, tram〉, 〈s3, stop〉} ∪ {〈s2, cab〉, 〈s3, stop〉}
= {〈s0, ride〉, 〈s1, cab〉, 〈s2, tram〉, 〈s2, cab〉, 〈s3, stop〉} = Λ1

This verifies that indeed Λ1 is the policy corresponding to π1 as claimed in
Example 3.

Lemma 6. Suppose S is finite. Then Pol(π, S) finite, and for every a ∈ Act,
〈s, a〉 ∈ Pol(π, S) implies that a is applicable at s.

Proof. We can prove by induction on the form of π that for every a ∈ Act,
if 〈s, a〉 ∈ Pol(π, S) then a is applicable at s. Now note that since models are
assumed to be locally valuation determined, for every action a and state s,
Ra(s) must be finite. Finiteness of Pol(π, S) is then due to finiteness of S and
to finiteness of every Ra(s); the proof is by induction on the form of π.

The hypotheses of Lemma 6 are not enough to guarantee strong exe-
cutability of Pol(π, S). Consider our model from Fig. 1 which clearly satis-
fies the hypotheses of Lemma 6. Here, Pol(ride; tram, {s0}) is empty because
MAct, s0 	� ([ride; tram])�. The next result says that Pol(π, S) is strongly exe-
cutable under the condition that ([π])γ is true at S (for any γ, so in partic-
ular when γ is �). It moreover says that then Pol(π, S) is defined at S and
MAct,Stop(Pol(π, S)) � γ.

Proposition 4. Let 〈S, γ,MAct〉 be a planning task and suppose MAct, S �
([π])γ. Then Pol(π, S) is a strong solution of 〈S, γ,MAct〉.
Proof. Since 〈S, γ,MAct〉 is a planning task, S is valuation determined, and
hence finite. Thus, by Lemma 6, Pol(π, S) is finite, and 〈s, a〉 ∈ Pol(π, S) implies
that a is applicable at s for every a ∈ Act. To show that Pol(π, S) is strongly
executable it remains to show that 〈s, a〉 ∈ Pol(π, S) implies that Pol(π, S) is
defined at Ra(s). Furthermore, we have to show that Pol(π, S) is defined at S
and that MAct,Stop(Pol(π, S)) � γ. We proceed by induction on the form of π.

MAct, S � ([ψ?])γ implies MAct, S � ψ and MAct, S � γ by the truth con-
dition for test. By Lemma 1, Pol(ψ?, S) = S × {stop} is a strong solution of
〈S, γ,MAct〉.

MAct, S � ([a])γ implies MAct, Ra(S) � γ. The policy Pol(a, S) =
(
S×{a})∪(

Ra(S)×{stop}) is defined at S and at Ra(S) (so due to the latter it is strongly
executable). Hence Pol(a, S) is a strong solution of 〈S, γ,MAct〉.

The Dynamic Logic of Policies and Contingent Planning 671

MAct, S � ([π1;π2])γ implies MAct, S � ([π1])([π2])γ. By induction hypothesis
Pol(π1, S) is a strong solution of 〈S, ([π2])γ,MAct〉. So MAct,Stop(Pol(π1, S)) �
([π2])γ. We apply the induction hypothesis again: Pol(π2,Stop(Pol(π1, S))) is a
strong solution of the planning task 〈Stop(Pol(π1, S)), γ,MAct〉. Then

Pol(π1;π2, S) =
(
Pol(π1, S)

)−stop ∪ Pol(π2,Stop(Pol(π1, S)))

is a strong solution of 〈S, γ,MAct〉 thanks to Lemma 5.

MAct, S � ([π1∪π2])γ implies that for every s ∈ S, one of the following holds:
1. MAct, s � ([π1])γ and MAct, s � ([π2])γ;
2. MAct, s � ([π1])γ and MAct, s 	� ([π2])�;
3. MAct, s 	� ([π1])� and MAct, s � ([π2])γ.

Remember that by definition Pol(πi, S) is empty if MAct, S 	� ([πi])�. Therefore
by the induction hypothesis one of the following holds:

1. Pol(π1, {s}) and Pol(π2, {s}) are both strong solutions of 〈{s}, γ,MAct〉;
2. Pol(π1, {s}) is a strong solution of 〈{s}, γ,MAct〉 and Pol(π2, {s}) = ∅;
3. Pol(π1, {s}) = ∅ and Pol(π2, {s}) is a strong solution of 〈{s}, γ,MAct〉.

In each of these three cases we have that Pol(π1, {s}) ∪ Pol(π2, {s}) is a strong
solution of 〈{s}, γ,MAct〉, where in the first case we apply Lemma 3. Finally, by
Lemma 4 we conclude that Pol(π1∪π2, S) =

⋃
s∈S

(
Pol(π1, {s}) ∪ Pol(π2, {s})

)

is a strong solution of 〈S, γ,MAct〉. This completes the proof.

We immediately get the following, given that by definition Pol(π, S) is empty
when MAct, S 	� ([π])γ.

Corollary 1. Let 〈S, γ,MAct〉 be a planning task. Then MAct, S � ([π])γ iff
Pol(π, S) is a strong solution of 〈S, γ,MAct〉.

6 From Policies to Programs

In this section we associate a program to a given policy. Given a model MAct =
〈W, {Ra}a∈Act, V 〉, the characteristic formula of a state s ∈ W is

χs =
(∧

p∈V (s)

p
) ∧ (∧

p/∈V (s)

¬p
)

Such formulas will be tested in the program associated to a policy Λ in order to
correctly capture the actions of Λ that apply at s. The crucial property is that
χs is only true in states that have the same valuation as s, as is immediately
seen from the definition of the χs.

The abbreviation skipifstopΛ(s) =
⋃

〈s,stop〉∈Λ skip will be convenient: when
〈s, stop〉 ∈ Λ then it is equivalent to skip; otherwise (by our convention of
Sect. 2) it equals fail. Now we are ready to associate to every finite policy Λ
and finite set of states S a program πΛ,S as follows:

πΛ,S =
⋃

s∈S

⎛

⎝χs?;

⎛

⎝skipifstopΛ(s) ∪
⋃

a|〈s,a〉∈Λ

(
a;πΛ,Ra(s)

)
⎞

⎠

⎞

⎠

672 T. Bolander et al.

The function πΛ,S is well-defined because Λ is finite and MAct is acyclic.

Proposition 5. If Λ is a strong solution of the planning task 〈S, γ,MAct〉 then
MAct, S � ([πΛ,S])γ.

Proof. By induction on the depth d(Λ, S) of the policy Λ from S. If d(Λ, S) =
0 then there can be no 〈a, s〉 ∈ Λ for any s ∈ S, and for every s
the subprogram

⋃
a|〈s,a〉∈Λ

(
a;πΛ,Ra(s)

)
of Pol(Λ, S) is the fail program.

Therefore πΛ,S is
⋃

s∈S

(
χs?;

(
skipifstopΛ(s) ∪ fail

))
, which is equivalent to

⋃
s∈S

(
χs?;

(
skipifstopΛ(s)

))
, by Proposition 3, item (4). Suppose Λ is a strong

solution of 〈S, γ,MAct〉. So γ is true at Stop(Λ) = S and Λ applies to S.
The latter means that skipifstopΛ(s) equals skip for every s ∈ S. Therefore
the program πΛ,S equals

⋃
s∈S (χs?; skip), which is equivalent to the program⋃

s∈S χs? (more precisely, we have Rπ;skip = Rπ ◦ R�? = Rπ). By item (7) of
Proposition 3, the formula

([⋃
s∈S χs?

])
γ is equivalent to (

∨
s∈S χs) ∧ γ; and as

MAct, S �
∨

s∈S χs, we have that MAct, S �
([⋃

s∈S χs?
])
γ. So we can conclude

that MAct, S �
([
πΛ,S

])
γ.

If d(Λ, S) ≥ 1 then suppose Λ is a strong solution of 〈S, γ,MAct〉. Choose
s ∈ S arbitrarily. We then need to prove MAct, s �

([
πΛ,S

])
γ. By Lemma 2, Λ is

a strong solution of 〈Ra(s), γ,MAct〉 for every 〈s, a〉 ∈ Λ. Then by the induction
hypothesis we have for every 〈s, a〉 ∈ Λ

MAct, Ra(s) �
([
πΛ,Ra(s)

])
γ,

i.e., as Λ applies to s, that for every a such that 〈s, a〉 ∈ Λ:

MAct, s �
([
a
])
([πΛ,Ra(s)])γ.

Therefore,

MAct, s �
∧

a|〈s,a〉∈Λ

([
a;πΛ,Ra(s)

])
γ,

which by the validity of Axiom NDet implies that

MAct, s �
([⋃

a|〈s,a〉∈Λ

(
a;πΛ,Ra(s)

)])
γ.

Furthermore, as Λ is a strong solution of 〈S, γ,MAct〉 we have MAct,Stop(Λ) � γ
and hence,

MAct, s � ([skipifstopΛ(s)])γ ∨ ¬([skipifstopΛ(s)])�.

Due to the validity of Axiom NDet we can combine the last two lines and obtain

MAct, s �
([
skipifstopΛ(s)∪(⋃

a|〈s,a〉∈Λ

(
a;πΛ,Ra(s)

))])
γ.

Since MAct, s � χs, we have:

MAct, s �
([
χs?

])([
skipifstopΛ(s)∪(⋃

a|〈s,a〉∈Λ

(
a;πΛ,Ra(s)

))])
γ.

The Dynamic Logic of Policies and Contingent Planning 673

Using the validity of Axiom Seq, we then get:

MAct, s �
([
χs?;

(
skipifstopΛ(s)∪(⋃

a|〈s,a〉∈Λ

(
a;πΛ,Ra(s)

)))])
γ.

Since the set S of initial states of any planning task is assumed to be valuation
determined, we must have MAct, s � ¬χt for every t ∈ S \ {s}. This implies
MAct, s � ¬([χt])�, and hence:

MAct, s � ¬([
χt?;

(
skipifstopΛ(t)∪(⋃

a|〈t,a〉∈Λ

(
a;πΛ,Ra(t)

)))])�, for t ∈ S \ {s}.

Applying Axiom NDet to the last two lines, we now get

MAct, s �
([⋃

s∈S

(
χs?;

(
skipifstopΛ(s)∪⋃

a|〈s,a〉∈Λ

(
a;πΛ,Ra(s)

)))])
γ.

In other words, MAct, s �
([
πΛ,S

])
γ as required.

Putting Propositions 4 and 5 together now finally gives us the following.

Corollary 2. A planning task 〈S, γ,MAct〉 has a strong solution iff there exists
a star-free PDL program π such that MAct, S � ([π])γ.

This indicates that PDL with our new modality ([·]) provides an appropriate
linguistic and semantic framework to reason about policies.

References

1. Andersen, M.B., Bolander, T., Jensen, M.H.: Conditional epistemic planning. In:
del Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS (LNAI), vol.
7519, pp. 94–106. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
33353-8 8

2. Bolander, T., Engesser, T., Mattmüller, R., Nebel, B.: Better eager than lazy? How
agent types impact the successfulness of implicit coordination. In: Proceedings of
the 16th International Conference on Principles of Knowledge Representation and
Reasoning (KR 2018). AAAI Press (2018)

3. Chellas, B.F.: Modal Logic: An Introduction. Cambridge University Press, Cam-
bridge (1980)

4. Cimatti, A., Pistore, M., Roveri, M., Traverso, P.: Weak, strong, and strong cyclic
planning via symbolic model checking. Artif. Intell. 147(1–2), 35–84 (2003)

5. Engesser, T., Bolander, T., Mattmüller, R., Nebel, B.: Cooperative epistemic multi-
agent planning for implicit coordination. In: Ghosh, S., Ramanujam, R. (eds.)
Proceedings of the Ninth Workshop on Methods for Modalities, M4M. EPTCS,
vol. 243, pp. 75–90 (2017)

6. Gabbay, D., Kurucz, A., Wolter, F., Zakharyaschev, M.: Many-Dimensional Modal
Logics: Theory and Applications, Studies in Logic and the Foundations of Mathe-
matics, vol. 148. Elsevier (2003)

7. Goré, R., Widmann, F.: An optimal on-the-fly tableau-based decision procedure
for PDL-satisfiability. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol.
5663, pp. 437–452. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-02959-2 32

https://doi.org/10.1007/978-3-642-33353-8_8
https://doi.org/10.1007/978-3-642-33353-8_8
https://doi.org/10.1007/978-3-642-02959-2_32
https://doi.org/10.1007/978-3-642-02959-2_32

674 T. Bolander et al.

8. Harel, D.: Dynamic logic. In: Gabbay, D.M., Günthner, F. (eds.) Handbook of
Philosophical Logic, vol. II, pp. 497–604. D. Reidel, Dordrecht (1984)

9. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)
10. Hustadt, U., Schmidt, R.A.: A comparison of solvers for propositional dynamic

logic. In: Schmidt, R.A., Schulz, S., Konev, B. (eds.) Proceedings of the 2nd Work-
shop on Practical Aspects of Automated Reasoning, PAAR-2010, Edinburgh, Scot-
land, UK, 14 July 2010. EPiC Series in Computing, vol. 9, pp. 63–73. EasyChair
(2010)

11. Li, Y.: Knowing What to Do: A Logical Approach to Planning and Knowing How.
Ph.D. thesis, University of Groningen (2017)

12. Yu, Q., Li, Y., Wang, Y.: More for free: a dynamic epistemic framework for con-
formant planning over transition systems. J. Logic Comput. 27, 2383–2410 (2017)

Interpolation and Beth Definability
in Default Logics

Valentin Cassano1(B), Raul Fervari1, Carlos Areces1, and Pablo F. Castro2

1 CONICET and Universidad Nacional de Córdoba, Córdoba, Argentina
vcassano@famaf.unc.edu.ar

2 CONICET and Universidad Nacional de Ŕıo Cuarto, Ŕıo Cuarto, Argentina

Abstract. We investigate interpolation and Beth definability in default
logics. To this end, we start by defining a general framework which is suf-
ficiently abstract to encompass most of the usual definitions of a default
logic. In this framework a default logic DL is built on a base, monotonic,
logic L. We then investigate the question of when interpolation and Beth
definability results transfer from L to DL. This investigation needs suit-
able notions of interpolation and Beth definability for default logics. We
show both positive and negative general results: depending on how DL

is defined and of the kind of interpolation/Beth definability involved, the
property might or might not transfer from L to DL.

1 Introduction

Interpolation and Beth definability are recognized as important properties of
the meta-theory of a logic (see, e.g., [19]). Interpolation goes back to the seminal
work of Craig in [11] and is, in one form, the following result: suppose that
ϕ � ψ, there is ξ in the common language of ϕ and ψ s.t. ϕ � ξ and ξ �
ψ. In addition to its theoretical relevance, interpolation has also proven to be
influential in applications in Computer Science, e.g., in the context of software
specification [6,14,25,34], in the construction of Formal Ontologies [23], and in
Model Checking [26]. Though interpolation stands as a property in its own right,
its main importance lies in the fact that it can be used to prove a result known
as Beth definability via a standard argument (see, e.g., [28]). Intuitively, Beth
definability implies that the syntax of the language is powerful enough to define
any notion that is semantically fixed in a model. This is commonly regarded
as a sign of a well behaved logic, where syntax and semantics are in harmony.
Interpolation and Beth definability have received a lot less attention in non-
classical and, in particular, non-monotonic logics. With this as our motivation,
we investigate interpolation and Beth definability in default logics, a sub-class
of the field of Non-monotonic Logic.

We start by defining a general framework which is sufficiently abstract to
encompass most of the usual default logics (e.g., those introduced in [13,24,
27,29]), generalizing ideas presented in [17,18]. We define a default logic DL
on a base, monotonic, logic L satisfying some minimal requirements. Then, we
c© Springer Nature Switzerland AG 2019
F. Calimeri et al. (Eds.): JELIA 2019, LNAI 11468, pp. 675–691, 2019.
https://doi.org/10.1007/978-3-030-19570-0_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19570-0_44&domain=pdf
https://doi.org/10.1007/978-3-030-19570-0_44

676 V. Cassano et al.

turn to the question of when interpolation and Beth definability results transfer
from L to DL. As a result of the generality of our framework, we are able to
prove far-reaching transfer results for a comprehensive class of default logics. We
draw attention to the fact that interpolation and Beth definability for default
logics need suitable definitions. When dealing with a non-monotonic logical con-
sequence relation |∼, it may not simply be possible to define interpolation as: if
ϕ |∼ ψ, then there is ξ in the common language of ϕ and ψ s.t. ϕ |∼ ξ and ξ |∼ ψ.
For starters, since |∼ is non-monotonic, it may not be transitive. Moreover, since
consequence in most default logics is defined in terms of default theories, the
notion of “common language”, and the left and right hand sides of |∼ should
also be dealt with care. After discussing how to define interpolation and Beth
definability in default logics, we show both positive and negative results. Depend-
ing on how DL is defined and of which kind of interpolation/Beth definability
property we study, the property might or might not transfer from L to DL. In
particular, we show that the Strong Craig Interpolation Property (SCIP) always
transfer from L to DL (Proposition 6), while the Split Interpolation Property
(SIP) fails for any traditional DL based on L extending classical propositional
logic (CPL), even though CPL has SIP (Proposition 7). Similarly, if L has SIP and
DL is stable under substitutions, then sceptical default consequence in DL has
a version of the Beth definability property (Proposition 8), while this property
fails for credulous default consequence in traditional DL based on L extending
CPL (Proposition 9).

Structure. In Sect. 2 we provide a general definition of a default logic. We start
by defining what we require of a base logic in Sect. 2.1. We introduce default
logics in Sect. 2.2, and define traditional default logics in Sect. 2.3. In Sect. 2.4 we
briefly discuss strongly saturated default logics – a class of well behaved default
logics generalizing traditional default logics. Section 3 investigates interpolation
and Beth definability. We introduce appropriate definitions in Sects. 3.1 and 3.3.
Our main results are shown in Sects. 3.2 and 3.4. Section 4 concludes the paper
discussing related work and providing pointers for future research.

2 What Is a Default Logic?

Default logics are a sub-class of non-monotonic logics. Different default logics
have been introduced after the originating proposal in Reiter’s seminal work [29].
These different default logics have in common the notion of a default and an
extension. A default is a triple of formulas of a formal language, notation π

ρ
=⇒ χ,

capturing a conditional, defeasible statement. An extension is a set of formulas
making precise some constraints on π and ρ, enabling us to detach χ from π

ρ
=⇒ χ.

Default logics differ from one another in the conditions enabling detaching a
default. Defaults and extensions are basic ingredients in what is a default logic.

Interpolation and Beth Definability in Default Logics 677

2.1 Preliminary Definitions

We define default logics over a base logic. In our setting, a base logic, or a logic for
short, has two ingredients: a set of formulas and a consequence relation. Formulas
are defined over a language, i.e., a triple F = 〈A,L ,G 〉 where: A is a set of non-
logical symbols (the alphabet); L is a set of logical symbols with corresponding
arities; and G are the rules of grammar. We also use F for the set of all formulas
of a language F . As usual, lowercase and uppercase Greek letters are variables
for formulas and sets of formulas, resp. We restrict our attention to propositional
languages, i.e., languages where A is a set of proposition symbols. We use p, q, r,
etc., for proposition symbols. For any F and Φ ⊆ F , A(Φ) is the alphabet of Φ,
i.e., the set of proposition symbols appearing in formulas in Φ. We say that Φ is
defined on an alphabet A if A(Φ) ⊆ A. We define F �A = { ϕ ∈ F | A(ϕ) ⊆ A }.
We use Sp

q(Φ) to indicate the result of substituting every appearance of p by q in
every formula in Φ. A consequence relation � is a subset of 2F × F indicating
what follows from what in a logic. We use Φ � ϕ for (Φ,ϕ) ∈ �; and � ϕ if
Φ = ∅ (we omit brackets for singleton sets). We make no assumptions regarding
whether � is defined syntactically or semantically. We do assume that � satisfies
reflexivity, monotonicity, cut, and structurality (see, e.g., [16]). We make precise
what a logic is in the next definition.

Definition 1 (Logic). A logic is a tuple L = 〈F ,�〉 where F is a language,
and � ⊆ 2F × F is a consequence relation s.t. ϕ � ϕ (reflexivity); if Φ � ϕ and
Φ ⊆ Φ′, then Φ′ � ϕ (monotonicity); if Φ � ϕi and Φ ∪ {ϕi | i ∈ I } � ψ, then
Φ � ψ (cut); and if Φ � ϕ, then Sp

q(Φ) � Sp
q(ϕ) (structurality).

For any logic L, we say that ϕ is a consequence of Φ iff Φ � ϕ. We define
Φ• = { ϕ | Φ � ϕ }. The operator ()• is a closure operator, i.e.: Φ ⊆ Φ•; if Φ ⊆ Φ′,
then Φ• ⊆ Φ′•; and Φ• = Φ••. A set of sentences Φ is consistent if Φ• ⊂ F .

Definition 2. An implicative logic is a logic whose logical symbols contain
nullary symbols � (verum) and ⊥ (falsum), and a binary symbol ⊃ (implica-
tion); whose set F of formulas contains {� ⊃ ϕ,ϕ ⊃ �,⊥ ⊃ ϕ,ϕ ⊃ ⊥, ϕ ⊃ ψ};
and whose consequence relation satisfies: � ∈ Φ• iff ⊥ ⊃ ⊥ ∈ Φ• (�⊥-def);
ϕ ∈ Φ• iff � ⊃ ϕ ∈ Φ• (�-left-neutral); if {ϕ ⊃ φ, φ ⊃ ψ} ⊆ Φ•, ϕ ⊃ ψ ∈ Φ•

(⊃-transitive); and if {ϕ,ϕ ⊃ ψ} ⊆ Φ•, ψ ∈ Φ• (modus ponens).

Henceforth, by a logic, we mean an implicative logic. Implicative logics play
a fundamental role in our treatment of interpolation and Beth definability.

Example 1. The following are some typical cases of logics: Classical Propositional
Logic (CPL) [15]; Intuitionistic Propositional Logic (IPL) [33]; the class of Normal
Modal Logics [7]; in particular, the Basic Modal Logic K with local consequence
[7]; the Basic Modal Logic K with global logical consequence [7]; the Modal Logic
KAlt1 [7]; the Standard Deontic Logic D [10,35]; the Deontic Logic KDA [9]; the
epistemic logic S5 [10,21]; and the hybrid logic H(A, ↓) [5] (which is equivalent
to Classical First-Order Logic over the appropriate language).

678 V. Cassano et al.

2.2 Default Logics

We start with a general definition of a default logic.

Definition 3 (Default Logic). A default logic is a pair DL = 〈L,E 〉 where L

is a logic and E : (2F × 2(F 3)) → 2(2F) is a function s.t. for every E ∈ E (Φ,Δ),
E = (Φ ∪ {χ | (π, ρ, χ) ∈ Δ′ })• for some Δ′ ⊆ Δ.

D = F 3 is the set of all defaults of a default logic. π
ρ
=⇒ χ is notation for

(π, ρ, χ) ∈ D . A default theory Θ is a pair (Φ,Δ) where Φ ⊆ F and Δ ⊆ D .
If Θ is a default theory, ΦΘ and ΔΘ are the sets of formulas and defaults of Θ,
resp. For a default theory Θ, E (Θ) is its set of extensions. We associate with
each default logic two notions of default consequence: credulous, and sceptical.
Formally, ϕ is a credulous default consequence of a default theory Θ, notation
Θ |∼c ϕ, iff ϕ ∈ ⋃

E (Θ); in turn, ϕ is a sceptical default consequence of Θ,
notation Θ |∼s ϕ, iff ϕ ∈ ⋂

E (Θ). If E (Θ) = ∅,
⋃
E (Θ) = ∅ and

⋂
E (Θ) = F

(see [32]). Define Θc = { ϕ | Θ |∼c ϕ } and Θs = { ϕ | Θ |∼s ϕ }. We use |∼ and Θd

when there is no need to distinguish between |∼c and |∼s, and Θc and Θs, resp.
The rest of this section illustrates how some of the most common properties of

Default Logics fit into our definition. We say that a default logic DL guarantees
extensions iff for all Θ, E (Θ) �= ∅. Default logics that guarantee extensions are
supra-classical, i.e., for all Θ, (ΦΘ)• ⊆ Θd; and they satisfy Θs ⊆ Θc for all Θ.
These properties are not satisfied if extensions fail to exist, i.e., if there is Θ s.t.
E (Θ) = ∅. Let Θ1 and Θ2 be default theories, define Θ1 � Θ2 iff ΦΘ1 ⊆ ΦΘ2

and ΔΘ1 ⊆ ΔΘ2 . We say that DL is non-monotonic iff there are Θ1 and Θ2 s.t.
Θ1 � Θ2 and (Θ1)

d � (Θ2)
d. We say that DL is semi-monotonic iff for any

two Θ1 and Θ2 s.t. Θ1 � Θ2, if ΦΘ1 = ΦΘ2 , then for all E1 ∈ E (Θ1), there is
E2 ∈ E (Θ2) s.t. E1 ⊆ E2. Further, we say that DL is E -consistent iff for all Θ, if
ΦΘ is L-consistent, then all E ∈ E (Θ) are L-consistent. Non-monotonocity, semi-
monotonicity, and E -consistency do not follow from Definition 3. Moreover, they
need not be satisfied by default logics (even if they guarantee extensions); they
depend on the particularities of the definition of E . We make no assumptions
regarding whether an arbitrary default logic satisfies any of the properties above.

2.3 Traditional Default Logics

Definition 3 paints a general picture of what is a default logic. At the same
time, it captures default logics that are, in a sense, “degenerate”. E.g., we can
define a default logic s.t. for all Θ, E (Θ) = {(ΦΘ)•}. This default logic ignores
defaults, thus collapsing default reasoning into reasoning in the underlying logic,
i.e., Θc = Θs = (ΦΘ)• for all Θ. We call any default logic satisfying this condition
trivial. Trivial default logics are extreme cases of little interest from a Default
Logic perspective. In defining a default logic, we wish to provide a precise account
of what does it mean to reason with defaults in a way such that reasoning
in the underlying logic is extended non-monotonically. This is the purpose of
traditional default logics. Traditional default logics encompass Reiter’s seminal

Interpolation and Beth Definability in Default Logics 679

work on default logic [29] and some of its major variants, e.g., [13,24,27,30],
summarized in [2,12]. We introduce what we mean by a traditional default logic
in Definition 8 by building on, and generalizing, definitions and results presented
in [17,18].

We begin by taking a closer look at defaults. Typically, a default π
ρ
=⇒ χ is

intuitively read as: if π is grounded in what is known and ρ is coherent with what
is known, then, detach χ and assume it tentatively as part of what is known.
Extensions formalize the set of “known things”, what is meant by grounded,
coherent, and detached and assumed tentatively. How these concepts are for-
malized separate traditional default logics from each other, as different intuitions
lead to different formalizations.

Henceforth, by consistency we mean L-consistency. Define, for all sets Δ,
ΔΠ = { π | π

ρ
=⇒ χ ∈ Δ }, ΔP = { ρ | π

ρ
=⇒ χ ∈ Δ } and ΔX = { χ | π

ρ
=⇒ χ ∈ Δ }.

Definition 4 (Grounded). Let Θ be a default theory, and Δ1 ⊆ Δ2 ⊆ ΔΘ;
we say that Δ2 is grounded in Δ1 iff ΔΠ

2 ⊆ (ΦΘ ∪ ΔX
1)•. In addition, for all

Δ ⊆ ΔΘ, we say that Δ is a closed set iff ΔΠ ⊆ (ΦΘ ∪ ΔX)•.

Definition 4 captures a standard view on what does it mean for a set of
defaults to be grounded. Intuitively, if we think of the sets Δ1 and Δ2 as defaults
“already considered” and defaults “to be considered”, resp., the view of grounded
in Definition 4 permits only for the consequents of “already considered” defaults
to be used to establish the prerequisites of “to be considered” defaults. Closed
sets are sets of defaults whose prerequisites can be established from within the
set.

Definition 5 (Coherence). Let Θ be a default theory, and Δ1 ⊆ Δ2 ⊆ ΔΘ; we
say that Δ2 is i-coherent w.r.t. Δ1 iff:

(1-coherent) for all δ2 ∈ Δ2, (ΦΘ ∪ ΔX
1 ∪ δP

2)• is consistent.
(2-coherent) for all δ2 ∈ Δ2, (ΦΘ ∪ ΔX

2 ∪ δP
2)• is consistent.

(3-coherent) (ΦΘ ∪ ΔX
1 ∪ ΔP

2)• is consistent.
(4-coherent) (ΦΘ ∪ ΔX

2 ∪ ΔP
2)• is consistent.

In addition, we say that Δ2 is self i-coherent if it is i-coherent w.r.t. itself.

Proposition 1. i-coherence implies 1-coherence, while 4-coherence implies i-
coherence, for 1 ≤ i ≤ 4. Further, self 1-coherence implies self 2-coherence; self
3-coherence implies self 4-coherence.

A default π
ρ
=⇒ χ ∈ Δ is normal iff ρ = χ. We use π =⇒ χ as notation for

normal defaults. A default theory Θ is normal if all δ ∈ ΔΘ are normal.

Proposition 2. For normal default theories, the four notions of coherence
introduced in Definition 5 are equivalent.

680 V. Cassano et al.

Table 1. Coherence and detachment

Coherence Detachment Proponent Reference

1-coherence classical Reiter [29]

2-coherence justified �Lukaszewicz [24]

3-coherence rational Mikitiuk and Truszczynski [27]

4-coherence constrained Delgrande, Jackson, and Schaub [13,30]

Definition 5 captures four different views on what does it mean for a set of
defaults to be coherent. The relation between these different views is made clear
in Propositions 1 and 2. Again, if we think of the sets Δ1 and Δ2 as defaults
“already considered” and defaults “to be considered”, resp., 1-coherence and
2-coherence require the justifications of the defaults “to be considered” to be
individually consistent w.r.t. the defaults “already considered”. They differ from
each other in whether or not the consequents of the defaults “to be considered”
should be included in the consistency check. These takes on coherence correspond
to Reiter [24,29] and to �Lukaszewicz [24], resp. In turn, 3-coherence and 4-
coherence require the justifications of the defaults “to be considered” to be jointly
consistent; and differ from each other in whether or not the consequents of
the defaults “to be considered” should be included in the consistency check.
These takes on coherence correspond to Mikitiuk and Truszczynski [27], and
to Delgrande, Jackson, and Schaub [13,30], resp. When there is no need to
distinguish between the different types of coherence, we simply say that Δ2 is
coherent w.r.t. Δ1.

Definition 6 (Detachment). Let Θ be a default theory and Δ1,Δ2 ⊆ ΔΘ; we
say that Δ2 is detached by Δ1 if Δ2 is grounded in, and coherent w.r.t., Δ1.
We say that δ is detached by Δ1 if Δ2 = Δ1 ∪ δ is detached by Δ1.

Intuitively, detachment can be thought of as a version of modus-ponens for
defaults. Fixing a definition of coherence, we say that detachment is: classical,
justified, rational, and constrained, according to Table 1.

Remark 1. Recall that every well-ordering ≺ is order-equivalent to exactly one
ordinal number τ. Such an ordinal number τ is the order type of ≺. The precise
definitions of these terms, and that of a limit ordinal, can be found in [32].

Definition 7. Let Θ be a default theory; we say that Δ ⊆ ΔΘ is regular if there
is a well-ordering ≺ on ΔΘ s.t. Δ = D≺

Θ(τ), where τ is the order type of ≺, and
for all ordinals ω s.t. 0 < ω < τ, and all limit ordinals λ s.t. λ ≤ τ, D≺

Θ is
defined:

D≺
Θ(0) = ∅

D≺
Θ(ω + 1) =

⎧
⎪⎨

⎪⎩

D≺
Θ(ω) ∪ δ if δ ∈ (Δ \ D≺

Θ(ω)) is detached by D≺
Θ(ω) and for all other

δ′ ∈ (Δ \ D≺
Θ(ω)), if δ′ is detached by D≺

Θ(ω), δ ≺ δ′

D≺
Θ(ω) otherwise

D≺
Θ(λ) =

⋃{D≺
Θ(ω) | ω ≤ λ }

Interpolation and Beth Definability in Default Logics 681

Again, Definition 7 encompasses four kinds of regularity. We say that a regu-
lar set of defaults is: classical, justified, rational, and constrained, depending on
the definition of detachment it uses. Regularity captures a prescriptive view of
how to cumulatively detach defaults in default theory. The function D≺

Θ is the
closure under detachment of a set of defaults under the selection strategy defined
by the well-ordering ≺, and is a standard definition of a function by transfinite
recursion. Example 2 illustrates the need for transfiniteness.

Example 2. In some cases, we may wish to prove that our default logic is semi-
monotonic. Suppose that extensions in a default logic DL are obtained through
regular sets of defaults, and only those sets. This example shows that unless we
allow for transfinite steps, we may fail to prove semi-monotonicity due to restric-
tions on the definition of D≺

Θ. Let DL be an E -consistent default logic built over
KAlt1�+ (i.e., the modal logic where � is interpreted over a weakly functional
accessibility relation, and �+ is its transitive closure, see, e.g., [7]). Let Θ1 be a
default theory s.t. ΦΘ1 = {��} and ΔΘ1 = { �i� =⇒ �(i+1)� | i ≥ 0 }. ΔΘ1 is
regular for all kinds of detachment. Let E1 = (ΦΘ1 ∪ ΔΘ1)

• = {�i� | i ≥ 0 }•.
E1 is satisfied in Kriple models in which every world has a successor. Let Θ2 be
s.t. Θ1 � Θ2, ΦΘ1 = ΦΘ2 , and ΔΘ2 = ΔΘ1 ∪ {� =⇒ �+�⊥}; the formula �+�⊥
describes the existence of a world reachable in a finite number of steps through
the accessibility relation, which has no successors. There is no well-ordering ≺
on ΔΘ2 of order type ω0 s.t. E1 ⊆ ({��} ∪ (D≺

Θ2
(ω0))X)•. To see why, note that

any such ≺ on ΔΘ2 contains � =⇒ �+�⊥ at some position n. Since � =⇒ �+�⊥
is detached by any Δ2 ⊆ ΔΘ2 , D

≺
Θ2

(ω0) detaches � =⇒ �+�⊥ in at most n steps.
But as soon as � =⇒ �+�⊥ is detached no other default in ΔΘ2 can be detached.
Thus, for all ≺, E2 = ({��} ∪ (D≺

Θ2
(ω0))X)• is satisfied in Kripke models con-

sisting of chains of at most n worlds; and so E1 � E2. This establishes a failure of
semi-monotonicity. By allowing transfinite steps, we can first detach all defaults
in ΔΘ1 , and then proceed to check whether or not � =⇒ ��⊥ can be detached
in a transfinite step. From this, we can recover semi-monotonicity.

Definition 8 (Traditional Default Logic). We say that a default logic DL is
traditional iff for all default theories Θ, E (Θ) is the smallest set s.t. for all regular
and self coherent subsets Δ of ΔΘ, there is E ∈ E (Θ) s.t. E = (ΦΘ ∪ ΔX)•.

From Definition 8 it is possible to prove that traditional default logics
encompass four distinct sub-classes of default logics. These classes are: classi-
cal default logics (classical regularity and 1-coherence); justified default logics
(justified regularity and 2-coherence); rational default logics (rational regular-
ity and 3-coherence); and constrained default Logics (constrained regularity and
4-coherence). This claim is made precise in Proposition 3.

Proposition 3. Every traditional default logic is either a classical, a justified,
a constrained, or a rational default logic, and vice-versa.

It follows by construction, adapting the argument in [17,18], that Classical
Default Logic, defined by Reiter in [29], is a classical default logic. The same is

682 V. Cassano et al.

true, mutatis mutandis, for Justified Default Logic, defined by �Lukaszewicz in
[24], Rational Default Logic, defined by Mikitiuk and Truszczynski in [27], and
Constrained Default Logic, defined by Delgrande, Jackson, and Schaub in [13].

2.4 Intermediate Default Logics

Definition 3 paints a very general picture of what is a default logic. In turn,
Definition 8 captures default logics whose extensions are obtained in a very pre-
scriptive way via regular set of defaults. The obvious question is whether there
are some “interesting” default logics “stricter” than those in Definition 3 but
“weaker” than those in Definition 8.

Definition 9. Let DL be any default logic, and Θ be any default theory; we say
that Δ ⊆ ΔΘ is saturated iff for all Δ′ ⊆ ΔΘ, if Δ′ is detached by Δ, Δ′ ⊆ Δ.

Definition 10. We say that a default logic DL is weakly saturated iff for all
default theories Θ and all E ∈ E (Θ), there exists a saturated Δ ⊆ ΔΘ s.t.
E = (ΦΘ ∪ ΔX)•. In addition, we say that DL is strongly saturated iff it is
weakly saturated and for all default theories Θ and all saturated Δ ⊆ ΔΘ, if Δ
is self coherent, then there is E ∈ E (Θ) s.t. E = (ΦΘ ∪ ΔX)•.

Proposition 4. Every traditional default logic is strongly saturated.

We can think of weakly saturated default logics as imposing an “upper
bound” on extensions, i.e., anything that is not a saturated set of defaults cannot
be an extension. On the other hand, strongly saturated default logics impose a
“lower bound” on extensions, i.e., anything that is a saturated and self coher-
ent set of defaults must be an extension. Strongly saturated default logics are
an interesting generalization of traditional default logics for they simplify the
proof of some results circumventing the prescriptive definition of extensions in
Definition 8.

3 Interpolation and Beth Definability

As mentioned, interpolation and Beth definability are recognized as important
properties of the meta-theory of a logic. Here, we investigate interpolation and
Beth definability in Default Logics. More precisely, we investigate when results
transfer from L to DL. In order to accomplish this, we first need to formulate
suitable notions of interpolation and Beth definability for a default logics.

3.1 Interpolation

There is no unifying definition of interpolation in the literature, see [22]. Instead,
this property comes in many flavours. In what follows, we discuss some relevant
formulations of interpolation. In this discussion we assume an arbitrary logic L.

Let us start with the so-called Craig Interpolation Property (CIP).

Interpolation and Beth Definability in Default Logics 683

Definition 11. We say that consequence in L has CIP iff whenever � ϕ ⊃ ψ,
there is ξ defined on A(ϕ) ∩ A(ψ) s.t. � ϕ ⊃ ξ and � ξ ⊃ ψ.

On certain occasions, in place for CIP, we may wish to have a stronger version.

Definition 12. We say that consequence L has the Strong Craig Inteprolation
Property (SCIP) iff whenever Φ � ϕ ⊃ ψ, there is ξ defined on A(Φ,ϕ) ∩ A(ψ)
s.t. Φ � ϕ ⊃ ξ and Φ � ξ ⊃ ψ.

A rather different formulation of interpolation, used in the standard argument
for Beth Definability, is the so-called Split Interpolation Property (SIP), see [31].

Definition 13. We say that consequence L has SIP iff for any Φ and ϕ defined
on an alphabet A1, and any Ψ and ψ defined on an alphabet A2; if Φ ∪ Ψ � ϕ ⊃ ψ,
there is ξ defined on A1 ∩ A2 s.t. Φ � ϕ ⊃ ξ and Ψ � ξ ⊃ ψ. The formula ξ is
called a split interpolant.

In general, CIP, SCIP, and SIP are not equivalent (having one does not imply
having the others). Equivalence depends on the particularities of the logical con-
nectives under consideration and on logical consequence satisfying properties
such as compactness, deduction, etc. Logics known to have all three different
versions of interpolation are, for example, CPL, IPL, and the modal logics K, S5
and H(A, ↓) with local and global consequence. For a discussion regarding equiv-
alence of interpolation in these logics see [3,4]. We take a particular interest in
SIP: as an interpolation result in its own right, given its widespread applicability,
and as a step towards obtaining Beth definability in a standard way [28].

3.2 Interpolation in Default Logics

We explore what the natural formulations of CIP, SCIP, and SIP, look like for
default consequence in default logics.

Definition 14. We say that default consequence in a default logic DL has the
Default Craig Interpolation Property, notation DCIP, iff whenever |∼ ϕ ⊃ ψ,
there is ξ defined on A(ϕ) ∩ A(ψ), s.t. |∼ ϕ ⊃ ξ and |∼ ξ ⊃ ψ.

Proposition 5. For any default logic DL = 〈L,E 〉; if consequence in L has
CIP, then, default consequence in DL has DCIP.

The proof of Proposition 5 is direct from the definition of a default logic
and CIP for � in L. DCIP is rather trivial as it involves only reasoning from
empty default theories, thus reducing default consequences to consequences in
the underlying logic. Let us consider the more interesting case of DSCIP, the
SCIP version of interpolation for Default Logics, which makes use of non-empty
default theories.

Definition 15. We say that default consequence in a default logic DL has
the Default Strong Craig Interpolation Property, notation DSCIP, iff whenever
Θ |∼ ϕ ⊃ ψ, there is ξ defined on A(Θ, ϕ) ∩ A(ψ), s.t. Θ |∼ ϕ ⊃ ξ and Θ |∼ ξ ⊃ ψ.

684 V. Cassano et al.

Proposition 6. For any default logic DL = 〈L,E 〉; if consequence in L has
SCIP, then, default consequence in DL has DSCIP.

Proof (by cases). Let Θ be a default theory; if E (Θ) = ∅, Θc = ∅ and Θs = F .
The result follows trivially from these facts. If E (Θ) �= ∅:

(c) Let Θ |∼c ϕ ⊃ ψ; then, there is E ∈ E (Θ) s.t. E � ϕ ⊃ ψ. From SCIP, there is
ξ defined on A(E,ϕ) ∩ A(ψ) s.t. E � ϕ ⊃ ξ and E � ξ ⊃ ψ. So, Θ |∼c ϕ ⊃ ξ
and Θ |∼c ξ ⊃ ψ, with A(ξ) ⊆ A(Θ, ϕ) ∩ A(ψ).

(s) Let Θ |∼s ϕ ⊃ ψ, and Γ =
⋂
E (Θ); then, Γ � ϕ ⊃ ψ. From SCIP, there is ξ

defined on A(Γ, ϕ) ∩ A(ψ) s.t. Γ � ϕ ⊃ ξ and Γ � ξ ⊃ ψ. Thus, Θ |∼s ϕ ⊃ ξ
and Θ |∼s ξ ⊃ ψ, with A(ξ) ⊆ A(Θ, ϕ) ∩ A(ψ).

The result follows from (c) and (s).

We now turn our attention to what does SIP look like for default consequence.

Remark 2. For default theories Θi, define Θ1 � Θ2 = (ΦΘ1 ∪ ΦΘ2 ,ΔΘ1 ∪ ΔΘ2).

Definition 16. We say that default consequence in a default logic DL has the
Default Split Interpolation Property, notation DSIP, iff for all Θ1 and ϕ defined
on an alphabet A1, and Θ2 and ψ defined on an alphabet A2, if Θ1 � Θ2 |∼ ϕ ⊃ ψ,
there is ξ defined on A1 ∩ A2, s.t. Θ1 |∼ ϕ ⊃ ξ and Θ2 |∼ ξ ⊃ ψ.

For DSIP we obtain a negative result in the following form.

Proposition 7. For any traditional default logic DL built on a logic extending
Classical Propositional Logic, default consequence in DL does not have DSIP.

Proof. W.l.o.g. let L be CPL, and Θ1 = ({p}, {p =⇒ q}) and Θ2 = (∅, {q =⇒ r}),
it follows that:

(1) for all E1 ∈ E (Θ1), E1 = {p, q}•.
(2) for all E2 ∈ E (Θ2), E2 = ∅•.
(3) for all E ∈ E (Θ1 � Θ2), E3 = {p, q, r}•.

From (3), Θ1 � Θ2 |∼ p ⊃ r. Immediately, p ∈ A(Θ1), and r ∈ A(Θ2). Then, any
formula ξ defined on A(Θ1) ∩ A(Θ2) is equivalent to �, ⊥, q, or ¬q. If we fix ξ
to any of these formulas, either from (1), Θ1 �|∼ p ⊃ ξ; or from (2), Θ2 �|∼ ξ ⊃ r.

We explored some natural formulations of CIP, SCIP, and SIP for default
consequence in a default logic. We have shown positive transfer results for DCIP
and DSCIP. We highlight the generality of these results: not only they con-
cern traditional logics, but all default logics. This level of generality, i.e., proofs
depending on extensions and not their construction, is achieved thanks to the
abstract presentation of what is a default logic. We have also shown a negative
transfer result for DSIP. In this case the counter-example is much more concrete,
but still sufficiently general to cover all traditional default logics. Lack of DSIP
is a set back for Beth definability, as we are now pre-empted to use the standard
argument for establishing the latter from the former [28]. Nonetheless, we show
that Beth definability can still be obtained in some form for some default logics.

Interpolation and Beth Definability in Default Logics 685

3.3 Definability

Beth definability is commonly regarded as a sign of a well behaved logic. We
adapt our definition of this property from [22].

Definition 17. Let L be any logic, Φ be a set of formulas s.t. A(Φ) ⊆ A, and
q /∈ A; we say that consequence in L has the Beth Definability Property (BDP)
iff whenever

Φ ∪ Sp
q(Φ) � p ⊃ q and Φ ∪ Sp

q(Φ) � q ⊃ p (1)

there is ε defined on an alphabet A0 = A \ {p} s.t.

Φ � p ⊃ ε and Φ � ε ⊃ p (2)

Equation (1) expresses that Φ implicitly defines p; whereas Eq. (2) is the explicit
definition of p from Φ.

In general, BDP can be obtained from SIP through a standard argument [28].
Let us remark that failure of SIP does not necessarily imply failure of BDP. The
latter property may still be obtained through other means.

3.4 Definability in Default Logics

Definition 18 introduces a natural formulation of Beth definability for default
logics.

Definition 18. Let DL be a default logic, Θ a default theory s.t. A(Θ) ⊆ A, and
q /∈ A; we say that default consequence in DL has the Default Beth definability
property (DBDP) iff whenever

Θ � Sp
q(Θ) |∼ p ⊃ q and Θ � Sp

q(Θ) |∼ q ⊃ p (3)

there is ε defined on an alphabet A0 = A \ {p} s.t.

Θ |∼ p ⊃ ε and Θ |∼ ε ⊃ p (4)

Equation (3) expresses that Θ implicitly defines p; whereas ε in Eq. (4) is the
explicit definition of p from Θ.

Proving Beth definability for default consequence in default logics requires
some additional definitions and lemmas (the proofs of which are in AppendixA).
First, it needs a condition on stability, see Definition 19. This condition states
that the extensions of a default theory are in harmony with the extensions of its
extended default theory under substitution.

Definition 19. We say that a default logic DL = 〈L,E 〉 is stable iff for all
default theories Θ defined on an alphabet A, if q /∈ A, it follows that for all
E ∈ E (Θ), there is E′ ∈ E (Θ � Sp

q(Θ)) s.t. E′ = (E ∪ Sp
q(E))•.

686 V. Cassano et al.

Lemma 1 shows that the condition of being stable is rather natural, in the
sense that it is satisfied by a non-trivial class of default logics, i.e., those that
are strongly saturated and, in particular, by traditional default logics.

Lemma 1. Any strongly saturated default logic DL is stable.

Lemma 2 establishes that the notion coherence for the extensions of a given
default theory is preserved if we augment the default theory by substitution.

Lemma 2. Let DL be a default logic; for all default theories Θ and all Δ ⊆ ΔΘ,
if Δ is self coherent in Θ, then, Δ ∪ Sp

q(Δ) is self coherent in Θ � Sp
q(Θ).

The following lemma, simplifies a key step in the proof of Proposition 8.

Lemma 3. Let { Φi | i ∈ I } be a set of sets of formulas s.t. for all i ∈ I,
A(Φi) ⊆ A and Φi = Φi

•; if consequence in L has SIP, q /∈ A, and p ⊃ q ∈⋂{
(Φi ∪ Sp

q(Φi))• ∣
∣ i ∈ I

}
, then p ⊃ q ∈ (

⋂{ Φi | i ∈ I } ∪ ⋂{
Sp

q(Φi)
∣
∣ i ∈ I

}
)•.

Proposition 8. For any default logic DL = 〈L,E 〉; if DL is stable and conse-
quence in L has SIP, then, sceptical default consequence in DL has DBDP.

Proof (by cases). Let Θ be any default theory defined on alphabet A, and q /∈ A;
if E (Θ � Sp

q(Θ)) = ∅, the result holds trivially from the fact that DL is stable.
Otherwise, i..e, if E (Θ � Sp

q(Θ)) �= ∅, let Θ � Sp
q(Θ) |∼s p ⊃ q; from the fact that

DL is stable, p ⊃ q ∈ ⋂{
(E ∪ Sp

q(E))• ∣
∣ E ∈ E (Θ)

}
. From Lemma 3, p ⊃ q ∈

(
⋂{ E | E ∈ E (Θ) } ∪ ⋂{

Sp
q(E)

∣
∣ E ∈ E (Θ)

}
)•. From SIP, there is ξ defined on

A \ {p} s.t. p ⊃ ξ ∈ ⋂{ E | E ∈ E (Θ) } and (†) ξ ⊃ q ∈ ⋂{
Sp

q(E)
∣
∣ E ∈ E (Θ)

}
.

Substituting p for q in (†) we obtain ξ ⊃ p ∈ ⋂{ E | E ∈ E (Θ) }. Therefore, there
is ξ defined on A \ {p} s.t. Θ |∼s p ⊃ ξ and Θ |∼s ξ ⊃ p.

Corollary 1. For all traditional default logics built on a logic L; if L has SIP,
then sceptical consequence has DBDP.

For credulous default consequence we obtain the following negative result.

Proposition 9. For all traditional default logic DL built on a logic extending
CPL, credulous default consequence in DL does not have DSIP.

Proof. W.l.o.g. let L be CPL; consider a default theory Θ = (∅, {δ1, δ2}), where

δ1 = � ¬p
=⇒ [(¬p ∨ r) ∧ s] δ2 = s

p
=⇒ (p ∧ ¬r)

Trivially, we get Sp
q(Θ) = (∅, {� ¬q

=⇒ [(¬q ∨ r) ∧ s], s
q
=⇒ (q ∧ ¬r)}). Moreover:

(1) In classical, justified, constrained, and rational default logic on L, it follows
that, E (Θ � Sp

q(Θ)) ⊇ { (ΔX
i)• | i ∈ {1, 2} } where: Δ1 = {δ1,Sp

q(δ2)}; and
Δ2 = {Sp

q(δ1), δ2}.
(2) In justified, constrained, and rational default logic on L, it follows that, for

all E ∈ E (Θ), E = ({δ1}X)•.
(3) In classical default logic on L, it follows that, E (Θ) = ∅.

Interpolation and Beth Definability in Default Logics 687

Clearly, q /∈ A(Θ). From (1), Θ � Sp
q(Θ) |∼c p ⊃ q and Θ � Sp

q(Θ) |∼c q ⊃ p. To see
why, note that (ΔX

1)• = {[(¬p ∨ r) ∧ s],¬r}• and (ΔX
2)• = {[(¬q ∨ r) ∧ s],¬r}•

are both in E (Θ � Sp
q(Θ)). Immediately, {[(¬p ∨ r) ∧ s],¬r} � p ⊃ q, and also

{[(¬q ∨ r) ∧ s],¬r} � q ⊃ p. In justified, constrained, and rational default logic
on L, there is no ξ defined on A(Θ) \ {p} for which Θ |∼c p ⊃ ξ and Θ |∼c ξ ⊃ p.
To see why, note from (2) that every E ∈ E (Θ) is equal to {(¬p ∨ r) ∧ s}•. Let
E be any such extension, it is easy to see that there are models M1 and M2

of E s.t. M1 � p and M1 � ¬p. This establishes failure of DBDP for justified,
constrained, and rational default logic on L. In classical default logic on L, there
is no ξ defined on A(Θ) \ {p} for which Θ |∼c p ⊃ ξ and Θ |∼c ξ ⊃ p simply
because E (Θ) = ∅. This establishes failure of DBDP for classical default logic on
L. In summary, the default theory Θ defined above exhibits a counter-example
for DBDP for credulous default consequence in any traditional default logic built
on a logic extending CPL.

Even though DSIP fails for default logics, we showed that under certain
conditions, DBDP can be still obtained for the sceptical default consequence.

4 Final Remarks

Interpolation and Beth definability are recognized as important properties of the
meta-theory of a logic. However, few authors have explored these properties in
the field of Non-monotonic Logic, and in default logics in particular. A pioneering
work in this area is [1]. Therein the author studies interpolation for circumscrip-
tion, default logic, and logic programs with the stable models semantics. The
version of interpolation presented in [1] is different from the ones investigated
here, and is proven for sceptical default consequence in what we would call classi-
cal default logic over CPL (with finite vocabularies). The author also formulates a
version of split interpolation and proves it for credulous consequence in the same
context. However, the proof of this property requires the alphabet of the conse-
quences of one default theory to be disjoint from the alphabet of the prerequisites
and justifications of the defaults in other default theory. Thus the result applies
to a restricted set of cases. In contrast, our results hold for a richer collection of
default logics and generalize some of those introduced in [1]. Another interest-
ing interpolation result in the field of Non-monotonic is [20]. This work studies
interpolation in equilibrium logic; presenting a technique to obtain interpolation
results by relying on the fact that the version of non-monotonic consequence in
question can be defined via some minimally (axiomatically) defined models in
some monotonic logic. This technique does not directly apply in default logics,
since minimal sets of models of the base logics are not immediately connected to
extensions. But this deserves a deeper investigation. We are, to the best of our
knowledge, unaware of investigations of Beth definability in default logics.

We investigated interpolation and Beth definability in default logics. To this
end, we started with a presentation of a general frawework for defining a default
logic DL from a basic monotonic logic L. This framework covers well-known

688 V. Cassano et al.

traditional default logics found in the literature, but encompasses a much richer
family of default logics. Then, we defined suitable versions of interpolation and
Beth definability for Default Logics, and studied their statuses. Given the gener-
ality of our definition of a default logic, the discussed results hold (or fail to hold)
for several versions of default logics. In particular, we showed that CIP and SCIP
(two versions of the so-called Craig Interpolation Property) transfers from L to
DL, but Split Interpolation SIP fails for default logics extending CPL, even if L
has it. When considered as a step towards Beth definability, this negative result
is a set back. However, we showed that the sceptical default consequence in a DL
has Beth definability (DBDP) if DL is stable (i.e., the extensions of a default
theory are in harmony with those of its augmented default theory under substi-
tution) and L has SIP. Different is the case for credulous default consequence,
in which DBDP fails for any DL built on a logic extending CPL.

We view this work as a first step towards a better understanding of the
meta-theory of default logics in general. As future work, it would be interesting to
apply similar ideas to study proof calculi for default logics that are parameterized
on the underlying logic. Moreover, it would be interesting to see whether the
methods for constructing interpolants in the underlying proof calculi transfer to
the default version (see e.g. [8]).

Ackowledgements. This work was partially supported by ANPCyT-PICTs-2017-
1130 and 2016-0215, MinCyT Córdoba, SeCyT-UNC, the Laboratoire International
Associé INFINIS and the European Union’s Horizon 2020 research and innovation
programme under the Marie Skodowska-Curie grant agreement No. 690974 for the
project MIREL: MIning and REasoning with Legal texts.

A Selected Proofs

Remark 3. Let L be any logic, and Φ and Ψ be sets of sentences; we say that Ψ is
a conservative extension of Φ, notation Ψ ≥ Φ, iff Φ• ⊆ Ψ• and (Ψ•�A(Φ)) ⊆ Φ•.

Lemma 4. Let L be any logic, Φ be a set of sentences defined on an alphabet A,
and q /∈ A; if consequence in L has SIP, Φ ∪ Sp

q(Φ) ≥ Φ and Φ ∪ Sp
q(Φ) ≥ Sp

q(Φ).

Proof. Trivially, Φ• ⊆ (Φ ∪ Sp
q(Φ))•. In turn, let ϕ ∈ (Φ ∪ Sp

q(Φ))•�A(Φ); then,
Φ ∪ Sp

q(Φ) � ϕ, alt., Φ ∪ Sp
q(Φ) � � ⊃ ϕ. From SIP, there is ε defined on A \ {p}

s.t. Sp
q(Φ) � � ⊃ ε and Φ � ε ⊃ ϕ. Since q /∈ A(Φ, ε), Sq

p(S
p
q(Φ)) � Sq

p(� ⊃ ε)
results in Φ � � ⊃ ε. Then, Φ � � ⊃ ε and Φ � ε ⊃ ϕ; and so, Φ � � ⊃ ϕ, alt.,
Φ � ϕ. Therefore, (Φ ∪ Sp

q(Φ))•�A(Φ) ⊆ Φ•.

Lemma 1. Any strongly saturated default logic DL is stable.

Proof. Let Θ be a default theory defined on an alphabet A, and and q /∈ A.
In addition, let E ∈ E (Θ) be s.t. E = (ΦΘ ∪ ΔX)• for some Δ ⊆ ΔΘ. Since
DL is strongly saturated, Δ is saturated in Θ. The result follows immediately
if Δ ∪ Sp

q(Δ) is saturated in Θ � Sp
q(Θ); as E′ = (ΦΘ ∪ Sp

q(ΦΘ) ∪ (Δ ∪ Sp
q(Δ))X)•

is our extension. The proof proceeds by contradiction. Let Δ ∪ Sp
q(Δ) be not

Interpolation and Beth Definability in Default Logics 689

saturated in Θ�Sp
q(Θ); w.l.o.g. there is a default δ /∈ Δ∪Sp

q(Δ) s.t. δ is detached
by Δ ∪ Sp

q(Δ). Clearly, δ ∈ ΔΘ or δ = Sp
q(δ

′) for some δ′ ∈ ΔΘ. If δ ∈ ΔΘ,
from Lemma 4, δ is detached by Δ; and so Δ is not saturated. This yields a
contradiction. If δ = Sp

q(δ
′) for some δ′ ∈ ΔΘ, from Lemma 4, Sp

q(δ
′) is detached

by Sp
q(Δ); and so Sp

q(Δ) is not saturated. But by substitution, δ′ is detached by
Δ, and so Δ is not saturated. This also yields a contradiction. Thus, Δ ∪ Sp

q(Δ)
is saturated in Θ � Sp

q(Θ).

Lemma 2. Let DL be a default logic; for all default theories Θ and all Δ ⊆ ΔΘ,
if Δ is self coherent in Θ, then, Δ ∪ Sp

q(Δ) is self coherent in Θ � Sp
q(Θ).

Proof. Similar to that of Lemma 1.

Lemma 3. Let { Φi | i ∈ I } be a set of sets of formulas s.t. for all i ∈ I,
A(Φi) ⊆ A and Φi = Φi

•; if consequence in L has SIP, q /∈ A, and p ⊃ q ∈⋂{
(Φi ∪ Sp

q(Φi))• ∣
∣ i ∈ I

}
, then p ⊃ q ∈ (

⋂{ Φi | i ∈ I } ∪ ⋂{
Sp

q(Φi)
∣
∣ i ∈ I

}
)•.

Proof (by contradiction). Let us assume that p ⊃ q ∈ ⋂{ (Φi ∪ Sp
q(Φi))• | i ∈ I };

by definition, it follows that all (∗) Φi ∪ Sp
q(Φi) � p ⊃ q. At the same time, let

p ⊃ q /∈ (
⋂{ Φi | i ∈ I } ∪ ⋂{

Sp
q(Φi)

∣
∣ i ∈ I

}
)•; then, for all ξ defined on A \ {p},

either (†) p ⊃ ξ /∈ ⋂{ Φi | i ∈ I } or (‡) ξ ⊃ q /∈ ⋂{
Sp

q(Φi)
∣
∣ i ∈ I

}
. From (†),

there is Φi �� p ⊃ ξ; and from Lemma 4, (§) Φi ∪ Sp
q(Φi) �� p ⊃ ξ. But (§) leads

to a contradiction; since from (∗) Φi ∪ Sp
q(Φi) � p ⊃ q, by SIP, there is in fact ξ

defined on A \ {p} s.t. Φi ∪ Sp
q(Φi) � p ⊃ ξ! Similarly, we obtain a contradiction

from (‡). Thus, p ⊃ q ∈ (
⋂{ Φi | i ∈ I } ∪ ⋂{

Sp
q(Φi)

∣
∣ i ∈ I

}
)•.

References

1. Amir, E.: Interpolation theorems for nonmonotonic reasoning systems. In: Flesca,
S., Greco, S., Ianni, G., Leone, N. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp.
233–244. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45757-7 20

2. Antoniou, G., Wang, K.: Default logic. In: Gabbay, D., Woods, J. (eds.) The Many
Valued and Nonmonotonic Turn in Logic. Handbook of the History of Logic, vol.
8, pp. 517–555. North-Holland (2007)

3. Areces, C., Blackburn, P., Marx, M.: Hybrid logics: characterization, interpolation
and complexity. J. Symb. Logic 66(3), 977–1010 (2001)

4. Areces, C., de Rijke, M.: Interpolation and bisimulation in temporal logic. In:
Workshop on Logic, Language, Information and Computation (WoLLIC 1998),
pp. 15–21 (1998)

5. Areces, C., ten Cate, B.: Hybrid logics. In: Blackburn, P., van Benthem, J., Wolter,
F. (eds.) Handbook of Modal Logic, pp. 821–868. Elsevier (2006)

6. Bicarregui, J., Dimitrakos, T., Gabbay, D., Maibaum, T.: Interpolation in practical
formal development. Logic J. IGPL 9(2), 231–244 (2001)

7. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press,
Cambridge (2001)

8. Blackburn, P., Marx, M.: Constructive interpolation in hybrid logic. J. Symb. Logic
68(2), 463–480 (2003)

https://doi.org/10.1007/3-540-45757-7_20

690 V. Cassano et al.

9. Cassano, V., Areces, C., Castro, P.: Reasoning about prescription and description
using prioritized default rules. In: Barthe, G., Sutcliffe, G., Veanes, M. (eds.) 22nd
International Conference on Logic for Programming, Artificial Intelligence and
Reasoning (LPAR-22). EPiC Series in Computing, vol. 57, pp. 196–213. EasyChair
(2018)

10. Chellas, B.: Modal Logic: An Introduction. Cambridge University Press, Cam-
bridge (1980)

11. Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory
and proof theory. J. Symb. Logic 22, 269–285 (1957)

12. Delgrande, J., Schaub, T.: Expressing default logic variants in default logic. J.
Logic Comput. 15(5), 593–621 (2005)

13. Delgrande, J., Schaub, T., Jackson, W.: Alternative approaches to default logic.
Artif. Intell. 70(1–2), 167–237 (1994)

14. Diaconescu, R., Goguen, J., Stefaneas, P.: Logical support for modularisation.
Papers Presented at the 2nd Annual Workshop on Logical Environments, pp. 83–
130. Cambridge University Press, Cambridge (1993)

15. Enderton, H.: A Mathematical Introduction to Logic, 2nd edn. Academic Press,
Cambridge (2001)

16. Font, J.: Abstract Algebraic Logic. An Introductory Textbook, 1st edn. College
Publications (2016)

17. Froidevaux, C., Mengin, J.: A framework for default logics. In: Pearce, D., Wagner,
G. (eds.) JELIA 1992. LNCS, vol. 633, pp. 154–173. Springer, Heidelberg (1992).
https://doi.org/10.1007/BFb0023427

18. Froidevaux, C., Mengin, J.: Default logics: a unified view. Comput. Intell. 10,
331–369 (1994)

19. Gabbay, D., Maksimova, L.: Interpolation and Definability: Modal and Intuition-
istic Logic. Oxford University Press, Oxford (2005)

20. Gabbay, D., Pearce, D., Valverde, A.: Interpolable formulas in equilibrium logic
and answer set programming. J. Artif. Intell. Res. 42, 917–943 (2011)

21. Hintikka, J.: Knowledge and Belief. Cornell University Press, Ithaca (1962)
22. Hoogland, E.: Definability and Interpolation. Ph.D. thesis, Institute for Logic,

Language and Computation Universiteit van Amsterdam (2001)
23. Kontchakov, R., Wolter, F., Zakharyaschev, M.: Can you tell the difference between

DL-Lite ontologies? In: 11th International Conference on Principles of Knowledge
Representation and Reasoning (KR 2008), pp. 285–295. AAAI Press (2008)

24. �Lukaszewicz, W.: Considerations on default logic: an alternative approach. Com-
put. Intell. 4, 1–16 (1988)

25. Maibaum, T., Sadler, M.: Axiomatizing specification theory. In: 3rd Workshop on
Theory and Applications of ADTs (WADT 1984). Informatik-Fachberichte, vol.
116, pp. 171–177. Springer, Heidelberg (1984)

26. McMillan, K.L.: Applications of craig interpolants in model checking. In: Halb-
wachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 1–12. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31980-1 1

27. Mikitiuk, A., Truszczynski, M.: Constrained and rational default logics. In: 14th
International Joint Conference on Artificial Intelligence (IJCAI 1995), pp. 1509–
1517 (1995)

28. Parikh, R.: Beth definability, interpolation and language splitting. Synthese
179(2), 211–221 (2011)

29. Reiter, R.: A logic for default reasoning. AI 13(1–2), 81–132 (1980)
30. Schaub, T.: On constrained default theories. In: 11th European Conference on

Artificial Intelligence (ECAI 1992), pp. 304–308 (1992)

https://doi.org/10.1007/BFb0023427
https://doi.org/10.1007/978-3-540-31980-1_1

Interpolation and Beth Definability in Default Logics 691

31. Shoenfield, J.: Mathematical Logic. Addison-Wesley, Boston (1967)
32. Suppes, P.: Axiomatic Set Theory. Dover Books on Mathematics. Dover Publica-

tions, Mineola (1972)
33. van Dalen, D.: Logic and structure, 5th edn. Springer, Heidelberg (2004). https://

doi.org/10.1007/978-3-540-85108-0
34. Veloso, P., Maibaum, T.: On the modularization theorem for logical specifications.

Inf. Process. Lett. 53(5), 287–293 (1995)
35. Von Wright, G.H.: Deontic logic. Mind 60, 1–15 (1951)

https://doi.org/10.1007/978-3-540-85108-0
https://doi.org/10.1007/978-3-540-85108-0

Axiomatising Logics with Separating
Conjunction and Modalities

Stéphane Demri1, Raul Fervari2(B), and Alessio Mansutti1

1 LSV, CNRS, ENS Paris-Saclay, Université Paris-Saclay, Cachan, France
2 CONICET and Universidad Nacional de Córdoba, Córdoba, Argentina

fervari@famaf.unc.edu.ar

Abstract. Modal separation logics are formalisms that combine modal
operators to reason locally, with separating connectives that allow to
perform global updates on the models. In this work, we design Hilbert-
style proof systems for the modal separation logics MSL(∗, 〈�=〉) and
MSL(∗, �), where ∗ is the separating conjunction, � is the standard
modal operator and 〈�=〉 is the difference modality. The calculi only use
the logical languages at hand (no external features such as labels) and
take advantage of new normal forms and of their axiomatisation.

1 Introduction

Separation Logics with Epistemic Flavour. Modal logic [7,8] is a family
of languages extending propositional logic with operators to describe and rea-
son about different modes of truth. Such operators are usually called modalities.
For instance, this family includes deontic (for permissions and obligations), epis-
temic (to reason about knowledge) and temporal modalities. On the other hand,
separation logic [29,30] is a family of assertion languages originally conceived
to perform Hoare-style verification [26] of programs with mutable data struc-
tures. The key components of separation logic are its non-classical connectives,
that allow us to reason about updates of the models. For example, the formula
φ ∗ψ uses the separating conjunction ∗, which requires to split a model into two
disjoint pieces, one satisfying φ and the other one satisfying ψ. Over the last
years, several approaches combining modal and separation logics have appeared.
In most cases, the modal and the separation dimensions are orthogonal (see
e.g. [9,12,13]), allowing us to design decision procedures by combinations of pro-
cedures from each dimension. However, recently, combinations of such operators
interpreted over the same structures have been considered, see e.g. [17,18]. In
this way, the underlying modal relational structure can be seen as a model from
separation logic: states can be seen as memory locations, and edges can be seen
as links between these locations.

These efforts on combining separation and modal logics witness the numer-
ous attempts to use separation logic in different contexts. When interpreted on
sets, separation logic can be used to model some particular phenomena in belief
revision [25]. It can be combined with modalities from epistemic logic to capture
c© Springer Nature Switzerland AG 2019
F. Calimeri et al. (Eds.): JELIA 2019, LNAI 11468, pp. 692–708, 2019.
https://doi.org/10.1007/978-3-030-19570-0_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19570-0_45&domain=pdf
https://doi.org/10.1007/978-3-030-19570-0_45

Axiomatising Logics with Separating Conjunction and Modalities 693

reachable states (see the epistemic logic for resources introduced in [13]). Epis-
temic separation logic [15], where models have equivalence relations representing
possible worlds, has been extended in [14] with public announcements. Lastly,
in [28] operators from temporal and separation logics are combined, allowing to
express both temporal and spatial conditions in search control knowledge for
AI planning (see also [10]). From a logical perspective, modal operators to per-
form updates on a relational model can be seen as weaker versions or variants
of separating connectives, since they all have similar effects: updating the model
(by adding, removing or changing some feature of the model) while evaluating a
formula. For example, consider the sabotage modal logic SML introduced in [34]
(see [24] for application in formal learning theory). SML is an extension of the
basic modal language with a so-called sabotage operator which deletes one arrow
of the model when it is evaluated. This operator can be seen as a weak version
of the separating conjunction that separates only one edge from the rest of the
model (see [18] for details). Other examples of dynamic logics used to describe
graph evolution in games can be found in [3,33] (see also [16]).

Due to their ability to perform updates on a relational model, designing proof
methods for such logics is known to be a non-trivial task. As a matter of fact, no
proof system without features external from the logical language is known for
the above-mentioned logics. For instance, there exist tableaux-based procedures
to check satisfiability of sabotage logics [2,4] but model updates are handled
with labels. Moreover, the rules in these calculi are quite complex, and they are
far from providing a good understanding of the logics. On the other hand, there
are no Hilbert-style calculi, as it is extremely challenging to axiomatise these
logics that do not satisfy the uniform substitution rule (see e.g. [3]).

Our Motivations. We pursue a research program about modal separation logics
to better understand the computational complexity of their decision problems
and to design proof systems, such as Hilbert-style calculi. These calculi have
clearly an historical value but also provide essential means to grasp what are the
core validities and rules of the logical formalisms, see a recent illustration in [1]. It
should be noted that not all modal separation logics admit finite axiomatisation,
see e.g. [18], and sometimes, the axiomatisation of abstract separation logics
requires the need for external features such as nominals or labels, see e.g. [11,
27]. In this work, we adopt a puristic approach to design Hilbert-style proof
systems for the very logical language without any external help. In the context
of modal separation logics, this is a requirement that happens to be rewarding
for understanding their expressive power, considering that such logics freely mix
modal operators and separating connectives having global effects.

Our Contribution. We design sound and complete Hilbert-style proof systems
for the modal separation logics MSL(∗,�) and MSL(∗, 〈�=〉) [18], where ∗ is the
separating conjunction, � is the standard modal operator and 〈�=〉 is the differ-
ence modality. In both cases, we provide a syntactical treatment to the semanti-
cal abstractions used to decide such logics in [18], leading to NP-completeness.
Each formula is shown equivalent to a Boolean combination of core formulae:
simple formulae of the logic expressing elementary properties about the models.

694 S. Demri et al.

More precisely, each elementary property consists of a “modal part” (describing
partially the structure of the model), and a “size part” (related to the number of
edges). Thus, we show how to introduce axioms to transform every formula into
a Boolean combination of core formulae, together with axioms to deal with these
simple formulae. This result borrows some ideas from the Gaifman’s Theorem
in first-order logic [21], which states that every first-order sentence is logically
equivalent to a Boolean combination of so-called local formulae. A similar strat-
egy is also followed for axiomatising dynamic epistemic logics [35–37] with the
introduction of reduction axioms. In this technique, it is essential to translate
each formula containing a dynamic operator into a formula without it, by using
provably equivalent formulae. Then, completeness follows from the completeness
of the system for the ‘basic’ language (see also a similar approach for the lin-
ear μ-calculus in [20]). In our case, another difficulty arises as we also have to
design an axiomatisation for such Boolean combinations. The proof system for
MSL(∗,�) (Sect. 3) uses partially the standard machinery for modal logic, but
it is a bit different from the axiomatisation for the modal logic Alt1, i.e., the
modal logic over deterministic frames, characterised by the axiom �p ⇒ �p (see
e.g. [5]). For MSL(∗, 〈�=〉) (Sect. 4), the modal part extends results from [32] to
infinite models (a peculiarity of modal separation logics as the set of locations
is infinite). These constructions give us an exact characterisation of the prop-
erties that can be expressed on each logic. Moreover, it is also remarkable to
have axiomatisations for these two NP-complete logics, since the full logic MSL
(including the separating implication) is not (finitely) axiomatisable [18].

2 Preliminaries About Modal Separation Logics

We briefly recall the definition of the modal separation logic MSL(∗,�, 〈�=〉) intro-
duced in [18]. Let PROP = {p, q, . . .} be a countably infinite set of propositional
symbols. Formulae of the logic MSL(∗,�, 〈�=〉) are defined by the grammar:

φ ::= � | p | emp | ¬φ | φ ∨ φ | �φ | 〈�=〉φ | φ ∗ φ,

where p ∈ PROP (as usual ⊥def= ¬�). A model is a tuple M = 〈N,R,V〉 such
that

– the set of locations is the set of natural numbers N,
– R ⊆ N×N is finite and weakly functional (a.k.a. deterministic, i.e. (l, l′) ∈ R

and (l, l′′) ∈ R imply l′ = l′′) and,
– V : PROP → P(N) is a valuation.

In the rest of the document, by ‘functional’, we mean ‘weakly functional’.
Since separation logics are interpreted on structures representing heaps [6], this
explains why in the models, the domain is N (an infinite set of locations), and
the accessibility relation is finite and functional (formal relationships with sep-
aration logics can be found in [18, Sect. 2.2]). The models M1 = 〈N,R1,V〉
and M2 = 〈N,R2,V〉 are disjoint if R1 ∩ R2 = ∅; when this holds, M1 � M2

Axiomatising Logics with Separating Conjunction and Modalities 695

denotes the model corresponding to the disjoint union of M1 and M2. Given
M = 〈N,R,V〉 and l ∈ N, the satisfaction relation |= is defined below (we omit
standard clauses for Boolean connectives):

M, l |= p
def⇔ l ∈ V(p) M, l |= emp

def⇔ R = ∅
M, l |= �φ

def⇔ M, l′ |= φ, for some l′ ∈ N such that (l, l′) ∈ R

M, l |= 〈�=〉φ def⇔ M, l′ |= φ, for some l′ ∈ N such that l′ �= l

M, l |= φ1 ∗ φ2
def⇔ 〈N,R1,V〉, l |= φ1 and 〈N,R2,V〉, l |= φ2,

for some partition {R1,R2} of R.
The semantics for the modal operators and the separating connectives is

the standard one, see e.g. [7,30]. The restriction of MSL(∗,�, 〈�=〉) without the
modal operator � (resp. 〈�=〉) is denoted by MSL(∗, 〈�=〉) (resp. MSL(∗,�)). It is
established in [18] that the satisfiability problems for MSL(∗,�) and MSL(∗, 〈�=〉)
are NP-complete whereas the problem for MSL(∗, 〈�=〉,�) is Tower-complete1.

To illustrate the expressive power of MSL(∗,�), let us define loop1, which
states that the model consists of a single reflexive edge at the evaluation point:

¬emp ∧ ¬(¬emp ∗ ¬emp) ∧ ���.

Moreover, it is possible to define the formula loop2, that interpreted on a location
l, states that the model contains exactly a loop of length 2 visiting l:

(¬emp ∗ ¬emp) ∧ ¬(¬emp ∗ ¬emp ∗ ¬emp) ∧ ����∧

¬(¬emp ∗ ����) ∧ ¬�(¬emp ∗ ����).

Notice that ∗ is associative. Obviously, these properties cannot be expressed in
the modal logic Alt1.

So, in this paper, we aim at providing Hilbert-style axiomatisations for
MSL(∗,�) and MSL(∗, 〈�=〉), which amounts to characterise syntactically the
set of valid formulae by means of a proof system. By contrast, the complex-
ity results from [18] are obtained semantically, without any proof-theoretical
analysis.

3 Axiomatising MSL(∗,�) with Core Formulae

In this section, we define a proof system for MSL(∗,�), namely HMSL(∗,�).
To do so, we introduce a set of core formulae that are simple formulae captur-
ing essential properties. As shown later on, every MSL(∗,�) formula is logically
equivalent to a Boolean combination of core formulae. However, as every core
formula is shown to be an MSL(∗,�) formula, we can derive an axiomatisation
of MSL(∗,�) by axiomatising Boolean combinations of core formulae. So, we
define three sets of axioms and inference rules: (1) those dedicated to the propo-
sitional logic of core formulae, (2) those that, given a Boolean combination of

1 The class Tower [31] is the class of problems of time complexity bounded by a
tower of exponentials, whose height is an elementary function of the input.

696 S. Demri et al.

core formulae φ, allow to derive a Boolean combination of core formulae that
is equivalent to �φ (a property called herein �-elimination, see Lemma 6), and
(3) those that, given two Boolean combinations of core formulae φ1, φ2, allow to
derive a Boolean combination of core formulae that is equivalent to φ1 ∗ φ2 (a
property called herein ∗-elimination, see Lemma 9).

Core Formulae for MSL (∗,�). Core formulae are divided into two families:
a set of size formulae that express properties about the size of the model (i.e.
the number of edges) and a set of graph formulae describing the shape of the
model that is observable from the current location. As the relation R in models
is weakly functional, the number of distinct shapes is limited, ranging from lasso
shapes to segments with dead-end.

Let us introduce expressions of the form size ≥ β that hold true whenever
R has at least β elements (the symbol β always refers to a natural number
throughout the paper). A size literal is a formula of the form size ≥ β or
¬size ≥ β. Every Boolean combination of size literals is a size formula. We also
use size = β as an abbreviation for size ≥ β ∧ ¬size ≥ β+1. At this stage, it
is worth noting that size ≥ β should be understood as a built-in atomic formula
enriching the logical language for MSL(∗,�). However, as it will quickly appear
below, size ≥ β can be characterised with a formula of MSL(∗,�) and later on
in the document, such occurrences of size ≥ β should be understood as mere
abbreviations. The same distinction applies to the graph formulae defined below.

Graph formulae describe the shape of a portion of the model, partly inspired
from the semantical notion of abstract frame from [18, Sect. 4.1] but with con-
straints on propositional variables. Formally, every graph formula is an expres-
sion derived from the non-terminal G of the grammar below:

� := � |⊥| p | ¬p Q := � | Q ∧ Q G := |Q,..., Q〉 | |Q,..., Q] | |Q,..., Q,..., Q ,

where p ∈ PROP, and G must contain at least one conjunction Q. By slightly
abusing the standard terminology, expressions of the form � are called literals. A
conjunction Q is contradictory whenever ⊥ occurs in Q or there is some p such
that both p and ¬p occur in Q. Note that Q is contradictory iff Q is unsatisfiable.
By convention, contradictory conjunctions are denoted by Q⊥. A graph formula
is contradictory if at least one of its conjunctions is contradictory. Note also
that the semantics for graph formulae shall guarantee that a graph formula is
contradictory iff it is unsatisfiable.

Since we are working on weakly functional and finite relations, graph formulae
represent paths satisfying a conjunction of literals Q at each position. A formula
of the form |Q1,..., Qn〉 expresses that there exists a path of length n in which all
the locations are distinct of each other, and we do not know whether it continues
after. The formula |Q1,..., Qn] states that there is a path of length n − 1, all the
locations are distinct, and the last location has no successor. Finally, the formula
of the form |Q1,..., Qi,..., Qn expresses that there is a path of size n − 1 with all
distinct locations, and there is a loop from the location in position n and the
one in the position i (lasso shape). Sometimes, we write |Q1,..., Qn? to refer to

Axiomatising Logics with Separating Conjunction and Modalities 697

graph formulae of any kind. Furthermore, we write |Q,..., Q′?(n) to express that
the last argument Q′ of the corresponding graph formula is at position n. For
example, |�,...,�](5) stands for |�,�,�,�,�]. Lastly, we write �(|Q1,..., Qn?)
to denote the graph size of |Q1,..., Qn? defined as follows:

�(|Q1,..., Qn〉) def= n �(|Q1,..., Qn])
def= n−1 �(|Q1,..., Qi,..., Qn) def= n.

Given M = 〈N,R,V〉 and l ∈ N, the relation |= is extended to core formulae:

M, l |= size ≥ β
def⇔ card(R) ≥ β

M, l |= |Q1,..., Qn〉 def⇔ there are distinct l1,..., ln+1 s.t. l=l1Rl2R...Rln+1,
and for all j ∈ [1, n], M, lj |= Qj

M, l |= |Q1,..., Qn]
def⇔ there are distinct l1,..., ln s.t. l=l1Rl2R...Rln,

R(ln) = ∅ and for each j ∈ [1, n], M, lj |= Qj

M, l |= |Q1,..., Qi,..., Qn
def⇔ there are distinct l1,..., ln s.t. l=l1Rl2R...lnRli

and for all j ∈ [1, n], M, lj |= Qj .

Below, we establish that every core formula has a logically equivalent counter-
part in MSL(∗,�) (Lemma 1). This is an essential property as these formulae
are the building blocks of the axiomatisation of MSL(∗,�). Consequently, we
obtain that our axioms are only made of MSL(∗,�) formulae, with no need for
external properties or extra machinery such as nominals or labels.

For every core formula ψ, we define its extension ext(ψ) in MSL(∗,�).

– ext(size ≥ 0) def= � and ext(size ≥ β) def=
β times

︷ ︸︸ ︷¬emp ∗ · · · ∗ ¬emp for β > 0.
– ext(|Q]) def= Q∧¬��. For n ≥ 2, ext(|Q1, Q2,..., Qn])

def= Q1∧�ext(|Q2,..., Qn]).
– ext(|Q1,..., Qn〉) def= ext(|Q1,..., Qn,�]) ∗ �.

– ext(|Q1,..., Qn) is defined as the formula

� ∗ (ext(size = n) ∧ �n+1� ∧ (ext(|Q1,..., Qn]) ∗ �) ∧ ¬�(ext(size = 1) ∗ �n�))

where �0φ
def= φ and �i+1φ

def= ��iφ. For i > 1, ext(|Q1,..., Qi,..., Qn) is

� ∗ (

ext(size = n) ∧ �n+1� ∧ (ext(|Q1,..., Qn]) ∗ �)∧
�i−1(ext(size = i−1) ∗ ext(|�,...,� (n−i+1)))

)

.

Lemma 1. All the core formulae ψ are logically equivalent to ext(ψ).

From now on, for any occurrence of a core formula ψ, including occurrences in
the axioms or inference rules, we mean the formula ext(ψ) so that their provisory
status of built-in atomic formula is upgraded to a permanent abbreviation.

Hilbert-style Proof System for MSL(∗,�). To obtain an axiomatisation of
MSL(∗,�), we start by introducing the proof system Hc dedicated to Boolean
combinations of core formulae. As MSL(∗,�) includes the propositional logic,
Hc and all the subsequent proof systems contain the axiom schemas and modus
ponens for the propositional calculus. Throughout the paper we use standard
notations about Hilbert-style proof systems. To simplify, sometimes we will abuse

698 S. Demri et al.

the terminology and use ‘axiom’ instead of ‘axiom schema’. The axioms whose
name is of the form G?

i (resp. S?
i) handle graph formulae (resp. size formulae).

We start with the axioms for size ≥ β, its interactions with graph formulae and
one axiom schema for inconsistent graph formulae.
Axioms for size formulae and for inconsistent graph formulae

(Sc
1) size ≥ 0

(Sc
2) size ≥ β+1 ⇒ size ≥ β

(Gc
1) |Q1,..., Qn? ⇒ size ≥ �(|Q1,..., Qn?)

(Gc
2) ¬|..., Q⊥,...?

The meaning of these axioms is straightforward. For instance, the axiom
(Sc

2) states that if the accessibility relation of a model has at least β+1 elements,
then it has at least β elements. The axiom (Gc

1) states that if a model satisfies
a graph formula G then its accessibility relation cannot have less elements than
its graph size. We complete the definition of Hc with two families of axioms,
involving graph formulae. The first family (with the axioms from (Gc

3) to (Gc
13)

concerns conjunctions of graph formulae. In particular, given two graph formu-
lae, these axioms allow us to derive an equivalent graph formula. Similarly, the
second family (with the axioms from (Gc

14) to (Gc
16)) concerns the negation of

a graph formula. With these axioms, every negation of a graph formula is shown
equivalent to a disjunction of graph formulae. Let us begin with the first family.
Axioms for conjunction of graph formulae

(Gc
3) ¬(| . . .](n) ∧ | . . . (m))

(Gc
4) ¬(| . . . 〉(n) ∧ | . . .](m)) with n ≥ m

(Gc
5) ¬(| . . . 〉(n) ∧ | . . . (m)) with n ≥ m

(Gc
6) ¬(| . . .](n) ∧ | . . .](m)) with n �= m

(Gc
7) |Q1,..., Qn〉 ∧ |Q′

1,..., Q
′
m〉 ⇔ |Q1 ∧ Q′

1,..., Qn ∧ Q′
n, Q′

n+1,..., Q
′
m〉 with n ≤ m,

(Gc
8) |Q1,..., Qn〉 ∧ |Q′

1,..., Q
′
m] ⇔ |Q1 ∧ Q′

1,..., Qn ∧ Q′
n, Q′

n+1,..., Q
′
m] with n < m,

(Gc
9) |Q1,..., Qn] ∧ |Q′

1,..., Q
′
n] ⇔ |Q1 ∧ Q′

1,..., Qn ∧ Q′
n]

(Gc
10) ¬(|Q1,..., Qi,..., Qn ∧ |Q′

1,..., Q
′
j ,..., Q

′
m) with n �= m or i �= j

(Gc
11) |Q1,..., Qi,..., Qn ∧ |Q′

1,..., Q
′
i,..., Q

′
n ⇔ |Q1 ∧ Q′

1,..., Qi ∧ Q′
i,..., Qn ∧ Q′

n

(Gc
12) if n < i ≤ m,

|Q1,..., Qn〉 ∧ |Q′
1,..., Q

′
i,..., Q

′
m ⇔ |Q1 ∧ Q′

1,..., Qn ∧ Q′
n, Q′

n+1,..., Q
′
i,..., Q

′
m

(Gc
13) if i ≤ n < m,

|Q1,..., Qn〉 ∧ |Q′
1,..., Q

′
i,..., Q

′
m ⇔ |Q1 ∧ Q′

1,..., Qi ∧ Q′
i,..., Qn ∧ Q′

n, Q′
n+1,..., Q

′
m

Thanks to these axioms, any conjunction of two graph formulae is valid only
if it express properties that can be found together in a single model. For instance,
| . . .](n)∧ | . . . (m) is clearly contradictory (see the axiom (Gc

3)), as the existence
of a loop contradicts the fact that there is a dead-end (i.e. a location without
successors). To ease the readability of the axioms for negation, we first define
some auxiliary formulae.

ρn
def= |�,...,�〉(n) τn

def=
∨

i∈[1,n] |�,...,�](i) λn
def=

∨

i∈[1,n]
j∈[1,i]

|�,...,�
j
,...,�

(i)

Axiomatising Logics with Separating Conjunction and Modalities 699

In λn, the index j below � indicates that the loop begins at the j-th position.
We introduce the involution (.) on literals so that for every p ∈ PROP, p

def= ¬p,
¬p

def= p, � def=⊥ and ⊥ def= �. This development is needed since graph formulae do
not admit doubly negated literals. We write � ∈ Q to denote that � is a literal
occurring in Q with the same polarity. So, ¬p appearing in Q does not imply
p ∈ Q. The axioms for dealing with negation are defined as follows.
Axioms for negation of graph formulae

(Gc
14) ¬|Q1,..., Qn〉 ⇔ λn ∨ τn ∨ ∨

i∈[1,n]
�∈Qi

|�,..., �
i
,..., �〉(n)

(Gc
15) ¬|Q1,..., Qn] ⇔ ρn ∨ τn−1 ∨ λn ∨ ∨

i∈[1,n]
�∈Qi

|�,..., �
i
,..., �](n)

(Gc
16) ¬|Q1,..., Qi,..., Qn ⇔ ρn ∨ τn ∨ λn−1 ∨ ∨

i∈[1,n−1]
�∈Qi

|�,..., �
i
..., �〉(n−1)

∨ ∨
k∈[1,n]\{i} |�,..., �

k
,..., �

(n)
∨ ∨

�∈Qn
|�,..., �

i
,..., �

(n)

These axioms characterise the shape of the accessibility relation when one
particular shape is excluded. For example, if M, l |= ¬|�,�,�], then the path
starting from l is of length 0, 1 or greater than 2. When it is of length 2 (equal to
�(|�,�,�])), it has a lasso shape. These cases are captured by the axiom (Gc

15).

Lemma 2. Every axiom in Hc is valid for MSL(∗,�).

To show the completeness of Hc, we exploit its ability to eliminate negations
and conjunctions of graph formulae. This is enough to show that every Boolean
combination of core formulae is equivalent to a disjunction of formulae of the
form either G ∧ size ≥ β or G ∧ size ≥ β ∧ ¬size ≥ β′, where G is a graph
formula. Such formulae are called elementary shapes.

Lemma 3. Let φ be a Boolean combination of core formulae. There is a dis-
junction of elementary shapes ψ such that �Hc

φ ⇔ ψ.

By Lemma 2, the formulae φ and ψ in Lemma 3 are logically equivalent. We
prove that Hc is complete for the restricted case of elementary shapes.

Lemma 4. Let φ be an elementary shape. φ is satisfiable iff � �Hc
¬φ.

From this result, we can establish the completeness of Hc with respect to
Boolean combinations of core formulae. This is an essential step to get a complete
proof system for MSL(∗,�) (its definition is to be completed in the rest of
Sect. 3).

Theorem 1. A Boolean combination of core formulae φ is valid iff �Hc
φ.

700 S. Demri et al.

Proof. Let φ be a Boolean combination of core formulae. By Lemma2, �Hc
φ

implies that φ is valid. Conversely, let us assume that φ is valid and ad absurdum,
let us suppose that ��Hc

φ. By propositional calculus, there exists a formula φ′

in conjunctive normal form (CNF) such that the “literals” are core formulae or
their negations, and �Hc

φ ⇔ φ′. As ��Hc
φ, there is a conjunct of φ′, say ψ,

such that ��Hc
ψ. As φ′ is valid, this implies that ψ is valid too. By Lemma 3,

�Hc
¬ψ ⇔ (ϕ1 ∨ · · · ∨ ϕn) where ϕ1 ∨ · · · ∨ ϕn is a disjunction of elementary

shapes and therefore (ϕ1 ∨ · · · ∨ ϕn) is unsatisfiable. Consequently, for all i ∈
[1, n], the formula ϕi is unsatisfiable and by Lemma 4, we get that �Hc

¬ϕi. By
propositional reasoning, we get �Hc

¬ϕ1 ∧ · · · ∧ ¬ϕn and again by propositional
reasoning using �Hc

¬ψ ⇔ (ϕ1 ∨ · · · ∨ ϕn), we obtain �Hc
ψ, which leads to a

contradiction. ��
�-elimination. We enrich Hc by adding axioms and one inference rule that
handle �, leading to the extended proof system Hc(�) dedicated to the set of
formulae obtained by closing core formulae under Boolean connectives and �.
Axioms and inference rule for Hc(�)

(�DISTR) �(φ ∨ ψ) ⇔ �(φ) ∨ �(ψ) (G�
17) �(|Q1,..., Qn]) ⇔ |�, Q1,..., Qn]

(S�
3) �(φ ∧ S) ⇔ �(φ) ∧ S where S is a size formula,

(G�
18) �(|Q1, . . . , Qn〉) ⇔ |�, Q1,..., Qn ∨ |�, Q1,..., Qn〉

(G�
19) �(|Q1,..., Qi,..., Qn) ⇔ |�, Q1,..., Qi,..., Qn with i ≥ 2,

(G�
20) �(|Q1,..., Qn−1, Qn) ⇔ |Qn, Q1,..., Qn−1 ∨ |�, Q1,..., Qn−1, Qn

Regularity rule:
φ ⇒ ψ

�φ ⇒ �ψ

Lemma 5. Axioms and rules in Hc(�) are valid for MSL(∗,�).

These axioms give us some insight about the interplay between separating and
modal connectives. In the case of size formulae, there is no interplay at all (see
the axiom (S�

3)). Indeed, every condition in a formula ψ about the size of the
accessibility relation R carries on independently of the structure of R described
by ψ through modalities. However, there are interplays with respect to loops
(see e.g. the axiom (G�

18) and recall that ext(|Q1,..., Qi,..., Qn) uses ∗).

Lemma 6. Let φ be a Boolean combination of core formulae. There is a Boolean
combination of core formulae ψ such that �Hc(�) �φ ⇔ ψ.

By Lemma 5, the formulae �φ and ψ in Lemma 6 are logically equivalent.

∗-elimination. Finally, we enrich Hc by adding axioms and one inference rule
for the separating conjunction. We denote the resulting proof system by Hc(∗).

Axiomatising Logics with Separating Conjunction and Modalities 701

Axioms and inference rule for Hc(∗)

(COM) (φ ∗ ψ) ⇔ (ψ ∗ φ)

(ASSOC) (φ ∗ ψ) ∗ ϕ ⇔ φ ∗ (ψ ∗ ϕ)

(⊥) ¬(⊥ ∗φ) (with ⊥def
= ¬size ≥ 0)

(S∗
4) φ ⇔ (φ ∗ ¬size ≥ 1)

(∗DISTR) (φ1 ∨ φ2) ∗ ψ ⇔ (φ1 ∗ ψ) ∨ (φ2 ∗ ψ)
(G∗

22) ¬(G1 ∗ G2) with �(G1) × �(G2) ≥ 1
(G∗

23) |Q1,..., Qn〉 ∗ φ ⇒ |Q1,..., Qn〉
(G∗

24) |Q1,..., Qi,..., Qn ∗φ ⇒ |Q1,..., Qi,..., Qn

(S∗
5) size ≥ β1+β2 ⇒ size = β1 ∗ size ≥ β2

(S∗
6) ¬size ≥ β1 ∗ ¬size ≥ β2 ⇒ ¬size ≥ (β1+β2)

.− 1 (α1
.− α2

def
= max(0, α1−α2))

(G∗
25) |Q1,..., Qn] ∗ size ≥ 1 ⇒ |Q1,..., Qn] ∨ |Q1,..., Qn〉 ∨ ∨

i∈[1,n] |Q1,..., Qi,..., Qn

(G∗
26) (|Q1 ∧ Q,..., Qn? ∧ φ) ∗ ψ ⇔ (|Q1,..., Qn? ∧ φ) ∗ (|Q] ∧ ψ)

(G∗
27) |Q1,..., Qn? ∧ size ≥ β ⇒ (|Q1,..., Qn? ∧ size = β) ∗ 	 with β ≥ �(|Q1,..., Qn?)

(G∗
28) |Q1,..., Qn〉 ∧ size ≥ β+n ⇒ (|Q1,..., Qn] ∧ size ≥ (β+n) .− 1) ∗ size = 1

(G∗
29) |Q1,..., Qi,..., Qn ∧ size ≥ β+n ⇒ (|Q1,..., Qn] ∧ size ≥ (β+n)−1) ∗ size = 1

∗-introduction rule:
φ ⇒ ϕ

φ ∗ ψ ⇒ ϕ ∗ ψ

The first property to check is the soundness of Hc(∗).

Lemma 7. Axioms and rules in Hc(∗) are valid for MSL(∗,�).

Forthcoming Lemma 9 states that the separating conjunction φ ∗ ψ of two
Boolean combinations of core formulae is equivalent in Hc(∗) to some Boolean
combination of core formulae ϕ, and therefore by Lemma 7, φ ∗ ψ is also log-
ically equivalent to ϕ. Thanks to the axioms (COM) and (∗DISTR), the
∗-introduction rule and propositional reasoning, the satisfaction of such a prop-
erty amounts to check it in the restricted case of elementary shapes (see
Lemma 8).

With the formula Q1,..., Qn we denote a formula of the form either
Q1,..., Qn or Q1,..., Qi,..., Qn (this excludes graph formulae of the form
Q1,..., Qn In the table below, the occurrences of Q1,..., Qn on the left and
on the right of every double implication are for the same form, i.e. either both
Q1,..., Qn or both Q1,..., Qi,..., Qn (where the position i is the same). Moreover,
0 ≤ β1 < β′

1 and 0 ≤ β2 < β′
2. Finally, we write ϕn to denote

ϕn
def= (Q1 Q,..., Qn Q1 Q,..., Qn i [1,n] Q1 Q,..., Qi,..., Qn) size

Derivable formulae about separating conjunctions of elementary shapes

• (|Q1,..., Qn 〉 ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2) ⇔ |Q1 ∧ Q,..., Qn 〉 ∧ size ≥ β1+β2

• (|Q1,..., Qn 〉 ∧ size ≥ β1 ∧ ¬size ≥ β′
1) ∗ (|Q] ∧ size ≥ β2)

⇔ |Q1 ∧ Q,..., Qn 〉 ∧ size ≥ β1+β2

• (|Q1,..., Qn 〉 ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2 ∧ ¬size ≥ β′
2)

⇔ |Q1 ∧ Q,..., Qn 〉 ∧ size ≥ β1+β2

• (|Q1,..., Qn 〉 ∧ size ≥ β1 ∧ ¬size ≥ β′
1) ∗ (|Q] ∧ size ≥ β2 ∧ ¬size ≥ β′

2)

⇔ |Q1 ∧ Q,..., Qn 〉 ∧ size ≥ β1+β2 ∧ ¬size ≥ (β′
1+β′

2) .−1
• (|Q1,..., Qn] ∧ size ≥ β1) ∗ (|Q] ∧ ¬size ≥ 1) ⇔ |Q1 ∧ Q,..., Qn] ∧ size ≥ β1

702 S. Demri et al.

• (|Q1,..., Qn] ∧ size ≥ β1 ∧ ¬size ≥ β2) ∗ (|Q] ∧ ¬size ≥ 1)

⇔ |Q1 ∧ Q,..., Qn] ∧ size ≥ β1 ∧ ¬size ≥ β2

• (|Q1,..., Qn] ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2+1) ⇔ ϕn

• (|Q1,..., Qn] ∧ size ≥ β1 ∧ ¬size ≥ β′
1) ∗ (|Q] ∧ size ≥ β2+1) ⇔ ϕn

• (|Q1,..., Qn] ∧ size ≥ β1) ∗ (|Q] ∧ size ≥ β2+1 ∧ ¬size ≥ β′
2) ⇔ ϕn

• (|Q1,..., Qn] ∧ size ≥ β1 ∧ ¬size ≥ β′
1) ∗ (|Q] ∧ size ≥ β2+1 ∧ ¬size ≥ β′

2) ⇔
ϕn size β′

1 β′
2
. 1

Once Lemma 8 is shown, forthcoming Lemma 9 can be easily shown.

Lemma 8. The formulae listed in the table above are derivable in Hc(∗) assum-
ing that for any elementary shape ψ of the form either G ∧ size ≥ β or
G ∧ size ≥ β ∧ ¬size ≥ β′, we have �(G) ≤ β, β < β′ and ��Hc

¬ψ.

From Lemmata 7 and 9, we get the main result about ∗-elimination.

Lemma 9. Let φ, ψ be Boolean combinations of core formulae. There is a
Boolean combination of core formulae ϕ such that �Hc(∗) (φ ∗ ψ) ⇔ ϕ.

In the proof of Lemma 9, if �Hc(∗) ¬φ or �Hc(∗) ¬ψ, the axiom (⊥) is then
used. Otherwise, the proof amounts to prove the statement for elementary shapes
only, which corresponds to Lemma8. Let HMSL(∗,�) be the Hilbert-style proof
system defined as the union of the axioms and inference rules from Hc(�) and
Hc(∗) (with the intersection Hc) augmented with the axiom below:

(G30) p (p p p) with p ∈ PROP.

Theorem 2. HMSL(∗,�) is sound and complete for MSL(∗,�).

Proof. (sketch) We need to show that (1) the axiom (G30) is valid for MSL(∗,�)
(easy), (2) to show that all the axioms and inference rules of HMSL(∗,�) are
valid for MSL(∗,�) and (3) to prove that �HMSL(∗,�) φ for every valid formula
φ.

The proof of (2) is a consequence of (1), Lemma 5 and Lemma 7. However, one
needs to notice that the validity of the axiom schemas and inference rules can be
deduced from the proofs of Lemma 5 and Lemma 7, even though in HMSL(∗,�),
the metavariables φ, ψ and ϕ used in the axioms and inference rules from Hc(�)
and Hc(∗), can be safely instantiated by any formula in MSL(∗,�).

The proof of (3) consists in showing that there is a Boolean combination of
core formulae ψ such that �HMSL(∗,�) φ ⇔ ψ (φ and ψ are logically equivalent by

(2)). For instance, loop1 from Sect. 2 is logically equivalent to size 2 ,
whereas loop2 is logically equivalent to size 3 , . These equivalences
can be derived in HMSL(∗,�). So, ψ is valid and by Theorem1, we get �Hc

ψ and therefore �HMSL(∗,�) ψ. By propositional reasoning, we conclude that
�HMSL(∗,�) φ. It remains to prove that ψ exists. The proof is by structural
induction using Lemma 6, Lemma 9 and the axiom (G30). ��

Axiomatising Logics with Separating Conjunction and Modalities 703

4 Hilbert-Style Proof System for MSL(∗, 〈�=〉)
In this section, we present a proof system for MSL(∗, 〈�=〉) by using previous
developments from Sect. 3 as well as by adapting to infinite models the proof
method in [32] for axiomatising the logic of elsewhere ML(〈�=〉). The NP upper
bound proof for MSL(∗, 〈�=〉) satisfiability in [18] takes advantage of an abstrac-
tion accounting only for the number of edges in the model (up to a value depend-
ing linearly on the size of the input formula) and whether given a propositional
valuation (restricted to the propositional variables occurring in the input for-
mula), there are none, one or two locations satisfying it. The developments
below propose a syntactic characterisation for MSL(∗, 〈�=〉) validity that also
witnesses that the interplay between the number of edges and the constraints on
the valuations is very weak. Below, a pure separation formula is understood as
a formula in MSL(∗, 〈�=〉) with no occurrences of 〈�=〉 and propositional symbols,
and a pure modal formula is understood as a formula with no occurrences of ∗
and emp. We denote these families as MSL(∗) and MSL(〈�=〉), respectively.

We design the system HMSL(∗, 〈�=〉) for MSL(∗, 〈�=〉) by the union of the
system HMSL(〈�=〉) for MSL(〈�=〉), of the system HMSL(∗) for MSL(∗), plus
the new axioms (〈�=〉SEP) and (∗SEP).

Axiomatising ML(〈�=〉) on MSL Models. We introduce HMSL(〈�=〉) for
axiomatising the logic MSL(〈�=〉), that is designed by augmenting the Hilbert-
style system for the logic of elsewhere ML(〈�=〉) from [32] by an axiom expressing
that MSL(〈�=〉) models have an infinite number of locations (namely (INF)). For
instance, the formula 〈U〉(p ∧ [�=]¬p) ∧ 〈U〉(¬p ∧ [�=]p), where [�=]φ def= ¬〈�=〉¬φ

and 〈U〉φ def= φ ∨ 〈�=〉φ, is satisfiable in some ML(〈�=〉) model with two locations
exactly whereas it is unsatisfiable for MSL(〈�=〉). As usual, the axiom schemas
and modus ponens for propositional calculus are part of HMSL(〈�=〉).
Axioms and inference rule for HMSL(〈�=〉)
(K) [�=](φ ⇒ ψ) ⇒ ([�=]φ ⇒ [�=]ψ)
(B) φ ⇒ [�=]〈�=〉φ (ALIO) φ ⇒ ([�=]φ ⇒ [�=][�=]φ)

(INF)
∨

X⊆{p1,...,pn}〈U〉(ψX ∧ 〈�=〉ψX) for every {p1, . . . , pn} ⊂fin PROP,

where ψX stands for (
∧

p∈X p) ∧ (
∧

p∈({p1,...,pn}\X) ¬p).

Necessitation rule:
φ

[�=]φ

In HMSL(〈�=〉), the axiom (K) and the necessitation rule are standard for
normal modal logics, whereas the axiom (B) (resp. (ALIO)) takes care of the
symmetry (resp. the aliotransitivity) of the difference relation. As the MSL(〈�=〉)
models are necessarily infinite (by contrast to the models for the logic of else-
where), we add the axiom (INF).

Lemma 10. Axioms and rules in HMSL(〈�=〉) are valid for MSL(〈�=〉).
An MSL(〈�=〉) model M = 〈N,R,V〉 can be understood as the ML(〈�=〉)

model 〈N, �=,V〉 since the language MSL(〈�=〉) does not require to use of R to

704 S. Demri et al.

evaluate formulae. So, in the sequel, we assume that the models for ML(〈�=〉)
are of the form 〈W, �=,V〉, whereas those for MSL(〈�=〉) are the restrictions with
W = N.

Lemma 11. HMSL(〈�=〉) is sound and complete for MSL(〈�=〉).
The completeness of HMSL(〈�=〉) is shown by adapting the completeness

proof from [32] and by taking advantage of the infinity axiom (INF).

Axiomatising MSL(∗). We present the Hilbert-style system HMSL(∗) for
the logic MSL(∗). It is designed as a fragment of the Hilbert-style system
HMSL(∗,�) from Sect. 3 by simplifying the axioms and by keeping only what
is needed for MSL(∗).
Axioms and inference rules for HMSL(∗)

(COM) (φ ∗ ψ) ⇔ (ψ ∗ φ)
(∗DISTR) (φ1 ∨ φ2) ∗ ψ ⇔ (φ1 ∗ ψ) ∨ (φ2 ∗ ψ)
(ASSOC) (φ ∗ ψ) ∗ ϕ ⇔ φ ∗ (ψ ∗ ϕ)
(S∗

4) φ ⇔ (φ ∗ ¬size ≥ 1)

(⊥) ¬(⊥∗ φ)
(Sc

1) size ≥ 0
(Sc

2) size ≥ β+1 ⇒ size ≥ β

(S∗
5) size ≥ β1+β2 ⇒ size = β1 ∗ size ≥ β2

(S∗
6) ¬size ≥ β1 ∗ ¬size ≥ β2 ⇒ ¬size ≥ (β1+β2)

.− 1 (α1
.− α2

def
= max(0, α1−α2))

∗-introduction rule:
φ ⇒ ϕ

φ ∗ ψ ⇒ ϕ ∗ ψ

As MSL(∗) is a fragment of both MSL(∗,�) and MSL(∗, 〈�=〉), it should not
come as a surprise that all the axioms above were already introduced in Sect. 3.
Before proving completeness, we establish a few results about HMSL(∗) that
can be shown along the lines of Sect. 3 but drastic simplifications apply.

Lemma 12. Axioms and rules in HMSL(∗) are valid for MSL(∗).

This is a consequence of the correctness for HMSL(∗,�) (see Sect. 3), as deriv-
ability in HMSL(∗) implies derivability in HMSL(∗,�).

Lemma 13. Given φ in MSL(∗), �HMSL(∗)φ⇔ψ for some size formula ψ.

Proving completeness is now by an easy verification.

Lemma 14. HMSL(∗) is sound and complete for MSL(∗).

Proof. (sketch) Soundness is from Lemma 12. It remains to establish complete-
ness. Let φ be a formula that is valid for MSL(∗). First, notice that the following
property holds: if �HMSL(∗) φ ⇔ φ′, then �HMSL(∗) ψ[φ]ρ ⇔ ψ[φ′]ρ, where the
formula ψ[φ]ρ stands for the formula obtained from ψ by replacing the formula
at the occurrence ρ by the formula φ.

By Lemma 13, it is easy to show that there is a size formula φ′ in CNF
such that �HMSL(∗) φ ⇔ φ′ in HMSL(∗) and each conjunct of φ′ contains at
most 2 size literals, and they are of distinct polarity. By Lemma12, φ′ is also
MSL(∗) valid and therefore each conjunct is valid. If a conjunct is of the form
size ≥ β, then β = 0 as size ≥ β should be valid. As size ≥ 0 = �, we

Axiomatising Logics with Separating Conjunction and Modalities 705

have �HMSL(∗) size ≥ 0. No conjunct can be of the form ¬(size ≥ β) as no
formula of the form ¬(size ≥ β) is valid. If a conjunct is of the form size ≥
β ∨ ¬(size ≥ β′), then β′ ≥ β as size ≥ β ∨ ¬(size ≥ β′) is required to be
valid. By propositional reasoning and by using (β′ −β) times the axiom (Sc

2), we
can conclude that �HMSL(∗) (size ≥ β′) ⇒ (size ≥ β) and therefore �HMSL(∗)
size ≥ β ∨ ¬(size ≥ β′) by propositional reasoning. Hence, �HMSL(∗) φ′, and
since �HMSL(∗) φ ⇔ φ′, by propositional reasoning, we also get �HMSL(∗) φ. ��

Putting All Together: Axiomatising MSL(∗, 〈�=〉). It is now time to define
the Hilbert-style proof system HMSL(∗, 〈�=〉) obtained from the calculus contain-
ing the axioms and rules from HMSL(∗) and HMSL(〈�=〉). We need however to
introduce two more axioms, stating that pure separation formulae can be sepa-
rated from pure modal formulae. Notice that this property has some similarities
with the separation theorem for Past LTL from [23].
Separation axioms

(〈�=〉SEP) 〈�=〉(φ ∧ ψ) ⇔ (〈�=〉φ) ∧ ψ where ψ is a pure separation formula
(∗SEP) φ ∗ (φ′ ∧ ψ) ⇔ (φ ∗ φ′) ∧ ψ where ψ is a pure modal formula

Lemma 15. Axioms and rules in HMSL(∗, 〈�=〉) are valid for MSL(∗, 〈�=〉).
Completeness of HMSL(∗, 〈�=〉) takes advantage of the resp. completeness of

HMSL(〈�=〉) and HMSL(∗), and the fact that for all pure modal (resp. separa-
tion) formulae φM (resp. φS), φM ∨ φS is valid iff φM is valid or φS is valid.

Theorem 3. HMSL(∗, 〈�=〉) is sound and complete for MSL(∗, 〈�=〉).
Proof. (sketch) Soundness is from Lemma 15. Let us establish completeness. Let
φ be valid for MSL(∗, 〈�=〉). By using the axioms (〈�=〉SEP) and (∗SEP), one
can show that there is a formula φ′ such that �HMSL(∗,〈�=〉) φ ⇔ φ′ and φ′ is a
Boolean combination of formulae from MSL(∗) ∪ MSL(〈�=〉). By the validity of
the axioms and inference rules (Lemma 15), we have that φ′ is MSL(∗, 〈�=〉) valid
as well. By propositional reasoning in HMSL(∗, 〈�=〉), there is φ′′ in CNF such
that �HMSL(∗,〈�=〉) φ′ ⇔ φ′′ and φ′′ is a conjunction of disjunctions of the form
φM ∨φS where φM is a pure modal formula and φS is a pure separation formula.
Again, by the validity of the axioms and inference rules, each disjunction φM ∨φS

is valid in MSL(∗, 〈�=〉).
Now, one can show that φM ∨ φS is valid iff φM is valid for MSL(〈�=〉) or φS

is valid for MSL(∗). By completeness of HMSL(〈�=〉) and HMSL(∗), we get that
φM ∨φS is valid iff �HMSL(〈�=〉) φM or �HMSL(∗) φS . This is sufficient to conclude
that �HMSL(∗,〈�=〉) φM ∨ φS . Consequently, for each disjunct φM ∨ φS of φ′′, we
have �HMSL(∗,〈�=〉) φM ∨φS and therefore by propositional reasoning, we get that
�HMSL(∗,〈�=〉) φ′′. As �HMSL(∗,〈�=〉) φ ⇔ φ′ and �HMSL(∗,〈�=〉) φ′ ⇔ φ′′, we get that
�HMSL(∗,〈�=〉) φ. Therefore, HMSL(∗, 〈�=〉) is complete. ��

706 S. Demri et al.

5 Concluding Remarks

We provided an axiomatisation for the logics MSL(∗,�) and MSL(∗, 〈�=〉),
despite the well-known difficulties to axiomatise logics equipped with operators
that update the models in the evaluation process. Such operators are ubiquitous
in theoretical computer science and in knowledge representation areas, and we
hope that our calculi shed some new light on their expressive power. For the
axiomatisation of MSL(∗,�) we had to identify the core properties that can
be expressed in the logic, partially following the semantical analysis from [18].
We also had to express them in the language with the so-called core formulae.
Implicitly, the axiomatisation is divided into two parts: axioms and rules to
transform any formula of MSL(∗,�) into a Boolean combination of core formu-
lae and the axiomatisation of these Boolean combinations. For the axiomatisa-
tion of MSL(∗, 〈�=〉), we use a similar approach, except that we had to adapt
the axiomatisation of the logic of elsewhere from [32] to infinite models and
to implement syntactically a separation principle satisfied by MSL(∗, 〈�=〉). It
is worth noting that the completeness of HMSL(∗,�) and HMSL(∗, 〈�=〉) does
not imply their strong completeness, as MSL(∗) is not compact. Let us consider
X∞={size ≥ β | β ∈ N}. Indeed, for both logics, X∞ is unsatisfiable, since
MSL models have finite accessibility relations. Strong completeness would imply
that ⊥ could be derived from X∞. As all rules are finitary, then there is a finite
subset X ⊆ X∞ such that X �⊥, or equivalently � ∨

ψ∈X ¬ψ. This leads to a
contradiction by the correctness of HMSL(∗,�) and HMSL(∗, 〈�=〉). The same
argument can be used for other finitary proof systems, with the same set X∞.

As part of future work, we aim at Hilbert-style axiomatisations for separation
logics having a notion of core formulae (see e.g. [19,22]), or for very expressive
modal separation logics such as MSL(∗, 〈�=〉,�). Additionally, the expressivity
characterisation provided by core formulae appears to be handy not only as the
basic ingredient for the axiomatisations, but also for studying other problems,
such as the implementation of proof methods, or the analysis of meta-theoretical
properties of the logics.

Ackowledgements. This work was partially supported by ANPCyT-PICTs-2017-
1130 and 2016-0215, MinCyT Córdoba, SeCyT-UNC, the Laboratoire International
Associé INFINIS and the Centre National de la Recherche Scientifique (CNRS).

References

1. Areces, C., Fervari, R.: Hilbert-style axiomatization for hybrid XPath with data.
In: Michael, L., Kakas, A. (eds.) JELIA 2016. LNCS (LNAI), vol. 10021, pp. 34–48.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48758-8 3

2. Areces, C., Fervari, R., Hoffmann, G.: Tableaux for relation-changing modal logics.
In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS (LNAI),
vol. 8152, pp. 263–278. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40885-4 19

3. Areces, C., Fervari, R., Hoffmann, G.: Relation-changing modal operators. Logic
J. IGPL 23(4), 601–627 (2015)

https://doi.org/10.1007/978-3-319-48758-8_3
https://doi.org/10.1007/978-3-642-40885-4_19
https://doi.org/10.1007/978-3-642-40885-4_19

Axiomatising Logics with Separating Conjunction and Modalities 707

4. Aucher, G., van Benthem, J., Grossi, D.: Modal logics of sabotage revisited. JLC
28(2), 269–303 (2018)

5. Balbiani, Ph., Tinchev,T.: Unification in modal logic Alt1. In: AiML 2016, pp.
117–134. College Publications (2016)

6. Berdine, Josh, Calcagno, Cristiano, O’Hearn, Peter W.: A Decidable Fragment
of Separation Logic. In: Lodaya, Kamal, Mahajan, Meena (eds.) FSTTCS 2004.
LNCS, vol. 3328, pp. 97–109. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-540-30538-5 9

7. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic, Cambridge University Press
(2001)

8. Blackburn, P., van Benthem, J.F., Wolter, F. (eds.): Handbook of Modal Logic.
Elsevier (2006)

9. Boudou, J.: Decidable logics with associative binary modalities. In: LIPIcs CSL
2017, vol. 82, pp. 1–15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)

10. Brochenin, R., Demri, S., Lozes, E.: Reasoning about sequences of memory states.
Ann. Pure Appl. Logic 161(3), 305–323 (2009)

11. Brotherston, J., Villard, J.: Parametric completeness for separation theories. In:
POPL 2014, pp. 453–464. ACM (2014)

12. Calvanese, D., Kotek, T., Šimkus, M., Veith, H., Zuleger, F.: Shape and content.
In: Albert, E., Sekerinski, E. (eds.) IFM 2014. LNCS, vol. 8739, pp. 3–17. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-10181-1 1

13. Courtault, J.-R., Galmiche, D.: A modal separation logic for resource dynamics.
JLC 28(4), 733–778 (2018)

14. Courtault, J.-R., van Ditmarsch, H., Galmiche, D.: A public announcement sepa-
ration logic. Math. Struct. Comput. Sci. (2019, to appear)

15. Courtault, J.-R., van Ditmarsch, H., Galmiche, D.: An epistemic separation logic.
In: de Paiva, V., de Queiroz, R., Moss, L.S., Leivant, D., de Oliveira, A.G. (eds.)
WoLLIC 2015. LNCS, vol. 9160, pp. 156–173. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-47709-0 12

16. Dawar, A., Gardner, P., Ghelli, G.: Expressiveness and complexity of graph logic.
IC 205(3), 263–310 (2007)

17. Demri, S., Deters, M.: Two-variable separation logic and its inner circle. ToCL
2(16), 15:1–15:36 (2015)

18. Demri, S., Fervari, R.: On the complexity of modal separation logics. In: AiML
2018, pp. 179–198. College Publications (2018)

19. Demri, S., Lozes, É., Mansutti, A.: The effects of adding reachability predicates
in propositional separation logic. In: Baier, C., Dal Lago, U. (eds.) FoSSaCS 2018.
LNCS, vol. 10803, pp. 476–493. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-89366-2 26

20. Doumane, A.: Constructive completeness for the linear-time μ-calculus. In: LICS
2017, pp. 1–12. IEEE Computer Society (2017)

21. Ebbinghaus, H.D., Flum, J.: Finite Model Theory. Perspectives in Mathematical
Logic. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-662-03182-7

22. Echenim, M., Iosif, R., Peltier, N.: On the expressive completeness of
Bernays-Schönfinkel-Ramsey separation logic. Technical report arXiv:1802.00195,
arXiv:cs.LO, February 2018. To appear in FOSSACS 2019

23. Gabbay, D.: The declarative past and imperative future. In: Banieqbal, B., Bar-
ringer, H., Pnueli, A. (eds.) Temporal Logic in Specification. LNCS, vol. 398, pp.
409–448. Springer, Heidelberg (1989). https://doi.org/10.1007/3-540-51803-7 36

https://doi.org/10.1007/978-3-540-30538-5_9
https://doi.org/10.1007/978-3-540-30538-5_9
https://doi.org/10.1007/978-3-319-10181-1_1
https://doi.org/10.1007/978-3-662-47709-0_12
https://doi.org/10.1007/978-3-662-47709-0_12
https://doi.org/10.1007/978-3-319-89366-2_26
https://doi.org/10.1007/978-3-319-89366-2_26
https://doi.org/10.1007/978-3-662-03182-7
http://arxiv.org/abs/1802.00195
http://arxiv.org/abs/cs.LO
https://doi.org/10.1007/3-540-51803-7_36

708 S. Demri et al.

24. Gierasimczuk, N., Kurzen, L., Velázquez-Quesada, F.R.: Learning and teaching as
a game: a sabotage approach. In: He, X., Horty, J., Pacuit, E. (eds.) LORI 2009.
LNCS (LNAI), vol. 5834, pp. 119–132. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-04893-7 10

25. Herzig, A.: A simple separation logic. In: Libkin, L., Kohlenbach, U., de Queiroz, R.
(eds.) WoLLIC 2013. LNCS, vol. 8071, pp. 168–178. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-39992-3 16

26. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969)

27. Hou, Z., Clouston, R., Goré, R., Tiu, A.: Modular labelled sequent calculi for
abstract separation logics. ToCL 19(2), 13:1–13:35 (2018)

28. Lu, X., Tian, C., Duan, Z.: Temporalising separation logic for planning with search
control knowledge. In: IJCAI 2017, pp. 1167–1173 (2017)

29. Pym, D., Spring, J., O’Hearn, P.W.: Why separation logic works. In: Philosophy
and Technology, pp. 1–34 (2018). https://doi.org/10.1007/s13347-018-0312-8

30. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
LICS 2002, pp. 55–74. IEEE (2002)

31. Schmitz, S.: Complexity hierarchies beyond elementary. ACM Trans. Comput.
Theor. 8(1), 3:1–3:36 (2016)

32. Segerberg, K.: A note on the logic of elsewhere. Theoria 47, 183–187 (1981)
33. Shoham, Y., Leyton-Brown, K.: Multiagent Systems: Algorithmic, Game-

Theoretic, and Logical Foundations. Cambridge University Press, New York (2008)
34. Benthem, J.: An essay on sabotage and obstruction. In: Hutter, D., Stephan, W.

(eds.) Mechanizing Mathematical Reasoning. LNCS (LNAI), vol. 2605, pp. 268–276.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-32254-2 16

35. van Benthem, J.: Logical Dynamics of Information and Interaction. Cambridge
University Press (2011)

36. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Synthese
Library Series, vol. 337. Springer, Dordrecht (2008). https://doi.org/10.1007/978-
1-4020-5839-4

37. Wang, Y., Cao, Q.: On axiomatizations of public announcement logic. Synthese
190(Supplement–1), 103–134 (2013)

https://doi.org/10.1007/978-3-642-04893-7_10
https://doi.org/10.1007/978-3-642-04893-7_10
https://doi.org/10.1007/978-3-642-39992-3_16
https://doi.org/10.1007/s13347-018-0312-8
https://doi.org/10.1007/978-3-540-32254-2_16
https://doi.org/10.1007/978-1-4020-5839-4
https://doi.org/10.1007/978-1-4020-5839-4

Nested Sequents for the Logic
of Conditional Belief

Marianna Girlando1,2(B) , Björn Lellmann3 , and Nicola Olivetti1

1 Aix Marseille University, Université de Toulon, CNRS, LIS, Marseille, France
{marianna.girlando,nicola.olivetti}@univ-amu.fr

2 University of Helsinki, Helsinki, Finland
3 Technische Universität Wien, Vienna, Austria

lellmann@logic.at

Abstract. The logic of conditional belief, called Conditional Doxastic
Logic (CDL), was proposed by Board, Baltag and Smets to model revis-
able belief and knowledge in a multi-agent setting. We present a proof
system for CDL in the form of a nested sequent calculus. To the best of
our knowledge, ours is the first internal and standard calculus for this
logic. We take as primitive a multi-agent version of the “comparative
plausibility operator”, as in Lewis’ counterfactual logic. The calculus is
analytic and provides a decision procedure for CDL. As a by-product we
also obtain a nested sequent calculus for multi-agent modal logic S5i.

Keywords: Nested sequent calculus · Conditional doxastic logic ·
Belief revision · Multi-agent epistemic logic

1 Introduction

Knowledge and belief are the most important propositional attitudes to reason
about epistemic interaction among agents. Conditional Doxastic Logic (CDL) was
proposed by Board [4] and Baltag and Smets [1–3] for modelling both belief and
knowledge in a multi-agent setting (see also [14]). Differently from knowledge,
the essential feature of beliefs is that they are revisable whenever the agent learns
new information. To capture the revisable nature of beliefs, CDL contains the
conditional belief operator Bel i(C|B), the meaning of which is that agent i would
believe C in case she learnt B. Both unconditional beliefs and knowledge can be
defined in CDL: Bel iB (agent i believes B) as Bel i(B|�), KiB (agent i knows
B) as Bel i(⊥|¬B), the latter meaning that i considers impossible (inconsistent)
to learn ¬B. We also consider the comparative plausibility operator A �i B,
whose reading is that the agent i considers A to be at least as plausible as
B. This operator, introduced by Lewis for (single-agent) counterfactual logics
is interdefinable with the conditional belief operator; thereby also simple belief
and knowledge can be defined directly in terms of it.

This work was partially supported by the Project TICAMORE ANR-16-CE91-0002-01
and by WWTF project MA 16-28.

c© Springer Nature Switzerland AG 2019
F. Calimeri et al. (Eds.): JELIA 2019, LNAI 11468, pp. 709–725, 2019.
https://doi.org/10.1007/978-3-030-19570-0_46

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19570-0_46&domain=pdf
http://orcid.org/0000-0002-9384-1356
http://orcid.org/0000-0002-5335-1838
http://orcid.org/0000-0001-6254-3754
https://doi.org/10.1007/978-3-030-19570-0_46

710 M. Girlando et al.

The logic of conditional belief has been significantly employed in game the-
ory [17], and it has been used as the basic formalism to study further dynamic
extensions of epistemic logics, determined by several kinds of epistemic/doxastic
actions. Not surprisingly, the axiomatization of the operator Bel in CDL inter-
nalises the well-known AGM postulates of belief revision.

The difference between the conditional belief operator Bel i(B|A) and the
simple belief operator Bel i(A → B) is illustrated by the following (modified)
example from [17]. Let agent i believe that Jones is a coward, Bel i C(j). We
want to express that if the agent is to learn that Jones has been sent to battle,
S(j), he would no longer believe that he is a coward (since only brave men are
sent to battle). Using the simple belief operator would yield a contradiction,
because ¬Bel i(S(j) → C(j)) implies ¬Bel iC(j). However, if we express it as
¬Bel i(C(j)|S(j)), we retain consistency, since ¬Bel iC(j) cannot be derived (this
is verified, e.g., using the calculus below). As a second example, consider a variant
of the three-wise-men puzzle, where agent i initially believes that she has a white
hat, Bel iWi. However, if i were to learn that agent j knows the colour of the
hat j herself wears, she would change her beliefs and be convinced that she
is wearing a black hat instead: Bel i(Bi|Kj(Wj ∧ Bj)). The two formulas are
consistent (assuming ¬(Bi ∧ Wi)) as the operator is non-monotonic: Bel i(C|A)
does not entail Bel i(C|A ∧ B).

The original semantics of CDL is defined in terms of Plausibility Models, i.e.,
standard epistemic models, where each agent is further equipped with a “com-
parative plausibility” relation between worlds used to evaluate her (conditional)
beliefs. However, following [8,9], an alternative semantics is given in terms of
multi-agent neighbourhood models, which are essentially a multi-agent version of
Lewis’ sphere models for counterfactual logics [10]. In particular, the semantics of
CDL coincides with a multi-agent version of Lewis’ logic VTA. Proof-theoretically
the logic CDL has not been studied much, the only existing calculus for it being
the labelled sequent calculus based on this neighbourhood semantics from [9].

Here we propose the first internal calculus for CDL, meaning that the syntac-
tic structures employed in the calculus (nested sequents) have a direct formula
translation. Since CDL admits two rather different semantics, the internal calcu-
lus presents the advantage of being independent of the choice of the semantics,
differently from what happens with a labelled proof system.

Similarly to the calculi for Lewis’ conditional logics in [7], our calculus NCDL

takes as primitive the comparative plausibility operator, albeit in its multi-agent
version A �i B. In order to obtain an internal calculus for CDL, the simple
hypersequent structure used to capture Lewis’ logics in [7], is no longer adequate.
To keep track of the “locality” of information for each agent, and to account
for beliefs of an agent occurring within the beliefs of another, we use a nested
structure, which is not necessary in the single-agent case. The calculus NCDL is
analytic and provides a decision procedure for CDL. Its completeness is proved
semantically by extracting a finite countermodel from failed proof search. As
mentioned, the epistemic operator Ki is defined in CDL, and it corresponds to

Nested Sequents for the Logic of Conditional Belief 711

the knowledge operator of multi-agent S5i. Hence, “specialising” the rules of
NCDL to the Ki fragment we obtain a natural nested sequent calculus for S5i.

2 Multi-agent Conditional Logic CDL

The language of CDL extends propositional logic with operators for (conditional)
belief, knowledge, and comparative plausibility, all labelled with an agent.

Definition 1. Let A be a set of agents, and let i be an agent. Formulas of CDL
are generated as follows, for P propositional variable:

FCDL � A ::= P | ⊥ | � | A → A | A �i A | Bel i(A|A)

A conditional belief formula Bel i(C|B) is read “agent i believes C, given B”.
The meaning of a formula A �i B is that agent i considers A at least as plausible
as B. The operators of Bel i and �i are interdefinable:

Bel i(B|A) ≡ (⊥ �i A) ∨ ¬((A ∧ ¬B) � (A ∧ B))
A �i B ≡ Bel i(⊥|A ∨ B) ∨ ¬Bel i(¬A|A ∨ B)

Intuitively, an agent conditionally believes B given A whenever she considers A
impossible or she considers A∧¬B to be less plausible than A∧B. Unconditional
belief and knowledge can then be defined by these operators as follows1:

Bel iA := Bel i(A|�) Bel iA := ¬(¬A �i �) (belief)
KiA := Bel i(⊥|¬A) KiA := ⊥ �i ¬A (knowledge)

An axiomatization of CDL is given by the following axioms and rules [3,4]:

(0) Axiomatization of classical propositional logic
(1) If 	 B, then 	 Bel i(B|A)
(2) If 	 A ↔ B, then 	 Bel i(C|A) ↔ Bel i(C|B)
(3) (Bel i(B|A) ∧ Bel i(B → C|A)) → Beli(C|A)
(4) Bel i(A|A)
(5) Bel i(B|A) → (Bel i(C|A ∧ B) ↔ Bel i(C|A))
(6) ¬Bel i(¬B|A) → (Bel i(C|A ∧ B) ↔ Bel i(B → C|A))
(7) Bel i(B|A) → Bel i(Bel i(B|A)|C)
(8) ¬Bel i(B|A) → Bel i(¬Bel i(B|A)|C)
(9)A → ¬Bel i(⊥|A)

These axioms represent an “internalised” version of the AGM belief revision
postulates in a multi-agent setting, e.g., axioms 5 and 6 encode the Minimal
Change Principle2 An alternative axiomatization of CDL taking �i as primitive
1 An equivalent definition of the simple belief operator is the following: Bel iA :=

¬(¬A �i A) [10]. We choose a simpler formulation in terms of �, also from [10].
2 Refer to [4,9] for a detailed correspondence.

712 M. Girlando et al.

essentially amounts to a multi-agent version of Lewis’ counterfactual logic system
VTA [7] and contains in addition to classical propositional logic the following:

(CPR)
� B → A
� A �i B

(CPA) (A �i A ∨ B) ∨ (B �i A ∨ B)

(TR) (A �i B) ∧ (B �i C) → (A �i C) (CO) (A �i B) ∨ (B �i A)
(N) ¬(⊥ �i �) (T) (⊥ �i ¬A) → A
(A1) (A �i B) → (⊥ �i ¬(A �i B)

)
(A2) ¬(A �i B) → (⊥ �i (A �i B)

)

The original semantics of CDL is given in terms of plausibility models; the alter-
native semantics in terms of neighbourhood models from [9] is as follows.

Definition 2. Let A be a set of agents; a multi-agent neighbourhood model
has the form M = 〈W, {Ni}i∈A, � �〉 where W is a non empty set of worlds,
� � : Atm → P(W) is the evaluation for atomic formulas and for each i ∈ A,
Ni : W → P(P(W)) is a neighbourhood function, satisfying:

– Non-emptiness: For all α ∈ Ni(x), α �= ∅
– Nesting: For all α, β ∈ Ni(x), α ⊆ β or β ⊆ α
– Total reflexivity: There exists α ∈ Ni(x) such that x ∈ α
– Local absoluteness: If α ∈ Ni(x) and y ∈ α then Ni(x) = Ni(y)

The truth conditions for Boolean combinations of formulas are standard; the
remaining ones use the local forcing notation introduced in [12], i.e., α �∀ A iff
for all y ∈ α we have y � A, and α �∃ A iff there exists y ∈ α such that y � A:

x � Bel i(B|A) iff for all α ∈ Ni(x) it holds that α �∀ ¬A or there exists
β ∈ Ni(x) such that β �∃ A and β �∀ A → B
x � A �i B iff for all β ∈ Ni(x) if β �∃ B then β �∃ A
x � Bel iB iff there exists β ∈ Ni(x) such that β �∀ B
x � KiB iff for all β ∈ Ni(x) it holds that β �∀ B

A formula A is valid in M if for all w ∈ W , w � A. A formula A is valid if A is
valid in every multi-agent neighbourhood model.

3 Nested Sequent Calculus NCDL

In this section we present a sequent for CDL. The calculus is based on the
structure of nested sequents (e.g., [5,16]), adjusted to the multiagent setting and
extended with the mechanism to handle comparative plausibility formulas using
conditional blocks from [6,13] as follows.

Definition 3. A multi-agent conditional block for agent i is a syntactic struc-
ture i: (A1 . . . An �i B), interpreted as: (A1 ∨ · · · ∨ An) �i B. A multi-agent
nested sequent (short: nested sequent) S is a structure

S = Γ ⇒ Δ, [G1]i1 , . . . , [Gn]in

where i1, . . . , in ∈ A, Γ is a multiset of formulas, and Δ is a multiset of formulas
and multi-agent conditional blocks, and each G1, . . . , Gn is a nested sequent.

Nested Sequents for the Logic of Conditional Belief 713

Intuitively, a nested sequent is a finite labelled directed tree with nodes labelled
with sequents Γ ⇒ Δ, where Δ also contains multi-agent conditional blocks,
and edges labelled with agents. We call the nodes with their sequent label the
components of the nested sequent. Thus each Gj represents an immediate subtree
of the tree with root S. The formula interpretation is given by:

(Γ ⇒ Δ, (Σ1 �i C1), . . . , (Σk �j Ck), [G1]i1 , . . . , [Gn]in)int :=
∧

Γ →
∨

Δ ∨
∨

1�s�k
((

∨
Σs) �i Cs) ∨ Ki1 (G1)int ∨ · · · ∨ Kin (Gn)int

for Ki A = ⊥ �i ¬A. We sometimes include nested successors into the succedent
of a sequent, denoted with superscript ∗. E.g., for Γ ⇒ Δ, [G]i we also write
Γ ⇒ Δ∗. For a multiset Δ, we write set(Δ) for its underlying set, i.e., its carrier.

To operate with nested sequents, we use the notion of context, denoting a
nested sequent with a unique “hole”, to be filled with another nested sequent.

Definition 4. We define a context G{ } as:

– G{ } = Γ ⇒ Δ∗, { } is a context;
– if F{ } is a context, then G{ } = Γ ⇒ Δ∗, [F{ }]i is a context.

The result of filling a context G{ } with a nested sequent Γ ⇒ Δ∗ then is denoted
as G{Γ ⇒ Δ∗} and defined via:

– If G{ } = Σ ⇒ Π∗, { }, then G{Γ ⇒ Δ∗} = Γ,Σ ⇒ Δ∗,Π∗;
– If G{ } = Σ ⇒ Π∗, [F{ }]i then G{Γ ⇒ Δ∗} = Σ ⇒ Π∗, [F{Γ ⇒ Δ∗}]i.

The rules of the multi-agent nested sequent calculus NCDL are given in Fig. 1.
They are formulated in the cumulative version, repeating all formulas and blocks
of the conclusion in the premisses. This is used for proving completeness, but of
course could be avoided at the cost of explicit contraction rules.

As in nested calculi, each nested sequent can be thought as encoding the
formulas relative to one world of the model. Since our neighbourhood models
are multi-agent, each nested sequent has associated a label for an agent.

More in detail, rule R � introduces backwards a conditional block, and rule
L � (read upwards) combines a the true plausibility formula in the antecedent of
a sequent with a with the false conditional block in the consequent by means of
a case analysis. With the com rule, two blocks communicate with one another.
This rule can be thought as a syntactic equivalent of the nesting condition over
neighbourhoods, with each conditional block encoding the comparative plausibil-
ity formulas relative to one neighbourhood of the model. The jump rule creates a
new nested sequent in correspondence to a conditional block, with the same agent
label. Rule T accounts for the condition of total reflexivity of the neighbourhood
function, and the transfer rules are needed to express local absoluteness: due to
this condition comparative plausibility formulas are evaluated in the same way
at all the worlds accessible for the same agent - and thus, these formulas are
allowed to “pass” between nested sequents with the same agent label. Finally,
the rules of conditional belief make use of the definition of Bel i(B|A) in terms of

714 M. Girlando et al.

the comparative plausibility operator given in the previous section. For instance,
rule BelL read backwards states that if Bel i(B|A) is true, either A is impossible
(left premiss) or A ∧ ¬B is strictly less plausible than A (right premiss).

Fig. 1. Nested calculus NCDL

Theorem 1 (Soundness). If G is derivable in NCDL then (G)int is valid.

Proof. By induction on the derivation height, showing that if the premiss of a
rule is valid, so is its conclusion. By means of example we show jump, T and Tr1.

Suppose the premiss of jump is valid, and its conclusion is not. Thus, there
exists a model such that M, x � F for all F ∈ Γ and M, x � H for all H ∈ Δ.
Since x � (Σ � C), there exists α ∈ Ni(x) such that α �∃ C and α �

∃

(A1∨· · ·∨An), for Σ = A1, . . . , An. Then there exists y ∈ α such that M, y � C
and M, y � (A1 ∨ · · · ∨ An). However, from the previous conditions and validity
of the premiss we have that for all k ∈ ⋃

Ni(x) either M, k � C or M, k � As,
for some As ∈ Σ, contradicting the latter statement.

Nested Sequents for the Logic of Conditional Belief 715

As for T, suppose the premisses of the rule are valid, while the conclusion is
not. Thus, there is a model M, x � A �i B, such that for all F ∈ Γ , H ∈ Δ,
M, x � F and M, x � H. From M, x � A �i B we have for all α ∈ Ni(x), if
α �∃ B, then α �∃ A. As for the premisses, it must hold that M, x � ⊥ �i A,
and thus that (∗) for all α ∈ Ni(x), α ��∃ A and M, x � B. By total reflexivity,
there is a β ∈ Ni(x) such that x ∈ β. Thus, β �∃ B, whence β �∃ A, which
contradicts (∗).

Similarly, suppose the premiss of Tr1 is valid, while the conclusion is not.
Then there is a model such that M, x � A �i B, and for all F ∈ Γ , H ∈ Δ,
M, x � F and M, x � H. Moreover, we have that there exists y ∈ ⋃

Ni(x) such
that M, y � S for all S ∈ Σ, and M, y � P , for all P ∈ Π. From all these
conditions, and from the fact that the premiss of Tr1 are assumed to be valid,
we obtain in particular that (�) M, y � A �i B. However, by local absoluteness
we have Ni(x) = Ni(y); thus M, x � A �i B, against (�). ��
Lemma 1. The rules of weakening and contraction are admissible in NCDL:

G{Γ ⇒ Δ∗}
G{Γ,Σ ⇒ Δ∗,Π∗} W

G{Γ,A,A ⇒ Δ∗}
G{Γ,A ⇒ Δ∗} CL

G{Γ ⇒ Δ∗, A,A}
G{Γ ⇒ Δ∗, A} CR

Proof. Standard, by induction on the depth of the derivation. ��
Remark 1. The rules for simple belief and knowledge can be explicitly defined
as follows:

G{Γ ⇒ Δ, (¬A �i �)}
G{Beli A, Γ ⇒ Δ} BL

G{¬A �i �, Γ ⇒ Δ}
G{Γ ⇒ Δ, Beli A} BR

G{KiA, Γ ⇒ Δ, (¬A, Σ �i C)}
G{KiA, Γ ⇒ Δ, (Σ �i C)} KL

G{Γ ⇒ Δ, (⊥ �i A)}
G{Γ ⇒ Δ, KiA} KR

Example 1. A derivation of KiA → Beli (¬Bel j(⊥|A)) is shown in Fig. 2, with
rule R¬ derivable from R →, recalling ¬A = A → ⊥. We omit repetitions of the
principal formulas in the premisses.

4 Completeness of NCDL

To prove completeness of NCDL, we show how to construct a countermodel from
failed proof-search. For this, we first introduce the notion of saturated sequent
(Definition 7), i.e., an unprovable sequent to which all the rules have been non-
redundantly applied. Then, we build a countermodel for the sequent placed at the
root of the derivation from the information contained in the saturated sequent.

Intuitively, we can consider a saturated sequent S as a labelled tree, where
each node is a nested component Sj of S. Each world of a countermodel for S
corresponds to a node of the tree, and the world falsifying S as a whole is the
node placed at the root of the tree.

In countermodel construction we have to take care of the following: (a) for
each agent i and world Sj define a system of neighbourhoods Ni(Sj); and (b)

716 M. Girlando et al.

Fig. 2. Derivation of the formula KiA → Bel i(¬Belj(⊥|A)).

verify that the condition of local absoluteness holds in the model. Concerning
(a), the neighbourhoods Ni(Sj) will be determined by the blocks (Σ �i C)
contained in the consequent of Sj . As for (b), we need our models to satisfy
the following property. Let M be an arbitrary model, x, y two worlds in the
model, and Ri(x, y) the relation defined as y ∈ ⋃

Ni(x). By local absoluteness
it follows that Ri is an equivalence relation3 and from Ri(x, y) follows Ni(y) =
Ni(x). The syntactic counterpart of Ri is the equivalence relation ∼i between
two components Sj and Sk of S, one of which might be S itself (Definition
6). This relation holds whenever Sj and Sk are related by an i-path in the tree
associated with S. Lemma 2 proves that if Sj ∼i Sk then the two nested sequents
contain the same blocks. This suffices to ensure that Ni(Sj) = Ni(Sk).

Let us come back to (a). To define the set Ni(Sj) for a world Sj , we consider
the blocks (Σ �i C) occurring in the consequent of Sj . However since the rules
are cumulative, Sj may contain two blocks (A1, A2 �i C) and (A1, A2, A3 �i

C). In this case the former block can be disregarded, as it is included in the
latter. Thus, only “maximal” blocks (Definition 8) are relevant in order to define
Ni(Sj). It turns out that maximal blocks of a saturated sequent are ordered
by set inclusion, due to the com rule. Moreover, each maximal block (Σ �i

C) occurring in Sj is supposed to be false in world Sj . This means that Sj

has associated a “witnessing” world Sk where C is true and all formulas in

3 Refer to next section on S5i.

Nested Sequents for the Logic of Conditional Belief 717

Σ are false. This world/component is such that Sj ∼i Sk, and its existence
is guaranteed by saturation with respect to jump. Thus, the neighbourhoods
Ni(Sj) are determined by the maximal blocks and their witnessing worlds. The
following example should illustrate the construction.

Example 2. For pi, r, s, t, u, distinct atomic formulas, let:

Π = (p1 �i r), (p1 �i s), (p1, p2 �i t), (p1, p2, p3 �i u)

S = c ⇒ Π, [r ⇒ p1,Π]i, [s ⇒ p1,Π]i, [t ⇒ p1, p2,Π]i, [u ⇒ p1, p2, p3,Π]i

The four components of S are numbered as S1, S2, S3, S4 respectively (so that
S1 = [r ⇒ p1,Π]i etc.). Sequent S is saturated according to Definition 7. More-
over, observe that the blocks in Π are ordered by set inclusion, and that each
block has an associated witnessing world: (p1 �i r) is associated to S1, (p1 �i s)
to S2, (p1, p2 �i t) to S3 and (p1, p2, p3 �i u) to S4. In the countermodel,
W = {S, S1, S2, S3, S4}. The system of neighbourhoods Ni(S) is determined by
putting in the smallest neighbourhood the worlds corresponding to the largest
block, and so on.

Ni(S) = {{S4}, {S4, S3}, {S4, S3, S2, S1}, {S4, S3, S2, S1, S}}

This ensures that if a neighbourhood α falsifies a block (Σ �i C), i.e., α �∃ C
and α ��∃ ∨

Σ, then any larger neighbourhood falsifies the block as well. The
inclusion of S in the largest sphere is needed to ensure total reflexivity. Since the
worlds are related by ∼i, we have that Ni(Sj) = Ni(S). Finally, the evaluation
function assigns to atoms the worlds / nested component containing the atoms in
the antecedent. Thus, �u� = {S4}, �t� = {S3}, �u� = {S2}, �r� = {S1}, �c� = {S}.
It can be easily seen that world S falsifies sequent S : for instance, in case of
block (p1, p2 �i t), we have {S4, S3} �∃ t but {S4, S3} ��∃ p1 ∨ p2.

Definition 5. Let S1 and S2 be two nested sequents. We say that S2 occurs in
S1, in symbols S2 ∈̃ S1 if S1 = S2 or S1 = Γ ⇒ Δ∗, [S3]i for some i and S2 ∈̃S3.

Viewing nested sequents as labelled trees, we thus have S2 ∈̃S1 if S2 is a subtree
of S1. We denote by the symbol ∈ occurrence of a formula A or conditional block
(Σ �i A) in a multiset Γ of formulas and conditional blocks.

Definition 6. Let S be a nested sequent. For every agent i the relation ∼i on
the nested sequents occurring in S is the equivalence relation generated by the
relation ∼1

i given by: S1 ∼1
i S2 iff S1 = Γ ⇒ Δ, [S2]i.

Intuitively, we have S1 ∼i S2 if S1 = S2 or the two components are linked with
an i-path . Next, recall that set(Δ) is the set underlying the multiset Δ.

Definition 7. Let S = Γ ⇒ Δ, [G1]i1 , . . . [Gn]in be a nested sequent. We say
that S is locally saturated if it satisfies the following conditions.

718 M. Girlando et al.

1. (init) Γ ∩ Δ = ∅ and ⊥ /∈ Γ ;
2. (L →) If A → B ∈ Γ then A ∈ Δ or B ∈ Γ ;
3. (R →) If A → B ∈ Δ then A ∈ Γ and B ∈ Δ;
4. (R �) If A �i B ∈ Δ then there exists a conditional block (A �i B) ∈ Δ;
5. (L �) If A �i B ∈ Γ and (Σ �i C) ∈ Δ, then there is a (Σ′ �i C) ∈ Δ with

set(Σ,B) = set(Σ′) or (Σ �i A) ∈ Δ;
6. (com) If (Σ1 �i A) and (Σ2 �i B) ∈ Δ, then for some Π with set(Σ1, Σ2) ⊆

set(Π) we have (Π �i A) ∈ Δ or (Π �i B) ∈ Δ.
7. (T) If A �i B ∈ Δ then either (⊥ �i A) ∈ Δ or B ∈ Δ;

We denote by Blocki(S) the set of conditional blocks in Δ labelled with i. More-
over, we say that S is saturated if the following conditions hold for every S1 ∈̃S:

– S1 is locally saturated;
– (jump) If S1 = Γ ⇒ Δ∗, (Σ �i C), then there is a S2 ∼i S1 with S2 = Φ ⇒

Ω∗, [Ψ,C ⇒ Σ,Ξ∗]i;
– (Transfer rules) If S1 = Γ ⇒ Δ∗, [Σ ⇒ Π∗]i, then Blocki(S1) = Blocki(Σ ⇒

Π∗) and for every formula A �i B we have A �i B ∈ Γ iff A �i B ∈ Σ;

Lemma 2. If S1 and S2 are saturated and S1 ∼i S2, then Blocki(S1) =
Blocki(S2).

Proof. By induction on the length of the i-path between S1 and S2, using the
saturation condition for the transfer rules in the base case. ��
We define a naive backwards proof-search strategy for NCDL as follows: Apply the
rules bottom-up to the nested sequent unless the saturation condition associated
to the particular application of the rule is already satisfied. If the sequent is
saturated and not an initial sequent, return it, otherwise return “derivable”.

Lemma 3. Let S be a nested sequent. Then proof search under the strategy
above terminates and yields a derivation or a saturated nested sequent.

Proof. For termination, we first bound the number of the nested sequents occur-
ring in the proof search. Let n be the size of S, i.e., the number of symbols
occurring in it. Note that the premisses of the rules contain at least one for-
mula occurrence more than the conclusion. Since according to the proof-search
strategy rules are not applied if the nested sequent already satisfies the cor-
responding saturation condition, no formula or block is added twice. Since S
contains at most n many formulas, at most 2n · n many different conditional
blocks and 2n · 2n many sequents consisting only of formulas can be obtained
without repetition. Hence at most 22

n·n · 22n many different sequents consisting
of formulas and blocks occur in the proof search. To bound the maximal depth
of a nested sequent (seen as a tree) occurring in the proof search, we consider a
branch in such a nested sequent and divide it into blocks, taking two components
S1 and S2 in the branch to be in the same block if for some agent i we have
S1 ∼i S2. Since the maximal nesting depth of comparative plausibility formulas
in S is n, the number of alternations between agents in such a formula is at most

Nested Sequents for the Logic of Conditional Belief 719

n. Every application of the jump rule produces a new component such that the
maximal nesting depth of formulas in this component is strictly smaller than
that of the component from which it was created. Moreover the transfer rules
only transfer comparative plausibility formulas and blocks across nesting oper-
ators for the same agent. Hence every branch of every nested sequent occurring
in the proof search contains at most n many non-trivial blocks in addition to
those of S. Thus the maximal depth of a nested sequent occurring in the proof
search is the number of possible sequents times the maximal number of blocks
in a branch, i.e., 22

n·n · 22n · 2n = O(22
n

). Since the branching of the nested
sequents themselves (seen as trees) is caused by applications of the jump rule, by
the saturation conditions the branching of a nested sequent is bounded by the
number of formula-formula sequents, i.e., 22n. Hence the number of components
of a nested sequent occurring in the proof search is O((22

n

)2
2n

). Further, each
of these components contains one of at most O(22

n

) many sequents. Hence the
total number of nested sequents which might occur in the proof search is finite.
Together with the fact that in every step of the proof search at least one new
occurrence of a formula is added, this means that the algorithm terminates.

It is straightforward to construct a derivation if the procedure returns “deriv-
able”. Suppose that it does not yield a derivation. Since the algorithm terminates,
it yields a nested sequent S. But this nested sequent must satisfy the satura-
tion conditions for every rule, since otherwise it would be possible to apply the
corresponding rule and the procedure would not have terminated. ��
We then construct a countermodel from a saturated nested sequent. While the
worlds of the model will be the components of the nested sequents, for defining
the neighbourhood function we consider the “largest” blocks in the components:

Definition 8. For a nested sequent S, a conditional block (Σ �i C) ∈ Blocki(S)
is maximal if there is no block (Σ′ �i C) ∈ Blocki(S) with set(Σ) � set(Σ′).
We write MaxBlocki(S) for the set of maximal blocks in Blocki(S).

Remark 2. A maximal conditional block is the “largest” (containing most formu-
las in the antecedent) of all the blocks in Blocki(S) with the same consequent.
Thus, all maximal blocks have a different consequent. If S is saturated, the
antecedents of the conditional blocks in MaxBlocki(S) can be ordered w.r.t. set
inclusion, such that set(Σ1) ⊂ set(Σ2) ⊂ · · · ⊂ set(Σk), for k the number of
maximal conditional blocks. Note that there could be maximal blocks sharing
the same antecedent, e.g., as a consequence of saturation with respect to Tr3,
Tr4 or com, this latter applied to two different pairs of conditional blocks.

Given a saturated nested sequent S as above, the construction of the counter-
model MN = 〈W, {Ni}i∈A, � �〉 proceeds as follows.

– W := {Sj | Sj ∈̃ S};
– �p� := {Sj ∈ W | p ∈ Φj}.

To define the neighbourhood functions, observe that by the condition of abso-
luteness, this must be the same for all worlds seen by the same agent. Thus, for

720 M. Girlando et al.

all nested sequents Sm with Sm ∼i Sj , we define a single neighbourhood function
Ni(Sj) = Ni(Sm). In order to do so, we consider the maximal blocks occurring
in Sj , knowing by Lemma2 that if Sj ∼i Sm then Blocki(Sj) = Blocki(Sm), and
hence MaxBlocki(Sj) = MaxBlocki(Sm). Suppose the set MaxBlocki(Sj) con-
tains n1 +n2 + · · ·+nk maximal conditional blocks, with exactly k different sets
set(Σ1) ⊂ set(Σ2) ⊂ · · · ⊂ set(Σk):

(Σ1 �i C1
1) , . . . , (Σ1 �i C1

n1
)

(Σ2 �i C2
1) , . . . , (Σ2 �i C2

n2
)

...
...

(Σk �i Ck
1) , . . . , (Σk �i Ck

nk
)

So for each z � k there are nz different blocks (Σz �i Cz
1), . . . , (Σz �i Cz

nz
) with

the same antecedent. By the saturation condition for jump, for all Σz, Cz
w with

w ∈ {1, . . . , nz}, there is a Sz,w = Φz,w ⇒ Ωz,w ∈̃ S with Sj ∼i Sz,w, Cz
w ∈ Φz,w

and Σz ⊆ Ωz,w. Let W
Sj

i = {Sz | Sz ∼i Sj}. Now define Ni(Sj) as follows:

Ni(Sj) := {{Sk,1, . . . , Sk,nk
}, {Sk,1, . . . , Sk,nk

, Sk−1,1, . . . , Sk−1,nk−1}, . . . ,

{Sk,1, . . . , Sk,nk
, Sk−1,1, . . . , Sk−1,nk−1 , . . . S1,1, . . . , S1,n1}, W

Sj

i }
I.e., we add into the same neighbourhood the worlds associated to blocks sharing
the same antecedent. The so defined MN is a model for CDL: it satisfies the
properties of non-emptiness, nesting and local absoluteness (immediate from the
definition). Total reflexivity follows from the fact that for all Sj , W

Sj

i ∈ Ni(Sj).

Lemma 4. Let S be a saturated nested sequent and Sj = Φj ⇒ Ω∗
j a nested

sequent with Sj ∼i S. Let MN be the model as just defined. Let MaxBlocki(Sj) =
(Σ1 �i C1

1), . . . , (Σ1 �i C1
n1

), . . . , (Σk �i Ck
1), . . . , (Σk �i Ck

nk
). For A a for-

mula and (Σ �i C) a conditional block the following hold:

1. If A ∈ Φj then MN , Sj � A;
2. If A ∈ Ω∗

j then MN , Sj � A;
3. If (Σ �i C) ∈ Ω∗

j then MN , Sj � (
∨

B∈Σ B �i C).

Proof. We prove statements 1 and 2 by induction on the complexity of A, show-
ing only the case of comparative plausibility formulas. The proof of statement 3
uses the proof of 2. As for 1, suppose A �i B ∈ Φj . We have to show that
MN , Sj � A �i B, i.e. that for all the α ∈ Ni(Sj) we have α �

∃ B or α �∃ A.
First, suppose α �= W

Sj

i . Then, α = {Sk,1, . . . , Sk,nk
, . . . , St,1, . . . , St,nt

}, for
some t � k. For z � k and w ∈ {1, . . . , nz}, each Sz,w comes from a maxi-
mal conditional block (Σz �i Cz

w), and denotes a nested sequent Φz,w ⇒ Ωz,w

occurring in W with Cz
w ∈ Φz,w and Σz ⊆ Ωz,w. By saturation condition L �,

either B ∈ Σt or A = Ct
q, for some q ∈ {t, . . . , nt}. In the former case, by

set(Σt) ⊂ set(Σt+1) ⊂ · · · ⊂ set(Σk) and by inductive hypothesis, we have that
for all Sz,w, with z � k and w ∈ {1, . . . , nz}, MN , Sz,w � B; thus, α �

∃ B.
Otherwise, let A = Ct

q, for some q ∈ {1, . . . , nt}. Then, St,q = A,Φ′
t,q ⇒ Ωt,q.

By inductive hypothesis and since St,q ∈ α we get α �∃ A.

Nested Sequents for the Logic of Conditional Belief 721

If α = W
Sj

i , we have to prove that W
Sj

i �
∃ B or W

Sj

i �∃ A. Let W
Sj

i =
{S1, . . . , St}. By the saturation conditions for Tr1 and Tr2 we have A �i B ∈ Φq,
for all q � t. By saturation condition T, either there exists some Sq with (⊥ �i

A) ∈ Blocki(Sq), or for all Sq we have B ∈ Ωq. In the former case, by saturation
condition jump, to Sq is associated a nested sequent Sq′ = A,Φq′ ⇒ Ωq′ . It holds
that Sq ∼1

i Sq′ , and thus Sq′ ∈ W
Sj

i . By inductive hypothesis, M, Sq′ � A, and
W

Sj

i �∃ A. Otherwise, we have that for all Sq, B ∈ Ωq. By inductive hypothesis
M, Sq � B, and thus W

Sj

i �
∃ B.

As for 2, suppose A �i B ∈ Ωj . We have to prove that MN , Sj � A � B,
i.e., that there is an α ∈ Ni(Sj) with α �∃ B and α �∃ B and α �

∃ A. From the
definition of Ni(Sj), and with z � k and w ∈ {1, . . . , nz}, we have that to each
Sz,w occurring in

⋃
Ni(Sj) is associated a sequent Cz

w, Φz,w ⇒ Ωz,w, Σz, coming
from a maximal conditional block (Σz �i Cz

w). Thus, by saturation for R �
there exists z � k and w ∈ {1, . . . , nz} such that B = Cz

w and A ∈ Σz. Let us
consider the world Sz,w associated to this nested sequent, and the sphere to which
Sz,w belongs: α = {Sk,1, . . . Sk,nk

. . . , Sz,1, . . . , Sz,nz
}. By inductive hypothesis,

MN � B, and thus α �∃ B. Moreover, since set(Σz) ⊂ set(Σz+1) ⊂ · · · ⊂
set(Σk) and by inductive hypothesis, it holds that for all Sl,q, for l ∈ {z, . . . , k}
and q ∈ {1, . . . , nl}, Sl,q � A. Since no worlds in α validate A, α �

∃ A. ��
Corollary 1. Let S = Γ ⇒ Δ, [G1]i1 , . . . , [Gn]in be a saturated nested sequent
and MN a model as defined above. Then, for all Sj ∈ W it holds that MN , Sj �

(Sj)int, and MN , S � (S)int. ��
Completeness of NCDL follows immediately: by Lemma 3, backwards proof search
terminates, yielding a derivation or a saturated sequent. In the former case the
formula is derivable; in the latter case, we obtain a countermodel using Corol-
lary 1. Moreover, the completeness proof constructs a finite countermodel from a
saturated sequent, and thereby also shows the finite model property of the logic.

Theorem 2 (Completeness). Every valid formula is derivable in NCDL. ��
Example 3. We construct the countermodel M for the underivable sequent ⇒
Bel i(P → Q) → Bel i(Q|P). By backwards applications of NCDL rules we obtain
the following saturated sequent, where we assume �i binds stronger than ∧:

S = P ∧ ¬Q �i P,Blocki(S) ⇒ [P ⇒ Q,Blocki(S)]i, [� ⇒ P,Blocki(S)]i

where Blocki(S) = (⊥ �i P ∧ ¬Q), (P ∧ ¬Q,P,⊥ �i �). Let S1 = P ⇒
Q,Blocki(S) and S2 = � ⇒ P,Blocki(S). Then, W = WS

i = {S, S1, S2}, and
S ∼i S1 ∼i S2. Sequent S1 and S2 are obtained by jump respectively from the
former and latter conditional block in Blocki(S). Since {⊥} ⊂ {P ∧ ¬Q,P,⊥}
we have that Ni(S) = Ni(S1) = Ni(S2) = {{S2}, {S2, S1},WS

i }. By defini-
tion, P is true only at world S2, and Q is false at all the worlds. It holds
that (i) M, S � Bel i(P → Q), i.e., that there exists an α ∈ Ni(S) such that
α �∀ P → Q. Neighbourhood {S2} satisfies the condition. It also holds that

722 M. Girlando et al.

(ii) M, S � Bel i(Q|P), i.e., that there exists an α ∈ Ni(S) such that α �∃ P
and that for all β ∈ Ni(S) it holds that β �∃ P ∧ ¬Q. The former condition
is satisfied by the neighbourhood {S2, S1}, and all neighbourhoods satisfy the
latter condition. Since (i) and (ii) hold for all the worlds in the model, M is a
countermodel for the sequent.

Fig. 3. Rules of NS5i

5 Relationship with S5i

As mentioned, the operator Ki can be defined by KiA = ⊥ �i ¬A. If we adopt
this definition, restrict the language to FS5i = p | ⊥ | A → B | KiA, and apply
the rules of NCDL to these formulas (Remark 1), we obtain a nested sequent
calculus for a multi-agent modal epistemic logic, where the knowledge operator
corresponds to the � modality. The proof system, called NS5i , captures multi-
agent logic S5i.

Nested sequents of NS5i are interpreted as NCDL nested sequents, with the
difference that NS5i does not need conditional blocks to capture the simpler
semantics of S5i. Observe that the rules of NS5i are essentially the multi-agent
versions of the standard nested sequent rules for single-agent S5 [5,11,16]. But
while the nested sequent structure is an overkill for S5, it is necessary to capture
S5i. To the best of our knowledge, the only published sequent calculus for S5i is
Poggiolesi’s hypersequent calculus, which uses syntactic labels for the agents [15].
The connection between mono-agent CDL and S5 is known since [10]: As men-
tioned above, counterfactual logic VTA is the mono-agent system corresponding
to CDL. But a Kripke-style accessibility relation R can be obtained from (mono-
agent) neighbourhood models by setting R(x, y) if and only if y ∈ ⋃

N(x). For
VTA this yields an equivalence relation, thus characterizing modal logic S5. The
relation can be used to evaluate formulas KA, i.e., formulas ⊥ � ¬A4. For
A ∈ FS5i , define T (A) ∈ FCDL to be the formula obtained by replacing every
occurrence of KiA with ⊥ �i ¬A. The translation is lifted to nested sequents in
the obvious way. By generalizing Lewis’ argument to the multi-agent case, we
obtain the following:
4 Evaluating KA at a world x corresponds to evaluating ⊥ � ¬A in the outer neigh-
bourhood of N(x). For this reason, Lewis calls S5 the outer modal logic of VTA.

Nested Sequents for the Logic of Conditional Belief 723

Lemma 5. If A is a theorem of S5i, then T (A) is a theorem of CDL.

Completeness of the nested calculus for S5i seems to be unpublished, but consid-
ered folklore in the nested sequent community. Using the previous proposition,
it can be obtained proof-theoretically from the completeness of NCDL.

Theorem 3. The calculus NS5i is sound and complete w.r.t. modal logic S5i.

Proof (Sketch). Soundness can be proved directly (standard). For complete-
ness, we only sketch the main argument. We claim that for a sequent S =
KiA1, . . . ,KiAn, Γ ⇒ Δ,KiB1, . . . ,KiBm, if there is a derivation of T (S) =
⊥ �i ¬A1, . . . ,⊥ �i ¬An, Γ ⇒ Δ,⊥ �i ¬B1, . . . ,⊥ �i ¬Bm in NCDL, then
there is a derivation of the original sequent S in NS5i . If T (S) is derivable in
NCDL, then it must have been derived (modulo rule permutations) either by an
application of T or by multiple applications of R �, followed by applications of
L � and com, and finally jump. In the former case, the first premiss of the appli-
cation of T contains a block (⊥ �i ⊥) and is derivable via jump, while the right
premiss modulo propositional rules is just the premiss of K�

T . In the latter case,
after (backwards) applications of R �, we first reach the sequent:

⊥ �i ¬A1, . . . ,⊥ �i ¬An, Γ ⇒ Δ, (⊥ �i ¬B1), . . . , (⊥ �i ¬Bm).

Similarly to the case of T, the left premiss in any (backwards) application of L �
to a formula ⊥ �i ¬A� and a block (⊥ �i ¬Bk) is derivable, since it contains
the conditional block (⊥ �i ⊥). The other premiss of an application of L � is:

⊥ �i ¬A1, . . . ,⊥ �i ¬An, Γ ⇒ Δ, (Aj ,⊥ �i ¬B1), . . . , (⊥ �i ¬Bm).

Exhaustive backwards applications of L � yield the sequent

⊥ �i ¬A1, . . . ,⊥ �i ¬An, Γ ⇒ Δ, (Σ �i ¬B1), . . . , (Σ �i Bm)

where all blocks have the same Σ = ¬A1, . . . ,¬An. Hence the rule of com is not
really necessary: with applications of L � until saturation we obtain the same
sequent as with mixed applications of L � and com. Finally, by applications of
jump and of the rules for negation to the above sequent we reach the sequent

T (S∗) = ⊥ �i ¬A1, . . . ,⊥ �i ¬An, Γ ⇒ Δ, [Σ ⇒ B1]i, . . . , [Σ ⇒ Bm]i.

The corresponding NS5i sequent S∗ is the same sequent that can be obtained
from Γ,KiA1, . . . ,KiAn ⇒ Δ,KiB1, . . . ,KiBm by applying first rule K�

R to all
KiB1, . . . ,KiBm and then Tr1� exhaustively on KiA1, . . . ,KiAn.

Thus, the nested calculus NS5i simulates by macro-steps NCDL derivations
in the restricted language FS5i . Since the structure of conditional blocks is not
needed, the rules of com, Tr3 and Tr4 become superfluous and have no corre-
sponding rules in NS5i . Rule Tr2� simulates rule Tr2. ��

724 M. Girlando et al.

6 Conclusions

We have presented the first internal calculus NCDL for the multi-agent logic of
conditional beliefs CDL. The calculus manipulates nested sequents, where the
nesting is determined by nested beliefs of different agents. The calculus provides
a decision procedure for the logic. Since CDL contains as a fragment multi-agent
S5i, by specialising the rules of NCDL to that fragment we obtain a natural
internal calculus for S5i. CDL logic in itself can be extended to formalise the
dynamics of beliefs induced by different kinds of announcements [1]. We plan to
study how to extend our calculus to deal with the dynamic extension of CDL.

References

1. Baltag, A., Smets, S.: Conditional doxastic models: a qualitative approach to
dynamic belief revision. Electron. Notes Theor. Comput. Sci. 165, 5–21 (2006)

2. Baltag, A., Smets, S.: A qualitative theory of dynamic interactive belief revision.
Log. Found. Game Decis. Theory (LOFT 7) 3, 9–58 (2008)

3. Baltag, A., Smets, S., et al.: The logic of conditional doxastic actions. Texts Log.
Games Spec. Issue New Perspect. Games Interact. 4, 9–31 (2008)

4. Board, O.: Dynamic interactive epistemology. Games Econ. Behav. 49(1), 49–80
(2004)

5. Brünnler, K.: Deep sequent systems for modal logic. Arch. Math. Log. 48, 551–577
(2009)

6. Girlando, M., Lellmann, B., Olivetti, N., Pozzato, G.L.: Standard sequent calculi
for Lewis’ logics of counterfactuals. In: Michael, L., Kakas, A. (eds.) JELIA 2016.
LNCS (LNAI), vol. 10021, pp. 272–287. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-48758-8 18

7. Girlando, M., Lellmann, B., Olivetti, N., Pozzato, G.L.: Hypersequent calculi for
Lewis’ conditional logics with uniformity and reflexivity. In: Schmidt, R.A., Nalon,
C. (eds.) TABLEAUX 2017. LNCS (LNAI), vol. 10501, pp. 131–148. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-66902-1 8

8. Girlando, M., Negri, S., Olivetti, N., Risch, V.: The logic of conditional beliefs:
neighbourhood semantics and sequent calculus. In: Advances in Modal Logic, pp.
322–341 (2016)

9. Girlando, M., Negri, S., Olivetti, N., Risch, V.: Conditional beliefs: from neigh-
bourhood semantics to sequent calculus. Rev. Symb. Log. 11(4), 736–779 (2018)

10. Lewis, D.K.: Counterfactuals. Blackwell, Oxford (1973)
11. Marin, S., Straßburger, L.: Label-free modular systems for classical and intuitionis-

tic modal logics. In: Goré, R., Kooi, B.P., Kurucz, A. (eds.) AiML 10. pp. 387–406.
College (2014)

12. Negri, S.: Proof theory for non-normal modal logics: the neighbourhood formalism
and basic results. IFCoLog J. Log. Appl. 4, 1241–1286 (2017)

13. Olivetti, N., Pozzato, G.L.: A standard internal calculus for Lewis’ counterfactual
logics. In: De Nivelle, H. (ed.) TABLEAUX 2015. LNCS (LNAI), vol. 9323, pp.
270–286. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24312-2 19

14. Pacuit, E.: Neighbourhood semantics for modal logics. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-319-67149-9

15. Poggiolesi, F.: A cut-free simple sequent calculus for modal logic S5. Rev. Symb.
Log. 1(1), 3–15 (2008)

https://doi.org/10.1007/978-3-319-48758-8_18
https://doi.org/10.1007/978-3-319-48758-8_18
https://doi.org/10.1007/978-3-319-66902-1_8
https://doi.org/10.1007/978-3-319-24312-2_19
https://doi.org/10.1007/978-3-319-67149-9

Nested Sequents for the Logic of Conditional Belief 725

16. Poggiolesi, F.: The method of tree-hypersequents for modal propositional logic. In:
Makinson, D., Malinowski, J., Wansing, H. (eds.) Towards Mathematical Philoso-
phy. TL, vol. 28, pp. 31–51. Springer, Dordrecht (2009). https://doi.org/10.1007/
978-1-4020-9084-4 3

17. Stalnaker, R.: Belief revision in games: forward and backward induction 1. Math.
Soc. Sci. 36(1), 31–56 (1998)

https://doi.org/10.1007/978-1-4020-9084-4_3
https://doi.org/10.1007/978-1-4020-9084-4_3

Reasoning About Cognitive Attitudes
in a Qualitative Setting

Emiliano Lorini(B)

IRIT-CNRS, Toulouse University, Toulouse, France
lorini@irit.fr

Abstract. We present a general logical framework for reasoning about
agents’ cognitive attitudes of both epistemic type and motivational type.
We provide a sound and complete axiomatization for our logic and we
show that it allows us to express a variety of relevant concepts for quali-
tative decision theory including the concepts of knowledge, belief, strong
belief, conditional belief, desire, strong desire, comparative desirability
and choice.

1 Introduction

Since the seminal work of Hintikka on epistemic logic [17], of Von Wright on the
logic of preference [28,29] and of Cohen and Levesque on the logic of intention
[10], many formal logics for reasoning about cognitive attitudes of agents such
as knowledge and belief [14], preference [6,21], desire [13], intention [19,27] and
their combination [23,30] have been proposed. Generally speaking, these logics
are nothing but formal models of rational agency relying on the idea that an
agent endowed with cognitive attitudes makes decisions on the basis of what she
believes and of what she desires or prefers.

The idea of describing rational agents in terms of their epistemic and motiva-
tional attitudes is something that these logics share with classical decision theory
and game theory. Classical decision theory and game theory provide a quantita-
tive account of individual and strategic decision-making by assuming that agents’
beliefs and desires can be respectively modeled by subjective probabilities and
utilities. Qualitative approaches to individual and strategic decision-making have
been proposed in AI [7,12] to characterize criteria that a rational agent should
adopt for making decisions when she cannot build a probability distribution over
the set of possible events and her preference over the set of possible outcomes
cannot be expressed by a utility function but only by a qualitative ordering over
the outcomes. For example, going beyond expected utility maximization, quali-
tative criteria such as the maxmin principle (choose the action that will minimize
potential loss) and the maxmax principle (choose the action that will maximize
potential gain) have been studied and axiomatically characterized [8,9].

The aim of this paper is to present a rich logical framework for representing
a variety of agents’ cognitive attitudes in a multi-agent setting. In agreement
with philosophical theories [18,22,25,26], our logic allows us to distinguish two
c© Springer Nature Switzerland AG 2019
F. Calimeri et al. (Eds.): JELIA 2019, LNAI 11468, pp. 726–743, 2019.
https://doi.org/10.1007/978-3-030-19570-0_47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19570-0_47&domain=pdf
https://doi.org/10.1007/978-3-030-19570-0_47

Reasoning About Cognitive Attitudes in a Qualitative Setting 727

general categories of cognitive attitudes: epistemic attitudes, including belief and
knowledge, and motivational ones, including desires and preferences. Moreover,
in agreement with rational choice theory, it allows us to capture a notion of
choice which depends on what an agent believes and desires as well as on the
decision criterion she adopts.

The paper is organized as follows. In Sect. 2, we present the semantics and
syntax of our logic, called Dynamic Logic of Cognitive Attitudes (DLCA). At
the semantic level, it exploits two orderings that capture, respectively, an agent’s
comparative plausibility and comparative desirability over states. At the syntac-
tic level, it uses program constructs of dynamic logic (sequential composition,
non-deterministic choice, intersection, converse and test) to build complex cog-
nitive attitudes from simple ones. Following [15,24], it also uses nominals in
order to axiomatize intersection of programs. In Sect. 3, we illustrate the expres-
sive power of our logic by using it to formalize a variety of cognitive attitudes of
agents including knowledge, belief, strong belief, conditional belief, desire, strong
desire, comparative desirability and choice. In Sect. 4, we present a sound and
complete axiomatization for it. In Sect. 5 we conclude.

2 Dynamic Logic of Cognitive Attitudes

Let Atm be a countable infinite set of atomic propositions, let Nom be a count-
able infinite set of nominals disjoint from Atm and let Agt be a finite set of
agents.

Definition 1 (Multi-agent cognitive model). A multi-agent cognitive model
(MCM) is a tuple M = (W, (�i,P)i∈Agt , (�i,D)i∈Agt , (≡i)i∈Agt , V) where:

– W is a set of worlds or states;
– for every i ∈ Agt, �i,P and �i,D are preorders on W and ≡i is an equivalence

relation on W such that for all τ ∈ {P,D} and for all w, v ∈ W :
(C1) �i,τ⊆≡i,
(C2) if w ≡i v then w �i,τ v or v �i,τ w;

– V : W −→ 2Atm∪Nom is a valuation function such that for all w, v ∈ W :
(C3) VNom(w) �= ∅,
(C4) if VNom(w) ∩ VNom(v) �= ∅ then w = v;
where VNom(w) = Nom ∩ V (w).

w �i,P v means that, according to agent i, v is at least as plausible as w,
whereas w �i,D v means that, according to agent i, v is at least as desirable
as w. Finally, w ≡i v means that w and v are indistinguishable for agent i.
For every w ∈ W , ≡i (w) is also called agent i’s information set at state w.
According to Constraint C1, an agent can only compare the plausibility (resp.
desirability) of two states in her information set. According to Constraint C2,
the plausibility (resp. desirability) of two states in an agent’s information set are
always comparable. Constraints C3 and C4 capture the two basic properties of
nominals: every state is associated with at least one nominal and there are no
different states associated with the same nominal.

728 E. Lorini

We introduce the following modal language LDLCA(Atm,Nom,Agt), or sim-
ply LDLCA, for the Dynamic Logic of Cognitive Attitudes DLCA:

π ::= ≡i|�i,P |�i,D|�∼
i,P |�∼

i,D| π;π′ | π ∪ π′ | π ∩ π′ | −π | ϕ?
ϕ ::= p | x | ¬ϕ | ϕ ∧ ϕ′ | [π]ϕ

where p ranges over Atm, x ranges over Nom and i ranges over Agt . The other
Boolean constructions �, ⊥, ∨, → and ↔ are defined from p, ¬ and ∧ in the
standard way.

Elements π are called cognitive programs or, more shortly, programs. The set
of all programs is denoted by P(Atm,Nom,Agt), or simply, P.

Cognitive programs correspond to the basic constructions of Propositional
Dynamic Logic (PDL) [16]: atomic programs of type ≡i, �i,P , �i,D, �∼

i,P and
�∼

i,D, sequential composition (;), non-deterministic choice (∪), intersection (∩),
converse (−) and test (?). A given cognitive program π corresponds to a specific
configuration of the agents’ cognitive states including their epistemic states and
their motivational states.

The formula [π]ϕ has to be read “ϕ is true, according to the cognitive program
π”. As usual, we define 〈π〉 to be the dual operator of [π], that is, 〈π〉ϕ =def

¬[π]¬ϕ.
The atomic program ≡i represents the standard S5, partition-based and fully

introspective notion of knowledge [2,14]. [≡i]ϕ has to be read “ϕ is true according
to what agent i knows” or more simply “agent i knows that ϕ is true”, which
just means that “ϕ is true in all worlds that agent i envisages”.

The atomic programs �i,P and �i,D capture, respectively, agent i’s plausibil-
ity ordering and agent i’s desirability ordering over facts. In particular, [�i,P]ϕ
has to be read “ϕ is true at all states that, according to agent i, are at least
as plausible as the current one”, while [�i,D]ϕ has to be read “ϕ is true at all
states that, according to agent i, are at least as desirable as the current one”. The
atomic programs �∼

i,P and �∼
i,D are the complements of the atomic programs

�i,P and �i,D, respectively. In particular, [�∼
i,P]ϕ has to be read “ϕ is true at

all states that, according to agent i, are not at least as plausible as the current
one”, while [�∼

i,D]ϕ has to be read “ϕ is true at all states that, according to agent
i, are not at least as desirable as the current one”. The program constructs ;,
∪, ∩, − and ? are used to define complex cognitive programs from the atomic
cognitive programs. For example, the formula [�i,P ∪ �i,D]ϕ has to be read “ϕ
is true at all states that, according to agent i, are either at least as plausible or
at least as desirable as the current one”, whereas the formula [�i,P ∩ �i,D]ϕ
has to be read “ϕ is true at all states that, according to agent i, are at least as
plausible and at least as desirable as the current one”.

The following definition provides truth conditions for formulas in LDLCA:

Reasoning About Cognitive Attitudes in a Qualitative Setting 729

Definition 2 (Truth conditions). Let M = (W, (�i,P)i∈Agt , (�i,D)i∈Agt ,
(≡i)i∈Agt , V) be a MCM and let w ∈ W . Then:

M,w |= p ⇐⇒ p ∈ V (w)
M,w |= x ⇐⇒ x ∈ V (w)

M,w |= ¬ϕ ⇐⇒ M,w �|= ϕ

M,w |= ϕ ∧ ψ ⇐⇒ M,w |= ϕ and M,w |= ψ

M,w |= [π]ϕ ⇐⇒ ∀v ∈ W : if wRπv then M,v |= ϕ

where the binary relation Rπ on W is inductively defined as follows, with τ ∈
{P,D}:

wR≡i
v iff w ≡i v

wR�i,τ
v iff w �i,τ v

wR�∼
i,τ

v iff w ≡i v and w ��i,τ v

wRπ;π′v iff ∃u ∈ W : wRπu and uRπ′v

wRπ∪π′v iff wRπv or wRπ′v

wRπ∩π′v iff wRπv and wRπ′v

wR−πv iff vRπw

wRϕ?v iff w = v and M,w |= ϕ

For notational convenience, we use wRπv and (w, v) ∈ Rπ as interchangeable
notations.

We can build a variety of cognitive programs capturing different types of
plausibility and desirability relations between possible worlds. For instance, for
every τ ∈ {P,D}, we can define:

�i,τ =def − �i,τ

�i,τ =def �i,τ ∩ �∼
i,τ

�∼
i,τ =def − �∼

i,τ

≺i,τ =def �i,τ ∩ �∼
i,τ

≈i,τ =def �i,τ ∩ �i,τ

The five definitions denote respectively “at most as plausible (resp. desirable)
as”, “less plausible (resp. desirable) than”, “not at most as plausible (resp. desir-
able) as”, “more plausible (resp. desirable) than” and “equally plausible (resp.
desirable) as”.

For every formula ϕ in LDLCA we say that ϕ is valid if and only if for every
multi-agent cognitive model M and world w in M , we have M,w |= ϕ. Con-
versely, we say that ϕ is satisfiable if ¬ϕ is not valid.

For a given multi-agent cognitive model M = (W, (�i,P)i∈Agt , (�i,D)i∈Agt ,
(≡i)i∈Agt , N, V), we define ||ϕ||M = {v ∈ W : M,v |= ϕ} to be the truth
set of ϕ in M . Moreover, for every w ∈ W and for every i ∈ Agt , we define
||ϕ||i,w,M = {v ∈ W : M,v |= ϕ and w ≡i v} to be the truth set of ϕ from i’s
point of view at state w in M .

730 E. Lorini

3 Formalization of Cognitive Attitudes

In this section, we show how the logic DLCA can be used to model the variety
of cognitive attitudes of agents that we have briefly discussed in Sect. 1.

3.1 Epistemic Attitudes

We start with the family of epistemic attitudes by defining a standard notion of
belief. We say that an agent believes that ϕ if and only if ϕ is true at all states
that the agent considers maximally plausible.

Definition 3 (Belief). Let M = (W, (�i,P)i∈Agt , (�i,D)i∈Agt , (≡i)i∈Agt , V) be
a MCM and let w ∈ W . We say that agent i believes that ϕ at w, denoted by
M,w |= Biϕ, if and only if Best i,P (w) ⊆ ||ϕ||M where Best i,P (w) = {v ∈ W :
w ≡i v and ∀u ∈ W, if w ≡i u then u �i,P v}.

As the following proposition highlights, the previous notion of belief is expressible
in the logic DLCA by means of the cognitive program ≡i; [≺i,P]⊥?.

Proposition 1. Let M = (W, (�i,P)i∈Agt , (�i,D)i∈Agt , (≡i)i∈Agt , V) be a MCM
and let w ∈ W . Then, we have

M,w |= Biϕ iff M,w |= [≡i; [≺i,P]⊥?
]
ϕ.

It is worth noting that the set Best i,P (w) in Definition 3 might be empty,
since it is not necessarily the case that the relation �i,P is conversely well-
founded.1 As a consequence, the belief operator Bi does not necessarily satisfy
Axiom D, i.e., the formula Biϕ ∧ Bi¬ϕ is satisfiable in the logic DLCA. More
details about these aspects will be given at the end of Sect. 4.

In the literature on epistemic logic [3], mere belief of Definition 3 is usu-
ally distinguished from strong belief. Specifically, we say that an agent strongly
believes that ϕ if and only if, according to agent i, all ϕ-worlds are strictly more
plausible than all ¬ϕ-worlds.

Definition 4 (Strong belief). Let M = (W, (�i,P)i∈Agt , (�i,D)i∈Agt ,
(≡i)i∈Agt , V) be a MCM and let w ∈ W . We say that agent i strongly believes
that ϕ at w, denoted by M,w |= SBiϕ, if and only if ∀v ∈ ||ϕ||i,w,M and ∀u ∈
||¬ϕ||i,w,M : u ≺i,P v.

As the following proposition highlights, the previous notion of strong belief
is expressible in the logic DLCA by means of the cognitive program ≡i;ϕ?;�i,P .

Proposition 2. Let M = (W, (�i,P)i∈Agt , (�i,D)i∈Agt , (≡i)i∈Agt , V) be a MCM
and let w ∈ W . Then, we have

M,w |= SBiϕ iff M,w |= [≡i;ϕ?;�i,P

]
ϕ.

1 This means that there could be a world v such that w ≡i v and there is a �i,P -infinite
ascending chain from v.

Reasoning About Cognitive Attitudes in a Qualitative Setting 731

Strong belief that ϕ implies belief that ϕ, if the agent envisages at least one
state in which ϕ is true. This property is expressed by the following validity:

|=(
SBiϕ ∧ 〈≡i〉ϕ

) → Biϕ (1)

Conditional belief is another notion which has been studied by epistemic
logicians given its important role in belief dynamics [5]. We say that an agent
believes that ϕ conditional on ψ, or she would believe that ϕ if she learnt that ψ,
if and only if, according to agent i, all most plausible ψ-worlds are also ϕ-worlds.

Definition 5 (Conditional belief). Let M = (W, (�i,P)i∈Agt , (�i,D)i∈Agt ,
(≡i)i∈Agt , V) be a MCM and let w ∈ W . We say that agent i would believe
that ϕ if she learnt that ψ at w, denoted by M,w |= Bi(ψ,ϕ), if and only
if Best i,P (ψ,w) ⊆ ||ϕ||M , where Best i,P (ψ,w) = {v ∈ ||ψ||i,w,M : ∀u ∈
||ψ||i,w,M , u �i,P v}.

Note that Best i,P (�, w) = Best i,P (w).
As for belief and strong belief, we have a specific cognitive program ≡i; (ψ ∧

[≺i,P]¬ψ)? corresponding to the belief that ϕ conditional on ψ, so that the latter
can be represented in the language of the logic DLCA.

Proposition 3. Let M = (W, (�i,P)i∈Agt , (�i,D)i∈Agt , (≡i)i∈Agt , V) be a MCM
and let w ∈ W . Then, we have

M,w |= Bi(ψ,ϕ) iff M,w |= [≡i; (ψ ∧ [≺i,P]¬ψ)?
]
ϕ.

3.2 Motivational Attitudes

The first kind of motivational attitude we consider is desire. Following [13], we
say that an agent desires that ϕ if and only if all states that the agent envisages at
which ϕ is true is true are not minimally desirable for the agent. In other words,
desiring that ϕ consists in having some degree of attraction for all situations in
which ϕ is true.

Definition 6 (Desire). Let M = (W, (�i,P)i∈Agt , (�i,D)i∈Agt , (≡i)i∈Agt , V) be
a MCM and let w ∈ W . We say that agent i desires that ϕ at w, denoted by
M,w |= Diϕ, if and only if Worst i,D(w) ∩ ||ϕ||M = ∅, where Worst i,D(w) =
{v ∈ W : w ≡i v and ∀u ∈ W, if w ≡i u then v �i,D u}.

As the following proposition highlights, the previous notion of desire is charac-
terized by the cognitive program ≡i; [�i,D]⊥?.

Proposition 4. Let M = (W, (�i,P)i∈Agt , (�i,D)i∈Agt , (≡i)i∈Agt , V) be a MCM
and let w ∈ W . Then, we have

M,w |= Diϕ iff M,w |= [≡i; [�i,D]⊥?
]¬ϕ.

732 E. Lorini

Similarly to the set Best i,P (w) in Definition 3, the set Worst i,D(w) in Def-
inition 6 might be empty, since it is not necessarily the case that the relation
�i,D is well-founded.2 As a consequence, desires are not necessarily consistent,
i.e., the formula Diϕ ∧Di¬ϕ is satisfiable in the logic DLCA. As emphasized by
[13], this notion of desire satisfies the following property:

|=Diϕ → Di(ϕ ∧ ψ) (2)

Indeed, if an agent has some degree of attraction for all situations in which ϕ
is true then, clearly, it should have some degree of attraction for all situations
in which ϕ ∧ ψ is true, since all ϕ ∧ ψ-situations are also ϕ-situations. It is a
property that this notion of desire shares with the open reading of the concept
of permission studied in the area of deontic logic (see, e.g., [1,20]).3

One way of blocking this inference is by strengthening the notion of desire.
We say that an agent strongly desires that ϕ if and only if, according to agent
i, all ϕ-worlds are strictly more desirable than all ¬ϕ-worlds.

Definition 7 (Strong desire). Let M = (W, (�i,P)i∈Agt , (�i,D)i∈Agt , (≡i

)i∈Agt , V) be a MCM and let w ∈ W . We say that agent i strongly desires
that ϕ at w, denoted by M,w |= SDiϕ, if and only if ∀v ∈ ||ϕ||i,w,M and ∀u ∈
||¬ϕ||i,w,M : u ≺i,D v.

As for desire, there exists a cognitive program which characterizes strong desire,
namely, the program ≡i;ϕ?;�i,D.

Proposition 5. Let M = (W, (�i,P)i∈Agt , (�i,D)i∈Agt , (≡i)i∈Agt , V) be a MCM
and let w ∈ W . Then, we have

M,w |= SDiϕ iff M,w |= [≡i;ϕ?;�i,D

]
ϕ.

We have that strong desire implies desire:

|=SDiϕ → Diϕ (3)

Differently from desiring, it is not necessarily the case that strongly desiring
that ϕ implies strongly desiring that ϕ∧ψ, i.e., the formula SDiϕ∧¬SDi(ϕ∧ψ)
is satisfiable in the logic DLCA. Indeed, strongly desiring that ϕ is compatible
with envisaging a situation in which ϕ ∧ ψ holds and another situation in which
ϕ ∧ ¬ψ holds such that the first situation is less desirable than the second one.

2 This means that there could be a world v such that w ≡i v and there is a �i,D-infinite
descending chain from v.

3 According to deontic logicians, there are at least two candidate readings of the
statement “ϕ is permitted”: (i) every instance of ϕ is OK according to the normative
regulation, and (ii) at least one instance of ϕ (but possibly not all) is OK according
to the normative regulation. The former is the so-called open reading of permission.

Reasoning About Cognitive Attitudes in a Qualitative Setting 733

3.3 From comparative desirability to choice

We consider two views about comparative statements between formulas of the
form “the state of affairs ϕ is for agent i at least as desirable as the state of
affairs ψ”. According to the optimistic view, when assessing whether ϕ is at
least as desirable as ψ, an agent focuses on the best ϕ-situations in comparison
with the best ψ-situations. Specifically, an “optimistic” agent i considers ϕ at
least as desirable as ψ if and only if, for every ψ-situation envisaged by i there
exists a ϕ-situation envisaged by i such that the latter is at least as desirable
as the former. According to the pessimistic view, she focuses on the worst ϕ-
situations in comparison with the worst ψ-situations. Specifically, a “pessimistic”
agent i considers ϕ at least as desirable as ψ if and only if, for every ϕ-situation
envisaged by i there exists a ψ-situation envisaged by i such that the former is
at least as desirable as the latter.

Let us first define comparative desirability according to the optimistic view.

Definition 8 (Comparative desirability: optimistic view). Let M =
(W, (�i,P)i∈Agt , (�i,D)i∈Agt , (≡i)i∈Agt , V) be a MCM and let w ∈ W . We say
that, according to agent i’s optimistic assessment, ϕ is at least as desirable as
ψ at w, denoted by M,w |= DOpt

i (ψ � ϕ), if and only if ∀u ∈ ||ψ||i,w,M ,∃v ∈
||ϕ||i,w,M : u �i,D v.

As the following proposition highlights, it is expressible in the language
LDLCA.

Proposition 6. Let M = (W, (�i,P)i∈Agt , (�i,D)i∈Agt , (≡i)i∈Agt , V) be a MCM
and let w ∈ W . Then, we have

M,w |= DOpt
i (ψ � ϕ) iff M,w |= [≡i;ψ?

]〈�i,D〉ϕ.

The following abbreviation defines strict comparative desirability according to
the optimistic view:

DOpt
i (ψ ≺ ϕ) =def DOpt

i (ψ � ϕ) ∧ ¬DOpt
i (ϕ � ψ)

DOpt
i (ψ ≺ ϕ) has to be read “according to i’s optimistic assessment, ϕ is more

desirable than ψ”.
Let us now define comparative desirability according to the pessimistic view.

Definition 9 (Comparative desirability: pessimistic view). Let M =
(W, (�i,P)i∈Agt , (�i,D)i∈Agt , (≡i)i∈Agt , V) be a MCM and let w ∈ W . We say
that, according to agent i’s pessimistic assessment, ϕ is at least as desirable as
ψ at w, denoted by M,w |= DPess

i (ψ � ϕ), if and only if ∀v ∈ ||ϕ||i,w,M ,∃u ∈
||ψ||i,w,M : u �i,D v.

As for the optimistic view, the pessimistic view is also expressible in the
language LDLCA.

734 E. Lorini

Proposition 7. Let M = (W, (�i,P)i∈Agt , (�i,D)i∈Agt , (≡i)i∈Agt , V) be a MCM
and let w ∈ W . Then, we have

M,w |= DPess
i (ψ � ϕ) iff M,w |= [≡i;ϕ?

]〈�i,D〉ψ.

The following abbreviation defines strict comparative desirability according to
the pessimistic view:

DPess
i (ψ ≺ ϕ) =def DPess

i (ψ � ϕ) ∧ ¬DPess
i (ϕ � ψ)

DPess
i (ψ ≺ ϕ) has to be read “according to i’s pessimistic assessment, ϕ is more

desirable than ψ”.
The previous notion of (optimistic and pessimistic) comparative desirabil-

ity does not depend on what the agent believes. This means that, in order to
assess whether ϕ is at least as desirable as ψ, an agent also takes into account
worlds that are implausible (or, more generally, not maximally plausible). Real-
istic comparative desirability requires that an agent compares two formulas ϕ
and ψ only with respect to the set of most plausible states. This idea has been
discussed in the area of qualitative decision theory by different authors [7–9].

The following definition introduces realistic comparative desirability accord-
ing to the optimistic view.

Definition 10 (Realistic comparative desirability: optimistic view). Let
M = (W, (�i,P)i∈Agt , (�i,D)i∈Agt , (≡i)i∈Agt , V) be a MCM and let w ∈ W . We
say that, according to agent i’s optimistic assessment, ϕ is realistically at least
as desirable as ψ at w, denoted by M,w |= RDOpt

i (ψ � ϕ), if and only if ∀u ∈
Best i,P (w) ∩ ||ψ||i,w,M ,∃v ∈ Best i,P (w) ∩ ||ϕ||i,w,M : u �i,D v.

The idea is that an “optimistic” agent i considers ϕ realistically at least as
desirable as ψ if and only if, for every ψ-situation in agent i’s belief set there
exists a ϕ-situation in agent i’s belief set such that the latter is at least as
desirable as the former.

The previous notion as well is expressible in the language LDLCA.

Proposition 8. Let M = (W, (�i,P)i∈Agt , (�i,D)i∈Agt , (≡i)i∈Agt , V) be a MCM
and let w ∈ W . Then, we have

M,w |= RDOpt
i (ψ � ϕ) iff M,w |= [≡i; [≺i,P]⊥?;ψ?

]〈�i,D ∩(≡i; [≺i,P]⊥?)〉ϕ.

We define:

RDOpt
i (ψ ≺ ϕ) =def RDOpt

i (ψ � ϕ) ∧ ¬RDOpt
i (ϕ � ψ)

RDOpt
i (ψ ≺ ϕ) has to be read “according to agent i’s optimistic assessment, ϕ

is realistically more desirable than ψ”.
The following definition introduces realistic comparative desirability accord-

ing to the pessimistic view.

Reasoning About Cognitive Attitudes in a Qualitative Setting 735

Definition 11 (Realistic comparative desirability: pessimistic view).
Let M = (W, (�i,P)i∈Agt , (�i,D)i∈Agt , (≡i)i∈Agt , V) be a MCM and let w ∈ W .
We say that, according to agent i’s pessimistic assessment, ϕ is realistically at
least as desirable as ψ at w, denoted by M,w |= RDPess

i (ψ � ϕ), if and only if
∀v ∈ Best i,P (w) ∩ ||ϕ||i,w,M ,∃u ∈ Best i,P (w) ∩ ||ψ||i,w,M : u �i,D v.

The idea is that a “pessimistic” agent i considers ϕ realistically at least as
desirable as ψ if and only if, for every ϕ-situation in agent i’s belief set there
exists a ψ-situation in agent i’s belief set such that the former is at least as
desirable as the latter.

It is also expressible in the language LDLCA.

Proposition 9. Let M = (W, (�i,P)i∈Agt , (�i,D)i∈Agt , (≡i)i∈Agt , V) be a MCM
and let w ∈ W . Then, we have

M,w |= RDPess
i (ψ � ϕ) iff M,w |= [≡i; [≺i,P]⊥?;ϕ?

]〈�i,D ∩(≡i; [≺i,P]⊥?)〉ψ.

We define:

RDPess
i (ψ ≺ ϕ) =def RDPess

i (ψ � ϕ) ∧ ¬RDPess
i (ϕ � ψ)

RDPess
i (ψ ≺ ϕ) has to be read “according to agent i’s pessimistic assessment, ϕ

is realistically more desirable than ψ”.
We conclude this section by defining two notions of choice: agent i’s optimistic

choice that ϕ, denoted by COpt
i ϕ, and agent i’s pessimistic choice that ϕ, denoted

by CPess
i ϕ.

COpt
i ϕ =def RDOpt

i (¬ϕ ≺ ϕ)

CPess
i ϕ =def RDPess

i (¬ϕ ≺ ϕ)

According to these definitions, an optimistic (resp. pessimistic) agent should
choose ϕ if and only if, according to her optimistic (resp. pessimistic) assessment,
ϕ is realistically more desirable than ¬ϕ.

4 Axiomatization

In this section, we provide a sound and complete axiomatization for the logic
DLCA. The first step consists in precisely defining this logic.

736 E. Lorini

Definition 12. We define DLCA to be the extension of classical propositional
logic given by the following axioms and rules with τ ∈ {P,D}:

([π]ϕ ∧ [π](ϕ → ψ)) → [π]ψ (Kπ)
[≡i]ϕ → ϕ (T≡i

)
[≡i]ϕ → [≡i][≡i]ϕ (4≡i

)
¬[≡i]ϕ → [≡i]¬[≡i]ϕ (5≡i

)
[�i,τ]ϕ → ϕ (T�i,τ

)
[�i,τ]ϕ → [�i,τ][�i,τ]ϕ (4�i,τ

)
[≡i]ϕ → [�i,τ]ϕ (Int�i,τ ,≡i

)
(〈≡i〉ϕ ∧ 〈≡i〉ψ

) → (〈≡i〉(ϕ ∧ 〈�i,τ 〉ψ) ∨ 〈≡i〉(ψ ∧ 〈�i,τ 〉ϕ)
)

(Conn�i,τ ,≡i
)

[π;π′]ϕ ↔ [π][π′]ϕ (Red;)
[π ∪ π′]ϕ ↔ ([π]ϕ ∧ [π′]ϕ) (Red∪)
([π]ϕ ∧ [π′]ψ) → [π ∩ π′](ϕ ∧ ψ) (Add1∩)
(〈π〉x ∧ 〈π′〉x) → 〈π ∩ π′〉x (Add2∩)
ϕ → [π]〈−π〉ϕ (Conv1−)
ϕ → [−π]〈π〉ϕ (Conv2−)
([�i,τ]ϕ ∧ [�∼

i,τ]ϕ) ↔ [≡i]ϕ (Comp1∼)

〈�i,τ 〉x → [�∼
i,τ]¬x (Comp2∼)

[?ϕ]ψ → (ϕ → ψ) (Red?)
〈π〉(x ∧ ϕ) → [π′](x → ϕ) (Mostx)

ϕ

[π]ϕ
(Necπ)

[π]¬x for all x ∈ Num
[π]⊥ (Cov)

For every ϕ ∈ LDLCA, we write � ϕ to denote the fact that ϕ is a theorem of
DLCA, i.e., there exists an at most countably infinite sequence ψ0, ψ1, . . . such
that ψ0 = ϕ and for all k ≥ 0, ψk is an instance of some axiom or ψk can be
obtained from some later members of the sequence by an application of some
inference rule.

The rest of this section is devoted to prove that the logic DLCA is sound and
complete for the class of multi-agent cognitive models.

Soundness, namely checking that the axioms are valid and the rules of infer-
ences preserve validity, is a routine exercise. Notice that the admissibility of the
rule of inference Cov is guaranteed by the fact that the set of nominals Nom is
infinite.

As for completeness, the proof is organized in several steps. We use techniques
from dynamic logic and modal logic with names [15,24].

Reasoning About Cognitive Attitudes in a Qualitative Setting 737

In the rest of this section, we denote sets of formulas from LDLCA by
Σ,Σ′, Let ϕ ∈ LDLCA and Σ ⊆ LDLCA, we define:

Σ + ϕ = {ψ ∈ LDLCA : ϕ → ψ ∈ Σ}.

Let us start by defining the concepts of theory and maximal consistent theory.

Definition 13. A set of formulas Σ is said to be a theory if it contains all
theorems of DLCA and is closed under modus ponens and rule Cov. It is said
to be a consistent theory if it is a theory and ⊥ �∈ Σ. It is said to be a maximal
consistent theory (MCT) if it is a consistent theory and, for each consistent
theory Σ′, we have that if Σ ⊆ Σ′ then Σ = Σ′.

We have the following property for theories.

Proposition 10. Let Σ be a theory and let ϕ ∈ LDLCA. Then, Σ + ϕ is a
theory. Moreover, if Σ is consistent then either Σ + ϕ is consistent or Σ + ¬ϕ
is consistent.

The following proposition highlights some standard properties of MCTs.

Proposition 11. Let Σ be a MCT. Then, for all ϕ,ψ ∈ LDLCA:

– ϕ ∈ Σ or ¬ϕ ∈ Σ,
– ϕ ∨ ψ ∈ Σ iff ϕ ∈ Σ or ψ ∈ Σ.

The following variant of the Lindenbaum’s lemma is proved in the same way
as [24, Lemma 4.15].

Lemma 1. Let Σ be a consistent theory and let ϕ �∈ Σ. Then, there exists a
MCT Σ+ such that Σ ⊆ Σ+ and ϕ �∈ Σ+.

The following lemma highlights a fundamental properties of MCTs.

Lemma 2. Let Σ be a MCT. Then, there exists x ∈ Num such x ∈ Σ.

Let us now define the canonical model for our logic.

Definition 14. The canonical model is the tuple M c = (W c, (�c
i,P)i∈Agt ,

(�c
i,D)i∈Agt , (≡c

i)i∈Agt , V
c) such that:

– W c is the set of all MCTs,
– for all i ∈ Agt, for all τ ∈ {P,D}, for all w, v ∈ W c, w �c

i,τ v iff, for all
ϕ ∈ LDLCA, if [�i,τ]ϕ ∈ w then ϕ ∈ v,

– for all i ∈ Agt, for all w, v ∈ W c, w ≡c
i v iff, for all ϕ ∈ LDLCA, if [≡i]ϕ ∈ w

then ϕ ∈ v,
– for all w ∈ W c, V c(w) = (Atm ∪ Nom) ∩ w.

Let us now define the canonical relations for the complex programs π.

738 E. Lorini

Definition 15. Let M c = (W c, (�c
i,P)i∈Agt , (�c

i,D)i∈Agt , (≡c
i)i∈Agt , V

c) be the
canonical model. Then, for all π ∈ P and for all w, v ∈ W c:

wRc
πv iff, for all ϕ ∈ LDLCA, if [π]ϕ ∈ w then ϕ ∈ v.

The following Lemma 3 highlights one fundamental property of the canonical
model.

Lemma 3. Let M c = (W c, (�c
i,P)i∈Agt , (�c

i,D)i∈Agt , (≡c
i)i∈Agt , V

c) be the
canonical model. Then, for all Σ,Σ′ ∈ W c, for all π ∈ P and for all x ∈ Num,
if x ∈ Σ, x ∈ Σ′ and ΣRc

πΣ′ then Σ = Σ′.

The next step consists in proving the following existence lemma.

Lemma 4. Let M c = (W c, (�c
i,P)i∈Agt , (�c

i,D)i∈Agt , (≡c
i)i∈Agt , V

c) be the
canonical model, let w ∈ W c and let 〈π〉ϕ ∈ LDLCA. Then, if 〈π〉ϕ ∈ w then
there exists v ∈ W c such that wRc

πv and ϕ ∈ v.

The following truth lemma is proved in the usual way by induction on the
structure of ϕ thanks to Lemma 4.

Lemma 5. Let M c = (W c, (�c
i,P)i∈Agt , (�c

i,D)i∈Agt , (≡c
i)i∈Agt , V

c) be the
canonical model, let w ∈ W c and let ϕ ∈ LDLCA. Then, M c, w |= ϕ iff ϕ ∈ w.

The pre-final stage of the proof consists in introducing an alternative seman-
tics for the language LDLCA which turns out to be equivalent to the original
semantics based on MCMs.

Definition 16 (Quasi multi-agent cognitive model). A quasi multi-agent
cognitive model (quasi-MCM) is a tuple M = (W, (�i,P)i∈Agt , (�i,D)i∈Agt ,
(≡i)i∈Agt , V) where W , �i,P , �i,D, ≡i and V are as in Definition 1 except that
Constraint C4 is replaced by the following weaker constraint. For all w, v ∈ W :

(C4∗) if VNom(w) ∩ VNom(v) �= ∅ and wRπv for some π ∈ P then w = v.

By the generated submodel property, it is easy to show that the semantics in
terms of MCMs and the semantics in terms of quasi-MCMs are equivalent with
respect to the language LDLCA.

Proposition 12. Let ϕ ∈ LDLCA. Then, ϕ is valid relative to the class of MCMs
if and only if ϕ is valid relative to the class of quasi-MCMs.

The following theorem highlights that the canonical model is indeed a struc-
ture of the right type.

Lemma 6. The canonical model M c is a quasi-MCM.

Reasoning About Cognitive Attitudes in a Qualitative Setting 739

Let us conclude the proof by supposing �� ¬ϕ. Therefore, by Lemma 1 and
the fact that the set of DLCA-theorems is a consistent theory, there exists a
MCT w such that ¬ϕ �∈ w. Thus, by Proposition 11, we can find a MCT w such
that ϕ ∈ w. By Lemma 5, the latter implies M c, w |= ϕ for some w ∈ W c. Since,
by Lemma 6, M c is a quasi-MCM, it follows that ϕ is satisfiable relative to the
class of quasi-MCMs. Therefore, by Proposition 12, ϕ is satisfiable relative to
the class of MCMs.

We can finally state the main result of this section.

Theorem 1. The logic DLCA is sound and complete for the class of multi-agent
cognitive models.

We conclude this section by discussing the properties of converse well-
foundedness for the relation �i,P and well-foundedness for the relation �i,D.
As emphasized in Sect. 3, these properties are required to make agents’ beliefs
and desires consistent, namely, to guarantee that the formulas ¬(Biϕ ∧ Bi¬ϕ)
and ¬(Diϕ∧Di¬ϕ) become valid. It turns out that these properties can be easily
added to our logical framework.

In particular, let us consider the class of multi-agent cognitive models whose
relations �i,D and �i,P are, respectively, well-founded and conversely well-
founded.

Furthermore, let us consider the following two axioms:

〈≡i〉ψ → 〈≡i〉(ψ ∧ [≺i,P]¬ψ) (CWF�i,P
)

〈≡i〉ψ → 〈≡i〉(ψ ∧ [�i,D]¬ψ) (WF�i,D
)

Let us define DLCAwf to be the extension of the logic DLCA of Definition 12
by these axioms. It is straightforward to verify that the logic DLCAwf is sound
for the class of multi-agent cognitive models whose relations �i,D and �i,P are,
respectively, well-founded and conversely well-founded. We conjecture that we
can easily adapt the proof of Theorem 1 to show that it is also complete.

5 Conclusion

We have presented a logical framework for modelling a rich variety of cognitive
attitudes of both epistemic type and motivational type. We have provided a
sound and complete axiomatization for our logic.

Directions of future research are manifold. The present paper is devoted to
study the proof-theoretic aspects of the logic. In future work, we plan to investi-
gate its computational aspects including decidability of its satisfiability problem
and, at a later stage, complexity. In order to prove decidability, we expect to
be able to use existing filtration techniques from modal logic. Following the lit-
erature on dynamic epistemic logic (DEL) [11], we also plan to study several
dynamic extensions of our logic in order to capture a large variety of cogni-
tive dynamics in a multi-agent setting. The latter includes belief change, desire
change and choice change. We believe choice change is particularly interesting

740 E. Lorini

given the dependence of an agent’s choices on her beliefs and desires, as illus-
trated in Sect. 3.3. Specifically, since an agent’s choices depend on her plausibility
and desirability orderings over possible worlds, if these orderings change, then
the agent’s choices may also change. In other words, choice change can be seen as
derivative of belief change and desire change. Another research direction we plan
to follow in the future is to connect the notion of choice formalized in Sect. 3.3
with a notion of action in the sense of STIT logic, the logic of “seeing to it that”
by [4]. The interesting aspect of STIT is that agents’ choices are explicit in its
semantics and agents’ actions are conceived as results of their choices.

Acknowledgments. This work was supported by the ANR project CoPains. I would
like to thank Philippe Balbiani for his useful comments on its content.

A Proofs

We provide a selection of the proofs for the results given in the paper.

A.1 Proof of Lemma 2

Proof. We prove the lemma by reductio ad absurdum. Let Σ be a MCT. More-
over, suppose that, for all x ∈ Nom, x �∈ Σ. By Proposition 11, it follows that,
for all x ∈ Nom, ¬x ∈ Σ.

By Axiom Red?, we have ¬x ↔ [?�]¬x ∈ Σ for all x ∈ Nom. Thus, for all
x ∈ Nom, [?�]¬x ∈ Σ. Hence, since Σ is closed under Cov, [?�]⊥ ∈ Σ. By
Axiom Red?, the latter is equivalent to ⊥ ∈ Σ. The latter is contradiction with
the fact that Σ is a MCT. ��

A.2 Proof of Lemma 3

Proof. Let us first prove that (i) if x ∈ Σ and ϕ ∈ Σ then [π](x → ϕ) ∈ Σ.
Suppose x, ϕ ∈ Σ. Thus, x ∧ ϕ ∈ Σ since Σ is a MCT. Moreover, (x ∧ ϕ) →
[π](x → ϕ) ∈ Σ, because of Axiom Mostx). Hence, [π](x → ϕ) ∈ Σ.

Now let us prove by absurdum that (ii) if x ∈ Σ,Σ′ and ΣRc
πΣ′ then Σ = Σ′.

Suppose x ∈ Σ,Σ′, ΣRc
πΣ′ and Σ �= Σ′. The latter implies that there exists ϕ

such that ϕ ∈ Σ and ϕ �∈ Σ′. By item (i) above, it follows that [π](x → ϕ) ∈ Σ.
Since ΣRc

πΣ′, the latter implies that x → ϕ ∈ Σ′. Since x ∈ Σ′, it follows that
ϕ ∈ Σ′ which leads to a contradiction. ��

A.3 Proof of Lemma 4

Proof. Suppose w is a MCT and 〈π〉ϕ ∈ w. It follows that [π]w = {ψ : [π]ψ ∈ w}
is a consistent theory. Indeed, it is easy to check that [π]w contains all theorems
of DLCA, is closed under modus ponens and rule Cov. Let us prove that it is
consistent by reductio ad absurdum. Suppose ⊥ ∈ [π]w. Thus, [π]⊥ ∈ w. Hence,

Reasoning About Cognitive Attitudes in a Qualitative Setting 741

[π]¬ϕ ∈ w. Since 〈π〉ϕ ∈ w, ⊥ ∈ w. The latter contradicts the fact that w is a
MCT. Let us distinguish two cases.

Case 1: ϕ ∈ [π]w. Thus, ¬ϕ �∈ [π]w since w is consistent. Thus, by Lemma 1,
there exists MCT v such that [π]w ⊆ v, ϕ ∈ v and ¬ϕ �∈ v. By definition of Rc

π,
wRc

πv.
Case 2: ϕ �∈ [π]w. By Proposition 10, [π]w+ϕ is a theory since [π]w is a theory.

[π]w+ϕ is consistent. Suppose it is not. Thus, ϕ → ⊥ ∈ [π]w and, consequently,
¬ϕ ∈ [π]w. Hence, [π]¬ϕ ∈ w. It follows that ⊥ ∈ w, since 〈π〉ϕ ∈ w. But this
contradicts the fact that w is a MCT. Thus, [π]w + ϕ is a consistent theory.
Moreover, ϕ ∈ [π]w + ϕ, ¬ϕ �∈ [π]w + ϕ and [π]w ⊆ [π]w + ϕ. By Lemma 1,
there exists MCT v such that [π]w ⊆ v, ϕ ∈ v and ¬ϕ �∈ v. By definition of Rc

π,
wRc

πv. ��

A.4 Proof of Lemma 6

Proof. The fact that M c satisfies Constraints C3 and C4∗ follows from Lemmas
2 and 3. To prove that ≡i is an equivalence relation that �c

i,D and �c
i,D are

preorders and that M c satisfies Constraints C1 and C2 is just a routine exercise.
Indeed, Axioms T≡i

, 4≡i
, 5≡i

, T�i,τ
, 4�i,τ

Int�i,τ ,≡i
and Conn�i,τ ,≡i

are
canonical for these semantic conditions.

To conclude, we need to prove that the following six conditions hold, for
i ∈ Agt and τ ∈ {P,D}:

(w, v) ∈ Rc
�∼

i,τ
iff (w, v) ∈ Rc

≡i
and (w, v) �∈ Rc

�i,τ

(w, v) ∈ Rc
π;π′ iff ∃u ∈ W c : (w, u) ∈ Rc

π and (u, v) ∈ Rc
π′

(w, v) ∈ Rc
π∪π′ iff (w, v) ∈ Rc

π or (w, v) ∈ Rc
π′

(w, v) ∈ Rc
π∩π′ iff (w, v) ∈ Rc

π and (w, v) ∈ Rc
π′

(w, v) ∈ Rc
−π iff (v, w) ∈ Rc

π

wRc
ϕ?v iff w = v and M c, w |= ϕ

We only prove the second and fourth conditions which are the most difficult ones
to prove.

Let us start with the proof of the second condition. The right-to-left direction
is standard. We only prove the left-to-right direction. Suppose (w, v) ∈ Rc

π;π′ .
Let [π]w = {ψ : [π]ψ ∈ w}. Moreover, let 〈π′〉v = {〈π′〉ψ : ψ ∈ v}. Finally,
let 〈π′〉ψ1, 〈π′〉ψ2, . . . be an enumeration of the elements of 〈π′〉v. We define
Σ1 = [π]w + 〈π′〉ψ1 and, for all k > 1, Σk = Σk−1 + 〈π′〉ψk. By Proposition 10
and the fact that [π]w is a theory, it can be shown that every Σk is a theory.
Moreover, by induction on k, it can be shown that every Σk is consistent. Since
Σk−1 ⊆ Σk for all k > 1, it follows that Σ =

⋃
k>1 Σk−1 is a consistent theory.

By Lemma 1 and the definition of Σ, there exists u ∈ W c such that Σ ⊆ u,
(w, u) ∈ Rc

π and (u, v) ∈ Rc
π′ .

Let us now prove the fourth condition. Suppose (w, v) ∈ Rc
π∩π′ . By Definition

15 and Proposition 11, it follows that, for all ϕ, if ϕ ∈ v then 〈π ∩ π′〉ϕ ∈ w.

742 E. Lorini

The latter implies that for all ϕ, if ϕ ∈ v then 〈π ∩ π′ 〉(ϕ ∨ ⊥) ∈ w since
� 〈π ∩ π′〉ϕ → 〈π ∩ π′ 〉(ϕ ∨ ⊥). By Axiom Kπ, it follows that, for all ϕ,
if ϕ ∈ v then 〈π〉ϕ ∨ 〈π′〉⊥ ∈ w. Thus, for all ϕ, if ϕ ∈ v then 〈π〉ϕ ∈ w,
since � (〈π〉ϕ ∨ 〈π′〉⊥) → 〈π〉ϕ. In a similar way, we can prove that, for all ϕ,
if ϕ ∈ v then 〈π′〉ϕ ∈ w. By Definition 15 and Proposition 11, it follows that
(w, v) ∈ Rc

π and (w, v) ∈ Rc
π′ .

Now suppose (w, v) ∈ Rc
π and (w, v) ∈ Rc

π′ . Thus, by Definition 15 and
Proposition 11, (i) for all ϕ, if ϕ ∈ v then 〈π〉ϕ ∈ w and 〈π′〉ϕ ∈ w. By Proposi-
tion 11 and Lemma 2, we have that (ii) there exists x ∈ Num such that, for all
ϕ, ϕ ∈ v iff x∧ϕ ∈ v. Item (i) and item (ii) together imply that (iii) there exists
x ∈ Num such that, for all ϕ, if ϕ ∈ v then 〈π〉(x ∧ ϕ) ∈ w and 〈π′〉(x ∧ ϕ) ∈ w.
We are going to prove the following theorem:

� (〈π〉(x ∧ ϕ) ∧ 〈π′〉(x ∧ ϕ)) → 〈π ∩ π′〉(x ∧ ϕ)

By Axiom Kπ, 〈π 〉(x ∧ ϕ) ∧ 〈π′ 〉(x ∧ ϕ) implies 〈π 〉x ∧ 〈π′〉x. By Axiom
Add2∩, the latter implies 〈π ∩ π′〉x. Moreover, by Axiom Int�i,τ ,≡i

and Axiom
Mostx), 〈π〉(x∧ϕ) implies [≡∅](x → ϕ). By Axiom Int�i,τ ,≡i

, the latter implies
[π ∩ π′](x → ϕ). By Axiom Kπ, [π ∩ π′](x → ϕ) and 〈π ∩ π′〉x together imply
〈π ∩ π′〉(x ∧ ϕ). Thus, 〈π〉(x ∧ ϕ) ∧ 〈π′〉(x ∧ ϕ) implies 〈π ∩ π′〉(x ∧ ϕ).

From previous item (iii) and the previous theorem it follows that there exists
x ∈ Num such that, for all ϕ, if ϕ ∈ v then 〈π ∩ π′〉(x ∧ ϕ). The latter implies
that, for all ϕ, if ϕ ∈ v then 〈π ∩ π′〉ϕ. The latter implies that (w, v) ∈ Rc

π∩π′ .��

References

1. Anglberger, A.J., Gratzl, N., Roy, O.: Obligation, free choice, and the logic of
weakest permissions. Rev. Symb. Log. 8, 807–827 (2015)

2. Aumann, R.: Interactive epistemology I: knowledge. Int. J. Game Theory 28(3),
263–300 (1999)

3. Baltag, A., Smets, S.: Talking your way into agreement: belief merge by persuasive
communication. In: Proceedings of the Second Multi-Agent Logics, Languages, and
Organisations Federated Workshops (MALLOW), volume 494 of CEUR Workshop
Proceedings (2009)

4. Belnap, N., Perloff, M., Xu, M.: Facing the Future: Agents and Choices in Our
Indeterminist World. Oxford University Press, Oxford (2001)

5. van Benthem, J.: Dynamic logic for belief revision. J. Appl. Non-Class. Log. 17(2),
129–155 (2007)

6. van Benthem, J., Girard, P., Roy, O.: Everything else being equal: a modal logic
for ceteris paribus preferences. J. Philos. Log. 38, 83–125 (2009)

7. Boutilier, C.: Towards a logic for qualitative decision theory. In: Proceedings of
International Conference on Principles of Knowledge Representation and Reason-
ing (KR 1994), pp. 75–86. AAAI Press (1994)

8. Brafman, R.I., Tennenholtz, M.: An axiomatic treatment of three qualitative deci-
sion criteria. J. ACM 47(3), 452–482 (2000)

9. Brafman, R.I., Tennenholtz, M.: On the foundations of qualitative decision theory.
In: Proceedings of the Thirteenth National Conference on Artificial Intelligence
(AAAI 1996), pp. 1291–1296. AAAI Press (1996)

Reasoning About Cognitive Attitudes in a Qualitative Setting 743

10. Cohen, P.R., Levesque, H.J.: Intention is choice with commitment. Artif. Intell.
42, 213–261 (1990)

11. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Syn-
these Library, vol. 337. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
1-4020-5839-4

12. Doyle, J., Thomason, R.: Background to qualitative decision theory. The AI Mag.
20(2), 55–68 (1999)

13. Dubois, D., Lorini, E., Prade, H.: The strength of desires: a logical approach. Mind.
Mach. 27(1), 199–231 (2017)

14. Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning About Knowledge. MIT
Press, Cambridge (1995)

15. Gargov, G., Goranko, V.: Modal logic with names. J. Philoso. Log. 22, 607–636
(1993)

16. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)
17. Hintikka, J.: Knowledge and Belief: An Introduction to the Logic of the Two

Notions. Cornell University Press, Ithaca (1962)
18. Humberstone, I.L.: Direction of fit. Mind 101(401), 59–83 (1992)
19. Icard, T.F., Pacuit, E., Shoham, Y.: Joint revision of beliefs and intention. In:

Proceedings of the Twelfth International Conference on Principles of Knowledge
Representation and Reasoning (KR 2010), pp. 572–574. AAAI Press (2010)

20. Lewis, D.: A problem about permission. In: Saarinen, E., Hilpinen, R., Niiniluoto,
I., Hintikka, M.P. (eds.) Essays in Honour of Jaakko Hintikka, vol. 124, pp. 163–
175. Springer, Dordrecht (1979). https://doi.org/10.1007/978-94-009-9860-5 11

21. Liu, F.: Reasoning about Preference Dynamics. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-94-007-1344-4

22. Lorini, E.: Logics for games, emotions and institutions. If-CoLog J. Log. Appl.
4(9), 3075–3113 (2017)

23. Meyer, J.J.Ch., van der Hoek, W., van Linder, B.: A logical approach to the dynam-
ics of commitments. Artif. Intell. 113(1–2), 1–40 (1999)

24. Passy, S., Tinchev, T.: An essay in combinatorial dynamic logic. Inf. Comput. 93,
263–332 (1991)

25. Platts, M.: Ways of Meaning. Routledge and Kegan Paul, Abingdon (1979)
26. Searle, J.: Expression and Meaning. Cambridge University Press, Cambridge (1979)
27. Shoham, Y.: Logical theories of intention and the database perspective. J. Philos.

Log. 38(6), 633–647 (2009)
28. Von Wright, G.H.: The Logic of Preference. Edinburgh University Press, Edinburgh

(1963)
29. Von Wright, G.H.: The logic of preference reconsidered. Theory Decis. 3, 140–169

(1972)
30. Wooldridge, M.: Reasoning About Rational Agents. MIT Press, Cambridge (2000)

https://doi.org/10.1007/978-1-4020-5839-4
https://doi.org/10.1007/978-1-4020-5839-4
https://doi.org/10.1007/978-94-009-9860-5_11
https://doi.org/10.1007/978-94-007-1344-4

Computational Complexity of Core
Fragments of Modal Logics T, K4, and S4

Przemys�law Andrzej Wa�l ↪ega1,2(B)

1 Department of Computer Science, University of Oxford, Oxford, UK
2 Institute of Philosophy, University of Warsaw, Warsaw, Poland

p.a.walega@gmail.com

Abstract. We show that the satisfiability problem in core fragments of
modal logics T, K4, and S4 in whose languages diamond modal opera-
tors are disallowed is NL-complete. Moreover, we provide deterministic
procedures for satisfiability checking. We show that the above fragments
correspond to certain core fragments of linear temporal logic, hence our
results imply NL-completeness of the latter.

Keywords: Modal logic · Sub-propositional fragments ·
Computational complexity

1 Introduction

Modal logics are formal systems which enable us to talk about relational struc-
tures and have a wide range of applications [3]. In order to obtain modal lan-
guages of lower computational complexity a number of methods have been intro-
duced, e.g., restricting the nesting depth of modal operators [8,11–13] or bound-
ing the number of propositional variables [7]. In this paper we consider another,
recently investigated, way of restricting syntax of a language which leads to
sub-propositional fragments by [6,15]:

– limiting formulas to the Horn, Krom, or core forms (which are analogous as
in the propositional calculus [9,10]), denoted by “horn”, “krom”, and “core”,
respectively, in the lower index of a fragment’s symbol, and

– allowing only � or only ♦ operators, which is denoted by “�” and “♦”,
respectively, in the upper index of a fragment’s symbol.

This method often results in fragments which have a good compromise between
computational complexity and expressive power. Such fragments have been stud-
ied, e.g., in the case of linear temporal logic [1], temporal description logics [2],
interval temporal logics [4,5], and, recently, normal modal logics K, T, K4, S4,
and S5 [6,15]. Recall that K is the basic modal logic which semantically cor-
responds to the class of relational structures with an arbitrary binary relation,
whereas in T, K4, S4, and S5 the relation is reflexive, transitive, a preorder
(i.e., reflexive and transitive), and an equivalence, respectively. In this paper we
c© Springer Nature Switzerland AG 2019
F. Calimeri et al. (Eds.): JELIA 2019, LNAI 11468, pp. 744–759, 2019.
https://doi.org/10.1007/978-3-030-19570-0_48

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19570-0_48&domain=pdf
https://doi.org/10.1007/978-3-030-19570-0_48

Computational Complexity of Core Fragments of T, K4, and S4 745

identify complexity of a logic with the computational complexity of the satisfi-
ability problem of its formulas. It is well-known that the logics K, T, K4, and
S4 are PSpace-complete, whereas S5 is NP-complete [11]. A Hasse diagram for
fragments of these logics together with the computational complexity results is
depicted in Fig. 1, where an arrow indicates a syntactical extension of a given
fragment.

Fig. 1. Computational complexity map for sub-propositional fragments of normal
modal logics, where results established in this paper are presented in a frame

In particular, it is known that L�
horn is P-complete for L ∈ {K,T,K4,S4}

[6,15]. On the other hand, its fragment L�
core is known to be NL-complete for

L = K but its complexity for L ∈ {T,K4,S4} was not known. As stated in [15],
it was only known that the problem is in P (by P-completeness of L�

horn [6]),
and NL-hard (by NL-completeness of the core fragment of classical propositional
calculus [14]). The core fragment is particularly interesting since it is expressive
enough to represent some basic constraints used in conceptual modelling, and
hence, it has a potential for practical applications [2]. On the other hand, in
most of the investigated cases (e.g., in linear temporal logic [1] and interval logics
[4]) tight complexity bounds for the satisfiability problem in core fragments are
usually unknown.

The main result of this paper is that L�
core for L ∈ {T,K4,S4} is in NL,

which implies NL-completeness of these fragments. In particular, we show that
given an L�

core-formula ϕ, we can reduce the problem of checking its satisfiability
in S4�

core to checking if ϕ is satisfiable in the minimal frame with 2 elements –
see Table 1. In the case of T�

core the minimal frame is of size md(ϕ) + 1, where
md(ϕ) is the modal depth of ϕ, i.e., the maximum number of nested modal
operators in ϕ. For K4�

core there are two types of minimal frames, both of size

746 P. A. Wa�l ↪ega

at most |ϕ|, where |ϕ| is the length of ϕ. Next, we show that for a minimal frame
of T�

core, K4�
core, and S4�

core we can construct the minimal model based on this
frame, such that ϕ is satisfiable in the minimal frame if and only if it is satisfied
in the the minimal model. As we show, the latter condition can be checked in
NL, which implies that these fragments are in NL.

Table 1. Minimal frames for K�
core, T

�
core, K4�

core, and S4�
core, and the corresponding

LTL fragments

By the form of the minimal frames for K�
core, T

�
core, K4�

core, and S4�
core it

follows that these logics coincide with core fragments of linear temporal logic
(LTL) with temporal modal operators © ‘in the next time-point’, ‘now and
in the next time-point’, � ‘always in the future’, and � ‘now and always in
the future’, respectively. Our results imply that the above-mentioned fragments
of LTL are NL-complete over time lines of arbitrary countable length. Slightly
different fragments of LTL (with clauses preceded by the universal modality) have
been classified according to their computational complexity over integers in [1],
where it is shown that LTL�

core with clauses preceded by universal modalities is
NL-complete over integers.

The paper is organized as follows. In Sect. 2 we define core fragments of
normal modal logics and in Sect. 3 we recall results on minimal frames, which
were established in [15]. In Sect. 4 we prove that T�

core, K4�
core, and S4�

core are
in NL, and in Sect. 5 we construct deterministic algorithms for the satisfiability
problem in these fragments. In Sect. 6 we describe implications of our results for
the complexity of LTL -fragments and in Sect. 7 we conclude the paper.

2 Syntax and Semantics

We start by introducing syntax and semantics of core fragments of normal modal
logics. Let formulas of the core fragment with box modal operator only (i.e.,

Computational Complexity of Core Fragments of T, K4, and S4 747

without diamonds), denoted by L�
core-formulas, be generated by the following

abstract grammar:

ϕ := λ | ¬λ | �s(¬λ ∨ λ) | �s(¬λ ∨ ¬λ) | ϕ ∧ ϕ, (1)
λ := � | p | �λ,

where for any s ∈ N (N is the set of all natural numbers including 0), �sϕ stands
for � . . . �

︸ ︷︷ ︸

s times

ϕ and p ∈ PROP for PROP a countable set of propositional variables.

A Kripke frame (a frame in short) is a pair F = (W,R), where W is a non-
empty set of worlds and R ⊆ W × W is an accessibility relation. A model based
on a frame F is a pair M = (F, V) (we will also write M = (W,R, V)), where
V : PROP −→ P(W) is a valuation assigning a set of worlds to each propositional
variable. The satisfaction relation |= for a model M = (W,R, V) and a world
w ∈ W is defined inductively as follows:

M, w |= � for all w ∈ W ;
M, w |= p iff w ∈ V (p), for all p ∈ PROP;
M, w |= ¬ϕ iff M, w 	|= ϕ;
M, w |= ϕ1 ∧ ϕ2 iff M, w |= ϕ1 and M, w |= ϕ2;
M, w |= ϕ1 ∨ ϕ2 iff M, w |= ϕ1 or M, w |= ϕ2;
M, w |= �ϕ iff M, w′ |= ϕ for all w′ such that R(w,w′),

where ϕ,ϕ1, and ϕ2 are L�
core-formulas.

For convenience we introduce an equisatisfiable grammar for L�
core-formulas

given by:

ϕ := �sλ | �s(p → λ) | �s(λ → p) | �s(p ∧ p → ⊥) | ϕ ∧ ϕ, (2)

where s ∈ N, p ∈ PROP, ⊥ is an abbreviation for ¬�, and ϕ1 → ϕ2 is an abbre-
viation for ¬ϕ1 ∨ ϕ2. We denote the set of all conjuncts in ϕ by clauses(ϕ) and
the set of all propositional variables occurring in ϕ by PROP(ϕ). The following
result is obtained by a straight forward translation.

Proposition 1. Any formula generated by (2) can be transformed in L into an
equisatisfiable formula generated by (1), and vice versa.

A formula ϕ is T-satisfiable if it is satisfied in some model M = (W,R, V) in
which R is reflexive. Analogously, ϕ is K4-satisfiable if R is transitive and ϕ is
S4-satisfiable if R is transitive and reflexive.

3 Pre-linear Models

In this Section we will briefly recall results from [6] and [15] on minimal frames in
K�

core, K4�
core, and S4�

core, which will be useful in further Sections. Following [6],
we call a frame F = (W,R) a pre-linear frame if W is countable (finite or infinite),
i.e., W = {w0, w1, . . .} and R = {(wk−1, wk) | wk ∈ W and k 	= 0} – see Fig. 2.

748 P. A. Wa�l ↪ega

Moreover, for any R ⊆ W × W , we denote by R� its reflexive closure, by
−→
R its

transitive closure, and by R∗ its transitive and reflexive closure. If (W,R) is a
pre-linear frame, then (W,R�) is a pre-linear reflexive frame, (W,

−→
R) is a strict

linear order (asymmetric, transitive, and total relation) and (W,R∗) a non-strict
linear order (reflexive, antisymmetric, transitive, and total relation). A model
is pre-linear, reflexive pre-linear, strict linear, or non-strict linear if it is based,
respectively, on a pre-linear, reflexive pre-linear, strict linear, or non-strict linear
frame. As shown in [15], pre-linear models can be used to check satisfiability of
an L�

core-formula, as follows:

Theorem 2 ([15]). The following statements hold for all L�
core-formulas ϕ:

(i) ϕ is T-satisfiable if and only if it is satisfiable in the root of a pre-linear
reflexive model of size at most md(ϕ) + 1;

(ii) ϕ is K4-satisfiable if and only if it is satisfiable in the root of a model M
of size at most |ϕ| such that (i) M is strict linear or (ii) M is strict linear
and additionally its last world is in accessibility relation with itself;

(iii) ϕ is S4-satisfiable if and only if it is satisfiable in the root of a non-strict
linear model of size at most |ϕ|.

w0 w1 w2 w3 w4 w5

Fig. 2. A pre-linear frame F = (W, R), where W = {w0, . . . , w5} and an arrow from wi

to wj denotes that R(wi, wj)

4 Computational Complexity

By L�
core-satisfiability, for L ∈ {T,K4,S4}, we denote the problem of checking

whether a given L�
core-formula is L-satisfiable. It is known that L�

core-satisfiability
for L ∈ {T,K4,S4} is NL-hard and in PTime [6,15] but, to the best of our
knowledge, the tight complexity bounds were unknown so far. In the following
Subsections we will show that each of these problems is in NL, which implies
that they are all NL-complete.

4.1 Core Fragment of T

The first result we will show is that T�
core-satisfiability is in NL. By Theorem 2

in order to check whether an L�
core-formula ϕ is T-satisfiable it suffices to check

if ϕ is satisfiable in the root of some pre-linear reflexive model of size at most
md(ϕ) + 1. We will show that in order to check whether ϕ is satisfiable in
some pre-linear reflexive model of size D + 1 it suffices to construct the minimal
model of size D +1, denoted by MT

D,ϕ, and to check whether ϕ is satisfied there
(Lemma 3). We show that MT

D,ϕ is monotonic in a sense that if a propositional

Computational Complexity of Core Fragments of T, K4, and S4 749

variable holds in some world in MT
D,ϕ, then this propositional variable holds

in all ancestors of this world (Lemma 4). This property allows us to simplify
rules used to construct the minimal model (Lemma 5) and to show that to check
satisfiability of ϕ it suffices to verify whether ϕ is satisfied in the minimal model
of size md(ϕ) + 2 (Corollary 6). Finally, we use the monotonicity property from
Lemma 4 to show that checking whether ϕ is satisfied in the minimal model of
size md(ϕ)+2 reduces to the reachability problem in a directed graph (Lemma 7),
hence the former is in NL.

For an L�
core-formula ϕ and D ∈ N we introduce the minimal pre-linear

reflexive model of size D + 1 with respect to ϕ, MT
D,ϕ = (W,R, V), where

(W,R) is the pre-linear reflexive frame of size D+1, i.e., W = {w0, . . . , wD} and
R = {(wk, wk) | k ≤ D} ∪ {(wk, wk+1) | k < D}. To define V : PROP −→ P(W)
we start by setting V0 : PROP −→ P(W) such that for all p ∈ PROP:

V0(p) := {wk ∈ W | �s(�mp) ∈ clauses(ϕ) and k ≤ s + m}. (3)

For a function f : PROP −→ P(W), let cl(f) be the result of non-recursive
application of the below rules to f :

(cl1T) If �s(p1 → �mp2) ∈ clauses(ϕ) and wk ∈ f(p1) for some k ≤ s, then
add to f(p2) all wl such that k ≤ l ≤ k + m;

(cl2T) If �s(�mp1 → p2) ∈ clauses(ϕ) and for some k ≤ s it holds that for all
l such that k ≤ l ≤ k + m we have wl ∈ f(p1), then add wk to f(p2),

where k, l ≤ D. The rules (cl1T) and (cl2T) capture semantics of formulas of
the forms �s(p1 → �mp2) and �s(�mp1 → p2), respectively. Define the sets,
obtained by subsequent applications of cl to V0 as follows:

cl0(V0) := V0; cln+1(V0) := cl(cln(V0)).

Since W and PROP(ϕ) are finite, there are only finitely many functions of the
form f : PROP(ϕ) −→ P(W), and so cl has the fixed point. We define V as this
fixed point. An example of MT

D,ϕ is presented in Fig. 3.

w0 w1 w2 w3

p, q p, q p

Fig. 3. The minimal model MT
D,ϕ for D = 3 and ϕ = �2(p) ∧ �2(�p → q)

By the construction of the minimal model we can show that the following result
holds.

Lemma 3. The following conditions are equivalent for all L�
core-formulas ϕ:

750 P. A. Wa�l ↪ega

(1) ϕ is satisfied in the root of some pre-linear reflexive model of size D + 1;
(2) ϕ is satisfied in the root of MT

D,ϕ.

Moreover, MT
D,ϕ is monotonic in the following sense.

Lemma 4. For all p ∈ PROP and wk ∈ W , if MT
D,ϕ, wk |= p, then we have

MT
D,ϕ, wl |= p for all l < k.

This Lemma allows us to simplify construction of the minimal model by replacing
(cl1T) and (cl2T) with the following rules:

(cl1T′) If �s(p1 → �mp2) ∈ clauses(ϕ) and wk ∈ f(p1) for some k ≤ s, then
add to f(p2) all wl such that l ≤ k + m;

(cl2T′) If �s(�mp1 → p2) ∈ clauses(ϕ) and wk ∈ f(p1), then:
(i) if k = D, then for all l ≤ s add wl to f(p2);
(ii) if k < D, then for all l ≤ s such that l ≤ k − m add wl to f(p2).

To see that (cl2T) can be replaced with (cl2T′) note that by Lemma 4 the model
MT

D,ϕ is such that if wk ∈ V (p1), then all its ancestors belong to V (p1). If p1
is satisfied in all worlds, then a clause �s(�mp1 → p2) forces p2 to be satisfied
in worlds w0, . . . , ws. If p1 is satisfied in wk for some k < D, then a clause
�s(�mp1 → p2) forces p2 to be satisfied in MT

D,ϕ in worlds w0, . . . , wl such
that l ≤ s and l ≤ k − m. As we will show afterwards, the new form of rules
is essential to obtain the decision procedure in NL. We can also show that the
following property holds:

Lemma 5. Let ϕ be a L�
core-formula and D a positive natural number. If ϕ is

satisfied in the root of MT
D,ϕ, then ϕ is satisfied in the root of MT

D+1,ϕ.

As a result of Lemma 5, rather than checking whether ϕ is satisfied in the root of
some pre-linear reflexive model of size at most md(ϕ)+1, it suffices to check if ϕ
is satisfied in the root of the pre-linear reflexive model of size exactly md(ϕ)+1.

Corollary 6. An L�
core-formula ϕ is T�

core-satisfiable if and only if ϕ is satisfied
in the root of MT

md(ϕ)+1,ϕ.

Next, we show that checking whether ϕ is satisfied in the root of MT
md(ϕ)+1,ϕ

reduces to the reachability problem.

Lemma 7. Checking whether an L�
core-formula ϕ is satisfied in the root of

MT
D,ϕ is in NL.

Proof. We use the fact that NL= coNL [14] and introduce an NL procedure
checking whether ϕ is not satisfied in the root of MT

D,ϕ.
Note that all rules in ϕ which do not contain ⊥ are satisfied in MT

D,ϕ by
its construction. Hence, to check whether MT

D,ϕw0 	|= ϕ it suffices to non-
deterministically guess a rule �s(p1 ∧ p2 → ⊥) in ϕ and then verify that
MT

D,ϕ, w0 	|= �s(p1 ∧ p2 → ⊥). If MT
D,ϕ, w0 	|= �s(p1 ∧ p2 → ⊥), then by

Computational Complexity of Core Fragments of T, K4, and S4 751

Lemma 4 we have MT
D,ϕ, w0 |= p1 and MT

D,ϕ, w0 |= p2. To check in NL whether
this is the case we construct a directed graph G = (V ert, E) such that:

V ert = {start} ∪ {(p,w) | p ∈ PROP(ϕ) and w ∈ W};
E = {(start, (p,w)) | w ∈ V0(p)}

∪ {((p,w), (p′, w′)) | w ∈ f(p) implies w′ ∈ cl(f)(p′) by (cl1T′)}
∪ {((p,w), (p′, w′)) | w ∈ f(p) implies w′ ∈ cl(f)(p′) by (cl2T′)}.

This graph (see Fig. 4), which we call an application graph, is of a polynomial
size with respect to |ϕ| and can be constructed in L.

start

(p, w0) (p, w1) (p, w2) (p, w3)

(q, w0) (q, w1) (q, w2) (q, w3)

�2(p)

�2(�p → q)

Fig. 4. An application graph for ϕ = �2(p) ∧ �2(�p → q) and D = 3, where curly
brackets indicate clauses used to construct corresponding edges (one of the arrows is
dashed only in order to make the figure more readable)

We claim that for all p ∈ PROP and w ∈ W we have MT
D,ϕ, w |= p if and

only if there is a path in G starting in start and ending in (p,w). Indeed, assume
that there is a path in G from start to (p,w). Edges in E correspond to the
construction of V0 and applications of rules (cl1T′) and (cl2T′), hence w ∈ V (p).
For the other direction assume that w ∈ V (p). Then, there is a sequence of
applications of rules (cl1T′) and (cl2T′) to V0 which results in adding w to V (p).
Importantly, the rules (cl1T′) and (cl2T′) are linear in a sense that each of them
has only one precondition, so the above-mentioned sequence of applications can
be represented as a path in G, starting in start and ending in (p,w).

We have reduced in L checking whether MT
D,ϕ, w |= p to checking if there is

a path in a directed graph. The latter problem is well-known to be in NL [14],
so the former is in NL as well. It follows that checking MT

D,ϕ, w0 |= ϕ is in NL.

By Corollary 6 and Lemma 7 we obtain that T�
core-satisfiability is in NL, so

the following result holds.

Theorem 8. T�
core-satisfiability is NL-complete.

752 P. A. Wa�l ↪ega

4.2 Core Fragment of K4

Next, we consider K4�
core-satisfiability and show that it is also in NL. The proof

is similar to the one for T�
core-satisfiability, however, there are some important

differences. First, there are two types of minimal models (Lemma 9) and second,
these models are monotonic but the direction of monotonicity is opposite to
the direction of the monotonicity in minimal models for T. In particular, if a
propositional variable holds in a minimal model for K4 in some world, then it
holds in all descendants of this world (Lemma 11). This property also allows
us to reduce the satisfiability problem to the graph reachability problem, which
implies that K4�

core-satisfiability is in NL (Theorem 12).
By Theorem 2 a K4�

core-formula ϕ is satisfiable if it is satisfied in a root
of a model M of size at most |ϕ| such that (i) M is strict linear or (ii) M is
strict linear and additionally its last world is in accessibility relation with itself.
For a fixed D ∈ N we introduce two types of minimal strict linear models with
respect to ϕ, namely MK4(i)

D,ϕ and MK4(ii)
D,ϕ which correspond to (i) and (ii),

respectively. Let MK4(i)
D,ϕ = (W,R, V) and MK4(ii)

D,ϕ = (W,R′, V ′) be such that
W = {w0, . . . , wD}, R = {(wi, wj) | i < j ≤ D}, and R′ = R ∪ {(wD, wD)}.
We define V0 : PROP −→ P(W) and V ′

0 : PROP −→ P(W) such that for all
p ∈ PROP:

V0(p) := {wk ∈ W | �s(�mp) ∈ clauses(ϕ) and k ≥ s + m}
∪{wk ∈ W | �s(�mq → p) ∈ clauses(ϕ), k ≥ s, and k + m > D};

V ′
0(p) := {wk ∈ W | �s(�mp) ∈ clauses(ϕ) and k ≥ s + m}

∪{wD | �s(�mp) ∈ clauses(ϕ) for all s,m ∈ N}.

For a function f : PROP −→ P(W), let cl(i)(f) be the result of non-recursive
application of the following rules to f :

(cl1K4(i)) If �s(p1 → �mp2) ∈ clauses(ϕ) and wk ∈ f(p1) for some k ≥ s,
then add to f(p2) all wl such that l ≥ k + m;

(cl2K4(i)) If �s(�mp1 → p2) ∈ clauses(ϕ) and for some k ≥ s it holds that for
all l with l ≥ k + m we have wl ∈ f(p1), then add wk to f(p2),

where k, l ≤ D. Similarly, cl(ii)(f) is the result of non-recursive application of
the following rules to f : PROP −→ P(W):

(cl1K4(ii)) If �s(p1 → �mp2) ∈ clauses(ϕ) and wk ∈ f(p1) for some k ≥ s,
then add to f(p2) the world wD and all wl such that l ≥ k + m;

(cl2K4(ii)) If �s(�mp1 → p2) ∈ clauses(ϕ), wD ∈ f(p1), and for some k ≥ s
it holds that for all l such that l ≥ k + m we have wl ∈ f(p1), then
add wk to f(p2),

where k, l ≤ D. We define:

cl0(x)(V0) := V0; cln+1
(x) (V0) := cl(x)(cl

n
(x)(V0)).

Computational Complexity of Core Fragments of T, K4, and S4 753

Since W and PROP(ϕ) are finite, there is a fixed point of cl(x) for x ∈ {i, ii}. Let
V be the fixed point of cl(i) and V ′ the fixed point of cl(ii). The models MK4(i)

D,ϕ

and MK4(ii)
D,ϕ satisfy the following properties.

Lemma 9. The following hold for all L�
core-formulas ϕ and all D ∈ N:

(1) MK4(i)
D,ϕ , w0 |= ϕ if an only if ϕ is satisfied in the root of a strict linear model

of size D + 1;
(2) MK4(ii)

D,ϕ , w0 |= ϕ if an only if ϕ is satisfied in the root of a strict linear
model of size D + 1 with additional accessibility relation from the last world
to itself.

Corollary 10. An L�
core-formula ϕ is K4�

core-satisfiable if an only if for some
D ≤ |ϕ| − 1 we have MK4(i)

D,ϕ , w0 |= ϕ or MK4(ii)
D,ϕ , w0 |= ϕ.

By the transitivity of the accessibility relation in K4 we can show that both
MK4(i)

D,ϕ and MK4(ii)
D,ϕ are monotonic in the following sense.

Lemma 11. Let ϕ be an L�
core-formula, D ∈ N, p ∈ PROP, x ∈ {i, ii}, and

wk ∈ W such that wk 	= w0. If MK4(x)
D,ϕ , wk |= p, then MK4(x)

D,ϕ , wl |= p for all
wl ∈ W such that l > k.

Therefore, each of (cl2K4(i)) and (cl2K4(ii)) can be replaced with the following
rule:

(cl2K4′) If �s(�mp1 → p2) ∈ clauses(ϕ), and wk ∈ f(p1) for some wk 	= w0,
then for any l ≥ k − m with l ≥ s add wl to f(p2).

Theorem 12. K4�
core-satisfiability is NL-complete.

Proof. Fix an L�
core-formula ϕ and nondeterministically guess the natural num-

ber D ≤ |ϕ|−1 and the type of a model, i.e., x ∈ {i, ii}. By Corollary 10 the for-
mula ϕ is K4�

core-satisfiable if and only if MK4(i)
D,ϕ , w0 |= ϕ or MK4(ii)

D,ϕ , w0 |= ϕ.
Both of the latter conditions reduce to reachability in the application graph
which we construct in an analogous way as in the proof of Lemma 7. It follows
that the whole procedure is in NL. The matching lower bound is well-known.

4.3 Core Fragment of S4

In this Section we will study the satisfiability problem in S4�
core. We will show

that to check whether an S4�
core-formula is satisfiable in a frame of size D + 1 it

suffices to construct the minimal model MS4
D,ϕ and check whether the formula

holds there (Lemma 13). Then, we show that if a propositional variable holds
in a non-root world in a minimal model MS4

D,ϕ , then it holds everywhere in
this model (Lemma 14). Hence, for all D > 1 we can construct a surjective
p-morphism from MS4

D,ϕ to MS4
1,ϕ, so S4�

core-satisfiability reduces to checking
whether MS4

1,ϕ, w0 |= ϕ (Corollary 15), which can be solved in NL (Theorem 16).

754 P. A. Wa�l ↪ega

For a fixed L�
core-formula ϕ, let MS4

D,ϕ = (W,R, V) be the minimal non-strict
linear model of size D + 1, where (W,R) is the non-strict linear frame of size
D + 1, i.e., W = {w0, . . . , wD} and R = {(wi, wj) | i ≤ j ≤ D}. We define
V0 : PROP −→ P(W) such that for all p ∈ PROP:

V0(p) :={w0 | �0(�0p) ∈ clauses(ϕ)}
∪{w0, . . . , wD | �s(�mp) ∈ clauses(ϕ) and s + m > 0}.

For a function f : PROP −→ P(W), let cl(f) be the result of non-recursive
application of the following rules to f :

(cl1S4) If �0(p1 → p2) ∈ clauses(ϕ) and w0 ∈ f(p1), then add w0 to f(p2);
(cl2S4) If �s(p1 → p2) ∈ clauses(ϕ) and w ∈ f(p1), then add w to f(p2);
(cl3S4) If �0(p1 → �mp2) ∈ clauses(ϕ) and w0 ∈ f(p1), then f(p2) := W ;
(cl4S4) If �s(p1 → �mp2) ∈ clauses(ϕ) and wk ∈ f(p1), add wk, . . . , wD to

f(p2);
(cl5S4) If �0(�mp1 → p2) ∈ clauses(ϕ) and f(p1) = W , then add w0 to f(p2);
(cl6S4) If �s(�mp1 → p2) ∈ clauses(ϕ) and wk, . . . , wD ∈ f(p1), then add wk

to f(p2),

where m, s > 0. We define the following sets, obtained by applying cl to V0:

cl0(V0) := V0; cln+1(V0) := cl(cln(V0)).

Let V be the fixed point of cl. For an example of MS4
D,ϕ see Fig. 5.

w0 w1 w2 w3

p, q q q q

w0 w1

p, q q

Fig. 5. The minimal models MS4
3,ϕ and MS4

1,ϕ for ϕ = �0(p) ∧ �2(p → �q), where the
p-morphism from MS4

3,ϕ to MS4
1,ϕ is indicated with dashed arrows

Lemma 13. An L�
core-formula is satisfied in the root of a non-strict linear model

of size D + 1 if and only if ϕ is satisfied in the root of MS4
D,ϕ.

Furthermore, if a propositional variable is satisfied in MS4
D,ϕ in some wk 	= w0,

then this variable is satisfied in all worlds of MS4
D,ϕ.

Lemma 14. Let ϕ be an L�
core-formula, D ∈ N, and MS4

D,ϕ = (W,R, V). For
all k ≥ 1 and p ∈ PROP if MS4

D,ϕ, wk |= p, then MS4
D,ϕ, w |= p for all w ∈ W .

Computational Complexity of Core Fragments of T, K4, and S4 755

As a consequence of Lemma 14 and the form of the rules (cl1S4)–(cl6S4) we
can show that for all D > 1 there is a surjective p-morphism from MS4

D,ϕ to
MS4

1,ϕ (for a description of p-morphisms see [3]). This surjective p-morphism
maps the root of MS4

D,ϕ into the root of MS4
1,ϕ and all non-root worlds of MS4

D,ϕ

into the non-root world of MS4
1,ϕ as depicted in Fig. 5. Then, by the existence

of such a p-morphism, MS4
D,ϕ, w0 |= ϕ implies MS4

1,ϕ, w0 |= ϕ. Moreover, by the
form of the rules (cl1S4)–(cl6S4) it is easy to show that MS4

0,ϕ, w0 |= ϕ implies
MS4

1,ϕ, w0 |= ϕ, hence:

Lemma 15. An L�
core-formula ϕ is S4�

core-satisfiable if and only if it is satisfied
in the root of MS4

1,ϕ.

It follows that to check if an L�
core-formula is S4�

core-satisfiable it is sufficient
check whether MS4

1,ϕ, w0 |= ϕ. By Lemma 14 if D > 0, then the rules (cl5S4)
and (cl6S4) can be replaced with the following:

(cl5S4′) If �0(�mp1 → p2) ∈ clauses(ϕ) and w1 ∈ f(p1), then add w0 to f(p2);
(cl6S4′) If �s(�mp1 → p2) ∈ clauses(ϕ) and w1 ∈ f(p1), then f(p2) = W ,

where s > 0. Each of the rules (cl1S4)–(cl4S4), (cl5S4′), and (cl6S4′) has only
one precondition, so we can construct an application graph for MS4

1,ϕ analogously
as in the proof of Lemma 7. Hence, S4�

core-satisfiable reduces to reachability, so
it is in NL.

Theorem 16. S4�
core-satisfiability is NL-complete.

5 Algorithms

In the previous Section we have showed that the satisfiability problems for T�
core,

K4�
core, and S4�

core are NL-complete. In the current Section, we present deter-
ministic algorithms for solving these problems. The algorithms will construct a
minimal model and check if the formula is satisfied in the root of this model.

The pseudocode for satisfiability checking in T�
core is depicted in Algorithm 1.

For a given L�
core-formula ϕ the algorithm constructs a set M of pairs of the form

(w, p) such that (w, p) ∈ M is to mean that in the minimal model MT
md(ϕ),ϕ the

propositional variable p is satisfied in the world w. The construction is initialized
in the Lines 1–2 by fixing the size D of the minimal model and adding to M
elements corresponding to V0 as defined in (3). Afterwards, in the Lines 3–7,
the rules (cl1T′) and (cl2T′) are applied to M until a fixed point is reached (as
we have discussed in the previous Section this procedure terminates). It remains
to check in the Lines 8–9 whether some clause of the form �s(p1 ∧ p2 → ⊥)
occurring in ϕ raises a contradiction. If this is the case, the input formula is
not T�

core-satisfiable and the algorithm returns ‘False’, otherwise the formula is
T�

core-satisfiable and the algorithm returns ‘True’.
The algorithms for checking S4�

core- and K4�
core-satisfiability are obtained

by suitable modifications of Algorithm 1. The procedure for S4�
core-satisfiability

756 P. A. Wa�l ↪ega

Algorithm 1. Checking T�
core-satisfiability

Input: an L�
core-formula ϕ

Output: ‘True’ if ϕ is T-satisfiable, ‘False’ otherwise
1: D ← md(ϕ)
2: M ← {(w, p) | w ∈ V0(p)}
3: while something changes do
4: M ′ ← ∅
5: for all c ∈ clauses(ϕ) and (wk, p1) ∈ M do
6: M ′ ← M ′ ∪ {(wl, p2) | wk ∈ f(p1) implies wl ∈ f(p2) by application

of (cl1T
′) or (cl2T

′) to c}
7: M ← M ∪ M ′

8: for all �s(p1 ∧ p2 → ⊥) ∈ clauses(ϕ) do
9: if (w0, p1) ∈ M and (w0, p2) ∈ M then

10: return False
11: return True

requires the following changes: (a) the Line 1 becomes “D ← 1” as the minimal
model for S4�

core is of size 2, (b) in the Line 6 “(cl1T′) or (cl2T′)” is replaced
with “(cl1S4)–(cl4S4) or (cl5S4′)–(cl6S4′)”.

The algorithm for K4�
core-satisfiability is more complex. For an L�

core-formula
ϕ it has to be checked for all D ≤ |ϕ| − 1 and for all x ∈ {i, ii} whether
MK4(x)

D,ϕ , w0 |= ϕ. Hence, for a fixed D ≤ |ϕ| − 1 and x ∈ {i, ii} the follow-
ing modifications of Algorithm 1 needs to be done: (a) the Line is 1 deleted
because D is already fixed, (b) if x = i, then in the Line 6 “(cl1T′) or (cl2T′)” is
replaced with “(cl1K4(i)) or (cl2K4′)”, otherwise it is replaced with “(cl1K4(ii))
or (cl2K4′)”, (c) in the Line 9 all occurrences of “w0” are replaced with “wD”.

The above described algorithms construct minimal models of a relevant type
and check whether no clause of the form �s(p1 ∧p2 → ⊥) raises a contradiction.
By Corollaries 6, 10, and 15, these procedures are sufficient for satisfiability
checking.

6 Correspondence to Linear Temporal Logic

Since there is a close correspondence between the minimal models which we have
introduced for checking T�

core-, K4�
core-, and S4�

core-satisfiability with fragments
of the linear temporal logic, our results transfer to the latter.

Let ©, , �, and �, be modal temporal operators whose intuitive reading is,
respectively, ‘in the next time-point’, ‘now and in the next time-point’, ‘always
in the future’, and ‘now and always in the future’. For each X ∈ {©, ,�,�}
let LTLX

core-formulas be generated by the following grammar:

ϕX := λX | ¬λX | �s(¬λX ∨ λX) | �s(¬λX ∨ ¬λX) | ϕX ∧ ϕX ; (4)
λX := � | p | Xλ,

where s ∈ N and p ∈ PROP.

Computational Complexity of Core Fragments of T, K4, and S4 757

As usual in linear temporal logic, LTLX
core-formulas are interpreted over a lin-

ear order of time-points, namely an LTL-model is a tuple M = (T,<, V), where
(T,<) is a countable discrete and linear order of time-points and the valuation
V : PROP −→ P(T) assigns sets of time points to propositional variables. The
satisfaction relation for a model M and a time point t ∈ T is defined for temporal
modal operators as follows:

M, t |= ©ϕ iff M, t′ |= ϕ for t′ the immediate <-succesor of t;
M, t |= ϕ iff M, t |= ϕ ∧ ©ϕ;
M, t |= �ϕ iff M, t′ |= ϕ for all t′ such that t < t′;
M, t |= �ϕ iff M, t |= ϕ ∧ �ϕ,

where t′ ∈ T and for other propositional connectives the satisfaction relation
is defines as in normal modal logics. Let 0 be the smallest element in (T,<).
Then, an LTL-formula ϕ is satisfiable if there exists an LTL-model M such that
M, 0 |= ϕ.

To show how the fragments of LTL correspond to the fragments of normal
modal logics we introduce a translation τX(ϕ) for X ∈ {©, ,�,�} and an
L�

core-formula ϕ, such that τX(ϕ) is an LTLX
core-formula obtained from ϕ by

replacing each occurrence of “�” in ϕ with “X” except �’s proceeding clauses,
which remain unchanged. Consider the following example:

ϕ = �2(p) ∧ �2(�p → q);

τ(ϕ)© = ©2(p) ∧ �2(©p → q).

Then, by the form of minimal models in K�
core, T

�
core, K4�

core, and S4�
core we

obtain the following correspondence for all L�
core-formulas ϕ:

– ϕ is K�
core-satisfiable if an only if τ(ϕ)© is LTL-satisfiable;

– ϕ is T�
core-satisfiable if an only if τ(ϕ) is LTL-satisfiable;

– ϕ is K4�
core-satisfiable if an only if ϕ(�) is LTL-satisfiable;

– ϕ is S4�
core-satisfiable if an only if τ(ϕ) is LTL-satisfiable.

It follows that satisfiability in LTLX
core is NL-complete for all X ∈ {©, ,�,�}.

A similar result for LTL�
core has been established in [1], where a slightly modified

version of the grammar of LTL�
core-formulas was shown to be NL-complete over

time lines coinciding with the standard ordering of integers. The modification
was obtained by replacing “�s” preceding clauses in the grammar (4) with the
universal modality, stating that a formula holds in all time points.

7 Conclusions and Future Work

In the paper we have showed that the satisfiability problem in core fragments
of normal modal logics T�

core, K4�
core, and S4�

core are NL-complete. We have
conducted the proofs by constructing minimal models and checking if the input

758 P. A. Wa�l ↪ega

formula is satisfiable in them. We have showed that for a given L�
core-formula

ϕ there is a single T�
core and a single S4�

core minimal model of sizes md(ϕ) + 1
and 2, respectively. These results enabled us to construct simple algorithms for
satisfiability checking in T�

core and S4�
core. In the case of K4�

core there are two
types of minimal models which make the algorithm more complex.

Moreover, by the form of the minimal models we have showed a correspon-
dence of the above fragments with core fragments of linear temporal logic. There-
fore, our computational complexity results for T�

core, K4�
core, and S4�

core imme-
diately transfer to the corresponding fragments of linear temporal logic.

The complexity map for sub-propositional fragments of normal modal logics
still contains a number open problems – see Fig. 1. As a future work we plan to
investigate the following questions:

– What is the complexity of L♦
core for L ∈ {K.T,K4,S4}? These fragments are

known to be NL-hard and in P but no tight complexity bounds have been
established for them so far;

– What is the computational complexity of core fragments in the basic interval
logic, known as the logic of Halpern and Shoham? Is it possible to exploit our
proof techniques in the case of interval logics?

Acknowledgments. This work is supported by the National Science Centre in Poland
(NCN) grant 2016/23/N/HS1/02168 and by the Foundation for Polish Science (FNP).

References

1. Artale, A., Kontchakov, R., Ryzhikov, V., Zakharyaschev, M.: The complexity of
clausal fragments of LTL. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.)
LPAR 2013. LNCS, vol. 8312, pp. 35–52. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-45221-5 3

2. Artale, A., Kontchakov, R., Ryzhikov, V., Zakharyaschev, M.: A cookbook for
temporal conceptual data modelling with description logics. ACM Trans. Comput.
Logic (TOCL) 15(3), 25 (2014)

3. Blackburn, P., De Rijke, M., Venema, Y.: Modal Logic. Cambridge University
Press, Cambridge (2002)

4. Bresolin, D., Kurucz, A., Muñoz-Velasco, E., Ryzhikov, V., Sciavicco, G.,
Zakharyaschev, M.: Horn fragments of the Halpern-Shoham interval temporal logic.
ACM Trans. Comput. Logic (TOCL) 18(3), 22:1–22:39 (2017)

5. Bresolin, D., Muñoz-Velasco, E., Sciavicco, G.: Sub-propositional fragments of the
interval temporal logic of Allen’s relations. In: Fermé, E., Leite, J. (eds.) JELIA
2014. LNCS (LNAI), vol. 8761, pp. 122–136. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-11558-0 9

6. Bresolin, D., Munoz-Velasco, E., Sciavicco, G.: On the complexity of fragments of
Horn modal logics. In: 2016 23rd International Symposium on Temporal Repre-
sentation and Reasoning (TIME), pp. 186–195. IEEE (2016)

7. Halpern, J.Y.: The effect of bounding the number of primitive propositions and
the depth of nesting on the complexity of modal logic. Artif. Intell. 75(2), 361–372
(1995)

https://doi.org/10.1007/978-3-642-45221-5_3
https://doi.org/10.1007/978-3-642-45221-5_3
https://doi.org/10.1007/978-3-319-11558-0_9
https://doi.org/10.1007/978-3-319-11558-0_9

Computational Complexity of Core Fragments of T, K4, and S4 759

8. Halpern, J.Y., Moses, Y.: A guide to completeness and complexity for modal logics
of knowledge and belief. Artif. Intell. 54(3), 319–379 (1992)

9. Horn, A.: On sentences which are true of direct unions of algebras. J. Symbolic
Logic 16(1), 14–21 (1951)

10. Krom, M.R.: The decision problem for formulas in prenex conjunctive normal form
with binary disjunctions. J. Symbolic Logic 35(2), 210–216 (1970)

11. Ladner, R.E.: The computational complexity of provability in systems of modal
propositional logic. SIAM J. Comput. 6(3), 467–480 (1977)

12. Nguyen, L.A.: Constructing the least models for positive modal logic programs.
Fundam. Inf. 42(1), 29–60 (2000)

13. Nguyen, L.A.: On the complexity of fragments of modal logics. Adv. Modal Logic
5, 318–330 (2004)

14. Papadimitriou, C.H.: Computational Complexity. Wiley, Hoboken (2003)
15. Sciavicco, G., Muñoz-Velasco, E., Bresolin, D.: On sub-propositional fragments of

modal logic. Logical Methods. Comput. Sci. 14, 1–35 (2018)

Temporal Logic

Axiomatic Systems and Topological
Semantics for Intuitionistic

Temporal Logic

Joseph Boudou1, Mart́ın Diéguez2(B) , David Fernández-Duque3 ,
and Fabián Romero1

1 IRIT, Toulouse University, Toulouse, France
{Joseph.Boudou, Fabian.Romero}@irit.fr
2 LAB-STICC, CERV, ENIB, Brest, France

martin.dieguez@enib.fr
3 Department of Mathematics, Ghent University, Ghent, Belgium

David.FernandezDuque@UGent.be

Abstract. The importance of intuitionistic temporal logics in Computer
Science and Artificial Intelligence has become increasingly clear in the
last few years. From the proof-theory point of view, intuitionistic tempo-
ral logics have made it possible to extend functional languages with new
features via type theory, while from its semantical perspective several
logics for reasoning about dynamical systems and several semantics for
logic programming have their roots in this framework. In this paper we
propose four axiomatic systems for intuitionistic linear temporal logic
and show that each of these systems is sound for a class of structures
based either on Kripke frames or on dynamic topological systems. Our
topological semantics features a new interpretation for the ‘henceforth’
modality that is a natural intuitionistic variant of the classical one. Using
the soundness results, we show that the four logics obtained from the
axiomatic systems are distinct.

1 Introduction

Intuitionistic logic (IL) [24] enjoys a myriad of interpretations based on compu-
tation, information or topology, making it a natural framework to reason about
dynamic processes in which these phenomena play a crucial role. Thus it should
not be surprising that combinations of intuitionistic logic and linear tempo-
ral logic (LTL) [27] have been proposed for applications within several different
contexts.

The first involves the Curry-Howard correspondence [17], which identifies
intuitionistic proofs with the λ-terms of functional programming. Several exten-
sions of the λ-calculus with operators from LTL have been proposed in order
to introduce new features to functional languages: Davies [7,8] has suggested

Mart́ın Diéguez is funded by the ANR-12-ASTR-0020 project STRATEGIC and the
European COST Action CA17124.

c© Springer Nature Switzerland AG 2019
F. Calimeri et al. (Eds.): JELIA 2019, LNAI 11468, pp. 763–777, 2019.
https://doi.org/10.1007/978-3-030-19570-0_49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19570-0_49&domain=pdf
http://orcid.org/0000-0003-3440-4348
http://orcid.org/0000-0001-8604-4183
http://orcid.org/0000-0003-1242-5391
https://doi.org/10.1007/978-3-030-19570-0_49

764 J. Boudou et al.

adding a ‘next’ (◦) operator to IL in order to define the type system λ◦, which
allows extending functional languages with staged computation1 [13]. Davies and
Pfenning [9] proposed the functional language Mini-ML� which is supported by
intuitionistic S4 and allows capturing complex forms of staged computation as
well as runtime code generation. Yuse and Igarashi later extended λ◦ to λ� [29]
by incorporating the ‘henceforth’ operator (�), useful for modelling persistent
code that can be executed at any subsequent state.

Alternately, intuitionistic temporal logics have been proposed as a tool for
modelling semantically-given processes. Maier [23] observed that an intuition-
istic temporal logic with ‘henceforth’ and ‘eventually’ (♦) could be used for
reasoning about safety and liveness conditions in possibly-terminating reactive
systems, and Fernández-Duque [14] has suggested that a logic with ‘eventu-
ally’ can be used to provide a decidable framework in which to reason about
topological dynamics. In the areas of nonmonotonic reasoning, knowledge repre-
sentation (KR), and artificial intelligence, intuitionistic and intermediate logics
have played an important role within the successful answer set programming
(ASP) [5] paradigm for practical KR, leading to several extensions of modal
ASP [6] that are supported by intuitionistic-based modal logics like temporal
here and there [3].

Despite interest in the above applications, there is a large gap to be filled
regarding our understanding of the computational behaviour of intuitionistic
temporal logics. We have successfuly employed semantical methods to show the
decidability of the logic ITLe defined by a natural class of Kripke frames [4] and
shown that these semantics correspond to a natural calculus over the �-free frag-
ment [12]. However, as we will see, in the presence of �, new validities arise which
may be undesirable from the point of view of an extended Curry-Howard isomor-
phism. Thus our goal is to provide semantics for weaker axiomatically-defined
intuitionistic temporal logics in order to provide tools for understanding their
computational behaviour. We demonstrate the power of our semantics by sepa-
rating several natural axiomatically-given calculi, which in particular answers in
the negative a conjecture of Yuse and Igarashi [29] that the Gentzen-style and
the Hilbert-style calculi presented there prove the same set of formulas.

There have already been some notable efforts towards a semantical study of
intuitionistic temporal logics. Kojima and Igarashi [19] endowed Davies’s logic
with Kripke semantics and provided a complete deductive system. Bounded-time
versions of logics with henceforth were later studied by Kamide and Wansing
[18]. Both use semantics based on Simpson’s bi-relational models for intuition-
istic modal logic [28]. Since then, Balbiani and the authors have shown that
temporal here-and-there is decidable and enjoys a natural axiomatization [3].
Topological semantics for intuitionistic modal and tense logics have also been
studied by Davoren et al. [10,11], and Kremer suggested a topologically-defined
intuitionistic variant of LTL with ◦ and � [21]. The decidability of Kremer’s

1 Staged computation is a technique that allows dividing the computation in order to
exploit the early availability of some arguments.

Axiomatic Systems and Topological Semantics 765

logic remains open, but Fernández-Duque has shown that a similar logic with
‘eventually’ ♦ instead of � is decidable [14].

In this paper we lay the groundwork for an axiomatic treatment of intuitionis-
tic linear temporal logics. We will introduce a ‘minimal’ intuitionistic temporal
logic, ITL0, defined by adding standard axioms of LTL to intuitionistic modal
logic. We also consider additional Fischer Servi axioms and a ‘constant domain’
axiom �(p ∨ q) → �p ∨ ♦q. Combining these, we obtain four intuitionistic tem-
poral logics, each of them sound for a class of structures: the two logics with the
constant domain axiom are sound for the class of dynamic posets, and the Fischer
Servi axioms correspond to backwards-confluence of the transition function.

The constant domain axiom is not derivable from the others, and to show
this, we will consider topological semantics for intuitionistic temporal logic. As
our axioms involve both ♦ and �, we would like to be able to interpret both
tenses. Kremer [21] observed that his semantics for � do not satisfy some key
LTL validities, namely �p → ◦�p, � ◦ p → ◦�p, and �p → ��p. Consequently
ITL0 is not sound for this interpretation. In order to obtain models of ITL0, we
propose an alternative interpretation for �. Our approach is natural from an
algebraic perspective, as we define the interpretation of �ϕ via a greatest fixed
point in the Heyting algebra of open sets. We will show that dynamic topological
systems provide semantics for the logics without the constant domain axiom,
from which we conclude the independence of the latter. Moreover, we show that
the Fischer Servi axioms are valid for the class of open dynamical topological
systems. The constant domain axiom shows that the {♦,�}-logic of dynamic
posets is different from that of dynamic topological systems. We show via an
alternative axiom that the {◦,�}-logics are also different.

Layout. Section 2 introduces the syntax and the four axiomatic systems we
propose for intuitionistic temporal logic. Section 3 reviews dynamic topological
systems, which are used in Sect. 4 to provide semantics for our formal language.
Section 5 shows that each of the four logics is sound for a class of dynamical
systems. These soundness results are used in Sect. 6 to show that the four logics
are pairwise distinct. Finally, Sect. 7 lists some open questions.

2 Syntax and Axiomatics

In this section we will introduce four natural intuitionistic temporal logics. All
of the axioms have appeared either in the intuitionistic logic, the temporal logic,
or the intuitionistic modal logic literature. They will be based on the language
of linear temporal logic, as defined next.

Fix a countably infinite set P of propositional variables. The language L of
intuitionistic (linear) temporal logic ITL is given by the grammar

⊥ | p | ϕ ∧ ψ | ϕ ∨ ψ | ϕ → ψ | ◦ ϕ | ♦ϕ | �ϕ,

where p ∈ P. As usual, we use ¬ϕ as a shorthand for ϕ → ⊥ and ϕ ↔ ψ as a
shorthand for (ϕ → ψ) ∧ (ψ → ϕ). We read ◦ as ‘next’, ♦ as ‘eventually’, and

766 J. Boudou et al.

� as ‘henceforth’. Given any formula ϕ, we denote the set of subformulas of
ϕ by sub(ϕ). The language L♦ is defined as the sublanguage of L without the
modality �. Similarly, L� is the language without ♦.

We begin by establishing our basic axiomatization. It is obtained by adapting
the standard axioms and inference rules of LTL [22], as well as their dual versions.
To be precise, the logic ITL0 is the least set of L-formulas closed under the
following rules and axioms.

(i) All intuitionistic tautologies.
(ii) ¬ ◦ ⊥
(iii) ◦ (ϕ ∧ ψ) ↔ (◦ϕ ∧ ◦ψ);
(iv) ◦ (ϕ ∨ ψ) ↔ (◦ϕ ∨ ◦ψ);
(v) ◦ (ϕ → ψ) → (◦ϕ → ◦ψ);
(vi) � (ϕ → ψ) → (�ϕ → �ψ);
(vii) � (ϕ → ψ) → (♦ϕ → ♦ψ);

(viii) �ϕ → ϕ ∧ ◦�ϕ;
(ix) ϕ ∨ ◦♦ϕ → ♦ϕ;
(x) �(ϕ → ◦ϕ) → (ϕ → �ϕ);
(xi) �(◦ϕ → ϕ) → (♦ϕ → ϕ);

(xii)
ϕ ϕ → ψ

ψ
;

(xiii)
ϕ

◦ϕ
.

Each axiom is either included in the axiomatization of Goldblatt [16, p. 87]
or is a mild variant of one of them (e.g., a contrapositive); this is standard
in intuitionistic modal logic, as such variants are needed to account for the
independence of the basic connectives. We do not consider ‘until’ in this paper,
but have studied its intuitionistic semantics in [2]. Modal intuitionistic logics
often involve additional axioms, and in particular Fischer Servi [15] includes the
schema

FS♦(ϕ,ψ) def= (♦ϕ → �ψ) → � (ϕ → ψ) .

Recalling that ◦ is self-dual, we also define

FS◦(ϕ,ψ) def= (◦ϕ → ◦ψ) → ◦ (ϕ → ψ) .

Later we will show that these schemas lead to strictly stronger logics. Finally,
we consider additional axioms reminiscent of constant domain axioms in first-
order intuitionistic logic. As we will see, in the context of intuitionistic temporal
logics, these axioms separate Kripke semantics from the more general topological
semantics.

CD(ϕ,ψ) def= �(ϕ ∨ ψ) → �ϕ ∨ ♦ψ

BI(ϕ,ψ) def= �(ϕ ∨ ψ) ∧ �(◦ψ → ψ) → �ϕ ∨ ψ.

Here, CD stands for ‘constant domain’ and BI for ‘backward induction’.
From a constructive perspective CD might not be desirable, as from �(ϕ∨ψ)

one cannot in general extract an upper bound for a witness for ♦ψ.2 The axiom
BI is meant to be a ♦-free approximation to CD, as witnessed by the following.

2 For example, if ϕ represents the ‘active’ states and ψ the ‘halting’ states of a program,
then CD would require us to decide whether the program halts, which is not possible
to do constructively.

Axiomatic Systems and Topological Semantics 767

Proposition 1. ITL0 	 CD(p, q) → BI(p, q).

Proof. We reason within ITL0. Assume that (1) CD(p, q), (2) �(◦q → q), and
(3) �(p ∨ q). From (1) and (3) we obtain �p ∨ ♦q, which together with (2) and
axiom (xi) gives us �p ∨ q, as needed.

With this, we define the following logics:

ITLFS ≡ ITL0 + FS◦ + FS♦, ITLCD ≡ ITL0 + CD, ITL1 ≡ ITLFS + ITLCD.

We are also interested in logics over sublanguages of L. For any logic Λ defined
above, let Λ� be defined by restricting similarly all rules and axioms to L�,
except that when CD is an axiom of Λ, we add the axiom BI to Λ�. The logic
ITL0� is similar to a Hilbert calculus for the ∧,∨-free fragment considered by
Yuse and Igarashi [29], although they do not include induction but include the
axioms �ϕ → ��ϕ and � ◦ ϕ ↔ ◦�ϕ. It is not difficult to check that the latter
are derivable from our basic axioms, and hence their logic is contained in ITL0�.

We also define Λ♦ be the logic obtained by restricting all rules and axioms to
L♦, and adding the rules ϕ→ψ

♦ϕ→♦ψ and ◦ϕ→ϕ
♦ϕ→ϕ . Note that these rules correspond

to axioms (vii), (xi), respectively, but do not involve �. In this paper we are
mostly concerned with logics including ‘henceforth’, but �-free logics are studied
in detail in [12].

3 Dynamic Topological Systems

The four logics over L defined above are pairwise distinct. We will show this
by introducing semantics for each of them. They will be based on dynamic
topological systems (or dynamical systems for short), which, as was observed in
[14], generalize their Kripke semantics [4]. Let us first recall the definition of a
topological space [25]:

Definition 1. A topological space is a pair (X, T) , where X is a set and T a
family of subsets of X satisfying (a) ∅,X ∈ T ; (b) if U, V ∈ T then U ∩V ∈ T ,
and (c) if O ⊆ T then

⋃
O ∈ T . The elements of T are called open sets.

If x ∈ X, a neighbourhood of x is an open set U ⊆ X such that x ∈ U . Given
a set A ⊆ X, its interior, denoted A◦, is the largest open set contained in A. It
is defined formally by

A◦ =
⋃

{U ∈ T : U ⊆ A} . (1)

Dually, we define the closure A as X \ (X \ A)◦; this is the smallest closed set
containing A.

If (X, T) is a topological space, a function S : X → X is continuous if,
whenever U ⊆ X is open, it follows that S−1[U] is open. The function S is open
if, whenever V ⊆ X is open, then so is S[V]. An open, continuous function is an
interior map, and a bijective interior map is a homeomorphism.

A dynamical system is then a topological space equipped with a continuous
function:

768 J. Boudou et al.

Definition 2. A dynamical (topological) system is a triple X = (X, T , S) such
that (X, T) is a topological space and S : X → X is continuous. We say that
X is invertible if S is a homeomorphism, i.e., S is bijective and S−1 is also a
continuous function, and open if S is an interior map.

Topological spaces generalize posets in the following way. Let F = (W,�)
be a poset; that is, W is any set and � is a transitive, reflexive, antisymmetric
relation on W . To see F as a topological space, define ↑w = {v : w � v} . Then
consider the topology T� on W given by setting U ⊆ W to be open if and only
if, whenever w ∈ U , we have ↑w ⊆ U . A topology of this form is a up-set topology
[1]. The interior operator on such a topological space can be computed by

A◦ = {w ∈ W : ↑w ⊆ A}; (2)

i.e., w lies on the interior of A if whenever v � w, it follows that v ∈ A.
Throughout this text we will often identify partial orders with their corre-

sponding topologies, and many times do so tacitly. In particular, a dynamical
system generated by a poset is called a dynamic poset. It will be useful to char-
acterize the continuous and open functions on posets:

Lemma 1. Consider a poset (W,�) and a function S : W → W . Then,

1. S is continuous with respect to the up-set topology if and only if, whenever
w � w′, it follows that S(w) � S(w′), and

2. S is open with respect to the up-set topology if whenever S(w) � v, there is
w′ ∈ W such that w � w′ and S(w′) = v.

These are confluence properties common in multi-modal logics; open, continuous
maps on a poset are called persistent.

w

w

S

S

(a) Continuity

w

vw

S

S

(b) Openness

Fig. 1. On a dynamic poset the above diagrams can always be completed if S is con-
tinuous or open, respectively.

4 Semantics

In this section we will see how dynamical systems can be used to provide a
natural intuitionistic semantics for the language of linear temporal logic.

Formulas are interpreted as open subspaces of a dynamical system. Each
propositional variable p is assigned an open set �p�, and then �·� is defined
recursively for more complex formulas according to the following:

Axiomatic Systems and Topological Semantics 769

Definition 3. Given a dynamical system X = (X, T , S), a valuation on X is a
function �·� : L → T such that:

�⊥� = ∅

�ϕ ∧ ψ� = �ϕ� ∩ �ψ�

�ϕ ∨ ψ� = �ϕ� ∪ �ψ�

�ϕ → ψ� =
(
(X \ �ϕ�) ∪ �ψ�

)◦

�◦ϕ� = S−1�ϕ�
�♦ϕ� =

⋃

n≥0

S−n�ϕ�

��ϕ� =
⋃ {

U ∈ T : S[U] ⊆ U ⊆ �ϕ�
}

A tuple M = (X, T , S, �·�) consisting of a dynamical system with a valuation
is a dynamic topological model, and if T is generated by a partial order, we will
say that M is a dynamic poset model.

All of the semantic clauses are standard from either intuitionistic or temporal
logic, with the exception of that for �ϕ, which we discuss in greater detail below.
It is not hard to check by structural induction on ϕ that �ϕ� is uniquely defined
given any assignment of the propositional variables to open sets, and that �ϕ�
is always open. We define validity in the standard way, and with this introduce
four additional semantically-defined logics, two of which were already studied by
us in Boudou et al. [4].

Definition 4. If M = (X, T , S, �·�) is any dynamic topological model and ϕ ∈ L
is any formula, we write M |= ϕ if �ϕ� = X. Similarly, if X = (X, T , S) is a
dynamical system, we write X |= ϕ if for any valuation �·� on X , we have that
(X , �·�) |= ϕ. Finally, if Ω is a class of structures, we write Ω |= ϕ if for every
A ∈ Ω, A |= ϕ, in which case we say that ϕ is valid on Ω.

We denote the set of formulas valid over the class of all dynamical systems by
ITLc, over the class of all dynamic posets by ITLe, over the class of all persistent
posets by ITLp and over the class of all open dynamical systems by ITLo. If Λ is
one of these four logics we define Λ� = Λ ∩ L� and Λ♦ = Λ ∩ L♦.

In practice, it is convenient to have a ‘pointwise’ characterization of the
semantic clauses of Definition 3. For a model M = (X, T , S, �·�), x ∈ X and
ϕ ∈ L, we write M, x |= ϕ if x ∈ �ϕ�, and M |= ϕ if �ϕ� = X. Then, in
view of (1), given formulas ϕ and ψ, M, x |= ϕ → ψ if and only if there is a
neighbourhood U of x such that for all y ∈ U , if M, y |= ϕ then M, y |= ψ;
note that this is a special case of neighbourhood semantics [26].

Using (2), this can be simplified somewhat in the case that T is generated
by a partial order �:

Proposition 2. If (X,�, S, �·�) is a dynamic poset model, x ∈ X, and ϕ, ψ are
formulas, then M, x |= ϕ → ψ if and only if whenever y � x and M, y |= ϕ, it
follows that M, y |= ψ.

This is the standard relational interpretation of implication, and thus topo-
logical semantics are a generalization of the usual Kripke semantics. Now let us
discuss the topological interpretation of ‘henceforth’, which is the main novelty
in our semantics. In classical temporal logic, ��ϕ� is the largest set contained

770 J. Boudou et al.

in �ϕ� which is closed under S. In our semantics, ��ϕ� is the greatest open set
which is closed under S. From this perspective, our interpretation is the natural
intuitionistic variant of the classical one. If M, x |= �ϕ, this fact is witnessed
by an open, S-invariant neighbourhood of x, where U ⊆ X is S-invariant if
S[U] ⊆ U .

Proposition 3. If (X, T , S, �·�) is a dynamic topological model, x ∈ X, and ϕ
is any formula, then M, x |= �ϕ if and only if there is an S-invariant neigh-
bourhood U of x such that for all y ∈ U , M, y |= ϕ.

In fact, the open, S-invariant sets form a topology; that is, the family of
S-invariant open sets is closed under finite intersections and arbitrary unions.
This topology is coarser than T , in the sense that every S-invariant open set is
(tautologically) open. Thus � can itself be seen as an interior operator based on
a coarsening of T , and ��ϕ� is always an S-invariant open set.

Example 1. As usual, the real number line is denoted by R and we assume that
it is equipped with the standard topology, where U ⊆ R is open if and only if it
is a union of intervals of the form (a, b). Consider a dynamical system based on
R with S : R → R given by S(x) = 2x. We claim that for any model M based
on (R, S) and any formula ϕ, M, 0 |= �ϕ if and only if M |= ϕ.

To see this, note that one implication is obvious since R is open and S-
invariant, so if �ϕ� = R it follows that M, 0 |= �ϕ. For the other implication,
assume that M, 0 |= �ϕ, so that there is an S-invariant, open U ⊆ �ϕ� with
0 ∈ U . It follows from U being open that for some ε > 0, (−ε, ε) ⊆ U . Now,
let x ∈ R, and let n be large enough so that |2−nx| < ε. Then, 2−nx ∈ U , and
since U is S-invariant, x = Sn(2−nx) ∈ U . Since x was arbitrary, U = R, and it
follows that M |= ϕ.

On the other hand, suppose that 0 < a < x and (a,∞) ⊆ �ϕ�. Then, (a,∞)
is open and S-invariant, so it follows that x ∈ ��ϕ�. Hence in this case we do
not require that �ϕ� = R. Similarly, if x < a < 0 and (−∞, a) ⊆ �ϕ�, we readily
obtain x ∈ ��ϕ�.

As was the case for implication, our interpretation for � becomes familiar
when restricted to Kripke semantics.

Lemma 2. Let M = (W,�, S, �·�) be any dynamic poset model, w ∈ W and
ϕ ∈ L. Then, the following are equivalent:

(a) M, w |= �ϕ; (b) w ∈ (⋂
n<ω S−n�ϕ�

)◦
; (c) for all n < ω, M, Sn(w) |= ϕ.

Proof. First we prove that (a) implies (b). Assume that M, w |= �ϕ, so that
there is an S-invariant neighbourhood U of w with U ⊆ �ϕ�. To see that w ∈(⋂

n<ω S−n�ϕ�
)◦, we must show that if v � w, then v ∈

⋂
n<ω S−n�ϕ�. So fix

such a v and n < ω. Since U is S-invariant, Sn(w) ∈ U , and since Sn(v) � Sn(w)
and U is open, Sn(v) ∈ U , as needed. Thus v ∈

⋂
n<ω S−n�ϕ�, and since v � w

was arbitrary, (b) holds.

Axiomatic Systems and Topological Semantics 771

That (b) implies (c) is immediate from
(

⋂

n<ω

S−n�ϕ�

)◦
⊆

⋂

n<ω

S−n�ϕ�,

so it remains to show that (c) implies (a). Suppose that for all n < ω,
M, Sn(w) |= ϕ, and let U =

⋃
n<ω ↑Sn(w). That the set U is open follows

from each ↑Sn(w) being open and unions of opens being open. If v ∈ U ,
then v � Sn(w) for some n < ω and hence by upwards persistence, from
M, Sn(w) |= ϕ we obtain M, v |= ϕ; moreover, S(v) � Sn+1(w) so S(v) ∈ U .
Since v ∈ U was arbitrary, we conclude that U is S-invariant and U ⊆ �ϕ�. Thus
U witnesses that M, w |= �ϕ.

Remark 1. Kremer [21] uses (b) as the definition of ��ϕ�. However, as we men-
tioned in the introduction, even our minimal axiomatic system ITL0 is not sound
for such an interpretation over arbitrary dynamical systems.

5 Soundness

In this section we will show that the four logics we have considered are sound
for semantics based on different classes of dynamic topological systems. First we
show that our minimal logic is sound for the class of all dynamical systems. The
following simple observation will be useful.

Lemma 3. If M = (X, T , S, �·�) is any model and ϕ,ψ ∈ L, then M |= ϕ → ψ
if and only if �ϕ� ⊆ �ψ�.

Proof. If �ϕ� ⊆ �ψ� then (X \ �ϕ�) ∪ �ψ� = X, so �ϕ → ψ� =
(
(X \ �ϕ�) ∪

�ψ�
)◦ = X◦ = X. Otherwise, there is z ∈ �ϕ� such that z /∈ �ψ�, so that

z /∈
(
(X \ �ϕ�) ∪ �ψ�

)◦, i.e. z /∈ �ϕ → ψ�.

Theorem 1. ITL0 is sound for the class of dynamical systems; that is, ITL0 ⊆
ITLc.

Proof. Let M = (X, T , S, �·�) be any dynamical topological model; we must
check that all the axioms (i)–(xi) are valid on M and the rules (xii), (xiii), pre-
serve validity. Note that all intuitionistic tautologies are valid due to the sound-
ness for topological semantics [24]. Many of the other axioms can be checked
routinely, so we focus only on those axioms involving the continuity of S or the
semantics for �.

(v) Suppose that x ∈ �◦(ϕ → ψ)�. Then, S(x) ∈ �ϕ → ψ�. Since S is continuous
and �ϕ → ψ� is open, U = S−1�ϕ → ψ� is a neighbourhood of x. Then, for y ∈ U ,
if y ∈ �◦ϕ�, it follows that S(y) ∈ �ϕ�∩�ϕ → ψ�, so that S(y) ∈ �ψ� and y ∈ �◦ψ�.
Since y ∈ U was arbitrary, x ∈ �◦ϕ → ◦ψ�, thus �◦(ϕ → ψ)� ⊆ �◦ϕ → ◦ψ�, and
by Lemma 3 (which we will henceforth use without mention), (v) is valid on M.

772 J. Boudou et al.

(vi) Suppose that x ∈ ��(ϕ → ψ)�. Then, there is an S-invariant neighbourhood
U of x such that U ⊆ �ϕ → ψ�. We claim that if y ∈ U ∩ ��ϕ� it follows that
y ∈ ��ψ�, from which we obtain x ∈ ��ϕ → �ψ�, as needed. If y ∈ U ∩ ��ϕ�,
let U ′ be an S-invariant neighbourhood of y such that U ′ ⊆ �ϕ�, and define
V = U ∩ U ′. Then, the set V is an S-invariant neighbourhood of y. Moreover,
if z ∈ V , then z ∈ U ⊆ �ϕ → ψ�, while z ∈ U ′ ⊆ �ϕ�, hence z ∈ �ψ�. It follows
that V ⊆ �ψ�, and thus y ∈ ��ψ�, as desired.

(vi) Observe that ��(ϕ → ψ)� is an S-invariant open subset of �ϕ → ψ�. Simi-
larly, ��ϕ� is an S-invariant open subset of �ϕ�. Let

U = ��(ϕ → ψ)� ∩ ��ϕ�.

Since U is open, it suffices to prove that U ⊆ ��ψ�. Moreover, U is S-invariant,
therefore it suffices to prove that U ⊆ �ψ�, which is direct because U ⊆ �ϕ → ψ�∩
�ϕ� and �ϕ → ψ� ⊆ (X \ �ϕ�) ∪ �ψ�.

(vii) As before, suppose that x ∈ ��(ϕ → ψ)�, and let U be an S-invariant
neighbourhood of x such that U ⊆ �ϕ → ψ�. If y ∈ U ∩ �♦ϕ�, then Sn(y) ∈ �ϕ�
for some n; since U is S-invariant, Sn(y) ∈ U , hence Sn(y) ∈ �ψ� and y ∈ �♦ψ�.
We conclude that x ∈ �♦ϕ → ♦ψ�.

(viii) Suppose that x ∈ ��ϕ�, and let U ⊆ �ϕ� be an S-invariant neighbourhood
of x. Then, x ∈ U , so x ∈ �ϕ�. Moreover, U is also an S-invariant neighbourhood
of S(x), so S(x) ∈ ��ϕ� and thus x ∈ �◦�ϕ�. We conclude that x ∈ �ϕ ∧ ◦�ϕ�.

(x) Supppose that x ∈ ��(ϕ → ◦ϕ)�. If x ∈ �ϕ�, then U = �ϕ� ∩ ��(ϕ → ◦ϕ)�
is open (by the intuitionistic semantics) and S-invariant, since if y ∈ U , from
y ∈ �ϕ → ◦ϕ� we obtain S(y) ∈ �ϕ�. It follows that U is an S-invariant neigh-
bourhood of x, so x ∈ ��ϕ�.

(xi) Suppose that x ∈ ��(◦ϕ → ϕ)�∩�♦ϕ�. Let U ⊆ �◦ϕ → ϕ� be an S-invariant
neighbourhood of x. Let n be least so that Sn(x) ∈ �ϕ�; if n > 0, since U
is S-invariant we see that Sn−1(x) ∈ U ⊆ �◦ϕ → ϕ�, hence Sn−1(x) ∈ �ϕ�,
contradicting the minimality of n. Thus n = 0 and x ∈ �ϕ�.

The additional axioms we have considered are valid over specific classes of
dynamical systems. Specifically, the constant domain axiom is valid for the class
of dynamic posets, while the Fischer Servi axioms are valid for the class of open
systems. Let us begin by discussing the former in more detail.

Theorem 2. ITLCD and ITLCD� are sound for the class of dynamic posets; that
is, ITLCD ⊆ ITLe and ITLCD� ⊆ ITLe�.

Proof. Let M = (X,�, S, �·�) be a dynamic poset model; in view of Theorem 1,
it only remains to check that CD and BI are valid on M. However, by Propo-
sition 1, BI is a consequence of CD, so we only check the latter. Suppose that
x ∈ ��(ϕ ∨ ψ)�, but x �∈ ��ϕ�. Then, in view of Lemma 2, for some n ≥ 0,
Sn(x) �∈ �ϕ�. It follows that Sn(x) ∈ �ψ�, so that x ∈ �♦ψ�.

Axiomatic Systems and Topological Semantics 773

Note that the relational semantics are used in an essential way, since Lemma 2
is not available in the topological setting, and indeed we will show in Proposi-
tion 4 that these axioms are not topologically valid. But before that, let’s turn
our attention to the Fischer Servi axioms.

Theorem 3. ITLFS ⊆ ITLo, i.e. ITLFS is sound for the class of open dynamical
systems.

Proof. Let M = (X, T , S, �·�) be a dynamical topological model where S is an
interior map. We check that axioms FS◦ and FS♦ are valid on M.

(FS◦) Suppose that x ∈ �◦ϕ → ◦ψ�, and let U ⊆ �◦ϕ → ◦ψ� be a neighbourhood
of x. Since S is open, V = S[U] is a neighbourhood of S(x). Let y ∈ V ∩ �ϕ�,
and choose z ∈ U so that y = S(z). Then, z ∈ U ∩ �◦ϕ�, so that z ∈ �◦ψ�,
i.e. y ∈ �ψ�. Since y ∈ V was arbitrary, S(x) ∈ �ϕ → ψ�, and x ∈ �◦(ϕ → ψ)�.

(FS♦) Suppose that x ∈ �♦ϕ → �ψ�, and let U ⊆ �♦ϕ → �ψ� be a neighbour-
hood of x. Set V =

⋃
n<ω Sn[U]; since S is open and unions of opens are open,

V is open as well. Moreover, V is clearly S-invariant, as if x ∈ V , then x ∈ Sn[U]
for some n ≥ 0, so that S(x) ∈ Sn+1[U] ⊆ V .

We claim that V ⊆ �ϕ → ψ�, from which we obtain a witness that M, x |=
�(ϕ → ψ). Suppose that y ∈ V ∩ �ϕ�. By the definition of V , y = Sn(z) for
some n < ω and some z ∈ U . Then, z ∈ U ∩ �♦ϕ�, so that z ∈ ��ψ�. From this
we may choose an S-invariant neighbourhood Z ⊆ �ψ� of z. But y = Sn(z) ∈ Z
so that y ∈ �ψ�, and since y ∈ V was arbitrary we see that V ⊆ �ϕ → ψ�, as
needed.

As an easy consequence, we mention the following combination of Theorems 2
and 3. Recall that dynamic posets with an interior map are also called persistent.

Corollary 1. ITL1 and ITL1� are sound for the class of persistent dynamic
posets, that is, ITL1 ⊆ ITLp and ITL1� ⊆ ITLp�.

6 Independence

In this section we will use our soundness results to show that the four logics we
have considered are pairwise distinct. First we note that the formulas CD and
BI separate Kripke semantics from the general topological semantics.

Proposition 4. The formulas CD(p, q) and BI(p, q) are not valid over the class
of invertible dynamical systems based on R, hence ITLFS �	 CD(p, q) and ITLFS �	
BI(p, q).

Proof. Define a model M on R, with S(x) = 2x, �p� = (−∞, 1) and �q� = (0,∞).
Clearly �p ∨ q� = R, so that ��(p ∨ q)� = R as well.

Let us see that M, 0 �|= CD(p, q). Since M, 0 |= �(p ∨ q), it suffices to show
that M, 0 �|= �p ∨ ♦q. It is clear that M, 0 �|= ♦q simply because Sn(0) = 0 �∈ �q�

774 J. Boudou et al.

for all n. Meanwhile, by Example 1, M, 0 |= �p if and only if �p� = R, which is
not the case. We conclude that M, 0 �|= CD(p, q).

To see that M, 0 �|= BI(p, q) we proceed similarly, where the only new ingre-
dient is the observation that M, 0 |= �(◦q → q). But this follows easily from the
fact that if M, x |= ◦q, then x > 0 so that M, x |= q, hence �◦q → q� = R.

Proposition 5. The formula BI(p, q) → CD(p, q) is not valid over the class of
invertible dynamical systems based on R.

Proof. Consider a model M similar to that used in the proof of Proposition 4,
except that �q� = R\[−1/2, 1/2]. Then, �(p∨q) → �p∨♦q fails at 0 (by essentially
the same reasoning). However, it could easily be checked that ��(◦q → q)� = �q�.
Hence 0 ∈ �¬�(◦q → q)�, from which it readily follows that 0 satisfies

�(◦q → q) →
(
�(p ∨ q) → �p ∨ q

)
.

Therefore BI(p, q) does not imply CD(p, q) over the class of invertible dynamical
systems.

Note, however, that Proposition 5 does not necessarily imply that there are
no formulas ϕ, ψ such that BI(ϕ,ψ) → CD(p, q) is derivable, and hence it is
reasonable to use BI in place of CD to axiomatize ♦-free logics.

The Fischer Servi axioms are also not valid in general, as shown in Boudou
et al. [2]. From this and the soundness of ITLFS (Theorem 3), we immediately
obtain that they are not derivable in ITL0.

p

S
S

S

Fig. 2. A dynamic poset model falsifying both Fischer Servi axioms. Propositional
variables that are true on a point are displayed; only one point satisfies p and no
point satisfies q. It can readily be checked that FS◦(p, q) and FS♦(p, q) fail on the
highlighted point on the left. Note that S is continuous but not open, as can easily be
seen by comparing to Fig. 1.

Proposition 6. FS◦(p, q) and FS♦(p, q) are not valid over the class of dynamic
posets, hence ITLCD �	 FS◦(p, q) and ITLCD �	 FS♦(p, q).

Proof. Let {p, q} be a set of propositional variables and let us consider the
model M = (W,�, S, V) defined by (1) W = {w, v, u}; (2) S(w) = v, S(v) = v
and S(u) = u; (3) v � u; (4) V (p) = {u}, and (5) V (q) = ∅ (see Fig. 2).
Clearly, M, u �|= p → q, so M, v �|= p → q. By definition, M, w �|= ◦ (p → q) and
M, w �|= � (p → q); however, M, w |= ◦p → ◦q and M, w |= ♦p → �q since
the negation of each antecedent holds, so M, w �|= (◦p → ◦q) → ◦ (p → q) and
M, w �|= (♦p → �q) → � (p → q).

Axiomatic Systems and Topological Semantics 775

Remark 2. As mentioned previously, Yuse and Igarashi [29] present a Hilbert-
calculus which yields a sub-logic of ITL0�. They also present a Gentzen-style
calculus and conjecture that their two calculi prove the same set of formulas.
However, Kojima and Igarashi [19] show that the formula FS◦(p, q) is derivable
in this Gentzen calculus. Thus Proposition 6 shows that the two calculi are not
equivalent.

The above independence results are sufficient to see that each of our four
syntactically-defined logics, as well as each of our four semantically-defined log-
ics, are pairwise distinct.

Theorem 4. The logics ITL0, ITLFS, ITLCD and ITL1 are pairwise distinct, as
are ITL0�, ITL

FS
� , ITLCD� and ITL1�. Similarly, ITLc, ITLo, ITLe and ITLp are pair-

wise distinct, as are ITLc�, ITL
o
�, ITL

e
� and ITLp�.

Proof. By Proposition 4 and the definition of ITLCD, CD(p, q) ∈ ITLCD \ ITLFS;
similarly, by Proposition 6, FS◦(p, q) ∈ ITLFS \ ITLCD. Thus ITLFS and ITLCD

are incomparable, from which we conclude that ITL0, which is contained in their
intersection, is strictly smaller than either of them, while ITL1, which contains
their union, is strictly larger. The arguments for the logics over L� are analogous,
except that CD is replaced with BI, as is the argument for semantically-defined
logics.

7 Concluding Remarks

We have proposed a natural ‘minimalist’ intuitionistic temporal logic, ITL0, along
with possible extensions including Fischer Servi or constant domain axioms. We
have seen that relational semantics validate the constant domain axiom, leading
us to consider a wider class of models based on topological spaces, with a novel
interpretation for ‘henceforth’ based on invariant neighbourhoods. With this,
we have shown that the logics ITL0, ITLCD, ITLFS and ITL1 are sound for the
class of all dynamical systems, of all dynamical posets, of all open dynamical
systems, and of all persistent dynamical posets, respectively, which we have used
in order to prove that the logics are pairwise distinct. Of course this immediately
raises the question of completeness, which we have not addressed. Specifically,
the following are left open.

Question 1. Are the logics:

– ITL0 and ITL0� complete for the class of dynamical systems?
– ITLCD and ITLCD� complete for the class of dynamic posets?
– ITLFS, ITLFS♦ and ITLFS� complete for the class of open dynamical systems?
– ITL1, ITL1♦ and ITL1� complete for the class of persistent dynamic posets?

We already know that ITL0♦ is sound and complete for the class of dynamic
posets [12]. However, the completeness of ITLFS♦ and ITL1♦ is likely to be a more
difficult problem than that of ITL0♦, as in these cases it is not even known if the
set of valid formulas is computably enumerable, let alone decidable.

776 J. Boudou et al.

Question 2. Are any of the logics Λ, Λ♦, or Λ� with Λ ∈ {ITLp, ITLo} decidable
and/or computably enumerable?

In any of these cases a negative answer is possible, since that is the case
for their classical counterparts [20] and these logics do not have the finite model
property [4]. Nevertheless, the proofs of non-axiomatizability in the classical case
do not carry over to the intuitionistic setting in an obvious way, and these remain
challenging open problems.

References

1. Aleksandroff, P.: Diskrete räume. Matematicheskii Sbornik 2(44), 501–518 (1937)
2. Balbiani, P., Boudou, J., Diéguez, M., Fernández-Duque, D.: Bisimulations for

intuitionistic temporal logics. arXiv:1803.05078 (2018)
3. Balbiani, P., Diéguez, M.: Temporal here and there. In: Michael, L., Kakas, A.

(eds.) JELIA 2016. LNCS (LNAI), vol. 10021, pp. 81–96. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-48758-8 6

4. Boudou, J., Diéguez, M., Fernández-Duque, D.: A decidable intuitionistic temporal
logic. In: 26th EACSL Annual Conference on Computer Science Logic (CSL), vol.
82, pp. 14:1–14:17 (2017)

5. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011)

6. Cabalar, P., Pérez Vega, G.: Temporal equilibrium logic: a first approach. In:
Moreno Dı́az, R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2007.
LNCS, vol. 4739, pp. 241–248. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-75867-9 31

7. Davies, R.: A temporal-logic approach to binding-time analysis. In: Proceedings,
11th Annual IEEE Symposium on Logic in Computer Science, New Brunswick,
New Jersey, USA, 27–30 July, 1996, pp. 184–195 (1996)

8. Davies, R.: A temporal logic approach to binding-time analysis. J. ACM 64, 1:1–
1:45 (2017)

9. Davies, R., Pfenning, F.: A modal analysis of staged computation. J. ACM 48(3),
555–604 (2001)

10. Davoren, J.M.: On intuitionistic modal and tense logics and their classical compan-
ion logics: topological semantics and bisimulations. Ann. Pure Appl. Logic 161(3),
349–367 (2009)

11. Davoren, J.M., Coulthard, V., Moor, T., Goré, R., Nerode, A.: Topological seman-
tics for intuitionistic modal logics, and spatial discretisation by A/D maps. In:
Workshop on Intuitionistic Modal Logic and Applications (IMLA) (2002)

12. Diéguez, M., Fernández-Duque, D.: An intuitionistic axiomatization of ‘eventually’.
In: Advances in Modal Logic, vol. 12, pp. 199–218 (2018)

13. Ershov, A.P.: On the partial computation principle. Inf. Process. Lett. 6(2), 38–41
(1977)

14. Fernández-Duque, D.: The intuitionistic temporal logic of dynamical systems. Log-
ical Methods Comput. Sci. 14(3), 1–35 (2018)

15. Fischer Servi, G.: Axiomatisations for some intuitionistic modal logics. In: Ren-
diconti del Seminario Matematico, vol. 42, pp. 179–194. Universitie Politecnico
Torino (1984)

http://arxiv.org/abs/1803.05078
https://doi.org/10.1007/978-3-319-48758-8_6
https://doi.org/10.1007/978-3-540-75867-9_31
https://doi.org/10.1007/978-3-540-75867-9_31

Axiomatic Systems and Topological Semantics 777

16. Goldblatt, R.: Logics of time and computation. In: Center for the Study of Lan-
guage and Information, CSLI Lecture Notes, no. 7, 2nd edn. Stanford (1992)

17. Howard, W.A.: The formulas-as-types notion of construction. In: Seldin, J.P., Hind-
ley, J.R. (eds.) To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus,
and Formalism, pp. 479–490. Academic Press (1980)

18. Kamide, N., Wansing, H.: Combining linear-time temporal logic with constructive-
ness and paraconsistency. J. Appl. Logic 8(1), 33–61 (2010)

19. Kojima, K., Igarashi, A.: Constructive linear-time temporal logic: proof systems
and Kripke semantics. Inf. Comput. 209(12), 1491–1503 (2011)

20. Konev, B., Kontchakov, R., Wolter, F., Zakharyaschev, M.: On dynamic topological
and metric logics. Stud. Logica 84, 129–160 (2006)

21. Kremer, P.: A small counterexample in intuitionistic dynamic topological logic
(2004). http://individual.utoronto.ca/philipkremer/onlinepapers/counterex.pdf

22. Lichtenstein, O., Pnueli, A.: Propositional temporal logics: decidability and com-
pleteness. Logic J. IGPL 8(1), 55–85 (2000)

23. Maier, P.: Intuitionistic LTL and a new characterization of safety and liveness.
In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp. 295–309.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30124-0 24

24. Mints, G.: A Short Introduction to Intuitionistic Logic. University Series in Math-
ematics. Springer (2000). https://doi.org/10.1007/b115304

25. Munkres, J.R.: Topology. Featured Titles for Topology Series, Prentice Hall, Incor-
porated (2000)

26. Pacuit, E.: Neighborhood Semantics for Modal Logic. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-319-67149-9

27. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science (SFCS 1977), pp. 46–57 (1977)

28. Simpson, A.K.: The proof theory and semantics of intuitionistic modal logic. Ph.D.
thesis, University of Edinburgh, UK (1994)

29. Yuse, Y., Igarashi, A.: A modal type system for multi-level generating extensions
with persistent code. In: Proceedings of the 8th ACM SIGPLAN International
Conference on Principles and Practice of Declarative Programming, PPDP 2006,
pp. 201–212 (2006)

http://individual.utoronto.ca/philipkremer/onlinepapers/counterex.pdf
https://doi.org/10.1007/978-3-540-30124-0_24
https://doi.org/10.1007/b115304
https://doi.org/10.1007/978-3-319-67149-9

Interval Temporal Logic Decision
Tree Learning

Andrea Brunello2 , Guido Sciavicco1(B) , and Ionel Eduard Stan2

1 Department of Mathematics and Computer Science,
University of Ferrara, Ferrara, Italy

guido.sciavicco@unife.it
2 Department of Mathematics, Computer Science, and Physics,

University of Udine, Udine, Italy
andrea.brunello@uniud.it, stan.ioneleduard@spes.uniud.it

Abstract. Decision trees are simple, yet powerful, classification models
used to classify categorical and numerical data, and, despite their sim-
plicity, they are commonly used in operations research and management,
as well as in knowledge mining. From a logical point of view, a decision
tree can be seen as a structured set of logical rules written in proposi-
tional logic. Since knowledge mining is rapidly evolving towards temporal
knowledge mining, and since in many cases temporal information is best
described by interval temporal logics, propositional logic decision trees
may evolve towards interval temporal logic decision trees. In this paper,
we define the problem of interval temporal logic decision tree learning,
and propose a solution that generalizes classical decision tree learning.

Keywords: Decision trees · Interval temporal logics ·
Symbolic learning

1 Introduction

It is commonly recognized that modern decision trees are of primary importance
among classification models [30]. They owe their popularity mainly to the fact
that they can be trained and applied efficiently even on big datasets, and that
they are easily interpretable, meaning that they are not only useful for pre-
diction per se, but also for understanding the reasons behind the predictions.
Interpretability is of extreme importance in domains in which understanding
the classification process is as important as the accuracy of the classification
itself, such in the case of production business systems or in the computer-aided
medicine domain. A typical decision tree is constructed in a recursive man-
ner, following the traditional Top Down Induction of Decision Trees (TDIDT)
approach [26]: starting from the root, at each node the attribute that best par-
titions the training data, according to a predefined score, is chosen as a test
to guide the partitioning of instances into child nodes. The process continues
until a sufficiently high degree of purity (with respect to the target class), or a
c© Springer Nature Switzerland AG 2019
F. Calimeri et al. (Eds.): JELIA 2019, LNAI 11468, pp. 778–793, 2019.
https://doi.org/10.1007/978-3-030-19570-0_50

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19570-0_50&domain=pdf
http://orcid.org/0000-0003-2063-218X
http://orcid.org/0000-0002-9221-879X
http://orcid.org/0000-0001-9260-102X
https://doi.org/10.1007/978-3-030-19570-0_50

Interval Temporal Logic Decision Tree Learning 779

minimum cardinality constraint (with respect to the number of instances reach-
ing the node), is achieved in the generated partitions. This is the case of the
well-known decision tree learning algorithm ID3 [26], which is the precursor of
the commonly-used C4.5 [27]. A decision tree can be seen as a structured set of
rules: every node of the tree can be thought of as a decision point, and, in this
way, each branch becomes a conjunction of such conditional statements, that is,
a rule, whose right-hand part is the class. A conditional statement may have
many forms: it can be a yes/no statement (for binary categorical attributes),
a categorical value statement (for non-binary categorical attributes), or a split-
ting value statement (for numerical attributes); the ariety of the resulting tree
is two if all attributes are binary or numerical, or more, if there are categorical
attributes with more than two categories. Each statement can be equivalently
represented with propositional letters, so that a decision tree can be also seen as
a structured set of propositional logic rules.

Temporal Classification: Static Solutions. Just focusing on the static
aspects of data is not always adequate for classification; for example, in the
medical domain, one may want to take into account which symptoms a patient
was experiencing at the same time, or whether two symptoms were overlapping.
That is, in some application domains, the temporal aspects of the information
may be essential to an accurate prediction. Within static decision tree learning,
temporal information may be aggregated in order to circumvent the absence of
explicit tools for dealing with temporal information (for example, a patient can
be labelled with a natural number describing how many times he/she has been
running a fever during the observation period); the ability of a decision tree to
perform a precise classification based on such processed data, however, strongly
depends on how well data are prepared, and therefore on how well the under-
lying domain is understood. Alternatively, decision trees have been proposed
that use frequent patterns [15,19,22] in nodes, considering the presence/absence
of a frequent pattern as a categorical attribute [13,18]. Nevertheless, despite
being the most common approach to (explicit) temporal data classification, fre-
quent patterns in sequences or series have a limited expressive power, as they
are characterized by being existential and by intrinsically representing temporal
information with instantaneous events.

Our Approach: Interval Temporal Logic Decision Trees. A different app-
roach to temporal classification is mining temporal logic formulas, and since tem-
poral databases universally adopt an interval-based representation of time, the
ideal choice to represent temporal information in data is interval temporal logic.
The most representative propositional interval temporal logic is Halpern and
Shoham’s Modal Logic of Allen’s Relations [20], also known as HS. Its language
encompasses one modal operator for each interval-to-interval relation, such as
meets or before, and the computational properties of HS and its fragments have
been studied in the recent literature (see, e.g. [10–12]). The very high expressive
power of HS, as well as its versatility, make HS the ideal candidate to serve as the
basis of a temporal decision tree learning algorithm. Based on these premises, we
propose in this paper a decision tree learning algorithm that produces HS-based

780 A. Brunello et al.

trees. Our proposal, Temporal ID3, is a direct generalization of the ID3 algo-
rithm [26], founded on the logical interpretation of tree nodes, and focuses on
data representation and node generation; we borrow other aspects, such as split-
ting based on information gain and the overall learning process from the original
algorithm. The accuracy of a decision tree and its resilience to over-fitting also
depends on the stopping criterion and possible post-pruning operations, but we
do not discuss these aspects here.

Existing Approaches to Temporal Logic Decision Trees. Learning tem-
poral logic decision trees is an emerging field in the analysis of physical systems,
and, among the most influential approaches, we mention learning of automata [3]
and learning Signal Temporal Logic (STL) formulas [6,14,24,28]. In particular,
STL is a point-based temporal logic with until that encompasses certain metric
capabilities, and learning formulas of STL has been focused on both the fine
tuning of the metric parameters of a predefined formula and the learning the
innermost structure of a formula; among others, decision trees have been used
to this end [8]. Compared with STL decision tree learning, our approach has
the advantage of learning formulas written in a well-known, highly expressive
interval-based temporal logic language; because of the nature of the underlying
language and of the interval temporal logic models, certain application domains
fit naturally into this approach. Moreover, since our solution generalizes the
classical decision tree learning algorithm ID3, and, particularly, the notion of
information gain, it is not limited to binary classification only. Moreover, in [7]
a first-order framework for TDIDT is presented with the attempt to make such
paradigm more attractive to inductive logic programming (ILP). Such a frame-
work provides a sound basis for logical decision tree induction; in opposition,
we employ the framework to represent modal, instead of first-order, relational
data. Additionally, our approach should not be confused with [23], in which
the term interval indicates an uncertain numerical value (e.g., the patient has a
fever of 38 Celsius versus the patient has a fever between 37.5 and 38.5 Celsius),
and in which an algorithm for inducing decision trees on such uncertain data is
presented that is based on the so-called Kolmogorov-Smirnov criterion, but the
data that are object of that study are not necessarily temporal, and the pro-
duced trees do not employ any temporal (logical) relation. In [4,29] and [21], the
authors present two other approaches to a temporal generalization of decision
tree learning. In the former, the authors provide a general method for building
point-based temporal decision trees, but with no particular emphasis on any
supporting formal language. In the latter, the constructed trees can be seen as
real-time algorithms that have the ability to make decisions even if the entire
description of the instance is not yet available. Finally, in [16], a generalization
of the decision tree model is presented in which nodes are possibly labelled with
a timestamp to indicate when a certain condition should be checked.

Summarizing, our approach is essentially different from those presented in
the literature in several aspects. As a matter of fact, by giving a logical perspec-
tive to decision tree learning, we effectively generalize the learning model to a
temporal one, instead of introducing a new paradigm. In this way, instances that

Interval Temporal Logic Decision Tree Learning 781

present some temporal component are naturally seen as timelines, and, thanks
to the expressive power provided by HS, our algorithm can learn a decision tree
based on the temporal relations between values, instead of the static information
carried by the values.

2 Preliminaries

Decision Trees. Decision tree induction is based on the following simple con-
cepts [27]. Given a set of observable values V = {v1, v2, . . . , vn}, with associated
probabilities Π = {π1, π2, . . . , πn}, the information conveyed by Π (or entropy),
is defined as:

E(Π) = −
n∑

i=1

πi log(πi).

Assume that a dataset T has n instances, each characterized by the attributes
A1, . . . , Al, and distributed over s classes C1, . . . , Cs. Each class C can be seen
as the subset of T composed of precisely those instances classified as C, so that
the information needed to identify the class of an element of T is:

Info(T) = E({ |C1|
|T | ,

|C2|
|T | , . . . ,

|Cs|
|T | }).

Intuitively, the entropy is inversely proportional to the purity degree of T with
respect to the class values. Splitting, which is the main operation in decision
tree learning, is performed over a specific attribute A. If A is categorical and its
domain Dom(A) consists of m distinct values, we can split T into T1, . . . , Tm,
each Ti being characterized by A having precisely the value ai (i.e., A = ai).
The information of a categorical split, therefore, is:

InfoCat(A, T) =
m∑

i=1

(
|Ti|
|T |)Info(Ti).

If, on the other hand, A is numerical, then the set {a1 < . . . < am} of actual
values for A that are present in T gives rise to m − 1 possible splits, all of them
binary, and the information conveyed by each possible split is, then, a function
not only of the attribute but also of the chosen value:

InfoNum(A, ai, T) = (
|T1|
|T |)Info(T1) + (

|T2|
|T |)Info(T2),

where T1 (respectively, T2) encompasses all and only those instances with A ≤
ai (respectively, A > ai). The information conveyed by an attribute can be
consequently defined as:

782 A. Brunello et al.

Fig. 1. Allen’s interval relations and HS modalities.

InfoAtt(A, T) =

{
InfoCat(A, T) if A is categorical,

min
ai∈Dom(A)

{InfoNum(A, ai, T)} if A is numerical,

and the information gain brought by A is defined as:

Gain(A, T) = Info(T) − InfoAtt(A, T).

The information gain, which can be also seen as the reduction of the expected
entropy when the attribute A has been chosen, is used to drive the splitting pro-
cess, that is, to decide over which attribute (and how) the next split is performed.
The underlying principle to decision tree building consists of recursively split-
ting the dataset over the attribute that guarantees the greatest information gain
until a certain stopping criterion is met. Each split can be seen as a proposi-
tional condition if p then -, else -. When splitting is performed over a numerical
attribute, e.g., A ≤ ai, then the corresponding propositional statement is simply
the condition itself (in our example, is a propositional letter pA≤ai

); when it
is performed over a categorical attribute, e.g., A = a1, A = a2, . . . , then each
statement is a propositional statement (in our example, pA=a1 , pA=a2 ,. . .) on its
own.

Interval Temporal Logic. Let D ⊆ N. In the strict interpretation, an interval
over D is an ordered pair [x, y], where x, y ∈ D and x < y, and we denote by
I(D) the set of all intervals over D. If we exclude the identity relation, there
are 12 different Allen’s relations between two intervals in a linear order [1]:
the six relations RA (adjacent to), RL (later than), RB (begins), RE (ends),
RD (during), and RO (overlaps), depicted in Fig. 1, and their inverses, that
is, RX = (RX)−1, for each X ∈ A, where A = {A,L,B,E,D,O}. Halpern
and Shoham’s modal logic of temporal intervals (HS) is defined from a set of
propositional letters AP, and by associating a universal modality [X] and an
existential one 〈X〉 to each Allen’s relation RX . Formulas of HS are obtained by

ϕ:: = p | ¬ϕ | ϕ ∨ ϕ | 〈X〉ϕ | 〈X〉ϕ,

Interval Temporal Logic Decision Tree Learning 783

where p ∈ AP and X ∈ A. The other Boolean connectives and the logical
constants, e.g., → and 	, as well as the universal modalities [X], can be defined
in the standard way. For each X ∈ A, the modality 〈X〉 (corresponding to the
inverse relation RX of RX) is said to be the transpose of the modalities 〈X〉,
and vice versa. The semantics of HS formulas is given in terms of timelines
T = 〈I(D), V 〉1, where D is a linear order and V : AP → 2I(D) is a valuation
function which assigns to each atomic proposition p ∈ AP the set of intervals
V (p) on which p holds. The truth of a formula ϕ on a given interval [x, y] in an
interval model T is defined by structural induction on formulas as follows:

T, [x, y] � p if [x, y] ∈ V (p), for p ∈ AP;
T, [x, y] � ¬ψ if T, [x, y]
� ψ;
T, [x, y] � ψ ∨ ξ if T, [x, y] � ψ or T, [x, y] � ξ;
T, [x, y] � 〈X〉ψ if there is [w, z] s.t [x, y]RX [w, z] and T, [w, z] � ψ;
T, [x, y] � 〈X̄〉ψ if there is [w, z] s.t [x, y]RX̄ [w, z] and T, [w, z] � ψ.

HS is a very general interval temporal language and its satisfiability prob-
lem is undecidable [20]. Our purpose here, however, is to study the problem of
formula induction in the form of decision trees, and not of formula deduction,
and therefore the computational properties of the satisfiability problem can be
ignored at this stage.

3 Motivations

In this section, we present some realistic scenarios in which learning a temporal
decision tree may be convenient, and, then, we discuss aspects of data prepro-
cessing related to the temporal component.

Learning. There are several application domains in which learning a temporal
decision tree may be useful. Consider, for example, a medical scenario in which
we consider a dataset of classified patients, each one characterized by its medi-
cal history, as in Fig. 2, top. Assume, first, that we are interested in learning a
static (propositional) classification model. The history of our patients, that is,
the collection of all relevant pieces of information about tests, results, symptoms,
and hospitalizations of the patient that occurred during the entire observation
period, must be processed so that temporal information is subsumed in propo-
sitional letters. For instance, if some patient has been running a fever during
the observation period, we may use a proposition fever, with positive values
for those patient that have had fever, and negative values for the others (as in
Fig. 2, bottom, left). Depending on the specific case, we may, instead, use the
actual temperature of each patient, and a static decision tree learning system
may split over fever < t, for some threshold temperature t, effectively intro-
ducing a new propositional letter, and therefore a binary split. Either way, the
temporal information is lost in the preprocessing. For example, we can no longer
1 We deliberately use the symbol T to indicate both a timeline and an instance in a

dataset.

784 A. Brunello et al.

Patient Symptom TimeStamp
P1 fever [3,4]
P2 fever [4,5]
P3 fever [3,5]
P1 head [2,4]
P2 head [3,5]
P3 head [2,4]
P4 head [4,6]

Patient Class
P1 C1
P2 C1
P3 C2
P4 C2

Patient fever head Class
P1 yes yes C1
P2 yes yes C1
P3 yes yes C2
P4 no yes C2

P1

P2

P3

P4

fever
head

fever
head

fever
head

head

C1

C1

C2

C2
0 1 2 3 4 5 6

stati
c temporal

Fig. 2. Example of static and temporal treatment of information in the medical domain.

take into account whether fever occurred before, after, or while the patient
was experiencing headache (head), which may be a relevant information for a
classification model. By generating, instead, the timeline of each patient (as in
Fig. 2, bottom, right), we keep all events and their relative qualitative relations.
By learning a decision tree on a preprocessed dataset such as the one in Fig. 2
(bottom, left), we see that the attribute head has zero variance, and therefore
zero predictive capabilities; then, we are forced to build a decision tree using
attribute fever alone, which results in a classifier with 75% accuracy. On the
contrary, by using the temporal information in the learning process, we are able
to distinguish the two classes: C1 is characterized by presenting both head and
fever, but not overlapping, and this classifier has, in this toy example, 100%
accuracy. In this example, the term accuracy refers to the training set accuracy
(we do not consider independent trainining and test data), that is, the ability
of the classification system to discern among classes on the data used to train
the system itself; it should not be confused with test set accuracy, which mea-
sures the real classification performances that can be expected on future, real-life
examples.

Alternatively, consider a problem in the natural language processing domain.
In this scenario, a timeline may represent a conversation between two individu-
als. It is known that, in automatic processing of conversations, it is sometimes
interesting to label each interval of time with one or more context, that is, a
particular topic that is being discussed [2,5,25], in order to discover the exis-

Interval Temporal Logic Decision Tree Learning 785

tence of unexpected or interesting temporal relations among them. Suppose, for
example, that a certain company wants to analyze conversations between sell-
ing agents and potential customers: the agents contact the customers with the
aim of selling a certain product, and it is known that certain contexts, such as
the price of the product (price), its known advantages (advantages) over other
products, and its possible minor defects (disadvantages) are interesting. Assume
that each conversation has been previously classified between those that have
been successful and those that ended without the product being acquired. Now,
we want to learn a model able to predict such an outcome. By using only static
information, nearly every conversation would be labelled with the three contexts,
effectively hiding the underlying knowledge, if it exists. By keeping the relative
temporal relations between contexts, instead, we may learn useful information,
such as, for example, if price and disadvantages are not discussed together, the
conversation will be likely successful.

Preprocessing. Observe, now, how switching from static to temporal informa-
tion influences data preparation. First, in a context such as the one described in
our first example, numerical attributes may become less interesting: for instance,
the information on how many times a certain symptom occurred, or its frequency,
are not needed anymore, considering that each occurrence is taken into account
in the timeline. Moreover, since the focus is on attributes relative temporal posi-
tions, even categorical attributes may be ignored in some contexts: for instance,
in our scenario, we may be interested in establishing the predictive value of the
relative temporal position of fever and head regardless of the sex or age of the
patient. It is also worth underlying that propositional attributes over intervals
allow us to express a variety of situations, and sometimes propositional labelling
may result in gaining information, instead of loosing it. Consider, again, the case
of fever, and suppose that a certain patient is experiencing low fever in an interval
[x, y], say, a given day, and that during just one hour of that day, that is, over the
interval [w, z] strictly contained in [x, y], he/she has an episode of high fever. A
natural choice is to represent such a situation by labelling the interval [x, y] with
lo and its sub-interval [w, z] with hi. On the other hand, representing the same
pieces of information as three intervals [x,w], [w, z], [z, y] respectively labelled
with lo, hi, and lo, which would be the case with a point-based representation
(or with an interval-based representation under the homogeneity assumption),
would be unnatural, and it would entail hiding a potentially important informa-
tion such as: “the patient presented low fever during the entire day, except for
a brief episode of high fever”. Building on such considerations, our approach in
the rest of this paper is based on propositional, non-numerical attributes only.

4 Learning Interval Temporal Logic Decision Trees

In this section we describe a generalization of the algorithm ID3 that is capable of
learning a binary decision tree over a temporal dataset, as in the examples of the
previous section; as in classical decision trees, every branch of a temporal decision
tree can be read as a logical formula, but instead of classical propositional logic

786 A. Brunello et al.

we use the temporal logic HS. To this end, we generalize the notion of information
gain, while, at this stage, we do not discuss pre-pruning, post-pruning, and purity
degree of a sub-tree [9,27].

Data Preparation and Presentation. We assume that the input dataset
contains timelines as instances. For the sake of simplicity, we also assume that
all timelines are based on the same finite domain D of length N (from 0 to N−1).
The dataset T can be seen as an array of n structures; T [j] represents the j-th
timeline of the dataset, and it can be thought of as an interval model. Given a
dataset T , we denote by AP the set of all propositional letters that occur in it.

Temporal Information. We are going to design the learning process based
on the same principles of classical decision tree learning. This means that we
need to define a notion of splitting as well as a notion of information conveyed
by a split, and, to this end, we shall use the truth relation as defined in Sect. 2
applied to a timeline. Unlike the atemporal case, splits are not performed over
attributes, but, instead, over propositional letters. Splitting is defined relatively
to an interval [x, y], and it can be local, if it is applied on [x, y] itself, or temporal,
in which case it depends on the existence of an interval [z, t] related to [x, y] and
the particular relation RX such that [x, y]RX [z, t] (or the other way around). A
local split of T into T1 and T2, where [x, y] is the reference interval of T , and p
is the propositional letter over which the split takes place is defined by:

T1 = {T ∈ T | T, [x, y] � p},
T2 = {T ∈ T | T, [x, y] � ¬p}.

(1)

On the contrary, a temporal split, in the same situation, over the temporal rela-
tion RX , is defined by:

T1 = {T ∈ T | T, [x, y] � 〈X〉p},
T2 = {T ∈ T | T, [x, y] � [X]¬p}.

(2)

Consequently, the local information gain of a propositional letter p is defined as:

LocalGain(p, T) = Info(T) −
(

(
|T1|
|T |)Info(T1) + (

|T2|
|T |)Info(T2)

)
,

where T1 and T2 are defined as in (1), while the temporal information gain of a
propositional letter p is defined as:

TemporalGain(p, T) = Info(T) − min
X∈A

{
(
|T1|
|T |)Info(T1) + (

|T2|
|T |)Info(T2)

}
,

where T1 and T2 are defined as in (2) and depend on the relation RX . Therefore,
the information gain of a propositional letter becomes:

Gain(p, T) = max{LocalGain(p, T), T emporalGain(p, T)},

and, at each step, we aim to find the letter that maximizes the gain.

Interval Temporal Logic Decision Tree Learning 787

proc FindBestUnanchoredSplit (T)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

gBest = 0
for ([x, y] ∈ I(D))⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

AssignReferenceInterval(T , [x, y])
< X, p, g >= FindBestAnchoredSplit(T)
if (g > gBest)
then{
< XBest, pBest, gBest >=< X, p, g >
[xBest, yBest] = [x, y]

AssignReferenceInterval(T , [xBest, yBest])
return < XBest, pBest, gBest, [xBest, yBest] >

proc FindBestAnchoredSplit (T)⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

gBest = 0
for (p ∈ AP)⎧⎨
⎩

< X, g >= Gain(p, T)
if (g > gBest)
then < XBest, pBest, gBest >=< X, p, g >

return < XBest, pBest, gBest >

proc Temporal ID3 (T){
c = CreateNode()
Learn(T , c)

proc Learn (T , c)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if NoStop(T)
then⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if UnAnchored(T)
then{
< X, p, g, [x, y] >= FindBestUnanchoredSplit(T)
Label(c, [x, y])
else < X, p, g >= FindBestAnchoredSplit(T)

(T1, T2) = Split(T , X, p)
c1 = CreateLeftChild(c)
c2 = CreateRightChild(c)
Learn(T1, c1)
Learn(T2, c2)

Fig. 3. The algorithm Temporal ID3.

The Algorithm. Let us analyze the code in Fig. 3. At the beginning, the time-
lines in T are not assigned any reference interval, and we say that the dataset
is unanchored. The procedure FindBestUnanchoredSplit systematically explores
every possible reference interval of an unanchored dataset, and, for each one
of them, calls FindBestAnchoredSplit, which, in turn, tries every propositional
letter (and, implicitly, every temporal relation) in the search of the best split.
This procedure returns the best possible triple <X, p, g>, where X is an interval
relation, if the best split is temporal, or it has no value, if the best split is local,
p is a propositional letter, and g is the information gain. Temporal ID3 first cre-
ates a root node, and then calls Learn. The latter, in turn, first checks possible
stopping conditions, and then finds the best split into two datasets T1 and T2.
Of these, the former is now anchored (to the reference interval returned by Find-
BestUnanchoredSplit), while the latter is still unanchored. During a recursive
call, when T1 is analyzed to find its best split, the procedure for this task will be
FindBestAnchoredSplit, called directly, instead of passing through FindBestU-
nanchoredSplit. So, in our learning model, all splits are binary. Given a node,
the ‘lefthand’ outgoing edge is labeled with the chosen 〈X〉p, or just p, when the

788 A. Brunello et al.

Patient Symptom TimeStamp
P1 fever [0,2]
P2 fever [1,3]
P3 head [0,2]
P4 head [1,3]

Patient Class
P1 C1
P2 C1
P3 C2
P4 C2

P1

P2

P3

P4

fever

fever

head

head

0 1 2 3−2 −1 4 5

C1

C1

C2

C2

Fig. 4. Example of a problematic dataset.

split is local, whereas the corresponding ‘righthand’ edge is labeled with [X]¬p
(or just ¬p); also, the node is labeled with a new reference interval if its cor-
responding dataset is unanchored. After a split, every T ∈ T1 (the existential
dataset, which is now certainly anchored) is associated with a new witnessing
interval: in fact, those instances satisfy 〈X〉p on [x, y], and, for each one of them,
there is a possibly distinct witness. Witnesses are assigned by the function Split;
while the witnessing interval of an instance may change during the process, its
reference interval is set only once.

Consider, now, the function AssignReferenceInterval and the example shown
in Fig. 4. As can be seen, neglecting the temporal dimension, one may classify
the instances with just a single split based on the presence of the symptom
fever (or headache). On the contrary, given the temporal dataset with domain
D = {0, 1, 2, 3} it is not possible discriminate the classes within a single step.
A natural solution consists of augmenting D in such a way to simulate the
behaviour of an infinite domain model. In our example, it suffices to consider
D = {−2,−1, 0, 1, 2, 3, 4, 5}, so that a single split may be based on the rule:
〈L〉fever → C1, otherwise C2 holding on [−2,−1] (or, equivalently, its inverse
formulation on [4, 5]). Thus, the function AssignReferenceIntervals, while search-
ing all possible reference intervals, takes into consideration two extra points at
each side of the domain. Although it is possible to obtain a similar result by
adding less than four points (in our example, −2 and −1 suffice), this is no
longer true if we include the possibility that Temporal ID3 is called on a sub-
set of HS modalities, for example, for computational efficiency reasons. Adding
four points, on the other hand, guarantees that the most discriminative split can
always be found.

Analysis. We now analyze the computational complexity of Temporal ID3. To
this end, we first compute the cost of finding the best splitting. Since the car-
dinality of the domain of each timeline is N , there are O(N2) possible inter-
vals. This means that, fixed a propositional letter and a relation RX , comput-
ing T1 and T2 costs O(nN2), where n is the number of timelines. Therefore, the
cost of FindBestAnchoredSplit is obtained by multiplying the cost of a single

Interval Temporal Logic Decision Tree Learning 789

(tentative) splitting by the number of propositional letters and the number of
temporal relations (plus one, to take into account the local splitting), which sums
up to O(13nN2|AP|). The cost of FindBestUnanchoredSplit increases by a factor
of N2, as the for cycle ranges over all possible intervals, and therefore it becomes
O(13nN4|AP|). We can increase the efficiency of the implementation by suitably
pre-compute the value of 〈X〉p for each temporal relation, each propositional let-
ter, and each interval, thus eliminating a factor of N2 from both costs.

If we consider AP as fixed, and N as a constant, the cost of finding the
best splitting becomes O(n), and, under such (reasonable) assumption, we can
analyze the complexity of an execution of Learn in terms of the number n of
timelines. Two cases are particularly interesting. In the worst case, every binary
split leads to a very unbalanced partition of the dataset, with |T1| = 1 and
|T2| = n − 1 (or the other way around). The recurrence that describes such a
situation is:

t(n) = t(n − 1) + O(n),

which can be immediately solved to obtain t(n) = O(n2). However, computing
the worst case has only a theoretical value; we can reasonably expect Temporal
ID3 to behave like a randomized divide-and-conquer algorithm, and its compu-
tational complexity to tend towards the average case. In the average case, every
binary split leads to a non-unbalanced partition, but we cannot foresee the rel-
ative cardinality of each side of the partition. Assuming that every partition is
equally probable, the recurrence that describes this situation is:

t(n) =
1
n

n∑

k=1

(t(k) + t(n − k)) + O(n).

We want to prove that t(n) = O(n log(n)). To this end, we first prove a useful

bound for the expression
n∑

k=1

k log(k), as follows:

n∑
k=1

(k log(k)) =
�n

2 �−1∑
k=1

(k log(k)) +
n∑

k=�n
2 �

(k log(k))

≤
�n

2 �−1∑
k=1

(k log(n2)) +
n∑

k=�n
2 �

(k log(n))

= (log(n) − 1)
� n

2 �−1∑
k=1

k + log(n)
n∑

k=� n
2 �

k

= log(n)
n∑

k=1

k −
�n

2 �−1∑
k=1

k

≤ 1
2 log(n)n(n + 1) − 1

2
n
2 (n2 + 1)

= 1
2 (n2 log(n) + n log(n)) − 1

8n2 − 1
4n.

Now, we prove, by induction, that t(n) ≤ an log(n) + b for some positive
constants a, b, as follows:

790 A. Brunello et al.

[0, 1]

C2 C1

C2

〈L〉fe
ve
r [L]¬fever

〈O〉he
ad

[O]¬head

Fig. 5. A decision tree learned by Temporal ID3 on the example in Fig. 2.

t(n) = 1
n

n∑
k=1

(t(k) + t(n − k)) + O(n)

= 2
n

n∑
k=1

t(k) + O(n)

≤ 2
n

n∑
k=1

(ak log(k) + b) + O(n) inductive hypothesis

= 2
n

n∑
k=1

(ak log(k)) + 2
n

n∑
k=1

b + O(n)

= 2a
n

n∑
k=1

(k log(k)) + 2b + O(n)

≤ 2a
n (12 (n2 log(n) + n log(n)) − 1

8n2 − 1
4n)

+2b + O(n) proved above

= an log(n) + 2a log(n) − an
4 − a

2

+2b + O(n)

≤ an log(n) + b. if an
4 ≥ 2alog(n) − a

2 + b + O(n).

Example of Execution. Consider our initial example of Fig. 2, with four time-
lines distributed over two classes. Since this is a toy example, there are many
different combination of intervals, relations, and propositional letters that give
the same information gain. Figure 5 gives one possible outcome, which seems
to indicate that, looking at the entire history, the class C2 is characterized by
presenting headache and overlapping fever, or no fever at all.

There are several running parameters that can be modulated for an execu-
tion of Temporal ID3, and further analysis is required to understand how they
influence the final result, and, particularly, the properties of the resulting clas-
sifier. The most important ones are: (i) how to behave in case of two splits with
the same information gain; (ii) how to behave in case of more than one possible
witness interval for a given timeline; (iii) how to behave in case of more than

Interval Temporal Logic Decision Tree Learning 791

one optimal reference interval for a given unanchored temporal dataset. If we
allow, in all such cases, a random choice, the resulting learning algorithm is not
deterministic anymore, and different executions may result in different decision
trees. This is a typical situation in machine learning (e.g., in algorithms such as
k-means clustering, or random forest), that involves some experience in order to
meaningfully assess the results.

5 Conclusions

Classical decision trees, which are a popular class of learning algorithms, are
designed to interpret categorical and numerical attributes. In decision trees,
every node can be seen as a propositional letter; therefore, a decision tree can
be seen as a structured set of propositional logic rules, the right-hand part of
which is a class. Since classifying based on the static aspects of data is not always
adequate, and since decision tree learning cannot deal with temporal knowledge
in an explicit manner, we considered the problem of learning a classification
model capable to combine propositional knowledge with qualitative temporal
information. Towards its solution, we showed how temporal data can be prepared
in a optimal way for a temporal decision tree to be learned and presented a
generalization of the classical decision tree learning algorithm ID3 that is able to
split the dataset based on temporal, instead of static, information, using the well-
known temporal logic HS. Future work include testing our method on real data,
improving the capabilities of Temporal ID3 by enriching the underlying language,
and studying the effect of different pruning and stopping conditions. Moreover, it
would be interesting to study adapting ID3 to other logical languages, although
this may require re-designing some key elements, such as the representation of
temporal datasets, or the process that underlies the splitting algorithm.

Machine learning is generically focused on a non-logical approach to knowl-
edge representation. However, when learning should take into account temporal
aspects of data, a logical approach can be associated to classical methods, and
besides decision tree learning, interval temporal logics has been already proposed
as a possible tool, for example, for temporal rules extraction [17]. Focusing these
approaches on fragments of interval temporal logics whose satisfiability problem
is decidable (and tractable) may result into an integrated systems that pairs
induction and deduction of formulas, intelligent elimination of redundant rules,
and automatic verification of inducted knowledge against formal requirement.
Also, using a logical approach in learning may require non-standard semantics
for logical formulas (e.g., fuzzy semantics, or multi-valued propositional seman-
tics); these, in turn, pose original and interesting questions on the theoretical
side concerning the computational properties of the problems associated with
these logics (i.e., satisfiability), generating, de facto, a cross-feeding effect on the
two fields.

792 A. Brunello et al.

References

1. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM
26(11), 832–843 (1983)

2. Alluhaibi, R.: Simple interval temporal logic for natural language assertion descrip-
tions. In: Proceedings of the 11th International Conference on Computational
Semantics (IWCS), pp. 283–293 (2015)

3. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

4. Antipov, S., Fomina, M.: A method for compiling general concepts with the use of
temporal decision trees. Sci. Tech. Inf. Process. 38(6), 409–419 (2011)

5. Baeza-Yates, R.: Challenges in the interaction of information retrieval and natural
language processing. In: Gelbukh, A. (ed.) CICLing 2004. LNCS, vol. 2945, pp.
445–456. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24630-
5 55

6. Bartocci, E., Bortolussi, L., Sanguinetti, G.: Data-driven statistical learning of
temporal logic properties. In: Legay, A., Bozga, M. (eds.) FORMATS 2014. LNCS,
vol. 8711, pp. 23–37. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10512-3 3

7. Blockeel, H., De Raedt, L.: Top-down induction of first-order logical decision trees.
Artif. Intell. 101(1–2), 285–297 (1998)

8. Bombara, G., Vasile, C., Penedo, F., Yasuoka, H., Belta, C.: A decision tree app-
roach to data classification using signal temporal logic. In: Proceedings of the 19th
International Conference on Hybrid Systems: Computation and Control, pp. 1–10
(2016)

9. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression
Trees. Wadsworth and Brooks, Monterey (1984)

10. Bresolin, D., Della Monica, D., Goranko, V., Montanari, A., Sciavicco, G.: Metric
propositional neighborhood logics on natural numbers. Softw. Syst. Model. 12(2),
245–264 (2013)

11. Bresolin, D., Monica, D.D., Montanari, A., Sala, P., Sciavicco, G.: Interval temporal
logics over strongly discrete linear orders: expressiveness and complexity. Theor.
Comput. Sci. 560, 269–291 (2014)

12. Bresolin, D., Sala, P., Sciavicco, G.: On begins, meets, and before. Int. J. Found.
Comput. Sci. 23(3), 559–583 (2012)

13. Brunello, A., Marzano, E., Montanari, A., Sciavicco, G.: J48S: a sequence classi-
fication approach to text analysis based on decision trees. In: Proceedings of the
24th International Conference on Information and Software Technologies (ICIST),
pp. 240–256 (2018)

14. Bufo, S., Bartocci, E., Sanguinetti, G., Borelli, M., Lucangelo, U., Bortolussi, L.:
Temporal logic based monitoring of assisted ventilation in intensive care patients.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2014. LNCS, vol. 8803, pp. 391–403.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45231-8 30

15. Cheng, H., Yan, X., Han, J., Hsu, C.: Discriminative frequent pattern analysis
for effective classification. In: Proceedings of the 23rd International Conference on
Data Engineering (ICDE), pp. 716–725 (2007)

16. Console, L., Picardi, C., Dupré, D.: Temporal decision trees: model-based diagnosis
of dynamic systems on-board. J. Artif. Intell. Res. 19, 469–512 (2003)

https://doi.org/10.1007/978-3-540-24630-5_55
https://doi.org/10.1007/978-3-540-24630-5_55
https://doi.org/10.1007/978-3-319-10512-3_3
https://doi.org/10.1007/978-3-319-10512-3_3
https://doi.org/10.1007/978-3-662-45231-8_30

Interval Temporal Logic Decision Tree Learning 793

17. Della Monica, D., de Frutos-Escrig, D., Montanari, A., Murano, A., Sciavicco, G.:
Evaluation of temporal datasets via interval temporal logic model checking. In:
Proceedings of the 24th International Symposium on Temporal Representation
and Reasoning (TIME), pp. 11:1–11:18 (2017)

18. Fan, W., et al.: Direct mining of discriminative and essential frequent patterns via
model-based search tree. In: Proceedings of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 230–238 (2008)

19. Fournier-Viger, P., Gomariz, A., Šebek, M., Hlosta, M.: VGEN: fast vertical mining
of sequential generator patterns. In: Bellatreche, L., Mohania, M.K. (eds.) DaWaK
2014. LNCS, vol. 8646, pp. 476–488. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-10160-6 42

20. Halpern, J., Shoham, Y.: A propositional modal logic of time intervals. J. ACM
38(4), 935–962 (1991)

21. Karimi, K., Hamilton, H.J.: Temporal rules and temporal decision trees: a C4.5
approach. Technical report, CS-2001-02, Department of Computer Science, Uni-
versity of Regina (2001)

22. Lin, W., Orgun, M.A.: Temporal data mining using hidden periodicity analysis.
In: Raś, Z.W., Ohsuga, S. (eds.) ISMIS 2000. LNCS (LNAI), vol. 1932, pp. 49–58.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-39963-1 6

23. Mballo, C., Diday, E.: Decision trees on interval valued variables. Symbolic Data
Anal. 3(1), 8–18 (2005)

24. Nguyen, L., Kapinski, J., Jin, X., Deshmukh, J., Butts, K., Johnson, T.: Abnormal
data classification using time-frequency temporal logic. In: Proceedings of the 20th
International Conference on Hybrid Systems: Computation and Control, pp. 237–
242 (2017)

25. Pratt-Hartmann, I.: Temporal prepositions and their logic. Artif. Intell. 166(1–2),
1–36 (2005)

26. Quinlan, J.: Induction of decision trees. Mach. Learn. 1, 81–106 (1986)
27. Quinlan, J.: Simplifying decision trees. Int. J. Hum.-Comput. Stud. 51(2), 497–510

(1999)
28. Rajan, A.: Automated requirements-based test case generation. SIGSOFT Softw.

Eng. Notes 31(6), 1–2 (2006)
29. Vagin, V., Morosin, O., Fomina, M., Antipov, S.: Temporal decision trees in diag-

nostics systems. In: 2018 International Conference on Advances in Big Data, Com-
puting and Data Communication Systems (icABCD), pp. 1–10 (2018)

30. Witten, I., Frank, E., Hall, M., Pal, C.: Data Mining: Practical Machine Learning
Tools and Techniques. Morgan Kaufmann, Burlington (2016)

https://doi.org/10.1007/978-3-319-10160-6_42
https://doi.org/10.1007/978-3-319-10160-6_42
https://doi.org/10.1007/3-540-39963-1_6

Stable-Ordered Models for Propositional
Theories with Order Operators

Johannes Oetsch(B) and Juan-Carlos Nieves

Department of Computing Science, Ume̊a University, Ume̊a, Sweden
{joetsch,jcnieves}@cs.umu.se

Abstract. The stable-model semantics has been generalised from logic
programs to arbitrary theories. We explore a further generalisation and
consider sequences of atoms as models instead of sets. The language is
extended by suitable order operators to access this additional informa-
tion. We recently introduced an extension of classical logic by a single
order operator with a temporal interpretation for activity reasoning. The
logic envisaged here is a nonmonotonic version thereof. Our definition of
what we call stable-ordered models is based on the stable-model seman-
tics for theories due to Ferraris and Lifschitz with the necessary changes.
Compared to related nonmonotonic versions of temporal logics, our app-
roach is less costly as checking model existence remains at the second
level of the polynomial hierarchy. We demonstrate versatile applications
from activity reasoning, combinatorial testing, debugging concurrent pro-
grams, and digital forensics.

Keywords: Stable-model semantics · Temporal logic ·
Nonmonotonic reasoning · Knowledge representation

1 Introduction

Answer-set programming (ASP) is a problem solving paradigm with many AI
applications [7]. It means that problems are encoded as logic programs so that
the solutions correspond to the models of the programs [13,15]. The stable-
model semantics for logic programs, introduced by Gelfond and Lifschitz [10],
is the basis of ASP. It has been generalised to arbitrary theories by Pearce [17]
using equilibrium logic. Ferraris and Lifschitz [8,9] came up with an alternative
characterisation that is based on reducts which is more in the spirit of the original
definition. We explore a further generalisation and consider sequences of atoms
as models instead of sets. The language is extended by suitable order operators
to access this additional information. The order of atoms can be interpreted
in different ways: either temporal, e.g., the order in which goals or events are
achieved, or in a more general sense as how objects of interest are arranged or
permuted.

Besides curiosity, our motivation to study a new generalisation comes from
activity reasoning, a topic that we studied in recent work [16]. There, we intro-
duced a monotonic version of the logic we are envisioning here. Models in this
c© Springer Nature Switzerland AG 2019
F. Calimeri et al. (Eds.): JELIA 2019, LNAI 11468, pp. 794–802, 2019.
https://doi.org/10.1007/978-3-030-19570-0_51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19570-0_51&domain=pdf
https://doi.org/10.1007/978-3-030-19570-0_51

Stable-Ordered Models for Propositional Theories with Order Operators 795

monotonic logic, dubbed ordered models, are sequences of atoms without repe-
tition and the language is standard classical logic plus a single modal operator.
Intuitively, a model represents in which order goals—viewed as atomic entities—
are achieved. However, the monotonic semantics comes with the usual limitations
for representing incomplete knowledge which is common in activity reasoning.
Based on the temporal logic from previous work, we introduce a nonmonotonic
semantics for theories with order operators. We use the reduct-based definition
of stable models for theories from Ferraris and Lifschitz [8,9] with the necessary
changes to define what we call stable-ordered models.

Related to this work is a nonmonotonic variant of linear-temporal logic
(LTL) [18] based on infinite traces and equilibrium logic [1]. A version of this
logic for finite traces has been introduced recently by Cabalar et al. [5]. Their
approach is readily implementable via ASP but requires multi-shot solving, i.e.,
several calls to an ASP solver are necessary to compute a satisfying trace. This
is in accordance with the complexity of satisfiability checking which is PSPACE
hard. Also other approaches extend LTL for nonmonotonic reasoning and elab-
oration tolerant goal representations [2,3]. Our approach is different from all
previous work as the idea to use a sequence of atoms as model is quite unique.
The complexity of checking model existence remains at ΣP

2 which means a com-
putational advantage over related work. Although our notion of stable-ordered
model is less expressive than arbitrary traces of states, there are interesting
applications where it suffices. We demonstrate this with examples from activity
reasoning, combinatorial testing, fault detection for concurrent programs, and
digital forensics.

2 Preliminaries

The logic we introduce in this paper is a nonmonotonic version of a monotonic
temporal logic that we proposed in recent work in the context of activity rea-
soning [16]. Language L is determined by an infinite countable set U of atoms,
Boolean connectives ⊃, ∧, ∨, ⊥, and the modal operators ◦, ♦, and �, where
◦ means previously, � stands for now and always in the past, and ♦ means
now or at some time in the past.1 A formula ϕ is defined by the grammar
ϕ :: = a | ⊥ | (ϕ1 ⊃ ϕ2) | (ϕ1 ∧ ϕ2) | (ϕ1 ∨ ϕ2) | (◦ϕ) | (♦ϕ) | (�ϕ) where a ∈ L
is an atom. Parentheses are omitted if no ambiguities arise.

A theory is a set of formulas. For an expression (formula or theory) e, At(e)
is the set of atoms occurring in e. We use P = 〈a1, . . . , an〉 to denote a finite
sequence of elements. The length of P , denoted by |P |, is n. For two sequences P
and Q, PQ is the concatenation of P and Q. We say that P is a prefix of Q and
write P
 Q iff Q = PR for some sequence R. The empty sequence is denoted
by ε. Note that the notion of prefix is reflexive. An ordered model M over U is a

1 Note that ◦ was not part of the initial version of the logic to avoid unintended effects
when used under the open-world assumption [16]. Also, note that we do not consider
strong negation.

796 J. Oetsch and J.-C. Nieves

sequence of atoms from U without repetition. We write M |= ϕ to denote that
formula ϕ is true in M . Relation |= is inductively defined as follows:

M �|= ⊥
M |= a iff a occurs in M , for an atom a ∈ U ;
M |= ϕ1 ∧ ϕ2 iff M |= ϕ1 and M |= ϕ2;
M |= ϕ1 ∨ ϕ2 iff M |= ϕ1 or M |= ϕ2;
M |= ϕ1 ⊃ ϕ2 iff M �|= ϕ1 or M |= ϕ2;
M |= ◦ϕ iff M ′ |= ϕ for some M ′
 M with |M | − |M ′| = 1;
M |= ♦ϕ iff M ′ |= ϕ for some M ′
 M ;
M |= �ϕ iff M ′ |= ϕ for each M ′
 M .

For a theory T , M |= T iff M |= ϕ for each ϕ ∈ T . Also, entailment, equivalence,
etc. are defined as in classical logic. We use the abbreviations ¬ϕ := ϕ ⊃ ⊥ and
� := ¬⊥. To denote the initial state, we define I := ¬◦� which is only true in ε.

An ordered model 〈a1, . . . , an〉 can be understood as a compact representation
of a sequence s0, . . . , sn of classical models that represent states of the world,
where s0 = ∅ and the only difference between any si and si+1 is that atom ai+1

becomes true in si+1. Note that two properties that are reasonable to assume in
the context of goal achievements are implicit in this representation: First, once an
atom becomes true, i.e., a goal has been achieved, it remains true (persistence).
Second, the same goal cannot be reached twice (Heraclitus principle). We refer
the reader to previous work for details [16].

3 Stable-Ordered Models

The nonmonotonic semantics of language L that we define in this paper is an
adaptation of the stable-model semantics due to Ferraris and Lifschitz [8,9]
for propositional theories with the necessary changes. For a formula ϕ and an
ordered model X over At(ϕ), we define the reduct of ϕ with respect to X, ϕX

in symbols, inductively as follows:

⊥X = ⊥
aX =

{
a if a is an atom and X |= a

⊥ otherwise

(ϕ1 ⊗ ϕ2)X ,⊗ ∈ {∧,∨,⊃} =

{
ϕX
1 ⊗ ϕX

2 if X |= ϕ1 ⊗ ϕ2

⊥ otherwise

(◦ϕ)X =

{
◦ϕY if Y
 X, |X| − |Y | = 1, and Y |= ϕ

⊥ otherwise
(♦ϕ)X =

∨
Y ∈{X′|X′�X} ♦ϕY

(�ϕ)X =
∧

Y ∈{X′|X′�X} �ϕY

For a theory T , TX = {ϕX | ϕ ∈ T}. An ordered model M over At(T) is a
stable-ordered model of T iff M |= TM , and for each subsequence M ′ of M ,
M ′ |= TM implies M ′ = M . With other words, M is a subsequence-minimal

Stable-Ordered Models for Propositional Theories with Order Operators 797

ordered model of TM . The stable-ordered models of a formula ϕ are the ones of
the theory {ϕ}.

The definition of the reduct for the classical connectives is the one for propo-
sitional theories [8,9]. For the classical connectives and a formula ϕ, the context
X is propagated to all direct subformulas of ϕ if a formula is true in X. Other-
wise, ϕ is replaced by ⊥. For the order operators, ϕ is evaluated not in X but
in respective prefixes of X. An evaluation of ♦ϕ, resp., �ϕ, in X corresponds to
the disjunction, resp., conjunction, of ϕ with respect to all prefixes of X. Note
that such a disjunction or conjunction is equivalent to ⊥ if the formula is false
in X.

Consider X = 〈a, b〉 and ϕ = ♦((a ∧ ¬b) ∨ b) ∧ (a ⊃ b). The reduct of ϕ for
X is

(♦((a ∧ ¬b) ∨ b))X ∧ (a ⊃ b)X

=
(
♦((a ∧ ¬b) ∨ b)ε ∨ ♦((a ∧ ¬b) ∨ b)〈a〉 ∨ ♦((a ∧ ¬b) ∨ b)〈a,b〉

)
∧ (

aX ⊃ bX
)

= (♦⊥ ∨ ♦a ∨ ♦b) ∧ (a ⊃ b)
= (♦a ∨ ♦b) ∧ (a ⊃ b)

The single minimal ordered model of ϕX is 〈b〉, thus X is not stable. But this
is reasonable: In the formation of the minimal ordered model of the reduct,
subformula ψ = ♦((a∧¬b)∨b) is not strong enough to force a (and subsequently
b by a ⊃ b) when evaluated in context X as ψ can also be satisfied by 〈b〉. This is
reflected by the disjunction in ϕX . It can be checked that the only stable-ordered
model of ϕ is 〈b〉.

It holds that every stable-ordered model is also an ordered model:

Theorem 1. For a formula ϕ ∈ L and ordered model X over At(ϕ), X |= ϕ iff
X |= ϕX .

Proof. For the if direction, assume that X �|= ϕ. Then, ϕX ≡ ⊥ and X �|= ϕX

follows.
We show the only-if direction by induction on the structure of ϕ. If ϕ = ⊥

or ϕ is atomic, X |= ϕ implies ϕX = ϕ and X |= ϕX follows.
Otherwise, ϕ is of form ϕ1 ⊗ ϕ2, ⊗ ∈ {∧,∨,⊃}, ◦ϕ1, ♦ϕ1, or �ϕ1. The

cases for the classical connectives are straight forward: For any ⊗ ∈ {∧,∨,⊃},
ϕX = ϕX

1 ⊗ ϕX
2 . By induction, X |= ϕ1 iff X |= ϕX

1 and X |= ϕ2 iff X |= ϕX
2 .

Hence, X |= ϕ1 ⊗ ϕ2 implies X |= ϕX
1 ⊗ ϕX

2 , and X |= ϕX follows.
Assume ϕ = ◦ϕ1. X |= ϕ implies that that there is a prefix X ′ of X with

|X| − |X ′| = 1 and X ′ |= ϕ1. By the inductive hypothesis, X ′ |= ϕX′
1 , and thus

X |= ◦ϕX′
1 . As ϕX = ◦ϕX′

1 , X |= ϕX follows.
Assume ϕ = ♦ϕ1. X |= ϕ implies that there is some prefix X ′ of X with

X ′ |= ϕ1. By induction, X ′ |= ϕX′
1 . This implies that X |= ♦ϕX′

1 . As ♦ϕX′
1 is a

disjunct of ϕX by definition, we conclude with X |= ϕX .
Finally, assume ϕ = �ϕ1. X |= ϕ implies that each prefix X ′ of X satisfies

ϕ1 and, by induction, ϕX′
1 . Hence, X satisfies �ϕX′

1 for each prefix X ′ of X, and
consequently X |= ϕX . ��

798 J. Oetsch and J.-C. Nieves

Our logic indeed generalises the stable-model semantics as the stable models
for theories without order operators correspond to its stable-ordered models and
vice versa.

As stable model existence for disjunctive programs is a ΣP
2 -complete prob-

lem [6], ΣP
2 -hardness for deciding existence of a stable-ordered model for a for-

mula follows. Deciding if an ordered model satisfies a formula in L can be done
in polynomial time [16].2 This implies that checking whether an ordered model
is a subsequence-minimal model of a formula is in coNP. As we can compute the
reduct ϕX in polynomial time, the following result follows:

Theorem 2. Given a formula ϕ ∈ L, the problem of deciding whether a stable-
ordered model for ϕ exists is ΣP

2 -complete.

4 Applications

We illustrate ASP with theories under the stable-ordered model semantics with
problems involving knowledge representation, temporal reasoning, and combina-
torial search.

Activity Reasoning. We studied activity reasoning based on achieving hier-
archically structured goals in previous work [16]. A goal can depend on subgoals
that need to be reached beforehand. An activity model is a formal description
of goal hierarchies together with constraints, where the activities correspond to
top-level goals. For illustration, consider the activity model for activities a and
d involving the subgoals b, c, and e, where a requires b and c, d requires e, e
requires c or f , and c cannot precede b. It can be formalised by the following L
formulas:

a ⊃ ♦(¬a ∧ (b ∧ c)) (1)
d ⊃ ♦(¬d ∧ e) (2)
e ⊃ ♦(¬e ∧ (c ∨ f)) (3)
¬ (b ∧ ♦(¬b ∧ c)) (4)

Formulas (1)–(3) represent the subgoal relation, and (4) is the constraint regard-
ing the order of c and b. Assume we observe that c is already archived. We want
to explain this observation in terms of the activity model. That is, does some
activity entail the observation? We use the following formulas:

a ∨ d (5)
¬¬♦(c ∧ ◦I) (6)

The single stable-ordered model of formulas (1)–(6) is 〈c, e, d〉. Only activity d
can explain the observation as a can never be realised because of constraint (4).
2 Although this result was formulated for L without ◦, it is applicable for L mutatis

mutandis.

Stable-Ordered Models for Propositional Theories with Order Operators 799

This is an example of abductive reasoning from the activities as hypotheses:
Formula (5) nondeterministically selects either activity a or activity d and (6)
enforces that the activity model derives the observation that c has already been
archived.

Combinatorial Event-Sequence Testing. In many applications, faults are
triggered by the order of events. Based on the fault model that the number of
events relevant to a bug is typically low, Kuhn et al. introduced sequence-covering
arrays (SCAs) as combinatorial designs to avoid the high costs of exercising all
possible event sequences [11]. ASP for event-sequence testing has been studied
in previous work [4]. Given a set E of events, an E-sequence is a permutation
of the events in E. An SCA of strength t and size n is a set {e1, . . . , en} of
E-sequences such that each sequence of pairwise distinct atoms from E with
length t is subsequence of some ei, 1 ≤ i ≤ n. We assume a fixed t = 3. Often,
some sequences are not feasible, e.g., “paste” cannot happen before“copy”. Let
C be a set of binary constraints over E with (a, b) ∈ C iff a must not precede b
in any ei. Define

P = {(a, b, c) ∈ E3 | a �= b, b �= c, a �= c, (a, b) �∈ C, (b, c) �∈ C, and (a, c) �∈ C}
The following L formulas with parameter n encode all SCAs of size n compatible
with the constraints in C:∧

a∈E,0<i≤n
ai (7)∧

(a,b)∈C,0<i≤n
¬(bi ∧ ♦(¬bi ∧ ai)) (8)∧

(a,b,c)∈P

∨
0<i≤n

(ci ∧ ♦(¬ci ∧ bi ∧ ♦(¬bi ∧ ai))) (9)

Formula (7) defines the test-input space in terms of sets of E-sequences. Index
i means that event ai belongs to ei. Formula (8) is a constraint that enforces
that there is no ei where a precedes b if (a, b) ∈ C. Set P contains all triples of
events that need to be covered, i.e., occur as a subsequence of some E-sequence.
Finally, coverage of all elements of P is guaranteed by Formula (9).

Fault Detection in Concurrent Programs. Finding bugs in multi-threaded
programs is notoriously hard due the vast number of possible thread interleav-
ings. A program consists of threads t1, . . . , tm and a set E of shared variables.
Each thread ti is modelled by a sequence 〈ai

1, . . . , a
i
ni

〉 of read or write accesses
to variables from E. A thread interleaving is a total order on all ai

j such that
the relative order within the threads is preserved. Based on the fault model that
many bugs are caused by reading a variable that has been defined by the wrong
writer, define-use pairs have been studied as coverage criterion to select inter-
esting interleavings [12]. A define-use pair (w, r)v is a write and a read access to
the same variable v. An interleaving covers (w, r)v iff w precedes r, and there is
no write to v inbetween.

800 J. Oetsch and J.-C. Nieves

Let P be the set of define-use pairs. To obtain total coverage of P by a set
of interleavings, we iterate the following steps until P = ∅:

(i) search for an interleaving I that covers some p ∈ P , and
(ii) remove all pairs covered by I from P .

The following L formulas can be used to search for an interleaving that covers
a given define-use pair q = (w, r)v and to identify all additionally covered ones.
Let Wv be the set of all write accesses to a variable v.

∧m

i=1

(
ai
1 ∧

∧ni−1

j=1

(
ai

j+1 ∧ ♦
(¬ai

j+1 ∧ ai
j

)))
(10)

∧
(w,r)v∈P

((
r ∧ ♦(¬r ∧ w)∧

∧
a∈Wv\{w} ¬♦(w ∧ a ∧ ¬r)

)
⊃ c(w,r)v

)
(11)

¬¬c(w,r)v (12)

Formula (10) spans the search space of possible thread interleavings. For-
mula (11) derives c(w,r)v if the define-use pair (w, r)v is covered. Finally, (12) is
a constraint that prunes away all models where the specified define-use pair q is
not covered.

Digital Forensics. A frequent problem in digital forensics is file carving, i.e.,
to recover fragmented files when file-table information is not available. Files are
typically stored in terms of clusters but these clusters are not necessarily in
order on a storage device. The problem of recovering multiple files from a set of
clusters has been studied by Pal and Memon [14] as a k-vertex disjoint graph
problem. The clusters are the vertices V of a graph G = (V,E), some clusters
are identified as headers H ⊆ V or footers F ⊆ V , and (a, b) ∈ E iff a �∈ F ,
b �∈ H, and the likelihood that b follows a—calculated by a suitable metric—is
above a fixed threshold. We want to find k paths in G that start with a header
and end in a footer such that each cluster appears in exactly one path. We can
formalise this problem concisely as follows:∧

a∈V
a (13)∧

(a,b)∈V 2\(E∪(F×H))
¬♦(b ∧ ◦(a ∧ ¬b) ∧ ¬◦◦a) (14)

Formula (13) spans the search space in terms of permutations of all clusters.
Paths where b follows a but (a, b) �∈ E, unless a is a footer and b is a header, i.e.,
a new path starts, are excluded via (14) . Each stable-ordered model of formulas
(13)–(14) describes a solution to the specified k-vertex disjoint graph problem.

5 Discussion

Our idea of sequences of atoms as models naturally lends itself to reasoning
about goal achievements when goals are seen as atomic entities and the order

Stable-Ordered Models for Propositional Theories with Order Operators 801

operators have a temporal interpretation. This is by design as our initial moti-
vation comes from activity reasoning [16]. In fact, ordered models are a compact
representation of LTL traces where in each step a single new atom becomes true.
Also others dealt with nonmonotonic temporal logics based on LTL [1–3,5], but
the idea of ordered models is quite unique and allows for a semantics closer
to standard stable models. Notably, the complexity of deciding model existence
remains in ΣP

2 . Although this is a distinctive advantage compared to aforemen-
tioned related work, the flip-side is reduced expressiveness. Yet, we demonstrate
versatile applications from activity reasoning combinatorial testing, concurrent
programming, and digital forensics. Although these problems can also be encoded
in standard ASP, we think that dedicated order operators allow for more natural
and concise problem encodings.

We expect that common results for theories under the stable-model semantics
(strong equivalence, splitting sets, etc.) hold for theories under the stable-ordered
model semantics as well but leave this for future work. Also, we plan to identify
normal forms of theories that are closer to the familiar rule based syntax of logic
programming and study translations into standard ASP so that existing solvers
can be used for model generation.

References

1. Aguado, F., Cabalar, P., Diéguez, M., Pérez, G., Vidal, C.: Temporal equilibrium
logic: a survey. J. Appl. Non-Class. Logics 23(1–2), 2–24 (2013)

2. Baral, C., Zhao, J.: Non-monotonic temporal logics for goal specification. In: Pro-
ceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI
2007), pp. 236–242. AAAI Press (2007)

3. Baral, C., Zhao, J.: Non-monotonic temporal logics that facilitate elaboration tol-
erant revision of goals. In: Proceedings of the 23rd AAAI Conference on Artificial
Intelligence (AAAI 2008), pp. 406–411. AAAI Press (2008)

4. Brain, M., et al.: Event-sequence testing using answer-set programming. Int. J.
Adv. Softw. 5(3 & 4), 237–251 (2012)

5. Cabalar, P., Kaminski, R., Schaub, T., Schuhmann, A.: Temporal answer set pro-
gramming on finite traces. TPLP 18(3–4), 406–420 (2018)

6. Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic programming:
propositional case. Ann. Math. Artif. Intell. 15(3–4), 289–323 (1995)

7. Erdem, E., Gelfond, M., Leone, N.: Applications of answer set programming. AI
Mag. 37(3), 53–68 (2016)

8. Ferraris, P.: Answer sets for propositional theories. In: Baral, C., Greco, G., Leone,
N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 119–131.
Springer, Heidelberg (2005). https://doi.org/10.1007/11546207 10

9. Ferraris, P., Lifschitz, V.: Mathematical foundations of answer set programming.
In: We Will Show Them! Essays in Honour of Dov Gabbay, vol. 1, pp. 615–664.
College Publications (2005)

10. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Proceedings of the 5th International Conference and Symposium on Logic Pro-
gramming, pp. 1070–1080. MIT Press (1988)

https://doi.org/10.1007/11546207_10

802 J. Oetsch and J.-C. Nieves

11. Kuhn, D.R., Higdon, J.M., Lawrence, J., Kacker, R., Lei, Y.: Combinatorial meth-
ods for event sequence testing. In: Proceedings of the 5th IEEE International Con-
ference on Software Testing, Verification and Validation (ICST 2012), pp. 601–609.
IEEE Computer Society (2012)

12. Lu, S., Jiang, W., Zhou, Y.: A study of interleaving coverage criteria. In: Proceed-
ings of the 6th joint meeting of the European Software Engineering Conference
and the ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pp. 533–536. ACM (2007)

13. Marek, V.W., Truszczyński, M.: Stable models and an alternative logic program-
ming paradigm. In: Apt, K.R., Marek, V.W., Truszczynski, M., Warren, D.S. (eds.)
The Logic Programming Paradigm, pp. 375–398. Springer, Heidelberg (1999).
https://doi.org/10.1007/978-3-642-60085-2 17

14. Memon, N.D., Pal, A.: Automated reassembly of file fragmented images using
greedy algorithms. IEEE Trans. Image Process. 15(2), 385–393 (2006)

15. Niemelä, I.: Logic programs with stable model semantics as a constraint program-
ming paradigm. Ann. Math. Artif. Intell. 25(3–4), 241–273 (1999)

16. Oetsch, J., Nieves, J.C.: A knowledge representation perspective on activity theory.
arxiv eprint arXiv:1811.05815 (2018)

17. Pearce, D.: A new logical characterisation of stable models and answer sets. In:
Dix, J., Pereira, L.M., Przymusinski, T.C. (eds.) NMELP 1996. LNCS, vol. 1216,
pp. 57–70. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0023801

18. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th IEEE
Symposium on the Foundations of Computer Science (FOCS 1977), pp. 46–57.
IEEE Computer Society Press (1977)

https://doi.org/10.1007/978-3-642-60085-2_17
http://arxiv.org/abs/1811.05815
https://doi.org/10.1007/BFb0023801

Cut-Free Calculi and Relational
Semantics for Temporal STIT Logics

Kees van Berkel(B) and Tim Lyon(B)

Institut für Logic and Computation, Technische Universität Wien, Vienna, Austria
{kees,lyon}@logic.at

Abstract. We present cut-free labelled sequent calculi for a central
formalism in logics of agency: STIT logics with temporal operators.
These include sequent systems for Ldm, Tstit and Xstit. All calculi pre-
sented possess essential structural properties such as contraction- and
cut-admissibility. The labelled calculi G3Ldm and G3Tstit are shown
sound and complete relative to irreflexive temporal frames. Additionally,
we extend current results by showing that also Xstit can be characterized
through relational frames, omitting the use of BT+AC frames.

Keywords: Labelled sequent calculi · Cut-free completeness ·
Temporal logic · Multi-agent STIT logic · Relational semantics

1 Introduction

Various autonomous machines are developed with the aim of performing partic-
ular human tasks. Human acting, however, is inevitably connected to legal and
moral decision making–sometimes more than we think. Hence, such machines
will eventually be found in difficult scenarios in which normatively acceptable
actions must be generated [12]. What is more, these decisions can quickly turn
into complex (technical) problems [13]. The above stresses the need for formal
tools that allow for reasoning about agents, the choices they have, and the actions
they are able and allowed to perform. Implementable logics of agency can play an
important role in the development of such automated systems: they can provide
explicit proofs that can be checked and which, more importantly, can be under-
stood by humans (e.g. [1]). The present work takes a first step in this direction
by providing cut-free sequent calculi for one of the central formalisms of agency:
STIT logic with temporal operators.

The logic of STIT, which is an acronym for ‘Seeing To It That’, is a promi-
nent modal framework for the formal analysis of multi-agent interaction and
reasoning about choices.1 In short, STIT logics contain modal formulae of the
form [i]φ, capturing the notion that “the agent i sees to it that the state of affairs

1 For an introduction to STIT logic and a historical overview we refer to [3,4,16].

Work funded by the projects WWTF MA16-028, FWF I2982 and FWF W1255-N23.

c© Springer Nature Switzerland AG 2019
F. Calimeri et al. (Eds.): JELIA 2019, LNAI 11468, pp. 803–819, 2019.
https://doi.org/10.1007/978-3-030-19570-0_52

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19570-0_52&domain=pdf
http://orcid.org/0000-0003-3214-0828
https://doi.org/10.1007/978-3-030-19570-0_52

804 K. van Berkel and T. Lyon

φ is brought about”. STIT logic knows many fruitful extensions and its recent
application to legal theory, deontic reasoning, and epistemics shows that issues
of agency are essentially tied to temporal aspects of choice: for example, con-
sider issues in legal responsibility [18]; social commitment [17]; knowledge-based
obligations [7]; agent-bound instrumentality [5]; and actions as events [28].

Unfortunately, nearly all available proof systems for STIT logics are Hilbert-
style systems, which are known to be cumbersome for proof search and not
suitable for proving metalogical properties of the intended formalisms. To this
purpose, a renowned alternative proof framework is Gentzen’s sequent calculus
[11]. It allows one to construct proofs that decompose the formulae to be proven
in a stepwise manner; making it an effective tool for proof search and a good
candidate for automated deduction procedures. However, this framework is not
strong enough to design cut-free analytic calculi for many modal logics of interest
[20]; including STIT logic. In this work, we will treat several STIT logics through
a more expressive extension of this formalism: Labelled Sequent Calculi [20,26].

The aim of the present paper is to provide labelled calculi for several central
temporal STIT logics: Ldm, Tstit and Xstit. To our knowledge, there have only
been three attempts to capture STIT logics in alternative proof systems: in [1]
a natural deduction system for a deontic STIT logic is proposed and in [24,27]
tableaux systems for multi-agent deliberative STIT logics are presented.

On the one hand, the novelty of the present contribution compared to previ-
ous works, is that all presented calculi (i) possess useful proof-theoretic proper-
ties such as contraction- and cut-admissibility and (ii) are modular and extend
to several temporal STIT-logics, including both temporal operators and inher-
ently temporal STIT-operators (in a multi-agent, as well as a group setting).
In doing so, we answer an open question in [27] regarding the construction of a
rule-based proof system for temporal extensions of Ldm. On the other hand, the
investigation of STIT has been with an essential focus on its intuitive seman-
tics: branching time structures, extended with histories as paths and agential
choice-functions (BT+AC-frames). Recent work [2,14,17], however, shows that
the basic atemporal STIT logic Ldm and its temporal extension Tstit are char-
acterizable through simpler relational frames. The current work extends these
results by showing that also the logic Xstit can be semantically characterized
without using BT+AC structures.

In Sect. 2 we will introduce the base logic Ldm and its corresponding labelled
calculus. Thereafter, in Sect. 3, we provide a cut-free calculus for the temporal
STIT logic Tstit, introduced in [17], which exploits a temporal irreflexivity rule
based on [10]. Last, in Sect. 4, we provide a labelled calculus for the inherently
temporal STIT logic Xstit from [7,8]. Here we show that the independence of
agents principle of STIT logic can be captured using systems of rules from [22].
We conclude and highlight some envisaged future work in Sect. 5.

Cut-Free Calculi for Temporal STIT Logics 805

2 The Logic Ldm

2.1 Axioms and Relational Semantics for Ldm

The basic STIT logic Ldm offers a framework for reasoning about individual
agents realizing propositions via the choices available to them at particular
moments in time. In the semantics of Ldm, each moment can be formalized as
an equivalence class of worlds, where each world sits in a linear chain (referred
to as a history) extending to the future and (possibly to) the past. Therefore,
each world contained in a particular moment can be thought of as an alternative
state of affairs that evolves along a different timeline. Moreover, for each agent,
moments are further partitioned into equivalence classes, where each class rep-
resents a possible choice available to the agent for realizing a set of potential
outcomes. Hence, if a proposition φ holds true in every world of a particular
choice for an agent i, then we claim that “i sees to it that φ” (written formally
as [i]φ) at each world of that choice; i.e. i’s committal to the choice ensures φ
regardless of which world in the choice set is actual.

The above STIT operator [i] is referred to as the Chellas-STIT (i.e. cstit)
[4]. It is often distinguished from the deliberative STIT (i.e. dstit) which consists
of cstit together with a negative condition: we say that “agent i deliberatively
sees to it that φ” (written formally as [i]d) when (i) “i sees to it that φ” and
(ii) “φ is currently not settled true” [15,16]. The second condition ensures that
the realization of φ depends on the choice made by the agent; i.e. φ might not
have been case had the agent chosen to act differently. By making use of the
settledness operator �, which is prefixed to a formula when the formula holds
true at every world in a moment, cstit and dstit become inter-definable: namely,
[i]dφ iff [i]φ ∧ ¬�φ. As an example of a STIT formula, the formula ♦[i]dφ must
be interpreted as follows: at the current moment, agent i has a possible choice
available that allows i to see to it that φ is guaranteed, and there is an alternative
choice present to i that does not guarantee φ. In this paper, we introduce � and
[i] as primitive and take [i]d as defined.

In this section, we make all of the aforementioned notions formally precise
and provide a relational semantics for Ldm along with a corresponding cut-free
labelled calculus. In Sect. 3, we will extend Ldm with temporal operators, obtain-
ing the logic Tstit. Since both logics rely on the same semantics, we introduce
their languages and semantics simultaneously, avoiding unnecessary repetition.
Lastly, in what follows we give all formulae of the associated logics in negation
normal form. This reduces the number of rules in the associated calculi and offers
a simpler presentation of the proof theory. The languages for Ldm and Tstit are
given below:

Definition 1 (The Languages LLdm and LTstit). Let Ag = {1, 2, ..., n} be a
finite set of agent labels and let V ar = {p1, p2, p3...} be a countable set of propo-
sitional variables. The language LLdm is given by the following BNF grammar:

φ ::= p | p | φ ∧ φ | φ ∨ φ | �φ | ♦φ | [i]φ | 〈i〉φ

806 K. van Berkel and T. Lyon

The language LTstit is defined accordingly:

φ ::= p | p | φ ∧ φ | φ ∨ φ | �φ | ♦φ | [i]φ | 〈i〉φ | [Ag]φ | 〈Ag〉φ | Gφ | Fφ | Hφ | Pφ

where i ∈ Ag and p ∈ V ar.

The language LTstit extends LLdm through the incorporation of the tense
modalities G, F, H, and P and the modalities [Ag] and 〈Ag〉 for the grand coalition
Ag of agents. G and F are duals and read, respectively, as ‘always will be in the
future’ and ‘somewhere in the future’. H are P are also dual and are interpreted,
respectively, as ‘always has been in the past’ and ‘somewhere in the past’ (cf.
[17,25]). The operator [Ag] captures the notion that ‘the grand coalition of
agents sees to it that’. Note that the negation of a formula φ, written φ, is
obtained in the usual way by replacing each operator with its dual, each positive
propositional atom p with its negation p, and each negative propositional atom
p with its positive version p. We may therefore define φ → ψ as φ ∨ ψ, φ ↔ ψ
as φ → ψ ∧ ψ → φ, 	 as p ∨ p, and ⊥ as p ∧ p. We will use these abbreviations
throughout the paper.

At present, we are principally interested in Ldm and temporal frames: in
particular, since Tstit will be introduced as the temporal extension of Ldm and,
more generally, because the logic of STIT has an implicit temporal intuition
underlying choice-making (cf. original branching-time frames employed for Ldm
[4,15,16]). We will prove that Ldm is strongly complete with respect to these
more elaborate irreflexive Temporal Kripke STIT frames.

Definition 2 (Relational Tstit Frames and Models [17]). Let Rα(w) :=
{v ∈ W |(w, v) ∈ Rα} for α ∈ {�, Ag,G,H} ∪ Ag. A relational Tempo-
ral STIT frame (Tstit-frame) is defined as a tuple F = (W,R�, {Ri|i ∈
Ag},RAg,RG,RH) where W is a non-empty set of worlds w, v, u... and:

– For all i ∈ Ag, R�, Ri, RAg ⊆ W × W are equivalence relations where:
(C1) For each i, Ri ⊆ R�;
(C2) For all u1, ..., un ∈ W , if R�uiuj for all 1 ≤ i, j ≤ n, then

⋂
i Ri(ui) �=

∅;
(C3) For all w ∈ W , RAg(w) =

⋂
i∈Ag Ri(w);

– RG ⊆ W ×W is a transitive and serial binary relation and RH is the converse
of RG, and the following conditions hold:
(C4) For all w, u, v ∈ W , if RGwu and RGwv, then RGuv, u = v, or RGvu;
(C5) For all w, u, v ∈ W , if RHwu and RHwv, then RHuv, u = v, or RHvu;
(C6) RG ◦ R� ⊆ RAg ◦ RG; (Relation composition ◦ is defined as usual.)
(C7) For all w, u ∈ W , if u ∈ R�(w), then u �∈ RG(w);

A Tstit-model is defined as a tuple M = (F, V) where F is a Tstit-frame and V
is a valuation function assigning propositional variables to subsets of W ; that is,
V : V ar �→ P(W).

Cut-Free Calculi for Temporal STIT Logics 807

The property expressed in C2 corresponds to the familiar independence of
agents principle of STIT logic, which states that if it is currently possible for
each distinct agent to make a certain choice, then it is possible for all such
choices to be made simultaneously. Condition C6 captures the STIT principle
of no choice between undivided histories, which ensures that if two time-lines
remain undivided at some future moment, then no agent can currently make a
choice realizing one time-line without the other. (This principle is inexpressible
in the atemporal language of the base logic Ldm.) For a philosophical discussion
of these principles see [4]. Last, condition C7 ensures that the temporal frames
under consideration are irreflexive, which means that the future is a strict future
(excluding the present). For a discussion of the other frame properties we refer
to [17].

Definition 3 (Semantics for LLdm and LTstit). Let M be a Tstit-model and
let w be a world in its domain W . The satisfaction of a formula φ on M at w is
inductively defined as follows (in clauses 1–14 we omit explicit mention of M):

1. w |= p iff w ∈ V (p)
2. w |= p iff w �∈ V (p)
3. w |= φ ∧ ψ iff w |= φ and w |= ψ
4. w |= φ ∨ ψ iff w |= φ or w |= ψ
5. w |= �φ iff ∀u ∈ R�(w), u |= φ
6. w |= ♦φ iff ∃u ∈ R�(w), u |= φ
7. w |= [i]φ iff ∀u ∈ Ri(w), u |= φ

8. w |= 〈i〉φ iff ∃u ∈ Ri(w), u |= φ
9. w |= [Ag]φ iff ∀u ∈ RAg(w), u |= φ

10. w |= 〈Ag〉φ iff ∃u ∈ RAg(w), u |= φ
11. w |= Gφ iff ∀u ∈ RG(w), u |= φ
12. w |= Fφ iff ∃u ∈ RG(w), u |= φ
13. w |= Hφ iff ∀u ∈ RH(w), u |= φ
14. w |= Pφ iff ∃u ∈ RH(w), u |= φ

A formula φ is globally true on M (i.e. M |=φ) iff it is satisfied at every world
w in the domain W of M . A formula φ is valid (i.e. |=φ) iff it is globally true
on every Tstit-model.

Definition 4 (The Logic Ldm [4]). The Hilbert system of Ldm consists of the
following axioms and inference rules:

φ → (ψ → φ) (ψ → φ) → (φ → ψ) (φ → (ψ → χ)) → ((φ → ψ) → (φ → χ))

�φ → φ ♦φ → �♦φ �(φ → ψ) → (�φ → �ψ) [i]φ → φ 〈i〉φ → [i]〈i〉φ

�φ ∨ ♦φ [i]φ ∨ 〈i〉φ ∧
i∈Ag ♦[i]φi → ♦(

∧
i∈Ag[i]φi)

[i](φ → ψ) → ([i]φ → [i]ψ) �φ → [i]φ
φ

�φ

φ φ → ψ

ψ

A derivation of φ in Ldm from a set of premises Θ, is written as Θ �Ldm φ.
When Θ is the empty set, we refer to φ as a theorem and write �Ldm φ.

The axiomatization contains duality-axioms �φ ∨ ♦φ and [i]φ ∨ 〈i〉φ which
ensure the usual interaction between the box and diamond modalities. Further-
more, the axiom

∧
i∈Ag ♦[i]φi → ♦(

∧
i∈Ag[i]φi) is the independence of agents

(IOA) axiom.

Theorem 1 (Soundness [17]). For any formula φ, if �Ldm φ, then |=φ.

808 K. van Berkel and T. Lyon

Observe that all axioms of Ldm are within the Sahlqvist class. Therefore, we
know that Ldm is already strongly complete relative to the simpler class of frames
defined by the first-order properties corresponding to its axioms [6] (cf. [2,14] for
alternative completeness proofs of Ldm relative to this class of relational frames).
As mentioned previously, we are interested in Ldm relative to the more involved
temporal frames. The usual canonical model construction from [6] cannot be
applied to obtain completeness of Ldm in relation to Tstit-frames. This follows
from the fact that the axioms of Ldm do not impose any temporal structure on
the canonical model of Ldm, and hence, we are not ensured that the resulting
model qualifies as a Tstit-model. Theorem 2 is therefore proved via an alternative
canonical model construction. Since our main focus is sequent calculi for STIT
logics, we omit the lengthy completeness proof here, and refer the interested
reader to the appendix (available at http://arxiv.org/abs/1902.06632).

Theorem 2 (Completeness). Any consistent set Σ ⊂ LLdm is satisfiable.

2.2 A Cut-Free Labelled Calculus for Ldm

We now provide a cut-free labelled calculus for Ldm, which can be seen as a
simplification of the tableaux calculus in [27]. Labelled sequents Γ are defined
through the following BNF grammar:

Γ ::= x : φ | Γ, Γ | Rαxy, Γ

where x is from a countable set of labels L = {x, y, z, ...}, α ∈ {�} ∪ Ag,
and φ ∈ LLdm. Note that commas are used equivocally in the interpretation
of a labelled sequent: representing (i) a conjunction when occurring between
relational atoms, (ii) a disjunction when occurring between labelled formulae,
and (iii) an implication when binding the multiset of relational atoms to the
multiset of labelled formulae, which comprise a sequent. Last, we use the notation
�G3X x : φ (for X ∈ {Ldm,Tstit,Xstit}) to denote here and later that the labelled
formula x : φ is derivable in the calculus G3X.

The first order correspondents of all Ldm axioms are geometric axioms: that
is, axioms of the form ∀x1...xn((φ1 ∧ ... ∧ φm) → ∃y1...yk(ψ1 ∨ ... ∨ ψl)) where
each φi is atomic and does not contain free occurrences of yj (for 1 ≤ j ≤ k), and
each ψi is a conjunction χ1 ∧ ... ∧ χr of atomic formulae. The calculus G3Ldm is
obtained by transforming all such correspondents into rules; i.e. geometric rules.
(For further discussion on extracting rules from axioms, we refer to [20,22].)
Last, since our formulae are in negation normal form, we provide a one-sided
version of the calculi introduced in [20]. This allows for a simpler formalism with
fewer rules, but which is equivalent in expressivity.

Definition 5 (The Calculus G3Ldm).

(id)
Γ, w : p, w : p

Γ, w : φ Γ, w : ψ
(∧)

Γ, w : φ ∧ ψ

Γ, w : φ, w : ψ
(∨)

Γ, w : φ ∨ ψ

Γ, R�wv, v : φ
(�)∗

Γ, w : �φ

Γ, R�wu, w : ♦φ, u : φ
(♦)

Γ, R�wu, w : ♦φ

Γ, Riwv, v : φ
([i])∗

Γ, w : [i]φ

Γ, Riwu, w : 〈i〉φ, u : φ
(〈i〉)

Γ, Riwu, w : 〈i〉φ

http://arxiv.org/abs/1902.06632

Cut-Free Calculi for Temporal STIT Logics 809

R�ww, Γ
(refl�)

Γ

Riww, Γ
(refl[i])

Γ

R�wu1, ..., R�wun, R1u1v, ..., Rnunv, Γ
(IOA)∗R�wu1, ..., R�wun, Γ

R�wu, R�wv, R�uv, Γ
(eucl�)R�wu, R�wv, Γ

R�wu, Riwu, Γ
(br[i])Riwu, Γ

Riwu, Riwv, Riuv, Γ
(eucl[i])Riwu, Riwv, Γ

The ‘∗’ on the labels (�), ([i]), and (IOA) indicates an eigenvariable condition
for this rule: i.e. the label v occurring in the premise of the rule cannot occur in
the conclusion.

The rule (id) is an initial sequent and the rules (∧), (∨), (�), (♦), ([i]) and
(〈i〉) allow us to decompose connectives. Furthermore, as indicated by the rela-
tional atoms, the rules (refl�), (refl[i]), (eucl�), (eucl[i]), (br[i]) capture the behav-
ior of the corresponding modal operators, and the rule (IOA) secures indepen-
dence of agents in G3Ldm. In order to establish the intended soundness and
completeness results, we need to formally interpret a labelled sequent relative to
a given model. For the sake of brevity, we provide the semantics uniformly for
all labelled sequent languages appearing in this paper:

Definition 6 (Interpretation, Satisfiability, Validity). Let X ∈
{Ldm,Tstit,Xstit}. Let M be a model for X with domain W , L the set of
labels used in the labelled sequent language of G3X, Γ a sequent in G3X and
let Rα be a relation of M . (We have Rα ∈ {R�,Ri} for X = Ldm, Rα ∈
{R�,Ri,RAg,RG, R̆G,RH} for X = Tstit, and Rα ∈ {R�,RX ,RA}, for all
A ⊆ Ag, when X = Xstit. We take R̆G as the complement of the relation RG.)
Last, let I be an interpretation function of L on M that maps labels to worlds;
i.e. I: L �→ W . We say that,

a sequent Γ is satisfied in M with I iff for all relational atoms Rαxy and
equalities x= y in Γ , if RαxIyI holds in M , then there must exist some z : φ
in Γ such that M, zI |=φ.

A sequent Γ is valid iff it is satisfiable in any model M with any I of L on M .

Theorem 3 (Soundness). Every sequent derivable in G3Ldm is valid.

Proof. By induction on the height of the given G3Ldm derivation. For initial
sequents of the form Γ,w:p,w:p the claim is clear. The inductive step is argued
by showing that each inference rule preserves validity (cf. Theorem 5.3 in [21]).

Lemma 1. For all φ ∈ LLdm, if �Ldm φ, then �G3Ldm x : φ.

Proof. The derivation of each axiom and inference rule of Ldm, except for the
IOA-axiom, is straightforward (See [20,23]). For readability, we only present the
derivation of the IOA-axiom for two agents; the general case is similar:

810 K. van Berkel and T. Lyon

R1vu, R1yv, R1yu, ..., y : 〈1〉φ1, u : φ1, u : φ1

R1vu, R1yv, Riyu, ..., y : 〈1〉φ1, u : φ1

R1vu, R1yv, ..., y : 〈1〉φ1, u : φ1

R1yv, ..., y : 〈1〉φ1, v : [1]φ1

R2vu, R2zv, Rizw, ..., z : 〈2〉φ2, w : φ2, w : φ2

R2vw, R2zv, R2zw, ..., z : 〈2〉φ2, w : φ2

R2vw, R2zv, ..., z : 〈2〉φ2, w : φ2

R2zv, ..., z : 〈2〉φ2, v : [2]φ2

R1yv, R2zv, R�xy, R�yv, R�xv, R�xz, y : 〈1〉φ1, z : 〈2〉φ2, x : ♦([1]φ1 ∧ [2]φ2), v : [1]φ1 ∧ [2]φ2

R1yv, R2zv, R�xy, R�yv, R�xv, R�xz, y : 〈1〉φ1, z : 〈2〉φ2, x : ♦([1]φ1 ∧ [2]φ2)

R1yv, R2zv, R�xy, R�yv, R�xz, y : 〈1〉φ1, z : 〈2〉φ2, x : ♦([1]φ1 ∧ [2]φ2)

R1yv, R2zv, R�xy, R�xz, y : 〈1〉φ1, z : 〈2〉φ2, x : ♦([1]φ1 ∧ [2]φ2)

R�xy, R�xz, y : 〈1〉φ1, z : 〈2〉φ2, x : ♦([1]φ1 ∧ [2]φ2)

x : �〈1〉φ1, x : �〈2〉φ2, x : ♦([1]φ1 ∧ [2]φ2)

x : �〈1〉φ1 ∨ �〈2〉φ2 ∨ ♦([1]φ1 ∧ [2]φ2)

The dashed lines in the above proof indicate the use of transitivity rules, which
are derivable from the (refl[i]), (eucl[i]), (refl�), and (eucl�) rules (see [20]).

Theorem 4 (Completeness). For all φ ∈ LLdm, if |= φ, then �G3Ldm x : φ.

Proof. Follows from Theorem 2 and Lemma 1.

Due to the fact that all labelled sequent calculi given in this paper fit within the
scheme presented in [20,22], we obtain the subsequent theorem specifying their
proof-theoretic properties:

Theorem 5. Each calculus G3X with X ∈ {Ldm,Tstit,Xstit} has the following
properties:

1. All sequents of the form Γ, x : φ, x : φ are derivable in G3X with φ in the
language LX;

2. All inference rules of G3X are height-preserving invertible;
3. Weakening, contraction, and variable-substitution are height-preserving

admissible;
4. Cut is admissible.

Proof. See [20] and [22] for details.

In order to maintain the admissibility of contraction, our calculi must satisfy
the closure condition [20,22]. That is, the calculi G3Ldm,G3Tstit and G3Xstit
adhere to the following condition: For any generalized geometric rule in which
a substitution of variables produces a duplication of relational atoms or equali-
ties active in the rule, the instance of the rule with such duplicates contracted
is added to the calculus. Since variable substitutions can only bring about
a finite number of rule instances possessing duplications, the closure condi-
tion adds at most finitely many rules and is hence unproblematic. (General-
ized geometric rules extend the class of geometric rules and can be extracted
from generalized geometric axioms. In short, these are formulae of the form
GAn = ∀x1...xn((φ1 ∧ ...∧φm) → (∃y1

∧
GAk1 ∨ ...∨∃ym

∧
GAkm

)), where each∧
GAkj

(for 0≤k1, · · ·, km<n) stands for a conjunction of generalized geometric
axioms, inductively constructed up to kj-depth with the base case GA0 being a
geometric axiom. For a formal treatment of these axioms and rules see [22]).

Cut-Free Calculi for Temporal STIT Logics 811

3 The Logic Tstit

3.1 Axiomatization for Tstit

The logic Tstit extends the logic Ldm through the incorporation of tense modal-
ities and the modality for the grand coalition of agents (see Definition 1). This
additional expressivity allows for the application of Tstit in settings where one
wishes to reason about the joint action of all agents, or the consequences of
choices over time. The logic was originally proposed in [17] as a Hilbert system,
in this section we provide a corresponding cut-free calculus.

Definition 7 (The Logic Tstit [17]). The Hilbert system for the logic Tstit is
defined as the logic Ldm extended with the following axioms and inference rules:

[Ag]φ → φ 〈Ag〉φ → [Ag]〈Ag〉φ ∧
1≤i≤n[i]φi → [Ag]

∧
1≤i≤n φi φ → GPφ

FPφ → Pφ ∨ φ ∨ Fφ G(φ → ψ) → (Gφ → Gψ) φ → HFφ PFφ → Pφ ∨ φ ∨ Fφ

H(φ → ψ) → (Hφ → Hψ) Gφ → Fφ FFφ → Fφ F♦φ → 〈Ag〉Fφ [Ag]φ ∨ 〈Ag〉φ

Gφ ∨ Fφ Hφ ∨ Pφ
φ

Gφ

φ

Hφ

(�¬p ∧ �(Gp ∧ Hp)) → φ
with p �∈ φ

φ

A derivation of φ in Tstit from a set of premises Θ, is written as Θ �Tstit φ.
When Θ is the empty set, we refer to φ as a theorem and write �Tstit φ.

Note that the axiom F♦φ → 〈Ag〉Fφ characterizes the no choice between
undivided histories property (Definition 2, C6). Furthermore, the last inference
rule, a variation of Gabbay’s irreflexivity rule [10], characterizes the property
of RG-irreflexivity (Definition 2, C7). For a discussion of all axioms and rules
see [17].

Theorem 6 (Soundness and Completeness [17]). For any formula φ ∈
LTstit, �Tstit φ iff |= φ.

3.2 A Cut-Free Labelled Calculus for Tstit

Let L = {x, y, z, ...} be a countable set of labels. The language of G3Tstit is
defined as follows:

Γ ::= x : φ | Γ, Γ | Rαxy, Γ

where x ∈ L, φ ∈ LTstit, and Rα ∈ {R�,Ri,RAg,RG, R̆G,RH}. On the basis of
this language, we construct the calculus G3Tstit as an extension of G3Ldm.

Definition 8 (The Calculus G3Tstit). The labelled calculus G3Tstit consists
of all the rules of G3Ldm extended with the following set of rules:

RHwu, RGuw, Γ
(convH)RHwu, Γ

Γ, RHwu, w : Pφ, u : φ
(P)

Γ, RHwu, w : Pφ

(compG1)RGwu, R̆Gwu, Γ

812 K. van Berkel and T. Lyon

Γ, RGwv, v : φ
(G)∗

Γ, w : Gφ

Γ, RGwu, w : Fφ, u : φ
(F)

Γ, RGwu, w : Fφ

RGwu, RHuw, Γ
(convG)RGwu, Γ

Γ, RAgwu, w : 〈Ag〉φ, u : φ
(〈Ag〉)

Γ, RAgwu, w : 〈Ag〉φ
RAgww, Γ

(reflAg)
Γ

w = w, Γ
(refl=)

Γ

RGuv, RGwu, RGwv, Γ u = v, RGwu, RGwv, Γ RGvu, RGwu, RGwv, Γ
(connG)RGwu, RGwv, Γ

RHuv, RHwu, RHwv, Γ u = v, RHwu, RHwv, Γ RHvu, RHwu, RHwv, Γ
(connH)RHwu, RHwv, Γ

RGwu, R�uz, RAgwv, RGvz, Γ
(ncuh)∗RGwu, R�uz, Γ

RGwu, Γ R̆Gwu, Γ
(compG2)Γ

RGwu, RGuv, RGwv, Γ
(transG)RGwu, RGuv, Γ

RAgwu, Riwu, Γ
(agd)RAgwu, Γ

Γ, RHwv, v : φ
(H)∗

Γ, w : Hφ

RGwv, Γ
(serG)

∗
Γ

RAgwu, RAgwv, RAguv, Γ
(euclAg)RAgwu, RAgwv, Γ

R�wu, R̆Gwu, Γ
(irrG)R�wu, Γ

w = u, Δ[w], Δ[u], Γ
(sub=)

w = u, Δ[w], Γ

w = u, w = v, u = v, Γ
(eucl=)

w = u, w = v, Γ

Γ, RAgwv, v : A
([Ag])∗

Γ, w : [Ag]A

For (H), ([Ag]), (G), (ncuh), and (serG) the ‘∗’ states that v must be an
eigenvariable.

We note that the rules (convG) and (convH) express the converse rela-
tion between RG and RH, and the rules (agd), (connG), (connH), (ncuh) and
{(irrG), (compG1), (compG2)} correspond to conditions (C3)–(C7) of Defini-
tion 2, respectively. Furthermore, the notation Δ[u] in the substitution rule
(sub=) is used to express a collection of relational atoms and labelled formulae
where all occurrences of the label w in Δ[w] have been replaced by occurrences
of u. This notation uniformly captures all of the substitution rules given in [20].

Theorem 7 (Soundness). Every sequent derivable in G3Tstit is valid.

Proof. Similar to Theorem 3.

Unfortunately, with respect G3Tstit completeness, we cannot use the relatively
simple strategy applied in proving G3Ldm completeness. This is because the
irreflexivity rule (Definition 7) does not readily lend itself to derivation in G3Tstit.
Here we prove G3Tstit completeness relative to irreflexive Tstit-frames by lever-
aging the methods presented in [21]. (NB. For this reason, we introduced R̆G–the
complement of RG–directly into the language of the proof system).

Lemma 2. Let Γ be a G3Tstit-sequent. Either, Γ is G3Tstit-derivable, or it has
a Tstit-countermodel.

Cut-Free Calculi for Temporal STIT Logics 813

Proof. We construct the Reduction Tree (RT) of a given sequent Γ , following
the method of [21]. If RT is finite, all leaves are initial sequents that are con-
clusions of (id) or (compG1). If RT is infinite, by König’s lemma, there exists
an infinite branch: Γ0, Γ1, ..., Γn,... (with Γ0=Γ). Let Γ =

⋃
Γi. We define a

Tstit-model M∗=(W,R�, {Ri|i ∈ Ag},RAg,RG,RH, V) as follows: Let x ∼Γ y
iff x=y ∈ Γ. (Usage of the rules (ref=) and (eucl=) in the infinite branch
ensure ∼Γ is an equivalence relation.) Define W to consist of all equivalence
classes [x] of labels in Γ under ∼Γ. For each Rαxy ∈ Γ let ([x]

∼Γ
, [y]

∼Γ
) ∈ Rα

(with Rα∈{R�,Ri,RAg,RG, R̆G,RH}), and for each labelled propositional atom
x : p ∈ Γ, let [x]

∼Γ
�∈ V (p). It is a routine task to show that all relations and the

valuation are well-defined. Last, let the interpretation I:L�→W map each label
x to the class of labels [x]

∼Γ
containing x, and suppose I maps all other labels

not in Γ arbitrarily. We show that: (i) M∗ is a Tstit model, and (ii) M∗ is a
counter-model for Γ .

(i) First, we assume w.l.o.g. that Γ �= ∅ because the empty sequent is not
satisfied on any model. Thus, there must exist at least one label in Γ ; i.e. W �= ∅.

We argue that R� is an equivalence relation and omit the analogues proofs
showing that Ri and RAg are equivalence relations. Suppose, for some Γn in
the infinite branch there occurs a label x but R�xx �∈ Γn. By definition of RT,
at some later stage Γn+k the rule (refl�) will be applied; hence, R�xx ∈ Γ.
The argument is similar for the (eucl�) rule. Properties (C1) and (C2) follow
from the rules (br[i]) and (IOA), respectively. Regarding (C3), we only obtain
RAg ⊆ ⋂

i∈Ag Ri in M∗ via the (agd) rule. Using lemma 9 of [17], we can
transform M∗ into a model where (i) RAg=

⋂
i∈Ag Ri and where (ii) the model

satisfies the same formulae.
We obtain that RG is transitive and serial due to the (transG) and (serG)

rules. RH is the converse of RG by (convG) and (convH). The properties (C4),
(C5) and (C6) follow from the rules (connG), (connH) and (ncuh), respectively.

(C7) follows from (irrG), (compG1), and the equality rules: these rules ensure
that (∗) if [u]

∼Γ
∈ R�([w]

∼Γ
), then [u]

∼Γ
�∈ RG([w]

∼Γ
). In what follows, we

abuse notation and use [w] to denote equivocally the label w, as well as any other
label v for which a chain of equalities between w and v occurs in the sequent. The
claim (∗) is obtained accordingly: if both R�[w][u] and RG[w][u] appear together
in some sequent Γi, then higher up in the infinite branch, the equality rules will
introduce relational atoms of the form R�w′u′ and RGw′u′. Eventually, the rule
(irrG) will also be applied and, subsequently, the rule (compG1) will ensure that
the reduction tree procedure halts for the given branch. Moreover, if RG[w][w]
occurs in a sequent Γi of RT, then higher up in the branch the equality rules
will introduce a relational atom of the form RGw′w′. Eventually, (refl�) will
be applied which adds R�w′w′ to the branch containing Γi. Lastly, (irrG) will
be applied even higher up this branch, adding R̆Gw′w′, which by (compG1) will
halt the RT-procedure for that branch. Thus we may conclude: for any infinite
branch of RT RGww will not occur for any label w; meaning that not only
will M∗ satisfy (C7), its relation RG will be irreflexive. Additionally, note that
(compG2) will ensure that R̆G is the complement of RG.

814 K. van Berkel and T. Lyon

Lastly, as long as [x]
∼Γ

�∈ V (p) when x : p ∈ Γ, all other labels can be
mapped by V in any arbitrary manner. Thus, V is a valid valuation function.

(ii) By construction, M∗ satisfies each relational atom in Γ, and therefore,
satisfies each relational atom in Γ . By induction on the complexity of φ it is
shown that for any formula x : φ ∈ Γ we have M∗, [x]

∼Γ
�|= φ (See [21] for

details). Hence, Γ is falsified on M∗ with I.

Theorem 8 (Completeness). Every valid sequent is derivable in G3Tstit.

Proof. Follows from Lemma 2.

4 The Logic Xstit

4.1 Axioms and Relational Semantics for Xstit

A common feature of the cstit- and dstit-operator is that they do not internally
employ temporal structures. In this section, we consider the logic of Xstit which
contains a non-instantaneous STIT-operator explicitly affecting next states. This
logic, introduced in [7,8], has been motivated by the observation that affecting
next states is a central aspect of agency in computer science. Moreover, exten-
sions of the logic Xstit have been employed to investigate the concepts of purpose-
ful and voluntary acts and their relation to different levels of legal culpability [7].
The logic was originally proposed for a two-dimensional semantics making refer-
ence to both states and histories; the latter defined as maximally linear ordered
paths on a frame. In this section, we provide a semantics for Xstit that relies on
relational frames, avoiding the use of complex two-dimensional indices (the pos-
sibility of which was already noted in [7]). We provide a labelled calculus G3Xstit
for this logic and prove that it is sound and complete with respect to its rela-
tional characterization. Furthermore, by showing a correspondence between the
original Hilbert system Xstit and the calculus G3Xstit we show that the language
of Xstit does not allow us to distinguish between the two available semantics.

Definition 9 (The Language LXstit). Let Ag = {1, 2, ..., n} be a finite set of
agent labels and let V ar = {p1, p2, p3...} be a countable set of propositional vari-
ables. LXstit is defined as follows:

φ ::= p | p | φ ∧ φ | φ ∨ φ | �φ | ♦φ | [A]xφ | 〈A〉xφ | [X]φ | 〈X〉φ

where p ∈ V ar; and A ⊆ Ag (with special cases ∅ and Ag).

The language uses the settledness operator �, a group-stit operator [A]x, and
the operator [X] referring to the next state. Formulae of the form [A]xφ must
be read as ‘group A effectively sees to it that in the next state φ holds’.

As mentioned previously, we provide a semantics for the logic Xstit based on
relational frames. The conditions on these frames are obtained through a simple
transformation of the two-dimensional frame properties presented in [7].

Cut-Free Calculi for Temporal STIT Logics 815

Definition 10 (Relational Xstit Frames and Models). An Xstit-frame is
defined to be a tuple F = (W,R�,RX , {RA|A ⊆ Ag}) such that W �= ∅ and:

(D1) R� ⊆ W×W is an equivalence relation;
(D2) RX ⊆ W×W is serial and deterministic;
(D3) RA ⊆ W×W such that,

(i) R∅ = R� ◦ RX ;
(ii) RAg = RX ◦ R�;
(iii) RA ⊆ RB for ∅ ⊆ B ⊆ A ⊆ Ag;
(iv) For any B,A ⊆ Ag (s.t. B ∩ A = ∅) and ∀w1, w2, w3, w5, w6 ∈ W we

have: (R�w1w2 ∧ R�w1w3) → ∃w4(R�w1w4 ∧ (RAw4w5 → RAw2w5) ∧
(RBw4w6 → RBw3w6))

A relational Xstit-model is a tuple M = (F, V) where F is an Xstit-frame and V
a valuation function mapping propositional variables pi ∈ V ar to subsets of W ;
i.e. V : V ar �→ P(W).

Condition (D3)-(iv) expresses the independence of agents principle for Xstit.
From condition (D3)-(ii) we obtain that RAg ⊆ RX ◦ R�, which ensures the
principle of no choice between undivided histories (cf. Definition 2, C6). Further-
more, we stress that, following [7], the relation RX is not explicitly defined as
a strict next-relation; that is, the frame construction allows for reflexive worlds.
For a discussion of all the frame properties we refer the reader to [7].

Definition 11 (Semantics of LXstit). To define the satisfaction of a formula
φ ∈ LXstit on M at w, we make use of clauses (1)–(6) from Definition 3, taking
M to be an Xstit-model (but omitting explicit mention of M in the clauses),
along with the following clauses (global truth and validity are defined as usual):

7. w |= [A]xφ iff ∀u ∈ RA(w), u |= φ;
8. w |= 〈A〉xφ iff ∃u ∈ RA(w), u |= φ;

9. w |= [X]φ iff ∀u ∈ RX(w), u |= φ;
10. w |= 〈X〉φ iff ∃u ∈ RX(w), u |= φ.

Definition 12 (The Logic Xstit [7]). The Hilbert system for Xstit consists of
the axioms and rules below, where φ, ψ ∈ LXstit, A ⊆ Ag and α ∈ {�, [A]x, [X]}:

φ → (ψ → φ) (ψ → φ) → (φ → ψ) (φ → (ψ → χ)) → ((φ → ψ) → (φ → χ))

α(φ → ψ) → (αφ → αψ) �φ → φ ♦φ → �♦φ [A]xφ → 〈A〉xφ 〈X〉φ → [X]φ

�[X]φ ↔ [∅]xφ [Ag]xφ ↔ [X]�φ [A]xφ → [B]xφ(†) �φ ∨ ♦φ [A]xφ ∨ 〈A〉xφ

♦[A]xφ ∧ ♦[B]xψ → ♦([A]xφ ∧ [B]xψ)(††) [X]φ ∨ 〈X〉φ φ φ → ψ

ψ

φ

αφ

where (†)A ⊆ B ⊆ Ag; and (††)A ∩ B = ∅.
A derivation of φ in Xstit from Θ is written as Θ �Xstit φ. When Θ is the

empty set, we refer to φ as a theorem and write �Xstit φ.

816 K. van Berkel and T. Lyon

We refer to ♦[A]xφ∧♦[B]xψ → ♦([A]xφ∧ [B]xψ) as the IOAx-axiom. In contrast
with the standard IOA-axiom, observe that IOAx-axiom refers to the indepen-
dence of isolated groups of agents with respect to successor states. For a natural
language interpretation of the other axioms of Xstit we refer to [7].

Instead of proving completeness for the intended sequent calculus directly,
we prove it first for the Hilbert calculus. This enables us to eventually conclude
the equivalence of these two calculi with respect to the logic Xstit.

Theorem 9 (Completeness of Xstit). For all φ ∈ LXstit, if |= φ, then �Xstit φ.

Proof. As observed in [7], all axioms of Xstit are Sahlqvist formulae. Further-
more, the first-order correspondents of the Xstit axioms taken together define
the class of frames from Definition 10. Applying Theorem 4.42 of [6], we obtain
that the logic Xstit is complete relative to this class of frames.

4.2 A Cut-Free Labelled Calculus for Xstit

We provide a labelled calculus G3Xstit that is sound and complete relative to
the relational frames of Definition 10. In order to convert the Xstit axiomati-
zation into rules for the intended calculus, we first observe that every axiom
of Xstit is a geometric formula with the exception of the IOAx axiom. For the
geometric formulae we can find corresponding geometric rules, following [20].
The first-order frame condition (D3)(iv) for IOAx (Definition 10) is not a geo-
metric formula; however, we observe that its components RAw4w5→RAw2w5

and RBw4w6→RBw3w6 in fact are. The IOAx-condition is, thus, a generalized
geometric axiom of type GA1 and we may therefore find an equivalent system
of rules, following [22].

We refer to the following system of rules 〈(IOA−E), {(IOA−U1), (IOA−U2)}〉
as the ‘independence of agents’ rule (IOAX). We may use the rule (IOA−E) wher-
ever throughout the course of a derivation, but if we use either (IOA−U1) or
(IOA−U2), then we must (i) use the other (IOA−Ui) rule (for i ∈ {1, 2}) in
a separate branch of the derivation and (ii) use the (IOA−E) rule below both
instances of (IOA−Ui); i.e. the derivation is of the form represented below:

RAw4w5, RAw2w5, Γ
(IOA − U1)

RAw4w5, Γ

...

RBw4w6, RBw3w6, Γ
′

(IOA − U2)
RBw4w6, Γ

′

...

R�w1w2, R�w1w3, R�w1w4, Γ
′′

(IOA − E)∗
R�w1w2, R�w1w3, Γ

′′

where (*) w4 is an eigenvariable in the (IOA − E) rule.

Definition 13 (The Calculus G3Xstit). The labeled calculus G3Xstit consists
of the rules (id), (∧), (∨), (refl=), (eucl=), (sub=), (�), (♦), (refl�), and (eucl�)
from Definitions 5 and 8 extended with the (IOAX)-rule and the following:

Cut-Free Calculi for Temporal STIT Logics 817

Γ, RAwv, v : φ
([A]x)∗

Γ, w : [A]xφ

Γ, RAwu, w : 〈A〉xφ, u : φ
(〈A〉x)

Γ, RAwu, w : 〈A〉xφ

Γ, RXwv, w : 〈X〉φ, v : φ
(〈X〉)

Γ, RXwvw : 〈X〉φ
R�wv, RXvu, R∅wu, Γ

(Eff∅)R�wv, RXvu, Γ

RAwv, RBwv, Γ
(C−Mon)†

RAwv, Γ

RXwv, Γ
(serX)∗

Γ

v = u, RXwv, RXwu, Γ
(detX)RXwv, RXwu, Γ

Γ, RXwv, v : φ
([X])∗

Γ, w : [X]φ

R�wv, RXvu, R∅wu, Γ
(∅Eff)∗

R∅wu, Γ

RAgwu, RXwv, R�vu, Γ
(EffAg)RXwv, R�vu, Γ

RAgwu, RXwv, R�vu, Γ
(AgEff)∗

RAgwu, Γ

where (∗) v is an eigenvariable; and (†) B ⊆ A ⊆ Ag.

Observe that the rules {(∅Eff), (Eff∅)}, {(AgEff), (EffAg)}, (C−Mon) and
(IOAX) of the labelled calculus G3Xstit capture the frame conditions (D3)(i)−(iv)
of Definition 10, respectively.1

Theorem 10 (Soundness). Every sequent derivable in G3Xstit is valid.

Proof. Similar to Theorem3. Since all rules of G3Xstit are generalized geometric
rules, we can apply the general soundness results of Theorem 6.3 of [22].

In order to prove completeness of G3Xstit relative to the logic Xstit, we employ
the same strategy as for G3Ldm, by first proving that every formula derivable in
Xstit is derivable in G3Xstit.

Lemma 3. For all φ ∈ LXstit, if �Xstit φ, then �G3Xstit x : φ.

Proof. The derivation of each axiom and inference rule is straightforward (See
[20]). The G3Xstit-derivation of the IOAx-axiom can be obtained by applying
the rule system (IOAX) (see appendix at http://arxiv.org/abs/1902.06632).

Corollary 1 (Completeness). For all φ ∈ LXstit, if |= φ, then �G3Xstit x : φ

Proof. Follows from Theorem 9 and Lemma 3.

As another consequence, we obtain that the logic Xstit can be characterized
without using two-dimensional frames employing histories, as applied in [7].

1 In [22] it is shown that every generalized geometric formula can be captured through
(a system of) rules, allowing for the construction of analytic calculi for the minimal
modal logic K extended with any axioms from the Sahlqvist class. Since all axioms
of Ldm and Xstit are Sahlqvist formulae, the results also apply to these logics.

http://arxiv.org/abs/1902.06632

818 K. van Berkel and T. Lyon

5 Conclusion and Future Work

In this paper, we laid the proof-theoretic foundations for implementable logics
of agency by providing calculi for one of its central formalisms: STIT logic. In
particular, we developed cut-free labelled sequent calculi for three STIT logics:
Ldm, Tstit and Xstit. Furthermore, by providing the cut-free calculus G3Tstit for
temporal STIT logic we answered the open question from [27]. All labelled calculi
presented in this work, are sound and cut-free complete relative to their classes
of temporal relational frames. As a corollary to the latter, we extended prior
results from [2,14,17] and provided a characterization of Xstit through relational
frames.

We see two possible future extensions of the calculi provided in this paper:
First, we aim to use these calculi to solve the decidability problems for Tstit and
Xstit, which are currently open questions. Our approach will be proof-theoretic
in nature and will consist of showing decidability via proof-search. To realize our
goal, we plan on harnessing refinement (i.e. internalization) procedures, such as
those in [9], to obtain variants of our labelled calculi that are more suitable for
proof-search. Second, we aim to extend the current calculi to incorporate formal
concepts that enable reasoning about normative choice-making, for example,
those found in utilitarian deontic STIT [16,19] and legal theory [18].

Acknowledgments. The authors would like to thank their supervisor Agata Ciabat-
toni for her helpful comments.

References

1. Arkoudas, K., Bringsjord S., Bello, P.: Toward ethical robots via mechanized deon-
tic logic. In: AAAI Fall Symposium on Machine Ethics, pp. 17–23 (2005)

2. Balbiani, P., Herzig, A., Troquard, N.: Alternative axiomatics and complexity of
deliberative STIT theories. J. Philos. Logic 37(4), 387–406 (2008)

3. Belnap, N., Perloff, M.: Seeing to it that: a canonical form for agentives. In: Kyburg,
H.E., Loui, R.P., Carlson, G.N. (eds.) Knowledge Representation and Defeasible
Reasoning, pp. 167–190. Springer, Dordrecht (1990). https://doi.org/10.1007/978-
94-009-0553-5 7

4. Belnap, N., Perloff, M., Xu, M.: Facing the Future: Agents and Choices in Our
Indeterminist World. Oxford University Press on Demand, Oxford (2001)

5. van Berkel, K., Pascucci, M.: Notions of instrumentality in agency logic. In: Miller,
T., Oren, N., Sakurai, Y., Noda, I., Savarimuthu, B.T.R., Cao Son, T. (eds.)
PRIMA 2018. LNCS (LNAI), vol. 11224, pp. 403–419. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03098-8 25

6. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press,
Cambridge (2001)

7. Broersen, J.: Deontic epistemic stit logic distinguishing modes of Mens Rea. J.
Appl. Logic 9(2), 137–152 (2011)

8. Broersen, J.: Making a start with the stit logic analysis of intentional action. J.
Philos. Logic 40(4), 499–530 (2011)

9. Ciabattoni, A., Lyon, T., Ramanayake, R., Tiu, A.: Mutual translations between
nested and labelled calculi for tense logics (2019, unpublished)

https://doi.org/10.1007/978-94-009-0553-5_7
https://doi.org/10.1007/978-94-009-0553-5_7
https://doi.org/10.1007/978-3-030-03098-8_25

Cut-Free Calculi for Temporal STIT Logics 819

10. Gabbay, D.M., Hodkinson, I., Reynolds, M.: Temporal Logic: Mathematical Foun-
dations and Computational Aspects. Oxford University Press, Oxford (1994)

11. Gentzen, G.: Untersuchungen über das logische Schließen. Mathematische
Zeitschrift 39(3), 405–431 (1935)

12. Gerdes, J.C., Thornton, S.M.: Implementable ethics for autonomous vehicles. In:
Maurer, M., Gerdes, J.C., Lenz, B., Winner, H. (eds.) Autonomes Fahren, pp. 87–
102. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-45854-9 5

13. Goodall, N.J.: Machine ethics and automated vehicles. In: Meyer, G., Beiker, S.
(eds.) Road Vehicle Automation. Lecture Notes in Mobility, pp. 93–102. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-05990-7 9

14. Herzig, A., Schwarzentruber, F.: Properties of logics of individual and group
agency. In: Advances in Modal Logic, vol. 7, pp. 133–149. College Publications
(2008)

15. Horty, J.F., Belnap, N.: The deliberative stit: a study of action, omission, ability,
and obligation. J. Philos. Logic 24(6), 583–644 (1995)

16. Horty, J.: Agency and Deontic Logic. Oxford University Press, Oxford (2001)
17. Lorini, E.: Temporal STIT logic and its application to normative reasoning. J.

Appl. Non-Class. Logics 23(4), 372–399 (2013)
18. Lorini, E., Sartor, G.: Influence and responsibility: a logical analysis. In: Legal

Knowledge and Information Systems, pp. 51–60. IOS Press (2015)
19. Murakami, Y.: Utilitarian deontic logic. In: Advances in Modal Logic, vol. 5, pp.

211–230. King’s College Publications (2005)
20. Negri, S.: Proof analysis in modal logic. J. Philos. Logic 34(5–6), 507–544 (2005)
21. Negri, S.: Kripke completeness revisited. In: Acts of Knowledge-History, Philosophy

and Logic, pp. 247–282 (2009)
22. Negri, S.: Proof analysis beyond geometric theories: from rule systems to systems

of rules. J. Logic Comput. 26(2), 513–537 (2016)
23. Negri, S., von Plato, J.: Structural Proof Theory. Cambridge University Press,

Cambridge (2001)
24. Olkhovikov, G., Wansing, H.: An axiomatic system and a tableau calculus for STIT

imagination logic. J. Philos. Logic 47(2), 259–279 (2018)
25. Prior, A.N.: Past, Present and Future. Clarendon Press, Oxford (1967)
26. Viganò, L.: Labelled Non-Classical Logics. Kluwer Academic Publishers (2000)
27. Wansing, H.: Tableaux for multi-agent deliberative-stit logic. In: Advances in

Modal Logic, vol. 6, pp. 503–520. College Publications (2006)
28. Xu, M.: Actions as events. J. Philos. Logic 41(4), 765–809 (2012)

https://doi.org/10.1007/978-3-662-45854-9_5
https://doi.org/10.1007/978-3-319-05990-7_9

Author Index

Allocca, Carlo 453
Alpuente, María 171
Alviano, Mario 462
Amendola, Giovanni 479, 490
Areces, Carlos 675

Baader, Franz 323, 434
Balduccini, Marcello 231
Ballis, Demis 171
Baumann, Ringo 41
Bednarczyk, Bartosz 642
Beierle, Christoph 279
Berg, Jeremias 287
Bistarelli, Stefano 58, 69
Bogaerts, Bart 214
Bolander, Thomas 659
Borgwardt, Stefan 371
Botha, Leonard 339
Boudou, Joseph 763
Breu, Christian 498
Brewka, Gerhard 85
Broersen, Jan 629
Brunello, Andrea 778

Cabalar, Pedro 509
Casini, Giovanni 182
Cassano, Valentin 675
Castro, Pablo F. 675
Chen, Jieying 355
Costabile, Roberta 453
Cramer, Marcos 102
Cristani, Matteo 247
Cropper, Andrew 198, 259
Cuenca-Ortega, Angel 171
Cuteri, Bernardo 526

Demri, Stéphane 692
Denecker, Marc 214
Diéguez, Martín 763
Dodaro, Carmine 479
Dubois, Didier 3
Dvořák, Wolfgang 116

Ecke, Andreas 434
Eiter, Thomas 576
Engesser, Thorsten 659
Escobar, Santiago 171

Faber, Wolfgang 462, 479
Fandinno, Jorge 509
Fernández-Duque, David 763
Fervari, Raul 675, 692
Fiorentino, Alessio 453
Forkel, Walter 371

Geibinger, Tobias 542
Giordano, Laura 387
Girlando, Marianna 709
Gottlob, Georg 21
Governatori, Guido 247
Guillaume, Mathieu 102

Hannula, Miika 304
Haret, Adrian 133
Herzig, Andreas 659
Hirvonen, Åsa 304

Ind, Axel 498

Järvisalo, Matti 116, 287

Kain, Tobias 559
Kern-Isberner, Gabriele 434
Kieroński, Emanuel 642
Kontinen, Juha 304
Kriegel, Francesco 323, 399
Kulikov, Vadim 304
Kutsch, Steven 279

LeBlanc, Emily 231
Lellmann, Björn 709
Linker, Felix 41
Linsbichler, Thomas 116
Lorini, Emiliano 726
Ludwig, Michel 355
Lyon, Tim 803

Ma, Yue 355
Mansutti, Alessio 692
Mantadelis, Theofrastos 58
Marte, Cinzia 490
Mattmüller, Robert 659
Mertesdorf, Julia 498
Meseguer, José 171
Meyer, Thomas 182, 339
Morel, Rolf 198

Nebel, Bernhard 659
Nieves, Juan-Carlos 794
Niskanen, Andreas 116
Nuradiansyah, Adrian 323

Oetsch, Johannes 794
Olivetti, Nicola 709
Olivieri, Francesco 247
Ong, C.-H. Luke 198
Ozaki, Ana 418

Peñaloza, Rafael 339
Perri, Simona 453
Pieris, Andreas 21
Policriti, Alberto 387
Prade, Henri 3
Pührer, Jörg 85
Pulina, Luca 479

Ragni, Marco 498
Ramírez Abarca, Aldo Iván 629
Reale, Kristian 526

Ricca, Francesco 479, 526
Romero, Fabián 763

Sallinger, Emanuel 21
Santini, Francesco 69
Saribatur, Zeynep G. 576
Schaub, Torsten 509
Schellhorn, Sebastian 509
Schüller, Peter 576, 593
Sciavicco, Guido 778
Stan, Ionel Eduard 778
Su, Ezgi Iraz 608

Tompits, Hans 542, 559
Tourret, Sophie 259
Troquard, Nicolas 418

Ulbricht, Markus 151

van Berkel, Kees 803
Varzinczak, Ivan 182
Vennekens, Joost 214, 231
Virtema, Jonni 304

Wałęga, Przemysław Andrzej 744
Wallner, Johannes P. 133
Walther, Dirk 355
Wilhelm, Marco 434
Witkowski, Piotr 642
Woltran, Stefan 85, 116

Zangari, Jessica 453

822 Author Index

	Preface
	Organization
	Contents
	Invited Talks
	Possibilistic Logic: From Certainty-Qualified Statements to Two-Tiered Logics – A Prospective Survey
	1 Introduction
	2 Short Refresher on Possibility Theory
	3 Basic Possibilistic Logic
	4 Applications of Basic Possibilistic Logic
	5 Extensions of Basic Possibilistic Logic
	6 Generalized Possibilistic Logic
	7 Applications of Generalized Possibilistic Logic
	8 Conclusion
	References

	Vadalog: Recent Advances and Applications
	1 Introduction
	2 Preliminaries
	3 The Logical Core of Vadalog
	4 Query Answering via Proof Trees
	5 Datalog Rewritability
	6 Limiting Recursion
	7 Applications
	References

	Belief Revision and Argumentation
	AGM Meets Abstract Argumentation: Contraction for Dung Frameworks
	1 Introduction
	2 Background
	2.1 Abstract Argumentation
	2.2 Dung-Logics
	2.3 AGM-Style Contraction

	3 Dung-Style Contraction
	3.1 Contraction Postulates for Kernel k
	3.2 Non-existence of Contraction Operators
	3.3 Brute Contraction
	3.4 Discussion

	4 Related Work and Summary
	References

	A Possible World View and a Normal Form for the Constellation Semantics
	1 Introduction
	2 Preliminaries
	2.1 Abstract Argumentation
	2.2 Constellation Based Probabilistic Abstract Argumentation Frameworks
	2.3 Inducing AAFs by Imposing Restrictions

	3 Possible Worlds and AAFs
	4 Probabilistic Attack Normal Form
	4.1 Transforming General PrAAFs to Probabilistic Attack Normal Form PrAAFs
	4.2 Transforming Probabilistic Arguments to Probabilistic Attacks

	5 Conclusion and Future Work
	References

	Well-Foundedness in Weighted Argumentation Frameworks
	1 Introduction
	2 Background
	2.1 Other Weighted Proposals in the Literature

	3 Well-Foundedness in Weighted AAFs
	3.1 Motivations
	3.2 Well-Foundedness

	4 Some Formal Results on Unicity and Existence
	5 Related Work
	6 Conclusion
	References

	Multi-valued GRAPPA
	1 Introduction
	2 Multi-valued GRAPPA
	3 Acceptance Programs
	3.1 Syntax
	3.2 Semantics

	4 Examples
	5 Conclusions
	References

	Empirical Study on Human Evaluation of Complex Argumentation Frameworks
	1 Introduction
	2 Preliminaries of Abstract Argumentation Theory
	3 Cognitive Variability of Humans
	4 Design of the Study
	5 Results and Discussion
	6 Related Work
	7 Conclusion and Future Work
	References

	Preprocessing Argumentation Frameworks via Replacement Patterns
	1 Introduction
	2 Argumentation Frameworks and Equivalence
	3 Replacement Patterns
	3.1 Main Concepts
	3.2 Formalizing Concrete Patterns

	4 Empirical Evaluation
	5 Conclusions
	References

	Manipulating Skeptical and Credulous Consequences When Merging Beliefs
	1 Introduction
	2 Belief Merging
	3 Acceptance and Satisfaction Notions
	4 Manipulability and Strategyproofness
	4.1 Constructive and Destructive Manipulation with Respect to an Atom
	4.2 Manipulation with Respect to a Satisfaction Index

	5 Influence of One Agent over the Outcome
	6 Complexity of Constructive and Destructive Manipulation
	7 Related Work
	8 Conclusions
	References

	Repairing Non-monotonic Knowledge Bases
	1 Introduction
	2 Background
	3 Addition-Based Repairs
	4 Arbitrary Repairs
	5 Preferences and Refinements
	6 Excursus: Inconsistency in Abstract Argumentation
	7 Conclusions
	References

	Causal, Defeasible and Inductive Reasoning
	ACUOS2: A High-Performance System for Modular ACU Generalization with Subtyping and Inheritance
	1 Introduction
	2 Least General Generalization Modulo A, C, and U
	3 ACUOS2: A High Performance Generalization System
	4 ACU Generalization in a Biological Domain
	5 Experimental Evaluation
	6 Related Work
	References

	Taking Defeasible Entailment Beyond Rational Closure
	1 Introduction
	2 Background
	2.1 KLM-Style Defeasible Implication
	2.2 Defeasible Entailment
	2.3 Rational Closure

	3 Basic Defeasible Entailment
	4 Rational Defeasible Entailment
	5 Lexicographic Closure
	6 Related Work
	7 Conclusion
	References

	Typed Meta-interpretive Learning of Logic Programs
	1 Introduction
	2 Related Work
	3 Framework
	3.1 Preliminaries
	3.2 Meta-interpretive Learning
	3.3 Typed Meta-interpretive Learning
	3.4 Hypothesis Space Reduction

	4 MetagolT and HEXMILT
	4.1 MetagolT
	4.2 HEXMILT

	5 Experiments
	5.1 Experiment 1: Ratio Influence
	5.2 Experiment 2: Droplasts
	5.3 Experiment 3: More Problems

	6 Conclusions
	References

	Explaining Actual Causation in Terms of Possible Causal Processes
	1 Introduction
	2 The Causal Logic: Syntax and Informal Semantics
	3 Formal Semantics: Causal Processes and Possible Worlds
	4 Definitions of Actual Causation
	4.1 Early Preemption Versus Switch

	5 Related Work and Conclusions
	References

	Explaining Actual Causation via Reasoning About Actions and Change
	1 Introduction
	2 Preliminaries
	3 Theoretical Framework
	3.1 Definitions
	3.2 Yale Shooting Problem

	4 ASP Implementation of the Framework
	4.1 Answer Set Programming
	4.2 Framework Implementation

	5 Empirical Study of the Implementation
	6 Overview of Related Work
	7 Conclusions and Future Work
	References

	Advancements in Resource-Driven Substructural Defeasible Logic
	1 Introduction
	2 Language and Logical Formalisation of RSDL
	3 Results
	4 Conclusions and Related Work
	References

	SLD-Resolution Reduction of Second-Order Horn Fragments
	1 Introduction
	1.1 Motivation
	1.2 Contributions

	2 Related Work
	3 Problem Statement and Decidability
	3.1 Preliminaries
	3.2 Derivation Reduction

	4 Fragments of Interest in H
	5 The Fragment Hc Is Reducible to Hc,2
	5.1 Graph Encoding
	5.2 Reducibility of Hc

	6 Reducibility of H2c2,
	7 Reducibility of H2c3,
	8 Extension to Standard Resolution
	9 Conclusion
	References

	Conditional, Probabilistic and Propositional Logic
	Systematic Generation of Conditional Knowledge Bases up to Renaming and Equivalence
	1 Introduction
	2 Background: Conditional Logic
	3 Orderings and Normal Forms for Conditionals
	4 Knowledge Base Equivalences and Isomorphisms
	5 Systematic Generation of Knowledge Bases
	6 Conclusions and Further Work
	References

	Unifying Reasoning and Core-Guided Search for Maximum Satisfiability
	1 Introduction
	2 Maximum Satisfiability, MaxSAT Solving and Preprocessing
	2.1 Core-Guided MaxSAT Solving and MaxSAT-Reducibility
	2.2 MaxSAT Preprocessing and MCS-Equivalence

	3 An Abstract MaxSAT Solving Framework
	4 Overview of Results
	5 Analysis of Known Transformations
	5.1 MaxSAT-Reducibility
	5.2 MCS-Equivalence
	5.3 Combining MSRED and MCSEQ

	6 RAT Clauses in MaxSAT
	7 Correction Set Reducible Transformations
	8 Related Work
	9 Conclusions
	References

	Facets of Distribution Identities in Probabilistic Team Semantics
	1 Introduction
	2 Preliminaries
	3 Expressiveness of FO()
	4 Expressiveness of FO(*) and FO()
	4.1 Translations of Dependence and Marginal Identity to FO(*)
	4.2 Scaled Union Closure of FO()

	5 Binary Probabilistic Teams
	6 Conclusions and Further Directions
	References

	Description Logics
	Privacy-Preserving Ontology Publishing for EL Instance Stores
	1 Introduction
	2 Preliminaries
	3 Computing Optimal Compliant Generalizations
	4 Computing Optimal Safe Generalizations
	5 The Complexity of Deciding Optimality
	6 Conclusion
	References

	A Bayesian Extension of the Description Logic ALC
	1 Introduction
	2 Preliminaries
	3 BALC
	4 Consistency
	5 Satisfiability and Subsumption
	6 Instance Checking
	7 Conclusions
	References

	Computing Minimal Projection Modules for ELHr-Terminologies
	1 Introduction
	2 Preliminaries
	3 Projection Modules
	4 Computing Minimal Projection Modules
	4.1 Definition of Subsumption Projection Justifications
	4.2 Computing Subsumee Projection Justifications

	5 Application of Minimal Projection Modules
	5.1 Computing Minimal Query Modules
	5.2 Ontology Comparison Measure

	6 Conclusion
	References

	Closed-World Semantics for Conjunctive Queries with Negation over ELH_ Ontologies
	1 Introduction
	2 Preliminaries
	3 Conjunctive Queries with Negation
	3.1 Semantics for NCQs

	4 A Combined Rewriting for NCQs
	4.1 Correctness

	5 Conclusion
	References

	Extending ALC with the Power-Set Construct
	1 Introduction
	2 Preliminaries
	2.1 The Description Logic ALC
	2.2 The Theory
	2.3 The Description Logic ALC

	3 A Set Theoretic Translation of ALC
	3.1 A Set Theoretic Translation of ALC with Empty ABox
	3.2 Translating the Fragment LC
	3.3 Translating ALC by Encoding into LC

	4 Conclusions and Related Work
	References

	Learning Description Logic Axioms from Discrete Probability Distributions over Description Graphs
	1 Introduction
	2 Related Work
	3 The Probabilistic Description Logic P1EL
	4 Concept Inclusion Bases in 硅䰠bot
	5 Axiomatization of Concept Inclusions in PnEL
	6 Conclusion
	References

	Learning Ontologies with Epistemic Reasoning: The EL Case
	1 Introduction
	2 Learning with Epistemic Reasoning
	2.1 The Epistemic Extension of L
	2.2 A Learning Model Based on Epistemic Reasoning

	3 Epistemic and Exact Polynomial Learnability
	4 The Epistemic EL Description Logic
	4.1 EL: Syntax, Semantics, and Complexity
	4.2 Reasoning in ELK
	4.3 Reasoning in Conjunctive ELK

	5 Learning EL with Epistemic Reasoning
	6 Discussion
	References

	Counting Strategies for the Probabilistic Description Logic ALCME Under the Principle of Maximum Entropy
	1 Introduction
	2 The Description Logic ALCME
	3 Conditional Structures and Types for ALCME
	4 Counting Strategies for ALCME
	5 Consistency Check and Drawing Inferences in ALCME
	6 Conclusion and Future Work
	References

	Logic Programming
	Memory-Saving Evaluation Plans for Datalog
	1 Introduction
	2 An ASP-Based Evaluation Planner
	2.1 Evaluation Plans
	2.2 Computing Evaluation Plans via ASP

	3 Experimental Evaluation
	4 Conclusion
	References

	Chain Answer Sets for Logic Programs with Generalized Atoms
	1 Introduction
	2 Background
	2.1 Notation
	2.2 FLP Semantics
	2.3 SFLP Semantics

	3 Chain Answer Set Semantics
	3.1 Supportedness, Anti-chain Property, Relationship to FLP

	4 Integrating Support with Chain Answer Sets
	5 Computational Complexity
	6 Conclusion and Discussion
	References

	Algorithm Selection for Paracoherent Answer Set Computation
	1 Introduction
	2 Preliminaries
	2.1 Syntax of ASP
	2.2 Standard Semantics
	2.3 Paracoherent Semantics
	2.4 Evaluation Algorithms

	3 Classification Models and Experiments
	4 Conclusion
	References

	Extending Bell Numbers for Parsimonious Chase Estimation
	1 Introduction
	2 Preliminaries
	3 Parsimonious Chase Estimation
	4 Discussion and Future Work
	References

	The Weak Completion Semantics Can Model Inferences of Individual Human Reasoners
	1 Introduction
	2 Mathematical Preliminaries
	3 Modelling the WST with the WCS
	4 Extending the WCS for the Individual Case
	5 Results, Conclusion, and Future Work
	References

	Lower Bound Founded Logic of Here-and-There
	1 Motivation
	2 Background
	3 Lower Bound Founded Logic of Here-and-There
	3.1 HTLB Properties
	3.2 Negation in HTLB
	3.3 HTLB versus HT
	3.4 HTLB-stable versus Ferraris-style stable models
	3.5 Modeling with Bound Founded Programs

	4 Related Work
	5 Conclusion
	References

	A Logic-Based Question Answering System for Cultural Heritage
	1 Introduction
	2 Answer Set Programming
	3 Overview of the Problem
	4 ASP-based System for Question Answering
	4.1 Question NL Processing
	4.2 Template Matching
	4.3 Intent Determination
	4.4 Query Execution
	4.5 Answer Generation

	5 System Performance on Real-World Data
	6 Related Work
	7 Conclusion
	References

	Characterising Relativised Strong Equivalence with Projection for Non-ground Answer-Set Programs
	1 Introduction
	2 Preliminaries
	2.1 Logic Programs
	2.2 Notions of Equivalence

	3 Program Correspondence
	4 Characterising Relativised Strong Equivalence Without Projection
	5 Characterising Relativised Strong Equivalence with Projection
	6 Computability Issues
	7 Conclusion
	References

	Uhura: An Authoring Tool for Specifying Answer-Set Programs Using Controlled Natural Language
	1 Introduction
	2 Preliminaries
	2.1 Answer-Set Semantics
	2.2 The Controlled Natural Language PENGASP

	3 The System Uhura
	3.1 Workflow in Uhura
	3.2 The Controlled Natural Language LU of Uhura
	3.3 Implementation

	4 Conclusion and Discussion
	References

	Abstraction for Non-ground Answer Set Programs
	1 Introduction
	2 Domain Abstraction for ASP
	3 Towards an Abstract Program
	3.1 Lifted Built-in Relations

	4 Abstract Program Construction
	5 Abstract Answer Set Computation
	5.1 Implementation

	6 Applications
	7 Experiments
	8 Conclusion
	References

	The Hexlite Solver
	1 Introduction
	2 Preliminaries
	2.1 HEX Syntax
	2.2 Semantics

	3 The Pragmatic HEX Fragment (PHF)
	3.1 Properties
	3.2 Amenable Application Scenarios

	4 Hexlite Solver Design and Architecture
	5 Experimental Evaluation
	5.1 Cost-Based Abduction Benchmark
	5.2 RDF Benchmark
	5.3 Experimental Setup
	5.4 Results

	6 Discussion and Conclusion
	References

	Epistemic Answer Set Programming
	1 Introduction
	2 Epistemic Specifications (ES) and Its World View Semantics
	2.1 The Language of ES (LES)
	2.2 The Semantics of ES

	3 Fariñas et al.'s Approach: Autoepistemic Equilibrium Models
	3.1 Epistemic Here-and-There Logic (EHT) and Its Equilibrium Models

	4 Shen and Eiter's Approach: Epistemic Negation
	5 Our Approach: Epistemic ASP (E-ASP) and Its Epistemic Views
	5.1 Motivation and Novelty
	5.2 The Language of Epistemic ASP (LE-ASP)
	5.3 The Semantics of Epistemic ASP
	5.4 Comparison of Epistemic Views with World Views and AEEMs

	6 Splitting Epistemic Logic Programs
	7 Conclusion
	References

	Modal and Default Logic
	A Logic of Objective and Subjective Oughts
	1 Introduction
	2 Action, Knowledge, and Obligation in Stit
	2.1 Horty's Puzzles

	3 A Logic of Objective and Subjective Oughts
	3.1 Solution to Horty's Puzzles

	4 Axiomatization and Some Logical Properties
	4.1 Soundness
	4.2 Completeness

	5 Conclusion
	References

	On the Complexity of Graded Modal Logics with Converse
	1 Introduction
	2 Preliminaries
	2.1 Languages, Kripke Structures and Satisfiability
	2.2 Standard Translation

	3 Euclidean Frames: Counting Successors and Predecessors
	3.1 The Shape of Euclidean Frames
	3.2 The Upper Bound for Graded Two-Way K5 and D5
	3.3 Lower Bounds for Two-Way Graded K5 and D5
	3.4 Transitive Euclidean Frames

	4 Transitive Frames: Counting Successors, Accessing Predecessors
	References

	The Dynamic Logic of Policies and Contingent Planning
	1 Introduction
	2 Background: PDL and Sequential Plans
	3 Policies and Strong Solutions to Planning Tasks
	4 Extending PDL by the Modal Operator ([])
	5 From Programs to Policies
	6 From Policies to Programs
	References

	Interpolation and Beth Definability in Default Logics
	1 Introduction
	2 What Is a Default Logic?
	2.1 Preliminary Definitions
	2.2 Default Logics
	2.3 Traditional Default Logics
	2.4 Intermediate Default Logics

	3 Interpolation and Beth Definability
	3.1 Interpolation
	3.2 Interpolation in Default Logics
	3.3 Definability
	3.4 Definability in Default Logics

	4 Final Remarks
	A Selected Proofs
	References

	Axiomatising Logics with Separating Conjunction and Modalities
	1 Introduction
	2 Preliminaries About Modal Separation Logics
	3 Axiomatising MSL(,) with Core Formulae
	4 Hilbert-Style Proof System for MSL(,"426830A = "526930B)
	5 Concluding Remarks
	References

	Nested Sequents for the Logic of Conditional Belief
	1 Introduction
	2 Multi-agent Conditional Logic CDL
	3 Nested Sequent Calculus NCDL
	4 Completeness of NCDL
	5 Relationship with S5i
	6 Conclusions
	References

	Reasoning About Cognitive Attitudes in a Qualitative Setting
	1 Introduction
	2 Dynamic Logic of Cognitive Attitudes
	3 Formalization of Cognitive Attitudes
	3.1 Epistemic Attitudes
	3.2 Motivational Attitudes
	3.3 From comparative desirability to choice

	4 Axiomatization
	5 Conclusion
	A Proofs
	A.1 Proof of Lemma 2
	A.2 Proof of Lemma 3
	A.3 Proof of Lemma 4
	A.4 Proof of Lemma 6

	References

	Computational Complexity of Core Fragments of Modal Logics T, K4, and S4
	1 Introduction
	2 Syntax and Semantics
	3 Pre-linear Models
	4 Computational Complexity
	4.1 Core Fragment of T
	4.2 Core Fragment of K4
	4.3 Core Fragment of S4

	5 Algorithms
	6 Correspondence to Linear Temporal Logic
	7 Conclusions and Future Work
	References

	Temporal Logic
	Axiomatic Systems and Topological Semantics for Intuitionistic Temporal Logic
	1 Introduction
	2 Syntax and Axiomatics
	3 Dynamic Topological Systems
	4 Semantics
	5 Soundness
	6 Independence
	7 Concluding Remarks
	References

	Interval Temporal Logic Decision Tree Learning
	1 Introduction
	2 Preliminaries
	3 Motivations
	4 Learning Interval Temporal Logic Decision Trees
	5 Conclusions
	References

	Stable-Ordered Models for Propositional Theories with Order Operators
	1 Introduction
	2 Preliminaries
	3 Stable-Ordered Models
	4 Applications
	5 Discussion
	References

	Cut-Free Calculi and Relational Semantics for Temporal STIT Logics
	1 Introduction
	2 The Logic Ldm
	2.1 Axioms and Relational Semantics for Ldm
	2.2 A Cut-Free Labelled Calculus for Ldm

	3 The Logic Tstit
	3.1 Axiomatization for Tstit
	3.2 A Cut-Free Labelled Calculus for Tstit

	4 The Logic Xstit
	4.1 Axioms and Relational Semantics for Xstit
	4.2 A Cut-Free Labelled Calculus for Xstit

	5 Conclusion and Future Work
	References

	Author Index

