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Abstract Despite the advances in solving the Railway Alignment Optimization
(RAO) problem, the computational burden of the current algorithms to estimate new
intercity connections of minimum cost is still an issue. This paper proposes a parallel
Genetic Algorithm framework running on a high performance computing environ-
ment to solve theRAOproblemwhileminimizing the costs of new railway alignments
constrained by the geometric parameters required to run trains with different average
speeds. The framework was applied to new connections between Brazilian cities and
the results show that it is capable of providing accurate estimations compared to
the international experience. From the computational aspect, the parallel computing
approach drastically reduces the running times in the cases studied. However, scaling
the computing infrastructure to more than 5 machines running in parallel may not
be advantageous since the running times do not decrease significantly when more
virtual machines are available.

Keywords Railway · Alignment · Parallel Genetic Algorithm · High Performance
Computing

1 Introduction

Railway transport is capable of influencing economic and social growth of regions,
as passenger transport may lead to the development and growth of different activities
such tourism, culture etc., and freight transport can reduce road usage (Dolinayova
et al. 2018). However, planning new railway alignments (i.e., the sequence of straight
lines connected by curves) is complex and usually comprises an iterative process of
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a multidisciplinary team of specialists and, thus, is not straightforward and hardly
leads to near-optimal costs without computational assistance.

According to Li et al. (2016), the railway alignment optimization (RAO) prob-
lem is defined as the task of finding the sequence of horizontal and vertical curves
connected by straight lines while minimizing a mathematical function of total cost
given the geometric and operational constraints of the transportation mode.

OECD (1973) and Chew et al. (1989) classify the costs to build highways or
railway alignments into infrastructure, earthwork, tunnels and bridges, expropriation
and drainage; where the first three account for 75% of the overall construction costs.
Additionally, Schonfeld et al. (2007) separate the infrastructure cost into building
and operational costs to users and to the operator.

It is well known that an appropriate alignment optimization model must com-
pute the most significant cost items such as earthwork and infrastructure (tunnels
and bridges). It should not violate the geometric constraints related to the mode of
transport and its rolling stock. It also should simultaneously optimize 3-dimensional
alignments, search within a continuous solution space, yield a realistic alignment,
have an efficient solution algorithm in terms of memory requirements and computing
time, must be compatible with a Geographic Information System (GIS) and should
avoid inaccessible regions (Jha et al. 2006).

Besides the geological, hydrological, land use and topographical conditions pro-
vided by georeferenced databases, the safety and riding comfort standards of trains
are relevant aspects to be considered when optimizing railway alignments. How-
ever, given these georeferenced datasets, the computational burden to solve the RAO
problem requires significant efforts to find good quality solutions.

In this paper, a parallel Genetic Algorithm running on a high performance com-
puting environment is proposed to solve the RAO problem while minimizing the
costs of new railway alignments constrained by the geometric parameters required
to run trains with different average speeds on intercity connections. The framework
was applied to different connections between Brazilian cities considering High Per-
formance Trains (henceforth HPTs) with average speeds of 200 km/h and High
Speed Trains (onwards HSTs) running at 300 km/h on average. This application was
undertaken in order to assess its accuracy in estimating the costs of intercity railway
alignments and in evaluating its benefits in terms of processing times to achieve good
solutions.

While the approach is based on previous work, it is not merely an adaptation of the
existing solutions to the RAO problem since: (i) a parallel approach over a set of high
performance computers is proposed to estimate the costs of new railway alignments;
(ii) different geometric constraints and types of trains distinguished by their average
speeds are taken into account to estimate the alignments; and (iii) the framework is
applied to estimate the costs of intercity alignments in different topographical and
land use conditions in Brazil.

The remainder of this paper is organized as follows. Section 2 presents a literature
review of previous research on RAO and solution strategies to solve the problem.
Section 3 describes a Genetic Algorithm (GA) to solve the model, and the proposed
parallel computing framework, followed by Sect. 4where the results of its application
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to different connections in Brazil are shown and compared with values from the
literature based on international practice. Finally, Sect. 5 summarizes the conclusions
of the research.

2 Literature Review

The RAO is distinguished from the highway alignment optimization problem by the
objective function to be minimized. However, both mathematical models address the
horizontal and vertical curves as continuous differentiable functions, constrained by
minimum and maximum radii and slopes at their respective derivatives in successive
points of the alignment (Jha et al. 2006).

The mathematical models and solution methods to these alignment optimiza-
tion problems emerged in the 1970s and were applied to different contexts in order
to assist the decision makers planning new transport infrastructures. However, the
solution to these problems can hardly be achieved to optimality by an exact method
since the terrain configuration usually cannot be represented as a continuous surface.
Moreover, the design parameters regarding the minimum values of the horizontal
and vertical alignments also affect these estimations (Hodas 2014).

Several mathematical models and heuristic algorithms were proposed to solve the
horizontal, vertical, and three-dimensional alignment optimization problems (Li et al.
2016, 2017): calculus of variations (Howard et al. 1968); enumeration (Easa 1988);
dynamic programming (Li et al. 2013); genetic algorithms (Jha 2003; Kang et al.
2012); neighborhood search heuristics with mixed integer programming (Cheng and
Lee 2006); mixed integer programming (Easa and Mehmood 2008); particle swarm
optimization (Maji 2017); and distance transform (De Smith 2006; Li et al. 2016,
2017).

The benefits and shortcomings of these methods are addressed by Jha et al. (2006)
to optimize highway alignments, which may be extended to the RAO problem. How-
ever, despite being the most promising approach to solve the problem in reason-
able computational time, Genetic Algorithms (GA) still require large computational
resources to assess the large-scale datasets containing information on the topographic
and land use conditions.

Jha and Schonfeld (2000) used a Geographic Information System (GIS) to assess
the land use costs to build a new highway infrastructure, and Jha et al. (2001) and
Jha (2003) proposed a decision support system that enables the alteration of an
alignment given the surrounding infrastructure. Jha et al. (2007) applied the GA to
the RAOusing themethod proposed by Jha et al. (2006), where the objective function
comprised the operator costs (track construction, stations, earthwork, land use and
operational costs) and the costs to users (access, egress, and travel time).

Li et al. (2016) proposed a two-phase methodology to solve the RAO problem,
where promising paths are generated in the first phase, followed by curve refinements.
The approach is validated through a real-world case study in a mountainous area
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where the natural terrain gradient is nearly the triple of the maximum allowed design
gradient.

Samanta and Jha (2011) proposed a model to plan a rail transit line in which the
optimal alignment is obtained by microscopic analysis, followed by the solution of a
station location problem by a Genetic Algorithm which minimizes the total system
cost per person, the total user cost per person and maximizes the total ridership.

Lai and Schonfeld (2016) and Pu et al. (2018) applied a distance-transform algo-
rithm to solve the railway alignment and station location problem concurrently in
the urban context and in mountainous terrain, respectively. The concurrency relates
to the simultaneous alignment optimization and station location.

Kim et al. (2005) considered dividing a studied area into smaller regions to deal
with the computational burden to solve the highwayoptimizationproblem through the
so-called “Stepwise Genetic Algorithm”. However, the evidence through statistical
hypothesis testing proved its effectiveness only to a small theoretical grid area of 200
× 200 ft.

The parallel computing approach has been applied to solve combinatorial opti-
mization problems with different methods such the Variable Neighborhood Search
and the Bee Colony Algorithm (Gupta and Deep 2009; Crainic et al. 2012). The
adaptive Genetic Algorithm based on a multi-population parallel approach proposed
by Chen et al. (2011) is capable of estimating the costs of highway alignments
while avoiding premature convergence compared to a single-population evolutionary
algorithm. Kazemi and Shafahi (2013) solved the highway alignment optimization
problem with a parallel processing particle swarm optimization algorithm.

As far as we know, the proposed approach to solve the alignment optimization
problem through a parallel Genetic Algorithm running on a set of high performance
computers has not been explored in the literature, considering the computational
burden to estimate new railway alignments in wide areas, such intercity connections
in large countries as Brazil. Nowadays, data can be easily stored and processed by
interconnected computers in datawarehouses, such the parallel computing consists of
a physical infrastructure of computers (Virtual Machines, VMs) remotely accessed
and an interface that enables exchanging information among servers and clients
through the Internet.

3 The Parallel Genetic Algorithm and High Performance
Computing Environment

This section details the parallel computing framework considered to obtain near-
optimal railway alignments. The literature review presented in last section shows that
the Genetic Algorithm has been extensively applied to solve both the highway and
railway alignment optimization problems. One of the main contributions in this field
is by Jha et al. (2006), who detailed the mathematical formulation and procedures to
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Set parameters
Create individuals of population (set of alignments)
Set genes of individuals (coordinates of Horizontal Intersection Points and their respective
altitudes)
For each individual execute the following SUB-ROUTINE

Eliminate horizontal circular curves
Set radii of horizontal circular curves
Calculate attributes of horizontal circular curves
Set Vertical Intersection Points
Calculate length of vertical parabolic curves
Calculate attributes of vertical parabolic curves
Calculate the position and elevation of equally spaced track points
Calculate fitness (total cost)

Sort population by fitness (alignments by total cost)
Identify alignment of lowest cost (best individual with lowest fitness)
Calculate probability of changing or removing individual from the population
While NUMBER GENERATIONS ≠ MAXIMUM GENERATIONS do

Calculate number of crossover and mutation operators to be executed
Select the operators to be executed
Crossover and mutate individuals
For each individual execute the SUB-ROUTINE
Update population
Sort population by fitness (alignments by total cost)
Identify alignment of lowest cost (best individual with lowest fitness)
Calculate probability of changing or removing individual from the population
If fitness of best individual of current iteration = fitness of best individual of last
iteration then
NUMBER GENERATIONS=NUMBER GENERATIONS +1
Else
NUMBER GENERATIONS=0
End If

End While
Print best individual (attributes and georeferenced file of the lowest cost alignment)

Fig. 1 Steps of the genetic algorithm implemented in this paper to estimate railway alignments.
Source Adapted from Jha et al. (2006)

estimate the overall costs to build linear transport infrastructures with applications
to road design.

The steps of the 3-dimension Genetic Algorithm implemented in this paper to
estimate new railway alignments are described in Fig. 1, taking into account the
procedures described by Jha et al. (2006).

Initially, the algorithm sets the coordinates of the start (S) and end (E) points
of the alignment, the values of track parameters (minimum horizontal radius, and
minimum andmaximum slope), and the GA population size (number of alignments),
the number of generations (iterations of the algorithm) and the unit cost to estimate
the fitness function of each individual (i.e., the cost of each alignment).

Next, the individuals of the population are created, each one representing an align-
ment containing Horizontal Intersection Points (HIPs) and their respective elevations
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defined as: points over the straight line between S and E, and random elevations;
points in equidistant perpendicular plans over the straight line between S and E, and
random elevations; points in equidistant perpendicular plans over the straight line
between S and E, and ground elevation based on Digital Elevation Model (DEM);
random points and ground elevations based on DEM; or random points and random
elevations.

For each individual, the algorithm executes a SUB-ROUTINE where excessive
horizontal curves are eliminated, the radii of the horizontal circular curves con-
strained by minimum values as a function of the railway technology to be operated
are set, and the attributes of the tangent and curvature points of each horizontal
circular curve are calculated.

TheVertical Intersection Points (VIPs) are defined in the same position of theHIPs
in a way that three geometric elements may arise in these locations given the slope
constrained by minimum and maximum parameters: (i) a horizontal circular curve
and a vertical parabolic curve result in a three-dimension curvature; (ii) a horizontal
curve stands in a flat or sloping terrain; and (iii) or a tangent section lies on a vertical
curve.

Once the altitudes of the Vertical Intersection Points are defined based on the
values of their respective HIPs, the length of the parabolic curves and their attributes
are calculated, followed by the identification of the position and altitude of equally
spaced track points along the three-dimensional alignment.

The fitness function of each individual, i.e., the overall construction cost of each
alignment (CC), is estimated as the sum of the track related cost (TRC), the land use
cost (LUC), the earthwork cost (EWC) and the costs to build tunnels and bridges
(TBC). The TRC refers to the track elements (rails, sleepers, electrification etc.) and
is calculated as a function of the total length of the alignment and an average unit
cost per kilometer.

The landuse cost (LUC) is calculated by the expropriation costs over a surrounding
area of the alignment given an average unit cost depending on the land use provided
by a georeferenced dataset (IBGE 2014), which classifies the studied region into
urban and rural areas as illustrated in Fig. 2 (left). The cutting and embankment
volumes calculate the earthwork costs (EWC) over successive track points given
their cross-sectional areas and the elevations provided by the DEM illustrated in of
Fig. 2 (right) (U.S. Geological Survey 2014).

Finally, the costs to build tunnels and bridges (TBC) are estimated based on
unit monetary values per kilometer along the sequence of track points where those
structures are more economical than earthworks. An economic break-even point
between earthwork cost and construction cost of bridges or tunnels is determined by
the difference between the ground elevation and the altitude of the equally spaced
track points of the vertical alignment.

By the end of the SUB-ROUTINE, all the individuals are sorted in ascending
order of their fitness, and the probability of changing their genes is calculated based
on an uniform distribution. Four types of crossover operators (simple, two-point,
arithmetic and heuristic) and four types of mutation operators (uniform, straight and
non-uniform mutation to one or to all Horizontal Intersection Points) addressed by
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Fig. 2 Georeferenced datasets of land use (left) and DEM (right) of the Brazilian Southeastern
region in Brazil

Jha et al. (2006) are randomly applied to 30–50%of the population. At each crossover
or mutation, the new individuals are submitted to the SUB-ROUTINE to calculate
their fitness.

The replacement of individuals of the old population with a new one has been
implemented based on Jha et al. (2006). A random value between zero (0) and one (1)
is drawn based on an uniform probability function and assigned to the new individual
obtained by the crossover or mutation. This value is then compared with a calculated
probability of excluding the kth individual of the existing population based onEq. (1).
If the assigned random value is between pk and pk+1, then the old individual in the kth
position of the old population sorted in the descending order of fitness is replaced by
the new one, otherwise the new individual is excluded. This replacement procedure
occurs after performing all the crossovers and mutations.

pk = q · (1− q)k−1

1− (1− q)np
(1)

where pk = choice probability of the kth individual sorted in descending order of the
fitness function; np = population size; and q = exchange parameter equals 0.25 as
recommended by Jha et al. (2006).

The new population is sorted once again in ascending order of fitness and the
first individual is identified, which represents the alignment of lowest total cost.
Finally, a stop criterion is checked: if the number of successive iterations in which
the value of the fitness function of the best individual among the population does not
change, then the parameterNUMBER_GENERATIONS is increased by one unit, else
its value is set to zero. In the former case, the crossover and mutation probabilities
are re-calculated, and these operators and the SUB-ROUTINE are executed until the
parameter NUMBER_GENERATIONS differs fromMAXIMUM_GENERATIONS.
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3.1 Parallel Computing Framework

Despite the effectiveness of the Genetic Algorithm previously described to solve
the RAO problem, its application usually is constrained to small areas given the com-
putational burden due to data processing and recurrent access to the DEM and land
use georeferenced files. Additionally, the algorithm applied to wide areas requires
large-scale datasets to be processed at each generation after executing the crossover
andmutation operators. Thus, the parallel programming is a suitable approach to deal
with these computational issues by assigning tasks to multiple computers simulta-
neously, and, thus considerably reduce the running times to achieve good solutions
to the problem.

The computational experiments presented in this paper were performed using the
high performance computing resources of the University of São Paulo’s Advanced
Scientific Computing Laboratory (LCCA). More specifically, a cluster with physical
servers (virtual machines) Intel(R) Xeon(R) CPU E7-2870 @ 2.40 GHz 32 GB of
RAM. The georeferenced DEM and land use datasets were stored in one of these
machines and accessed by a relational programming language (MySQL 2014). The
fitness function of the individuals were assessed simultaneously in different virtual
machines, provided their availability previously defined by the user.

Execute Curve Elimination Procedure

Set Horizontal Circular Curves Radii 

Calculate Horizontal Circular Curve Attributes

Retrieve Altitude of Vertical Intersection Points

Set Parabolic Vertical Curve Length

Calculate Vertical Parabolic Curve Attributes

Calculate Coordinates of Station Points

Calculate Total Cost (fitness)

Job (set of tasks)

MySQL

Initialize Parameters

Create Individuals

Set Coordinates
of Horizontal/Vertical

Intersection Points

Client

Sort Population

Crossover and Mutation

Stopping Criteria Reached ?

Print Results

Nodes (SUB-ROUTINE)

Identify best individual

Calculate chamging and 
exclusion probabilities

Server

YES

NO

Fig. 3 Parallel genetic algorithm framework to solve the RAO problem
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A virtual machine (master) containing the core of the GA coded in Java is con-
nected to several machines (nodes) through the “Java Parallel Programming Frame-
work” library (JPPF 2014), each one running a SUB-ROUTINE (task) to a specific
individual.

The flowchart of Fig. 3 represents the communication among the master and the
nodes of the high performance computing environment to illustrate the proposed
parallel Genetic Algorithm framework to solve the RAO problem.

4 Model Application

This section presents the results of the proposed parallel GA applied to the high per-
formance computing environment in different railway connections betweenBrazilian
cities. The algorithm was applied to three pairs of cities in the Southeastern Region
of the country, varying the number of Horizontal Intersection Points as a function
of the length between them and the number of virtual machines (nodes) available
to run the SUB-ROUTINE. The total cost, processing time, length of the alignments
and the average cost per kilometer have been assessed between each city given the
specified type of train (HPT and HST).

Figure 4 illustrates the location of cities in the Brazilian Southeastern Region
chosen to be connected by new railway alignments, defined as “Rio de Janeiro-Juiz
de Fora”, “Campinas-Poços deCaldas” and “Araraquara-Ribeirão Preto”. Since these
cities already have a railway infrastructure in the urban areas as a consequence of
their historical development, the new alignments resulting from the parallel GAwere
estimated only in the rural areas between them.

Fig. 4 Cities among which new alignments have been estimated
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4.1 Parameters

For each railway technology (HPT and HST) and each pair of city, the number of
Horizontal Intersection Points have been set proportionally to an average density of
points per kilometer (i.e., HIPs separated by 5, 10, 15, 20 or 25 km on average) given
the distance of the straight line between the start and end point of the alignment.
In addition, the number of VMs available in the high performance computing envi-
ronment to process the tasks in every iteration of the SUB-ROUTINE were set to: 1
(equivalently to execute the algorithm in a single computer), 5, 10, 25, or 50 VMs.

Finally, in order to assess the variability of the total estimated costs, the GA was
executed five times per city connection, type of train, average density of HIPs, and
number of available VMs. Thus, 125 executions of the GA have been performed in
each studied case of intercity connection. The values of the parameters to estimate
the costs of the alignments are shown in Table 1 given the standard section of the
railway alignment illustrated in Fig. 5 regardless of the type of train.

4.2 Case 1: Rio de Janeiro-Juiz de Fora

Rio de Janeiro is a coastal city situated in the State of Rio de Janeiro, and Juiz de Fora
is located in the State of Minas Gerais in rough terrain, and are separated by 128 km
over mountainous terrain. The total costs and average costs in Brazilian monetary
units (R$ and R$ per km, respectively), and processing times (seconds), and total
length (km) of the estimated alignments to operate HPTs are presented in Fig. 6,
obtained by the application of the proposed parallel GA framework running on the
high performance computing environment.

Additionally, Figs. 7 and 8 illustrate the alignment over the land use and the DEM,
and its longitudinal profile, respectively, regarding the lowest total cost solution

Fig. 5 Standard railway section to estimate the alignment for HPT and HST
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Table 1 Parameters to
estimate the railway
alignments through the GA

Parameter Genetic algorithm Source

Non-
uniformity
degree (k)

6 Jha et al.
(2006)

Exchange
parameter (q)

0.25 Jha et al.
(2006)

Population
size

15. Number of HIP Jha et al.
(2006)

Stopping
criterion

100 successive iterations –

HPT HST Source

Geometric

Gauge (m) 1.435 1.435 –

Platform (m) 8 8 –

Railway
corridor (m)

24 24 –

Vertical
acceleration
(m/s2)

0.1829 0.1829 AREMA
(2003)

Distance
between
track points
(m)

90 90 –

Rolling
coefficient

0.29 0.29 AREMA
(2003)

Minimum
slope (%)

−2 −2 –

Maximum
slope (%)

2 2 –

Additional
planning cost
(%)

10 10 –

Average
speed (km/h)

150 300 –

Minimum
horizontal
radius (m)*

2000.00 7000.00 AREMA
(2003)

Earthwork

Embankment
degree (°)

45 45 TAV (2014)

Cutting
degree (°)

45 45 TAV (2014)

(continued)
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Table 1 (continued) Parameter Genetic algorithm Source

Tunnels and bridges

Maximum
tunnel depth
(m)

40 40 TAV (2014)

Maximum
cutting height
(m)

30 30 TAV (2014)

Maximum
bridge height
(m)

20 20 TAV (2014)

Maximum
embankment
height (m)

20 20 TAV (2014)

Minimum
tunnel/bridge
length (m)

50 50 TAV (2014)

Minimum
tunnel/bridge
length (m)

200 200 TAV (2014)

Bridge width
(m)

8 8 –

Tunnel
section area
(m2)

90 90 TAV (2014)

Infrastructure unit cost

Average
construction
cost (R$/m)

1556.00 4221.00 TAV (2014)

Earthwork cost

Landfill cost
(R$/m3)

2.71 2.71 TAV (2014)

Cutting cost
(R$/m3)

15.4 15.4 TAV (2014)

Bulking
factor

0.15 0.15 –

Landfill
transporta-
tion cost
(R$/m3 km)

1.78 1.78 TAV (2014)

Borrow pit
transporta-
tion cost
(R$/m3 km)

6.7 6.7 TAV (2014)

(continued)
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Table 1 (continued) Parameter Genetic algorithm Source

Tunnel/bridge cost

Tunnel
opening cost
(R$/unit)

1,660,000.00 1,660,000.00 TAV (2014)

Tunnel
construction
cost (R$/m)

120,000.00 120,000.00 TAV (2014)

Tunnel
construction
cost (R$/m2)

4745.00 4745.00 TAV (2014)

Expropriation cost

Urban area
(R$/m2)

23.6 23.6 TAV (2014)

Rural area
(R$/m2)

6.9 6.9 TAV (2014)

*Rounded values from 1668.0 and 6673.0 m for HPT and HST
respectively, considering height difference between parallel rails
equals 6 in. (approx. 0.1524 m) to compensate the centrifugal
acceleration

(a) Total Cost (b) Processing Time

(c) Total Length (d) Average Cost

Fig. 6 Average values of the estimated alignments for HPT between Rio de Janeiro and Juiz de
Fora
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Fig. 7 Estimated lowest cost alignment over land use (left) and DEM (right) to operate HPT
between Rio de Janeiro and Juiz de Fora

Fig. 8 Longitudinal section of the estimated lowest cost alignment to operate HPT between Rio
de Janeiro and Juiz de Fora

among the 125 replications of the algorithm. Similarly, Figs. 9, 10 and 11 present the
results of the GA regarding the estimations of alignments proper to operate HSTs.

For both types of trains (HPT and HST), the total costs vary with the number of
VMs and increase when the average distance between intersection points increases.
They vary practically in the same range for both technologies, with average value
of R$8.20 × 109 (standard deviation of R$1.12 × 109), average distance between
HIPs equals 5 km (19 intersection points) and 50 VMs for HPTs, and R$8.50 × 109

(standard deviation of R$1.12 × 109) for HST with the same number of Horizontal
Intersection Points and 25 available VMs.

The elapsed times to achieve the optimal solutions are not proportional to the
average distance between intersection points. There is a remarkable variation when
thenumber of available nodes changes, as the running times reduce significantlywhen
five VMs are used instead of only one. For instance, when the intersection points
are spaced by 5 km and one virtual machine runs the GA, the average processing
time is 184 min and standard deviation of 70 min to estimate alignments to HPTs,
and 180 min with standard deviation of 101 min adequate to HST. With five VMs
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(a) Total Cost (b) Processing Time

(c) Total Length (d) Average Cost

Fig. 9 Average values of the estimated alignments for HST between Rio de Janeiro and Juiz de
Fora

Fig. 10 Estimated lowest cost alignment over land use (left) and DEM (right) to operate HST
between Rio de Janeiro and Juiz de Fora
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Fig. 11 Longitudinal section of the estimated lowest cost alignment to operate HST between Rio
de Janeiro and Juiz de Fora

running, these values are 36min on average with standard deviation of 24 and 85min
(standard deviation of 42 min) respectively to HPT and HST.

However, when the number of nodes is increased, the running times do not
decrease in the same rate and become higher in some cases (e.g., when 25 VMs
are configured to run the code with intersection points spaced by 5 km on average
for the HPT alignments).

The average distance between intersection points and the number of running nodes
apparently do not affect the results regarding the alignment length. Therefore, the
cost per km increases when the number of intersection points increases since the
total costs are higher when the average spacing between points is greater, which can
be explained by refined estimations of earthwork volumes. In the worst case, the
highest average cost for HPT is R$10.18× 107/km (standard deviation of R$ 0.87×
107/km) when running 5 VMs and average distance between intersection points of
25 km, and the values for HST are R$9.67× 107/km (standard deviation of R$0.91×
107/km) with 25 virtual machines and the same number of points. The average costs
per kilometer to build new alignments in this case are similar due to the mountainous
terrain, which require the construction of a set of tunnels near the coastal area of Rio
de Janeiro.

4.3 Case 2: Campinas-Poços de Caldas

Campinas is 90 km away from the capital of the State of São Paulo and Poços de
Caldas is a touristic town in the State of Minas Gerais. They are separated by flat
terrain close to Campinas that becomes mountainous near Poços de Caldas, with
small surrounding cities in their path. The results of the parallel GAwhen estimating
new railway alignments between them resulted in total costs, running times, total
length and costs per kilometer depicted in Figs. 12 and 15 regarding the estimated
alignments suitable to operate HPT and HST, respectively. Figures 13, 14, 16 and 17
illustrate the horizontal and vertical profile of the lowest cost alignments regarding
the respective technologies.

As can be seen, the variation of total costs is small across the average distance
between intersection points and number of nodes for both technologies. The average
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(a) Total Cost (b) Processing Time

(c) Total Length (d) Average Cost

Fig. 12 Average values of the estimated alignments for HPT between Campinas and Poços de
Caldas

Fig. 13 Estimated lowest cost alignment over land use (left) and DEM (right) to operate HPT
between Campinas and Poços de Caldas
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Fig. 14 Longitudinal section of the estimated lowest cost alignment to operateHPTbetweenCamp-
inas and Poços de Caldas

(a) Total Cost (b) Processing Time

(c) Total Length (d) Average Cost

Fig. 15 Average values of the estimated alignments for HST between Campinas and Poços de
Caldas

minimum cost for HPT is R$7.22× 109 (standard deviation of R$0.67× 109) when
the intersection points are separated by 5 km on average (24 intersection points)
and 10 VMs are available to run the GA. On the other hand, the minimum cost is
R$7.78 × 109 (standard deviation of R$0.75 × 109) for HST with the same average
distance between HIP and 10 available VMs. The estimations tend to be similar
to the previous case as the total costs increase when the average distance between
intersection points raise, but do not vary significantly across the number of available
nodes.

There is a remarkable reduction in running times when more than one VM is used
to execute the Genetic Algorithm, which do not change significantly when more than
five nodes are turned on. For instance, the average elapsed time to solve the RAO



Parallel Genetic Algorithm and High Performance Computing … 177

Fig. 16 Estimated lowest cost alignment over land use (left) and DEM (right) to operate HST
between Campinas and Poços de Caldas

Fig. 17 Longitudinal section of the estimated lowest cost alignment to operateHSTbetweenCamp-
inas and Poços de Caldas

problem for HPT when the intersection points are spaced by 25 km on average is
157 min (standard deviation of 50 min) with one VM running and, on the other hand,
the convergence is reached in 28 min on average (standard deviation of 14 min) if
5 nodes are running in the high performance computing environment. For HST, the
largest difference is observed when the intersection points are separated by 5 km,
with elapsed time of 193 min on average (standard deviation of 83 min) for one
single running node, and 57 min (standard deviation of 35 min) and 63 min (standard
deviation of 46 min) minutes with 5 and 50 VMs respectively.

The length of the estimated alignments gradually increases when the number of
intersection points reduces, i.e., when the average distance between them increases.
Despite the variation of the estimated distances when running the GAwith a different
number of nodes, these values do not affect the average cost per kilometer as they
are relatively small compared to the total estimated costs.

The obtained costs per kilometer are lower compared to the previous case as the
minimum average costs per km for HPT is R$4.96 × 107/km (standard deviation of
R$0.71 × 107/km) and R$5.24 × 107/km (standard deviation of R$0.63 × 107/km)
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(a) Total Cost (b) Processing Time

(c) Total Length (d) Average Cost

Fig. 18 Average values of the estimated alignments for HPT between Araraquara and Ribeirão
Preto

for HST, both for replications with intersection points spaced by 5 km on average
and 5 VMs.

The estimated costs among the studied cases may differ due to the terrain con-
figuration between Campinas and Poços de Caldas, with reduced earthwork costs.
The length of tunnels and bridges is small in all the replications and, thus, their
contribution to the total costs is smaller.

4.4 Case 3: Araraquara-Ribeirão Preto

The last case studied presents the solution to the RAO problem to estimate new
alignments between Ribeirão Preto and Araraquara, two medium size cities in the
State of São Paulo. Figures 18 and 21 show the results of total costs, the elapsed
times to achieve these solutions, the total length and the cost per kilometer of the
alignments suitable to operateHPT andHST respectively. Figures 19 and 20 illustrate
the estimated lowest cost alignment to operate HPT over the land use and DEM
database, and its longitudinal section, respectively. Similarly, Figs. 22 and 23 show
the lowest cost alignment suitable to operate HSTs.

Despite the same trends compared to the other connections, the variance of total
and average costs per km of the obtained alignments between Ribeirão Preto and
Araraquara are closer to the results obtained betweenCampinas and Poços de Caldas.



Parallel Genetic Algorithm and High Performance Computing … 179

Fig. 19 Estimated lowest cost alignment over land use (left) and DEM (right) to operate HPT
between Araraquara and Ribeirão Preto

Fig. 20 Longitudinal section of the estimated lowest cost alignment to operate HPT between
Araraquara and Ribeirão Preto

The minimum average total cost for HPT is R$2.28 × 109 with standard deviation
of R$0.91 × 109 when the distance between intersection points is 5 km on average
and 50 VMs are available. For HST these values are respectively R$2.38 × 109 and
R$0.31× 109 with an average distance between intersection points of 5 km and one
running VM.

However, the elapsed times to retrieve the solutions are considerably smaller when
one virtual machine is running compared to the performance of more than five nodes,
while the results with a higher number of VMs is less deviated from the average than
in the other studied cases. For HPT alignments, the minimum average processing
time is 142 min with a standard deviation of 108 min when running one node and
the intersection points are spaced by 5 km on average. When four nodes are added to
solve the problem, the average running time reduces to 44 min (standard deviation
of 18 min) given the same average distance between intersection points.

Besides, the minimum average computational time to obtain alignments for HST
is 162 min (standard deviation of 57 min) when the intersection points are separated
by 5 km, and one VM is used. Furthermore, the processing time to achieve the
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(a) Total Cost (b) Processing Time

(c) Total Length (d) Average Cost

Fig. 21 Average values of the estimated alignments for HST between Araraquara and Ribeirão
Preto

Fig. 22 Estimated lowest cost alignment over land use (left) and DEM (right) to operate HST
between Araraquara and Ribeirão Preto
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Fig. 23 Longitudinal section of the estimated lowest cost alignment to operate HST between
Araraquara and Ribeirão Preto

solutions using 5 nodes is reduced to 50 min on average with a standard deviation of
19 min.

The average length of the optimal solutions for HPT is 95.6 km (standard devia-
tion of 11.6 km) when running one virtual machine with average distance between
intersection points of 5 km. The obtained alignments for HST lead to an average
length of 93.4 km with a standard deviation of 8.2 km under the same conditions.

The average cost per kilometer to build HPT alignments is R$2.67× 107/kmwith
standard deviation of R$0.67 × 107/km obtained by running the GA in 50 nodes
with average distance of 5 km between HIPs, which is significantly smaller than the
results obtained in the previous cases. On the other hand, the obtained value for HST
equals R$2.52 × 107/km on average with standard deviation of R$0.87 × 107/km
given an average distance between HIPs of 5 km and 5 VMs.

4.5 Comparative Analysis

This section aims to compare the results of the parallel Genetic Algorithm applied
to the intercity connections previously described. Table 2 summarizes the results of
the estimated alignments of minimum total cost in each studied cases.

The results show that the lowest cost solutions to the RAO problem are when the
average distance between intersection points is 5 km as it provides the most refined
estimations of earthwork volumes and, thus, lower values to the most representative
cost item among the overall estimated alignment cost. The number of Genetic Algo-
rithm generations to achieve the solutions is not influenced by the railway technology
and the running times are proportional to the number of iterations.

The minimum total costs are close to each other when the technologies are com-
pared within the same case studied. However, the costs tend to reduce for both tech-
nologies when the connections of Rio de Janeiro-Juiz de Fora and Campinas-Poços
de Caldas are compared to Araraquara-Ribeirão Preto since the terrain between the
cities becomes flatter in Case 3.

The total estimated cost is not directly associated with the distance since the total
length of the alignments for both technologies between Rio de Janeiro and Juiz de
Fora is smaller than the Araraquara-Ribeirão Preto case. While the respective length
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Table 2 Estimated results of the lowest cost alignments regarding each intercity connection and
type of train

Intercity
connection

Rio de Janeiro-Juiz de
Fora

Campinas-Poços de
Caldas

Araraquara-Ribeirão
Preto

Technology HPT HST HPT HST HPT HST

Average
distance
between
HIPs (km)

5 5 5 5 5 5

Number of
HIPs

19 19 24 24 14 14

Number of
generations

340 877 645 1081 755 648

Running
time (min)

23 58 67 93 47 35

Total cost
(R$ ×109)

7.00 7.67 6.19 6.23 1.51 1.87

Length
(km)

111.1 106.7 146.3 149.1 94.5 87.9

Cost per
kilometer

62.98 71.87 42.33 41.75 15.94 21.22

Infrastructure
cost (R$ ×
109)

0.17
(2.4%)

0.45
(5.9%)

0.23
(3.7%)

0.63
(10.1%)

0.15
(9.9%)

0.37
(19.8%)

Earthwork
cost (R$ ×
109)

0.63
(9.0%)

0.57
(7.4%)

0.71
(11.5%)

0.68
(10.9%)

0.25
(16.6%)

0.37
(19.8%)

Tunnel cost
(R$ ×109)

4.12
(58.9%)

4.48
(58.4%)

2.64
(42.6%)

3.22
(51.7%)

0.51
(33.8%)

0.47
(25.1%)

Bridge cost
(R$ ×109)

1.42
(20.3%)

1.44
(18.8%)

2.02
(32.6%)

1.1
(17.7%)

0.45
(29.8%)

0.47
(25.1%)

Expropriation
cost (R$ ×
109)

0.02
(0.3%)

0.02
(0.3%)

0.03
(0.5%)

0.03
(0.5%)

0.02
(1.3%)

0.01
(0.5%)

for HPT and HST in the first case is 111.1 km and 106.7 km, and the total costs
are R$7.00 × 109 and R$7.67 × 109 respectively, the third case resulted in 94.5
km and 87.9 km for the respective technologies with total cost of R$1.51 × 109

and R$1.87 × 109. The terrain configuration considerably impacts the total cost to
build the alignment regardless the railway technology since the tunnel costs represent
around 64% of the total costs for both technologies in Case 1, and 37.2% and 27.6%
in Case 3 for HPT and HST, respectively.

These results directly affect the average cost per kilometer of the alignments.
While Case 1 resulted in R$62.98 × 106/km and R$71.87 × 106/km for alignments
suitable to HPT and HST, respectively, the respective values of Case 2 are R$42.33×
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Fig. 24 Average costs per kilometer for construction of new HST rail alignments. Source Adapted
from De Rus et al. (2009)

106/km and R$41.75 × 106/km, and R$15.94 × 106/km and R$21.22 × 106/km in
the third case. Thus, the average cost per km in Case 3 is 25.3% smaller than in the
first one regarding the operation of HPT, and 29.5% for HSTs.

Given the estimated costs to build alignments appropriate to operate HPT and
HST, the geometric parameters required to properly operate these technologies may
not be the most relevant proxy since the earthwork, and tunnels and bridges costs are
the most relevant cost items provided the terrain configuration.

In order to compare the estimated values, Fig. 24 presents the range of infras-
tructure construction costs required to operate High Speed Trains across different
countries worldwide. Considering an average quotation of R$3.10 per European
currency unit (e) between 01/19/2015 and 05/19/2014 (BCB 2015), the minimum
and maximum values observed refer to R$14.6 × 106/km (France) and R$204.3 ×
106/km (Italy), respectively.

Despite the specific features of the Brazilian terrain and the premises of the pro-
posed parallel Genetic Algorithm framework, Fig. 24 shows that the average cost
values to build the railway alignments obtained in this paper are close to the interna-
tional practice (DeRus et al. 2009).While the average construction cost per kilometer
of HST alignments worldwide is R$78.4 × 106/km, the average estimated values in
Brazil are R$65.9 × 106/km for HST and R$63.6 × 106/km for HPT.
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5 Conclusions

This paper provides a solution to the railway alignment optimization problem through
a parallel Genetic Algorithm implemented on a high performance computing envi-
ronment to estimate intercity alignments in Brazil under distinct land use and terrain
configurations. The proposed approach was able to compute the costs to build new
infrastructure to operate trains of 200 and 300 km/h, respectively defined in this paper
as High Performance Trains (HPTs) and High Speed Trains (HSTs).

Despite being able to solve the problem with one single virtual machine running
in the high performance computing environment, the elapsed times to achieve the
solutions significantly decrease when the number of machines available to compute
the fitness function of the individuals of the algorithm increases. However, scaling the
computing infrastructure to more than five nodes is not appropriate since the running
times do not decrease significantly when more virtual machines are available. Thus,
investing in such large number of computers may not be the most adequate strategy
to solve the problem.

While the length of the alignments remains almost the same when the average
distance between intersection points is higher (because of slight differences in the
number of horizontal andvertical curves), the total costs decreaseswith higher density
of points (i.e., lower average distance between intersection points) since the tunnels
and bridges are replaced by cutting and embankments.

Throughout the application of the model to three real-world cases, we showed
that the alignment costs are not affected by the number of nodes available to run the
Genetic Algorithm and that the high performance computing infrastructure affects
only the running times and not the problem solution itself.

As expected, the alignments adequate to operate HPT and HST have less number
of curves in flat terrains such in the studied cases of Campinas-Poços de Caldas
and Araraquara-Ribeirão. However, in these scenarios the shape of the alignments
is different between train technologies. On the other hand, the estimated alignments
between Rio de Janeiro-Juiz de Fora are similar among train technologies because
the mountainous terrain between them require more tunnels and bridges regardless
the type of train.

Despite the capabilities of the parallel GA framework to solve theRAOproblem, it
can still benefit from technical improvements as the total estimated costs may include
the values of operating costs on a two-level approach of RAO solutions followed by a
train performance simulation. Moreover, methodological research would be carried
to investigate the performance of a concurrent computing approach compared to the
parallel environment described in this paper.
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