
Chapter 3
Background Independence
in a Background Dependent RG

3.1 Introduction

In Sect. 1.3.2 we underlined the importance of background independence in quantum
gravity and motivated going beyond the single field approximation to instead work
within bi-metric truncations in which separate dependence on the background field
is retained. Recall that using bi-metric truncations requires imposing a modified split
Ward identity (msWI) to ensure that background independence is recovered in the
limit the cutoff k is removed, k → 0.We also remarked in Sect. 1.3.2 that fixed points
can be forbidden by the very msWIs that are enforcing background independence,
an unsettling conclusion from the research reported in [1]. In this chapter we present
the research of [2] in which we uncover the underlying reasons for fixed points being
forbiddenwithin the derivative expansion and polynomial truncations of conformally
reduced gravity, extending the work of [1].

In the conformally truncated gravity model investigated in [1], fixed points are
forbidden generically when the anomalous dimension η is non-vanishing. This can
however be avoided by a careful choice of parametrisation f (setting it to be a power
of the background fieldχ determined by its scaling dimension [1]). On the other hand,
it was shown in [1] that the situation is saved in all cases, at least in the conformally
reduced gravity model, by the existence of an alternative background independent
description of the flow. This involves in particular a background independent notion
ofRGscale, k̂. This background independent description exists at a deeper underlying
level since in terms of these background independent variables, the RG fixed points
and corresponding flows always exist, and are manifestly independent of the choice
of parametrisation f (χ).

After approximating the exact RG flow equations and msWIs to second order in
the derivative expansion (as will be reviewed later), the crucial technical insight was
to notice that, just as in the scalar field theory model [3], the msWIs and RG flow
equations can be combined into linear partial differential equations. It is the solution
of the latter equations by the method of characteristics, that uncovers the background
independent variables. And it is by comparing the description in these variables with
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the equivalent description in the original variables, that we see that fixed points in
the original variables are in general forbidden by background independence.

However, in order to facilitate combining the RG flow equations andmsWIs when
the anomalous dimension η �= 0, the authors of [1] were led to a particular form of
cutoff profile Rk , namely a power-law cutoff profile. In the research presented in this
chapter we will show that in fact this cutoff profile plays a role that is much deeper
than the convenience of a mathematical trick. It in fact provides a condition that, if
obeyed, means that the flow and msWI are compatible. Recall from Sect. 1.3.2, that
compatibility is achieved if solutions to the flow equation also satisfy the msWI. The
notion of compatibility is of great importance as without it fixed points are forbidden
to exist, as we will see in the ensuing sections. As already argued in 1.3.2, at the exact
level the msWIs are guaranteed to be compatible with the exact RG flow equation,
but this will typically not be the case once approximated.1 We will see that in the
O(∂2) derivative expansion approximation derived in reference [1], the msWI and
flow equations are in fact compatible if and only if either the cutoff profile is power
law,2 or we have the special case that η = 0.3

The structure of this chapter is then as follows. In Sect. 3.2 we quickly review
the results we need from [1] and their context. In Sect. 3.3 we provide a proof of
compatibility at the exact level and investigate compatibility in the O(∂2) derivative
expansion along with deriving the requirements needed in order to achieve it. If the
msWIs are not compatible with the flow equations within the derivative expansion, it
does not immediately follow that there are no simultaneous solutions to the system of
equations. However, as we argue in Sect. 3.3, the equations are overconstrained and
it is for this reason that it is hopeless to expect any solutions for the non-compatible
case. We verify this using the LPA in Sect. 3.4 (see also 3.5). We also see in Sect. 3.4
that when the LPA equations are compatible they can indeed be combined to give a
background independent description of the flow; however, even when compatibility
is achievedwith power-law cutoff, we understandwhy themsWI can still forbid fixed
points for general parameterisation f and η �= 0. Finally, in Sect. 3.5, we consider
how these issues become visible in polynomial truncations and without resorting to
the trick of combining the flow and msWI equations. It is instructive to do so since it

1Note that even though conformally reduced gravity is a truncation of the full theory in which we
only focus on one particular mode of the metric (the conformal mode), approximation in the sense
that we mean it here involves an expansion, terminated at some order, like the other approximation
schemes outlined in Sect. 1.4.
2Power law cutoff profiles have nice properties in that they ensure that the derivative expansion
approximation preserves the quantisation of the anomalous dimension in non-gravitational systems,
e.g. scalar field theory [4–6]. (Although as with the optimised cutoff [7, 8], they do not allow a
derivative expansion to all orders [9–11].) Nevertheless, given the unsettling nature of the conclu-
sions in reference [1], it is important to understand to what extent the results depend on cutoff
profile.
3In fact it is natural to expect η to be non-vanishing at the LPA level for conformally truncated
gravity, as explained in reference [12].
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seems likely that this is the only waywe could investigate these issues using the exact
non-perturbative flow equations. We verify very straightforwardly that generically
there can be no fixed points as the equations over-constrain the solutions if the
truncation is taken to a sufficiently high order.

3.2 Conformally Reduced Gravity at Order
Derivative-Squared

In this section we give a quick review of the results we need and their context from
reference [1]. Recall that we arrive at conformally reduced gravity (in Euclidean
signature) by writing:

g̃μν = f (φ̃)ĝμν = f (χ + ϕ̃)ĝμν and ḡμν = f (χ)ĝμν . (3.2.1)

The metric g̃μν is restricted to an overall conformal factor f (φ̃) times a reference
metricwhich in factwe set to flat: ĝμν = δμν . Following the background fieldmethod,
we split the total conformal factor field φ̃(x) into a background conformal factor field
χ(x) and fluctuation conformal factor field ϕ̃(x). It is then the latter that is integrated
over. Similarly, we parametrise the backgroundmetric ḡμν in terms of the background
conformal factor field χ.

Examples of parametrisations used previously in the literature include f (φ) =
exp(2φ) [13] and f (φ) = φ2 [14, 15]. However we leave the choice of parametri-
sation unspecified. It is important to note however that f cannot depend on k since
it is introduced at the bare level and has no relation to the infrared cutoff (moreover
if f depended on k, the flow equation (3.2.2) would no longer hold). Later we will
change to dimensionless variables using k and in these variables it can be forced to
depend on k (see Sects. 3.3.5 and 3.4.1).

By keeping only the conformal factor of the metric, diffeomorphism invariance is
destroyed. Therefore gauge fixing and ghosts are not required in this setup.A remnant
diffeomorphism is preserved however, a multiplicative rescaling, which constrains
appearances of the background field.

Introducing the classical fluctuation field ϕ = 〈ϕ̃〉 and total classical field φ =
〈φ̃〉 = χ + ϕ, the effective action satisfies the flow equation

∂t�k[ϕ,χ] = 1

2
Tr

[
1√

ḡ
√

ḡ

δ2�k

δϕδϕ
+ Rk[χ]

]−1

∂t Rk[χ]. (3.2.2)

Note that here we are using the same notation for the effective action as in Chap. 1.
We have also introduced RG time

t = ln(k/μ), (3.2.3)
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with μ being a fixed reference scale, which can be thought of as being the usual
arbitrary finite physical mass-scale. Recall from Sect. 1.3.1 that in the context of the
background field method the cutoff operator Rk itself depends on the background
field χ as it becomes a function of the covariant Laplacian of the background metric
Rk

(−∇̄2
)
. We see that again, now in the context of conformally reduced gravity,

that the effective action possesses a separate dependence on the background field,
enforced through the cutoff.

By specialising to a background metric ḡμν that is slowly varying, so that space-
time derivatives of it can be neglected, we effectively terminate at the level of the LPA
for the background conformal factor χ. For the classical fluctuating conformal factor
ϕ however, O(∂2) in the derivative expansion approximation is fully implemented,
making no other approximation. The effective action in its most general form at this
level of truncation is thus given by

�k[ϕ,χ] =
∫

dd x
√

ḡ

(
−1

2
K (ϕ,χ)ḡμν∂μϕ∂νϕ + V (ϕ,χ)

)
. (3.2.4)

ThemsWI originates from the observation that the introduction of the cutoff action
into the functional integral violates split symmetry:

ϕ̃(x) �→ ϕ̃(x) + ε(x) and χ(x) �→ χ(x) − ε(x), (3.2.5)

under which the bare action is invariant.4 It is the breaking of this symmetry that
signals background independence has been lost, both at the level of the functional
integral and at the level of the effective action. ThemsWI encodes the extent to which
the effective action violates split symmetry5:

1√
ḡ

(
δ�k

δχ
− δ�k

δϕ

)
= 1

2
Tr

[
1√

ḡ
√

ḡ

δ2�k

δϕδϕ
+ Rk [χ]

]−1
1√
ḡ

{
δRk [χ]

δχ
+ d

2
∂χln f Rk [χ]

}
.

(3.2.6)
Exact background independence would be realised if the right-hand side of the
msWI was zero, implying that the effective action is only a functional of the total
field φ = χ + ϕ. The presence of the cutoff operator however causes the right-hand
side to be non-vanishing in general. It is only in the limit k → 0 (again whilst holding
unscaledmomenta and fields fixed) that the cutoff operator drops out and background
independence can be restored exactly. We now see how imposing the msWI in addi-
tion to the flow equation (3.2.2) automatically ensures exact background indepen-
dence in the limit k → 0. The observation we further explore in the work presented

4The source term also breaks the symmetry but does not contribute to the separate background field
dependence in �k [ϕ,χ].
5When all metric degrees of freedom are considered in full gravity, the msWI receives extra con-
tributions to its right-hand side originating from gauge fixing and ghosts.
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in this chapter is that restricting flows to satisfy (3.2.6) then has consequences for
RG properties, in particular fixed point behaviour, that follow from (3.2.2).

Computing the flow equation andmsWI in the derivative expansion (3.2.4) results
in flow equations and modified split Ward identities,6 for the potential V :

∂t V (ϕ,χ) = f (χ)−
d
2

∫
dp pd−1Q p Ṙp, (3.2.7)

∂χV − ∂ϕV + d

2
∂χln f V = f (χ)−

d
2

∫
dp pd−1Q p

(
∂χ Rp + d

2
∂χln f Rp

)
,

(3.2.8)

and for K :

f −1∂t K (ϕ,χ) = 2 f − d
2

∫
dp pd−1Pp(ϕ,χ)Ṙp, (3.2.9)

f −1
(

∂χK − ∂ϕK + d − 2

2
∂χln f K

)
= 2 f − d

2

∫
dp pd−1Pp(ϕ,χ)

(
∂χ Rp + d

2
∂χln f Rp

)
.

(3.2.10)

The p subscripts denote the momentum dependence of Q p, Pp and the cutoff Rp

and as usual RG time derivatives are denoted also by a dot on top. Q p is defined as

Q p =
(

∂2
ϕV − p2 K

f
+ Rp

)−1

. (3.2.11)

and Pp is given by

Pp = − 1

2

∂ϕK

f
Q2

p + ∂ϕK

f

(
2∂3

ϕV − 2d + 1

d

∂ϕK

f
p2

)
Q3

p

−
[{

4 + d

d

∂ϕK

f
p2 − ∂3

ϕV

}(
∂p2 Rp − K

f

)
+ 2

d
p2∂2

p2 Rp

(
∂ϕK

f
− ∂3

ϕV

)]

×
(

∂3
ϕV − ∂ϕK

f
p2

)
Q4

p

− 4

d
p2

(
∂p2 Rp − K

f

)2 (
∂3

ϕV − ∂ϕK

f
p2

)2

Q5
p. (3.2.12)

3.3 Compatibility of the msWI With the Flow Equation

Compatibility of the msWI with the flow equation can be phrased in the following
way. Write the msWI in the form W = 0 and assume that this holds at some scale

6Although we always mean these modified identities, we will sometimes refer to them simply as
Ward identities.
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k. Computing Ẇ by using the flow equation, we say that the msWI is compatible if
Ẇ = 0 then follows at scale k without further constraints.

In the first part of this section we rederive the flow equation and msWI for con-
formally reduced gravity but organised in a different way from reference [1] so as to
make the next derivation more transparent. We then prove that they are compatible
with one another. As previously emphasized, this is naturally to be expected since
both are derived from the same partition function. For completeness we include it
here in order to fully understand the issues once we consider derivative expansions.
(For a proof of the exact case in a more general context see reference [16].) In the
second part we study the notion of compatibility for conformally reduced gravity in
the truncation (3.2.4). Asking for compatibility in the derivative expansion is actually
non-trivial. We derive the requirements necessary to achieve it.

3.3.1 Compatibility at the Exact Level

The proof of compatibility of the un-truncated system consists of demonstrating that
the RG time derivative of the msWI is proportional to the msWI itself [17, 18]. In
analogy with references [17, 18], we expect to find that this RG time derivative is,
more specifically, proportional to a second functional derivative with respect to ϕ
acting on themsWI and it iswith this inmind thatwe proceed (see also reference[16]).

We begin by considering the following Euclidean functional integral over the
fluctuation field ϕ̃

eWk =
∫
Dϕ̃ exp (−S[χ + ϕ̃] − �Sk[ϕ̃, ḡ] + Ssrc[ϕ̃, ḡ]) . (3.3.1)

This integral is regulated in the UV (as it must be), however we leave this regularisa-
tion implicit in what follows. Compatibility can be shown most easily by presenting
both the flow equation and themsWI as matrix expressions. Thus we begin by rewrit-
ing the source term using matrix notation, introduced in Chap. 1:

Ssrc[ϕ̃, ḡ] =
∫

dd x
√

ḡ(x) ϕ̃(x)J (x) ≡ ϕ̃x Txy Jy ≡ ϕ̃ · T · J, (3.3.2)

where Txy ≡ T (x, y) ≡ √
ḡ(x)δ(x − y). Similarly, we write the cutoff action as

�Sk[ϕ̃, ḡ] = 1

2

∫
dd x

√
ḡ(x) ϕ̃(x)Rk[ḡ]ϕ̃(x) ≡ 1

2
ϕ̃xrxyϕ̃y ≡ 1

2
ϕ̃ · r · ϕ̃, (3.3.3)

where
rxy ≡ r(x, y) ≡ √

ḡ(x)
√

ḡ(y)Rk(x, y), (3.3.4)
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and where the cutoff operator and its kernel are related according to

Rk(x, y) = Rk,x
δ(x − y)√

ḡ(y)
. (3.3.5)

We refrain from putting a k subscript on rxy to avoid clutter with indices, but note
that it still has k-dependence. Also note that now the factors of

√
ḡ are no longer part

of the integration; this is to enable all χ-dependent quantities to be easily accounted
for when acting with δ/δχ later on.

With these definitions in place, the RG time derivative of (3.3.1) gives

Ẇk = −1

2
ṙxy〈ϕ̃x ϕ̃y〉. (3.3.6)

In the usual way, we take the Legendre transform of Wk :

�̃k = J · T · ϕ − Wk with T · ϕ = δWk

δJ
(3.3.7)

and from this we define the effective average action

�k[ϕ, ḡ] = �̃k[ϕ, ḡ] − �Sk[ϕ, ḡ]. (3.3.8)

From (3.3.7), it also follows that

〈ϕ̃x ϕ̃y〉 =
(

δ2�̃k

δϕxδϕy

)−1

+ ϕxϕy . (3.3.9)

Finally substituting (3.3.7) and (3.3.9) into (3.3.6), together with (3.3.8), we obtain
the flow equation for the effective average action

�̇k = 1

2
Tr

[(
δ2�k

δϕδϕ
+ r

)−1

ṙ

]
≡ 1

2
Tr� ṙ , (3.3.10)

where

�xy ≡
(

δ2�k

δϕxδϕy
+ rxy

)−1

. (3.3.11)

ThemsWI is derived by applying the split symmetry transformations (3.2.5), with
infinitesimal ε(x), to the functional integral (3.3.1). Applying these shifts we obtain

− δWk

δχ
· ε = 〈ε · T · J − ϕ̃ ·

(
δT

δχ
· ε

)
· J − ε · r · ϕ̃ + 1

2
ϕ̃ ·

(
δr

δχ
· ε

)
· ϕ̃〉.
(3.3.12)
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Under these same shifts, the Legendre transformation (3.3.7) gives

δWk

δχ
· ε = J ·

(
δT

δχ
· ε

)
· ϕ − δ�̃k

δχ
· ε. (3.3.13)

Substituting the above relation into (3.3.12) together with (3.3.8), we obtain the
msWI:

δ�k

δχω
− δ�k

δϕω
= 1

2
�xy

δryx

δχω
, (3.3.14)

where we have used the fact that the identity must hold for arbitrary ε(ω). Note that
in deriving (3.3.14) the contribution of the source term to the separate background
field dependence of �k[ϕ,χ] drops out.

The equations just derived, (3.3.10) and (3.3.14), appear at first sight to be in con-
flict with (3.2.2) and (3.2.6) respectively. In particular factors of

√
ḡ are apparently

missing. This is because the
√

ḡ factors are absorbed in a different definition of the
inverse kernel. Indeed the inverse kernel (3.3.11) now satisfies

(
δ2�k

δϕxδϕy
+ rxy

)
�yz = δxz (3.3.15)

without a
√

ḡ(y) included in the integration over y.
Now that we have derived the flow equation and msWI written in a convenient

notation, we are ready to prove that they are compatible. We begin by defining

Wω ≡ δ�k

δχω
− δ�k

δϕω
− 1

2
�xy

δryx

δχω
= 0. (3.3.16)

Taking the RG time derivative of W→ then gives

Ẇω = δ�̇k

δχω
− δ�̇k

δϕω
+ 1

2

[
�

(
δ2�̇k

δϕδϕ
+ ṙ

)
�

]
xy

δryx

δχω
− 1

2
�xy

δṙyx

δχω
(3.3.17)

and upon substituting the flow equation (3.3.10) into the right-hand side, we have

Ẇω = − 1

2
�xz

δ3�k

δϕzδϕz′δχω
�z′ yṙyx + 1

2
�xz

δ3�k

δϕzϕz′ϕω
�z′ yṙyx

+ 1

4
�xz

(
δ2

δϕzδϕz′
�uu′

)
ṙu′u�z′ y

δryx

δχω

= − 1

2
(�ṙ�)zz′

δ2

δϕz′δϕz

(
δ�

δχω
− δ�

δϕω

)
+ 1

4

(
δ2

δϕzδϕz′
�uu′

)
ṙu′u �z′ y

δryx

δχω
�xz .

(3.3.18)
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The first term in the last equality is in the formwe want: a differential operator acting
on (part of) W→. We now expand out the second term with the aim of also putting
it into the desired form. For the sake of neatness let us define

�x1...xn ≡ δn�k

δϕx1 ...δϕxn

. (3.3.19)

Expanding out the second term then gives

(
δ2

δϕzδϕz′
�uu′

)
ṙu′u �z′ y

δryx

δχω
�xz =�xz

(
�uv�zvs�sv′�z′v′s′�s′u′ +�uv′�v′s′z′�s′v�zvs�su′

− �uv′�v′s′zz′�s′u′
)

ṙu′u�z′ y
δryx

δχω
. (3.3.20)

Upon exchanging factors of � and relabelling indices, we find

(
δ2

δϕzδϕz′
�uu′

)
ṙu′u

(
�z′ y

δryx

δχω
�xz

)
= (�ṙ�)s ′v′

δ2

δϕv′δϕs ′
�xy

δryx

δχω
, (3.3.21)

which now has the structure we require. Thus we have shown that the RG time
derivative of the msWI can be written as

Ẇω = −1

2
Tr

(
�ṙ�

δ2

δϕδϕ

)
Wω, (3.3.22)

i.e. that it is proportional to the msWI itself. If �k satisfiesW→ at some initial scale
k0, and satisfies the flow equation there, it thus follows without further restriction
that Ẇ→|k0 = 0 since it is proportional to W→. Thus the msWI is compatible with
the flow equation. If �k continues to evolve according to the flow equation, it then
follows that W→ and thus Ẇ→ will be zero for all k.

3.3.2 Compatibility Versus Derivative Expansion

Recalling from (3.3.11) that � is an infrared regulated full propagator, we see from
(3.3.20) that the identity (3.3.21) can be understood diagrammatically in terms of
two-loop diagrams as sketched in Fig. 3.1. The symmetry of these diagrams means
that nothing changes if we exchange ṙ ↔ δr/δχ. This exchange immediately leads
to the identity (3.3.21).

This identity breaks down in general in the derivative expansion. If the Ward
identity is approximated by a derivative expansion, the full propagator in the one-
loop term in (3.3.16) is also expanded in a derivative expansion. This full propagator
has loop momentum q say, and is then expanded in powers of momenta carried by
the external fluctuation field ϕ(p), i.e. by the external legs. The RG time derivative



66 3 Background Independence in a Background Dependent RG

ṙ

δr

δχ

p

q

p + qδ3Γk

δϕ3
δ3Γk

δϕ3

ṙ

δr

δχ

p

q

δ4Γk

δϕ4

Fig. 3.1 The two-loop diagrams in (3.3.20). Their symmetry immediately implies the identity
(3.3.21). Momentum flow is indicated in the case where the fluctuation field ϕ is then set to zero.

of the Ward identity yields the RG time derivative of such vertices, as can be seen
from the δ2�̇k/δϕ

2 term in (3.3.17). This latter term has two internal legs given by
the explicit functional derivatives, carrying the loop momentum q and joining full
internal propagators �, and any number of external legs contained in the vertices
of �̇k . Substituting the flow equation (3.3.10) then gives in particular the last term
in eqn. (3.3.18) in which two of these external legs are now joined to form a loop
connected via ṙ . However it is momenta external to this new loop which are Taylor
expanded in the derivative expansion of the flow equation (see also [10, 11]). This
is illustrated in the diagram displayed in fig. 3.1. In particular when the remaining
external fluctuation field dependence is removed by setting ϕ = 0, we have exactly
themomentumdependence displayed in the figure.We see that a derivative expansion
of the Ward identity involves Taylor expanding in small p, while integrating over q.
However a derivative expansion of the flow equation involves Taylor expanding in
small q, and integrating over p instead. Thus the symmetry between the two loops
is broken and the identity (3.3.21) no longer follows.

On the other handwe see that if ṙ and δr/δχ have the samemomentumdependence
then the identity (3.3.21) is restored because it is no longer possible to distinguish the
two loops. Returning the placement of

√
ḡ from (3.3.4) to the integration measure,

this in fact would give us the relation (3.3.40) that is necessary and sufficient for
compatibility of the Ward identities within the derivative expansion, and which we
will now derive directly within the derivative expansion.
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3.3.3 Compatibility at Order Derivative-Squared

Wenowproceed to compute the flowof themsWI for the system truncated atO(∂2) as
described in Sect. 3.2, and investigate directly underwhich circumstances it vanishes.
Let us start bywriting theflowequations andmsWIs for bothV and K in the following
form so that we can study both cases simultaneously:

Ȧ(ϕ,χ) =
∫

p
Bp Ṙp, (3.3.23)

W (A) = ∂̄ A − γ A +
∫

p
Bp(∂χ Rp + γRp) = 0, (3.3.24)

where A is either V or K / f such that Bp is either Q p or 2Pp respectively. Here we
have also introduced the shorthand notation

∫
p

≡ f (χ)−
d
2

∫
dp pd−1, γ ≡ d

2
∂χln f, and ∂̄ ≡ ∂ϕ − ∂χ. (3.3.25)

It will also be useful to have to hand the following relations:

(
∂̄ + ∂t − γ

)
V = W(V ) +

∫
q

Qq (Ṙq − ∂χ Rq − γRq ), (3.3.26)

(
∂̄ + ∂t − γ

) K

f
= W(K ) + 2

∫
q

Pq (Ṙq − ∂χ Rq − γRq ), (3.3.27)

(
∂̄ + ∂t + nγ

)
Qn

p = −n Qn+1
p

∫
q
(∂2ϕQq − 2 p2Pq )(Ṙq − ∂χ Rq − γRq )

− n Qn+1
p (Ṙp − ∂χ Rp − γRp) − n Qn+1

p (∂2ϕW(V ) − p2W(K )).

(3.3.28)

The first two relations are derived by subtracting the msWI from the flow equation
for V and K / f respectively. The last relation is then derived by using the first two
relations above together with the definition of Q p given in (3.2.11).

We begin by taking the RG time derivative of (3.3.24). Substituting in the flow
equation for Ȧ, and remembering the power of f (χ) hidden in the integral over p,
this gives

Ẇ (A) =
∫

p
Ṙp

(
∂̄ + ∂t + γ

)
Bp −

∫
p

Ḃp
(
Ṙp − ∂χ Rp − γRp

)
. (3.3.29)

In order to proceed we have to assume a particular form of Bp so that we can compute
the result of the linear operators under the integral acting on it. A general term in Pp

takes the form

B̃p = (
∂i

ϕV
)a

(
∂ j

ϕ

K

f

)b (
∂k

p2 Rp

)c (
p2

)l
Qe

p, (3.3.30)
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where a, b, c, e, i, j, k (not to be confused with the cutoff scale), and l are non-
negative integers. From the structure of the terms in Pp one can read off the following
sum rule for the exponents:

a + b + c = e − 1. (3.3.31)

Notice that the case Bp = Q p for the potential is also included, since a = b = c =
l = 0 and e = 1 also satisfies the sum rule. Taking the term under the first integral
of (3.3.29), we find

(
∂̄ + ∂t + γ

)
B̃p =

[
a

(
∂i

ϕV
)−1

∂i
ϕ

(
∂̄ + ∂t

)
V + b

(
∂ j

ϕ

K

f

)−1

∂ j
ϕ

(
∂̄ + ∂t

) K

f

+ c
(
∂k

p2 Rp

)−1
∂k

p2
(−∂χ + ∂t

)
Rp + e Q−1

p

(
∂̄ + ∂t

)
Q p + γ

]
B̃p.

(3.3.32)

Substituting equations (3.3.26)–(3.3.28) into the above expression and using the sum
rule, we obtain

(
∂̄ + ∂t + γ

)
B̃p =

[
a

(
∂i
ϕV

)−1
∂i
ϕ

(
W(V ) +

∫
q

Qq R̄q

)

+ b

(
∂

j
ϕ

K

f

)−1
∂

j
ϕ

(
W(K ) + 2

∫
q

Pq R̄q

)
+ c

(
∂k

p2
Rp

)−1
∂k

p2
R̄p

− e Q p

∫
q

(
∂2ϕ Qq − 2p2Pq

)
R̄q − e Q p R̄p − e Q p

(
∂2ϕW(V )− p2W(K )

)
R̄q

]
B̃p

(3.3.33)

where we have introduced the shorthand notation

R̄p = Ṙp − ∂χ Rp − γRp. (3.3.34)

Turning our attention now to the second integral of (3.3.29) we take the RG time
derivative of B̃p and again substitute in the flow equations for V and K / f . This gives

˙̃Bp =
[

a
(
∂i

ϕV
)−1

∂i
ϕ

∫
q

Qq Ṙq + b

(
∂ j

ϕ

K

f

)−1

∂ j
ϕ

∫
q
2Pq Ṙq

+ c
(
∂k

p2 Rp

)−1
∂k

p2 Ṙp − e Q p

∫
q

(
∂2

ϕQq − 2p2Pq
)

Ṙq − e Q p Ṙq

]
B̃p.

(3.3.35)

Inserting (3.3.33) and (3.3.35) into (3.3.29) we obtain
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Ẇ(A) =
∑
B̃p

{
a

∫
p,q

B̃p(∂i
ϕV )−1∂i

ϕ

(
ṘpW(V ) + Qq [Ṙ, ∂χ R + γR]qp

)

+ b
∫

p,q
B̃p

(
∂

j
ϕ

K

f

)−1
∂

j
ϕ

(
ṘpW(K ) + 2Pq [Ṙ, ∂χ R + γR]qp

)
(3.3.36)

+ c
∫

p
B̃p

(
∂k

p2
Rp

)−1 ((
∂χ Rp + γRp

)
∂k

p2
Ṙp − Ṙp∂k

p2
(
∂χ Rp + γRp

))

−e
∫

p
B̃p Q p Ṙp

(
∂2ϕW(V )− p2W(K )

)
− e

∫
p,q

B̃p Q p

(
∂2ϕ Qq− 2p2Pq

)
[Ṙ, ∂χ R + γR]qp

}

wherewehave introduced the commutator-like construct [A, B]qp = Aq Bp − Bq Ap.
When A = V the above expression simplifies considerably to

Ẇ(V ) = −
∫

p
Q2

p Ṙp

(
∂2ϕW(V ) − p2W(K )

)
−

∫
p,q

Q2
p

(
∂2ϕQq − 2p2Pq

)
[Ṙ, ∂χ R + γR]qp,

(3.3.37)

which we see contains only terms that contain either the Ward identities or the
‘commutator’ [Ṙ, ∂χ R + γR]qp. On the other hand for the flow of the K / f msWI,
the terms do not collect, so that it remains separately dependent on the individual B̃p.
However each term either contains theWard identities themselves, the ‘commutator’
[Ṙ, ∂χ R + γR]qp, or the additional commutator-like structures:

(
∂χ Rp + γRp

)
∂k

p2 Ṙp − Ṙp∂
k
p2

(
∂χ Rp + γRp

)
. (3.3.38)

These appear in the third line of (3.3.36), and the integer k takes values 1 and 2.
For a general cutoff Rp, these two additional commutator terms neither vanish nor
combine with other terms of the flow.

If [Ṙ, ∂χ R + γR]qp vanishes, the flow (3.3.37) of the V msWI is automatically
satisfied providing that both the K and V msWI are also satisfied. In this case we
have by rearrangement that

(
∂χ Rp + γRp

)
/Ṙp = (

∂χ Rq + γRq
)
/Ṙq , (3.3.39)

which means that the ratio is independent of momentum. Equivalently

∂χ Rp + γRp = F(χ, t) Ṙp, (3.3.40)

where F can be a function of χ and t but not of p. However it is straightforward to
see that (3.3.40) also forces the additional commutators (3.3.38) to vanish.

We have therefore shown that all the commutator-like terms vanish if and only if
Ṙp and ∂χ Rp + γRp have the same dependence on p, with the consequence that both
the Ẇ (A) vanish, if the Ward identities W (A) themselves vanish. Since for general
choices of the functions, the vanishing of the ‘commutators’ is surely necessary to
achieve Ẇ (A) = 0 without further restriction, we have thus shown that the condition
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(3.3.40) is necessary and sufficient to ensure compatibility, as defined at the beginning
of this section.

3.3.4 Incompatibility Implies no Solutions

However even if the commutators do not vanish, and thus the Ward identities are
incompatible with the flow equations, a priori there could still be a non-empty
restricted set of solutions that both satisfy the flow equations and Ward identities. In
this case the equations are satisfied not by the vanishing of the commutators them-
selves, but by the fact that for the given solutions the sum of all these terms vanish
after performing the integration over momenta. Therefore, as well as obeying the
flow equations and the msWIs W (A) = 0, the solutions must also separately obey
two further conditions, namely the vanishing of the right-hand sides of (3.3.36). In
the language of Dirac’s classification of constraints [19, 20], the W (A) = 0 provide
the primary constraints. We have shown that if the ‘commutators’ do not vanish,
then the solutions are subject also to non-trivial secondary constraints Ẇ (A) = 0.
Given the involved form of Ẇ (K ) in particular, we can be sure that the procedure
does not close and that actually there is then an infinite tower of secondary con-
straints, ∂n

t W (A) = 0, ∀ n > 0, all of which must be satisfied. It would therefore
seem inevitable that there are in fact no non-trivial solutions in this case. We will
confirm this by example in Sect. 3.4.2. We conclude that the vanishing of the ‘com-
mutators’, and hence condition (3.3.40), is both necessary and sufficient for there to
be any solutions to the flows and Ward identities in the derivative expansion approx-
imation outlined in Sect. 3.2.

The condition (3.3.40) was already used in reference [1], where however it was
introduced as amathematical trick to help solve the coupled system of flow equations
and msWI. As we recall below, it implies either that η = 0 or Rp is of power-law
form. We now see that the requirement for Ṙp and ∂χ Rp + γRp to have the same
dependence on p, goes much deeper: the flow equations (3.2.7) and (3.2.9), and the
Ward identities (3.2.8) and (3.2.10), are incompatible without this constraint, and
incompatibility forces there to be no solutions to the combined system.

3.3.5 Required Form of the Cutoff Profile

Note that Rp must take a form that respects the scaling dimensions. Introducing
dimensionless variables for use in the next section and later on, we can make these
scaling dimensions explicit by employing the RG scale k. We denote the new dimen-
sionless quantities with a bar. We have
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ϕ = kη/2ϕ̄, χ = kη/2χ̄, f (χ) = kd f f̄ (χ),

V (ϕ,χ) = kdV V̄ (ϕ̄, χ̄), K (ϕ,χ) = kdR−2+d f K̄ (ϕ̄, χ̄), (3.3.41)

where
dV = d(1 − d f /2) and dR = dV − η, (3.3.42)

and thus from (3.3.3) and (3.2.1), we have by dimensions that Rp must take the form

R(p2/ f ) = −kdR r

(
p2

k2−d f f

)
= −kdR r( p̂2), (3.3.43)

where r is a dimensionless cutoff profile of a dimensionless argument,7 and we have
introduced the dimensionless momentum magnitude p̂ = p

√
kd f −2/ f .

If Ṙp and ∂χ Rp + γRp have the same dependence on p, i.e. satisfy (3.3.40), then
either η = 0 or Rp is of power-law form [1]. To see this, note that from (3.3.43) and
(3.3.25) we have

γ Ṙp = dV
[
∂χ Rp + γRp

] − ηγRp. (3.3.44)

Thus (choosing F = γ/dV ) we see that (3.3.40) is satisfied if η = 0, without further
restriction on R. However if η �= 0, then (3.3.44) together with (3.3.40) implies

f
∂Rp

∂ f
= d

2

(
ηF

dV F − γ
− 1

)
Rp, (3.3.45)

and thus from (3.3.43)

p̂
d

d p̂
r( p̂2) = −d

(
ηF

dV F − γ
− 1

)
r( p̂2). (3.3.46)

Since the term in brackets does not depend on p, we see that this is only possible if
in fact the term in brackets is a constant. Setting this constant to be 2n/d for some
constant n, we thus also deduce that r ∝ p̂−2n .

An example of a cutoff that does not satisfy (3.3.40) if η �= 0, and thus leads to
incompatible msWIs in this case, is the optimised cutoff [7, 8]:

r( p̂2) = (1 − p̂2)θ(1 − p̂2). (3.3.47)

It is straight-forward to confirm that this does not satisfy (3.3.40) if η �= 0. Using
(3.3.43) and (3.3.44) we find

Ṙp ∝ dV

[
2

d
θ(1 − p̂2) + (1 − p̂2)θ(1 − p̂2)

]
− η (1 − p̂2)θ(1 − p̂2). (3.3.48)

7The minus sign in (3.3.43) is necessary to work with the wrong sign kinetic term in (3.2.4) [1].
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In order for (3.3.47) to satisfy (3.3.40), the right-hand side must be proportional to
∂χ Rp + γRp i.e. to the term in square brackets. This is only true if η = 0.

3.4 LPA Equations

Wewill now use the Local Potential Approximation to further investigate the restric-
tion imposed by the msWI on the RG flow equation, in terms of general solutions and
also on the existence of k-fixed points (i.e. RG fixed points with respect to variations
in k). We start with a very clear example where the msWI forbids the existence of
k-fixed points.

Then using the concrete example of the optimised cutoff we show explicitly that
compatibility forces η = 0 for non-power-law cutoffs. Setting η = 0 we will see
that background independent variables exist, in other words they exist whenever
the msWI is compatible with the flow. We will also see that such k̂-fixed points8

coincide with the k-fixed points. The background independent variables allow us to
solve for the fixed points explicitly, uncovering a line of fixed points, consistent with
the findings for power-law cutoff [12].

3.4.1 Demonstration of Background Independence
Forbidding Fixed Points in General

We use the change to dimensionless variables (3.3.41) and (3.3.43). In the LPA we
discard the flow and Ward identity for K , and set K̄ = 1. The result, for a general
cutoff profile r( p̂2), is:

∂t V̄ + dV V̄ − η

2
ϕ̄

∂V̄

∂ϕ̄
− η

2
χ̄

∂V̄

∂χ̄
=

∫ ∞

0
d p̂ p̂d−1 dR r − dV

d p̂ r ′

p̂2 + r − ∂2
ϕ̄V̄

, (3.4.1)

∂V̄

∂χ̄
− ∂V̄

∂ϕ̄
+ γ̄ V̄ = γ̄

∫ ∞

0
d p̂ p̂d−1 r − 1

d p̂ r ′

p̂2 + r − ∂2
ϕ̄V̄

, (3.4.2)

where r ′ means dr( p̂2)/d p̂ and from the change to dimensionless variables we find:

γ̄ = d

2

∂

∂χ̄
ln f̄

(
eηt/2μη/2χ̄

)
. (3.4.3)

Note that since f cannot depend on t (see the discussion in Sect. 3.2), once we go to
dimensionless (i.e. scaled) variables, f̄ is in general forced to depend on t if χ has
non-vanishing scaling dimension η. At the (k-)fixed point wemust have ∂t V̄ = 0.We

8Recall that k̂ is the background independent notion of RG scale.
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see at once why fixed points are generically forbidden by the msWI: the fixed point
potential V̄ would have to be independent of t , but through (3.4.2) and (3.4.3) this is
impossible in general since V̄ is forced to be dependent on explicit t-dependence in
f̄ through theWard identity. This is true even in the case of power-law cutoff profile9

which as we have seen allows (3.4.2) to be compatible with the flow (3.4.1).
At first sight an escape from this problem is simply to set f to be power law.

Indeed setting f ∝ χρ for some constant ρ, (3.4.3) implies

γ̄ = d

2

ρ

χ̄
, (3.4.4)

and thus (3.4.2) no longer has explicit t dependence. Recall that for power-law cutoff
profiles r , it was indeed found that k-fixed points for V̄ are allowed if f is chosen to
be of power law form [1].10 However we have seen in Sect. 3.3.5 that any other cutoff
profile does not allow theWard identity to be compatible with the flow unless η = 0.
We argued in Sect. 3.3.4 that incompatibility overconstrains the equations leading
to no solutions. In the next subsection, Sect. 3.4.2, we will confirm this explicitly,
choosing as a concrete example the optimised cutoff profile and space-timedimension
d = 4.

On the other hand, if we set η = 0 then the msWI (3.4.2) is compatible with
the flow (3.4.1), for any parametrisation f . Apparently k-fixed points are also now
allowedwithout further restriction, since again (3.4.3) loses its explicit t dependence.
Opting once more for optimised cutoff profile and d = 4, we will see in Sect. 3.4.3
that indeed they are allowed and furthermore they coincide with fixed points in a
background independent description that we also uncover.

3.4.2 Confirmation of No Solutions if the msWI is
Incompatible With the Flow

Specialising to the optimised cutoff and (for simplicity) the most interesting case of
spacetime dimension d = 4, the equations read

∂t V̄ + dV V̄ − η

2
ϕ̄ ∂ϕ̄V̄ − η

2
χ̄ ∂χ̄V̄ =

(
dR

6
+ η

12

)
1

1 − ∂2
ϕ̄V̄

, (3.4.5)

∂χ̄V̄ − ∂ϕ̄V̄ + γ̄V̄ = γ̄

6

1

1 − ∂2
ϕ̄V̄

. (3.4.6)

9And indeed this issue was highlighted, but in a different way in reference [1].
10This is true also for K̄ . However if the dimensions of f and χ do not match up, these fixed points
do not agree with the background independent k̂-fixed points and furthermore the effective action
�k still runs with k [1].
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Choosing power law f and thus eliminating explicit dependence on t , cf. (3.4.4),
apparently these equations can work together. Combining them by eliminating their
right-hand sides, we get

2∂t V̄ + ηV̄ − (ηϕ̄ − αχ̄) ∂ϕ̄V̄ − (η + α)χ̄∂χ̄V̄ = 0, (3.4.7)

where we have introduced the constant α = (dR + η/2)/ρ. This equation can be
solved by the method of characteristics (see e.g. the appendix in reference [1]).
Parametrising the characteristic curves with t , they are generated by the following
equations:

dV̄

dt
= −η

2
V̄ ,

dχ̄

dt
= −α + η

2
χ̄,

dϕ̄

dt
= αχ̄ − ηϕ̄

2
. (3.4.8)

Solving the second equation before the third, it is straightforward to find the curves:

V̄ = V̂ e−ηt/2, χ̄ = χ̂ e−(η+α)t/2, ϕ̄ + χ̄ = φ̂ e−ηt/2, (3.4.9)

in terms of initial data V̂ , φ̂, χ̂. Thus the solution to (3.4.7) can be written as

V̄ = e−ηt/2 V̂ (φ̂, χ̂) = e−ηt/2 V̂
(
eηt/2[ϕ̄ + χ̄], e(η+α)t/2χ̄

)
, (3.4.10)

as can be verified directly. Plugging this into either (3.4.5) or (3.4.6) gives the same
equation, which in terms of the hatted variables reads

χ̂∂χ̂V̂ + 2ρV̂ = ρ

3

1

e− η
2 t − ∂2

φ̂
V̂

. (3.4.11)

Since V̂ (φ̂, χ̂) is independent of t , we see there are no solutions unless η = 0.We saw
inSect. 3.3.5 that thiswas also the necessary and sufficient condition for compatibility
in this case.

3.4.3 Background Independence at Vanishing Anomalous
Dimension

We now set η = 0. As recalled in Sect. 3.3.5, the msWI is now compatible with
the flow, and furthermore from (3.4.3) the explicit t dependence has dropped out.
For power-law cutoff profiles we found that k-fixed points exist and coincide with
background independent k̂-fixed points for any form of f with any dimension d f [1].
We will see that for non-power law cutoff that the same is true. (Again we choose
optimised cutoff and d = 4 as an explicit example.) We will uncover consistent
background independent variables forwhich the full line of fixedpoints is visible [12].
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Since η = 0, in the equations (3.4.5) and (3.4.6), we also have dR = dV = 2(2 −
d f ) and γ̄ = 2∂χ̄ ln f̄ (χ̄). Note that from (3.3.43), d f = 2 is excluded otherwise the
IR cutoff no longer depends on k. Also note that since η = 0 we can drop the bars on
χ and ϕ. Combining the equations into a linear partial differential equation we get

∂t V̄ + 2 − d f

∂χ ln f̄

(
∂ϕV̄ − ∂χV̄

) = 0, (3.4.12)

whose characteristic curves satisfy

dχ

dt
= d f − 2

∂χ ln f̄
,

dϕ

dt
= 2 − d f

∂χ ln f̄
,

dV̄

dt
= 0. (3.4.13)

Solving the first equation gives:

t̂ = t + ln f̄

2 − d f
, (3.4.14)

where the integration constant t̂ is thus the background independent definition of RG
time (see the appendix to reference [1]). Exponentiating,

k̂ = k
{

f̄ (χ)
} 1

2−d f = k
2
1−d f
2−d f { f (χ)} 1

2−d f , (3.4.15)

where the second equality follows from (3.3.41). The sum of the first two equations
in (3.4.13) tells us that φ = ϕ + χ is an integration constant for the characteristics,
and finally the last equation says that V̄ is also constant for characteristics. Thus we
learn that the change to background independent variables is achieved by writing

V̄ = V̂ (φ, t̂ ). (3.4.16)

It is straightforward to verify that this solves (3.4.12). Substituting into either (3.4.5)
or (3.4.6) gives the same flow equation:

∂t̂ V̂ + dV V̂ = dV

6

1

1 − ∂2
φV̂

, (3.4.17)

which is indeed now background independent, i.e. independent of χ, and indeed
independent of parametrisation f . There remains a dependence on the dimension of
f through dV = 2(2 − d f ) although this disappears for k̂-fixed points, and can be
removed entirely by a rescaling t̂ �→ t̂ dV which however changes the dimension of
k̂ to dV .

We also see from (3.4.14) and (3.4.16) that

∂t V̄ = ∂t̂ V̂ , (3.4.18)
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and thus fixed points in k coincide with the background independent fixed points.
Finally, the fixed points are readily found from (3.4.17) similarly to references [5,

12] by recognising that
d2V̂

dφ2
= 1 − 1

6V̂
(3.4.19)

is equivalent to Newton’s equation for acceleration with respect to ‘time’ φ of a
particle of unit mass at ‘position’ V̂ in a potential U = −V̂ + (ln V̂ )/6. In this way
it can be verified that there is a line of fixed points ending at the Gaussian fixed point,
which is here V̂ = 1/6. The appearance of this line of fixed points is a consequence of
the conformal factor problem, discussed in Sect. 1.4 of Chap. 1, and is in agreement
with the findings for power-law cutoff in reference [12] in which the problem has
been addressed.

3.5 Polynomial Truncations

The analysis so far has used properties of conformally truncated gravity and the
derivative expansion approximation method. In order to gain insight about what
might happen at the non-perturbative level, and in full quantum gravity, we will
consider how the issues would become visible in polynomial truncations.

The generic case treated in Sect. 3.4.1 will be just as clear in the sense that
truncations of theWard identity will still force the effective potential (effective action
in general) to be t-dependent if the dimensionless parametrisation (3.4.3) is similarly
forced to be t-dependent. In general therefore, if the way the metric is parametrised
forces the parametrisation to become t-dependent, we can expect that background
independence excludes the possibility of fixed points, at least with respect to t .

Consider next the situation treated in Sect. 3.4.2. Expanding the dimensionless
potential and the equations in a double power series in the fluctuation and the back-
ground field, we write:

V̄ (ϕ̄, χ̄) =
∞∑

n,m=0

anmϕ̄nχ̄m . (3.5.1)

Substituting (3.4.4) into (3.4.6) and multiplying through by χ̄, we can read off from
this and (3.4.5) the zeroth level equations:

dV a00 =
(

dR

6
+ η

12

)
1

1 − 2a20
, 2ρ a00 = ρ

3

1

1 − 2a20
. (3.5.2)

Since ρ cannot vanish and a20 cannot diverge, combining these equations gives
dV = dR + η/2 which from (3.3.42) implies η = 0. Thus we recover already from
the zeroth order level that fixed points are excluded unless η = 0. (Of course the real
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reason, namely that the equations are incompatible, and the full consequence that
there are no t-dependent solutions either, is maybe not so easy to see this way.)

3.5.1 Counting Argument

We remarked the Introduction that generically the solutions become over-constrained
if we consider a sufficiently high truncation.We now proceed to make a careful count
of the coefficients appearing in the equations and estimate the level at which this
happens.

We concentrate on fixed point solutions to the LPA system (3.4.1), (3.4.2) and
(3.4.3) where either η = 0 or we choose power-law f , so that explicit t depen-
dence does not already rule out such solutions. We introduce the short-hand notation
V̄ (n,m) = ∂n

ϕ̄∂m
χ̄ V̄ (ϕ̄, χ̄). To obtain the system at order r we have to plug the expan-

sion of the potential (3.5.1) into both the fixed point equation and msWI, act on them
with operators ∂i+ j

∂ϕ̄i ∂χ̄ j such that i + j = r , before finally setting the fields to zero. In
particular, for any fixed value r� we have 2 (r� + 1) equations and hence up to order
r there are

neqn(r) =
r∑

i=0

2 (i + 1) = r2 + 3r + 2 (3.5.3)

equations.
To count the coefficients appearing in these neqn(r) equations let us start with the

left-hand sides. First note that

V̄ (i, j)

∣∣∣∣
ϕ̄=χ̄=0

∝ ai j . (3.5.4)

That is, for any fixed pair (i, j) the left-hand side of (3.4.2) will contain the coeffi-
cients ai j , ai+1, j and ai, j+1, whereas the left-hand side of (3.4.1) will only contain
ai j . Up to some fixed order r there will be thus coefficients ai j where i and j run
from 0 to r + 1 and i + j � r + 1

{
a00, a01, . . . , a0,r+1, a10, . . . , a1,r , . . . , a2,r−1, . . . , ar+1,0

}
, (3.5.5)

(cf. figure 3.2). This adds up to the following number of coefficients

nlhs(r) =
r+2∑
i=1

i = 1

2
r2 + 5

2
r + 3. (3.5.6)

Including the coefficients on the right-hand sides, we have to be careful not to
double count any coefficients that have already been taken account of on the left-hand
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Fig. 3.2 Coefficients of the potential appearing on the left sides of the equations

sides. Let us suppose we have fixed the cutoff and let us assume that for the moment
γ̄ = const. Then all additional coefficients on the right-hand sides come from the
expansion of the propagator

∂i+ j

∂ϕ̄i ∂χ̄ j

(
1

1 − V̄ (2,0)

) ∣∣∣∣
ϕ̄=χ̄=0

= ∂ j

∂χ̄ j

[
∂i−1

∂ϕ̄i−1

(
V̄ (3,0)

(1 − V̄ (2,0))2

)] ∣∣∣∣
ϕ̄=χ̄=0

.

(3.5.7)
Since we can always arrange the ϕ̄–derivatives to act first, the expression in the
square brackets will involve terms V̄ (2,0) · · · V̄ (i+2,0). Using (3.5.4), we see that the
expression given in (3.5.7) will then include terms

{
a20, a21, . . . , a2i , a30, . . . , a3i , . . . , ai+2,0, . . . , ai+2, j

}
. (3.5.8)

Up to any fixed order r , i and j can take values between 0 and r such that i + j = r ,
and in total we will have the following coefficients on the right-hand sides

{
a20, . . . , a2,r , a30, . . . , a3,r−1, . . . , a4,r−2, . . . , ar+2,0

}
, (3.5.9)

(cf. figure 3.3). Most of these coefficients have however already been accounted for
on the left-hand sides cf. (3.5.5). The only ones not yet counted are

{
a2,r , a3,r−1, a4,r−2, . . . , ar+2,0

}
, (3.5.10)

(cf. figure 3.4) which precisely add up to a further r + 1 coefficients. We also must
include another two coefficients, namely η and d f . Finally, since γ is in general some
function of χ it is easy to see that
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Fig. 3.3 Coefficients of the potential appearing in the expansion of the propagator
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Fig. 3.4 All the coefficients of the potential appearing on both sides of the equations

dr

dχ̄r
γ̄ ∝ dr

dχ̄r

(
f ′

f

)
⊆

{
f, f ′, . . . , f (r+1)

}
, (3.5.11)

which gives us an additional (r + 2) coefficients from the Taylor expansion of f .
The total number of coefficients from both left and right-hand sides is then given by

ncoeff(r) = nlhs + (r + 1) + (r + 2) + 2 = 1

2
r2 + 9

2
r + 8. (3.5.12)
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From (3.5.3) we see that for large r the number of equations ∼r2, while from
(3.5.12) the number of coefficients only ∼r2/2. There are therefore asymptotically
twice as many equations as coefficients, as already discussed in the Introduction.
Equating the number of equations and coefficients yields the positive solution

r = 5.3. (3.5.13)

Therefore the number of equations exceeds the number of coefficients for the first
time at order r = 6. If there is to be a conflict between the existence of (k-)fixed points
and background independence generically wewould expect this to become evident at
about this level. Equally, if there is no conflict between background independence and
the existence of (k-)fixed points then from this level onwards some equations become
redundant (i.e. they provide constraints that are automatically satisfied once the other
equations are obeyed). In the limit r → ∞ fully half of the equations must become
redundant if (k-)fixed points are to be consistent with background independence.

3.6 Conclusions

Ifwe construct the non-perturbative flowequation for quantumgravity by introducing
a cutoff defined through a background metric then independence from this artificial
metric can only be achieved if the appropriate modified split Ward identity is obeyed.
However even if it is obeyed, background independence is guaranteed only in the
limit k → 0. RG properties on the other hand are defined at intermediate scales k.
There is therefore the potential for conflict in this formulation between RG notions
such as fixed points, and the requirement of background independence. Examples of
such conflicts were uncovered in reference [1].

In this paper we have further investigated these issues. Our findings, together
with those of reference [1], are summarised in table 3.1.11 The first question that
needs to be addressed is whether the msWI,W = 0, is compatible with the exact RG
flow equation, i.e. such that Ẇ = 0 then follows. At the exact level, compatibility is
guaranteed since they are both identities derived from the partition function (see also
Sect. 3.3.1). Within the derivative expansion approximation of conformally reduced
gravity considered in reference [1] (reviewed in Sect. 3.2), we have shown in Sects.
3.3.3 and 3.3.5, that this compatibility follows if and only if either η = 0 or the cutoff
profile is power law. In Sect. 3.3.2, we saw precisely why the derivative expansion
breaks compatibility in general and why these special cases restore it. We argued in
Sect. 3.3.4 that if the equations are incompatible they are overconstrained since there
are then an infinite number of secondary constraints, and thus not even t-dependent
solutions can exist. We confirmed this latter conclusion by example in Sect. 3.4.2 in
the LPA. In Sect. 3.5, we also saw that the fixed point equations and Ward identities

11For power law cutoff r(z) = z−n , d f = 2 − η/(n + 2) is excluded [1], and from Sect. 3.3.5 when
η = 0, d f = 2 is excluded for any cutoff profile: in these cases the cutoff term is independent of k.
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Table 3.1 RG properties of the derivative expansion for conformally reduced gravity, when the
msWI is also satisfied. The results depend on whether the conformal factor develops an anomalous
dimension η, on the choice of cutoff profile r , and on how the metric is parametrised via f .
Depending also on its dimension d f , f can contain a massive parameter, and thus run with k when
written in dimensionless terms, as listed in the table. F̂P indicates that a background independent
description exists, while ( ) FP indicates that k-fixed points are (not) allowed; the (in)equality
shows how these relate to the k̂-fixed points

Parametrisation f Cutoff profile r

η Type d f Runs Power-law Not power-law

�= 0 Not power-law Any Yes F̂P

incompatiblePower law �= ρη/2 Yes FP �= F̂P

f = χρ = ρη/2 No FP = F̂P

= 0 Any �= 0 Yes FP = F̂P

= 0 No

together generically overconstrain the system when expanded in terms of vertices
beyond the six-point level.

Even if the equations are compatible, the msWI can still forbid fixed points. In
Sect. 3.4.1 the reason was laid out particularly clearly. The Ward identity

∂V̄

∂χ̄
− ∂V̄

∂ϕ̄
+ γ̄ V̄ = γ̄

∫ ∞

0
d p̂ p̂d−1 r − 1

d p̂ r ′

p̂2 + r − ∂2
ϕ̄V̄

(3.6.1)

(which is compatible for power-law r ), forces the effective potential V̄ to depend on
t through

γ̄ = d

2

∂

∂χ̄
ln f̄

(
eηt/2μη/2χ̄

)
, (3.6.2)

whenever this dimensionless combination is similarly forced to be t-dependent. For
example we see that fixed points with respect to k are forbidden for exponential
parametrisations f (φ) = exp(φ) if the field grows a non-zero anomalous dimension.
It is clear that the reasons for this conflict are general and not tied to the derivative
expansion of the conformally truncated model per se. Therefore this issue could pro-
vide important constraints for example on the exponential parametrisations recently
advocated in the literature [21–29].

In Sect. 3.5 we considered how these issues arise in polynomials truncations. We
saw that the problem is that if the fixed point equations and msWI equations are truly
independent, then they will over-constrain the solutions if carried to a sufficiently
high order truncation. Indeed, expanding in powers of the fluctuation field ϕ to the
mth level and background field χ to the nth level, we get one fixed point equation for
each (m, n)-point vertex and one msWI equation per vertex. Even though each of
these equations is open (depending on yet higher-point vertices) we saw that since
there are two equations for every vertex, at sufficiently high order truncation there
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are more equations than vertices (indeed eventually double the number) and thus
either the equations become highly redundant or the vertices are constrained to the
point where there are no solutions. This analysis strongly suggests that the full non-
perturbative Ward identities would lead to important constraints on RG properties.

For full quantum gravity, such conflict between k-fixed points and background
independence may also show up clearly in a vertex expansion, as discussed in 3.5, or
generically it may not become visible until the six-point level. However for full quan-
tumgravity, ifwe are to follow the standard procedure,wemust alsofix the gauge. The
original msWI, which formally expresses background independence before gauge
fixing, will no longer be compatible with the flow equation. Instead we must use
the appropriate version which has contributions from the background dependence of
the gauge fixing and ghost terms as well as from cutoff terms for the ghost action
itself. However background independence is then only restored in the limit k → 0
after going “on-shell” (assuming such an appropriate property can be defined). This
last step is required to recover quantities that are independent of the gauge fixing.
If we are to continue with a flow equation for a Legendre effective action [30, 31]
then to get around this obstruction, the Vilkovisky-DeWitt covariant effective action
seems called for [16, 32–34], with the msWI replaced by the corresponding modi-
fied Nielsen identities where the role of the background field is played by the “base
point” [35].

Returning to the present study, it seems surely significant that whenever the msWI
equations are actually compatible with the flow equations, it is possible to combine
them and thus uncover background independent variables, including a background
independent notion of scale, k̂. These are not only independent of χ but also inde-
pendent of the parametrisation f . Of course such an underlying description has only
been shown in this O(∂2) approximation and in conformally truncated gravity, and
one might doubt that this happy circumstance could be generalised to full quantum
gravity, and not only for the reasons outlined above. However we also saw in Sect.
3.5.1 that if modified Ward identities are to be compatible with the flow equations
then in terms of vertices, the information they contain becomes highly redundant
at sufficiently high order (the six-point level in our case). This in itself suggests the
existence of a simpler description. Finally, a formulation for non-perturbative RG has
recently been proposed where computations can be made without ever introducing
a background metric (or gauge fixing) [36].
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