
Chapter 1
Introduction

General relativity (GR) is one of the towering achievements of twentieth-century
physics. Its predictions have received spectacular experimental confirmation time
and time again since its publication over one hundred years ago [1]. However, GR
is not the end of the story as far as gravity is concerned. Singularities appearing in
the theory provide internal evidence that it is somehow incomplete, and furthermore
GR is a classical description of gravity whilst nature at a fundamental level behaves
quantum mechanically. At scales approaching the Planck length quantum effects are
expected to become important and it is believed that a theory of quantum gravity is
needed in order to describe nature at the Planck scale and beyond.1 Such a theory
promises to bring a deeper understanding of fascinating phenomena such as black
holes and the big bang, and its discovery remains one of the biggest open challenges
in fundamental physics.

Actually, there is nothing preventing us from quantising GR using the standard
perturbative techniques that have been successfully applied to nature’s other funda-
mental fields. The resulting quantum field theory (QFT) can be used to make testable
predictions, for example in the form of corrections to the Newtonian potential [2].2

However, if we wish to describe gravity at distances approaching the Planck length
predicitivity is lost. It turns out that an infinite number of measurements need to be
performed by experiment in order to determine the parameters required to cancel the
divergences of the theory i.e. the theory is perturbatively non-renormalizable [3–6].

Perturbative quantisation of GR therefore only provides an effective description
of the graviton. Still, effective field theories are commonplace in physics and some
of the most successful field theories of the last century come under this umbrella.

1Even though probing Planck-scale physics may require energies far above those accessible at
current particle accelerators, there are ways to study quantum gravitational effects e.g. from the
finger prints of the very early universe left on the CMB. See Chap.5 for more discussions on
experimental searches for quantum gravity.
2Although these effects are very small and therefore not likely to be measured any time soon.
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2 1 Introduction

The Standard Model for example can be considered an effective description of the
interactions of fundamental particles. Likewise, Newton’s theory of gravity is a low
energy approximation toEinstein’sGR,which in turnmust be an effective description
of some higher-energy theory of the gravitational field (whether this be a QFT or
something more exotic).

The shortcomings of perturbative approaches3 do not mean that QFT and gravity
are incompatible however.Awell-behaved quantum theory of gravitymight be recov-
ered by taking the dynamics of the non-perturbative regime into account. One such
non-perturbative route, which retains the fields and symmetries of GR, is asymptotic
safety. Asymptotic safety posits the existence of a non-Gaussian UV fixed point of
the gravitational renormalization group flow to control the behaviour of the theory at
high energies and thereby keep physical quantities safe from unphysical divergences.
This idea was first put forward byWeinberg [8] and has since been the focus of many
searches for quantum gravity, the majority of which offer encouraging signs that an
appropriate high-energy fixed point could indeed exist.

It may well turn out that we have to go beyond conventional QFT in order to
describe gravity at the Planck scale and in the process introduce additional degrees of
freedom and symmetries like those of string theory or additional spacetime structure
as in loopquantumgravity, or perhaps something else is required altogether.However,
whether or not the asymptotic safety hypothesis turns out to be ultimately correct, it
is important to make progress with fundamental aspects of the approach, a collection
of which provide the focus of this thesis.

In the sections that follow we give the necessary background for the research
presented in Chaps. 2–4. We begin with a review of the renormalization group as
understood by Kenneth Wilson in Sect. 1.1, before introducing the theory space on
which the renormalization group flows play out in Sect. 1.2. In the following Sect. 1.3,
we review the specific application of the renormalization group in the asymptotic
safety approach to quantum gravity. Section 1.4 contains a discussion on popular
approximation schemes employed in asymptotic safety, many of which are then
used in the chapters that follow. Finally, we conclude this introductory chapter with
an outline of the rest of the thesis.

1.1 The Wilsonian Renormalization Group

Naturally the scale at which we observe the world determines how we describe it.
We construct theories in terms of variables appropriate for the viewing scale and
in fact we need not worry about what goes on at shorter distances (or equivalently,
higher energies) in order to make successful predictions. For example, to describe

3Another example comes from [7] in which adding higher derivative operators to the Einstein–
Hilbert action leads to a perturbatively renormalizable quantum theory of gravity, but which does
not respect unitary.
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water flowing in a stream we do not need an understanding of water at the molecular
level, instead the physics of fluid mechanics is enough.

However, by the very nature of their construction our theories are often blind
to UV dynamics; they are effective theories with limited descriptive power and a
finite realm of validity. The scale at which a theory ceases to be applicable is aptly
named the cutoff scale. It indicates the point at which our knowledge breaks down
and beyond which new physics lies. As we have already mentioned, in the case of
perturbative quantum gravity this is the Planck scale. How then are we able to gain
access to a high-energy (short-distance) description of nature?

An answer comes from the understanding of the renormalization group (RG) owed
toWilson [9]. TheRG is themathematical formalism that enables us to systematically
generate and relate descriptions of a system befitting different viewing scales, and for
this reason is often said to be analogous to a microscope with varying magnification.
The basic idea is that a system’s microscopic degrees of freedom can be replaced
by effective ones, together with appropriate rescaled interaction strengths, to give
a different description of the system but which produces the same predictions for
physical observables. RG methods are at the heart of the asymptotic safety approach
to quantum gravity and as such provide the focus of this section.

Wilson’s RG has its origins in the study of condensed matter systems and so we
begin this section by introducing key RG concepts through a discussion on Kadanoff
blocking. We then move on to review the continuum description of the RG due to
Wilson and visit Polchinski’s flow equation. We end this section with a compar-
ison between the renormalization of perturbation theory and the modern view of
renormalizability that Wilson’s ideas brought about.

1.1.1 Kadanoff Blocking

Consider a two-dimensional lattice of atoms each possessing two spin degrees of
freedom, up or down, and with nearest-neighbour interactions, as shown in Fig. 1.1a.
In this example the cutoff scale is given by the lattice spacing δ. Now suppose we
average over a group of neighbouring spins and replace them by a single “blocked”
spin at the centre. For example, a 3 by 3 block of spins containing mostly up spins is
replaced by a single spin-up degree of freedom, and vice versa for down spins. The
resulting picture is one with fewer degrees of freedom at an increased separation, see
Fig. 1.1b. This procedure is known as blocking or more generally as coarse graining.

In order to compare the coarse-grained description of the system to the original
microscopic Fig. 1.1a, a second step is performed—a rescaling—to shrink the lattice
spacingback to its original size, seeFig. 1.1c.This two-stepprocess of coarse graining
and rescaling is known as block-spin renormalization and was introduced by Leo
Kadanoff in 1966 [10]. Together the two steps make up a renormalization group
transformation.4

4Note that these transformations do not form a group in the formal sense as the coarse-graining
procedure is not invertible.
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(a)
δ

(b) (c)

Fig. 1.1 Illustration of a block-spin RG transformation in a 2-dimensional lattice of spins. Coarse
graining proceeds from (a) to (b), followed by rescaling from (b) to (c). In c lattice sites previously
outside the picture have been pulled in

Block-spin renormalization gives us an alternative way of describing the lattice of
spins, i.e. in terms of coarse-grained variables with appropriately scaled interaction
strengths (as opposed to in terms of the original microscopic degrees of freedom). In
this sense, an RG transformation is like a reorganization of what we already know.
In fact, not only does the block-spin procedure modify the spin-spin interactions, but
it also gives rise to new ones. In the original lattice there are only nearest-neighbour
interactions, but the block-spin transformation generates next-to-nearest neighbour
interactions, next-to-next-to-nearest neighbour interactions and so on.

Crucially though, these different pictures of the system still predict the same
values for physical observables, so long as we consider physics at length scales much
greater than the cutoff. In other words, performing an RG transformation changes
the couplings in such a way so as to leave observables unchanged. Indeed it seems
reasonable to expect that when describing some long-distance phenomena, far away
from the cutoff scale, predictions for observables should be insensitive to changes
in it. In the case of a lattice of spins such an observable would be the resistivity of a
metal, which is independent of the precise inter-atomic spacing.

1.1.2 Wilsonian Renormalization

The RG transformations of Kadanoff’s blocking procedure are concerned with dis-
crete changes in the cutoff scale. In 1971 Kenneth Wilson introduced a version of
the RG adapted to continuous changes in the cutoff which could be implemented
through the path integral formulation of quantum field theory [9].

To illustrate this approach let us consider a single-component scalar field φ(x)
with bare action Ŝ[φ]. In the language of path integrals, physical observables of the
field are then given by derivatives of the generating functional

Z [J ] =
∫ �

Dφ e−Ŝ[φ]+J ·φ , (1.1.1)
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with respect to the external current J (x). We will use a dot notation to denote inte-
gration over position or momentum space:

J · φ ≡ Jxφx ≡
∫

ddx J (x)φ(x) =
∫

dd p

(2π)d
J (p)φ(−p) . (1.1.2)

For bilinear terms we regard the kernel as a matrix, thus the following forms are
equivalent:

φ · �−1· φ ≡ φx�
−1
xyφy ≡

∫
dd xdd y φ(x)�−1(x, y)φ(y) =

∫
dd p

(2π)d
φ(p)�−1(p2)φ(−p) .

(1.1.3)
Note that when transforming to momentum space, Green’s functions G(p1, . . . , pn)
come with momentum conserving delta functions such that they are only defined for
p1 + · · · + pn = 0. Thus two-point functions are functions of just a single momen-
tum p = p1 = −p2. The integral (1.1.1) is endowed with a sharp UV cutoff � such
that only those modes propagating with momentum |p| ≡ √

p2 ≤ � are integrated
over. Here and throughout the rest of this thesis we will now deal with energy scale
cutoffs as opposed to length scale cutoffs δ = 1/�. Note the Euclidean signature
of the functional integral needed in order to take proper account of modes with
nearly light-like four momenta. (In gravitational theories the Euclidean signature
gives rise to the well-known conformal factor problem which has profound conse-
quences for the RG properties of the theory in question. We discuss this in more
detail in Sect. 1.4.4.) Finally, the requirement for physics to be independent of the
cutoff in the context of the path integral means for the generator of Green’s functions
Z [J ] to be independent of �:

�
dZ [J ]
d�

= 0 . (1.1.4)

Here coarse graining corresponds to lowering the cutoff by integrating out the
high-energy degrees of freedom between � and some lower energy scale k, cf.
Fig. 1.2. For simplicity, let us only consider observables with momenta less than the

Λ Ŝ

k Ŝ k

Physics

Hidden

Fig. 1.2 Energy spectrum over which modes are integrated out
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lower cutoff k so that J (p) = 0 for |p| > k. Splitting the modes into two sets, those
with momenta |p| > k denoted by φ> and those with |p| ≤ k denoted φ<, we can
rewrite (1.1.1) as

Z [J ] =
∫ 0<|p|≤k

Dφ<

∫ k<|p|≤�

Dφ> e−Ŝ[φ<+φ>]+J ·φ< (1.1.5)

=
∫ 0<|p|≤k

Dφ< e−Ŝk [φ<]+J ·φ< , (1.1.6)

where the result of integrating over a shell of momenta k < |p| ≤ � has been re-
expressed in terms of a new, effective action5

Ŝk[φ] = − ln
∫ k<|p|≤�

Dφ> e−Ŝ[φ<+φ>] . (1.1.7)

This effective action predicts exactly the same low-energy (E � k) physics as the
original bare action Ŝ . It contains new interactions arising from the coarse-graining
procedure (just likewe saw inKadanoff blocking).As the cutoff is lowered,modes are
removed from the propagator and “hidden away” in the effective action, manifesting
themselves as changes in the couplings, cf. Fig. 1.2. These changes compensate for
the change in the cutoff, meaning that Z [J ] and its functional derivatives remain
unchanged i.e. they obey (1.1.4). It follows that a simple Lagrangian at the cutoff
scale � will become more complicated as the the cutoff is lowered, growing new
interactions, including contributions from irrelevant operators.6

We still need to perform the rescaling step. This can be most easily achieved by
making all quantities (fields and their couplings) dimensionless by dividing by the
effective scale k raised to the power of their scaling dimension. This is equivalent to
rescaling distances and momenta, and sends the cutoff back to its original size. Thus
writing everything in terms of dimensionless quantities, in addition to the coarse-
graining step as described above, completes an RG transformation in the Wilsonian
approach.Applying successiveRG transformations gives a series of effective actions:

Ŝ → Ŝ′ → Ŝ′′ → · · · (1.1.8)

describing a system up to successively decreasing cutoff scales.
Joseph Polchinski adaptedWilson’sRGby introducing a smoothmomentum scale

cutoff in a more direct way [11]. This was achieved by incorporating a smoothly
varying cutoff-dependent function f into the propagator like so7

5See Chap.2 for a more comprehensive example and further discussions.
6With this in mind, it no longer makes sense to insist that Lagrangians only contain relevant opera-
tors. Indeed, in the application of the Wilsonian RG to asymptotic safety we allow for all possible
operators consistent with symmetry constraints.
7Where the mass term is contained within the interactions.
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1

p2
→ f (p2/k2)

p2
≡ �k . (1.1.9)

The function f has the property that for |p| < k, f ≈ 1 and mostly leaves modes
unaffected whilst for |p| > k, f suppresses modes, vanishing rapidly at infinity.
Using the modified propagator, (1.1.6) instead becomes

Z [J ] =
∫
Dφ e− 1

2 φ·(�k )−1·φ−Sk [φ]+J ·φ , (1.1.10)

where for the sake of neatness we have made the replacement φ< → φ and where the
effective action Ŝk[φ]has been split into a kinetic part and interactions Sk[φ]. The path
integral is smoothly regulated in the UV by the cutoff function f . Polchinski showed
that if the effective interactions Sk[φ] satisfy the following integro-differential equa-
tion [11]

∂

∂k
Sk[φ] = 1

2

δSk

δφ
· ∂�k

∂k
· δSk

δφ
− 1

2
Tr

(
∂�k

∂k
· δ2Sk

δφδφ

)
(1.1.11)

then (1.1.4) (with the replacement � → k for the case at hand) follows. This is
Polchinski’s version of Wilson’s flow equation [12, 13]8 which we will see again
shortly in Chap.2. It expresses how the effective interactions must change as the
cutoff is lowered in order to keep Z [J ] constant. It is commonly referred to as an
exact RG equation (ERGE) as no approximation is used in its derivation; in particular,
it does not rely on small couplings.

1.1.3 The Wilsonian Perspective

Wilson’s approach brought about a new understanding of renormalizability in quan-
tum field theory. In the old view of renormalization a cutoff is introduced to loop
integrals to enable their computation on the way to calculating scattering amplitudes
and is nothing more than a mathematical trick. Physical quantities are then made
independent of the cutoff (they are “renormalized”) such that its value can be safely
taken to infinity at the end of the calculation with physical quantities remaining
finite. This is the familiar renormalization of perturbation theory, implemented for
example by redefining bare couplings in terms of renormalized ones or subtracting
divergences with a finite number of counter terms.

From the modernWilsonian perspective the cutoff should be viewed as physically
meaningful and all quantum field theories in possession of one should be treated as
effective theories only valid up to the cutoff scale. As already mentioned, the cutoff
represents the scale at which our knowledge breaks down and therefore we cannot

8For a more careful comparison between Wilson’s and Polchinski’s versions see Ref. [14].
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justify taking the limit � → ∞, at least not before knowing the high-energy
behaviour of a theory.9 For a theory to be renormalizable from theWilsonian perspec-
tive means that it is truly free from divergences at all scales: no divergences appear,
no matter how high we take the cutoff. Technically, this is achieved by arranging for
the theory to emanate from a UV fixed point, the subject of the next section.

Unlike perturbation theory, the Wilsonian RG does not rely on couplings being
small and therefore represents a non-perturbative approach to renormalization. This
is one of its chief advantages as it opens the door to exploring the non-perturbative
regime of quantum theories such as gravity.

In summary, in both the perturbative and nonperturbative regimes, the word
“renormalization” refers to a way of dealing with divergences, but the methods by
which this is done are conceptually and technically different. From the Wilsonian
viewpoint, theories such as QED which appear renormalizable where perturbation
theory is valid, are not truly renormalizable in the full non-perturbative sense of
the word. Wherever we use the term renormalization we will mean it in the sense
of the Wilsonian renormalization group, also known in the continuum as the exact
renormalization group (ERG), the functional renormalization group (FRG) and the
continuous renormalization group.

1.2 Fixed Points and Theory Space

Now that we have reviewed the Wilsonian RG and seen an example of an exact RG
equation, we are ready to examine the space on which its solutions live: theory space.
In this section we introduce the concept of theory space and discuss its key features,
namely fixed points, as well as highlighting the properties they must exhibit in order
for asymptotic safety to be realised. We continue to use the scalar field throughout
for illustrative purposes.

Theory space by definition is the space containing all possible actions that can be
built from a given set of fields obeying certain symmetry constraints. An action in
the space is assumed to have the form:

Sk[φ] =
∑

gi (k)Oi (φ) , (1.2.1)

where gi are the dimensionless, k-dependent couplings and Oi are operators made
up of products of the dimensionless fields and their derivatives. Furthermore, the
gi s do not include redundant (a.k.a. inessential) couplings i.e. those which can be
eliminated from the action by a field redefinition. The operators form the basis of
the theory space whilst the couplings play the role of coordinates. In this way, each

9Indeed from this point of view the action of sending � → ∞ in perturbation theory is misleading.
For example, QED can be renormalized perturbatively—at low energy when the couplings are
small—but at high enough energies (≈10300 GeV) it still develops divergences in spite of the limit
� → ∞ having already been taken.
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point in the space represents a different possible action. A priori the sum (1.2.1) is
infinite as we allow for all possible couplings and therefore so is the dimension of the
theory space. In a later Sect. 1.4, we will discuss reducing the dimension by making
approximations.

Performing an RG transformation corresponds to moving between effective
actions in theory space along an RG trajectory or flow line. In geometrical terms,
these RG trajectories are the induced integral curves of the vector field defined by
an RG equation, such as Polchinski’s in (1.1.11). Thus the trajectory gives a way of
visualizing the evolution of a theory with changes in the cutoff scale as described by
the RG. By conventionwe flow from high to low energy, in the direction of increasing
coarse graining10 as indicated by the arrows in Fig. 1.3. It is important to point out
here that it is the trajectory itself that we identify with a theory, not the individual
actions.

Features of theory space of particular interest are fixed points. These are sources
and sinks of RG flows and are home to scale-invariant theories S∗, i.e.

k
∂

∂k
S∗[φ] = 0 . (1.2.2)

Recall that all variables have been made dimensionless using k and so independence
of k implies that S∗ depends on no scale at all. It follows that fixed point theories are
massless. This scale independence also makes fixed point theories trivially renor-
malizable as we can trivially send k → ∞. This limit is referred to as the continuum
limit and theories which have one are said to be UV complete. A fixed point action
therefore describes physics at the Planck scale and beyond.

For a given UV fixed point, there exists a submanifold called the critical surface
SUV , as shown in Fig. 1.3. By definition, any point in theory space—i.e. any action—
on this surface is pulled towards the fixed point under the reverse RG flow (against
the directions of the arrows). The portion of the critical surface local to the fixed
point, is spanned by so-called relevant operators11—those whose coefficients in the
action increase aswemove out from the fixed point i.e. as k → 0. Perturbing the fixed
point action along the relevant directions gives rise to a “renormalized trajectory”,
indicated by the purple lines in the figure. The trajectory represents a renormalizable
theory as its high-energy behaviour is controlled by a fixed point, i.e. as we take the
limit k → ∞ and approach the UV fixed point, the couplings of the theory tend to
fixed finite values and are protected from blowing up. Since observable quantities
can be expressed as functions of the couplings, this means that they will also remain
finite when the continuum limit is taken.

The effective actions sitting on a renormalized trajectory are called “perfect
actions” [15]. All their scale dependence is carried through the couplings and the
anomalous dimension η(k): Sk[φ] = S[φ] (g1(k), . . . , gn(k), η(k)). This means that

10Again, coarse graining can only be performed in one direction—we can only integrate out modes,
we cannot “integrate them in”—but once the trajectory is defined, we can flow in either direction.
11These also include marginally relevant operators.
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NGFP

SU V

Fig. 1.3 Schematic picture of UV critical surface SUV in theory space and RG trajectories flowing
from high to low k in the direction of coarse graining. The surface contains a non-Gaussian fixed
point (NGFP) supporting renormalized trajectories (purple lines). There is also a trajectory coming
from outside the surface and flowing into the fixed point (red line); for this trajectory, the fixed point
is IR

the actions undergo a self-similar evolution under RG transformations. We return to
these perfect actions in the next chapter.

The number of relevant operators spanning the fixed point (a.k.a. eigenpertur-
bations or eigenoperators) gives the dimension dUV of SUV , which will therefore
contain a dUV -parameter set of trajectories. Which trajectory is realized in nature
will be decided by experiment. For asymptotic safety we require dUV to be finite
otherwise we lose predictivity (as we would have to take an infinite number of mea-
surements to fix the infinite number of couplings). Consequently, the smaller the
dimension of SUV , the more predictive the theory will be. In the asymptotic safety
literature, usually fixed points with a finite number of relevant directions (typically
three) are found (see e.g. reviews [16–20] and textbooks [21, 22]), however there are
also examples of fixed points which support a continuous spectra of eigenperturba-
tions, see e.g. [23].

Whether a fixed point is classified as UV or IR will depend on the trajectory
under consideration. If instead as we flow in the direction of coarse graining, we
are pulled into a fixed point then, as far as this trajectory is concerned, it is an IR
fixed point. Furthermore, what is a UV fixed point for one trajectory may be an IR
fixed point for another. Hence, in addition to the renormalized trajectory flowing out
of the fixed point in Fig. 1.3, there may also be trajectories flowing into the fixed
point, one such trajectory being indicated by the red line. Interestingly, this implies
that very different physical systems described by very distinct theories can exhibit
the same low-energy behaviour. The observation that the macroscopic description
of a phenomenon is independent of the microscopic details is known as universality.
Indeed this situation could be realised in a UV complete theory of quantum gravity
if it supported more than one high-energy fixed point.
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The UV fixed points required for non-perturbative renormalizability can be Gaus-
sian or non-Gaussian, home to either free or interacting theories respectively. For
example, the theory of QCD possesses a Gaussian fixed point in the UV supporting
interacting relevant directions: a free theory at the fixed point grows into a theory
of interacting quarks as we flow into the infrared. Theories exhibiting such fixed
points are said to be asymptotically free and are naturally renormalizable since again
the UV dynamics are controlled by a fixed point. Of course the UV fixed points of
most interest to quantum gravity searches are non-Gaussian. (Asymptotic safety at
a Gaussian fixed point would be equivalent to perturbative renormalizability plus
asymptotic freedom, but as noted at the start of the chapter, perturbative quantisa-
tion of gravity fails.) Theories emanating from such fixed points exhibit asymptotic
safety. For this reason renormalized trajectories are also called asymptotically safe.

Preferably we want the theory space to support only one non-Gaussian fixed point
(NGFP), or at least a finite number, otherwise again we lose predictivity. However,
there are examples in the literature in which lines and planes of fixed points have
been uncovered, see [23–26]. On the contrary, it might turn out that the theory space
contains no fixed points. One reason found for this in gravitational theories is that
background independence has not been properly taken care of [27, 28], as discussed
in Chap.3. The number of fixed points supported by the theory space is determined
by counting up the number of independent parameters and constraints coming from
the RG equation at the fixed point and its asymptotic solutions. This is the subject of
Chap.4.

In summary, we have seen that for the asymptotic safety scenario to be realised, a
theory space must contain NGFPs (and preferably only one) with a finite number of
relevant directions. Further to this, fixedpointsmust support a renormalized trajectory
that reproduces the behaviour of classical gravity at low energies.

1.3 The Effective Average Action and Its Flow

Having introduced the concept of the RG and the space on which its flows play out,
in this section we review the specific application of the RG to asymptotic safety. In
the first part we introduce the central tools of the field—namely the effective average
action and its flow equation—whilst continuing to work within the setting of scalar
field theory so as to illustrate the key concepts in the simplest way possible. The
purpose of the proceeding subsection is then to review the necessary modifications
when applying these ideas to gravity. The final subsection contains a discussion on
background independence, an important requirement for any theory of gravitation,
which will be of particular relevance to Chap. 3.

Historically the first hints of asymptotically safe gravity came from applying
Wilson’s ideas in 2 + ε dimensions [8]. Nowadays proponents of the field use a
reformulation of Wilson’s exact RG given in terms of the effective average action
�k , a scale dependent version of the usual effective action � i.e. the generator of
one-particle irreducible Green’s functions. For a scalar field the effective average
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action is defined via the Legendre transform of a functional integral of the following
form

Z [J ] =
∫ �

Dφ e−Ŝ [φ]−�Sk [φ]+J ·φ ≡ eW
�
k [J ] , (1.3.1)

which is related to the generator of connected Green’s functions W�
k [J ] in the usual

way. Just as in Sect. 1.1.2, the integral is subject to an overallUVcutoff that is required
to make sense of the integration. Here it is implemented by a sharp cutoff at �, but it
could equally well be of a different type (see Chap.2 for examples). The functional
integral also depends on another cutoff scale, k. When working with the Wilsonian
action in the previous chapter, k denoted the effectiveUV cutoff scale, whereas here it
represents an IR cutoff. This might seem like an unnecessary complication, however
the reason for this choice becomes clear in Chap. 2 where a relationship between
the effective average action and the Wilsonian effective action is derived. To avoid
confusion, we will denote any UV cutoff parameter with a superscript and any IR
cutoff parameter with a subscript and use this pictorial guide throughout.

The dependence on k is introduced via the IR cutoff operator Rk which lives inside
the cutoff action:

�Sk[φ] = 1

2
φ · Rk · φ . (1.3.2)

The cutoff operator is a function of the Laplacian: Rk = Rk(−∇2), and acts on
the field φ to turn �Sk into a mass-like term. Roughly speaking, Rk suppresses
modes propagating with momentum p2 < k2, otherwise leaving them unaffected.
The precise way in which it does this is unimportant but it must satisfy the two limits

lim
p2/k2→0

Rk(p
2) = k2 and lim

p2/k2→∞
Rk(p

2) = 0 . (1.3.3)

Popular choices for Rk include the optimized cutoff Rk(p2) = (k2 − p2)�(k2 − p2)
[29–31] and the exponential cutoff Rk(p2) = (p2/k2)[exp(p2/k2) − 1]−1.

The effective average action ��
k is obtained by subtracting the cutoff action �k S

(as a functional of the classical fields) from the Legendre transform of (1.3.1):

��
k [ϕ] ≡ �̃�

k [ϕ] − 1

2
ϕ · Rk · ϕ , (1.3.4)

where �̃�
k = −W�

k [J ] + J · ϕ is the Legendre transform and ϕ(x) ≡ 〈φ(x)〉 is the
expectation value a.k.a. classical field.

The flow equation for the effective average action is obtained by taking the deriva-
tive of (1.3.4) with respect to k12:

∂k�
�
k [ϕ] = 1

2
Tr�

[(
δ2��

k

δϕδϕ
+ Rk

)−1

∂k Rk

]
. (1.3.5)

12The steps are given in Chap.3.
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The trace is taken over position (or momentum) space coordinates and here is
restricted to only those modes propagating with momentum |p| ≤ �. Note that at
this point both the effective action ��

k and the flow equation depend on two scales:
the IR cutoff scale k and the UV cutoff scale �. However, the derivative ∂k Rk is
sharply peaked around p2 = k2, dying off rapidly for p2  k2, and so the left-hand
side of the flow equation only receives contributions from modes near (or below) k.
This means that the trace is prevented from blowing up in the limit � → ∞ and the
UV cutoff can be safely removed. Doing this yields the following RG equation [12,
32]13

∂k�k[ϕ] = 1

2
Tr

[(
δ2�k

δϕδϕ
+ Rk

)−1

∂k Rk

]
. (1.3.6)

It is this “�-free” flow equation which is employed in current investigations into
asymptotically safe gravity. In contrast to (1.3.5), its solutions �k depend only on a
single scale, k. This is crucial to its use as it allows us to express everything in terms
of dimensionless couplings gi (k) with respect to the single dimensionful parameter
k, i.e. to recover the power of the Wilsonian RG. From now on when referring to the
flow equation and its solutions we will mean the �-free versions.

Now let us comment on some key features of the flow equation (1.3.6). First of
all, a solution �k of (1.3.6) represents an action for a system in which the high-
energy modes (with respect to k) have been integrated out and provides a natural
effective action for processes occurring at energies E ≈ k. A complete set of well-
behaved solutions to the flow equation {�k, 0 ≤ k < ∞} corresponds to a complete
RG trajectory, free fromdivergences in both the IR andUV.Aswe saw in the previous
section, the latter condition is realized by arranging the trajectory to originate from
a high-energy fixed point.14

Secondly, just like Polchinski’s, (1.3.6) is an exact RG equation suitable for the
non-perturbative regime. However, despite the flow equation itself being exact, in
practice it is not possible to solve it exactly and an approximation to the effective
average action has to be made. These approximations are the subject of Sect. 1.4.

Thirdly, since the infrared cutoff k is introduced by hand, it is an artificial quantity
that must not feature in physical observables. The physical part of the effective action
is therefore only recovered when the cutoff is removed. This is done by taking the
limit k → 0 whilst holding all physical, i.e. unscaled, quantities fixed. It is in this
limit that we recover the information contained in the full path integral.

There is a further property of this set up which is important to recognise: given
a solution �k of the flow equation, it is not possible to exactly recover the path
integral (1.3.1) from which it was derived. Or more specifically, there is no exact
way to reconstruct the bare action Ŝ from an effective average action �k . In short,
the reason for this is that a UV regulated path integral cannot, through the Legendre

13Dimensionless RG time t = ln(k/μ) where μ is a fixed reference scale is also commonly used
instead of k.
14Note that all theory space concepts described in the previous section apply equally well to the
effective average action.
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transform procedure, return an effective action �k but instead necessarily gives rise
to an effective action ��

k which depends explicitly on two cutoffs. At the point of
defining �k , all reference to the UV cutoff is lost and so there is no way to gain
access to the bare action in the original UV regularized functional integral from the
solutions of the �-free flow equation.

Conceptually there is nothing wrong with simply working with the flow equation
(1.3.6) and forgoing defining a path integral representation of the theory. In this
way, we dispense with the need to define a bare action at the overall cutoff scale
and concomitant tuning required to reach the continuum limit. One of the main
advantages of working with the effective average action over the path integral is that
it lends itself to more powerful approximation techniques. Being able to work with
approximations is crucial as solving the flow equation is equivalent to, and practically
as difficult as, solving the original path integral from which it came. Furthermore,
since �k is the k-dependent generator of one-particle irreducible Green’s functions,
it is directly related to scattering amplitudes which means that once we have found
a complete trajectory, taking consecutive functional derivatives of �k give us all the
Green’s functions of the theory and in the limit k → 0 they coincide with those of
the standard effective action � ≡ �0.

Despite the advantages of using the effective average action, there are still reasons
for wanting a path integral formulation of the theory. For example, to more easily
understand certain properties of the QFT such as constraints and symmetries and
to compare with other approaches to quantum gravity. The challenge of obtaining a
path integral representation is called the reconstruction problem and is the subject of
Chap.2.

Even though we cannot directly obtain the bare action from the effective average
action as emphaszied above, a simple and exact relationship between �k and the
Wilsonian effective action Ŝk (introduced in (1.1.7)) does exist [12, 33]. Referring
back to Fig. 1.2, it need not seem so surprising that there is such a relationship [13].
In the discussions on the Wilsonian RG in Sect. 1.1.2, we saw that integrating out
degrees of freedom between� and some lower cutoff scale k resulted in aWilsonian
effective action Sk with the scale k acting as a UV cutoff for the unintegrated modes.
On the other hand, k can also be regarded as an infrared cutoff for the modes which
have already been integrated out (those which reside in the shaded area of Fig. 1.2).
From this perspective we see that the Wilsonian effective action is almost equivalent
to the original functional integral, but modified by an infrared cutoff k, which in turn
is straightforwardly related to �k in the continuum limit (cf. Eq. (2.6.3) in Chap. 2).
In Chap.2 we derive this relationship and show how Ŝk can play the role of a perfect
bare action which lives inside a fully UV regularised functional integral.

1.3.1 The Effective Average Action for Gravity

Up to this point we have been using a scalar field to introduce key concepts in
functional RG methods, but of course we need to go beyond scalar theory to study
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quantum gravity. Instead of quantizing some field living on some predetermined
spacetime background, in quantum gravity spacetime itself becomes the dynamical
variable we wish to quantise, and with this give meaning to the path integral over all
metrics ∫

Dg̃μν e
−Ŝ[g̃μν ] (1.3.7)

and its associated effective average action. This brings with it new challenges, both
conceptual and technical in nature. In the following we give an overview of the
construction of the effective average action for gravity and its flow equation. The
derivation is more involved than for the case of the scalar field but the procedure
follows the same general pattern.

To deal with the obstacles arising when applying the functional RG to gravity, a
technique called the background field method is used. It consists of decomposing the
full metric g̃μν into a background metric ḡμν and a fluctuation field h̃μν like so

g̃μν = ḡμν + h̃μν . (1.3.8)

The background metric is fixed but left completely arbitrary. The split shifts the
integration (1.3.7) over the total metric to one over the fluctuation field h̃μν i.e. it is
the fluctuation field that is quantised in the path integral. Note that the fluctuation
h̃μν is not restricted to being small here like in perturbation theory.

The bare action Ŝ[g̃μν] is invariant under diffeomorphisms,

δg̃μν = Lv g̃μν ≡ vρ∂ρg̃μν + ∂μv
ρg̃ρν + ∂νv

ρg̃ρμ , (1.3.9)

which after performing the background split can be written as

δh̃μν = Lv g̃μν and δḡμν = 0 . (1.3.10)

Here Lv is the Lie derivative along the vector field vμ∂μ. These gauge transforma-
tions must be gauge-fixed to avoid over-counting seemingly distinct but physically
indistinguishable metric configurations. A gauge-fixing condition Fμ[h̃; ḡ] = 0 is
introduced into the path integral via the Fadeev-Popov procedure. This results in a
ghost actionwhich then appears alongside the bare action. The broken gauge symme-
try of the path integral will eventually be communicated to the effective action via the
generator of connected Green’s functions, however we can restore diffeomorphism
invariance to the effective action if we insist that it is invariant under the so-called
background gauge transformations:

δḡμν = Lv ḡμν and δh̃μν = Lv h̃μν . (1.3.11)

These extra gauge choices are made possible thanks to the background field method.
Another key advantage of the this method is that it allows the construction of a

covariant IR cutoff. In this gravitational context, the IR cutoff operator becomes a
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function of the covariant Laplacian associatedwith the backgroundfield: Rk(−∇̄2) =
Rk(−ḡμν∇̄μ∇̄ν). It is thenwith respect to the spectrum of−∇̄2 that fluctuationmodes
are compared to the cutoff scale k and are either integrated out or suppressed. A
Laplacian of the total metric cannot be used as it would not preserve the structure of
the flow equation as represented in (1.3.6). This fact actually turns out to be of key
significance in the quest for background independence, an important issue which we
shall return to shortly. Note that the ghost fields also come with their own IR cutoff.

Once the gauge fixing, ghost and cutoff terms have all been included in the func-
tional integral alongside the bare action and source terms for all thefields, the effective
average action is obtained by following the analogous steps described in Sect. 1.3
and which are explicitly laid out in [34]. The result is the effective average action for
gravity [34]:

�k[h, ḡ, ξ, ξ̄] , (1.3.12)

where h is the classical fluctuation field, ḡ is the backgroundmetric as before and ξ, ξ̄
are the classical ghost fields. The crucial observation here is that the effective action
depends separately on the background metric ḡ. This is due to the extra background
field dependence of the ghost, gauge fixing and cutoff terms, which is in turn a
consequence of using the background field method. As mentioned above, as long
as the background gauge transformations (1.3.11) are obeyed, i.e. the background
metric transforms as an ordinary tensor field δḡμν = Lν ḡμν , the effective action is
a diffeomorphism invariant functional of its fields: �k[� + Lν�] = �k[�] where
� = {hμν, ḡμν, ξ

μ, ξ̄μ}.
The derivation of the flow equation for gravity goes through in much the same

way as in the case of the scalar field (the explicit steps can be found in [34]). The
result has the same general structure as (1.3.6) but with the right-hand side featuring
a trace for both the fluctuation field h and ghosts ξ, ξ̄ (with an additional minus sign
for the anti-commuting ghost term). The functional derivatives in the traces are taken
at fixed ḡ. Again, the UV cutoff on the functional integral drops out at the level of
the flow equation due to the protective properties on the cutoff function Rk .

1.3.2 Background Independence

As pointed out already, an essential ingredient for any theory of gravity is back-
ground independence. Background independence is the requirement that a theory be
free from any prior geometry; instead, the properties of the spacetime should emerge
as a prediction of the theory. With this in mind, it might seem like a misstep to
introduce dependence on a background metric through the background field method.
However, by leaving the background metric completely unspecified, no background
configuration plays a distinguished role in the construction of the flow equation. This
means that the flow equation does not rely on the properties of any particular back-
groundfield, implying that quantisation of the fluctuation h̃ occurs on all backgrounds
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simultaneously.15 Nevertheless, the solutions of the flow equation do depend on the
background. They are forced to carry separate dependence on the background metric
ḡμν through the cutoff operator Rk(−∇̄2) as previously emphasized. Physics should
depend only on the full metric, and not also on a background metric that was intro-
duced by hand through the background field technique. This separate background
dependence means that in general each background configuration would lead to dif-
ferent results for physical observables.

Not only do these solutions live in an appropriately enlarged theory space,
spanned by operators of both the total metric and background metric, but the
separate background field dependence makes further artificial enlargement of the
theory space possible. A solution of the flow equation can be modified by an arbi-
trary scale-independent functional of the background field F[ḡ] such that the result
�k[h, ḡ, ξ, ξ̄] + F[ḡ] is also a solution to the flow equation. This additional freedom,
also introduced by hand through the background field method, needs to be controlled
as well.

It is thus necessary to go beyond simply making sure the formalism does not
depend on any particular background and to also somehow manage the separate
background field dependence of the effective action. In most of the literature, the
requirement of background independence refers only to the construction of the flow
equation about an arbitrary background, whereas background independence in the
sense that we mean it here is much more than this, and is in fact a strong extra
constraint.

One way of circumventing these issues is to use the single field approximation.16

This approximation consists of neglecting the evolution of the gauge-fixing and ghost
sectors and setting ḡ = g (equivalently, h = 0) in �k[h, ḡ] such that the effective
action becomes a functional of only one field, namely the total metric g. Note that
this can only be done once the functional derivatives in the trace have been performed
as they are taken at fixed ḡ.With the solutions of the flowequation then just depending
on the total metric, the aforementioned issues are bypassed.

The single field approximation has been employed in the majority of works in
asymptotic safety to date. A severe drawback of this approximation however is that
it cannot be used to explore the effects of background dependence as of course
dependence on the backgroundmetric becomes invisible. This can lead to unphysical
results as has been seen in the Local Potential Approximation (LPA) for scalar field
theory [35] and obscures the significance of fixed point solutions at large field in the
f (R) approximation as emphasized in [23]. Instead, background dependence can
only be investigated in bi-metric truncations in which dependence on both the full
metric and the background metric is retained. For studies going beyond the single
field approximation in different ways see [36–45].

Workingwithin bi-metric truncations, and therefore being able to take full account
of the effects of background dependence, requires us to find an alternative way to

15Even then, background independence of the formalism is not guaranteed due to the inherent
background dependence of the RG scale k. See end of section for further discussion.
16Spoken about in more detail in Sect. 1.4.
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manage the separate background dependence of the effective action. This can be
achieved by imposing an additional constraint alongside the flow equation known
as a modified split Ward Identity (msWI). (See Eq. (3.2.6) for an example of what
the msWI looks like in the context of conformally reduced gravity.) Even though
for all k > 0 background independence will inevitably be lost due to the cutoff,
imposing the msWI in addition to the flow equation ensures that exact17 background
independence is recovered in the limit k → 0 (the limit in which Rk drops out) after
going “on-shell”. This is imperative for the attainment of background independent
physical observables as it is in this limit that the physical part of the effective action
is recovered, as already explained at the start of this section. Furthermore, solutions
of the flow equation do not automatically satisfy the msWI and in this way the
msWI also controls the arbitrary enlargement of the theory space manufactured by
the background split.

It is important to note that themsWI constraint is not an optional extra. It is derived
from the same functional integral as the flow equation and therefore any set of (exact)
solutions to the flow equation must also satisfy the msWI. In other words, the flow
equation and msWI must be compatible. In Chap.3 we prove that this is indeed true
at the exact level, before any approximation to the effective action has been made.
For approximate solutions, compatibility is not automatically guaranteed. We show
that in the case of approximation, namely a derivative expansion up to O(∂2) for
conformally reduced gravity, extra conditions must be placed on the form of the
cutoff or the anomalous dimension in order to achieve compatibility.

An unsettling conclusion from the research reported in [27] was that fixed points
with respect to the RG scale k are in general forbidden by the msWIs that are enforc-
ing background independence. With hindsight, this can be seen as a useful signal
that a background dependent description of quantum gravity does not make sense
and a hint that there might be some deeper understanding of the meaning of RG in
quantum gravity to be unearthed. For scalar field theory at the level of the LPA in [35]
and later in the setting of conformally reduced gravity in [27], it was discovered that
it is possible to combine the msWI and flow equation to uncover a background inde-
pendent description of the entire flow, written in terms of background independent
variables, including a background independent notion of the RG scale.

The employment of the msWI thus also remedies the issue of the ambiguity in the
meaning of the scale k in a gravitational setting. Since it is the metric that provides
us with the definition of length, the RG scale k (which can be equally thought of as
some inverse length 1/k) is inherently dependent on it. But moreover, in a quantum
gravity theory, length scales fluctuate and so it is not clear what meaning should
be ascribed to k or indeed scale dependence as expressed through the RG. Using
the background field method alone does not resolve this issue since then k is defined
with respect to modes of the covariant background field Laplacian−∇̄2 and becomes
inherently dependent on the background metric instead.

17By exact we mean background independence in the strict sense defined previously.
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1.4 Approximations

As emphasized in Sect. 1.3, it is usually impossible to solve the flow equation exactly
and in order to actually make any progress we need to make an approximation for
the effective average action. Making an approximation corresponds to truncating the
theory space to some lower dimensional subspace and evaluating the flow equation
there.18 The subspace should be chosen in such a way that it is small enough to make
calculations feasible but yet still big enough to capture the essential physics. Despite
not retaining all the information within the full effective action (or equivalently, the
path integral), approximations make computations manageable and prove a fruitful
way to gain insights into important foundational issues in asymptotic safety. The
purpose of this section is to introduce well-known and much-used approximation
schemes, the majority of which are employed in the chapters to come.

1.4.1 The Einstein–Hilbert Truncation

The earliest truncation for which RG flows have been found is the Einstein–Hilbert
truncation [34]:

�k[h, ḡ, ξ, ξ̄] = 1

16πGk

∫
d4x

√
g (−R + 2�k) + Sgf[h, ḡ] + Sgh[h, ḡ, ξ, ξ̄] ,

(1.4.1)
where the classical gauge fixing Sgf and ghost actions Sgh are chosen to be inde-
pendent of k. This ansatz utilizes the single field approximation which, now stated
more precisely, means that the evolution of the ghosts is neglected, it features no k-
dependent piece for which ḡ �= g and as before, we set h = 0 once the Hessians have
been computed. Most notably, (1.4.1) contains two parameters which are allowed to
run with energy: the cosmological constant �k and Newton’s coupling Gk .

By inserting the ansatz into the flow equation, RG flows for the dimension-
less Newton’s coupling G̃k = k2Gk and dimensionless cosmological constant �̃k =
k−2�k can be determined. This requires projecting the flowon to the chosen subspace
of theory space. Let us briefly review how this is done in the general case of a theory
space comprised of functionals of the form �k[ϕ] = ∑

i=1 gi (k)Oi (ϕ). An approx-
imation �̌k[ϕ] is made up of operators (perhaps infinitely many of them) belonging
to the subspace only, for example �̌k[ϕ] = ∑N

j=1 g j (k)O j (ϕ). The general idea is

to expand the trace on the right-hand side of the flow equation with the ansatz �̌k

inserted on the basis {Oi } of the full theory space i.e.

18One option is to do this by expanding the trace with respect to a small coupling, but of course this
would only then allow us to explore the perturbative regime.
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Fig. 1.4 Plot of RG flows from the Einstein–Hilbert truncation (1.4.1) in the g − λ plane (G̃k − �̃k
in our notation). Reprinted figure with permission from [M. Reuter and F. Saueressig, Physical
Review D, Vol. 65, 065016, 2002.] Copyright (2002) by the American Physical Society. https://dx.
doi.org/10.1103/PhysRevD.65.065016

1

2
Tr[· · · ] =

∞∑
i=1

βiOi (ϕ) =
N∑
j=1

β jO j (ϕ) + rest (1.4.2)

and retaining only those terms contained within the subspace i.e. neglecting the
“rest”. Here β = β(g1, g2, . . .) are the beta functions for the couplings which,
unlike the beta functions of perturbation theory, are not restricted to be functions
of only small couplings. Equating (1.4.2) to the left-hand side of the flow equa-
tion, ∂k�̌k = ∑N

j=1 β jO j , yields a system of N coupled ODEs for the couplings.
Once these equations are solved, we say that the RG flow in the space of all cou-
plings has been projected onto the N -dimensional subspace. Here we have used an
approximation of the polynomial type as an example, but the same ideas apply to
approximations involving full functionals as well; then instead of having coupled
differential equations we obtain an evolution equation for the functional.19

Carrying out this procedure for the Einstein–Hilbert truncation gives rise to the
flows displayed in Fig. 1.4. Notably the figure features two fixed points: a Gaussian
one at the origin and a NGFP at positive values for both couplings. Whilst the
employment of different cutoff types shifts the position of the NGFP, it continues

19In fact this highlights a computational advantage of polynomial truncations over those retaining a
full functional: the flow equation for a polynomial truncation is simply an ODE in k yielding a finite
number of relations for the couplings, whereas working with a full functional results in a partial
differential equation which is technically more involved.

https://dx.doi.org/10.1103/PhysRevD.65.065016
https://dx.doi.org/10.1103/PhysRevD.65.065016
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to be present for all cutoffs tested to date [16]. Furthermore, it is always found in
the quadrant of positive G̃k and �̃k and is UV attractive for both couplings i.e. has
two relevant directions. The Einstein–Hilbert truncation (1.4.1) predicts a NGFP
with the desired properties for asymptotic safety and has been the subject of many
studies within the community [34, 46–52]. However, to be sure that a reputed fixed
point is not just an artifact of an insufficient approximation, we must go beyond the
Einstein–Hilbert truncation.

1.4.2 Polynomial Truncations

The natural next step is to explore less severe truncations. These so-called polynomial
truncations keep successively higher powers of the scalar curvature R and have to
date included all powers up to R34 [53–55]. In all cases asymptotically safe fixed
points have been found. This is encouraging, but it is easy to be misled into thinking
fixed points exist as past studies have shown. For example, in the LPA for a single-
component scalar field, spurious fixed points have been found to persist in polynomial
truncations of the potential to very high order. These fixed points can then be shown
to disappear when the full potential is considered [56]. Another example is given
by [57] which analysed the RG properties of U(1) theory in three dimensions using
the approximation f (F2

μν). There again non-Gaussian fixed points were found for
f (F2

μν) truncated to a polynomial, whereas using the full function resulted in no such
fixed points.

We find that even though careful treatment of polynomial approximations taken
to high order can allow extraction of convergent results, one does not see in this way
the singularities at finite field or asymptotic behaviour at diverging field which are
actually responsible for determining their high order behaviour. Indeed such large
field effects can invalidate deductions from polynomial truncations [56–58] and/or
restrict or even exclude the existence of global solutions [13, 59–61]. Another good
example is provided by some of the most impressive evidence for asymptotic safety
to date: the polynomial expansions up to R34. These are however derived from a
differential equation for an f (R) fixed point Lagrangian [51] which was shown in
[24] to have no global solutions as a consequence of fixed singularities at finite field.

Furthermore, since fixed points are effectively the solutions of polynomial equa-
tions in the couplings, they only allow for discrete solutions. But physical systems
exist with lines or even higher dimensional surfaces of fixed points, parameterised
by exactly marginal couplings (in supersymmetric theories these are common and
called moduli). Moreover, lines and planes of fixed points have been found in other
approximations within asymptotic safety [23–25].20

20And in a perhaps related approximation in scalar-tensor gravity [62].



22 1 Introduction

As well as this, by construction, polynomial truncations only deal with small
curvatures, which has to be the case for an expansion in powers of R to make sense.
Thismeans that polynomial truncations are insensitive to strong curvature effects and
the deep non-perturbative regime of quantumgravity that we are ultimately interested
in.

1.4.3 The f (R) Approximation

In order to have confidence that asymptotically safe fixed points exist we must there-
fore go beyond even polynomial truncations to approximations that keep an infinite
number of couplings. Arguably the simplest such approximation is to keep all powers
of the scalar curvature, making the ansatz

�k[g] =
∫
d4x

√
g fk(R) . (1.4.3)

This is called the f (R) approximation and has been investigated in many works
[51, 63–75].21 Inserting such an approximation into the flow equation results in a
non-linear partial differential equation which governs the evolution of fk(R) with
changes in the RG scale k. At fixed points, where the k-dependence drops out, it
reduces to an ODE of either second or third order (depending on the cutoff scheme
used). See Eq. (4.2.1) in Chap. 4 for an example written in terms of scaled variables,
ϕ(r) := k4 f (Rk−2).

In the f (R) approximation we are no longer restricted to small curvatures, how-
ever this then raises the question: what significance should we attach to the behaviour
of fk(R) for R  1? Since then the size of the spacetime is much smaller than the
cutoff 1/k. This puzzle is addressed and resolved in [73] and also discussed in more
detail in the introduction to Chap.4.

Finally, as already hinted at above in Polynomial truncations, in order to ascertain
the true nature of fixed points it is crucial to explore the regime of large scaled
curvature: r → ∞, i.e. to develop the asymptotic solutions. We could have already
guessed that the behaviour of solutions in this limit is important to understand since
for fixed background curvature22 R it corresponds to the limit in which the physical
effective action is recovered, k → 0. These asymptotic solutions are the central topic
of Chap.4.

21In fact, to date this is the only such approximation that has been investigated, together with some
closely related approximations in scalar-tensor [76, 77] and unimodular [78] gravity, and in three
space-time dimensions [79].
22Here we commit a slight abuse of notation as, at the level of the projected flow equation, R now
represents the background curvature which emerges from employing the single field approximation.
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1.4.4 Conformally Reduced Gravity

Conformally reducedgravity is the regime inwhichonlyfluctuations of the conformal
factor of the metric are quantised. A small number of works have studied it using the
exact RG, starting with Ref. [80]. To arrive at conformally reduced gravity we only
consider a subset of metrics that are conformally equivalent to some fixed reference
metric ĝμν :

g̃μν = f (φ̃)ĝμν . (1.4.4)

Here φ̃ is the total conformal factor field and f is some choice of parameterisation. It
is then the fluctuation field φ̃ that is integrated over in the path integral. This leads to
a scalar-like theory and a simpler model than say f (R) for investigating the effects
of background dependence, and is of particular relevance to Chap. 3.

Recent investigations in conformally reduced gravity have shed light on impor-
tant foundational issues in asymptotic safety which deserve some comment. Even
though conformally reduced gravity and standard 4-dimensional scalar theory are
very similar in structure (after all the conformal factor is a single-component scalar
field), the flow equation for the former comes with an additional minus sign, a result
of the conformal factor problem already mentioned below Eq. (1.1.1). As is well-
known, the Euclidean signature functional integral for the Einstein–Hilbert action
suffers from this problem [81], which is that the negative sign for the kinetic term
of the conformal factor yields a wrong-sign Gaussian destroying convergence of the
integral. At first sight, providing the cutoff is adapted, the change in sign seems not
to pose any special problem for the exact RG equation [34]. However as is shown in
[23], this one sign change has profound consequences for the RG properties of the
solutions, broadly resulting in a continuum of fixed points supporting both a discrete
and a continuous eigenoperator spectrum.

The conclusions reached in [23] seem to be strongly at variance with the asymp-
totic safety literature where a single fixed point with a handful of relevant directions
(typically three) is found.23 The great majority of work in the literature however
focuses on the single field approximation and/or polynomial truncations which can
obscure the effects of the conformal factor problem;whereas, in [23] use of these type
of approximations was avoided—the only approximations used were that of confor-
mally reduced gravity itself and the slow field limit for the background field—and
furthermore, background independence was incorporated. Further work is needed to
understand whether this picture persists when working with the full metric; perhaps
this might qualitatively alter the results.

23Actually a continuum of fixed points supporting a continuous spectra of eigenoperators has been
found for the f (R) approximation already in [24].
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1.4.5 The Derivative Expansion

The derivative expansion is an approximation originally developed for scalar field
theory [59] and as such can be straightforwardly applied to conformally reduced
gravity. It consists of expanding an action in powers of derivatives of the field. For
standard scalar field theory, an expansion of the effective average action up to the
third order looks like

�k[ϕ] =
∫

ddx
{
V (ϕ, t) + 1

2
K (ϕ, t)(∂μϕ)2 + H1(ϕ, t)(∂μϕ)4

+ H2(ϕ, t)(�ϕ)2 + H3(ϕ, t)(∂μϕ)2(�ϕ) + · · · } , (1.4.5)

which in momentum space amounts to an expansion in powers of momenta.
The leading order of the derivative expansion is the LPA, introduced in [82] and

since rediscovered bymany authors e.g. [56, 83, 84]. This functional truncation keeps
a general potential V (ϕ) for the field and therefore incorporates infinitely many oper-
ators. When keeping all components of the metric tensor, the f (R)-approximation is
as close to the LPA as one can get, as emphasized in [64]. We make use of the LPA,
and more generally the derivative expansion, in Chap.3 in the setting of conformally
reduced gravity.

Let us close this section by remarking that in practice expanding the trace and
extracting the terms belonging to the subspace of an approximation is a rather
involved technical process. The background metric is often fixed to be that of a
four-sphere to simplify calculations.24 A transverse-traceless decomposition of the
fluctuation field h̃μν is performed to facilitate the computation of the inverse Hessian
on the right-hand side of the flow equation and this introduces new fields. Also to
facilitate computation, different types of cutoffs are used, e.g. a type I cutoff where
Rk is just a function of −∇̄2 as in Sect. 1.3, or a type II cutoff, Rk = Rk(−∇̄2 + E),
where E is a non-trivial endomorphism [51]. Type II cutoffs allow flexibility in how
different modes are integrated out and will appear again in Chap.4. The spacetime
trace in the flow equation itself is evaluated by a type of heat kernel expansion.
Finally, solving the differential equations resulting from the projection often entails
a combination of analytical and numerical methods.

1.5 Thesis Outline

Each of the following three chapters focuses on a different fundamental aspect of
asymptotic safety. In Chap.2 we consider the reconstruction problem. As explained
in Sect. 1.3, this is the problem of how to recovery a path integral formulation of a
theory from the effective average action. Presenting the research of [33], we provide

24But note that there is no conceptual necessity for this and final results should be independent of
the choice of background metric.
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two exact solutions to this problem and understand how they compare to a one-loop
approximate solution in the existing literature. In Chap. 3 we present the work of
[28] in which the fundamental requirement of background independence in quan-
tum gravity is addressed. Working within the derivative expansion of conformally
reduced gravity, we explore the notion of compatibility (introduced in Sect. 1.3.2)
and uncover the underlying reasons for background dependence generically forbid-
ding fixed points in such models, extending the work of [27]. As emphasized in
Sect. 1.4.3, in order to understand the true nature of fixed point solutions it is nec-
essary to study their asymptotic behaviour. Chapter 4 presents the work of [26] in
which we explain how to find the asymptotic form of fixed point solutions in the
f (R) approximation. In the fifth and final chapter we give a brief summary of the
research presented in Chaps. 2–4, discussing the significance of the key findings and
commenting on useful extensions of the work. We finish by considering the need to
incorporate matter into the formalism in a compatible way and touch upon potential
opportunities to test asymptotic safety in the future.
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