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Introduction

Susan D’Agostino

We call ourselves Women Math Warriors. When we first gathered in 1998, only
13% of US PhDs in the mathematical sciences were awarded to American women,
of which only 2% were underrepresented women [1]. We are community members
of the Enhancing Diversity in Graduate Education (EDGE) Program, an American
Mathematical Society “program that makes a difference” in improving diversity
in the US mathematical profession [2]. In A Celebration of the EDGE Program’s
Impact on the Mathematics Community and Beyond, we report on our own program,
mathematics outreach and inclusivity work, mathematics teaching, mathematics
research, and mathematical lives.

In Part I, we offer a broad overview of the EDGE Program. Sarah Bryant
(see editor signature for EDGE involvement) and Jessica Spott (EDGE 2018
administrative support) deliver a comprehensive summary of data, impacts, and
outcomes of the EDGE Program’s multifaceted approach to mentoring a diverse
group of women in pursuit of advanced degrees in the mathematical sciences.
The editorial board offers a photographic journey of EDGE Program participants,
mentors, local coordinators, instructors, and leaders from 1998 through 2018. Farrah
Jackson (EDGE 1999 participant, 2003 and 2004 mentor) and Leona Harris (see
editor signature for EDGE involvement) offer an inside account of the EDGE
Program’s history as told by the original founders and past and present program
directors. Rachelle DeCoste (EDGE 1998 participant, 2002 mentor, 2015 instructor)
presents the first curated list of local, state, and national leadership positions in
which the EDGE community members have served. Alejandra Alvarado (EDGE
2002 participant, 2006 mentor, 2013 instructor, 2016 local coordinator), Donatella
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2 S. D’Agostino

Danielli (EDGE Mentoring Cluster Leader, Indiana), Rachel Davis, Zenephia Evans
(EDGE 2016 Difficult Dialogues Facilitator), and Edray Herber Goins (EDGE
2016 local coordinator) discuss the positive impact the EDGE Program had on
Purdue University, the 2016 host institution. In addition, the editorial board presents
testimonials describing the EDGE Program’s long-lasting impact on participants’
lives.

In Part II, we report on mathematics inclusivity and outreach work undertaken
by EDGE community members. Alejandra Alvarado (EDGE 2002 participant,
2006 mentor, 2013 instructor; 2016 local coordinator) and Candice Price (EDGE
2012 mentor) provide context and advice for the nearly half of mathematicians
who seek employment in business, industry, or government either for first post-
doctoral positions or mid-career pivots. Lance Bryant, Sarah Bryant (see editor
signature for EDGE involvement), and Diana White argue that math circles—
known for benefiting the K–12 students they serve—foster meaningful and spirited
professional growth among mathematicians who heed the math circle call. Amy
Buchmann (see editor signature for EDGE involvement), Yen Duong (EDGE
2010 participant), and Ami Radunskaya (EDGE 1998–2002, 2009–2011, and 2018
instructor, 2008 local coordinator, 2012–present co-director) explore the history,
motivations, data, reflections, and impacts of the Women in Mathematics Symposia,
a successful collection of annual, regional women-in-mathematics conferences.
Rachelle DeCoste (EDGE 1998 participant, 2002 mentor, 2015 instructor), founder
of the Career Mentoring Workshop, examines her efforts, lessons learned, and
successes in diversifying the mathematics community by way of a program targeting
women completing mathematics doctorates. Gizem Karaali (EDGE 2008 instructor)
reports on both positive and negative ways that mathematics faculty are asked to
provide emotional labor, arguing that mentoring programs, such as EDGE, help
diminish the negative and reinforce the positive.

In Part III, we provide a window into contemporary undergraduate mathematics
teaching. Michelle Craddock Guinn (see editor signature for EDGE involvement)
and Bradford Schleben discuss a summer academic program for US students
studying in Europe and Australia that emphasizes cultural understanding and
promotes mathematics as a universal language. Jill Jordan (EDGE 1999 participant)
offers advice for undergraduate mathematics faculty seeking to transform student
attitudes regarding inquiry-based curriculums from skepticism to enthusiasm and
confidence. Carolyn Otto (EDGE 2006 participant) introduces engaging activities
and assignments for a project-based linear algebra class in which the students are
considered members of a “Zombie Containment Task Force.”

In Part IV, we showcase new developments in mathematics research. Jamye
Curry (EDGE 2009 participant), Xin Dang, and Hailin Sang offer a new multi-
variate, rank-based test statistic for determining whether two samples hail from
the same population. Karamatou Yacoubou Djima (EDGE 2008 participant; 2013
mentor) and Wojciech Czaja present a result on composite wavelet frames, a tool
for representing data at increasingly precise resolution. Erica Graham (EDGE
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2006 participant, 2010 mentor) and Ami Radunskaya (EDGE 1998–2002, 2009–
2011, and 2018 instructor; 2008 local coordinator; 2012 – present Co-Director)
introduce a mathematical model of deep vein thrombosis that identifies contributing
factors to embolus formation, an important step for informing clinical treatment.
Torina Lewis (EDGE 2008 participant) introduces a new class of periodic functions
known as “geometric polygon functions” that may be useful in matroid theory.
Erin Craig and Eirini Poimenidou (EDGE 2006 and 2013 local coordinator, 2002,
2014, 2016 instructor) extend Wolfram’s Rule 90 for one-dimensional cellular
automata over non-abelian group alphabets and applies the finding to automata
over dihedral groups. Candice Price (EDGE 2012 mentor) and Nina Fefferman
discuss preliminary results exploring EDGE Program network organization metrics,
establishing a foundation for understanding features essential for participant suc-
cess. Kimberly Spayd and Ellen Swanson (EDGE 2006 participant, 2013 instructor)
extend Hayes and LeFloch’s work by deriving a model for a three-phase flow in
porous media with rate-dependent capillary pressure, research that helps engineers
and environmentalists understand accidental pipeline leaks contaminating soil and
water supplies. Chelsea Walton (EDGE 2012, 2013, 2014, 2015 instructor) delivers
an engaging introduction to noncommutative algebra appropriate for advanced
undergraduate and graduate students.

Finally, in Part V, we tell engaging mathematical stories about some EDGE
community members’ lives. Karoline Pershell’s (EDGE 2003 participant, 2008
mentor) narrative of her post-PhD trajectory, including a leap from academe into
public, private, and not-for-profit work, demonstrates the value of an ongoing self-
reflection in defining personal success. Carla Cotwright-Williams (EDGE 2001
participant, 2005 mentor) examines how her childhood in a service-oriented family
set her on a course for a public-service career as a mathematician at the US Social
Security Administration and the NASA Ames Research Center. Carol Wood (EDGE
2004 instructor) draws on her experiences teaching EDGE students to discuss
the challenges of finding a just-right balance between encouraging and preparing
students to succeed in mathematics.

As publishing this volume was an it-takes-a-village endeavor, we have many
people and organizations to thank, including Ami Radunskaya for suggesting
that we edit this volume; Sylvia Bozeman, Rhonda Hughes, Ulrica Wilson, Ami
Radunskaya, and Raegan Higgins for the ongoing inspiration and EDGE Pro-
gram leadership; EDGE Program sponsors for generously providing us financial
and moral support (see https://www.edgeforwomen.org/our-sponsors/); Dimana
Tzvetkova at Springer for the early encouragement and ongoing assistance; Dahlia
Fisch at Springer for the assistance in the final stretch; anonymous peer-reviewers
for their time and expertise; allies at the Association for Women in Mathematics, the
National Association of Mathematicians, and the Society for the Advancement of
Chicanos/Hispanics and Native Americans in Science; and, of course, the Women
Math Warriors of the EDGE Program whose mathematics research, teaching,
leadership, testimonials, and rich professional and personal lives are the subjects
of this book.

https://www.edgeforwomen.org/our-sponsors/


4 S. D’Agostino

“I stood at the border, stood at the edge and claimed it as central, claimed it as
central and let the rest of the world move over to where I was,” [3] Toni Morrison
once said in an interview about her books. Morrison’s statement captures the spirit
of what we have worked to accomplish in our book. That is, we claim the EDGE
Program as central and invite readers to move over to where we are. Editing this
uncommon volume of papers during the Me Too and Black Lives Matter era—
a period that has overlapped with a need for Marches for Science—has provided
deeply meaningful work. Be inspired by the intelligent, thoughtful, and bold writing
of EDGE Program community members. Then, go and affect positive change in the
world.

Respectfully,
Susan D’Agostino
Editor in Chief
On behalf of the editorial board:
Sarah Bryant, Editor (EDGE 2002 participant; 2005 and 2006 mentor; 2012,

2015, 2018 instructor; 2014–2016 EDGE foundation executive director)
Amy Buchmann, Editor (EDGE 2010 participant, 2012–2014 mentor)
Michelle Craddock Guinn, Editor (EDGE 2004 participant, 2008 mentor)
Susan D’Agostino, Editor in Chief (EDGE 1998 participant)
Leona Harris, Editor (EDGE 2008 and 2018 instructor)

From left: Susan D’Agostino, Michelle Guinn, Amy Buchmann, Leona Harris,
Sarah Bryant
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Part I
The Enhancing Diversity in Graduate

Education (EDGE) Program



The EDGE Program: 20 Years
and Counting

Sarah Bryant and Jessica Spott

Abstract The EDGE (Enhancing Diversity in Graduate Education) Program is
designed to strengthen the ability of women and minority students to successfully
complete graduate programs in the mathematical sciences. The founders of EDGE
sought to empower women entering graduate school in mathematics. In this chapter,
we provide some statistics about EDGE participants and the impacts and outcomes
of EDGE on these women and the field of mathematics.

1 EDGE: A Multi-Faceted Mentoring Program

The EDGE (Enhancing Diversity in Graduate Education) Program was started in
1998 by Dr. Sylvia Bozeman and Dr. Rhonda Hughes. EDGE began with a shared
vision of supporting women entering mathematics PhD programs. However, as
EDGE has grown and participants have finished graduate degrees and pursued
careers, the scope of EDGE programs has also grown. The ultimate goal of EDGE is
to enhance the diversity of leadership in the mathematics community. In support of
this goal, EDGE runs a comprehensive mentoring and training program including a
summer session, reunion conference, mentoring clusters, and other activities. These
activities further the EDGE goal of empowering women through all developmental
stages of their professional identities (Fig. 1).

The EDGE program offers comprehensive mentoring for women, approximately
half of whom are underrepresented minorities, pursuing careers in the mathematical
sciences. EDGE activities are designed to provide ongoing support toward their
academic development and research productivity at several critical stages of their
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10 S. Bryant and J. Spott

Fig. 1 EDGE Postcard by Tai-Danae Bradley

careers-entering graduate students, advanced graduate students, postdocs, and early
career mathematicians. Brief descriptions of these activities are given below:

Summer Session The EDGE Summer Session is a 4-week residential program
for women entering graduate programs in the mathematical sciences that consist
of two main workshops in analysis and algebra. The workshops are immersion
experiences that simulate the fast pace of studying graduate-level mathematics.
Advanced graduate students serve as mentors. The summer session also includes
mini-courses in vital areas of mathematical research, guest lectures by short-term
visitors from academia and industry, group problem-solving sessions, and activities
that foster network building and professional development.

Annual Reunion Conference Each year during the EDGE Summer Session, this
2-day reunion conference includes activities designed to mentor graduate students
and recent doctoral graduates. Both the current and previous year’s summer session
participants attend the conference along with EDGE participants who have recently
earned their PhDs.

Research Mini-Sabbaticals As part of its objective to support the research
activities of women in mathematics, EDGE funds extended visits (2–6 weeks)
for advanced graduate students, recent PhDs, and junior faculty to work with a
collaborator in their research area. These research visits advance the research and
intellectual growth of the recipient and increase their visibility in the mathematics
research community.

Regional Mentoring Clusters Small groups of women in mathematics (under-
graduates, graduate students, junior faculty, and senior faculty) in close geographical
proximity meet 2–3 times a semester to facilitate tiered mentoring. Currently, EDGE
sponsors cluster activities in southern California, Georgia, Indiana, North Carolina,
Iowa, and the mid-Atlantic region.

Special Sessions and Regional Research Symposia EDGE has hosted special
sessions at multiple Joint Math Meetings and Association for Women in Mathe-
matics Conferences. The EDGE regional research symposia grew from the EDGE
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clusters out of an expressed interest for more direct interaction between women
mathematicians at all stages in their careers. The goal of the regional symposia is
to strengthen the network of female mathematicians in a particular geographical
region, and to encourage collaborations and mentoring relationships.

2 EDGE Summer Session: A Program That Makes
a Difference

Every summer, the EDGE cohorts form a diverse group, with talented students
selected from across the nation. From 1998 to 2018, there have been 255 participants
from more than 150 undergraduate and 100 graduate institutions. The participants
are recruited with an eye toward racial and ethnic diversity, and the data show
48.2% of EDGE participants are White while 51.8% are from Underrepresented
Minority Groups. Over 40% of EDGE participants are from 4-year colleges and
over 23% from historically black colleges and universities (HBCUs). With such
a variety of unique educational backgrounds and experiences, the opportunity for
growth through community building and the exchanging of ideas is endless.

Though EDGE began by alternating Summer Sessions between Spelman College
and Bryn Mawr College, in 2003, the pattern changed and EDGE Summer Session
was at Pomona College. Since then, colleges and universities across the country
have become hosting partners with EDGE (see Fig. 2). Additional hosting sites
now include North Carolina A&T University, New College of Florida, North
Carolina State University, Florida A&M University, Harvey Mudd College, Howard
University, Purdue University, Mills College, and Texas Tech University.

Fig. 2 Map of EDGE summer session locations; Undergraduate and Graduate Institutions of
participants indicated (note: locations outside continental US not shown)
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At each location, the EDGE directors and a local coordinator work with a team
to ensure all students have access to housing, food, and individual study/classroom
space while on campus for the month of June. Local hosts also aim to provide an
enjoyable experience centered on holistic student success and professional identity
development through formal and informal interactions between the summer session
students and EDGE mentors, faculty, presenters, and staff.

Elizabeth Sharp, Interim Vice President of Diversity, Equity & Inclusion at Texas
Tech University spoke of the impact of hosting the 2018 EDGE Summer Session.
“It was an honor for Texas Tech University to have the opportunity to host EDGE
and we are proud to have been part of a program with such a strong track-record
of impact on women in the field of mathematics. The presence of EDGE on our
campus created a strong energy and further signaled our commitment to equity in
the field of mathematics.”

During one weekend of the Summer Session, local coordinators host a reunion
conference for EDGE participants from the previous years’ cohort to reconnect,
debrief, and pass along advice to the new EDGE cohort. Returning students share
their experiences with the next EDGE cohort by telling of their highs and lows of
their first year of graduate school. One student explained: “Getting through that
first year was such a rush of emotions . . . I’m excited to hopefully pass on some
encouragement.”

EDGE Summer Session Fast Facts: 1998–2018

People Involved

255 participants across 20 sessions (median cohort size is 14)
48 mentors (32 former EDGE Summer Session participants)
42 instructors (11 former EDGE Summer Session participants or mentors)

Participant Race/Ethnicity

48.2% White; 34.9% African American/Black; 9.0% Hispanic/Latina, 5.1%
Asian/Pacific Islander; 2.7% Multiracial

Undergraduate Institutions Among Participants

153 colleges and universities, from 38 states and the Virgin Islands

Undergraduate Institution Profiles

44.1% are Historically Black Colleges and Universities, Hispanic Serving
Institutions, or Women’s Colleges; 40.8% are Baccalaureate Colleges

(continued)
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Graduate Institutions Among Participants

96 colleges and universities, from 39 states and four additional countries
(Canada, Germany, France, and England)

Top 5 Most-Frequent Undergraduate Institutions

Spelman College, Bryn Mawr College, Pomona College, The College of New
Jersey, and Xavier University

Top 5 Most-Frequent Graduate Institutions

North Carolina State University, University of Nebraska–Lincoln, Iowa State
University, University of Maryland–College Park, and University of
Kentucky

3 EDGE Women Become Mathematicians and Leaders

With so many programs and activities, it is impossible to capture the impact
of EDGE in a single statistic. The initial goal of the founding directors—to
support women entering and persisting in graduate studies towards a PhD in
mathematics—has certainly produced measurable success. Since 1998, 255 women
have participated in the EDGE summer session. To date, more than 90 EDGE
participants have earned PhDs, and the directors expect to celebrate the 100th EDGE
PhD in 2019. In fact, the PhD completion rates among EDGE alumnae have been
above 60% (and as high as 80%) for 6 of the 10 cohorts between 2000 and 2010
(Note: There was no EDGE Summer Session in 2007).

As mentioned in the previous section, the EDGE participants are a diverse group.
The first African-American EDGE participant earned her PhD in 2005. From 2005
to 2015 (the most recent AMS report on PhD completion), EDGE alumnae account
for 20% of all African-American women graduating with doctorates in mathematics.
In 2015, EDGE alumnae were 45% of that demographic. Tracking one decade of
EDGE (2000–2010) with a total of 130 participants (123 whose outcomes are known
and shown below), we have the following statistics regarding PhD and Master’s
completion (Fig. 3).

In this 10-year window, more than 90% of participants earned a graduate degree
or are persisting in their studies. The overall rate of PhD completion for EDGE
participants was 55% in this same 10-year period. The last published national data
on PhD completion rates put the overall national completion rate at 51%, and much
lower for women and underrepresented minorities [2]. This supports the claim that
EDGE has created a successful model for preparing women for graduate school in
mathematics.
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Fig. 3 Graduate degrees for EDGE cohorts 2000–2010

EDGE focuses not only on the future academic successes of its participants;
it also strives to develop the whole person to be successful. EDGE participants
gain the knowledge and skills needed for them to survive graduate school. But
equally significant is the emotional support and confidence EDGE offer students
encouraging them to thrive, both in graduate school and in their future careers.

I left EDGE with a feeling of empowerment. I was confident that I belonged where I was. I
deserved to be in the program that I got into . . . I think that without that, I would have had
more self-doubt. But it was such a strong feeling of empowerment when I left the summer
session and that continued on. I think that helped me know I was where I was supposed to
be.—2017 EDGE participant describes the impact of EDGE on her success.

During the EDGE Summer Session, participants experience the blending of friendly
and professional training, which helps them transition from undergraduate programs
to graduate school. One 2017 participant explains this adaptation of professional
mentors, “A lot of people have supportive people in their lives but I hadn’t
had supportive math people in my life . . . ” Through decades of experience, the
directors of EDGE have identified this support system as one of the most essential
components for learning and helping students develop their professional identity.

The Summer Session addresses the cognitive, skills-based, and attitudinal needs
and growth for EDGE participants through the workshops, mini-courses, and
networking activities. Addressing each of these needs helps students anticipate what
to expect in their doctoral programs and increases their learning and likeliness
to succeed. These three needs have been addressed repeatedly through aspects of
the EDGE Summer Session and continue to be further enforced in various EDGE
activities. Because of the life-long relationships that are developed through the
EDGE network, EDGE participants are continually supported throughout distinct
phases in their careers. EDGE 2006 participant Ellen Swanson reiterates, “For
me, more than 10 years after being an EDGE participant, the EDGE connection
continues to run strong.”
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EDGE women are not only graduating with Masters and PhDs, but have also
become influential leaders in mathematics and related fields. EDGE alumnae are:

• Teaching at institutions across the United States. Approximately 110 EDGE
alumnae are now teaching the next generation of mathematicians;

• Advocating for sound STEM policy, including advising state government on K-
12 education, developing math curriculum, attending AWM on the Hill events,
and serving as AAAS Fellows;

• Involved in a wide range of outreach initiatives including leading Math Cir-
cles, organizing Sonia Kovalevsky Days, and organizing and participating in
conferences and workshops aimed at broadening participation in mathematical
sciences.

3.1 Diverse Careers of EDGE Alumnae

EDGE alumnae thrive in a wide variety of roles, inside and outside of academia. We
include here a few profiles, to highlight the breadth of the EDGE network.

Sarah Bleiler-Baxter (EDGE 2006) earned an MA in Mathematics and
PhD in Mathematics Education from the University of South Florida. She
is an Associate Professor at Middle Tennessee State University, where her
scholarly work focuses on undergraduates’ learning of mathematical proof.

Yen Duong (EDGE 2010) earned a PhD from University of Illinois at
Chicago. She was a 2018 AAAS Mass Media Fellow, writing for the
Raleigh News & Observer. She currently covers healthcare for North
Carolina Health News and does freelance science writing.

Chandra Erdman (EDGE 2002 & 2003) earned an MA in Statistics from
Columbia University and PhD in Statistics from Yale University. She was a
Principal Researcher at the US Census Bureau and is now a Statistician at
Google.
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Heather Harrington (EDGE 2006) earned a PhD from Imperial College
London. She is now a Royal Society University Research Fellow and
Associate Professor at University of Oxford, leading the Algebraic
Systems Biology Group and co-directing the Centre for Topological Data
Analysis.

Talithia Williams (EDGE 2000) earned an MA in Mathematics from
Howard University and PhD in Statistics from Rice University. She is a
Professor at Harvey Mudd College. She was the host of the six-part PBS
series “NOVA Wonders” and is the author of Power in Numbers: The Rebel
Women of Mathematics.

4 Recognition of Excellence

In 2018, EDGE received the Presidential Award for Excellence in Science, Math-
ematics and Engineering Mentoring (PAESMEM), awarded by the White House
Office of Science and Technology Policy (OSTP) and the National Science Foun-
dation (NSF) (Fig. 4). This honor recognizes the critical roles mentors play outside
the traditional classroom in the academic and professional development of the future
STEM workforce. To be eligible for nomination, individuals and organizations must
exhibit exemplary mentoring sustained over a minimum of 5 years.

This award helps make people aware that there are concrete things we can do to increase
diversity in the mathematical sciences—things that work. Not just the number of women
in mathematics but women in mathematics from diverse backgrounds.—Ami Radunskaya
(EDGE co-director), quote from [1].

EDGE first received national recognition when it was honored in 2007 by the
American Mathematical Society as a “Program that Makes a Difference.” This
award was established in 2005, to highlight programs that aim to bring more
persons from underrepresented backgrounds into the pipeline to advanced degrees
in mathematics and professional success. These programs must be replicable models
that have achieved documentable success.

Since EDGE has acquired the national recognition as an exemplary program for
mentoring success through graduate studies, the founders and directors have also
received multiple awards and honors. Among many accolades, it is notable that Ami
Radunskaya, Rhonda Hughes, and Sylvia Bozeman have each earned the AAAS
Mentor Award.
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Fig. 4 Receiving the Presidential Award for Excellence in Science, Mathematics, and Engineering
Mentoring. June 26, 2018. L to R: Raegan Higgins, Ulrica Wilson, Rhonda Hughes, Sylvia
Bozeman, Ami Radunskaya

5 Planning for the Future of EDGE

From its founding in 1998 until 2017 (with the exception of 2007), the EDGE
Program was made possible by funding from National Science Foundation, the
National Security Agency, the Andrew W. Mellon Foundation, and Microsoft
Research. The EDGE directors worked in close coordination with program officers
committed to the goals of EDGE to ensure funding for the program.

In 2013, in response to an overwhelming push from former EDGE participants,
the directors established a 501(c)3 nonprofit organization, the Sylvia Bozeman and
Rhonda Hughes EDGE Foundation to raise money to support EDGE activities and
better ensure the longevity of the program. The EDGE Foundation advisory board
includes current and former directors, along with mathematicians and stakeholders
with a shared commitment to the continuation of the mission of EDGE.

Since its establishment, the EDGE Foundation has partnered with several
colleges and universities and other entities. Sponsors include Texas Tech University,
Spelman College, American Mathematical Society, National Security Agency, Bryn
Mawr College, Pomona College, Cal Poly Pomona, University of Washington
Applied Mathematics, Cornell University, Worcester Polytechnic Institute, Uni-
versity of Nebraska–Lincoln, University of Washington, Henry Luce Foundation,
and Springer (publisher of this work). Some academic sponsors have benefitted
from their partnership with EDGE by visiting the Summer Session with plans to
adopt successful strategies for retaining women in PhD programs; by recommending
incoming PhD students to the EDGE Summer Session; and by receiving applications
from EDGE participants whose initial choice of a graduate program was not the
correct fit.
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EDGE co-director Ami Radunskaya is currently co-PI of NSF INCLUDES:
WATCH US grant (NSF 1649365). This project seeks to increase and diversify
the number of professional mathematicians in the United States by identifying and
proliferating best practices and known mechanisms for increasing the success of
women in mathematics graduate programs, particularly women from underrepre-
sented groups.

Raegan Higgins, an EDGE 2002 participant and current Associate Professor
of Mathematics at Texas Tech University, became co-director of EDGE in 2017.
She says, “As we look to the future, we aim to have EDGE everywhere. We want
people, institutions, and businesses to learn from and to implement the ideas and
practices that EDGE has used to increase and to maintain the number of women and
minorities in mathematics. EDGErs are thriving in this community and we want the
world to know how it can contribute to this success.”

Informed Consent All participants in this manuscript gave informed consent for the use of their
quotes.
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EDGE 1998 held at Bryn Mawr College

EDGE 1999 held at Spelman College

EDGE 2000 held at Bryn Mawr College
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EDGE 2001 held at Spelman College

EDGE 2002 held at Bryn Mawr College
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EDGE 2003 held at Pomona College

EDGE 2004 held at Spelman College
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EDGE 2005 held at North Carolina A&T State University

EDGE 2006 held at New College of Florida
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EDGE 2008 held at Pomona College

EDGE 2009 held at Spelman College



EDGE Through the Years 25

EDGE 2010 held at North Carolina State University

EDGE 2011 held at Florida A&M University
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EDGE 2012 held at Pomona College

EDGE 2013 held at New College of Florida
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EDGE 2014 held at Harvey Mudd College

EDGE 2015 held at Howard University



28 S. Bryant et al.

EDGE 2016 held at Purdue University

EDGE 2017 held at Mills College
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EDGE 2018 held at Texas Tech University



Twenty Years of Enhancing Diversity
in Graduate Education from the
Perspectives of Five Dynamic Women
Who Have Led the Program

Farrah J. Ward and Leona Harris

Abstract In preparation for the completion of this book, we had the pleasure of
interviewing the five dynamic “women math warriors” who have served as co-
directors of the EDGE Program throughout its 20 years of existence, in an effort
to hear firsthand about the vision and impact of the EDGE Program. The account
below provides an overview of the history, contributions, and hopes for the future of
the EDGE Program as seen through the eyes of its beloved founders and directors.

1 In the Early Years a Partnership is Born: Sylvia Bozeman
and Rhonda Hughes

It is hard to imagine a more perfect pair of founders for the Enhancing Diversity
in Graduate Education (EDGE) Program than Dr. Sylvia Bozeman, who was a
Professor of Mathematics at the prestigious Spelman College, a historically black
women’s college in Georgia, and Dr. Rhonda Hughes, who was a Professor of
Mathematics from the prestigious Bryn Mawr College, a liberal arts women’s
college in Pennsylvania.

Sylvia and Rhonda first met in the late 1980s at a Joint Mathematics Meeting in
Atlanta, Georgia. The late Dr. Lee Lorch, who felt that they should know each other
because they were both worried about the same issues, introduced them to each
other and the rest is history! Rhonda remembers that it snowed in Atlanta that year
and the city “shut down.” They both recall meeting for dinner during the conference
and continuing to talk over the phone about their shared interests and concerns, and
potential ways in which they could collaborate with each other.
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From the beginning it was clear that these two women would cultivate a true,
long-term partnership. Sylvia and Rhonda, both department chairs of mathematics
departments at their respective women’s colleges, quickly realized that they shared
a common passion for finding ways to increase the numbers of mathematics majors
in their departments and, in particular, get more women involved in mathematics.

The EDGE Program was not their first collaboration to support women mathe-
maticians. In the early 1990s, there was a national influx of Research Experiences
for Undergraduates (REUs) around the country that focused on getting rising
juniors and seniors involved in undergraduate research. Sylvia and Rhonda decided
that they wanted to create a program that focused on getting freshman and
sophomore students, who had demonstrated promise in calculus courses, interested
in mathematics and prepared for REUs and careers in the mathematical sciences.

After many hours of brainstorming, planning, and grant-writing, Sylvia and
Rhonda secured funding for their first collaborative project, the Bryn Mawr–
Spelman Summer Mathematics Program, which targeted promising, freshman and
sophomore women at Spelman, Bryn Mawr and area colleges. In this program,
Rhonda and Sylvia built in experiences for students that would develop their
mathematical confidence, attract them to the mathematics major, introduce them
to research, and prepare them for later participation in a summer REU.

From the beginning of their partnership, Sylvia and Rhonda were always
focused on fairness and equity. As such, Sylvia recalls that they made a conscious
effort to refer to the program as “the Bryn Mawr–Spelman Summer Mathematics
Program for two years” and then they “called it the Spelman–Bryn Mawr Summer
Mathematics Program,” for the next 2 years so as not to show favoritism to any
one of their institutions. This successful initiative, which lasted for 4 years (1992–
1996), created a space for Sylvia and Rhonda to grapple with what they referred
to as “some of the real issues in the math community” and to develop a strong
professional relationship as well as a close friendship. Their bond, built on mutual
respect, shared goals, and a common vision for the field of mathematics led to lots
of discussions about next steps and future collaborations.

Towards the end of the grant cycle for the Spelman–Bryn Mawr Summer
Mathematics Program, Rhonda and Sylvia reviewed a report from a conference
sponsored by the National Science Foundation (NSF) that focused on improving
graduate education in the mathematical sciences. The outcomes from the NSF
conference solidified their desire to work on a different effort that focused squarely
on what was happening in graduate school. Having witnessed firsthand several
mathematically talented women from both Spelman and Bryn Mawr, who were
strong and well-prepared, leave their graduate programs after the first year of study,
Sylvia and Rhonda knew that finding ways to build and increase support for women
as they transitioned from undergraduate to graduate school was the key ingredient
to helping them persist through their graduate programs.
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2 The Development of the EDGE Program: Key Ingredients
for Success

The initial goal for the new program was clear, “to help students make it through
their first year of graduate school and go back for the second year,” says Sylvia. We
wanted to create, recalls Rhonda, an “academic bridge program” for women that
realistically simulated what students would experience during their first year of a
mathematics graduate program with an effort to build in features that would focus
on increasing retention and persistence.

To ensure that the summer program they were developing would accurately
reflect the graduate experience, Rhonda and Sylvia drew from their own experiences
but also solicited advice from others, including current and recent graduate students.
One such advisor was Diana (Dismus) Campbell, who was a mathematics graduate
student at Rutgers University at the time and also a graduate of Spelman College.
Diana had been one of Sylvia’s students at Spelman and was then a mentor for
the Spelman–Bryn Mawr Summer Mathematics Program. Both Sylvia and Rhonda
recall that Diana provided valuable insight from a student’s perspective for the
EDGE Program and that she was very instrumental in the design of the program.

Rhonda and Sylvia were deliberate and purposeful when designing each compo-
nent of the EDGE Program. They spent a significant amount of time creating the
EDGE experience (including graduate-level course content, near-peer mentoring,
bonding experiences, group work, and networking opportunities), and working on
a grant proposal to secure funding for the program. They had the proposal written
when they realized that they still needed to come up with a name for the program
that would stand out. Rhonda and Sylvia both recall spending numerous hours on
the phone, “stretched out across the bed” toiling over the perfect name for the
program that would have a catchy acronym. They went back and forth, tossing
around different possibilities for names that would lead to a good acronym: “one or
two letters at a time” until the perfect name arose, Enhancing Diversity in Graduate
Education (EDGE).

Although Sylvia and Rhonda developed what they believed was an outstanding
proposal for a new innovative program to support women, during a critical time in
the mathematics community, the EDGE Program was not initially funded by the
National Science Foundation (NSF). It might have been that their vision for the
program was too farfetched for the review panel at the time. Although they did not
secure grant funding initially, Sylvia and Rhonda were very concerned that even
some of their “best students were struggling,” and they knew that something had
to be done. They felt very strongly that their program could help fix this national
problem, so they persisted in the grant acquisition process because they knew they
were on to something. Luckily there was one NSF program officer, Lloyd Douglas,
who believed in the vision for the EDGE Program and shopped the proposal around
to various program officers at NSF searching for ways to fund EDGE. In the end,
Rhonda and Sylvia received grant funds from both NSF and the National Security
Agency (NSA) to support the EDGE Program. They both recall that the funding
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amount was reduced which resulted in the need for them to restructure the program
from 6 to 4 weeks in order to cut the budget. In subsequent years, the Andrew W.
Mellon Foundation provided generous and crucial support to the program, thanks to
its program director Dr. Danielle Carr.

Rhonda and Sylvia were able to draw from their own personal experiences
in graduate school when developing the EDGE Program. Rhonda can remember
struggling in her graduate program and was even asked to leave after the first year.
“I had to regroup and try again. The leap was challenging but I figured out how
to approach and understand mathematics, and my performance improved.” Rhonda
recalls questioning whether she “belonged” even though she pursued her graduate
degree at the same school where she received her undergraduate degree. After
careful reflection, Rhonda emphatically stated “I don’t think I could have created the
program had I not struggled myself.” Sylvia experienced firsthand how “exposure”
made the graduate experiences a bit “uneven.” Within her first weeks of graduate
school, Sylvia realized that many of her classmates had been exposed to more
mathematics while they were undergraduates than she had and several of them had
even utilized their graduate textbooks during their undergraduate studies. Sylvia’s
experience was not unique, and they both understood that it was essential to simulate
this environment during the EDGE Program. In order to replicate the mathematical
diversity of many of the graduate schools in the nation, they intentionally selected
women from a variety of institutions ranging from small liberal arts colleges
to historically black colleges and universities to research-intensive universities.
Understanding that different people with different backgrounds would experience
the rigors of graduate work in different ways, they sought out to ensure that the
program was built in a way that would equip students with the tools needed to
successfully adjust to the graduate school culture.

Graduate-Level Courses and Near-Peer Mentorship. When designing the
course format for the program, courses were intentionally designed so that “the
material started off slowly with topics many students had already seen as an
undergraduate and gradually advanced so that by the time the four weeks were
up, the participants were experiencing graduate – level content,” says Sylvia. In
addition, since participants were exposed to the faster pace of graduate school in
classes with peers who were mathematically and racially diverse, Sylvia and Rhonda
knew that it would be important to focus on group work and group dynamics. In
order to address this issue, they deliberately created mandatory group study sessions
with the goal of creating a space for students to learn to successfully work with their
peers, a skill they knew was essential to success in graduate school.

Having graduate students serve as mentors for EDGE participants (known as
EDGErs) was a key ingredient of the EDGE Program from the very beginning. The
mentors were chosen to serve as role models for student participants and to serve as
liaisons between the students and the instructors. The ability for EDGErs to interact
with current graduate students who could readily relate to what they were feeling
was crucial. Mentors were at the center of the study sessions and not only assisted
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EDGErs with their coursework but worked with students to interpret questions and
develop problem-solving strategies.

“We did not want the students to compete with each other when they came
in the summer even though we knew there were students at different levels,”
Sylvia explains, so it was extremely important that homework assignments were
not graded. Instead, instructors would give considerable feedback on the student’s
choices of proof strategy, technique, and structure. Sylvia wanted to emphasize
to participants that “everybody had gaps somewhere,” and the goal was not to
“compete with the people across the table,” but instead for participants to “focus
on filling in their gaps and making themselves stronger and ready for those graduate
classes.” They wanted an individual student to understand that she was really only
competing with herself and they wanted them to be able to clearly answer the
questions: What knowledge and skills did you have entering the program? What
do you know now, at the end of 4 weeks, as you leave the program?

Bonding Experiences. Understanding the significance of the mentor/mentee bond,
Rhonda and Sylvia built in Thursday night dinners out, where mentors and mentees
bonded over dinner without any directors or faculty involved. While helping
students adapt to the rigor of graduate-level mathematics was important, they knew
that the inclusion of nonacademic components in EDGE was equally important.
At the end of the second week of the program, EDGE participants created and
performed in a talent show. On the surface, the talent show may have seemed like a
way to entertain the previous cohort during their reunion weekend, but its inclusion
was quite deliberate. Students who had a stronger mathematical foundation were
able to stand out in class, but the talent shows provided a good opportunity for
students who may have been struggling initially in their courses to “demonstrate
their strengths in other areas.” Rhonda proclaimed, “the talent show provided an
affirmation of their strengths, reminding people of areas where they had special
talents.” Rhonda stressed the importance of this component and recalled that it gave
students a “sense of belonging.” Sylvia pointed out that the talent shows helped to
keep students encouraged and created respect for abilities beyond mathematics.

3 The Early Years of the EDGE Program

While Rhonda and Sylvia integrated many high-impact practices into the EDGE
Program, there were unforeseen challenges. They realized it was not enough to
assemble a diverse group of students; there was a need to intentionally address
communication among students from different backgrounds. So, in the second year
of the EDGE Program, Rhonda ad Sylvia enlisted a sociologist, Barbara Carter, from
Spelman College, to design and facilitate a seminar entitled “Difficult Dialogues,”
where social, racial, economic, gender, and cultural differences were addressed.

Another challenge arose as participants coped with the heavy course load and
their struggles to complete their homework assignments in a short period of time.
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Rhonda recalls calling Sylvia one day to discuss how some students were in tears
and to determine whether they needed to make modifications to the coursework.
In the end, no major adjustments to the amount and level of coursework were
made. Rhonda and Sylvia knew that the feeling of being overwhelmed was a
natural experience for many first-year graduate students and they saw the value of
students experiencing and grappling with those emotions in a supportive, nurturing
environment.

As the Co-Founders and first Co-Directors of the EDGE Program, Sylvia and
Rhonda enlisted lots of people to help them with this effort along the way. Diana
Campbell’s role in the early years of the EDGE Program cannot be overstated. She
worked with Rhonda and Sylvia from the conception of EDGE and she served as
their Administrative Director for many years. Sylvia proclaims, “we really owe her,”
as she reflects on the past and remembers all that Diana contributed to the program.
Both Sylvia and Rhonda credit Diana for having lots of good ideas that were used
to help develop the components of the program, including coming up with the idea
of calling EDGE Program participants, “EDGErs.” They recalled the fact that they
had “little money” for the program in the early years and they often joked that “our
national headquarters were in Diana’s bedroom.”

Sylvia and Rhonda also note that Ann Dixon, a Bryn Mawr alumna, cared
deeply about women’s issues and was always willing to help with some of the
administrative duties. For many years, and to this day, Ann designed and maintained
the EDGE website, posting news, facilitating the exchange of information within
the EDGE community, and giving access to a new group of students each summer.
Nona Smith, the grants administrator at Bryn Mawr and a steadfast supporter of the
program, helped the program run smoothly.

4 The “Baltimore 10” Help the Co-Founders Make Key
Decisions on the Future of EDGE

Similar to the Bryn Mawr–Spelman Summer Mathematics Program, the EDGE
Program alternated between Bryn Mawr and Spelman for the first 4 years. After
operating the EDGE Program for 4 years, Rhonda and Sylvia invited a group of
key supporters, dubbed the “Baltimore 10,” to a meeting in Baltimore to discuss the
future directions of the program. Rhonda notes that it was during this meeting that
they “re-upped” and decided to “go national” and seek out institutions nationwide
that would be interested in hosting the EDGE Program in future years. The ability
to host EDGE across the country would increase visibility among students and
professionals, so that the EDGE network would have an opportunity to grow and
ultimately be seen as an outstanding STEM mentoring program.
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5 Who are the EDGE Co-Founders?

When asked to reflect on their own personal and professional personalities and what
it was like to work with each other as colleagues, here is what Sylvia and Rhonda
had to say:

Sylvia considers herself to be a “servant leader” who patterns herself after her
mother who served others in the community and the church. “I had a great mentor
in Etta Falconer. Dr. Falconer was so good at bringing people together and getting
them to work together. I learned everything I know about managing programs and
people from Etta Falconer.” When asked about her personality, Sylvia says, “I am
kind of low-key.”

“Rhonda is much more experimental! She is willing to step out there and try
things. She is bolder; much bolder than I am,” Sylvia proclaims. “I learned a lot
from Rhonda as we worked together on the EDGE Program. She would set a goal
that I would be hesitant to set . . . . I finally learned to step out there with Rhonda.
We did so much together. We became very close through our experiences. It was
really a gift to me to be able to work with her like that. It helped me to work with
other people.”

Some would consider Rhonda to be an extrovert, but Rhonda explains, “I am
really an introvert but I have another side that I can call upon when needed.
Personally I identify with and aspire to be like people who stand up for truth and
justice, people who fight against the status quo. Lee Lorch and Mary Gray were role
models for me, as they always called out things that they deemed to be unjust. I
would describe myself as passionate.”

Rhonda points out that she “learned diplomacy from Sylvia. Sylvia is very
diplomatic. She has deeply held beliefs and she delivers things with style and grace.”
Rhonda jokingly describes their relationship as “good cop/bad cop” and says, “I was
the more feisty one, the more outspoken of the two of us.” Rhonda notes, “I could
say this is wrong” about some injustice and Sylvia would have the “more diplomatic
approach. We really worked well together.”

6 The Glue: Ulrica and Ami, Intentional Choices
and Long-Term Commitment

When deciding to continue the EDGE Program, Sylvia and Rhonda knew that they
would need to solicit the help of others who would have a long-term commitment to
the program.

Dr. Ami Radunskya, who was an Assistant Professor of Mathematics at Pomona
College, was invited by Rhonda and Sylvia to work with the EDGE Program as a
real analysis instructor in 1998, the first year of the summer program. Ami was a
junior faculty member and in her third year as an Assistant Professor. At the time,
she had never met Rhonda or Sylvia, but was recommended to them by Dr. Victor
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Donnay, one of Rhonda’s Bryn Mawr colleagues, as someone who would be good
for the program because she had been actively involved in other diversity initiatives.
Ami distinctly remembers getting tenure the year after she started working with
EDGE. She recalls spending a lot of time working with various summer programs
with missions that she cared about and she remembers being concerned about
how that would affect her chances for tenure, because she “did not have a lot of
publications” at the time.

Having been involved in a number of summer programs for women in mathe-
matics, Ami recalls that “EDGE immediately stood out as one of the only ones that
really cared about racial diversity.” The community aspect of the EDGE Program
really kept Ami coming back each year. “I very much wanted to work for women
in math because as a grad student, postdoc, and junior faculty, I needed that kind
of community for myself. EDGE created the kind of community that I wanted to
belong to.”

Ami’s mathematical knowledge, enthusiasm, zest for life, dedication to diversity,
and belief in the ability of all students made her an ideal EDGE instructor; and
Sylvia and Rhonda kept inviting her to come back. “Faculty had to spend a lot of
time and a lot of emotional energy keeping students encouraged but yet making
them work and not letting up; they had to demand something from them and yet
keep them encouraged and Ami was good at that,” recalls Sylvia. “We kept inviting
her back because she did such a good job and she kept coming back . . . She was
just really good with the students.”

Ami knew she had “concrete strategies for navigating the complex web of one’s
graduate school path” and she was eager to share them with EDGErs. She recalls
that when she was a graduate student at Stanford, there were no women faculty
and that the “graduate student lounge was overtly an unfriendly place for women.”
She recalls organizing a group of graduate students to “clean up the space” so that
women would feel comfortable there and it turned out to be a “better place for
everybody.” The point that she wanted to stress here was that you shouldn’t “feel
that you have to accept things the way they are, even though you are just a first year
grad student with no power,” and that there are “allies that are there to help you.”

Ami was the mother of a small child while in graduate school and she remembers
having trouble attending study sessions on campus and struggling to support her
family on her graduate stipend. She recalls inviting her classmates to her house to
study and “luring” them there by cooking them dinner. She also recalls going to
the graduate director and explaining why she needed more money to be able to stay
in school. He found more funding for her, but also gave her “more work to do.”
From these experiences, she shares the following advice with EDGErs and other
students that she mentors: “Seek out your allies; build your own community; ask for
what you need; and don’t beat yourself up if your circumstances are different from
others.”

In addition to transferring her knowledge to the EDGE participants, Ami used
the EDGE Program to fill a void in her own life. Ami recalls that prior to EDGE,
she didn’t have any mentors and she used her time at EDGE to seek mentorship
from Sylvia and Rhonda. Ami recalls having many “long talks with both Sylvia
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and Rhonda about teaching, life, relationships, and parenting” and attributes their
mentorship to her overall personal and professional growth. “I was impacted by their
stories.” She recalls Sylvia inviting her to church when EDGE was held at Spelman
and remembers what a welcoming experience that was. Ami has continued to go
to Sylvia for advice on interpersonal relationships and she notes that “her advice
is always spot on!” Ami credits Rhonda for giving her advice on how to deal with
curricular issues and administrative problems when she was department chair at
Pomona, and she notes that Rhonda is good at giving “concrete, no – nonsense
advice about how to move through your career.”

Ami recalls being the first person to be selected to “run the program at an
institution that wasn’t Spelman or Bryn Mawr” as a Local Coordinator in 2003. “It
was a big deal for me. I felt very honored that they trusted me to run it at Pomona.”
Ultimately, Ami would go on to run the program again at Pomona in 2008 and 2012.

Ulrica Wilson was a third-year graduate student at Emory University when she
joined EDGE as a graduate mentor in 1999, the second year of the program. Ulrica
had graduated from Spelman College with a BS in Mathematics. Sylvia mentored
Ulrica while she was a student at Spelman and invited her to work with the Spelman–
Bryn Mawr Summer Mathematics Program. Having persisted through her own
struggles in graduate school, Sylvia and Rhonda felt that Ulrica was a natural choice
for a graduate mentor in the early years of the EDGE Program. After completing a
Master’s degree at the University of Massachusetts at Amherst, Ulrica went back to
Spelman to teach while Sylvia was still the department chair. Sylvia recalls, “she
taught for a year or two but Dr. Falconer wasn’t having that . . . she had to go back
to graduate school.” So Ulrica went to Emory to pursue her PhD.

While at Emory, Ulrica returned as a mentor every summer and she contributed
greatly to the EDGE Program with her experience, mathematical knowledge, laid-
back personality, and positive spirit. Ulrica recalls that the mentorship that she
received from Spelman professors impacted how she mentored EDGE participants,
noting that she tried to “mimic the experience.”

Ulrica credits the EDGE Program with providing her with the opportunity to
gain mentorship as a young graduate student. She recalls being mentored, not only
by Sylvia and Rhonda, but also by the numerous instructors and lecturers with
whom she interacted with throughout the program. According to Ulrica, EDGE
provided her with one of the first professional experiences where she engaged
with her research outside of the confines of her department, a key component to
her mathematical development. Ulrica notes, “I was very clear about how I had
benefitted from being in that space. I chose to be there each year.” She credits the
program for increasing her “capacity to engage at a high level at Emory.”

Ulrica also recalls a time when she needed funding to travel to France to give a
research presentation as a graduate student and Rhonda found funds to supplement
what her department could pay. She emphasized that this experience was one of the
reasons that the EDGE Program began providing travel funds to its participants to
attend conferences in future years.

Once Ulrica graduated from Emory in 2004 with a PhD in Mathematics, she
started a postdoc at Claremont McKenna College, and in 2005, Dr. Ulrica Wilson
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began serving as an abstract algebra instructor in the EDGE Program for the first
time. Ulrica distinctly remembers being excited because “it felt like a promotion.”
She also recalls that when she was applying for academic positions, Sylvia and
Rhonda helped her “navigate through the different offers” and she accepted a
position at Morehouse College as Assistant Professor of Mathematics in 2007.

Ulrica and Ami were invited to be instructors each year, for many years, during
the second 2 weeks of the program: Ami teaching Analysis and Ulrica teaching
Abstract Algebra. Rhonda notes that Ami and Ulrica “were consistent. They were
always going above and beyond. They brought an energy that we didn’t always have.
Both were the two anchors teaching for many years.” Ulrica recalls that Rhonda and
Sylvia gave her and Ami the ability to manage certain parts of the program and that
they were able to introduce new traditions to the program. One such tradition was
the concept of calling EDGErs “Women Math Warriors (WMW)” that Rhonda made
clear “was all Ami” and joked that “she and Sylvia did not have the personalities to
come up with that.” Sylvia noted that throughout the years “Ulrica and Ami became
good friends; good colleagues . . . they knew how to work together and they both
took a real interest” in the EDGE Program.

7 Transition in Power: Passing the Torch to Ami and Ulrica

When it was time for Rhonda and Sylvia to retire from their colleges, they realized
that they needed to consider what was going to happen with the EDGE Program.
Sylvia says, “we were just moving along and all of a sudden we realized ‘ok’ we are
about to retire and we want the EDGE Program to be in some good hands; and here
are two people (Ami and Ulrica) who have proven themselves to be conscientious
about it and capable and dedicated to the program; and they will be a good team!
We have seen them work together.” After deciding that Ulrica and Ami were ideal
people to turn the program over to, Sylvia and Rhonda decided to set up a four-way
conference call to tell them that they wanted them to take over the EDGE Program.

Ami remembers the phone call distinctly and recalls being “surprised that they
would trust me with their baby. It’s like someone calls you and you won a big a
prize.” Although Ami did not view herself as an administrator, she agreed to serve
as one of the next Co-Directors, along with Ulrica, because she really believed in
EDGE. “I had been working on the program every summer. I didn’t think about the
burden of finding funding. I felt like I could do all the other parts. It brought me a
lot of joy. I also loved working with Ulrica. We seemed like a good combination. I
knew that Rhonda and Sylvia would still be around and lots of other people would
be around. I knew that there was already a community that would be there for us. I
was just shifting roles.”

Ulrica was also “caught off guard” when Sylvia and Rhonda called to discuss the
offer but she agreed to serve as one of the next Co-Directors because it “felt like the
right fit . . . like the natural thing to do.” She also felt that there were things that she
could contribute that would help to grow the outcomes of the program.
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Ulrica distinctly remembers there being an “official hand-off” in 2011 when
Rhonda and Sylvia handed off a silver platter to Ami and Ulrica to mark the official
transition in power. When looking back, Rhonda jokes that Ulrica was replacing
her as the “feisty one” and that Ami was replacing Sylvia as the “peace-maker.”
Sylvia pointed out that under this new leadership, increased attention was given to
supporting the research efforts of advanced EDGErs. They also led the creation of
the Sylvia Bozeman and Rhonda Hughes EDGE Foundation for long-term support
of the Program.

8 The Impact of EDGE on Its Participants After
the Summer Program

When Ami and Ulrica became Co-Directors, Ulrica says that one of their first
projects was to work on marketing materials. They wanted to make sure that
potential funders “understood that EDGE was much more than the four weeks.” So
they worked hard to capture the informal aspects of EDGE in an effort to show that
the EDGE Program represented a true community and that the mentoring aspects of
the program lasted well beyond the summer program.

In their marketing materials, they also wanted to capture the variety of ways in
which EDGErs receive help from the EDGE community to overcome obstacles.
For example, when EDGErs were unsuccessful with their preliminary exams and
doubted themselves, the EDGE staff was always right there encouraging them along
the way; or when EDGErs encountered unsupportive programs and contemplated
leaving graduate school, the EDGE staff would help them to find new graduate
programs.

The support system that EDGE provides EDGErs during graduate school is a
key component of its success. If EDGErs feel isolated during their early years of
graduate school, EDGE provides students with a diverse network of women at all
levels that are prepared to assist them during crucial transition periods.

9 A New Era Begins When an EDGEr Becomes
a Co-Director

By 2017, Ami and Ulrica had been serving as Co-Directors for 5 years and Ulrica
was interested in focusing more heavily on her role as Vice President of the Sylvia
Bozeman and Rhonda Hughes EDGE Foundation, a position that allowed her to
continue to work with Ami, the President of the Foundation. As such, it was time
for Ulrica to find someone to replace her as Co-Director. After a short discussion,
Ami and Ulrica felt that Dr. Raegan Higgins would be a great choice. Raegan was an
Associate Professor of Mathematics at Texas Tech University at the time; she was
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a 2002 EDGE participant, she had taught in the program as one of the real analysis
instructors from 2014 to 2017, and she had been expressing a strong interest in
hosting EDGE at Texas Tech. Ami recalls that when Raegan kept coming back to
teach in the summer, “she had very strong ideas about how things should be run;
she had a lot of energy; she seemed to be in the right place in her career; she really
wanted to host EDGE at her institution, she had been talking about it for a while;
and she just came to mind right away as someone who would be great for the role.”
Ulrica agreed and approached Raegan to ask her to serve EDGE in this new capacity.

Raegan recalls getting a vague email from Ulrica asking her to set up a time to
talk about her role in EDGE. When they spoke over the phone, Ulrica explained
to Raegan that she was preparing to end her term and Raegan remembers being
caught “off guard” when Ulrica said, “we have met and we think it would be good
if you were a Co-Director.” Raegan’s initial reaction was “Yes!” She remembers
being excited that they trusted her to assume this role, but she also remembers
asking a lot of questions about expectations, obligations, funding concerns, and
time commitments, given that she had two small children and that she was actively
doing research and writing in preparation for applying for Full Professor. Raegan
also wanted to know how long Ami would be serving. Ulrica assured her that Ami
would remain Co-Director for several years and that she would still be around to
help, just in a different capacity, as she was planning to stay on to help write grant
proposals and seek new funding sources.

Raegan recalls that as an undergraduate, she often looked to her peer mentor,
Kiandra Johnson, for advice when deciding on the next steps in her mathematical
path. After completing EDGE in 2001, Kiandra shared her experiences during
EDGE with Raegan and strongly encouraged her to apply for the program the next
year; and in 2002, Raegan went on to participate in the program. The impact of the
EDGE Program on Raegan’s mathematical development was clear. When talking
about what helped her get through graduate school, Raegan credits “the Lord, her
parents, her husband, and then EDGE”; and she jokes about interchanging the order
of her “husband and EDGE,” in terms of their impact on her career since she was
introduced to the EDGE Program first. Raegan vividly recalls that when she took
real analysis in graduate school, she often contacted Ami, who had been her real
analysis instructor in the EDGE Program, for help with some of her assignments.
She distinctly remembers, “copying and faxing Ami proofs” that she had written in
order to get assistance. “Ami would critique the proofs, provide feedback and fax
them back” to her and she credits Ami for helping her get through the course and
for helping her to become a better mathematician.

Thrilled about the opportunity to work with Ami in this capacity, Raegan agreed
to serve as Co-Director, and in 2017, she served as a Co-Director and as a real
analysis instructor. Raegan felt strongly that this would be a great way to give back
to a community that gave so much to her. Raegan proclaims, “when I think about
just how impactful EDGE has been for me getting to the PhD,” it was easy for her
to say “Yes!”

Raegan appreciated the opportunity to serve as Local Coordinator in 2018. She
felt that as a Co-Director it was important to host EDGE at her home institution
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at least once. In addition, as a faculty member, bringing EDGE to Texas Tech was
important to her at that time in her career, because it would allow her colleagues to
see who she really is, why she has made certain choices in her professional life, and
what impacts and motivates her.

10 EDGE’s Contributions to the Mathematics Community

During our interviews with all of the EDGE Co-Directors, past and present, we
asked them to share what they believed were the most important contributions of
the EDGE Program to the mathematics community.

Rhonda believes that “we showed the mathematics community that it can be
diverse in a completely natural, organic way” and she expressed her excitement
about the “diverse group of women moving into leadership positions” who have
come out of the EDGE Program. She takes great pride in their efforts to select a
diverse group of participants and believes that those efforts “created an ecosystem
that is very different from the math community we all knew as students. We have
shown that this is what success can look like.”

Sylvia points to the “supportive community that EDGE women have created”
and is very proud of the “large percentage of African-American women who earned
PhDs in mathematics who went through the EDGE Program.” Sylvia is excited
about what EDGErs are doing now and she notes that the impact of the EDGE
Program is best demonstrated through what Rhonda has coined the “EDGE 2nd
Effects,” programs created by EDGErs that have the same spirit and philosophy of
EDGE. These programs carry on the legacy of EDGE by continuing to promote
diversity and inclusion within the mathematics community.

Ami credits the program for helping to “produce women who have become
movers and shakers in the math community.”

Ulrica is happy to see that there are “grad programs operating differently because
of the influence of EDGE.”

Raegan expressed her deep appreciation for the Co-Founders, Sylvia and
Rhonda, who “recognized the need for EDGE” in the mathematics community
and then “did something about it.”

11 EDGE’s Impact on Its Co-Founders and Co-Directors

We also asked all of the Co-Directors, past and present, to share with us what they’ve
learned from EDGE and how it had impacted their lives. This is what they shared:

Sylvia explains that “it is difficult to explain how amazing it is to see all of these
young women and their accomplishments. When we get together for reunions at the
Joint Mathematics Meetings and I see them at conferences, I realize that all of these
women have PhDs that they may not have earned if it had not been for the EDGE
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Program. They may not have finished!” She emphasizes what they were thinking
when they started the program: “When we conceived of the EDGE Program Rhonda
and I decided that we not only wanted students to earn their degrees, we also did not
want them to be ‘beaten up’ in the process, that is, to be so disillusioned with the
mathematics community that they didn’t want to ever see research again and they
didn’t ever want to do anything in the mathematics community . . . It is wonderful
to see them excited and willing to take on professional roles. They are willing to
do research together; they are willing to talk at conferences; and they are willing to
accept leadership roles in the mathematics community. Just to see all of them out
there doing what they want to do; that is very rewarding for me. I am proud not
only of the students in the EDGE community, but also proud of the mentors and
the teachers, the people who were young and came into EDGE and were impacted
by the program. They developed new colleagues. It just warms my heart to see
it.” Sylvia also notes that the EDGE Program has “extended my professional circle
tremendously and it is extended among a diverse group of people.”

Rhonda says emphatically, “we cannot predict with certainty ‘who’s got the right
stuff’ to be successful in mathematics. So many EDGErs have risen from what
they would describe as ‘struggling.’ To me EDGE proves that with hard work and
persistence, students can catch up and ultimately prevail!” Rhonda notes that EDGE
has afforded her great friendships and she exclaims, “it is my life’s work. It is the
most important thing that that I’ve done in my professional life.”

Ulrica shares, “I have learned what’s possible, in particular I learned how to
administer ideas. It really trained me to go from an idea, to communicating the idea
to other people, to tweaking it, implementing it, revising it, to it running on its own.
This is something I keep doing in other areas of my professional life. Starting with
that blank piece of paper and being able to dissect what this is, sell it to other people,
and get funding for it. EDGE is where I started to do that.”

Ulrica stressed the impact of EDGE on her career and explains, “when I got
into this, I don’t think that I anticipated taking on so many administrative roles
in my professional life. When I went to get my PhD and started a tenure track
position, I really expected to be a more traditional faculty member and focus solely
on my research and teaching. I had not anticipated doing administrative roles at all,
but it started here and other opportunities have followed.” She credits EDGE for
introducing her to the national mathematics community. She believes that it is the
root of how she knows so many people across the discipline.

When reflecting on what she’s learned, Ami explains, “I have learned that
together, even a small group working together, can have a big impact. The fact that
at least a quarter of all African American women with PhDs in math, in many of
the past years, have come through EDGE. That’s huge. It is just a small program
but it really has a big impact in changing the demographics of the math community,
which is an important thing to change. I learned that a small group of people, if they
have the passion and work together, can affect real change. Don’t think you can’t
just because there are a few of you. That has really empowered me.” Ami also notes
that she has learned that “there is some commonality in the challenges that women
face but there are also so many differences. I see how different it is for African
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American women than it is for White women or Latino women . . . there are all
sorts of layers of challenges, so there are times when you can’t just lump all women
together when addressing those challenges.” Finally, she points out that “EDGE has
provided me with a lot of my math friends and collaborators. My math life has
been hugely impacted. Now I have people I can work with, organize conferences
with . . . it’s fantastic . . . A pretty good chunk of my professional community comes
from the EDGE community and in my private life, I am fortunate to count some of
my very good friends among people I met through EDGE.”

Raegan explains that the EDGE Program has taught her “to be tenacious.” She
is impacted by the “scope and the range of all our experiences and the range of
our successes and failures” and she is excited by how EDGErs continue to “rally
together” to support one another. She points out that through the program, EDGErs
learn that their graduate studies and professional life will be hard, but that “there is
someone in this community that is going through (or has gone through) the same
level of difficulty” who will be able to help you get through your circumstances.

There is no doubt that the vision of these five dynamic leaders lives on in the
EDGE community, as captured by 2018 EDGE participant Gabby Angeloro when
she wrote, “EDGE has revitalized my passion for math. EDGE has re-energized my
stamina to do hard work. I feel like I am a part of something larger than myself. It
fuels me to achieve my dream of earning a PhD in mathematics.”



Second-Generation Programs:
The Far-Reaching Impact of EDGE
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Abstract EDGE community members undertake many diverse initiatives. These
diverse programs and activities are one way that the EDGE program is having an
impact on the mathematics community beyond the successful completion of PhDs
among participants. This article includes a wide sample of particular efforts by the
community and serves as evidence of the broad reach and as a reference for others
who wish to do outreach in the mathematics community.

Many in the EDGE community are actively working to diversify mathematics
through a variety of activities, programs, websites, etc. A wide variety of activities,
as seen in the many examples below, encourage women, students, and faculty of
color, first-generation students, and LGBTQ mathematicians, among others. Other
initiatives are aimed at exposing the larger public to mathematics and mathemati-
cians to help challenge the idea of who can be a mathematician. These programs
are vast in their audiences: middle-school girls, high-schoolers, undergraduates,
graduate students, and even professional mathematicians. The examples provided
below were collected through self-reporting by EDGE community members. They
are examples of the good work that the EDGE founders, directors, and community
members are doing beyond EDGE and also should serve as a valuable resource.
There are likely many initiatives and individuals whom we have missed and this
list will continue to grow in the years and decades ahead. In these examples,
however, we see how EDGE participants create, direct, and lead initiatives aimed
at diversifying mathematics beyond EDGE. They are second-generation EDGE
activities.

The EDGE community, as discussed in this article, includes all student partici-
pants, graduate student mentors, and professional mathematicians who have taught
in the program. As a way to distinguish the roles, we offer the following key:
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E## denotes EDGE Participant with year, M## graduate student mentor, I##
instructor.

Many programs serve multiple purposes, but we attempt to organize them by
target audience or key activity for the initiative.

1 Activities for Girls (K-12)

Many programs exist to encourage K-12 girls’ interest in mathematics. Sonia
Kovalevsky (SK) Days occur all over the country and are typically one-day
conferences to engage high-school girls in mathematics. They were not begun by
the EDGE community; however, several members of the community have founded
or played significant roles in such programs at their home institutions.

Sonia Kovalevsky Days, Omayra Ortega E01, I12 (founder). University of Iowa,
Arizona State, Pomona College. Focus of the day is on high-school students and the
transition to college; middle-school students are also welcome. The day includes an
undergraduate panel, a keynote by professional woman in mathematics or related
field, and hands-on activities. The goal is to share the fun of mathematics while
allowing girls to build community to learn they are not alone.

SK High School and Middle School Mathematics Day, Carolyn Otto E06 (co-
organizer), University of Wisconsin-Eau Claire.

FEMMES Capstone, Ziva Myer E11, M15 (presenter), Duke University.
FEMMES (Females Excelling More in Math, Engineering and Science) provides
outreach programs in STEM for middle-school girls.

Shippensburg (PA) Math Circle, Sarah Bryant E02, I15,18 (co-founder, co-
director). Program that shares the joy and creativity with fourth and fifth graders
in a rural area with 60% free/reduced lunch rate.

2 Seminars/Classroom Activities/Research
Opportunities/Conferences for Undergraduates

Math Ment♀ring, Christine Berkesh E04 (co-founder), Duke University. Program
for undergraduate women in mathematics with emphasis on peer mentoring and
fostering connections between undergraduates, graduate students, postdocs, and
faculty.

“Mathematician Mondays”, Carolyn Otto E06, University of Wisconsin-Eau
Claire. Short introductions to living mathematicians at the start of class once a week,
with a focus on women and underrepresented groups.

“Celebrating Women in Mathematics” Colloquium, Carolyn Otto E06 (orga-
nizer), University of Wisconsin-Eau Claire. A STEM colloquium organized for
undergraduates in conjunction with the local SK Day. A diverse group of four to
six women in mathematics from a variety of careers talk to the students about their
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mathematical journey, including their challenges and their successes. 2018 Speakers
included Dr. Syvillia Averett (College of Coastal Georgia) and Dr. Evelyn Lamb
(Roots of Unity Blog, Scientific American).

Math Modeling Competition, Kamila Larripa E01, Humboldt State University.
Over 20 students annually are mentored through the process of preparing for and
participating in the Consortium for Mathematics and its Application’s international
multi-day competition, the Mathematical Contest in Modeling; women students are
a majority of the participants. Activities continue throughout the year. Student men-
tors have been funded by a grant to run problem-solving sessions and a coding boot
camp. An additional outside speaker is brought in to mentor female undergraduates.
An increase in students attending graduate school has been observed since these
efforts have started.

Hidden No More Lecture Series, Alison Marr E02, Southwestern University. A
speaker series focusing on women from underrepresented minority/ethnic groups
talking about their personal journeys in mathematics and the mathematics they do.
The series will continue and expand to include speakers from all STEM fields.

Aqua Squad, Candice Price M12, University of San Diego. A research group
that features problems in social justice, viewed through the lens of mathematics that
includes undergraduate students of color.

EQUIP: Embracing Quantitative Understanding and the Inquiry Process, Ali-
son Marr E02 (co-creator, co-director), Southwestern University. A program to
strengthen math skills and make connections between math and other STEM
fields for first-year students from backgrounds underrepresented in STEM (defined
as racial/ethnic minorities, first-generation students, and those from challenged
socioeconomic backgrounds).

Peer Supplemental Instruction (PSI), Jamye Curry E09 (co-founder), Georgia
Gwinnett College. Support students in a successful transition from high school to
college-level STEM courses. The program provides collaborative learning opportu-
nities for students enrolled in gateway courses. PSI Student Leaders prepare lesson
plans using STEM-centered active learning strategies with the aim of students’
learning skills and understanding of the material in their classes. Assessment of
the program has revealed gains in student grades and leader knowledge of course
concepts. In addition, both leaders and student participants gain new skills and
competencies that should contribute to their success in STEM education and ensuing
careers.

Washington Directed Reading Program, Samantha Fairchild E15 (co-organizer),
University of Washington. Each undergraduate is paired with a graduate student
for a math reading experience. The goal is to help those in underrepresented
groups build a relationship with a mathematician and learn what it means to do
mathematics.

Young Women in Mathematics (YWM), Raegan Higgins E02, I14–17, EDGE Co-
director, Texas Tech University (TTU). A unique opportunity for TTU women to
empower, motivate, and support one another in a field where they may face obstacles
due to their gender.
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Association for Women in Mathematics Student Chapter, Emille Davie Lawrence
E01 (founder), University of San Francisco.

Pacific Coast Undergraduate Math Conference, Alissa Crans M03, I08,12
(co-organized 2005–2015). Undergraduate Conference that earned the American
Mathematical Society Programs That Make a Difference Award.

Association for Women in Mathematics at the Technion (WoMathTech), Arielle
Leitner E09, Israel Institute of Technology. First organization for Israeli women
in mathematics; currently, in Israel, women comprise approximately 15% of
undergraduate students and 5% of the faculty in mathematics.

Wheaton College Summit for Women in STEM. Rachelle DeCoste E98, M02,
I15 (co-founder, co-organizer), Wheaton College (MA). One-day summit for over
200 regional undergraduates, faculty, and other STEM professionals. Day includes
panel, keynote, undergraduate research talks, informal networking, and community-
building.

3 Conferences and Programs for Graduate Students
and Professional Mathematicians

Women in Mathematics Regional Symposia (WiM-), Conferences that highlight
female speakers, with the aim of creating regional professional and personal
networks of women mathematicians, encouraging students to present in welcoming
environments, and discussing challenges faced by women mathematicians.

• Alissa Crans M03, I08,12, Amy Radunskaya EDGE co-director. Southern
California.

• Amy Buchmann E10, Yen Duong E10. Midwest, Texas and the Carolinas.

WiSCon (Women in Symplectic and Contact Geometry/Topology) at ICERM, Ziva
Myer E11, M15 (co-organizer). Research Collaboration Conference for Women to
build a network of women in the field.

Women in Noncommutative Algebra and Representation Theory (WINART),
Chelsea Walton I12–15.

• (Contact organizer) Banff International Research Station, Banff, Canada, April
2016.

• (Contact organizer and research group co-leader) WINART2, University of
Leeds, Leeds, UK, May 2019.

Underrepresented Students in Topology and Algebra (USTARS), Candice Price
M12 (co-founder, co-organizer). Conference to showcase the research of underrep-
resented graduate students. The aim of the conference is to cultivate research and
mentoring networks among such students.



Second-Generation Programs: The Far-Reaching Impact of EDGE 51

Designing for Equity by Thinking in and about Mathematics, Juliana Belding E03
(member). NSF-funded professional development program that addresses racially
based inequities in secondary mathematics education in the United States.

Career Mentoring Workshop for Women in Mathematics (CaMeW). Rachelle
DeCoste E98, M02, I15 (founder, director). A 3-day workshop for women entering
their final year in graduate school that aims to support women as they search for
their first postdoctoral position.

4 Organization of Research Sessions at National Meetings

EDGE Paper Sessions at the JMM (co-organizers)

• Shanise Walker E12; Laurel Ohm E13.

– MAA Contributed Paper Session “The EDGE Program: Pure and Applied
Talks by Women Math Warriors”, 2019.

– MAA Contributed Paper Session “20th Anniversary-The EDGE Program:
Pure and Applied Talks by Women”, 2018.

• Candice Price M12; Amy Buchmann E10.

– AMS Special Session on Pure and Applied Talks by Women Math Warriors
Presented by EDGE, 2017.

– MAA Contributed Session on Pure and Applied Talks by Women Math
Warriors Presented by EDGE, 2016.

– Pure and Applied Talks by Women Math Warriors Presented by EDGE, 2015.
– Pure and Applied Talks by Women Math Warriors Presented by EDGE, 2014.

Sessions at AWM Research Symposium

• Alejandra Alvarado E02; Candice Price M12 (co-organizers) “EDGE-y Mathe-
matics: A Tribute to Dr. Sylvia Bozeman and Dr. Rhonda Hughes”, 2017.

• Kathleen Ryan E08 (co-organizer); Research from the “Cutting EDGE”, and
(co-editor) Advances in the Mathematical Sciences: Research from the 2015
Association for Women in Mathematics Symposium.

AMS-AWM Special Session on Women in Symplectic and Contact Geometry and
Topology, JMM 2018, Ziva Myer E11, M15 (co-organizer).

MAA Town Hall Meeting on Goals for Minority Participation in Mathematics,
MathFest 2013, Alissa Crans M03, I08,12; Talithia Williams E00 (co-organizers).
Report: https://www.maa.org/news/maa-mathfest-2013-town-meeting-on-goals-
for-minority-participation-in-mathematics.

MAA Town Hall Mathematical Mamas—Being Both Beautifully, MathFest 2018,
Emille Davie Lawrence E01; Erin Militzer E04 (co-organizers).

https://www.maa.org/news/maa-mathfest-2013-town-meeting-on-goals-for-minority-participation-in-mathematics
https://www.maa.org/news/maa-mathfest-2013-town-meeting-on-goals-for-minority-participation-in-mathematics
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5 Establishing Networks

Math Mamas Facebook Group, Emille Davie Lawrence E01 (creator and adminis-
trator). Facebook group to provide support and advice for self-identifying mothers
who are in mathematics. Currently, the group has over 600 members.

Women and Non-binary Researchers in Noncommutative Algebra and Repre-
sentation Theory, Chelsea Walton I12–15 (creator and manager). Site and email
listserv that is a resource for (cis and trans) women and non-binary researchers
in Noncommutative Algebra and Representation Theory. http://women-in-ncalg-
repthy.org/.

EDGE Ambassadors Initiative, Keisha Cook E14, M17 (co-founder and orga-
nizer). Provide role models to women at Historically Black Colleges and Univer-
sities (HBCUs) by sending EDGE participants to visit mathematics departments
at HBCUs to give talks, participate in panel discussions and discuss EDGE, and
pursuing graduate degrees in mathematics.

6 Public Awareness of Mathematics or Increasing Diversity
in Mathematics

Mathematically Gifted and Black, Erica Graham E06; Raegan Higgins E02, I14–
17, EDGE Co-director; Candice Price M12; Shelby Wilson E06 (co-creators).
A website devoted to recognizing and highlighting the work of Black mathe-
maticians. A new profile is posted each day during Black History Month. http://
mathematicallygiftedandblack.com/. In 2018, the AMS printed a poster highlighting
the historical contributions of Black mathematicians and one featuring a selection
of living mathematicians featured on the website.

NOVA Wonders, Talithia Williams E00 (host). Six-part 2018 PBS series that
considers some of science’s biggest questions and the scientists behind the research
to answer them.

Power In Numbers: The Rebel Women of Mathematics, Talithia Williams E00
(author). 2018 book containing biographies of women in mathematics, both historic
and current.

Journal of Humanistic Mathematics Special Issue on Mathematics and Mother-
hood, Emille Davie Lawrence E01 (co-editor). Volume 8, Issue 2 (July 2018).

“Own your Body’s Data” TED Talk, Talithia Williams E00. TED talk on
collecting and using data on the human body that has been viewed over 1.5 million
times.

PBS Infinite Series, Tai-Danae Bradley E14 (host). PBS web series on mathemat-
ics and science.

New Hampshire STEM Education Task Force, Susan D’Agostino E98 (appointed
member). Served the NH Governor who requested recommendations and help
implementing programs designed to modernize STEM education in the state.

http://women-in-ncalg-repthy.org/
http://women-in-ncalg-repthy.org/
http://mathematicallygiftedandblack.com/
http://mathematicallygiftedandblack.com/
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Math3ma, Tai-Danae Bradley E14 (creator). Website to help students transition
from undergraduate to graduate mathematics through the sharing of the author’s
own experiences. https://www.math3ma.com/.

7 Other

Dr. Gertrude Geraets Endowed Fund Stacy Hoehn E04, Franklin College. Provides
$1000 award to undergraduate, with preference going to a female majoring in
mathematics or computing, to encourage more women to persist in these majors.
The award recognizes Dr. Geraets who received her Ed.D. during a time when few
women were earning doctorates.

Association for Women in Mathematics, Executive Director, Karoline Pershell
E03.

Golden Anniversary Campaign for the National Association for Mathematicians
(NAM), Emille Davie Lawrence E01 (committee member). In honor of NAM’s 50th
anniversary in 2019, the committee aims to raise money to endow all of NAM’s
programs.

Undergraduate Mathematics Major, Susan D’Agostino E98 (founder), Southern
New Hampshire University. Founded a mathematics major at a university with a
large first-generation population.

Associate Department Head for Equity and Diversity, Miriam Freedman E00,
Penn State. An advocate in the Chemistry Department for developing a diverse
faculty and graduate student body.

https://www.math3ma.com/
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1 Introduction

It was a sunny July afternoon in West Lafayette, Indiana. Edray Goins was
escorting Ulrica Wilson around Purdue University, showing her the campus before
she addressed the Department of Mathematics with the talk entitled Division: In
an Algebra, In a Career, and In Research Mathematics. She had just finished a
lunchtime meeting with a handful of tenure-track faculty of color who were from
the College of Science.

Little did Ulrica know that Edray had ulterior motives for inviting her to visit
Purdue. He wanted to convince her that the EDGE Program should be held at the
West Lafayette campus one day. She had just finished teaching at EDGE 2011 as
the Algebra Instructor, and she would take over from Sylvia Bozeman and Rhonda
Hughes as one of the two EDGE co-directors beginning with EDGE 2012 at Pomona
College. Since the inception of the EDGE in 1998, the program had been hosted at
a variety of locations, but never at a tier one university in the Midwest. Purdue
University had a lot to offer EDGE, but Edray wanted to bring the program to
West Lafayette for what EDGE would offer to Purdue. The mission of EDGE is
in its name: Enhancing Diversity in Graduate Education. The EDGE Program has
always assembled together a diverse group of women for 4 weeks in the summer,
and Edray’s goal was to combine this activity with other communities at Purdue
striving to address issues involving inclusion and access.

It would take five more years before EDGE would come to Indiana. After
extensive work and preparation, EDGE 2016 was held at Purdue University from
June 6 through July 2, 2016. This article contains reflections from five individuals
who ran EDGE 2016 (titles during summer 2016 in parentheses):

• Edray Goins, local organizer (Associate Professor of Mathematics at Purdue)
• Alejandra Alvarado, local organizer (Assistant Professor of Mathematics at

Eastern Illinois University)
• Donatella Danielli, leader of the Indiana EDGE Mentoring cluster (Professor of

Mathematics at Purdue)
• Rachel Davis, leader of a mini-course at EDGE on using the Sage cloud (now

CoCalc) for computations. (Golomb Visiting Assistant Professor at Purdue)
• Zenephia Evans, leader of “Difficult Dialogues,” two 2-h workshops to help

prepare the participants for their first year of graduate school (Director of the
Science Diversity Office at Purdue).

2 Reflections from Edray Goins and Alejandra Alvarado,
Local Organizers

Structure of the Program As local organizers, we were responsible for coordi-
nating four faculty (Maia Averett, Raegan Higgins, Eirini Poimenidou, and Shelby
Wilson), one instructor (Rachel Davis, who lead a course entitled “SAGE: System
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Fig. 1 EDGE 2016 group photo from June 8, 2016

for Algebra and Geometry Experimentation”), one “Difficult Dialogues” facilitator
(Zenephia Evans), three mentors (Chassidy Bozeman, Angelica Gonzalez, and
Stefanie Wang), and 14 students (Alicia Arrua, Sarah Chehade, Zaynab Diallo,
Genesis Islas, Meghan Malachi, Zonia Menendez, Kirsten Morris, Erica Musgrave,
Nida Kazi Obatake, McCleary Philbin, Amanda Reeder, Stephanie Reyes, Morgan
Strzegowski, and Sarah Yoseph).

The students would take classes for the first 2 weeks (Linear Algebra and
Analysis), have a short break for the “Reunion Weekend,” then resume with classes
for the final 2 weeks (Abstract Algebra and Measure Theory). The mentors and
students worked, lived, and ate together on campus. There were also eight invited
speakers (Christine Berkesch, Sarah Bryant, Deidra Coleman, Donatella Danielli,
Piper Harron, April Harry, Erin Militzer, and Carmen Wright). We made a conscious
effort to have the 20 or so EDGE 2016 participants interact with the Purdue
Chapter of AWM as well as the REU PRiME (Purdue Research in Mathematics
Experience). Students from these three groups had lunch together and attended
the seminars together, with the hope that they would connect through the shared
experience of being in an immersive mathematics environment. We are thankful to
the supportive faculty and staff who worked with us to ensure that the participants
had a challenging and fulfilling experience (Fig. 1).

The Impact on Purdue We were well aware that EDGE was unlike anything
that the Department of Mathematics had seen before. Purdue has only graduated
one African American woman in mathematics (Kathy Lewis in 1999), and has
never graduated a US Latina in mathematics. The department has some 60 tenure-
track and tenured faculty, yet only five are women. The department hosts some 30
colloquium speakers every year, yet we are lucky if three are women. Professor
Rodrigo Bañuelos remarked to us after Piper Harron gave her talk during the
program: “That was a remarkable speech. She spoke about the perils of being a
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graduate student, doing mathematics, and being pregnant at the same time. I imagine
this is the first time anyone has ever spoken about being pregnant in this colloquium
room.” We suspect Rodrigo is completely correct.

We are not aware of whether the number of applications from domestic students,
women, or underrepresented minorities has increased at Purdue since 2016–2017.
However, we believe having EDGE at Purdue for those 4 weeks showed the
mathematics faculty what a diverse department could look like. Mathematics
graduate student Joan Ponce (one of Edray’s mentees) put it this way: “I think the
EDGE program is an amazing opportunity. I just wish it was longer.”

3 Reflections from Donatella Danielli, Mentoring Leader

EDGE’s Mentoring Clusters Mentoring is a crucial component of the EDGE
experience. EDGE students are mentored by the EDGE summer faculty, the
advanced graduate student assisting with the program, and the directors. As an
expansion of one-on-one mentoring, in 2005 EDGE created regional Mentoring
Clusters for women in the mathematical sciences, with financial support originally
provided by an NSF ADVANCE grant. The goal of this structure is to advance
women in academia at the three fundamental levels of graduate school, junior
faculty and senior faculty, by creating mentoring networks among small groups
of women in relatively close geographical proximity. The guiding principle is
that, through periodic gatherings and frequent communication, the Clusters would
facilitate the mentoring of junior women by senior women and the mentoring of
graduate students by those in the other two groups. Hence, such a network would
assist the younger two groups in advancing their professional goals while relying on
the expertise of senior faculty. Although many of the students and junior faculty in
the Clusters have been past participants in EDGE, other women mathematicians, at
different stages of their career, have also joined in.

Currently there are seven regional EDGE Clusters: California, Georgia, Indiana,
Iowa, Mid-Atlantic, Minnesota, and North Carolina. In addition, there is a non-
regional Cluster focusing on Mathematics Education. Since its inception, I have had
the pleasure of being the Leader of the Indiana Cluster, whose members have been
affiliated with Indiana University, Notre Dame University, Purdue University, and
the University of Illinois at Chicago. At any given time, the Cluster has had seven
to ten active members, and we have strived to meet at least once a year. For some of
the members this is a considerable effort, given that the various institutions are not
in very close proximity to each other. However, I find remarkable how everybody
is always enthusiastic to carve the time out of their own busy schedule to convene
with their fellow EDGErs, to keep in touch and exchange ideas.

The Cluster gatherings and relationships have provided the graduate students
with a forum to discuss issues on many academic and non-academic topics that
impact their progress. Through the Cluster, junior faculty have raised issues related
to finding early professional opportunities and negotiating the responsibilities of
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Fig. 2 Donatella Danielli and Alejandra Alvarado on June 7, 2016

the early stages of their careers. Even if the Cluster members have very different
backgrounds, some topics discussed in our conversations seem to be of recurring
interest, such as:

• General assessment of how female graduate students and junior faculty feel
treated in their respective departments;

• Balancing family and career;
• Comparison of teaching loads and course requirements in different departments;
• Entering graduate school a few years after college graduation;
• Transferring from one graduate program to another;
• How to choose an advisor.

Moreover, all the graduate students have expressed repeatedly their appreciation
for the EDGE program, which helped to make their transition to graduate school
much easier (Fig. 2).

Purdue’s Mentoring Cluster In recent years, some of the Cluster meetings have
been held in conjunction with the Women in Math Day at Purdue University, which
is an annual initiative of the Department of Mathematics at Purdue. The spirit of
this event is to provide an opportunity for women members of the department
(faculty and students alike) to interact with each other and with a prominent female
mathematician, who delivers the scientific highlight of the day, the Jean E. Rubin
Memorial Lecture. Other activities of the day typically include a luncheon for all
women members of the department, as well as female faculty members and graduate
students from other disciplines at Purdue. The luncheon is followed by an informal
meeting during which students and faculty can interact with each other and with
the distinguished guest. The synergy between the two events has been beneficial
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for the Cluster members in several respects. In fact, it has allowed them to discuss
their concerns with distinguished members of the mathematical community in a
very relaxed and informal setting; it has expanded their professional network; it
has inspired them to create similar events in their own institution. The Indiana
Mentoring Cluster is an important support system and networking opportunity for
its members. It is our hope and goal that it would constitute a crucial component in
improving the status of women mathematicians in academia.

4 Reflections from Rachel Davis, Short Course Instructor

Sage and EDGE I knew Alejandra because we both had Edray Goins as a mentor
during our time as postdocs at Purdue. During the Midwest Women in Mathematics
Symposia, modeled after successful WIMS held in Southern California, Alejandra
shared her idea that the EDGE 2016 mini-course topic could be mathematical
computations in Sage. I was eager to join the team and introduce the students to
Sage.

Sage stands for “System for Algebra and Geometry Experimentation” [5]. It is a
computer algebra system founded by William Stein, a mathematician affiliated with
the University of Washington. Computation itself has a history at Purdue–the first
Department of Computer Sciences in the USA was established at Purdue University
in 1962 (Fig. 3).

Sage covers mathematical computations from subjects ranging from calculus and
statistics to algebra, combinatorics, graph theory, numerical analysis, and number
theory. Sage is open-source, i.e., the computer code underlying the computational
functions is shared openly, so that users have the ability to view and to improve

Fig. 3 Rachel Davis on June 8, 2016
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the design of the software. There are also Sage Days conferences devoted to
software development by interested mathematicians. (See [8] for more information
and to get involved.) During the EDGE mini-course, participants signed into the
SageMathCloud, which now goes by CoCalc (Collaborative Calculation in the
Cloud). The hope was that Sage and EDGE would pair nicely with each other. In
particular, Sage computations can help EDGE participants by providing intuition
for mathematical research questions.

A Lasting Connection It is impressive to me that so many mathematicians
involved in EDGE have returned to EDGE. As of 2016, Alejandra Alvarado has
held multiple roles in EDGE as participant, mentor, speaker, instructor, and local
organizer. In 2016, most of the mentors, instructors, and even guest speakers
were former participants or closely related to the program. This involvement of
mathematicians at different stages in EDGE is one way that EDGE has been able
to excel at mentoring. Previous EDGE participants and advanced graduate students
have gained practical experience facing the challenges of graduate school. In this
way, EDGE has built an inspiring community of mathematicians and shines a
spotlight on their accomplishments.

5 Reflections from Zenephia Evans, “Difficult Dialogues”
Leader

Why Is EDGE Necessary? One of the featured news articles describing the panel
session, The Gender Gap In Mathematical and Natural Sciences from a Historical
Perspective, hosted during the International Congress of Mathematicians (ICM)
meeting in August of 2018, discussed the lack of women in the mathematical realm
[1]. The panelists noted that only one woman has earned the Fields Medal since it
was established in 1936, and only 15% of the featured 200 speakers were female
over the 9 day program. The lack of women is a frequent conversation topic at
conferences, in mathematics departments, and many other places. EDGE remains
necessary because the program aims to remove the barriers that may prohibit
substantial increases of women in the mathematical arena.

Empowered and Informed by Data A version of the “Difficult Dialogues”
workshop has been held at every EDGE summer session since 1999. During the
EDGE session at Purdue University, I worked with the organizers to design 2-
h sessions that would address the needs of women as they make the transition
from undergraduate to graduate programs. We were greatly influenced by the book
Successful STEM Mentoring Initiatives for Underrepresented Students [2]. We
aimed to highlight the numbers of women who pursue mathematics; to explore
the self-awareness of the participants; to stress the importance of creating a strong
network of allies, advocates, and mentors; to share tips to deal with Imposter
Syndrome; and to encourage participants to develop a plan that would aid in their
success as graduate students.
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The attendees learned of the historical numbers of newly minted PhDs, as
recorded by various surveys conducted by the American Mathematical Society [6],
and were encouraged to monitor the numbers during their career. We stressed this
as important because the data can allow the women to have a supporting narrative
to bring awareness to this issue on the national and local levels. We did not present
the data of women enrolled in each of the graduate programs among participants,
but we did showcase the Data Digest at Purdue University [7], and challenged the
participants to seek and know the data that is available for their perspective graduate
programs. The College of Science at Purdue University has enrolled approximately
31.4% of women in the graduate programs from 2008 to 2018. The total graduate
enrollment in 2018 was 1297 students, where 411 (32%) were female—which is the
highest number of women and the third highest percentage since 2008 (34%) during
this time frame. See Fig. 4.

The numbers are important because the lack of critical mass in certain environ-
ments may hinder the positive development of self-awareness of females that are
entering the field of mathematics and other science majors. One of the concepts
that can lead to success is to be aware of the traits that one possesses and those
which may pose a challenge to one’s chosen academic path. Self-awareness will
allow one to stand strong in the face of doubt and to provide a method to combat
the negativity which may be encountered during graduate school. Researchers have

Fig. 4 Enrolled graduate students by gender in the College of Science at Purdue University
(https://www.purdue.edu/datadigest/)

https://www.purdue.edu/datadigest/
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sited that persistence in STEM and other areas can be hindered if the individual
does not have a sense of belonging in the spaces that they occupy. In order to have
the sense of belonging, a level of self-awareness is necessary [4]. This awareness is
heightened by knowing the requirements and being able to meet the requirements
in the department, by earning the grades, passing qualifiers/comprehensive exams,
and so forth.

Allies, Advocates, and Mentors As facilitators working with new graduate stu-
dents, we wanted to stress the importance of being connected to a strong network
of allies, advocates, and mentors. This network can be formed by a variety of
people, including classmates, staff, faculty, and administrators. We wanted the
participants to be mindful of the importance of networks that are necessary to
assist in the navigation of new and unfamiliar academic terrain at their perspective
institutions. Allies often are discovered in both on formal and informal settings at the
college/university, conferences, and through normal day activities in the community.
The EDGE participants have sole ownership in observing and monitoring their self-
awareness in order to build an ally group that can motivate, encourage, and challenge
them as they satisfactorily meet their program requirements (Fig. 5).

We discussed the importance of identifying advocates and selecting mentors that
will support your success as a graduate student. This will require the participants to
have conversations with former and current graduate students and others that interact
with the potential mentors. Being able to engage in open and direct conversations
with mentors to ensure success as a graduate student is essential but not trivial or

Fig. 5 Sylvia Bozeman, Zenephia Evans, and Edray Goins at the reunion weekend on June 18,
2016
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easy. In sessions, we modeled this skill for the EDGE participants. We provided
questions to ask about a potential mentor and practiced difficult conversations with
potential mentors about needed time off, direction of the research, and funding
for graduate school. Intentional allies, positive advocacy, and great mentorship can
serve as connections to increase and build the self-awareness of the participants,
whereas negative allies, advocates, and mentors can decrease the view of self and
lead to development or enhancement of Imposter Syndrome (see below).

Imposter Syndrome Imposter Syndrome was first described in 1978 by clinical
psychologists Clance and Imes [2] as a pervasive feeling of self-doubt, insecurity,
or fraudulence and can occur once a person has been admitted to a prestigious
university, received an award or promotion. Imposter Syndrome can strike anyone at
any level of life. We wanted to ensure that the EDGE participants could define and
be aware of the syndrome, learn some tips to deal with it, and develop a personal
plan that will aid in their success when and if Imposter Syndrome strikes during the
course of their graduate studies.

We read and discussed a Scientific American article by Hendriksen [3]. In
particular, we reviewed the tips that have been developed to address Imposter
Syndrome: know that feeling like a fraud is normal; remind yourself of what you
have accomplished; tell a fan; seek out a mentor; teach; know that sometimes it is
okay not to know what you are doing; praising efforts of kids; build in an expectation
of initial failure. By presenting this content, we wanted to showcase the possibilities
and the means needed to combat the experience of Imposter Syndrome.

Who Gets To Tell Your Narrative? During the 4 h of dialogue, we discussed
difficult topics which may interfere with the success of the EDGE participants as
they progress in the graduate programs. In the session “Who Gets To Tell Your
Narrative?” we initiated the discussion by having the participants list the traits they
possess that are needed to be mathematical trailblazers. We then asked them to
recall and describe a situation when someone said or did something to get them to
question the traits listed, and we walked through the negative reinforcements of the
given narrative and discussed the possible outcomes which could result in knocking
away at their self-confidence. We ended this part of the session by sharing ways
which they could regain the positive reinforcements to combat the negativity of the
narrative. In order for successful persistence in a field that is male-dominated, it is
necessary to consistently monitor self-awareness, work to knowingly build a strong
network of allies, advocates, and mentors, and understand Imposter Syndrome.

6 Concluding Remarks from Edray and Alejandra

Organizing and coordinating all details of the EDGE 2016 summer session at Purdue
required planning that began in earnest during the Fall of 2015. We thank the
many supportive people at Purdue and in the EDGE program that made this pos-
sible, including: Gregery Buzzard, Department Head of Mathematics; Hao Zhang,
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Department Chair of Statistics; Rodrigo Bañuelos and Johnny Brown, Professors
of Mathematics; Mark Ward, Associate Professor of Statistics; David Goldberg,
Professor of Mathematics and Executive Director of the National Alliance for
Doctoral Studies in the Mathematical Sciences (The Math Alliance); Ethan Kingery,
of Purdue Conference Services; and the EDGE directors Ami Radunskaya and
Ulrica Wilson.

During the 2011–2013 academic years, we worked together to organize summer
speaker series where we brought a diverse group of early career female faculty to
talk to students and faculty. We are so grateful that Ulrica visited one of those bright
summers and (with thanks to this team) made the vision of hosting EDGE at Purdue
a reality.
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The Long-Lasting Impact of EDGE:
Testimonials from the EDGE Community

Sarah Bryant, Amy Buchmann, Michelle Craddock Guinn, Susan D’Agostino,
and Leona Harris

Abstract The EDGE program has had a profound effect on hundreds of people
in the mathematics community. Women who have been involved with the EDGE
program were asked to briefly describe the impact the EDGE program has had
on them. (Informed consent to publish was obtained for all quotes included in
this chapter.) We received an outpouring of feedback. Common themes include
inspiration, community, support, and the power of mentoring. We invite the reader
to enjoy these insights into the meaningful connections formed through the EDGE
program.
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EDGE has revitalized my passion for math. EDGE has re-energized my stamina to do hard
work. I feel like I am a part of something larger than myself. It fuels me to achieve my
dream of earning a PhD in mathematics.—Gabby Angeloro (EDGE 2018 participant)

· · ·

EDGE provided me with my first experiences learning collegiate level mathematics from
someone who looked like me, thought like me, and liked some of the same things I like that
weren’t common among the peers I had experience with. And I got to see so many other
black women concerned with social justice and representation on the same journey as me.
It was incredibly affirming, rigorous, and continues to be an amazing resource.—Demara
Austin (EDGE 2015 participant)

· · ·

Some of my fondest memories studying mathematics were during the EDGE program in
the summer of 2006. We worked together, made sense of problems, and prepared ourselves
mentally for the realities of graduate school. I left there armed with confidence as a
mathematician and with a support network of colleagues who were embarking on similar
journeys. Without that support structure and the recognition that I was not ‘alone’ in my
pursuit of a graduate degree in mathematics, I wonder if I would have persisted. When faced
with difficult times during graduate school, I always thought back to my EDGE family.
Just knowing that others were likely facing similar challenges gave me an extra layer of
confidence to persist.—Sarah Bleiler-Baxter (EDGE 2006 participant)

· · ·

EDGE has and continues to change my life. Everyday I remember that I have a community
of women supporting me, rooting for me and watching and wanting me to succeed. Looking
back at that community, I see women who represent my life goals and women who represent
every stage along my journey. Knowing that other women have been exactly where I am
and have overcome every struggle I currently experience is overwhelming and incredibly
empowering. I see the woman I want to be in every EDGEr, and because of them I know I
will accomplish my dreams.—Kelly Buch (EDGE 2017 participant)

· · ·

Organizing a conference was a profound experience in my professional development that
I can trace back to EDGE. Through the many challenges that come with graduate studies
and a career in mathematics, I always find my experiences with EDGE to be incredibly
energizing. I seek out any opportunity to be involved with the EDGE program because
it consistently rejuvenates my interest in mathematics.—Amy Buchmann (EDGE 2010
participant; 2012–2014 mentor)

· · ·

There are not words enough to capture the power of the EDGE program. I am so grateful
for all of the amazing and supportive women in EDGE. In particular, the EDGE directors
believed in me and provided instrumental support at every key transition point in my
mathematical journey. I have seen how their investment of time, energy, and love has built a
community of women who not only become mathematicians but Women Math Warriors.—
Sarah Bryant (EDGE 2002 participant; 2005 and 2006 mentor; 2012, 2015, 2018 instructor)

· · ·
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In EDGE I have found mentors who care about every aspect of myself. I have had the
privilege to be among people that are committed to my academic growth and personal
success. I am not afraid to ask them for help, share my anxieties and celebrate with them
moments of mathematical happiness.—Alejandra Castillo (EDGE 2017 participant)

· · ·

EDGE prepared me for graduate math courses, but also welcomed me into an amazing
network of women mathematicians! The cohort provided a support system that remains
today. Learning from successful women, especially women of color, was truly inspirational.
Giving back to EDGE has allowed me to inspire others and provide support for future
women mathematicians.—Keisha Cook (EDGE 2014 participant; 2017 mentor)

· · ·

Participation in EDGE changed my life. The opportunity to live and learn among likeminded
peers all working towards a common goal was a totally different experience than I had
in undergrad. I was a part of a community. I belonged. Interaction with the EDGE
instructors, mentors, guest speakers, and fellow participants empowered me in ways that are
immeasurable and priceless. I developed connection and bonds with the women of EDGE,
which are strong and have withstood the test of time and distance. I’ve found support when
I decided to pursue a non-traditional academic career. My EDGE support encouraged me
because they recognized my aptitude and talent for this new environment. I wouldn’t dare
try to single out any one EDGEr for improving my life. There are too many, each of who I
have special and unique connection!—Carla Cotwright-Williams (EDGE 2001 participant;
2005 mentor)

· · ·

EDGE has inspired me to mentor undergraduates at my current institution, which mostly
consists of under-represented, non-traditional students. I often share with my mentees my
experience in EDGE and offer encouragement for them to continue on to graduate education
upon receiving their undergraduate degrees.—Jamye Curry (EDGE 2009 participant)

· · ·

When I participated in EDGE on the campus of Bryn Mawr College more than 20 years ago,
I had no idea that I was joining a community of friends, colleagues, and collaborators in a
sort of national mathematics department that would last throughout my career. I am grateful
for Sylvia Bozeman’s and Rhonda Hughes’ foresight in creating the EDGE Program and
for the inspiring community of women mathematicians that grew up around it.—Susan
D’Agostino (EDGE 1998 participant)

· · ·

This, I would say, is the EDGE model: receive and always, always, find a way to give
back. . . Although I gained significant mathematical knowledge in the EDGE program,
it is mainly for the network of women that I was able to connect with that I feel
grateful. . . Between laughs and more serious heart-to-hearts, these incredible Women Math
Warriors always remind me to never settle, whether for research, teaching or outreach and
always having in mind to find ways in which I should pave the way of success for those
who come after me.—Karamatou Yacoubou Djima (EDGE 2008 participant; 2013 mentor)

· · ·



70 S. Bryant et al.

Before EDGE I had never thought about women in mathematics despite being one. Fun fact:
EDGE was the first time I had been taught math by a woman in my life besides a substitute
teacher in fifth grade. Now I find myself organizing women in math conferences, writing
and talking about being a woman and mother in math, and mentoring any women and girl
students I run into, all because of EDGE.—Yen Duong (EDGE 2010 participant)

· · ·

EDGE gave me a solid foundation coming into grad school that helped me thrive in my first
year. It also gave me an amazing support group and community of women that I know I will
be connected with for the rest of my life. Lastly it gave me a lot of female role models at all
stages in their mathematical careers that I can look up to. I am very grateful for everything
that EDGE has provided me with.—Catherine Godfrey (EDGE 2017 participant)

· · ·

The EDGE program hasn’t stopped impacting me since I submitted my application. Even
as a participant I didn’t see how EDGE is a long-lasting community of support. It was hard
to fathom how a quick summer program could change my life, but now it’s impossible to
fathom my life without it.—Shannon Golden (EDGE 2018 participant)

· · ·

Through EDGE, I belong to an amazing and diverse community of women mathematicians
that has invigorated me throughout the various stages of my career. EDGE has instilled
within me a confidence in what I can accomplish; shown me the importance of doing good
work and being active in my discipline; provided financial support and various professional
opportunities; given me role models like none other; made me deeply grateful for the
exceptional mentoring I have received along the way; and, inspired me to extend that
mentoring to those who come after me. Basically, EDGE is the gift that keeps on giving.—
Erica Graham (EDGE 2006 participant; 2010 mentor; 2019 instructor)

· · ·

During the EDGE program, I didn’t realize how influential this program would be to my
mathematical journey. It didn’t take long for me to recognize that EDGE would not only
be an integral part of my graduate education but it has been throughout my career long
after school, and not only professionally but also personally. EDGE is more than a summer
program, but it is a family. There are several people I met through this program who have
helped me study for qualifying exams, create research presentations, navigate the job market
and how to achieve tenure and promotion successfully. The support I received from this
program is outstanding, and I hope I can pay it forward to future mathematicians.—Michelle
Craddock Guinn (EDGE 2004 participant; 2008 mentor)

· · ·

EDGE provided me with confidence going into a PhD program, especially being the
first in my family to get a PhD. It also provided a network–more like a family–of
female mathematicians. We have supported each other through graduate school, postdoc
transitions, research visit funding, tenure-track angst and work/life/motherhood balance.
Even this last Joint Math Meeting, another EDGEr and I met up early morning (before
7am) to have a coffee catch up before all the activities began at the conference. I’m hugely
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indebted to the EDGE program and the women that have devoted their time and energy to
make it so successful.—Heather Harrington (EDGE 2006 participant)

· · ·

EDGE has provided me with tools to survive my first year of Grad school. It provided me
with confidence that carried me when I was at my lowest points. I am eternally grateful to
the support that EDGE has given me.—Micah Henson (EDGE 2017 participant)

. . .

The summer portion of EDGE was dress rehearsal for graduate school. That level of intense
preparation greatly contributed to my success as a graduate student. The EDGE community
is a HUGE part of my life and continues to contribute to my success.—Raegan Higgins
(EDGE 2002 participant; 2014–2017 instructor; 2018 local coordinator; current co-director)

· · ·

EDGE is a community of peers and mentors whom I would never have otherwise found!
They bring me hope and inspiration when I am frustrated and don’t see the point of
completing my PhD. I truly do not believe I would finish grad school without EDGE!!
Thank you to all, especially Raegan and Ami!!!—Austen James (EDGE 2017 participant)

· · ·

The EDGE experience was overwhelming at times, but looking back, the chance to meet
and work with so many different people for that intense period of time was such a valuable
opportunity for me. Amid the whirlwind, I learned an appreciation for the larger math
community, and as I continued on to graduate school and now a job in academia, I have
continued to learn how important community is for mathematicians. There is something
so special about making connections through a common interest in math. Following the
example set by Sylvia and Rhonda, members of the EDGE community celebrate good times
and help each other through difficult ones.—Jill Jordan (EDGE 1999 participant)

· · ·

I am sincerely thankful for the EDGE program’s profound and sustaining impact on my
career, as well as to Rhonda, Ami, Sylvia, and Ulrica for their continuing mentorship,
advice, and support. I received my Ph.D. in Applied Mathematics from UC Davis in 2006,
was a Fulbright scholar in Mathematics in Switzerland, and currently teach at Humboldt
State University on the beautiful and remote Northern California coast.—Kamila Larripa
(EDGE 2001 participant)

· · ·

The EDGE program replicates possible challenges that a person but more importantly a
woman may face in a doctoral program. However, one distinct difference that the EDGE
program incorporates are methods to overcome the challenges. . . . The dynamics of EDGE
forced us to bind as a group and taught us that multiple levels of support may be necessary in
graduate school as challenges occur. Every aspect of the program provided valuable lessons
that are still relevant to me as a professor.—Torina Lewis (EDGE 2008 participant)

· · ·
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EDGE prepared me for graduate school not only academically, but also emotionally. The
summer session allowed me to see my mistakes and failures as an opportunity for growth
instead of a hindrance. During my first year of grad school, there have been many instances
where I’ve had to pick myself up from a failure and keep going, which would have felt
impossible without the encouragement of my fellow EDGErs. I formed some of my closest
friendships in math because of EDGE. Thanks to these friends who have helped me navigate
the difficult parts of graduate school, I am much more confident and secure in myself as a
mathematician now. I still have a long way to go, but I’m confident that I’ll be able to finish
strong with the support of EDGE.—Jessie Loucks (EDGE 2018 participant)

· · ·

I feel blessed that I was able to participate in EDGE 2017. It was intense but beneficial.
It was an opportunity to improve our mathematical skills and knowledge. It is more
than a ‘one-month program.’ It is a free lifetime membership to amazing resources and
opportunities. It is my support system whenever I feel like giving up. Whenever I felt like
I did not belong to my program, or I do not understand some assignments, I would quickly
reach out to my fellow Edgers for support. It is a mentorship as well as a sisterhood for
the Edgers. Our mentors are always there whenever we need help or feel discouraged. We
need more women in this field and it starts with EDGE because they train Women Math
Warriors.—Carmel Laetitia Mobio (EDGE 2017 participant)

· · ·

I feel truly grateful and proud to be part of the EDGE community. It was valuable for me
to have a cohort of women that was going through the challenges of graduate school with
me and it is inspiring to see those who came before me and the amazing things they have
accomplished. It is rare in academics to find a group that cheers for you in your successes,
lifts you up in hard times, and provides support and mentorship at each step in your career.
EDGE has been that group for me and I feel like I am a part of something truly special.—
Molly Moran, (EDGE 2009 participant)

· · ·

I am so grateful to be a part of the EDGE family. They have cheered me on throughout my
graduate career and beyond. I enjoy passing that enthusiasm on to my EDGE mentees and
watching them flourish! It’s great to be a part of such a supportive community of women
math warriors!—Ziva Myer (EDGE 2011 participant; 2015 mentor)

· · ·

EDGE has been a constant positive force in my life since I first participated in 2001 at
Spelman College. I had never in my life learned mathematics in an all-female environment
and I never have since then. Learning in such a nurturing and comfortable environment
gave me the skills necessary to not only survive but to flourish during my first years in grad
school at the University of Iowa. I left the program with lifelong friends and collaborators
who have grown to be my chosen family. I cherish my time with my fellow EDGErs.—
Omayra Ortega (EDGE 2001 participant; 2012 instructor)

· · ·

From my first year as a graduate student to my eighth year as a professor, I have always
had my framed picture of my EDGE cohort within view of my desk. It is not something
I notice everyday, but when I am struggling with my work and I look up and see it, it
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gives me reassurance that I will overcome my struggle. . . I came into EDGE as a female
mathematician. One that was sometimes confident, sometimes unsure of herself and often
worried about the future and the challenges ahead. I left EDGE as a fierce Woman Math
Warrior.—Carolyn Otto (EDGE 2006 participant)

· · ·

In the summer of 2003, I learned how underprepared I was for graduate school, I learned
how to work with others who were smarter than me, and I saw that this work was hard
for everyone. There was a transparency that was more than just a ‘window into graduate
school,’ but was a transparency of ourselves to the other participants.—Karoline Pershell
(EDGE 2003 participant; 2008 mentor)

· · ·

EDGE has given me such joy, strength, inspiration and camaraderie through the years that
I consider my involvement with the program, one of the highlights of my professional
life. I enjoyed mentoring and being mentored and forming life long friendships.—Eirini
Poimenidou (EDGE 2006 and 2013 local coordinator; 2002, 2014, 2016 instructor)

· · ·

Even though I was not an EDGE participant, while I was in graduate school I was constantly
introduced to and mentored by EDGErs! From Michelle Craddock Guinn, Emille Davie
Lawrence, Rachelle DeCoste, Alejandra Alvarado, Carmen Wright, Omayra Ortega and
Carla Cotwright-Williams I always felt supported by EDGE, even when I didn’t know it.—
Candice Price (EDGE 2012 mentor)

· · ·

EDGE has been a consistent piece of my life as a professional mathematician, and the
Southern California regional cluster helped me ‘EDGify’ my life during the academic
year. . . For me, this is the joy of EDGE: watching our network not just grow, but thrive,
with each node maintaining its own personality, while strengthening and growing new
edges.—Ami Radunskaya (EDGE 1998–2002, 2009–2011, and 2018 instructor; 2008 local
coordinator; current co-director)

· · ·

EDGE has been such an amazing experience for me. I have gained so much from this
program and math has only been a small part of it. The EDGE community is unparalleled
and it has really inspired me. I am so grateful for the opportunity to be able to participate
and I truly believe that I will be able to succeed because of this program. The immense
support and encouragement from everybody involved is something I will cherish during my
years of graduate school. I have a deep love for this program and I think me being here is
such a blessing.—Lynnette Robinson (EDGE 2018 participant)

· · ·

EDGE introduced me to an amazing group of women and gave me the support to not only
survive but also thrive in my first year of grad school.—Rebecca Santorella (EDGE 2017
participant)

· · ·
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Since that time, I have remained in touch with many of the women I met through the
EDGE network and they have kept me informed of numerous academic and professional
opportunities. The EDGE Program has been very effective in diversifying STEM careers
and EDGErs have been and still are very significant to the science and mathematics
community. These women are inspiring trailblazers, leading in their chosen fields, serving
as role models for girls and other women, and creating their own paths of success.—Martene
L. Stanberry (EDGE 2005 participant)

· · ·

I received my Bachelor of Science degree from a small, liberal arts institution. I knew I
wanted to learn more but I was already suffering from imposter syndrome due to my limited
background. I was honored to be selected as a participant in EDGE 2006 at New College
of Florida in Sarasota, FL. This experience didn’t remedy my imposter syndrome but it
did give me a network of amazing women whose help and support continue to mold my
experiences within the math community. I attended North Carolina State University where
I continued to experience the doubt of being able to fulfill the requirements of graduate
school. But having a group of women who I thoroughly admired experiencing similar
struggles and doubts as I was made me realize that this was just a piece of the challenge.
Together we navigated through graduate school offering support and advice whenever
possible. . . Ultimately, I chose to continue my career at a small liberal arts institution where
I can provide support and encouragement to other young mathematicians doubting their
abilities to continue their journey within the field of mathematics.—Ellen Swanson (EDGE
2006 participant; 2013 instructor)

· · ·

The EDGE program has impacted me in so many ways. As a student leaving undergraduate
school, I was able to find connection in the mathematical community through meeting other
students entering graduate school as well as awesome mentors at the EDGE program. While
a graduate student, I reached out to mentors from the EDGE program for advice and was
given great advice. It was through the EDGE program that I made connections with other
women mathematicians that have proven to be long lasting.—Shanise Walker (EDGE 2012
participant)

· · ·

It was fantastic to work with other women, including many women of color, who were about
to embark on their graduate school journeys. I was also honored to have the opportunity
to work with other faculty who ‘walk the walk’ in efforts to increase diversity, inclusion,
and equity of researchers and educators in the mathematical sciences. . . Being able to see
myself in others–in students coming after me, in faculty clearing the path for me, and in
peers with me along with the way–is a crucial part of my finding happiness and a sense of
belonging in this job. . . . It is my humble wish to help clear the path so that EDGE program
participants and other marginalized folks can see themselves, not through the muddied lens
of others’ biases or prejudices, but with the proper view of using one’s talents (mathematics)
to find happiness, community, and fulfillment with this work.—Chelsea Walton (EDGE
2012–2015 instructor)

· · ·

Thanks to the EDGE program, I discovered the value of learning mathematics in an all
female setting. Since finishing my masters degree in mathematics, I have been teaching
math and computer science at an all-girls school. In my classroom, I am inspired daily by
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the next generation of female thinkers and leaders. I have also recently returned to graduate
school to complete my PhD in STEM education. My dissertation and future research will
be centered around girls in mathematics and computer science. I often refer back to my
EDGE days, when I realized the importance of being a part of a network of strong women
to support and encourage one another.—Jennifer Rowe Webster (EDGE 2002 participant)

· · ·

It is through my EDGE network that I have learned how to be a mathematician, a wife, a
mother, a teacher and how to exist at the intersections of all those things. Consistently over
the past 12 years, the EDGE network has provided both a net for me to fall down on and a
ladder for me to climb up. In short, EDGE is deeply woven into the fabric of my life and
will forever be one of the keys to my success.—Shelby Wilson (EDGE 2006 participant;
2009 mentor; 2014 and 2016 instructor)

· · ·

EDGE is a community of women that have experienced or are about to experience the
hardship required to get a PhD in math, especially as a woman. I have a plethora of amazing
women who are inspiring and willing to be a mentor to me. It’s great to know that I’m not
alone.—Lyndsey Wong (EDGE 2017 participant)

· · ·

I have been a part of the EDGE program since 2006 when I was a participant. Overall, I
had a positive experience that summer. Of course, the difficulty was the actual work, and
the inevitable feelings of inadequacy one faces in those situations. But it helped knowing I
wasn’t alone. I remember being impacted by seeing black women in pure mathematics. In
the EDGE community, we are allowed to have our own path and story to tell. Sometimes
EDGE provides emotional support to help us not feel alone, and sometimes it provides
connections and opportunities that help us move our careers forward. I truly cherish the
faith and belief that the EDGE community has shown in me.—Carmen Wright (EDGE
2006 participant; 2011 mentor)

· · ·

EDGE mentally prepared me for the fact that I would struggle–a lot–in grad school, and
gave me the confidence and support system I needed to know I’ll overcome all of the
struggles that come my way.—Jenna Zomback (EDGE 2017 participant)

· · ·
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Academic Preparation for Business,
Industry, and Government Positions

Alejandra Alvarado and Candice R. Price

Abstract According to the 2015 Annual Survey of the Mathematical Sciences,
1901 PhDs were awarded in the USA. The report shows that 52% of those recipients
are working in academia. This is a decrease from the 2014 survey which stated that
56% of new doctoral recipients went on to academia. Thus, what support do we, as
academics, provide to this growing population of business/industry, or government
job seekers? The goal of this paper is to provide insight into programs tackling this
question along with relevant information and advice for new PhDs interested in jobs
outside of academia as well as those interested in making successful mid-career
moves.

1 Introduction

Recently, a trend in academic conferences has been to include a panel session on
business/industry or government (BIG) jobs for academics and recent graduates.
Often these sessions include someone that started in a tenure track or tenured
position before being seduced by the allure of industry.

At the Infinite Possibilities Conference in 2018 [9], there was such a panel
session entitled, Mid-Career Moves and New Opportunities. The session included
four female mathematicians with varied experiences working in government,
industry, and academia. According to Dr. Carla Cotwright-Williams, who currently
works for the Department of Defense, many first generation graduate students don’t
know what they are signing up for when they enter graduate school. Cotwright-
Williams goes on to say that a career in academia can be very fulfilling, assuming
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the individual knows what it entails. If a student does not have professional role
models growing up, they are at a disadvantage—not knowing their options or
opportunities—even before entering college. This was the case with both authors of
this paper. The assumption was that a PhD in mathematics only meant a job teaching
at the university level. Many students are not exposed to the multitude of possible
careers in STEM, much less the career opportunities within the mathematical
sciences.

From the authors own experiences and through conversations with colleagues,
they learned that many faculty themselves don’t realize the vast opportunities within
academia as well as in BIG; switching from one career to another is a possibility but
requires preparation.

Another panelist Dr. Karoline Pershell, currently with the Association for
Women in Mathematics, and Service Robotics and Technologies, noted that she had
to be comfortable taking risks and not be afraid to fail in her career moves. After
her postdoctoral position, panelist Dr. Maria Garcia took several years off due to
a family situation that required her full attention. Her goal was always to return to
work but was unsure when and where. After hiring a career coach, and networking,
she received several job offers for many different types of positions. Although she
had originally planned to stay in academia, she happily accepted a position at the
US Bureau of the Census, where she has been for the last 20 years.

Another important piece of this story is the conversation around those under-
represented in mathematics. Included in the panelist presentations was a discussion
on the lack of representation in the mathematical sciences and its impact on the
question of career choice. How does a society encourage women to pursue PhDs
when it appears that jobs are scarce? Data shows that women hold about a third
of PhDs in the mathematical sciences, but only about 23% of women with STEM
degrees actually work in STEM fields [18].

The IPC panel session inspired the theme of this paper. The potential for
women to make significant contributions in the STEM workforce, specifically
in higher paying careers and leadership positions, is vital. We need to insure
women, especially women of color, have a seat at the table, and that their voices
are heard. Perhaps exposure to more career opportunities for those with STEM
degrees, mathematics in particular, will help shift the needle to a more balanced
representation.

In this work, we explore several support networks for those with degrees in the
mathematical sciences that are interested in BIG career opportunities. We conclude
by providing advice collected from various resources.

2 Programs Supporting Interest in Business, Industry,
or Government Positions

According to the most recent AMS Annual Survey, Report on the 2015–2016 New
Doctoral Recipients, the number of new PhDs taking positions in BIG has increased
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to 495 this year compared to 409 two years prior. US academic hiring has decreased
while US nonacademic hiring has increased, since 2012.

It should also be noted that while the overall unemployment rate of those who
receive a PhD in the mathematical sciences is 5.9%, new doctorates from the
Small Public Institutions reported the highest unemployment rate at 13.7% while
new doctorates from the Biostatistics group have consistently reported the lowest
unemployment. A 2016 Pilot Study, conducted by Dr. Amy Cohen, that looked at
the transition from a research postdoctoral position into immediate employment,
found that about a third went on to a tenure-track position, while 8% went into a BIG
career [7]. As more mathematicians are shifting into positions in BIG, quite a few
programs and groups have been formed around the primary mission of supporting
mathematicians interested in business, industry, or government positions.

The Business, Industry, and Government (BIG) Math Network [3] brings together
the mathematical sciences community to address several issues surrounding the
connections between academia and positions outside of academia. The BIG Math
Network is a collaborative effort between mathematical sciences societies, insti-
tutes, labs, businesses, government agencies, and academic partners. The goals
for the network include bringing together the mathematical sciences community
to build job opportunities for mathematicians; communicating the value of mathe-
matical science in the workplace; cultivating connections between students, faculty,
recruiters, and managers; increasing knowledge about internships and how to
prepare for them; providing viable models for internship logistics (including timing,
intellectual property, and training), and creating regional networks. The network
realizes these goals by accomplishing three primary objectives:

1. The network’s website includes information for students and departments,
opportunities for job seekers, and blog posts from people with careers outside
of academia.

2. The network has cosponsored career panels at conferences.
3. The network has created a tool to support departments to assess their current

initiatives to connect with BIG and make strategic plans to do more. The network
has also initiated the program Math to Industry Bootcamp at the Institute for
Mathematics and its Applications in Minneapolis.

The Math to Industry Bootcamp is a 6-week summer program that provides
about 30 graduate students the training and experience that is valuable in industry
positions [3].

The Mathematics Association of America (MAA) program Preparation for
Industrial Careers in Mathematical Sciences (PIC Math) prepares mathematical
sciences undergraduate students for industrial careers by engaging them in research
problems that come directly from industry by supporting faculty [16]. The PIC Math
program has three specific aims:

1. Increase awareness among mathematical sciences faculty and undergraduates
about nonacademic career options.

2. Provide research experience working on real problems from BIG.
3. Prepare students for industrial careers.
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PIC Math provides a program that supports faculty by equipping them with
content for a spring semester research and credit-bearing course focused on solving
industrial problems. Each faculty participant is asked to assemble a team of three
to five students and work with them to develop their problem solving, teamwork,
and communication skills. Each team will choose from one of five problems that
are real-world problems yet suitable for undergraduate students to work on. The
resources for students and faculty participating in PIC Math include a series of
training videos on techniques for generating solutions and decision aids useful for
coping with “messy” real-world problems [16].

This program includes a 3-day summer training workshop for faculty at US
institutions. This workshop provides participants with information on BIG careers
to share with their students; guidance on developing BIG connections; exposure
to problems that arise in industry; and often overlooked, training on how to help
students develop skills that are valued by employers.

The BIG Math Network officially kicked off in the early 2017, while PIC Math
received its first round of funding in 2013. But as far as longevity, the Society for
Industrial and Applied Mathematics (SIAM) [17] has a long-standing representation
of encouraging opportunities in industry. Its website includes a web page dedicated
to organizations hiring mathematicians, profiles of various mathematicians who
hold positions in BIG, and a download-able careers brochure.

While not explicitly a program for positions outside of academia, the Enhancing
Diversity in Graduate Education (EDGE) has been a large source of support for its
participants interested in positions outside of academia [8]. The EDGE program is a
summer math program with the goal “of strengthening the ability of women students
to successfully complete PhD programs in the mathematical sciences and place
more women in visible leadership roles in the mathematics community” [8]. Being a
part of the EDGE network provides participants with a network that includes women
in positions outside of academia who can provide mentor-ship for BIG careers. In
fact, Cotwright-Williams and Pershell are both members of the EDGE network.

Some companies have programs focused on recruiting those with PhD, thus giv-
ing applicants the opportunity to intern in industry during the summer or sabbaticals.
One such program is run by the Institute for Defense Analyses (IDA) [10]. Since
the 1950s, the IDA Center for Communications and Computing “has performed
fundamental research in support of the National Security Agency’s mission in
cryptology,” which includes both foreign signals intelligence and protecting the
communications of the US Government [10]. The Center is a nonprofit entity con-
sisting of the Centers for Communications Research with offices in Princeton, New
Jersey (CCR-P), and La Jolla, California (CCR-L), and the Center for Computing
Sciences in Bowie, Maryland (CCS). While the three offices have distinct areas
of focus, they work closely with each other and share many overlapping research
teams. For this paper, the most important collaboration occurs during the summer
workshops, called SCAMPs. These workshops bring in academics and others to
use a “team-style” approach to tackling several difficult problems each summer.
The participants for these workshops are diverse in many ways: some come from
the academic community while others from research organizations; there are many
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levels of experience ranging from seasoned researchers and distinguished faculty to
advanced graduate students or exceptional undergraduate students; and disciplinary
backgrounds can vary to include mathematics, computer science, statistics, physics,
and electrical engineering. In a typical summer, the workshop has more than a
hundred visitors across the three centers. The intense and collegial atmosphere is
well known.

There also exist several programs that offer internship-like opportunities that
post-PhD mathematicians can take advantage of. The American Association for the
Advancement of Science (AAAS) offers visiting scholar positions and fellowship
opportunities to “science and engineering professionals to participate in and develop
leadership skills for government, policy-making, and mass media roles” [1]. The
National Security Agency (NSA) offers sabbaticals ranging from 9 months to 2
years [13]. These visiting mathematicians have the opportunity to work on a variety
of problems in different areas of mathematics. The Office of Naval Research is
another government entity that has an internship-like appointment, the Summer
Faculty Research Program [15]. Science and engineering faculty members can work
at US Navy laboratories, on a recurring basis. The National Science Foundation
(NSF) offers temporary/rotator programs where math PhDs can be temporary
program directors and recommend which proposals to fund and have an influence
on scientific direction, while still being affiliated with their current institution [12].
Usually after a year or two, participants in both of these visiting positions return
to their institution with “new insights and experiences.” Returning faculty have
the opportunity to share their experiences and provide new knowledge about the
diversity of career options for mathematicians with their students and peers.

3 Preparing Students for Careers in Business, Industry,
or Government

Graduate students in the mathematical sciences work to advance the understanding
of a relatively narrow field of study. Preparation for future careers is typically in
an academic setting, for academic purposes, directed by academics. Thus many
graduates aspire to receive faculty positions, specifically, tenure-track positions.
But, the supply of newly trained PhDs outnumber faculty replacement needs. Hence,
BIG employment offers alternative opportunities for these “surplus” graduates.
According to a 2015 NSF-IPAM Mathematical Sciences Internship Workshop report
[11], the number of PhDs in the USA has approximately doubled in the past 10
years, while the number of tenure-track positions is decreasing.

This has led to what is academia is calling, the “career diversity” movement
[5]. These same issues are being seen not just in mathematics but across many
disciplines. It has become increasingly important to begin training students, under-
graduate and graduate, for diverse careers, rather than only training them for
academia.
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In [4], the authors state, “Many graduate students will continue to follow a
traditional academic career path, but having the option to choose careers in industry
and governmental organizations will benefit all of them.” So the question becomes:
how does one prepare students for careers outside of those offered in academia,
especially when all you know is academia? Some programs have made this a priority
at their institutions. They find that it is important to have more than one area
of training. One institution and program that has been recognized for its efforts
in the area is the University of Illinois Urbana-Champaign (UIUC) Department
of Mathematics. UIUC has an NSF funded program that has been successfully
helped place students in BIG positions through internships [11]. UIUC also offers
a summer computational boot camp to their graduate students, with the goal “to
teach practical computational mathematics techniques using Python programming
in 2 weeks to someone with little or no programming experience.” The results have
been rewarding.

“At UIUC, several students who might not think of their thesis focus as applied
or industrial mathematics topics have participated in internships, sometimes through
on-campus collaborations with lab groups in other departments. For example, a
combinatorist modeled infectious disease in sheep, in a veterinary medicine lab. A
number theorist modeled ant colonies, in the entomology department. A functional
analyst worked with an e-commerce analytics firm. A graph theorist worked with
a financial trading firm and a student interested in differential equations worked
on agricultural data analytics. One helpful mechanism for placing students in the
internships is interviewing them about their interests outside of mathematics.”

4 Advice for Mathematicians Interested in Careers
in Business, Industry, or Government

Transitioning from academia to positions outside of academia is increasingly more
common. According to the American Mathematical Society’s 2015 Annual Survey
of the Mathematical Sciences in the USA, 1901 PhDs were awarded [2]. The report
shows that 52% of those recipients are working in academia. This is a decrease from
the 2014 survey which stated that 56% of doctoral recipients went on to academia.
This transition is not obvious nor is it smooth. For a job in academia, an applicant
would highlight their individual achievements to stand out among a large number
of candidates. Yet, according to How to sail smoothly from academia to industry
“To beat the stiff competition, highlight your skills in collaboration, teamwork
and meeting deadlines.” Refocusing on collaboration, as opposed to individual
achievements is more beneficial if one wants to enter the corporate world [14].

One of the authors of this work, Dr. Candice R. Price, spent 3 years in the
mathematics department at the US Military Academy (USMA) in West Point, NY.
This is an institution whose goal is to train future army officers and leaders in
the USA. The mathematics curriculum at USMA, which includes mathematical
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modeling, calculus, and probability and statistics, has been structured intentionally
to broaden the mathematical training of all West Point cadets. Because USMA is
traditionally an engineering school, all cadets earn a Bachelors of Science with the
goal of beginning a military career directly after graduation. Few graduates go on
to graduate school and medical school. As an instructor at this institute, Price found
that because the goal of the curriculum was to train students for specific jobs in
the government, all of the math courses included real-world applications, public
speaking, and professional writing. Price found that these intentional inclusion of
these skills in the mathematics setting allowed the cadets to learn how to talk
about mathematics in all setting, an important skill for any mathematician. When
looking about at her own mathematical training, Price realized that it wasn’t until her
master’s program were these skills introduced, and that was in the math education
setting. On reflection, the inclusion of these techniques in the undergraduate
mathematical curriculum at every stage allows students to hone the skills needed
in any arena. This is one area that is being addressed by PIC Math programs. A
benefit of this style of curriculum is that it allows for the opportunity to expose
undergraduates to the many career options that mathematical training provides.

Several mathematicians who transitioned from academia echoed previous
thoughts on the skills needed in their transitions. Dr. David Tello, formerly an
assistant professor, transitioned to being an analyst at a financial institution, partly
to spend more time with his ailing mother. He found that while his soft skills were
lacking, his technical skills were excellent, and in the end was one of the reasons
he was hired. Tello states, “Graduate programs need to concentrate on teaching
these soft skills. Basic lectures on emotional intelligence, business writing, protocol
in company meetings, and business etiquette are vital to survive the corporate
world.” Dr. Brie Finegold also transitioned from academia to industry as a research
mathematician, also due to a family situation. Her research at the time was mostly
theoretical and she had minimal programming experience. “However”, Finegold
states, “I realized that I could learn many of the things I needed on the job, and I
demonstrated on interview that I was capable of thinking on my feet and that I was
genuinely curious.” Her problem-solving and writing skills acquired in academia
were valuable in her new position.

In [6], Cohen noted “The health of the mathematical community requires that
graduate students and early-career mathematicians see a broad range of paths to
respected and satisfying careers, whether inside or outside academia” [6]. We hope
that more mathematical science departments nationwide are encouraged to prepare
students for all employment opportunities. To close out this work, we include
some pointed advice, gathered from the mathematicians and references mentioned
throughout this paper, on how to make a transition to BIG smoother:

• Attend panels or presentations by those in positions outside of academia. These
are becoming more common at mathematical sciences conferences. Include
professional development opportunities that provide information, training, or
support for transitioning to positions in BIG.
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• If currently in academia, teach courses that will make the transition easier and
incorporate mathematical software. Computer programming is important but
there is no need to be an expert.

• Make yourself visible on professional social media, such as LinkedIn, and
include your resume. Network and seek out others in careers you find interesting.

• Seek the assistance from someone in BIG who can help turn your CV into a
resume specifically for nonacademic positions.

• Current trends are conferences and workshops in data science, and applications of
mathematics to political and social science. Explore a non-mathematical domain
area and how mathematics is applied, through conferences.
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Striking the Right Chord: Math Circles
Promote (Joyous) Professional Growth

Lance Bryant, Sarah Bryant, and Diana White

Abstract Math Circles are extracurricular programs organized by mathematicians,
aimed at introducing K-12 students or teachers to novel and interesting mathematics
in a collaborative environment. While other authors have discussed the impact of
Math Circles on participants, this article explores ways that Math Circles have
substantial impact on the professional growth of faculty involved. We hope our
experiences and commentary will inspire more faculty to become involved with
Math Circles both locally and nationally.

1 Introduction

1.1 What Is a Math Circle?

Math Circles are extracurricular programs organized around mathematicians or
mathematics enthusiasts collaborating with K-12 students and teachers. The infor-
mal atmosphere aims to encourage mathematical exploration and sustained problem
solving. Math Circles should be fun, positive, and full of interesting problems. The
content typically centers around low-threshold, high-ceiling problems connected to
advanced mathematics. Math Circles for students emerged in Eastern Europe in
the early twentieth century, and migrated to the USA along with professors that
had these experiences in their youth [9]. The Boston, Berkeley, and San Jose Math
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Circles were among the first to appear in the USA during the 1990s. Today, about
200 Math Circle programs exist nationwide [9]. In this paper, we focus on Math
Circles led by university or college faculty, so that we may outline some of the
impacts on the professional growth of faculty who lead Math Circles.

Math Circles serve a variety of purposes. Goals include creating community, nur-
turing mathematical curiosity, developing an exploration/research mind-set, offering
professional development (for teacher circles), and increasing STEM participation
among underrepresented groups. Venues can be on-campus, giving the community
greater access to a university or college, or in a school or community building to
perhaps lessen the burden of participation. Schedules typically range from weekly
to monthly, with Math Teachers’ Circles tending to meet approximately monthly,
whereas Math Circles for students often meet weekly. In short, Math Circles can be
tailored to meet the local needs of those involved, and given such needs, there is
likely an existing Math Circle that can serve as a model for creating a new one.

Though many Math Circles started via grassroots efforts, there has been enough
sustained interest to lead to the development of national organizational structures.
Two major mathematics research institutes, the Mathematical Sciences Research
Institute (MSRI) and the American Institute of Mathematics (AIM), developed
the National Association of Math Circles (NAMC) and the Math Teachers’ Circle
Network, respectively. These provide resources and support to the many Math
Circles across the country. There is also a special interest group of the Mathematical
Association of America dedicated to Math Circles (SIGMAA-MCST). Math Circle
sessions and workshops for faculty have become standard fare at conferences such
as MathFest and the Joint Mathematics Meetings. Thus, while the title of this
subsection is “What is a Math Circle?” it is highly likely that many mathematicians
are aware of them. We aim to address some of the ways these Math Circles are
impactful, focusing on impact on the leaders rather than participants.

1.2 The Authors: Our Backgrounds and Motivation

Sarah and Lance Bryant are the founding directors of the Shippensburg Area Math
Circle for 4th and 5th graders, with about fifteen participants per session and ten
Saturday-morning meetings per year. The program started in 2014 as an after-school
activity based on a desire to do some math outreach at their daughter’s school. The
Math Circle has expanded to a district-wide program housed in the Mathematics
Department at Shippensburg University. Sarah and Lance were in the first cohort of
the NAMC Math Circles Mentorship and Partnership (MC-MAP) program in 2015.
They continued to be involved in the MC-MAP program in 2016 as returning Math
Circle leaders and again in 2017 as Math Circle mentors.

Diana White runs the Rocky Mountain Math Circle Program, which consists
of a regular Math Teachers’ Circle, one or more Math Circles for students, a
Math Circle Math Camp, and Julia Robinson Mathematics Festivals. The program
began in 2010 as a single Math Teachers’ Circle, and has expanded over the years
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to encompass these broader Math Circle and mathematical outreach experiences.
Diana also serves as the Director of the National Association of Math Circles. As
previously mentioned, this program of MSRI is designed to nurture the growth of
Math Circles by seeding the creation of additional Math Circles in the USA; building
a community of Math Circle leaders through which novice and existing leaders
would be connected, encouraged, and inspired; providing high-quality resources
that help Math Circles build and sustain effective programs; and documenting and
disseminating the impact of Math Circle programs across the nation.

Our motivation in this manuscript is to detail some of the many benefits for
faculty involved with a Math Circle. We will include our own personal stories,
and we invite the reader to reflect on her own experiences or interests in math-
ematics outreach for connections to these themes. We focus on four areas where
Math Circles promote (joyous) professional growth: understanding of teaching
and learning mathematics; deepening connections at the department, university,
and community levels; broadening leadership skills; and connecting to the larger
mathematics community. We hope this inspires more faculty to become involved
with Math Circles and sparks deeper research into some of the ideas presented here.

2 Promoting Active Learning

In 2012, one of the five overarching recommendations by the President’s Council
of Advisors on Science and Technology was to “catalyze widespread adoption
of empirically validated teaching practices” [8]. In the wake of numerous studies
and reports spanning decades, including a landmark meta-analysis of 225 studies
published in the Proceedings of the National Academy of Sciences, having students
actively engage with content in their classrooms has been identified as an effective
means to increase positive student outcomes [4]. Active learning refers to the
teaching practices employed by educators to promote this in-class active engage-
ment. The Conference Board of the Mathematical Sciences (CBMS), an umbrella
organization consisting of seventeen professional societies for the mathematical
sciences, released a strong statement [1] of support for active learning with this
central message:

We call on institutions of higher education, mathematics departments and the mathematics
faculty, public policy-makers, and funding agencies to invest time and resources to ensure
that effective active learning is incorporated into post-secondary mathematics classrooms.

Despite this near-consensus support for active learning, a Notices article [3] and
a six-part American Mathematical Society blog series [2] cited faculty adoption of
active-learning strategies as a bottleneck in post-secondary mathematics teaching
advancement. We argue that Math Circles provide a great opportunity for faculty to
explore active-learning strategies.

Faculty are faced with many potential impediments to implementing active-
learning strategies. Class size, grading support, contact time, learning outcomes
for courses, student expectations, and instructor experience factor into each faculty
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members’ decisions on how to structure courses and are at times beyond their
control. There are also the pressures that come from fear of failure: if the students
do not support the change of course teaching, then teaching evaluations may suffer.
This can be especially stressful for pre-tenure faculty. Furthermore, the diversity
of faculty environments due to these factors complicates the national dialogue [2].
It can be easy to think that what works at one institution or in one particular setting
will not successfully transfer to another. However, we are aware of the support for
active learning and have turned to our work with Math Circles to strengthen our
development of a more student-centered classroom.

When running a Math Circle or facilitating a session, we find many of the
aforementioned limiting factors are easily managed or simply nonexistent (grading,
for example). Also, the Math Circle community has promoted a culture of active
exploration, collaboration, and inquiry as hallmarks of successful sessions. Thus
Math Circle leaders become immersed in the process of leading engaging sessions
that involve and inspire all participants. Removing lecture, homework, exams,
textbooks, and other common course components from the learning environment
can be freeing but we have also found it to be intimidating. Thus Math Circles
provide a space for faculty to practice a variety of active-learning strategies without
fear of adverse repercussions, thereby allowing them to both build their skills and
confidence.

For a typical mathematics course, structure and learning goals are centered
around content, and problem-solving strategies must be inserted into this structure.
Our work in Math Circles has allowed us to create (or borrow) lessons that are
designed the other way around: start with problem-solving techniques and use
mathematical settings to illustrate their uses, then present students with challenges
from a variety of topics. What is gained from these sessions are authentic expe-
riences for how problems are approached and solved in mathematics, making it
easier to incorporate these ideas into more traditional classroom settings. Some
of the materials from our Math Circle that we have used in college classrooms
include puzzles designed to introduce approaches for problem-solving (e.g., “try
an easier problem” or “work backwards”). These are particularly good prompts for
introduction to proofs courses, where students must break out of procedural and
algorithmic practices to explore the creative side of problem-solving. We have also
drawn on the work of Joshua Zucker, a well-known Math Teachers’ Circle leader,
whose article “Be Less Helpful” addresses the nature of stepping out of the lecturing
spotlight and allowing students to embrace the full experience of learning, including
the struggle [10].

3 Connections Between Faculty, University, and Community

Mathematical outreach programs, and Math Circles in particular, lie at the intersec-
tion of the interests of universities, local communities, public policy-makers, and the
mathematical community. Thus there is much potential for substantial connections
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between these stakeholders. However, when Math Circles are viewed as community
service, they are often not valued as highly as scholarly research and only incidental
to teaching in higher education. In “Making the Case for Professional Service,”
Ernest Lynton establishes a working definition of professional service, taking it to
be work based on professional expertise. Lynton claims “professional service can
and should be an important element in the definition of faculty roles and rewards—
not only because of its societal and institutional benefits. It also can constitute
scholarship of the highest order, equivalent in intellectual challenge, creativity, and
importance to scholarly research and scholarly teaching” [6]. We absolutely agree.
Math Circles are an exemplar of professional service in mathematics.

Math Circles satisfy Lynton’s definition of professional service because they
are outreach programs that rely heavily on the mathematical expertise of session
leaders. As session leaders we must draw on our deep understanding of a wide
range of mathematical ideas. We must understand entry points for these big ideas
and be comfortable with deviations from the expected path of exploration. While
it is often challenging (and keeps us on our toes!), there is nothing about leading a
Math Circle that relies on rote knowledge or repetition. We draw on our expertise in
crafting and leading these sessions in a way that represents a deep connection to the
content and to the learners.

When arriving in a new town, faculty members may not be aware of existing
tensions or bonds between the university and local community. In our personal
experiences, there has been some positive and some negative aspects of the “town-
gown” relationships. Thankfully, we have found that our towns are excited about
the opportunity of having a Math Circle and the university appreciates the valuable
link to the community. By inviting students and their families into the university,
a Math Circle can literally open doors to the institution and show a commitment
to the younger learners or teachers in the area. Some Math Circles travel to the
local schools or libraries, again with the goal of breaking down barriers of access
and bringing faculty expertise to non-university spaces. We have found that our
professional and personal networks in the local community are also enriched by this
work.

What we have found to be one consistent source of joy in working with Math
Circles is the satisfaction of making strong connections with young learners, many
of whom have never met a “mathematician” before. All three authors are first-
generation college students and did not grow up knowing that people still worked
on mathematics problems long past high school. We did not know that some
mathematics problems look like puzzles or that sometimes some mathematics
problems remain unsolved. It is all too common to hear people describe mathematics
as completely objective, absolutely black and white, with knowing the right answer
as the only currency of mathematics. Participants in a Math Circle not only meet
mathematicians, but also they become them. They get to see the “play” behind real
mathematics and appreciate that an answer is almost never as valuable to a good
mathematics conversation as a question is. In turn, Math Circle leaders can learn
from the participants some excellent strategies for being fearless, for asking “silly”
questions, and for being honest when something is not fun or seems impossible.
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4 Broadening Leadership Skills

Running a Math Circle means wearing many hats, including some that mathematics
faculty seldom get to wear. One must connect with the community of interest,
generally needing to make personal contact with teachers, community centers,
or other organizations that can help with advertising the program to the target
audience. There is a need for applications, flyers, and ideally at least a basic website.
Mathematics faculty may or may not have skills for these various things. Often,
they collaborate with others to accomplish them, and thus need to find volunteers
and build relationships. In addition, as Math Circle leaders we have had to learn the
ins and outs of hiring and training students, managing grant paperwork, submitting
reports, and responding to press requests. All of these skills have prepared us to
consider larger projects and for working with constituencies across our institutions
and in our communities.

A large-scale program can involve dozens up to hundreds of K-12 participants,
undergraduate and graduate student helpers, and a variety of faculty facilitators.
The collaborative nature of Math Circles lends themselves naturally to partnerships
between higher education institutions, K-12 schools, and business sponsors. For
example, the Maize and Blue Math Circle in Michigan has partnered with Ford and
DTE Energy Solution to support a free middle school Math Circle at the Dearborn
STEM School. Learning how to build and manage these types of partnerships is a
valuable skill for faculty seeking future leadership roles.

5 Connections and Identity in the Mathematics Community

Coming out of graduate school, a new faculty member is a part of a community
built around an area of expertise. Over the years, new sub-communities are joined.
Perhaps the faculty member is in the MAA’s Project NExT program or joins a
new faculty cohort at her hiring institution. What we have found unique about
the Math Circle community is its ability to be vertical in nature, uniting K-12
students, teachers, undergraduate students, graduate students, mathematicians, and
mathematically inclined parents or volunteers. Thus the Math Circle community in
mathematics has far reach and interest in a variety of areas, not just to a sub-specialty
of research.

The Math Circle community also functions with a refreshing lack of concern
over tenure-track status or job titles. People from all sorts of backgrounds work with
Math Circles, so there is great diversity among those involved, including long-term
temporary faculty, industry professionals, government employees, and freelance or
independent contractors. In fact, if you happen upon a group of Math Circle leaders
at a conference or workshop, we recommend skipping the usual opener “Where are
you at?” and opting instead for “Do you know the Math Circle Salute?” If you don’t
know it, watch James Tanton’s video [7] or, better yet, help out at a Math Circle for a
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day and learn it! This fun bit of the Math Circle community hints at the playfulness
of those involved; after all, it’s hard to take yourself too seriously when your arms
are twisted in knots in front of near strangers.

6 Our Stories: A Few Personal Notes on Math Circle
Involvement

6.1 Sarah

My mathematical role models are those who have not only increased mathematical
understanding but also contributed to broadening participation in mathematics.
Whether through a Math Circle or some other activity that takes an authentic
approach to exploring mathematics, the words of Francis Su can inspire us all: “The
goal of broadly getting people to appreciate math is not at odds with bringing more
people into deep mathematics. Connect with people in a deep way and you’re going
to draw more people into mathematics” [5]. Yes, this includes (in the case of our
Math Circle) 4th and 5th graders. I am dedicated to increasing access and improving
equity in mathematics, and being involved in Math Circles has helped enrich this
part of my personal and professional mission. There have been other benefits as
well, as I have been empowered to explore new lines of scholarly work and expand
my mathematical network, thanks to my involvement in Math Circles.

6.2 Lance

Like other faculty members I have known, I became more interested in K-12
education as my daughter started elementary school. In 2014, when Sarah and
I worked with the director of our daughter’s school to start an extracurricular
math program, we envisioned a small program running for a few years. I did not
expect the overwhelming response from the community, for sessions to consistently
have over fifteen participants, and I certainly did not expect to be working with
Math Circle leaders across the country. I have seen first-hand how a Math Circle
program can easily gain momentum and bring someone into a vibrant community
of mathematicians.

My department has run an annual math event for high school students since the
late 1950s. When I became director in 2010, the main event was a quiz bowl. After
attending the Math Circles Mentorship and Partnership (MC-MAP) grant workshop
in 2015 and participating in a Julia Robinson Math Festival (JRMF), I saw a better
way to generate excitement about mathematics among the high school student and
their teachers, while at the same time providing opportunities for our undergraduate
students and faculty. I replaced the quiz bowl with a JRMF. We now hold several
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problem-solving sessions each year for our undergraduate students both for their
own benefit and to prepare them to be table leaders for the JRMF and our Math
Circle. Our faculty enjoy working on these problems as well, and I feel like my
work with Math Circles has built connections across my campus that I would not
have otherwise. So, in addition gaining new relationships to those in the Math Circle
community, this work has added to many previous relationships with colleagues as
well.

6.3 Diana

Being a Math Circle leader has affected every aspect of my career. In particular
I credit almost all of the facilitation techniques that I use in my upper-level
undergraduate mathematics classes to my work with Math Teachers’ Circles. One
of the initial leadership team members for my Math Teachers’ Circle was a high-
school mathematics teacher with extensive professional development expertise. Our
collaboration resulted in me having the opportunity to observe and then practice
implementing a wide variety of active-learning and group facilitation techniques
with teachers. With feedback from this expert high-school teacher, my facilitation
skills improved tremendously, and I proceeded to also implement them in my
undergraduate mathematics classes. In addition, I also used these techniques (and
more) in leading professional development workshops with other mathematics
faculty.

7 Conclusion

Mathematicians deserve a chance to play, to grow as teachers without the inherent
pressures of the evaluation system, to try new types of math problems outside their
expertise, and to nurture new friendships and connections through projects they are
passionate about. We have found Math Circles to be the perfect outlet for these areas
of growth, giving us the opportunity to refine our professional skills in a fun and
joyful environment. We encourage other faculty and math enthusiasts to consider
starting or joining a Math Circle, not just because of all you will be giving to others
involved, but also for all you will be receiving in turn.

We hope this manuscript serves as a call for more faculty to consider the ways
that being involved in Math Circles is beneficial for them and very rewarding. We
would also expect that our personal stories are common in the larger Math Circles
community, a topic certainly worthy of continued research.
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The Women in Mathematics Symposia:
An Organic Extension of the EDGE
Program

Amy Buchmann, Yen Duong, and Ami Radunskaya

Abstract The Women in Mathematics Symposia are a collection of annual regional
mathematics conferences for women mathematicians which have all been organized
by EDGE affiliates. To the best of our knowledge, they exist in California, the
Midwest, Texas, the Carolinas, and Israel. We explore the history and original
motivations of the WiMSoCal organizers and how WIMS spread and adapted
to other regions. We include notes on participation, diversity and inclusion, and
organization from the conferences. We include quotes from a survey about the
conference’s effectiveness, data about the attendees, and reflections from attendees
on the impact it has had on their research and careers.

1 Introduction

The Women in Mathematics Symposia (WIMS) began in Southern California in
2009 and have affected over a thousand women in mathematics across the world
in the past decade. We three decided to write this chapter as both a record of the
past and a blueprint for the future. In it, we have past participants and organizers
reflecting on what worked and what didn’t in past WIMS. We hope this chapter
encourages some readers to organize their own vertically integrated conferences for
local women in mathematics. Like EDGE, the main goal of WIMS is to support
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women mathematicians. We want this chapter to do the same by motivating and
inspiring would-be organizers and participants.

WIMS have been held in several cities in Southern California, as well as in
the Chicago and Midwest area, Texas, the Carolinas, and Israel. Of over 1000
participants, 40 women have organized at least one WIMS. These 40 include many
graduate students and early career faculty, and so WIMS have offered an opportunity
for professional development through conference organization.

The WIMS symposia form pieces of a mosaic of mathematics conferences across
the country that focus on woman-identified mathematicians. This mosaic includes
but is not limited to:

• Association for Women in Mathematics (AWM) Research Symposia, held every
other year in a different location across the country

• Nebraska Conference for Undergraduate Women in Mathematics
• Graduate Research Opportunities for Women conferences for undergraduate

women that originated at Northwestern University in 2015
• Southeastern Conference for Undergraduate Women in Mathematics
• Women in Mathematics in New England conferences for undergraduate women
• Woman and Mathematics program at the Institute for Advanced Studies, which is

a one- or two-week long program targeting undergraduate and graduate students.

The WIMS symposia differ from these events in their goals, targeted participants,
and local focus.

Broadly speaking, the goal of WIMS is to support all woman-identified math-
ematicians. While undergraduates are often encouraged to attend, the focus of
WIMS is not to convince undergraduates to pursue graduate studies in mathematics.
“Local” is a key adjective in defining the WIMS objectives: in contrast to the
national AWM Research Symposia, we hope to bring together mathematicians
within driving distance of each other. There were four particular goals of the original
WIMS; different conferences have adapted and changed these goals to fit their
regions and cultures.

1. Strengthen the network of women mathematicians in the region.
2. Facilitate tiered mentoring between junior and senior mathematicians.
3. Highlight women’s contributions to the mathematical community.
4. Encourage new collaborations.

We begin this chapter with some history and facts about WIMS. Next are
results from a survey of past participants,1 a program description with schedule
suggestions, and notes about breakout sessions and other information that may be
useful to organizers. We conclude the chapter with tips and tricks for readers who
want to start their own WIMS.

Throughout the chapter we include quotes from participants and organizers
which we solicited via an online survey sent in spring 2018.

1Informed consent: prior to completing the survey, participants were informed that quotes from the
survey could be included in this chapter.
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2 History of WIMS

In 2005, EDGE directors Sylvia Bozeman and Rhonda Hughes came up with the
idea of formal “EDGE clusters.” These regional groups would nurture the networks
formed in the EDGE summer session, and enlarge the network by including other
women mathematicians at various stages in their careers. The regional clusters
resulted from a 3-year pilot project supported by an NSF ADVANCE grant.

The project created a network among a small group of women in close geograph-
ical proximity composed of senior and junior faculty and graduate students. Senior
women mentored junior women, while those junior faculty mentored graduate
students. The network was formed to help the younger groups advance toward their
professional goals with advice from senior faculty. As part of this pilot project,
six clusters were formed: the Georgia cluster, the Mid-Atlantic cluster, the Indiana
cluster, the North Carolina cluster, the Iowa cluster, and the Southern California
cluster.

In October 2005, the Southern California cluster met for the first time, with din-
ner after a mathematics talk on “Classifying Division Algebras” by Ulrica Wilson,
who was at the time a visiting assistant professor at Claremont McKenna College
and later an EDGE co-director. The organizers of the event were Ami Radunskaya
(Pomona College) and Cymra Haskell (University of Southern California). The talk
was part of a series that Cymra organized at USC with the support of Women in
Science and Engineering. The dinner meeting included six faculty, five graduate
students, and one undergraduate. The cluster grew and met regularly for advice,
stories, and social outings.

In June 2007, at a barbecue at Cymra’s house, over a dozen women discussed
the future vision of the group. What did the participants want from the network?
A majority of the cluster landed on: “We want the opportunity to talk about
mathematics with each other”. And so, the Women in Math in Southern California
(WiMSoCal) Symposium was born.

The first WiMSoCal Symposium took place at Loyola Marymount University
in (LMU), co-organized by Alissa Crans (LMU), Cymra, and Ami. The symposium
had 34 participants: 4 undergraduates, 20 graduate students, and 10 faculty members
from 9 local institutions. The eight talks included three talks by graduate students.
Feedback after the symposium indicated most participants wanted a similar event
once a semester, with the location rotating around Southern California. The rest of
the feedback led directly to some of the main features of WIMS. An incomplete list
of requests by participants follows.

• Vertical mentoring in the form of organized discussions: one for undergraduates
by graduate students, and one for graduate students by junior faculty

• Travel reimbursement funding
• Discussion about issues for women in mathematics
• Parallel sessions of shorter talks organized by research interest
• Keynote talks.
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Since 2009, ten more WiMSoCal symposia have occurred, and the number of
participants has grown to over one hundred. It has been gratifying for the original
organizers to see the idea of WiMSoCal replicated across the country after the
EDGE regional clusters led directly to WIMS.

3 Why WIMS?

Of those who enter graduate school in math-intensive fields, more women than men drop
out or change fields, and of those who complete doctorates, fewer women apply for tenure
track positions. Women drop out of scientific careers - especially math and physical sciences
- after entering them as assistant professors at higher rates than men, and this remains true
as women advance through the ranks [4].

Events for women in mathematics fight a battle to change the bleakness of the
quote above. Between 2007 and 2016, the proportion of math Ph.D. recipients who
were women fluctuated between 27% and 37%, as reported by the AMS Notices.
Over that same time period, women made up only 20% of the Invited Hour Address
Speakers at AMS meetings. Including at least one woman organizer for an AMS
special session in 2017 increased the percentage of women speakers slightly from
18–31% to 25–37% [1]. The ambiguity comes from speakers identified with initials
or non-gender-specific names.

The AMS does not keep track of demographic information of members, but
the Society for Industrial and Applied Mathematics (SIAM) does. Of the 14,638
members at the end of 2017, 2517 identified themselves as women, and 1704 did
not enter their gender into the SIAM database. So the percentage of women SIAM
members was between 17% and 29%.

To increase the participation of women in mathematics, the 2006 InterAcademy
Council report “Women for Science” [9] called for increasing the visibility of
women scientists, providing mentoring and networking opportunities to combat
isolation, and offering resources for launching careers. By highlighting women
mathematicians as keynote speakers, uniting women across a specific geographic
area, and including lively and relevant career and personal discussions, WIMS meets
each of these goals.

One of the greatest strengths of WIMS is its status as a small regional conference.
Women don’t need to travel far to attend. It’s easier to meet new people when
there aren’t too many of us. Many of us also share the experience of, at some
point, counting ourselves as the only woman in a room of mathematicians. After
connecting with conversations at WIMS, participants often see each other again at
larger regional events, strengthening the network.

We asked participants and organizers why they decided to become part of the
WIMS community. Their responses reminded us of some of the benefits we see
in EDGE. We include some of them here for future organizers to use in grant
applications or proposals.
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Several women mentioned the novelty and support of a women-only conference:

The first time, I was curious to see what a math conference with only women would be
like and it was conveniently located so I attended. I enjoyed the experience so much that I
continued to attend until I left the midwest. I found the social dynamic to be quite different
(much more relaxed and welcoming) than many other conferences I have attended.

I am really thankful for WIMSoCaL. Having known so many other women in the
[Southern California] area from attending many years of WIMSoCaL meetings always
brings me a strong sense of comfort and confidence whenever I attend local meetings.
WIMSoCaL created a strong network of women that help support each other academically
and personally. I have to attribute the success I have today to the wonderful work of the
WIMSoCaL organizers.

It was a great chance to network with other women in mathematics and give a talk in a
supportive environment. I gave my first talk on my research at Midwest WIMS. In terms of
niche, WIMS does a great job of highlighting the research of women and being a supportive
environment. It also is a great place to hear about research outside of your comfort zone.

Organizers can work to create that “supportive environment” by including the
phrase on promotional materials, websites, and handouts. They can also encourage
expository or beginning research talks to support graduate students.

Breakout sessions or small group discussions are a capstone of WIMS, described
in detail in Sect. 6. Every person who attends WIMS comes with their own unique
set of experiences and reflections, and should feel valued within their small group.

Even before the conferences I knew this is something worth doing, but only during [it] did
I understand the psychological and intellectual impact of intense learning and interacting in
such a supportive and non-competitive atmosphere.

Midwest WIMS had small group discussions on a range of topics and concerns. It was really
important to get advice from mathematicians who had similar goals and experiences.

I like that the conversation topics at breakout sessions at Midwest WIMS 1–3 were so
broad–not everyone wants to talk about work/life balance or finding a job–but there are
opportunities to find a conversation that is helpful no matter what career and life stage
you are at. It’s nice to share experiences, which are sometimes unexpected (in our algebra
session we had a lengthy discussion about clothing between talks).

Women have commented that they attended WIMS to have the opportunity to
present their research in a welcoming environment. One speaker said she “thought
WIMS would be a less stressful environment in which to do this because it
was mostly women.” Another also remarked on the uniqueness of the WIMS
environment:

I never realized how different the intellectual atmosphere could be in a room filled
mostly female mathematicians. When I spoke, I felt immediately valued as opposed [to]
apprehensive about saying something of value.

The above quotes and discussion may be helpful for people who have already
committed to organizing a WIMS, but there are plenty of women who may be
considering it and wary of the time commitment. As graduate student organizers,
Amy and Yen believe in the lasting professional and personal benefits from creating
and running one’s first conference. At some point every person learns about
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bureaucracy and politics and fundraising, but the stakes are pleasantly lower as a
graduate student and you have the benefit of faculty advisors for advice and help.
Faculty of course can and should organize WIMS, but we encourage them to include
students if possible.

As a graduate student [WIMS] was one of the first opportunities I had to be involved in
decision making processes. As I transition to a tenure-track role I feel that the skills I
developed in organizing and planning such an event are invaluable, as I plan sessions at
conferences and serve on department and university committees. (On a personal note, there
are a lot of similarities to planning a wedding!)

Benefits of organizing a WIMS are not limited to graduate students. Because they
contact the participants and different schools, organizers can form even stronger
networks than participants do. They can also increase their own visibility within
their departments and universities.

I got to know a lot more people because I was the organizer. I exchanged emails with almost
everyone who attended. My dean was also really excited that I did it, which definitely didn’t
hurt my career.

This last quote summarizes how far we have come as women in mathematics,
and encourages us to imagine how far we can go.

I think it is very important that we continue to bring together women, at various stages of
their careers, so that they can showcase their research, and have networking opportunities.
Although almost all conferences nowadays make an effort to increase the participation of
women, the reality is that there is still a large disproportion in gender representation in most
of them. It was refreshing to see so many women gathering together, all presenting very
high quality work. This would have been almost unthinkable when I started my career.

4 Diversity and Inclusion

While almost all WIMS participants share the experience of being a woman in math,
each has a different perspective to offer during the invaluable breakout sessions and
discussions. This section discusses different types of diversity that organizers can
seek out. We also discuss strategies for creating an inclusive environment.

We strongly encourage WIMS organizers to spend a few minutes during their
organizing process to reflect on who they want to serve with their conference,
and include language on their promotional materials to that end. For instance, the
Midwest WIMS 2017 website emphasizes that “Graduate students, postdoctoral
scholars, and researchers at small institutions are especially encouraged to apply”
for funding.

Organizers are the face of the conference to attendees. Organizing committees
may want to think about racial diversity among themselves, as one participant noted:

I’d like to see more diversity within this community. More people from underrepresented
communities giving talks and holding leading roles would be very nice.
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4.1 Career Stage

One question that often arises: what is the target career stage of a WIMS conference?
Certainly faculty and postdocs are welcome to present their research, network with
each other, and look for collaborators. But we argue that as one goal is to support up-
and-coming women mathematicians, WIMS is an invaluable resource for the early
graduate student who hasn’t yet given a research talk at a conference. We suggest
that organizers explicitly encourage graduate students to speak, either on original
research or expository topics. Organizers have taken different stands on including
undergraduates or not.

If organizers want undergraduates to benefit from the conference, they may
consider including a poster session or a parallel session consisting entirely of
undergraduate talks. If they want graduate students to benefit, they may explicitly
encourage talks by beginning researchers or even expository talks, and advertise
the supportive environment. Such a conference could still include invited talks
to set a research or teaching-focused motif for the day without discouraging
less experienced conference attendees from participating. Again, we encourage
organizers to include graduate students in the organizing committee who can speak
to graduate student concerns. For instance, one person who attended one WIMS in
2015 and another in 2017 wrote:

I liked that at the 2015 WIMS, people from smaller schools with fewer resources and
connections had more opportunities to speak. For the 2017 WIMS, there were way fewer
opportunities for people to speak, and there seemed to be more of a focus on talks from
people who were already well established. Those are not the people who need more
opportunities to talk.

For early career faculty, including a variety of questions about school and career
transitions in the breakout sessions can make them feel valuable as mentors for
students, while they benefit with knowledge from tenured faculty. Faculty may
also enjoy open problem sessions, but after our experiences with these, we urge
organizers to also include a parallel session for students, perhaps to do with
professional development.

4.2 University Size and Focus

While WIMSoCal began as a research-focused extension of an existing social
network, these new conferences concurrently offer a serious research environment
and create a new regional network of researchers, educators, and learners.

We urge research-focused organizers to remember teaching-oriented schools and
faculty, who have different relationships with students and offer unique perspectives
as mentors and examples for graduate and undergraduate students. They often have
smaller faculty and may be the only woman in their department, and hence could
benefit the most from a WIMS.
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On the other hand, one organizer cautioned future organizers:

Please be sure not to reinforce stereotypes about women. When a conference for women is
all about how to get a teaching job, then what message are we sending? It is great to talk
about such issues, but please be balanced.

It is not the case that those younger than us “should” follow our own paths,
but instead that we should show them a variety of paths. For finding people in
different fields, organizers suggested seeking out other organizations and using
existing networks.

As much as possible, include women from non-doctoral institutions. Reach out to people
who have done Project NExT to find recent PhDs in your area. They may be the only woman
in their department or looking for collaborators. They may not have large budgets to travel to
other conferences so regional conferences are especially helpful. It is also useful to include
such participants because many graduate students will not end up at research universities.
These women can help mentor these students. They may even want to help organize the
conference!

Use your own network of professional connections to invite a diverse group of speakers, in
terms of research, professional affiliation, etc. Advertise the conference widely.

4.3 Vertical Integration

Mixing undergraduates, faculty, and people at all career levels creates vertical
integration. Organizing several vertically integrated breakout sessions can be a
tedious task for organizers, but ultimately adds value. Explicitly, this requires an
organizer to assign participants to different discussion groups while keeping track
of the career levels represented in each group.

In vertically integrated breakout sessions, younger graduate students can chat
with more experienced ones, postdocs can chat with faculty, and tenured faculty can
share their experiences with those earlier on the career ladder. Mentoring junior
participants gives more senior ones a sense of accomplishment which can help
propel them through the next tricky research or teaching problem [11]. WIMS
creates an environment to ask open-ended questions and receive candid answers
about the commitments and experiences of being a professional mathematician.

4.4 Parenthood

Breakout sessions lead to insightful connections on topics which one may not
encounter at other conferences. For instance, Yen, who had two children during
graduate school, first thought about the timing for her children when attending
WIMSoCal in 2011, as motherhood came up in conversation during the breakout
session. Other participants also remarked on this topic:
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At Chicago, it was really useful to hear stories about “math and motherhood” that you
can’t really learn about except in person. At the Texas WIMS, I thought that participants
at all levels (from undergrad to faculty) really got a chance to connect and talk. At
both conferences, I really got a lot out of meeting and talking with other women
mathematicians – and presenting my research to a broad audience was really valuable.

On the topic of motherhood, late graduate school and early career faculty may
be the most in need of WIMS-style support networks [7]. Mentoring and fostering
a sense of “belonging” has been shown to be critical at this career stage [2, 5].

The tenure structure in academe demands that women having children make their greatest
intellectual contributions contemporaneously with their greatest physical and emotional
achievements, a feat not expected of men. When women opt out of full-time careers to
have and rear children this is a choice - constrained by biology - that men are not required
to make. [4]

One word of caution, which appears as common sense to some: avoid questioning
women on their reproductive choices. Creating a welcoming environment in which
to discuss topics like parenting or caring for older family members does not entitle
people to the sometimes-painful details of others’ lives.

Seek out money for childcare grants—organizers often hear “no” but sometimes
hear “yes” on this issue. Secure a lactation room, which requires a chair, an
electric outlet, a small table, and a door with a lock, before the conference and
let participants know that it is available [3].

4.5 Gender

We want to include a note about two other topics: transgender people, people
of minority genders, and men. In the spirit of inclusion, we expect most WIMS
organizers are open to people of minority genders and transgender people, but may
have overlooked them. One can include specific, inclusive language on promotional
materials and websites—the cost is low to organizers, and the potential benefits
for participants are high. For example, the WiMSoCal 2018 website says, “All are
welcome to register or give a talk/poster, regardless of gender.”

If the WIMS is listed as “in cooperation with the AWM” (see Sect. 7), then
organizers could include part of the AWM “Welcoming Environment” statement
on their website:

In pursuit of that ideal, the AWM is committed to the promotion of equality of opportunity
and treatment for all AWM members and participants in AWM-sponsored events, regardless
of gender, gender identity or expression, race, color, national or ethnic origin, religion
or religious belief, age, marital status, sexual orientation, immigration status, disabilities,
veteran status, or any other reason not related to scientific merit.

As for men, different organizers have taken different tactics. If you receive
federal funding, you cannot include discriminatory language excluding men. Men
who are interested in a WIMS are often the men we want as allies in departmental
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politics and collegial relationships. Though many organizers and participants noted
that having no men in a room changed the dynamic considerably, we endorse
inclusivity.

One tactic we do not endorse: putting men, transgender people, and people of
other minority genders in a separate room for breakout sessions, etc. This is an
alienating practice—an exception to this is if you have enough men to form their
own breakout session. They may benefit from discussing gender issues together.

5 Measurable Impact

To inform our understanding of the magnitude and impact of WIMS, we surveyed
past participants and organizers of WIMS—we received 127 responses from the
estimated 1000 people who have attended any WIMS, many of whom attended
multiple years and locations. Although we had a low response rate, we still believe
this data is valuable and we share it with the understanding that it reflects only a
small percentage of WIMS participants.

Figures 1 and 2 show how WIMS participants advanced in their careers.
Undergraduates became graduate students, graduate students became tenure track
faculty, postdocs, and lecturers, etc. Of the survey respondents who attended WIMS,
nearly half were students when they attended, and 37.6% were tenured or tenure-
track faculty. At the time of the survey, roughly a third were students, just over
40% were tenure or tenure track faculty, and the remaining quarter fit into the
postdoc/lecturer/other category.

In particular, we hope future organizers notice the diversity of career stages
at WIMS, and plan their own WIMS with inclusion in mind, as discussed in
Sect. 4. Students in particular may be interested in non-academic jobs discussed
in a breakout session or panel, though plenty of postdocs and professors have made
career switches. Some jobs that fit into the “other” category: tour guide, inventory

Fig. 1 Career stage at time
of attending WIMS
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Fig. 2 Career stage when
responding to survey

auditor, project manager, researchers at Microsoft, the US Navy, Duke Medical
Center, and Georgia Tech, software developer and journalist.

WIMS aims to strengthen regional networks of women. One benefit of a strong
network is increased collaboration and more innovative, fruitful mathematical ideas.
Of the 127 respondents, eleven people said they had collaborated with someone they
had met at WIMS.

One person met someone at a conference at one university, and then later in her
career ended up at that university. Knowing someone in the department ahead of
time certainly did not hurt her job prospects. Another person met a graduate student
and discussed the graduate student’s advisor, who became her postdoc supervisor.

Several people said that they later saw WIMS participants at other conferences.
Approximately 40% of respondents said they are still in touch with someone they
met at WIMS.

WIMS participants almost universally enjoy and recommend WIMS. Out of the
respondents, over 90% said they would recommend WIMS to a colleague. Over
80% agreed or strongly agreed that WIMS benefited them personally, while over
70% agreed or strongly agreed that it benefited them professionally (see Fig. 3).

However, of the 127 respondents, 13 reported that WIMS in some way did not
meet their expectations. Inappropriate research topics were an overarching theme of
the negative feedback—either parallel sessions were too specialized or the attendee
had no peers with whom to discuss research. It’s helpful to have broad research areas
represented in sessions, but we recommend that organizers stress the uniqueness of
WIMS as a way for women mathematicians to meet, not necessarily as just another
mathematical research conference, to temper these expectations.

It was always an issue whether there were going to be other people in my field or not. It
never seemed worthwhile to go if I was going to be the only one.

[The] conference was tailored to areas of math that were too specialized, so I didn’t learn
anything
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Fig. 3 A majority of respondents indicated that WIMS benefited them professionally and
personally

I felt like the talks were restricted to topology/geometry and analysis, rather than having a
larger variety of topics.

The WIMS in 2015 was at a SLAC and so had a more varied topics and attendees, since the
other ones have been held at Research Universities, the focus has been on research, which
is great, but as I have not had as much time to keep up, unless the speakers are in algebraic
topology, it is not so helpful.

Some lectures I heard in WIMS were very good, but otherwise I felt there is not much that
connects the participants (that were from different areas and different stages of their career).

6 Components of WIMS

Most WIMS have taken place over one day, which may lessen the burden of
traveling to a conference for women with family responsibilities. We include two
sample schedules from WiMSoCal 2014 and Midwest WIMS 2014 (Table 1) to
show the variety of sessions that have been included in the single day meetings.

Below we discuss some of the sessions that have been included in WIMS and
how they support the goals of WIMS.

Parallel Sessions Parallel sessions allow more women to present their research,
which is especially important for graduate students and early career faculty.

Parallel sessions are often divided into several mathematical subfields. This
gives women the opportunity to learn about research in their subfield by women
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Table 1 Example schedules from Midwest WIMS 2014 held at the University of Notre Dame
(left) and Twin WIMSoCal 2014 held at the University of San Diego (right)

Midwest WIMS 2014 Twin WIMSoCal 2014

8:30 AM Registration and breakfast 8:30 AM Coffee/Registration

9:15 AM Opening remarks 9:00 AM Opening remarks

9:30 AM Parallel sessions 9:10 AM Parallel sessions

11:30 AM Coffee break 10:15 AM Small group discussions

12:00 PM Problem session 11:00 AM Coffee break

1:00 PM Lunch with breakout sessions 11:30 AM Parallel sessions

2:30 PM Plenary speaker 12:30 PM Lunch and invited talk

3:30 PM Poster session 1:15 PM Panel discussion

4:30 PM Parallel sessions 2:00 PM Parallel sessions

5:30 PM Evening reception 3:00 PM Coffee break

3:30 PM Invited talk

4:15 PM Social event

in their area. Many fields have been represented in WIMS meetings including
Algebra and Combinatorics, Dynamical Systems, Geometry and Topology, Logic,
Mathematical Biology, Partial Differential Equations, Numerical Methods and
Modeling, Statistics, and Knot Theory.

Poster Session Poster sessions can be included during coffee breaks to enable
more junior mathematicians to present their work. This is especially valuable for
undergraduate and graduate students who may have research results to present but
are not yet comfortable with giving a talk. Poster sessions allow women to have
one-on-one discussions about their research where they can give and get feedback.

Problem Session A problem session may be included to support the goal of
encouraging new, regional collaborations. Women are encouraged to submit open
problems before the conference and are given a few minutes to discuss the problem
and solicit collaborators.

Invited Talk/Plenary Speaker A plenary talk given by an invited speaker show-
cases some of the work of women mathematicians in the area and entices par-
ticipants to attend a new WIMS. We all know women who inspire us—inviting
one of these to give a plenary talk is an exciting way to honor them. Publicizing
the participation of a well-known, engaging mathematician will be a draw, since
participants will have ample opportunities to talk to the plenary speaker at informal
events throughout the conference.

Panel Discussion Panel discussions can cover a wide range of topics, from the
ever-popular Work-Life Balance which can include caregiving for elderly and young
people to Career Options and Applying to Grad School/for Jobs. We strongly
endorse moderators with prepared questions, as well as plenty of time for audience
questions and discussion. Consider the size of WIMS when structuring a panel–
generally two or three panelists will be sufficient for these smaller conferences.
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Breakout Groups Navigating the early stages of a career as a mathematician can
be challenging for anyone, and there are some challenges particular to women. To
facilitate mentoring, several WIMS meetings have included time for small group
discussions. These discussions can be scheduled in between other sessions or during
lunch. At Midwest WIMS 2014, topics were selected ahead of time, and a woman
was invited for each discussion to facilitate the conversation. The discussions were
held over lunch with a discussion topic for each table. Participants were able to
move to different tables during the lunch.

Discussion topics have included: networking/mentoring, academic job market,
research oriented topics, life in graduate school, success in academic life, getting
tenure, and work-life balance. Small group discussions may be more successful at
larger, more diverse events, while smaller events or those with many people in the
same career stage may prefer panelists.

Group Activities In lieu of discussion groups as above, some WIMS set up small
group activities that encourage participants to get to know each other. Speaking up
can be challenging given extant power dynamics; for example, undergraduates may
not feel comfortable sharing their thoughts when senior mathematicians are at the
table. Some activities that we have tried with some success include:

• Math Haiku. Each group is given a set of words to create a haiku. The words in
the given “pile” are intended to provoke conversation. For example, words such
as “imposter,” “gender,” “identity,” and “outlier” might be included, as well as a
set of mathematical terms, and some words evoking emotion, such as “begrudge”
and “isolated.” Here is an example from WiMSoCal 2014, with words from the
given collection indicated in bold:

Blá, an outlier
Isolated in a ring
Continuity

Begrudgingly She
Feels closed in chaotic sand
wants Transformation

Seeks connected graph
Iterating to stable
Equilibrium

She generates a
Fundamental network of
Passionate mentors

• Proofs without words. Each group is given a choice of theorems or properties to
illustrate without words. They are allowed to use pictures, videos, or any other
medium. Example prompts: the Heine Borel Theorem or the associative property
of multiplication.

• Knot tiling activity. Each group is given a set of knot tiles, and they use these to
answer a set of questions about knots, and then create a “knot mosaic” [10].

Results of these activities can be displayed at the end of the day during the con-
cluding reception. We have found that these activities generate conversation, bring
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people from different backgrounds together, and provide fodder for conversation at
the end of the day. For a more detailed description, see the AWM Newsletters from
March 2016 and May 2017 [6, 8].

Lunch and Coffee Breaks It’s important to provide opportunities for informal
interactions at the conference venue. We recommend a coffee/continental breakfast
at the start of the day, coffee breaks mid-morning and mid-afternoon, and lunch in
a setting conducive to meeting new people and chatting. When food is available
on site, more formal activities can be offered during lunch, such as the panel
discussions or breakout groups listed above, or group walks. Whether or not there
are formal activities programs, one lesson we learned at EDGE is that eating
together means coming together.

One person bemoaned a lack of interaction time between talks, which can be
planned for with strategic breaks.

I also felt that there weren’t many instances to talk to those at the conference since the talks
were back to back.

Evening Reception A reception or social event allows time for informal discus-
sions to strengthen the connections made during the day, and serves as a great place
to announce the hosts for the following year’s WIMS. It’s also a good time to collect
surveys. One participant’s remark about the closing reception sums it up:

It was a great chance to meet active female researchers in the field and to meet role models
who had advice on how I could make it too as a women in math!

7 Suggestions for Organizing

Several organizers commented that organizing WIMS was a large job and was more
time consuming than anticipated. To ease the burden of planning and facilitating the
meeting we provide some suggestions below.

7.1 Steering Committee

To keep WIMS an annual event and to avoid reinventing the wheel, it can be helpful
to have a steering committee made up of organizers from the current and previous
WIMS meetings. Past organizers can share planning information such as submitted
grants, conference planning timeline, and catering orders as well as lessons learned
along the way.

The steering committee should also be responsible for establishing the steering
committee for the following year. Past organizers have suggested setting aside time
during the conference to identify a date and location for the next meeting with the
steering committee.
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7.2 Planning Ahead

Organizing a meeting is a large commitment with several tasks that need to be done
months in advance. As one organizer suggested, “start planning early and ask for
help.” Creating a sample planning calendar like the one shown in Table 2 can help
establish deadlines and keep the organization of the meeting on track.

7.3 Securing Funding

Ideally, organizers secure enough funding to support travel and lodging for all
who wish to participate. Travel funding makes the meeting more accessible to
everyone, especially early career mathematicians such as graduate students and
postdocs, as well as faculty with limited or no institutional travel funding. A sample
budget for a meeting with travel support is shown in Table 3. If organizing a

Table 2 Sample organization calendar

Approximate time Tasks

12 months out • Determine which university will host WIMS

• Request grant from previous year

6–11 months outa • Submit grant to secure funding

• Get departmental support

• Get other support as needed

• Invite keynote speakers

• Advertise the meeting

3–6 months out • Send out email announcement

• Invite parallel session organizers

• Sign up for “in cooperation with AWM” status

• Set up webpage

• Open registration and abstract submission

• Establish funding application procedure

3 weeks out • Finalize catering

• Finalize schedule

• Travel funding decisions and notification

• Hotel information

• Finalize rooms, session chairs, breakout sessions, panel

• Organize local help (student volunteers?)

1–2 Days out Print any handouts

Day of Enjoy the conference!
aDepending on the size and budget of the conference. If a grant is being submitted to fund
participant travel, organizers should err on the side of caution, and have these items done early to
submit the grant in a timely manner
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Table 3 Sample budget for
large meeting with lodging
and travel funding

Item Budget

Catering $8000

Invited speaker travel and lodging $3000

Participant travel and lodging $10,000

Mini-grants $2000

Other $200

Table 4 Sample budget for a
small meeting with no
funding for travel and lodging

Item Budget

Light breakfast, coffee breaks, and refreshments $400

Lunch $1000

Paper materials $100

meeting for an existing WIMS region, budgets of meetings held in that particular
region will give a better idea of an appropriate budget, as regions vary in size and
transportation options. Though travel funding is preferred for large geographical
regions, many WIMS meetings have been successfully organized with modest
budgets. An example of a minimal budget is shown in Table 4.

7.4 Funding Opportunities

Funding from Host Institutions Many of the WIMS meetings have been made
possible with modest amounts of funding secured from the host institutions.
The host department, college, and/or institution may have funds available for
conferences organized at that institution.

National Funding Agencies Several WIMS meetings have been funded with
grants from national funding agencies. Include in the grant: conference goals, any
confirmed funding from the hosting institution, a sample schedule including any
confirmed or invited speakers, and a list of schools to invite. It is especially helpful
to talk to past organizers who have been successful in securing grants from national
funding agencies.

7.5 Advertising

A great way to start advertising WIMS is by emailing all math departments
within a certain driving distance or geographic region. Include both research and
teaching oriented departments. Creating a thorough list of such universities is time-
consuming, but once created, such a list can be passed down to future organizers
and updated each year.
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A web page is necessary to convey logistical information about the conference.
Some meetings have also been advertised on social media. Many national associa-
tions advertise meetings on their calendars. Some associations to consider are the
Association for Women in Mathematics, The American Mathematical Society, and
the Mathematical Association of America.

To obtain “in cooperation with the AWM” status, visit the AWM website and
enter the conference information. Then include the AWM’s non-discrimination
statement on the website and conference materials. This is a convenient way to
avoid writing an original nondiscrimination statement.

7.6 Other Considerations

7.6.1 Supporting Parents

It can be especially challenging for women with small children to attend con-
ferences. Organizers can help by identifying a mother’s room on campus and
investigating childcare options [3].

7.6.2 It Takes a Village

There are many opportunities for volunteers during the meetings. Women can be
invited to chair parallel sessions, and volunteers can help with registration and
other logistics. Undergraduate students can organize their own poster session, or
brainstorm together about ice-breakers. Social media aficionadas can organize a
blog or hashtag, departments and administrators can demonstrate support by hosting
one of the social events, and university higher-ups can give some friendly words of
welcome.

8 Conclusions

We hope this chapter encourages you, the reader, to organize your own regional
women in mathematics conference in the same vein as WIMS. Through the words
of participants and organizers, we demonstrated the purpose and impact of WIMS
in hopes of motivating you to make your own. We combined our years of experience
with WIMS to offer insights on scheduling, planning, diversifying, and funding such
a conference. We believe that WIMS, which has affected hundreds of women across
the globe, demonstrates the long-term value of EDGE as a place to cultivate future
women leaders and organizers of the mathematical community.
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The Career Mentoring Workshop: A
Second-Generation EDGE Program

Rachelle C. DeCoste

Abstract The EDGE program, originally founded to provide support for women
entering doctoral programs in the mathematical sciences, has had a dramatic, pos-
itive impact on the mathematics community well beyond its program participants.
Many of the women who have participated in the EDGE summer sessions have
not only successfully earned doctorates in the mathematical sciences, but have
subsequently assumed leadership roles in new outreach efforts aimed at diversifying
the United States mathematics community. In this paper, we examine in more detail
the impact of the author’s—an EDGE alumna and current Associate Professor of
Mathematics—efforts to diversify the mathematics community by way of founding
the Career Mentoring Workshop (CaMeW) for women completing their math
doctorates. Lessons learned, including challenges and successes, will be shared for
others who may consider initiating similar outreach efforts. CaMeW is an example
of a “second-generation EDGE program,” that is a program founded by an EDGE
alumna who is actively working to diversify the math community.

1 Introduction

In the summer of 1998, I participated in the first EDGE program. It was held at
Bryn Mawr College and I was one of the eight women participants who were about
to enter their first year of graduate school in mathematics. In the 20 years that have
followed, I have completed a PhD, held a National Research Council Postdoctoral
Fellowship, and earned tenure and promotion at a small selective liberal arts
college—my dream job. I regularly publish research articles on the geometry of
nilmanifolds arising from Lie groups; I teach undergraduate mathematics classes
at all levels; and I mentor students, some of whom go on to graduate school in
mathematics and other disciplines. However, I am not just a typically successful
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academic mathematician; I am an EDGE mathematician. The impact of the EDGE
program is most heavily seen through the work I have done as a member of
the mathematics community in the 15 years, since I completed my PhD. EDGE
mathematicians are deeply committed to work diversifying mathematics.

I am the founder and director of the Career Mentoring Workshop (CaMeW), a
program that has mentored 95 women finishing their PhDs over the course of seven
workshops. This program helps women secure first postdoctoral positions—either
inside or outside of academe—and aims to ensure that they feel supported moving
forward.

2 CaMeW Rationale and Structure

CaMeW seeks to create a supportive community for women mathematicians in
pursuit of fulfilling professional careers. This is important for the individuals, but
also for the mathematics community. Women faculty enhance the persistence of
women students, as supported in Dasgupta [2] and Herrmann [7].

The Career Mentoring Workshop began as a hallway conversation with another
EDGE community member at the 2007 Joint Mathematics Meeting (JMM). At
the time, I was a National Research Council Fellow with a joint appointment at
the United States Military Academy at West Point and the United States Army
Soldier Research Center. This EDGE alumna was completing her PhD, searching
for her first postdoctoral position, and experiencing self-doubt about her ability
and potential to secure a faculty position. She was surprised to hear that I had
felt similarly when I had sought my first position. Our common experience was a
classic example of imposter syndrome, a well-studied phenomenon first introduced
by Clance and Imes [1] that tends to impact even the most highly successful
professionals.

This JMM conversation started a chain reaction. I could no longer ignore the
palpable consequences that doubt was having on women’s potential to access
careers they not only wanted, but were well qualified to fulfill. I decided to establish
a space where women could have open, honest conversations about the job search
process. Indeed, according to Hill [8], women in STEM (Science, Technology,
Engineering and Mathematics) fields are more susceptible to feeling like they do
not belong in academia, thus they are posited to benefit directly and strongly from
mentoring by other women. According to Fridkis-Hareli [3], the majority of women
in science who have been successful in their careers have been mentored, whether
formally or informally.

That fateful hallway conversation led to the first CaMeW held in the summer
of 2007 at the United States Military Academy at West Point. The workshop was
supported by a Mathematical Association of America (MAA)/Tensor Grant for
Women and the Department of Mathematical Sciences at West Point. Ten women
were invited to participate in the workshop from a pool of twenty-five applicants.
Since then, funding has been secured for the workshop to run in 2007–2010,
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2012, 2016, and 2018, with financial support from the MAA/Tensor Program,
the Department of Mathematical Sciences at West Point, Wheaton College (MA),
the NSA, the EDGE Foundation, the Department of Mathematics and Statistics
at Mount Holyoke College, and the Summer Mathematics Program at Carleton.
Each CaMeW session has hosted 12–15 graduate student participants. Even though
transportation for faculty mentors was funded, faculty did not receive stipends for
work preparing for or participating in CaMeW in the first five workshops. These
faculty volunteers demonstrated a deep commitment to supporting other women
mathematicians. June [10] describes tension between expecting professionals to
mentor the next generation and to perform service to the community and the fact that
much unpaid service is performed by women and other underrepresented minorities.
Moving forward, CaMeW expects to compensate faculty for their participation in
the program, though we recognize that the rate of compensation is well below what
their professional expertise should dictate. Throughout the iterations of CaMeW,
several of the faculty mentors have been members of the EDGE community.

The 3-day format of CaMeW has remained consistent throughout the years.
While a longer workshop would allow for more reflection time and community
building, a 3-day commitment is as much time as most participants can afford
away from their doctoral theses. Additionally, in the early years of the program,
asking faculty to volunteer more than 3 days of their time without compensation
seemed like too large a request. The workshops have been held in the Mathematics
Departments at West Point, Wheaton College, and most recently, at Mount Holyoke
College. The suggestion to move the workshop to a national mathematics meeting to
save money has been rejected because of the privacy afforded by these more intimate
venues. To hold CaMeW at MathFest, for example, would not allow for the same
level of comfort that leads to deep, honest conversations. When one’s classmates,
advisor, or potential employer might be just around the corner, it is harder to feel
safe with the level of vulnerability necessary to achieve true connections between
our participants and faculty.

The goals of the workshop are multiple. The immediate objectives are to educate
women about possible career paths and to help them establish, or build upon,
existing peer and mentor networks. Toward this end, several of the sessions consist
of faculty presenting material on topics such as possible postdoctoral positions, the
steps of the job search process, types and expectations of interviews, and negotiating
strategies. Each participant is asked to prepare and submit job search materials
(cover letter, curriculum vitae, research statement, and teaching statement) prior
to the workshop. Two different faculty members read each participant’s package
and then meet with the individuals to provide personalized feedback during the
workshop. This intentional mechanism allows the participants to have solid material
for their job search prior to the mathematics academic job search season, which
typically begins in early fall. In addition to preparing practical job materials,
participants also prepare and present a short talk about their dissertation research in
small group sessions where they receive individual written and verbal feedback. The
supportive atmosphere allows the participants to gain valuable personal feedback
without the negative consequences of a stressful environment. These practice
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presentations help prepare the participants for talks at the JMM or for job interviews.
Feedback on the talks focuses on both content and delivery, with the intent to help
each participant improve her ability to give an effective talk. In addition to the formal
interactions and sessions, time is set aside during CaMeW for each participant to
reflect on her stated goals and their outcomes both at the beginning and at the end
of the workshop.

As stated in the beginning of this essay, the overarching goal of CaMeW is to help
women find first postdoctoral positions that help them establish life-long careers in
mathematics. We believe that a first step in this process is to ask women participants
to consider the kind of a career they want to pursue.

CaMeW is often the first place where participants are asked to reflect on
the path they want for their future. Indeed, they usually know what their PhD
advisors envision, but they are often surprised when they realize that they have
never questioned whether their advisor’s goals align with their own. In fact, over
the years, we have helped several participants navigate difficult conversations and
relationships with advisors. We encourage participants to think about their long-term
career goals, by thinking individually about their desired day-to-day experiences, as
well as the more encompassing characteristics of their desired future work life. We
ask them to consider the balance between research and teaching, both short term and
long term. We challenge them to prioritize certain aspects of their future life from
a long list that includes job-related details—these include number of classes taught
each semester, sabbatical support, travel support, types of courses taught, class size,
size of the faculty, etc. We also validate the important consideration of the quality of
life when thinking about their future, and we encourage them to examine schools’
idiosyncrasies that are not directly work-related, such as geographic location, urban
vs rural locations, availability of social support, etc. We strongly believe that
thinking about priorities leads to a fulfilling work–life balance and is essential
to establishing a successful career in mathematics. We use this exercise to help
participants see that they are not a homogeneous group of 15 graduate students
vying for the same set of jobs. We embolden each participant to seek a job that
aligns with her individuality and with her own personal objectives. We openly and
strongly affirm that each list is valid and that each choice is legitimate.

After we ask participants to think about their ideal jobs and we give feedback on
their application materials, we hold an interactive workshop session on interviews,
during which we engage in mock interviews. The participants often find this
awkward at first, but we ask them to pretend that they are interviewing for their self-
defined “perfect job.” This experience gives the applicants an opportunity to explain
to someone else why they want this particular job and how they are qualified for that
position.

We ask questions that they might be asked on an initial interview, again offering
the opportunity for them to practice responses in a situation where there is no risk.
Participants also brainstorm lists of questions they think might arise and questions
they should ask during the interview process. We find that many participants do not
know that they are expected to ask questions during an interview. The interactive
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workshop session opens the door for us to remind them that interviews are dialogues
where they should gather information to understand whether the position fits their
personal and professional objectives, as discussed above. Through these sessions,
our participants become better communicators and confident speakers who can
advocate for themselves.

3 CaMeW Follow-Up

After the participants leave CaMeW the core faculty routinely review second drafts
of application material, discuss interviews, and provide advice on negotiations as
the participants move through the job search during the following year. We also
arrange an informal gathering at the JMM each year. In this meeting, we invite
participants from all years of CaMeW; this allows them to share their job search
experiences, while interacting with others who have been through the process,
providing additional role models and success stories. As they continue in their
career trajectories, we offer discussions about changing jobs, balancing work and
family life, and becoming more established in their professional settings. Today,
the community of women who continue to support each other as CaMeW alumnae
is impressive. They continue to mentor and advise each other, in person or online
through social media.

4 CaMeW Staffing

The workshop is faculty-intensive. For instance, over the course of 3 days in 2018,
15 participants interacted with 16 faculty and other professional mathematicians.
For each iteration of CaMeW, six core faculty are present for the entirety of the
workshop: the core faculty are there for every session, every meal, and even for
breaks. For the middle day of the workshop, the core faculty are joined by additional
faculty from nearby schools who participate in the feedback sessions and later host
a panel discussion for the participants. A benefit to holding CaMeW at schools
located in the Northeast has been the close proximity of many other colleges
and universities. It is necessary to include additional faculty to provide hands-
on feedback for the participants, but also to increase the number of perspectives
shared during the workshop, which is necessary to support our goal of allowing
participants to interact with a range of successful women in mathematics. We
strive to represent racial and ethnic diversity for the faculty and we also aim to
invite faculty mentors from a diverse range of schools, from traditional liberal arts
colleges, to comprehensive universities and R1 institutions. We seek to include
faculty who are at various points in their careers. For instance, we rely on more
junior faculty to discuss current trends in the job search in mathematics, as we
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know these trends change over time. We ask mid-career faculty who have achieved
tenure and who may have changed jobs to offer their perspective on the often-elusive
life–work balance. We also make sure to provide the perspectives of more senior
faculty who have mentored junior colleagues for years and who can share lessons
learned from their seasoned careers. The presence of senior faculty also benefits
the junior faculty as it allows for strong connections and mentoring relationships to
form among these faculty members. It should be noted that in the initial years of
CaMeW, there were men included among the faculty members. However, in later
years, the faculty have been all women, based on the belief that there are many male
mentors in the mathematics community. With only 20% of the women among full-
time faculty at R1 institutions, according to AMS data (2018), participants may be
lacking in both female role models and mentors.

Faculty who participate for 1 day are fully engaged through their individual
meetings to review application materials, through the feedback they give during
the math presentations, and through their panel session. They are also committed to
the success of the workshop through all the informal interactions that occur during
breaks and meals. Topics during the panel usually range from practical questions
about what makes a job application stand out, to personal experiences tied to the
challenges and rewards of life as a woman in mathematics. We end our one full
day together with a keynote talk by a woman mathematician who discusses her own
journey through mathematics. The most successful talks have been the ones where
speakers have shown their own personalities, honestly shared stories of successes
and challenges, and have humanized the life of a successful woman in mathematics.
Keynote speakers have included Ruth Haas, cofounder of the Smith College Center
for Women in Mathematics; Rhonda Hughes, Bryn Mawr College, cofounder of
the EDGE program; Suzanne Weekes, Worcester Polytechnic Institute, cofounder
of Preparation for Industrial Careers in Mathematical Sciences; Liz McMahon,
Lafayette College; Catherine Roberts, College of the Holy Cross and current AMS
Executive Director; Kathi Crow, Salem State University.

Given all these reasons and goals, it is evident that one of the challenges for
each CaMeW has been to find a well-balanced cohort of faculty who can represent
a wide range of women mathematicians. Each individual must be comfortable with
the vulnerability inherent in sharing her personal story, including the obstacles and
the failures faced along the way. To stay true to the original intent of the workshop,
we must provide a space for women to feel safe in sharing their struggles honestly. In
our experiences, the most effective faculty mentors are those who do not pretend that
their success is void of challenges, but the ones who share their full stories along
with some effective strategies for overcoming the difficulties that can arise in the
life of a woman mathematician. In addition to ensuring that each individual faculty
member will contribute to the overall goals of the workshop, we strive to ensure the
group is both diverse in its composition and cohesive in the overall message, which
is to validate and support each individual’s choices of professional path.
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5 Outcomes of CaMeW

Over the seven iterations of CaMeW, we have mentored 95 women from 54 different
graduate programs. Following the completion of their doctorates, participants of
CaMeW have gone on to successful careers in academia and in industry. Their
first postdoctoral positions include research postdocs, teaching postdocs, tenure-
track positions, visiting positions, industry positions, and full-time parenting. At
CaMeW, we discuss that many academic job paths are not linear and that many
people change jobs during their careers, including several of our faculty mentors.
We provide women with tools to persist in their chosen careers and we want them
to recognize that if they are in academic positions that do not fulfill them—for
either professional or personal reasons—they should know that the issue may not
lie with them not belonging in academia. We also recognize that sometimes women
DO choose to leave academia and move to industry; other times women choose to
remain at home after having children. These are all valid career choices as long
as they are ones that the women themselves feel empowered to make, rather than
feeling they must leave mathematics because they do not belong.

Following CaMeW, participants are able to finish preparing materials that are
tailored to specific jobs and discuss their preparation for these positions. During
interviews, CaMeW participants are able to articulate their own interests and
understand how they fit various positions. Overall, we believe that participants are
more confident in their ability to navigate the job search and that this contributes
to the successful attainment of their first postdoctoral position. Taking away the
unknown and the feeling of isolation provides a level of comfort that allows them
to focus on finding a job that is right for them instead of wondering if they belong
anywhere in mathematics. With our encouragement, CaMeW participants pass on
the knowledge and experiences they gain from their participation in CaMeW with
their peers. We also encourage them to apply for participation in other professional
development opportunities, such as the Association for Women in Mathematics
Graduate Poster Session at the JMM and MAA’s Project NExT.

6 CaMeW Challenges

We are aware of the possibility that participants may arrive at CaMeW with the
notion that they are in “competition” with each other on the job market. We ask
that they list their own personal objectives, which allows them to see that the
overlap of desired jobs is small. We ask participants to set aside this potential
competitive angle so that we may all support each other’s individual goals. During
each iteration, we have succeeded in creating a genuinely supportive environment
in which participants establish lasting relationships.

Funding remains a challenge for the sustainability and continuation of CaMeW.
The lack of funding has led to years when CaMeW could not run. The current
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iterations of the program, including funding for faculty, cost on average just over
$17,000. Though this small investment (just over $1000 per participant) effectively
supports diversifying mathematics, regular funding remains elusive. The future of
CaMeW is in doubt.

7 The Future of CaMeW

Why should programs like the EDGE program and CaMeW continue to exist? Do
women no longer need targeted programs to support their career-long participation
in the mathematics community? One needs look no further than the recent report
about sexual harassment in STEM fields edited by Johnson et al. [9] to see that
all is not equal in academia. Women remain underrepresented in the professoriate,
as documented in the AMS surveys of graduate students and departmental profiles
by Golbeck et al. [4], and are still internalizing these community-wide issues as
personal ones. The AMS recently participated in the National Science Foundation-
funded STEM Inclusion Study. While published results are not available, some
indications of the results were written about by Helen G. Grundman, AMS Director
of Education and Diversity, in the inclusion/exclusion blog of the AMS (November
29, 2018) [6]. As she indicates, women are significantly more likely than men to
agree that they have to work harder to be perceived as a legitimate professional.

In the same Inclusion Study, women members of the AMS report significantly
higher frequencies of being harassed, verbally or in writing on the job in the last year
than men. As a community, we need to do more to support the persistence of women
in mathematics at all levels. According to NSF data [11], women earned 41.7% of
the undergraduate degrees in mathematics and statistics in the United States in 2014.
Further, according to the Fall 2016 Departmental Profile Report in the 2016 Annual
Survey of the Mathematical Sciences in the US reported in the September 2018
Notices by Golbeck et al. [5], women account for 31% of all full-time faculty in
the mathematical sciences. This mirrors the percentage of women earning PhDs in
the United States, which was 30% in 2016 (31% in 2015) according to the AMS
Survey of new PhDs, again reported by Golbeck et al. [5]. However, when one
delves deeper into the employment data, one sees that women hold only 14% of full-
time tenured and 26% of full-time tenure-eligible positions in doctoral mathematics
departments. Though women are persisting in some areas of academia, they are still
largely underrepresented at graduate degree granting institutions.

8 CaMeW Conclusions and the Larger EDGE Community

In my career, I have intentionally surrounded myself with women who are deeply
committed to supporting each other and the larger mathematics community. All
mathematicians should assist with inclusivity efforts in the mathematics community.
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CaMeW is one program that has been successful in creating an inclusive community
of women who support each other as individuals. In Chapter 5, I identify many
other programs created or supported by members of the EDGE community.
EDGE community members are creating, directing, and leading initiatives aimed
at diversifying mathematics beyond—but because of—EDGE: they are second-
generation EDGE activities.
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The Bureau of Labor Statistics puts both “diplomat” and
“mathematician” in the “professional” category, yet the
emotional labor of a diplomat is crucial to his work whereas
that of a mathematician is not.

Arlie Russell Hochschild
The Managed Heart [21, p. 148].

Abstract Terms such as “affective labor” and “emotional labor” pepper feminist
critiques of the workplace. Though there are theoretical nuances between the two
phrases, both kinds of labor involve the management of emotions; some acts
associated with these constructs involve caring, listening, comforting, reassuring,
and smiling. In this article I explore the different ways academic mathematicians
are called to provide emotional labor in the discipline, thereby illuminating a rarely
visible component of a mathematical life in the academy. Underlying this work is
my contention that a conceptualization of labor involved in managing emotions is of
value to the project of understanding the character, values, and boundaries of such a
life. In order to investigate the various dimensions of emotional labor in the context
of academic mathematics, I extend the basic framework of Morris and Feldman
(Acad. Manag. Rev. 21:986–1010, 1996) and then apply this extended framework
to the mathematical sciences. Other researchers have mainly focused on the negative
effects of emotional labor on a laborer’s physical, emotional, and mental health, and
several examples in this article align with this framing. However, at the end of the
article, I argue that mathematical communities and mentoring structures such as
EDGE help diminish some of the negative aspects of emotional labor while also
accentuating the positives.
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1 Introduction

Sociologist Arlie Russell Hochschild launched the term “emotional labor” into
the mainstream with her 1983 book The Managed Heart: Commercialization of
Human Feeling. Inspired by Hochschild, and the large literature on emotional labor
following her seminal work (see, for instance, [39] for a careful review of this work
up to the end of the twentieth century, or [16] for a more recent volume), in this
paper I will define emotional labor as any labor that involves the management of
emotions, of the self or of others. For some nuances that might help the reader
engage with contemporary literature on this theme, see Sect. 2.

No matter how one defines emotional labor, according to Hochschild, the job
of a mathematician is quite independent of this kind of labor (as per the epigraphed
quote). Indeed many mathematicians enter this profession with similar illusions. For
some it is even an appealing factor that the human contact required in many other
professions would not be relevant. For others, emotional labor is a non-issue; they
at some point decide they love and cannot live without mathematics, or they decide
math is something they can do well enough to feed themselves and their loved ones;
in either case, the emotional dimensions of labor do not come into play in their
internal negotiations about future career plans.

However many academic mathematicians soon find that their job entails emo-
tional labor even if it is not part of the explicit job description.1 In this article I
investigate the different ways mathematicians are called upon to provide emotional
labor in the discipline. Even though many scholars have explored the features of
emotional labor in academia, literature does not engage with the specific context
and experiences of those in the mathematical sciences. In this article I probe the
construct of emotional labor in the context of academic mathematics in order to
shed light on this oft-neglected dimension of work in the discipline, and to highlight
some aspects of it that might otherwise be missed. Thus this article may be viewed as
a case study of sorts for emotional labor scholarship on the one hand and a reflection
exercise for mathematicians on the other.

In Sect. 2, I review the literature on emotional and affective labor, and building
on prior work, I tease out a nine-dimensional framework that undergirds the
discussion in the rest of the paper. In Sect. 3, I apply this framework to the three
contexts of teaching, academic service, and academic research. In this section I also
begin to answer the related question: “Who hears the call to emotional labor?” In
Sect. 4, I focus on the mathematical context and identify the kinds of emotional
labor mathematicians are called to do, adapting the framework of Sect. 2 and the
examples of Sect. 3 into the mathematical sciences, and supplementing them with

1Here for reference is the official job description the United States government provides:
mathematicians “conduct research in fundamental mathematics or in application of mathemat-
ical techniques to science, management, and other fields,” see https://www.bls.gov/oes/current/
oes152021.htm, last accessed on December 20, 2018.

https://www.bls.gov/oes/current/oes152021.htm
https://www.bls.gov/oes/current/oes152021.htm
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new ideas as needed. In Sect. 5, I zero in on a specific category of work demanding
emotional labor. Thus in this section I explore whether, and if so how, mathematical
communities and mentoring structures (such as EDGE) may help diminish some of
the negative aspects of emotional labor while also accentuating the positives. I also
address more fully the “who” question posed earlier. Section 6 wraps up this article,
with a few brief remarks.

2 A Framework for Emotional Labor

Theorists of labor have explored various types of work through the last century.
Manual/physical labor, that is, work that engages the human body in the production
of commodities, has been central to most labor movements of the twentieth century.
Intellectual/cognitive labor is of interest to many living in today’s “post-industrial”
“knowledge economy” environment. This paper is about a third type of labor, which
as Hochschild put it bluntly has been “seldom recognized by those who tell us what
labor is” [21, p. 197], also see [18]. Indeed emotional labor is often viewed to be
feminine and thus “less-than.”

In this paper we take any labor that involves managing the emotions of the
worker or of those they interact with to be emotional labor. Some acts associated
with this kind of labor include, but are not limited to, caring, listening, comforting,
reassuring, and smiling. However there are two distinct components here: the self-
management component remains internal, while the outward management of the
emotions of the other (the client, the patient, the passenger, or, in the classroom
setting, the student) is often more explicitly delineated and externally monitored
by the employer. Even though both kinds of emotion-related work were labeled
emotional labor by Hochschild in her [21], today these two are typically analyzed
under different terms.

In most contemporary scholarship, work that entails the monitoring and manag-
ing of the emotions of the laborer is called “emotional labor”; see, for example, [32],
as well as the many articles in [38]. Work that entails the creation or management of
emotions in a designated other (or a designated group of others) is called “affective
labor”, after [19]. These terms and the scholarship engaging with them are not
uncontroversial; see, for instance, [35] for a critique of how the phrase “affective
labor” might be used to create a gendered hierarchy of labor. Nonetheless, the
study of emotions in the workplace in general has led to productive ways of
thinking about the well-being of workers and more broadly about organizational
behavior [14]. Furthermore, understanding how mental, manual, and emotional
labor come together in today’s work may lead to “a potentially more comprehensive
understanding of nature and social life” [18]. Thus, it is my contention that a
conceptualization of labor involved in managing emotions is of value to the project
of understanding the character, values, and boundaries of a mathematical life in the
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academy. In the following, therefore, I will use the term “emotional labor” to capture
both types of emotion work, pointing out explicitly the distinct aspects of different
types when needed.

A formal framework to conceptualize the type of emotional labor involving
the management of the emotions of the laborer is presented in [32], where four
dimensions are proposed:

(a)self frequency of appropriate emotional display,
(b)self attentiveness to required display rules,
(c)self variety of emotions required to be displayed, and
(d)self emotional dissonance generated as the result of having to express organiza-

tionally desired emotions not genuinely felt.

The authors then argue that “although some dimensions of emotional labor (e.g.,
variety of emotions that are displayed) are likely to be associated with higher
emotional exhaustion, it is mainly emotional dissonance that is likely to lead
to lower job satisfaction.” Some of what follows will have resonances with this
perspective; see in particular Sect. 5.

A comprehensive framework for an analysis of emotional labor in the context
of academic mathematics will also need to account for the dimensions of the type
of emotion work that involves the creation and management of desired emotions
in designated others. Analogous to the four dimensions above, I propose the
following:

(a)others frequency of instances of management of the emotions of designated
others,

(b)others attentiveness to designated others’ current emotions,
(c)others variety of emotions one is required to engender or sustain in designated

others, and
(d)others emotional burden generated as the result of having to focus on designated

others’ emotions at the expense of other priorities or personal values.

To the above eight dimensions, I will add a ninth that does not require the
management of displayed emotion and yet is very much related to internal self-
directed emotion management:

(e)self internal self-management of emotion required to continue to perform effec-
tively in the job.

This dimension of emotion work, related in various ways to the mental health of
the laborer, is typically not monitored by the employer and yet is absolutely crucial
to the employee’s performance and sustained effectiveness. See [48] for a review
of the psychosocial consequences of the self-monitoring of emotions, and [34] for
recent work that points toward the various significant effects of self-focused emotion
management on the mental health and well-being of workers.
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3 Emotional Labor in the Academy

There are many ways of doing emotional labor in the academy. See [41] for a
“contemporary account of what it means to experience and feel academia, as a
privilege, risk, entitlement, or failure” [page 1]. Bellas [5] offers a critique of the
rewards system within the academy that values the “masculine” aspects of the job
(research and administration) over the “feminine” aspects (teaching and service).
However she also points out that emotional labor plays a significant role in all these
areas of academic work.

In the three subsections of this section I explore some examples of the emotional
labor involved in the trifecta of teaching, research, and service in terms of the nine
dimensions described above. This will be a general exploration; I will leave the
analysis of the specific context of the academic mathematician to the next section.

In the examples of this section (and the next), I intentionally focus almost
exclusively on the burdens that may accrue from the emotional dimensions of
teaching, service, and research. I do not deny that academics also get a lot of
emotional satisfaction from their work, and that for many, some of these aspects
serve as the highlight of their careers and sustain them for years. In fact in Sect. 5,
I will come back to teaching and service in particular, and zero in on some of the
positives of the emotional labor involved in these two aspects of an academic career.

3.1 Emotional Dimensions of Teaching

Teaching involves a significant amount of emotional work. Cavanagh in [10]
explores in depth the emotional dimensions of teaching and learning; see especially
pages 102–108 where the emotional labor of teaching is explicitly discussed.
Näring et al. in [33] explore specifically the relationship between the emotion
work of teachers and their emotional exhaustion. For this paper, however, it will be
sufficient to specifically point out examples of emotional labor related to teaching
that can be described in terms of the nine dimensions of Sect. 2.

During the academic year, professors typically meet their students in the
classroom a few times a week ((a)self). During these regular sessions, they often
aim to display effortless expertise, enthusiasm for the discipline, and joy of teaching
((c)self). These impressions are not always easy to sustain, and for those instructors
who are traditionally underrepresented in the professoriate, they may be somewhat
difficult to sustain simultaneously. (“She is so bubbly enthusiastic about her topic!
She must not really know what she is talking about.”) Thus the professor must
often pay close attention to carefully balancing the displayed emotions ((b)self). This
balancing act is often difficult. Too much enthusiasm might be counterproductive.
One must be perceived as professional and yet friendly, charismatic and yet not
too distant, and so on. This delicate performance aspect of teaching might be
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additionally difficult for the typical introvert academic, who might be exhausted
by putting on a show for the students every other day.

During office hours, professors regularly interact with students and need to
manage their feelings ((a)others). They need to attend to feelings of helplessness,
distrust, and apathy, and find ways of supporting students’ confidence, interest,
and enthusiasm ((b)others, (c)others). They may need to turn on this others’-feelings
focus, day after day, even when they themselves are not feeling emotionally
healthy or when they have other needs of their own ((d)others). Beyond the standard
requirements of office hour performance, occasionally professors find themselves in
the roles of therapist, mother, experienced older brother, or wise elder, where they
are expected to help students process and manage their emotions about various life
issues.

In academia a disproportionate amount of teaching-related emotional work
falls on the shoulders of female professors; in particular [13] highlights the extra
burden on female faculty. Add to this the gender bias in student evaluations of
teaching, which have been explored at least since the publication of [4]. Such extra
work demands and special requests for favors as well as concerns about student
evaluations certainly contribute to the burden of emotional work related to teaching,
in particular in the dimensions of (b)self, (d)self, (e)self, (b)others, (d)others.

It should be noted at this point that several statements made in this paper about
the added burden of gender on female faculty in general and female mathematicians
in particular may apply also to other minoritized or underrepresented groups. Most
of the scholarship I have come across on the topic of emotional labor works with
gender as the main variable. Scholarship that works with other variables such as
race, ethnicity, and socioeconomic status in the context of the academy does not
always engage explicitly with terms such as “emotional labor” or “affective labor.”
This of course does not mean that there is no extra burden on other minoritized
groups in the academy. See, for instance, [44] for a discussion of the types of
added stress African American faculty live with, and [27] for an investigation into
how underrepresented faculty may be managing their emotions. What is called
“emotional drain” in [45] experienced by women of color in the academy is also
very much in the same territory.

3.2 Emotional Dimensions of Academic Service

There is evidence that supports the claim that women do significantly more
academic service than men; research also seems to imply that the main source
of discrepancy is in the amount of internal service [17]. Furthermore Bellas [5]
argues that there may be “greater demands for emotional labor on women as
women attempt to convey, justify, and legitimize their contributions and, indeed,
their presence.” Noting how women’s ways of leading and communication are
often devalued, she concludes her section on emotional labor and academic service
with “All this may place additional demands for emotional labor on faculty
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women, especially women in the lower ranks and women of color, who may suffer
devaluation in interactive as well as financial contexts.” Once again readers may
assume that the above will apply to other minoritized groups.

Two significant components of internal service are student advising and com-
mittee work [5]. Emotional labor related to student advising is much akin to the
emotion work a professor does during office hours, even though often the others’-
feelings focus is even more dominant in advising. Advising professors must remain
in tune with their students’ emotional needs and general emotional condition in
any advising session ((b)others). Furthermore, they should preserve their “caring
professional” presentation ((b)self).

In faculty committees, which involve work on the emotions of both self and
others, professors often meet regularly to discuss matters that are either too small
or too large to be resolved by said committees. The frequency of these meetings
((a)self, (a)others), especially if in inverse proportion to their actual effectiveness, may
lead to burnout and sometimes apathy. However the main emotional dimensions of
this kind of academic work involve interpersonal relations between colleagues. One
should, for instance, make sure to help others feel good about themselves or at least
not offend their sensibilities too much ((b)others, (c)others). One should also attend to
seeming interested and competent ((b)self, (c)self). Faculty can feel emotionally burnt
out if they find themselves assigned to committees whose work does not interest or
challenge them, or if they find themselves on committees where their contributions
are not valued. If they want to be good team players, they still feel the pressure to
seem interested or at least act as if they care, all the while not feeling that way at all
((d)self). If on top of all this, their fellow committee members are high-maintenance
folks who need extra emotion management, those professors who feel obliged to
perform said management may be additionally burdened ((d)others).

Undeniably some faculty find academic service outlets that are emotionally
very fulfilling for them. Here, as mentioned in the preamble to Sect. 3, I focused
exclusively on the negative dimensions of emotion work related to service. See
Sect. 5 for an exploration of the positive features to complement this discussion.

3.3 Emotional Dimensions of Academic Research

Bellas [5] focuses on how emotional work relates to academic research in a section
titled “Emotional Labor and Research.” In the following I mainly follow her
examples, coding them according to the framework described earlier in Sect. 2.

Certain types of research, in particular social science research which involves
issues of personal relevance to the researcher, challenge the researcher to remain
neutral and objective, or at least conscious of their biases; this might be emotionally
challenging ((e)self). This, together with the expectation of neutrality in the presenta-
tion of the final product of the work, might lead to emotional dissonance ((d)self). In
quantitative or empirical research work, one might still find emotional labor lurking
in the background. If research involves interview or experiment participants, then
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the researcher may need to manage the emotions of said participants ((b)others–
(d)others). In all work, researchers need to remain vigilant against wishful thinking
and overly optimistic interpretations of experimental results and other data ((e)self).
If the research involves other researchers, such as training assistants, then the
researcher once again will need to manage emotions of others, and this time
probably at regular intervals ((a)others–(d)others).

Researchers need to attend to how the audience may view them during a con-
ference talk, making sure to present a professional, competent, and yet interesting
persona, though they may not really feel that way ((b)self, (c)self). When submitting
work for publication or proposals for grants or presentations, they should present
themselves as competent and confident ((b)self, (c)self). If said work is rejected in
a dismissive or rude manner, they must pretend to be mature and generous and
graciously take the given feedback ((d)self). This type of effort might also be needed
to handle certain audience members during conference presentations.

4 Emotional Labor in Mathematics

When I became a mathematician, I knew that my job would not involve much
manual/physical labor.2 If I did think in terms of labor economics at all, I simply
assumed that I would be part of today’s knowledge economy, where I would be
contributing to the production and dissemination of mathematical knowledge. But
what was not obvious to my naive young self is that both research and education
are a part of what is called the “service-providing sector”; see, for instance, the
classification offered by the United States Bureau of Labor Statistics [46]. And this
sector is today, possibly even more so than it had been during the writing of [21],
the largest sector that demands emotional labor from its participants.

In Sects. 3.1–3.3, I explored specific ways in which the three main parts of an
academic career (teaching, research, and service) might involve emotional labor.
In this section I focus more explicitly on the context of the mathematical sciences.
Note that in this section, too, my emphasis will be almost exclusively on the negative
burden of these aspects of academic work.

Perhaps it is natural that teaching mathematics is intrinsically emotional [7, 50].
Students come into our classrooms with many emotions about mathematics. Some
have math anxiety, some have self-doubt, some have a confidence level which may
not serve them well in their next course. Students also bring along non-mathematical
emotions, which contribute in all sorts of ways to how they engage with our content
and pedagogy. If they just broke up with a partner, or if they have a sick relative, or

2This is not to claim that mathematicians are disembodied workers. When I had a minor shoulder
injury and had visions of not being able to use the chalk board for several weeks, or during that
stressful time when I lost my voice unexpectedly, I very clearly noted the physical aspects of my
role in the academy.
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if they are anxious about paying the next month’s rent, their classroom participation
as well as their learning will be impacted. Thus it makes sense that emotional
labor, in particular others’-feelings oriented work along the dimensions of ((b)others–
(d)others), makes up a significant portion of the work of a teaching mathematician.

Most mathematics professors can identify several familiar aspects of teaching
described in Sect. 3.1, if not in their own experiences, then in some of their
colleagues’. In particular many departments have that one professor whose office
hours tend to turn into what seem like therapy sessions from outside the door.
This professor, more often than not, belongs to a minoritized group in the discipline;
it can be a woman or a person of color, for instance. It is clear that the amount of
teaching-related emotional labor an individual professor takes on is not independent
of the identity of that said professor. In particular, I have already mentioned in
Sect. 3.1 that the distribution of emotional labor related to teaching does not seem
to be gender-neutral; there is no reason to expect that the situation will be different
in mathematics.3

The growing focus on pedagogies that emphasize student voice, student activ-
ity, and student agency in the mathematics classroom rather than a charismatic
instructor’s perfect presentation might be a reflection of the emotional labor of
non-dominant groups in this area. Indeed professors from non-dominant groups
may find that the “traditional ways of being a mathematics professor” do not
work for them. That is, the caricature of a genius mathematician staring at the
chalk board or scanning the sea of nameless faces while delivering a flawless
lecture may not be the ideal way for all professors to connect with and teach all
students. Thus today’s mathematics instructors, especially those from non-dominant
groups, might tend toward teaching pedagogies that involve more others’-feelings
focused emotional work, possibly thus lightening the self-directed emotional work
load and the emotional dissonance that might accompany that kind of teaching.
In [40], Steurer describes how inquiry-based learning has resonated with her and
allowed her to more naturally handle the emotion work of teaching. Conceiving of
teaching mathematics as radical care [36] might be another way to reconcile these
dissonances.

Academic service of mathematicians is in many ways similar to that of other
academics. Though some disciplines may be more open to mentoring and outreach
activities than mathematics, and others might more naturally lead to service to the
community in other ways (such as an engineering faculty member serving as a
pro-bono consultant to a local water treatment facility), I believe that the features
of emotion work described in Sect. 3.2 capture many mathematicians’ service
experiences. Of course some may not have such uniformly negative experiences.

3I am by no means suggesting that this is a desirable situation; nor am I asserting that this is a
choice made by individual instructors. It is often the case that certain faculty find themselves in
these situations. It is my belief that nobody should be forced to do more emotional labor than they
are willing to do. Unfortunately, faculty from minoritized groups often face the dilemma of either
doing the extra emotional work and not being respected for it or rejecting doing the extra emotional
work and then suffering the consequences of that decision.
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There are many ways to serve, and some of these can be extremely fulfilling. For
example, Khadjavi and I worked hard for years to put together a collection of
resources for mathematics instructors who want to incorporate social justice issues
into their courses [23, 24]. This process was emotionally draining and yet also very
satisfying. I also find journal editing work to be completely exhausting but also very
fulfilling. I will come back to service in Sect. 5 and there will address this point
explicitly.

Thinking of academic research in mathematics, it is clear that mathematicians
occasionally engage in research that is personally relevant to them. See, for
instance, [26], where Kolba describes research she undertook to better understand
twin pregnancies, and [6], where Berger describes her research related to Down’s
Syndrome. Similarly the work I did with Glass on school districting (see, for
instance, [15]) also came out of personal investment in the topic. Nonetheless,
I believe I need to move beyond the emotional dimensions already described in
Sect. 3.3 to fully engage with the emotional dimensions of mathematical research.

To that end, I will refer to Weidman’s list of the four emotional challenges of a
mathematical life [47]:

“First of all, the mathematician must be capable of total involvement in a specific
problem.” That is, mathematics research often demands full focus for extended
periods of time, and this is not only mentally exhausting but also emotionally
draining. One might feel that one needs to withdraw from other interests, or else
one is not doing enough. Each of the self-management dimensions ((a)self–(e)self)
comes into play here.

“Second, the mathematician must risk frustration. Most of the time, in fact, he
finds himself, after weeks or months of ceaseless searching, with exactly nothing:
no results, no ideas, no energy.” A lot of mathematics research work leads to
no results of significance. Add to this the challenges of getting published once
one does have a significant result, which, for the not-yet-thick-skinned, can get
especially disorienting and discouraging. Similarly these are self-management
focused ((b)self–(e)self).

“Next, even the most successful mathematician suffers from lack of appreciation.”
The mathematics community proudly celebrates its geniuses, but celebrity and
genius are fickle [22]. After all, what more can you do once you win a Fields medal?
Anything after that will be a let-down. Even those who feel appreciated by their
mathematical colleagues may suffer from a dearth of appreciation from family and
friends, and the world outside the mathematical one might be totally immune to
mathematical glory. This might lead to serious emotional strain ((e)self).

“Finally, the mathematician must face the fact that he will almost certainly be
dissatisfied with himself.” Somewhat a corollary of the above, this means that
mathematics is huge and the contribution of each individual mathematician is just
a small speck. Whatever one does will be small change when compared to some of
the giants. Once again this type of dissatisfaction might lead to serious emotional
strain ((e)self).
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Weidman’s four challenges all require mathematicians to manage their own
emotions, corresponding to the dimensions ((a)self–(e)self). The mathematician who
cannot handle all of them at least halfway successfully at least some of the time is
bound to be miserable. One might reject some of these challenges as myths and try
to disentangle oneself from their hold (see [20] for a call for this kind of a rejection),
but that too takes emotional work as these ideas and ideals are quite solidly built into
the culture of the discipline.

So far I have explored some specific ways academic mathematicians might
engage in emotional labor. Are there any other kinds of emotional labor mathe-
maticians might be called to do? And just who gets to hear that call? What are the
consequences of hearing that call? I focus on these questions in the next section.

5 Mathematical Communities, Mentoring Structures,
and EDGE

The idea that emotional labor has various human costs is not new; neither is the
idea that it is not uniformly a negative for the particular laborer engaged in it, see,
for instance, [48]. In this section I explore some of the positive possibilities related
to emotional labor in the context of an academic mathematical life. In particular I
reflect upon mathematical communities, mentoring structures, and EDGE.

Since 2008, the American Mathematical Society has supported Mathematics
Research Communities (MRC). The MRC is “a professional development program
offering early-career mathematicians a rich array of opportunities to develop col-
laboration skills, build a network focused in an active research domain, and receive
mentoring from leaders in that area” [2]. In the last few years, the Association for
Women in Mathematics has led or supported research networking conferences for
women in various fields; see [3] for a list of research networks supported in various
ways by the AWM. These programs, and others like them, are all spearheaded by
mathematicians who feel called to do the work to create networks, connect people,
mentor young mathematicians, and make our community a more welcoming and
supportive place for more people.

The Mathematical Association of America has two programs for mentoring
junior mathematics faculty. The first one of these, Project NExT (New Experiences
in Teaching), “is a professional development program for new or recent Ph.D.s in the
mathematical sciences” addressing “all aspects of an academic career: improving
the teaching and learning of mathematics, engaging in research and scholarship,
finding exciting and interesting service opportunities, and participating in profes-
sional activities. It also provides the participants with a network of peers and
mentors as they assume these responsibilities” [31]. The MAA Mentoring Network
is another mentoring program “aimed at connecting early career mathematicians
with experienced mentors working in mathematics” [30].
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There are many other mentoring structures built around academic mathematics.
One might count among these:

1. The e-Mentoring Network, hosted by AMS blogs, available at https://blogs.ams.
org/mathmentoringnetwork/,

2. The Infinite Possibilities Conference, “a national conference designed to pro-
mote, educate, encourage and support minority women interested in mathematics
and statistics” [9],

3. NSF Mathematics Institutes’ Modern Math Workshop at SACNAS, “a pre-
conference workshop held at the SACNAS National Conference, intended to
encourage undergraduates, graduate students and recent PhDs from underrepre-
sented minority groups to pursue careers in the mathematical sciences and build
research and mentoring networks” [43],

4. The Field of Dreams Conference, organized by The National Alliance for
Doctoral Studies in the Mathematical Sciences, is a series of annual conferences
that “introduces potential graduate students to graduate programs in the mathe-
matical sciences at Alliance schools as well as professional opportunities in these
fields. Scholars spend time with faculty mentors from the Alliance schools, get
advice on graduate school applications, and attend seminars on graduate school
preparation and expectations as well as career seminars” [42].

And of course one cannot forget EDGE. “The EDGE Program is administered
by the Sylvia Bozeman and Rhonda Hughes EDGE Foundation with the goal of
strengthening the ability of women students to successfully complete PhD programs
in the mathematical sciences and place more women in visible leadership roles in
the mathematics community. Along with the summer session, EDGE supports an
annual conference, travel for research collaborations, travel to present research and
other open-ended mentoring activities” [12].

The work involved in each of these programs is varied, but there is a significant
emotional labor component. The main job is to connect people to one another, and
though a lot of the emotion work is distributed over a large number of people,
the main program organizers do a large chunk of it. There is much emotion work
that involves the management of the emotions of others; in particular many of
the junior mathematicians participating might be feeling insecure and lost or at
least mildly confused. The emotional labor involved is mainly about making sure
these participants feel a sense of belonging, and a sense of confidence and realistic
optimism about their future in academic mathematics.

Digging deeper, one can see the resonances with the types of emotional labor
described in Sects. 3.1–3.2. In particular the types of work involve teaching and
service. However, people involved do the work willingly. They basically self-select
into these roles. This is perhaps one of the main reasons why the emotional labor
involved, though still highly burdensome in any objective sense of the word, does
also help them feel nourished and fulfilled.

However there are two other reasons I believe.
First the people who put their time and energy into these programs feel called to

do this type of work because they believe ideologically and philosophically that it

https://blogs.ams.org/mathmentoringnetwork/
https://blogs.ams.org/mathmentoringnetwork/
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is the right thing to do. Their political and ethical framing of the world puts them in
the position to value this kind of work, and this in turn makes the work feel more
endurable, more meaningful, and even more joyful.4 “Meaningful work” is a catchy
phrase; see [11] for a working framework for it that revolves around three themes
(sense of self, the work itself, and sense of balance), and see [37] for more on the
benefits of meaningful work for the laborer. But even leaving related scholarship
aside, it is easy to understand how meaningful work can transform strenuous emo-
tional labor into pleasurable and desirable labor. Thinking of the nine dimensions
proposed in Sect. 2, one can see that the dimensions of emotional labor activated
mainly involved are (a)self–(c)self and (a)other–(d)other. There is little self-deception
or misrepresentation of feelings, and there is more or less no emotional dissonance.
So perhaps the individuals are exhausted at the end of the day, but they sleep well.
This resonates with the work of Morris and Feldman in [32], who found that
emotional dissonance was the main component of emotional labor that led to job
dissatisfaction; see the relevant quote in Sect. 2.

Secondly and perhaps relatedly, there is often a shared identity component to
the decision to dedicate time and energy to a program of this kind. This makes
the work meaningful and the emotional dissonance minimal, yes, and in all these
ways, this reason may seem similar to the first. But what makes this different is
how it interacts with the others’-feelings focused labor dimensions (a)other–(d)other.
The shared identity makes the emotional labor of managing the designated others’
emotions a lot easier, as the individual has a better understanding of said emotions of
those designated others. This of course does not mean that white women necessarily
make the best mentors for white women, black men necessarily make the best
mentors for black men, and gay Latinas necessarily make the best mentors for gay
Latinas. But it is natural to expect that shared identity makes aspects of the involved
emotional labor much easier.

6 Concluding Thoughts

The EDGE Program is an example of projects that demand emotional labor but that
also contribute significantly to the well-being of both its participants and its leaders
and mentors. In fact several participants become mentors and leaders themselves;
see [8]. Though emotionally exhausting, these projects can continue because they
fulfill several needs of those that work on them. Instead of expending their energy
and emotional well-being on trying to run their departmental and campus committee

4This certainly applies to other service work, such as my editing work with Khadjavi on [23, 24]
and K-12 outreach activities of various mathematicians; see, for instance, [49]. Similarly blogging
and hosting other networking sites is a valuable service contribution, where most of the time people
who do the needed work engage in it because of political and ethical goals. See in particular the
e-Mentoring Network mentioned above as well as the inclusion/exclusion blog of the American
Mathematical Society, available at https://blogs.ams.org/inclusionexclusion/.

https://blogs.ams.org/inclusionexclusion/
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meetings smoothly despite colleagues who expect them to make coffee or just smile
and nod, and these mathematicians can put their efforts into projects that help them
connect with each other, find meaning, and thrive in the academy.

On a more pragmatic level, there is perhaps more that can be said. One of the
anonymous reviewers of this paper wrote that “the analysis [done here], which has
intrinsic value in making visible labor that is generally hidden and unrewarded, has
even more value-added as a framework to support these programs.” I am sincerely
energized by the possibility that this work may help these programs in one way or
another. Indeed it may be of some value to the powers that be to comprehend that
these programs benefit not only their participants but also their organizers, in ways
that enrich their mathematical lives and naturally lighten some of the load of the
emotional labor that comes with the territory.

There are several directions where this work could be further enhanced. For
example, as one of the reviewers mentioned, there is significant variation across
institutions of higher education in the USA in terms of how the three pillars of
academic work (teaching, service, research) are to be valued and prioritized. This
might add significant complications to the way we can talk about mathematicians’
emotional labor. For instance, mathematics faculty in research-focused institutions
might be concerned more about their research productivity and might have to
perform more emotional work related to this aspect than others (in particular
in the categories of ((b)self–(e)self) as described at the end of Sect. 3.3), while
mathematicians in more teaching- and service-oriented institutions might find that
their work involves more emotion work along the dimensions of ((b)others, (c)others)
as described in Sects. 3.1–3.2.

As another possible direction, consider that research suggests that “foreign-
born women faculty members’ patterns of engagement in work activities contradict
the gendered division of labor in academia” [29]. Foreign-born faculty make up
a significant percentage of the overall American academia (in 2009, nonresident
aliens made up 11.5% of the 11,599 new tenure-track faculty members at four-year
institutions in the USA, while Asian Americans made 10.5%, African Americans
made 0.5%, and Hispanics made 0.4% [25]). Emotional labor in the context of
foreign-born faculty might look different; think, for instance, about what kinds of
different challenges such faculty might face in the contexts of teaching and advising,
and how the benefits described in Sect. 5 may apply to them in different ways.
As many US-based mathematicians are also foreign-born (cf. [1, 28]), parts of
the discussion in this article on emotional labor in mathematics might need some
modifying accordingly.
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Experiencing Mathematics Abroad

Michelle Craddock Guinn and Bradford Schleben

Abstract Study abroad experiences have been recognized as providing students
with valuable opportunities to work with individuals and groups different from
themselves, to incorporate diverse viewpoints into their work, and to engage
in meaningful experiences outside their culture. This article focuses on one of
the mathematics courses in Belmont University’s study abroad program that was
designed to synthesize course content and authentic learning experiences in order
to address the diverse set of student learning outcomes. While improved student
engagement in cultural understanding and the promotion of intellectual diversity
took on a central role in the course design and assessment, a secondary goal was
an improved student perception of mathematics and its application. We examine
the course in action by looking at three example assignments, followed by their
connections to program experiences, and how these things coordinate to meet the
student learning outcomes.

1 Introduction

Global learning opportunities that provide students with international perspectives
have become a goal of many university programs, especially those that aim to
provide students with opportunities to improve cultural understanding, and promote
intellectual diversity. Although these global opportunities are becoming more
common, it often remains a challenge to measure competencies and effectiveness
in programs that focus on cross-cultural experiences.

Study abroad experiences have, however, been recognized as providing students
with valuable opportunities to work with individuals and groups different from
themselves, to incorporate diverse viewpoints into their work, and to engage in
meaningful experiences outside their culture [4, 5]. In an effort to help educators
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align study abroad programs with the Essential Learning Outcomes laid out by
the Association of American Colleges & Universities [2], the Center for Capacity
Building in Study Abroad—a joint project between National Association of Foreign
Student Advisers (NAFSA) and the Association of Public and Land-grant Universi-
ties (APLU)—argues that meaningfully engaging students in global questions that
demand integration of knowledge, skills, and personal and social responsibility is
an essential outcome of study abroad programs [6].

The program discussed here is aimed at addressing these concerns by using
mathematics as a universal language to better understand and connect people and
social issues across different cultures. The program has been implemented in three
study abroad trips in Europe and Australia. While improved student engagement
in cultural understanding and the promotion of intellectual diversity took on a
central role in design and assessment, a secondary goal was an improved student
perception of mathematics and its application. This article focuses mainly on one
of the mathematics courses in this program abroad developed to benefit student
capacity for such engagement while promoting diverse cultural understanding and
appreciation. As such, the course was designed to synthesize course content and
authentic study abroad learning experiences in order to address the diverse set
of student learning outcomes. We will begin with a course overview and the
development of student learning outcomes. Next, we examine the course in action
by looking at three example assignments, followed by their connections to program
experiences, and how these things coordinate to meet the student learning outcomes.
Lastly, we will examine qualitative data aimed at examining perceived growth in
content and cultural understanding.

2 Course Overview

The authors teach courses at Belmont University, a liberal arts university in
Nashville, Tennessee. Students at Belmont must complete a core liberal arts
curriculum, including one mathematics course focusing on quantitative literacy and
reasoning. Hence, the study abroad course we will examine was designed around
the application of basic mathematics skills to the analysis and interpretation of real-
world quantitative information in order to tackle problems both relevant to students
in their lives and to the communities and cultures in which they were studying.
We found that a Math for Social Justice course provided a natural framework for
addressing both study abroad and mathematics learning goals.

The course was originally developed by the authors to satisfy the mathematics
requirement in the core liberal arts curriculum at Belmont University and was partly
inspired by conversations with faculty at other institutions, especially Dr. David
T. Kung of St. Mary’s College of Maryland. It ran multiple times over the course
of four consecutive fall and spring semesters before being adapted to the study
abroad format explored here. At the time of this publication, the course will have
run three consecutive summer terms in Australia, once in Europe, and will have
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expanded to include a version in Scandinavia. This course looks to take active
learning experiences beyond the institution and home region—highlighting issues
of social and economic justice on local, national, and global levels. Further, students
would see how mathematics can act as an analytical tool in understanding cultural
interdependence, power, and privilege. More succinctly, the goal is to give students
means and methods to quantify and interpret complex social issues affecting the
people, land, and culture.

As mentioned, this particular Math for Social Justice course has run in the
summer as part of an interdisciplinary study abroad program in Australia, during
which students spent over three weeks near Brisbane, Townsville, Cairns, and Syd-
ney, as part of a program designed to provide authentic and formative experiences
with different communities and cultures. The location selection allows for different
experiences in metropolitan cities and smaller coastal towns, with members of
multiple Aboriginal groups, and at a Queensland University research station on
North Stradbroke Island. The location diversity allows for encounters with a variety
of environmental ecosystems, cultures, and peoples—each of which brings different
opportunities to quantify issues of change and social justice.

2.1 Student Learning Outcomes and Preprogram Elements

Developing learning outcomes is an essential first step toward effective teaching.
Thus, in designing a mathematics course to fit in the study abroad context, it was
important to identify learning outcomes that would be effectively served by the
course content while also fulfilling the expanded goals of a study abroad course. As
appears in [6], NAFSA and the APLU have provided a broad framework in which
students should be engaging during a study abroad experience. This framework for
Essential Learning Outcomes (ELOs) centers on four areas:

• Personal and Social Responsibility;
• Intellectual and Practical Skills;
• Integrative Learning;
• Knowledge of Human Cultures and the Physical World.

Further, ELOs should be met in an environment which provides perspective and
opportunities beyond what is available to students at their home campus. We desired
for these changed perspectives to be a result of synthesis between content and
cultural learning, as opposed to being inspired solely by non-discipline related expe-
riences abroad. In addition to the above framework, special consideration was given
to engage students in deep learning outcomes, as outlined by the National Survey
of Student Engagement (NSSE) [10]. These outcomes focus on Higher Order, Inte-
grative, and Reflective experiences which inspired the learning outcome language
used in this course. Its inclusion in the design is evidenced in the three activities ref-
erenced in this paper: A “Press Release” activity, a “Discussion Lead” assignment,
and “Program Journal” component, each of which appears in the Appendix.
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In order to lay the groundwork for the above goals, this course would need
to establish an effective entry point for a deeper appreciation of mathematical
content while also meaningfully engaging students in the outcomes laid out in [6].
We used internal learning objectives, those outlined by other institutions, such as
UMASS Lowell [13], and the AAC&U’s VALUE rubric for quantitative literacy [1]
as guides to help shape the content objectives, particularly focusing on developing
curriculum that would be adjustable for different program locations going forward.
Considerable attention was given to making the Math for Social Justice course a
transferable model for connecting authentic cross-cultural experiences and quanti-
tative reasoning content, while opening the door for a deepened understanding of the
complex issues of whichever culture, community, or country students encountered.

Each course operated as a hybrid classroom, containing both online and in-
class components. The students had weekly online learning modules (five pre-trip,
two during the abroad portion, and one post-trip), accompanied by in-person class
meetings multiple times before the trip and interspersed group meetings during the
program. This allowed students the opportunity to individually practice and demon-
strate skills knowledge while also engaging in progressively more challenging
problems, projects, and discussion in a collaborative setting. It also helped ensure
sufficient content mastery and exposure to mathematical applications to cultural and
social issues prior to being abroad. These elements provided reference points for
integrative exposure and encounters with cultures and communities unfamiliar to
the students.

Finally, a well-known difficulty study abroad programs face is in combatting
the student perception that they are studying but “on vacation” abroad [3]. As
many study abroad facilitators and faculty have noted, a disconnect between
content and cultural encounters may increase the likeliness of this attitude emerging
during the program. In addition to emphasizing the importance of the synthesis of
course content and cultural experiences, this was combatted with the inclusion of
multiple service-learning components, which have been shown to play an important
role in connective learning [9, 11]. The preprogram assignments, discussion, and
project preparation sought to help bridge any perceived gap between curricular
activities and cultural experiences, priming students to make connections with built-
in opportunity for reflection throughout the program.

3 Course in Action

While much of the skills practice was completed individually prior to the program,
larger projects and assignments were designed to function as collaborative learning
experiences and tasks that could be refined and submitted during the program. Some
of these activities utilized small groups in which students submitted a common
work, while others had multiple components that were submitted in stages in
order to allow for feedback, revision, and discussion. We now look at several of
the activities and how they aligned with goals of a quantitative reasoning course,
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effectively met the underlying ELOs for the study abroad program, and connected
meaningfully to site visits and cultural experiences during the program. We will first
detail the assignments, each of which is presented in the Appendix. This is by no
means an exhaustive list, nor are learning outcome adaptations addressed in only
one activity. as they appear in the previous section.

3.1 Activities

The first activity is a “Press Release” assignment that could be modified to
address how a variety of social issues—such as poverty rates, incarceration rates,
educational performance—are quantified. It could also be scaled up in length and
difficulty via an added debate component or a more in-depth analysis. Students
were divided into groups, with each group selecting a country comparable to
where students would be traveling to abroad (Australia, in this case). The groups
were then tasked with collecting data regarding that country or region’s energy
production coming from renewable sources such as wind or solar over the last
10 years. The groups produced two press releases: one as though they were working
for an environmental group that advocates for more funding and support for
renewable energy and one in which they were public relations representatives for
the country’s department of energy. These two statements were to present a case
either arguing for increased renewable energy sources or an argument supporting the
country’s current energy policies. Part of their submission involved a collection of
footnotes detailing how statistical measures presented were calculated. Groups were
encouraged to be creative with their quantitative arguments, including providing
meaningful comparisons to the countries of other groups, while also outlining
potential consequences of each side of the argument.

In terms of addressing mathematical content objectives, this activity required
students to collect data, form basic statistical measures, and establish evidence
to support the positions assigned. In addition, the groups had to take on multiple
viewpoints of an important contemporary global issue and attempt to frame the data
to serve each side of the debate. Students needed to demonstrate an understanding
of the positions presented and the arguments defending each position, as well as be
able to decipher the origin of statistics used to support claims. They were assessed
on the appropriateness and clarity of data presented, as well as on the accuracy of
an accompanied explanation of each statistic presented. This activity also served
to assess the group’s ability to communicate mathematics effectively. Finally, it
served as an opportunity for feedback from both instructor and classmates regarding
how effective students were at communicating quantitative information. Polished
presentations highlighted the importance that framing plays in communicating
quantitative information.

Next was a “Discussion Lead” assignment that required students to research
a social, environmental, or ecological issue relevant to the program locations,
provide articles and references citing quantitative measures regarding the issue,
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and then develop the framework for a group discussion which they led near the
end of the program. In preparation for this—during each week of the pre-trip
portion of the course—students took turns submitting articles or studies containing
quantitative data on issues concerning inequality or injustice relevant to Australia
and its citizens. Students began developing the inclination to skeptically view
how data and mathematics are used in application. They explained concepts like
percentage change, correlation, and p-values in the context of social, economic,
and environmental issues before and after the mathematical content was rigorously
covered in the course. They then engaged in instructor-facilitated discussion about
different methods and conclusions of the various articles. For example, in the first
week students read articles concerning wealth inequality in Australia, culminating
with them learning about Gini coefficients and Lorenz curves as applied to the
issue. This practice allowed students to develop their skills of evaluating claims and
questioning quantitative evidence prior to the closing “Discussion Lead” assign-
ment. The discussions were required to address the quantitative information in the
references, while also challenging the audience to consider how their experiences
abroad connected to the topic chosen.

In addition to peer feedback, students were provided a rubric detailing how
they would be assessed on four components of their facilitation of discussion:
“Content Relevance and Clarity,” “Motivation and Connections to Experiences,”
“Engagement of Classmates,” and “Impact Analysis” (including future questions to
consider). As “Engagement” was an assessed component, students were encouraged
to utilize different active learning strategies they had been exposed to throughout
the course (e.g., “Think-Pair-Share”; “One-minute Papers”) in order to deepen the
discussion. Topics that students selected included: disparities in rates of domestic
violence, mental health disorders, and incarceration rates across different demo-
graphics in Australia; issues of legal discrimination and land right battles of different
indigenous groups; economic and environmental factors involved in bans on plastic
bags; and measuring Great Barrier Reef restoration efforts. Each of the discussions
presented different challenges and viewpoints in terms of what was being measured,
methods used in collecting information, analyses and conclusions drawn from data
collected, and the impact on the people and culture. This goal of this assignment
was to prime students for connecting the quantifying of social issues with their
own experiences abroad, along with highlighting the natural inclination for students
to identify and articulate parallels to issues present in their own culture. Further,
students were asked to apply content knowledge to determine the degree in which
they considered the data presented to be a meaningful representation of reality.

Finally, given that the program aimed to aid students in expanding their
understanding of cultures different from their own, the course had a required
journaling assignment designed to provide an opportunity for reflection on growth
and increased self-awareness. The hope of this activity was to have students identify
and describe changes in their own learning, specifically focusing on the contribution
of contextual components linked to their cross-cultural experiences. There were
structured, common journal prompts assigned as part of the abroad portion of the
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program, as well as other required entries allowed to be on a topic of the student’s
choosing. Then, a final prompt, revealed at the end of the program, required students
to reflect on the role that quantitative representations played in applying moral
reasoning to either social or ethical issues they encountered on the program, while
noting any challenges or limitations they encountered in doing so.

Again, the goal was to ensure that the journals went beyond a simple means of
recording experiences and instead involve meaningful reflection and assessment of
one’s own self-awareness, while also providing ample opportunity for autonomy in
selecting themes on which connect their own growth. Students completed at least
six journal entries throughout the program, each one-to-two pages in length. By this
stage of the program, students who had put great effort into quantifying and testing
measures of inequality mathematically and critically were tasked with reflecting
on their experiences with the people and cultures they had been studying. Further,
students were faced with the reality that, although mathematics is essential in mea-
suring and understanding complex issues including cultural differences, it provides
only a portion of the insight necessary to understand these differences in full.

3.2 Connecting Activities, Experiences, and ELOs

A challenging aspect of course design in an abroad program is finding and arranging
experiences that contribute to student learning and are different than what students
may experience on their home campus. A great deal of the program’s logistical
success in this area is due to Dr. Alison Parker of Belmont University, and the
program’s organizing partner of Arcadia University. We now look at a selection of
the experiences students had in Australia and some ways in which they connected
to the Essential Learning Outcomes stated in Sect. 2.1 and the activities outlined in
Sect. 3.1.

The “Personal and Social Responsibility” learning outcome encompasses the
importance of civic and intercultural knowledge and engagement. As such, it was
important for students to complement their quantitative study of complex issues
affecting both local and global communities with an ethical reasoning process. For
example, in the “Press Release” activity, students are asked to look at different
viewpoints of an important issue, the use of renewable energy, and then gather
and express quantitative evidence in support of an argument concerning that issue.
This emphasis on civic knowledge was present throughout the various “Discussion
Lead” topics as well. As a result of differing viewpoints surfacing in discussion,
these assignments also required students to interpret and propose hypotheses that
indicated a deep understanding of the issues, while engaging in ethical reasoning in
determining how to address them.

This outcome was further supported by several abroad experiences. One example
was when students met with the CEO and COO of a car-sharing company that
utilized statistical analyses to optimize hub locations, reduce emissions, and relieve
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parking space scarcity in Sydney, Australia. The company not only looked to
illuminate the transportation needs of different communities within the city, but it
also aimed to help address the real-world challenge of reducing carbon emissions
while providing means of affordable transportation. The students also visited an
environmental project development firm, Green Collar, that detailed how it applies
data analysis in its role as an environmental market investor and sustainable land
developer. Unlike the USA, Australia utilizes a carbon credit system and this
company works with land owners to make environmentally beneficial farming and
agricultural practices more affordable and profitable. While students were exposed
to data collection and the development and application of some basic mathematical
models, they also witnessed how environmentalism can benefit from the application
of some of these mathematical tools. In both of these instances, the experiences not
only promoted civic engagement in the issues of sustainability and social respon-
sibility, but they also highlighted the importance of communicating quantitative
information effectively, as the companies were often required to convince potential
clients, collaborators, and even government officials with compelling quantitative
arguments similar to those the students made.

Lastly, within the “Discussion Lead” assignment, several of the topics covered
revolved around the challenges facing Australia’s unique ecosystems as a result of
both humanity’s influence and global climate change. With the nonprofit organi-
zation Reef Ecologic, students participated in a Citizen Science expedition during
which they gathered and analyzed data relevant to an environmental issue of local
and national importance—the health of the Great Barrier Reef. They then partici-
pated in a case study detailing various proposals aimed at measuring and addressing
how pollution and land development affect local ecosystems comprised mainly
of wildlife endemic to the area. These assignments and experiences all required
students to understand the contexts of critical issues involving sustainability and
the environment, a matter of great importance to the land, people, and culture
of Australia. Further, students practiced ethical reasoning while witnessing the
application of the skills they had developed by the various organizations.

Given the course’s focus on quantitative literacy, the activities and experiences
almost all had components that addressed the “Intellectual and Practical Skills”
learning outcome. Both the “Press Release” and “Discussion Lead” assignments
looked to assess the students’ quantitative inquiry and analysis skills. Likewise,
experiences with the car-sharing company and Green Collar involved the application
of these skills in a real-world setting. While these basic quantitative literacy
outcomes were important, there were also activities that allowed students to
engage in creative and critical thinking processes while practicing oral and written
communication, most clearly demonstrated with the “Program Journal” assignment.

In terms of experiences serving these outcomes, the aforementioned Citizen
Science expedition provided an authentic opportunity for students to take concepts
they had learned examining other people’s data and apply them to their own project.
Being involved in the entire process, from logistical planning to data collection
to analysis, forced students to draw appropriate conclusions based on analysis of
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data while making judgments about the limitations of data as well. Further, the
expedition involved team problem-solving, as groups were tasked with deriving
potential solutions and interventions in a post-activity discussion.

Finally, students had the opportunity to engage in meaningful conversation with
people of different cultures and communities while abroad. One such opportunity
occurred within conversations students had with a member of the Quandamooka
Aboriginal people, Matt Burns. As a guest lecturer, Matt delivered an active-learning
lecture about his people’s culture and the ways in which they had previously
and continue to face discrimination and marginalization. He not only provided
students with insight and understanding unique to his life experiences, but he also
challenged students to describe what they knew about the inequality and injustices
facing Aboriginal people. Students who had studied and practiced identifying
and quantifying indicators of marginalization of Aboriginal people in the pre-trip
component of the “Discussion Lead” activity were now being asked to relay their
understanding to someone who had directly encountered and endured them.

Many of the experiences we have described focused on applying skills and
knowledge to complex problems. The broad outcomes of “Integrative Learning”
and “Knowledge of Human Culture and the Physical and Natural World” were at
the heart of each scheduled experience during the program. As these experiences
were often pre-empted by relevant pre-trip readings as part of the “Discussion Lead”
activity or with faculty-led group discussion, students were repeatedly challenged
to take their previous knowledge—regarding both content and cultural—and apply
it in new settings. Similarly, the “Program Journal” assignment was meant to be
a medium for acknowledgement of the synthesis of current and past learning, as
well as an opportunity for students to articulate the connections between content,
context, and their own self-awareness. For example, one student responded to the
final journal prompt by expressing appreciation for the application of quantitative
reasoning, but also frustration and resignation in the limitations of that pursuit
because “data will never tell us enough of the story.”

Many of the examples in which students not only integrated their knowledge, but
also engaged in an activity meant to broaden their cultural understanding, centered
around students’ experiences connecting with members of different Aboriginal
communities. Students had been exposed to a variety of issues affecting Aboriginal
people via the “Discussion Lead” activity pre-trip. They had responded to articles
examining topics ranging from the prevalence of suicide and depression in certain
Aboriginal communities to struggles of these traditional land owners attempting
to reclaim their land rights. In these and other contexts, students had experience
attempting to quantify the effects of discrimination against these people, but we
wanted them to achieve a deeper understanding of these issues of injustice and
inequality during their time in Australia.

At different points of the trip, members of both the Quandamooka and Nyawaygi
people were willing to discuss with students the challenges their people have faced
such as loss of land, liberty, and life. One of the most meaningful aspects of the trip
for multiple students, as relayed in the “Program Journal” assignment, was learning
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from people affected by the inequalities and injustices that students had studied pre-
trip. Students were asked to connect the quantitative information on which they have
honed their mathematical skills with the experiences and understanding stemming
from these conversations. These reflections and subsequent discussions were the
least mathematical components of the course, as students grappled with viewpoint
of the victims of the injustice and inequality they have been trying to quantify, along
with the reality that advantages and power possessed by one culture may often create
disadvantages and despair for others.

This was an important component of the student’s learning experience, because
although they can read and research and attempt to quantify the injustice and
inequality affecting people around the world, there is, hopefully, unique under-
standing gained in the opportunity to hear from the people affected. Though some
students described experiencing a feeling of unease as they grappled with these
issues during post-activity discussions, these experiences aimed to serve deeper
goals in the addressing of one’s own lack of understanding. Whether it was
reflection on complex questions about other cultures and diverse groups or cogently
connecting life experiences and academic knowledge, the journaling provided
another forum for students to articulate their own formation of the synthesis of
mathematical content and their experiences.

4 Student Perceptions on Learning

There has been recent research connecting study abroad programs to students’ cross-
cultural awareness [8] and openness to diversity [7, 12] that provided hope that this
program could achieve similar ends. In an effort to measure how successful the
program was in achieving its desired outcomes, students were provided with an
anonymous, voluntary post-program survey.1 Given the nature of short-term study
abroad programs, the level of student interest in mathematical courses, and the
relative recency of the program’s development, respondent data is limited. In fact,
the data set size (n < 20) is still too small to make meaningful conclusions based
on quantitative results. However, we feel the nature of the questions and the limited
data attained are still of interest in beginning to understanding student perception
and also illustrate some potentially useful information in course assessment.

First, students were asked to respond with the degree to which they agreed the
program affected them in a number of potential ways. Responses were given on a
five-point scale: strongly disagree, disagree, neutral, agree, and strongly agree. The
statements below had greater than 90% of students agreeing or strongly agreeing
with the statement. Students indicated that they felt the program achieved a variety
of goals, including the following:

1Belmont IRB Exemption, Protocol ID 690.



Experiencing Mathematics Abroad 159

• Contributed to them developing a more sophisticated way of looking at the
world.

• Increased the likelihood they would seek out opportunities to engage with
cultures other than their own.

• Was likely to have a lasting impact on their worldview.
• Increased their appreciation of mathematics.
• Helped them to better understand cultural/global issues with increasing

complexity.
• Influenced their understanding of cultural values and biases outside of

themselves.

The statement that received the highest level of disagreement was “The course
caused you to refine your social or political views.” This may indicate that, despite
wrestling with complex social issues, the problems and solutions examined and
discussed were not tied closely to one’s own political identity.

Qualitative data were also compiled from short-response questions. Students
responded to the following prompts:

• In what ways do you think taking the mathematics class abroad deepened your
understanding and appreciation for different cultural and global issues?

• In what ways did the abroad experience affect your interest or appreciation of the
mathematical content studied?

• The following is an opportunity to further comment on your experience taking
a mathematics course as part of your study abroad. Of particular interest is any
effect it had on your appreciation/awareness of cross-cultural issues.

Responses illustrated an appreciation for the intentional connections between
course content and cross-cultural experiences and an appreciation for growth and
change in students’ cultural perspectives. For example, one response focused on
achieving deeper understanding in these areas is included here.

“I began to intentionally learn more about other cultures and issues sur-
rounding an area very different from what I was used to. Hearing directly
from people in other cultures helped me to gain a deeper understanding
of global issues. Another thing that really deepened my understanding and
appreciation of global issues was participating in hands on experiences while
in Australia.”

Along these lines, another student commented, “If it weren’t for this class, my
perspective on culture, global issues and politics would not have changed for the
greater good.” These responses demonstrate some degree of growth, while also a
level of self-awareness in current and previous cultural perspectives.



160 M. C. Guinn and B. Schleben

Similarly, students noted the importance of connecting cultural activities with
course content and the effect doing so had on their growth and learning, with one
student writing,

“Being able to explore another culture through math allowed me to view the
Australian culture in a way that was interesting to me, and in turn it allowed
me to develop a deeper appreciation for the culture there. Had I taken the class
in Nashville, I don’t think it would have had as much of an impact because I
would not have been able to actually see the interactions in that culture.”

Other students made similar observations, with one noting,

“Being in a different country and learning about mathematical social justice
puts a perspective on a person that no other circumstance could. . . Learning
about the differences and similarities between the two countries helps one
realize how far off the stereotypes are. If I wasn’t majoring in music, I would
be majoring in Math for social justice (if that was a major)!”

Finally, multiple students mentioned a growth in appreciation for mathematics
and its role in understanding complex issues, as illustrated by one responder’s
comments, “Studying abroad with this specific content has helped shape and really
educate me on the cross-cultural issues and how to respect and appreciate other
cultures.” Another student added, “I like math. This trip made me like it more,”
while yet another indicated she or he would be adding a math minor.

4.1 Future Considerations

Study abroad courses often face some inherent difficulties and limitations, such as
limited face-to-face class time or opportunity for active learning experiences. Hence,
reflection on our mathematics course abroad has revealed areas of limitation as well
as opportunities for improvement. While the course was designed to be adaptable to
different programs and locations, it is worth highlighting a few of these issues here.

Looking first at limitations in teaching mathematics abroad, many of the course
and program elements that make the synthesis of content and experience effective
involve substantial cooperation with groups at the destination location. A clear
understanding of course elements and open collaboration with universities and
organizations abroad can help optimize the meaningfulness and appropriateness of
cultural experiences abroad. However, this can not only be difficult in organizing
meaningful site visits or guest speakers for a course, but it may also inflate budgets.
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There are also a number of opportunities for improving the mathematics abroad
course we have developed moving forward. One opportunity touched on by
student comments is providing ample time for connecting discussion and written
components of the course. In particular, students felt they could benefit from more
scheduled opportunities for discussion after students engaged in reflection and
journaling. Previous program design provided students with first an opportunity for
discussion and then written reflection. The aim was to give students time to process
discussion and experiences before reflecting in their journals, but they may also
benefit from a follow-up discussion in which they can compare aspects of their
reflection with their classmates. This may prove difficult, however, due to time
considerations during abroad programs.

Other potential limitations stem from the class size and issues arising with
either small or large enrollments. A larger course or program enrollment can
potentially benefit more students, but many activities become less engaging or
logistically difficult to implement effectively with a larger number of students.
This can significantly impact the effectiveness of activities requiring students to
individually communicate mathematical reasoning, as time may be a limiting factor
on discussion. On the other side is low-enrollment concern and a matter of driving
student interest in mathematics courses abroad. Mathematics courses can often
suffer from disinterest or fear, and the added abroad component can be a daunting
and determining factor in students avoiding the course.

Overall, the effectiveness of this course, and others like it, hinges on synthe-
sizing content with application to complex problems connected to site visits and
encounters while abroad. An important aspect of this is the surrounding discus-
sion and reflection which encourages students to reassess their perspectives and
worldview through the dual lenses of both mathematical content and cross-cultural
exposure. Quantitative literacy and reasoning are necessary tools for studying and
quantifying the elements of power, opportunity, privilege, and interdependence
with regard to cross-cultural learning. The perceived value of these mathematics
abroad experiences suggests these elements of content exposure and discussion,
project application, cultural engagement, and reflective writing provide profound
and lasting growth for students in study abroad programs.

Appendix

“Press Release” Activity

Below is the exact version of the assignment that students see, without the example
data tables and press release.

Press Release Activity
On the following pages you will find some example data for the total and per

capita wind power capacity in megawatts that the select could produce at the end of
each year in 2016 and an example press release from the Department of Energy of
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the United States. Your first task is to collect similar data from the last ten years for
both Australia and another country from the provided list. Each group will select a
distinct country. Once you have done so, you will be responsible for crafting two
press releases.

Side 1
Suppose you worked for the PR department at the Department of Energy for one of
the given countries when these data were released (I am requiring that one group
will be United States and another will be Australia). Write a press release (≥ 2
paragraphs) that puts these data in the best possible light, supporting your country’s
energy policy.

Side 2
Suppose you worked for an environmental group that advocates for more support
for renewable energy sources like wind. Write a press release that puts these data in
the worst possible light, supporting you argument that your country is falling further
behind the rest of the world.

Your goal is to establish arguments with evidence drawn from the data. Both
of the above releases may involve comparative data as well. Included with your
statements should be validation for each statistic you cite. Fore example, if I describe
a certain percent change in capacity from 2014–2015, there should be a footnote
providing the calculation made to get that percent change value.

Be sure to avoid some of the pratfalls that we have identified in the use of
percentages, rates, and ratios (such as averaging percent increase in capacity over a
number of years).

“Discussion Lead” Activity

Discussion Lead Assignment
I am asking that you prepare to lead an engaging and informative discussion
appropriate for our Math for Social Justice course while on our trip. The scope
of the discussion topic is up to you, but I encourage you to use the examples we
have done already as a guide. There will be components of this assignment due both
before and during our trip, as laid out below:

Pre-trip
Once you have selected your topic, you must provide at least three (3) reputable
sources for fellow students to serve as references. These sources should contain
quantitative information regarding your topic, giving your fellow students statistics
to consider as they prepare to participate in fruitful discussion.

Your source must be uploaded by July 1st to the Blackboard discussion board
forum “Discussion Leads”. This will allow your fellow students the time to
download copies of the articles before the trip, as well as familiarize themselves
with the quantitative information on the topic.
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While Abroad
I expect this to be approximately a thirty (30) minute discussion (NOT a lecture).
The rubric is attached. The main criteria are that this is a quantitative-driven
discussion of a social justice issue and the effectiveness at engaging of your
fellow classmates in challenging discussion. Good discussions will connect course
content with experiences abroad and challenge the participants to consider potential
responses and methods for social change, if appropriate.

Expectations for Participation
• Prepare to engage in meaningful discussion centered around quantitative literacy

and social justice while in Australia (I may provide further articles).
• Be engaged in group activities, experiences, panels, and lectures to the best of

your ability.
• Focus on making connections between course content and cultural experiences

abroad.

“Program Journal” Activity

The “Program Journal” activity was completed during the abroad component of
the program, allowing students to reflect on their experiences in country. The
final journal entry prompt, as mentioned before, was not given to students until
the end of the program. It asked students to reflect on the role that quantitative
representations played in applying moral reasoning to either social or ethical issues
they encountered on the program, while noting any challenges or limitations they
encountered in doing so.

Journal Assignment
You will keep a journal chronicling your experiences with mathematics, cultural

understanding, and social justice during the travel program. You are required to
write six entries over the course of the program, about one full page in length (you
may write more), and these may be written or typed. For four of these you will write
in response to the experiences of specific days, with the two remaining entries being
on topics of your choice but they should relate to mathematics and your experiences
in Australia. Your final entry will be revealed while on the program.
Required Experience Journals

Straddie, Swamp vs. Lake Consider procedures for data collection and analysis
in the field and compare the two different ecosystems. How are they similar?
Different? What did this teach you about the data collection and analysis? About
these ecosystems, specifically?

Reef Ecologic As you participate in this larger research project, what is your
role? How did your experience and the work you have seen elsewhere on the
trip and in the course prepare you to participate in this project? What are your
thoughts on the “citizen science” aspect of maintaining reef health? How about the
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struggle to model and quantify aspects of reef health? Discuss the overall logistics
of running an ongoing project of this scale using various volunteer groups and your
thoughts/feelings about participating.

Mungalla Station How do the struggles and concerns facing the Nyawaygi people
compare to the Quandamooka and Nunukul? How do they connect to issues that we
have discussed in class? What issues have you already worked to quantify? How, if
at all, did your experience quantifying these issues fall short of illustrating the whole
picture? How has this and other similar experiences affected your understanding of
issues of injustice and cultural interdependence?

Green Collar What are some of the concepts utilized by Green Collar that you
have seen in our course? How does their mission fit in with themes of our course
and previous experiences? What aspects of their operation surprised you?

Final Entry Specific prompted response to be done in Sydney.

For your own purposes: Read through your responses to the questions from our
pre-departure meeting. Respond to your pre-departure self. How are you the same?
How are you different? Describe some of your emotions/thoughts/feelings as you
reflect on the last three weeks. What event/activity/encounter/conversation was most
impactful for you and how will it change/impact your behavior once you get home?
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Change Is Hard, But Not Impossible:
Building Student Enthusiasm for
Inquiry-Based Learning

Jill E. Jordan

Abstract Taking a course that uses an inquiry-based curriculum can be challenging
for students who are accustomed to a traditional, lecture-based approach to math-
ematics instruction. At the end of the course, students who are not fully cognizant
of the results of their many hours of hard work may conclude that the teaching
approach was ineffective. This article seeks to help instructors who believe in the
effectiveness of inquiry-based learning but have trouble getting students on board
by giving them specific strategies to help build student confidence and enthusiasm.

1 Introduction

It is the first day of a new semester and a group of students walks into Abstract
Algebra I. They’re a little nervous about this class, but it’s just the first day, so they
anticipate getting through it just fine. They know what to expect: the teacher will
start with a few definitions and a few examples, maybe a theorem or two, and then
give the class an assignment from the chapter “The EDGE Program: 20 Years and
Counting” of the text. Most of these students really liked algebra class in high school
and are strong math students. This will be no problem for them!

After spending a few minutes going over the usual first-day details, the students
have just settled in to take notes when their professor distributes X-shaped pieces
of paper. “How many symmetries does this shape have? Think about it for a few
minutes on your own, then discuss it with a classmate.”1 Wait, what?! This is not
the way a math class is supposed to start. They haven’t even learned anything and
already they have an assignment!

1Unit 1, Lesson 1, Task 1 in the Inquiry Oriented Abstract Algebra (IOAA) curriculum [3].
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When class ends, the students have more questions than answers. Their note-
books are filled with scribbles and false starts, and to be honest, they’re not sure if
anything they wrote is worth keeping. One thing is for sure: nothing in there looks
like algebra. Students asked some questions but the professor turned the questions
right back around to the students instead of giving them the concise answers they
were hoping for. Welcome to an inquiry-based learning class.

2 A Primer on Inquiry-Based Learning

Inquiry-based learning (IBL) is a broad term describing an approach to classroom
teaching in which students are encouraged to learn through seeking answers to their
own or the instructor’s questions. Many teaching methods have significant overlap
with IBL or refer to a specific system within the category of IBL, including problem-
based learning, Moore method, student-centered instruction, discovery-based teach-
ing, problem-solving curriculum, active learning, and cooperative learning.

The question of why I use IBL can be answered quite simply: it works! I know
that my students gain a deeper understanding of the material when they confront
questions about the mathematics and then struggle individually and together to
discover answers to those questions. IBL works particularly well in my abstract
algebra course, which draws from a population of motivated mathematics majors.
This is a standard junior-level abstract algebra class with multiple pre-requisite
courses, and it is typically taken during a student’s junior or senior year. Anyone
who has decided that mathematics questions are not worth pursuing has abandoned
the major before this point. Every time I have taught this course, my students have
done whatever I have asked them to do without complaining. And so they spend
class time investigating my questions individually, working together, questioning
each other, coming to consensus, and finally presenting their results, usually
with very little help from me. Through this process, they end up with a better
appreciation for each word in a definition, a better understanding of each step in
proving a theorem, and better insight into the significance of each example and
counterexample. I am often surprised by their deep insights into the material, and I
expect that many of these insights would be missed if not for the IBL approach to
the class.

As you might expect, the pace of an IBL course is much slower than a traditional
lecture-based class. While it takes several class periods for my students to develop
the definition of an algebraic group2, an algebra professor who has chosen a lecture-
based approach would have no trouble getting through that definition (along with
several others) on the very first day of class. This can pose a problem for courses in
which a certain core amount of material must be covered. IBL does not have to be
an all-or-nothing proposition, however; while some professors may choose to use

2Unit 1, Lesson 5, Task 4 in the IOAA curriculum [3].
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a comprehensive IBL curriculum, IBL methods can also be sprinkled throughout a
traditionally taught course. Professors may choose a level of implementation that
fits with their own preferences and the needs of their students, which makes IBL an
inherently flexible approach to instruction. I have chosen to teach abstract algebra
using a complete IBL curriculum [3], but in other classes, I have opted to mix in
elements of IBL when I see opportunities arise.

3 The Problem

I went into my first IBL class with a mix of high hopes and apprehension, but by
the end of the course, I was convinced that I had a good thing going. I was thrilled
with my students’ learning and I could hardly wait to do it all again the next year.
Then a few weeks later, I received the student course evaluations and came crashing
back to earth. The numerical scores were dismal. Ratings for “Excellent Teacher”
and “Excellent Course” were well into the bottom decile. Unfortunately, the student
comments were not any better. The students had little positive to say about their
experience in the class, and their criticisms were centered around the very IBL
methods I had so carefully put into place. I refrained from answering questions
immediately, asking students to think them through on their own and then discuss
their ideas with each other. When writing proofs, I wanted them to help each other
figure out what was wrong and how to fix their mistakes. And yet my students
suggested3

Don’t let the students sit in silence if they don’t understand something. Help them to get to
the answer that you want them to have.

and similarly

. . . if the whole class is stuck on a proof, the best course of action may be for you to show
us what is wrong, instead of having us just sit and stare at it. Then we just get frustrated and
give up.

I requested that students not read ahead in the text so that they could discover the
relevant definitions and theorems through inquiry. So, of course, someone pointed
out that I should

[t]ell the class which sections of the book are going to be covered previous to the actual
class time. After I spent my break reading the book, I was able to understand more of the
concepts that we were going over.

For the weekly problem sets, I intentionally assigned problems with new concepts so
that the theme of inquiry would carry over into their work outside of class. Several
students shared their thoughts on that decision:

3Quotes from student course evaluations used with permission from the Houghton College
Institutional Review Board.
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Try making the homework on stuff we actually went over in class. There’s a thought.
Thisis not a 400 level course.

There seemed to be a rather large disconnect between what was covered in class and
what was on the homework.

It is difficult to do homework on information that we have not learned.

And finally, one student cut right to the chase. His response to being asked how he
would change the course:

More teacher-led classes.

Okay. I get the point, you all hate IBL! Now what?

4 The Solution

I learned early on in my teaching career to not put too much stock in student
evaluations. Recent studies (e.g. [2, 4]) have supported this practice, showing that
students’ evaluations of their teachers are not indicative of how well students learned
course material. Despite the poor evaluations, I remained convinced that my students
had learned the course material well. And so, if all that mattered to me was how
much and how well my students learned mathematics, I would have felt free to
ignore the evaluations and continue teaching the way I thought best, making no
significant changes to my methods. But the truth is, while student learning is
essential, I care about more than that. I want my students to not only learn, but
to know that they have learned. I want them to be able to appreciate the results of
their hard work. I want them to realize that their struggles in the class—yes, even
those times when they felt like they were going around in circles without making
any progress—made them better mathematicians. And because my goals go beyond
student learning, I need to pay close attention to what the student evaluations tell
me. This set very clearly told me that students needed to be taught how to appreciate
the value of an IBL course. In subsequent semesters of teaching the course, I have
incorporated the following into my class with the goal of making my students more
aware of how the IBL approach benefits their learning.

Tip #1: Start Off Strong The first time we meet as a class, I spend some time
describing IBL to my students. I explain the specific methods I will be using in the
class and give the rationale behind the IBL approach. I also distribute a handout
going over the same information and strongly recommend that students read the
handout before the next class and come back to it as needed throughout the semester.

I also assign my students a self-evaluation, to be turned in at the start of the
second class session. I ask my students to write a couple of paragraphs about
themselves as mathematicians, including their strengths, weaknesses, and potential
areas of improvement. This not only helps to activate their metacognition, but also
sets the stage for the end of the semester when they will be asked to write another
self-evaluation reflecting on their own growth as a mathematician during the course.
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Tip #2: Reiterate Throughout the Course (But Especially at the Beginning)
Students, like all of us, need to hear something many times before it truly sinks in.
One of my goals during the first couple of weeks of classes is to remind my students
several times per class of the intentionality of the class structure and the philosophy
behind an IBL approach to class. For example, when the students are struggling
to make progress and starting to feel frustrated, I might say, “I know that this is
hard, and you might feel like it is pointless, but this struggle is actually part of the
learning process. Don’t give up now!” When they have finally figured something
out together, they’ll hear, “Great job! You figured that out without my help, and
you should be very proud! If I had just told you the answer, you wouldn’t feel the
same sense of accomplishment, and you wouldn’t understand it as thoroughly as
you do now.” Here are some other examples of phrases that you’ll hear in my IBL
classroom:

• Learning math is a process, and not knowing the answer is part of the process.
• This is what mathematicians do! You’re becoming a better mathematician right

now!4

• I could write this on the board, or I could have you guys figure it out. I think
you’ll learn better if you figure it out for yourselves.

• This is exciting! You’re figuring out all of this without me needing to tell you!
• That’s a great question! I’ll write it on the board so you can all think through it

and find the answer together.
• You’ve really learned the right kind of question to ask!

In keeping with the theme of inquiry, I ask them questions like this:

• Do you see how this is helping you learn?
• Do you feel like you understand this better than if I had told you the answer?
• Do you understand why I wanted you to figure this out for yourself?

These sorts of encouragements and questions, while more frequent at the
beginning of the course, never really go away. Students need to be reminded
throughout that there is indeed “a method to the madness.” Sometimes I start to
feel like a broken record, but my students appreciate hearing it again and again.

Tip #3: Homework Counts Too As I mentioned above, I extend the IBL mentality
to the students’ work outside of class by assigning problem sets that go beyond what
we have covered in class, requiring them to learn something new on their own. What
I have found is that if students are not told how this relates to the IBL approach, they
assume it is accidental (or worse, that I am just being a mean professor). I still assign
the same types of problems, but now I tell them about my rationale way back at the
beginning of the semester and call attention to it again with each new assignment.
I indicate which specific problems will require them to go beyond where we have
gone in class. I point out that I am not asking them to follow a process that is any

4I like to use this one when they’re stuck, since they don’t think of being stuck as doing
mathematics.
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different or more difficult than what they do in class, and as such, they can expect to
struggle, but then ultimately to figure it out. Finally, as small groups are frequently
utilized in class, I remind them of the benefits of working with classmates, and I
encourage them to come to my office hours for additional help.

Tip #4: Ask Them About Their Learning This one sounds a little silly at first.
After all, teachers commonly ask students about their learning, and I certainly asked
plenty of learning-related questions during that first semester of abstract algebra.
But the kind of question I have since added to my repertoire goes beyond the usual
“do you understand? Do you need more time? Any questions?” and asks students
to delve more deeply into metacognition and reflect on their learning process. I
typically start asking these questions about halfway through the course in order to
give them enough time to start seeing signs of their own progress. Here are some
examples of the types of questions I ask:

• Have you noticed that when I ask a question, you get right to work, whereas at
the beginning of the semester you had trouble getting started?

• Can you see how your proofs have improved?
• Do you see any benefits to spending more time and going deeper into the material

rather than trying to cover a lot of content?
• Do you think that you learn better by copying information from the board or by

working through questions with your classmates?

This “asking” technique culminates at the end of the semester, when I assign
a second self-evaluation. Once again, I ask them to think about their strengths,
weaknesses, and areas of potential improvement, but this time with a focus on how
this course has helped to bring about change. It is good for my students to take
some time to put in writing how they have grown throughout the semester, and as
their teacher, I love seeing them recognize specific ways that my course has helped
them develop as mathematicians.

Tip #5: Don’t Stop I mentioned this one before, and yet it seems fitting to
say it again. After all, the point here is that even when I feel like I’ve said it
all before, continually encouraging and reminding students that they’re making
progress, students are ready for more! I have come to believe that part of my job
as a teacher is providing my students with a narrative of their experience in my
course. Working hard can be either discouraging or invigorating for my students,
depending on how I frame it, so I do my best to frame it in the most positive way
possible, and I keep doing that right up until the end of the course.

5 Survey Says . . .

As of this writing, I have taught my IBL abstract algebra class five times since that
first disastrous semester. Consider the following results from student evaluations
and decide for yourself whether or not my tweaks have made a difference in
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my students’ attitudes toward the class. Since the first semester, the numerical
ratings for “Excellent Teacher” and “Excellent Course” on student evaluations
have consistently been around the 70th percentile (compared to well below the
10th percentile the first time I taught it), and representative student comments now
include:

I really liked how we worked together on problems and coming up with answers versus it
being just a lecture where we take notes.

I really appreciated the style of this course. I like getting to work individually, in groups, and
as the whole class on problems. This way, we learned the definitions and theorems deeply
rather than just memorizing.

I enjoyed trying to first discover things on my own and then working in groups and finally
discussing it as a class.

What I liked best about the course was the requirement/expectation that we prove everything
to ourselves rather than simply memorize results.

My favorite part of the course was that instead of telling us important concepts, [the
instructor] pointed us in the right direction and we discovered them for ourselves.

6 In Conclusion

My purpose in sharing about my experience is to help other mathematics teachers
who find themselves struggling with student attitudes in their IBL classes. Please
use what is helpful and ignore whatever is not. If you are interested in learning
more about teaching an IBL abstract algebra course, I enthusiastically recommend
the IOAA curriculum [3], which you can read more about on the American
Mathematical Society’s Math Education blog [1].
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Linear Algebra, Secret Agencies,
and Zombies: Applications to Enhance
Learning and Creativity

Carolyn Otto

Abstract This article will discuss activities and assignments created for a linear
algebra course that aim to excite students about learning the course content. The
linear algebra course taught at the University of Wisconsin-Eau Claire covers
linear algebra, its applications, and serves as the introduction to proofs course.
Students often become overwhelmed with all the content and proof techniques
in this course. This leads to them not enjoying, nor engaging in, what they are
learning and they become discouraged with the material. Throughout the semester,
interactive projects are introduced which cover applications of the course content.
These activities center around the idea that the students have been recruited to
work with the “Zombie Containment Task Force” under the supervision of Agent
Frank Larson. Throughout the semester, students must complete several missions
to uncover secrets about the workings of the task force, discover knowledge about
zombies, and reveal double agents. At the end of the semester, students use clues
given throughout the semester to make a final decision which informs them of their
future in this fictional world. This article will give the outline of five interconnected
projects that are used in the course as well as discuss the implementation of these
missions.

1 Project Based Learning

To give a full picture of how I use projects in my course, first I present a background
of the linear algebra course at my institution. I will follow the introduction with a
discussion of how I incorporate these projects into my teaching approach.
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1.1 Linear Algebra at the University of Wisconsin-Eau Claire

The linear algebra course taught at the University of Wisconsin-Eau Claire (UWEC)
is a four credit-hour course taken by most mathematics/physics majors during
their sophomore or junior years. Each semester, there are typically 35–50 enrolled
for the course, which could be split between two sections. The course covers
the typical linear algebra curriculum, including matrix algebra, systems of linear
equations, vector spaces, linear transformations, eigenvalues, and applications of
these concepts. The course also covers methods of proof and is treated as the
“introduction to proof writing” course for our math majors. New to the curriculum
is an overview of student-faculty research and the related opportunities for students.

This course is also used in the department’s assessment of the mathematics major
with a liberal arts emphasis. Specifically, the course assesses the following two
program outcomes:

• Students will be able to write mathematical proofs.
• Students will be able to work independently and collaboratively on mathematical

problems.

I have taught this course six times at UWEC. The first time I was in charge
of the course, it was only three credit-hours and applications of the material were
optional content. The previously stated course description demonstrates how this
one semester course is quite dense with content. Within the last several years, our
department (with university approval) has increased the number of credits to four in
order to add in the applications to the topical outline. The additional credit allows
for more time with the application content. Even with the fourth credit, the core
content, the proof techniques, the applications, and projects still push the limits on
material for a four credit-hour course.

Since the addition of the fourth credit-hour, I have taught our linear algebra
course five times. I began by covering a selection of applications from the course
textbook [5] by lecturing and assigning problems from those sections. While I did
cover all the required material, I found myself not giving the applications the full
treatment they deserved in favor of more time with the proof techniques and proof
writing.

This is where zombies enter the story. As I taught the course more, I started to
incorporate writing projects in my linear algebra sections to get students interested
in the material and to engage their creativity. These projects have evolved over time
and now focus on covering some of the application sections of the course while
creating an ongoing narrative of the students’ involvement in a secret government
agency, “Zombie Containment Task Force.” The specifics of the narrative and
projects can be found in Sect. 2.
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1.2 Rationales for the Zombie Projects

Sharing my excitement for math is one of the reasons I love being an educator.
However, it sometimes takes more than just my excitement to get the students
engaged with the material. I create a fun and interesting experience for my linear
algebra students by developing creative zombie projects to motivate them to learn
and apply the material.

Over the course of my career, I have attended several panels and talks on
the incorporation of writing projects into the classroom. Specifically, I attended
a Project NExT Session on incorporating writing projects into undergraduate
research courses. The speaker mentioned several ways to incorporate projects,
how to create effective rubrics, and gave reference to their book [3], which I
used to model my rubrics. For more information on Project NExT, please visit
the website www.maa.org/programs-and-communities/professional-development/
project-next. The idea of incorporating writing projects really appealed to me for
this linear algebra course at UWEC, especially considering the two outcomes that
this course assesses. While these projects focus on applications and assessment
of the second outcome in Sect. 1.1, I have found that more practice writing
mathematics helps students to become comfortable writing proofs, which also
helps with the first listed outcome in Sect. 1.1. A mathematics focused paper has
a different style than a mathematical proof, but it has been my experience that when
students are comfortable communicating math in the first form, they have an easier
time effectively explaining why a mathematical statement is true. From there we
work on transforming their explanation into a proof.

Throughout my course, I give five writing projects to the students (see Sect. 2)
with the fourth project, an escape room, as an optional project. I decided to use a
zombie theme for these projects. This is for several reasons. First, I love zombies and
Halloween, so it is fun for me to write projects involving them. Second, when I first
started writing these projects, TV shows, books, and movies such as Zombieland,
iZombie, World War Z, and the Walking Dead (to name just a few) were popular
in the mainstream media. I cannot forget to mention that Colin Adams wrote and
published Zombies & Calculus [1]. It is worth mentioning that this book and these
projects are completely independent and were created without the knowledge of
each other1. Third, sci-fi topics lead to a little wiggle room when it comes to
storytelling and solutions. For example, if I find that 4.58 zombies survive, I don’t
need to round up. Having 0.58 of a zombie could make sense. Another example my
students see is blood flow in the brain changing directions after the injection of a
chemical. Again, this scenario could happen in this world.

I also give these projects a zombie theme in order to help motivate the students.
When I share my enthusiasm for this fictional world, I demonstrate to my students
that I care about the material and am excited to share it with them. The time I

1How awesome is it to have multiple, creative math and zombie products?

www.maa.org/programs-and-communities/professional-development/project-next
www.maa.org/programs-and-communities/professional-development/project-next
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spend developing and testing these projects is evident to the students and seeing
my dedication motivates them to learn the material [4]. The idea of telling stories
is also a great motivator to retain the information, “organizing a lesson plan like
a story is an effective way to help students comprehend and remember” [7]. My
projects are unique in regard to the storytelling. It is the aim that students will
remember the projects, math, and their experiences with them more than just
working problems from the book. For more ideas to incorporate projects with more
realistic applications, please see [2].

The primary focus of these projects is the communication of the solutions by the
students. I write the problems in a way that requires students to identify what the
problems are asking and determine the best method to solve them. I am interested
to see if they can explain the solution and what it means in a document written to
a person that does not know all the linear algebra details. When I first explain this
to the class, I receive comments such as “I thought I was taking a math class not an
English class,” or “If I wanted to write I would have been an English major.” This
usually leads to a discussion on why it is important to communicate effectively,
especially when working with mathematics. I emphasize the following points:

• an application of linear algebra in the “real world” will not be phrased as “solve
this equation,”

• employers need to be able to follow the logic of the solutions,
• many individuals outside of our linear algebra class may not understand math

jargon and it is important to know how to communicate ideas effectively, and
• writing down a solution with words helps to communicate the thought process

for yourself and the reader.

In addition to the points above, I also discuss collaboration skills at the beginning
of the semester, even though students are not in larger groups until the fourth and
fifth project. I take the time to explain the importance of working with others.
Specifically, I try to foreshadow work scenarios where they will be collaborating
with all different types of people and skill levels.

In the next section, I will detail the projects that I give for my course. This article
is just an overview of these projects. If you are looking for more specific details,
you can contact zombiecontainmenttaskforce@gmail.com and Agent Frank Larson
will supply you with more details and materials.

2 The Projects: Missions from the Zombie Containment
Task Force

This section provides details about each project/mission: the story, linear algebra
component, assignment, the assessment, and other details. In addition, I will provide
the general setup of the world of the “Zombie Containment Task Force.” It is
important to note that in my courses I use wide variety of materials and software

http://zombiecontainmenttaskforce@gmail.com
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in the management and logistics of these projects. If one is interested in creating
similar projects, these items are not all necessary and can be altered to fit an
instructor’s needs.

On the first day of the course, students receive a letter from the mysterious
Agent Frank Larson, see Fig. 1. They have been recruited to work for the “Zombie
Containment Task Force (ZCTF).” They are informed that throughout the semester
they will receive missions that require knowledge of linear algebra to successfully
complete.

2.1 Project One: Zombie Classification

Mission The ZCTF computer system has crashed! Information about zombie
specimens has been lost, only the paper copies remain. Students are given one
of the six medical files for a zombie specimen. In each of these files is general
information about a zombie, a photo, an image of “observed blood flow analysis,”
and information about experimentation that Dr. William had previously performed
on the zombie. Using the information supplied, you are to classify your zombie
as a crawler, shambler, walker, runner, or thriller by finding the blood flow at the
indicator site. The letter written by Agent Frank Larson can be found in Fig. 2.

Linear Algebra Component The blood flow image given in the file gives the fixed
and variable blood flow rates of certain veins/arteries in the zombie brain. An
example of one of these images can be seen in Fig. 3. Students set up a system
of linear equations to solve the system representing this network. The solution they
find includes a free variable. The experimentation data given instructs what students
should do with that free variable.

Assignment This is an individual assignment. Each student sets up and solves a
system of equations based on the information in their file. After they solve the
system of equations, they are supplied with one more piece of information: Dr.
William was conducting experiments and was able to find one more blood flow
value. Using the data, they are instructed to classify their zombie and write a letter to
Agent Larson in response to his inquiry that includes the explanation of the solution
and the method of solving the problem. This letter is to be typed and submitted to
the class’s Dropbox folder.

Assessment When the students receive their file folder of information, they are
also supplied with a detailed rubric for the assignment. Since this is their first
mission/writing assignment, I offer to read a rough draft of their response letter.
I specifically require that when they solve the system of equations, they obtain a
free variable. Then using Dr. William’s experimentation notes, the students can find
a value for this variable. I want to demonstrate the convenience of solving the system
in general. I make this a specific rubric item, mention it in class, and point it out in
the drafts supplied to me as most students will skip this step.
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Fig. 1 Introductory letter from Agent Frank Larson which is given to the students on the first day
of class. The character of Zombie-Bob, or Z-Bob, is important to the story as he is a character that
was turned into a zombie and then took the cure to become human again
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Fig. 2 Agent Larson’s instruction letter for the first mission
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Fig. 3 Example of a brain scan of a zombie showing the blood flows used in the first mission.
The letters indicate junction sites, while the numbers indicate the rate of the blood in milliliters per
minute

Debriefing I make comments on the letter and supply additional comments on a
copy of the rubric the students receive. In addition, students are supplied with
the classifications of all six zombies, the capture sites of these zombies, and
some identifying feature: a dragon brand or a black umbrella tattoo. This piece of
information is a clue for the students which they will use later to make a choice
about what happens to their character. These six zombies are used throughout the
projects.

Fun Extras To deliver this assignment, I assemble file folders with the information.
Each folder has the information sheets stapled in them to resemble a medical file.
Students from previous semesters agree to have their photo taken and turned into a
zombie and these photos are paper clipped to the file. Lastly, I create a label for the
ZCTF that matches their security clearance.
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2.2 Project Two: Code Breaking

Mission After completion of the first mission, Agent Frank Larson decides to
grant the students a new security clearance! With continuing problems of the main
computer systems, employees of the ZCTF have been communicating through
coded messages. Two mysterious messages are discovered by Agent Larson’s
personal assistant Reginald. Students receive one of the two envelopes, each of
which contain a set of encrypted messages. Using a set of potential decoding
matrices, students must decipher the messages and report back to Agent Larson.

Linear Algebra Component Each message was encoded using one of the several
n×n invertible matrices, known as coding matrices. The messages were partitioned
into uncoded row matrices, then multiplied by the coding matrices to obtain coded
row matrices. Potential coding matrices are provided to the students from Agent
Larson. Students must determine which inverse matrices will used to decode the
message and submit the message to Agent Larson.

Assignment This is an individual or partner assignment, students can choose. Each
envelope of information includes a coded message broken up into three parts and a
collection of five matrices. Students are informed that three of the matrices were
used to encrypt the message, one for each part of the message. They need to
determine which matrix decodes which part and then decode the message. The
description of the mission, detailed instructions on how to decode the message,
computations of the decryption, and a conclusion all of which must be typed into
a Maple template. Maple is a mathematics algebraic software that serves as a
computational environment which students are able to use on any school computer
and is the software we use most in class. If trying to adapt this project to one’s
own needs, the calculations could easily be done on their calculators or in Wolfram
Alpha.

Assessment When the students receive their envelopes of information, they are
supplied with a detailed rubric for the assignment, see Fig. 4. For this project, I
specifically require that they use a Maple template which I supply to them. They are
given one class period to work on this project. The classroom in which I teach this
course is our department’s computer lab so there are an ample number of computers.
At UWEC, students are also able to use a virtual lab which allows them to access
the Maple software even if they are not on campus. Since the ZCTF lost all their
computer files, students need to supply instructions on how to decode the message
using Maple. Thus, their Maple worksheet must be able to run and include all
relevant computations and instructions.

Debriefing I run all the Maple code to make sure the students’ computations work
without bugs. I make comments in the Maple code as well as on the rubric. Since
there are two different messages, students are given the answers to both when I hand
back the assignment. Their Maple code is returned by email so they are able to look
at all the comments in the Maple software. The messages set up the main mystery
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Instructions from Dr. Otto and Agent Larson

The purpose of this project is to apply the method of code-breaker to “real-life”
situations. You are to decipher the code given to you using the techniques from Section
2.5. It is expect that you will provide Agent Larson a Maple Worksheet the includes
the explanation of the solutions and method of decoding the message.

• You may work by yourself or with a partner. (1-2 people groups!)

• Dr. Otto has provided a Maple Worksheet template on D2L that you should use
to write up your assignment. Make sure you use it, but of course, feel free to
make it your own.

• This list will be used as a guide to grade your assignment and will be returned to
you with comments.

• Put your Maple Worksheet in the Dropbox Folder on D2L labeled “Codes” by
Wednesday, February 28 by the beginning of class.

Please feel free to use these checklists as a guide for yourself while writing this assign-
ment.

Math 324 Project Checklist: Maple Worksheet

Does this Maple Project:

1. clearly (re)state the problem to be solved?

2. state the answer in a complete sentence which stands on its own?

3. provide a paragraph which explains how the problem was approached?

4. aim its explanations at the appropriate audience?

5. explain how the data is derived, or where it can be found?

6. give acknowledgement where it is due?

In this Project,

1. did the writers use Maple? and the template that was given? follow the instruc-
tions in the template?

2. did the writers follow the instructions on the template?

3. are the spelling, grammar, and punctuation correct?

4. are the mathematics correct? include the correct amount of work? too little?

5. did the writers solve the question that was originally asked?

Comments:

Fig. 4 The rubric for the second mission
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Fig. 5 The deciphered messages from the second mission

for the course: “Who are the Black Umbrella Operatives?” In addition, we find that
Dr. William has gone missing. Decoded messages can be found in the appendix
section in Fig. 5.

Fun Extras Students meet a new character named Reginald, Agent Larson’s
personal assistant. I have a member of our math department come in and read a
script for my class and hand out the mission to the students.
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Fig. 6 Some information provided to the students that will be helpful in this mission. The science
behind zombies included can be found at [6]

2.3 Project Three: Location Finding

Mission Agent Frank Larson is quite impressed with the work of the students and
increases their security clearance! He informs them that there have been whispers
of something known as “Black Umbrella” and that the ZCTF has a secret facility in
downtown Eau Claire known as the Gamma Location. Students receive a mini-file of
information about sightings and capture locations of zombies as well as the location
and specifications of the Gamma Location, see Fig. 6. Using this information and a
map of Eau Claire, the main objective is to determine where the Black Umbrella’s
Interrogation Center is and try to locate Dr. William.

Linear Algebra Component In the information file, students are supplied with a
map that includes the observation and capture sites of three zombies as well as the
Gamma Location. There is also given a grid printed on a picture of transparency
paper that fits over the map. Creating coordinates of all the points of interest,
students are able use linear algebra, in particular determinants, to find the area
between the zombie capture sites and to find the volume of the tetrahedron that a
thermal camera can cover if on top of the Gamma Location. Students are informed
that two of the zombies travel in a straight line (but do not know which two).
This allows the students to find the points of intersection of the paths that these
zombies are following and then can deduce possible locations for the Interrogation
Center. In particular there will be three possible locations as there are three distinct
combinations of pairs of zombies.
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Assignment This is an individual assignment. Each student finds coordinates that
represent all the relevant locations and construct matrices in which the determinants
will provide the needed values. They are to write a letter to Agent Larson in response
to his inquiry that includes the explanation of the solution and the method of solving
the problem. This letter is to be typed and submitted to the class’s Dropbox folder.
For this mission, students are allowed to handwrite the supporting mathematics if
they desire with the story justification that the ZCTF is in a rush to find Dr. William.

Assessment When the students receive their mini-file of information, they are also
supplied with a detailed rubric for this assignment. At this point in the semester,
students are accustomed to reading the rubrics and knowing what information to
include. For this specific mission, students need to not only compute the quantities
requested, but must construct a map illustrating why their solutions make sense and
discuss any error that might occur.

Debriefing Just as with the first mission, I provide feedback on the letter and supply
additional comments on a copy of the rubric the students receive. In addition,
students are supplied with all the possible locations of the Interrogation Center with
a note from Agent Larson. This note congratulates them on a job well done and
now a more precise search for Dr. William will be conducted. A list of potential
destinations are given to the students with a date on which the search teams will
investigate.

Fun Extras My student grader (Agent Bella Lynn) and I had a ton of fun with the
delivery of this mission. Before class starts, we tape envelopes to the bottom of their
tables. Normally, I close the door to my classroom once class starts but on this day
I leave it open. My grader throws in a paper airplane and I read the message inside
to the class. The students are instructed to look under their tables to get the mission.
They loved this little twist.

2.4 Optional Project Four: The Escape Room

This is an optional project, optional in the sense that I choose whether or not the
whole class will participate in this activity. I use factors as time and enthusiasm to
decide if the class does this activity. It is meant to be a fun change of pace from
the classroom and gives a narrative that advances our story. In the fall this activity
usually occurs the day before Thanksgiving. I will give you the general outline of
the project and some idea of the problems. Please contact Agent Frank Larson at
the agency’s email: zombiecontainmenttaskforce@gmail.com for a more thorough
debriefing, if you are interested in the specific clues, puzzles, and problems.

Mission With a list of potential locations for the Interrogation Center, Agent Frank
Larson is assembling the Octopus Unit (an elite squad in the ZCTF) to search for
Dr. William. Students are given temporary clearance to join Agents Terry, Cory,
and Rowan in the investigation of Acoustic Cafe. The objective is to recover Dr.

http://zombiecontainmenttaskforce@gmail.com
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William, find information on Black Umbrella Operatives, and try to discover a mole
in the agency. In preparation for the search, Agent Larson tells students to read
about the applications of vector spaces in chapter 4 of their textbook [5]. At this
point in the semester, students have already worked extensively with vector spaces
and this section draws connections between their knowledge of vector spaces and
applications to differential equations (which all had seen in the prerequisite course
of Calculus II). Students prepare by reading over that chapter, working out problems.
It is expected they come to class with a solid understanding of the material. In
addition, Agent Larson randomly assigns groups of two or three students which will
be the search teams. During the next class, students investigate and try to escape
Acoustic Cafe. This cafe is a real location in Eau Claire that students often visit to
get snacks, coffee, and work on homework. I supply pictures of the real location if
students have never been there so all of the clues make sense.

There are three main tasks/puzzles for this escape room. For each task, groups
are given a set of clues, which include edited photos, dials, file folders, and pieces
of papers.

• Stopping the Pendulum: Students are locked in the cafe and pendulum blades
are descending on them and the other patrons! To stop them students must give
Agent Cory the relevant information.

1. What is the differential equation that models the pendulum? (Can be found
in the photographs and from the reading.)

2. What is a solution set for the above differential equation? (A selection of
possible solution sets are in a photo.)

2b. Verify that the set gives solutions to the differential equation.
3. Prove that the set is linearly independent using the Wronskian.

Bonus: Why is this an application of vector spaces?

• Freeing the Barista: The barista is locked behind a glass counter and you see
someone lying on the floor. There is a weird dial with an equation in two variables
on it and flyers on a bulletin board. Agent Rowan says to perform a rotation of
axes to eliminate the xy-term and then classify the conic section the equation
represents.

1. What is the angle of rotation?
1b. Provide the work to verify the angle.
2. What conic section is needed?

2b. Provide the work showing the standard equation of the conic section.
3. What symbol do students need to give to Agent Rowan to release the

barista? (This is found on the dial, the trigonometric watch you’re given,
and information on the flyers.)

Bonus: Why is this an application of vector spaces?

• Entering the Code: Dr. William is found lying behind the counter! Agent Terry
gets the doctor and says they must leave. There is a keypad by the bathroom
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door (true fact: Acoustic Cafe has a code to use the bathroom). The barista keeps
shouting “PS 3321421” over and over. What could this mean?

1. What is the seven digit code to leave? Students have five attempts. For this
question, there have been several clues on photos and paper to help figure it
out. This is purely for fun and has no bearing on students’ grades.

Assessment It is important to me that the students know that this project is mostly
for fun and for them to get to know their new group members. The largest portion of
the grade is participation points. For some group work/homework points, students
are to answer Stopping the Pendulum 2b and 3 as well as Freeing the Barista 1b
and 2b.

2.5 Project Five: Prediction Models

If students did the escape room, they have all the information to start the final
mission and will go to Mission B. If the escape room was not given in class, they go
to Mission A.

Mission A With the completion of the previous mission, the Octopus Unit and
Agent Bella Lynn create a list of potential locations for the Interrogation Center.
It is still believed that Dr. William is being held there. This past Saturday, Agents
Cory, Rowan, and Terry led the investigation of Acoustic Cafe, while the rest of the
unit checked out the other locations. Dr. William was found at the cafe but remains
unconscious. Agent Terry is keeping watch over him. The Octopus Unit found a
collection of data sets at the Antique Emporium which belong to the Black Umbrella
Organization. Students are to analyze the data to create six prediction models using
the methods of least squares. Agent Larson supplies each group a flash drive of the
found data, a statement from Z-Bob (see Fig. 7), instructions, peer assessment, and
a rubric. Z-Bob is an important character introduced in my Calculus courses and has
vital information about the zombie virus. He is highly sought after. Students do not
need to have previous knowledge of Z-Bob for these projects.

Mission B After the debacle at Acoustic Cafe, Agent Larson has taken you off
the Octopus Unit and back on office work duty. However he does congratulate the
students on successfully finding Dr. William! The Octopus Unit searched the other
locations and found a collection of data sets at the Antique Emporium which belong
to the Black Umbrella Organization. Students are to analyze the data to create six
prediction models using the methods of least squares. Agent Larson supplies each
group a flash drive of the found data, a statement from Z-Bob, instructions, peer
assessment, and a rubric.

Linear Algebra Component Each group is given a flash drive that has six collections
of data. Students must use the method of least squares and create six quadratic
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Fig. 7 Z-Bob’s statement

equations to predict values of zombie populations, brain cell regrowth (data can
be seen in Fig. 8), and brain cell deterioration.

Assignment This is a group project and the groups are randomly generated. Each
group must read the relevant material in the textbook. They also must write a letter
in response with the answers as well as a written report on the solutions. Students
are given two days in class to work on this letter and report. Also, as with the first
mission, I offer to read a draft of these items. The projects must be returned on the
flash drive.
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Fig. 8 Data found on a computer at the Antique Emporium

Assessment When the students receive their flash drive of information, they are also
supplied with a long, detailed rubric for the assignment and a peer review form. For
this project, groups are required to do outside research on the topic of least squares
and include references. They are also informed they must use this method, but in the
report they must include why this method applies to this specific collection of data
(this is the most commonly missed rubric item). Also, there is one model that seems
incorrect. The students must explain this as well.

This project helps to assess the second outcome for this course: Students will be
able to work independently and collaboratively on mathematical problems. Students
must complete a peer evaluation on their group members. My observations and these
evaluations will make up 20% of this project grade.

Debriefing As with the previous missions, I make comments on the letter and report
and supply additional comments on a copy of the rubric the students received.
Finally, students are given information about each of the Agents Terry, Cory, and
Rowan. They each individually make a choice about who to give the prediction
models and report. On the last day of class, I give them a final letter about what
happened to them in this fictional world. See Fig. 9 for an example.

Fun Extras I inform the students of their fates by making them a name badge with
a QR code on the back. They can scan the code to get their final outcome and to
have a final memento from the course.
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Fig. 9 Example of what may have happened to you at the end of the projects

3 Steps Forward

These projects are living things in my courses; they are constantly evolving to be
more effective as teaching tools. This involves changing the problems, adding more
to the story, creating “mini” missions, and creating more thorough assessments
for the projects themselves. I am currently working with the UWEC’s Center of
Teaching and Learning (CETL) to create an anonymous assessment survey for each
of these projects that will be sent to current and previous students.
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My absolute favorite thing about these zombie projects is the students’ creativity
with writing and storytelling. Students of course have the option of just answering
the questions and writing a plain letter back to Agent Larson. However, most of the
students really get involved in the world. I have had students create code names
for themselves, new departments in the agency, puzzles for Agent Larson, and
drawings/comics of the zombies. As such, it is my intention to get a small group
of students, from math majors, to art majors, to English majors to write a course
booklet about the ZCTF (or a brand new agency) that my calculus and linear algebra
students would receive at the beginning of the semester. I have projects made for
Calculus I, II, III, and Linear Algebra that would all be included in this volume.
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A Multivariate Rank-Based Two-Sample
Test Statistic

Jamye Curry, Xin Dang, and Hailin Sang

Abstract The problem of testing whether two samples come from the same or
different populations is a classical one in statistics. A new distribution-free test
based on standardized ranks for the univariate two-sample problem is studied.
Providing a distribution-free (nonparametric) method offers a valuable technique
for analyzing data that consists of ranks or relative preferences of data, and of
data that are small samples from unknown distributions. The proposed test statistic
examines the difference between the average of between-group rank distances and
the average of within-group rank distances. This test statistic is closely related to
the classical two-sample Cramér–von Mises criterion; however, they are different
empirical versions of the same quantity for testing the equality of two population
distributions. The advantage of the proposed rank-based test over the classical one
is its ease to generalize to the multivariate case. In addition, the motivation of the
proposed test is its application to microarray analyses in identifying sets of genes
that are differentially expressed in various biological states, such as diseased versus
non-diseased. A numerical study is conducted to compare the power performance
of the rank formulation test with other commonly used nonparametric tests.

1 Introduction

The objective of this paper is to study and investigate the two-sample problem.
A two-sample problem is when two independent random samples are obtained
and used to test a hypothesis regarding the populations in which the samples
are drawn from. The investigation of such problem, for example, can be used
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to analyze microarray data. Microarray technology allows researchers to examine
samples of gene expression levels under diverse circumstances. A common objective
in analyzing data from microarray experiments is to identify which genes are
differentially expressed which are drawn from samples obtained under various
conditions. Researchers test for differentially expressed genes when searching for
disease-related genes. For instance, one can compare data of gene expression levels
between cancer tissue samples and normal tissue samples to select genes related
to the cancer under investigation. The cancer gene will be detected if the average
expression levels between the two samples are significantly different.

For many statistical procedures, the goal is to test the null hypothesis of identical
distributions versus the location and dispersion (scale) alternatives, which is that
the populations are from the same distribution, but have a different measure of
central tendency and variability. There are also many statistics used to test for
dispersion which tests for the equality of variances of the two populations. However,
these procedures are a part of the parametric testing family where there are many
assumptions made about the parameters of the underlying distributions. If the
assumptions are accurate, then a parametric approach will provide precise estimates
of the parameters. On the other hand, if the assumptions are not accurate, then
a parametric approach will provide misleading and false results. Thus, we use a
nonparametric approach as it is more robust and resistant against outlying data, and
has very few assumptions.

Several distribution-free tests such as the Kolmogorov–Smirnov test, the
Cramér–von Mises test, and their variations have been proposed and widely used.

Suppose X1, X2, . . . , Xm
iid∼ F and Y1, Y2, . . . , Yn

iid∼ G are two independent
random samples with continuous distribution functions F and G, respectively,
where the notation iid indicates that the samples are independent and identically
distributed. The two-sample problem is to test

H0 : F = G vs Ha : F �= G. (1)

Denote Fm and Gn as the empirical distribution functions of the two samples
and HN as the empirical distribution function of the combined sample, where
N = m + n. The Kolmogorov–Smirnov (KS) two-sample test statistic is defined
as the maximum distance (difference) of the set of distances between the empirical
distributions Fm and Gn of the two samples. The classical Cramér–von Mises test
statistic has the form

Tc = mn

N

∫ ∞

−∞
[Fm(x)−Gn(x)]2dHN(x). (2)

This test statistic and its asymptotics have been well studied in the literature, for
example, Lehmann [13], Rosenblatt [17], Darling [5], Fisz [8], and Anderson [1].

Both of the KS test statistic and the Cramér–von Mises test statistic are
formulated based on the empirical distributions. Baringhaus and Franz [2] studied a
test statistic based on the original data. That is,
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mn

N

⎧⎨
⎩

1

mn

m∑
i=1

n∑
j=1

|Xi − Yj | − 1

2m2

m∑
i=1

m∑
j=1

|Xi −Xj | − 1

2n2

n∑
i=1

n∑
j=1

|Yi − Yj |
⎫⎬
⎭ .

(3)
This test statistic (3) was motivated by a conjecture considering the distances
between points of two types (Morgenstern [14]) and it has a direct generalization
to the multivariate case. However, it requires an assumption on the first moment
and it is not distribution-free for the univariate case (Baringhaus and Franz [2]). It
is worth to note that the test statistic (3) falls in the unified framework on energy
statistics studied by Székely and Rizzo [19]. Other similar tests include [7] and
[10], although they are derived under different motivations. Fernandez et al. [7]
developed a statistic based on the empirical characteristic functions of the observed
observations. The statistic uses a weighted integral of the difference between the
empirical characteristic function of the two samples. Gretton et al. [10] proposed
a test based on a kernel method in which the testing procedure is defined as the
maximum difference in expectations over functions evaluated on the two samples.
Each of these test statistics are of the form that measures the distance of the samples
between the two groups and measures the distance of the samples within the same
group, or a combination of the two. All of these test statistics mentioned above
are motivations to the proposed test statistic in this paper. The main objective for
our approach in investigating the two-sample problem is to test the null hypothesis
for the equality of distributions from independent random samples without any
parametric assumptions on the underlying populations. We will also observe that
the new approach may be applied in the multivariate setting as oppose to only the
univariate setting

The layout of the paper is as follows: A rank-based test statistic is proposed
for the univariate case followed by a simulation study to investigate the power
performance of the test statistic. The section following the univariate simulation
study will present the multivariate extension of the proposed rank-based test. The
final section includes a brief summary and discussion of the paper.

2 Univariate Case

Here, we propose a new rank-based test of the same form as the test statistic in (3).
Nevertheless, it overcomes the limitations of (3). It is formulated based on the
ranks of two samples with respect to the combined sample HN . Denote R(y,H)

as the standardized rank of the quantity y with respect to the distribution H , i.e.,
R(y,H) = H(y). For testing the hypothesis (1), we use the following test statistic:

T =mn

N

{
1

mn

m∑
i=1

n∑
j=1

|R(Xi,HN)− R(Yj ,HN)|
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− 1

2m2

m∑
i=1

m∑
j=1

|R(Xi,HN)− R(Xj ,HN)|

− 1

2n2

n∑
i=1

n∑
j=1

|R(Yi,HN)− R(Yj ,HN)|
}
. (4)

T is interpreted as the difference of the average of between-group rank differences
and the average of within-group rank differences. A large value of T indicates the
deviation of two groups. The test based on T is distribution-free and does not require
any moment condition.

For the balanced samples (m = n), one can consider an equivalent but simpler
statistic

T ′ = 1

mn

m∑
i=1

n∑
j=1

|R(Xi,HN)− R(Yj ,HN)|. (5)

T ′ is the average of rank differences between two groups. T and T ′ are equivalent
as T = nT ′ − (4n2 − 1)/(12n) when m = n.

Later, we show that the test statistic T is closely related to the classical
nonparametric Cramér–von Mises criterion Tc. They are different empirical plug-
in versions of the same population quantity. The rank-based test statistic and the
Cramér–von Mises criterion may not be equal to each other for finite samples, but
they are asymptotically equivalent. The advantage of the new rank-based test over
the classical one is its ease to generalize to the multivariate case. Multivariate gener-
alizations of Cramér–von Mises tests have been considered by many researchers, but
they are either applied on independent data [4], used for testing independence [9], or
used in the goodness-of-fit test of the uniform distribution on the transformed data
[3]. For the proposed rank-based formulation, generalizations to the multivariate
two-sample problem are straightforward by applying notions of multivariate rank
functions.

To formulate the rank-based test statistic T in (4), we first establish its population
version. We provide a result of the population version, from which we can see the
relationship between our test statistic and Cramér–von Mises criterion.

Lemma 1 Let X and Y be independent continuous random variables from F and
G, respectively. Let H = τF+(1−τ)G with 0 ≤ τ ≤ 1 be the mixture distribution,
J be the distribution of R(X,H), and K be the distribution function of R(Y,H).
Then

E|R(X,H)− R(Y,H)| =
∫ 1

0
J (t)(1−K(t)) dt +

∫ 1

0
K(t)(1− J (t)) dt. (6)
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Proof Notice that

|R(X,H)− R(Y,H)| =
∫ 1

0

[
I (R(X,H) ≤ s < R(Y,H))

+I (R(Y,H) ≤ s < R(X,H))
]
ds.

Since H is continuous and R(X,H) = H(X),R(Y,H) = H(Y), we have J (x) =
F ◦ H−1(x), K(x) = G ◦ H−1(x) for any x ∈ [0, 1], where H−1(x) = inf{u :
H(u) ≥ x}. Then (6) holds by Fubini’s theorem. 
�

Thus, based on Lemma 1 and the identity

E|R(X,H)− R(Y,H)| − 1

2
E|R(X1,H)− R(X2,H)| − 1

2
E|R(Y1,H)

− R(Y2,H)| =
∫ ∞

−∞
(F (x)−G(x))2d(τF (x)+ (1− τ)G(x)), (7)

we have the following theorem.

Theorem 1 Let X,X1, X2 and Y, Y1, Y2 be independent continuous random vari-
ables distributed from F and G, respectively. Let H = τF + (1 − τ)G with
0 ≤ τ ≤ 1 be the mixture distribution. Then

E|R(X,H)− R(Y,H)| − 1

2
E|R(X1,H)− R(X2,H)| − 1

2
E|R(Y1,H)

− R(Y2,H)| ≥ 0 (8)

and the equality holds if and only if F = G.

The result of Theorem 1 suggests two possible statistics for testing the hypoth-
esis (1). The first version is the sample plug-in version of the left side of (7). With
τ = m/N and multiplying by mn/N , it is our test statistic defined in (4). H0 is
rejected if the sample version is large, i.e., T > cα(m, n). The critical value cα(m, n)

is determined by the significance level α and the null distribution of T . The test
statistic T is the difference of the average of between-group rank differences and the
average of within-group rank differences. A large value of T indicates the deviation
of two groups.

The two-sample Cramér–von Mises statistic Tc in (2) is the empirical version of
the right side of (7). Hence T and Tc are all plug-in statistics of an equal quantity.
Nevertheless, they may take different values. For example, in the case that m = n =
2, let the two X realizations be 0 and 2 and the two Y realizations be 1 and 3. It is
easy to see that the Cramér–von Mises statistic has value 1

4 and the test statistic T

has value 1
8 .
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Next, we will study the properties of T . Let D be E|R(X,H) − R(Y,H)| −
1
2E|R(X1,H) − R(X2,H)| − 1

2E|R(Y1,H) − R(Y2,H)|, and D̂ = N/(mn)T .
Then we have the following theorem.

Theorem 2 For m, n →∞, if m/(m+ n) → τ , then D̂ → D a.s.

By this theorem and Theorem 1, it is easy to see that our test statistic T is consistent
for the alternative Ha : F �= G.

Theorem 3 Under H0, T is distribution-free.

Under H0, the combined samples X1, . . . , Xm, Y1, . . . , Yn constitute a random
sample of size N from the distribution F = G = H . So any assignment of
m numbers to X1, . . . , Xm and n numbers to Y1, . . . , Yn from the set of integers

{1, 2, . . . , N} is equally likely, i.e., has probability

(
N

m

)−1

which is independent of

F . Using the fact that those number assignments have one-to-one linear relationship
with the standardized ranks, T is distribution-free.

The exact null distribution of T can be found by enumeration of all possible
values of T by considering the N !/(m!n!) orderings of m X’s and n Y ’s. Figure 1
provides the exact null distribution of T for sample sizes m = n = 7 and
m = 7, n = 9 by considering all combinations. However, the exact null distribution
is infeasible to obtain for large sample sizes because the number of combinations
increases dramatically as m and n increase. For large samples, we can use the Monte
Carlo method on all combinations to approximate the null distribution [18]. Also,
the limiting distribution of T can be used to determine the critical values of the test.
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Fig. 1 The exact null distribution of T obtained from all combinations (left: m = 7, n = 7; right:
m = 7, n = 9). The vertical line in each graph indicates the 5% critical value
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3 Simulations

There are many nonparametric tests available for the two-sample problem. By
the simulation study in this section, we demonstrate the performance of the T
test. It is by no means to conduct a comprehensive comparison. Here, we include
Kolmogorov–Smirnov test (KS), Wilcoxon rank sum test (W) or Mood’s test
(M), the empirical likelihood ratio test (ELR) proposed by Gurevich anf Vexler
[11], the empirical likelihood test (ELT) proposed by Einmahl and McKeague [6],
Baringhaus and Franz’s Cramér test (CT) as in (3), and the test studied in Fernándes
et al. [7] (DT). It is necessary to note that the CT and DT tests are not distribution-
free tests, and their critical values and p-values are based on the Monte Carlo method
on permutations in each sample, which is implemented in the R package “Cramer.”
The R package “dbEmpLikeGOF” is used for the ELR test in which the parameter
is set to be 0.1 as suggested in [11]. The critical values of the ELT and our T test are
computed through 107 random combinations on {1, . . . , N}.

Various alternative distributions are considered. For each case, M = 10,000
iterations are computed to estimate powers by calculating the fraction of p-values
less than or equal to α = 0.05, the level of significance. The Monte Carlo errors can
be estimated by ±1.96

√
p(1− p)/M . In particular, the size of tests shall maintain

in the interval (0.046, 0.054).
Table 1 shows the size and power performance for each test under the normal

distributions, where X1,. . . ,Xn ∼ N(0, 1) and Y1,. . . ,Ym ∼ N(�, 1) with � = 0,
0.25, 0.5, 0.75, and 1. When � = 0, the KS test is undersized for both the equal
and unequal sample size cases; the ELR test is oversized in the equal sample size
case and seriously undersized for the unequal sample size case; all other tests keep
a desirable size. As expected, the W test is the best among all tests since it is well
known to be powerful for the two-sample problem with a constant shift in location,
especially when data follow logistic or normal distributions. The CT and ELT tests
are comparable to W. The T test is more powerful than the DT, KS, and ELR tests.
In the unequal sample size case, the W test is the best followed by the CT test. The
ELT and T tests are comparable and significantly better than the DT, KS, and ELR
tests.

The experiment is repeated for the t-distribution with 3 degrees of freedom and
the result is presented in Table 2. Although the statistical power of the T test is the
highest among all tests for all cases, its power differences with the W test or the ELT
test are small so that those three tests are comparable.

Table 3 shows the power performance for the Pareto distribution, where
X1,. . . ,Xn ∼ Pa(2, 2) and Y1,. . . ,Ym ∼ Pa(2+�, 2) are generated, with � = 0,
0.25, 0.5, 0.75, and 1. The power of the ELR test is much higher than that of all
others. For � = 0.25, the power of the ELR test is as high as 90%, which is
30% higher than the second best ELT test. A potential reason why the ELR test
outperforms the other tests is the idea that the ELR test is based on the empirical
likelihood function consisting of components that maximize the likelihood function
which satisfies empirical constraints. The T test is the third best one. The power
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Table 1 Power performance of each test with significance level α = 0.05 for the normal
distribution with location alternatives

� KS W ELR ELT CT DT T

0 0.040 0.050 0.057 0.050 0.050 0.051 0.050

0.041 0.047 0.031 0.047 0.048 0.048 0.049

0.25 0.162 0.228 0.182 0.224 0.226 0.191 0.217

0.160 0.208 0.119 0.196 0.203 0.171 0.198

0.5 0.534 0.681 0.578 0.670 0.671 0.582 0.652

0.498 0.621 0.446 0.603 0.615 0.526 0.600

0.75 0.875 0.949 0.902 0.945 0.943 0.901 0.936

0.851 0.926 0.829 0.919 0.922 0.871 0.912

1 0.988 0.998 0.994 0.997 0.998 0.991 0.996

0.979 0.995 0.976 0.994 0.994 0.984 0.993

Row 1: n = m = 50, Row 2: n = 50,m = 40

Table 2 Power performance of each test with significance level α = 0.05 for the t3 with location
alternatives

� KS W ELR ELT CT DT T

0 0.036 0.048 0.052 0.048 0.049 0.046 0.047

0.045 0.054 0.036 0.054 0.055 0.051 0.054

0.25 0.130 0.163 0.124 0.160 0.158 0.142 0.165

0.135 0.157 0.084 0.152 0.154 0.137 0.162

0.5 0.422 0.488 0.367 0.486 0.481 0.434 0.501

0.402 0.449 0.268 0.440 0.439 0.394 0.462

0.75 0.776 0.830 0.710 0.825 0.818 0.783 0.836

0.741 0.786 0.586 0.780 0.776 0.734 0.799

1 0.947 0.966 0.917 0.966 0.965 0.950 0.971

0.929 0.946 0.842 0.946 0.944 0.925 0.954

Row 1: n = m = 50, Row 2: n = 50,m = 40

difference between the T test and that of the CT test can be as large as 27% for
equal sample sizes and can be as large as 32% for unequal sample sizes.

All considered tests in the experiment for location alternatives are used for scale
alternatives except the Wilcoxon test (W), as this is a test for location. Instead, the
Mood’s test known as a scale test is used and referred to as the M test. Table 4
displays the results when the Y samples of size 50 are generated from N(0,�)

or Pareto(2, 2�), where � = 1, 1.5, 2, 2.5, and 3. In the normal case, the T
test does not compare favorably to all considered tests other than the KS test. It
performs significantly better than the KS test, but its power is 2–5 times smaller
than that of others. It is interesting to see that the M test outperforms all tests
in the normal case, but it is the inferior in the Pareto case. The T test has better
performance for Pareto samples than for normal samples due to the heavy tails in
Pareto distributions. In the Pareto case, all tests outperform the M test by a great
margin and the CT test is the superior. Furthermore, we add one more case in the
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Table 3 Power performance of each test with significance level α = 0.05 for the Pareto
distributions with location alternatives

� KS W ELR ELT CT DT T

0 0.040 0.052 0.058 0.051 0.052 0.050 0.051

0.044 0.050 0.032 0.050 0.050 0.053 0.052

0.25 0.417 0.443 0.906 0.599 0.205 0.287 0.472

0.377 0.405 0.815 0.516 0.186 0.265 0.428

0.5 0.960 0.886 0.999 0.978 0.655 0.843 0.968

0.940 0.859 0.998 0.958 0.598 0.798 0.948

0.75 0.999 0.989 1.000 0.999 0.945 0.993 0.999

0.998 0.980 1.000 0.998 0.908 0.988 0.997

1 1.000 0.999 1.000 1.000 0.993 1.000 1.000

1.000 0.998 1.000 1.000 0.988 1.000 1.000

Row 1: n = m = 50, Row 2: n = 50,m = 40

Table 4 Power performance of each test with significance level α = 0.05 for Normal and Pareto
scale alternatives, also the case of F = Exp and G = Lognorm

Distribution � KS M ELR ELT CT DT T

Normal 1 0.039 0.051 0.056 0.047 0.049 0.051 0.047

1.5 0.118 0.663 0.542 0.238 0.251 0.431 0.138

2 0.374 0.979 0.965 0.746 0.792 0.915 0.479

2.5 0.681 0.999 0.999 0.962 0.981 0.994 0.815

3 0.881 1.000 1.000 0.996 0.999 1.000 0.957

Pareto 1 0.040 0.054 0.055 0.049 0.052 0.049 0.050

1.5 0.307 0.098 0.378 0.418 0.487 0.356 0.398

2 0.741 0.165 0.828 0.857 0.909 0.815 0.831

2.5 0.937 0.214 0.973 0.980 0.992 0.974 0.978

3 0.988 0.234 0.997 0.998 0.999 0.997 0.998

Exp vs Lgnorm 0.336 0.535 0.654 0.555 0.502 0.315 0.476

simulation in which X1, . . . , Xn ∼ exp(1) and Y1, . . . , Ym ∼ lognorm(0, 1) with
sample sizes m = n = 50. The Monte Carlo powers of the seven tests are listed in
Table 4. In this scenario, the T test performs better than KS and DT, but does not
compare as favorably to the CT, W, ELT, and ELR tests.

Based on the simulations above, the T test is not recommended for scale alter-
natives. The Kolmogorov–Smirnov test is not recommended either. The empirical
likelihood ELR test is more suitable for a scale alternative, but is not recommended
for a location alternative for symmetric distributions. The T test has a better perfor-
mance for location alternatives than scale alternatives. It is easy to explain the power
performance of the Cramér–von Mises test with the rank-based formulation (4) for
the location alternatives. For two samples from the same class distributions (normal
distributions, t-distributions or Pareto distributions, and so on), but with different
locations, the ranks in the mixture are quite different. Therefore, the corresponding
test can easily recognize them and have good power performance. We recommend to
apply the T test for location alternatives, especially in the heavy-tailed distributions.
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4 Multivariate Extension

The proposed rank-based test statistic is closely related to the two-sample Cramér–
von Mises criterion. Both statistics are different sample plug-in forms from a same
population quantity. The advantage of our rank test is to allow straightforward gen-
eralizations to the multivariate case by using different multivariate rank functions.
Among them, the spatial rank is appealing due to its computation ease, efficiency,
and other nice properties [15, 16]. The sample version of the spatial rank function
with respect to HN , the empirical distribution of the combined sample x1, . . . , xm

and y1, . . . , yn in R
d , is defined as

R(x,HN) = 1

N

N∑
i=1

x − zi

‖x − zi‖ ,

where zi = xi for i = 1, . . . , m, zm+i = yi for i = 1, . . . , n, and ‖ · ‖ is the
Euclidian distance. Then the multivariate two-sample spatial rank statistic, denoted
by TM , is defined as

TM = mn

N
{ 1

mn

m∑
i=1

n∑
j=1

‖R(xi , HN)−R(yj , HN)‖

− 1

2m2

m∑
i=1

m∑
j=1

‖R(xi , HN)−R(xj , HN)‖

− 1

2n2

n∑
i=1

n∑
j=1

‖R(yi , HN)−R(yj , HN)‖}. (9)

The test statistic TM is the difference of the average of the intra-group rank distances
and the average of the inter-group rank distances. A large value of TM indicates
the deviation of the two groups and rejects the null hypothesis. The multivariate
counterpart of Theorem 1 states as follows:

Theorem 4 Let X,X1,X2 and Y ,Y 1,Y 2 be independent d-variate continuous
random vectors distributed from F and G, respectively. Let H = τF + (1 − τ)G

with 0 ≤ τ ≤ 1. Then

E‖R(X,H)−R(Y ,H)‖ − 1

2
E‖R(X1,H)−R(X2,H)‖ − 1

2
E‖R(Y 1,H)

−R(Y 2,H)‖ ≥ 0, (10)

where the equality holds if and only if F = G.
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Proof Let μ be the uniform distribution on the surface of the unit ball Sd−1 = {a ∈
R

d : ‖a‖ = 1}. From Theorem 1, we have

E|R(aT X,Ha)− R(aT Y ,Ha)| − 1

2
E|R(aT X1,H

a)− R(aT X2,H
a)|

− 1

2
E|R(aT Y 1,H

a)− R(aT Y 2,H
a)| ≥ 0

for each a ∈ Sd−1, where Ha = τF a + (1 − τ)Ga with Fa and Ga being
the distributions of aT X and aT Y , respectively. Integration of a with respect to
μ obtains (10). Equality holds if and only if for μ-almost all a ∈ Sd−1 the
distributions of aT X and aT Y coincide. For each t ∈ R the functions E exp(itaT X)

and E exp(itaT Y ) with a ∈ Sd−1 are continuous. Thus, equality in (10) holds if
and only if X and Y have the same characteristic function, hence have the same
distribution. 
�

The multivariate spatial rank test based on TM loses the distribution-free property
under the null hypothesis. The test relies on the permutation method to determine
critical values or to compute p-values. However, the test is robust. For example,
it does not require the assumption of finite second moment as the Hotelling’s T 2

test. Neither does it require the assumption of finite first moment as the CT test
considered by Baringhaus and Franz [2].

A simulation is conducted to compare performance of TM , CT, and the
Hotelling’s T 2 under multivariate normal, t1, and Pareto distributions on R

d

(d = 2, 5). Location and scatter alternatives are considered. For location alternatives
in normal and t1 distributions, the parameters of distributions for generating X

samples of size n = 50 are μ = 0 and �X = I , while for Y samples with size
m = 50 are μ = (�, . . . ,�)T and �Y = I , where � = 0, 0.25, 0.5, 0.75, and 1.
For the Pareto distribution, X = (X1, . . . , Xd)T is generated with each component
Xj from Pareto(1,1) and Y = (Y1, . . . , Yd)T is generated with each component Yj

from Pareto(1 + �, 1). The R package “Hotelling” is used for the Hotelling’s T 2

test. The TM and CT tests use the permutation method to compute p-values and
M = 10,000 iterations are computed to estimate powers by calculating the fraction
of p-values less than or equal 0.05. The results for the location alternatives are listed
in Table 5.

From Table 5, all three tests keep the size 5% well. Powers in d = 5 are higher
than that in d = 2 for each of the three tests under all distributions. In the normal
cases, TM performs slightly worse than the Hotelling’s test and CT. The power of
TM is about 2% lower than that of the Hotelling’s test and 1% lower than that of CT
under Ha when � = 0.25 and � = 0.50. However, the power gain of TM over CT
and the Hotelling’s test is huge in the t1-distributions. For � = 0.25 and � = 0.5,
TM is about twice powerful as CT and about triple powerful as the Hotelling’s test.
The advantage of our proposed TM over CT and the Hotelling’s test is even more
significant in the asymmetric Pareto distributions than in the t1 distributions for the
location alternatives.
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Table 5 Power performance of TM , CT, and Hotelling’s tests with significance level α = 0.05
for multivariate normal, t1, and Pareto distributions with location alternatives with sample sizes
n = m = 50

Dist Dim Method � = 0 � = .25 � = .50 � = .75 � = 1

Norm d = 2 TM 0.0550 0.3000 0.8688 0.9966 1

CT 0.0556 0.3090 0.8818 0.9972 1

Hotelling 0.0518 0.3226 0.8900 0.9976 1

d = 5 TM 0.0484 0.5178 0.9944 1 1

CT 0.0500 0.5332 0.9958 1 1

Hotelling 0.0494 0.5248 0.9942 1 1

t1 d = 2 TM 0.0538 0.1574 0.4898 0.8212 0.9644

CT 0.0596 0.0820 0.226 0.4504 0.7134

Hotelling 0.0546 0.0562 0.0934 0.1360 0.2058

d = 5 TM 0.0478 0.2382 0.7986 0.9888 0.9996

CT 0.0546 0.0858 0.288 0.6200 0.8568

Hotelling 0.0472 0.0742 0.1622 0.2990 0.4608

Pareto d = 2 TM 0.0492 0.3470 0.8682 0.9886 0.9998

CT 0.0560 0.1146 0.2850 0.5330 0.7298

Hotelling 0.0484 0.0986 0.1858 0.3076 0.4188

d = 5 TM 0.0522 0.2892 0.7942 0.9784 0.9996

CT 0.0492 0.1142 0.2942 0.5184 0.7128

Hotelling 0.0528 0.1108 0.2614 0.4462 0.6046

The results for scatter alternatives are listed in Table 6. For multivariate normal
and t1 distributions, we first consider the difference of scatter matrix only on
scales. The parameters for X samples are μ = 0 and �X = I , while for Y

samples are μ = 0 and �Y = �I , where � = 1, 1.5, 2, 2.5, and 3. We then
consider the alternative with different orientation on the scatter matrices. The scatter

matrix is

(
1 .5
.5 1

)
for X samples, while it is

(
1 −.5
−.5 1

)
for Y samples. Hence

two components of X are positively correlated and the two components of Y are
negatively correlated. The results for orientation difference alternatives are listed in
the last column “Orient” in Table 6. In d = 5, �X has diagonal elements to be
one and off-diagonal elements to be 0.5, and �Y is constructed to have the same
eigenvectors as �X and eigenvalues to be the reciprocals of eigenvalues of �X.
For Pareto distributions, X = (X1, . . . , Xd)T is generated with each component Xj

from Pareto(1,1) and Y = (Y1, . . . , Yd)T is generated with each component Yj from
Pareto(1,�).

From Table 6, all tests maintain the size 5% well. For asymmetric Pareto
distributions, CT is slightly better than TM and TM is better than the Hotelling’s
test. For normal and t1 distributions, the Hotelling’s T 2 completely fails in scatter
alternatives since it is a test on location difference. CT test is much better than TM

for scale alternatives. Particularly, CT is triple powerful as the TM in normal case
and twice powerful in the t1 case. This result is not surprising since TM is based on
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Table 6 Power performance of TM , CT, and Hotelling’s tests with significance level α = 0.05
for multivariate normal, t1, and Pareto distributions with scatter alternatives with sample sizes
n = m = 50

Dist Dim Method � = 1 � = 1.5 � = 2 � = 2.5 � = 3 Orient

Norm d = 2 TM 0.0468 0.0640 0.1064 0.1902 0.2992 0.3179

CT 0.0474 0.0982 0.2716 0.5660 0.8072 0.3016

Hotelling 0.048 0.0472 0.0598 0.0496 0.0524 0.0493

d = 5 TM 0.0476 0.0748 0.1272 0.2600 0.4124 0.9678

CT 0.0470 0.1510 0.5580 0.9192 0.9948 0.8188

Hotelling 0.045 0.0568 0.0526 0.0576 0.0540 0.0538

t1 d = 2 TM 0.0486 0.0580 0.0698 0.0948 0.1256 0.2366

CT 0.0482 0.0680 0.1182 0.1754 0.2370 0.0916

Hotelling 0.0506 0.0476 0.0488 0.0530 0.0544 0.0495

d = 5 TM 0.0514 0.0648 0.0900 0.1286 0.1742 0.5896

CT 0.0512 0.0836 0.1510 0.2320 0.3344 0.1984

Hotelling 0.0528 0.0494 0.0492 0.0556 0.0550 0.0468

Pareto d = 2 TM 0.0550 0.6164 0.9802 1 1 −
CT 0.0540 0.6896 0.9896 1 1 −
Hotelling 0.0498 0.5148 0.9354 0.9876 0.9976 −

d = 5 TM 0.0504 0.9158 1 1 1 −
CT 0.0512 0.9268 0.9996 1 1 −
Hotelling 0.0566 0.7616 0.9960 0.9998 1 −

the spatial ranks that lose major information on distances or scales. However, when
two scatter matrices of distributions are different on orientation, TM performs better
than CT, and especially in the t1 distribution, the power of TM is twice or triple as
that of CT.

5 Summary and Discussion

In summary, the problem of testing whether two samples come from the same or
different populations is a classical one in statistics. We have studied a rank-based
test for the univariate two-sample problem, where the test statistic is defined as the
difference between the average of between-group rank distances and the average
of within-group rank distances. We have shown that, under the null hypothesis, the
test statistic is distribution-free, and we recommend to apply the T test for location
alternatives, especially in the heavy-tailed distributions.

The proposed rank test statistic is closely related to the two-sample Cramér–von
Mises criterion. Both statistics are different sample plug-in forms from the same
population quantity. The advantage of our rank test is that it allows for straightfor-
ward generalizations to the multivariate case by using different multivariate rank
functions.
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The test statistic TM can be applied in the sense of detecting differentially
expressed genes. For instance, in a heterogeneous disease, the gene expression level
often shows greater variability from one case subject to another, due to the presence
of a certain number of distinct disease entities, as compared with the variability seen
from one control subject to another. In a single experiment, microarray technology
can provide information about hundreds of thousands of gene expression data.
Researchers try to test for differentially expressed genes to find genes which are
disease-related. That is, compare gene expression levels between cancerous and
normal genes, and detect the ones that are differentially expressed. If the mean
expression levels are statistically different, then there is a difference between the
two groups [12]. This type of data will generally produce multivariate robust data
that does not come from a normal distribution. Therefore, the TM test statistic would
be a preferred test in this case to detect such gene expression levels and to analyze
such data.

The idea of detecting differentially expressed genes serves as motivation for
pursuing the proposed tests. Therefore, a continuation of this work is to study
properties of the multivariate TM test and to utilize the test in application. Also,
future work is to further investigate generalizations based on other multivariate rank
functions.
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Sufficient Conditions for Composite
Frames

Wojciech Czaja and Karamatou Yacoubou Djima

Abstract In many fields of science and technology, multiscale (or multiresolution)
analysis is a useful tool to study data via efficient representation at increasingly
precise resolution. In this paper, we present a result on composite wavelet frames
(or composite frames), a relatively recent development in a long line of multiscale
techniques including the celebrated Fourier and wavelet analyses. Composite frames
generalize many traditional wavelet-based constructions and can be used to provide
new effective schemes, including such successful examples as shearlets, that capture
directionality in data, images in particular. Our construction is motivated by
wavelets with composite dilations, which were introduced in Guo et al. (Appl
Comput Harmon Anal 20:202–236, 2006). We focus on frames, a robust system that
generalizes orthogonal bases and can include redundant elements, and show that we
can construct composite frames for L2(Rn) using two main components: dilation
operators from admissible groups and generating functions which are refinable
with respect to these groups. We illustrate this theory with the construction of a
composite dilation frame based on a Haar wavelet with quincunx dilation and local
mollification.

1 Introduction

Composite wavelets, also known as wavelets with composite dilations, are repre-
sentation systems that generalize classical wavelets, which generated high interest
starting the 1980s and continue to prove their usefulness, both in applications and
in the theoretical development of new ideas for the analysis of signals, including the
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large datasets with complex structures that are of concern for researchers in many
fields today.

The idea of wavelets, and many other systems, is to decompose signals or data
(viewed as functions) into basic constituents [6, 8]. In the early twentieth century,
the Hungarian mathematician Haar studied the function

ψ(x) =
⎧⎨
⎩

1 if 0 ≤ x < 1
2 ,

−1 if 1
2 ≤ x < 1,

0 otherwise.

Haar proved that dilations with dyadic powers combined with integer translates of
ψ form an orthonormal basis for L2 (R) [5, 9, 16]. With its simple, orthogonal
functions of compact support able to capture local properties of functions in both
time and frequency, the Haar wavelet basis opened in new window in the analysis
of functions, even though wavelet systems were only thoroughly explored decades
later.

In general, if for ψ ∈ L2 (R) the sequence
{
ψj,k(x)

}
j, k∈Z, where

ψj,k(x) := 2j/2ψ(2j x − k), x ∈ R, (1)

forms an orthonormal basis for L2 (R), the function ψ is called a wavelet or
mother wavelet. The flexibility in the choice of ψ separates wavelets from other
representation systems such as the famed, albeit more rigid Fourier basis, and
makes wavelets attractive both in theory and application. Mother wavelets with
characteristics such as exponential decay or smoothness can compensate for the
Haar wavelet poor differentiability properties, which can cause severe errors in
certain approximations. In 1989, the introduction of the concept of multiresolution
analysis (MRA), a useful framework in which functions are approximated via
successive, coarse to finer, resolutions, led to a systematic construction of wavelet
orthonormal bases by offering conditions for which certain classes of functions
generate a wavelet system [22, 23]. All these advantages as well as the rise in
computing power at the end of the past century made classical wavelets a potent tool
in the approximation of functions or signals, including tasks such as singularities
detection, compression, or denoising.

In the early 2000s, further developments occurred in wavelet theory through the
addition of directional systems. Directional systems offer significantly more adapt-
ability by incorporating various orientations and elongated shapes with different
aspect ratios, as opposed to traditional wavelets that contain only isotropic elements
occurring at all scales and locations. This makes directional systems appealing
in applications where they can be used for optimal, sparse, representation of
functions such as signals or images with certain singularities and geometric features.
Well-known examples comprise contourlets [10], curvelets [4], shearlets, and their
extensions [7, 11, 13, 14, 18, 19, 21], all of which with proven advantages over
existing representations. For example, contourlets efficiently approximate images
made of smooth regions separated by smooth boundaries [10] and in very recent
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work on autism detection using placenta images, shearlets are used in combination
with a manifold learning technique, Laplacian eigenmaps, to successfully enhance
the appearance of vessels structures [1].

In this paper, we give sufficient conditions to obtain composite frames or frame
GAG-MRA. Frames are a generalization of orthonormal bases with highly desirable
properties such as versatility and robustness to errors in applications. Our frame
GAG-MRA is generated by consecutively applying dilations formed with elements
of subgroups GA and G of the general linear group to a function φ ∈ L2(Rn)

satisfying certain requirements, which we make precise later. Let GLn(R) denote
the linear group of degree n, i.e., the set of n × n invertible matrices over the
field R with the operation of ordinary matrix multiplication and SLn(R) be the
special linear group of degree n, i.e., the set of n × n matrices in GLn(R) with
determinant 1. We denote by G a finite subgroup of SLn (Z), and by GA the set{
Aj : j ∈ Z

} ⊂ GLn (R). Our construction is based on Guo et al.’s composite
wavelets, defined in [15] as a class of affine systems of the form

AGAG =
{
DADBTkψ : k ∈ Z

n, B ∈ G, A ∈ GA

}
, (2)

where ψ ∈ L2(Rn), Tk is a translation by k ∈ Z
n, DA and DB are dilation operators,

and GA, G are countable subgroups of GLn(R). The dilation operators GA and G
lead to wavelets with desired geometric properties such as directionality, elongated
shapes, oscillations; in particular, GA generally expands or contracts functions in
certain directions and G contains volume-preserving maps in transverse directions.

In [15], the authors give admissibility conditions GA and G such that the system
AGAG is a (multi)wavelet or Parseval frame for L2(Rn) using the idea of shift-
invariant systems. In our construction, we assume that these conditions hold and
focus on constructing a frame multiresolution analysis of scaling functions instead
of orthonormal wavelets. In [15], Parseval frames are mentioned but the main result
concerns orthonormal wavelets. Our sufficient conditions extend a result that was,
so far, only proved for specific orthonormal bases [14, 15]. In particular, our main
result, Theorem 16, gives conditions that a function φ must satisfy to generate
a frame GAG. We also use technical arguments that give an insight on how the
dilations interact to yield a frame GAG-MRA.

This paper is organized as follows: In Sect. 2, we introduce the terminology
and notation used throughout the paper and provide some useful results for our
subsequent computations. We also give the formal definition of a frame GAG-MRA
along with admissibility conditions for sets of matrices used as dilation matrices
in the frame GAG-MRA. In Sect. 3, we prove our main theorem: we assume the
existence of a function φ whose k-translations, for k ∈ Z

n, and dilations by
admissible matrices form a semi-orthogonal Parseval frame for the space of square
integrable functions on R

n and show that whenever φ is refinable, we obtain a frame
GAG-MRA. This condition of self-similarity for φ is related to others in classical
wavelets theory [2, 3, 5, 24]. In Sect. 4, we present an example of frame based on the
partial mollification of a 2-D Haar wavelet. Our frame differs from a GAG-MRA
only on a small set and has better smoothness properties. We summarize our results
in Sect. 5 and give future directions for our work.
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2 Preliminaries

2.1 Lp-Spaces and Fourier Transform

We have already been using R
n to represent Euclidean spaces; let us denote by N,

C, and Z
n, the set of natural numbers, complex numbers, and the n-dimensional

integer lattice, respectively. Let x be a column vector representing points in R
n and

ω, a row vector representing points in the frequency domain R̂n. Suppose X is an
open subset of Rn or Rn itself. For 1 ≤ p < ∞, the Banach spaces Lp(X) contain
complex-valued functions f for which |f |p is integrable on X with respect to the
Lebesgue measure, i.e.,

Lp(X) :=
⎧⎨
⎩f : X −→ C : f is measurable and

∫

X

|f (x)|pdx < ∞
⎫⎬
⎭ .

The norm on Lp(X) is

‖f ‖p = ‖f ‖Lp(X) =
⎛
⎝
∫

X

|f (x)|pdx

⎞
⎠

1/p

.

For p = ∞, the essential supremum of a function f on X is given by

‖f ‖L∞(X) = ess sup
x∈X

f = inf
x∈X

{λ ∈ R : f (x) ≤ λ a.e.} .

We are particularly interested in the space L2 (X) of complex-valued, square
integrable functions on X, with respect to the Lebesgue measure:

L2 (X) :=
⎧⎨
⎩f : X −→ C : f is measurable and

∫

X

|f (x)|2dx < ∞
⎫⎬
⎭ ,

equipped with the norm

‖f ‖2 = ‖f ‖L2(X) =
⎛
⎝
∫

X

|f (x)|2dx

⎞
⎠

1/2

.

In agreement with standard notation, we may sometimes write ‖f ‖ to denote ‖f ‖2.
The space L2 (X) is a Hilbert space and thus has an inner product given by

〈f, g〉 =
∫

X

f (x)g(x)dx, f, g ∈ L2 (X) .
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To compute estimates for certain quantities associated with functions in L2 (X), we
often use the Cauchy–Schwarz inequality, which states that

∫

X

|f (x)g(x)|dx ≤ ‖f ‖L2(X)‖g‖L2(X) for all f, g ∈ L2 (X) .

The discrete analog of L2 (Rn) is 	2 (K), the space of square summable scalar
sequences with respect to a countable index K:

	2 (K) :=
{
{xk}k∈K , xk ∈ C, K is countable : ‖f ‖2

	2(K)
=
∑
k∈K

|xk|2 < ∞
}

.

The space 	2 (K) is also a Hilbert space with respect to the inner product

〈{xk} , {yk}〉 =
∑
k∈K

xkyk,

where {xk}k∈K , {yk}k∈K ⊂ 	2 (K). The Cauchy–Schwarz inequality on 	2 (K) is
given by

∣∣∑
k∈K

xkyk

∣∣2 ≤∑
k∈K

|xk|2
∑
k∈K

|yk|2 , {xk}k∈K , {yk}k∈K ⊂ 	2 (K) .

We denote by T
n the n-dimensional torus R

n/Zn � [0, 1]n. The space of
measurable Z

n periodic function f such that

‖f ‖2
L2(Tn)

:=
∫

Tn

|f (x)|2dx < ∞

is denoted by L2 (Tn).
Finally, we define the Fourier transform of functions in L2 (Rn). Note that the

Fourier transform is usually defined for functions in L1(Rn), but because we wish
to use formulas such as Plancherel’s equation without additional assumptions, we
adopt the following definition.

Definition 1 The Fourier transform of F : L2 (Rn) −→ L2(R̂
n
) of a function

f ∈ L2(Rn) is given by

f̂ (ω) := F [f ] (ω) =
∫

Rn

f (x)e−2πiωx dx, ω ∈ R̂
n
. (3)
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For all f, g ∈ L2 (Rn), we have Plancherel’s equation

〈f, g〉 = 〈f̂ , ĝ
〉
, (4)

and, in particular,

‖f ‖L2(Rn) = ‖f̂ ‖
L2
(
R̂

n
). (5)

2.2 Frames

Definition 2 A countable family of elements {fk}∞k=1 in a (separable) Hilbert space
H is a frame for H if for each f ∈ H there exist constants CL < CU , with
0 < CL < CU < ∞, such that

CL‖f ‖2 ≤
∞∑

k=1

| 〈f, fk〉 |2 ≤ CU‖f ‖2. (6)

The constants CL and CU are called the frame bounds: CL is the lower frame
bound and CU is the upper frame bound, and they are optimal if CL is maximal
and CU is minimal. Frames generalize orthonormal bases (ONBs) and offer several
advantages: (1) without independence and orthogonality restrictions, they can be
constructed with varied characteristics that can be custom-made for the application
of interest and (2) without uniqueness constraint, they can lead to a more robust
representation of vectors or functions in V during certain processes [17]. Different
types of frames can be defined in terms of the value of frame bounds: a frame is
tight if A = B and a Parseval frame is a tight frame with A = 1. An orthonormal
basis satisfies the frame definition with CL = CU = 1, so an ONB is also a Parseval
frame. In the important area of finite frames (i.e., {fk}k=1,2,..., K , where K ∈ N),
a frame is a finite unit-norm tight frame (FUNTF) if it is tight and each frame
element has norm one.

The following results concern, respectively, the characterization of a frame
system via its synthesis operator T and the consequence of applying a unitary
operator to a frame for H produces another frame for H . Their proof can be found
in [5].

Proposition 1 A sequence {fk}∞k=1 in H is a frame for H if and only if

T : {ck}∞k=1 −→
∞∑

k=1

ckfk

is a well-defined mapping from 	2 (N) onto H .
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Proposition 2 Let {fk}∞k=1 be a frame in a Hilbert space H with frame bounds
CL, CU > 0. If U : H −→ H is a unitary operator, then {Ufk}∞k=1 is a frame
with frame bounds CL, CU .

2.3 Multiresolution Analysis

Definition 3 A sequence of closed subspaces
{
Vj

}
j∈Z of L2 (R) together with a

function φ is a MRA for L2 (R) if the following properties hold:

(i) · · ·V−1 ⊂ V0 ⊂ V1 · · · .
(ii)

⋃
j∈Z

Vj = L2 (R) and
⋂
j∈Z

Vj = {0}.
(iii) f ∈ Vj ⇐⇒ f (2x) ∈ Vj+1, x ∈ R.
(iv) f ∈ V0 =⇒ f (x − k) ∈ V0, for all k ∈ Z, x ∈ R.
(v) {φ(x − k)}k∈Z is an orthonormal basis for V0.

The properties described in Definition 3 are very useful for approximations. For
example, if we are looking for the approximation of a function f ∈ L2 (R) in a
certain space Vj and cannot find a satisfying one, we know, by (i), that the Vj ’s are
nested, and this allows us to move to another approximation space Vj ′ , j ′ �= j , via
the simple scaling defined in (iii).

Starting with a MRA, one can define, for each j ∈ Z, the space Wj as the
orthogonal complement of Vj in Vj+1. It follows that

L2 (R) =
⊕
j∈Z

Wj .

These spaces Wj will satisfy the same dilation property as the Vj ’s, i.e.,

ψ(x) ∈ Wj ⇐⇒ ψ(2x) ∈ Wj+1.

To obtain an orthonormal basis
{
ψj, k(x)

}
j, k∈Z for L2 (R), we can use the fact that,

via the Fourier transform,

φ̂(2ω) = H0(ω)φ̂(ω), a.e. ω ∈ R̂
n
, (7)

where H0 is a 1-periodic function [5]. A function φ that can be written as 7 is
said to be refinable. In this case, a choice of φ ∈ W0 that will generate a wavelet
orthonormal basis is

ψ̂(ω) = H0

(
ω

2
+ 1

2

)
e−πiωφ̂

(ω

2

)
.
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In this work, we are concerned with conditions that guarantee the existence of a
frame multiresolution analysis. We will obtain a condition similar to (7) for a frame
generated by composite dilations and translations of a scaling function φ.

2.4 Dilations and Translations Operators

We formally introduce the operators used to build affine systems with composite
dilations. Since we will use both their time and frequency properties, we provide
useful commutative relations as well as formulas that describe how the Fourier
transform acts on these operators.

Definition 4 Let f ∈ L2 (Rn), x ∈ R
n and define the following unitary operators

on L2 (Rn):

• The translation of f by y, Ty : L2 (Rn) −→ L2 (Rn), where y ∈ R
n, is given

by

(
Tyf
)
(x) = f (x − y).

• The dilation of f by A, DA : L2 (Rn) −→ L2 (Rn), where A ∈ GLn (R), is
given by

(DAf ) (x) = |det A|−1/2f
(
A−1x

)
.

In particular, when n = 1, A = 2, (D2f ) (x) = 1√
2
f
(

x
2

)
is the standard dyadic

dilation, and G is the trivial group, i.e., the identity, we have the classical wavelet
system:

{
2−j/2ψ

(
2−j/2x − k

)
: j, k ∈ Z

}
. (8)

Translations and dilations commute with one another as follows.

Proposition 5 Let A, B ∈ GLn(R), y ∈ R
n. We have

(i) D−1
A = DA−1 .

(ii) DADB = DAB .
(iii) DATy = TA−1yDA.

We now introduce two unitary operators that will simplify some frequency domain
manipulations.

Definition 6 Let y ∈ R
n, A ∈ GLn(R), and g ∈ L2(R̂n).

(a) The Fourier domain dilation D̂A of g is

D̂A (g) (ω) = | det A|1/2g (ωA) , ω ∈ R̂
n
.
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(b) The operator My : L2(R̂n) −→ L2(R̂n) is the modulation of g by y ∈ R
n,

given by

(
Myg

)
(ω) = e−2πiωyg(ω), ω ∈ R̂

n
.

Remark 7 Observe that the exponent in the modulation operator My contains a
negative sign. This definition is different from the usual definition of modulation,
but it will yield more obvious commutation relationships between operators in the
Fourier domain, and will spare us from the task of keeping track of a negative sign
in future calculations.

Finally, we have the action of the Fourier transform on dilation and translation
operators.

Proposition 8 Let A ∈ GLn(R), B ∈ SLn(R), and y, k ∈ R
n. Then,

(i) FDA = D̂AF .
(ii) FTy = MyF .

(iii) FD
j
ADB = D̂Aj D̂BF , j ∈ Z.

2.5 Shift-Invariant Spaces

Definition 9 A Z
n-invariant space (or shift-invariant space) of L2 (Rn) is a

closed subspace V ⊂ L2 (Rn) such that TkV = V for each k ∈ Z
n. Let

φ ∈ L2 (Rn) \ {0}. We denote by 〈φ〉 the shift-invariant space generated by φ:

〈φ〉 = span
{
Tkφ : k ∈ Z

n
}
.

Definition 10 Let G be a finite subgroup of SLn (Z) and let M�N denote the semi-
direct product of two groups M and N . The G�Z

n-invariant spaces are the closed
subspaces V ⊂ L2 (Rn) for which DBTkV = V for any pair (B, k) ∈ G � Z

n.
Let φ ∈ L2 (Rn). The G � Z

n-invariant spaces generated by φ, denoted 〈〈φ〉〉, are
defined as

〈〈φ〉〉 = span
{
DBTkφ : B ∈ G, k ∈ Z

n
}
.

Here, we only consider finite groups G, but one can certainly define shift-invariant
spaces for any countable group G, as is done when defining shearlets. For traditional
wavelets, we work on the shift-invariant space generated by a function ψ ∈ L2 (Rn)

under the shifts of Z
n. The observation that Zn is the semi-direct product of the

trivial group in SLn(R) and Z
n is the bridge between shift-invariant spaces for

classical wavelet theory and shift-invariant spaces for composite wavelets. For
composite wavelets, we consider L2 (Rn)-functions with shifts by the semi-direct
product of Zn and a discrete, and often non-abelian group, G. In [2, 24], and [3], G is
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a crystallographic group, i.e., a group of isometries such as rotations or reflections
on R

n. The example that we give in Sect. 5 will also feature such a group, which
naturally preserves the MRA structure of the Haar wavelet.

Definition 11 Let φ ∈ L2 (Rn) and let G be a finite subgroup of SLn (Z). The
set ΦG = {DBTkφ : B ∈ G, k ∈ Z

n} is a semi-orthogonal Parseval frame for the
G � Z

n-invariant subspace 〈〈φ〉〉 if {Tkφ : k ∈ Z
n} is a Parseval frame for 〈φ〉 and

〈〈φ〉〉 =
⊕
B∈G

DB 〈φ〉 ,

i.e., DBTkφ ⊥ DB ′Tk′φ for any B, B ′ ∈ G, B �= B ′, and k, k′ ∈ Z
n. We also say

that φ generates the semi-orthogonal Parseval frame ΦG in this case.

We can extend Definition 11 to any frame and remove the semi-orthogonality
condition for more general shift-invariant spaces. However our example will show
that having those conditions simplifies the construction of a frame GAG-MRA.

2.6 GAG-Multiresolution Analysis

Definition 12 Let G be a finite subgroup of SLn (Z). We say that A ∈ GLn (R)

normalizes G if, for each B ∈ G, ABA−1 ∈ G.

Definition 13 A matrix A is an expanding matrix if all the eigenvalues λ of A

satisfy the condition |λ| > 1.

If A normalizes G and, in addition, A is an expanding matrix, then the set GAG,
where GA = {

Aj : j ∈ Z
} ⊂ GLn (R), meets admissibility conditions that

guarantee the existence of a Parseval frame of the form (2) for L2 (Rn). For a
more comprehensive discussion of admissibility conditions, refer to [15]. Here,
this admissibility condition ensures that we obtain shift-invariance for fundamental
domains of Rn.

Definition 14 Let G be a finite subgroup of SLn (Z) and GA = {Aj : j ∈ Z
}
,

where A ∈ GLn(Z) is an expanding matrix. Moreover, assume that A normalizes
G. Then, the sequence of closed subspaces

{
Vj

}
j∈Z of L2 (Rn) is a GAG-

multiresolution analysis (GAG-MRA) if the following properties hold:

(i) DBTkV0 = V0, for all B ∈ G, k ∈ Z
n.

(ii) Vj ⊂ Vj+1 for each j ∈ Z, where Vj = D
−j
A V0.

(iii)
⋂
j∈Z

Vj = 0 and
⋃
j∈Z

Vj = L2 (Rn).

(iv) There exists φ ∈ L2 (Rn) such that ΦG = {DBTkφ : B ∈ G, k ∈ Z
n} is a

semi-orthogonal Parseval frame for V0.
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3 Sufficient Conditions

We start by giving conditions that guarantee that Vj ⊂ Vj+1 for each j ∈ Z.

Lemma 15 Assume G is a finite subgroup of SLn (Z) and GA = {Aj : j ∈ Z
}
,

where A ∈ GLn(Z) is an expanding matrix. For j ∈ Z, let Vj be defined as

Vj = D
−j
A span {ΦG} = span

{
D
−j
A ΦG

}
. (9)

Moreover, let φ ∈ L2 (Rn) and assume that ΦG = {DBTkφ : B ∈ G, k ∈ Z
n} is a

semi-orthogonal Parseval frame for V0. Then, for j ∈ Z,

(i) D
−j
A ΦG is a semi-orthogonal Parseval frame for Vj .

(ii) A function f ∈ L2 (Rn) belongs to Vj if and only if

f =
∑
k∈Zn

∑
B∈G

ck,BDA−j DBTkφ,

for some
{
ck,B

}
k∈Zn, B∈G ⊂ 	2 (Zn).

(iii) A function f ∈ L2 (Rn) belongs to Vj if and only if there exist L2 (Tn) periodic
functions FB, j ∈ L2 (Tn), B ∈ G, such that

f̂
(
ωAj
)
=
∑
B∈G

FB, j (ωB) φ̂ (ωB) . (10)

Proof

(i) Since {Tkφ : k ∈ Z
n} is a Parseval frame and D

−j
A is a unitary operator, by

Proposition 2, we have that
{
D
−j
A Tkφ : k ∈ Z

n
}

is a Parseval frame. For semi-

orthogonality, we use again the fact that DA is unitary, to obtain

〈
D
−j
A DBTkφ, D

−j
A DB ′Tk′φ

〉
=
〈
(D

−j
A )∗D−j

A DBTkφ, DB ′Tk′φ
〉

= 〈DBTkφ, DB ′Tk′φ〉
= 0,

whenever B �= B ′, by assumption.
(ii) This is a consequence of (i) combined with Proposition 1.

(iii) Using (ii), for each f ∈ Vj we have

f̂ (ω) = F

[∑
k∈Zn

∑
B∈G

ck,BD
−j
A DBTkφ

]
(ω)
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=
∑
k∈Zn

∑
B∈G

ck,BF
[
D
−j
A DBTkφ

]
(ω) .

Making use of Proposition 8,

f̂ (ω) =
∑
k∈Zn

∑
B∈G

ck,B

[
D̂
−j
A D̂BMkφ̂

]
(ω)

= D̂
−j
A

∑
k∈Zn

∑
B∈G

ck,B

[
D̂BMkφ̂

]
(ω) .

Then,

f̂
(
ωAj
)
= | det A|−j/2D̂

j
Af̂ (ω)

= | det A|−j/2D̂
j
A

(
D̂
−j
A

∑
k∈Zn

∑
B∈G

ck,B

[
D̂BMkφ̂

]
(ω)

)

= | det A|−j/2
∑
k∈Zn

∑
B∈G

ck,B

[
D̂BMkφ̂

]
(ω)

= | det A|−j/2
∑
B∈G

(∑
k∈Zn

ck,Be−2πiωBk

)
φ̂ (ωB) .

Now, for each j ∈ Z, B ∈ G, define

FB,j (ω) = | det A|−j/2
∑
k∈Zn

ck,Be−2πiωBk.

To verify that FB, j is in L2 (Tn), we compute
∫
Tn

|FB,j (ω)|2dω =
∫
Tn

|| det A|−j/2
∑
k∈Zn

ck,Be−2πiωBk|2dω

= | det A|−j

∫
Tn

∑
k∈Zn

∑
k′∈Zn

ck,Bck′, Be−2πiωBke2πiωBk′dω.

Now
{
ck,B

} ⊂ 	2 (Zn), so

∫
Rn

|FB,j (ω)|2dω = | det A|−j
∑
k∈Zn

∑
k′∈Zn

ck,Bck′, B

∫
Tn

e−2πiωBke2πiωBk′dω

= | det A|−j
∑
k∈Zn

|ck,B |2
∫
Tn

|e−2πiωBk|2 (ω) dω,



Sufficient Conditions for Composite Frames 225

since, for each B,
{
e−2πiωBk

}
k∈Z form an orthonormal basis for L2 (Tn). Thus

∫
Rn

|FB,j (ω)|2dω = |det A|−j
∑
k∈Zn

|ck,B |2 < ∞.

Hence, we have that (10) holds with FB, j (ω) = | det A|−j/2 ∑
k∈Zn

ck,Be−2πiωBk .

For the other direction, suppose that f ∈ L2 (Rn) and there exists a
function FB, j such that Eq. (10) is satisfied. Let dB,k be the Fourier
coefficients of FB,j . If we define cB,k = |det A|j/2dB,k , then we get
f = ∑

k∈Zn

∑
B∈G

ck,BDA−j DBTkφ. Hence, by (ii), f ∈ Vj . 
�
Next, we obtain sufficient conditions for a GAG-MRA by the way of Lemma 15 and
a few classical tools from harmonic analysis [5, 9] as well new approaches to deal
with the technicalities arising in this more complex setting. In the present paper, we
only provide details for (ii), which provide an insight on how the dilations interact
to yield a frame GAG-MRA.

Theorem 16 Let G be a finite subgroup of SLn (Z) and GA = {Aj : j ∈ Z
}
,

where A ∈ GLn(Z) is an expanding matrix. Assume that A normalizes G. Assume
also that φ ∈ L2 (Rn) and that ΦG = {DBTkφ : B ∈ G, k ∈ Z

n} is a semi-
orthogonal Parseval frame for V0. Define Vj = D

−j
A V0. If φ̂ is continuous, and

uniformly bounded on a neighborhood of zero, φ̂ �= 0, and there exist Tn-periodic
functions HB ∈ L∞ (Tn) such that

φ̂ (ω) =
∑
B∈G

HB

(
ωBA−1

)
φ̂
(
ωBA−1

)
, (11)

then φ generates a semi-orthogonal Parseval frame GAG-MRA.

Proof To show that our system satisfies (i) in Definition 14, we simply observe
the fact that ΦG is a semi-orthogonal Parseval frame for V0 that implies V0 =
span {ΦG}, which is, by assumption, an G �Z

n-invariant subspace of L2 (Rn), i.e.,
DBTkV0 = V0. Showing (iii) and (iv) in Definition 14 uses arguments similar in
spirit to one found in [9]. The details of these computations will be left out of this
paper.

We now focus on Definition 14(ii). Let f ∈ Vj , j ∈ Z. We want to show that
this implies f ∈ Vj+1, or equivalently, via Lemma 15, that there exist Tn-periodic
functions FB, j+1 ∈ L2 (Tn) such that Eq. (10) holds. Employing (iii) of Lemma 15
yields

f̂ (ωAj+1) = f̂ ((ωA)Aj ) =
∑
B ′∈G

FB ′,j
(
ωAB ′) φ̂ (ωAB ′) ,

where FB ′,j (ω) is a T
n-periodic, L2 (Tn) function.
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Using Assumption (11),

f̂
(
ωAj+1

)
=
∑
B ′∈G

FB ′,j
(
ωAB ′) ·

(∑
B ′′∈G

HB ′′
(
ωAB ′B ′′A−1

)
φ̂
(
ωAB ′B ′′A−1

))
.

Now, since GA normalizes G, we have that A′B ′B ′′A−1 ∈ G. Then, via a simple
proof contradiction, we obtain that for distinct B ′

1, B ′
2 in the first sum, A′B ′

1B
′′A−1

and A′B ′
2B

′′A−1 are also distinct. Then, letting B = AB ′B ′′A−1,

f̂
(
ωAj+1

)
=
∑
B ′∈G

FB ′,j
(
ωAB ′)

(∑
B∈G

HB ′′ (ωB) φ̂ (ωB)

)

=
∑
B∈G

(∑
B ′∈G

FB ′,j
(
ωAB ′)HB ′′ (ωB)

)
φ̂ (ωB) ,

where B ′′ = A−1(B ′)−1BA. Let

FB, j+1(ω) =
∑
B ′∈G

FB ′,j
(
ωAB ′B−1

)
HB ′′ (ω) .

With FB ′,j and HB ′′ Tn-periodic, FB, j+1 is T
n-periodic. We obtain FB, j+1 ∈

L2 (Rn) via the following calculation, in which we denote the norm by η

η =
∫

Tn

|
∑
B ′∈G

FB ′,j
(
ωAB ′B−1

)
HB ′′ (ω)|2dω

≤ ‖HB ′′ ‖2
L∞(Tn)

∫

Tn

|
∑
B ′∈G

FB ′,j
(
ωAB ′B−1

)
|2dω

≤ ‖HB ′′ ‖2
L∞(Tn)#|G|

∫

Tn

∑
B ′∈G

|FB ′,j
(
ωAB ′B−1

)
|2dω,

by Minkowski’s inequality. Consequently,

∫

Tn

|FB, j+1(ω)|2dω < ∞.
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We omit the proof that the intersection Vj , j ∈ Z, is empty of that the closure of
their union is the entire space L2 (Rn) as our (standard) argument follows closely
that for scalar dilations in [9]. 
�

4 Example

We present a composite dilation frame based on a Haar-like wavelet associated with
the quincunx dilation in R

2. This wavelet appears in [20] and also discussed briefly
in [2, 3, 24]. We chose this wavelet because of its simplicity and because it illustrates
difficulties that can arise when one tries to obtain more desirable properties for
composite dilation systems.

Let A be the quincunx matrix:

A =
(

1 −1
1 1

)
(12)

and let G = {Bi : i = 0, . . . , 7} be the group of symmetries of the unit square.
Explicitly,

b0 =
(

1 0
0 1

)
, b1 =

(
0 1
1 0

)
, b2 =

(
0 −1
1 0

)
, b3 =

(−1 0
0 1

)
,

b4 =
(−1 0

0 −1

)
, b5 =

(
0 −1
−1 0

)
, b6 =

(
0 1
−1 0

)
, b7 =

(
1 0
0 −1

)
,

and for i = 4, 5, 6, 7, Bi = −Bi−4.
Consider the region R0 = {(x1, x2) : 0 ≤ x1 < 1/2, 0 ≤ x2 ≤ x1}, i.e., R0 is the
triangular region with the vertices (0, 0), ( 1

2 , 0), and ( 1
2 , 1

2 ). For i = 0, . . . , 7,
define Ri = BiR0. The resulting triangles are shown in Fig. 1.
Let φ be defined as a scaled on R0

φ = √
8χR0 . (13)

We will use the following results, proved in [20] and adapted to our setting.

Proposition 17 Let φ be defined as in (13). Suppose A is the quincunx matrix
in (12) and G = {Bi : i = 0, . . . , 7} is the group of symmetries of the unit square.

(i) The system ΦG = {DBi
Tkφ : Bi ∈ G, k ∈ Z

2
}

is an orthonormal basis for
its closed linear span V0 ⊂ L2

(
R

2
)
, which comprises all square integrable

functions constant on each Z
2-translate of the triangles Ri , i = 0, . . . , 7.

(ii) Let Vj = DA−j V0, j ∈ Z, i.e., Vj contains all L2
(
R

2
)
-functions constant

on A−j
Z

2 translates of the triangles A−jRi , i = 0, . . . , 7. Then Vj ⊂ Vj+1,
j ∈ Z.
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Fig. 1 Fundamental domain R0 of the scaling function φ and its images, on the left, under
B1, . . . , B7, and on the right, under B1, . . . , B7, composed with A−1

(iii) The spaces Vj , j ∈ Z form an GAG-MRA with φ, which can be written as

φ = √
2
(
D−1

A DB1φ(x)+DA−1DB6T(1/2, 1/2)φ(x)
)

. (14)

Next, we focus on showing that a “smooth” deformation φε of φ on one side of the
triangle R0 generates a frame for V0. For x ∈ R

n, consider a “standard” mollifier

η(x) =
{

Ce
1

|x|2−1 , |x| < 1,

0, otherwise,
(15)

where C is chosen so that
∫
Rn η(x) dx = 1.

Given ε > 0, let ηε(x) := 1
ε2 η
(

x
ε

)
. It is easy to see that

∫
R2

ηε(x)dx = 1,

and ηε is supported in the ball of radius ε.
We define the mollification f ε of f : U −→ R, where U ⊂ R

n and f ∈ L2 (Rn)

locally, by the convolution

f ε(x) := (ηε ∗ f ) (x) =
∫
R2

η(y)f (x − y) dy, x ∈ Uε,

where Uε := {x ∈ U : ‖x − ∂U‖ > ε}. Functions defined in this way are just a
particular case of cutoff or bump functions. For given open sets �′ compactly
contained in � ⊂ R

n, it is well known that there exists a function ψ ∈ C∞
c (�),

such that 0 ≤ ψ ≤ 1 on �′ via mollification.
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For our particular case, let x = (x1, x2) and consider

ρ(x) =
{√

8, 1
2 − ε

2 ≤ x1 ≤ 1
2 + ε

2 , − ε
2 ≤ x2 ≤ x1,

0, otherwise.

Define ρε(x) = (ηε/4 ∗ ρ
)
(x). Using properties of mollifiers [12], it can be shown

that

(1) ρε(x) ∈ C∞(R2).

(2) supp (ρε) =
{
(x1, x2) : 1

2 − ε ≤ x1 ≤ 1
2 + ε, −ε ≤ x2 ≤ x1

}
.

(3) supp (ρε) = √
8 on

{
(x1, x2) : − 1

2 − ε
4 ≤ x1 ≤ 1

2 + ε
4 ,− ε

4 ≤ x2 ≤ x1 + ε
4

}
.

Finally, we define the smooth, one-sided, deformation φε of φ as φε = φ + ρε+,
where ρε+ is defined as the right side of ρε, that is,

ρε+(x) =

⎧⎪⎪⎨
⎪⎪⎩

1, 1
2 ≤ x1 ≤ 1

2 + ε
4 , 0 ≤ x2 ≤ x1,

a(x), 1
2 + ε

4 ≤ x1 ≤ 1
2 + 3ε

4 , 0 ≤ x2 ≤ x1,

0, otherwise.

(16)

In this definition, a(x) is a smooth function whose values are in (0, 1) for all x

(Fig. 2).

Fig. 2 Domain of Haar
scaling function φε smoothed
on one side and extended via
mollification on Rε

0



230 W. Czaja and K. Y. Djima

Proposition 3 Φε
G = {DBi

Tkφ
ε : Bi ∈ G, k ∈ Z

2
}

is a frame for V0, i.e., if f ∈
V0, then there exist constant CL, CU > 0 such that

CL‖f ‖2
L2(R2)

≤
∑
k∈Z2

7∑
i=0

|〈f, DBi
Tkφ

ε
〉|2 ≤ CU‖f ‖2

L2(R2)
. (17)

Proof Let μ = ∑
k∈Z2

7∑
i=0
|〈f, DBi

Tkφ
ε
〉|2. We start with the upper bound

μ =
∑
k∈Z2

7∑
i=0

|〈f, DBi
Tkφ
〉+ 〈f, DBi

Tkρ
ε+
〉|2

≤ 2
∑
k∈Z2

7∑
i=0

{
|〈f, DBi

Tkφ
〉|2 + |〈f, DBi

Tkρ
ε+
〉|2} .

Since ΦG is an orthonormal basis for V0, we have

∑
k∈Z2

7∑
i=0

|〈f, DBi
Tkφ
〉|2 = ‖f ‖2

L2(R2)
,

so, we focus on finding a bound for the term

R (f, ε) =
∑
k∈Z2

7∑
i=0

|〈f, DBi
Tkρ

ε+
〉|2

=
∑
k∈Z2

7∑
i=0

|
∫
R2

f (x)ρε+
(
B−1

i x − k
)

dx|2.

Let y = B−1
i x − k. By definition, ρε+(x) = 0 on R

2 except for x ∈ Rε
0 :=

{(x1, x2) : 1 ≤ x1 ≤ 1/2+ ε, 0 ≤ x2 ≤ x1}, as well as Rε
i = BiR

ε
0, for i =

1, . . . , 7. Note that x = Biy + Bik, which we will write as x = Biy − k since
Bik ∈ Z

2, and for any k1 �= k2, by invertibility of Bi , Bik1 �= Bik2. Thus, we have
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R (f, ε) =
∑
k∈Z2

7∑
i=0

|
∫

Rε
i

ρε+(y)f
(
B−1

i y − k
)

dy|2

≤
∑
k∈Z2

7∑
i=0

‖ρε+‖L∞(Rε
i )

(∫
Rε

i

DBi
Tk|f (y)| dy

)2

=
∑
k∈Z2

7∑
i=0

(∫
Rε

i

DBi
Tk|f (y)| dy

)2

,

since, by definition 0 ≤ ρε+ ≤ 1 on Rε
i . Note that we can write the right-hand side as

∑
k∈Z2

7∑
i=0

(∫
R2

DBi
Tk|f (y)|χRε

i
(y)dy

)2

.

Therefore,

R (f, ε) ≤
∑
k∈Z2

7∑
i=0

(∫
R2

DBi
Tk|f (y)|χRε

i
(y)dy

)2

(18)

=
∑
k∈Z2

7∑
i=0

|
〈
|f |, DBi

TkχRε
i

〉
|2.

At this stage, it is useful to look at the meaning of (18) geometrically. On R0,
R (f, ε) is integrated on translates and images of Rε

i which overlaps on corners
of [−1

2 , 1
2 )2 as shown in Fig. 3. On all the other Ri , we have the contribution of at

most two other translates of Rε
i . Therefore, we are integrating most 2|f | on each Ri ,

i = 0, . . . , 7, and their translates. Thus, using Proposition 17,

R (f, ε) ≤ 4‖f ‖2
L2(R2)

. (19)

Next, we compute the lower bound. We have

μ =
∑
k∈Z2

7∑
i=0

|〈f, DBi
Tkφ
〉+ 〈f, DBi

Tkρ
ε+
〉|2

≥
∑
k∈Z2

7∑
i=0

|〈f, DBi
Tkφ
〉|2

− 2
∑
k∈Z2

7∑
i=0

|〈f, DBi
Tkφ
〉||〈f, DBi

Tkρ
ε+
〉|.
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Fig. 3 The region Rε
0 and its images Rε

i overlap on
[

1
2 , 1

2

)2

Using Cauchy–Schwarz, we bound the last double sum as

⎛
⎝∑

k∈Z2

7∑
i=0

|〈f, DBi
Tkφ
〉|2
⎞
⎠

1
2
⎛
⎝∑

k∈Z2

7∑
i=0

|〈f, DBi
Tkρ

ε+
〉|2
⎞
⎠

1
2

.

Now, recognizing the second term as R (f, ε) and using (18), we obtain

R (f, ε) ≤
∑
k∈Z2

7∑
i=0

|
〈
|f (w)|, DBi

TkχRε
i

〉
|2.

Here, we cannot use the crude upper bound found in (19) because it will make our
lower bound negative. Instead, once again, we look at this sum on each translate of[

1
2 , 1

2

)2
and make use of Fig. 3 for more careful estimates. We obtain

R (f, ε) ≤
∑
k∈Z2

7∑
i=0

∣∣∣∣
∫
R2
|f (x)|DBi

Tkχ(Rε
i )′ dx +

∫
R2
|f (x)|DBi

Tkχ(Rε
i )′′ dx

∣∣∣∣
2

.

Since f (x) is constant on Ri , we can simplify this expression by finding which
proportion of

∫
R2 |f (x)|χRi

dx the terms
∫
R2 |f (x)|χ(Rε

i )′ dx and
∫
R2 |f (x)|χ(Rε

i )′′ dx

represent. These proportions are given by, respectively,

p1 := Area((Rε
i )
′)

Area(R1)
= (1/2)ε/2

(1/2)2/2
= 4ε

p2 := Area((Rε
i )
′′)

Area(R1)
= ε2/2

(1/2)2/2
= 4ε2.



Sufficient Conditions for Composite Frames 233

This yields

R (f, ε) ≤
∑
k∈Z2

7∑
i=0

|(p1 + 2p2)

∫
R2
|f (x)|DBi

TkχRi
(x)dx|2

= (8ε2 + 4ε)2‖f ‖2
L2(R2)

.

Hence, we have

∑
k∈Z2

7∑
i=0

|〈f, DBi
Tkφ

ε
〉|2 ≥ (1− 2(8ε2 + 4ε)2)‖f ‖2

L2(R2)
.

We simply pick ε such to get CL = (1 − 2(8ε2 + 4ε)2) > 0 to obtain a frame.
Figure 4 shows that such an ε exists. 
�

Fig. 4 This is the plot of the term θ(ε) = (1−2(8ε2+4ε)2) in the lower bound for the approximate

GAG-MRA frame, CL ≥ θ(ε)‖f ‖, for any f ∈ L2 (Rn). If we pick ε ∈ (0, 1
4 (
√

1+√2 − 1)),

with 1
4 (
√

1+√2− 1) ≈ 0.1384, we obtain a positive CL
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We thus showed that Φε
G is a frame for the space V0. Since we have not changed

the definition of V0, the spaces Vj = A−1V0, j ∈ Z form a nested sequence for the
same reasons as in the orthonormal case. We will say that the scaling function φ(x)

is “approximately refinable.” Indeed,

φε(x) = √
2
(
D−1

A DB−1φ
ε(x)+D−1

A DB−6φ
ε(x)
)

,

except for two strips Sε
1 in A−1Rε

1 ∪ A−1Rε
6 + (1/2 + ε/2, 1/2 + ε/2)T and

Sε
2 = {1/2+ ε/2 ≤ x1 ≤ 1/2 ≤ ε/2, 0 ≤ x2 ≤ x1} which can be made as small

as needed by choosing the appropriate ε. This is in part because we did not start
with a semi-orthogonal frame, i.e., Z2-translates of the Ri with the added strips are
not disjoint.

5 Conclusion

We showed that, given

(a) a subgroup of dilations GA, formed by integer powers of an invertible,
expanding matrix A,

(b) a finite subgroup of dilations G, formed by invertible matrices with determinant
1, such that A normalizes G, and

(c) a function φ ∈ L2 (Rn) such that (1) ΦG = {DBTkφ : B ∈ G, k ∈ Z
n} is a

semi-orthogonal Parseval frame for V0, a closed subspace of L2 (Rn) and (2) φ

satisfies (11),

we obtain a frame GAG-MRA for L2 (Rn). We also provided an example of an
“approximate” GAG-MRA. Although our construction already leads to a scaling
function with a significantly improved regularity, in future work, we will mollify
φ on all sides. We expect the resulting system to also be a frame or a GAG-MRA.
The extension to other two sides of the domain follows the same pattern and the
only remaining issue is around the corners. With the singularity set reduced to the
vicinity of three corners, utilizing this new improved function will have a positive
impact on applications.
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Mathematical Modeling
of Immune-Mediated Processes
in Coagulation and Anticoagulation
Therapy

Erica J. Graham and Ami Radunskaya

Abstract Thousands of people each year succumb to complications from deep
vein thrombosis (DVT). DVT occurs when blood flow in the veins is blocked
by a clot. Individuals with DVT are at increased risk of experiencing pulmonary
embolism (PE), in which small pieces of the clot break off and travel to the lungs.
PE can lead to lung damage and even death. Mechanisms implicated in DVT may
comprise an imbalance in the body, poor circulation, inflammation, or an immune
response. Given the complex interplay of mediating factors in DVT, it is important
to understand the role that each plays in thrombus and embolus formation. In this
work, we develop and implement a mathematical model of venous clot formation
and dissolution by describing interactions between inflammation, blood cells, and
various chemical factors. We then use the model to identify factors essential to
embolus formation and discuss implications for clinical treatment.

1 Why Do We Need a Mathematical Model of Blood
Clotting?

Blood clots in the arteries are typically formed in response to an injury of the blood
vessel, where the role of the clot is to stop the bleeding. They are the result of a chain
reaction, or cascade of chemical events in the blood that is initiated by an injury. In
a normal situation, this cascade of reactions results in a layer of activated platelets,
a type of small blood cell, sticking to the blood vessel wall to stop bleeding. The
layer is held together by a mesh made up of a chemical called fibrin (see Fig. 1).
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Fig. 1 A typical blood clot

Once the blood vessel wall is healed, the fibrin mesh disintegrates, and the blood
clot dissolves.

Problems do arise in this process, however. One type of problem occurs when
natural clotting is harmful, such as when a foreign body meant to be helpful triggers
the coagulation cascade. This could be the case when a stent, or small tube, is
placed in an artery to strengthen it and to keep it open. Here, coagulation could
be dangerous since it could block the flow of blood to the brain or other organs.
In general, such blockage by a clot is referred to as thrombosis. Virchow’s Triad,
named after nineteenth century scientist Rudolph Virchow, highlights thrombosis as
a collection of pathologies related to altered blood flow rates (stasis), vessel integrity
(endothelial injury), and chemical composition of the blood (hypercoagulability)
[9, 18].

In order to prevent unwanted blood clots and thrombosis, patients are prescribed
anti-coagulants such as warfarin, commonly known as “blood thinners.” These
drugs delay the initiation of the coagulation cascade, or slow its progress, by
indirectly affecting the natural chemicals circulating in the blood. A question of
concern to the medical community, and to anyone taking blood thinners, is “How
much drug should we give, and how often?” Too much anti-coagulant could cause
the patient to bleed internally, and too little could result in a life-threatening
blockage of the artery. Typically, a patient on anti-coagulants is periodically checked
using a prothrombin time (PT) test, from which the international normalized ratio
or INR is calculated (see Fig. 2). In this test, the patient’s blood is first filtered to
isolate the plasma, which lacks red blood cells and platelets. Chemical reagents
(thromboplastin and calcium) are then added to the filtered sample to initiate the
coagulation cascade. A stopwatch is used to determine the time at which a clot
forms, i.e., when small strands of fibrin are seen in the liquid. This clotting time is
formally referred to as the prothrombin time.

If the prothrombin time is too long relative to normal, the dose of anti-coagulant
is reduced; if the time is too short relative to normal, then the dose is increased. The
INR is defined as the ratio of the measured clot time to a normal clot time, where
“normal” is determined by an international standard developed by the World Health
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Fig. 2 Schematic of the prothrombin time (PT) test for computing the international normalized
ratio (INR)

Fig. 3 Representative therapeutic target window for INR in an individual susceptible to abnormal
clot formation. Excessive clotting or bleeding may result if the INR is too small or too large,
respectively

Organization. Thus, if a patient is at risk for clotting, the INR should be larger than
one (we want to slow clot formation to reduce the likelihood of an unwanted clot),
but the INR should not be too large, because some clotting is necessary to prevent
uncontrolled bleeding. Therefore, the goal of anti-coagulant therapy is to keep the
INR larger than, but not too much larger than, one. A value between 2 and 3 is a
typical therapeutic target. The PT test is therefore critical in determining the correct
dose of anti-coagulant (see Fig. 3).

In our previous work, we addressed the question, “Is the INR an accurate
reflection of what is occurring in the body?” We found that the blood flow rate
indeed altered coagulation rates, with decreased blood flow producing faster clot
formation. [4]. Because the INR is measured in a test-tube setting, there is no effect
of blood flow on in vitro clot times. Therefore, if blood flow was decreased, the clot
time simulated by the in vitro INR model was longer than the time predicted by
the in vivo model. The model predicts that anti-coagulants would be prescribed in
doses that are too low, resulting in the possible formation of dangerous blood clots
for patients with decreased blood flow, such as those confined to their beds.
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Fig. 4 A comparison of simulated INR results and NRvivo results at increasing flow rates. The
graph on the far right shows results at a normal flow rate of 2.5 centimeters per second. In each
graph, the INR value, as estimated by our simulation, is plotted on the horizontal axis, while the
NRvivo value is plotted on the vertical axis. Different data points on a given graph correspond to
different warfarin doses. Since warfarin increases clotting time, higher doses correspond to points
with higher INR and NRvivo values. Figure from de Pillis, Graham et al. [4]

In Fig. 4, we show a comparison of the in vivo clot times to simulated INR in vitro
values at six different blood flow rates. To compare what we believe is happening
inside the body to what is measured in the test tube, we define an in vivo version
of the “normalized ratio,” which we denote NRvivo. This ratio is defined as the clot
time divided by what is considered a “normal” clot time, i.e., the clot time that our
model produces at normal flow rates, normal levels of platelets and clotting factors,
and with no blood thinner. Thus, if the simulated clot time is normal, then NRvivo
would equal 1. If it takes longer than normal for a clot to form, NRvivo would be
greater than one. We ran model simulations of clot formation after an injury, for
different blood flow rates, and after various amounts of the blood thinner warfarin
had been administered. As more warfarin is administered, the clot times increase, as
expected. In each case, we also simulated a PT test and recorded the INR value. If
the INR test accurately predicted the clotting time in vivo, the resulting data point
would lie on the diagonal. If the point lies above the diagonal, then the INR test
is underestimating the clotting time, which could result in prescribing an excessive
amount of blood thinner. If the point lies below the diagonal, then the INR test is
overestimating the clotting time, and too little blood thinner might be prescribed,
potentially resulting in the patient developing a blood clot.

We notice that, for normal flow rates of 2.5 cm per sec, the INR test underes-
timates the clotting times when these times are relatively long. Since the goal of
prescribing warfarin is typically to keep the INR between 2 and 3, we conclude that
the test is fairly accurate at normal flow rates, in normal treatment regimes. However,
for low flow rates, such as might occur if a patient is inactive for a long period of
time, the INR test overestimates the clotting times for most doses of anti-coagulant
(see graph on the far left it Fig. 4). This means that the physician will prescribe a
dose of warfarin that is smaller than desired, resulting in clots forming. This is, in
fact, what is observed: patients who are inactive or who have poor circulation will
often develop clots where blood flow is low. This is where the new chapter in our
story starts.

As the preceding discussion shows, a mathematical model of blood clotting can
give us a more nuanced understanding of clotting times than the PT test typically
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administered in the clinic. The differences between the clotting times predicted by
the in vivo model versus the in vitro model could be critical under clinically relevant
conditions such as low blood flow or anti-coagulant treatment. Since we cannot
actually measure clotting times in a patient, it is important to develop and validate
mathematical models that we can use to predict actual clotting times under a variety
of conditions.

2 Deep Vein Thrombosis and Pulmonary Embolisms

Our previous model was successful in capturing the dynamics of a blood clot in
an artery that was initiated by an injury to the blood vessel. We were also able
to describe the effect of the anti-coagulant drug in different situations. However,
the most dangerous types of blood clots are those that occur in the veins, rather
than the arteries. This type of blood clot is called deep vein thrombosis or DVT.
In fact, according to the Center for Disease Control, 60,000 to 100,000 people in
the USA die each year of DVT [11]. The veins are different from the arteries:
they have different mechanics related to blood flow, and they also carry different
concentrations of cells and chemical factors. The goal of the proposed work is to
extend our previous work, and to develop a model of coagulation in the veins. We
want to describe how clots form in the absence of a specific injury, but rather as the
result of some imbalance in the body, from poor circulation, inflammation, and/or
an immune response. Figure 5 shows a clot that forms near a valve in a vein in the
leg, a common spot for DVT. Sometimes a piece of a large clot in a vein breaks off
and travels up to the heart, lungs, or brain, causing serious injury or sudden death.
These small pieces are called embolisms; when they travel to the lungs they are
called pulmonary embolisms or PE.

Fig. 5 Deep vein thrombosis and embolus formation
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Clinicians would like to be able to determine which patients with DVT are at
a high risk for PE, which should be treated with anti-coagulants, which should be
left alone, and which need more invasive treatments, such as surgery to remove the
clot or to drill a passageway through the clot for a new blood vessel. Understanding
the role of the immune system in blood clot formation could help develop strategies
for preventing DVTs that would be less likely to cause bleeding complications. The
immune system has also been implicated in the dissolution of blood clots [1]. To
better understand the risks of PE, we plan to include the dissolution of clots and the
formation of embolisms into our model of DVT.

While several different mathematical models of clot formation appear in the
literature, very few deal with blood clots that form in the vein, or incorporate
the inflammatory response. In this chapter we describe a preliminary model that
includes the initiation of clot formation through inflammation, clot dissolution, and
the formation of emboli. The model builds on the models in [4, 17] and [6]. In this
paper, we focus on the role of the immune cells: their recruitment, their interaction
with platelets, and their effect on the initiation of the clotting cascade. Since we
are ultimately interested in questions about the treatment of clots, we want the
model to also capture the binding of immune cells with platelets, which influence the
risk of pulmonary embolisms. For reference, we include a description of all model
variables, equations, and parameters in the Appendix.

2.1 The Biological Players in DVT

DVT, and venous thrombosis in general, is a process primarily mediated by the
immune system. In contrast to arterial thrombosis, DVT often results from decreased
or static blood flow in the absence of injury to the endothelial wall [25]. When
blood flow ceases, oxygen levels drop, activating the endothelium, which then
expresses various adhesion proteins that can recruit and activate platelets and
immune cells. When platelets are activated, they become “sticky,” and can form
aggregates with other platelets. Hypoxia, or low oxygen concentration, also recruits
white blood cells, or leukocytes, to the site. These immune cells, consisting mostly
of neutrophils, are activated either by directly adhering to the endothelium or in
the presence of other activated neutrophils. Activated platelets can adhere to the
endothelial cells, to each other, or to activated immune cells. DVT is established
by a combination of tissue factor (TF)-induced (extrinsic) coagulation as well as
the intrinsic coagulation pathway, which is initiated by an activated enzyme called
clotting factor XII (FXII).

Neutrophil extracellular trap (NET) formation has been discovered as essential
to establishing and sustaining venous thrombi. NETs are formed when neutrophils
release a combination of proteins and DNA that form a web of DNA [2, 23]. The
resulting “traps” can attract and activate more platelets, as well as stimulate both TF
release and FXII activation. Thus, NETs can promote both extrinsic and intrinsic
coagulation pathways [15]. Once fibrin (recall Fig. 1) is formed, the clot—an
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aggregate of platelets, NETs, and red blood cells—is stabilized to form a thrombus.
Because of the role of NETs in clot formation, venous thrombi do not comprise
tightly packed platelet aggregates. As a result, it is more likely that pieces of the
clot can break off and travel to other parts of the body, as occurs in PE.

Monocytes are another type of immune cell that is recruited to the wall of the
vein when blood flow is drastically slowed or stopped. Monocytes, even more so
than neutrophils, are a source of TF, a trigger for the extrinsic coagulation pathway.
Together, monocytes and neutrophils make up the population of leukocytes in our
model.

3 Model Description

To examine the role of the immune system in venous thrombosis, we develop a
mathematical framework of platelet and immune cell dynamics in a cylindrical
blood vessel. Specifically, we introduce a preliminary model of immune-mediated
platelet aggregation and thrombus formation prior to clot dissolution.

To describe the process that results in DVT, we introduce the following state
variables, in addition to those in the model described in [4]. For a complete list of
state variables, we refer the reader to the Appendix.

State Variables

W Vessel wall (endothelial) activation level, with values between 0
(unactivated) and 1 (fully activated)

Lm
u Concentration of unactivated and mobile leukocytes

L
p
a Concentration of activated leukocytes bound to platelets

Le
a Concentration of activated leukocytes bound to the endothelium
[NET ] Concentration of leukocyte-derived NETs
P b

a Concentration of activated platelets bound to other platelets (see
[17])

P l
a Concentration of activated platelets bound to leukocytes or NETs

P e
a Concentration of activated platelets bound to the endothelium

P m
a Concentration of activated and mobile platelets

T F Average concentration of active (decrypted) tissue factor expressed
per activated monocyte

The cartoon in Fig. 6 illustrates the meaning of the platelets and white blood cells
(leukocytes) in their various configurations. These cells as well as smaller molecules
(not shown below) flow in and out of the activated zone.
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FLOW IN FLOW OUT

W = activation level
Le
a P e

a

Pm
u Lm

u LP
a PL

a P b
a Pm

a

Fig. 6 Behavior of possible cellular interactions in the models. Platelets and leukocytes may flow
into and out of the region of interest. They may become activated, bind to an activated endothelium,
or bind to each other

3.1 Derivation of the Model Equations

We can represent interactions between platelets and white blood cells using a series
of reactions. Reversible reactions are indicated by −⇀↽−, with the rate parameter for
a particular direction indicated above or below the arrow. All other reactions are
considered irreversible (← or →). The nine reactions (R1)–(R9) accompanying the
species represented in Fig. 6 are listed below, with a slight abuse of notation.

(LEUK FLOW INTO/FROM ZONE)
kl

flowLup

−−−−→ Lm
u

kl
flow−−→ ∅R1:

(LEUK-TO-ENDO ADHESION) Lm
u

a1Ŵ−−⇀↽−−
a−1

Le
a

dleuk−−→ ∅R2:

(LEUK-TO-PLT BINDING) Lm
u + P e

a

a2−−−−⇀↽−−−−
a−2·πe

a

L
p
a

a−2·(1−πe
a )−−−−−−−⇀↽−−−−−−−

a2
Lm

u + P l
aR3:

(LEUK DEGRADATION) L
p
a

dleuk−−→ ∅R4:

(NET FORMATION) qL
p
a

a3−→ NET
a

p
3 P m

a←−−− qLe
aR5:

(NET DEGRADATION) NET
dNET−−→ ∅R6:

(PLT-TO-LEUK/NET BINDING) Le
a + P m

a

a5−−−−⇀↽−−−−
a−5·λe

a

P l
a

a−5(1−λe
a)−−−−−−⇀↽−−−−−−

a5
NET + P m

aR7:

(PLT ACTIVATION) P m
u

f (NET,
∑

P ∗
a ,e2)−−−−−−−−−−→ P m

a

k
p
flow−−→ ∅R8:
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(PLT-TO-ENDO ADHESION) P m
u

k+adhŴ−−−→ P e
a

k−adh−−−⇀↽−−−
k+adhŴ

P m
a .R9:

We use Ŵ as a surrogate for the more complex description of endothelial activation
to be outlined later. The expressions πe

a = P e
a /(P e

a + P l
a) and λe

a = Le
a/(L

e
a +

[NET ]) reflect the proportion of unbound platelet–leukocyte complexes assumed
to return to an endothelial-bound state. In reaction R8, f (·) is a function of the
specified arguments to be defined later, and �P ∗

a = P b
a + P e

a + P l
a + P m

a is simply
the sum of all activated platelets in the system. We use positive subscripts to denote
rates of species adhesion and negative subscripts for species dissociation/unbinding.

We can translate the reactions between chemical and cellular species into a
system of differential equations. To do this, we make use of the law of mass action,
which assumes the rate at which a reaction occurs is proportional to the product of
the species involved in the reaction. The goal is to identify all reactions containing
a particular state variable and use them to define its rate of change. For example,
consider Lm

u , which appears in reactions R1–R3. Arrows approaching Lm
u indicate

an increase in dLm
u /dt , whereas those leaving Lm

u indicate a decrease. The specified
parameters are multiplied by the originating species in a particular reaction. For Lm

u ,
we write

dLm
u

dt
= kl

flowLup − kl
flowLm

u︸ ︷︷ ︸
R1

−a1ŴLm
u + a−1L

e
a︸ ︷︷ ︸

R2

−a2L
m
u P e

a + a−2
P e

a

P e
a + P l

a

L
p
a

︸ ︷︷ ︸
R3

−a2L
m
u P l

a + a−2

(
1− P e

a

P e
a + P l

a

)
L

p
a

︸ ︷︷ ︸
R4

= kl
flow(Lup − Lm

u )− a1ŴLm
u + a−1L

e
a − a2(P

e
a + P l

a)L
m
u + a−2L

p
a .

Applying this methodology to the remaining variables, we can derive the complete
set of equations, each of which can be broken down into growth and loss terms.
The complete model describes components related to dynamics of the endothelium,
leukocytes and NETs, platelets, and coagulation triggers. We explain the equations
that are new to this model, and in the next section we discuss some model
simulations. For more details on previous model formulations, see [4, 16, 17].

Figure 7 shows interactions between state variables of the model, some of which
will flow in and out of the region of interest, where a clot could form, which we
will call the activation region. Each interaction, as well as flow into and out of the
activation region, is represented by a term in the differential equation representing
the evolution of the state variable.

Endothelial Activation Let W(t) denote the activation level of the vessel wall
endothelium, which is restricted between 0 and 1. Activated white blood cells
(Le

a) activate the endothelium at a maximal rate of a0. Sustained activation of
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Fig. 7 Diagram representing the biochemical pathways involved in the blood clotting model.
Species with “tape” shapes around them, such as L, have flow incorporated in their dynamics
as well. Curves with arrows on both ends denote reversible reactions. Figure modified from [4].
The new variables, NET and L, are highlighted in yellow. All of the variables are described in the
Appendix

the endothelium can occur through feedback from activated endothelium-bound
leukocytes. Endothelium-bound platelets may also provide additional feedback,
which we omit here [19]. We assume the magnitude of feedback is concentration-
dependent, with Hill coefficient 2 and half-maximal concentration kLe

a :w.

dW

dt
= a0

Le
a

2

Le
a

2 + k2
Le

a :w
(1−W). (1a)

Based on experimental evidence in which flow stasis or reduced flow activates
the endothelium [25], we assume initial activation, W(0), of the endothelium is a
decreasing function of the average rate of flow through the vessel. That is,

W(0) = F (v̄) = aw + (1− aw) · 1

1+ (v̄/kw)3 , (1b)

where v̄ = v/vmax is the normalized midstream velocity. We assume the endothe-
lium maintains a normally inactive state when v = vmax, i.e., F (1) = 0, and is fully
active under flow stasis, i.e., F (0) = 1. Based on these boundary conditions, we
define aw = −k3

w, where kw is a shape parameter for the function F (v̄). In other
words, kw determines how sensitive initial endothelium activation is to changes in
blood flow.
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As activated leukocytes and platelets bind to the endothelium, there is only a
fraction remaining that is available for binding by platelets and leukocytes, denoted
by W avail, which we define as

W avail = wmax ·W − Le
a − P e

a . (1c)

Leukocyte Dynamics Neutrophils and monocytes are the two white blood cell types
implicated in venous thrombosis [3]. For simplicity, we consider a single class of
such leukocytes that carries out their respective roles in venous thrombogenesis.
Leukocytes may be unactivated and mobile (Lm

u ), mobile, activated, and bound to
platelets (Lp

a ), or activated and endothelium-bound (Le
a). Monocyte-dependent and

neutrophil-dependent actions occur according to the observed fractions of these cells
in the area of the thrombus. 70–90% of leukocytes in any state are assumed to be
neutrophils and the remaining 10–30% are monocytes [3, 25]. Differential activity
between the two cell types is distinguished by the fractions q for neutrophils and
1− q for monocytes.

Leukocytes enter the vessel region by flowing in from upstream locations,
according to the midstream velocity, reflected in parameter kl

flow. Unactivated
leukocytes (Lm

u ) can either be activated by binding to endothelial-bound activated
platelets (Lp

a ) or upon adhesion to the available space on the endothelium (Le
a). This

assumption is based on the idea that the endothelium and platelets play some role
in leukocyte activation during thrombogenesis [19]. We also restrict the activating
sources based on the notion that leukocytes recruited to the reaction zone typically
slow to a roll along the endothelium. The differential equations describing leukocyte
dynamics become

dLm
u

dt
= kl

flow(Lup − Lm
u )︸ ︷︷ ︸

flow into/from
zone

−[a1W
avail + a2(P

e
a + P l

a)]︸ ︷︷ ︸
ENDO/PLT adhesion

·Lm
u + a−1L

e
a︸ ︷︷ ︸

ENDO
unbinding

+ a−2L
p
a︸ ︷︷ ︸

PLT
unbinding

,

(2)

dLe
a

dt
= a1W

availLm
u︸ ︷︷ ︸

adhesion

− a−1L
e
a︸ ︷︷ ︸

unbinding

− qa
p

3 P m
a Le

a︸ ︷︷ ︸
NET formation

− a5P
m
a Le

a︸ ︷︷ ︸
PLTbinding

(3)

+ a−5P
l
a

Le
a

Le
a + [NET ]︸ ︷︷ ︸

PLTunbinding

− dleukL
e
a[q − μ(1− q)]︸ ︷︷ ︸

turnover

,

dL
p
a

dt
= a2(P

e
a + P l

a)L
m
u︸ ︷︷ ︸

PLTbinding

− qa3L
p
a︸ ︷︷ ︸

NET formation

− a−2L
p
a︸ ︷︷ ︸

PLTunbinding

− dleukL
p
a [q − μ(1− q)]︸ ︷︷ ︸

turnover

,

(4)
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where Lup denotes the concentration of leukocytes upstream of the activation zone.
dleuk is the maximal turnover rate for leukocytes, and we assume monocytes turnover
at a fraction μ of the rate of shorter-lived neutrophils [20, 24]. The range for 1/μ in
humans can be anywhere between 3 and 12 [20]. Here we arbitrarily set 1/μ = 6.

NET formation can occur by interactions between mobile activated platelets and
endothelial-bound leukocytes or by platelet-bound activated leukocytes. We omit
the possibility that activated neutrophils release NETs in the absence of activated
platelets [25]. Leukocytes released from platelet unbinding may either be NETs or
endothelial-bound leukocytes, and the release rate is proportional to the fraction
present.

d[NET ]
dt

= q
[
a

p

3 P m
a Le

a + a3L
p
a

]
︸ ︷︷ ︸

formation

− a5P
m
a [NET ]︸ ︷︷ ︸

PLTbinding

(5)

+ a−5P
l
a

[NET ]
Le

a + [NET ]︸ ︷︷ ︸
PLTunbinding

− dNET[NET ]︸ ︷︷ ︸
degradation

.

Platelet Dynamics The pool of mobile inactive platelets is replenished from
populations upstream of the vessel. Platelets that bind to each other are now
considered as a distinct subset P b

a . It is assumed that unactivated platelets do
not bind to each other. NETs and activated platelets provide feedback to activate
inactive platelets [19]. These processes are modeled using mass-action terms with
rate constants a4 and kact

plt , respectively. Thrombin (e2) may also activate platelets,
which is modeled using Michaelis–Menten kinetics with maximal reaction rate kact

e2
and half-maximal concentration e2 [16].

dP m
u

dt
= k

p

flow(P up − P m
u )︸ ︷︷ ︸

flow into/from zone

− a4[NET ]P m
u︸ ︷︷ ︸

activation from NETs

−
[
kact

plt (P
b
a + P e

a + P l
a + P m

a )+ kact
e2

e2

e2 + e2

]
· P m

u︸ ︷︷ ︸
PLT/thrombin activation

− k+adhW
availP m

u︸ ︷︷ ︸
ENDO adhesion

.

(6)

As modeled previously, any activated platelets release signals such as ADP that can
in turn activate nearby platelets [16, 17]. Mobile activated platelets can adhere at rate
kcoh to bound platelets according to mass-action dynamics, following [6]. Activated
platelets can bind to NETs or other leukocytes (becoming leukocyte-bound platelets,
P l

a). We also assume that platelets bound to the endothelium or to leukocytes, but
not to other platelets, can bind a mobile activated platelet. Platelets unbinding from
leukocytes return to mobile activated platelets.
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dP b
a

dt
= kcoh

P e
a + P l

a

Pmax
P m

a︸ ︷︷ ︸
PLT cohesion

(7)

dP l
a

dt
= a5P

m
a (Le

a + [NET ])︸ ︷︷ ︸
PLT-LEUK binding

− a−5P
l
a︸ ︷︷ ︸

unbinding

− a2P
l
aL

m
u︸ ︷︷ ︸

LEUK binding

+ a−2L
p
a · P l

a

P l
a + P e

a︸ ︷︷ ︸
unbinding

(8)

dP m
a

dt
=
[
a4[NET ] + kact

plt (P
b
a + P e

a + P l
a + P m

a )− kact
e2

e2

e2 + e2

]
· P m

u︸ ︷︷ ︸
activation

(9)

−k
p

flowP m
a︸ ︷︷ ︸

flow out

− k+adhW
availP m

a + k−adhP
e
a︸ ︷︷ ︸

ENDObinding/unbinding

− kcoh
P e

a + P l
a

Pmax
P m

a︸ ︷︷ ︸
PLTbinding

− a5P
m
a (Le

a + [NET ])+ a−5P
l
a︸ ︷︷ ︸

LEUKbinding/unbinding

dP e
a

dt
= k+adhW

avail(P m
u + P m

a )− k−adhP
e
a︸ ︷︷ ︸

ENDObinding/unbinding

− a2P
l
aL

m
u + a−2L

p
a · P e

a

P l
a + P e

a︸ ︷︷ ︸
PLTunbinding

. (10)

Coagulation Triggers Tissue factor (TF) is the primary trigger for the extrinsic
coagulation cascade. With respect to venous thrombosis, platelet–leukocyte interac-
tions are believed to initiate tissue factor production in the absence of vessel injury.
Activated tissue factor (TF) is expressed by activated monocytes. Specifically,
monocytes bound to platelets or the endothelium will express active TF [3]. We
assume each individual activated monocyte expresses a constant maximal level of
active TF ([T F ]) with which other coagulation factors may interact. To further
simplify our biological assumptions, we omit monocyte-derived microparticle
expression of active TF [5].

TF available for initiation of coagulation on an individual monocyte is computed
as the difference between the total TF concentration contributed by all monocytes
in the region of interest and the different complexes it forms with other factors, as in
[16]. Because monocytes, but not neutrophils, express TF, we multiply the activated
leukocyte concentration by 1− q.

Notation In the following equations, the variables Zi and Ei denote the amount
of unactivated clotting factor i (zymogen) and activated clotting factor i (enzyme),
respectively. If the factors are bound to platelets, they are decorated by a superscript
m, as in zm

7 . Concentrations are denoted by square brackets, as in [T F ] or by
lowercase letters for the clotting factors: zi and ei . When molecules bind to form
a complex, we denote the complex by writing both molecules separated by a colon,
as in Z10 : Em

7 . A more detailed description of all the state variables is given in the
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Appendix, with even more detail given in [4].

[T F ]avail = (1− q)
(
Le

a + L
p
a

) · ([T F ] − zm
7 − em

7 − [Zm
7 : E10] − [Zm

7 : E2]
(11)

− [Z10 : Em
7 ] − [Z9 : Em

7 ] − [T FPI : E10 : Em
7 ] − [Zm

7 : E9]
)
.

Clotting factor XII is the primary trigger for the intrinsic (or contact) coagulation
cascade. Factor XII can be activated by NETs and activated (mobile or bound) neu-
trophils [13, 15]. Three primary effects of FXII activation are included. We describe
the modifications made to preexisting equations to incorporate these effects.

1. Factor XII activates the intrinsic coagulation pathway upstream of clotting factors
XI and IX. To simplify the model, we omit explicit kinetics of factors XII and
XI, instead including NET-dependent effects on factor IX activation (the most
upstream chemical included in the original model).

dz9

dt
= net flow ± platelet and other chemical interactions (12)

− kcat
9 z9[NET ]

de9

dt
= net flow ± platelet and other chemical interactions (13)

+ kcat
9 z9[NET ]

2. Activated FXII, or FXIIa, can reduce thrombomodulin (TM)-mediated activation
of protein C [7] to give APC, activated protein C.

dAPC

dt
= flow ± FVa and FVIIIa interactions (14)

+ kcat
PC:T M:e2

1+ [NET ]
kPC:T M:NET

· [T M : E2 : APC]

d[T M : E2]
dt

= TM–thrombin binding kinetics (15)

+ kcat
PC:T M:e2

1+ [NET ]/kPC:T M:NET

[T M : E2 : APC]
d[T M : E2 : APC]

dt
= TM–thrombin binding kinetics (16)

− kcat
PC:T M:e2

1+ [NET ]/kPC:T M:NET

[T M : E2 : APC]

3. Factor XIIa may also reduce fibrinolysis, a process which is carried out by the
plasmin ([P ]) enzyme [25].
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dF

dt
= formation from fibrinogen− cross− linking

− v17[F ][P ]
k17a + [P ] ·

ke12:F :NET

ke12:F :NET + [NET ]
(17)

In addition, we model the ability of NETs to cleave tissue factor pathway
inhibitor (TFPI), which typically works to inhibit intrinsic activation of the coag-
ulation pathway [23].

d[T FPI ]
dt

= flow ± FXa interactions− dT FPI · [NET ] · [T FPI ]. (18)

As modeled previously, we also adjust differential equations that involve activated
protein C to omit model dependence on an exposed subendothelium, as a primary
assumption is an intact endothelium. Further details may be found in [6].

4 Model Simulations and Discussion

Here we discuss the most salient aspects of the behavior of the model with respect
to changes in blood flow rates over a period of 48 h, the composition of resulting
clots, and model implications. First we numerically solve the full system of ordinary
differential equations using the DLSODA subroutine in Fortran. We assume that
veins experience normal shear rates of roughly 200 per second, so that vmax = 1.0
microns per second (μm s−1) [12]. We initialize the model for a cylindrical blood
vessel with radius 0.4 mm and track chemical and cellular interactions in a 40 μm
by 40 μm square along the vessel wall. Shear rates ranging from 2 to 200 per second
are used to simulate the model. For reference, these rates correspond to midstream
blood flow velocities ranging from 0.01 to 1.0 μm s−1, respectively. Parameters for
the new model components were either based on the literature or selected to achieve
reasonable qualitative behavior based on leukocyte and platelet recruitment times
[3, 25]. All others were taken from Fogelson et al. [4, 10, 17]. A complete list of
parameters is provided in the Appendix (see section “Complete Parameter List”).

4.1 Model Behavior Under Reduced Flow

Figure 8 demonstrates the time courses of a subset of our state variables for two
different shear rates, 50 and 150 s−1 (v = 0.25 and v = 0.75 μm s−1, respectively),
over an initial 24-h period post-endothelial activation. Recall that the initial level of
endothelial activation is determined by the midstream velocity. Variables are shown
in normalized levels, scaled by their respective maximal concentrations over the
complete 48-h simulation length. In the top row of Fig. 8, we observe an initial
rise in inflammation in the clot region, as determined by the concentrations of
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Fig. 8 Normalized trajectories for reduced flow. (a) Shear rate of 50 s−1 (v = 0.25 μm s−1), (b)
shear rate of 150 s−1 (v = 0.75 μm s−1). Top: activated leukocytes; middle: activated platelets;
bottom: endothelial activation level, fibrin, and tissue factor-bound activated factor VII (FVIIa).
This figure indicates that platelets and white blood cells are recruited to the activated region
substantially more quickly and in greater concentrations at lower shear, i.e., slower blood flow,
rates

bound leukocytes and NETs. Leukocytes bind to the endothelium and activated
platelets immediately, whereas NETs are released shortly after leukocyte activation.
The relative, though not absolute, rate of increase in endothelium-bound cells is
higher than that of platelet-bound cells. In the middle row, platelets rapidly bind to
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the endothelium and activated leukocytes. In addition, platelets and leukocytes are
initially recruited to the endothelium fairly early on, i.e., within the first hour of the
simulation. In the bottom row, we note that changes in endothelial activation occur
much more quickly under dramatically reduced flow conditions. Under low flow,
a sharp rise in TF-bound activated factor VII (FVIIa) initializes the clot cascade,
ultimately leading to pronounced fibrin production. Finally, low flow coagulation
dynamics are more dramatic within a shorter time frame relative to the delayed
dynamics experienced as flow rates approach the normal end of the spectrum.

In a more detailed comparison of flow-specific model behavior, we note that the
timeline illustrated under shear rate 50 s−1 is more consistent with descriptions of
inflammation-mediated coagulation processes than the 150 s−1 case. Specifically,
rapid and large-scale binding of leukocytes and platelets to the endothelium occurs
within the first hour of the simulation. This is followed by several hours’ worth
of additional recruitment and binding, with leukocytes achieving maximal numbers
earlier in the process. Once leukocytes and platelets are sufficiently activated, they
serve as feedback mediators for additional cellular recruitment and endothelial
activation, setting the stage for the TF-mediated intrinsic coagulation cascade [3].

4.2 Clot Composition

To determine the effect of inflammation and blood flow on the structure of the
resulting clot, we observe the composition of platelets and leukocytes over the
duration of the simulation. These results are summarized in Fig. 9a, in which we
determine which cell types dominate the volume in the reaction zone hours 1, 3, 6,
9, and 12 into the simulation and every 12 h thereafter. For frame of reference, we
also note that an average leukocyte has a diameter that is roughly 4–5 times that of
a platelet. In addition, because fibrin is the primary determinant of clot stability, we
show the levels of fibrin present at these time points with green shading.

Clot volumes in the simulation primarily comprise platelet-bound leukocytes,
followed by leukocyte-bound platelets. Other activated cells contribute minimally
to the overall clot structure. This makes sense, as we consider a reaction zone that is
significantly smaller than the blood vessel. As such, the surface area that leukocytes
and platelets have to bind in a single layer is limited, whereas cellular-bound
leukocytes and platelets may bind in several layers through successive interactions.

Both cell types increase upon endothelial activation, but the degree to which this
occurs varies with blood flow rate. For example, severe flow reduction, as with a
2 s−1 shear rate, produces a smaller clot with very low levels of fibrin. Slightly
higher flow rates (e.g., 10 and 50 s−1 shear rates) result in a bigger clot, with
greater recruitment of activated leukocytes earlier in the coagulation process and
progressively higher fibrin levels. As flow rates approach normal (e.g., 100 and 150
s−1 shear rates), the clot volume is composed of mostly leukocytes, whose numbers
decline dramatically the closer the flow rate is to normal. Leukocyte-bound platelet
volumes, on the other hand, appear to change less dramatically with changes in flow.



Fig. 9 (a) Composition of cellular volumes in clot region for activated leukocytes and platelets.
Both cell types are assumed spherical with diameters of 8 and 2 μm for leukocytes and platelets,
respectively. (b) Cell number distribution for activated leukocytes and platelets. At very low blood
flow, the clot contains fewer platelets and leukocytes, along with low levels of fibrin; thus, it is
fairly unstable. With low, but not extremely low flow, larger clots can result in very high levels of
fibrin, resulting in increased stability. With near-normal (higher) flow rates, clotting is negligible
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Figure 9b illustrates the absolute cell number composition of the various clots
produced. No considerable differences in absolute number of platelets bound to
leukocytes are observed for very low flow (1%–5% of normal), but less extreme
reductions (e.g., 25% of normal) result in larger cell-bound platelet-to-leukocyte
ratios, which then decline as flow rates are increased further. These results suggest
that variable mechanisms are responsible for establishing blood clots depending on
the magnitude of reduction. Specifically, extremely low flow results in smaller but
less stable clots, whereas low flow can produce larger clots with very high levels
of fibrin. Minimal flow reductions cannot produce an appreciable clot during the
length of the simulation. We hypothesize that similar behavior to other flow rates
would be eventually exhibited in the higher flow cases, but to a smaller magnitude
and over a much longer time span.

4.3 Implications for Embolization

To understand how inflammatory processes might influence embolus formation
mathematically, we examine trajectories in the two-dimensional phase plane for
multiple shear rates (Fig. 10). In particular, we focus on initial and terminal pro-
cesses in venous thrombus formation. That is, we examine behavior of endothelial
activation of leukocytes and platelets and of fibrin formation, respectively. The
largest number of endothelial-bound leukocytes occurs with a shear rate of 50 s−1,
whereas the largest number of platelets bound to the endothelium occurs for the
slowest shear rate examined. As flow rates normalize, leukocyte and platelet activity
on the endothelium is drastically reduced. The maximal fibrin concentration is
achieved for a shear rate of 100 s−1, and the largest concentration of mobile
activated platelets occurs with shear rate 2 s−1. Both fibrin and mobile activated
platelets are minimal for near-normal blood flow.

Beyond 40 h, fibrin levels exhibit a rebound late in the simulation for moderately
reduced flow rates (not shown), accompanied by a decline in mobile activated
platelets. This is due to the limit placed on the height of cellular layers necessary to
accommodate the simplified flow structure in the vessel.

These results illustrate an important aspect of inflammation and coagulation.
Consistent with experimental observations [3, 25], we find that nearly complete
flow stasis results in a non-standard clot characterized by very little fibrin, but a large
number of activated mobile platelets. In terms of embolization, the stickiness of such
platelets increases the possibility that downstream processes may be triggered by
platelet activation. In addition, the mobility of these platelets indicates that they may
travel to other parts of the body, such as in the case of venous thromboembolism.

Based on these results, we hypothesize that the stickiness of mobile activated
platelets are likely triggers of downstream processes that would exacerbate the
hypercoagulable state created by endothelial activation. Further, the mobility of
these platelets would allow them to travel to other parts of the body, as in the
case of venous thromboembolism. Reduced clot stability resulting from very low
fibrin concentrations also enhances the potential for heterotypic platelet–leukocyte
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Fig. 10 Phase plane trajectories over 40 h post-endothelial activation. Variables normalized to
maximum value achieved over all simulations. Left: Endothelial-bound leukocytes as a function of
endothelial-bound platelets. Right: Fibrin as a function of mobile activated platelets. Moderately,
but not extremely, low shear rates generate clots with high fibrin concentrations appearing at
relatively late times. Extremely low shear rates produce less fibrin-rich clots, but generate maximal
fibrin concentrations at earlier times

aggregates to break off from the primary clot structure. The current framework
does not accommodate the possibility for this latter process, but rather provides
a foundation for future extensions.

5 Next Steps

We have formulated a model of clot formation in the vein in which leukocytes
play an important role. Preliminary numerical solutions of the model show that
an intact yet activated endothelium requires leukocyte and platelet recruitment to
stimulate coagulation. Results indicate that leukocytes are important in initiating
coagulation under low, but not extremely low, flow conditions. Based on the shear
rates considered, we find that reductions in blood flow of 50–95% support venous
thrombus formation in a primarily immune-mediated manner. In contrast, nearly
complete flow stasis supports platelet-mediated coagulation, where leukocytes seem
to play a limited role in thrombogenesis. Our preliminary results qualitatively agree
with experimental observations that highlight major differences between thrombus
formation under complete flow stasis and flow reduction in the veins.

Due to the negative feedback loop in the clotting network, where the formation
of plasmin, a clot inhibitor, is promoted by the same factors that initiate the clot,
the process of clot resolution begins once a clot is formed (see Fig. 7, lower right
corner). If a thrombus has persisted, there must be a continued trigger, i.e., via
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leukocytes and NETs, as we have described in our model. Anti-coagulants are
helpful for preventing clot formation, but they have very little effect on existing
thrombi. Traditional treatments for large blood clots involve surgical removal, or
using chemicals or lasers to destroy the clot. These treatments, which destroy
the clots quickly, can be dangerous, and are associated with morbidity and other
complications [22]. Thus, treatments that encourage a natural resolution of the clot
are needed. These treatments are likely to involve the processes that we explore in
this model.

As we mentioned in the previous section, our preliminary results do have
implications for the formation of embolisms, where small pieces of the main
thrombus can break off and travel through the bloodstream, perhaps initiating new
clots or causing life-threatening blockages in the lungs or brain. However, in order
to understand the challenges of treating an existing thrombus in the vein, we need
to model a large clot that completely obstructs the vessel, as well as the resolution
of the clot.

In light of these concerns, our first step will be to expand the model to allow for
the occlusion of the vein. Next, we will compare simulated results to experimental
and clinical results in order to validate the model. For example, the results shown
in Fig. 9 where the composition of the clot is pictured over time can be compared
to the cell composition of actual thrombi. Emerging new techniques for the real-
time imaging of thrombi will allow us to validate and calibrate our models of the
interactions between leukocytes, NETs, and various clotting factors [14, 21]. Finally,
we can use the validated mathematical model to explore the effects of varying
conditions, testing immuno-modulation scenarios that could inform new treatments
[3, 22].
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Appendix

Model Variables

The model consists of interactions between 86 state variables, many of them taken
from [4]. A schematic of these interactions is given in Fig. 7. We gather here
descriptions of all of the state variables for ease of reference; for more details, refer
to [4].

The largest group of state variables consists of clotting factors (molecules) and
complexes that are involved in the coagulation cascade. These factors are often
denoted by roman numerals, e.g., “factor IX,” or “factor II.” Clotting factors can
be either inactive, or active, typically denoted by an “a,” as in factor IX (inactive)
and factor IXa (active). Here, we use Zi to denote the inactive clotting factor i
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(zymogen) and Ei to denote the active factor (enzyme). Concentrations are shown
with square brackets, or, to simplify the notation, concentrations of factors are
denoted by lowercase letters. So [Z9] = z9 and [E9] = e9 represent the concentrations
of factor IX and factor IXa, respectively. Factors that are bound to platelets are
denoted with a superscript m, as in em

9 or zm
9 . Certain enzymes can bind to specific

sites on platelets. These specifically bound enzymes are denoted with superscripts
m∗ or h, as in em∗

11 , eh
11 or, when both binding sites are used, e

h,m∗
11 .

In addition to these clotting factors, we have the following variables, some of
which have already been listed in Sect. 3.

F Fibrin
Fg Fibrinogen (fibrin precursor)
P Plasmin
Pg Plasminogen (plasmin precursor)
T FPI Tissue factor pathway inhibitor
APC Activated protein C
T M Thrombomodulin
W Vessel wall (endothelial) activation level, with values

between 0 (unactivated) and 1 (fully activated)
[NET ] Concentration of leukocyte-derived NETs
T F Average concentration of active (decrypted) tissue factor

expressed per activated monocyte
Lm

u , L
p
a , Le

a Concentration of unactivated and mobile, activated and
bound to platelets, and activated and endothelium-bound
leukocytes, respectively

P b
a , P l

a , P e
a ,P m

a Concentration of activated platelets bound to other
platelets, leukocytes, endothelium, or unbound (mobile),
respectively

Complexes are shown as molecules joined by a colon, as in T M : E2 or T M :
E2 : APC. Some complexes have special names:

T EN = VIII:IXa = platelet-bound tenase

PRO = Va:Xa = prothrombinase.

Model Equations

Here we give the complete list of model equations incorporating immune-
mediated mechanisms to coagulation in the veins. Following [6], we eliminate
the endothelium-dependent kinetic equations from the model in [4], as the current
model does not distinguish between sub- and intact endothelium. As such, the
following variables are omitted, with the necessary reactions appearing in the
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modified equations: eec
2 , APCec, eec

9 , eec
10. Specific changes from the previous

model [4] which models arterial coagulation (in vivo framework) are highlighted in
purple.

dW

dt
= a0

Le
a

2

Le
a

2 + k2
Le

a :w
(1−W), W(0) = f (v̄) = aw + (1− aw) · 1

1+ (v̄/kw)3 (1)

W avail = wmax ·W − Le
a − P e

a (2)

dLm
u

dt
= kl

flow(Lup − Lm
u )−

(
k+leukW

avail + a2P
e
a

)
· Lm

u + a−1L
e
a + a−2L

p
a (3)

dLe
a

dt
= k+leukW

availLm
u − a−1L

e
a − qa

p

3 P m
a Le

a − a5P
m
a Le

a + a−5P
l
a

Le
a

Le
a + [NET ] (4)

−dleukL
e
a[q − (1− q)/6]

dL
p
a

dt
= a2P

e
a Lm

u − qa3L
p
a + a2P

l
a ∗ Lm

u − a−2L
p
a − dleukL

e
a[q − (1− q)/6] (5)

d[NET ]
dt

= q
[
a

p

3 P m
a Le

a + a3L
p
a

]− a5P
m
u ∗ [NET ] + a−5P

l
a

[NET ]
Le

a + [NET ] (6)

dP m
u

dt
= k

p

flow(P up − P m
u )+ k−adhP

e
a (7)

−
[
a4[NET ] + kact

plt (P
b
a + P e

a + P l
a + P m

a )+ kact
e2

e2

e2 + e2
+ k+adhW

avail
]
· P m

u

dP b
a

dt
= kcoh(P

e
a + P l

a)P
m
a (8)

dP l
a

dt
= a5P

m
a (Le

a + [NET ])− a−5P
l
a − a2P

l
aL

m
u + a−2L

p
a · P l

a

P l
a + P e

a

(9)

+ dleukL
e
a[q − (1− q)/6]

dP m
a

dt
= −k

p

flowP m
a +

[
a4[NET ] + kact

plt (P
b
a + P e

a + P l
a + P m

a )kact
e2

e2

e2 + e2

]
· P m

u (10)

− k+adhW
availP m

a + k−adhP
e
a − kcoh(P

e
a + P l

a)P
m
a − a5P

m
a (Le

a + [NET ])+ a−5P
l
a

dP e
a

dt
= k+adhW

avail(P m
u + P m

a )− k−adhP
e
a−a2P

l
aL

m
u + a−2L

p
a · P e

a

P l
a + P e

a

(11)

dz9

dt
= −kon

9 z9p
avail
9 + koff

9 zm
9 + kflow(z

up
9 − z9)− k+

z9:em
7
z9e

m
7 + k−

z9:em
7
[Z9 : Em

7 ] (12)

− k+z9:e11
z9e

h
11 + k−z9:e11

[Z9 : Eh
11] − k+z9:e11

z9e11 + k−z9:e11
[Z9 : E11]−kcat

9 · [NET ]z9

de9

dt
= −kon

9 e9p
avail
9 + koff

9 em
9 − kon

9 e9p
avail
91 + koff

9 em∗
9 + kflow(e

up
9 − e9) (13)

− kin
AT :e9

e9 + kcat
z9:em

7
[Z9 : Em

7 ]
+ (kcat

z7:e9
+ k−z7:e9

)[Z7 : E9] − k+z7:e9
z7e9 + (kcat

zm
7 :e9

+ k−
zm

7 :e9
)[Zm

7 : E9]

− k+
zm

7 :e9
zm

7 e9 + kcat
z9:e11

[Z9 : Eh
11] + kcat

z9:e11
[Z9 : E11]−kcat

9 · [NET ]e9
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de2

dt
= −kon

2 pavail
2s e2 + koff

2 em
2 + kflow(e

up
2 − e2)+ kcat

zm
2 :PRO

[Zm
2 : PRO] (14)

− kin
AT :e2

e2 + (kcat
z5:e2

+ k−z5:e2
)[Z5 : E2]
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z11e2
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eh
11e2−k+T Me2[T M]avail + k−T M [T M : E2]

d[T FPI ]
dt

= −k+T FPI :e10
e10[T FPI ] + k−T FPI :e10

[T FPI : E10] (15)

+ kflow([T FPI ]up − [T FPI ])−dT FPI · [NET ] · [T FPI ]
dAPC

dt
= (kcat

em
5 :APC

+ k−
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5 :APC
)[APC : Em

5 ] − k+
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5 :APC
em

5 [APC] (16)
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)[APC : Em
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8 :APC
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· [T M : E2 : APC]

d[T M :E2]
dt

= k+T Me2[T M]avail − k−T M [T M : E2] (17)
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1+ [NET ]/kPC:T M:NET

[T M : E2 : APC]

d[T M : E2 : APC]
dt

= − kcat
PC:T M:e2

1+ [NET ]/kPC:T M:NET

[T M : E2 : APC] (18)

d[F ]
dt

= v14e2[Fg]
k14a + [Fg] −

v16[F ]e2

k16a + e2
− v17[F ][P ]

k17a + [P ] ·
ke12:F :NET

ke12:F :NET + [NET ] (19)

d

dt
z7 = −kon

7 z7[T F ]avail + koff
7 zm

7 − k+z7:e2
z7e2 + k−z7:e2

[Z7 : E2] − k+z7:e10
z7e10 (20)
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[Z7 : E10]−k+z7:e9

z7e9 + k−z7:e9
[Z7 : E9] + kflow(z

up
7 − z7)

d

dt
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7 e7[T F ]avail + koff
7 em

7 + kcat
z7:e2

[Z7 : E2] + kcat
z7:e10

[Z7 : E10] (21)

+kcat
z7:e9

[Z7 : E9] + kflow(e
up
7 − e7)

d

dt
zm

7 = kon
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7 − k+
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7 : E10] (22)
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d

dt
zm

9 = kon
9 z9p

avail
9 − koff

9 zm
9 − k+

zm
9 :eh,m

11

zm
9 e

h,m
11 + k−z9:e11

[Zm
9 : Eh,m

11 ] (36)

− k+z9:e11
zm

9 em∗
11 + k−z9:e11

[Zm
9 : Em∗

11 ]
d

dt
em

9 = kon
9 e9p

avail
9 − koff

9 em
9 + kcat

z9:e11
[Zm

9 : Eh,m
11 ] + kcat

z9:e11
[Zm

9 : Em∗
11 ] (37)

− k+
em

8 em
9
em

8 em
9 + k−

em
8 em

9
[T EN ]

d

dt
z2 = −kon

2 pavail
2 z2 + koff

2 zm
2 + kflow(z

up
2 − z2) (38)

d

dt
zm

2 = kon
2 pavail

2 z2 − koff
2 zm

2 − k+
zm

2 :PRO
[PRO]zm

2 + k−
zm

2 :PRO
[Zm

2 : PRO] (39)

d

dt
em

2 = kon
2 pavail

2s e2 − koff
2 em

2 (40)

+ (kcat
z5:em

2
+ k−

z5:em
2
)[Zm

5 : Em
2 ] − k+

z5:em
2
zm

5 em
2

+ (kcat
zm

8 :em
2
+ k−

zm
8 :em

2
)[Zm

8 : Em
2 ] − k+

zm
8 :em

2
zm

8 em
2

+ (kcat
z11:e2

+ k−z11:e2
)[Zm

11 : Em
2 ] − k+z11:e2

zm
11e

m
2

+ (kcat
z11:e2

+ k−z11:e2
)[Eh,m∗

11 : Em
2 ] − k+z11:e2

e
h,m∗
11 em

2

d

dt
[T EN ] = k+

em
8 em

9
em

8 em
9 − k−

em
8 em

9
[T EN ] (41)

+ (kcat
zm

10:T EN
+ k−

zm
10:T EN

)[Zm
10 : T EN ] − k+

zm
10:T EN

zm
10[T EN ]



Immune-Mediated Processes in Coagulation 263

d

dt
[PRO] = k+

em
5 :em

10
em

10e
m
5 − k−

em
5 :em

10
[PRO] (42)

− k+
zm

2 :PRO
zm

2 [PRO] + (k−
zm

2 :PRO
+ kcat

zm
2 :PRO

)[Zm
2 : PRO]

d

dt
[T FPI : E10] = −kflow[T FPI : E10] + k+T FPI :e10

e10[T FPI ] (43)

− k−T FPI :e10
[T FPI : E10] (44)

+ k−T FPI :e10:em7
[T FPI : E10 : Em

7 ] − k+
T FPI :e10:em

7
em

7 [T FPI : E10]

d

dt
[T FPI : E10 : Em

7 ] = −k−T FPI :e10:em7
[T FPI : E10 : Em

7 ] (45)

+ k+
T FPI :e10:em

7
em

7 [T FPI : E10] (46)

d

dt
[Z7 : E2] = k+z7:e2

z7e2 − (kcat
z7:e2

+ k−z7:e2
)[Z7 : E2] − kflow[Z7 : E2] (47)

d

dt
[Z7 : E10] = k+z7:e10

z7e10 − (kcat
z7:e10

+ k−z7:e10
)[Z7 : E10] − kflow[Z7 : E10] (48)

d

dt
[Zm

7 : E10] = k+
zm

7 :e10
zm

7 e10 − (kcat
zm

7 :e10
+ k−

zm
7 :e10

)[Zm
7 : E10] (49)

d

dt
[Zm

7 : E2] = k+z7:e2
zm

7 e2 − (kcat
z7:e2

+ k−z7:e2
)[Zm

7 : E2] (50)

d

dt
[Z10 : Em

7 ] = k+
z10:em

7
z10e

m
7 − (kcat

z10:em
7
+ k−

z10:em
7
)[Z10 : Em

7 ] (51)

d

dt
[Zm

10 : T EN ] = k+
zm

10:T EN
[T EN ]zm

10 − (kcat
zm

10:T EN
+ k−

zm
10:T EN

)[Zm
10 : T EN ] (52)

d

dt
[Z5 : E2] = k+z5:e2

z5e2 − (kcat
z5:e2

+ k−z5:e2
)[Z5 : E2] − kflow[Z5 : E2] (53)

d

dt
[Zm

5 : Em
10] = k+

zm
5 :em

10
zm

5 em
10 − (kcat

zm
5 :em

10
+ k−

zm
5 :em

10
)[Zm

5 : Em
10] (54)

d

dt
[Zm

5 : Em
2 ] = k+

z5:em
2
zm

5 em
2 − (kcat

z5:em
2
+ k−

z5:em
2
)[Zm

5 : Em
2 ] (55)

d

dt
[Zm

8 : Em
10] = k+

zm
8 :em

10
zm

8 em
10 − (kcat

zm
8 :em

10
+ k−

zm
8 :em

10
)[Zm

8 : Em
10] (56)

d

dt
[Zm

8 : Em
2 ] = k+

zm
8 :em

2
zm

8 em
2 − (kcat

zm
8 :em

2
+ k−

zm
8 :em

2
)[Zm

8 : Em
2 ] (57)

d

dt
[Z8 : E2] = k+z8:e2

z8e2 − (kcat
z8:e2

+ k−z8:e2
)[Z8 : E2] − kflow[Z8 : E2] (58)

d

dt
[APC : Em

8 ] = k+
em

8 :APC
[APC]em

8 − (kcat
em

8 :APC
+ k−

em
8 :APC

)[APC : Em
8 ] (59)

d

dt
[Z9 : Em

7 ] = k+
z9:em

7
z9e

m
7 − (kcat

z9:em
7
+ k−

z9:em
7
)[Z9 : Em

7 ] (60)

d

dt
[Zm

2 : PRO] = k+
zm

2 :PRO
zm

2 [PRO] − (kcat
zm

2 :PRO
+ k−

zm
2 :PRO

)[Zm
2 : PRO] (61)
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d

dt
[APC : Em

5 ] = k+
em

5 :APC
[APC]em

5 − (kcat
em

5 :APC
+ k−

em
5 :APC

)[APC : Em
5 ] (62)

d

dt
[Z7 : E9]= k+z7:e9

z7e9 − (kcat
z7:e9

+ k−z7:e9
)[Z7 : E9] (63)

d

dt
em∗

9 = kon
9 pavail

91 e9 − koff
9 em∗

9 + k−
em

8 :em
9
[T EN∗] − k+

em
8 :em

9
em

8 em∗
9 (64)

d

dt
[T EN∗] = −k−

em
8 :em

9
[T EN∗] + k+

em
8 :em

9
em

8 em∗
9 (65)

+ (kcat
zm

10:T EN
+ k−

zm
10:T EN

)[Zm
10 : T EN∗] − k+

zm
10:T EN

[T EN∗]zm
10

d

dt
[Zm

10 : T EN∗] = k+
zm

10:T EN
[T EN∗]zm

10 − (kcat
zm

10:T EN
+ k−

zm
10:T EN

)[Zm
10 : T EN∗] (66)

d

dt
[APC : E5] = k+e5:APCe5[APC] − (kcat

e5:APC + k−e5:APC)[APC : E5] (67)

d

dt
[APC : E8] = k+e8:APCe8[APC] − (kcat

e8:APC + k−e8:APC)[APC : E8] (68)

d

dt
z11 = kflow(z

up
11 − z11)− kon

z11
z11p

avail
11 + koff

z11
zm

11 − k+z11:e2
z11e2 + k−z11:e2

[Z11 : E2] (69)

d

dt
e11 = kflow(e

up
11 − e11)− kon

e11
e11p

avail
111 + koff

e11
em∗

11 (70)

− k+z9:e11
z9e11 + (k−z9:e11

+ kcat
z9:e11

)[Z9 : E11] + kcat
z11:e2

[Eh
11 : E2]

d

dt
zm

11 = kon
z11

z11p
avail
11 − koff

z11
zm

11 − k+z11:e2
zm

11e
m
2 + k−z11:e2

[Zm
11 : Em

2 ] (71)

d

dt
em∗

11 = kon
e11

e11p
avail
111 − koff

e11
em∗

11 (72)

− k+z9:e11
em∗

11 zm
9 + (k−z9:e11

+ kcat
z9:e11

)[Zm
9 : Em∗

11 ] + kcat
z11:e2

[Eh,m∗
11 : Em

2 ]
d

dt
[Zm

11 : Em
2 ] = k+z11:e2

zm
11e

m
2 − (k−z11:e2

+ kcat
z11:e2

)[Zm
11 : Em

2 ] (73)

d

dt
[Zm

9 : Em∗
11 ] = k+z9:e11

zm
9 em∗

11 − (k−z9:e11
+ kcat

z9:e11
)[Zm

9 : Em∗
11 ] (74)

d

dt
[Z11 : E2] = kflow([Z11 : E2]up − [Z11 : E2])+ k+z11:e2

z11e2 − (k−z11:e2
+ kcat

z11:e2
)[Z11 : E2]

(75)

d

dt
[Z9 : E11] = kflow([Z9 : E11]up − [Z9 : E11])+ k+z9:e11

z9e11 − (k−z9:e11
+ kcat

z9:e11
)[Z9 : E11]

(76)

d

dt
eh

11 = kflow(e
h,up

11 − eh
11)− kon

e11
eh

11p
avail
111 + koff

e11
e
h,m∗
11 − kon

z11
eh

11p
avail
11 + koff

z11
e
h,m
11 (77)

− k+z9:e11
z9e

h
11 + (k−z9:e11

+ kcat
z9:e11

)[Z9 : Eh
11] + kcat

z11:e2
[Z11 : E2]

− kz11:e2e
h
11e2 + k−z11:e2

[Eh
11 : E2]

d

dt
e
h,m
11 = kon

z11
eh

11p
avail
11 − koff

z11
e
h,m
11 (78)
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− k+z9:e11
zm

9 e
h,m
11 + (k−z9:e11

+ kcat
z9:e11

)[Zm
9 : Eh,m

11 ] + kcat
z11:e2

[Zm
11 : Em

2 ]
d

dt
e
h,m∗
11 = kon

e11
eh

11p
avail
111 − koff

e11
e
h,m∗
11 − k+z11:e2

e
h,m∗
11 em

2 + k−z11:e2
[Eh,m∗

11 : Em
2 ] (79)

d

dt
[Z9 : Eh

11] = kflow([Z9 : Eh
11]up − [Z9 : Eh

11])+ k+z9:e11
z9e

h
11 − (k−z9:e11

+ kcat
z9:e11

)[Z9 : Eh
11]

(80)

d

dt
[Zm

9 : Eh,m
11 ] = k+z9:e11

zm
9 e

h,m
11 − (k−z9:e11

+ kcat
z9:e11

)[Zm
9 : Eh,m

11 ] (81)

d

dt
[Eh

11 : E2] = kflow([Eh
11 : E2]up − [Eh

11 : E2])+ k+z11:e2
eh

11e2 − (k−z11:e2
+ kcat

z11:e2
)[Eh

11 : E2]
(82)

d

dt
[Eh,m∗

11 : Em
2 ] = k+

e
h,m∗
11 em

2

e
h,m∗
11 em

2 − (k−
e
h,m∗
11 em

2

+ kcat
e
h,m∗
11 em

2
)[Eh,m∗

11 : Em
2 ] (83)

d

dt
[Fg] = − v14e2[Fg]

k14a + [Fg] −
v15[P ][Fg]
k15a + [P ] + dFg(1− [Fg]) (84)

d

dt
[F ] = v14e2[Fg]

k14a + [Fg] −
v16[F ]e2

k16a + e2
− v17[F ][P ]

k17a + [P ] ·
ke12:F :NET

ke12:F :NET + [NET ] (85)

d

dt
[Pg] = −v21e2[Pg]

k21a + e2
− v23[APC][V KH2][Pg]

(k23a([APC] + c37a)+ [V KH2][APC]) (86)

− v22[F ][Pg]
k22a + [F ] + dPg(1− [Pg])

d

dt
[P ] = v21e2[Pg]

k21a + e2
+ v23[APC][V KH2][Pg]

(k23a([APC] + c37a)+ [V KH2][APC]) (87)

+ v22[F ][Pg]
k22a + [F ] − dP [P ].

Platelet Variables

Activated platelet dynamics are calculated as in Fogelson et al. [10]. At the
beginning of each step, we store the total active platelet concentration PLi

a =
[P e

a ]ps/p + [P m
a ]+P b

a + P l
a , and the total active leukocyte population: Li

a =
L

p
a + Le

a · ls/ leuk. Then the change in platelet concentration during a given time
step is calculated as

dPL = [P e
a ]ps/p + [P m

a ]+P b
a + P l

a − PLi
a.

The current height of the platelet layer, nhc, is updated using

nhc = nhc + (nhc + nh)(dPL · p+4 ∗ (L
p
a + Le

a · ls/ leuk − Li
a)leuk) · 6× 109

and, from this, the volume of the chemical boundary layer, vch, and the platelet
volume, vpl , are calculated:

vch = (nh+ nhc ∗ nnhc)/(nh+ nhcinnhc) vpl = (nh+ nhc)/(nh+ nhci).
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These volumes are then used to adjust the platelet and chemical concentrations.
Then platelet binding site availabilities are updated as follows:

p2 = p2 + dPL(p · np2/s2) (88)

p5 = p5 + dPL(p · np5/s5) (89)

p8 = p8 + dPL(p · np8/s8) (90)

p9 = p9 + dPL(p · np9/s9) (91)

p10 = p10 + dPL(p · np10/s10) (92)

p11 = p11 + dPL(p · np11/s11) (93)

p111 = p111 + dPL(p · np111/s111). (94)

Additionally, the binding site availabilities for surface binding interactions are
defined as follows (each step):

pavail
PLAS = pPLAS − [P e

a ] (95)

pavail
10 = p10 − zm

10 − em
10 − [Zm

10 : T EN ] − [Zm
5 : Em

10] (96)

− [Zm
8 : Em

10] − [PRO] − [Zm
2 : PRO] − [Zm

10 : T EN∗]
pavail

5 = p5 − zm
5 − em

5 − [Zm
5 : Em

10] − [Zm
5 : Em

2 ] − [APC : Em
5 ] (97)

− [PRO] − [Zm
2 : PRO]

pavail
8 = p8 − zm

8 − em
8 − [T EN ] − [Zm

8 : em
10 − [Zm

8 : Em
2 ] − [Zm

10 : T EN ] (98)

− [APC : Em
8 ] − [T EN∗] − [Zm

10 : T EN∗]
pavail

9 = p9 − zm
9 − em

9 − [T EN ] − [Zm
10 : T EN ] − [Zm

9 : Eh,m∗
11 ] − [Zm

9 : Em∗
11 ] (99)

pavail
2 = p2 − zm

2 − [Zm
2 : PRO] − [Zm

11 : Em
2 ] − [Eh,m∗

11 : Em
2 ] (100)

pavail
2s = p2s − em

2 − [Zm
5 : Em

2 ] − [Zm
8 : Em

2 ] − [Zm
11 : Em

2 ] − [Eh,m∗
11 : Em

2 ] (101)

pavail
91 = p91 − em∗

9 − ([T EN∗] + [Zm
10 : T EN∗]) (102)

pavail
11 = p11 − zm

11 − e
h,m∗
11 − [Zm

9 : Eh,m∗
11 ] − [Zm

11 : Em
2 ] (103)

pavail
111 = p111 − e

h,m∗
11 − em∗

11 − [Zm
9 : Em∗

11 ] − [Eh,m∗
11 : Em

2 ] (104)

[T M]avail = [T M] − [T M : E2] − [T M : E2 : APC]. (105)

Complete Parameter List

New Model Parameters

See Table 1.
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Original Model Parameters

See Tables 2, 3, and 4.

Table 2 Modified list of
reaction parameters for the
clotting pathway except for
vitamin K components

Parameter Value Units

k+T FPI :e10
1.6× 107 M−1 s−1

k−T FPI :e10
0.00033 s−1

k+
T FPI :em

7
107 s−1

k−
T FPI :em

7
0.0011 M−1 s−1

km
z10:em

7
4.5× 10−7 M

kcat
z10:em

7
1.15 s−1

k−
z10:em

7
1 s−1

k+
z10:em

7
(k−

z10:em
7
+ kcat

z10:em
7
)/km

z10:em
7

M

km
zm

7 :e10
1.2× 10−6 M

kcat
zm

7 :e10
5 s−1

k−
zm

7 :e10
1 s−1

k+
zm

7 :e10
(k−

zm
7 :e10

+ kcat
zm

7 :e10
)/km

zm
7 :e10

M

km
z7:e10

10−6 M

kcat
z7:e10

5 s−1

k−z7:e10
1 s−1

k+z7:e10
(k−z7:e10

+ kcat
z7:e10

)/km
z7:e10

M−1s−1

kcat
z7:e2

0.061 s−1

k−z7:e2
1 s−1

km
z7:e2

2.7× 10−6 M

k+z7:e2
(k−z7:e2

+ kcat
z7:e2

)/km
z7:e2

M−1s−1

km
z9:em

7
2.4× 10−7 M

kcat
z9:em

7
1.15 s−1

k−
z9:em

7
1 s−1

k+
z9:em

7
(k−

z9:em
7
+ kcat

z9:em
7
)/km

z9:em
7

M−1s−1

km
zm

5 :em
10

1.04× 10−8 M

kcat
zm

5 :em
10

0.046 s−1

k−
zm

5 :em
10

1 s−1

k+
zm

5 :em
10

(k−
zm

5 :em
10
+ kcat

zm
5 :em

10
)/km

zm
5 :em

10
M−1s−1

km
z5:em

2
7.1× 10−8 M

kcat
z5:em

2
0.23 s−1

k−
z5:em

2
1 s−1

(continued)
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Table 2 (continued) Parameter Value Units

k+
z5:em

2
(k−

z5:em
2
+ kcat

z5:em
2
)/km

z5:em
2

M−1s−1

km
z8:e2

2× 10−7 M

kcat
z8:e2

0.9 s−1

k−z8:e2
1 s−1

k+z8:e2
(k−z8:e2

+ kcat
z8:e2

)/km
z8:e2

M−1s−1

k+
em

5 :em
10

108 M−1s−1

k−
em

5 :em
10

0.01 s−1

k+
em

8 :em
9

108 M−1s−1

k−
em

8 :em
9

0.01 s−1

km
zm

10:T EN
1.6× 10−7 M

kcat
zm

10:T EN
20 s−1

k−
zm

10:T EN
1 s−1

k+
zm

10:T EN
(k−

zm
10:T EN

+ kcat
zm

10:T EN
)/km

zm
10:T EN

M−1s−1

km
zm

2 :PRO
3× 10−7 M

kcat
zm

2 :PRO
30 s−1

k−
zm

2 :PRO
1 s−1

k+
zm

2 :PRO
(k−

zm
2 :PRO

+ kcat
zm

2 :PRO
)/km

zm
2 :PRO

M−1s−1

km
zm

8 :em
2

2× 10−7 M

kcat
zm

8 :em
2

0.9 s−1

k−
zm

8 :em
2

1 s−1

k+
zm

8 :em
2

(k−
zm

8 :em
2
+ kcat

zm
8 :em

2
)/km

zm
8 :em

2
M−1s−1

km
zm

8 :em
10

2× 10−8 M

kcat
zm

8 :em
10

0.023 s−1

k−
zm

8 :em
10

1 s−1

k+
zm

8 :em
10

(k−
zm

8 :em
10
+ kcat

zm
8 :em

10
)/km

zm
8 :em

10
M−1s−1

kcat
em

5 :APC
0.5 s−1

k−
em

5 :APC
1 s−1

km
em

5 :APC
1.25× 10−8 M

k+
em

5 :APC
(k−

em
5 :APC

+ kcat
em

5 :APC
)/km

em
5 :APC

M−1s−1

kcat
e5:APC 0.5 s−1

k−e5:APC 1 s−1

km
e5:APC 1.25× 10−8 M

k+e5:APC (k−e5:APC + kcat
e5:APC)/km

e5:APC M−1s−1

kcat
em

8 :APC
kcat
em

5 :APC
s−1

(continued)
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Table 2 (continued) Parameter Value Units

km
em

8 :APC
km
em

5 :APC
M

k−
em

8 :APC
k−
em

5 :APC
s−1

k+
em

8 :APC
k+
em

5 :APC
M−1s−1

kcat
e8:APC kcat

e5:APC s−1

km
e8:APC km

e5:APC M

k−e8:APC k−e5:APC s−1

k+e8:APC k+e5:APC M−1s−1

kin
AT :e10

0.1 s−1

kin
AT :e9

0.1 s−1

kin
AT :e2

0.2 s−1

km
z7:e9

1.7× 10−6 M

kcat
z7:e9

0.32 s−1

k−z7:e9
1 s−1

k+z7:e9
(k−z7:e9

+ kcat
z7:e9

)/km
z7:e9

M−1s−1

k+z9:e11
0.6× 107 M−1s−1

k−z9:e11
1 s−1

kcat
z9:e11

0.21 s−1

k+z11:e2
2× 107 M−1s−1

k−z11:e2
1 s−1

kcat
z11:e2

1.3× 10−4 s−1

k+T M 108 M−1s−1

k−T M 5× 10−2 s−1

kcat
PC:T M:e2

1/6 s−1

km
PC:T M:e2

7× 10−7 M

k−PC:T M:e2
1 s−1

k+PC:T M:e2
(k−PC:T M:e2

+ kcat
PC:T M:e2

)/km
PC:T M:e2

M−1s−1

k
deg

8 0.005 s−1

e2 0.001 M

All values taken from Fogelson et al. [10]
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Table 3 Modified list of surface binding (on/off) parameters

Parameter Value Units Parameter Value Units

k+adh 2× 1010 M−1 s−1 kact
e2

0.1 s−1

k−adh 0 s−1 kact
plt 3× 108 M−1 s−1

kon
2 107 M−1 s−1 kon

2s 107 M−1 s−1

koff
2 5 .9 s−1 koff

2s 0.2 s−1

kon
5 5.7× 107 M−1 s−1 kon

8 5× 107 M−1 s−1

koff
5 0.17 s−1 koff

8 0.17 s−1

kon
9 107 M−1 s−1 kon

10 107 M−1 s−1

koff
9 0.025 s−1 koff

10 0.025 s−1

kon
z11

107 M−1 s−1 kon
e11

107 M−1 s−1

koff
z11

0.1 s−1 koff
e11

0.017 s−1

kon
7 5× 107 M−1 s−1

koff
7 0.005 s−1

All values taken from Fogelson et al. [10]

Table 4 Modified list of platelet, surface and volume scalings, and flow-related parameters

Parameter Value Description

cpl 1 1 corresponds to 250,000 platelets per L

rad 400 Radius of blood vessel (μm)

width 40 Width of injury (μm)

nphmax 80 Maximum height of clot (μm)

dc 5.0 Diffusion rate (μm2/s)

vel 1.0 Default midstream velocity (μm/s)

tf scale 1.0 Tissue factor concentration (fmol/cm2)

nh 0.01 · 3 3
√

(rad · width · dc/vel)/4 Default boundary layer thickness

kflow vel · nh · 104/(width · rad) Flow term (s−1)

k
p

flow 5 · vel · 104/(width · rad) Platelet flow term (s−1)

p 4 · 10−13/cpl Platelet concentration

ps 20/(6 · 1023 · nh · 10−5(102) · 10−10)

leuk 8.5× 10−15 Leukocyte concentration (8.5 fM)

ls 20/(6 · 1023 · nh · 10−5(102) · 10−10)

nnhc 1/8

v2 1.3× 10−6 1300 nM

v5 10−8 10 nM

v7 10−8 10 nM

v8 10−9 1 nM

v9 10−7 0.1 μM

v10 1.7× 10−7 170 nM

v11 10−8 0.01 μM

(continued)
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Table 4 (continued)

Parameter Value Description

vf 2.4× 10−9 2.4 nM ([TFPI])

n5 3× 103 Number of factor V molecules released per platelet

np10 2700 Number of factor X binding sites per platelet

np5 5000 Number of factor V binding sites per platelet

np8 450 Number of factor VIII binding sites per platelet

np9 250 Number of factor IX binding sites per platelet

np2 1000 Number of thrombin binding sites per platelet

np11 1500 Number of inactive factor XI binding sites per platelet

np111 250 Number of active factor XI binding sites per platelet

s2 p · np2 Total number of binding sites for thrombin

s5 np5 · p Total number of binding sites for factor V

s7 tf scale · 10−8/nh Volume conversion actor for [T F ]
s8 p · np8 Total number of binding sites for factor VIII

s9 p · np9 Total number of binding sites for factor IX

s10 p · np10 Total number of binding sites for factor X

s11 p · np11 Total number of binding sites for inactive factor XI

s111 p · np111 Total number of binding sites for active factor XI

sT M 5× 10−7 Thrombomodulin concentration

vpc 6.5× 10−8 Concentration of protein C

ndFg 8.95× 10−6 8945.5 nM

ndPg 2.15× 10−6 2154.3 nM

Values taken from DePillis et al. [4], Elizondo et al. [6], Fogelson et al. [10], Wajima et al. [26]
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Initial Conditions

See Table 5.

Table 5 Modified list of concentration scalings and nondimensional initial values used for all
variables

Nondimensional

Variable(s) Scaling Units Initial Value(s)

z7, e7, [Z7 : E2], [Z7 : E10], [Z7 : E9] v7 M 1, 0.01, 0, 0, 0

zm
7 , em

7 , [T FPI : E10 : Em
7 ], [Z9 : Em

7 ] s7 mol/μm2 0, 0, 0, 0

[Zm
7 : Em

10], [Zm
7 : Em

2 ], [Z10 : Em
7 ] s7 mol/μm2 0, 0, 0

z10, e10, e
ec
10 v10 M 1, 0, 0

zm
10, e

m
10, [Zm

5 : Em
10] s10 mol/μm2 0 ,0, 0

z5, e5, [Z5 : E2], [APC : e5] v5 M 1, 0, 0, 0

zm
5 , em

5 , [PRO] s5 mol/μm2 0, 0, 0

z8, e8, [Z8 : E2], [APC : e8] v8 M 1, 0, 0, 0

zm
8 , em

8 , [T EN ], [Zm
10 : T EN ] s8 mol/μm2 0, 0, 0, 0

[Zm
8 : Em

10], [Zm
8 : Em

2 ], [APC : Em
8 ] s8 mol/μm2 0, 0, 0

[T EN∗], [Zm
10 : T EN∗] s8 mol/μm2 0, 0

z9, e9, e
ec
9 , [Z9 : E11], [Z9 : Eh

11] v9 M 1, 0, 0, 0, 0

zm
9 , em

9 , em∗
9 , [Zm

9 : Em∗
11 ], [Zm

9 : Eh,m
11 ] s9 mol/μm2 0, 0, 0, 0, 0

z2, e2, [APC] v2 M 1, 0, 0

zm
2 , em

2 , [Zm
5 : Em

5 ] s2 mol/μm2 0, 0, 0

[P e
a ] ps count/μm2 0

[P m
u ], [P m

a ], [P l
a], [P b

a ] p count/L 1, 0, 0

[Le
a] ls count/μm2 0

[Lm
u ], [Lp

a ], [NET ] leuk count/L 0, 0

[T FPI ], [T FPI : E10] vf M 1, 0

[Zm
2 : PRO], [APC : Em

5 ] s5 mol/μm2 0, 0

[T M : e2], [T M : e2 : APC] sT M mol/μm2 0, 0

z11, e11, e
h
11, e

h,m
11 , [Z11 : E2], [Eh

11 : E2] v11 M 1, 0, 0, 0, 0, 0

zm
11, [Z11 : Em

2 ] s11 mol/μm2 0, 0

[Eh,m∗
11 : Em

2 ] s111 mol/μm2 0

z
up
i vi M 1

[Fg], [F ] ndFg M 1, 0

[Pg], [P ] ndPg M 1, 0

W 1 # Varied

Unless highlighted, these values are taken from DePillis et al. [4], Fogelson et al. [10], and Wajima
et al. [26]
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Trigonometric-Type Functions Derived
from Polygons Inscribed in the Unit
Circle

Torina Lewis

Abstract Given a polygon inscribed inside of a circle with vertices satisfying
the equation zN = 1, we introduce a new class of periodic functions called the
“geometric polygon functions.” Methodology used to construct and analyze the
classical circular and elliptic functions is essential for defining the cosine polygon,
sine polygon, and dine polygon functions, called the “geometric polygon functions.”
Dividing N into two sub-cases, odd values and even values, allows mutually
exclusive sets. Focusing on even values of N , the square functions are introduced
as the smallest most significant case within this sub-case. The square functions
provide the building blocks for larger even values of N for which additional analysis
is presented. The goals of this research are to introduce the “geometric polygon
functions” and compute the Fourier series expansion of the square functions. These
findings can be manipulated to prove results in matroid theory. In particular, the
construct of the “geometric polygon functions” are representations of graphs whose
bicircular matroids have well controlled circuit spectra.

1 Introduction

A function f defined on a set D ⊂ R is called periodic if there exists a constant
T > 0 for which f (x + T ) = f (x) for all x in D and for some real number
T �= 0. Such a constant T is called the period of the function f . We assert that
the period will always be positive. The fundamental period is the smallest positive
period of f if such a period exists [1, 2]. Continuous effort has been spent on
the development and application of periodic functions, for their critical role in
modeling physical phenomena through applications and connections to an array of
mathematics and science. Many applications of periodic functions and solutions,
such as bloodstain pattern analysis in forensic science [3], predator–prey models
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in mathematical biology [4, 5], and blood pressure analysis and glucose–insulin
interaction in medicine [6, 7], have been useful.

Trigonometric functions, also called circular functions are the first examples of
periodic functions in formal educational studies. Let us suppose that θ is an angle
in standard position, (x, y) is a point on the terminal side of θ which lies on a circle
with Cartesian equation x2 + y2 = r2 , and r is the radius of the circle. Then
the traditional circular functions as defined in trigonometry are cos(θ) = x

r
and

sin(θ) = y
r

. However, a third function, the dine function, is also derived from the
circle. This function is defined as din(θ) = r [8]. The dine function is typically
omitted from trigonometry courses because the radius of a circle is constant. Hence,
the dine function on a circle is a constant function and plots a horizontal line. In
the next section, the elliptic functions are discussed and the dine function reappears.
Unlike the circle, the ellipse has two radius measures, one horizontally along the
x-axis, and the other vertically along the y-axis. The elliptic dine function is not
constant. Thus the dine function is realized and more significant in the discussion
concerning elliptic functions.

2 Periodic Functions Associated with an Ellipse

The elliptical trigonometric unit is an ellipse centered at the origin with radii a and
b, and has the equation of the form,

(x

a

)2 +
(y

b

)2 = 1. (1)

Here, the y-intercept is normalized to b = 1 and the x-intercept a > 1, so that the
eccentricity or the modulus of the ellipse is defined as, k2 = 1− 1

a2 (Fig. 1).

Fig. 1 The elliptic cosine,
sine, and dine functions, see
Eqs. (2)–(4)
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Suppose θ is an angle in standard position, (x, y) is a point on the terminal side
of θ which lies on the normalized ellipse, and r is the distance from the origin to a
point (x, y) on the ellipse. Hence the elliptic cosine, “cn(θ),” elliptic sine, “sn(θ),”
and elliptic dine, “dn(θ),” functions are given by the following ratios [11–13]:

cn(θ) = x(θ)

a
, (2)

sn(θ) = y(θ), (3)

dn(θ) = r(θ)

a
. (4)

If radii a and b are equal, then Eq. (1) reduces to x2+y2 = r2. Thus the properties
for the circular functions hold, and the elliptic functions as written in Eqs. (2)–(4)
reduce to the equations,

cos(θ) = x

r
, sin(θ) = y

r
, din(θ) = r. (5)

On the normalized ellipse, the radii are not equal. Hence equation x2 + y2 = r2 is
replaced by the relation,

(x

a

)2 + y2 = 1. (6)

3 The “Geometric Polygon Functions”

For each positive integer N ≥ 3, the N th roots of unity satisfying the equation
zN = 1 have solutions zk = cos

( 2πk
N

) + isin
( 2πk

N

)
, where k is an integer. The

N solutions plotted in a complex plane correspond to the number of vertices of
a regular polygon inscribed in a circle centered at the origin with the Cartesian
equation x2 + y2 = 1. Each pair of adjacent vertices is equidistant apart with a
central angle that measures 2π

N
because the polygon is regular.

A regular polygon inscribed inside of a unit circle is a closed, simple, and convex
curve. Thus it gives rise to periodic curves. To give an explicit representation of these
curves in the plane, concepts in planar geometry, and motivation from the circular
and elliptic functions provide a foundation. An integration of theories facilitates the
derivation of the radius of a polygon inscribed inside of a unit circle. Let vi = (a, b)

be a vertex, and m be the slope between adjacent vertices vi and vi+1 on the outer
edge of a polygon inscribed inside of the unit circle, then

r ≡ b −ma

sin(θ)−m(cos(θ))
. (7)
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Given a construction of a regular polygon inscribed inside of a unit circle with
vertices satisfying the equation zN = 1, and the radius r , we define three associated
periodic functions, the cosine polygon, “CN(θ),” sine polygon, “SN(θ),” and dine
polygon, “DN(θ),” functions. The three functions are called the “geometric polygon
functions.” The definitions of these functions are written as,

CN(θ) ≡ r(θ)cos(θ), (8)

SN(θ) ≡ r(θ)sin(θ), (9)

DN(θ) ≡ r(θ), (10)

where N is the number of vertices on a regular polygon.
There are infinitely many regular polygons; therefore, the naming convention

used for the cosine polygon, sine polygon, and dine polygon functions is the
trigonometric function followed by the name of the polygon. For example, consider
the regular polygon with four sides and vertices satisfying the equation z4 = 1. We
call the explicit functions obtained, the cosine square, sine square, and dine square
functions, denoted by C4(θ ), S4(θ ), and D4(θ ), respectively. These functions are the
square functions.

The “geometric polygon functions” are a new class of periodic functions. While
we have generalized the Nth order, regular polygons inscribed inside of the unit
circle, details are presented regarding the case N = 4. The square functions are
periodic functions derived by Lewis [9] and Mickens [10] in separate works that
utilize contrasting methods. The graphical representation of the square functions
yields plots that are periodic. Radio and sound waves are modeled by periodic
curves. Decomposing waves using Fourier series have been extensively studied and
shown to affect signal transmission. The main theorem shows the computation while
decomposing the square functions into a sum of sine waves.

4 Geometric Features for N = Odd and N = Even

The construction of the “geometric polygon functions” follows techniques used to
establish the circular and elliptic functions and the methods are transferable for
each value of N . Before performing a deeper analysis of the “geometric polygon
functions,” N is subdivided into two fundamental cases having some similar
properties, but a unique difference that guarantees distinction between cases. The
two cases explored consider whether N is odd or even.
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4.1 The Triangle Functions and Odd N

The triangle functions derived by inscribing a triangle into a unit circle possess a
challenge that is absent from square functions or more generally, functions with
even N values. When the triangle functions are constructed, the triangle is invariant
only about the x-axis. Thus the triangle functions and furthermore all “geometric
polygon functions” with odd values of N require more attentive methods because
each symmetry transformation is not present. We expect that the methods used for
analyzing the triangle functions will be similar for any odd value N because of the
existing consistent symmetry property among the functions.

4.2 The Square Functions and Even N

The square functions are explicitly defined by inscribing a square inside of a unit
circle (see Fig. 2) with vertices satisfying z4 = 1, and manipulation of the equation,

| x | + | y |= 1 (11)

using trigonometric properties. This construction gives the square functions; the
core case when N is even. Note that the independent variable is the angle θ . Further,
the square functions are periodic functions of θ , with the following indicated
periods:

Fig. 2 The construction of
D4
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C4(θ + 2π) = C4(θ), S4(θ + 2π) = S4(θ), and D4

(
θ + π

2

)
= D4(θ). (12)

One point of significance is that the three systems, circular, elliptic, and square,
satisfy the following symmetry transformations:

T1 : x →−x , y → y, (13)

T2 : x → x , y →−y, (14)

T3 = T1T2 = T2T1 : x →−x , y →−y. (15)

All “geometric polygon functions” with even N values are symmetric as described
in Eqs. (13), (14), and (15). Thus solutions on the interval 0 < θ ≤ 2π are
determined from solutions found in the first quadrant by the application of shift
and reflection properties in trigonometry [13]. The “geometric polygon functions”
with an even number of vertices have similar properties, and an analogous approach
is used to investigate the functions. As a result of our approach, knowledge is
discovered regarding the “geometric polygon functions” with larger even N values.

5 The Fourier Series Expansion of the Square Functions

Since N = 4 is the smallest most interesting even case, it is examined in more detail.
In particular, we show by explicit calculation the Fourier coefficients for the square
functions.

Let f be a piecewise continuous function on [−l, l]. Then the Fourier expansion
of f is the expression,

a0

2
+

∞∑
k=1

(
akcos

(πkx

l

)
+ bksin

(πkx

l

))
, (16)

where the coefficients ak and bk in the series defined by

ak = 1

l

∫ l

−l

f (x)cos
(πkx

l

)
dx (k = 0, 1, 2, . . .), (17)

bk = 1

l

∫ l

−l

f (x)sin
(πkx

l

)
dx (k = 1, 2, . . .) (18)

are called the Fourier coefficients of f [2, 14].
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5.1 Preliminary Information

To prove the main theorem of this work, we introduce the following result. This
result is derived from unpublished work completed by Ronald E. Mickens and is
essential for computing the Fourier coefficients for the square functions.

Lemma 1 Let m ∈ N, θ ∈ R, and θ �= π
2 , 3π

2 , then

1

cos(θ)
= 2

∞∑
m=0

(−)mcos[(2m+ 1)θ ]. (19)

Solution This result is obtained by straightforward calculation. Let us begin with
the equation,

1 = 1. (20)

By adding and subtracting cosine functions, we write the following equation:

1 = 1+ cos2θ − cos2θ + cos4θ − cos4θ + cos6θ − cos6θ + · · · . (21)

Rewriting the equation using a particular grouping of the functions, the equation is
acquired,

1 = (1+ cos2θ)− (cos2θ + cos4θ)+ (cos4θ + cos6θ)+ · · ·
+(−)m[cos (2mθ)+ cos[2(m+ 1)θ ]. (22)

Using trigonometric properties, the previous equation simplifies to

1 = 2cosθ cosθ − 2cosθ cos3θ + 2cosθ cos5θ + · · ·
+2(−)mcosθ cos[(2m+ 1)θ ]. (23)

Factoring 2 cos θ from each term and dividing by cosθ gives the equation,

1

cosθ
= 2[cosθ − cos3θ + cos5θ + . . .+ (−)mcos[(2m+ 1)θ ]]. (24)

Therefore the desired result is obtained,

1

cos(θ)
= 2

∞∑
m=0

(−)mcos[(2m+ 1)θ ]. (25)


�



284 T. Lewis

5.2 The Fourier Coefficients for D4

The dine square function is represented in the definitions of the cosine and sine
square functions. Therefore, we determine the Fourier coefficients for the dine
square function which enables us to write a Fourier series expansion of the square
functions. It is indeed worthwhile to note that the coefficients bk are zero due to the
orthogonality condition.

Theorem 1 In the first quadrant, 0 < θ < π
2 , suppose that D4 = r(θ) =

1
cos(θ)+sin(θ)

is a piecewise periodic function such that D4(θ) = D4

(
θ + π

2

)
. Then

D4 has a Fourier series expansion of the form,

D4(θ) = a0

2
+

∞∑
k=1

( ∞∑
m=0

(−)m(−)k
(4
√

2

π

)[ sin[(4k + 2m+ 1)π
4 ]

4k + 2m+ 1

+ sin[(4k − 2m− 1)π
4 ]

4k − 2m− 1

])
cos(4kθ). (26)

Proof Since D4(θ) is periodic with period T = π
2 , then l = π

4 . Hence cos
(

kπθ
π
4

)
=

cos(4kθ) and its Fourier coefficients are given by the equation,

ak =
( 4

π

) ∫ π
4

−π
4

D4(θ) cos(4kθ) dθ. (27)

By symmetry, the equation reduces to

ak =
( 4

π

)
(2)

∫ π
4

0
D4(θ) cos(4kθ) dθ. (28)

Substituting D4 = 1
sin(θ)+cos(θ)

leads to

ak =
( 8

π

) ∫ π
4

0

cos(4kθ)

sin(θ)+ cos(θ)
dθ. (29)

Let y = π
4 , then cos(y) = sin(y) = 1√

2
. The use of a trigonometric relation

determines sin(θ)+ cos(θ) =√2cos(θ − π
4 ) and we get

ak =
(4
√

2

π

) ∫ π
4

0

cos(4kθ)

cos(θ − π
4 )

dθ. (30)

A � transformation, � = θ− π
4 , gives d� = dθ . This transformation and a change

of integration limits are reflected in the following equation:
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ak =
(4
√

2

π

) ∫ 0

− π
4

cos(4k� + kπ)

cos(�)
d�. (31)

Using a Ptolemy’s identity, we find cos(4k� + kπ) = (−)kcos(4k�). Thus the
series becomes

ak = (−)k
(4
√

2

π

) ∫ 0

− π
4

cos(4k�)

cos(�)
d�. (32)

Let � = −φ. Hence d� = −dφ. Making the substitutions and simplifying the
equation gives

ak = (−)k
(4
√

2

π

) ∫ π
4

0

cos(4kφ)

cos(φ)
dφ. (33)

By applying the result from Lemma 1,

1

cos(φ)
= 2

∞∑
m=0

(−)mcos[(2m+ 1)φ], (34)

to (33) we obtain,

ak = (−)k
(8
√

2

π

) ∞∑
m=0

(−)m
∫ π

4

0
cos(4kφ)cos[(2m+ 1)φ]dφ. (35)

A product-to-sum trigonometric identity and simplification transform the integrand
cos(4kφ)cos[(2m+ 1)φ] into

ak = (−)k
(4
√

2

π

) ∞∑
m=0

(−)m
∫ π

4

0
(cos[(4k + 2m+ 1)φ] + cos[(4k − 2m− 1)φ])dφ.

(36)

Using the substitution method for integration, we evaluate the integral and hence
receive the related coefficients,

ak = (−)k
(4
√

2

π

) ∞∑
m=0

(−)m
[
sin[(4k + 2m+ 1)π

4 ]
4k + 2m+ 1

+ sin[(4k − 2m− 1)π
4 ]

4k − 2m− 1

]
.

(37)
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Therefore, the Fourier coefficients of the dine square function on the interval
0 < θ < π

2 are

D4 = a0

2
+

∞∑
k=1

ak cos(4kθ). (38)


�

5.3 Fourier Coefficients for C4(θ) and S4(θ)

In Sect. 5.2, the Fourier coefficients for the dine square function were determined.
Now the Fourier series expansion is introduced for the square functions. First, let us
recall the definitions of the square functions,

C4(θ) ≡ cos(θ)D4(θ),

S4(θ) ≡ sin(θ)D4(θ),

D4(θ) ≡ r(θ).

These definitions and results from Sect. 3 are used to write the Fourier series
expansion for C4 and S4. The expansions are as follows:

C4 =
(a0

2

)
cos(θ)+

(a1

2

)
(cos3θ + cos5θ)+

(a2

2

)
(cos7θ + cos9θ)+ · · ·

+
(ak

2

)[
cos[(4k − 1)θ ] + cos[(4k + 1)θ ]

]
, (39)

S4 =
(a0

2

)
sin(θ)+

(a1

2

)
(−sin3θ + sin5θ)+

(a2

2

)
(−sin7θ + cos9θ)+ · · ·

+
(ak

2

)[
− sin[(4k − 1)θ ] + sin[(4k + 1)θ ]

]
. (40)

6 Discussion

In this work, a new class of periodic functions is introduced, the “geometric polygon
functions.” Methods involving the circular and elliptic functions are used to give
explicit definitions for the “geometric polygon functions.” The “geometric polygon
functions” are constructed by inscribing a regular polygon with N vertices satisfying
the equation zN = 1 inside of a unit circle. Subdividing the vertex set N into two
fundamental cases, (1) N is odd and (2) N is even, allows information extraction
from an analysis of the triangle and square functions. However, additional results
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center on the case where N is even. Consistent symmetry transformations among the
“geometric polygon functions” with an even number of vertices allow investigation
of the smallest most significant case N = 4 (square functions). Hence we also
derive explicit analytic formulas for the Fourier coefficients of the square functions
and show their related Fourier series expansion.

The construction of the “geometric polygon functions” provokes future questions
in the area of matroid theory as the graphs of the functions represent bicircular
matroids. An article published by Lewis et al. [15] investigates when bicircu-
lar matroids have circuit spectra of one or two. While the “geometric polygon
functions” have larger circuit spectra, the bicycles have very controlled sizes.
Relating the graphs generated by the “geometric polygon functions” to current
theoretical results involving bicircular matroids can lead to theoretical expansion
and development of conjectures in matroid theory.
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An Extension of Wolfram’s Rule 90
for One-Dimensional Cellular Automata
over Non-Abelian Group Alphabets

Erin Craig and Eirini Poimenidou

Abstract We study one-dimensional cellular automata with local update rule
defined by an extension of Wolfram’s Rule 90 over non-abelian group alphabets.
In particular we develop necessary and sufficient conditions for a state in such an
automaton to have a predecessor. We apply our results to compute the fraction of
states that are reachable through evolution of an automaton over a finite dihedral
group.

1 Introduction

In the study of cellular automata, one is interested in predicting the long term
behavior of an automaton based on its local update rules. In the classical case of
additive cellular automata, one relies heavily on the fact that an update rule can be
thought of as a group homomorphism in the following sense: Given a finite cellular
automaton of length W with periodic boundary conditions over an abelian group G,
we may think of a particular state of the automaton S = (d0, . . . , dW−1) with di ∈ G

as an element of G×G× · · · ×G = GW and the update rule as a homomorphism
φ : GW → GW . Rule 90 is then given as follows: let S = (d0, . . . , dW−1) be a state
over (Z/2Z)W , and define

φ : (Z/2Z)W → (Z/2Z)W

φ(S) = ((dW−1 + d1) mod 2, (d0 + d2) mod 2, . . . , (dW−2 + d0) mod 2).

We wish to consider an extension of Rule 90 over a non-abelian group, G. Letting
S = (d0, . . . , dW−1) be a state in GW , we study the following update rule:
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φ : GW → GW

φ(S) = (dW−1d1, d0d2, d1d3, d2d4, . . . , dW−2d0).

It is clear that, because the dis do not necessarily commute, φ is not in general a
homomorphism. As a result, we cannot apply the techniques that have been used in
the past, see [1] or [2]. In our study of cellular automata, we develop new techniques
to study the behavior of cellular automata over non-abelian groups. In particular, we
study the fraction of states in a cellular automaton that have predecessors, that is, we
study the fraction of states that are reachable through evolution of the automaton.
Our strategy is to develop the necessary and sufficient conditions for a state to have a
predecessor. We show that, given a state S = (d0, . . . , dW−1) and at most two entries
from its predecessor state S′, namely c0 and c1, for ci and di in a multiplicative group
G, we can obtain all entries in S′. We will then show that there are requirements on
c0 and c1 depending on the entries of S. Hence, given S, we can determine properties
that c0 and c1 must have, and given c0 and c1, we can determine S′ in its entirety. If
no such c0 or c1 exists, then S cannot have a predecessor state and so is unreachable
through evolution.

Our main object of study is a one-dimensional finite cellular automaton with
periodic boundary conditions over a multiplicative non-abelian group, G. As neces-
sary throughout the paper, we will understand the automaton as being on a length
W (discrete) circle or as being periodic on the entire discrete line with period W . As
such, given a state S′ = (c0, . . . , cW−1) and its successor, S = (d0, . . . , dW−1),
we may write our local update rule as di+1 mod W = ci mod Wci+2 mod W for all
i ∈ Z. This is the rule which will be studied throughout the paper unless otherwise
specified.

2 Cells Determined by Their Successors

This section is motivated by the desire to write the entries of a state in terms of the
entries in its successor state. This can be thought of as an attempt to move backwards
one time step in the evolution of the automaton defined.

Let S = (d0, . . . , dW−1) be a state in the automaton and suppose that its
predecessor, S′ = (c0, . . . , cW−1), exists. Then, given our choice of update rule,
we can write

caca+2 = da+1 ⇒ ca+2 = c−1
a da+1

and

ca+2ca+4 = da+3 ⇒ ca+4 = c−1
a+2da+3.
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d0 d1 d2 d3 d4 d5

c0 c2

d0 d1 d2 d3 d4 d5

c0 c2 c0 1d1 c4

d0 d1 d2 d3 d4 d5

c0 c2 c0 1d1 c4 d1 1c0d3

d0 d1 d2 d3 d4 d5

c2 c0 1d1 c4 d1 1c0d3c0 d0 1d3 1c0 1d1d5

Fig. 1 Given ci from a predecessor state, and its successor state (d0, d1, . . . , d5), we use our
update rule to find an equation for c0, which, once solved, can help us find c2 and c4. In this case,
we note that we have no information about c1, c3, and c5; however, we could write an equation for
c1 as we have done for c0

d0 d1 d2 d3 d4

c0 c2

d0 d1 d2 d3 d4

c0 c2 c0 1d1 c4

d0 d1 d2 d3 d4

c0 c1 c2 c0 1d1 c4 d1 1c0d3

d0 d1 d2 d3 d4

c0 c2 c0 1d1 c4 d1 1c0d3c1 d3 1c0 1d1d0 c3

d0 d1 d2 d3 d4

c0 c2 c0 1d1 c4 d1 1c0d3c1 d3 1c0 1d1d0 c3 d0 1d1 1c0d3d2

d0 d1 d2 d3 d4

c2 c0 1d1 c4 d1 1c0d3c1 d3 1c0 1d1d0 c3 d0 1d1 1c0d3d2c0 d2 1d3 1c0 1d1d0d4

Fig. 2 Given ci from a predecessor state, and its successor state (d0, d1, . . . , d4), we use our
update rule to write an equation for c0. In this case, we have information about all of the elements
of the predecessor state

Combining the two, we have ca+4 = d−1
a+1cada+3. In this way, we are able to write

c(a+2j) mod W in terms of c±1
a and the entries in S for any j ∈ N. This is illustrated

in Figs. 1 and 2.
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In Lemmas 1 and 2, we will explicitly describe this property. To prove these
lemmas, we will consider the automaton on a length W (discrete) circle as an
automaton on the entire discrete line which is periodic with period W .

Lemma 1 Let ci , di ∈ G, a multiplicative group, and let S = (. . . , dj , dj+1, . . .)

and S′ = (. . . , cj , cj+1, . . .) be states defined on the entire discrete line in the
automaton given, such that S′ evolves to S in one time step under the update rule
defined. Then, for a ∈ Z and j ∈ N such that j odd and j ≥ 3,

P(j) : ca+2j =
⎛
⎜⎝

j−1
2 −1∏
l=0

d−1
a+2j−3−4l

⎞
⎟⎠ c−1

a

⎛
⎜⎝

j+1
2 −1∏
l=0

da+1+4l

⎞
⎟⎠ . (1.1)

Proof We will use induction on j to prove the result. Without loss of generality, we
prove only the case when a = 0 and we note that adding ±a to every index shifts
each entry a cells to the right or left and does not change the proof. Let S′ and S be
as given in the statement of the lemma. To see that P(3) is true, we apply the update
rule to S′:

c0c2 = d1 ⇒ c2 = c−1
0 d1

c2c4 = d3 ⇒ c4 = c−1
2 d3 = d−1

1 c0d3

c4c6 = d5 ⇒ c6 = c−1
4 d5 = d−1

3 c−1
0 d1d5.

And so P(3) is true. Suppose now that P(k) is true for k odd. Then,

c2kc2(k+1) = d2k+1 ⇒ c2(k+1) = c−1
2k d2k+1

c2(k+1)c2(k+2) = d2k+3 ⇒ c2(k+2) = c−1
2(k+1)d2k+3 = d−1

2k+1c2kd2k+3.

By the inductive hypothesis,

c2(k+2) = d−1
2k+1

⎛
⎜⎝

k−1
2 −1∏
l=0

d−1
2k−3−4l

⎞
⎟⎠ c−1

0

⎛
⎜⎝

k+1
2 −1∏
l=0

d1+4l

⎞
⎟⎠ d2k+3

= d−1
2(k+2)−3

⎛
⎜⎝

k+1
2 −2∏
l=0

d−1
2(k+2)−3−4l

⎞
⎟⎠ c−1

0

⎛
⎜⎝

k+1
2 −1∏
l=0

d1+4l

⎞
⎟⎠ d

1+4
(

k+3
2 −1

)

=
⎛
⎜⎝

(k+2)−1
2 −1∏
l=0

d−1
2k−3−4l

⎞
⎟⎠ c−1

0

⎛
⎜⎝

(k+2)+1
2 −1∏
l=0

d1+4l

⎞
⎟⎠ .



Automata Over Non-Abelian Groups 293

Hence, P(3) is true and P(k) ⇒ P(k + 2) so P(j) is true for all j ∈ N, j odd, and
j ≥ 3.

A nearly identical proof gives the following lemma.

Lemma 2 Let ci , di ∈ G, a multiplicative group, and let S = (. . . , dj , dj+1, . . .)

and S′ = (. . . , cj , cj+1, . . .) be states defined on the entire discrete line in the
automaton given, such that S′ evolves to S in one time step under the update rule
defined. Then, for a ∈ Z and j ∈ N such that j even and j ≥ 2,

P(j) : ca+2j =
⎛
⎜⎝

j
2−1∏
l=0

d−1
a+2j−3−4l

⎞
⎟⎠ ca

⎛
⎜⎝

j
2−1∏
l=0

da+3+4l

⎞
⎟⎠ . (1.2)

Recalling that for j ∈ N,

⌊
j

2

⌋
=
{

j−1
2 j odd

j
2 j even

⌈
j

2

⌉
=
{

j+1
2 j odd

j
2 j even

we combine Lemmas 1 and 2 to prove the following theorem.

Theorem 1 Let ci , di ∈ G, a multiplicative group, and let S = (. . . , dj , dj+1, . . .)

and S′ = (. . . , cj , cj+1, . . .) be states defined on the entire discrete line. Then S′
evolves to S in one time step iff for all a ∈ Z and j ∈ N (j ≥ 2),

P(j) : ca+2j =
⎛
⎜⎝
� j

2 �−1∏
l=0

d−1
a−3+2j−4l

⎞
⎟⎠ c(−1)j

a

⎛
⎜⎝
� j

2 �−1∏
l=0

da+1+2(j+1 mod 2)+4l

⎞
⎟⎠ .

Proof We can see that S′ evolves to S in one time step using Lemmas 1
and 2. Conversely, suppose that P(j) is always satisfied. We want to show that
ca+2kca+2(k+1) = da+2k+1. Without loss of generality, we will choose a = 0 and
suppose that k is even. Then

c2k =
⎛
⎜⎝

k
2−1∏
l=0

d−1
2k−3−4l

⎞
⎟⎠ c0

⎛
⎜⎝

k
2−1∏
l=0

d3+4l

⎞
⎟⎠ ,
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and

c2(k+1) =
⎛
⎜⎝

k
2−1∏
l=0

d−1
2(k+1)−3−4l

⎞
⎟⎠ c−1

0

⎛
⎜⎝

k+2
2 −1∏
l=0

d1+4l

⎞
⎟⎠ .

So,

c2kc2(k+1) =
⎛
⎜⎝

k
2−1∏
l=0

d−1
2k−3−4l

⎞
⎟⎠ c0

⎛
⎜⎝

k
2−1∏
l=0

d3+4l

⎞
⎟⎠
⎛
⎜⎝

k
2−1∏
l=0

d−1
2(k+1)−3−4l

⎞
⎟⎠ c−1

0

⎛
⎜⎝

k+2
2 −1∏
l=0

d1+4l

⎞
⎟⎠ .

We will show first that

⎛
⎜⎝

k
2−1∏
l=0

d3+4l

⎞
⎟⎠ =

⎛
⎜⎝

k
2−1∏
l=0

d−1
2(k+1)−3−4l

⎞
⎟⎠
−1

,

by showing that their product is equal to 1

⎛
⎜⎝

k
2−1∏
l=0

d3+4l

⎞
⎟⎠
⎛
⎜⎝

k
2−1∏
l=0

d−1
2(k+1)−3−4l

⎞
⎟⎠ =

(
d3d7 . . . d

3+4
(

k
2−1
)
)

×
(

d−1
2(k+1)−3d

−1
2(k+1)−7 . . . d−1

2(k+1)−3−4
(

k
2−1
)
)

= (d3d7 . . . d2k−1)
(
d−1

2k−1d
−1
2k−5 . . . d−1

3

)

= 1

as desired. It remains to show that
⎛
⎜⎝

k
2−1∏
l=0

d−1
2k−3−4l

⎞
⎟⎠
⎛
⎜⎝

k+2
2 −1∏
l=0

d1+4l

⎞
⎟⎠ = d2k+1.

We expand the products and compute to find

⎛
⎜⎝

k
2−1∏
l=0

d−1
2k−3−4l

⎞
⎟⎠
⎛
⎜⎝

k+2
2 −1∏
l=0

d1+4l

⎞
⎟⎠ =

(
d−1

2k−3 . . . d−1

2k−3−4
(

k
2−2
)d−1

2k−3−4
(

k
2−1
)
)

×
(

d1d5 . . . d
1+4
(

k+2
2 −2

)d
1+4
(

k+2
2 −1

)
)
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=
(
d−1

2k−3 . . . d−1
5 d−1

1

)
(d1d5 . . . d2k−3d2k+1)

= d2k+1

as desired. This completes the proof.

Knowing now how to describe specific entries in a state using entries from its
successor state, we move forward to describe an entire state in terms of its successor.

3 States Determined by Their Successors

As before, let S′ = (c0, . . . , cW−1) evolve to S = (d0, . . . , dW−1) in one time step.
The value of Theorem 1 lies in the fact that it allows us to write ca+2j in terms only
of ca and the entries in the successor state, S. Taking the indices of the elements
of S and S′ modulo W , we note that, when j = W or 2j = W , we can write
ca nontrivially in terms of itself and the entries of S. Assuming the entries of S

are known and ca is unknown, then Theorem 1 gives a formula for ca . If it can be
solved, then ca and every entry of S′ indexed by a + 2k for k ∈ N exist. If not, then
there is no solution for ca or any entry of S′ indexed by a + 2k for k ∈ N. Hence,
for W odd, the existence of ca guarantees the existence of every element of S′. For
W even, the existence of ca guarantees only the existence of the elements of S′ that
have the same parity as a. This property is illustrated in Figs. 1 and 2. Below, we
take a closer look at the case when W = 6.

Example 1 W = 6, a = 0

c0c2 = d1 ⇒ c2 = c−1
0 d1

c2c4 = d3 ⇒ c4 = c−1
2 d3 = d−1

1 c0d3

c4c0 = d5 ⇒ c0 = c−1
4 d5 = d−1

3 c−1
0 d1d5.

As before, we take the indices in Theorem 1 modulo W = 6. In this example, we
see that c0 can only describe c0, c2, and c4, and the only elements from S necessary
to do so are d1, d3, and d5. To describe c1, c3, and c5, we proceed as before

c1c3 = d2 ⇒ c3 = c−1
1 d2

c3c5 = d4 ⇒ c5 = c−1
3 d4 = d−1

2 c1d4

c5c1 = d0 ⇒ c1 = c−1
5 d0 = d−1

4 c−1
1 d2d0.

Similarly, c1 can only describe c1, c3, and c5, and the only elements from S

necessary to do so are d0, d2, and d4.
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The example above motivates the development of notation to discuss which
elements from S are needed to describe the elements of S′. We note that S′ =
(c0, . . . , c5) can be understood as two sub-states, S′0 = (c0, c2, c4) and S′1 =
(c1, c3, c5), that evolve independent of each other and we can define S0 =
(d1, d3, d5) and S1 = (d0, d2, d4) to correspond accordingly.1 With a slight abuse
of terminology, we will refer to the two independently evolving sub-states that arise
when the automaton has even length, as “states ”. We define a reduced state as
follows.

Definition 1 A reduced state, Ta , is a state such that its predecessor state, T ′a , if it
exists, can be completely generated by the elements of Ta and the ath entry of T ′a .

Definition 2 A reduced predecessor state, T ′a , is a state whose successor state, Ta

is a reduced state.

For simplicity, we will always take a = 0. For automata of odd length, all
states are reduced: as noted, their predecessor states can be generated completely
by the entries of the state itself and c0. For automata of even length, a state S =
(d0, . . . , dW−1) is a combination of two reduced states, S0 = (d1, d3, . . . , dW−1)

with reduced predecessor S′0 = (c0, c2, . . . , cW−2) and S1 = (d0, d2, . . . , dW−2)

with reduced predecessor S′1 = (c1, c3, . . . , cW−1).

Example 2 Let G = D6 = 〈r, s | r3 = s2 = 1, srs = r2〉, and let S′ = (s, rs, r, r)

be a state in the automaton defined such that

S′ = (s, rs, r, r) → (r2s, r2s, s, rs) = S.

The corresponding reduced states are as follows: S′0 = (s, r), with S0 = (r2s, rs),
and S′1 = (rs, r), with S1 = (r2s, s).

4 Summary

The notation developed in Sects. 2 and 3 gives us a way to understand a state of the
automaton defined in terms only of one of its entries and the entries of its successor.
Corollaries 1, 2, and 3 describe when a state has a predecessor using the work and
notation developed in Sects. 2 and 3.

1It is important to mention that S′0 evolves to S0 under the update rule which maps

(c0, c1, c2) → (c0c1, c1c2, c2c0).

Hence, the study of automata with even length, W, under the original update rule corresponds to
study of automata of length W

2 under the update rule written above. Corresponding results are
inherent within the paper. While we note this here, we do not discuss it again explicitly.
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Corollary 1 Let W ∈ N such that 2� |W . Let S = (d0, . . . , dW−1) be a state in
the automaton defined over a multiplicative group, G. Then S has a predecessor
S′ = (c0, . . . , cW−1) iff there exists c0 ∈ G satisfying

c0

⎛
⎜⎝

W−1
2 −1∏
k=0

d(3+4k) mod W

⎞
⎟⎠ c0 =

W+1
2 −1∏
k=0

d(1+4k) mod W . (1.3)

Proof For this proof, we will understand S and S′ as states in the automaton defined
on the entire discrete line that are periodic with period W . For simplicity, we will
write the states as having length W .

Suppose first that S has a predecessor S′ = (c0, . . . , cW−1). Then, by application
of Lemma 1 for j = W , we see that c0 satisfies Eq. (1.3).

Conversely, suppose that there exists c0 ∈ G satisfying Eq. (1.3) and let S =
(d0, . . . , dW−1). Construct S′ = (c0, . . . , cW−1) such that ci mod Wci+2 mod W =
di+1 mod W using the following method:

c0c2 = d1 ⇒ c2 = c−1
0 d1

c2c4 = d3 ⇒ c4 = d−1
1 c0d3

...

cW−1c1 = d0 ⇒ c1 = c−1
W−1d0

...

and so on. Because we have already chosen c0, we can work this way only until
cW−2c0 = dW−1 ⇒ c0 = cW−2dW−1. All that remains is to show that the c0
chosen satisfies c0 = cW−2dW−1. To do so, we will show that cW−2c0 = dW−1. We
rewrite Eq. (1.3) to find

c0 =
⎛
⎜⎝

W−1
2 −1∏
k=0

d−1
(2W−3−4k) mod W

⎞
⎟⎠ c−1

0

⎛
⎜⎝

W+1
2 −1∏
k=0

d(1+4k) mod W

⎞
⎟⎠ .

By construction of c(W−2), we can use Lemma 2 to see that

c(W−2) = c2(W−1) mod W =
⎛
⎜⎝

W−1
2 −1∏
k=0

d−1
(2(W−1)−3−4k) mod W

⎞
⎟⎠ c0

⎛
⎜⎝

W−1
2 −1∏
k=0

d(3+4k) mod W

⎞
⎟⎠ .
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Hence,

cW−2c0 =
(
d−1

2W−5 . . . d−1
5 d−1

1 c0d3d7 . . . d2W−3

)

×
(
d−1

2W−3 . . . d−1
7 d−1

3 c−1
0 d1d5 . . . d2W−5d2W−1

)

=
(
d−1
W−5 . . . d−1

5 d−1
1 c0d3d7 . . . dW−3

)

×
(
d−1
W−3 . . . d−1

7 d−1
3 c−1

0 d1d5 . . . dW−5dW−1

)

= dW−1

as desired.

A similar proof reveals the following two corollaries.

Corollary 2 Let W ∈ N such that W = 2m and 2� |m. Let S = (d1, d3, . . . , dW−1)

be a reduced state in the automaton defined over a multiplicative group, G. Then S

has a predecessor S′ = (c0, c2, . . . , cW−2) iff there exists c0 ∈ G satisfying

c0

⎛
⎜⎝

m−1
2 −1∏
k=0

d(3+4k) mod W

⎞
⎟⎠ c0 =

m+1
2 −1∏
k=0

d(1+4k) mod W . (1.4)

We note here that, for a state of the form given in Corollary 2 to have a
predecessor, there must also exist a c1 ∈ G satisfying

c1

⎛
⎜⎝

m−1
2 −1∏
k=0

d(4+4k) mod W

⎞
⎟⎠ c1 =

m+1
2 −1∏
k=0

d(2+4k) mod W . (1.5)

This equation is in accordance with Theorem 1 for a = 1.

Corollary 3 Let W ∈ N such that W = 2m and 2 | m. Let S = (d1, d3, . . . , dW−1)

be a reduced state in the automaton defined over a multiplicative group, G. Then S

has a predecessor S′ = (c0, c2, . . . , cW−2) iff there exists c0 ∈ G satisfying

⎛
⎝

m
2 −1∏
k=0

d(1+4k) mod W

⎞
⎠ c0 = c0

⎛
⎝

m
2 −1∏
k=0

d(3+4k) mod W

⎞
⎠ . (1.6)

As in Corollary 2, a state of the form given in Corollary 3 has a predecessor if there
also exists a c1 ∈ G satisfying
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⎛
⎝

m
2 −1∏
k=0

d(2+4k) mod W

⎞
⎠ c1 = c1

⎛
⎝

m
2 −1∏
k=0

d(4+4k) mod W

⎞
⎠ . (1.7)

Again, this equation is in accordance with Theorem 1 for a = 1.

5 An Automaton Over the Dihedral Group

In this section, we study the automaton defined in Sects. 3 and 4 over the dihedral
group of order 2n generated by a rotation r and a flip s, namely D2n = 〈r, s |
rn = s2 = 1, srs = r−1〉. By writing solutions for the equations appearing in
Corollaries 1, 2, and 3 with entries from D2n, we describe the fraction of states that
have at least one predecessor.

We note here that the equations from Corollaries 1 and 2 have the same structure
and so we will study all reduced states of odd length concurrently. The equation
for a reduced state of even length seen in Corollary 3 will be treated separately.
However, to simplify all the aforementioned equations, we will use the following
property about the elements of D2n.

Lemma 3 Let D2n be generated by a rotation, r , and flip, s, such that rn = 1 = s2

and srs = r−1. Then for a ∈ Z/nZ and b ∈ Z/2Z,

sbra = r(a−2ab) mod nsb.

Proof Either b = 0 or b = 1. Suppose first that b = 0. Then ra = s0ra =
ra−2a(0)s0 = ra . If b = 1, then s1ra = r−a mod ns1 = ra−2a(1) mod ns1 as expected.

We proceed now to simplify Eqs. (1.3) and (1.4). It is important first to develop
notation that will be used throughout the paper.

Note 1 Throughout the paper, we use the following to define i1, i2, j1, and j2. For
a reduced state of odd width, W ,

ri1sj1 =
W−1

2 −1∏
k=0

d(3+4k) mod W

ri2sj2 =
W+1

2 −1∏
k=0

d(1+4k) mod W .
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When the state has even width, W = 2m such that 2� |m, we use

ri1sj1 =
m−1

2 −1∏
k=0

d(3+4k) mod W

ri2sj2 =
m+1

2 −1∏
k=0

d(1+4k) mod W .

Finally, when a state has width W = 2m such that 2 | m, we use

ri1sj1 =
m
2 −1∏
k=0

d(1+4k) mod W

ri2sj2 =
m
2 −1∏
k=0

d(3+4k) mod W .

Using notation from Note 1, we simplify Eqs. (1.3) and (1.4). We will write them
as

rxsyri1sj1rxsy = ri2sj2,

where c0 = rxsy . Using Lemma 3, we rewrite the above as

r(x+i1−2i1y) mod ns(j1+y) mod 2rxsy = ri2sj2

r(x+i1−2i1y+x−2x(j1+y mod 2)) mod ns(j1+2y) mod 2 = ri2sj2

r(x+i1−2i1y+x−2x(j1+y mod 2)) mod nsj1 mod 2 = ri2sj2

r(i1+2x−2x(j1+y mod 2)−2i1y) mod nsj1 mod 2 = ri2sj2 .

So, for a reduced state of odd length to have a corresponding reduced predecessor,
its elements must satisfy the requirement

j1 ≡ j2 mod 2. (1.8)

Additionally, there must exist a pair x ∈ Z/nZ and y ∈ Z/2Z satisfying

2x(1− (j1 + y mod 2))− 2i1y ≡ i2 − i1 mod n. (1.9)

We now repeat the above for a reduced state of even length. We write Eq. (1.6)
as
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ri1sj1rxsy = rxsyri2sj2 .

Again, c0 = rxsy . We use Lemma 3 to see that

ri1+x−2xj1 mod nsj1+y mod 2 = rx+i2−2i2y mod nsj2+y mod 2

r2i2y−2xj1 mod nsj1 = ri2−i1 mod nsj2 .

As before, for a reduced state S to have a corresponding reduced predecessor, its
elements must satisfy j1 ≡ j2 mod 2 (Eq. (1.8)). There must also exist a pair x ∈
Z/nZ and y ∈ Z/2Z satisfying

2i2y − 2xj1 ≡ i2 − i1 mod n. (1.10)

Examples illustrating the above calculations can be found in Sects. 6 of the paper.
Having addressed all cases, we begin to interpret these requirements with the goal

of stating the fraction of states that are reachable through evolution of the automaton
over D2n. For the reader’s convenience, we restate and rephrase Wolfram, Martin,
and Odlyzko’s theorem for the automaton over Z/2Z before stating our analogous
theorem for the automaton over D2n.

Theorem 2 (Theorem 3.1 in [2]) The fraction of the 2N possible configurations
of a size N cellular automaton defined [by the update rule given] which can be
reached by evolution is 1/2 for N odd and 1/4 for N even.

Theorem 3 The fraction of the (2n)W possible states of a size W cellular automa-
ton defined in Sect. 5 over the dihedral group of 2n elements which can be reached
through evolution of the automaton is given in the table below (Table 1).

Knowing now what requirements a reduced state must satisfy to have a prede-
cessor, we count the fraction of states that satisfy these requirements. Because both
the W odd and W even case require a state S to satisfy Eq. (1.8), we interpret
this requirement first. Some preliminary lemmas are needed before we can prove
Theorem 3.

Lemma 4 The product of 2k + 1 elements in D2n − 〈r〉 does not lie in 〈r〉.
Proof Let

φ : D2n → D2n/〈r〉

Table 1 Fraction of states
with predecessors in automata
of length W over finite
dihedral groups

n odd n even

W odd 1
2

1
4

W = 2m, m odd 1
4

1
16

W = 2m, m even (n(n+2)−1)2

16n4
(n(n+4)−4)2

64n4
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be the natural projection homomorphism so that φ(r) = 0 and φ(s) = 1. Define
{ai}2k+1

i=1 such that ai ∈ D2n − 〈r〉 for all i. Then

φ

( 2k+1∏
i=1

ai

)
= φ(a1)+ φ(a2)+ · · · + φ(a2k+1) = 1+ 1+ · · · + 1 = 1.

It follows that
∏2k+1

i=1 ai lies in D2n − 〈r〉.
Lemma 5 Let S = (d0, . . . , dW−1) be a reduced state. Then, using the notation
from Note 1, j1 = j2 iff S has an even number of terms that lie in D2n − 〈r〉.
Proof Suppose first that S is a reduced state and j1 = j2. Then using the notation
from Note 1, we consider the product of all elements of S as ri1sj1ri2sj2 . Using
Lemma 3, we write this product as ri1+i2−2i2j1 mod nsj1+j2 mod 2. Since j1 = j2, this
product lies in 〈r〉, and by Lemma 4, the product can be written only as products of
an even number of terms in D2n − 〈r〉. Hence, j1 = j2 ⇒ S has an even number of
terms in D2n − 〈r〉.

Conversely, suppose that S has an even number of terms in D2n − 〈r〉. Then
any product of all of its elements lies in 〈r〉; specifically, the product ri1sj1ri2sj2 =
ri1+i2−2i2j1 mod nsj1+j2 mod 2 lies in 〈r〉. From this, we see clearly that j1 + j2 ≡
0 mod 2 and so j1 ≡ j2 mod 2. Since j1 and j2 are in Z/2Z, j1 ≡ j2 mod 2 ⇒
j1 = j2. Hence, if S has an even number of terms in D2n − 〈r〉, then j1 = j2. This
completes the proof.

So, if a reduced state does not have an even number of terms from D2n − 〈r〉,
then it cannot have a corresponding predecessor state. The lemma below counts the
number of states which have an even number of terms from D2n − 〈r〉.
Lemma 6 For W ∈ N, the fraction of the (2n)W states in the cellular automaton
defined in Sect. 5 over D2n which have an even number of terms in D2n−〈r〉 is 1/2.

Proof Let W ∈ N, and let S = (d0, . . . , dW−1) denote a reduced state in the
automaton with an even number of terms in D2n − 〈r〉. Define EW as the set of
all states of length W with an even number of terms in D2n − 〈r〉 and OW as the set
of all states of length W with an odd number of terms in D2n − 〈r〉 and let

φ : EW → OW

φ(S) = (sd0, d1, . . . , dW−1).

It is easy to see that φ is well defined. We show that φ is a bijection. Let

ψ : OW → EW

ψ(S) = (sd0, d1, . . . , dW−1).
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Then ψ(φ(S)) = ψ(s ∗ d0, d1, . . . , dW−1) = (ssd0, d1, . . . , dW−1) = S, so φ has
an inverse and hence is a bijection. It follows that the fraction of the (2n)W states in
the automaton defined in Sect. 5 over D2n which have an even number of terms in
D2n − 〈r〉 is 1/2.

Hence, exactly 1/2 of states do not satisfy j1 = j2, and so at least 1/2 of states
cannot have predecessors. It is important now to examine the previous statement
in a different light. We can understand this statement by recalling that D2n is the
semidirect product of Z/nZ and Z/2Z, and so we can gain insight from the study of
the automata over Z/2Z. In [2], Wolfram, Martin, and Odlyzko prove the following
lemma:

Lemma 7 (Lemma 3.1 in [2]) Configurations containing an odd number of sites
with value 1 can never be generated in the evolution of the cellular automaton
defined [by the update rule given], and can occur only as initial states.

To make the connection between the automaton over Z/2Z and the automaton
over D2n, we take a reduced state S over D2n and write each entry modulo 〈r〉 to
obtain a new state, SZ/2Z, which lies in the automata over Z/2Z. Hence, if SZ/2Z
does not have a predecessor, neither does S. Given Lemma 7, it follows that S can
only have a predecessor if it has an even number of sites with value 1 from the Z/2Z
component of D2n. This correlates to a state having an even number of sites with
value from D2n − 〈r〉. Hence, at most, 1/2 of states in the automaton defined have
predecessors.

We now address the other requirement for a reduced state S to have a predecessor:
the necessity for the existence of a pair x ∈ Z/nZ and y ∈ Z/2Z to satisfy Eqs. (1.9)
or (1.10). To solve these equations, we will call upon a well-known result from
number theory.

Theorem 4 (Linear Congruence) Let a, b ∈ Z, let n ∈ N, and let gcd(a, n) = d.
Then

ax ≡ b mod n

has a solution for x iff d | b. If d | b and x0 is a solution of ax ≡ b mod n, then the
set

{
x0 + k

n

d
| k ∈ Z

}

is the set of all solutions for x. This set will reduce to d solutions modulo n.

Before proceeding with the proof of Theorem 3 we need one more lemma.
Lemma 8 For n ∈ N such that 2 | n, the fraction of pairs (i1, i2) such that i1, i2 ∈
Z/nZ and i1 ≡ i2 mod 2 is 1

2 .

Proof Let n ∈ N such that 2 | n. Let A be the set of all pairs (a, b) such that a, b ∈
Z/nZ and a ≡ b mod 2, and let B be the set of pairs (c, d) such that c, d ∈ Z/nZ

and c �≡ d mod 2. Define
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φ : A → B

φ(a, b) = (a + 1 mod n, b).

We show that φ is a bijection. Define

ψ : B → A

ψ(c, d) = (c − 1 mod n, d).

Then ψ(φ(a, b)) = ψ(a + 1 mod n, b) = (a, b) so φ has an inverse and hence is
a bijection. It follows that the fraction of pairs (i1, i2) such that i1, i2 ∈ Z/nZ and
i1 ≡ i2 mod 2 is 1

2 .

We begin now the proof of Theorem 3.

Proof (of Theorem 3) Using notation from Note 1, we know that a reduced state
must satisfy j1 = j2 in order to have a predecessor. Additionally, we must be able
to solve Eqs. (1.9) and (1.10) for x and y.

Supposing that j1 = j2 is satisfied, we proceed by solving Eq. (1.9)

2x(1− (y + j1) mod 2)− 2yi1 ≡ i2 − i1 mod n

for x ∈ Z/nZ and y ∈ Z/2Z.
To find x and y that satisfy the above, we note that there are two cases: j1 = 0

and j1 = 1. First, let j1 = 0. Then Eq. (1.9) becomes

2x(1− y)− 2yi1 ≡ i2 − i1 mod n.

Because y ∈ Z/2Z, all solutions are of the form (x, 0) or (x, 1). This allows us to
solve for x by letting y = 0 and then letting y = 1. Suppose y = 0. Then Eq. (1.9)
becomes

2x ≡ i2 − i1 mod n. (1.11)

For n such that 2� |n, 2 has a multiplicative inverse modulo n, and so Eq. (1.11)
reduces to and has the solution x ≡ 2−1(i2 − i1) mod n. By the Linear Congruence
Theorem, this is the unique solution. When 2 | n, then 2 has no multiplicative
inverse modulo n and Eq. (1.11) cannot be reduced further. Applying the Linear
Congruence Theorem, Eq. (1.11) has a solution iff 2 | i2 − i1. If 2 | i2 − i1, then
Eq. (1.11) has two solutions, namely x ≡ i2−i1

2 mod n and x ≡ i2−i1
2 + n

2 mod n.
When y = 1, then Eq. (1.9) becomes

−2i1 ≡ i2 − i1 mod n

0 ≡ i2 + i1 mod n. (1.12)
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In this case, there is no dependence on x. Hence, if 0 ≡ i2 + i1 mod n, then the set

{x = k | k ∈ Z/nZ}

is the set of solutions for x. This completes the case for j1 = 0.
Letting j1 = 1, Eq. (1.9) reduces to

2x(1− (y + 1) mod 2)− 2yi1 ≡ i2 − i1 mod n.

Proceeding as before, we suppose that y = 0. Then we can reduce the above to

0 ≡ i2 − i1 mod n. (1.13)

As in Eq. (1.12), there is no dependence on x. Hence, if 0 ≡ i2− i1 mod n, then the
set

{x = k | k ∈ Z/nZ}

is the set of solutions for x.
When y = 1, Eq. (1.9) becomes

2x − 2i1 ≡ i2 − i1 mod n

2x ≡ i2 + i1 mod n. (1.14)

For n such that 2� |n, 2 has a multiplicative inverse modulo n, and so Eq. (1.14)
reduces to and has the solution x ≡ 2−1(i2 + i1) mod n. By the Linear Congruence
Theorem, this is the unique solution. When 2 | n, then 2 has no multiplicative
inverse modulo n and Eq. (1.14) cannot be reduced further. Applying the Linear
Congruence Theorem, Eq. (1.14) has a solution iff 2 | i2 + i1. If 2 | i2 + i1, then
Eq. (1.14) has two solutions, namely x ≡ i2+i1

2 mod n and x ≡ i2+i1
2 + n

2 mod n.
For the reader’s convenience, these solutions are summarized in Table 2.
With the goal of describing the fraction of states in this automaton that have

predecessors, we use Table 2 to count how often Eq. (1.9) has a solution. Having
already counted the fraction of states that satisfy j1 = j2, we can now complete the
study of states of length W such that 4� |W .

Suppose first that W is odd. Then for n odd, all states satisfying j1 = j2 have
at least one predecessor and so 1

2 of states have at least one predecessor. When n

is even, only the states which satisfy j1 = j2 and i1 ≡ i2 mod 2 have at least one
predecessor. By Lemma 8, 1

2 of states satisfy i1 ≡ i2 mod 2. So, when W is odd and
n is even, the fraction of all states that have at least one predecessor is 1/4.

When W is even such that 4� |W , we recall that a state S is composed of two
reduced states that need to concurrently satisfy the same requirements as those in
the case for W odd. Hence, we square the probabilities above to see that when W is
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Table 2 2x(1− (y + j1) mod 2)− 2yi1 ≡ i2 − i1 mod n

j1 = 1 2� |n i2 ≡ i1 mod n i2 ≡ i1 mod 2 x ≡ 2−1(i2 + i1) mod n, y = 1

{x = k|k ∈ Z/nZ}, y = 0

i2 �≡ i1 mod 2 x ≡ 2−1(i2 + i1) mod n, y = 1

{x = k|k ∈ Z/nZ}, y = 0

i2 �≡ i1 mod n i2 ≡ i1 mod 2 x ≡ 2−1(i2 + i1) mod n, y = 1

i2 �≡ i1 mod 2 x ≡ 2−1(i2 + i1) mod n, y = 1

2 | n i2 ≡ i1 mod n i2 ≡ i1 mod 2 x ≡ i2+i1
2 mod n, y = 1;

x ≡ ( i2+i1
2 + n

2 ) mod n, y = 1

{x = k|k ∈ Z/nZ}, y = 0

i2 �≡ i1 mod 2 No solutions

i2 �≡ i1 mod n i2 ≡ i1 mod 2 x ≡ i2+i1
2 mod n, y = 1;

x ≡ ( i2+i1
2 + n

2 ) mod n, y = 1

{x = k|k ∈ Z/nZ}, y = 0

i2 �≡ i1 mod 2 No solutions

j1 = 0 2� |n i2 ≡ −i1 mod n i2 ≡ i1 mod 2 x ≡ 2−1(i2 − i1) mod n, y = 0

{x = k|k ∈ Z/nZ}, y = 1

i2 �≡ i1 mod 2 x ≡ 2−1(i2 − i1) mod n, y = 0

{x = k|k ∈ Z/nZ}, y = 1

i2 �≡ −i1 mod n i2 ≡ i1 mod 2 x ≡ 2−1(i2 − i1) mod n, y = 0

i2 �≡ i1 mod 2 x ≡ 2−1(i2 − i1) mod n, y = 0

2 | n i2 ≡ −i1 mod n i2 ≡ i1 mod 2 x ≡ i2−i1
2 mod n, y = 0;

x ≡ ( i2−i1
2 + n

2 ) mod n, y = 0

{x = k|k ∈ Z/nZ}, y = 1

i2 �≡ i1 mod 2 No solutions

i2 �≡ −i1 mod n i2 ≡ i1 mod 2 x ≡ i2−i1
2 mod n, y = 0;

x ≡ ( i2−i1
2 + n

2 ) mod n, y = 0

i2 �≡ i1 mod 2 No solutions

even (4� |W ) and n is odd, the fraction of states which have at least one predecessor
is 1/4 . When W is even (4� |W ) and n is even, this fraction is 1/16.

Having completed the case for automata of length W such that 4� |W , we proceed
to study the case when 4 | W . To do so, we suppose that j1 = j2 is satisfied and we
look for solutions of Eq. (1.10)

2i2y − 2xj1 ≡ i2 − i1 mod n.

Suppose first that j1 = 0. Then, Eq. (1.10) becomes

2i2y ≡ i2 − i1 mod n.
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No matter the choice of y, there is no dependence on x in this case. When y = 0, if
0 ≡ i2 − i1 mod n, the set of solutions for x is

{x = k | k ∈ Z/nZ} .

When y = 1, if 0 ≡ −i2 − i1, the set of solutions for x is as before,

{x = k | k ∈ Z/nZ} .

Now, let j1 = 1.Then Eq. (1.10) becomes

2i2y − 2x ≡ i2 − i1 mod n.

When y = 0, this simplifies to

−2x ≡ i2 − i1 mod n. (1.15)

For n such that 2� |n, 2 has a multiplicative inverse modulo n, and so Eq. (1.15)
reduces to and has the solution x ≡ 2−1(i2 + i1) mod n. By the Linear Congruence
Theorem, this is the unique solution. When 2 | n, then 2 has no multiplicative
inverse modulo n and Eq. (1.15) cannot be reduced further. Applying the Linear
Congruence Theorem, Eq. (1.15) has a solution iff 2 | i2 − i1. If 2 | i2 − i1, then
Eq. (1.15) has two solutions, namely x ≡ − i2−i1

2 mod n and x ≡ − i2−i1
2 + n

2 mod n.
We now let y = 1 and simplify Eq. (1.10) to

2i2 − 2x ≡ i2 − i1 mod n

−2x ≡ −i2 − i1 mod n

2x ≡ i2 + i1 mod n. (1.16)

For n such that 2� |n, 2 has a multiplicative inverse modulo n, and so Eq. (1.16)
reduces to and has the solution x ≡ 2−1(i2 + i1) mod n. By the Linear Congruence
Theorem, this is the unique solution. When 2 | n, then 2 has no multiplicative
inverse modulo n and Eq. (1.16) cannot be reduced further. Applying the Linear
Congruence Theorem, Eq. (1.16) has a solution iff 2 | i2 + i1. If 2 | i2 + i1, then
Eq. (1.16) has two solutions, namely x ≡ i2+i1

2 mod n and x ≡ i2+i1
2 + n

2 mod n.
These solutions are summarized in Table 3.
Using Table 3, we count how often Eq. (1.10) has at least one solution. Having

already counted the fraction of states that satisfy j1 = j2, we can now complete the
study of states of length W such that 4 | W . We write W as W = 2m and recall that
we are studying reduced states of length m.

The fraction of the states of length m that satisfy j1 = j2 is 1/2, and 1/2 of these
satisfy j1 = j2 = 1. For n odd, all of these states have predecessors; this accounts
for 1/4 of the (2n)m total states of length m. For n even and j1 = j2 = 1, a state
also has to satisfy i1 ≡ i2 mod 2 in order to have a predecessor; hence, of the states
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Table 3 2yi2 − 2xj1 ≡ i2 − i1 mod n

j1 = 1 2� |n i2 ≡ i1 mod 2 x ≡ 2−1(i2 + i1) mod n, y = 1

x ≡ 2−1(i1 − i2) mod n, y = 0

i2 �≡ i1 mod 2 x ≡ 2−1(i2 + i1) mod n, y = 1

x ≡ 2−1(i1 − i2) mod n, y = 0

2 | n i2 ≡ i1 mod 2 x ≡ i2+i1
2 mod n, y = 1; x ≡ ( i2+i1

2 + n
2 ) mod n, y = 1

x ≡ i1−i2
2 mod n, y = 0

i2 �≡ i1 mod 2 No solutions

j1 = 0 2� |n i2 ≡ i1 mod n {x ≡ k|k ∈ Z/nZ}, y = 0

i2 ≡ −i1 mod n {x = k|k ∈ Z/nZ}, y = 1

i2 �≡ ±i1 mod n No solutions

2 | n i2 ≡ i1 mod n {x ≡ k|k ∈ Z/nZ}, y = 0

i2 ≡ −i1 mod n {x = k|k ∈ Z/nZ}, y = 1

i2 �≡ ±i1 mod n No solutions

satisfying j1 = j2 = 1, 1/2 have predecessors. This accounts for 1/8 of the (2n)m

total states of length m.
Now we address the case when j1 = j2 = 0. To have a predecessor, a state

must satisfy i1 ≡ ±i2 mod n; we now count the number of states which satisfy this
requirement. We begin by noting that there are n choices for i1 and once chosen,
i2 is fixed as ±i1. Recall that i1 comes from an ordered product of m/2 elements.
The first element of this product can be one of 2n choices and we have the same
freedom in choice for all the other elements until the final one. The final element in
this product is uniquely determined by the choices made before it and the choice for
i1. Hence, there are (2n)m/2−1 products which give ri1 and so there are (2n)m/2−1

products which give ri2 = ri1 . Hence, including the choice of n, there are n(2n)m−2

ways to satisfy i2 ≡ i1 mod n. By a similar argument, there are n(2n)m−2 ways to
satisfy i2 ≡ −i1 mod n. We add the two to see that there are 2n(2n)m−2 ways to
satisfy i2 ≡ ±i1 mod n. However, for n odd, we have counted the case i1 = i2 = 0
twice, so we subtract (2n)m−2 from our total count. For n even, we have counted
both i1 = i2 = 0 and i1 = i2 = n/2 twice and so we subtract 2(2n)m−2 from our
count.

This gives, for n odd, the number of the (2n)m total reduced states of length
m (2 | m) which have predecessors is (2n)m

4 + (2n)m−1 − (2n)m−2. For n even,

this number is (2n)m

8 + (2n)m−1 − 2(2n)m−2. We recall that a state S of length W

(4 | W ) is composed of two reduced states that need to concurrently satisfy the
same requirements, and so we square these fractions to arrive at the following: for
W even (4 | W ) and n odd, the number of states which is reachable in the evolution
of the automata is (

(2n)m

4 + (2n)m−1 − (2n)m−2)2, when n is even, this number is

(
(2n)m

8 + (2n)m−1 − 2(2n)m−2)2. This completes the proof of Theorem 3.

The proof of Theorem 3 yields the following corollary regarding the in-degree of
a given state.
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Corollary 4 The following table describes the number of predecessors possible for
a state of length W in the automaton defined over D2n.

2� |n 2 | n
2� |W 0, 1, n+ 1 0, 2, n+ 2

2 | W, 4� |W 0, 1, n+ 1, (n+ 1)2 0, 4, 2(n+ 2), (n+ 2)2

4 | W 0, 4, 2n, 4n, n2, 2n2 0, 9, 3n, 6n, n2, 2n2

Proof The proof of Corollary 4 is seen by application of Tables 2 and 3. The
application of Tables 2 and 3 will be illustrated here, though we will not do all
cases explicitly.

Suppose first that 2� |W , n is odd. Then, suppose a state satisfies j1 = j2 =
1. If the state also satisfies i2 ≡ i1 mod n, then it has n + 1 predecessors.
The predecessors are determined by x ≡ 2−1(i2 + i1) mod n, y = 1 and
{x = k | k ∈ Z/nZ} and y = 0. If a state does not satisfy i2 ≡ i1 mod n, then it
has only one predecessor, determined by x ≡ 2−1(i2 + i1) mod n and y = 1.

If a state satisfies j1 = j2 = 0 and additionally, the state satisfies i2 ≡ −i1 mod
n, then it has n+ 1 predecessors. They are determined by x ≡ 2−1(i2 − i1) mod n

and y = 0, and {x = k | k ∈ Z/nZ} and y = 1. If the state does not satisfy i2 ≡
−i1 mod n, then it has only the predecessor determined by x ≡ 2−1(i2 − i1) mod n

and y = 0.
Now, suppose that 2� |W and n is even. Then, if a state satisfies j1 = j2 =

1, i2 ≡ i1 mod n, and i2 ≡ i1 mod 2, it has n + 2 predecessors, determined by

x ≡ i2+i1
2 mod n and y = 1, x ≡

(
i2+i1

2 + n
2

)
mod n and y = 1, and the set

{x = k | k ∈ Z/nZ} and y = 0. If a state of the form j1 = j2 = 1 does not satisfy
i2 ≡ i1 mod 2, then it has no predecessors.

If a state satisfies j1 = j2 = 0, i2 ≡ −i1 mod n, and i2 ≡ i1 mod 2,
then it has n + 2 predecessors, determined by x ≡ i2−i1

2 mod n and y = 0,

x ≡
(

i2−i1
2 + n

2

)
mod n and y = 0, and the set {x = k | k ∈ Z/nZ} and y = 1.

If the state satisfies j1 = j2 = 0 and i2 ≡ i1 mod 2, it has only two predecessors,

given by x ≡ i2−i1
2 mod n and y = 0, x ≡

(
i2−i1

2 + n
2

)
mod n and y = 0. If a state

does not satisfy i2 ≡ i1 mod n, then it has no predecessors.
The rest of the proof for this corollary lies in Tables 2 and 3.

6 Examples

Using the methods described in Sect. 5, we will give examples of states in the
automaton defined over D2n to determine if they have predecessors and if so, what
those predecessors are.
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Example 1 Let S = (s, r, rs, r2s, s, s) be a state in the automaton defined over D8.
Then S has no predecessor because it has an odd number of terms in D8 − 〈r〉.
Example 2 Let S = (s, r, rs, r2s, s) be a state in the automaton defined in Sect. 5
over D10. Because S has an even number of terms in D10−〈r〉, we compute i1, i2, j1,
and j2 by application of Corollary 1 for automata of odd length over a multiplicative
group G. This corollary states that S = (d0, . . . , dW−1) has a predecessor S′ =
(c0, . . . , cW−1) iff there exists c0 ∈ G satisfying

c0

⎛
⎜⎝

W−1
2 −1∏
k=0

d(3+4k) mod W

⎞
⎟⎠ c0 =

W+1
2 −1∏
k=0

d(1+4k) mod W .

In this case, S has a predecessor iff there exists c0 ∈ D10 satisfying

c0d3d2c0 = d1d0d4,

that is,

c0(r
2s)(rs)c0 = (r)(s)(s).

This simplifies to

c0rc0 = r.

Hence, i1 = i2 = 1 and j1 = j2 = 0. Using Table 2, we see that S has exactly one
predecessor. This predecessor is determined by x ≡ 2−1(i2 − i1) mod n and y = 0.
Explicitly, we see that the solution for c0 is

c0 = r0s0 = 1.

Now that c0 is fixed, we compute the other terms using Theorem 1. Because
Theorem 1 does not offer a solution for c2 in terms of c0, we compute this term
explicitly

c1 =
3−1

2 −1∏
l=0

d−1
6−3−4l mod 5c

−1
0

j+1
2 −1∏
l=0

d1+4l mod 5

= d−1
3 c−1

0 d1d0

= (r2s)−1(1)(r)(s)

= r

c0c2 = d1
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c2 = c−1
0 d1

= (1)(r)

= r

c1c3 = d2

c3 = c−1
1 d2

c3 = r−1(rs)

= s

c2c4 = d3

c4 = c−1
2 d3

= (r−1)(r2s)

= rs.

Finally, we check to see that the state obtained, S′ = (1, r, r, s, rs), updates to S in
one time step:

(1, r, r, s, rs) → (rsr, r, rs, rrs, s) = (s, r, rs, r2s, s),

as desired.

Example 3 Let S = (s, r, r, rs, rs, s) be a state in the automaton defined in
Sect. 5 over D8. Because S has an even number of terms in D8 − 〈r〉, we compute
i1, i2, j1, and j2 by application of Corollary 2 for automata of even length over
a multiplicative group G. This corollary states that S = (d0, . . . , dW−1) has a
predecessor S′ = (c0, . . . , cW−1) iff there exist c0, c1 ∈ G satisfying

c0

⎛
⎜⎝

m−1
2 −1∏
k=0

d(3+4k) mod W

⎞
⎟⎠ c0 =

m+1
2 −1∏
k=0

d(1+4k) mod W

c1

⎛
⎜⎝

m−1
2 −1∏
k=0

d(4+4k) mod W

⎞
⎟⎠ c1 =

m+1
2 −1∏
k=0

d(2+4k) mod W .

In this case, S has a predecessor iff there exists c0 ∈ D8 satisfying

c0d3c0 = d1d5,



312 E. Craig and E. Poimenidou

that is,

c0(rs)c0 = (r)(s)

and c1 ∈ D8 satisfying

c1d4c1 = d2d0,

that is,

c1(rs)c1 = (r)(s).

These simplify to

c0rsc0 = rs

and

c1rsc1 = rs.

Because these equations are identical, we solve only for c0. We see that i1 = i2 = 1
and j1 = j2 = 1. Using Table 2, we know that there are 6 predecessors for this
reduced state. Using the formulas given, the predecessors for the reduced state are
determined by 1, r3, s, rs, r2s, and r3s.
Suppose that c0 = 1 and c1 = rs. We now compute the other terms in the
predecessor state using Theorem 1 as before

c0c2 = d1

c2 = c−1
0 d1

= r

c1c3 = d2

c3 = c−1
1 d2

= (rs)(r) = s

c2c4 = d3

c4 = c−1
2 d3

= r−1(rs)

= s

c3c5 = d4



Automata Over Non-Abelian Groups 313

c5 = c−1
3 d4

= s−1(rs) = r3.

Finally, we check to see that the state obtained, S′ = (1, rs, r, s, s, r3), updates to S

in one time step:

(1, rs, r, s, s, r3) → (r3rs, r, rss, rs, sr3, s) = (s, r, r, rs, rs, s),

as desired.

Example 4 Let S = (1, r, s, rs, s, s, r, r) be a state in the automaton defined in
Sect. 5 over D6. Because S has an even number of terms in D6 − 〈r〉, we compute
i1, i2, j1, and j2 by application of Corollary 3 for automata of even length over a
multiplicative group G. This corollary states that for W = 2m, S = (d0, . . . , dW−1)

has a predecessor S′ = (c0, . . . , cW−1) iff there exist c0, c1 ∈ G satisfying

⎛
⎝

m
2 −1∏
k=0

d(1+4k) mod W

⎞
⎠ c0 = c0

⎛
⎝

m
2 −1∏
k=0

d(3+4k) mod W

⎞
⎠

and

⎛
⎝

m
2 −1∏
k=0

d(2+4k) mod W

⎞
⎠ c0 = c0

⎛
⎝

m
2 −1∏
k=0

d(4+4k) mod W

⎞
⎠ .

In this case, S has a predecessor iff there exists c0 ∈ D6 satisfying

d1d5c0 = c0d3d7,

that is,

(r)(s)c0 = c0(rs)(r)

and c1 ∈ D8 satisfying

d2d6c1 = c1d4d0,

that is,

(s)(r)c1 = c1(s)(1).

These simplify to

rsc0 = c0s
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and

r2sc1 = c1s.

We solve first for c0. In this case, i1 = 1, i2 = 0, and j1 = j2 = 1. Using Table 3,
we see that there are two solutions for x and y, determined by x ≡ 2−1(1) mod 3,
y = 0 and x ≡ 2−1(1) mod 3, y = 1. We will choose the latter.

To solve for c1, we see that i1 = 2, i2 = 0, and j1 = j2 = 1. Using Table 3,
we see that there are two solutions for x and y, namely x ≡ 2−1(2) mod 3, y = 0
and x ≡ 2−1(2) mod 3, y = 1. Again, we choose the latter. We solve now for the
remaining entries in S′. When c0 = r2s and c1 = rs, we have

c0c2 = d1

c2 = c−1
0 d1

= (r2s)−1(r) = rs

c1c3 = d2

c3 = c−1
1 d2

= (rs)−1(s) = r

c4 =
2
2−1∏
l=0

d−1
4−3−4l mod 8c0

2
2−1∏
l=0

d3+4l mod 8

= d−1
1 c0d3

= (r−1)(r2s)(rs)

= 1

c5 =
2
2−1∏
l=0

d−1
1+4−3−4l mod 8c1

2
2−1∏
l=0

d1+3+4l mod 8

= d−1
2 c1d4

= (s)−1(rs)(s)

= r2s

c6 =
2
2−1∏
l=0

d−1
6−3−4l mod 8c0

4
2−1∏
l=0

d1+4l mod 8

= d−1
3 c−1

0 d1d5
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= (rs)−1(r2s)−1(r)(s)

= s

c7 =
2
2−1∏
l=0

d−1
1+6−3−4l mod 6c

−1
1

4
2−1∏
l=0

d1+1+4l mod 6

= d−1
4 c−1

1 d2d6

= (s)−1(rs)−1(s)(r)

= rs.

Finally, we check to see that the state obtained, S′ = (r2s, rs, rs, r, 1, r2s, s, rs),
updates to S in one time step:

(r2s, rs, rs, r, 1, r2s, s, rs) → (rsrs, r2srs, rsr, rs, rr2s, s, r2srs, sr2s),

= (1, r, s, rs, s, s, r, r)

as desired.

7 Further Study

In this work we focused on studying cellular automata over non-abelian group
alphabets with Wolfram’s Rule 90 as the update rule. We applied our finding to
automata over dihedral groups. By studying different rules over other non-abelian
groups we have a rich source of problems particularly suited for undergraduates.
The program GAP [3] was used extensively to conjecture and verify results in this
paper. The PascGalois [4] is a great resource for studying and visualizing automata
evolution.

In the study of cellular automata, one wishes to draw the state transition diagram
(STD), that is, one wishes to draw the map of all states in the automaton as nodes
mapping to each other under the update rule for the automaton. On the STD, all
nodes with in-degree zero represent states that have no predecessors and these nodes
map into the remaining states, transients, and states on cycles. This diagram is useful
in interpreting the long term behavior of automata. In our study of the automaton
over D2n, we did not focus on drawing the state transition diagram in favor of finding
the fraction of states which have predecessors. We note that this is an important piece
of data for the STD; this fraction gives us the number of nodes that have in-degree
of at least 1. Figuring out the STD for given automata over given groups is another
fruitful area of research particularly suited for undergraduates.
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In the interest of brevity, we also omitted any historical elements on cellular
automata and their applications. Interested readers can find some historical elements
in [5–7].
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A Preliminary Exploration
of the Professional Support Networks
the EDGE Program Creates

Candice R. Price and Nina H. Fefferman

Abstract Programs such as the Enhancing Diversity in Graduate Education
(EDGE) Program for women focus on improving outcomes for women and
minorities in postgraduate degree programs in mathematics. One of the functions
of these programs is increasing the size and reach of professional networks,
including both mentors and peers. This is, in part, based on research showing a
direct correlation between the strength of professional networks and individual
professional success. However, little work has been done to analyze networks
created by such programs. We extracted the network connections between EDGE
participants from their undergraduate and graduate training in addition to their
EDGE co-participants. We then examined these connections according to some
frequently explored metrics of network organization to ascertain whether features
of participation within the EDGE network were critical to individual success.
Unfortunately, for the purpose of this work, EDGE was a victim of its own success:
nearly all the past participants of the program were successfully employed in
roles that utilized their postgraduate degrees in mathematics! We subsequently
chose a more restrictive definition for success and explored factors within the
available EDGE network that might predict the completion of a doctoral degree
in mathematics. Our preliminary study lays the groundwork for future efforts to
understand the true impact of EDGE-like programs and how to design purposefully
targeted, efficient, and effective interventions.
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1 The EDGE Program

Underrepresented students, women of color specifically, are more likely to be
retained in STEM programs if they have opportunities to engage in course content
with peers, participate in undergraduate research, and join clubs and organizations.
The authors in [1] discuss how belongingness is crucial as students learn about the
people who pursue a STEM career, the values in STEM workplaces, and whether
they can see themselves in those workplaces or graduate programs. Programs
successful in recruiting and retaining women in science note the importance of
opportunities to develop deeper understandings and connections to science through
living and learning programs, broad mentoring, and opportunities to work closely
with faculty in hands-on science experiences [1]. Networking opportunities provide
more than social connections while students pursue a professional position—they
provide images of who the students can be in the future [7]. As a result, some
programs specifically have among their goals the generation of ongoing social and
mentoring networks. One such program is the Enhancing Diversity in Graduate
Education (EDGE) Program.

The EDGE Program was launched in 1998 by Dr. Sylvia Bozeman and Dr.
Rhonda Hughes. As faculty at women’s colleges, Spelman College and Bryn Mawr
College, respectively, Bozeman and Hughes found that attrition takes its toll on
women mathematician at the graduate level. While there are programs supporting
the pipeline for women at the K-16 level, women and minority students were
particularly adversely affected by the change in culture in the transition from
undergraduate to graduate study [13]. The EDGE program is designed to strengthen
the ability of women and minority students to successfully complete graduate
programs in the mathematical sciences. In its 20 year tenure, over 275 women have
participated in EDGE either as summer participants, mentors, instructors, or local
organizers. Because mentoring is a critical component of the EDGE experience,
EDGE participants find mentors among the EDGE summer faculty, the advanced
graduate student assistants, and the directors. The structure of the program involves
two basic components: an intensive summer program, and a follow-up mentoring
program [13]. The program creates a strong network between its participants and
thus we set out to explore the types of connections made by this highly successful
program and which of these connects lead to success.

Since social psychology and educational theory suggest that strong networks
can be important factors in succeeding in graduate programs in STEM fields
[6, 8], we consider that the networks EDGE creates may be largely responsible
for the acknowledged success of the program overall [9]. We therefore analyze the
professional social network that EDGE creates among its participants to explore
which features of this network might be most effective in support of the success
of the participants of EDGE. Once this is understood, our hope is that it may
be possible to purposefully design the types of networks programs like EDGE
generates to improve outcomes of those in STEM fields.
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One challenge we face in accomplishing this goal is that the idea of success can
mean different things. We may conclude that success of the EDGE program includes
securing the pipeline for women and minorities in STEM. Yet, complications arise
when the metric for this success is discussed. Does it include finding employment
in STEM? Achieving a terminal master’s degree? Graduating with a Ph.D. in a
mathematical science? If outcomes and goals can vary, this becomes a compli-
cated problem. Since the ultimate goal of the EDGE program is to enhance the
professional success of women with advanced degrees in mathematical sciences, our
first inclination was to consider “success” as simply being employed in a role that
would utilize such a degree. To our joy and consternation, we found this to provide
no means for analysis of predictors within the EDGE participant network, since
97% of participants for whom there was information on current employment (86%)
had achieved this outcome. There was therefore an insufficient set of examples
of negative outcomes against which to correlate potential indicators. We therefore
made the choice to restrict our definition of success solely to completing a Ph.D. in
mathematical sciences.

2 Social Network Analysis

A social network approach to discussing the impact of EDGE on the success
of it participants can assist in understanding what aspect of the network is most
influential. Although there are multiple network centrality measures [4], we focus
on and measure the following four: degree, betweenness, closeness, and eigenvector.

Degree centrality is historically the first, and conceptually simplest centrality
measure. The degree of a node can be interpreted as the number of direct
connections node ni has, see Eq. (1)

Di =
n∑

j=1

aij (1)

where aij =
{

1 if node ni is connected to node nj

0 if node ni is not connected to node nj .

Individuals or organizations with high degree are those who are “in the know,” i.e.,
who are connected to many others in the network.

Closeness centrality describes a measure of the average path length between node
ni and each of the other nodes in the graph. This measure expresses the average
social distance from each individual to every other individual in the network. The
concept of social distance is easily understood by considering the concept of an
“Erdös number,” calculated by finding the shortest set of connections from any
oneself to Paul Erdös based on “collaborative distance” (authorship of mathematical
papers) [12]. To calculate closeness centrality, we use the following algorithm:
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Ci =
⎡
⎣ n∑

j=1

bij

⎤
⎦
−1

where bij represents the number of links in the shortest path connecting nodes ni

and nj . In this way an individual with a direct tie to everyone else ends up with the
largest closeness value.

Betweenness provides a mathematical compromise between degree and close-
ness. Betweenness of a node ni measures the percentage of shortest paths from one
node in the network to another node in which node ni is included. To calculate
betweenness centrality, start by finding all the shortest paths between any two nodes
in the network. Then, count the number of these shortest paths that go through each
node (Eq. (2)). This number is betweenness centrality

Bi =
∑

i<j gjk(ni)

gjk

(2)

where gjk represents the number of links in the shortest path connecting agents nj

and nk and gjk(ni) represents the number of these paths that contain agent ni .
Eigenvector centrality, in contrast, measures how well connected a node is

to other well connected nodes. To calculate eigenvector centrality, first construct
an adjacency matrix, M , that describes who is connected to whom in the social
network. We use equation aij for our entries in the matrix. Then, we calculate
the eigenvalues λ of this matrix and chose the largest eigenvalue. After making
this choice, then find the associated eigenvector. This eigenvector, v, provides the
eigenvector centrality measure for each agent in the network. The largest component
in the eigenvector corresponds to the agent with the highest eigenvector centrality.

2.1 Extraction of EDGE Data

Although the data is publicly available via the EDGE website, for ease of analysis,
we obtained information from the EDGE-maintained database by direct request to
the program administrators. This database extraction provided us with the following
information for each participant: name, year of participation, the undergraduate
institution they attended, the graduate program they attended immediately following
participation in EDGE, whether or not a doctoral degree had been awarded at
time of extraction (to the best of the program’s knowledge), and current place of
employment (if known; 86% self-reported). The database extraction also provided
the names of the mentors and instructors for each year of the program. To allow
for students who may still be successful in completing a doctoral program, but
have not yet completed their graduate degrees within a standard 6 years [10], we
analyzed the provided data for individuals who participated in EDGE only between
1998 (the first year of the program) and 2011. We then built the contact network
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by including an edge between any two individuals who (a) participated in the same
EDGE cohort year, (b) attended the same undergraduate institution, (c) matriculated
the same graduate institution directly after participation in EDGE, or (d) were a
mentor/instructor to participant pair. This extraction was done by hand, with spot
checking between the two co-authors to attempt to minimize errors. It should
be noted that this preliminary analysis omits some very likely huge aspects of
the EDGE participant network: the reunion meetings at which individuals from
multiple cohorts interact with each other, and participation in EDGE mentoring
clusters. These activities most certainly act to both broaden and strengthen the
professional network fostered by the EDGE program. Information on attendance of
or participation in these activities was not publicly available at the time of analysis.
This missing data is clearly crucially important to any effort to fully characterize
the professional social network fostered by the EDGE program, and therefore also
critical to any analysis that would understand which factors in such networks are the
most important drivers of individual success. We therefore present our findings as
a proposal for how future efforts might best evaluate a more complete description
of the interactions and activities EDGE creates and supports, rather than as any
definitive finding of current impact.

2.2 Analysis of Extracted Network

We used the included network analysis tools in Matlab 2017a to calculate the
individual centrality metrics (degree, closeness, betweenness, and eigenvector) for
our extracted network (Fig. 1).

We then calculated the pairwise correlations between these metrics and the
Boolean “success” outcome from the initial database of completion of a doctoral
degree. To determine whether or not there were meaningful associations between
the network metrics and the success outcomes, we considered coefficient of corre-
lation, R2 fit of the linear approximation, and the F−statistic associated with the
analysis of variance (ANOVA) performed [11]. The statistical methods themselves
conformed with standard practice in the social network analysis literature, details
of which are beautifully explained in the original introductory paper on centrality
analysis [5]. (Note that while individuals who already had their degrees before
participating in the program, e.g., instructors, were included in the extracted network
in order to capture the potential for social connectivity mediated by knowing them,
they were excluded from the correlation analysis since their “success,” based on our
definition, cannot be attributed to participation in EDGE.)

To consider whether the impacts of network position may be less nuanced than
continuous centrality measures, we also transformed each centrality metric into a
Boolean version of either greater than or equal to the median centrality outcome,
or less than the median centrality outcome for each of the four measures and
considered the correlation between these Boolean versions of the centralities with
the success outcome. These, however, were less successful in prediction than their
more exact, continuous counterparts.
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Fig. 1 This is a visualization of the extracted network of EDGE participants from 1998 through
2011, including mentors and instructors. Connections were included if two individuals shared the
same EDGE cohort, if two individuals attended the same undergraduate or graduate institution,
and between instructors/mentors and participants within the same year of the EDGE program

3 Observed Correlations of Network Metrics with EDGE
Participant Success

Based on these fairly straightforward analyses of the most commonly analyzed
metrics of social network organization, we see that the feature of individual
centrality that correlated at all with the successful completion of a Ph.D. in STEM
is degree centrality. However, the explanatory power even of this most correlated
metric is extremely low (coefficient of correlation of 0.008 with an R2 = 0.02,
p ≤ 0.05). Though a weak correlation, this is consistent with other studies [3] that
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have shown that increases in numbers of connections (in our case, even just within
the EDGE participant cohort) might support long-term career success. Of course,
to fully understand the impact of the EDGE network, data from the additional
professional network development activities fostered by the EDGE program (e.g.,
reunion gatherings, etc.) would need to be included in this type of analysis.

It is important to note that the observable impact from the EDGE dataset is
limited to exploring the internal determinants of which factors indicated likelihood
of success among EDGE participants. We are not making conclusions about the
impact of the EDGE program itself. While data exist as published statistics about
the increase in successful completion of graduate programs for EDGE participants
relative to comparable students who did not participate in EDGE [2, 13] that data
does not include sufficient detail about professional networks for us to have analyzed
the same network metrics to determine the specifics of how EDGE effects change
in supportive professional networks. We strongly support any future endeavors to
capture these types of comparative data so we may begin to understand which
features of social and professional support may be most important in improving
career outcomes for women and minorities in mathematics.

It is also important to revisit the discussion on the definition of “success” itself.
The stated goal of the EDGE program for women is “to strengthen the ability
of women and minority students to successfully complete graduate programs in
the mathematical sciences” [13]. Due to the focus of the program’s activities and
website highlighting the completion of a Ph.D., we did not include the completion
of a terminal master’s degree as a “successful” outcome in our analyses even though
this clearly constitutes a successful completion of a graduate program in cases in
which it was the student’s intended goal. Conversely, as mentioned above, it is also
important to reiterate that the broader outcome of supporting individuals pursuing
careers in STEM had to be rejected as an analyzed program outcome because too
few of the EDGE participants were not successfully working in STEM fields as of
the time of this analysis (of the 86% of past participants for whom employment
status was known, only 3% were employed outside of a STEM-focused position).
That by itself is a nearly unheard of rate of professional success in STEM for any
group of women and/or minority students.

4 Motivation for Further Analysis

As already mentioned above, the strong evidence that improved professional
networks in STEM increase rates of success for women and minorities is just a first
step at understanding how these goals are being achieved. Advances in the field of
social network analysis over the past few decades have highlighted the diversity of
mechanisms and impacts of different structures and actions of network types. This
understanding has led the field to the insight that simply increasing the number of
connections or numbers of participants in a supportive professional network may
be correlates, rather than causal drivers, of successful outcomes. Until we begin
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to analyze the comparative networks of individuals, we will not truly be able to
understand how interventions such as the successful EDGE program are achieving
their goals. However, once analyzed, our hope is that the field will be able to design
efficient, targeted strategies to improve exactly those aspects which most directly
impact career outcomes for students. To that end, our efforts here presented provide
the extracted network for the first 13 years of EDGE and the analyses that can act
as a comparative dataset for a “known successful” intervention. (Note: The authors
will happily share the de-identified EDGE participant network.) It is our hope that
future work will shortly enable these comparisons and insights.

5 Conclusions

The EDGE program has been shown to be remarkably effective in helping students
become STEM professionals, but thus far, it remains unknown which aspects of the
support EDGE provides are the most important drivers of those benefits. EDGE
may therefore not only act to support their participants directly, but may also
benefit the broader scientific community by providing a test bed for understanding
how supportive interventions work in STEM fields. This understanding could then
not only help refine and improve EDGE activities, but could aid in the targeted
design of future programs, to more efficiently help students through their graduate
programs and launch their professional STEM careers. Discovering these features
may also generate testable hypotheses for the types of social support that can
best address even broader pipeline issues, beyond preparation for graduate work
in mathematics among women and minority students. While our current analyses
were limited by the data available, we believe the methods here presented may
prove valuable tools for future use in understanding how the support of programs
like EDGE can shape effective professional networks that support and enhance our
community. We eagerly anticipate the expansion of these efforts to include further
input from network and education scientists and sociologists and are grateful for the
opportunity to analyze even these preliminary social networks of EDGE participants
in aid of advancing this agenda.
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A Model for Three-Phase Flow in Porous
Media with Rate-Dependent Capillary
Pressure

Kimberly Spayd and Ellen R. Swanson

Abstract As a contaminant, such as oil, travels through a porous media, such as
soil, there is contact between the contaminant, groundwater, and the intermediate
gas, air. At this interface there is a pressure difference, capillary pressure, which
impacts the flow of the contaminant through the porous media. We derive a model
for three-phase flow in porous media with the inclusion of capillary pressure, as
given by thermodynamically constrained averaging theory (TCAT). Starting with
conservation of mass, an incompressibility condition, and Darcy’s law, we include
constitutive equations that extend a strictly hyperbolic system analyzed by Juanes
and Patzek. In the absence of gravity and capillarity, they show that solutions
include rarefaction waves and shocks which satisfy the Liu entropy criterion. By
incorporating capillary pressure, we show that the model gains dissipation and
dispersion terms, the latter of which is rate-dependent. This extends the framework
developed by Hayes and LeFloch in which there are solutions involving shocks
which do not satisfy the Liu entropy criterion.

1 Introduction

The installation and use of underground pipelines to transport oil and other fluid
mixtures has been a controversial topic of late, particularly in regard to accidental
leaks contaminating the surrounding soil and water supply [16, 26, 31]. Such events
are of concern to petroleum engineers and environmentalists alike. Much work has
been done to optimize remediation after a chemical spill or pipeline malfunction
(see [8] and the references therein), but there remains much to understand about
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how the contaminant, water, and air underground behave in time and space. In this
paper, we assume there is a point-source leakage of an insoluble contaminant into
a porous medium; the fluid is a nonaqueous phase liquid (NAPL) and its source is
above the water table, in a region of the porous medium where air and water are both
present. For simplicity, we assume that the horizontal flow of the NAPL is limited
in scope so that a model with only one spatial dimension is sufficient to capture the
evolution of the contaminant’s position. Our interest is in modeling the changing
saturations, i.e., volume fractions, of all three phases through time.

To do this, we derive a system of two one-dimensional partial differential
equations which arise from physical principles including conservation of mass,
an incompressibility condition, Darcy’s law, and many constitutive equations that
provide specific functional forms for quantities of interest. Section 2 presents
these equations in detail. Previous work in this area has neglected the important
contributions of dissipation and dispersion terms that appear in the system through
the capillary pressure equation; see [3, 20, 22] as examples. Capillary pressure, Pc,
is defined to be the difference of two-phase pressures at their interface and is given
at the microscale by the Young–Laplace equation

Pc = Pn − Pw = 2γ

R
, (1)

where Pn is the pressure of the nonwetting phase (for example, oil), Pw is the
pressure of the wetting phase (groundwater), γ is the surface tension between the
two phases, and R is the radius of curvature for a spherically shaped interface.
Historically, Eq. (1) has been thought to accurately model the equilibration of the
two-phase pressures as an instantaneous event dependent only on the saturation of
the wetting phase, u. Its contribution to the larger model was insignificant as the
resulting terms only smoothed solutions whose structure was captured by the more
substantial governing equations.

In recent years, Gray and Miller introduced thermodynamically constrained
averaging theory (TCAT), including a representation of capillary pressure at the
macroscale [10–12]:

Pc(u, ut ) = Pn − Pw = P e
c (u)− τφut − τγ k̂

ε − εeq

P e
c (u)

(2)

in which P e
c is the equilibrium capillary pressure, τ is a relaxation time, φ is the

porosity of the medium, ε and εeq are interfacial areas, the latter at equilibrium,
and k̂ is a generation rate coefficient for the interfacial area. The presence of the
second and third terms on the right-hand side of Eq. (2) signifies that capillary
pressure between two phases does not equilibrate instantaneously; rather there is
a time dependence in the physical event, which is not represented in Eq. (1). Prior
work by Hassanizadeh and Gray introduced the importance of this rate dependence
through a simpler first-order correction to Eq. (1) known as dynamic capillary
pressure [13, 14], in which Eq. (2) is reduced to the first two terms on the right-
hand side. A rigorous model based on TCAT principles for two-phase flow at the



Three-Phase Flow 329

macroscale is discussed in [9]; an intense effort can be made to extend this work to
three phases. With our simpler model developed below, our ultimate interest is in
potential solution structures rather than a high level of physical applicability.

The mathematical implications of dynamic and TCAT capillary pressure on
multiphase flow models have been considered extensively, for example, in [5, 19,
29, 32, 33, 35]. In particular, traveling wave analysis uncovers the presence of
undercompressive shocks in these models when rate-dependent capillary pressure
equations are incorporated. An undercompressive shock is a jump discontinuity
which has characteristics converging only on one side; they arise as limits of
traveling wave solutions for regularized equations with nonconvex fluxes. Their
consideration has expanded the catalog of possible solution profiles for multiphase
flow models through combinations with rarefaction and other shock waves.

Experimental results support that capillary pressure depends on more than just
the saturation of the wetting phase. Nonmonotonic saturation profiles observed
in [4, 5, 34] for single-phase flow cannot be adequately modeled with only the
expression of capillary pressure given in Eq. (1); when water infiltrates columns
of dry sand, the fluid can exhibit a phenomenon known as saturation overshoot in
which water saturation is higher at the leading edge. Eckberg and Sunada describe
their experimental results for three-phase flow, specifically with oil spills in mind, in
[6] and note that static equations for capillary pressure are inadequate to capture the
observed saturation behavior. Two-dimensional contaminant transport in different
porous media, saturated and unsaturated, is described in [18] and nonmonotonic
saturation profiles appear as well. More recently, two-phase flow experiments in
which NAPL displaces water in a saturated medium have been analyzed in the
context of dynamic effects [25]. O’Carroll et al. find an improved fit to the data when
their model incorporates dynamic capillary pressure but not relative permeability
constitutive relationships.

In this paper, we develop a rudimentary model for three-phase flow in a porous
medium using TCAT capillary pressure; see Sect. 2. In Sect. 3, we describe how
the model fits a framework in which undercompressive shocks develop as solutions
to the associated Riemann problem [15]. In Sect. 4, we summarize our work and
provide further lines of inquiry into this model.

2 Model

We consider the saturations of three fluid phases: water, air, and a nonaqueous phase
liquid (NAPL), represented by u(x, t), v(x, t), s(x, t), respectively. The NAPL
contaminant is treated as a singular phase although in practice it may have multiple
constituents. Our model represents the transport of the contaminant in a porous
medium above the water table, where air is present. Thus, u+v+ s = 1. The NAPL
phase is assumed to be nonreactive, so microbial remediation is not represented in
the model. Each phase has density ρi and moves with velocity Vi , i = w (water), a

(air), and n (NAPL).
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Conservation of mass for each phase gives

∂

∂t
(φρwu)+ ∂

∂x
(Vw) = 0, (3a)

∂

∂t
(φρav)+ ∂

∂x
(Va) = 0, (3b)

∂

∂t
(φρns)+ ∂

∂x
(Vn) = 0. (3c)

Following the development of similar multiphase flow models, for example [20, 32],
we assume incompressibility of the three phases, unrealistic as it is with air present
in the system. This implies that the total fluid velocity Vt = Va+Vw+Vn is constant.
Darcy’s law for each phase, neglecting gravitational terms, relates the phase velocity
to the pressure gradient:

Vi = −ρi

Kki

μi

∂Pi

∂x
, (4)

where K represents the absolute permeability of the porous medium, ki the relative
permeability, μi the viscosity, and Pi the pressure of phase i. For ease of notation,
let

λi = ρi

Kki

μi

(5)

and λt = λa + λw + λn, so that
∑

i

λi

λt

= 1.

The NAPL phase is typically treated as the intermediary wetting phase between
air and water [8] as the contact angle it makes with the medium is smaller than air
and larger than water. Then the TCAT capillary pressures between NAPL and water,
Pcnw, as well as air and NAPL, Pcan, are functions of the respective wetting phase
saturations. Using the rate-dependent capillary pressure forces of Eq. (2), we obtain:

Pcnw = Pn − Pw = P
eq
cnw(u)− τnwφ

∂u

∂t
− τnwγnwk̂nw

εnw − ε
eq
nw

P
eq
cnw(u)

, (6a)

Pcan = Pa − Pn = P
eq
can(s)− τanφ

∂s

∂t
− τanγank̂an

εan − ε
eq
an

P
eq
can(s)

. (6b)

Following [2], we express Vw =
∑

i

λi

λt

Vw ± λw

λt

Vn± λw

λt

Va . Then reorganizing

terms and incorporating Darcy’s law for each phase gives

Vw = λw

λt

Vt + λn

λt

Vw + λa

λt

Vw − λw

λt

Vn − λw

λt

Va (7)
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= λw

λt

Vt − λwλn

λt

∂Pw

∂x
− λwλa

λt

∂Pw

∂x
+ λwλn

λt

∂Pn

∂x
+ λwλa

λt

∂Pa

∂x
. (8)

Capillary pressure is introduced into Eq. (8) by grouping terms and distributing
negative signs:

Vw = λw

λt

Vt − λwλn

λt

∂

∂x
(Pw − Pn)− λwλa

λt

∂

∂x
(Pw − Pa) (9)

= λw

λt

Vt + λwλn

λt

∂

∂x
(Pn − Pw)+ λwλa

λt

∂

∂x
(Pa − Pn + Pn − Pw) (10)

= λw

λt

Vt + λwλn

λt

∂Pcnw

∂x
+ λwλa

λt

∂Pcan

∂x
+ λwλa

λt

∂Pcnw

∂x
. (11)

We introduce the following functions to streamline the expanding notation:

fw(x, t) = λw

λt

, (12a)

H(x, t) = λw(λn + λa)

λt

, (12b)

G(x, t) = λwλa

λt

. (12c)

Then Eq. (11) becomes Vw = fw(x, t)Vt + H(x, t)
∂Pcnw

∂x
+ G(x, t)

∂Pcan

∂x
.

Similarly, we let Va =
∑

i

λi

λt

Va ± λa

λt

Vw ± λa

λt

Vn so that

Va = λa

λt

Vt + λw

λt

Va + λn

λt

Va − λa

λt

Vw − λa

λt

Vn (13)

= λa

λt

Vt − λwλa

λt

∂Pa

∂x
− λnλa

λt

∂Pa

∂x
+ λwλa

λt

∂Pw

∂x
+ λnλa

λt

∂Pn

∂x
(14)

= λa

λt

Vt + λaλn

λt

∂

∂x
(Pn − Pa)+ λwλa

λt

∂

∂x
(Pw − Pn + Pn − Pa) (15)

= λa

λt

Vt − λaλn

λt

∂Pcan

∂x
− λwλa

λt

∂Pcnw

∂x
− λwλa

λt

∂Pcan

∂x
, (16)

= fa(x, t)Vt −G(x, t)
∂Pcnw

∂x
− F(x, t)

∂Pcan

∂x
(17)

where

fa(x, t) = λa

λt

, (18a)
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F(x, t) = λa(λw + λn)

λt

. (18b)

The equilibrium capillary pressure between water and NAPL is taken to be
a decreasing linear function of water saturation, while the equilibrium capillary
pressure between air and NAPL is taken to be an increasing linear function of air
saturation [2]. Substituting Eq. (11) into Eq. (3a), we have that the conservation of
mass for the water phase is

φρw

∂u

∂t
+ Vt

∂fw(x, t)

∂x

= ∂

∂x

[
−H(x, t)

∂

∂x

(
−u− τnwφ

∂u

∂t
− τnwγnwk̂nw

εnw − ε
eq
nw

−u

)

+G(x, t)
∂

∂x

(
v − τanφ

∂s

∂t
− τanγank̂an

εan − ε
eq
an

v

)]
. (19)

Then substituting Eq. (17) into Eq. (3b), conservation of mass for the air phase
becomes

φρa

∂v

∂t
+ Vt

∂fa(x, t)

∂x

= ∂

∂x

[
G(x, t)

∂

∂x

(
−u− τnwφ

∂u

∂t
− τnwγnwk̂nw

εnw − ε
eq
nw

−u

)

+ F(x, t)
∂

∂x

(
v − τanφ

∂s

∂t
− τanγank̂an

εan − ε
eq
an

v

)]
. (20)

We make the substitution s = 1 − u − v in Eqs. (19, 20) so that the two equations
only depend on water and air saturations. Reorganizing the right-hand sides of
Eqs. (19, 20) into dissipation and dispersion terms gives

φρw

∂u

∂t
+ Vt

∂fw(x, t)

∂x
= ∂

∂x

[
H(x, t)

(
1+ τnwγnwk̂nw

εnw − ε
eq
nw

u2

)
∂u

∂x

+G(x, t)

(
1+ τanγank̂an

εan − ε
eq
an

v2

)
∂v

∂x

]

+ ∂

∂x

[
φ (H(x, t)τnw +G(x, t)τan)

∂2u

∂xt

+ φτanG(x, t)
∂2v

∂xt

]
(21)
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and

φρa

∂v

∂t
+ Vt

∂fa(x, t)

∂x
= ∂

∂x

[
−G(x, t)

(
1+ τnwγnwk̂nw

εnw − ε
eq
nw

u2

)
∂u

∂x

+ F(x, t)

(
1+ τanγank̂an

εan − ε
eq
an

v2

)
∂v

∂x

]

+ ∂

∂x

[
φ (F (x, t)τan −G(x, t)τnw)

∂2u

∂xt

+ φτanF (x, t)
∂2v

∂xt

]
. (22)

To nondimensionalize Eqs. (21, 22), we let t = T t̄ and x = Lx̄, where T and L

are constant characteristic time and length scales, respectively, and the bar notation
represents the nondimensional variable. Substituting these into Eqs. (21, 22) and

balancing coefficients, we obtain the relation
φ

T
= Vt

L
= 1

L2 . Then Eqs. (21, 22)

become

ut + (fw(u, v))x =
[
(1+ τ1

u2
)H(u, v)ux + (1+ τ2

v2
)G(u, v)vx

]
x

+ [(τ3H(u, v)+ τ4G(u, v))utx + τ4G(u, v)vtx]x (23a)

vt + (fa(u, v))x =
[
−(1+ τ1

u2 )G(u, v)ux + (1+ τ2

v2 )F (u, v)vx

]
x

+ [(−τ3G(u, v)+ τ4F(u, v)) utx + τ4F(u, v)vtx]x (23b)

in which we drop the bar notation and introduce the following notation for
simplicity:

τ1 = τnwγnwk̂nw(εnw − ε
eq
nw), (24a)

τ2 = τanγank̂an(εan − ε
eq
an), (24b)

τ3 = τnwφ

T
= τnw

L2 , (24c)

τ4 = τanφ

T
= τan

L2 . (24d)
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Finally, we scale x and t by a small parameter ε > 0 in order to control the
dissipative and dispersive effects. Then, system (23) becomes

∂

∂t

(
uε

vε

)
+ ∂

∂x

(
fw

fa

)

= ε
∂

∂x

[(
(1+ τ1

u2 )H(u, v) (1+ τ2
v2 )G(u, v)

−(1+ τ1
u2 )G(u, v) (1+ τ2

v2 )F (u, v)

)
∂

∂x

(
uε

vε

)]

+ ε2 ∂

∂x

[(
τ3H(u, v)+ τ4G(u, v) τ4G(u, v)

−τ3G(u, v)+ τ4F(u, v) τ4F(u, v)

)
∂2

∂x∂t

(
uε

vε

)]
. (25)

Note that when TCAT capillary pressure is reduced to dynamic capillary pressure,
so that τ1 = τ2 = 0, the dissipation coefficient matrix in system (25) simplifies
but the dispersion coefficient matrix is unaffected. Moreover, when only Eq. (1) is
used in the derivation, the regularization terms in system (25) are limited to the
same simplified dissipation terms but now the dispersion terms vanish. It is precisely
the inclusion of rate-dependent capillary pressure that allows for undercompressive
shocks in the solution structure.

3 Nonclassical Solutions: Undercompressive Shocks

System (25) approaches a strictly hyperbolic system of conservation laws as ε → 0
when

λw = 1

μw

u2, (26a)

λa = 1

μa

(
βav + (1− βa)v

2
)

, (26b)

λn = 1

μn

(1− u− v)(1− u)(1− v), (26c)

with 0 <
μa√
μnμw

< βa and μw < 2μn [21]. Juanes and Patzek show that Eq. (26),

based on typical assumptions in hydrology and petroleum engineering, allows for
the unregularized system to be classified as strictly hyperbolic for all u, v ∈ (0, 1)

instead of elliptic for some saturations u, v [2, 17, 27, 28]. Figure 1 illustrates the
flux functions (12a, 18a) when μw = 0.875, μa = 0.03, μn = 2, βa = 0.1 as
in [21]. The surface plot of fw has a shape analogous to the typical S-shaped flux
curve in the Buckley–Leverett equation for two-phase flow; see [32, 33].
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Fig. 1 Flux functions fw (left) and fa (right), given by Eqs. (12a, 18a) with mobility functions
(26) and constants μw = 0.875, μa = 0.03, μn = 2, βa = 0.1 from [21]

Under these conditions, Juanes and Patzek determine that solutions of the
associated Riemann problem in U = (u, v)

Ut + f(U)x = 0, −∞ < x < ∞, t > 0 (27a)

U(x, 0) =
{

U	 if x < 0

Ur if x > 0
(27b)

are combinations of rarefaction and shock waves [20]. Further, the characteristic
fields are not genuinely nonlinear, so that the shocks found in [20], traveling with
speed σ , all satisfy the Liu entropy criterion [23, 24]:

σj (U, U−) > σj (U+, U−) (28)

for all U lying on the j-shock curve that passes through the point U− between left
and right states U±. See [7, 30] for further background reading.

While Juanes considers the impact of non-equilibrium constitutive equations in
[19], he uses a model from Barenblatt and Vinnichenko [1] that incorporates time
dependency into the relative permeability functions through an evolution equation
for water saturation rather than a rate-dependent capillary pressure equation. The
dynamic system in [19], then, is different from system (23) and does not reveal
nonclassical solutions because capillarity is still neglected. The main conclusion in
[19] is that the regularization terms only smooth the solutions; undercompressive
shocks are not considered to be attainable by including the regularization terms in
the analysis and numerics.

Together, system (25) and the work of Juanes and Patzek in [20, 21] match the
framework developed by Hayes and LeFloch in [15] for nonclassical shock solutions
of strictly hyperbolic systems of conservation laws. In [15], the authors consider a
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system of N strictly hyperbolic conservation laws

∂U
∂t

+ ∂f(U)

∂x
= 0, U(x, t) ∈ U , (29)

for an open and convex U ⊂ R
N and flux function f : U → R

N . The regularized
approximation to Eq. (29) is given as

∂Uε

∂t
+ ∂f(Uε)

∂x
= ε

∂

∂x

[
B1(Uε)

∂Uε

∂x

]
+ ε2 ∂

∂x

[
B2(Uε)

∂2Uε

∂x2

]
(30)

in which ε > 0 and B1, B2 are N × N matrices. Hayes and LeFloch rely on the
use of an entropy pair (Φ, Ψ ) such that Φ,Ψ : RN → R are smooth functions that
satisfy

∇Ψ T = ∇ΦT Df (31)

∇2Φ ≥ cI (32)

for some positive constant c. Then a nonclassical shock is defined to be a shock that
satisfies the entropy inequality Φ(U)t+Ψ (U)x ≤ 0 but not the Liu entropy criterion
(28); this is equivalent to an undercompressive shock [15].

While the results in [15] assume that dispersion is represented by spatial
derivatives only, the justifications are unaffected for system (25) with its rate-
dependent dispersive term. Thus, by Theorem 2.6B from [15], the j -wave fan for
Eq. (27) may contain a combined rarefaction-undercompressive shock or a leading
classical shock trailed by a nonclassical shock.

4 Discussion

In this paper, we have derived a simple three-phase flow model with TCAT capillary
pressure and described how this full system fits within the context of general
results from Hayes and LeFloch [15]. The inclusion of a rate-dependent capillary
pressure constitutive equation is essential in this process. The resultant dissipation
and dispersion terms are the keys to unlocking previously neglected nonclassical
solutions for this model.

While the work of Hayes and LeFloch in [15] demonstrates the existence of
undercompressive shocks in the solution profile for system (25), applying their
methods in this case study remains an open line of inquiry. The complexity
of Eqs. (12, 18), with the specific functional forms given by Eq. (26), makes
determining the entropy pair (Φ, Ψ ) for system (25) exceedingly difficult, even with
software. Once found, an appropriate entropy pair dictates an entropy dissipation
function [15] which can be used to determine specific initial conditions (U−, U+)
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for which undercompressive shocks arise. Explicitly identifying such initial condi-
tions, along with numerical simulations to visualize corresponding solutions, would
be an interesting and substantial addition to the work of Juanes and Patzek in [20].
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An Invitation to Noncommutative
Algebra

Chelsea Walton

Abstract This is a brief introduction to the world of Noncommutative Algebra
aimed at advanced undergraduate and beginning graduate students.

1 Introduction

The purpose of this note is to invite you, the reader, into the world of Noncommu-
tative Algebra. What is it? In short, it is the study of algebraic structures that have
a noncommutative multiplication. One’s first encounter with these structures occurs
typically with matrices. Indeed, given two n-by-n matrices X and Y with n > 1,
we get that XY �= YX in general. But this simple observation motivates a deeper
reason why Noncommutative Algebra is ubiquitous. . .

Let’s consider two basic transformations of images in real 2-space: Rotation by
90◦ clockwise and Reflection about the vertical axis. As we see in the figures below,
the order in which these transformations are performed matters.
Since these transformations are linear (i.e., in R

2, lines are sent to lines), they can
be encoded by 2-by-2 matrices with entries in R [2, Section 3.C]. Namely

• 90◦ CW Rotation corresponds to
(

0 1−1 0

)
, which sends vector

(
v1
v2

)
to
( v2−v1

)
;

• Reflection about the y-axis is encoded by
(−1 0

0 1

)
, which sends

(
v1
v2

)
to
(−v1

v2

)
.

The composition of linear transformations is then encoded by matrix multiplication.
So, the first row in Fig. 1 corresponds to

(−1 0
0 1

) (
0 1−1 0

)
=
( 0 −1
−1 0

)
, which sends(

v1
v2

)
to
(−v2−v1

)
. Yet the second row is given by

(
0 1−1 0

) (−1 0
0 1

)
=
(

0 1
1 0

)
, sending

(
v1
v2

)
to
(

v2
v1

)
. Therefore, the outcome of Fig. 1 is a result of the fact that

( 0 −1
−1 0

) �= ( 0 1
1 0

)
.

One can cook up other, say higher dimensional, examples of the varying
outcomes of composing linear transformations by exploiting the noncommutativity
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Fig. 1 The composition of rotation and reflection transformations is noncommutative

of matrix multiplication. This is all part of the general phenomenon that functions
do not commute under composition typically. (Think of the myriad of outcomes
of composing functions from everyday life—for instance, washing and drying
clothes!)

Now let’s turn our attention to special functions that we first encounter as chil-
dren: Symmetries. To make this concept more concrete mathematically, consider
the informal definition and notation below.

Definition 1 Take any object X. Then, a symmetry of X is an invertible,
structure/property-preserving transformation from X to itself. The collection of
such transformations is denoted by Sym(X).

Historically, the examination of symmetries in mathematics and physics served
as one of the inspirations for defining a group as an abstract algebraic structure
(see, e.g. [43, Section 1(c)]). Namely Sym(X) is a group with the identity element
e being the “do nothing” transformation, with composition as the associative binary
operation, and Sym(X) is equipped with inverse elements by definition.

Continuing the example above: Take X = R
2 and Sym(R2) to be the collection of

R-linear transformations from R
2 to R

2 (so the origin is fixed). We get that Sym(R2)
is the general linear group GL(R2), often written as GL2(R) denoting the group of
all invertible 2-by-2 matrices with real entries. Further, this group is non-abelian;
thus, composition of R-linear symmetries of R2 is noncommutative.

Another concept that is inherently noncommutative is that of a representation.
We will see later in Sect. 3 that this is best motivated by elementary problem of find-
ing matrix solutions to equations (which, in turn, can have physical implications).
But for now let’s think about the problem below.

Question 1 Which matrices M ∈ Mat2(R) satisfy the equation x2 = 1?

Now one could do the chore of writing down an arbitrary matrix M = ( a b
c d

)
and

solve for entries a, b, c, d that satisfy

(
a b

c d

)(
a b

c d

)
=
(

1 0
0 1

)
.
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Not only is this boring, and it can be very tedious to find solutions to more general
problems (e.g., taking instead M ∈ Matn(R) for n > 2). For a more elegant
approach to Question 1, consider an abstract algebraic structure T defined by the
equation x2 = 1, and link T to Sym(R2) via a structure-preserving map φ. Then, a
solution to Question 1 is produced in terms of an image of φ.

For example, we could take T to be the group Z2 as its presentation is given by
〈x | x2 = e〉. An example of a structure-preserving map φ is given by

φ : Z2 → Sym(R2), e "→ {Do Nothing}, x "→ {Reflection about y−axis}.

Indeed, φ(gg′) = φ(g) ◦ φ(g′) for all g, g′ ∈ Z2. For instance,

φ(x)◦φ(x) = {Ref. about y−axis}◦{Ref. about y−axis} = {Nothing} = φ(e) = φ(x2).

Since φ(e) and φ(x) correspond, respectively, to
(

1 0
0 1

)
and

(−1 0
0 1

)
, these

matrices are solutions to Question 1. Further, other reflections of R
2 produce

additional solutions to Question 1 (Fig. 2). (Think about if all solutions to Question 1
can be constructed in this manner.)

Continuing this example, instead of using the abstract group Z2 we could have
used the group algebra T = RZ2, as it encodes the same information needed
to address Question 1. We will discuss more about abstract algebraic structures in
Sect. 2 (see Fig. 5); in any case, their representations are defined informally below.

Definition 2 Given an abstract algebraic structure T , we say that a representation
of T is an object X equipped with a structure/property-preserving map T →
Sym(X).

An example of a representation of a group G is a vector space V equipped with a
group homomorphism G → GL(V ), where GL(V ) is the group of invertible linear
transformations from V to itself (e.g., GL(R2) = GL2(R) as discussed above).
Just as a representation of G is identified as a G-module, representations of rings
and of algebras coincide with modules over such structures (see Fig. 12). See also
[50, Chapters 1 and 3] for further reading and examples.

x

y

x

y

x

y

Ref. about y = 0 � 1 0
0 −1 Rotation 180◦CW � −1 0

0 −1 Ref. about y = x � 0 1
1 0

Fig. 2 Reflections of R2 and the corresponding solution to Question 1
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Now Representation Theory is essentially a noncommutative area due to the
following key fact. Take A to be a commutative algebra over a field k with a
representation V of A, that is, a k-vector space V equipped with algebra map
φ : A → GL(V ). If (V , φ) is irreducible [Definition 14], then dimk V = 1
[50, Section 1.3.2]. Therefore, representations of commutative algebras aren’t so
interesting.

Moreover, Representation Theory is a vital subject because the problem of
finding matrix solutions to equations is quite natural. Since this boils down
to studying representations of algebras that are generally noncommutative, the
ubiquity of Noncommutative Algebra is conceivable. (Equations that correspond
to representations of groups, like in Question 1, are special.)

To introduce the final notion in Noncommutative Algebra that we will highlight
in this paper, observe symmetries and representations both occur under an action of
a gadget T on an object X, but the difference is that symmetries form the gadget T

(what is acting on an object), whereas representations are considered to be the object
X (something being acted upon). What happens to these notions if we consider
deformations of T and X? Consider the following informal terminology.

Definition 3 A deformation of an object X is an object Xdef that has many of the
same characteristics of X, possibly with the exception of a few key features. In
particular, a deformation of an algebraic structure T is an algebraic structure Tdef
of the same type that shares a (less complex) underlying structure of T .

For example, a deformation of a ring R could be another ring Rdef that equals R

as abelian groups, possibly with a different multiplication than that of R (see Fig. 5).
Now if we deform an object X, is there a gadget Tdef that acts on Xdef naturally?

On the other hand, if we deform the gadget T , is there a natural deformation Xdef of
X that comes equipped with an action of Tdef? These are obvious questions, yet the
answers are difficult to visualize. This is because, visually, symmetries of an object
X are destroyed when X is altered, even slightly; see Fig. 3.

So we need to think beyond what can be visualized and consider a larger
mathematical framework that handles symmetries under deformation. To do so, it is
essential to think beyond group actions, because many classes of groups, including
finite groups, do not admit deformations. However, group algebras or function
algebras on groups do admit deformations, so we include these gadgets in the
improved framework to study symmetries. We will see later in Sect. 4 that when

X: Equilateral triangle Isosceles triangle Scalene triangle

Sym(X): Dihedral group of order 6 Cyclic group of order 2 Trivial group of order 1

Fig. 3 Triangles and their respective symmetry groups
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symmetries are recast in the setting where they could be preserved under deforma-
tion, other interesting and more general algebraic gadgets like bialgebras and Hopf
algebras arise in the process. This is crucial in Noncommutative Algebra as some
of the most important rings, especially those arising in physics, are noncommutative
deformations of commutative rings; the symmetries of such deformations deserve
attention.

Symmetries, Representations, and Deformations will play a key role
throughout this article, just as they do in Noncommutative Algebra.

The remainder of the paper is two-fold: first, we will review three historical snap-
shots of how Noncommutative Algebra played a prominent role in mathematics and
physics. We will discuss William Rowan Hamilton’s Quaternions in Sect. 2 and the
birth of Quantum Mechanics in Sect. 3. We will also briefly discuss the emergence
of Quantum Groups in Sect. 4, together with the concept of Quantum Symmetry.
In Sect. 5 we present a couple of research avenues for further investigation. All of
the material here is by no means exhaustive, and many references will be provided
throughout.

2 Hamilton’s Quaternions (1840s–1860s)

Can numbers be noncommutative? The best answer is, as always, “Sure, why not?”
(Fig. 4).

In this section we will explore a number system that generalizes both the systems
of real numbers R and complex numbers C. The key feature of this new collection of
numbers—the quaternions H—is that they have a noncommutative multiplication!
This feature caused a bit of ruckus for William Rowan Hamilton (1805–1865) after
his discovery of the quaternions in the mid-nineteenth century.

Fig. 4 Numbers that we all
know and love. . . but we
should love more!
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Fig. 5 Some algebraic structures. Straight arrows denote structures increasing in complexity.
Dashed arrows denote structures merging compatibly to form another structure

Quaternions came from Hamilton after really good work had been done; and, though
beautifully ingenious, have been an unmixed evil to those who have touched them in any
way. . .

—Lord Kelvin, 1892

Now what do we mean by a number system? Loosely speaking, it is a set of
quantities used to measure or count (a collection of) objects, which is equipped
with an algebraic structure (Fig. 5).

Since we should be able to add, subtract, multiply, and divide numbers, we
consider the following terminology.

Definition 4 Fix n ∈ Z≥1. An n-dimensional division algebra D over R consists
of the set of n-tuples of real numbers a := (a1, a2, . . . , an), ai ∈ R, with 0 :=
(0, 0, . . . , 0) and a unique element designated as 1 so that

• we can add and subtract two n-tuples a and b component-wise to form a + b and
a − b in D, respectively;

• we can multiply a by a scalar λ ∈ R component-wise to form λ ∗ a in D;
• there is a rule for multiplying a and b to form a · b in D (this is not necessarily

done component-wise, nor does it need to be commutative); and
• there is a rule for dividing a by b �= 0 to form a ÷ b in D;

in such a way that

(i) (D,+,−, 0) is an abelian group,
(ii) (D,+,−, 0, ∗) is an R-vector space,

(iii) (D, ·, 1) is an associative unital ring, and
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(iv) (D,+,−, ∗, ·, 0, 1) is an associative R- algebra

all in a compatible fashion (e.g., · distributes over +, etc.).

As one can imagine, there are not many of these gadgets floating around as they
have a lot of structure. A 1-dimensional division algebra D over R must be the field
R itself. Moreover, a 2-dimensional division algebra D over R is isomorphic to the
field of complex numbers C, where the pair (a1, a2) is identified with the element
a1+a2i for i2 = −1. The algebraic structure for the pairs then follows accordingly,
e.g., the multiplication of C is given by

(a1, a2) · (b1, b2) = (a1b1 − a2b2, a1b2 + a2b1).

Note that the 1- and 2-dimensional real division algebras, R and C, are commutative
rings, and these can be viewed geometrically as in Fig. 6.

A natural question is then the following.

Question 2 What are the n-dimensional real division algebras for n ≥ 3?

Hamilton obsessed over this question, especially the n = 3 case, for over
a decade. Even his children would routinely ask him, “Papa, can you multiply
triplets?” (Figs. 7 and 8).
His initial ideas were to use two imaginary axes i and j so that the 3-tuples
(a1, a2, a3) of a 3-dimensional number system correspond to a1 + a2i + a3j .

Fig. 6 The real line, and the
complex plane visualized as
R

2

Fig. 7 A failed attempt at a
3-dimensional number system
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Fig. 8 Plaque on Brougham
Bridge in Dublin, recognizing
Hamilton’s invention

However, he could not cook up rules that i and j should obey to make this collection
of triples a valid division algebra [30, 55, 67]. According to some mathematicians,
this obsession was quite “Mad” [4, 60].

Finally, on October 16th 1843, on a walk with his wife in Dublin, Hamilton had
a moment of Eureka! In his words to his son Archibald,

An electric circuit seemed to close; and a spark flashed forth, the herald, as I foresaw
immediately, of many long years to come of definitely directed thought and work [. . . ]
Nor could I resist the impulse, unphilosophical as it may have been, to cut with a knife on
the stone of Brougham Bridge, as we passed it, the fundamental formula with the symbols
i, j , k; namely i2 = j2 = k2 = ijk = −1, which contains the solution of the problem. . .

—W. R. Hamilton, August 5th, 1865

Hamilton had discovered that day a number system generalizing both R and
C, consisting of 4-tuples of real numbers, not constructed from triplets as he had
imagined for so long [30].

Definition 5 The quaternions is a 4-dimensional real division algebra, denoted by
H, comprised of 4-tuples of real numbers a := (a0, a1, a2, a3), which are identified
as elements of the form

a0 + a1i + a2j + a3k, for ai ∈ R,

where addition, subtraction, and scalar multiplication are performed component-
wise, and multiplication and division are governed by the rule

i2 = j2 = k2 = ijk = −1.

Observe that jk = i, whereas kj = −i. Therefore, H is a noncommutative ring!
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In any case, notice that the multiplication rule of H is a bit complicated:

(a0, a1, a2, a3) · (b0, b1, b2, b3) =
⎛
⎜⎝

a0b0 − a1b1 − a2b2 − a3b3,

a0b1 + a1b0 + a2b3 − a3b2,

a0b2 − a1b3 + a2b0 + a3b1,

a0b3 + a1b2 − a2b1 + a3b0

⎞
⎟⎠ (1)

. . . and let’s not commit this rule to memory. To circumvent this issue Hamilton gave
the quaternions a geometric realization that encodes their multiplication. Namely for
a := a0 + a1i + a2j + a3k ∈ H, let

a0 be the “scalar” component of a, and
⇀a := a1i + a2j + a3k be the “vector” component of a.

Then, the vector components are visualized as points/vectors in R
3, whereas the

scalar component is realized as an element of time. See, for instance, the footnote
on page 60 and other parts of the preface of [29] for Hamilton’s original thoughts on
the connection between the quaternions and the laws of space and time. (Yes, yes,
this was all very controversial back then!)

Hamilton then devised two vector operations, now known as the dot product (•)
and cross product (×) to make the multiplication rule of H more compact:

a · b =
[
a0b0 − ⇀a • ⇀

b
]
+
[
a0

⇀
b + b0

⇀a + ⇀a × ⇀
b
]
, ∀a, b ∈ H. (2)

Not only is formula (2) easier to retain than (1), the (commutative) dot product
and (noncommutative) cross product have appeared in various parts of mathematics
and physics throughout the years, including our multi-variable calculus courses
(Fig. 9).

Geometrically, the operations in H capture symmetries of R
3 [Definition 1]:

addition/subtraction, scalar multiplication, and multiplication/division correspond,
respectively, to translation, dilation, and rotation of vectors of R3; see, e.g. [29, page
272] and [45] for a discussion of rotation. To see rotations in action, first note that

Fig. 9 A successful attempt
at a 4-dimensional number
system
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Fig. 10 Rotating vector k about axis j by π
2 radians � Conjugating k by quaternion e

π
4 j

the length of a quaternion a is given by

|a| :=
√

a2
0 + a2

1 + a2
2 + a2

3 .

Next, fix an axis of rotation ⇀n := n1i + n2j + n3k with |⇀n| = 1, a quaternion of
unit-length. Then, rotating a vector ⇀q about the axis ⇀n clockwise by θ radians (when

viewed from the origin) corresponds to conjugating ⇀q by the quaternion e
θ
2

⇀n. It’s

helpful to use here an extension of Euler’s formula, e
θ
2

⇀n = cos( θ
2 ) + sin( θ

2 )⇀n, to

understand the quaternion e
θ
2

⇀n. An example is given in Fig. 10.
Moreover, rotations of R3 can be encoded as a representation [Definition 2] of

the multiplicative subgroup U(H) consisting of unit-length quaternions. Indeed, we
have a group homomorphism

U(H) −→ GL(R3) = GL3(R), given by

a0 + a1i + a2j + a3k

with|a| = 1
"→

⎛
⎝a2

0 + a2
1 − a2

2 − a2
3 2a1a2 − 2a0a3 2a1a3 + 2a0a2

2a1a2 + 2a0a3 a2
0 − a2

1 + a2
2 − a2

3 2a2a3 − 2a0a1

2a1a3 − 2a0a2 2a2a3 + 2a0a1 a2
0 − a2

1 − a2
2 + a2

3

⎞
⎠ .

This geometric realization of H has many modern applications—we refer to
the text [44] for a nice self-contained discussion of applications to computer-aided
design, aerospace engineering, and other fields.

Returning to Question 2, its answer is now given below.

Theorem 1 ([26, 62], [46, Theorem 13.12], [8, 42, 71]) The answer to Question 2
is Yes if and only if n = 1, 2, 4, 8. Such division algebras D are unique up to
isomorphism in their dimension with isomorphism class represented by

• the real numbers R for n = 1, • the complex numbers C for n = 2,

• quaternions H for n = 4, • octonions O for n = 8.

Here, D is commutative only when n = 1, 2, and is associative only when n =
1, 2, 4.
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So, Hamilton discovered the last associative finite-dimensional real division
algebra, but the price that he had to pay (at least mathematically) was the loss of
commutativity. Perhaps this was not too high of a price—we are certainly willing to
lose ordering when choosing to work with C instead of R. If we are also willing to
part with associativity, then the octonions O is a perfectly suitable number system;
see [3] for more details. And, of course, there are further generalizations of number
systems—see [19, 49, 70] to start, and go wild!

We return to the quaternions later in Sect. 5.1 for a discussion of potential
research directions.

3 The Birth of Quantum Mechanics (1920s)

Another period that sparked an interest in Noncommutative Algebra was the birth
of Quantum Mechanics in the 1920s. Three of the key figures during this time were
Max Born (1882–1970), Werner Heisenberg (1901–1976), and Paul Dirac (1902–
1984), who were all curious about the behavior of subatomic particles [7, 20, 32]
(Fig. 11).

Along with their colleagues, Born, Heisenberg, and Dirac believed that important
aspects of subatomic behavior are those that could be observed (or measured).
However, the tools of classical mechanics available at the time (with observables
corresponding to real-valued functions) were not suitable in capturing this behavior
properly. A new type of mechanics was needed, leading to the development of
quantum mechanics where observables are realized as linear operators. For a great
account of how this transition took place (some of which we will recall briefly
below), see Part II of the van der Waerden’s text [68]. (For historical context of
another figure, Pascual Jordan, who also played a role in these developments, see,
e.g. [34].)

The two observables in which Born, Heisenberg, and Dirac were especially inter-
ested were the position and momentum of a subatomic particle, and they employed
Niels Bohr’s notion of orbits to keep track of these quantities. Mathematically,

Fig. 11 “More than
anything, this photograph was
really the result of a series of
little accidents.” —Billy
Huynh, photographer . . . So
is good mathematics!
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this boils down to using matrices in order to book-keep data corresponding to the
observables under investigation, thus initiating matrix mechanics. The surprising
outcome of using this new matrix framework in studying subatomic particles was
stated succinctly as follows [33]:

The more precisely the position is determined, the less precisely the momentum is known,
and vice versa.

—Heisenberg’s “Uncertainty Principle,” 1927

More precisely, suppose that P and Q are square matrices of the same size
representing the observables momentum and position, respectively. The fact that
P and Q do not commute typically (as one expects in classic mechanics) led to
the discovery of what Born dubbed as The Fundamental Equation of Quantum
Mechanics:

PQ−QP = i� ∗ I, (3)

Here i is the square root of−1, � is Planck’s constant, and i�∗I is the scalar multiple
of the identity matrix I of the same size as P and Q. For physical reasons, it was
known early in the theory of quantum mechanics that matrices P and Q that satisfy
Eq. (3) should be of infinite size, and we will recall a well-known, mathematical
proof of this fact later in Proposition 1.

As done in practice by many physicists and mathematicians, through rescaling
let’s consider a normalized version of The Fundamental Equation, as this still
captures the spirit of Heisenberg’s Uncertainty Principle:

PQ−QP = I, (4)

Now with today’s technology, one convenient way of studying matrix solutions P

and Q to Eq. (4) (or to Eq. (3)) is to use the theory of representations of (associative)
algebras. To see this connection, first let’s fix a field k and for ease:
Standing Hypothesis. We assume in this section that k is a field of characteristic 0.

Then recall from Definition 4 (and Fig. 5) that a k-algebra A is a k-vector space
equipped with the structure of a unital ring in a compatible fashion. In this case,
A = (A,+,−, ∗, ·, 0, 1), where (A,+,−, ∗, 0) is the k-vector space structure
where + is the abelian group operation and ∗ is scalar multiplication, and (A, ·, 1)

is a unital ring with · denoting its multiplication. Next, we make our vague notion
of representations in Definition 2 more precise in the context of k-algebras.

Definition 6 Consider the following notions:

1. For a k-vector space V , the endomorphism algebra End(V ) on V is an k-algebra
consisting of endomorphisms of V with multiplication being composition ◦. (If
V is an n-dimensional k-vector space, then End(V ) is isomorphic to the matrix
algebra Matn(k) with matrix multiplication. Here, n could be infinite.)
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2. A representation of an associative k-algebra A is a k-vector space V equipped
with a k-algebra homomorphism φ : A → End(V ); say φ(a) =: φa ∈ End(V )

for a ∈ A. Namely for all a, b ∈ A, λ ∈ k, and v ∈ V , we get that

φa+b(v) = φa(v)+ φb(v), φλ∗a(v) = λ ∗ φa(v), φab(v) = (φa ◦ φb)(v).

3. The dimension of a representation (V , φ) of an associative k-algebra A is the
k-vector space dimension of V , which could be infinite.

Representations of associative k-algebras A go hand-in-hand with A-modules, as
illustrated in Fig. 12.

Now for the purposes of finding matrix solutions of Eq. (4), consider the k-
algebra defined below.

Definition 7 The (first) Weyl algebra over a field k is the k-algebra A1(k) generated
by noncommuting variables x and y, subject to relation yx−xy = 1. That is, A1(k)

has a k-algebra presentation

A1(k) = k〈x, y〉/(yx − xy − 1),

given as the quotient algebra of the free algebra k〈x, y〉 (consisting of words in
variables x and y) by the ideal (yx− xy− 1) of k〈x, y〉. (This algebra is sometimes
referred to as the Heisenberg–Weyl algebra due to its roots in physics.)

The Weyl algebra is also the first example of an algebra of differential oper-
ators—its generators x and y can be viewed as the differential operators on the
polynomial algebra k[x] given by multiplication by x and d

dx
, respectively. (Check

that d
dx

x − x d
dx

is indeed the identity operator on k[x].)
Returning to the problem of finding n-by-n matrix solutions to Normalized

Fundamental Eq. (4)—this is equivalent to the task of constructing n-dimensional

Fig. 12 Connection between representations and modules of k-algebras
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Fig. 13 Connection between matrix solutions to N.F.E. and representations of A1(k)

representations of A1(k) as shown in Fig. 13. In fact, this is why A1(k) is known as
the ring of quantum mechanics.

Next, with the toolkit of matrices handy, we obtain a well-known result on the
size of matrix solutions to (4). We need following facts about the trace of a square
matrix X (which is the sum of the diagonal entries of X): tr(X±Y ) = tr(X)± tr(Y )

and tr(XY ) = tr(YX) for any X, Y ∈ Matn(k).

Proposition 1 The Normalized Fundamental Eq. (4) does not admit finite matrix
solutions, i.e., representations of A1(k) must be infinite-dimensional.

Proof By way of contradiction, suppose that we have matrices P,Q ∈ Matn(k)

with 0 < n < ∞ so that PQ − QP = I . Applying trace to both sides of this
equation yields

0 = tr(PQ)− tr(PQ) = tr(PQ)− tr(QP ) = tr(PQ−QP) = tr(I ) = n,

a contradiction as desired. 
�
On the other hand, the first Weyl algebra does have an infinite-dimensional

representation. Take, for instance:

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1
0 2

0 3

0
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and Q =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
1 0

1 0
1 0

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

. (5)

. . . And there are many, many more!
But finding explicit matrix solutions to equations is computationally difficult

in general, especially when the most important representations of an algebra are
infinite-dimensional. The power of representation theory, however, is centered on
its tools to address more abstract algebraic problems that are (perhaps) related to
computational goals. For instance, representation theory may address some of the
following questions for a given k-algebra A, which are all quite natural:

• Do representations of A exist? If so, what are their dimensions?
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• When are two representations considered to be the same (or isomorphic)?
• Are (some of) the representations of A parameterized by a geometric object X ?

Do isomorphism classes of representations correspond bijectively to points
of X ?

We will explore a few of these questions and further notions in Sect. 5.2 towards
a research direction in Representation Theory.

The representation theory of other algebras of differential operators has also
been key in modeling subatomic behavior. This includes Dirac’s quantum algebra
that addresses the question of how several position observables (Q1, . . . , Qm)
and momentum observables (P1, . . . , Pm) commute, generalizing Heisenberg’s
Uncertainty Principle for m = 1 [20]. These days Dirac’s algebra is now known
as the mth Weyl algebra Am(k), which has k-algebra presentation:

Am(k) = k〈x1, . . . , xm, y1, . . . , ym〉
(xixj − xjxi, yiyj − yjyi, yixj − xjyi − δi,j )

. (6)

Here, δi,j is the Kronecker delta, and the generators xi and yi are viewed as elements
of End(k[x1, . . . , xm]) given resp. by multiplication by xi and partial derivation ∂

∂xi
.

Want more physics? We’re in luck—the representation theory of numerous
noncommutative k-algebras plays a vital role in several fields of physics. Some of
these algebras and a physical area in which they appear are listed below. Happy
exploring!

Noncommutative k-algebras Appearance in physics Reference (year)

W -algebras Conformal field theory [9] (1993)

4-dimensional Sklyanin algebras Statistical mechanics [64] (1982)

3-dimensional Sklyanin algebras String theory [6] (2000)

Yang–Mills algebras Gauge theory [13] (2002)

Superpotential algebras String theory [25] (2006)

Various enveloping algebras of Lie algebras * Everywhere * Too many to list!

4 Quantum Groups (1980s–1990s) and Quantum Symmetries

Let’s begin here with a question mentioned in the introduction on the ties between
symmetries [Definition 1] and deformations [Definition 3].

Question 3 How do we best handle (i.e., axiomatize, or “make mathematical,” the
concept of) symmetries of deformations?
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Several answers to this question lead us to use Hopf algebras [Definition 11].
But before we give the precise definition of this structure, we point out that Hopf
algebras became prominent in mathematics in a few waves, including: its origins in
Algebraic Topology [35], role in Combinatorics [38], and abstraction in Category
Theory [40]. One tie to Noncommutative Algebra (in the context of Question 3) first
appeared in the 1980s in statistical mechanics, especially in the Quantum Inverse
Scattering Method for solving quantum integrable systems. The Hopf algebras that
arose this way were coined Quantum Groups by Vladimir Drinfel’d [22], and have
been a key structure in Noncommutative Algebra and physics ever since.

Instead of delving further into historical details, let’s now discuss (quantum)
symmetries of (deformed) algebras through concrete examples. Fix a field k, and
recall from Fig. 5 that an associative k-algebra is a k-vector space equipped with the
structure of a (unital) ring; we consider their deformations below.

Definition 8 Fix a k-algebra A. A k-algebra Adef is a deformation of A if Adef and
A are the same as k-vector spaces, but their respective multiplication rules are not
necessarily the same.

Example 1 Our running example of a k-algebra throughout this section will be the
q-polynomial algebra:

kq [x, y] = k〈x, y〉/(yx − qxy), for q ∈ k
×,

which is the quotient algebra of the free algebra k〈x, y〉 by the ideal (yx − qxy).
Loosely speaking, kq [x, y] is a q-deformation of k[x, y] as the former structure
“approaches” the latter as q → 1. More explicitly, note that kq [x, y] and k[x, y]
have the same k-vector space basis {xiyj }i,j≥0, but their multiplication rules differ
for q �= 1.

Now let us examine symmetries of kq [x, y] for q �= 1 versus those of k[x, y].
For this it is enough to consider degree-preserving symmetries, i.e., invertible
transformations that send the generators x and y to a linear combination of
themselves. Namely let V = kx⊕ky be the generating space of kq [x, y] (or k[x, y]
with q = 1). We want to pin down which invertible matrices in GL(V ) = GL2(k)

also induce a symmetry of kq [x, y], and to do so, we need to rewrite kq [x, y] using
the notion below. (From now on, we need an understanding of tensor products ⊗
and a nice discussion of this operation can be found in [15].)

Definition 9 Given a k-vector space V , the tensor algebra T (V ) is the k-vector
space

⊕
i≥0 V⊗i , where V 0 = k, and with multiplication given by concatenation,

i.e., (v1 ⊗ · · · ⊗ vm)(vm+1 ⊗ · · · ⊗ vm+n) = v1 ⊗ · · · ⊗ vm+n.

Ideals I of tensor algebras T (V ) are defined as usual, and one can define a
quotient k-algebra given by T (V )/I .

Example 2 The free algebra k〈x, y〉 is identified with the tensor algebra T (V ) on
the k-vector space V = kx ⊕ ky: for the forward direction insert ⊗ between
variables, and conversely suppress ⊗ between variables. The q-polynomial algebra
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kq [x, y] is then identified as the quotient algebra of T (kx ⊕ ky) by the ideal
(y ⊗ x − qx ⊗ y).

Now take g ∈ GL(V ) for V = kx ⊕ ky. We want to extend this symmetry on V

to a symmetry of kq [x, y] identified as T (V )/(y ⊗ x − qx ⊗ y). Let’s assume that,
as in the case for group actions, g acts on T (V ) diagonally:

g(v ⊗ v′) := g(v)⊗ g(v′), ∀v, v′ ∈ V. (7)

Now the question is: When is the ideal (y⊗x−qx⊗y) preserved under this action?
In fact it suffices to show that

g(y ⊗ x − qx ⊗ y) = λ(y ⊗ x − qx ⊗ y), for some λ ∈ k, (8)

since the g-action is degree preserving. To be concrete, say g ∈ GL(V ) is given by

g(x) = αx + βy and g(y) = γ x + δy, for some α, β, γ, δ ∈ k. (9)

Then, g(y ⊗ x − qx ⊗ y) = [g(y)⊗ g(x)] − q[g(x)⊗ g(y)], which is equal to

(1− q)αγ (x ⊗ x)+ (βγ − qαδ)(x ⊗ y)+ (αδ − qβγ )(y ⊗ x)+ (1− q)βδ(y ⊗ y).

Therefore, the condition (8) is satisfied:

• Always, if q = 1;
• Only when α = δ = 0 or β = γ = 0, if q = −1;
• Only when β = γ = 0, if q �= ±1.

(Note that in the first case λ = αδ−βγ , the determinant of g when in matrix form.)
So, when we pass from the commutative polynomial algebra k[x, y] to its

noncommutative deformation kq [x, y] for q �= 1, the amount of its degree-
preserving symmetries shrinks abruptly. This is rather unsatisfying as passing
“continuously” from k[x, y] to kq [x, y] does not yield a “continuous passage”
between their respective degree-preserving automorphism groups.

We need to think beyond group actions like those in (7). In general, we want
to construct symmetries of a k-algebra T (V )/I by (i) considering symmetries of
the generating space V , (ii) extending those to symmetries of T (V ), and then (iii)
determining which symmetries in (ii) descend to T (V )/I . For step (i), take V to be
a representation of an algebraic object H , e.g., H could be a group or a k-algebra.
(We often swap back and forth between using “representations” and “modules.”)
For (ii), one needs to tackle the issue of building a direct sum and tensor product of
H -representations. The former is pretty straightforward—one can always construct
the direct sum of H -representations to get another (the first guess is most likely the
correct one!). But if we are given two vector spaces V1 and V2 that are H -modules,
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Question 4 When is V1 ⊗ V2 an H -module? 1

If H were a group G, then one can give V1 ⊗ V2 the structure of a (left) G-
module via (7). We can extend this linearly to get that V1 ⊗ V2 is a module over a
group algebra on G. But if H were an arbitrary algebra, then the diagonal action on
V1 ⊗ V2 does not necessarily give it the structure of an H -module (as we will see
in Remark 1). In fact, to have an action of H on V1 ⊗V2 we first need algebra maps

� : H → H ⊗H, �(h) "→
∑

h1 ⊗ h2, and ε : H → k.

Here, we use the Sweedler notation shorthand to denote elements of �(H). These
maps should be compatible in a way that is dual to the manner that the multiplication
map m : H ⊗ H → H and unit map η : k → H of an algebra are compatible (cf.
m(η⊗ idH ) = idH = m(idH ⊗ η)). That is, after identifying k⊗H = H = H ⊗k,

(ε ⊗ idH ) ◦� = idH = (idH ⊗ ε) ◦�. (10)

Definition 10 ([63, Chapter 5]) An associative k-algebra H = (H,m, η) is a k-
bialgebra if it is equipped with algebra maps � (coproduct) and ε (counit), so
that (H,�, ε) is a coassociative k-coalgebra with the structures (H,m, η) and
(H,�, ε) being compatible.

To answer Question 4: If H is a bialgebra, the H -module structure on V1 ⊗V2 is

h(v1 ⊗ v2) =:
∑

h1(v1)⊗ h2(v2) ∀h ∈ H and v1, v2 ∈ V.

We also get that k admits the structure of a trivial H -module via h(1k) = ε(h)1k.

Remark 1 We cannot always use a diagonal action—sometimes a fancier coproduct
is needed to address Question 4. To see this, take H to be the 2-dimensional
associative k-algebra k[h]/(h2) (e.g., so that we are considering linear operators that
are the zero map when composed with itself). If the coproduct of H is �(h) = h⊗h,
then ε(h) = 1 by (10). But this implies 0 = ε(h2) = ε(h)2 = 1, a contradiction. To
“fix” this, check that the coproduct �(h) = h⊗ 1+ 1⊗ h with the counit ε(h) = 0
gives k[h]/(h2) the structure of a bialgebra over k.

Moreover, one may be interested in (symmetries of) an algebra with generating
space V ∗, the linear dual; this will play a role later in Sect. 5.2. To get this,
we want V ∗ to have the induced structure of an H -module, and we need an
anti-algebra-automorphism S : H → H of H to proceed.

Definition 11 ([63, Chapters 6-7]) A k-bialgebra H = (H,m, η,�, ε) is a Hopf
algebra over k if there exists anti-automorphism S : H → H (antipode) so that

1In categorical language, this is the question of whether the category of H -modules (or of
representations of H ) has a monoidal structure.
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m ◦ (S ⊗ idH ) ◦� = η ◦ ε = m ◦ (idH ⊗ S) ◦�.

If H is a Hopf algebra with H -module V , an action of H on V ∗ can be given by2

[h(f )](v) = f [S(h)(v)], ∀h ∈ H, f ∈ V ∗, v ∈ V.

Examples of Hopf algebras are group algebras on finite groups kG, function
algebras on algebraic groups O(G), and universal enveloping algebras of Lie
algebras U(g), which are all considered “classical” in the sense that they are
commutative (as an algebra, m ◦ τ = m) or cocommutative (as a coalgebra,
τ ◦� = �), for τ(a⊗b) = b⊗a. Indeed, these Hopf algebras capture the actions of
a group on a k-algebra by automorphism and actions of a Lie algebra on a k-algebra
by derivation. Moreover, deformations (or quantized versions) of these structures
provide a setting to handle deformations of the aforementioned symmetries (cf.
Question 3); refer to [1, 36, 51, 54] for examples of Hopf algebras arising in this
fashion. We also recommend the excellent text on (actions of) Hopf algebras by
Susan Montgomery [57].

Now we summarize a few frameworks for studying (quantum) symmetries of a
k-algebra A involving a group G or a Hopf algebra H . See [57] for more details.3

[G-ACT] Group actions on A: That is, A is a G-module with G-action map G ×
A → A given by (g, a) "→ g(a) satisfying g(ab) = g(a) g(b) and g(1A) = 1A,
for all g ∈ G and a, b ∈ A.

[G-GRD] Group gradings on A: That is, A is G-graded if A = ⊕g∈G Ag , for Ag

a k-vector space, with Ag · Ah ⊂ Agh. When G is finite, this is equivalent to A

being acted upon by the dual group algebra (kG)∗.
[H-ACT] Hopf algebra or bialgebra actions on A: That is, A is an H -module with

H -action map H×A → A given by (h, a) "→ h(a) with h(ab) =∑ h1(a) h2(b)

and h(1A) = ε(h)1A, for all h ∈ H and a, b ∈ A, with �(h) =∑ h1 ⊗ h2.

Finally we end with an example of a Hopf algebra action on kq [x, y], illustrating
a scenario where Question 3 has a possible answer. For other (more general)
examples in the literature, we refer to [41, Sections IV.7 and VII.3].

Example 3 (A Simplified Version of [41, Theorem VII.3.3]) For ease, we take k to
be C. Also, let q be a nonzero complex number that’s not a root of unity. We aim to
produce an action of a Hopf algebra Hq over C (whose structure depends on q) on
the q-polynomial algebra Cq [x, y] = C〈x, y〉/(yx − qxy), so that

• the “limit” of Hq as q → 1 is a “classical” Hopf algebra H (i.e., H is either
commutative or cocommutative and Hq is a q-deformation of H ), and

• the “limit” of the Hq -action on Cq [x, y] as q → 1 is an action of H on C[x, y].

2In this case, the category of H -modules is a rigid monoidal category.
3For more settings of quantum symmetry, see, e.g. [63, Chapter 11] for a categorical framework.
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We begin by defining a Hopf algebra Hq with algebra presentation,

Hq = C〈g, g−1, h〉/(gg−1 − 1, g−1g − 1, gh− q2hg),

along with coproduct, counit, and antipode given by

�(g) = g ⊗ g, �(g−1) = g−1 ⊗ g−1, �(h) = 1⊗ h+ h⊗ g,

ε(g) = 1, ε(g−1) = 1, ε(h) = 0,

S(g) = g−1, S(g−1) = g, S(h) = −hg−1.

Next we define a q-number [	]q := q	−q−	

q−q−1 for any integer 	. Now for any

element p = ∑i,j≥0 λij x
iyj in Cq [x, y], the rule below gives us an action of Hq

on Cq [x, y]:

g(p) =
∑
i,j≥0

λij q
i−j xiyj , g−1(p) =

∑
i,j≥0

λij q
j−ixiyj , h(p)

=
∑
i,j≥0

λij [j ]q xi+1yj−1.

To check this, it suffices to show that (i) the relations of Hq act on Cq [x, y] by zero,
and that (ii) the relation space of Cq [x, y] is preserved under the rule above. We’ll
provide some details here and leave the rest as an exercise. We compute:

For(i), (gh− q2hg)(p) = g(
∑

λij [j ]q xi+1yj−1)− q2h(
∑

λij q
i−j xiyj )

= ∑
λij [j ]q qi−j+2xi+1yj−1 − q2∑ λij [j ]q qi−j xi+1yj−1 = 0;

For(ii), h(yx − qxy) = [1(y) h(x)+ h(y) g(x)] − qh(xy) = (x)(qx)− q(x2) = 0.

Now the “limit” of Hq as q → 1 is H = C[x] ⊗ CZ, the tensor product of
Hopf algebras, for Z = 〈g〉 (see, e.g. [63, Exercise 2.1.19]); H is both commutative
and cocommutative. Also, Hq = H as C-vector spaces. Moreover, as q → 1, the
generators g and g−1 (resp., h) of H act on Cq [x, y] as the identity (resp., by ∂

∂y
).

5 Research Directions in Noncommutative Algebra

We highlight a couple of directions for research in Noncommutative Algebra in this
section, building on the discussions of Sects. 1–4. The material below could also
serve as a topic for an undergraduate or Master’s thesis project, or as a reading
course topic. Finding a friendly faculty (or advanced graduate student) mentor to
help with these pursuits is a good place to start. . .
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5.1 On Symmetries

Continuing the discussions of Sects. 2 and 4, we propose the following avenue
for research: Study of the symmetries of (algebraic structures that generalize)
Hamilton’s quaternions H [Problem 1]. One such generalization is given below.

Definition 12 ([12, Section 5.4]) Fix a field k with char k �= 2, with nonzero
scalars a, b ∈ k. Then a quaternion algebra Q(a, b)k is a k-algebra that has
an underlying 4-dimensional k-vector space with basis {1, i, j, k}, subject to
multiplication rules

i2 = a, j2 = b, ij = −ji = k.

Note that k2 = ijk = −ab, for instance.

Sometimes Q(a, b)k is denoted by (a, b)k, by (a, b;k), or even by (a, b)

if k is understood. The structure above extends the construction of Hamilton’s
quaternions [Definition 5], namely H = Q(−1,−1)R. Moreover, split-quaternions,
Q(−1,+1)R, also appear frequently in the literature.

Fun fact: A quaternion algebra is either a 4-dimensional k-division algebra
[Definition 4], or is isomorphic to the matrix algebra M2(k)! (The latter is called the
split case.) Also, these cases are characterized by the norm of elements Q(a, b)k:

N(a0 + a1i + a2j + a3k) := a2
0 − aa2

1 − ba2
2 + aba2

3, for a0, a1, a2, a3 ∈ k.

Namely if k has characteristic not equal to 2, then Q(a, b)k is a division algebra
precisely when N(a0+ a1i+ a2j + a3k) = 0 only for (a0, a1, a2, a3) = (0, 0, 0, 0)

[18, Proposition 5.4.3]. For instance, H = Q(−1,−1)R is a R-division algebra
since

N(a0 + a1i + a2j + a3k) = a2
0 + a2

1 + a2
2 + a2

3

for a0, a1, a2, a3 ∈ R, and is 0 if and only if (a0, a1, a2, a3) = (0, 0, 0, 0).
Quaternion algebras (in the generality of Definition 12) have appeared primarily

in number theory [69] [56, Chapter 5] and in the study of quadratic forms [47,
Chapter III]. They have also been used in hyperbolic geometry [52] [53, Chapter 2],
and in various parts of physics and engineering; see, e.g. [5] and [61]. For more
details about their applications and structure, see [14] and the references therein.

Recall from Sect. 4 that there are several frameworks for studying symmetries of
a k-algebra, including group actions [G-ACT], group gradings [G-GRD], and Hopf
algebra actions [H-ACT]. Also, the latter symmetries are considered to be quantum
symmetries if H is non(co)commutative, as discussed by Fig. 14.

Problem 1 Study the (quantum) symmetries of quaternion algebras. Namely pick
a setting [G-ACT], [G-GRD], [H-ACT], a collection of structures (G or H ) in this
class, and classify all such symmetries of G or H on Q(a, b)k.
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Fig. 14 Symmetries
deforming

Even if this problem is not addressed in full generality, a collection of exam-
ples would be quite useful for the literature. For instance, a group grading of
Q(−1,−1)R = H was used in recent work of Cuadra and Etingof as a counterexam-
ple to show that their main result on faithful group gradings on division algebras fails
when the ground field is not algebraically closed [18, Theorem 3.1, Example 3.4].

There are also other works that partially address Problem 1, such as on group
gradings [17, 58, 59] and Hopf algebra (co)actions [21, 66]. These papers also
contain work on (quantum) symmetries of some generalizations of quaternion
algebras; Problem 1 can also be posed for these generalizations of Q(a, b)k as
well.

Moreover, a second part of Problem 1 could include the study of two algebraic
structures formed by the symmetries constructed above, namely the subalgebra of
(co)invariants, and the smash product algebra (or, skew group algebra if [G-ACT]
is used). See [57] for the definitions, examples, and a discussion of various uses of
these algebraic structures. Overall, after one gets comfortable with the terminology,
such problems are computational in nature . . . and fun to do!

5.2 On Representations

In this section, k is a field of characteristic zero.
Towards a research direction in representation theory (continuing the discussion

in Sect. 3) it is natural to think further about the representations of the first Weyl
algebra A1(k). Since there are no finite-dimensional representations of A1(k)

[Proposition 1], what are its infinite-dimensional representations? To get one, for
example, identify A1(k) as a ring of differential operators on k[x] where the
generators x and y act as multiplication by x and by d

dx
, respectively. So, by fixing a

basis {1, x, x2, x3, . . . } of k[x], we get the (matrix form of) infinite-dimensional
representation in (5). Producing explicit infinite-dimensional representations of
A1(k) is tough in general. But there are many works on the abstract representation
theory of A1(k) and of other rings of differential operators, and we recommend
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the student-friendly text of S.C. Coutinho on algebraic D-modules [16] for more
information.

Now for a concrete research problem to pursue, we suggest working with defor-
mations of Weyl algebras instead, particularly those that admit finite-dimensional
representations (as this is more feasible computationally). One could:

Problem 2 Examine the (explicit) representation theory of quantum Weyl algebras
(at roots of unity) [Definition 16].

Before we discuss quantum Weyl algebras, we introduce some terminology that
will be of use later in order to make the problem above more precise. The text [23]
(which, again, is student-friendly) is a nice reference for more details.

Definition 13 Take a k-algebra A with a representation

φ : A → Matn(k) (∼= End(V )) for V = k
⊕n.

1. We say that φ is decomposable if we can decompose V as W1 ⊕ W2 with
W1,W2 �= 0 so that φ|Wk

: A → End(Wk) are representations of A for k = 1, 2.
Otherwise, we say that φ is indecomposable.

2. The representation φ is reducible if there exists a proper subspace W of V so
that φ|W : A → End(W) is a representation of A; here, φ|W is called a (proper)
subrepresentation of φ. If φ does not have any proper subrepresentations, then φ

is irreducible; the corresponding A-module V is said to be simple (cf. Fig. 12).
3. Take another representation φ′ : A → End(V ′) of A. We say that φ′ is equivalent

(or isomorphic) to φ if dim V = dim V ′ and there exists an invertible k-linear
map ρ : V → V ′ so that ρ(φa(v)) = φ′a(ρ(v)) for all a ∈ A and v ∈ V .

Irreducible representations are indecomposable; the converse doesn’t
always hold.

To understand the notions above in terms of matrix solutions of equations
(cf. Fig. 13), take a finitely presented k-algebra A, that is, A has finitely many
noncommuting variables xi as generators, and finitely many words fj (x) in xi as
relations:

A = k〈x1, . . . , xt 〉(
f1(x), . . . , fr (x)

) .

Let us also fix an n-dimensional representation of A, given by

φ : A → Matn(k), xi "→ Xi fori = 1, . . . , t.

Definition 14 Retain the notation above. Suppose that we have a matrix solution
X = (X1, . . . , Xt ) to the system of equations f1(x) = · · · = fr(x) = 0.

1. If each matrix Xi can be written as a direct sum of matrices Xi,1⊕Xi,2, where

• Xi,k ∈ Matnk
(k) with k = 1, 2 for some positive integers n1 and n2, and
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• Xk = (X1,k, . . . , Xt,k) is a solution to f1(x) = · · · = fr(x) = 0 for k = 1, 2,

then the matrix solution X is decomposable. Otherwise, X is indecomposable.
2. For Matn(k) identified as End(V ) with V = k

⊕n, suppose that there exists a
proper subspace W of V that is stable under the action of each Xi . Then we say
that X is reducible. Otherwise, X is irreducible.

3. We say that another matrix solution X′ ∈ Matn′(k)×t to the system of equations
f1(x) = · · · = fr(x) = 0 is equivalent (or isomorphic) to X if n = n′ and there
exists an invertible matrix P ∈ GLn(k) so that P Xi P−1 = Xi for all i.

So two representations of A (or, two matrix solutions of {fj (x) = 0}rj=1) are

equivalent precisely when they are the same up to change of basis of V =⊕t
i=1 xi .

Therefore Problem 2 can be refined as follows.

Precise Version of Problem 2 Classify the explicit irreducible representations of
the quantum Weyl algebras [Definition 16], up to equivalence.

Let’s define the quantum Weyl algebras now. One way of getting these algebras
is by deforming the mth Weyl algebras Am(k) from (6) via the symmetry discussed
below. (The reader may wish to skip to Definition 16 for the outcome of this
discussion.)

Definition 15 Fix a k-vector space V .

1. A k-linear transformation c : V ⊗ V → V ⊗ V is a braiding if it satisfies the
braid relation, (c⊗ idV )◦ (idV ⊗c)◦ (c⊗ idV ) = (idV ⊗c)◦ (c⊗ idV )◦ (idV ⊗c)

as maps V⊗3 → V⊗3.
2. A braiding H : V ⊗ V → V ⊗ V is a Hecke symmetry if it satisfies the Hecke

condition, (H −q idV⊗V )◦ (H +q−1 idV⊗V ) = 0 as maps V ⊗V → V ⊗V ,
for some nonzero q ∈ k.

Given a Hecke symmetry H ∈ End(V ⊗ V ) one can form the H -symmetric
algebra SH ,q (V ) = T (V )/ (Image(H − q idV⊗V )) . For example, when H =
flip (sending xi ⊗ xj to xj ⊗ xi) and q = 1 we get that Sflip,1(V ) is the symmetric
algebra S(V ) on V ; this is isomorphic to the polynomial ring k[x1, . . . , xm] for
V =⊕m

i=1 kxi .
Summarizing the discussion in [28], we now build a q-version of a Weyl algebra

using a Hecke symmetry H as follows. Consider the dual vector space V ∗ and
the induced k-linear map H ∗ ∈ End(V ∗ ⊗ V ∗). Then construct the algebra
AH ,q (V ⊕ V ∗) on V ⊕ V ∗, which is the tensor algebra T (V ⊕ V ∗) subject to
the relations: Image(H − q idV⊗V ), and Image(H ∗ − q−1 idV ∗⊗V ∗), and certain
relations intertwining generators from V with those from V ∗ by using H . The
resulting algebra AH ,q (V ⊕ V ∗) is called the quantum Weyl algebra associated
with H .

For simplicity, we provide the presentation of AH ,q (V ⊕ V ∗) for the standard
1-parameter Hecke symmetry given in [37, page 442] (provided in the form of an
R-matrix). Here, V = ⊕m

i=1 kxi and V ∗ = ⊕m
i=1 kyi with yi := x∗i (linear dual

of xi).
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Definition 16 ([37, page 442] [28, Definition 1.4]) Take m ≥ 2. The 1-parameter
quantum Weyl algebra is an associative k-algebra A

q
m(k) with noncommuting

generators x1, . . . , xm, y1, . . . , ym subject to relations

xixj = qxjxi, yiyj = q−1yjyi, ∀i < j

yixj = qxjyi, ∀i �= j

yixi = 1+ q2xiyi + (q2 − 1)
∑

j>i xj yj , ∀i.
By convention, we define A

q

1(k) to be k〈x, y〉/(yx−qxy−1). If q is a root of unity
then we refer to these algebras as quantum Weyl algebras at a root of unity.

Notice that one gets the Weyl algebras A1(k) [Definition 7] and Am(k) [Eq. (6)]
by taking the “limit” of A

q

1(k) and A
q
m(k) as q → 1, respectively.

Fun fact: If q is a root of unity, say of order 	, then all irreducible representations
of a quantum Weyl algebra AH ,q (V ⊕V ∗) are finite-dimensional! Moreover in this
case, the dimension of an irreducible representation is AH ,q (V ⊕ V ∗) is bounded
above by some positive integer N(	) depending on 	, and this bound is met most
of the time. This is part of a general phenomenon for quantum k-algebras with
scalar parameters—they have infinite-dimensional irreducible representations in the
generic case, and in the root of unity case all of their irreducible representations are
finite-dimensional. Further, in the root of unity case, most irreducible representa-
tions of a quantum algebra A have dimension equal to the polynomial identity (PI)
degree of A (see, for instance, the informative text of Brown–Goodearl [11]). For
example, the PI degree of A

q

1(k) is equal to 	 when q is a root of unity of order 	.
This leads us to discussion of a partial answer to Problem 2. Indeed, one was

achieved for A
q

1(k), for q a root of unity of order 	, in two undergraduate research
projects directed by Letzter [10] and by L. Wang [31]. The explicit irreducible
matrix solutions (X, Y ) to the equation YX − qXY = 1 were computed in these
works (up to equivalence), the majority of which are 	-by-	 matrices.

Naturally, the next case for Problem 2 is the representation theory of quantum
Weyl algebras AH ,q (V ⊕ V ∗), where dimk V = 2 and q is a root of unity; this
should build on the partial answer above. There are a few routes one could take, such
as examining A

q
m(k) for m ≥ 2, or more generally, addressing Problem 2 for multi-

parameter quantum Weyl algebras as in [28, Example 2.1] [11, Definition 1.2.6].
Why care? One reason is that quantum Weyl algebras have appeared in numerous

works in mathematics and physics, including Deformation Theory [27, 28, 37, 39],
Knot Theory [24], Category Theory [48], Quantum mechanics and Hypergeometric
Functions [65] to name a few. Therefore, any (partial) resolution to Problem 2 would
be a welcomed addition to the literature. So let’s have a go at this. :)

Photo and Figure Credits Figs. 2, 5–7, 9–10, 12–13: Author. (** = from
unsplash.com)

Fig. 1: Tammie Allen, @tammeallen**. Fig. 8: Wikipedia, user: JP.

Fig. 3: GazzaPax (flickr.com). Fig. 11: Billy Huynh, @billy_huy**.

Fig. 4: Karolina Szczur, @thefoxis**. Fig 14. Dan Gold, @danielcgold**.
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Mathematical Lives



Taking a Leap Off the Ivory Tower:
Normalizing Unconventional Careers

Karoline P. Pershell

Abstract I explain my own winding journey to shed light on how paths in
mathematics can unfold. I share this personal story to remind us that you can start at
any point and get to any other point, to share my own litmus test for when to move
forward bravely and boldly, and to encourage each of us to keep searching for the
space where we are productive.

1 Introduction

I love my job.
As Executive Director of the Association for Women in Mathematics, I get to

support and celebrate women across the career spectrum individually with pro-
gramming, prizes, grant opportunities, and collectively with activities that promote
institutional change. I empower volunteers to direct their efforts toward projects that
personally or professionally advance their careers and passions. I develop strategic
initiatives to address the social problems surrounding the advancement of women
in mathematics. And I constantly meet inspirational people at every stage of their
careers.

In mathematics, the gold standard for a successful career has been a tenure-track
job at a research institution with a light teaching load. We are raised and trained by
our PhD or master’s advisors who are exactly in such positions and often groom us
to reach similar positions. This inherited value system of what matters in math had
unjustifiably narrowed my perceived career paths and distorted my own measures
of success. The result was that I consistently undervalued my worth and abilities
outside of research mathematics early on in my career.

This perspective on careers (and on the mythical “right” career) is something I
have internally fought as I traipsed back and forth across the country and around
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the world. Along the way, I built a unique skill set that is authentic to me. Most
importantly, I was aware of my growth, and that consciousness allowed me to
seek out jobs that a younger me would have assumed were out of my scope or
unattainable to me. My own unconventional career emphasizes that careers don’t
have to be trajectories, that there is no single “right” starting place, and that one
can be a mathematician across academia, government, business, industry, and the
nonprofit sector. So how did I start my own unconventional career? By saying yes
to the most unconventional opportunity: bull riding.

2 The Not-so-Typical Start to a Math Career

I came to the University of Tennessee at Martin (UTM) for an undergraduate degree
in mathematics on a pretty non-traditional path: by joining the men’s rodeo team.
Sometimes, when I say it out loud, it sounds silly, but—at that time and based on
my current 19-year-old experiences—I felt it was the right decision for me.

I grew up training and showing horses to make money in the summers. I actually
started college at Saint Mary’s (the all-women’s sister-school of Notre Dame in
South Bend, Indiana), just as Notre Dame was starting a rodeo team. I didn’t know
anything about rodeo, but I joined thinking I would ride saddle broncs. Through a
series of unexpected events, I got unceremoniously ushered into bull riding.

I pursued bull riding on my own for another year, competing in a handful of
rodeos, including one at UTM. It was then that I decided I needed to get some
professional help for my bull riding addiction. Since UTM had and has a national
championship rodeo program, I decided to transfer there in my sophomore year.
I don’t exactly remember, but I think the conversation with my parents went
something like:

Mom, Dad, I want to leave my full-ride academic scholarship at a private women’s
university to attend a school you have never heard of, in a state you have never visited,
to pursue something I am not very good at.1

I may be creatively paraphrasing, but what I heard my parents say was: “Karoline,
that is the smartest decision you have ever made.” And it turns out they were right.

I was the first woman to compete in Bull Riding in the National Intercollegiate
Rodeo Association (NIRA) Eastern region, the first woman nationally to complete
a full year and to compete for subsequent seasons in Bull Riding in NIRA. I also
joined the Professional Women’s Rodeo Association and won Rookie of the Year
for Bull Riding and Bareback Broncs in 2001. This meant driving cross-country
on long weekends and school holidays to compete in rodeos, while completing my
major in math and a minor in physics with a perfect GPA and working in the UTM

1Excerpts from a speech given by Karoline Pershell to the University of Tennessee at Martin
Development Committee (Spring 2012) and reported on here http://www.utm.edu/facesofutm/
facesbio.php?personNum=47&pageNum=5.
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Math Tutoring Lab. (I didn’t tell my rodeo friends I did math, and I didn’t talk to
my math friends about rodeo. They just seemed like two separate crowds.)

During my college rodeo career, my riding drastically improved and the small
victories I had when competing—when I simultaneously knew what I was supposed
to do and was able to execute the move—were some of the most rewarding
moments. I competed for “personal bests” but was never great and there was no
clear path in rodeo for me past college.

Unconventional paths can be lonely: you may not have peers or mentors and
there is never an obvious plan for next steps. Rather, it feels like you are walking at
night on a dark path with a weak flashlight. You only can see a few steps in front of
you. You know there is risk, but you just have to keep walking to see what is next.
It doesn’t matter that you can’t see the whole path. Just keep walking.

3 Next Steps

3.1 Grad School

I went to get my master’s and PhD in low-dimensional topology from Rice
University under the brilliant and patient direction of Dr. John Hempel. I lived many
of the canonical grad school horror stories, with feelings of failure exacerbated,
because I believed I was supposed to eliminate all other facets of my life until I was
just math. I now realize this was a terrible plan: things will go wrong with your math
research and math career. When I was multifaceted, I could rebound from a failure
in one area of my life because I was more than just that one thing. But, when my
entire identity was wrapped up in math, failure in math translated to my complete
failure as a person.

Near the end of my time in graduate school, I was “gifted” an opportunity to
expand my identity. Due to poorly managed finances and a poorly chosen ex, at the
beginning of my fifth year of grad school, I had a quarter million dollars in debt to
my name, a deconstructed house that was worth about a fifth of what I owed, and a
dissertation problem that had just been neatly solved and published . . . by someone
else. My advisor helped me refocus on a different problem, and on the side, I also
became my own general contractor. I was pulling permits and hiring subcontractors
when necessary, becoming quite skilled in tile work and drywall and competent at
residential-level electrical and plumbing upgrades. I owe many thanks to helpful
neighbors, my parents who came out to lend some elbow grease, and to all of the
collective expertise that could be found on the internet. I was able to sell at a profit,
clear my debts, have funding toward my next home purchase, and finish my disser-
tation. Ten years later, I now have five home renovations under my belt, each aiding
in creating some financial stability that has allowed me to focus on personal growth.
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3.2 The Tenure-Track Position

As I proceeded down the next step in my mathematical journey, I jumped at the
chance to return to my undergrad institution (the University of Tennessee at Martin)
as an Assistant Professor. This was a friendly place to land after graduate school and
figure out “what next?” in a supportive environment. I taught my classes, pursued
research, and kept reaching up and out to the opportunities that interested me:

Student Clubs I initiated a student club for researching green technologies, which
petitioned the student body to get a vote to raise their own tuition and use the funds
toward energy efficiency improvements on campus. I also served as a faculty advisor
for the Alpha Kappa Alpha sorority and worked to revitalize a local chapter of the
National Society for Black Engineers.

NSF EPSCoRE I applied for and received an NSF grant to build a cross-
disciplinary team to conduct research on reversible hydrogen fuel cells. I worked
with a brilliant and eccentric retired British physicist, who had started his own
winery in west Tennessee, as well as UTM faculty and students.

Qingdao Summer Teaching I accepted an email offer to teach college-level math
courses for a summer in China. I had very little information before I got there
and realized only later that this international exchange was probably not following
the intent of the law with regard to work visas, as it was actually a for-profit
company that was running courses under the umbrella of an academic institution.
With the other visiting faculty, we quickly had to organize and require administrative
structures around courses, attendance, final exams, and grades.

Fulbright Scholar I was awarded a Fulbright and jetted off to India to teach proof-
writing and logic to master’s-level students, while also collecting data on cultural
perceptions of Indian women in mathematics. Though feeling completely out of my
element, I presented my preliminary findings at a sociology conference in Delhi that
focused on gender harassment and disparities in academia.

STEM Study Abroad Program With a chemistry colleague, I co-led a 10-
day study abroad program for UTM students to examine the STEM industrial
applications in Germany.

Despite a welcoming department, I still did not yet feel like I belonged in math.
I did enjoy working with students and clearly capitalized on the flexibility that
academia offered, pursuing a variety of other life experiences as I tried to find
the right balance that would make this tenure-track job everything I thought I was
supposed to want in an academic career.
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3.3 AAAS Science & Technology Policy Fellowship

While in India, I was accepted as a Science & Technology Policy Fellow for a 2-year
appointment in Washington, DC. So after 4 years at UTM, I left my tenure-track job,
sold my renovated dream house on 9 acres, and headed to DC with a moving truck
and 1.75 dogs. (I have two dogs and one has 3 legs. It would also be mathematically
correct to guess that I had one, seven-legged dog. No one has yet done so.)

On the drive, I got a call that my intended position had been cut due to the
government sequester.

Let’s revisit the part that says, I just quit my tenure-track job, sold my dream
home, and am sitting alone in a truck with 1.75 stinky dogs so that I could pursue
an adventure that had now evaporated. The next several hours were spent in tears
and self-pity. Despite my inner-dialogue that could only sarcastically congratulate
myself on ruining the rest of my life, I kept driving north to DC. I had no other
options, so I still showed up, made calls, and positively pitched myself as capable of
any opportunities they had left. I worked with AAAS to review what appointments
were still available that would take a mathematician. (It turns out, many of them!)

I left academia so that I could pursue a position that would have placed me in
governmental labs, helping me transition to more applied lab sciences and engineer-
ing. Well, that was my intention, anyway. Instead, I landed at the Department of
State’s Foreign Service Institute. I became their Evaluation Coordinator, working
under the Director of the Institute (a former Ambassador) and her Deputy, both
brilliant and strategic individuals who taught me how to play the long-game for
creating institutional change. This role provided me a variety of experiences, such
as:

The Day Job As the Evaluation Coordinator, I was responsible for understanding
the large swath of training and determining the effectiveness of training toward
execution of national priorities. I was responsible for building a cooperative
community of evaluators and leading them to develop Department of State-adopted
policies and standards around training evaluation.

Assess, then Develop and Implement Policy I traveled to five embassies in the
Middle East to work on issues relating to how the US teaches Arabic dialects and
help develop policies for training such dialects. I also traveled to the United Nations
and the US’s European training headquarters to assess how the US was training in
multilateral negotiations. In both instances, I learned how to assess costs to time,
personnel, and morale when implementing change and developing implementation
strategies that met the needs of those affected.

Some Math! I did a tour at the State Department’s United Nations office to look
at UN voting trends using qualitative clustering techniques. More than half of my
time at this post was devoted to assessing how the appropriate personnel perceived,
reviewed, and applied the information I presented them. In many ways, this pulled
on my previous life in the classroom: I had to convey what the data meant and why
they should care.
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Side Projects on Behalf of the Ambassador I was tasked with bringing some
great (but nascent) ideas to fruition, like the establishment of an educational arm to
review the implementation of diplomatic initiatives, and leading a cross-discipline
committee on developing guidelines for evaluation that would reach across all
Department of State training programs.

I learned a lot about how to get things done in a large bureaucracy, how to create
coalitions, lead projects, and then get out of the way when others have better ideas.
I worked with brilliant people from across the social sciences and yet just like in the
math world, I was painfully aware that I was not from their world. This was not my
“normal” and this was not where I wanted my career to stay for the long haul.

3.4 From Visiting Embassies in Suits and Heels to Working
from Home in Yoga Pants

In the last 4 months of my Fellowship, I got a message from a recruiter who offered
me half-time contract work with a Silicon Valley start-up. The offer was to work
remotely on algorithm optimization for social media text mining and with a definite
pay cut. But I would get my time back. Working in government, I realized I sorely
missed autonomy over my own time, and now prioritized that above all else in this
next career transition.

I tested the waters with this start-up, continuing with the Department of State
while working nights and weekends because I didn’t believe this company actually
needed me. But I quickly identified and solved organizational-level problems
regarding accuracy of the algorithms, management of the remote technical team,
and evaluation of customer needs. I was building off the skills I had just gotten in
my last job! I moved on to manage a team that developed sentiment-recognition
classifiers, and I worked on corporate expansion strategy. I know I can learn, and I
know I like to be challenged to solve new problems, but this was my first experience
where I didn’t feel like I was playing catch-up . . . and it was amazing! I had a skill
set that was needed in this world that overlapped math and leadership.

It was awesome. I mattered. I was needed. There was a space for someone like
me. This is what I needed out of a job, and jobs like this existed!

3.5 Capitalizing on Our Own Ideas

My husband and I jumped all-in when we won an NSF small business grant to bring
our robotics and Internet of Things software integration framework to market. I left
the Silicon Valley start-up and he left his work as a space roboticist at the US Naval
Research Lab to build our own start-up, Service Robotics & Technologies (SRT). At
SRT, I do everything from recruit and manage staff to oversee optimizing Kahlman
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Filters that reduce signal processing noise. We made the early years of SRT work
by renting our DC homes, moving into a home we owned by the Johnson Space
Center (Houston), renovating the home, running it as a start-up space with four
different computer programmers crashing with us for nearly a year, and then selling
the home as we moved back to DC. (Those home renovation skills just keep getting
used!) At SRT, I work with people I like to develop cool technology. It is awesome!
So why did I still not feel like it was enough?

3.6 AWM

As I learned about the Association for Women in Mathematics’ search for a new
Executive Director, I realized what I was still looking for in a career: a clear path for
giving back. My work as Executive Director brings together research mathematics,
teaching, project management, monitoring and evaluation, program design, orga-
nizational development, implementation of institutional change, network building,
grant writing, and fundraising in such a way, that . . . well . . . my career almost looks
connected. Or even planned!

In my current role, I use skills I learned from leading negotiations at State,
from fundraising and grant writing for the robotics start-up, serving as a technical
liaison between customers and programmers at the Silicon Valley start-up, and from
understanding the math world so I can communicate with members, and tap into
my earliest loves and fears of math so that I am driven to listen to other’s journey.
Working as Executive Director is the culmination of my past experiences, and yet I
know there is still room to grow.

4 Devising My Career Litmus Test

So how did my cobbled-together “career” happen? How did I decide to make these
transitions? Because at each juncture, I was hit with the fact that I wanted to do
MORE.

• But I didn’t know what MORE was.
• Or where you find MORE.
• Or how you actually do MORE when you find it.
• I just wanted to do MORE.

That’s not a lot to go on, but luckily, I have never felt the need to make decisions
based on the clarity of outcomes. I balance the risk and decide if I am going to jump.

So I took chances.
When an opportunity came up, I learned from a fabulous mentor to ask two things

of myself: does this use my skills and does the work look interesting? I did not ask,
“Where do I see myself in 10 years?” or “What’s the right path to get there?”
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Instead, I had a nagging inner voice that said, “You can do MORE” and a level
of judgment that merely said, “Yup. This sure looks like MORE. You should go do
that.”

Let’s be clear that “MORE” for me could have been anything: a different
academic position, a new institution, motherhood, astronaut, or rodeo cowboy.
(Wait, not that last one. I already did that one.) It just so happened that the doors
that I knocked on, that opened, and that I chose to walk through took me through a
path that led away from the Ivory Tower.

5 Conclusion

I am a mathematician.
I was in academia, government, industry, and now am in the nonprofit sector.

I have followed a very unconventional career trajectory that may not work for
everyone, but it has worked for me: at each stage, I added meaningful (often
unplanned!) experiences that were crucial in the next stage of my career. Each
position showed me what I wanted (or didn’t want!) in my next job. Most
importantly, an understanding of how I add value and how I want to grow as a
professional means I was aware of the potential for opportunities as they came along.

A career is only labeled unconventional if we don’t see other people doing it. As
such, these careers seem improbable and even intimidating. By shedding light on
the different ways that professional life can actually unfold, I hope to help normalize
such careers.

My unconventional career path included a climb up the Ivory Tower, and a lot
of uncertainty when I decided I wanted to do something outside academia. In my
current role with the Association for Women in Mathematics, I have an amazing
opportunity to empower women to pursue whatever their dream job might be,
however, conventional or unconventional it may seem.



A Mathematician’s Journey to Public
Service

Carla D. Cotwright-Williams

Abstract The author discusses her path from a childhood growing up in a family
that valued helping others, to earning a PhD in Mathematics, to working as an
assistant professor of mathematics, to serving as a American Mathematical Soci-
ety/American Association for the Advancement of Science Congressional Fellow,
to public service work as a federal employee keeping data safe at the US Social
Security Administration and conducting research on autonomous vehicles at the
NASA Ames Research Center. During the author’s work for the federal government,
she has held the titles of “computer scientist,” “senior research analyst,” and “data
scientist.” Nonetheless, she has discovered that a mathematician by another name
is still a mathematician. Further, she argues that mathematicians who are interested
in using their knowledge and skills to help improve the lives of others and to help
find solutions to the government’s toughest problems should consider public service
careers.

1 Helping Others

Growing up in L.A., I saw people in need all around. I observed my family helping
the community and those less fortunate in their personal and professional lives.
My dad was a police officer, helping protect the citizens of our city. My mom
volunteered with the children’s ministry at church. I was exposed to many instances
of helping others. I recall once, in a routine trip to the grocery store, when my mom
brought groceries for two brothers who were asking for money outside the store
to buy food. Rather than simply give them the money, she brought them everyday
staples like milk, cereal, bread, and lunch meat—so they could eat for more than a
day or so. My family was not affluent nor well off. I learned helping others doesn’t
require a lot of money, but it calls for humility.
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From an early age, I developed a heart to help others. I volunteered with the
Skid Row Ministry at my church to help sort through donated food and clothing for
those in need. I was a youth leader and active in a local youth fellowship, using my
computer skills to prepare handouts and programs for participants. In high school, I
was a member of the Student Government. For two summers while in high school,
I attended a minority engineering summer institute at a local university. Despite
the program being hosted by the School of Engineering, it was designed to provide
STEM enrichment for students from surrounding public schools. Exposure to those
helping underprivileged and underrepresented students cultivated my appreciation
for helping others through organized programs.

Throughout undergrad, I looked for opportunities to improve the lives of
others and support my community. I continued as a youth leader. I was a Civil
Engineering major learning to build safe buildings and roads. I ultimately changed
to mathematics and took a few courses for future teachers. It was important to me
to not only study something I enjoyed, but also I wanted to earn a degree where I
might help others.

During my PhD program, I was not a traditional grad student. My days weren’t
solely filled with research and teaching. I mentored middle school girls in a STEM
enrichment program in north Mississippi with a local public service organization.
I was an officer in the University of Mississippi’s Graduate Student Council. As
Secretary and ultimately Vice President, I represented my fellow graduate students
around campus in various capacities. I had the opportunity to travel to Washington,
D.C. to lobby on behalf of UM graduate students regarding the taxes required for
graduate student stipends. I was amazed of the immediate access I, or anyone, could
have to our elected officials. I saw first-hand how I could have my voice be heard,
especially as I represented my graduate student community. This helped to further
peak my interest in public service.

2 Public Service in a Formal Role

Notwithstanding my unique public service exposure in graduate school, I contin-
ued on the road to an academic career. I sought a tenure-track position. After
graduate school, I accepted a visiting assistant professor position at Wake Forest
University and worked to improve my teaching and research. While attending
the SACNAS (Society for the Advancement of Chicano and Native Americans
in Science) conference that fall, I learned of the American Association for the
Advancement of Sciences (AAAS). The AAAS is a long-standing international non-
profit organization dedicated to advancing science for the benefit of all people. The
AAAS sponsors a Science and Technology Policy Fellowship to provide the nation’s
outstanding scientists and engineers a hands-on opportunity to learn and engage in
policymaking as well as to provide them knowledge and analytical skills in the
federal government.
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For over 40 years, the AAAS S&T Fellowship program has hosted fellows in
the Legislative, Executive, and Judicial Branches of the US Government. Close to
900 applications are received once a year from PhD scientists for approximately
250 placements. (Engineers can apply with a masters.) Depending on a fellow’s
placement, they will spend 12 months working among federal employees at one of
the approximately 430 federal departments, agencies, and sub-agencies in the DC-
metro. Fellow’s experiences range from working with the United States Agency
for International Development (USAID) to provide technology assistance after
a national disaster in a third-world country to informing the strategic planning
of international multifaceted partnerships with the Department of Energy (DOE).
Exposure to this unique learning experience inspired me to begin to explore my
options outside of academia.

I took steps to prepare myself to apply for this fellowship. While in my tenure-
track position at Norfolk State University, I took public policy courses at a local
university. I completed requirements for a graduate certificate in public policy
analysis. I preferred to take classes in person because it gave me the opportunity
to interact and engage with peers outside of my math network. I expanded my
research portfolio. For two summers, I conducted research with NASA and the US
Navy, respectively. I wanted to learn and do math in areas which had an impact
on the public in some form. These research experiences exposed me to real-world
applications of math, expanded my professional network, and gave an initial view
of working for the federal government. I became even more active in my local
community. I continued working to provide STEM enrichment to underrepresented
girls. I also volunteered on several local, state, and national political campaigns. I
believed it was important to branch out from the STEM academic community.

The American Mathematical Society (AMS), in conjunction with the AAAS,
award one PhD mathematician to serve as AMS/AAAS Congressional Fellow. In
2012, I was awarded the AMS Congressional Fellowship. I took leave from my
tenure-track position at Norfolk State University to work on Capitol Hill—the
extraordinary opportunity I’d been working toward.

My work with Congress was a whirlwind. The work of Congress can be
fast paced despite the intentionally slow legislative process. I served as a staffer
supporting a policy portfolio which included cybersecurity, science, and homeland
security. I worked in both a personal House office and on the majority staff of the US
Senate Homeland Security and Government Affairs Committee (HSGAC) prepping
the chair for two congressional hearings.

There is a great deal of analytical thinking in the Halls of Congress by members
and their staff. Critical thinking and problem solving are the required activities no
matter the party affiliation. Math, as most of us know it, doesn’t really appear every
day in policymaking. Not because math isn’t necessary to make important decisions,
but because at that level of policymaking, only the final outcomes matter. Legislators
must make tough decisions on behalf of their constituents who care about the bottom
line—how the policy will impact their lives. My time on “The Hill” opened my eyes
to the impact of science and mathematics on policy and decision-making. This rare
experience helped solidify my desire for a math career outside of academia.
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3 Goodbye Academia

During my year as AMS congressional fellow, I resigned from my position in
academia. I looked for work so I could continue to pursue and fulfill my desire
to use math in a way to impact my community and the world outside the classroom.
I faced a number of personal challenges in doing so. But with a newfound focus and
supportive network, I have been successful working in the public sector. My path
has encouraged others to consider doing the same.

3.1 You’ve Got the Right Stuff, Baby

My first hurdle in transitioning from academia was me. I didn’t always feel like
I was good enough in my new line of work. It took me time to feel comfortable
and confident in my abilities. Finding work outside of academia wasn’t always
determined by whether I had a PhD or not. Many people I have worked with
didn’t have a PhD. Being successful outside of academia is about being a problem
solver. As a PhD mathematician, I’d learned and become an expert problem solver.
I could synthesize mass amounts of information quickly and use the knowledge to
expand my problem-solving capabilities. I learned how to abstract key aspects from
a problem necessary to develop a meaningful solution.

To this end, I found it critical to re-brand myself. It was vitally important to
highlight these KSAs (knowledge, skills and abilities). During my congressional
fellowship, I interacted with other scientists who had completed the Science and
Technology Policy Fellowship and chose not to return to their academic positions.
As fellows, we were offered workshops on effective communication as a scientist
and remarketing our diverse skill set acquired during the PhD process. I re-
marketed my experiences to connect with government hiring managers and fit
job descriptions. Academic jobs have a standard job description—effective teach-
ing, produce research/publications and grantsmanship. Government positions have
standard job qualifications—effective written and oral communication, strategic
problem solving, ability to plan, analyze, coordinate, and evaluate priorities. While
expressed differently, a critical analysis yields the abilities sought after in academia
are similarly sought in the government.

I took advantage of opportunities to engage leadership and other stakeholders
on projects I worked on. While working on a data analytics project for the US
Citizenship and Immigration Services (USCIS), I talked to a seasoned contractor
working on our project. I asked about their career progression and sought career
advice for this new environment. The response had become a familiar one. “You’re
smarter than me, you easily could do this.” I was readily impressed by their skills
and capabilities as we completed project tasks. It was a confidence builder knowing
they were impressed with what I brought to the table. I found that despite being in a
new environment, under new circumstances, I had the right skills and abilities to be
successful.
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3.2 Finding Solace

Another hurdle I dealt with was feeling like I had I betrayed the math community
by not remaining in the classroom and continuing research in an academic position.
It felt like if I didn’t remain to do research, teach, and apply for and earn tenure
I was not a good mathematician. Primarily, I was encouraged to follow the path
of academia because of my pure math training. It was a natural progression. In
addition, given the growing diversity of students, I’ve grown to believe in the
significance of having proportional numbers of women and underrepresented groups
in academic positions.

My graduate research appeared not to have real-world applications. In pure math,
initially, I just didn’t study or look for applications of my research. There always
seems to be two paths for a mathematician: pure and applied. Working in academia,
I believed I was expected to seek to expand math only through research. It took me
several years to become openly comfortable with exploring real-world applications
of my research. I realize that not all math needs to have everyday applications to be
meaningful. I greatly respect those who do math for math’s sake. It is important and
necessary to expand the mathematical world. I could not however continue to deny
my own desire to do math for the public’s sake.

I found solace in a small but growing part of my math community who supported
me in my effort to establish a different kind of math career, one I was defining. As
I became more comfortable in expressing my new math focus, I received support
from close math friends and mentors. One mentor gave me a book on financial math
after I enthusiastically shared a recent experience and considered pursing work in
the field. I’ve found in recent years growing efforts within the math community to
support those seeking careers in the mathematical sciences outside of academia. One
organization is the BIG Math network (Business, Industry, and Government) who
has partnered with the AMS, MAA, and SIAM, among others, to bring together the
math community to expand awareness of BIG careers for mathematical scientists.

4 Real-World Math and Policy

As I continue on this career path, I seek to remain aware and expand my scope
of the use math in the public sector. It is important to me to be aware of the
applications of math in the real world. In addition to increasing my real-world math
awareness, I wanted to know and understand potential policy outcomes of these
applications. Here are two instances of how math impacts the world around us.
These two examples have led to discussions, development, and implementation of
policies, which protect and support the lives of citizens and residents across the USA
and the world.



382 C. D. Cotwright-Williams

4.1 Keeping Data Safe

The federal government collects and uses administrative data every day. When we
apply for passports or financial aid, we provide our personal information in order to
complete our desired transactions. Data are collected and stored for processing. Our
data must be kept safe and secure. My time at the US Social Security Administration
included working in the Office of Information Security, where I examined the
methods of securing the data of the 65 million people who receive social security
benefits and the 165 million people who pay into social security each year.

The National Institute of Standards and Technology (NIST) establishes the
standards and frameworks for federal government information security capabilities.
One method to secure electronic communication, developed by the scientists and
mathematicians at NIST, are hash functions. Hash functions are used for computer
security applications like message authentication and password verification. A
critical characteristic of hash functions is that they are not easily invertible. It is
extremely difficult to determine the original inputs for advanced hash functions.

In the mid-2000s, through the use of mathematics and brute computer force,
hackers were able to crack early hash function encryption. Soon after, NIST
moved to use and recommend the use of a stronger hash functions in protecting
the data stored in federal information systems. Legislation such as the Federal
Information Security Modernization Act of 2014 (FISMA 2014), was enacted to
ensure appropriate techniques and technology are implemented to secure federal
information systems.

4.2 Autonomous Vehicles

A few years ago, I conducted research at the NASA Ames Research Center. I worked
with a team of engineers and computer scientists to develop and improve Avionics—
the electrical systems of airplanes and space vehicles. The team examined avionic
systems health in an effort to create methods and technology to diagnose the systems
health of avionic and autonomous vehicles.

These electrical power systems can be modeled with graphs or networks.
Bayesian networks are frequently used to construct diagnostic and prognostic
systems. Given my background in graph theory, I examined the connections between
random graphs and Bayesian networks to help identify graph analytic properties
which could be used to minimize the propagation time of these analytic systems.

Autonomous vehicles, using this technology, have gained notoriety in recent
years with the potential of the availability to the public. Under laboratory conditions
and in computer models, predictive models work well in determining how these
vehicles will function. However, predicting human behavior in the real world, a
critical variable in the use of self-driven vehicles, can be extremely difficult resulting
in performance uncertainty and safety concerns. Prior to the public release of this
technology, entities such as the US Department of Transportation (USDOT) are
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developing policies and guidance for the development and testing of automated
vehicle technology to ensure safe deployment of self-driven vehicles for public use.

5 A Mathematician by Any Other Name Is Still
a Mathematician

Since changing career paths, I’ve held the titles “computer scientist,” “senior
research analyst,” and “data scientist” but I have not been formally called “math-
ematician.” I was the technical lead on the data quality project with US Citizenship
and Immigration Services (USCIS). I have worked with the Social Security Admin-
istration, (SSA), on a number of the agency’s high-profile information technology
projects, such as the launch of SSA’s cloud infrastructure and developing anti-fraud
data analytics. My work involved various aspects of my math ability, but even more
so, my problem solving and communication skills.

I now appreciate that I am just as much a contributor to the math community
as I would be in the classroom or on a university campus. I continue to research,
teach, and mentor but the goals and final outcomes are measured differently. It’s not
always for a grade or evaluation, but I do it to help others be better at their jobs so
that we all do a better job of providing services and safety to improve the daily lives
of the public we serve.

I have discovered I am a better mathematician than I give myself credit for
being. After many years of personal challenges and self-doubt, I am confident in
what I bring to my organization as a public servant. I knew I wanted to have an
impact on the world in a different way—outside of academia. I continued to seek
out opportunities to use mathematics, critical thinking, and analytical skills to make
a broader impact on society.

Mathematicians may not always find themselves solving actual math problems.
They often find themselves facing large sums of information, an unclear problem,
and the urgent need for a solution to the problem. As a PhD mathematician and
former member of academia, I found that the skills I gained as a graduate teaching
assistant and assistant professor prepared me to take on the most abstract and
vague problems to find possible solutions in the real world. Attacking a problem
systematically and synthesizing vast amounts of data to identify viable solutions are
not skills the average person possesses, but mathematicians do!

The world is a big place. There is a substantial amount of important work to
do to make the world a better place. I want to do my part in making it better.
I have unique exposure, experiences and a perspective of public service, which I
find deeply satisfying and rewarding. Local, state, and federal governments need a
variety of skilled workers to do the work of the people. Mathematicians who are
interested in using their knowledge and skills to help improve the lives of others
should consider a career in public service.

Mathematicians are equipped with skills to address and help find solutions to the
toughest of problems faced by the government.



Reflections on the Challenges of
Mentoring

Carol Wood

Abstract Mentoring mathematics students continues to be a challenge, for me and
surely for others. I taught in the EDGE Program at Spelman in the summer of
2004. To help students make the transition from undergraduate to graduate school, I
decided to offer a sample of a first year graduate algebra course. While this was not a
terrible approach, it missed the mark on some of the key goals of the program. In this
article I describe the challenges of mentoring young women at this stage, with more
questions than answers. Along the way I mention some of my own experiences, and
my observations of the power of the EDGE Program.

Before preparing this article, I learned from the EDGE website that nine of the
fourteen students in EDGE 2004 had completed PhDs in the mathematical sciences,
seven of these within 6 years. This strikes me as a great result, and reassures me
that I did not do substantial harm that summer. Of course these were—and are—
exceptional women, of whom one expects success. But I too often meet a young
woman and think “this one cannot fail” and then she disappears off the radar.

In 2004 I had been on the faculty at Wesleyan University for over 30 years, and
had taught graduate algebra often. My research area is model theory, a branch of
logic, in my case heavily skewed toward applications in other parts of mathematics,
of which algebra was my first love. I was invited to teach in EDGE on the
recommendation of Robert Bozeman; he and I had served together writing the GRE
Math subject test, and he had noticed my fondness for algebra questions. I was
happy to accept, having admired the work that Sylvia Bozeman and Rhonda Hughes
did with the EDGE Program, plus I had a good friend Teresa Edwards who was at
Spelman at the time. In addition, I am an advocate for women, including having
served as a president of the Association for Women in Mathematics. One memorable
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if trivial moment came during my AWM term when I tilted with the CEO of Mattel,
a woman, when talking Barbie said “math class is hard.” I’m not sure the CEO got
it, but the general outcry made Barbie’s talking career mercifully brief.

Wesleyan has a small doctoral program, with a number of US based students
coming from small colleges. Like many EDGE participants, they are good at
mathematics but have limited experience with material beyond the undergraduate
curriculum. The traditional first year graduate courses in algebra and analysis can
pose difficulties. EDGE made a smart strategic choice in providing courses in these
two areas as part of its summer program.

I studied at a liberal arts college for women, where I had the great luck to
find there two exceptional women in the mathematics department, Evelyn Wiggins
Casner and M. Gweneth Humphreys, both with doctorates from the University of
Chicago. In light of my ambition, they advised me to learn more mathematics than
the curriculum in the major offered, and even suggested I transfer to a university
after 2 years. But I dug in my heels, staying for four happy years, taking courses in
many subjects, and adding mathematics via reading courses and summer programs
at other institutions. I entered graduate school a bit deficient in analysis but well
prepared in algebra and topology, and with an interest in logic also. My first year
experience was the proverbial drinking from a fire hose. I aver that all graduate
students should learn as much mathematics as possible, most especially during the
first year, and without asking why. It’s professional preparation, that’s why!

I decided to cast my teaching in the EDGE Program as professional training, with
fast-moving formal lectures in group theory: theorem, proof, examples—in essence,
algebra boot camp. Their understanding of the lectures was tested with problem sets.
It soon became apparent that this was very different from what the students had been
led to expect by the first half of the program. Nonetheless, I stubbornly chose for
them to be blown out of the water by me, instead of by their professors in the coming
year. US graduate programs are international, with foreign students who arrive with
strong backgrounds in mathematics. I had seen many small college students doubt
their own talents, when the only problem was that they were not as well prepared as
their international peers.

Even though I came from a small college myself, I was super confident, for which
I thank and blame my mother. As my sister once put it, our mother told us we could
do anything; she was the smartest and most competent person we knew and so we
took her word as gospel. In mathematics, confidence can be crucial to success, all
the more if one differs from the typical mathematician in some way such as gender
or color. My goal at EDGE was to build that confidence in a friendly environment
by helping the students see they could handle tough work.

The first clue that I was overdoing my approach came when the graduate mentors
asked me how to do the homework. I was grateful that they were willing to admit
what they did not know, a good sign for any mathematician. We scheduled faculty-
mentor sessions before they met with the students. I mentored the mentors, who in
turn mentored the students. These sessions were fun for me, and the mentors told
me both then and later that it was a good learning experience for them. It puzzled
me that most of the students did not approach me directly. Too scary I suppose. I
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should add that a couple of the participants were clearly on top of the material and
not at all reluctant to talk with me, but others struggled. With fourteen students it
should have been possible for me to adapt, but it was hard to figure out how in real
time.

Fortunately the EDGE students were resilient. They did what I demanded,
mostly tolerant of my taking a big chunk of their time. They made it clear they
had not expected to work this hard, and I began to realize that the bonding time
and supportive environment of the program were at least as important as their
comprehension of group theory. But I was a woman on a mission! I had experience
in having to stand my ground in the world of mathematics. I had learned to play
by what I call “boys’ rules,” and wanted to give them a sense of how to navigate
that world. I had also served on visiting committees at small colleges where I
was shocked at how women students were coddled. I was appalled when faculty
explained that the women were not capable of facing serious challenges. This did
them no favor; indeed, some women realized they were hothouse plants and told
me that they had developed strategies for hardening off, such as taking courses at
nearby graduate programs to sample the real world.

Despite my social ineptitude, I was able to share some of my own stories,
including my first crisis of confidence. Qualifying exams in my graduate program
were oral. There was no special syllabus and no information about the committee
other than it would be one person from each of three general areas: algebra, analysis,
and topology. During the 2 weeks leading up to my exam I began to panic, and
concluded that I knew almost nothing. I recalled a strategy from memorizing piano
music, namely to overlearn the material. There was no way to overlearn everything,
so I picked one thing: Galois theory. I learned the theorems and their proofs down
cold. This was calming for me: at least I knew something. In a stroke of serendipity,
the first question at my exam was “can you tell me something about Galois theory?”
The examining committee had a hard time getting me to stop talking Galois theory
in order to move on to other topics. By then, I was on my way!

There was another down side to my approach to teaching in EDGE. Rhonda,
Ami, and Sylvia were lively and fun, with social skills that I observed with
admiration but with no hope of emulating. My tough love turned out to be isolating,
plus I’m a lousy dancer. This is not to say that I did no socializing, but I had
established myself as someone other than a pal.

Luckily I underestimated the power of the EDGE Program and the perseverance
of the women involved. The students were tolerant and kind, and experienced in
navigating demands placed on them throughout their lives. Over the years I have felt
their warmth toward me when we encounter each other at the annual math meetings.
I continue to be in awe of these remarkable women.

What is my takeaway from this one time experience at EDGE? There is a fine
line to be walked in encouraging students in mathematics and at the same time in
preparing them to succeed in mathematics. Make it too hard and they shut down.
Make it too easy and they get clobbered later. Finding a balance is not a natural skill
for most mathematicians, certainly not for me. I have tried and succeeded at times,
and have failed at other times. Thus it was at EDGE.
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Another balancing act involves providing helpful signposts and warnings. I
wanted to guide the EDGE women as they figured out how to learn mathematics,
whom to trust, and whom to ignore. In such matters there are no easy answers,
at least none that I have found. No one questioned my right or ability to do
mathematics until I entered graduate school, and then only a couple of peers, far
too late to dissuade me. Still, unpleasant experiences or even poor advice can be a
huge distraction, another reason it is important to be optimistic and not bitter. One
benefit of the passage of time is that I now feel much more free to tell my own horror
stories, since they are so far in the past that they are met with disbelief—and also
because I can laugh about them myself. Perhaps the best I can do now is to show
up. I am always astonished—but pleased—when a former student or colleague tells
me it mattered to have me as a role model (warts and all).

Thinking long and hard about the challenges of mentoring has brought me no
clear solutions although the EDGE experience heightened my awareness of the
problems. Some successful mathematical mentors barely recognize that the students
are a different gender or color; I have seen students relax when they sense this
detachment. Luckily, much wisdom went into the design of the EDGE Program,
and the effect produced by the program is profound. The EDGE Program takes a
proactive approach, in providing a network and a safety net for a student who—like
almost all of us—is bound to hit stumbling blocks. Having both peer group and
mentors matters a lot. We all need to be able to share bizarre encounters, if only
to learn that we are not among the crazy persons in the story. EDGE provides a
network of colleagues who expect a young woman to get up and dust herself off,
and who will cheer her on. It would take much more than my boot camp insanity to
derail that!

I took a colleague along to an EDGE reunion at the Joint Mathematics Meetings.
Over dessert we heard reports of successes such as “passed my prelims” and
“defended my thesis.” The spirit in that room was inspiring. He, as an outsider and
experienced teacher, was dazzled. Me too.
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