
Chapter 2
Sensor-Based Activity Recognition
Review

2.1 Introduction

The idea of using sensors for activity monitoring and recognition has been existent
since the late 90s. It was initially pioneered and experimented by the work of the
Neural Network house [1] in the context of home automation, and a number of
location-based applications aiming to adapt systems to users’ whereabouts [2, 3]. The
approach was soon found to be more useful and suitable in the area of ubiquitous and
mobile computing—an emerging area in the late 90s, due to its easy deployment.
As such, extensive research has been undertaken to investigate the use of sensors
in various application scenarios of ubiquitous and mobile computing, leading to
considerablework on context-awareness [4–6], smart appliances [40, 41] and activity
recognition [7–10]. Most research at that time made use of wearable sensors, either
dedicated sensors attached to human bodies or portable devices like mobile phones,
with application to ubiquitous computing scenarios such as providing context-aware
mobile devices. Activities being monitored in these researches are mainly physical
activities like motion, walking and running. These early works lay a solid foundation
for wearable computing and still inspire and influence today’s research.

In the early 2000s, a new sensor-based approach that uses sensors attached to
objects tomonitor human activities appeared. This approach, which was later dubbed
as the “dense sensing” approach, performs activity recognition through the inference
of user-object interactions [11, 12]. The approach is particular suitable for dealing
with activities that involve a number of objects within an environment, or instrumen-
tal Activities of Daily Living [13, 14]. Research on this approach has been heavily
driven by the intensive research interests and huge research effort on smart home-
based assistive living, such as the EU’s AAL program [15]. In particular, sensor-
based activity recognition can better address sensitive issues in assistive living such
as privacy, ethics and obtrusiveness than conventional vision-based approaches. This
combination of application needs and technological advantages has stimulated con-
siderable research activities in a global scale, which gave rise to a large number of
research projects, including theHouse_n,CASAS,Gator-Tech, inHaus,AwareHome,
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DOMUS and iDorm projects, to name but a few. As a result of the wave of intensive
investigation, there have seen a plethora of impressive works on sensor-based activity
recognition in the past several years.

While substantial research has been undertaken, and significant progress has been
made, the two main approaches, wearable sensors based and dense sensing based
activity recognition are currently still focuses of study. The former is mainly driven
by the ever-popular pervasive andmobile computingwhile the latter is predominantly
driven by smart environment applications such as ambient assisted living. Interests
in various novel applications are still increasing and application domains are rapidly
expanding.

2.2 Sensor-Based Activity Monitoring

Currently a wide range of sensors, including contact sensors, RFID, accelerometers,
audio and motion detectors, to name but a few, are available for activity monitoring.
These sensors are different in types, purposes, output signals, underpinning theo-
retical principles and technical infrastructure. However, they can be classified into
two main categories in terms of the way they are deployed in activity monitoring
applications. These are wearable sensors and dense sensors, and are described in
details in the following.

2.2.1 Wearable Sensor Based Activity Monitoring

Wearable sensors generally refer to sensors that are positioned directly or indirectly
on a human body. They generate signals when the user performs activities. As a
result, they can monitor features that are descriptive of the person’s physiological
state ormovement.Wearable sensors can be embedded into clothes, eyeglasses, belts,
shoes, wristwatches, mobile devices or positioned directly on the body. They can be
used to collect information such as body position and movement, pulse, and skin
temperature. Researchers have found that different types of sensor information are
effective for classifying different types of activities. In the following, we summarise
the common practice in wearable sensor-based activity monitoring.

Accelerometer sensors are probably the most frequently used wearable sensor for
activity monitoring. They are particularly effective in monitoring actions that involve
repetitive body motions, such as walking, running, sitting, standing, climbing stairs.
Bao et al. [11] provide a summary of research work that recognises human activities
using acceleration data. Kern et al. [16] deploy a network of 3-axis accelerometers
distributed over the user’s body. Each accelerometer provides information about
the orientation and movement of the corresponding body part. Lukowicz et al. [17]
recognize workshop activities using body-worn microphones and accelerometers.
Measuring acceleration and angular velocity (the angle of the user’s thigh) through
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wearable sensors, such as accelerometers and gyroscopes, Lee et al. [10] propose
a dead-reckoning method for determining a user’s location and recognizing sitting,
standing and walking behaviours. Mantyjarvi [18] recognises human ambulation and
posture on acceleration data collected from the hip.

GPS sensors are another widely used wearable sensor for monitoring location-
based activities in open pervasive and mobile environments. Patterson et al. [12]
present details of detecting human high-level behaviour from a GPS sensor stream,
such as boarding a bus at a particular bus stop, travelling and disembarking.Ashbrook
et al. [19] useGPS to learn significant locations and predictmovement acrossmultiple
users. Liao et al. [20] learn and infer a user’s mode of transportation and their goal in
addition to abnormal behaviours (e.g., taking a wrong bus) based on GPS data logs.

Biosensors are an emerging technology aiming to monitor activities through vital
signs. A diversity of sensors in different forms has been studied in order to measure
the wide range of vital signs such as blood pressure, heart rate, EEG, ECG and
respiratory information. Sung et al. [21] monitor the body temperature of soldiers to
detect hypothermia. Harms et al. [22] use information gathered by a smart garment
to identify body posture.

In addition to the investigation of different wearable sensors for activity mon-
itoring, research on the support and novel application of wearable computing has
been undertaken. Pantelopoulos et al. [23] present a survey on wearable systems
for monitoring and early diagnosis for the elderly. Dakopoulos and Bourbakis [24]
present a survey on wearable obstacle avoidance electronic travel aids for visually
impaired. Yoo et al. [25] design on-body and near-body networks that use the human
body itself as a channel for creating BodyNets. Cooper and Au use wearable sensors
to design and evaluate assistive wheelchairs [26] and smart walking sticks [27]. Kim
et al. [28] use wearable sensors to recognize gestures. Madan et al. [29] characterize
a person’s social context by evaluating a user’s proximity, speech, head movements
and galvanic skin response.

Wearable sensor-based activity monitoring suffers from limitations. Most wear-
able sensors need to run continuously and be operated hands-free. This may have
difficulties in real-world application scenarios. Practical issues include the accept-
ability or willingness to use wearable sensors and the viability and ability to wear
them. Technical issues include the size, ease of use, battery life and effectiveness of
the approach in real-world scenarios. To address these issues, vigorous investigation
of smart garments has been carried out, which aims to embed sensors in garments
for monitoring [30]. Another research thread is to make use of existing gadgets that
have already been carried in a daily basis like smartphones as intelligent sensors for
activity monitoring, recognition and assistance. This practice has been in place for
a while and is expected to gain large-scale uptake given the latest development and
affordability of such palm-held electronic devices.

Obviously, wearable sensors are not suitable for monitoring activities that involve
complex physical motions and/or multiple interactions with the environment. In
some cases, sensor observations from wearable sensors alone are not sufficient to
differentiate activities involving simple physical movements (e.g., making tea and
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making coffee). As a result, dense sensing based activity monitoring has emerged,
which is described below.

2.2.2 Ambient Sensor Based Activity Monitoring

Ambient sensor based activity monitoring refers to the practice that a large number
of ambient sensors are attached to objects within an environment, and activities are
monitored by detecting user-object interactions. The approach is based on real-world
observations that activities are characterized by the objects that are manipulated
during their performance. A simple indication of an object being used can often
provide powerful clues about the activity being undertaken. As such it is assumed
that activities can be recognised from sensor data that monitors human interactions
with objects in the environment. By dense sensing, we refer to the way and scale with
which sensors are used. Using dense sensing a large number of sensors, normally
low-cost low-power and miniaturized, are deployed in a range of objects or locations
within an environment for the purpose of monitoring movement and behaviour.

As dense sensing-based monitoring embeds sensors within environments, this
makes it more suitable for creating ambient intelligent applications such as smart
environments. As such, dense sensing-based activity monitoring has been widely
adopted in ambient assisted living (AAL), via the smart home paradigm [14]. Sensors
in an SH can monitor an inhabitant’s movements and environmental events so that
assistive agents can infer the undergoing activities based on the sensor observations,
thus providing just-in-time context-aware ADL assistance. For instance, a switch
sensor in the bed can strongly suggest sleeping, and pressure mat sensors can be
used for tracking the movement and position of people within the environment.

Since the introduction of the idea in the early 2000s, extensive research has been
undertaken to investigate the applicability of the approach in terms of sensor types,
modalities and applications. For example, Tapia et al. [64] use environmental state-
change sensors to collect information about interaction with objects and recognize
activities that are of interest to medical professionals such as toileting, bathing, and
grooming.Wilson et al. [31] use four kinds of anonymous and binary sensors, motion
detectors, break-beam sensors, pressure mats, and contact switches for simultane-
ous tracking and activity recognition. Wren et al. [32] employ networks of passive
infrared motion sensors to detect the presence and movement of heat sources. With
this captured data they can recognize low-level activities such as walking, loitering,
and turning, as well as mid-level activities such as visiting and meeting. Srivastava
et al. [33] exploit wireless sensor network to develop a smart learning environment
for young children. Hollosi et al. [34] use voice detection techniques to perform
acoustic event classification for monitoring in Smart Homes. Simple object sensors
are adopted in [35].

Given the abundance of different types and modalities of sensors, sensors have
been used in different ways and combinations for dense sensing activity monitoring
in many application scenarios. It is impossible to claim that one sensor deployment
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for a specific application scenario is superior to the other. The suitability and per-
formance is usually down to the nature of the type of activities being assessed and
the characteristics of the concrete applications. As such, in this chapter, we shall not
discuss in detail the different usage of dense sensing in various scenarios but simply
introduce its rationale as described above.

Generally speaking, wearable sensor-based activity monitoring receives more
attention in mobile computing while dense sensing is more suitable for intelligent
environment enabled applications. It is worth pointing out that wearable sensors
and dense sensing are not mutually exclusive. In some applications, they have to
work together. For example, RFID (Radio Frequency Identification) based activ-
ity monitoring requires that objects are instrumented with tags and users wear an
RFID reader affixed to a glove or a bracelet. Philipose and Fishkin [36, 37] devel-
oped two devices, iGlove and iBracelet, working as wearable RFID readers that
detect when users interact with unobtrusively tagged objects. Patterson et al. [38]
performed fine-grained activity recognition (i.e., not just recognising that a person
is cooking but determining what they are cooking) by aggregating abstract object
usage. Hodges et al. [39] proposed to identify individuals from their behaviour based
on their interaction with the objects they use in performing daily activities. Buettner
et al. [40] recognize indoor daily activities by using an RFID sensor network. In
most cases, wearable sensors and dense sensing are complementary and can be used
in combination in order to yield optimal recognition results. For example, Gu et al.
[41] combine wearable sensors and object sensors for collecting multimodal sensor
information. Through a pattern-based method, they recognize sequential, interleaved
and concurrent activities.

While substantial research has been undertaken, and significant progress has been
made, the two main approaches, wearable sensors based and dense sensing-based
activity recognition are currently still focuses of study. The former is mainly driven
by the ever-popular pervasive andmobile computingwhile the latter is predominantly
driven by smart environment applications such as ambient assisted living. Interests
in various novel applications are still increasing and application domains are rapidly
expanding.

2.3 Data-Driven Approaches to Activity Modelling
and Recognition

Data-driven activity modeling can be classified into two main categories: generative
and discriminative. In the generative approach, one attempts to build a complete
description of the input or data space, usually with a probabilistic model such as
a Bayesian network. In the discriminative approach, one only models the mapping
from inputs (data) to outputs (activity labels). Discriminative approaches include
many heuristic (rule-based) approaches, neural networks, conditional random fields
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and linear or non-linear discriminative learning (e.g. support vector machines). In
the following, we cover major results using each of these methods.

2.3.1 Generative Methods

The simplest possible generative approach is the naïve Bayes classifier, which has
been used with promising results for activity recognition. Naïve Bayes classifiers
model all observations (e.g. sensor readings) as arising froma common causal source:
the activity, as given by a discrete label. The dependence of observations on activity
labels is modelled as a probabilistic function that can be used to identify the most
likely activity given a set of observations.Despite the fact that these classifiers assume
conditional independence of the features, the classifiers yield good accuracy when
large amounts of sample data are provided. Nevertheless, naïve Bayes classifiers
do not explicitly model any temporal information, usually considered important in
activity recognition.

The Hidden Markov Model (HMM) is probably the most popular generative
approach that includes temporal information. A HMM is a probabilistic model with
a particular structure that makes it easy to learn from data, to interpret the data once
a model is learned, and is both easy and efficient to implement. It consists of a set of
hidden (latent) states coupled in a stochastic Markov chain, such that the distribution
over states at some time depends only on the values of states at a finite number
of preceding times. The hidden states then probabilistically generate observations
through a stochastic process. HMMs made their impact initially through use in the
speech recognition literature, where latent states correspond to phoneme labels, and
observations are features extracted from audio data. HMMs have more recently been
adopted as a model of choice in computer vision for modelling sequential (video)
data. HMM use a Markov chain over a discrete set of states. A closely relative of the
HMMuses continuous states, amodel usually referred to as a linear dynamical system
(LDS). State estimation in LDSs is better known as a Kalman filter. LDSs have been
used with inputs from a variety of sensors for physiological condition monitoring
[42] in which a method is also introduced to deal with unmodelled variations in data,
one of the major shortcomings of the generative approach.

HMMs form the basis of statistical temporal models. They are, in fact, a special
case of the more general dynamic Bayesian networks (DBNs), which are Bayesian
networks inwhich a discrete time index is explicitly represented. Inference and learn-
ing in DBNs is simply an application of network propagation in Bayesian networks.
DBNs usually make a Markovian assumption, but explicitly represent conditional
independencies in the variables, allowing for more efficient and accurate inference
and learning. A well-known early use of DBNs for activity monitoring was in the
Lumière project, where a Microsoft Windows user’s need for assistance was mod-
elled based on their activities on the screen [43].

A simple DBN extension of HMMs is the coupled HMM for recognition of simul-
taneoushumanactions.CoupledHiddenMarkovModels (CHMMs)have twoMarko-
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vian chains, each modelling a different stream of data, with a coupling between them
to model their inter-dependence. Oliver et al. [57] learn a multi-layer model of office
activity to choose actions for a computational agent. The model uses multimodal
inputs, making only very slight use of computer vision. The Assisted Cognition
project [44] has made use of DBNs, in particular for Opportunity Knocks [20], a
system designed to provide directional guidance to a user navigating through a city.
This system uses a three level hierarchical Markov model represented as a DBN to
infer a user’s activities from GPS sensor readings. Movement patterns, based on the
GPS localization signals, are translated into a probabilistic model using unsuper-
vised learning. From the model and the user’s current location, future destinations
and the associated mode of transportation can be predicted. Based on the prediction,
the system has the ability to prompt the user if an error in route is detected.

Wilson and Atkeson [31] use DBNs to simultaneously track persons and model
their activities from a variety of simple sensors (motion detectors, pressure sensors,
switches, etc.). DBNs were also used in the iSTRETCH system [45], a haptic robotic
device to assist a person with stroke rehabilitation. The DBN models the person’s
current behaviours, their current abilities, and some aspects of their emotional state
(e.g. their responsiveness, learning rate and fatigue level). The person’s behaviours
correspond to how long they take for each exercise, what type of control they exhibit
and whether they compensate. These behaviours are inferred from sensors on the
device and in the person’s chair.

Even though they are simple and popular, HMMs and DBNs have some limita-
tions. A HMM is incapable of capturing long- range or transitive dependencies of the
observations due to its very strict independence assumptions (on the observations).
Furthermore, without significant training, a HMMmay not be able to recognize all of
the possible observation sequences that can be consistent with a particular activity.

2.3.2 Discriminative Methods

A drawback of the generative approach is that enough data must be available to
learn the complete probabilistic representations that are required. In this section, we
discuss an alternative approach for modelling in which we focus directly on solving
the classification problem, rather than on the representation problem. The complete
data description of a generative model induces a classification boundary, which can
be seen by considering every possible observation and applying the classification
rule using inference. The boundary is thus implicit in a generative model, but a lot
of work is necessary to describe all the data to obtain it. A discriminative approach,
on the other hand, considers this boundary to be the primary objective.

Perhaps the simplest discriminative approach is Nearest Neighbor (NN), in which
a novel sequence of observations is compared to a set of template sequences in a
training set, and the most closely matching sequences in the training set vote for their
activity labels. This simple approach can often provide very good results. Bao and
Intille [11] investigated this method along with numerous other base-level classifiers
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for the recognition of activities from accelerometer data. They found that the simple
nearest neighbor approach is outperformed by decision trees, a relatedmethod, where
the training data is partitioned into subsets according to activity labels and a set of
rules based on features of the training data. The rules can then be used to identify the
partition (and hence the activity label) corresponding to a new data sample. Maurer
et al. [46], employed decision trees to learn logical descriptions of activities from
complex sensor readings from a wearable device (the eWatch). The decision tree
approach offers the advantage of generating rules that are understandable by the
user, but it is often brittle when high precision numeric data is collected. Stikic and
Schiele [47] use a clustering method in which activities are considered as a “bag of
features” to learn template models of activities from data with only sparse labels.

Many discriminative approaches explicitly take into account the fact that, for
classification, it is actually only the points closest to the boundary that are of interest.
The ones very far away (the “easy” ones to classify) do not play such a significant
role. The challenge is therefore to find these “hard” data points (the ones closest
to the boundary). These data points will be known as the “support vectors”, and
actually define the boundary. A support vector machine (SVM) is a machine learning
technique to find these support vectors automatically. A recent example of an SVM
in use for activity modelling is presented by Brdiczka et al. [48] where a model of
situations is learned automatically from data by first learning roles of various entities
using SVMs and labelled training data, then using unsupervised clustering to build
‘situations’ or relations between entities, which are then labelled and further refined
by end users. The key idea in this work is to use a cognitive model (situation model)
based on cognitive theory motivated by models of human perception of behaviour
in an environment. The CareMedia project [49] also uses an SVM to locate and
recognize social interactions in a care facility frommultiple sensors, including video
and audio. The fusion of video and audio allowed 90% recall and 20% precision
in identifying interactions including shaking hands, touching, pushing and kicking.
The CareMedia project’s goals are to monitor and report behaviour assessments in a
care home to caregivers and medical professionals.

Ravi et al. also found that SVMs performed consistentlywell, but also investigated
meta-level classifiers that combined the results of multiple base-level classifiers [50].
Features extracted from worn accelerometers are extracted and classified using five
different base-level classifiers (decision tables, decision trees, k-nearest neighbors,
SVM and Naïve Bayes). The meta-level classifiers are generated through a variety of
techniques such as boosting, bagging, voting, cascading and stacking. For recogniz-
ing a set of eight activities including standing,walking, running, goingup/downstairs,
vacuuming and teeth brushing, they found that a simple voting scheme performed
the best for three easier experimental settings, whereas boosted SVM performed best
for the most difficult setting (test/training separation across users and days).

In practice, many activities may have non-deterministic natures, where some steps
of the activities may be performed in any order, and so are concurrent or interwoven.
A conditional random field (CRF) is a more flexible alternative to the HMM that
addresses such practical requirements. It is a discriminative and generative proba-
bilistic model that represents the dependence of a hidden variable y on an observed
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variable x. Both HMMs and CRFs are used to find a sequence of hidden states
based on observation sequences. Nevertheless, instead of finding a joint probability
distribution p(x,y) as the HMM does, a CRF attempts to find only the conditional
probability p(y|x). A CRF allows for arbitrary, non-independent relationships among
the observation sequences, hence the added flexibility. Another major difference is
the relaxation of the independence assumptions, in which the hidden state probabil-
ities may depend on the past and even future observations. A CRF is modelled as
an undirected acyclic graph, flexibly capturing any relation between an observation
variable and a hidden state. CRFs are applied to the problem of activity recognition
in [51] where they are compared to HMMs, but only in a simple simulated domain.
Liao et al. [52] use hierarchical CRFs for modelling activities based on GPS data.
Hu and Yang [53] use skip-chain CRFs, an extension in which multiple chains inter-
act in a manner reminiscent of the CHMM, to model concurrent and interleaving
goals, a challenging problem for activity recognition. Mahdaviani and Choudhury
[54] show how semi-supervised CRFs can be used to learn activity models from
wearable sensor data.

2.3.3 Heuristic and Other Methods

Many approaches do not fall clearly into discriminative or generative categories,
but rather use a combination of both, along with some heuristic information. The
Independent Lifestyle Assistant (ILSA) is an example, as it uses a combination of
heuristic rules and statistical models of sequential patterns of sensor firings and time
intervals to help a person with planning and scheduling [55]. PEAT (the Planning
and Execution Assistant and Trainer) is a cognitive assistant that runs on a mobile
device and helps compensate for executive functional impairment. PEAT uses reac-
tive planning to adjust a user’s schedule based on their current activities. Activity
recognition in PEAT is based on what the user is doing, and on data from sensors on
the mobile device. These are fed into an HMM, the outputs of which are combined
with the reactive planning engine [56].

Other work has investigated how activities can be modelled with a combination of
discriminative and generative approaches [57], how common sense models of every-
day activities can be built automatically using data mining techniques [58], and how
human activities can be analysed through the recognition of object use, rather than the
recognition of human behaviour [59]. This latter work uses DBNs to model various
activities around the home, and a variety of radio frequency identification (RFID)
tags to bootstrap the learning process. Some authors have attempted to compare
discriminative and generative models [11, 50], generally finding the discriminative
models yield lower error rates on unseen data, but are less interpretable. Gu et al. [41]
use the notion of emerging patterns to look for frequent sensor sequences that can
be associated with each activity as an aid for recognition. Omar et al. [60] present a
comparative study of a variety of classification methods for analysing multi-modal
sensor data from a smart walker.
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The generative approach, which attempts to build a complete description of the
input or data space, usually with probabilistic analysis methods such asMarkovmod-
els [61] and Bayesian networks [48] for activity modelling. These methods incorpo-
rate an inhabitant’s preferences by tuning the initial values of the parameters of the
probabilistic models. The major disadvantage with such methods is that the model
is static and subjective in terms of probabilistic variable configuration. An alterna-
tive approach is referred to as the discriminative approach, which only models the
mapping from inputs (data) to outputs (activity labels). Discriminative approaches
include many heuristics (rule-based) approaches, for example, neural networks, lin-
ear or non-linear discriminant learning. They use machine learning techniques to
extract ADL patterns from observed daily activities, and later use the patterns as
predictive models [48]. Both approaches require large datasets for training models,
thus suffer from the data scarcity or the “Cold Start” problem. It is also difficult to
apply modelling and learning results from one person to another.

2.4 Knowledge-Driven Approaches to Activity Modelling
and Recognition

Knowledge-driven activity recognition and modelling is motivated by real-world
observations that for most activities of daily living and working, the list of objects
required for a particular activity is limited and functionally similar. Even if the
activity can be performed in different ways the number and type of these involved
objects do not vary significantly. For example, it is common sense that the activity
“make coffee” consists of a sequence of actions involving a coffee pot, hot water,
a cup, coffee, sugar and milk; the activity “brush teeth” contains actions involving
a toothbrush, toothpaste, water tap, cup and towel. On the other hand, as humans
have different lifestyles, habits or abilities, they may perform various activities in
different ways. For instance, onemay like strongwhite coffee, and anothermay prefer
a special brand of coffee. Even for the same type of activity (e.g., making white
coffee), different individuals may use different items (e.g., skimmed milk or whole
milk) and in different orders (e.g., adding milk first and then sugar, or vice versa).
Such domain-dependent activity-specific prior knowledge provides valuable insights
into how activities can be constructed in general and how they can be performed by
individuals in specific situations.

Similarly, knowledge-driven activity recognition is founded upon the observations
that most activities, in particular, routine activities of daily living and working, take
place in a relatively specific circumstance of time, location and space. The space
is usually populated with events and entities pertaining to the activities, forming a
specific environment for specific purposes. For example, brushing teeth is normally
undertaken twice a day in a bathroom in the morning and before going to bed and
involves the use of toothpaste and a toothbrush; meals are made in a kitchen with
a cooker roughly three times a day. The implicit relationships between activities,
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related temporal and spatial context and the entities involved (objects and people)
provide a diversity of hints and heuristics for inferring activities.

Knowledge-driven activity modelling and recognition intends to make use of rich
domain knowledge and heuristics for activity modelling and pattern recognition. The
rationale is to use various methods, in particular, knowledge engineering method-
ologies and techniques, to acquire domain knowledge. The captured knowledge can
then be encoded in various reusable knowledge structures, including activity mod-
els for holding heuristics and prior knowledge in performing activities, and context
models for holding relationships between activities, objects and temporal and spatial
contexts. Comparing to data-driven activity modelling that learns models from large-
scale datasets and recognises activities through data intensive processing methods,
knowledge-driven activity modelling avoids a number of problems, including the
requirement for large amounts of observation data, the inflexibility that arises when
each activity model needs to be computationally learned, and the lack of reusability
that results when one person’s activity model is different from another’s.

Knowledge structures can be modelled and represented in different forms, such
as schemas, rules or networks. This will decide the way and the extent to which
knowledge is used for following processing such as activity recognition, prediction
and assistance. In terms of the manner in which domain knowledge is captured, rep-
resented and used, knowledge-driven approaches to activity modelling and recogni-
tion can be roughly classified into three main categories as presented in the following
sections.

2.4.1 Mining-Based Approach

The rationale of a mining-based approach is to create activity models by mining
existing activity knowledge from publicly available sources. More specifically, given
a set of activities, the approach seeks to discover from the text corpuses a set of
objects used for each activity and extract object usage information to derive their
associated usage probabilities. The approach essentially views the activity model as
a probabilistic translation between activity names (e.g., “make coffee”) and the names
of involved objects (e.g., “mug”, “milk”). As the correlations between activities and
their objects are common-sense prior knowledge (e.g., most of us know how to carry
out daily activities), such domain knowledge can be gleaned in various sources such
as how-tos (e.g., those at ehow.com), recipes (e.g., from epicurious.com), training
manuals, experimental protocols, and facility/device user manuals.

A mining-based approach consists of a sequence of distinct tasks. Firstly, it needs
to identify activities of concern and relevant sources that describe these activities.
Secondly, it uses various methods, predominantly information retrieval and analysis
techniques, to retrieve activity definitions from specific sources and extract phrases
that describe the objects used during the performance of the activity. Then algorithms,
predominantly probabilistic and statistical analysis methods such as co-occurrences
and association are used to estimate the object-usage probabilities. Finally, themined
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object and usage information is used to create activity models such as a HMM that
can be used further for activity recognition.

Mining-based activity modelling was initially investigated by researchers from
Intel Research [62, 63]. Perkowitz et al. [63] proposed the idea of mining theWeb for
large-scale activity modelling. They used the QTag tagger to tag each word in a sen-
tence with its part of speech (POS) and a customized regular expression extractor to
extract objects used in an activity. They then used the Google Conditional Probabil-
ities (GCP) APIs to determine automatically the probability values of object usage.
The mined object and their usage information are then used to construct DBN mod-
els through Sequential Monte Carlo (SMC) approximation. They mined the website
ehow.com for roughly 2300 directions on performing domestic tasks (from “boiling
water in the microwave” to “change your air filter”), and the website ffts.com and
epicurious.com for a further 400 and 18,600 recipes respectively, generating a total
21,300 activity models. Using the DBN activity models they have performed activ-
ity recognition for a combination of real user data and synthetic data. While initial
evaluation results were positive, the drawback was that there are no mechanisms to
guarantee the mined models capturing completely the sequence probabilities and the
idiosyncrasy of certain activities. The inability to capture such intrinsic characteris-
tics may limit the model’s accuracy in real deployments.

Wyatt et al. [62] followed Perkowitz’s approach bymining theWeb to create DBN
activity models. However, this group extended the work in three aspects, aiming to
address the idiosyncrasies and to improve model accuracy. To cover the wide variety
of activity definition sources, they mined the Web in a more discriminative way in
a wider scope. They did this by building a specialized genre classifier trained and
tested with a large number of labelled Web pages. To enhance model applicability,
they used the mined models as base activity models and then exploited the Viterbi
Algorithm and Maximum Likelihood to learn customized activity parameters from
unsegmented, unlabelled sensor data. In a bid to improve activity recognition accu-
racy they also presented a bootstrap method that produced labelled segmentations
automatically. Then they used the Kullback–Leibler (KL) divergence to compute
activity similarity.

A difficulty in connecting mined activities with tagged objects is that the activity
models may refer to objects synonymously. For example, both a “mug” and “cup”
can be used for making tea; both a “skillet” and “frying pan” be used for making
pasta. This leads to a situation that one activity may have different models with
each having the same activity name but different object terms. To address this, Tapia
et al. [64] proposed to extract collections of synonymous words for the functionally-
similar objects automatically from WordNet, an online lexical reference system for
theEnglish language. The set of terms for similar objects is structured and represented
in a hierarchical form known as the object ontology. With the similarity measure
provided by the ontology, an activity model will not only cover a fixed number of
object terms but also any other object terms that are in the same class in the ontology.

Another shortcoming of early work in the area is that the segmentation is carried
out in sequential order based on the duration of an activity. As the duration of per-
forming a specific activity may vary substantially from one to another, this may give
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rise to applicability issues. In addition, in sequential segmentation, one error in one
segmentmay affect the segmentations of the subsequent traces. To tackle this, Palmes
et al. [65] proposed an alternate method for activity segmentation and recognition.
Instead of relying on the order of object use, they exploited the discriminative trait
of the usage frequency of objects in different activities. They constructed activity
models by mining the Web and extracting relevant objects based on their weights.
The weights are then utilized to recognize and segment an activity trace containing
a sequence of objects used in a number of consecutive and non-interleaving activi-
ties. To do this, they proposed an activity recognition algorithm, KeyExtract, which
uses the list of discriminatory key objects from all activities to identify the activi-
ties present in a trace. They further proposed two heuristic segmentation algorithms,
MaxGap andMaxGain, to detect the boundary between each pair of activities identi-
fied by KeyExtract. Boundary detection is based on the calculation, aggregation, and
comparison of the relative weights of all objects sandwiched in any two key objects
representing adjacent activities in a trace. Though the mining-based approach has a
number of challenges relating to information retrieval, relation identification and the
disambiguation of term meaning, nevertheless, it provides a feasible alternative to
model a large amount of activities. Initial research has demonstrated the approach is
promising.

Mining-based approaches are similar to data-driven approaches in that they all
adopt probabilistic or statistical activity modelling and recognition. But they are dif-
ferent from each other in the way the parameters of the activity models are decided.
The mining-based approaches make use of publicly available data sources avoiding
the “cold start” problem. Nevertheless, they are weak in dealing with the idiosyn-
crasies of activities. On other hand, data-driven approaches have the strength of
generating personalized activity models, but they suffer from issues such as “cold
start” and model reusability for different users.

2.4.2 Logic-Based Approach

The rationale of logical approaches is to exploit logical knowledge representation for
activity and sensor data modelling, and to use logical reasoning to perform activity
recognition. The general procedure of a logical approach includes (1) to use a logical
formalism to explicitly define and describe a library of activitymodels for all possible
activities in a domain, (2) to aggregate and transform sensor data into logical terms
and formula, and (3) to perform logical reasoning, e.g., deduction, abduction and
subsumption, to extract a minimal set of covering models of interpretation from the
activity model library based on a set of observed actions, which could explain the
observations.

Even though each task can be undertaken in different ways the role of each task
is specific and unique. Normally, the first step is to carry out knowledge acquisition,
which involves eliciting knowledge from various knowledge sources such as domain
experts and activity manuals. The second step is to use various knowledge modelling
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techniques and tools to build reusable activity structures. This will be followed by a
domain formalization process in which all entities, events and temporal and spatial
states pertaining to activities, along with axioms and rules, are formally specified
and represented using representation formalism. This process usually generates the
domain theory. The following step will be the development of a reasoning engine in
terms of knowledge representation formalisms to support the inference. In addition,
a number of supportive system components will be developed, which are responsible
for aggregating and transforming sensor data into logical terms and formula.With all
functional components in place, activity recognition proceeds by passing the logical
representation of sensor data onto the reasoning engine. The engine performs logical
reasoning, e.g., deduction, abduction or induction, against the domain theory. The
reasoning will extract a minimal set of covering models of interpretation from the
activity models based on a set of observed actions, which could semantically explain
the observations.

There exist a number of logical modelling methods and reasoning algorithms in
terms of logical theories and representation formalisms. One thread of work is to
map activity recognition to the plan recognition problem in the well-studied artificial
intelligence field [66]. The problem of plan recognition can be stated in simple
terms as: given a sequence of actions performed by an actor, how to infer the goal
pursued by the actor and also to organize the action sequence in terms of a plan
structure. Kautz et al. [67] adopted first-order axioms to build a library of hierarchical
plans. They proposed a set of hypotheses such as exhaustiveness, disjointedness and
minimum cardinality to extract a minimal covering model of interpretation from the
hierarchy, based on a set of observed actions.Wobke [68] extendsKautz’s work using
situation theory to address the different probabilities of inferred plans by defining a
partial order relation between plans in terms of levels of plausibility. Bouchard et al.
[69] borrow the idea of plan recognition and apply it to activity recognition. They
use action Description Logic (DL) to formalize actions and entities and variable
states in a smart home to create a domain theory. They model a plan as a sequence
of actions and represent it as a lattice structure, which, together with the domain
theory, provides an interpretation model for activity recognition. As such, given a
sequence of action observations, activity recognition amounts to reasoning against
the interpretation model to classify the actions through a lattice structure. It was
claimed that the proposed DL models can organize the result of the recognition
process into a structured interpretation model in the form of a lattice, rather than a
simple disjunction of possible plans without any classification. This minimizes the
uncertainty related to the observed actor’s activity by bounding the plausible plans
set.

Another thread of work is to adopt the highly developed logical theory of actions,
such as the Event Calculus (EC) [70], for activity recognition and assistance. The EC
formalizes a domain using fluents, events and predicates. Fluents are any properties
of the domain that can change over time. Events are the fundamental instrument of
change. All changes to a domain are the result of named events. Predicates define
relations between events and fluents that specify what happens when and which flu-
ents hold at what times. Predicates also describe the initial situation and the effects of
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events. Chen et al. [71] proposed an EC-based framework in which sensor activations
are modelled as events, and object states as properties. In addition, they developed
a set of high-level logical constructors to model compound activities, i.e. the activ-
ities consisting of a number of sequential and/or parallel events. In the framework,
an activity trace is simply a sequence of events that happen at different time points.
Activity recognition ismapped to deductive reasoning tasks, e.g., temporal projection
or explanation, and activity assistance or hazard prevention is mapped to abductive
reasoning tasks. The major strength of this work is its capability to address temporal
reasoning and the use of compound events to handle uncertainty and flexibility of
activity modelling.

Logical activity modelling and reasoning is semantically clear and elegant in
computational reasoning. It is also relatively easy to incorporate domain knowledge
andheuristics for activitymodels anddata fusion.Theweakness of logical approaches
is their inability or inherent infeasibility to represent fuzziness and uncertainty. Most
of them offer no mechanism for deciding whether one particular model is more
effective than another, as long as both of them can be consistent enough to explain
the actions observed. There is also a lack of learning ability associated with logic-
based methods.

2.4.3 Ontology-Based Approach

Using ontologies for activity recognition is a recent endeavour and has gained grow-
ing interest. In the vision-based activity recognition community, researchers have
realized that symbolic activity definitions based on the manual specification of a set
of rules suffer from limitations in their applicability because the definitions are only
deployable to the scenarios for which they have been designed. There is a need for a
commonly agreed explicit representation of activity definitions or an ontology. Such
ontological activity models are independent of algorithmic choices, thus facilitating
portability, interoperability and reuse and sharing of both underlying technologies
and systems. Chen et al. [72] propose activity ontologies for analysing social inter-
action in nursing homes, Hakeem et al. [73] for the classification of meeting videos,
and Georis et al. [74] for activities in a bank monitoring setting. To consolidate
these efforts and to build a common knowledge base of domain ontologies, a col-
laborative effort has been made to define ontologies for six major domains of video
surveillance. This has led to a video event ontology [75] and the corresponding repre-
sentation language [76]. For instance, Akdemir [77] used the video event ontologies
for activity recognition in both bank and car park monitoring scenarios. In princi-
ple, these studies use ontologies to provide common terms as building primitives for
activity definitions. Activity recognition is performed using individually preferred
algorithms, such as rule-based systems [73] and finite-state machines [77].

In the dense sensing-based activity recognition community, ontologies have been
utilised to construct reliable activity models. Such models are able to match different
object names with a term in an ontology which is related to a particular activity.
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For example, a Mug sensor event could be substituted by a Cup event in the activity
model “MakeTea” asMug andCup can both be used for the “MakeTea” activity. This
is particularly useful to address model incompleteness and multiple representations
of terms. Tapia et al. [64] generate a large object ontology based on the functional
similarity between objects from WordNet, which can complete mined activity mod-
els from the Web with similar objects. Yamada et al. [78] use ontologies to represent
objects in an activity space. By exploiting semantic relationships between things, the
reported approach can automatically detect possible activities even given a variety
of object characteristics including multiple representation and variability. Similar
to vision-based activity recognition, these studies mainly use ontologies to provide
activity descriptors for activity definitions. Activity recognition can then be per-
formed based on probabilistic and/or statistical reasoning [64, 78].

Ontology-based modelling and representation have been applied to general ambi-
ent assisted living. Latfi et al. [79] propose an ontological architecture of a telehealth-
based smart home aiming at high-level intelligent applications for elderly persons
suffering from loss of cognitive autonomy.Michael et al. [80] developed an ontology-
centred design approach to create a reliable and scalable ambient middleware. Chen
et al. [81] pioneered the notion of semantic smart homes in an attempt to lever-
age the full potential of semantic technologies in the entire lifecycle of assistive
living i.e. from data modelling, content generation, activity representation, process-
ing techniques and technologies to assist with the provision and deployment. While
these endeavours, together with existing work in both vision- and dense sensing-
based activity recognition, provide solid technical underpinnings for ontological
data, object, sensor modelling and representation, there is a gap between semantic
descriptions of events/objects related to activities and semantic reasoning for activity
recognition.

Most works use ontologies either asmappingmechanisms formultiple terms of an
object [64] or the categorisation of terms [78] or a common conceptual template for
data integration, interoperability and reuse [79]. Activity ontologieswhich provide an
explicit conceptualisation of activities and their interrelationships have only recently
emerged and have been used for activity recognition. Chen et al. [82] proposed
and developed an ontology-based approach to activity recognition. They constructed
context and activity ontologies for explicit domainmodelling. Sensor activations over
a period of time are mapped to individual contextual information and then fused to
build a context at any specific time point. They made use of subsumption reasoning
to classify the constructed context based on the activity ontologies, thus inferring the
ongoing activity. Ye et al. [83] developed an upper activity ontologies that facilitates
to the capturing of domain knowledge to link the meaning implicit in elementary
information to higher-level information that is of interest to applications. Riboni
et al. [84] investigated the use of activity ontologies, in particular, the new feature of
rule representation and rule-based reasoning from OWL2, to model, represent and
reason complex activities.
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2.5 Discussions on Activity Recognition Approaches

This section presents the comparison of different AR approaches and further dis-
cusses the relations between activity recognition and other closely related areas. As
activity recognition involves a number of research areas, and each area is itself a
research topic with considerable literature. The full reviews of these related areas are
beyond the scope of this chapter.

2.5.1 Activity Recognition Approach Comparison

Compared with data-driven and mining-based approaches, ontology-based
approaches offer several compelling features: Firstly, ontological ADL models
can capture and encode rich domain knowledge and heuristics in a machine-
understandable and processable way. This enables knowledge based intelligent pro-
cessing at a higher degree of automation. Secondly, DL-based descriptive reasoning
along a timeline can support incremental progressive activity recognition and assis-
tance as anADLunfolds. The two levels of abstraction in activitymodelling, concepts
and instances, also allow coarse-grained and fine-grained activity assistance. Thirdly,
as the ADL profile of an inhabitant is essentially a set of instances of ADL concepts,
it provides an easy and flexible way to capture a user’s activity preferences and
styles, thus facilitating personalised ADL assistance. Finally, the unified modelling,
representation and reasoning for ADL modelling, recognition and assistance makes
it natural and straightforward to support the integration and interoperability between
contextual information and ADL recognition. This will support systematic coordi-
nated system development by making use of seamless integration and synergy of a
wide range of data and technologies.

Compared with logic-based approaches, ontology-based approaches have the
same mechanisms for activity modelling and recognition. However, ontology-based
approaches are supported by a solid technological infrastructure that has been devel-
oped in the semantic web and ontology-based knowledge engineering communi-
ties. Technologies, tools and APIs are available to help carry out each task in the
ontology-based approach, e.g., ontology editors for context and activity modelling,
web ontology languages for activity representation, semantic repository technologies
for large-scale semantic data management and various reasoners for activity infer-
ence. This gives ontology-based approaches huge advantage in large-scale adoption,
application development and system prototyping.

Logic-based approaches are totally different from data-driven approaches in the
way activities are modelled and the mechanisms activities are recognised. They do
not require pre-existing large-scale dataset, and activity modelling and recognition is
semantically clear and elegant in computational reasoning. It is easy to incorporate
domain knowledge and heuristics for activity models and data fusion. The weakness
of logical approaches is their inability or inherent infeasibility to represent fuzziness



40 2 Sensor-Based Activity Recognition Review

and uncertainty even though there are recent works trying to integrate fuzzy logics
into the logical approaches. Another drawback is that logical activity models are
viewed as one-size-fits-all, inflexible for adaption to different users’ activity habits.
The logical approach, uses logical formalisms, for example event calculus [71] and
lattice theory [85], for representing ADL models and conducts activity explanation
and predication through deduction or abduction reasoning. Comparing to the above
two data-centric approaches, logical approaches are semantically clear in modelling
and representation and elegant in inference and reasoning.

A complete comparison between different approaches in terms of a number of
criteria is summarised in Tables 2.1 and 2.2. We have collected the experimental
results of these surveyed approaches aiming to establish their performance profiles.
Initial findings, which are in line with the findings from [86], have found out that the
accuracy of different recognition approaches varies dramatically between datasets.
The accuracy also varies between individual activities and is affected by the amount
of available data, the quality of the labels that were provided for the data, the number
of residents in the space that are interacting and performing activities in parallel, and
the consistency of the activities themselves. It becomes apparent that the quantitative
comparisons of different approaches will only make sense if the experiments are
based on the same activities and sensor datasets. Otherwise, the findings may not be
applicable to general cases, and even be misleading.

Cook [86] created a single benchmark dataset that contains eleven separate sensor
event datasets collected from seven physical testbeds. Using this dataset, a systematic
study has been conducted to compare the performance of three activity recognition
models: a naïve Bayes classifier (NBC), a hidden Markov model (HMM), and a
conditional random field (CRF) model. The result of recognition accuracy using 3-
fold cross validation over the dataset is 74.87, 75.05 and 72.16% for the NBC, HMM
and CRF respectively.

Table 2.1 The comparison of data-driven approaches

Generative Discriminative

Model type NB, HMM, LDS, DBNs NN, SVM, CRF, decision tree

Modelling mechanism (un)supervised learning from
datasets

Activity recognition method Probabilistic classification Similarity or rule-based
reasoning

Advantage Modelling uncertainty,
temporal information

Modelling uncertainty,
temporal information,
Heuristics

Disadvantage “Cold start” problems, lack of
reusability and scalability
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Table 2.2 The comparison of knowledge-driven approaches

Mining Logic Ontology

Model type HMM, DBN,
SVM, CRF, NN

Logic formula,
e.g., plans,
lattices, event,
trees

HMM, DBN,
SVM, CRF, NN

Sensor and
activity
ontology

Modelling
mechanism

Information
retrieval and
analysis

Formal
knowledge
modelling

(un)supervised
learning from
datasets

Ontology
engineering

Activity
recognition
method

Generative or
discriminative
methods

Logical
inference, i.e.,
deduction,
induction

Generative or
discriminative
methods

Semantic
reasoning, e.g.,
subsumption,
consistency

Advantage No “cold start”
problems, using
multiple data
sources

No “cold start”
problems, clear
semantics on
modelling and
inference

Shared terms,
interoperability
and reusability

No “cold start”
problems,
multiple models,
clear semantics
on modelling
and inference,
interoperability
and reusability

Disadvantage The problems as
DDA

Weak in
handling
uncertainty and
scalability

The problems as
DDA

Weak in
handling
uncertainty and
time

2.5.2 The Influence of Activity Monitoring on Activity
Recognition

The outputs of activity sensing, i.e., sensor data, can affect activity recognition in
several aspects. Firstly, in a data driven approach, the sensor type can often drive
the selection of an appropriate model. Sensors can yield single or multi-dimensional
data (e.g., an accelerometer would be multi-dimensional whereas a temperature sen-
sor would be uni-dimensional), and sensors can either give continuous or discrete
measurements. The models need to be modified to fit whatever type of sensor data is
being used. At the very least, the variable representing each sensor in a data-driven
model must match the sensor type in dimensionality and arity. For example, Oliver
et al. [57] use a variety of different sensor types, including audio time-of-arrival,
continuous and multi-dimensional computer vision measures, and a set of discrete
event from mouse and keyboard, as inputs (observations) of a set of HMMs. Liao
et al. [52] use continuous 2-dimensional GPS data as input to a CRF. One solution to
adapt activity models to sensor types is to include all available sensors in a discrim-
inative or generative model and allow the model itself to choose the most effective
ones for any given situation. This is known as sensor selection or active sensing.
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Secondly, the complexity of sensor data will determine to some extent the com-
plexity of activity models. In data-driven approaches, sensor data can be directly
fed into the activity models, either generative or discriminative, for model training
and/or activity inference. Alternatively, sensor data can be pre-processed, e.g., to
reduce the complexity of the data, before they are used in model training and activity
inference. There is always a trade-off between the complexity of the sensor data in
the model, and the complexity of the model. As a general principle the trade-off
is always about reducing the complexity of the model as much as possible without
sacrificing representation that is necessary for activity recognition.

For knowledge-driven approaches, sensor data do not directly affect activity mod-
els and inference. This is because activity models in knowledge-driven approaches
are pre-specified based on domain knowledge rather than driven by sensor data. In
addition, in knowledge-driven approaches sensor data are always mapped through
pre-processing to the values of properties of the formal activity models. As such, the
types and complexity of sensor data will only affect the initial conceptualisation of
activity models and the complexity of pre-processing but not themodel and inference
mechanisms.

2.6 Summary

Activity recognition has become the determinant to the success of the new wave of
context-aware personalized applications in a number of emerging computing areas,
e.g., pervasive computing and smart environments. Synergistic research in various
scientific disciplines, e.g., computer vision, artificial intelligence, sensor networks
and wireless communications, has resulted in a diversity of approaches and methods
to address this issue. In this chapterwe present a survey of the state-of-the-art research
on sensor-based activity recognition. We first introduce the rationale, methodology,
history and evolution of the approach. Then we reviewed the primary approaches and
methods in the fields of activity monitoring, modelling and recognition respectively.
In particular we identified key characteristics for each individual field and further
derived a classification structure to facilitate systematic analysis of the surveyed
work. We have conducted in-depth analysis and comparisons of different methods
in each category in terms of their robustness to real-world conditions and real-time
performance, e.g., applicability, scalability and reusability. The analysis has led to
some valuable insights for activity modelling and recognition.

In addition to the extensive review we have discussed emerging research trends
associatedwith activity recognition. One primary direction is complex activity recog-
nition focusing on the underlying modelling, representation and inference of inter-
leaved, concurrent and parallel activities. The other key direction is to improve
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reusability, scalability and applicability of existing approaches. Research in this
direction has been undertaken in several strands, including multi-level activity mod-
elling, abnormal activity recognition, infrastructure mediatedmonitoring, and sensor
data reuse and repurposing. Another noticeable trend is research on formal activity
representation at a higher level of abstraction, e.g., developing dedicated activity rep-
resentation languages and representing situations and goals. These emerging efforts
provide guidance and indication for the future research of activity recognition.

Many researchquestions havenot been toucheddue to the limited space. For exam-
ple, we did not elaborate in-depth low-level specific technical issues such as uncer-
tainty, temporal reasoning and sensor data inconsistency. We believe the emerged
structure of classification of activity recognition approaches and the comparison of
their pros and cons can inform and help interested readers for further exploration
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