Liming Chen - Chris D. Nugent

Human Activity
Recognition
and Behaviour
Analysis

For Cyber-Physical Systems in Smart
Environments

@ Springer

Human Activity Recognition and Behaviour
Analysis

Liming Chen - Chris D. Nugent

Human Activity Recognition
and Behaviour Analysis

For Cyber-Physical Systems in Smart
Environments

@ Springer

Liming Chen Chris D. Nugent

School of Computer Science School of Computing
and Informatics Ulster University
De Montfort University Belfast, UK

Leicester, UK

ISBN 978-3-030-19407-9 ISBN 978-3-030-19408-6 (eBook)
https://doi.org/10.1007/978-3-030-19408-6

© Springer Nature Switzerland AG 2019

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-0200-7989
https://doi.org/10.1007/978-3-030-19408-6

Preface

Recent advances in ubiquitous computing, sensing technologies, the Internet of
Things, mobile computing and smart environments have led to a new wave of smart
cyber-physical applications. These applications require human-machine systems to
support context awareness, learning and cognitive capabilities, personalization and
adaptation. Activity recognition and computational behaviour analysis are key to
the success of such cyber-physical human-machine systems, as they provide
essential contexts at multiple levels of abstraction for the aforementioned features.
Over years, there has been a constant shift of sensor observation modelling, rep-
resentation, interpretation and usage, from low-level raw observation data and their
direct/hardwired usage, data aggregation and fusion to high-level formal context
modelling, activity recognition and behaviour analysis, and further to change
detection, semantic interpretation, decision support and recommendation. It is
envisioned that this trend will continue towards a further higher level of abstraction,
achieving situation, activity and goal awareness to support smart cyber-physical
human-machine systems in a wide range of applications such as smart homes, smart
grid, intelligent transport, smart cities, to name but a few.

This book provides a systematic introduction on human activity recognition and
behaviour analysis for cyber-physical human-machine systems in smart environ-
ments. It is built upon the authors’ extensive expertise, skills, experiences acquired
over years’ research, as well as insights and visions on future research trends and
directions. The book focuses on knowledge-driven approaches and relevant
underpinning technologies. It contains ten chapters, each targeting on a particular
aspect. Chapters 1 and 2 set up the scene and context for the discussions of the
remaining chapters of the book. Chapter 1 provides an overview of the background,
basic concepts, existing approaches and methodologies, potential applications,
opportunities and research trends and directions for computational behaviour anal-
ysis. Chapter 2 is dedicated to the comprehensive review on sensor-based approach
to activity recognition, detailing the state of the art of both data-driven and
knowledge-driven approaches as well as an in-depth critical analysis of their
strengths and weaknesses. Chapters 3 and 4 introduce the ontology-based
knowledge-driven approach to activity recognition. Chapter 3 focused on

vi Preface

ontological activity modelling, sensor data analysis methods and semantic pattern
reasoning mechanisms, whereas Chap. 4 details a hybrid approach, combining
knowledge-driven activity recognition and data-driven behaviour analysis, to
facilitating an incremental semi-automatic modelling process. Chapters 5 and 6
describe data segmentation approaches and methods for real-time streaming sensor
data collected from a large number of miniaturised sensors and smart objects or more
broadly the internet of things. Chapter 5 analyses the complexity and characteristics
of activities of daily living, and introduces time window-based temporal segmen-
tation methods and algorithms. Chapter 6 addresses the challenges of multiple
activity recognition, namely interleaved and concurrent activities, by presenting an
alternative, semantic-based approach to dynamic data segmentation. Chapter 7
introduces a solution to composite activity recognition, i.e. interleaved and con-
current activities, which combine ontological and temporal formalisms for activity
modelling and reasoning in a multi-agent system. From Chap. 3 to Chap. 7, each
chapter includes an example application case study, which uses real-world use
scenarios and implemented system prototypes to test, evaluate and demonstrate the
developed models, algorithms and methods. In addition to the underpinning
approaches, methods and technologies described in previous chapters, Chaps. 8
and 9 describe the semantic smart home concepts and its underlying technologies
and usage. It illustrates to readers how activity recognition and behaviour analysis
are used in real-world problem solving. While Chap. 8 focuses on the technical
creation of a semantic smart home, including the lifecycle of ontological modelling,
semantic sensor data collection, storage and analysis, Chap. 9 concentrates on the
use of semantic smart home for situation-aware assistance provisioning describing
an agent-based assisted system for decision support and assistive living. Finally,
Chap. 10 outlines four prototypes of user-centred cyber-physical systems covering a
lightweight easy-to-deploy standalone system, a multi-agent system and two
service-oriented system implementations based on different service technologies.
This chapter is aimed at offering readers practical implementation knowledge and
experience that they can easily adapt and use for their own research.

This book can serve many purposes. For undergraduate and Ph.D. researchers in
relevant areas, it can be used as an introductory textbook to provide a comprehensive
systematic introduction to activity recognition, covering the basic problem
descriptions, concept definition, critical analysis of the methodologies and frame-
works, state-of-the-art technologies, case studies and implementations, both theo-
retical and application aspects. For researchers such as postdocs, research associates
or fellows, and junior academic, this book can be used as a handbook which provides
in-depth descriptions for the knowledge-driven approach to activity recognition,
covering the whole spectrum of the underlying technologies from modelling, data
processing, pattern recognition, behaviour analysis to decision support and recom-
mender systems. For academics and industrial practitioners in cyber-physical system
domains, the book can be used as a practical reference book to provide a systematic
methodology along with a scalable framework and extensible technology infras-
tructure, including models, methods, toolsets and prototype systems, which allow
readers to follow up and build up by making best use of current research. For health

Preface vii

and care technology and solution developers, this book offers an example technol-
ogy solution for smart health care. All models, analysis methods, and technologies
and systems are developed and implemented using the latest technologies in sensing,
IoT, big data analysis, Al techniques and decision support, and tested and evaluated
using real-world application scenarios from healthcare domain, e.g. assisted living
and healthy ageing. It exemplifies a problem-solving process and a potential solution
to many problems in smart health care.

Acknowledgements

The authors would like to express their gratitude to colleagues and research col-
laborators for their contributions to the content of this book. In particular, they
would like to thank George Onyango Okeyo, Darpan Triboan, Joseph Rafferty and
Ahmad Al-Bashrawi for their technical inputs in various research topics, imple-
mentation of prototype systems and evaluations of approaches and technologies in
different application scenarios.

The authors would also like to thank Hui Wang, Roy Sterritt, Jesse Hoey,
Diane J. Cook and Zhiwen Yu for their constructive discussions and comments
during their collaborations in this research area.

The authors would also like to pay their heartfelt gratitude for the continued
support over the years from their families for their encouragement and tolerance to
the lost family engagements.

The authors would express their thanks to everyone in the Springer
team, specifically Simon Rees, Wayne Wheeler and Manjula Saravanan, for their
guidance and advice during this process.

Leicester, UK Liming Chen
Belfast, UK Chris D. Nugent

Contents

1 Imtroduction 1
1.1 Background 1
1.2 Basic Concepts on Activity Recognition. 2

1.2.1 Action and Activity 2
1.2.2 Activity Recognition. 3
1.3 Activity Recognition Approaches. 4
1.3.1 Vision-Based Activity Recognition 4
1.3.2 Sensor-Based Activity Recognition 6
1.4 Activity Recognition Methods 7
1.4.1 Data-Driven Activity Recognition 7
1.4.2 Knowledge-Driven Activity Recognition 9
1.5 Activity Recognition Applications 9
1.5.1 A Typical Application Scenario: Ambient Assisted
Living 10
1.5.2 Activity Recognition Challenges in Ambient Assisted
Living oo 11
1.6 Research Trends and Directions. 12
1.6.1 Complex Activity Recognition 12
1.6.2 Domain Knowledge Exploitation. 14
1.6.3 Multi-level Activity Modelling for Scalability
and Reusability o0 L. 15
1.6.4 Infrastructure Mediated Activity Monitoring. 16
1.6.5 Intent or Goal Recognition 17
1.6.6 Abnormal Activity Recognition. 17
1.6.7 Sensor Data Reuse and Repurposing 18
1.7 Summary 18
References 19

ix

Contents

Sensor-Based Activity Recognition Review
2.1 Introduction
2.2 Sensor-Based Activity Monitoring
2.2.1 Wearable Sensor Based Activity Monitoring
2.2.2 Ambient Sensor Based Activity Monitoring
2.3 Data-Driven Approaches to Activity Modelling and
Recognition
2.3.1 Generative Methods
2.3.2 Discriminative Methods
2.3.3 Heuristic and Other Methods
2.4 Knowledge-Driven Approaches to Activity Modelling
and Recognition
2.4.1 Mining-Based Approach
2.4.2 Logic-Based Approach
24.3 Ontology-Based Approach
2.5 Discussions on Activity Recognition Approaches
2.5.1 Activity Recognition Approach Comparison.
2.5.2 The Influence of Activity Monitoring on Activity
Recognition
2.6 SUMMATY
References L

An Ontology-Based Approach to Activity Recognition
3.1 Introduction
3.1.1 Application Context: Smart Home Based Assisted

Living

3.2 The Ontology-Based System Architecture.
3.3 Ontological Modelling for Activity Recognition
3.3.1 Smart Home Characterisation

3.3.2 Ontological Context Modelling

3.3.3 Ontological ADL Modelling

3.4 Ontology-Based Mechanisms for Activity Recognition
34.1 Theoretical Foundation

3.4.2 Semantic Inference for Activity Recognition

3.4.3 Real-Time, Continuous Activity Recognition

3.5 AnExample Case Study
3.5.1 A Prototype System

3.5.2 Experiment Setup..................

3.5.3 Experiment Procedure.

3.5.4 Results and Discussions

3.6 SUMMArY
References

Contents xi

4 A Hybrid Approach to Activity Modelling 77
4.1 Introduction 77
4.2 The Hybrid Approach to Activity Modelling 79

4.2.1 Ontological Activity Modelling 81
4.2.2 Semantics-Based Activity Recognition. 82
4.3 Learning Unmodelled Activities. 83
4.4 Learning User Activity Profiles 86
4.4.1 Object Patterns Detection 87
4.4.2 Activity Duration Detection 90
4.4.3 Activity Patterns Detection 90
4.44 Activity Knowledge Model Evolution 92
4.5 An Example Case Study 93
4.5.1 Experiment Design and Data Collection. 94
4.5.2 Analysis and Evaluation 95
4.6 Summary 100
References 100

5 Time-Window Based Data Segmentation 103
5.1 Introduction 103
5.2 Recent Work on Temporal Data Segmentation 104
5.3 Real-Time Activity Recognition Analysis................. 106

5.3.1 Concept and Architecture 106
5.3.2 Data Stream Segmentation Characterisation 108
5.4 Sensor Data Segmentation Modelling. 109
5.4.1 Formal Time Window Modelling 111
5.4.2 Time Window Manipulation 112
5.5 Real-Time Data Segmentation for Continuous Activity
Recognition 114
5.5.1 Recognition Algorithms 115
5.5.2 The Algorithm for Shrinking Time Window 116
5.5.3 The Algorithm for Expanding Time Window 117
5.6 An Example Case Study 117
5.6.1 Experiment Design........................... 119
5.6.2 Time-Window Model Configuration 120
5.6.3 Ground-True Synthetic ADL Data................ 121
5.6.4 Experiment Result Analysis 122
5.6.5 Findings and Discussions 122
57 Summary 125
References 126

6 Semantic-Based Sensor Data Segmentation. 127

6.1 Introduction 127
6.1.1 Semantic Approach: Indirect Query and Rules 128

6.1.2 Syntactical Approach: RDBMS and Semantic
KB Mapping 129

Xii

Contents

6.1.3 Pragmatic Approach: Precondition and Evidential

Theory. 130
6.2 Semantic-Based Approach to Sensor Data Segmentation 130
6.2.1 Object, ADL and Context Relationships Modelling ... 131
6.2.2 Semantic Decision Engine 134
6.2.3 Semantic Segmentation Algorithm........... 135
6.3 Semantic Segmentation Lifecycle. 137
6.3.1 Ontological Modelling 137
6.3.2 Multithread Segmentation Process 141
6.3.3 Reasoner and Supporting Tools. 142
6.4 An Example Case Study 143
6.4.1 Experiment Design........................... 143
6.4.2 Results and Discussions 144
6.5 Summary 146
References 148
Composite Activity Recognition 151
7.1 Introduction 151
7.2 Related Work 153
7.3 A Hybrid Approach to Composite Activity Modelling 154
7.3.1 Representing Temporal Knowledge in Ontologies 156
7.3.2 A Hybrid Ontological and Temporal Approach 157
7.4 Composite Activity Modelling 159
7.4.1 Concept and Terminology 159
7.4.2 Ontological Composite Activity Modelling 162

7.4.3 Interval Temporal Logic in Composite Activity
Modelling i . 166
7.5 Simple and Composite Activity Recognition Methods. 170
7.5.1 Ontological and Temporal ADL Models 170
7.5.2 Composite Activity Recognition Architecture. 170
7.5.3 Composite Activity Recognition Algorithm 172
7.6 An Example Case Study 175
7.6.1 System Prototype 175
7.6.2 Experiment Design........................... 176
7.6.3 Results and Discussions 177
TT 0 Summary 179
References 179

Semantic Smart Homes: Towards a Knowledge-Rich Smart

Environment 183
8.1 Introduction 183
8.2 Semantic Smart Homes 185

Contents

10

8.2.1 TheConcept,

8.2.2 Related Work.

8.2.3 The Conceptual Architecture.

8.3 Semantic Smart Home Analysis.

8.3.1 Semantics, Semantic Modelling and Representation . . .

8.3.2 Smart Home Ontology Engineering

8.4 Semantic Enabled Processing Capabilities
8.4.1 Towards a Paradigm of Extensible and Flexible

Assistance Provisioning

8.4.2 Cognitive ADL Monitoring and Recognition

8.4.3 Knowledge-Based Assistive Living Systems

85 Summary

References

Semantic Smart Homes: Situation-Aware Assisted Living.
9.1 Introduction
9.2 Related Work
9.3 A Systematic Approach to Situation-Aware ADL Assistance . . .
9.4 Semantic Data Management
9.4.1 Semantic Data Modelling
9.4.2 Semantic Data Creation
9.4.3 Semantic Content Storage and Retrieval
9.5 Semantic Enabled Intelligent Assisted Agent
9.5.1 An Example Case Study
0.6 Summary
References

Human Centred Cyber Physical Systems
10.1 Introduction
10.2 SMART: A Standalone System for Sequential Activity
Recognition
10.2.1 The SMART System Architecture
10.2.2 The SMART System Implementation
and Operation
10.2.3 SMART Limitations and Opportunities
10.3 An Agent-Based System for Composite Activity
Recognition
10.3.1 The Conceptual Architecture.
10.3.2 Multi-agent System Implementation.
10.3.3 Multi-agent System Interface.
10.4 A Service-Oriented SOAP-Based Smart System
10.4.1 The Service-Oriented System Architecture
10.4.2 The SOA Based System Implementation

Xiii

185
186
186
189
190
191
192

214

Xiv Contents

10.4.3 The SOA Based System Interface 235
10.4.4 SOA Based System Benefits and Limitations 236
10.5 A Multi-layered Service-Oriented REST-Based Smart
SYSteM . . o o 239
10.5.1 A Multi-layered SOA Based Framework 239
10.5.2 The Multi-layered SOA Based System
Implementation 241
10.5.3 The Multi-layered SOA Based System Interface. 244
10.6 SUMMATYot 248
References 248

About the Authors

Liming Chen is Professor of Computer Science, Head of the Context, Intelligence
and Interaction Research Group and its associated Smart Lab in the School of
Computer Science and Informatics, De Montfort University, UK. He received his
B.Eng. and M.Eng. from Beijing Institute of Technology, Beijing, China, and his
Ph.D. in Artificial Intelligence from De Montfort University, UK. His research
interests include data analytics, pervasive computing, user-centred intelligent sys-
tems, smart environments and their application in smart health and care. He is an
IET Fellow, an IEEE Senior Member, a co-founder and co-director of the IEEE CIS
“User-centred Smart Systems” Task Force. He has secured multi-million research
funding, acting as coordinator and principal investigator, from the UK and
European Union funding bodies, industry and third countries. He has over 200
peer-reviewed publications in internationally recognised journals and conferences,
spanning both theoretical and applied research. He plays an active role in various
scholarly activities, acting as a general or program chair for prestigious international
conferences, and as editors and guest editors for a number of high-profile journals.
He has delivered invited talks, keynotes and seminars in various forums, confer-
ences, industry and academic events.

Chris D. Nugent is currently the Head of the School of Computing at Ulster
University and leads the Pervasive Computing Research Group. He received a
Bachelor of Engineering in Electronic Systems and D.Phil. in Biomedical
Engineering both from Ulster University and currently holds the position of
Professor of Biomedical Engineering. His research within biomedical engineering
addresses the themes of the development and evaluation of technologies to support
pervasive healthcare within smart environments. Specifically, this has involved
research in the topics of mobile based reminding solutions, activity recognition and
behaviour modelling and more recently technology adoption modelling. He has
published over 450 papers in these areas and has been a grant holder of Research
Projects funded by National, European and International funding bodies. He is the

XV

XVi About the Authors

co-Principal Investigator of the Connected Health Innovation Centre at Ulster
University and a co-Investigator of the British Telecom Ireland Innovation Centre.
In 2016 he was awarded the Senior Distinguished Research Fellowship from Ulster
University.

Abbreviations

AAL
A-Box
ADL
AJAX
API
AR
BLE
CEP
CRUD
DD
EC
ESB
HAR
HCI
HTML
HTTP
ICT
IoT
JESS
JSON
KD
MQTT
oS
RDBMS
RDF
REST
RF

SH
SOA
SOAP

Ambient Assisted Living

Assertion Box

Activities of Daily Living
Asynchronous JavaScript and XML
Application Programming Interface
Activity Recognition

Bluetooth

Complex Event Processing

Create, Read, Update and Delete
Data-driven

Event Calculus

Enterprise Service Bus

Human Activity Recognition
Human—Computer Interface

Hypertext Markup Language
Hypertext Transfer Protocol
Information and Communications Technology
Internet of Things

Java Expert System Shell

JavaScript Object Notation
Knowledge-driven

Message Queuing Telemetry Transport
Operating System

Relational Database Management System
Resource Description Framework
Representational State Transfer

Radio Frequency

Smart Home

Service-oriented Architecture

Simple Object Access Protocol

Xvii

XViii Abbreviations

SPARQL SPARQL Protocol and RDF Query Language
SWRL Semantic Web Rule Language

T-Box Terminology Box

TDB Triplestore Database

USB Universal Serial Bus

XML Extensible Markup Language

List of Figures

Fig.
Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.
Fig.

Fig.
Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.

1.1

1.2

1.3

3.1
32
3.3
3.4
3.5
3.6
3.7
3.8
3.9
4.1

4.2

43

4.4
5.1
5.2

53
54
5.5
5.6
6.1

Activity classification: a single-user composite activity,

b multiple user composite activity
The 3-Ps AAL framework: preparing, processing

and Presenting.t
A three-dimensional characterization for activity

TECOZNMILION . o oottt et et e e e
Knowledge-driven activity recognition architecture.
The generic conceptual sensor model
The illustration of the situation formation process
A fragment of the SH domain ontologies
The conceptual activity model
A fragment of the ADL ontologies.
The activity recognition algorithm
The system interface in real time operation mode.
A log trace fragment.
Hybrid framework for activity recognition using

knowledge- and data-driven approaches
An excerpt of the activity ontologies with a entities

b relationships, and ¢ ADLs
Probability distribution of three ADLs over a period

of time
The system interface operating in real time mode.
Architecture of real-time activity recognition approach.
Representation of time-based sensor data segmentation
SCENATIOS . « . v vt vttt e e e
Fragment of ADL ontology
System configuration and status display interfaces
Comparison of recognition accuracy per activity
Comparison of average recognition accuracy
Tlustrating five interdependent phases of activity

TECOZNMILION . . ottt et et

XiX

XX

Fig.
Fig.
Fig.

Fig.
Fig.

Fig.

Fig.
Fig.

Fig.
Fig.

Fig.
Fig.

Fig.

Fig.
Fig.
Fig.
Fig.
Fig.

Fig.
Fig.
Fig.
Fig.

Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

6.2

6.3

6.4

6.5
6.6

6.7

6.8
6.9

7.1
7.2

7.3
7.4

7.5

7.6
8.1
8.2
8.3
8.4

9.1
9.2
9.3
9.4

9.5
9.6

9.7
9.8
10.1
10.2
10.3
10.4

10.5

List of Figures

Overview of the semantic segmentation approach

with 7-box and A-box KB. 132
Semantic relationship properties between MakeTea ADL,

objects, and sensor characteristics. 133
Example of semantic-based decision engine with input
andoutputdata. 136
Conceptualising environmental context (EC) with Protégé 138
An excerpt of MakeTea ADL with semantic relationship

(SR) between EC in Protégé. 139
Inconsistency on hasAdding object property due

to the restrictions in MakeTea ADL class. 140
Inhabitant preferences as individuals with a list of sensors. ... 140
Semantical segmentation process with concurrent actions

for MakeTea and MakeToast ADL 142
The enhanced conceptual activity model. 156
A fragment of the activity models showing concepts

and their inter-relationships. 165
Temporal relationship models of composite activities. 167
A logical architecture for composite activity modelling

and recoOgnitiont 172
A snapshot of the interactions between activity ontologies

and runtime agent SyStem. 176
Summary of results for composite activities 178
The conceptual architecture of the SSH 187
An RDF graph describing a concrete contact sensor. 190
An open paradigm for assistance provision. 194
A fragment of the graphical hierarchy of the ADL

oNtologY . . . oo 195
The proposed system architecture. 204
The core components for semantic management. 205
A fragment of the SH ontology 206
A fragment of the OWL representation of the inhabitant

INSLANCE.o 207
The semantic repository within the SSH. 208
The incremental situation formation and ADL recognition

PIOCESS & . vttt e et e e e 211
The smart home and connected assistive system. 213
Sensor network design in the experiment 213
The SMART system architecture 220
The relationships between various entities within a SH 221
The system interface in real time mode 223
Sensor simulation interface to activate sensors, store

and reload actions from local disk 224
The modular architecture of the proposed approach 227

List of Figures Xxi

Fig. 10.6 The multi-agent architecture for unified activity

TECOZNILIONttt 228
Fig. 10.7 A snapshot of the runtime agent system.................. 232
Fig. 10.8 The SOAP-based system architecture 233
Fig. 10.9 Key services view of the ESB SOA system architecture

VIBW .« oot 234
Fig. 10.10 SOA ESB Smart re-implementation Ul—sensor sampler,

AR and learning L 236
Fig. 10.11 SOA ESB Smart re-implementation Ul—sensor logs 237
Fig. 10.12 SOA ESB Smart re-implementation Ul—explicit user

preferences 237
Fig. 10.13 The multilayer SOA using REST-based web service

protocol 240
Fig. 10.14 Software: sensor utility package 242
Fig. 10.15 Hardware: connectivity diagram of sensing devices 242
Fig. 10.16 Server-sent event (SSE) mechanism to communicate

between client and web service. 244
Fig. 10.17 Response data from web service android application 245
Fig. 10.18 Android application displaying semantical segmentation

results three activities 245
Fig. 10.19 ADL simulation environment for ADL preferences

matching. 246

Fig. 10.20 User preference management interface 247

List of Tables

Table 1.1
Table 2.1
Table 2.2
Table 3.1

Table 3.2
Table 3.3
Table 3.4
Table 3.5

Table 3.6
Table 3.7
Table 4.1
Table 4.2
Table 4.3
Table 4.4
Table 4.5
Table 4.6
Table 4.7
Table 4.8
Table 5.1

Table 5.2
Table 5.3
Table 5.4
Table 5.5
Table 5.6
Table 5.7
Table 5.8

The application categories and example areas.
The comparison of data-driven approaches.
The comparison of knowledge-driven approaches.
Concept for concept formation syntax and element

NOLAtIONS oottt
Two example activity specifications
Recognition results of the 144 activities.
Activity recognition accuracy (%)oeiio...
The TpRO for all the eight activities performed

by actor2 in experiment2
Fine-grained activity recognition results
Interaction recognition rate.,
The algorithm for learning unmodelled activities
The algorithm for learning object patterns
The algorithm for learning activity duration...............
The algorithm for learning activity patterns
Two examples of activity specifications
Recognition results of the 144 activities.
The activity discovery results from UATs
Part of the activity learning results from LATs.
Time-window segmentation based ontological activity
recognition algorithm L
Ontological reasoning algorithm (adapted from [4]).........
Listing to shrink a time window.
Listing to expand a time window
Summary of synthetic ADL datasets.
Recognition accuracy without shrinking or expansion
Recognition accuracy with only shrinking enabled.
Recognition accuracy with both shrinking and expansion
enabled.

XXiii

XXiv

Table 6.1
Table 6.2
Table 6.3
Table 6.4

Table 6.5
Table 6.6
Table 7.1
Table 7.2
Table 7.3
Table 7.4

Table 7.5
Table 7.6
Table 7.7

Table 7.8
Table 7.9
Table 8.1
Table 8.2
Table 10.1

List of Tables

The pseudocode of the semantic segmentation algorithm 137
Examples of sequential actions of single activities 144
Combinations of simple activities. 144
Single activity performed in no specific order with generic

and personal preferences. 145
Multiple activities performed in a composite manner. 146
Summary of recent KB approaches 148
Thirteen interval relations. 158
OWL constructors, axioms and dl syntax................. 159
Properties for the concepts in the activity models. 163
DL formulas for a select set of concepts used in activity

models 164
Entailment rules for inferring composite activities 169
Summary of ADL concepts in the ADL ontology 171
Temporal reasoning algorithm for composite activity

TECOZNITION vttt 173
Summary of simple activities in synthetic data set.......... 177
Summary of composite activities in synthetic data set 177
A list of examples processing and presentation services. 188
The RDF representation of the RDF graph in Fig. 8.2..... .. 191

Description of different layers in the conceptual model 221

Chapter 1 ®)
Introduction Check for

1.1 Background

Recent advances in sensing technologies, the Internet of Things (IoT), pervasive
computing, smart environments have transformed traditional embedded Information
and Communications Technology (ICT) systems into an ecosystem of interconnected
and collaborating smart objects, devices, embedded systems and most importantly
humans. Such systems, often referred to as cyber-physical systems (CPS), are usually
human user-driven or user—centred, and are aimed at providing people and businesses
with a wide range of innovative applications and services, e.g. making smarter, more
intelligent, more energy-efficient and more comfortable our transport systems, cars,
factories, hospitals, offices, homes, cities and personal devices. For example, a “Smart
Home” can monitor and analyse the daily activities of its inhabitants, usually the
elderly or individuals with disabilities, so that personalised context-aware assistance
can be provided. A “Smart City” can monitor, manage and control all basic city
functionalities such as transport, energy supply and waste collection, at a higher level
of automation by collecting and harnessing sensor data across the larger geographic
expanse.

In order to respond in real-time to an individual user’s specific needs in dynamic
and complex situations and support ergonomic and user-friendliness taking into var-
ious human factors such as privacy, dignity and behaviour characteristics, cyber-
physical human-machine systems need to be aware of the physical environment and
human participants’ behaviour. This awareness enables effective and fast feedback
loops between sensing and actuation, possibly with cognitive and learning capa-
bilities adapting to the participants’ preferences, capabilities and the modality of
human-machine interaction as well as dynamic situations. At this moment, vigorous
research on cyber-physical human-machine systems and their applications have been
undertaken in various national, regional and international research initiatives and pro-
grams. These include the smart home for supporting active and healthy ageing, and
smart cities to enhance performance and wellbeing, to reduce costs and resource
consumption, and to engage more effectively and actively with its citizens. A whole

© Springer Nature Switzerland AG 2019 1
L. Chen and C. D. Nugent, Human Activity Recognition
and Behaviour Analysis, https://doi.org/10.1007/978-3-030-19408-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19408-6_1&domain=pdf
https://doi.org/10.1007/978-3-030-19408-6_1

2 1 Introduction

raft of heterogeneous computing technologies providing fragments of the necessary
functionality, e.g. sensor networks, data analytics, artificial intelligence, pervasive
computing, human-computer interaction, has been developed. Nevertheless, to sup-
port the core features of this new breed of smart cyber-physical applications with
context-awareness, personalisation and adaptation, computational agents, devices
and the overall human-machine systems should be activity and goal aware as well as
responsive to changes. The collection, modelling, representation and interpretation
of the states, events and behaviours happened between human participants and both
physical and software agents/devices situated in a cyber-physical integrated envi-
ronment need to be carried out in a formal systematic way and at a higher level of
abstraction. This will facilitate data fusion and joint interpretation based on multiple
dimensions of observations (e.g., environment context, human physical activities and
mental or system states) as well as longitudinal pattern recognition.

Over the past decade, the modelling, representation, interpretation and usage of
sensor observations have constantly shifted from low-level raw observation data
and their direct/hardwired usage, data aggregation and fusion, to high-level formal
context modelling and context-based computing. It is envisioned that this trend will
continue towards a further higher level of abstraction, allowing situation, activity and
goal modelling, representation and inference. The resulting technologies will thus
enable and support user-centred functionality, ergonomics and usability in the next
generation of smart cyber-physical applications.

Human activity recognition (HAR) is key to the successful realisation of intel-
ligent cyber-physical systems. This relates to the fact that activities in a pervasive
environment provide important contextual information and any intelligent behaviour
of situated CPSs within the environment must be relevant to the user’s context and
ongoing activities. As such, HAR has become one of the most important research
topics for a variety of problem domains, including pervasive and mobile comput-
ing [1], surveillance-based security [2], context-aware computing [3] and ambient
assistive living [4]. With the prevalence of the underlying technologies, e.g. IoT, data
analytics, artificial intelligence, HCI and pervasive computing, and the acceptance
and industry-level uptake of the new wave of CPS applications in smart healthcare,
smart cities, intelligent transport and energy, it becomes increasingly apparent that
activity recognition and computational behaviour analysis will play a decisive role
in the future smart CPSs.

1.2 Basic Concepts on Activity Recognition

1.2.1 Action and Activity

Before we embark on an in-depth discussion on activity monitoring, modelling and
recognition, it is useful to distinguish human behaviours at different levels of gran-
ularity. For physical behaviours, the terms “action” and “activity” are commonly

1.2 Basic Concepts on Activity Recognition 3

(b) Multiple People ﬁ

[]
Collaborative Independent
Activity Activities
(a) Single Person ﬁ
3 v \
Single Activity < Multiple Activities
Non-/S tial

on-/ gquen @ Concurrent Interwoven Parallel

Actions

Fig. 1.1 Activity classification: a single-user composite activity, b multiple user composite activity

used in activity recognition communities. In some cases, they are used interchange-
ably and in other cases they are used to denote behaviours of different complexity
and duration. In the latter cases the term “action” is usually referred to as simple
ambulatory behaviour executed by a single person and typically lasting for a very
short duration of time. Examples of actions include bending, retrieving a cup from
a cupboard, opening a door, putting a teabag into a cup, etc. On the other hand,
the term “activity” here refers to complex behaviours consisting of a sequence of
actions and/or interleaving or overlapping actions. They could be performed by a
single human or several humans who are required to interact with each other in a
constrained manner. They are typically characterized by much longer temporal dura-
tions, such as making tea or two persons making meals. As one activity can contain
only one action, there will be no cut-off boundary between these two behaviour cat-
egories. Nevertheless, this simple categorization provides a baseline on the concept
of action and activity for the discussions in this book.

Activities can be performed in many contexts. A single person can perform a single
activity sequentially or multiple activities in a sequential, concurrent, interwoven or
parallel manner. On the other hand, multiple people can perform a single activity
or multiple activities in a sequential, concurrent, interwoven or parallel manner in a
shared space, independently or in collaboration. Figure 1.1 show arough hierarchical
structure for categorising human activities in terms of the numbers of involved users
and activities.

1.2.2 Activity Recognition

Activity recognition is the process whereby a person’s behaviour and his/her situated
environment are monitored and analysed to infer the undergoing activities. It com-
prises many different tasks, namely activity modelling, behaviour and environment

4 1 Introduction

monitoring, data processing and pattern recognition. To perform activity recognition,
it is, therefore, necessary to:

(1) choose and deploy appropriate sensors to objects and environments in order
to monitor and capture a user’s behaviour along with the state change of the
environment;

(2) create computational activity models in a way that allows software sys-
tems/agents to conduct reasoning and manipulation;

(3) collect, manage and process perceived information through aggregation and
fusion to generate a high-level abstraction of context or situation;

(4) design and develop reasoning algorithms to infer activities from collected sensor
data;

(5) carry out pattern recognition to determine the performed activity.

Researchers from different application domains have investigated activity recog-
nition for the past two decades by developing a diversity of approaches and techniques
for each of these core tasks. It is often the case that the selection of a method used
for one task is dependent on the method of another task(s), which will be closely
examined and studied in the remaining of this book.

These concepts about action, activity, the way of performing activities and the
characterisation of activity recognition tasks discussed above provide a basic con-
ceptualisation and clarity for the discussions in this chapter and the rest of this book.

1.3 Activity Recognition Approaches

Monitoring an actor’s behaviour along with changes in the environment is a critical
task in activity recognition. This monitoring process is responsible for capturing
relevant contextual information for activity recognition systems to infer an actor’s
activity. In terms of the way and data type of these monitoring facilities, there are
currently two main activity recognition approaches; vision-based activity recognition
and sensor-based activity recognition.

1.3.1 Vision-Based Activity Recognition

Vision-based activity recognition uses visual sensing facilities, e.g., camera-based
surveillance systems, to monitor a person’s behaviour and its environment changes.
The generated sensor data are video sequences or digitized visual data. The
approaches in this category exploit computer vision techniques, including feature
extraction, structural modelling, movement segmentation, action extraction and
movement tracking to analyse visual observations for pattern recognition. Vision-
based activity recognition has been a research focus for a long period of time due to
its important role in areas such as human-computer interaction, user interface design,

1.3 Activity Recognition Approaches 5

robot learning and surveillance. Researchers have used a wide variety of modalities,
such as single camera, stereo and infrared, to capture activity contexts. In addition,
they have investigated a number of application scenarios, e.g., single actor or group
tracking and recognition.

Vision-based activity recognition has been a research focus for a long period of
time due to its important role in areas such as surveillance, robot learning and anti-
terrorist security. Researchers have used a wide variety of modalities, such as a single
or multi-camera, stereo and infra-red, to investigate a diversity of application sce-
narios, for single or groups of individuals. Several survey papers about vision-based
activity recognition have been published over the years. Aggarwal and Cai [5] dis-
cuss the three important sub-problems of an action recognition system extraction of
human body structure from images, tracking across frames, and action recognition.
Cedras and Shah [6] present a survey on motion-based approaches to recognition
as opposed to structure-based approaches. Gavrila [7] and Poppe [8] present sur-
veys mainly on tracking human movement via 2D or 3D models and the enabled
action recognition techniques. Moeslund et al. [9] presents a survey of problems
and approaches in human motion capture, tracking, pose estimation, and activity
recognition. Yilmaz et al. [10] and Weinland et al. [11] present surveys of tracking
objects for action recognition. More recently, Turaga et al. [2] and Aggarwal et al.
[12] present surveys focusing on high-level representation of complex activities and
corresponding recognition techniques. Together these works have provided an exten-
sive overview on the vision-based approach. Given these existing works, this chapter
will not review research on vision-based activity recognition. However, it is worth
pointing out that while visual monitoring is intuitive and information-rich, vision-
based activity recognition suffers from issues relating to privacy and ethics [10] as
cameras are generally perceived as recording devices. Compared with the number of
surveys in vision-based activity recognition and considering the wealth of literature
in sensor-based activity recognition, there is a lack of extensive review on the state of
the art of sensor-based activity recognition. This may be because the approach only,
recently, became feasible when the sensing technologies matured to be realistically
deployable in terms of the underpinning communication infrastructure, costs, and
sizes.

It is worth pointing out that while visual monitoring is intuitive, information-
rich, and considerable work has been undertaken and significant progress has been
made, vision-based activity recognition approaches suffer from issues related to
scalability and reusability due to the complexity of real-world settings, e.g., highly
varied activities in the natural environment. In addition, as cameras are generally
used as recording devices, the invasiveness of this approach as well as privacy and
ethics concerns as perceived by some also prevent it from large-scale uptake in some
applications, in particular, in home environments.

6 1 Introduction

1.3.2 Sensor-Based Activity Recognition

Sensor-based activity recognition is to use the emerging sensor network technolo-
gies, the Internet of Things (IoT), and smart devices for activity monitoring. The
generated sensor data from sensor-based monitoring are mainly time series of state
changes and/or various parameter values that are usually processed through data
fusion, probabilistic or statistical analysis methods and formal knowledge technolo-
gies for activity recognition. A wide range of sensors, including contact sensors,
RFID, accelerometers, audio and motion detectors, to name but a few, are available
for activity monitoring. These sensors are different in types, purposes, output sig-
nals, underpinning theoretical principles and technical infrastructure. Sensors can be
attached to either an actor under observation or objects that constitute the environ-
ment. Sensors attached to humans, i.e., wearable sensors, often use inertial measure-
ment units (e.g. accelerometers, gyroscopes, magnetometers), vital sign processing
devices (heart rate, temperature) and RFID tags to gather a person’s behavioural
information. Activity recognition based on wearable sensors has been extensively
used in the recognition of human physical movements characterised by a distinct,
periodic motion pattern such as physical exercises, walking, running, sitting down/up,
climbing.

The wearable sensor-based approach is effective and relatively inexpensive for
data acquisition and activity recognition for certain types of human activities, mainly
human physical movements. Nevertheless, it suffers from two drawbacks. Firstly,
most wearable sensors are not applicable in real-world application scenarios due
to technical issues such as size, ease of use and battery life in conjunction with the
general issue of acceptability or willingness of the user to wear them. Secondly, many
activities in real-world situations involve complex physical motions and complex
interactions with the environment. Sensor observations from wearable sensors alone
may not be able to differentiate activities involving simple physical movements,
e.g., making tea and making coffee. To address these issues, object-based activity
recognition has emerged as one mainstream approach. The approach is based on real-
world observations that activities are characterised by the objects that are manipulated
during their operations. Simple sensors can often provide powerful clues about the
activity being undertaken. As such, it is assumed that activities can be recognised
from sensor data that monitor human interactions with objects in the environment.

Sensors attached to an object within an environment, namely ambient sensors
are used to infer activities by monitoring human-object interactions through the
usage of multiple multi-modal miniaturized sensors. As such, this approach is often
referred to as dense sensing as it involves in the use of many ambient sensors. It is
particularly suitable for dealing with activities that involve a number of objects within
an environment. Research on this approach has been driven by the intensive research
interest and huge research effort on smart home based assistive living, such as the
EU’s Active Assisted Living (AAL) program. In particular, sensor-based activity
recognition can better address sensitive issues in assisted living such as privacy, ethics
and obtrusiveness than conventional vision-based approaches. This combination of

1.3 Activity Recognition Approaches 7

application needs, and technological advantages has stimulated considerable research
activities in a global scale, which gave rise to a large number of research projects,
including the House_n [13], CASAS [26], Gator-Tech [14], inHaus [15], AwareHome
[16], DOMUS [17] and iDorm [18] projects, to name but a few. As a result of the
wave of intensive investigation, there have seen a plethora of impressive works on
sensor-based activity recognition in the past several years [19, 20].

Object-based activity recognition has attracted increasing attention as low-cost
low-power intelligent sensors, wireless communication networks and pervasive com-
puting infrastructures become technically mature and financially affordable. It has
been, in particular, under vigorous investigation in the creation of intelligent perva-
sive environments for ambient assisted living (AAL), i.e., the SH paradigm. Sensors
in a SH can monitor an inhabitant’s movements and environmental events so that
assistive agents can infer the undergoing activities based on the sensor observations,
thus providing just-in-time context-aware ADL assistance. For instance, a switch
sensor in the bed can strongly suggest sleeping, and pressure mat sensors can be
used for tracking the movement and position of people within the environment.

It is worth pointing out that the approaches described above may be suitable for
different applications because the sensing devices come in different in size, weights,
cost, measurement, mechanism, software, and communication and battery life. Tak-
ing this into account it is not possible to claim that one approach is superior to the
other. The suitability and performance in the end, is down to the nature of the type
of activities being assessed and the characteristics of the concrete applications. In
most cases, they are complementary and can be used in combination in order to yield
optimal recognition results.

1.4 Activity Recognition Methods

Activity recognition methods can be broadly divided into two major categories. The
first one is based on data mining and machine learning techniques while the second
strand of methods is based on priori domain knowledge and logical modelling and
reasoning. The former is usually referred to as data-driven approach, and the latter
as knowledge-driven approach. Both are elaborated below.

1.4.1 Data-Driven Activity Recognition

Data-driven methods for activity recognition include supervised and unsupervised
learning methods, which primarily use probabilistic and statistical reasoning. Super-
vised learning requires the use of labelled data upon which an algorithm is trained.
Following training the algorithm is then able to classify unknown data. The general
procedure using a supervised learning algorithm for activity recognition includes
several steps, namely, (1) to acquire sensor data representative of activities, includ-

8 1 Introduction

ing labelled annotations of what an actor does and when, (2) to determine the input
data features and its representation, (3) to aggregate data from multiple data sources
and transform them into the application-dependent features, e.g., through data fusion,
noise elimination, dimension reduction and data normalization, (4) to divide the data
into a training set and a test set, (5) to train the recognition algorithm on the training
set, (6) to test the classification performance of the trained algorithm on the test
set, and finally (7) to apply the algorithm in the context of activity recognition. It is
common to repeat steps (4)—(7) with different partitioning of the training and test
sets in order to achieve better generalisation with the recognition models. There are
a wide range of algorithms and models for supervised learning and activity recog-
nition. These include Hidden Markov Models (HMMs), dynamic and naive Bayes
networks, decision trees, nearest neighbour and support vector machines (SVMs)
[21, 22]. Among them HMMs and Bayes networks are the most commonly used
methods in activity recognition.

Unsupervised learning on the other hand tries to directly construct recognition
models from unlabelled data. The basic idea is to manually assign a probability
to each possible activity and to predefine a stochastic model that can update these
likelihoods according to new observations and to the known state of the system. Such
an approach employs density estimation methods, i.e., to estimate the properties of
the underlying probability density or clustering techniques, to discover groups of
similar examples to create learning models. The general procedure for unsupervised
learning typically includes (1) to acquire unlabelled sensor data, (2) to aggregate
and transforming the sensor data into features, and (3) to model the data using
either density estimation or clustering methods. Algorithms for unsupervised learning
include the use of graphical models [23] and multiple eigenspaces [24]. A number
of unsupervised learning methods are also based on probabilistic reasoning such
as various variants of HMMs and Bayes networks. The main difference between
unsupervised and supervised probabilistic techniques is that, instead of using a pre-
established stochastic model to update the activity likelihood, supervised learning
algorithms keep a trace of their previous observed experiences and use them to
dynamically learn the parameters of the stochastic activity models. This enables
them to create a predictive model based on the observed agent’s activity profiles.

A major strength of the activity recognition algorithms that are based on prob-
abilistic learning models is that they are capable of handling noisy, uncertain and
incomplete sensor data. Probabilities can be used to model uncertainty and capture
domain heuristics, e.g., some activities are more likely than others. The limitation
of the unsupervised learning probabilistic methods lies in the assignment of these
handcrafted probabilistic parameters for the computation of the activity likelihood.
They are usually static and highly activity-dependent. The disadvantage of super-
vised learning in the case of probabilistic methods is that they require a large amount
of labelled training and test data. In addition, to learn each activity in a probabilistic
model for a large diversity of activities in real-world application scenarios could be
deemed as being computationally expensive. The resulting models are often ad hoc,
not reusable and scalable due to the variation of the individual’s behaviour and their
environments.

1.4 Activity Recognition Methods 9

1.4.2 Knowledge-Driven Activity Recognition

Knowledge-driven methods for activity recognition is to exploit knowledge mod-
elling and representation for activity and sensor data modelling, and to use logical
reasoning to perform activity recognition. The general procedure of a knowledge-
driven approach includes (1) to use a knowledge representation formalism to explic-
itly define and describe a library of activity models for all possible activities in a
domain; (2) to aggregate and transform sensor data into logical terms and formula;
and (3) to perform logical reasoning, e.g., deduction, abduction and subsumption, to
extract a minimal set of covering models of interpretation from the activity model
library based on a set of observed actions, which could explain the observations.

There exist a number of knowledge modelling and representation methods and
reasoning algorithms in terms of logical theories and representation formalisms. For
example, Kauz [25] adopted first order axioms to build a library of hierarchical
plans for plan recognition. Wobke [26] extended Kauz’s work using situation the-
ory to address the different probabilities of inferred plans. Bouchard [27] used action
Description Logic (DL) and lattice theory for plan recognition with particular empha-
sis on the modelling and reasoning of plan intra-dependencies. Chen [28] exploited
the event theory—a logical formalism, for explicit specification, manipulation and
reasoning of events, to formalise an activity domain for activity recognition and
assistance. The major strength of Chen’s work is its capabilities to handle temporal
issues and undecidability. Logical activity modelling and reasoning is semantically
clear and elegant in computational reasoning. It is also relatively easy to incorporate
domain knowledge and heuristics for activity models and data fusion. The weakness
of logical approaches is their inability or inherent infeasibility to represent fuzziness
and uncertainty.

Most of them offer no mechanism for deciding whether one particular model is
more effective than another, as long as both of them can be consistent enough to
explain the actions observed. There is also a lack of learning ability associated with
logic-based methods.

1.5 Activity Recognition Applications

From an application perspective, activity recognition is seldom the final goal but
usually one step of an application system. For example, in assistive living, activ-
ity recognition is used as input for decision making that attempts to detect and
provide activity assistance. In security applications, activity recognition helps iden-
tify potential troublemakers providing an input for the following investigation and
decision-making processes. While it is beyond the scope of the chapter to provide
a thorough review on activity recognition applications, Table 1.1 summarises the
major application categories and some key application areas for reference.

10 1 Introduction

Table 1.1 The application categories and example areas

Application categories Example application areas

Security Airport, train station, Banks, car park warning systems

Intelligent Smart homes, smart offices, meeting rooms, smart

environment hospitals, smart cars, smart classrooms

Healthcare Activity (physical) tracking, assistive living, well-being
monitoring

Military Soldier monitoring in the battlefield

Pervasive and mobile computing | Context-aware interface design, content delivery, mobile
task assistance, energy efficiency

1.5.1 A Typical Application Scenario: Ambient Assisted
Living

Ambient-assisted living (AAL) aims to exploit activity monitoring, recognition, and
assistance to support independent living and ageing in place. Other emerging appli-
cations, such as intelligent meeting rooms and smart hospitals, are also dependent
on activity recognition in order to provide multimodal interactions, proactive service
provision, and context-aware personalised activity assistance. The main goal of build-
ing an AAL system is to aid the inhabitants in a Smart Home (SH) environment to
carry out their Activities of Daily Living (ADL). A SH is considered to be augmented
living environments equipped with sensors and actuators, within which monitoring of
ADL and personalised assistance can be facilitated. Several lab-based or SH systems
have been developed to support inhabitants in conducting ADLs such kitchen-based
activities, taking medications, detecting anomalies and behaviour patterns. However,
these SH systems provide only the fragments of necessary functionality required to
support for independent living. The existing SH technologies and solutions suffer
from a number of drawbacks. One of the key limitations is the lack of interoperability
of the systems between vendors, adapting non-standard communications protocols
and developing proprietary devices. This creates a huge challenge in reusability of the
SH system for not only integrating third-party sensors and actuators devices but also
limit heterogeneity of the data. Hence, the adaptation and applicability of solutions
affect the end-user.

The fundamental processes undertaken by the AAL system can be categorised in
three Ps: Preparing, Processing and Presenting [29]. The preparing stage involves
developing activity models, data collection and monitoring. The processing stage
comprises of segmenting the raw data stream, inferencing and recognising mixed user
(also referred to inhabitant) activities, aiding when required and learning new activi-
ties. The resource-intensive processing tasks are generally delegated from resource-
constrained devices to more powerful devices such as servers with a web service
interface. The presenting stage is responsible for tailoring the system to specific appli-
cation types and providing an intuitive human-computer interface (HCI). Figure 1.2
illustrates these phases as the building blocks of an AAL system.

1.5 Activity Recognition Applications 11

&
= Can be Distributed

- - /e
f Knowledge-driven resenting J Natural %, . ¥ s —
I \ -, / »
T ; Human & cowrrea[SMART Web Service |
. - + Computer THRY o¥ —
e i . Interface \“ Requests | Other Services
= o ¥ TS —_————————————
- ' - \ Activity Inferencing &
- S Application % Reasoning Services
! {Specific Use Case \ 1
______ Fostwrea) _____) 3

R Sensors Utility Service

Dynamic User Model

Hybrid P . Learning
o rocessing

Providing Assistance

Data-driven
a & ? Mixed Activity Inference &
o O et O Recognition
s
-

Raw Sensor Data Processing
‘1‘ P {Separation & Segmentation)

reparing P
il '3- Data Collection & Monitoring |
! z (Smart Environment) [}

User Activity Modelling
(Data-driven, Knowledge-driven & Hybrid Approach)

AAL System Building Block Smart Environment Devices

Fig. 1.2 The 3-Ps AAL framework: preparing, processing and presenting

1.5.2 Activity Recognition Challenges in Ambient Assisted
Living

Activity recognition in the context of ambient assisted living within a smart home
presents a number of challenges. Firstly, ADLs can be carried out with a high degree
of freedom in relation to the way and the sequential order they are performed. Indi-
viduals have different lifestyles, habits or abilities and as such have their own way
of performing ADLs. Though ADLs usually follow some kind of pattern there are
no strict constraints on the sequence and duration of the actions. For example, to
prepare a meal one can firstly turn on the cooker and then place a saucepan on the
cooker, or vice versa. Such phenomena happen in almost all ADLs, e.g., preparing a
drink, grooming, to name but a few. The wide range of ADLs and the variability and
flexibility in the manner in which they can be performed require an approach that is
scalable to large scale activity modelling and recognition.

Secondly, multi-modal sensors co-exist in an SH. They generate heterogeneous
data different in both formats and semantics. It is often necessary to fuse and interpret
sensor data from multiple sources in order to establish the context of the ongoing
ADL. For instance, the ADL making tea may involve the preparation of tea bag, cup,
hot water, milk and sugar. Only when some or all sensor data from these items are
fused, can the ADL be recognised. In addition, sensor data are full of noises, e.g.,
missed activations and/or faulty readings. This increases the uncertainty of sensor
data, as such the reliability of recognition.

12 1 Introduction

Thirdly, most ADLs are composed of a sequence of temporally related actions. As
such, sensor data related to an ADL is generated incrementally as the ADL unfolds. In
order to provide context-aware assistance for an SH inhabitant, activity recognition
should be performed at discrete time points in real-time in a progressive manner.
This will accommodate the ever-changing sensor data to recognise the current state
of the ongoing activity and further identify the user’s needs at the correct time.

1.6 Research Trends and Directions

1.6.1 Complex Activity Recognition

Most existing work on activity recognition is built upon simplified use scenarios, nor-
mally focusing on single-user single-activity recognition. In real world situations,
human activities are often performed in complex manners. These include, for exam-
ple, that a single actor performs interleaved and concurrent activities, and/or a group
of actors interact with each other to perform joint activities. The approaches and algo-
rithms described in previous sections cannot be applied directly to these application
scenarios. Researchers in related communities have realised this knowledge gap and
more attention is being focused towards this area as depicted in Fig. 1.3. This shift
of research emphasis is also driven by the increasing demand on scalable solutions
that are deployable to real world use cases. Nevertheless, research endeavours in this
niche field are still at infancy.

Activity Complexity Monitoring Mechanisms

Al:t:ivit\r Recognition
Characterisation

Multiple User
Multiple Activity

Multiple User
Single Activity

Multiple Sensor
Multiple Modality

Single User
Interleaved Activity
Single User
Single Activity
o3 [y EAi
& & & X
L 3 > 3 oy
& & il 2 & Q‘o
SRS G) Fof &
& & see 7 & Q8
& o & +
N P o

Fig. 1.3 A three-dimensional characterization for activity recognition

1.6 Research Trends and Directions 13

In the modelling and recognition of complex activities of a single user, Wu et al.
[30] proposed an algorithm using the factorial conditional random field (FCRF)
for recognising multiple concurrent activities. This model can handle concurrency
but cannot model interleaving activities and cannot be easily scaled up. Hu et al.
[30] proposed a two-level probabilistic and goal-correlation framework that deals
with both concurrent and interleaving goals from observed activity sequences. They
exploited skip-chain conditional random fields (SCCRF) at the lower level to estimate
the probabilities of whether each goal is being pursued given a newly observed
activity. At the upper level, they used a learnt graph model of goals to infer goals in a
“collective classification” manner. Modayil et al. [31] introduced Interleaved Hidden
Markov Models to model both inter-activity and intra-activity dynamics. To reduce
the size of the state space, they used an approximation for recognising multitasked
activities. Gu et al. [32] proposed an Emerging Patterns based approach to Sequential,
Interleaved and Concurrent Activity Recognition (epSICAR). They exploit Emerging
Patterns as powerful discriminators to differentiate activities. Different from other
learning-based models built upon the training dataset for complex activities, they built
activity models by mining a set of Emerging Patterns from the sequential activity trace
only and applied these models in recognising sequential, interleaved and concurrent
activities.

In the modelling and recognition of complex activities of a group or multiple
occupants, existing work has mainly focused on vision analysis techniques for activ-
ity recognition from video data. Various HMM models have been developed for
modelling an individual person’s behaviour, interactions and probabilistic data asso-
ciations. These include the dynamically multi-linked HMM model [33], the hierar-
chical HMM model [34], the Coupled HMM [35], the mixed-memory Markov model
[36] and the Layered Hidden Markov Models (LHMMs) [37]. DBN models are also
extensively used to model human interaction activities [38, 39], both using video
cameras. Lian et al. [40] used FCRF to conduct inference and learning from patterns
of multiple concurrent chatting activities based on audio streams. Work on using
dense sensing for complex activity recognition is rare. Lin et al. [41] proposed a
layered model to learn multiple users’ activity preferences based on sensor readings
deployed in a home environment. Nevertheless, their focus is on learning of prefer-
ence models of multiple users rather than on recognising their activities. Wang et al.
[42] used CHMMs to recognise multi-user activities from dense sensor readings in
a smart home environment. They developed a multimodal sensing platform and pre-
sented a theoretical framework to recognise both single-user and multi-user activities.
Cook et al. [43] proposed a single HMM model for two residents. The model can
not only represent transitions between activities performed by one person but also
represent transitions between residents and transitions between different activities
performed by different residents. As such their probabilistic models of activities are
able to recognise activities in complex situations where multiple residents are per-
forming activities in parallel in the same environment. Hoey and Grzes [44] present
a multi-level DBN model for providing assistance in multiple simultaneous tasks,
where the recognition of activities is implicitly used to tailor assistance based on the
recognised activities of the person.

14 1 Introduction

While increasing attention has been drawn into this area, nevertheless, research in
this niche field is still at its infancy. With the intensive interest in related areas such
as smart environments, pervasive computing and novel applications, it is expected
that research on activity recognition along this dimension will continue to receive
attention and generate results in the next few years.

1.6.2 Domain Knowledge Exploitation

As can be seen from the above discussions, at present, there is a multitude of sensing
technologies, multimodal devices and communication platforms being developed
and deployed in smart environments for activity monitoring. There is an abundance
of approaches and algorithms for activity recognition in various scenarios, includ-
ing a single user performing a single activity, a single user performing interleaved
multiple activities and multiple users performing complex activities. Nevertheless,
existing endeavours for activity monitoring and recognition suffer from several main
drawbacks.

Firstly, sensor data generated from activity monitoring, in particular in the situ-
ations of using multimodal sensors and different types of sensors, are primitive and
heterogeneous in format and storage, and separated from each other in both structure
and semantics. Such data sets are usually ad hoc, lack of descriptions, thus difficult
for exchange, sharing and reuse. To address this problem researchers have made
use of domain knowledge to develop high-level formal data models. Nugent et al.
[45] proposed a standard XML schema HomeML for smart home data modelling
and exchange; Chen et al. [46] proposed context ontologies to provide high-level
descriptive sensor data models and related technologies for semantic sensor data
management aiming to facilitate semantic data fusion, sharing and intelligent pro-
cessing. We believe knowledge rich data modelling and standardisation supported
by relevant communities is a promising direction towards a commonly accepted
framework for sensor data modelling, sharing and reuse.

Secondly, current approaches and algorithms for activity recognition are often
carefully handcrafted to well-defined specific scenarios. Existing implemented proof-
of-concept systems are mainly accomplished by plumbing and hardwiring the frag-
mented, disjointed, and often ad hoc technologies. This makes these solutions subject
to environment layout, sensor types and installation, and specific application scenar-
ios, i.e., lack of interoperability and scalability. The latest experiments performed by
Biswas et al. [47] indicated it is difficult to replicate and duplicate a solution in differ-
ent environments even for the same, simplest single-user single-activity application
scenario. This highlights the challenge to generalise approaches and algorithms of
activity recognition to real world use cases. While it is not realistic to pre-define one-
size-fits-all activity models due to the number of activities and the variation of the
way activities are performed, it is desirable if rich domain knowledge can be exploited
to produce initial explicit generic activity models. These models are later used, on
the one hand, to generate fine-grained individual-specific activity models, and on the

1.6 Research Trends and Directions 15

other hand, to evolve towards completion through learning. Chen et al. [48] devel-
oped activity ontologies where concepts represent the course-grained activity models
while instances represent user activity profiles. Okeyo et al. [49] extended this idea
by developing learning algorithms to automatically create fine-grained individual-
specific activity models, and also learn new activity models to evolve ontologies
towards model completion. Initial results are promising, and further work is needed
along this line.

1.6.3 Multi-level Activity Modelling for Scalability
and Reusability

Current approaches and algorithms for activity recognition are often carefully hand-
crafted to well-defined specific scenarios, both activities and the environment. Exist-
ing implemented proof-of-concept systems are mainly accomplished by plumbing
and hardwiring the fragmented, disjointed, and often ad hoc technologies. This makes
these solutions subject to environment layout, sensor types and installation, and spe-
cific activities and users. The solutions thus suffer from a lack of interoperability
and scalability. The latest experiments performed by Biswas et al. [47] indicated it
is difficult to replicate and duplicate a solution in different environments even for
the same, simplest single-user single-activity application scenario. This highlights
the challenge to generalize approaches and algorithms of activity recognition to real
world use cases.

While it is not realistic to pre-define one-size-fits-all activity models due to the
number of activities and the variation of the way activities are performed, we believe
multi-level activity modelling and corresponding inference mechanisms at different
levels of details could address the problem of applicability and scalability. The basic
idea is similar to the concepts of class and object in object-oriented programming
(OOP) in that an activity are modelled at both coarse-grained and fine-grained levels.
The coarse-grained level activity models are generic like a class in OOP that can be
used by any one in many application scenarios. The fine-grained activity models
are user specific like an instance in OOP that can accommodate the preference and
behaviour habits of a particular user. As such, the models and associated recogni-
tion methods can be applied to a wide range of scenarios. Chen et al. [48] devel-
oped activity ontologies where concepts represent the course-grained activity models
while instances represent user activity profiles. Okeyo et al. [49] extended this idea
by developing learning algorithms to automatically create fine-grained individual-
specific activity models, and also learn new activity models to evolve ontologies
towards model completion. Initial results are promising, and further work is needed
along this line. A systematic view on activity recognition.

Research on activity recognition has increasingly taken a systematic view, which
takes into consideration seamless integration and reuse of activity modelling, repre-
sentation, inference and application-specific features. Some of the existing systems

16 1 Introduction

have integrated activity modelling with decision making using artificial intelligence
techniques [50]. In data driven approaches, the most successful of these are probably
the decision theoretic models that extend the DBNs by adding utilities and actions.
These models are known as Markov decision processes (MDPs) and their partially
observable counterparts POMDPs. These models have been used for scheduling [51]
and for assistance with a variety of activities of daily living [52, 53]. POMDPs have
also been integrated with high-level knowledge from psychological analyses to gen-
erate prompting system for tasks involving dense sensing [54]. In knowledge driven
approaches, ontologies have been used as a conceptual backbone for modelling and
representation of sensors, context and activities, ranging from context management,
data integration, interoperation and sharing, to activity recognition, decision-making
support [48, 55-57]. As technologies are adaptive towards real world use cases and
transformed into products, it is expected the systematic view on activity recognition
will get growing currency.

Domain knowledge will certainly play a dominant role when activity recognition
is designed as a component of a complete system, e.g., as an input to support infer-
ence and decision making. An envisioned application is to use activity recognition
to perform behavioural or functional assessment of adults in their everyday environ-
ments. This type of automated assessment also provides a mechanism for evaluating
the effectiveness of alternative health interventions. For example, Patel et al. [58]
used accelerometer sensor data to analyse and assess the activities of patients with
Parkinson’s disease. They developed analysis metrics and compared the results with
assessment criteria from domain experts to estimate the severity of symptoms and
motor complications. This demonstrates that domain knowledge about activity profil-
ing and assessment heuristics are valuable for providing automated health monitoring
and assistance in an individual’s everyday environment.

1.6.4 Infrastructure Mediated Activity Monitoring

The current practice of installing a large number of sensors and an extensive sensing
infrastructure in an environment, e.g., residential homes, has been widely viewed
as problematic in real world scenarios. A recent trend for activity monitoring is to
leverage a home’s existing infrastructure to “reach into the home” with a small set
of strategically-placed sensors [59]. The residential infrastructure is usually referred
to as existing water pipes, electrical circuits, meters, heating or venting passages
or facilities within a home. The basic idea is to capture parameter or state changes
of an infrastructure from which activities can be monitored and further recognised.
Infrastructure mediated activity monitoring requires selecting appropriate sensors
and designing elaborate methods for combining the sensors with the existing infras-
tructure. Patel et al. [60] detected human movement by differential air pressure sens-
ing in HVAC system ductwork. Fogarty et al. [59] deploy a small number of low-cost
sensors at critical locations in a home’s existing water distribution infrastructure.
The authors infer activities in the home based on water usage patterns. Infrastructure

1.6 Research Trends and Directions 17

mediated activity monitoring is a very promising direction for activity monitoring
and recognition, and certainly worth further exploration.

1.6.5 Intent or Goal Recognition

Current activity recognition and its application is roughly a bottom-up approach
starting from the lowest sensor data, then discovering the activity and purposes of
the user through increasing higher-level processing. An emerging trend is to adopt a
top-down approach to activity monitoring and recognition. namely to (1) recognise
or discover the intent or goal of a user, (2) identify the activity that can achieve the
goal, (3) monitor the user’s behaviour including the performed actions, (4) decide
whether or not the user is doing the right thing in terms of the activity model and the
monitored behaviour, and finally (5) provide personalized context-aware interactions
or assistance whenever and wherever needed. Goals can be either explicitly manually
specified, such as when a care provider defines goals for a patient to achieve during
a day, or learnt based on domain context. Activities are pre-defined in some flexible
way and linked to specific goals. As such, once a goal is specified or identified,
applications can instruct/remind users to perform the corresponding activity.

While research on cognitive computation, goal modelling and representation of
motivations, goals, intention, belief and emotion, has been undertaken widely in
Al communities, in particular within intelligent agent research, the adoption of the
knowledge and research results in pervasive computing and smart environments and
their applications have so far receive little attention [61]. Nevertheless, interest is
growing and a recent workshop on situation, activity and goal awareness (SAGAware)
has been organised [62], aiming to facilitate knowledge transfer and synergy, bridge
gaps between different research communities/groups, lay down a foundation for
common purposes, and help identify opportunities and challenges.

1.6.6 Abnormal Activity Recognition

The existing research on activity recognition focuses mainly on normal activities
that may account for the majority of collected data and processing computation.
Nevertheless, the results may contribute significantly less towards the purposes of
activity recognition as most applications involving activity recognition intend to
detect abnormal activities. This is a particularly important task in security moni-
toring where suspicious activities need to be dealt with and healthcare applications
where assistance need to be provided for incapable users. While this view may gen-
erate cost-effective results, solving the problem is challenging. Firstly, the concept of
an abnormal activity has not been well defined and elaborated with a variety of inter-
pretations available. For instance, everyone performs activity A, one person carries
out activity B. there are different views on whether or not activity B is abnormal. Yin

18 1 Introduction

et al. [63] defined abnormal activities as events that occur rarely and have not been
expected in advance. Secondly, there is an unbalanced data problem in abnormal
activity detection. A much larger proportion of sensing data is about normal activity,
while the data for abnormal ones are extremely scarce, which makes training the
classification model quite difficult. Knowledge driven approaches can certainly fit
in. The problem is really about the completeness of priori domain knowledge. For
example, is it possible to predict the behaviour of a terrorist in advance or based on
previous experience? Clearly, a raft of research problems and issues are open for
further investigation.

1.6.7 Sensor Data Reuse and Repurposing

Currently, sensor data generated from activity monitoring, in particular in the situ-
ations of using multimodal sensors and different types of sensors, are primitive and
heterogeneous in format and storage, and separated from each other in both structure
and semantics. Such data sets are usually ad hoc, lack of descriptions, thus difficult for
exchange, sharing and reuse. To address these problems researchers have made use
of priori domain knowledge to develop high-level formal data models. Nugent et al.
[45] proposed a standard XML schema HomeML for smart home data modelling
and exchange; Chen et al. [46] proposed context ontologies to provide high-level
descriptive sensor data models and related technologies for semantic sensor data
management aiming to facilitate semantic data fusion, sharing and intelligent pro-
cessing. We believe knowledge rich data modelling and standardization supported by
relevant communities is a promising direction towards a commonly accepted frame-
work for sensor data modelling, sharing and repurposing. This idea is also in line
with the infrastructure mediated monitoring, namely deploy-once, and reuse-for-all.

1.7 Summary

There is no doubt that cyber-physical systems in smart environments will pervade
future working and living spaces, transform our lives and impact our society. Activ-
ity recognition is becoming an increasingly important determinant to the success
of context-aware personalised pervasive applications. Synergistic research efforts
in various scientific disciplines, e.g., computer vision, artificial intelligence, sensor
networks and wireless communication to name but a few, have brought us a diversity
of approaches and methods to address this issue. In this chapter, we first present
the background of the research on activity recognition for cyber-physical systems in
smart environments. Then we introduce the concept and rationale of activity recog-
nition, and further characterise activity recognition in terms of the way activities are
monitored, modelled and analysed. In addition, it highlights a number of application
areas for which activity recognition plays key roles, and further describes the typi-

1.7 Summary 19

cal application scenario of ambient assisted living, as well as challenges of activity
recognition in assisted living within a smart home. Followed the above descriptions,
we discuss existing research trends and directions in this area. This chapter serves
the purpose of establishing the overall picture of activity recognition and further
pointing to core constituent components, key research issues, directions and tends.
It sets up the scene for readers to proceed to following chapters.

References

—

AN L

(o]

10.
11.

12.
13.
. Helal S, Mann W, El-Zabadani H, King J, Kaddoura Y, Jansen E (2005) The gator tech smart

15.
16.

17.
. The IDORM project. https://www.usherbrooke.ca/domus/fr/
19.
20.

21.

22.

23.

24.

. Weiser M (1991) The computer for the 21st century. Sci Am (1991)
. Turaga P, Chellappa R, Subrahmanian VS, Udrea O (2008) Machine recognition of human

activities: a survey. IEEE Trans Circuits Syst Video Technol

. Wren CR, Tapia EM (2006) Toward scalable activity recognition for sensor networks. In:

Lecture notes in computer science (including subseries Lecture notes in artificial intelligence
and lecture notes in bioinformatics)

. Wang Y, Cang S, Yu H (2018) A data fusion-based hybrid sensory system for older people’s

daily activity and daily routine recognition. IEEE Sens J 18:6874—-6888

. Aggarwal JK, Cai Q (1999) Human motion analysis: a review. Comput Vis Image Underst
. Cédras C, Shah M (1995) Motion-based recognition a survey. Image Vis Comput
. Gavrila DM (1999) The visual analysis of human movement: a survey. Comput Vis Image

Underst

. Poppe R (2010) A survey on vision-based human action recognition. Image Vis Comput
. Moeslund TB, Hilton A, Kriiger V (2006) A survey of advances in vision-based human motion

capture and analysis. Comput Vis Image Underst 104(2-3):90-126

Yilmaz A, Javed O, Shah M (2006) Object tracking: a survey. ACM Comput Surv

Weinland D, Ronfard R, Boyer E (2011) A survey of vision-based methods for action repre-
sentation, segmentation and recognition. Comput Vis Image Underst

Aggarwal JK, Ryoo MS (2011) Human activity analysis: a review. ACM Comput Surv

MIT: House_n The PlaceLab. http://web.mit.edu/cron/group/house_n/placelab.html

house: a programmable pervasive space. Computer (Long Beach Calif) 38:50-60

Design I Inhaus design. http://inhausdesign.co.uk/projects/

Georgia Institute of Technology: Aware Home Research Initiative. http://www.awarehome.
gatech.edu/

The Domus Laboratory. https://cswww.essex.ac.uk/iieg/idorm.htm

Lin W, Xing S, Nan J, Wenyuan L, Binbin L (2018) Concurrent recognition of cross-scale
activities via sensorless sensing. IEEE Sens J 19(2):658-669

De-La-Hoz-Franco E, Ariza-Colpas P, Quero JM, Espinilla M (2018) Sensor-based datasets for
human activity recognition — a systematic review of literature. IEEE Access 6:59192-59210
Nef T, Urwyler P, Biichler M, Tarnanas I, Stucki R, Cazzoli D, Miiri R, Mosimann U (2015)
Evaluation of three state-of-the-art classifiers for recognition of activities of daily living from
smart home ambient data. Sensors (Basel) 15:11725-11740

Liu J, Shahroudy A, Xu D, Kot Chichung A, Wang G (2017) Skeleton-based action recognition
using spatio-temporal LSTM network with trust gates. IEEE Trans Pattern Anal Mach Intell
XX:1-14

Liao L, Fox D, Kautz H (2007) Extracting places and activities from GPS traces using hierar-
chical conditional random fields. Int J Rob Res

Huynh T, Schiele B (2006) Unsupervised discovery of structure in activity data using multiple
eigenspaces. In: Hazas M, Krumm J, Strang T (eds) Location- and context-awareness. Springer,
Berlin, pp 151-167

http://web.mit.edu/cron/group/house_n/placelab.html
http://inhausdesign.co.uk/projects/
http://www.awarehome.gatech.edu/
https://cswww.essex.ac.uk/iieg/idorm.htm
https://www.usherbrooke.ca/domus/fr/

20

25.

26.
217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

1 Introduction

Kautz HA (2014) A formal theory of plan recognition and its implementation. In: Reasoning
about plans

Wobcke W (2002) Two logical theories of plan recognition. J Log Comput

Bouchard B, Giroux S, Bouzouane A (2006) A smart home agent for plan recognition of
cognitively-impaired patients. J] Comput

Chen L, Nugent C, Mulvenna M, Finlay D, Hong X, Poland M (2008) A logical framework
for behaviour reasoning and assistance in a smart home. Lecture notes in computer science
(including subseries Lecture notes in artificial intelligence and lecture notes in bioinformatics)
Triboan D, Chen L, Chen F, Wang Z (2017) Semantic segmentation of real-time sensor data
stream for complex activity recognition. Pers Ubiquitous Comput

WuT, Lian C, HsuJY'Y (2007) Joint recognition of multiple concurrent activities using factorial
conditional random fields. In: Proceedings 22nd conferences on artificial intelligence
Modayil J, Bai T, Kautz H (2008) Improving the recognition of interleaved activities. In:
Proceedings of the 10th international conference on Ubiquitous computing - UbiComp *08
Gu T, Wu Z, Tao X, Pung HK, Lu J (2009) epSICAR: an emerging patterns based approach to
sequential, interleaved and concurrent activity recognition. In: 7th annual IEEE international
conference on pervasive computing and communications, PerCom 2009

Gong S, Xiang T (2003) Recognition of group activities using dynamic probabilistic networks.
In: Proceedings ninth IEEE international conference on computer vision

Nguyen N, Venkatesh S, Bui H (2006) Recognising behaviours of multiple people with hierar-
chial probabilistic model and statistical data association. In: British machine vision conference
Oliver N, Rosario B, Pentland A (1999) A Bayesian computer vision system for modeling
human interactions. In: Lecture notes in computer science (including subseries Lecture notes
in artificial intelligence and lecture notes in bioinformatics)

Choudhury T, Basu S (2005) Modeling conversational dynamics as a mixed-memory markov
process. Adv Neural Inf Process Syst 17

Oliver N, Garg A, Horvitz E (2004) Layered representations for learning and inferring office
activity from multiple sensory channels. In: Computer vision and image understanding

Wyatt D, Choudhury T, Bilmes J, Kautz H (2007) A privacy-sensitive approach to modeling
multi-person conversations. In: IJCAI international joint conference on artificial intelligence
Youtian D, Feng C, Wenli X, Yongbin L (2006) Recognizing interaction activities using
dynamic Bayesian network. In: Proceedings - international conference on pattern recognition
Lian C-C, Hsu JY-J (2008) Chatting activity recognition in social occasions using factorial
conditional random fields with iterative classification. In: Proceedings of the 23rd national
conference on artificial intelligence, vol 3. AAAI Press, pp 1814-1815

Lin ZH, Fu LC (2007) Multi-user preference model and service provision in a smart home
environment. In: Proceedings of the 3rd IEEE international conference on automation science
and engineering, IEEE CASE 2007

Wang L, Gu T, Tao X, Lu J (2008) Sensor-based human activity recognition in a multi-user
scenario. In: Lecture notes in computer science (including subseries Lecture notes in artificial
intelligence and lecture notes in bioinformatics)

Singla G, Cook DJ, Schmitter-Edgecombe M (2010) Recognizing independent and joint activ-
ities among multiple residents in smart environments. J Ambient Intell Humaniz Comput
Hoey J, Grze M (2011) Distributed control of situated assistance in large domains with many
tasks. In: Twenty-first international conference on automated planning and scheduling (2011)
Nugent C, Finlay D, Davies R, Wang H, Zheng H, Hallberg J, Synnes K, Mulvenna M (2007)
homeML ? An open standard for the exchange of data within smart environments. In: Pervasive
computing for quality of life enhancement

Chen L, Nugent C, Al-Bashrawi A (2009) Semantic data management for situation-aware
assistance in ambient assisted living. In: Proceedings of the 11th international conference on
information integration and web-based applications & services - iiWAS 09

Biswas J, Baumgarten M, Tolstikov A, Wai AAP, Nugent C, Chen L, Donnelly M (2010)
Requirements for the deployment of sensor based recognition systems for ambient assistive
living. In: Lecture notes in computer science (including subseries Lecture notes in artificial
intelligence and lecture notes in bioinformatics)

References 21

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

Chen L, Nugent C (2009) Ontology-based activity recognition in intelligent pervasive environ-
ments. Int J Web Inf Syst

Okeyo G, Chen L, Wang H, Sterritt R (2011) Ontology-based learning framework for activity
assistance in an adaptive smart home. In: Chen L, Nugent CD, Biswas J, Hoey J (eds) Activity
recognition in pervasive intelligent environments. Atlantis Press, Paris, pp 237-263

Modayil J, Levinson R, Harman C (2008) Integrating sensing and cueing for more effective
activity reminders. In: AAAI fall symposium: Al in eldercare: new solutions to old problems
Pollack ME, Brown L, Colbry D, McCarthy CE, Orosz C, Peintner B, Ramakrishnan S,
Tsamardinos I (2003) Autominder: an intelligent cognitive orthotic system for people with
memory impairment. In: Robotics and autonomous systems

Kan P, Huq R, Hoey J, Goetschalckx R, Mihailidis A (2011) The development of an adaptive
upper-limb stroke rehabilitation robotic system. J Neuroeng Rehabil 8:33

Hoey J, Poupart P, von Bertoldi A, Craig T, Boutilier C, Mihailidis A (2010) Automated
handwashing assistance for persons with dementia using video and a partially observable
Markov decision process. Comput Vis Image Underst

Hoey J, Pltz T, Jackson D, Monk A, Pham C, Olivier P (2011) Rapid specification and automated
generation of prompting systems to assist people with dementia. Pervasive Mob Comput
Latfi F, Lefebvre B, Descheneaux C (2007) Ontology-based management of the telehealth smart
home, dedicated to elderly in loss of cognitive autonomy. In: CEUR workshop proceedings
(2007)

Klein M, Schmidt A, Lauer R (2007) Ontology-centred design of an ambient middleware for
assisted living: the case of SOPRANO. Context (2007)

Chen L, Nugent C, Mulvenna M, Finlay D, Hong X (2009) Semantic smart homes: towards
knowledge rich assisted living environments. Stud Comput Intell

Patel S, Lorincz K, Hughes R, Huggins N, Growdon J, Standaert D, Akay M, Dy J, Welsh
M, Bonato P (2009) Monitoring motor fluctuations in patients with parkinsons disease using
wearable sensors. IEEE Trans Inf Technol Biomed (2009)

Fogarty J, Au C, Hudson SE (2006) Sensing from the basement: a feasibility study of unobtru-
sive and low-cost home activity recognition. In: Proceedings of the annual ACM symposium
on user interface software and technology

Patel SN, Reynolds MS, Abowd GD (2008) Detecting human movement by differential air
pressure sensing in HVAC system ductwork: an exploration in infrastructure mediated sensing.
In: Lecture notes in computer science (including subseries Lecture notes in artificial intelligence
and lecture notes in bioinformatics)

Mei L, Easterbrook S (2007) Evaluating user-centric adaptation with goal models. In: Pro-
ceedings - ICSE 2007 workshops: first international workshop on software engineering for
pervasive computing applications, systems, and environments, SEPCASE’07

Chen L, Rashidi P (2012) Situation, activity and goal awareness in ubiquitous computing. Int
J Pervasive Comput Commun 8:216-224

Yin J, Yang Q, Pan JJ (2008) Sensor-based abnormal human-activity detection. IEEE Trans
Knowl Data Eng

Chapter 2 ®)
Sensor-Based Activity Recognition oo
Review

2.1 Introduction

The idea of using sensors for activity monitoring and recognition has been existent
since the late 90s. It was initially pioneered and experimented by the work of the
Neural Network house [1] in the context of home automation, and a number of
location-based applications aiming to adapt systems to users’ whereabouts [2, 3]. The
approach was soon found to be more useful and suitable in the area of ubiquitous and
mobile computing—an emerging area in the late 90s, due to its easy deployment.
As such, extensive research has been undertaken to investigate the use of sensors
in various application scenarios of ubiquitous and mobile computing, leading to
considerable work on context-awareness [4—6], smart appliances [40, 41] and activity
recognition [7-10]. Most research at that time made use of wearable sensors, either
dedicated sensors attached to human bodies or portable devices like mobile phones,
with application to ubiquitous computing scenarios such as providing context-aware
mobile devices. Activities being monitored in these researches are mainly physical
activities like motion, walking and running. These early works lay a solid foundation
for wearable computing and still inspire and influence today’s research.

In the early 2000s, a new sensor-based approach that uses sensors attached to
objects to monitor human activities appeared. This approach, which was later dubbed
as the “dense sensing” approach, performs activity recognition through the inference
of user-object interactions [11, 12]. The approach is particular suitable for dealing
with activities that involve a number of objects within an environment, or instrumen-
tal Activities of Daily Living [13, 14]. Research on this approach has been heavily
driven by the intensive research interests and huge research effort on smart home-
based assistive living, such as the EU’s AAL program [15]. In particular, sensor-
based activity recognition can better address sensitive issues in assistive living such
as privacy, ethics and obtrusiveness than conventional vision-based approaches. This
combination of application needs and technological advantages has stimulated con-
siderable research activities in a global scale, which gave rise to a large number of
research projects, including the House_n, CASAS, Gator-Tech, inHaus, AwareHome,

© Springer Nature Switzerland AG 2019 23
L. Chen and C. D. Nugent, Human Activity Recognition
and Behaviour Analysis, https://doi.org/10.1007/978-3-030-19408-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19408-6_2&domain=pdf
https://doi.org/10.1007/978-3-030-19408-6_2

24 2 Sensor-Based Activity Recognition Review

DOMUS and iDorm projects, to name but a few. As a result of the wave of intensive
investigation, there have seen a plethora of impressive works on sensor-based activity
recognition in the past several years.

While substantial research has been undertaken, and significant progress has been
made, the two main approaches, wearable sensors based and dense sensing based
activity recognition are currently still focuses of study. The former is mainly driven
by the ever-popular pervasive and mobile computing while the latter is predominantly
driven by smart environment applications such as ambient assisted living. Interests
in various novel applications are still increasing and application domains are rapidly
expanding.

2.2 Sensor-Based Activity Monitoring

Currently a wide range of sensors, including contact sensors, RFID, accelerometers,
audio and motion detectors, to name but a few, are available for activity monitoring.
These sensors are different in types, purposes, output signals, underpinning theo-
retical principles and technical infrastructure. However, they can be classified into
two main categories in terms of the way they are deployed in activity monitoring
applications. These are wearable sensors and dense sensors, and are described in
details in the following.

2.2.1 Wearable Sensor Based Activity Monitoring

Wearable sensors generally refer to sensors that are positioned directly or indirectly
on a human body. They generate signals when the user performs activities. As a
result, they can monitor features that are descriptive of the person’s physiological
state or movement. Wearable sensors can be embedded into clothes, eyeglasses, belts,
shoes, wristwatches, mobile devices or positioned directly on the body. They can be
used to collect information such as body position and movement, pulse, and skin
temperature. Researchers have found that different types of sensor information are
effective for classifying different types of activities. In the following, we summarise
the common practice in wearable sensor-based activity monitoring.

Accelerometer sensors are probably the most frequently used wearable sensor for
activity monitoring. They are particularly effective in monitoring actions that involve
repetitive body motions, such as walking, running, sitting, standing, climbing stairs.
Bao et al. [11] provide a summary of research work that recognises human activities
using acceleration data. Kern et al. [16] deploy a network of 3-axis accelerometers
distributed over the user’s body. Each accelerometer provides information about
the orientation and movement of the corresponding body part. Lukowicz et al. [17]
recognize workshop activities using body-worn microphones and accelerometers.
Measuring acceleration and angular velocity (the angle of the user’s thigh) through

2.2 Sensor-Based Activity Monitoring 25

wearable sensors, such as accelerometers and gyroscopes, Lee et al. [10] propose
a dead-reckoning method for determining a user’s location and recognizing sitting,
standing and walking behaviours. Mantyjarvi [18] recognises human ambulation and
posture on acceleration data collected from the hip.

GPS sensors are another widely used wearable sensor for monitoring location-
based activities in open pervasive and mobile environments. Patterson et al. [12]
present details of detecting human high-level behaviour from a GPS sensor stream,
such as boarding a bus at a particular bus stop, travelling and disembarking. Ashbrook
etal. [19] use GPS to learn significant locations and predict movement across multiple
users. Liao et al. [20] learn and infer a user’s mode of transportation and their goal in
addition to abnormal behaviours (e.g., taking a wrong bus) based on GPS data logs.

Biosensors are an emerging technology aiming to monitor activities through vital
signs. A diversity of sensors in different forms has been studied in order to measure
the wide range of vital signs such as blood pressure, heart rate, EEG, ECG and
respiratory information. Sung et al. [21] monitor the body temperature of soldiers to
detect hypothermia. Harms et al. [22] use information gathered by a smart garment
to identify body posture.

In addition to the investigation of different wearable sensors for activity mon-
itoring, research on the support and novel application of wearable computing has
been undertaken. Pantelopoulos et al. [23] present a survey on wearable systems
for monitoring and early diagnosis for the elderly. Dakopoulos and Bourbakis [24]
present a survey on wearable obstacle avoidance electronic travel aids for visually
impaired. Yoo et al. [25] design on-body and near-body networks that use the human
body itself as a channel for creating BodyNets. Cooper and Au use wearable sensors
to design and evaluate assistive wheelchairs [26] and smart walking sticks [27]. Kim
et al. [28] use wearable sensors to recognize gestures. Madan et al. [29] characterize
a person’s social context by evaluating a user’s proximity, speech, head movements
and galvanic skin response.

Wearable sensor-based activity monitoring suffers from limitations. Most wear-
able sensors need to run continuously and be operated hands-free. This may have
difficulties in real-world application scenarios. Practical issues include the accept-
ability or willingness to use wearable sensors and the viability and ability to wear
them. Technical issues include the size, ease of use, battery life and effectiveness of
the approach in real-world scenarios. To address these issues, vigorous investigation
of smart garments has been carried out, which aims to embed sensors in garments
for monitoring [30]. Another research thread is to make use of existing gadgets that
have already been carried in a daily basis like smartphones as intelligent sensors for
activity monitoring, recognition and assistance. This practice has been in place for
a while and is expected to gain large-scale uptake given the latest development and
affordability of such palm-held electronic devices.

Obviously, wearable sensors are not suitable for monitoring activities that involve
complex physical motions and/or multiple interactions with the environment. In
some cases, sensor observations from wearable sensors alone are not sufficient to
differentiate activities involving simple physical movements (e.g., making tea and

26 2 Sensor-Based Activity Recognition Review

making coffee). As a result, dense sensing based activity monitoring has emerged,
which is described below.

2.2.2 Ambient Sensor Based Activity Monitoring

Ambient sensor based activity monitoring refers to the practice that a large number
of ambient sensors are attached to objects within an environment, and activities are
monitored by detecting user-object interactions. The approach is based on real-world
observations that activities are characterized by the objects that are manipulated
during their performance. A simple indication of an object being used can often
provide powerful clues about the activity being undertaken. As such it is assumed
that activities can be recognised from sensor data that monitors human interactions
with objects in the environment. By dense sensing, we refer to the way and scale with
which sensors are used. Using dense sensing a large number of sensors, normally
low-cost low-power and miniaturized, are deployed in a range of objects or locations
within an environment for the purpose of monitoring movement and behaviour.

As dense sensing-based monitoring embeds sensors within environments, this
makes it more suitable for creating ambient intelligent applications such as smart
environments. As such, dense sensing-based activity monitoring has been widely
adopted in ambient assisted living (AAL), via the smart home paradigm [14]. Sensors
in an SH can monitor an inhabitant’s movements and environmental events so that
assistive agents can infer the undergoing activities based on the sensor observations,
thus providing just-in-time context-aware ADL assistance. For instance, a switch
sensor in the bed can strongly suggest sleeping, and pressure mat sensors can be
used for tracking the movement and position of people within the environment.

Since the introduction of the idea in the early 2000s, extensive research has been
undertaken to investigate the applicability of the approach in terms of sensor types,
modalities and applications. For example, Tapia et al. [64] use environmental state-
change sensors to collect information about interaction with objects and recognize
activities that are of interest to medical professionals such as toileting, bathing, and
grooming. Wilson et al. [31] use four kinds of anonymous and binary sensors, motion
detectors, break-beam sensors, pressure mats, and contact switches for simultane-
ous tracking and activity recognition. Wren et al. [32] employ networks of passive
infrared motion sensors to detect the presence and movement of heat sources. With
this captured data they can recognize low-level activities such as walking, loitering,
and turning, as well as mid-level activities such as visiting and meeting. Srivastava
et al. [33] exploit wireless sensor network to develop a smart learning environment
for young children. Hollosi et al. [34] use voice detection techniques to perform
acoustic event classification for monitoring in Smart Homes. Simple object sensors
are adopted in [35].

Given the abundance of different types and modalities of sensors, sensors have
been used in different ways and combinations for dense sensing activity monitoring
in many application scenarios. It is impossible to claim that one sensor deployment

2.2 Sensor-Based Activity Monitoring 27

for a specific application scenario is superior to the other. The suitability and per-
formance is usually down to the nature of the type of activities being assessed and
the characteristics of the concrete applications. As such, in this chapter, we shall not
discuss in detail the different usage of dense sensing in various scenarios but simply
introduce its rationale as described above.

Generally speaking, wearable sensor-based activity monitoring receives more
attention in mobile computing while dense sensing is more suitable for intelligent
environment enabled applications. It is worth pointing out that wearable sensors
and dense sensing are not mutually exclusive. In some applications, they have to
work together. For example, RFID (Radio Frequency Identification) based activ-
ity monitoring requires that objects are instrumented with tags and users wear an
RFID reader affixed to a glove or a bracelet. Philipose and Fishkin [36, 37] devel-
oped two devices, iGlove and iBracelet, working as wearable RFID readers that
detect when users interact with unobtrusively tagged objects. Patterson et al. [38]
performed fine-grained activity recognition (i.e., not just recognising that a person
is cooking but determining what they are cooking) by aggregating abstract object
usage. Hodges et al. [39] proposed to identify individuals from their behaviour based
on their interaction with the objects they use in performing daily activities. Buettner
et al. [40] recognize indoor daily activities by using an RFID sensor network. In
most cases, wearable sensors and dense sensing are complementary and can be used
in combination in order to yield optimal recognition results. For example, Gu et al.
[41] combine wearable sensors and object sensors for collecting multimodal sensor
information. Through a pattern-based method, they recognize sequential, interleaved
and concurrent activities.

While substantial research has been undertaken, and significant progress has been
made, the two main approaches, wearable sensors based and dense sensing-based
activity recognition are currently still focuses of study. The former is mainly driven
by the ever-popular pervasive and mobile computing while the latter is predominantly
driven by smart environment applications such as ambient assisted living. Interests
in various novel applications are still increasing and application domains are rapidly
expanding.

2.3 Data-Driven Approaches to Activity Modelling
and Recognition

Data-driven activity modeling can be classified into two main categories: generative
and discriminative. In the generative approach, one attempts to build a complete
description of the input or data space, usually with a probabilistic model such as
a Bayesian network. In the discriminative approach, one only models the mapping
from inputs (data) to outputs (activity labels). Discriminative approaches include
many heuristic (rule-based) approaches, neural networks, conditional random fields

28 2 Sensor-Based Activity Recognition Review

and linear or non-linear discriminative learning (e.g. support vector machines). In
the following, we cover major results using each of these methods.

2.3.1 Generative Methods

The simplest possible generative approach is the naive Bayes classifier, which has
been used with promising results for activity recognition. Naive Bayes classifiers
model all observations (e.g. sensor readings) as arising from a common causal source:
the activity, as given by a discrete label. The dependence of observations on activity
labels is modelled as a probabilistic function that can be used to identify the most
likely activity given a set of observations. Despite the fact that these classifiers assume
conditional independence of the features, the classifiers yield good accuracy when
large amounts of sample data are provided. Nevertheless, naive Bayes classifiers
do not explicitly model any temporal information, usually considered important in
activity recognition.

The Hidden Markov Model (HMM) is probably the most popular generative
approach that includes temporal information. A HMM is a probabilistic model with
a particular structure that makes it easy to learn from data, to interpret the data once
amodel is learned, and is both easy and efficient to implement. It consists of a set of
hidden (latent) states coupled in a stochastic Markov chain, such that the distribution
over states at some time depends only on the values of states at a finite number
of preceding times. The hidden states then probabilistically generate observations
through a stochastic process. HMMs made their impact initially through use in the
speech recognition literature, where latent states correspond to phoneme labels, and
observations are features extracted from audio data. HMMs have more recently been
adopted as a model of choice in computer vision for modelling sequential (video)
data. HMM use a Markov chain over a discrete set of states. A closely relative of the
HMM uses continuous states, a model usually referred to as a linear dynamical system
(LDS). State estimation in LDSs is better known as a Kalman filter. LDSs have been
used with inputs from a variety of sensors for physiological condition monitoring
[42] in which a method is also introduced to deal with unmodelled variations in data,
one of the major shortcomings of the generative approach.

HMMs form the basis of statistical temporal models. They are, in fact, a special
case of the more general dynamic Bayesian networks (DBNs), which are Bayesian
networks in which a discrete time index is explicitly represented. Inference and learn-
ing in DBNss is simply an application of network propagation in Bayesian networks.
DBNs usually make a Markovian assumption, but explicitly represent conditional
independencies in the variables, allowing for more efficient and accurate inference
and learning. A well-known early use of DBNs for activity monitoring was in the
Lumiere project, where a Microsoft Windows user’s need for assistance was mod-
elled based on their activities on the screen [43].

A simple DBN extension of HMMs is the coupled HMM for recognition of simul-
taneous human actions. Coupled Hidden Markov Models (CHMMs) have two Marko-

2.3 Data-Driven Approaches to Activity Modelling and Recognition 29

vian chains, each modelling a different stream of data, with a coupling between them
to model their inter-dependence. Oliver et al. [57] learn a multi-layer model of office
activity to choose actions for a computational agent. The model uses multimodal
inputs, making only very slight use of computer vision. The Assisted Cognition
project [44] has made use of DBNS, in particular for Opportunity Knocks [20], a
system designed to provide directional guidance to a user navigating through a city.
This system uses a three level hierarchical Markov model represented as a DBN to
infer a user’s activities from GPS sensor readings. Movement patterns, based on the
GPS localization signals, are translated into a probabilistic model using unsuper-
vised learning. From the model and the user’s current location, future destinations
and the associated mode of transportation can be predicted. Based on the prediction,
the system has the ability to prompt the user if an error in route is detected.

Wilson and Atkeson [31] use DBNs to simultaneously track persons and model
their activities from a variety of simple sensors (motion detectors, pressure sensors,
switches, etc.). DBNs were also used in the iSTRETCH system [45], a haptic robotic
device to assist a person with stroke rehabilitation. The DBN models the person’s
current behaviours, their current abilities, and some aspects of their emotional state
(e.g. their responsiveness, learning rate and fatigue level). The person’s behaviours
correspond to how long they take for each exercise, what type of control they exhibit
and whether they compensate. These behaviours are inferred from sensors on the
device and in the person’s chair.

Even though they are simple and popular, HMMs and DBNs have some limita-
tions. A HMM is incapable of capturing long- range or transitive dependencies of the
observations due to its very strict independence assumptions (on the observations).
Furthermore, without significant training, a HMM may not be able to recognize all of
the possible observation sequences that can be consistent with a particular activity.

2.3.2 Discriminative Methods

A drawback of the generative approach is that enough data must be available to
learn the complete probabilistic representations that are required. In this section, we
discuss an alternative approach for modelling in which we focus directly on solving
the classification problem, rather than on the representation problem. The complete
data description of a generative model induces a classification boundary, which can
be seen by considering every possible observation and applying the classification
rule using inference. The boundary is thus implicit in a generative model, but a lot
of work is necessary to describe all the data to obtain it. A discriminative approach,
on the other hand, considers this boundary to be the primary objective.

Perhaps the simplest discriminative approach is Nearest Neighbor (NN), in which
a novel sequence of observations is compared to a set of template sequences in a
training set, and the most closely matching sequences in the training set vote for their
activity labels. This simple approach can often provide very good results. Bao and
Intille [11] investigated this method along with numerous other base-level classifiers

30 2 Sensor-Based Activity Recognition Review

for the recognition of activities from accelerometer data. They found that the simple
nearest neighbor approach is outperformed by decision trees, a related method, where
the training data is partitioned into subsets according to activity labels and a set of
rules based on features of the training data. The rules can then be used to identify the
partition (and hence the activity label) corresponding to a new data sample. Maurer
et al. [46], employed decision trees to learn logical descriptions of activities from
complex sensor readings from a wearable device (the eWatch). The decision tree
approach offers the advantage of generating rules that are understandable by the
user, but it is often brittle when high precision numeric data is collected. Stikic and
Schiele [47] use a clustering method in which activities are considered as a “bag of
features” to learn template models of activities from data with only sparse labels.

Many discriminative approaches explicitly take into account the fact that, for
classification, it is actually only the points closest to the boundary that are of interest.
The ones very far away (the “easy” ones to classify) do not play such a significant
role. The challenge is therefore to find these “hard” data points (the ones closest
to the boundary). These data points will be known as the “support vectors”, and
actually define the boundary. A support vector machine (SVM) is a machine learning
technique to find these support vectors automatically. A recent example of an SVM
in use for activity modelling is presented by Brdiczka et al. [48] where a model of
situations is learned automatically from data by first learning roles of various entities
using SVMs and labelled training data, then using unsupervised clustering to build
‘situations’ or relations between entities, which are then labelled and further refined
by end users. The key idea in this work is to use a cognitive model (situation model)
based on cognitive theory motivated by models of human perception of behaviour
in an environment. The CareMedia project [49] also uses an SVM to locate and
recognize social interactions in a care facility from multiple sensors, including video
and audio. The fusion of video and audio allowed 90% recall and 20% precision
in identifying interactions including shaking hands, touching, pushing and kicking.
The CareMedia project’s goals are to monitor and report behaviour assessments in a
care home to caregivers and medical professionals.

Ravi et al. also found that SVMs performed consistently well, but also investigated
meta-level classifiers that combined the results of multiple base-level classifiers [50].
Features extracted from worn accelerometers are extracted and classified using five
different base-level classifiers (decision tables, decision trees, k-nearest neighbors,
SVM and Naive Bayes). The meta-level classifiers are generated through a variety of
techniques such as boosting, bagging, voting, cascading and stacking. For recogniz-
ing a set of eight activities including standing, walking, running, going up/down stairs,
vacuuming and teeth brushing, they found that a simple voting scheme performed
the best for three easier experimental settings, whereas boosted SVM performed best
for the most difficult setting (test/training separation across users and days).

In practice, many activities may have non-deterministic natures, where some steps
of the activities may be performed in any order, and so are concurrent or interwoven.
A conditional random field (CRF) is a more flexible alternative to the HMM that
addresses such practical requirements. It is a discriminative and generative proba-
bilistic model that represents the dependence of a hidden variable y on an observed

2.3 Data-Driven Approaches to Activity Modelling and Recognition 31

variable x. Both HMMs and CRFs are used to find a sequence of hidden states
based on observation sequences. Nevertheless, instead of finding a joint probability
distribution p(x,y) as the HMM does, a CRF attempts to find only the conditional
probability p(ylx). A CRF allows for arbitrary, non-independent relationships among
the observation sequences, hence the added flexibility. Another major difference is
the relaxation of the independence assumptions, in which the hidden state probabil-
ities may depend on the past and even future observations. A CRF is modelled as
an undirected acyclic graph, flexibly capturing any relation between an observation
variable and a hidden state. CRFs are applied to the problem of activity recognition
in [51] where they are compared to HMMs, but only in a simple simulated domain.
Liao et al. [52] use hierarchical CRFs for modelling activities based on GPS data.
Hu and Yang [53] use skip-chain CRFs, an extension in which multiple chains inter-
act in a manner reminiscent of the CHMM, to model concurrent and interleaving
goals, a challenging problem for activity recognition. Mahdaviani and Choudhury
[54] show how semi-supervised CRFs can be used to learn activity models from
wearable sensor data.

2.3.3 Heuristic and Other Methods

Many approaches do not fall clearly into discriminative or generative categories,
but rather use a combination of both, along with some heuristic information. The
Independent Lifestyle Assistant (ILSA) is an example, as it uses a combination of
heuristic rules and statistical models of sequential patterns of sensor firings and time
intervals to help a person with planning and scheduling [55]. PEAT (the Planning
and Execution Assistant and Trainer) is a cognitive assistant that runs on a mobile
device and helps compensate for executive functional impairment. PEAT uses reac-
tive planning to adjust a user’s schedule based on their current activities. Activity
recognition in PEAT is based on what the user is doing, and on data from sensors on
the mobile device. These are fed into an HMM, the outputs of which are combined
with the reactive planning engine [56].

Other work has investigated how activities can be modelled with a combination of
discriminative and generative approaches [57], how common sense models of every-
day activities can be built automatically using data mining techniques [58], and how
human activities can be analysed through the recognition of object use, rather than the
recognition of human behaviour [59]. This latter work uses DBNs to model various
activities around the home, and a variety of radio frequency identification (RFID)
tags to bootstrap the learning process. Some authors have attempted to compare
discriminative and generative models [11, 50], generally finding the discriminative
models yield lower error rates on unseen data, but are less interpretable. Gu et al. [41]
use the notion of emerging patterns to look for frequent sensor sequences that can
be associated with each activity as an aid for recognition. Omar et al. [60] present a
comparative study of a variety of classification methods for analysing multi-modal
sensor data from a smart walker.

32 2 Sensor-Based Activity Recognition Review

The generative approach, which attempts to build a complete description of the
input or data space, usually with probabilistic analysis methods such as Markov mod-
els [61] and Bayesian networks [48] for activity modelling. These methods incorpo-
rate an inhabitant’s preferences by tuning the initial values of the parameters of the
probabilistic models. The major disadvantage with such methods is that the model
is static and subjective in terms of probabilistic variable configuration. An alterna-
tive approach is referred to as the discriminative approach, which only models the
mapping from inputs (data) to outputs (activity labels). Discriminative approaches
include many heuristics (rule-based) approaches, for example, neural networks, lin-
ear or non-linear discriminant learning. They use machine learning techniques to
extract ADL patterns from observed daily activities, and later use the patterns as
predictive models [48]. Both approaches require large datasets for training models,
thus suffer from the data scarcity or the “Cold Start” problem. It is also difficult to
apply modelling and learning results from one person to another.

2.4 Knowledge-Driven Approaches to Activity Modelling
and Recognition

Knowledge-driven activity recognition and modelling is motivated by real-world
observations that for most activities of daily living and working, the list of objects
required for a particular activity is limited and functionally similar. Even if the
activity can be performed in different ways the number and type of these involved
objects do not vary significantly. For example, it is common sense that the activity
“make coffee” consists of a sequence of actions involving a coffee pot, hot water,
a cup, coffee, sugar and milk; the activity “brush teeth” contains actions involving
a toothbrush, toothpaste, water tap, cup and towel. On the other hand, as humans
have different lifestyles, habits or abilities, they may perform various activities in
different ways. For instance, one may like strong white coffee, and another may prefer
a special brand of coffee. Even for the same type of activity (e.g., making white
coffee), different individuals may use different items (e.g., skimmed milk or whole
milk) and in different orders (e.g., adding milk first and then sugar, or vice versa).
Such domain-dependent activity-specific prior knowledge provides valuable insights
into how activities can be constructed in general and how they can be performed by
individuals in specific situations.

Similarly, knowledge-driven activity recognition is founded upon the observations
that most activities, in particular, routine activities of daily living and working, take
place in a relatively specific circumstance of time, location and space. The space
is usually populated with events and entities pertaining to the activities, forming a
specific environment for specific purposes. For example, brushing teeth is normally
undertaken twice a day in a bathroom in the morning and before going to bed and
involves the use of toothpaste and a toothbrush; meals are made in a kitchen with
a cooker roughly three times a day. The implicit relationships between activities,

2.4 Knowledge-Driven Approaches to Activity Modelling and Recognition 33

related temporal and spatial context and the entities involved (objects and people)
provide a diversity of hints and heuristics for inferring activities.

Knowledge-driven activity modelling and recognition intends to make use of rich
domain knowledge and heuristics for activity modelling and pattern recognition. The
rationale is to use various methods, in particular, knowledge engineering method-
ologies and techniques, to acquire domain knowledge. The captured knowledge can
then be encoded in various reusable knowledge structures, including activity mod-
els for holding heuristics and prior knowledge in performing activities, and context
models for holding relationships between activities, objects and temporal and spatial
contexts. Comparing to data-driven activity modelling that learns models from large-
scale datasets and recognises activities through data intensive processing methods,
knowledge-driven activity modelling avoids a number of problems, including the
requirement for large amounts of observation data, the inflexibility that arises when
each activity model needs to be computationally learned, and the lack of reusability
that results when one person’s activity model is different from another’s.

Knowledge structures can be modelled and represented in different forms, such
as schemas, rules or networks. This will decide the way and the extent to which
knowledge is used for following processing such as activity recognition, prediction
and assistance. In terms of the manner in which domain knowledge is captured, rep-
resented and used, knowledge-driven approaches to activity modelling and recogni-
tion can be roughly classified into three main categories as presented in the following
sections.

2.4.1 Mining-Based Approach

The rationale of a mining-based approach is to create activity models by mining
existing activity knowledge from publicly available sources. More specifically, given
a set of activities, the approach seeks to discover from the text corpuses a set of
objects used for each activity and extract object usage information to derive their
associated usage probabilities. The approach essentially views the activity model as
aprobabilistic translation between activity names (e.g., “make coffee”’) and the names
of involved objects (e.g., “mug”, “milk”). As the correlations between activities and
their objects are common-sense prior knowledge (e.g., most of us know how to carry
out daily activities), such domain knowledge can be gleaned in various sources such
as how-tos (e.g., those at ehow.com), recipes (e.g., from epicurious.com), training
manuals, experimental protocols, and facility/device user manuals.

A mining-based approach consists of a sequence of distinct tasks. Firstly, it needs
to identify activities of concern and relevant sources that describe these activities.
Secondly, it uses various methods, predominantly information retrieval and analysis
techniques, to retrieve activity definitions from specific sources and extract phrases
that describe the objects used during the performance of the activity. Then algorithms,
predominantly probabilistic and statistical analysis methods such as co-occurrences
and association are used to estimate the object-usage probabilities. Finally, the mined

34 2 Sensor-Based Activity Recognition Review

object and usage information is used to create activity models such as a HMM that
can be used further for activity recognition.

Mining-based activity modelling was initially investigated by researchers from
Intel Research [62, 63]. Perkowitz et al. [63] proposed the idea of mining the Web for
large-scale activity modelling. They used the QTag tagger to tag each word in a sen-
tence with its part of speech (POS) and a customized regular expression extractor to
extract objects used in an activity. They then used the Google Conditional Probabil-
ities (GCP) APIs to determine automatically the probability values of object usage.
The mined object and their usage information are then used to construct DBN mod-
els through Sequential Monte Carlo (SMC) approximation. They mined the website
ehow.com for roughly 2300 directions on performing domestic tasks (from “boiling
water in the microwave” to “change your air filter”), and the website ffts.com and
epicurious.com for a further 400 and 18,600 recipes respectively, generating a total
21,300 activity models. Using the DBN activity models they have performed activ-
ity recognition for a combination of real user data and synthetic data. While initial
evaluation results were positive, the drawback was that there are no mechanisms to
guarantee the mined models capturing completely the sequence probabilities and the
idiosyncrasy of certain activities. The inability to capture such intrinsic characteris-
tics may limit the model’s accuracy in real deployments.

Wyatt et al. [62] followed Perkowitz’s approach by mining the Web to create DBN
activity models. However, this group extended the work in three aspects, aiming to
address the idiosyncrasies and to improve model accuracy. To cover the wide variety
of activity definition sources, they mined the Web in a more discriminative way in
a wider scope. They did this by building a specialized genre classifier trained and
tested with a large number of labelled Web pages. To enhance model applicability,
they used the mined models as base activity models and then exploited the Viterbi
Algorithm and Maximum Likelihood to learn customized activity parameters from
unsegmented, unlabelled sensor data. In a bid to improve activity recognition accu-
racy they also presented a bootstrap method that produced labelled segmentations
automatically. Then they used the Kullback-Leibler (KL) divergence to compute
activity similarity.

A difficulty in connecting mined activities with tagged objects is that the activity
models may refer to objects synonymously. For example, both a “mug” and “cup”
can be used for making tea; both a “skiller” and “frying pan” be used for making
pasta. This leads to a situation that one activity may have different models with
each having the same activity name but different object terms. To address this, Tapia
et al. [64] proposed to extract collections of synonymous words for the functionally-
similar objects automatically from WordNet, an online lexical reference system for
the English language. The set of terms for similar objects is structured and represented
in a hierarchical form known as the object ontology. With the similarity measure
provided by the ontology, an activity model will not only cover a fixed number of
object terms but also any other object terms that are in the same class in the ontology.

Another shortcoming of early work in the area is that the segmentation is carried
out in sequential order based on the duration of an activity. As the duration of per-
forming a specific activity may vary substantially from one to another, this may give

2.4 Knowledge-Driven Approaches to Activity Modelling and Recognition 35

rise to applicability issues. In addition, in sequential segmentation, one error in one
segment may affect the segmentations of the subsequent traces. To tackle this, Palmes
et al. [65] proposed an alternate method for activity segmentation and recognition.
Instead of relying on the order of object use, they exploited the discriminative trait
of the usage frequency of objects in different activities. They constructed activity
models by mining the Web and extracting relevant objects based on their weights.
The weights are then utilized to recognize and segment an activity trace containing
a sequence of objects used in a number of consecutive and non-interleaving activi-
ties. To do this, they proposed an activity recognition algorithm, KeyExtract, which
uses the list of discriminatory key objects from all activities to identify the activi-
ties present in a trace. They further proposed two heuristic segmentation algorithms,
MaxGap and MaxGain, to detect the boundary between each pair of activities identi-
fied by KeyExtract. Boundary detection is based on the calculation, aggregation, and
comparison of the relative weights of all objects sandwiched in any two key objects
representing adjacent activities in a trace. Though the mining-based approach has a
number of challenges relating to information retrieval, relation identification and the
disambiguation of term meaning, nevertheless, it provides a feasible alternative to
model a large amount of activities. Initial research has demonstrated the approach is
promising.

Mining-based approaches are similar to data-driven approaches in that they all
adopt probabilistic or statistical activity modelling and recognition. But they are dif-
ferent from each other in the way the parameters of the activity models are decided.
The mining-based approaches make use of publicly available data sources avoiding
the “cold start” problem. Nevertheless, they are weak in dealing with the idiosyn-
crasies of activities. On other hand, data-driven approaches have the strength of
generating personalized activity models, but they suffer from issues such as “cold
start” and model reusability for different users.

2.4.2 Logic-Based Approach

The rationale of logical approaches is to exploit logical knowledge representation for
activity and sensor data modelling, and to use logical reasoning to perform activity
recognition. The general procedure of a logical approach includes (1) to use a logical
formalism to explicitly define and describe a library of activity models for all possible
activities in a domain, (2) to aggregate and transform sensor data into logical terms
and formula, and (3) to perform logical reasoning, e.g., deduction, abduction and
subsumption, to extract a minimal set of covering models of interpretation from the
activity model library based on a set of observed actions, which could explain the
observations.

Even though each task can be undertaken in different ways the role of each task
is specific and unique. Normally, the first step is to carry out knowledge acquisition,
which involves eliciting knowledge from various knowledge sources such as domain
experts and activity manuals. The second step is to use various knowledge modelling

36 2 Sensor-Based Activity Recognition Review

techniques and tools to build reusable activity structures. This will be followed by a
domain formalization process in which all entities, events and temporal and spatial
states pertaining to activities, along with axioms and rules, are formally specified
and represented using representation formalism. This process usually generates the
domain theory. The following step will be the development of a reasoning engine in
terms of knowledge representation formalisms to support the inference. In addition,
anumber of supportive system components will be developed, which are responsible
for aggregating and transforming sensor data into logical terms and formula. With all
functional components in place, activity recognition proceeds by passing the logical
representation of sensor data onto the reasoning engine. The engine performs logical
reasoning, e.g., deduction, abduction or induction, against the domain theory. The
reasoning will extract a minimal set of covering models of interpretation from the
activity models based on a set of observed actions, which could semantically explain
the observations.

There exist a number of logical modelling methods and reasoning algorithms in
terms of logical theories and representation formalisms. One thread of work is to
map activity recognition to the plan recognition problem in the well-studied artificial
intelligence field [66]. The problem of plan recognition can be stated in simple
terms as: given a sequence of actions performed by an actor, how to infer the goal
pursued by the actor and also to organize the action sequence in terms of a plan
structure. Kautz et al. [67] adopted first-order axioms to build a library of hierarchical
plans. They proposed a set of hypotheses such as exhaustiveness, disjointedness and
minimum cardinality to extract a minimal covering model of interpretation from the
hierarchy, based on a set of observed actions. Wobke [68] extends Kautz’s work using
situation theory to address the different probabilities of inferred plans by defining a
partial order relation between plans in terms of levels of plausibility. Bouchard et al.
[69] borrow the idea of plan recognition and apply it to activity recognition. They
use action Description Logic (DL) to formalize actions and entities and variable
states in a smart home to create a domain theory. They model a plan as a sequence
of actions and represent it as a lattice structure, which, together with the domain
theory, provides an interpretation model for activity recognition. As such, given a
sequence of action observations, activity recognition amounts to reasoning against
the interpretation model to classify the actions through a lattice structure. It was
claimed that the proposed DL models can organize the result of the recognition
process into a structured interpretation model in the form of a lattice, rather than a
simple disjunction of possible plans without any classification. This minimizes the
uncertainty related to the observed actor’s activity by bounding the plausible plans
set.

Another thread of work is to adopt the highly developed logical theory of actions,
such as the Event Calculus (EC) [70], for activity recognition and assistance. The EC
formalizes a domain using fluents, events and predicates. Fluents are any properties
of the domain that can change over time. Events are the fundamental instrument of
change. All changes to a domain are the result of named events. Predicates define
relations between events and fluents that specify what happens when and which flu-
ents hold at what times. Predicates also describe the initial situation and the effects of

2.4 Knowledge-Driven Approaches to Activity Modelling and Recognition 37

events. Chen et al. [71] proposed an EC-based framework in which sensor activations
are modelled as events, and object states as properties. In addition, they developed
a set of high-level logical constructors to model compound activities, i.e. the activ-
ities consisting of a number of sequential and/or parallel events. In the framework,
an activity trace is simply a sequence of events that happen at different time points.
Activity recognition is mapped to deductive reasoning tasks, e.g., temporal projection
or explanation, and activity assistance or hazard prevention is mapped to abductive
reasoning tasks. The major strength of this work is its capability to address temporal
reasoning and the use of compound events to handle uncertainty and flexibility of
activity modelling.

Logical activity modelling and reasoning is semantically clear and elegant in
computational reasoning. It is also relatively easy to incorporate domain knowledge
and heuristics for activity models and data fusion. The weakness of logical approaches
is their inability or inherent infeasibility to represent fuzziness and uncertainty. Most
of them offer no mechanism for deciding whether one particular model is more
effective than another, as long as both of them can be consistent enough to explain
the actions observed. There is also a lack of learning ability associated with logic-
based methods.

2.4.3 Ontology-Based Approach

Using ontologies for activity recognition is a recent endeavour and has gained grow-
ing interest. In the vision-based activity recognition community, researchers have
realized that symbolic activity definitions based on the manual specification of a set
of rules suffer from limitations in their applicability because the definitions are only
deployable to the scenarios for which they have been designed. There is a need for a
commonly agreed explicit representation of activity definitions or an ontology. Such
ontological activity models are independent of algorithmic choices, thus facilitating
portability, interoperability and reuse and sharing of both underlying technologies
and systems. Chen et al. [72] propose activity ontologies for analysing social inter-
action in nursing homes, Hakeem et al. [73] for the classification of meeting videos,
and Georis et al. [74] for activities in a bank monitoring setting. To consolidate
these efforts and to build a common knowledge base of domain ontologies, a col-
laborative effort has been made to define ontologies for six major domains of video
surveillance. This has led to a video event ontology [75] and the corresponding repre-
sentation language [76]. For instance, Akdemir [77] used the video event ontologies
for activity recognition in both bank and car park monitoring scenarios. In princi-
ple, these studies use ontologies to provide common terms as building primitives for
activity definitions. Activity recognition is performed using individually preferred
algorithms, such as rule-based systems [73] and finite-state machines [77].

In the dense sensing-based activity recognition community, ontologies have been
utilised to construct reliable activity models. Such models are able to match different
object names with a term in an ontology which is related to a particular activity.

38 2 Sensor-Based Activity Recognition Review

For example, a Mug sensor event could be substituted by a Cup event in the activity
model “MakeTea” as Mug and Cup can both be used for the “MakeTea activity. This
is particularly useful to address model incompleteness and multiple representations
of terms. Tapia et al. [64] generate a large object ontology based on the functional
similarity between objects from WordNet, which can complete mined activity mod-
els from the Web with similar objects. Yamada et al. [78] use ontologies to represent
objects in an activity space. By exploiting semantic relationships between things, the
reported approach can automatically detect possible activities even given a variety
of object characteristics including multiple representation and variability. Similar
to vision-based activity recognition, these studies mainly use ontologies to provide
activity descriptors for activity definitions. Activity recognition can then be per-
formed based on probabilistic and/or statistical reasoning [64, 78].

Ontology-based modelling and representation have been applied to general ambi-
ent assisted living. Latfi et al. [79] propose an ontological architecture of a telehealth-
based smart home aiming at high-level intelligent applications for elderly persons
suffering from loss of cognitive autonomy. Michael et al. [80] developed an ontology-
centred design approach to create a reliable and scalable ambient middleware. Chen
et al. [81] pioneered the notion of semantic smart homes in an attempt to lever-
age the full potential of semantic technologies in the entire lifecycle of assistive
living i.e. from data modelling, content generation, activity representation, process-
ing techniques and technologies to assist with the provision and deployment. While
these endeavours, together with existing work in both vision- and dense sensing-
based activity recognition, provide solid technical underpinnings for ontological
data, object, sensor modelling and representation, there is a gap between semantic
descriptions of events/objects related to activities and semantic reasoning for activity
recognition.

Most works use ontologies either as mapping mechanisms for multiple terms of an
object [64] or the categorisation of terms [78] or a common conceptual template for
data integration, interoperability and reuse [79]. Activity ontologies which provide an
explicit conceptualisation of activities and their interrelationships have only recently
emerged and have been used for activity recognition. Chen et al. [82] proposed
and developed an ontology-based approach to activity recognition. They constructed
context and activity ontologies for explicit domain modelling. Sensor activations over
a period of time are mapped to individual contextual information and then fused to
build a context at any specific time point. They made use of subsumption reasoning
to classify the constructed context based on the activity ontologies, thus inferring the
ongoing activity. Ye et al. [§3] developed an upper activity ontologies that facilitates
to the capturing of domain knowledge to link the meaning implicit in elementary
information to higher-level information that is of interest to applications. Riboni
et al. [84] investigated the use of activity ontologies, in particular, the new feature of
rule representation and rule-based reasoning from OWL2, to model, represent and
reason complex activities.

2.5 Discussions on Activity Recognition Approaches 39

2.5 Discussions on Activity Recognition Approaches

This section presents the comparison of different AR approaches and further dis-
cusses the relations between activity recognition and other closely related areas. As
activity recognition involves a number of research areas, and each area is itself a
research topic with considerable literature. The full reviews of these related areas are
beyond the scope of this chapter.

2.5.1 Activity Recognition Approach Comparison

Compared with data-driven and mining-based approaches, ontology-based
approaches offer several compelling features: Firstly, ontological ADL models
can capture and encode rich domain knowledge and heuristics in a machine-
understandable and processable way. This enables knowledge based intelligent pro-
cessing at a higher degree of automation. Secondly, DL-based descriptive reasoning
along a timeline can support incremental progressive activity recognition and assis-
tance as an ADL unfolds. The two levels of abstraction in activity modelling, concepts
and instances, also allow coarse-grained and fine-grained activity assistance. Thirdly,
as the ADL profile of an inhabitant is essentially a set of instances of ADL concepts,
it provides an easy and flexible way to capture a user’s activity preferences and
styles, thus facilitating personalised ADL assistance. Finally, the unified modelling,
representation and reasoning for ADL modelling, recognition and assistance makes
it natural and straightforward to support the integration and interoperability between
contextual information and ADL recognition. This will support systematic coordi-
nated system development by making use of seamless integration and synergy of a
wide range of data and technologies.

Compared with logic-based approaches, ontology-based approaches have the
same mechanisms for activity modelling and recognition. However, ontology-based
approaches are supported by a solid technological infrastructure that has been devel-
oped in the semantic web and ontology-based knowledge engineering communi-
ties. Technologies, tools and APIs are available to help carry out each task in the
ontology-based approach, e.g., ontology editors for context and activity modelling,
web ontology languages for activity representation, semantic repository technologies
for large-scale semantic data management and various reasoners for activity infer-
ence. This gives ontology-based approaches huge advantage in large-scale adoption,
application development and system prototyping.

Logic-based approaches are totally different from data-driven approaches in the
way activities are modelled and the mechanisms activities are recognised. They do
not require pre-existing large-scale dataset, and activity modelling and recognition is
semantically clear and elegant in computational reasoning. It is easy to incorporate
domain knowledge and heuristics for activity models and data fusion. The weakness
of logical approaches is their inability or inherent infeasibility to represent fuzziness

40 2 Sensor-Based Activity Recognition Review

and uncertainty even though there are recent works trying to integrate fuzzy logics
into the logical approaches. Another drawback is that logical activity models are
viewed as one-size-fits-all, inflexible for adaption to different users’ activity habits.
The logical approach, uses logical formalisms, for example event calculus [71] and
lattice theory [85], for representing ADL models and conducts activity explanation
and predication through deduction or abduction reasoning. Comparing to the above
two data-centric approaches, logical approaches are semantically clear in modelling
and representation and elegant in inference and reasoning.

A complete comparison between different approaches in terms of a number of
criteria is summarised in Tables 2.1 and 2.2. We have collected the experimental
results of these surveyed approaches aiming to establish their performance profiles.
Initial findings, which are in line with the findings from [86], have found out that the
accuracy of different recognition approaches varies dramatically between datasets.
The accuracy also varies between individual activities and is affected by the amount
of available data, the quality of the labels that were provided for the data, the number
of residents in the space that are interacting and performing activities in parallel, and
the consistency of the activities themselves. It becomes apparent that the quantitative
comparisons of different approaches will only make sense if the experiments are
based on the same activities and sensor datasets. Otherwise, the findings may not be
applicable to general cases, and even be misleading.

Cook [86] created a single benchmark dataset that contains eleven separate sensor
event datasets collected from seven physical testbeds. Using this dataset, a systematic
study has been conducted to compare the performance of three activity recognition
models: a naive Bayes classifier (NBC), a hidden Markov model (HMM), and a
conditional random field (CRF) model. The result of recognition accuracy using 3-
fold cross validation over the dataset is 74.87, 75.05 and 72.16% for the NBC, HMM
and CRF respectively.

Table 2.1 The comparison of data-driven approaches

Generative Discriminative
Model type NB, HMM, LDS, DBNs NN, SVM, CRE, decision tree
Modelling mechanism (un)supervised learning from
datasets
Activity recognition method | Probabilistic classification Similarity or rule-based
reasoning
Advantage Modelling uncertainty, Modelling uncertainty,
temporal information temporal information,
Heuristics
Disadvantage “Cold start” problems, lack of
reusability and scalability

2.5 Discussions on Activity Recognition Approaches

Table 2.2 The comparison of knowledge-driven approaches

41

Mining Logic Ontology
Model type HMM, DBN, Logic formula, HMM, DBN, Sensor and
SVM, CRF, NN |e.g., plans, SVM, CRF, NN | activity
lattices, event, ontology
trees
Modelling Information Formal (un)supervised Ontology
mechanism retrieval and knowledge learning from engineering
analysis modelling datasets
Activity Generative or Logical Generative or Semantic
recognition discriminative inference, i.e., discriminative reasoning, e.g.,
method methods deduction, methods subsumption,
induction consistency
Advantage No “cold start” No “cold start” Shared terms, No “cold start”
problems, using | problems, clear | interoperability | problems,
multiple data semantics on and reusability multiple models,
sources modelling and clear semantics
inference on modelling
and inference,
interoperability
and reusability
Disadvantage The problems as | Weak in The problems as | Weak in
DDA handling DDA handling
uncertainty and uncertainty and
scalability time

2.5.2 The Influence of Activity Monitoring on Activity
Recognition

The outputs of activity sensing, i.e., sensor data, can affect activity recognition in
several aspects. Firstly, in a data driven approach, the sensor type can often drive
the selection of an appropriate model. Sensors can yield single or multi-dimensional
data (e.g., an accelerometer would be multi-dimensional whereas a temperature sen-
sor would be uni-dimensional), and sensors can either give continuous or discrete
measurements. The models need to be modified to fit whatever type of sensor data is
being used. At the very least, the variable representing each sensor in a data-driven
model must match the sensor type in dimensionality and arity. For example, Oliver
et al. [57] use a variety of different sensor types, including audio time-of-arrival,
continuous and multi-dimensional computer vision measures, and a set of discrete
event from mouse and keyboard, as inputs (observations) of a set of HMMs. Liao
et al. [52] use continuous 2-dimensional GPS data as input to a CRF. One solution to
adapt activity models to sensor types is to include all available sensors in a discrim-
inative or generative model and allow the model itself to choose the most effective
ones for any given situation. This is known as sensor selection or active sensing.

42 2 Sensor-Based Activity Recognition Review

Secondly, the complexity of sensor data will determine to some extent the com-
plexity of activity models. In data-driven approaches, sensor data can be directly
fed into the activity models, either generative or discriminative, for model training
and/or activity inference. Alternatively, sensor data can be pre-processed, e.g., to
reduce the complexity of the data, before they are used in model training and activity
inference. There is always a trade-off between the complexity of the sensor data in
the model, and the complexity of the model. As a general principle the trade-off
is always about reducing the complexity of the model as much as possible without
sacrificing representation that is necessary for activity recognition.

For knowledge-driven approaches, sensor data do not directly affect activity mod-
els and inference. This is because activity models in knowledge-driven approaches
are pre-specified based on domain knowledge rather than driven by sensor data. In
addition, in knowledge-driven approaches sensor data are always mapped through
pre-processing to the values of properties of the formal activity models. As such, the
types and complexity of sensor data will only affect the initial conceptualisation of
activity models and the complexity of pre-processing but not the model and inference
mechanisms.

2.6 Summary

Activity recognition has become the determinant to the success of the new wave of
context-aware personalized applications in a number of emerging computing areas,
e.g., pervasive computing and smart environments. Synergistic research in various
scientific disciplines, e.g., computer vision, artificial intelligence, sensor networks
and wireless communications, has resulted in a diversity of approaches and methods
to address this issue. In this chapter we present a survey of the state-of-the-art research
on sensor-based activity recognition. We first introduce the rationale, methodology,
history and evolution of the approach. Then we reviewed the primary approaches and
methods in the fields of activity monitoring, modelling and recognition respectively.
In particular we identified key characteristics for each individual field and further
derived a classification structure to facilitate systematic analysis of the surveyed
work. We have conducted in-depth analysis and comparisons of different methods
in each category in terms of their robustness to real-world conditions and real-time
performance, e.g., applicability, scalability and reusability. The analysis has led to
some valuable insights for activity modelling and recognition.

In addition to the extensive review we have discussed emerging research trends
associated with activity recognition. One primary direction is complex activity recog-
nition focusing on the underlying modelling, representation and inference of inter-
leaved, concurrent and parallel activities. The other key direction is to improve

2.6 Summary 43

reusability, scalability and applicability of existing approaches. Research in this
direction has been undertaken in several strands, including multi-level activity mod-
elling, abnormal activity recognition, infrastructure mediated monitoring, and sensor
data reuse and repurposing. Another noticeable trend is research on formal activity
representation at a higher level of abstraction, e.g., developing dedicated activity rep-
resentation languages and representing situations and goals. These emerging efforts
provide guidance and indication for the future research of activity recognition.
Many research questions have not been touched due to the limited space. For exam-
ple, we did not elaborate in-depth low-level specific technical issues such as uncer-
tainty, temporal reasoning and sensor data inconsistency. We believe the emerged
structure of classification of activity recognition approaches and the comparison of
their pros and cons can inform and help interested readers for further exploration

References

1. Mozer MC (1998) The neural network house: an environment that adapts to its inhabitants. In:
Proceedings of AAAI spring symposium on intelligent environments
2. Leonhardt U, Magee J (1998) Multi-sensor location tracking. In: Proceedings of the 4th annual
ACM/IEEE international conference on mobile computing and networking. ACM, New York,
NY, USA, pp 203-214
3. Golding AR, Lesh N (1999) Indoor navigation using a diverse set of cheap, wearable sensors.
In: Third international symposium on wearable computers digest of papers, pp 29-36
4. Schmidt A, Beigl M, Gellersen HW (1999) There is more to context than location. Comput
Graph
5. Randell C, Muller H (2000) Context awareness by analysing accelerometer data. In: Fourth
international symposium on wearable computers digest of papers, pp 175-176
6. Gellersen HW, Schmidt A, Beigl M (2002) Multi-sensor context-awareness in mobile devices
and smart artifacts. Mob Netw Appl
7. Van Laerhoven K, Aidoo Ka, Lowette S (2001) Real-time analysis of data from many sensors
with neural networks. In: Proceedings of 5th international symposium on wearable computer
8. Foerster F, Fahrenberg J (2000) Motion pattern and posture: correctly assessed by calibrated
accelerometers. Behav Res Methods Instruments Comput
9. Laerhoven K, Van Cakmakci O (2000) What shall we teach our pants? In: Fourth international
symposium on wearable computers, digest of papers, pp 77-83
10. Lee SW, Mase K (2002) Activity and location recognition using wearable sensors. IEEE Per-
vasive Comput 1(3):24-32
11. BaolL, Intille SS (2004) Activity recognition from user-annotated acceleration data. In: Ferscha
A, Mattern F (eds) Pervasive computing. Springer, Berlin, pp 1-17
12. Patterson DJ, Liao L, Fox D, Kautz H (2003) Inferring high-level behavior from low-level
sensors. Presented at the 12 October 2003
13. Nugent CD, Mulvenna MD, Hong X, Devlin S (2009) Experiences in the development of a
Smart Lab. Int J Biomed Eng Technol 2:319-331
14. Chan M, Esteve D, Escriba C, Campo E (2008) A review of smart homes—present state and
future challenges. Comput Methods Programs Biomed 91:55-81
15. Programme A, AAL programme - active assisted living programme - ageing well. http://www.
aal-europe.eu/
16. Kern N, Schiele B, Junker H, Lukowicz P, Troster G (2002) Wearable sensing to annotate
meeting recordings. In: Proceedings - international symposium on wearable computers, ISWC

http://www.aal-europe.eu/

44

17.

18.
19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

2 Sensor-Based Activity Recognition Review

Lukowicz P, Ward JA, Junker H, Stiger M, Troster G, Atrash A, Starner T (2004) Recognizing
workshop activity using body worn microphones and accelerometers. Presented at the 2004
Aggarwal JK, Ryoo MS (2011) Human activity analysis: areview. ACM Comput Surv. 43(3):16
Ashbrook D, Starner T (2003) Using GPS to learn significant locations and predict movement
across multiple users. Pers Ubiquitous Comput. 7(5):275-286

Liao L, Patterson DJ, Fox D, Kautz H (2007) Learning and inferring transportation routines.
Artif Intell

Sung M, DeVaul R, Jimenez S, Gips J, Pentland A (2004) Shiver motion and core body tem-
perature classification for wearable soldier health monitoring systems. In: Eighth international
symposium on wearable computers, 2004. ISWC 2004

Harm H, Amft O, Roggen D, Troster G (2008) SMASH: a distributed sensing and processing
garment for the classification of upper body postures. In: Proceedings of the 3rd international
ICST conference on body area networks

Pantelopoulos A, Bourbakis NG (2010) A survey on wearable sensor-based systems for health
monitoring and prognosis

Dakopoulos D, Bourbakis NG (2010) Wearable obstacle avoidance electronic travel aids for
blind: a survey

Yoo J, Cho N, Yoo H-J (2008) Analysis of body sensor network using human body as the
channel. In: Proceedings of the ICST 3rd international conference on body area networks.
ICST (Institute for computer sciences, social-informatics and telecommunications engineer-
ing), ICST, Brussels, Belgium, pp 13:1-13:4

Cooper RA, Ding D, Simpson R, Fitzgerald SG, Spaeth DM, Guo S, Koontz AM, Cooper R,
Kim J, Boninger ML (2005) Virtual reality and computer-enhanced training applied to wheeled
mobility: an overview of work in pittsburgh. Assist Technol 17(2):159-170

Au LK, Wu WH, Batalin MA, Stathopoulos T, Kaiser WJ (2008) Demonstration of active
guidance with SmartCane. In: 2008 international conference on information processing in
sensor networks (ipsn 2008), pp 537-538

KimJ, He J, Lyons K, Starner T (2007) The gesture watch: a wireless contact-free gesture based
wrist interface. In: Proceedings - international symposium on wearable computers, ISWC
Madan A, Caneel R (2004) Towards socially-intelligent wearable networks

Wang Q, Timmermans A, Chen W, Jia J, Ding L, Xiong L, Rong J, Markopoulos P (2018)
Stroke patients’ acceptance of a smart garment for supporting upper extremity rehabilitation.
IEEE] Transl Eng Heal Med 6:1-9

Wilson D, Atkeson C (2005) Simultaneous tracking and activity recognition (STAR) using
many anonymous, binary sensors. In: Proceedings of the third international conference on
pervasive computing, (PERVASIVE2005)

Wren CR, Tapia EM (2006) Toward scalable activity recognition for sensor networks. In:
Lecture notes in computer science (including subseries Lecture notes in artificial intelligence
and lecture notes in bioinformatics)

Srivastava MB, Muntz R, Potkonjak M (2001) Smart kindergarten: sensor-based wireless net-
works for smart developmental problem-solving enviroments. In: Proceedings of the 7th annual
international conference on mobile computing and networking - MobiCom "01 (2001)
Hollosi D, Schroder J, Goetze S, Appell JE (2010) Voice activity detection driven acoustic
event classification for monitoring in smart homes. In: 2010 3rd international symposium on
applied sciences in biomedical and communication technologies, ISABEL 2010

Aipperspach R, Cohen E, Canny J (2006) Modeling human behavior from simple sensors in
the home. In: Lecture notes in computer science (including subseries Lecture notes in artificial
intelligence and lecture notes in bioinformatics)

Philipose M, Fishkin KP, Perkowitz M, Patterson DJ, Fox D, Kautz H, Héhnel D (2004)
Inferring activities from interactions with objects

Fishkin KP, Philipose M, Rea A (2005) Hands-on RFID: wireless wearables for detecting use
of objects. In: Proceedings - international symposium on wearable computers, ISWC
Patterson DJ, Fox D, Kautz H, Philipose M (2005) Fine-grained activity recognition by aggre-
gating abstract object usage. In: Proceedings - international symposium on wearable computers,
ISWC

References 45

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

Hodges MR, Pollack ME (2007) An ‘object-use fingerprint’: the use of electronic sensors for
human identification. In: Proceedings of international conference on ubiquitous computing
(UbiComp *07)

Buettner M, Prasad R, Philipose M, Wetherall D (2009) Recognizing daily activities with RFID-
based sensors. In: Proceedings of the 11th international conference on ubiquitous computing -
Ubicomp 09

Gu T, Wu Z, Tao X, Pung HK, Lu J (2009) epSICAR: an emerging patterns based approach to
sequential, interleaved and concurrent activity recognition. In: 7th annual IEEE international
conference on pervasive computing and communications, PerCom 2009

Quinn JA, Williams CKI, Mclntosh N (2009) Factorial switching linear dynamical systems
applied to physiological condition monitoring. IEEE Trans Pattern Anal Mach Intell

Horvitz EJ, Breese JS, Heckerman D, Hovel D, Rommelse K (2013) The Lumiere project:
Bayesian user modeling for inferring the goals and needs of software users

Kautz H, Fox D, Etzioni O, Borriello G, Arnstein L (2002) An overview of the assisted cognition
project. In: Proceedings of AAAI

Kan P, Huq R, Hoey J, Goetschalckx R, Mihailidis A (2011) The development of an adaptive
upper-limb stroke rehabilitation robotic system. J Neuroeng Rehabil 8:33

Stikic M, Schiele B (2009) Activity recognition from sparsely labeled data using multi-instance
learning. In: Lecture notes in computer science (including subseries Lecture notes in artificial
intelligence and lecture notes in bioinformatics)

Maurer U, Rowe A, Smailagic A, Siewiorek D (2006) Location and activity recognition using
eWatch: a wearable sensor platform. In: Lecture notes in computer science (including subseries
Lecture notes in artificial intelligence and lecture notes in bioinformatics)

Brdiczka O, Crowley JL, Reignier P (2009) Learning situation models in a smart home. IEEE
Trans Syst Man Cybern Part B Cybern 39(1):56-63

Chen DT, Yang J, Wactlar H (2005) A study of detecting social interaction with sensors in a
nursing home environment

Ravi N, Mysore P, Littman ML, Dandekar N (2005) Activity recognition from accelerometer
data

Vail DL, Veloso MM, Lafterty JD (2007) Conditional random fields for activity recognition.
In: Proceedings of the 6th international joint conference on autonomous agents and multiagent
systems - AAMAS *07

Liao L, Fox D, Kautz H (2007) Hierarchical conditional random fields for GPS-based activity
recognition. In: Thrun S, Brooks R, Durrant-Whyte H (eds) Robotics research. Springer, Berlin,
pp 487-506

Hu DH, Yang Q (2008) CIGAR: concurrent & interleaving goal & activity recognition. In:
AAAI conference on artificial intelligence

Mahdaviani M, Choudhury T (2007) Fast and scalable training of semi-supervised crfs with
application to activity recognition. Adv Neural Inf

Guralnik V, Haigh K (2002) Learning models of human behaviour with sequential patterns. In:
AAAI workshop on automation as caregiver

Modayil J, Levinson R, Harman C (2008) Integrating sensing and cueing for more effective
activity reminders. In: AAAI fall symposium Al eldercare new solutions to old problems
Oliver N, Garg A, Horvitz E (2004) Layered representations for learning and inferring office
activity from multiple sensory channels. Comput Vis Image Underst

Pentney W, Philipose M, Bilmes J (2008) Structure learning on large scale common sense
statistical models of human state. In: Proceedings of the 23rd national conference on artificial
intelligence, vol 3, pp 1389-1395. AAAI Press

Wu J, Osuntogun A, Choudhury T, Philipose M, Rehg JM (2007) A scalable approach to
activity recognition based on object use. In: Proceedings of the IEEE international conference
on computer vision

46

60.

61.

62.

63.

64.

65.

66.

67.

68.
69.

70.

71.

72.

73.

74.

75.

76.

7.

78.

79.

80.

81.

82.

83.

2 Sensor-Based Activity Recognition Review

OmarF, Sinn M, Truszkowski J (2010) Comparative analysis of probabilistic models for activity
recognition with an instrumented walker. In: Proceedings of the 26th conference on uncertainty
in artificial intelligence

Sanchez D, Tentori M, Favela J (2008) Activity recognition for the smart hospital. IEEE Intell
Syst

Wyatt D, Philipose M, Choudhury T (2005) Unsupervised activity recognition using automati-
cally mined common sense. In: Proceedings of 20th national conference on artificial intelligence
Perkowitz M, Philipose M, Fishkin K, Patterson DJ (2004) Mining models of human activities
from the web. In: Proceedings of the 13th conference on world wide web - WWW 04

Tapia EM, Choudhury T, Philipose M (2006) Building reliable activity models using hierarchi-
cal shrinkage and mined ontology. In: Lecture notes in computer science (including subseries
Lecture notes in artificial intelligence and lecture notes in bioinformatics)

Palmes P, Pung HK, Gu T, Xue W, Chen S (2010) Object relevance weight pattern mining for
activity recognition and segmentation. Pervasive Mob Comput 6(1):43-57

Albrecht D, Zukerman I, Nicholson A (1998) Bayesian models for keyhole plan recognition
in an adventure game. User Model User-adapt Interact

Kautz Ha (1991) A formal theory of plan recognition and its implementation. Presented at the
1991

Wobcke W (2002) Two logical theories of plan recognition. J Log Comput 12(3):371-412
Bouchard B, Giroux S, Bouzouane A (2006) A smart home agent for plan recognition of
cognitively-impaired patients. J Comput 1(5):53-62

Shanahan M (1997) Solving the frame problem: a mathematical investigation of the common
sense law of inertia. MIT Press

Chen L, Nugent C, Mulvenna M, Finlay D, Hong X, Poland M (2008) A logical framework
for behaviour reasoning and assistance in a smart home. Lecture notes in computer science
(including subseries Lecture notes in artificial intelligence and lecture notes in bioinformatics)
Chen D, Yang J, Wactlar HD (2004) Towards automatic analysis of social interaction patterns in
anursing home environment from video. In: Proceedings of the 6th ACM SIGMM international
workshop on multimedia information retrieval - MIR ’04

Hakeem A, Shah M (2004) Ontology and taxonomy collaborated framework for meeting clas-
sification. In: Proceedings - international conference on pattern recognition

Georis B (2004) A video interpretation platform applied to bank agency monitoring. In: Intel-
ligent distributed surveillance systems (IDSS-04) (2004)

Nevatia R, Hobbs J, Bolles B (2004) An ontology for video event representation. In: IEEE
computer society conference on computer vision and pattern recognition workshops

Frangois ARJ, Nevatia R, Hobbs J, Bolles RC (2005) VERL: an ontology framework for
representing and annotating video events. IEEE Multimed 12(4):76-86

Akdemir U, Turaga P, Chellappa R (2008) An ontology based approach for activity recognition
from video. In: Proceeding of the 16th ACM international conference on multimedia - MM
"08

Yamada N, Sakamoto K, Kunito G, Isoda Y, Yamazaki K, Tanaka S (2007) Applying ontology
and probabilistic model to human activity recognition from surrounding things. IPSJ Digit
Cour

Latfi F, Lefebvre B, Descheneaux C (2007) Ontology-based management of the telehealth smart
home, dedicated to elderly in loss of cognitive autonomy. In: CEUR workshop proceedings
Klein M, Schmidt A, Lauer R (2007) Ontology-centred design of an ambient middleware for
assisted living: the case of SOPRANO. Context

Chen L, Nugent C, Mulvenna M, Finlay D, Hong X (2009) Semantic smart homes: towards
knowledge rich assisted living environments. Stud Comput Intell

Chen L, Nugent CD, Wang H (2012) A knowledge-driven approach to activity recognition in
smart homes. IEEE Trans Knowl Data Eng 24(6):961-974

Ye J, Stevenson G, Dobson S (2011) A top-level ontology for smart environments. Pervasive
Mob Comput 7(3):359-378

References 47

84. Riboni D, Bettini C (2011) OWL 2 modeling and reasoning with complex human activities.
Pervasive Mob Comput 7(3):379-395

85. Preuveneers D, den Bergh J, Wagelaar D, Georges A, Rigole P, Clerckx T, Berbers Y, Coninx
K, Jonckers V, De Bosschere K (2004) Towards an extensible context ontology for ambient
intelligence. In: Markopoulos P, Eggen B, Aarts E, Crowley JL (eds) Ambient intelligence.
Springer, Berlin, pp 148-159

86. Cook DJ (2012) Learning setting-generalized activity models for smart spaces. IEEE Intell
Syst 2010(99):1

Chapter 3
An Ontology-Based Approach to Activity | e
Recognition

3.1 Introduction

Using ontologies for activity recognition is a recent endeavour and has gained grow-
ing interest. In the vision-based activity recognition community, researchers have
realised that symbolic activity definitions based on manual specification of a set
of rules suffer from limitations in their applicability, i.e., the definitions are only
deployable to the scenarios for which they have been designed. There is a need for
an explicit commonly agreed representation of activity definitions, i.e., ontologies,
for activities that are independent of algorithmic choices, thus facilitating portability,
interoperability and reuse and sharing of both underlying technologies and systems.
As such, researchers have proposed ontologies for specific domains of visual surveil-
lance. For example, Chen [1] proposed an ontology for analysing social interaction in
nursing homes; Hakeem [2] used ontolgoies for the classification of meeting videos,
and Georis [3] for activities in a bank monitoring setting. To consolidate these efforts
and to build a common knowledge base of domain ontologies, a collaborative initia-
tive has been made to define ontologies for six domains of video surveillance. This
has led to a video event ontology [4] and the corresponding representation language
[5]. For instance, Akdemir [6] used the video event ontologies for activity recogni-
tion in both bank and car park monitoring scenarios. In principle, these studies use
ontologies to provide common terms as building primitives for activity definitions.
Activity recognition is performed using individually preferred algorithms, such as
rule-based systems [2] and finite-state machines [6].

In the object-based activity recognition community, ontologies have been utilised
to construct reliable activity models. Such models are able to match an unknown
sensor reading with a word in an ontology which is related to the sensor event.
For example, a Mug sensor event could be substituted by a Cup event in the activity
model “MakeTea” asituses a Cup. This is particularly useful to address model incom-
pleteness and multiple representations of terms. For example, Tapia [7] generated a
large object ontology based on the functional similarity between objects from Word-
Net, which can complete mined activity models from the Web with similar objects.

© Springer Nature Switzerland AG 2019 49
L. Chen and C. D. Nugent, Human Activity Recognition
and Behaviour Analysis, https://doi.org/10.1007/978-3-030-19408-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19408-6_3&domain=pdf
https://doi.org/10.1007/978-3-030-19408-6_3

50 3 An Ontology-Based Approach to Activity Recognition

Yamada [8] used ontologies to represent objects in an activity space. By exploit-
ing semantic relationships between things, the reported approach can automatically
detect possible activities even given a variety of object characteristics including mul-
tiple representation and variability. Similar to vision-based activity recognition, these
studies mainly use ontologies to provide activity descriptors for activity definitions.
Activity recognition is performed based on probabilistic and/or statistical reasoning
[7, 8].

More recently, ontology based modelling and representation have been applied in
pervasive computing and in particular Ambient Assisted Living. For example, Latfi
[9] proposed an ontological architecture of a telehealth based SH aiming at high-level
intelligent applications for elderly persons suffering from loss of cognitive auton-
omy. Michael et al. [10] developed an ontology-centred design approach to create a
reliable and scalable ambient middleware. Chen et al. [11] pioneered the notion of
semantic smart homes in an attempt to leverage the full potential of semantic tech-
nologies in the entire lifecycle of assistive living i.e. from data modelling, content
generation, activity representation, processing techniques and technologies to assist
with the provision and deployment. While these endeavours, together with existing
work in both vision- and object-based activity recognition, provide solid techni-
cal underpinnings for ontological data, object, sensor modelling and representation,
there is a gap between semantic descriptions of events/objects related to activities
and semantic reasoning for activity recognition. Ontologies are currently used as a
mapping mechanism for multiple terms of an object as in [7] or the categorisation of
terms as in [8] or acommon conceptual template for data integration, interoperability
and reuse as in [9—12]. Specifically, there is a lack of activity ontologies, i.e., explicit
conceptualisation of activities and their interrelationships.

3.1.1 Application Context: Smart Home Based Assisted
Living

With the rising aging population and overstretched healthcare resources, technology-
driven healthcare delivery to support independent living has attracted increasing
amounts of attention. Within this new paradigm, the concepts of Smart Homes (SH)
have recently emerged as a viable mainstream approach to achieving this goal [13].
A SH is a residential home setting augmented with a diversity of multi-modal sen-
sors, actuators and devices along with Information and Communication Technologies
(ICT) based services and systems [14]. By monitoring environmental changes and
inhabitant’s activities, an assistive system in a SH can process perceived sensor data,
make timely decisions and take appropriate actions to assist an inhabitant perform
activities of daily living (ADL), thus extending the period of time living indepen-
dently within their own home environment .

3.1 Introduction 51

Currently there are a number of SH projects being developed for the purpose of
proof-of-concept demonstration in addition to the establishment of real living envi-
ronments [15, 16]. There is a broad range of enabling technologies such as sensor
networks, data communications and devices, that provide fragments of the neces-
sary functionality required for the SH [17, 18]. This has led to, on the one hand,
increasing capabilities of generating massive amounts of sensor data related to SH
environments, inhabitants and events, and on the other hand, the high expectation
of providing novel advanced ADL recognition and assistance. Trends in the area
of SH-based assistive living are now moving from location or time based reminder
systems or emergency oriented reactive alert systems towards context-aware cogni-
tive ADL assistance [19]. Cognitive ADL assistance intends to provide just-in-time
activity guidance for elderly people and those suffering from for example cognitive
deficiencies such as Alzheimer’s disease, in completing their ADLs [20]. To achieve
this objective it is necessary to (1) monitor an inhabitant’s behavior and their situated
environment in real time, (2) dynamically fuse and interpret the multiple modalities
of signals and features, (3) infer and recognise behaviours, changes or anomalies,
continuously in real-time in a progressive way, and (4) provide assistance to help the
inhabitant perform the intended activity based on incrementally accumulated sensor
data. There is at present a major gap between the potential of data generation and
the aspiration of advanced assistance provision in which context-aware personalized
ADL assistance at multiple levels of granularity can be provided whenever needed.
The central problem behind this gap is the lack of a novel, yet pragmatic, approach
to activity recognition which is truly scalable and can be easily deployed within real
living environments.

Activity recognition in a SH is presented with a number of challenges as described
in Chap. 1. Current researches on activity recognition have mainly focused on
the use of probabilistic and statistical analysis methods, the so-called data-driven
approach, for single-user single-activity scenarios [21-24]. In this chapter we present
an ontology-based knowledge-driven approach to the processing of multi-source sen-
sor data streams for the purposes of activity recognition. The purpose of our study
is not to extend existing data-mining methods to address complex activity scenar-
ios, e.g., interleaved or concurrent activities, sensor noise-caused uncertainty and
multi-occupancy, however, to develop an alternative activity recognition paradigm
that can address the aforementioned challenges. The approach is motivated by the
observations that ADLs are daily routines full of common-sense knowledge pro-
viding rich links between the environment, events and activities. In addition, user
profiles, i.e., an inhabitant’s ADL preferences and their specific ways of performing
ADLs, provide prior personal-level details about the ADL itself. Such domain and
prior knowledge is valuable in creating ADL models, avoiding the need of large-scale
dataset collection and training.

52 3 An Ontology-Based Approach to Activity Recognition

3.2 The Ontology-Based System Architecture

Central to the ontology-based approach is the formal explicit ontological modelling
and representation of the SH domain, i.e. SH context and ADLs. Ontological activity
modelling provides a description-based modelling method. It models activities as a
hierarchy of classes with each class described by a number of properties. As such, the
generated activity models are able to capture built-in interrelations between objects
and activities irrelevant of the sequence in which these objects are used. Context
ontologies serve as a situation model that inter-links multi-source sensor data to
build a situation at specific time points. These situations can then be interpreted
in terms of the ADL models to infer activities. ADL ontologies can be used as a
seed ADL classification model. The seed model can, on the one hand, be directly
used to interpret situations for activity recognition, and on the other hand, grow
naturally by learning undefined activity patterns from ongoing data mining. With
the proposed approach presented in this chapter activity recognition is equivalent
to performing subsumption reasoning using dynamically constructed SH situations
against ADL descriptions. Activity assistance is reduced to instance checking in
ontological reasoning, i.e. to discover the most closely-matched activity profile for
each user with regard to the recognised activity and subsequently to use the missing
properties for assistance provision.

Figure 3.1 depicts the proposed system architecture for ontology-based activity
recognition. Central to the architecture is the ontological modelling and representa-
tion of ADLs in the context of smart homes. This not only avoids the fundamental
difficulty of obtaining labelled data to learn activity models but also provides an
effective way to incorporate domain knowledge into both context and activity mod-
els. As can be viewed in Fig. 3.1, the ADL Repositories component consists of ADL
models at two levels of abstraction, i.e., ADL ontologies as the generic ADL mod-
els and User Profiles as a user’s personalised ADL model. A user’s ADL profile,
in essence, is an instance of the corresponding ADL classes in the ADL ontologies
with specific binding in terms of the user’s activity preferences. Similarly, the Con-
text Repositories component contains conceptual context models, i.e., the context
ontologies, which are used to instantiate sensor observations to create situations at
discrete time points. A situation at a specific time point is, on one hand, used for
activity recognition in real time. On the other hand, it can be archived over a longer
period of time and used to extract ADL patterns or detect changes in the way the
ADL is being completed. For example, a user regularly makes tea over a period of
three months at a specific time in the day, or the duration for making tea increases
over a given period of time.

The components in the left-hand column of Fig. 3.1 denote the physical environ-
ment of the SH, which consists of users, sensors, actuators and assistive services. The
sensors are responsible for monitoring environmental, event and activity contexts.
Assistive Services receive instructions from the ADL Assistive Agent and act on the
environment, devices and/or the inhabitant through various actuators. Many research

3.2 The Ontology-Based ... 53

' ™\ { B Pz ™
Inhabitant Personalised ADL ADL Repositories
\) L y y = ADL Onfologies
" " s D & User Profiles)
Assistive Services Assistive Agent - i »
3 g = ADL Recognition .
- ~ - ADL Model Leaming SH Domain Knowiedge
Sensors & Devices = ADL Assistance & N J
\ J @ 4 a ™
1 Context Repositories
() () « Context Ontologies
SH Environment Semantic Context « Situations
\ J - J - S

Fig. 3.1 Knowledge-driven activity recognition architecture

issues relating to the hardware aspects in an SH, e.g., optimal deployment of sensors,
still remain unsolved, however, are beyond the scope of this chapter.

The Assistive Agent is the core component of the system, which takes as inputs
the semantic descriptions of a situation and performs activity recognition with regard
to the ADL models in the ADL Repositories. A situation at a specific time is gen-
erated by aggregating user-object interactions as described in Sect. 3.3.2. Activity
recognition makes use of description-based reasoning capabilities enabled by onto-
logical modelling and representation. The agent performs coarse-grained activity
recognition by reasoning semantic situations against generic activity models, i.e.,
ADL ontologies, and fine-grained activity recognition against a user’s ADL profile.
This allows an assistive agent to provide generic and personalised assistance respec-
tively in terms of a user’s need and the level of details of recognised activities. In
addition, given the diversity of ADLs and discrepancy of an individual’s living styles
and preferences, the manually built ADL ontologies will be treated as the seed of
the ADL models. When a large amount of sensor data pertaining to an inhabitant’s
ADLs are captured and mined over a long period of time, regular activities that have
not been modelled before, either a new generic activity or a personalized one with
more subtlety can then be identified and extracted. The agent can use these learnt
activities to grow ADL ontologies. As such, activity models can evolve, and sub-
sequently improve the performance of activity recognition. The following sections
will describe the core constituent components of the system, i.e. ontological activity
modelling and recognition, one by one in details.

54 3 An Ontology-Based Approach to Activity Recognition

3.3 Ontological Modelling for Activity Recognition

3.3.1 Smart Home Characterisation

Inhabitants in a SH usually perform routine daily activities in specific circumstances,
i.e., in specific locations with specific objects at specific times. For example, brushing
teeth normally takes place twice a day, in the bathroom, in the morning and before
going to bed. It usually involves the use of toothpaste, a toothbrush and water. This
is generally referred to as the context for the corresponding activity. As humans
have different lifestyles, habits or abilities, an individual’s ADLs and the manner
in which they perform them may vary from one person to another. For instance,
one person may prefer white coffee and another person may prefer black coffee.
Even for the same type of activity, e.g., making white coffee, different people may
use different items, e.g., skimmed milk or whole milk, and complete the task in a
different order, e.g., adding milk first and then sugar, or vice versa. As such ADLs can
be categorized as generic ADLs applicable to all and personalised ADLSs taking into
account individual subtleties. In addition, ADLs can be conceptualized at different
levels of granularity. For example, Grooming can be considered to be comprised
of the sub-activities Washing, Brushing and Applying Make-up. There are usually
a “is-a” and “part-of” relationship between a primitive and composite ADLs. All
these observations could be viewed as prior domain knowledge that can facilitate
activity modelling and recognition.

Ontological modelling is the process to explicitly specify key concepts and their
properties for a problem domain. These concepts are organised in a hierarchical
structure in terms of their shared properties to form super-class and sub-class rela-
tions. For example, MakeTea is a subclass of MakeHotDrink. Properties establish
the interrelations between concepts. For instance, hasDrinkType is a property of the
MakeHotDrink activity that links the DrinkType concept (e.g., tea, coffee, chocolate)
to the MakeHotDrink concept. Both concepts and properties are modelled using the
commonly shared terms in the problem community. The resulting ontologies are
essentially knowledge models able to encode and represent domain knowledge and
heuristics. This avoids the manual class labelling, pre-processing and training pro-
cesses in the traditional approaches to activity recognition. In addition, ontologies
allow software agents to interpret data and reason against ontological contexts, thus
enhancing the capabilities of automated data interpretation and inference.

Ontology-based activity recognition approach offers several compelling features:
Firstly, ontological ADL models can capture and encode rich domain knowledge and
heuristics in a machine-understandable and processable way. This enables knowledge
based intelligent processing at a higher degree of automation. Secondly, DL-based
descriptive reasoning along a timeline can support incremental progressive activ-
ity recognition and assistance as an ADL unfolds. The two levels of abstraction in
activity modelling, i.e., concepts and instances, also allow coarse-grained and fine-
grained activity assistance. Thirdly, as the ADL profile of an inhabitant is essentially
a set of instances of ADL concepts, it provides an easy and flexible way to capture a

3.3 Ontological Modelling ... 55

user’s activity preferences and styles, thus facilitating personalised ADL assistance.
Finally, the unified modelling, representation and reasoning for ADL modelling,
recognition and assistance makes it natural and straightforward to support the inte-
gration and interoperability between contextual information and ADL recognition.
This will support systematic coordinated system development by making use of
seamless integration and synergy of a wide range of data and technologies. In the
following sections, we use SH based ambient assisted living to further illustrate these
concepts within the realms of ontological activity recognition.

3.3.2 Ontological Context Modelling

SH inhabitants perform ADLs in a diversity of temporal, spatial, environmental con-
texts. Spatial contexts relate to location information and surrounding entities such as
rooms, household furniture and appliances. Event contexts contain background activ-
ities and dynamic state changes of appliances and devices. Example events could be
the state changes of doors, windows, lights, alarms, a cooker and taps. Environmental
contexts are composed of environmental information such as temperature, humidity
and general weather conditions. Temporal contexts indicate the time and/or duration.
There is a high correlation between ADLs and contexts. For example, a cooking ADL
happens in the kitchen with a cooker turned on. A grooming ADL takes place in the
bathroom in the morning.

Contextual information is usually captured through various sensors. Each sensor
monitors and reflects one facet of a situation. Based on this observation our context
modelling is centred on ontological sensor modelling. As can be viewed from the
generic conceptual model in Fig. 3.2, sensors are inherently linked to a number of
physical and conceptual entities such as objects, locations and states. For example,
a contact sensor is attached to a teapot in the second cupboard to the left of the sink
in the kitchen. By explicitly capturing and encoding such domain knowledge in a
sensor model it is possible to infer the corresponding objects and location from the
activation of the sensor. This implies that an inhabitant performs an activity in the
inferred location with the inferred object.

As most ADLs require the interlinking and fusion of data from multiple, disparate
sensor sources in order to infer the high-level activities, it is necessary to aggregate
a sequence of sensor activations to generate a situation at a specific time point.
Figure 3.3 shows the situation formation process, which can be described as follows.
Each sensor has a default state value for its state property, denoting the state of the
object to which it is attached. When a sensor is activated (SA,), the state property will
change. Subsequently, the system will translate the state change as an occurrence of
a user-object interaction at the specific time (t,). As it is difficult, if not impossible,
to monitor what happens at detailed levels after an object is interacted with, it is
common practice to interpret a sensor activation as a user-object interaction (SSDj,),
ignoring how the object is used and when it is de-activated. As such a user-object
interaction is equivalent to an instantaneous sensor activation and can be interpreted

56 3 An Ontology-Based Approach to Activity Recognition

ManufactureID

hasID
hasType hasLocation

hasSensorValue

activatedAt
AttachedTo

@

Fig. 3.2 The generic conceptual sensor model

‘ SAi SA2 SAm SAx ‘
N O o & o
A4 V v b 4 A 4
to 1 t2 fn-1 ta T
- — Time Window _——

Context at T=> SSD: U SSD: U... U SSDu1 U SSD.

Fig. 3.3 The illustration of the situation formation process

as an object has been used for performing an activity. In this way, by aggregating
individual user-object interactions along a timeline (refer to Fig. 3.3) the situation at
specific time points can be generated.

The conceptual sensor model depicted in Fig. 3.3 can be formally represented
in the SH context ontologies—refer to (a) and (b) in Fig. 3.4. Context ontologies
consist of classes and properties for describing SH entities such as Device, Furniture,
Location, Time and Sensor, along with their interrelationships.

To help illustrate our approach we use the MakeDrink ADL class hierarchy, as
shown in Fig. 3.4, as an example for discussion. An activity model in the ADL
ontologies is a concept described by a number of properties that specify relation-
ships between the activity and other entities. Specifically, the MakeDrink activity is
described with two inherited properties hasActor and hasLocation, and two specific
properties hasContainer and hasAddings. Its sub-classes, e.g., MakeHotDrink and
MakeColdDrink have additional properties, e.g., drink types. An inhabitant’s ADL
profile is a set of ADL instances defined by incorporating the user’s preferences
and life styles. For instance, an inhabitant ADL profile for MakeDrink may con-
tain a MakeHotDrink instance with properties hasActor(thelnhabitant), hasLoca-
tion(kitchen), hasContainer(cup), hasHotDrinkType(coffee) and hasAddings(semi-
skimmedMilk).

3.3 Ontological Modelling ... 57

» @ Container mmactivatedAt ¥ O ADLActivity
Y Device WmattachedTo » BasicADLActivity
U Actuator mmachieve ¥ @ FunctionalADLActivity
¥ ' Sensor WdependenOn » ' DoHousework
ContactSensor ®=hasActor ¥ O KitchenADL
" DoorBell mhasAdding ¥ ' MakeDrink
FireAlarm mhasColdMealType > MakeColdDrinl
PressureSensor ®=hasContainer » " MakeHotDrink
Thermometer ®=hasCookingApplian > ' MakeMeal
> @ DrinkType > mmhasDrinkType ManageMoney
v @ HomeEntities "= hasEntities TakeMedicine
» D Addings mmhasEntityState » "UsePhones
» O ElectriElectroApplianc ™shasHotMealType b ' RecreativeADLActivity
» @ Furniture "= hasLocation » @ Container
b MedicalDevice ®=hasMaterial b ' Device
> @ Location mhasSensor » @ DrinkType
(a) Contextual classes (b) Properties (c) Activity classes

Fig. 3.4 A fragment of the SH domain ontologies

3.3.3 Ontological ADL Modelling

In order to perform activity recognition, computational activity models are required.
Based on the nature and characteristics of ADLs we developed a description-based
conceptual activity model as presented in Fig. 3.5. In addition to the name and
textual description, an activity can be described by a number of properties. These
properties relate an activity to other physical items and conceptual entities. They
can be categorised into three groups. The first group represents the context, e.g.
time, location and actors, within which the activity takes place. The second group
represents the causal and/or functional relations, e.g., conditions and effects that are
used for inference during high-level activity reasoning. The properties in the third
group denote the type and interrelationship between activities. With the diversity of
ADLs in a SH this conceptual model will serve as a base model and can be extended
to cover ADLs at multiple levels of abstraction.

The conceptual activity model depicted in Fig. 3.5 can be structured and repre-
sented in formal ADL ontologies in Fig. 3.4c. The ADL ontology consists of an
activity hierarchy in which each node, also called a class, denotes a type of ADL.
Each class is described with a number of properties. A property is defined by spec-
ifying its domain and range. The domain refers to all classes that can be described
by the property and the range refers to all classes whose instances can be assigned
to the property. A property describes a class using either a literal or an instance of
another class as its value, thus linking two classes. Sub-classes can inherit all prop-
erties from its super-class. This can be illustrated using the previous example, i.e.,
hasDrinkType is a property. Its domain is the MakeHotDrink activity class and its
range the DrinkType class. The instances of the DrinkType class, e.g., tea and coffee,
are the values that the hasDrinkType property will take.

58 3 An Ontology-Based Approach to Activity Recognition

Activity
Time Actor
superActivity
Conditions T £ peshanadty Location
dependentOn awm
- typeOf Activity require
Activity C ID, Name, { Resources
resultedin _hasEntities
Effects g . Environment
achieve lastFor Entities
. subActivity
Goal Duration
Activity

Fig. 3.5 The conceptual activity model

In the knowledge-driven approach, ADL ontologies can be viewed as activity
models that establish links between activities and contextual information through
activity-based properties. Context ontologies can be regarded as feature models
for constructing situations at specific time points that link contextual information
with sensor observations through context properties. As such, the whole process
of assisted living ranging from low-level sensor data collection, middle-level data
fusion, to high-level activity recognition can be streamlined in a unified modelling,
representation and reasoning formalism. Activity recognition amounts to construct-
ing situations from sensor observations and reasoning them against activity models.

We carry out knowledge acquisition through interviews, questionnaires and by
studying existing documents from which we derive the conceptual models for
describing activities and their relations with sensors and objects. Based on SH char-
acterization and the conceptual activity model we develop ADL ontologies using
Protégé [25] as shown in Fig. 3.6. The ADL ontology consists of an activity hier-
archy in which each node, also called a class, denotes a type of ADL. Each class
is described with a number of properties. In a similar way we develop SH context
ontologies that consist of classes and properties for describing SH entities such as
Device, Furniture, Location, Time and Sensor, and their interrelationships with an
activity class. Each sensor monitors and reflects one facet of a situation. By aggregat-
ing individual sensor observations, the contextual snapshots at specific time points, or
say a situation, can be generated, which can be used to perform activity recognition.

3.3 Ontological Modelling ... 59

v @ ADLActivity ~mmdependenOn
k-0 BasicADLActivity ~-mmhasActor
v @ FunctionalADLActivity W hasAdding
>’ DoHousework ~-mmhasColdMealType
v KitchenADL ~#mhasContainer
V' MakeDrink ~~#mhasCookingApplianc:
> MakeColdDrink |V ™ hasDrinkType
b MakeHotDrink ~#=hasAlcoholType
> MakeMeal ~-mmhasColdDrinkType
@' ManageMoney - #mhasHotDrinkType
'TakeMedicine ~-WmhasEntities
b UsePhones - WWhasEntityState
> RecreativeADLActivity mhasHotMeal Type
b2 Container ~-mmhasLocation
> @ Device mhasMaterial
»-@ DrinkType - mmhasSensor
Vo HamaFntitias ~MMhasSensorState

Fig. 3.6 A fragment of the ADL ontologies

Given the nature of sensor data in SH, we develop a two phase semi-automatic
approach to generating semantic descriptions. In the first phase, data sources such
as sensors and devices are manually semantically described. In the second phase
dynamically collected sensor data are first converted to textual descriptors. They are
then automatically attached to semantic instances of the corresponding ontological
classes to create a semantic knowledge repository. All these operations are performed
through demon-like style software tools embedded in the implemented system. the
generated semantic data and metadata are archived in a knowledge repository.

3.4 Ontology-Based Mechanisms for Activity Recognition

3.4.1 Theoretical Foundation

The ontological activity modelling and representation is a logical approach in nature
in that it uses a Description Logic (DL) based markup language (i.e., OWL and
RDF Schema) for specifying conceptual structures and relationships. Both languages
support inference and reasoning. The compelling feature of the approach is that it
can model domain knowledge at two levels of abstraction. Common, generic activity
knowledge can be modelled at the conceptual level as an activity class described by
a number of properties. These properties describe the types of objects that can be

60 3 An Ontology-Based Approach to Activity Recognition

Table 3.1 Concept for concept formation syntax and element notations

Formation syntax Some element notations

C,D — A| <<« <<« (atomic concept) C1C C2| (subclass of)

T| <« (universal concept) Cl = ... = Cn (equivalent class)
1| < (bottom concept) R1E Rn (subproperty of)

—A| <« (atomic negation) Rl=..=TRn (equivalent class)

O1 = ... = On (same individual)
CiC—(Cj (disjoint classes)
{Oi # Oj} (different individuals)

C N D| <« (intersection)
VR.C| <« (all value restriction)
IR.C| < (some value restriction)

{O1, ... On}| (enumeration) R1 = R2™ (inverse of)
AR {O} | (property value) RYC R <« (transitive)
>nR.C, <nR.C, =R.L| R =R~ <« <«—(symmetric)

(min, max, cardinality)

used to perform the activity. In this way, activity models can be created without the
requirement of large amounts of observation data and training processes. They are
applicable and reusable to a wide range of users.

The core elements of the DL formalism are concepts, roles and individuals. Con-
cepts denote sets of individuals. Roles denote binary relationships between individu-
als. Individuals are instances of concepts. The vocabulary used for defining concepts
and roles of an application domain is referred to as the terminology or the 7Box
in short. All named individuals in terms of vocabulary are referred to as assertions
about a real-world domain or the ABox. In addition to atomic concepts and roles
in the TBox, all DL systems allow users to build complex descriptions of concepts
and roles. This can be performed using the syntax and constructors of description
languages. As DL has a model-theoretic semantics, the statements in the 7Box and
the ABox can be interpreted with rules and axioms in DL, thus enabling reasoning
and inference, e.g. subsumption and satisfiability reasoning [26].

Consider, in abstract notation, we use the letter A for atomic concepts, the letter R
for atomic roles, the letter 7 for TBox, and the letters C and D for concept descriptions.
Concept descriptions in OWL can be formed using the basic elements in Table 3.1.

DL supports a number of reasoning tasks [26, 27], including satisfiability, sub-
sumption, equivalence, disjointness and consistency. Satisfiability is to check whether
a newly defined concept makes sense or whether it is contradictory. The following
three tasks are to infer relationships between concepts. For example, subsumption
is to find out whether a concept is more general than another one. A concept C is
subsumed by a concept D if the set of individuals denoted by C is a subset of the
set denoted by D. Actually, all inferences about concept interrelationships can be
reduced to satisfiability reasoning.

DL reasoning has been well studied, which supports decidability, completeness
and soundness in polynomial time complexity for an inexpressive DL and in expo-
nential time complexity for expressive DLs [27, 28]. With the advanced tableau
algorithms and various optimisation techniques, modern reasoners such as FACT++,
Pellet and Racer have substantially improved the performance in terms of not only

3.4 Ontology-Based Mechanisms ... 61

a quantitative change but also a qualitative change from an exponential growth in
solution time to an almost constant solution time growth [29]. Current semantic data
infrastructures can support semantic classification and queries in seconds against a
knowledge base of millions of triples (http://challenge.semanticweb.org). This pro-
vides sufficient technological support for our knowledge-driven approach.

With ontological modelling, activities are modelled as activity classes in the ADL
ontologies and contextual information such as location and SH objects are mod-
elled as properties for describing activity classes. As such, a situation at a specific
time point is actually a concept description created from SH contextual ontologies,
denoting an unknown activity. In this case, activity recognition can be mapped to the
classification of the unknown activity into the correct position of the class hierarchy
of the activity ontologies and the identification of the equivalent activity class. This is
the subsumption problem in DL, i.e., to decide if a concept description C is subsumed
by a concept description D, denoted as C & D. The commonly used tableau proof
system uses negation to reduce subsumption to unsatisfiability of concept descrip-
tions, which can be described below.

e Reduce subsumption to check unsatisfiability of concept description, i.e., a concept
C is subsumed by a concept D can be reduced to the checking of satisfiability of
concept C and the negation of concept D, which can be written below

CCD—CN-D

e Check whether an instance b of this resulting concept description can be con-
structed <

Build a tree-like model for the concept description

Transform the concept description in Negation Normal Form

Decompose the description using tableau transformation rules

Stop when a clash occurs or no more rules are applicable

If each branch in the tableau contains a clash, the concept is inconsistent

Specifically, a situation, i.e., an unknown concept description at a specific time
point can be generated by linking sensor observations to properties of the context
ontologies (as shown in Fig. 3.3) and incrementally fusing a sequence of sensor
observations (as shown in Fig. 3.4). For example, the activation of the contact sen-
sors on a cup and milk bottle can link the cup and milk to the unknown activity
through hasContainer and hasAddings properties. By aggregating sensor observa-
tions along a timeline, a specific situation, that corresponds to an unknown activity,
could be reached, e.g., hasTime(10am), hasLocation(kitchen), hasContainer(cup)
and hasAddings(milk). If the closest ADL class in the ADL ontologies that con-
tains as many perceived properties as possible to the situation can be found, e.g.,
MakeDrink, then it can be deemed to be the type of ADL for the identified situation.

http://challenge.semanticweb.org

62 3 An Ontology-Based Approach to Activity Recognition

3.4.2 Semantic Inference for Activity Recognition

An ontology based knowledge repository KR (7, A) as described above consists of
a set of terminological axioms 7, i.e., ontological concepts and a set of assertional
axioms A4, i.e., instantiated facts (instances). The activity recognition algorithm is
depicted in Fig. 3.7 and described as follows:

a. Detect sensor activations and convert them to corresponding ADL properties in
the ontologies.

b. Use context ontologies to aggregate and fuse multiple sensor observations to
construct a situation at individual time points.

c. Construct an activity description, denoted as A7V, at two levels of abstraction.
AT V-C denotes the conceptual description of A7) whereas A7 V-I denotes its
instance that binds properties with sensor readings.

d. Perform equivalency and subsumption reasoning to check whether A7 V-C is
equivalent to any atomic concept REC- ATV in 7. If that is the case, go to step
e, otherwise go to step g.

e. If ATV-C is equivalent to an atomic activity concept REC- ATV, then we can
recognise REC-ATYV as the type of the underlying activity. We still need to
decide whether it is an abstract activity such as MakeDrink or a specific activity,
e.g., MakeTea.

f. Use semantic retrieval to obtain the set of atomic activity concepts SUB-AT V-
SET in T subsumed by REC-AT V. These are the equivalents and descendants
of REC-ATV inT.

i. If SUB-ATV-SET is empty, this means REC- ATV has no sub-activity
concepts and REC- ATV is a specific activity, e.g. MakeTea

ii. If SUB-ATV-SET is not empty, this means REC- ATV has sub-activity
concepts and REC- ATV is an abstract activity, e.g. MakeDrink. In this case,

Sensor Aclivations
& Observations

SH Ontologies
The End

d

Fig. 3.7 The activity recognition algorithm

3.4 Ontology-Based Mechanisms ... 63

a general activity can be recognised such as MakeDrink. It will need further
sensor data to decide which sub-activity the A7 V-C is, e.g. to decide if
it is MakeColdDrink or MakeHotDrink. This allows incremental activity
recognition.

g. If ATV-C is not equivalent to any atomic activity concept, use semantic retrieval
to obtain the most specific atomic concepts MSC-ATV in T subsuming A7 V-
C. In essence, the MSC-ATYV is the direct super-concept of A7 V-C.

h. Use semantic retrieval to obtain the set of atomic activity concepts SUB- ATV -
SET in T subsumed by MSC- AT V. These are the equivalents and descend-ants
of MSC-ATV inT.

i. If SUB-ATV-SET is empty, this means MSC-AT YV has no sub-activity
concepts and MSC-ATYV is a leaf activity, e.g. MakeTea. But the activity
has not completed. This means the approach can recognise activities with
incomplete sensor data.

it. If SUB-ATV-SET is not empty, the activity recognition process will be
similar to the case in f (ii) with MSC-ATV replacing REC-AT V.

It is worth pointing out that the above algorithm describes the process of a single
round of activity recognition, i.e., given an activity description (equivalent of a set
of sensor data) discover the possible activities. This process could be repeated many
times in order to realise continuous progressive activity recognition. To illustrate the
algorithm, assume that a kitchen door sensor has activated and further the cup is
only used for making a drink. Suppose that the contact sensor attached to a cup is
activated. This means that the cup, as an instance of Container, is used in an ADL. As
the Container class is the filler of hasContainer property, it can be inferred that the
hasContainer property is assigned the value cup. Since the hasContainer property
is used to describe the MakeDrink class, it can then be inferred that a MakeDrink
ADL has taken place. Though it is not possible to ascertain whether the ADL is
MakeHotDrink or MakeColdDrink as both ADLs have the hasContainer property,
nevertheless, based on the limited sensor information the agent can identify the
high-level ADLSs, i.e., the inhabitant is performing a MakeDrink ADL. If, as the
ADL unfolds, we obtain sensor data about the use of coffee, then we can determine
that the inhabitant is making a hot drink. From the above discussion, it is apparent
that the proposed approach can monitor the unfolding of an ADL and continuously
recognize the ultimate ADL with an increasing level of accuracy and certainty, which
may be considered as not being possible with other approaches.

3.4.3 Real-Time, Continuous Activity Recognition

Activity classes in ADL ontologies are structured in a hierarchical tree with sub-
classes inheriting all properties from their super-classes. The closer to the leaf of
the class tree the more properties with which the activity is described, and the more
specific the activity is. When an ADL is performed in the real world along the tem-

64 3 An Ontology-Based Approach to Activity Recognition

poral dimension, the contextual information related to the ADL will be captured
incrementally. With less contextual information, e.g., at the initial stage of the ADL,
subsumption reasoning can only classify an ADL to a generic activity class. Never-
theless, as the ADL unfolds, more contextual information will become available to
enable the creation of an increasingly rich activity description. As such, by perform-
ing ADL subsumption reasoning dynamically along a timeline, as shown in Fig. 3.3,
it is possible to recognize an ongoing ADL continuously and progressively.

As ontological activity models are description-based, i.e., based on the values
or status of their properties, they do not model temporal aspects explicitly in the
activity models themselves. Nevertheless, as the status of a property is coupled with
sensor activation and a sensor activation is time stamped, temporal data are actually
implicitly embedded in the occurrence of a user-object interaction. As such, the
handling of the temporal aspects is carried out at the system operational level, which
is described in the following paragraphs.

Two methods are used to handle temporal reasoning in order to support real-time,
continuous activity recognition. The first is the sliding time window technique for
sensor activation fusion. A time window is a fixed duration of time within which all
sensor activations are aggregated to generate an activity description. The generated
description serves as the input to the subsumption reasoner for activity recognition.
If an activity is successfully recognised at a time point within the time window, e.g.,
the 3rd minute, the algorithm will clear all activated sensors accumulated so far and
the time window will re-start from the time point (e.g., the 3rd minute) again, i.e.,
the time window is sliding each time an activity is recognised. The sliding window
technique provides a mechanism for activity partitioning along a timeline and also a
method to decide which sensors should be discarded and which should be aggregated
to form an activity description. If the algorithm cannot recognise an activity within
the time window, the system will deem that the activity is aborted. It will then abort
this round of recognition reasoning, i.e., clear all existing activated sensors and re-
start sensor monitoring and time window again. Note that within the time window if
the system does not receive any user-interactions within a fixed amount of time after
the last sensor activation it will provide action reminders for the user—i.e., providing
activity assistance. As such, the system only aborts activity recognition after it has
attempted to help the user and the user does not respond. A possible scenario is that
the system can send an alarm if it infers that the user should do something, however,
fails to do so. This is the assistance aspect of the system we do not cover in this
chapter.

The length of the sliding window is determined as follows. A fixed maximum
amount of time is provided as the default duration of the sliding time window. In
addition, the duration of an activity is modelled as a duration property in its onto-
logical model. The value of the duration property can be initially decided based
on domain knowledge and later refined through learning. As such, the sliding time
window can be adjusted once an activity is initially recognised. For example, a
MakeDrink activity may set its duration property as 4 min and a MakeMeal activity
as 15 min respectively. If they are recognised in the continuous progressive activ-
ity recognition, the time window can be re-set to the corresponding value. In this

3.4 Ontology-Based Mechanisms ... 65

way, the correct set of sensor activations can be guaranteed to be used for activity
description generation, thus improving recognition accuracy.

The second method for handling temporal reasoning is to determine when a recog-
nition operation is performed, i.e., the activity description from sensor fusion within
the time window is fed into the under-lying subsumption reasoner for activity recog-
nition. Activity recognition in assistive living is different from activity recognition
in traditional data mining where a prior dataset is available and recognition can be
performed offline. In assistive living, an activity must be continuously recognised in
real-time to detect anomalies and difficulties during the performance of the user in
order to provide just-in-time assistance. This requires the recognition reasoning as
described in Sect. 3.4.1 to be performed repeatedly as the activity unfolds. A recogni-
tion operation can be initiated in two ways. The first is to specify a fixed time interval
(a frequency), i.e., a recognition operation is performed periodically when the time
interval elapses. The second way is to use the sensor activation as a trigger, i.e., each
time a user-interaction happens (i.e., an action has been performed) the recognition
operation is performed. With the ontological activity models, the sensor activation
and aggregation models and the two temporal handling methods, the system is able
to support real-time continuous activity recognition.

Another feature of the algorithm is that it can offer both coarse-grained and fine-
grained activity recognition. The former is based on subsumption reasoning against
TBox, i.e., concept descriptions at the terminological level. In this case, following the
activity recognition algorithmin Sect. 3.4.1, an extra step may be to compare the prop-
erties of the recognised activity with the properties identified by sensor observations.
The missing properties can then be used to suggest the next action(s). For example,
if the MakeTea activity is described by properties hasContainer, hasAddings and
hasHotDrinkType, and the sensors observe tea as HotDrinkType and cup as Con-
tainer, then advice on Addings such as milk or sugar can be provided.

Fine-grained activity recognition and assistance is based on subsumption reason-
ing against ABox, i.e., auser’s ADL profiles at the instance level. In this case, once the
type of activity that an inhabitant performs (as described in Sect. 3.3.2) is recognised,
the instances of the inhabitant performing the type of activity in terms of his/her
ADL profile can be retrieved from the XR(7, A). The discovered ADL instance
can then be analysed in terms of sensor observations. Fine-grained activity recog-
nition and assistance will not only recommend the types of action to be performed,
but also the items/objects used for the action. For example, suppose an unknown
ADL has been identified in the context of hasContainer(cup), hasAddings(milk)
and hasHotDrinkType(coffee), using the aforementioned recognition mechanism,
the MakeCoffee ADL can be firstly recognised. Suppose the inhabitant has a spe-
cial way of making coffee that is modelled in the ABox as myWayOfMakeColffee.
Further myWayOfMake Coffee is described by hasContainer(cup), hasAddings(milk),
hasHotDrinkType(coffee), hasAddings(sugar) and hasHotWater(hotWater). Through
comparison, an assistive agent can infer that sugar and hot water are needed in order
to complete the ADL. As the matching happens at the instance level, i.e. based on
the way the user performs the activity and what actually happened, it can provide
users with personalised assistance.

66 3 An Ontology-Based Approach to Activity Recognition

3.5 An Example Case Study

3.5.1 A Prototype System

The proposed approach has been implemented in a feature-rich context-aware assis-
tive system as shown in Fig. 3.8. When the system is in operation within a smart
home, it obtains real-time sensor activations from a designated communication port
that is connected to an external Tynetec receiver. Each time a sensor is activated, it
will aggregate the information with previously collected activated sensors to gen-
erate an activity description. The description is then fed to the reasoning engine to
infer the potential activity against activity models and profiles. As an actor interacts
with the objects in sequence in real time, sensor activations are continuously fed
into the system. As such, recognition operations are repeatedly performed to realise
continuous progressive activity recognition. As can be seen in Fig. 3.8, the system
can dynamically display the activated sensor sequence, the incrementally recognised
activities, and system status and data.

Home Smart Sampler Real-Time History Preferences About Logout
{~ ACTIVATED SENSORS [recoroin sTatus
Close Port Open Port Refresh Recording Status - O
Part af i
i
1 1 1 pata Recording
F [7] Learning outeur @
B 035428 |=xiachenobpoors |l‘.o|nr_\r0n
B 05501 [pemecty | sensoron TR
|) ‘, ObiS - » 20:38:25: All active sensors
ﬁ.oﬁi\o | CookerObys I vﬂl}U:‘. n e | e e e s
ﬁ 035443 =DramerObys “gﬂfr'r BRI = |
. Using communication port (4)
ﬁ 035443 tﬁtwﬂ{ =SensorOn
B | eV ™ Joruerotss | =sensoron Ueer (xyen}
W |wsis [esempmctrs [ssesoron e e

20:38:25: Graph parsed
successfully ..

20:38:25: Ontology imported

successfully ..

= #KitchenD o
rrim: o The recognised activities based on only 20:38:38: Sensor

4 #MakeMeal 2 . (#E1itchentbiboors) has “ol"\“"“
£ #MakeDrink]/ Mor

| activated .. 'y
—-#KitchenDoor -> #ChinaCup The ised activities b Lon 20:38:40: ng for tasks
o]/‘, activation of both kitchen door and a cup
+-#MakeDrink

LY 4 . RECOGNIZED ACTIVITIES

1 {w this sensor .
538!
= #¥itchenDoor -> #ChinaCup -> #ChineseTea

40: Task can be one of:
*MakeTes —> The recognised activity based on all sensor activations

Fig. 3.8 The system interface in real time operation mode

#MakeReal (entails) =--> (
NBakeDrink (entails) --> (-

3.5 An Example Case Study 67

3.5.2 Experiment Setup

To illustrate the use of the methods and algorithms described in previous sections,
a feature-rich context-aware assistive system has been developed (Table 3.2). Full
detail of the system is elaborated in Chap. 9. and Sect. 9.2. in this case study, eight
typical ADLs (refer to Table 3.3) are selected for the purposes of experimentation.
For each activity, the required objects for performing the activity were identified and
to each of them, an appropriate type of sensor was attached. For example, a tilt sensor
was attached to a kettle for detecting the action of pouring water. For each activity, we
specify how it is performed based on domain knowledge. It is specified as a sequence
of user-object interactions. The interaction is detected by sensors when a user uses
the objects to perform the activity. For example, the activity “making tea” is specified
as the sequence “go to kitchen, take a cup, take a teabag, add hot water, add milk
and add sugar”. These activities and all the sensors are modelled in ontologies and
represented in OWL, which are uploaded into the system during system start-up.

In order to test not only functionalities but also scalability and robustness, each
activity was designed to be performed in three different ways, leading to three types
of activity specification. Table 3.2 shows two selected activities, each with three types
of specification. The Type 1 activity specification can be viewed as the “standard”
way of performing a specific activity. The experiment using the Type 1 activity
specification is mainly aimed to test the functionalities and provide a baseline of
activity recognition.

The Type 2 activity specification is obtained by deliberately changing the sequence
of the objects being interacted with by a user (refer to Table 3.2). The main objective
of this experiment is to test system scalability, i.e., if the system can still recognise the
activity even if the way (the sequence of the objects used) of performing the activity
has changed. The Type 3 activity specification is obtained by deliberately introducing
sensor noise (uncertainty) to the Type 1 specification. We simulate a faulty (fails to

Table 3.2 Two example activity specifications

Activities Activities specification (sequences of user-object interactions identified
by sensors)

Make tea | Type 1 GoToKitchen, GetCup, PourWater, GetMilk, GetSugar
Type 2 GoToKitchen, GetCup, PourWater, GetMilk, GetTea, GetSugar
Type 3 GoToKitchen, GetCup*, PourWater, GetMilk, GetSugar

Brush Type 1 GoToBathroom, RunSink, GetToothbrush, GetToothpaste,
teeth GetMouthwash
Type 2 GoToBathroom, GetToothbrush, GetToothpaste, RunSink,
GetMouthwash
Type 3 GoToBathroom, RunSink, GetToothbrush, getSoap**, GetToothpaste,
GetMouthwash

*faulty sensors that do not fire; **false or extra sensor reading

68 3 An Ontology-Based Approach to Activity Recognition

Table 3.3 Recognition results of the 144 activities

Activities Actorl Actor2 Actor3 Sum Y/N
Expl Exp2 Expl Exp2 Expl Exp2
Make tea TP1 Y Y Y Y Y Y 6/0
TP2 Y Y Y Y N Y 51
TP3 Y Y Y N N N 3/3
Brush teeth TP1 Y Y Y Y Y Y 6/0
TP2 Y Y Y Y Y Y 6/0
TP3 Y Y Y Y Y Y 6/0
Make coffee TP1 Y Y Y Y Y Y 6/0
TP2 Y Y N Y N Y 4/2
TP3 Y Y Y Y Y Y 6/0
Have bath TP1 Y Y Y Y Y Y 6/0
TP2 Y Y Y Y Y Y 6/0
TP3 Y Y Y Y Y Y 6/0
Watch TV TP1 Y Y Y Y Y Y 6/0
TP2 Y Y Y Y Y Y 6/0
TP3 Y Y Y Y Y Y 6/0
Make chocolate | TP1 Y Y Y Y Y Y 6/0
TP2 Y Y Y Y Y Y 6/0
TP3 Y Y Y Y Y Y 6/0
Make pasta TP1 Y Y Y Y Y Y 51
TP2 Y Y Y Y Y Y 6/0
TP3 Y Y Y Y Y Y 6/0
Wash hands TP1 Y Y Y Y Y Y 6/0
TP2 Y Y Y Y Y Y 6/0
TP3 Y Y Y Y Y Y 6/0
Sum Y/N All 24/0 24/0 22/2 23/1 20/4 23/1 136/8
TPs

activate) sensor by omitting a user-object interaction and a false sensor reading by
adding an irrelevant object interaction. The purpose of this experiment is to test
system robustness under instances of information uncertainty.

Approximately 40 sensors were deployed in the experiment, including two tilt
sensors, two pressure sensors, and the remaining contact sensors. Each sensor was
attached to one of the objects involved in these activities. On average five objects
(sensors) were used for each activity. The sliding time window was set to five minutes
using the system configuration tool. This value is relatively long as in this experiment
we do not set the duration properties for these selected activities. The recognition
operation is set to be performed each time a sensor is activated, i.e., a user interacts

3.5 An Example Case Study 69

with an object. This is deemed as necessary in order to provide just-in-time assistance
in a real assistive living scenario.

We selected three activities out of the eight activities, i.e., making tea, mak-
ing coffee and making pasta, to test and evaluate fine-grained activity recogni-
tion. For each activity, a special way of performing this specific activity, e.g., an
activity profile was specified for each actor. For example, actor A had a profile
“ActorA_Preferred_MakeTea” that specified the specific objects the actor uses for
making tea.

Two types of experiment were designed and conducted. In the first experiment, the
actor only used the objects specified by the preferred activity model. This experiment
aims to test how accurate the system recognises and further provides fine-grained
assistance to users according to their preferences. It is assumed that when a user
activity preference is available, the system should be able to remind the user, not just
the type of action, e.g., adding milk, but also the specific type of object to be used,
e.g., adding the semi-skimmed milk. In the second experiment, the actor will perform
the activity but replace one of the objects with the same type but a different object.
This experiment aims to test how the system reacts to a noisy activity (information
uncertainty). In this case, the noise is of the same type but a different object. For
example, a user prefers to use WholeMilk for making tea, but the actor actually uses
the semi-skimmed milk.

3.5.3 Experiment Procedure

Three male actors with ages 25, 35 and 45 took part in the experiments. Each of the
participants performed 3 (type) x 8 (activity) = 24 activities in terms of the activity
specification for two rounds. This produced a total of 24 (activity scenarios) x 2
(rounds) x 3 (actors) = 144 activities being performed in the experiment.

For each activity, the experiment was carried out as follows: an actor was vocally
prompted by a human evaluator to start performing an activity by following the object
sequence of the specified activity scenario. The evaluator observed and recorded
the actor’s action and the recognition results of the system in an experiment data
sheet. This provided the ground truth about individual user-object interactions and
the activity for later evaluation. The interval between two consecutive actions was
set to approximately 30 s. The exact timing of each user-object interaction and the
recognition result was recorded by the system logger from which the run-time of
each recognition operation can be extracted. In addition to an in-memory buffer for
holding sensor activations within a time window, the system provides two automatic
recording facilities to store sensor data permanently. The first was to record all sensor
activations into a structured XML document representing all user-object interactions
during the recording sessions, including sensor information and temporal data. The
collected data was mainly used for advanced data processing, e.g., activity model
learning and user profile learning. The second method was similar to a server logger.
It recorded everything from the start of the system, including sensor activations, the

70 3 An Ontology-Based Approach to Activity Recognition

recognition results at each step, error messages, warning messages (e.g., a sensor
battery level-low warnings). The recorded information was archived in a text file.
The logging function provided a tool for system debugging and results checking.

For the fine-grained activity recognition experiment, two male actors each per-
formed 2 (type) x 3 (activity) = 6 activities in terms of the activity specifications,
producing a total of 6 (activity scenarios) x 2 (actors) = 12 activities. The procedure
is the same as described above.

3.5.4 Results and Discussions

Activity Recognition Accuracy: Table 3.4 shows the recognition results of the 144
activities, where TP refers to the type of activity, Expl and Exp2 refer to the two
rounds of experiments respectively, Y and N denote the success and failure of activity
recognition, and Sum in each row and column refers to the number of Y and N for a
particular type of activity and a particular actor respectively. In the analysis, activity
recognition is deemed successful the first time an activity is correctly recognised.
The rationale is that once an activity is recognised, there is no need for further
recognition effort for the present activity until the next activity starts. The activity
recognition system will pass the recognised activity to an assistive system, which will
subsequently use the standard activity model to help users to complete the activity.

The metric used for evaluation is recognition accuracy, defined as the percentage of
the correctly recognised activities against the total activities of a specific experimental
scenario. Table 3.4 shows recognition accuracies for a combination of scenarios.
As can be seen from Table 3.4, recognition accuracies for type 1, 2 and 3 activity
scenarios are 100%, 91.66% and 91.66% respectively with the overall recognition
accuracy of 94.44%. The accuracies for type 2 and 3 experiments are lower than
the type 1 experiment. This was expected given that type 1 activities are performed
according to the way they had been designed in the activity model. If we use type
1 experiments as a benchmark, then the results (91.66%) from type 2 experiments
where activities are performed in an order different from that specified in the activity
model, and type 3 (91.66%) experiment where various levels of sensor noise are
introduced, proves that the approach is scalable, i.e., adaptive to different activity
styles, and robust, i.e., resilient to noise (information uncertainty). Given that this

Table 3.4 Activity recognition accuracy (%)

Actor/Activity Actor 1 Actor 2 Actor 3 Accuracy (Aggr.)
Type 1 100 100 100 100

Type 2 100 93.75 81.25 91.66

Type 3 100 87.5 87.5 91.66

Accuracy (Aggr.) | 100 93.75 89.58 Overall: 94.44

3.5 An Example Case Study 71

is real-time continuous activity recognition with incomplete sensor data, we believe
the results are quite impressive.

We also analysed activity recognition accuracies for individual actors. The goal

is to evaluate how much different actors affect the recognition performance of the
system. In a real-world environment, the system will be used by different users,
the consistency of the system performance is therefore important. As can be seen
from Table 3.4, the recognition accuracies for the three actors were 100, 93.75 and
89.58% respectively with small variations. This suggests that the system performance
is consistent and stable in real world contexts.
Real Time System Performance: Real time continuous activity recognition requires
that the recognition operation occurs periodically during the performance of an activ-
ity. As such, the time taken for each recognition operation is critical for system
responsiveness. We use the Time per Recognition Operation (7 p R O) as the metric
to evaluate the real time system performance. The TpR O is defined as the interval
in second(s) from the time a sensor is activated until the time the system produces
a recognised activity. As can be seen from Table 3.5, the average Tp RO s for each
activity ranges from 2.2s to 3.0s with the overall average TpR O roughly as 2.5s.
Given the nature of ADLs, i.e., necessary object movement between locations, and
the generic characteristics of users of assistive living, i.e., ageing people or cogni-
tively impaired like dementia patients, the 7' p R O from the experiment proves that the
system can efficiently and effectively respond to real world user-object interactions,
thus offering real-time continuous recognition.

By analysing TpRO s for different activities, we also test the hypothesis that
complex activities involving more user-object interactions will need more time for
subsumption classification reasoning, thus higher TpRO to complete recognition
operation. Nevertheless, the TpRO results in Table 3.5 disprove this hypothesis
since the 7-object activity Make Pasta have a TpR O of 2.4s and the 3-object Wash
Hands had a TpRO of 3.0s. The reason for this counter-intuitive finding may be
relevant to other factors of affecting semantic reasoning, e.g., the location of an
activity model in the hierarchical tree structure of activity ontologies, and also the
number of similar activities, i.e., requiring more effort to distinguish from each other.
While further systematic experimentation is required for an in-depth examination of
this finding, the generic level and range of TpRO has proved that the system is
applicable in real-world scenarios.

Fine-grained Activity Recognition Accuracy: Table 3.6 shows the recognition
results of the 12 fine-grained activities. Here activity recognition is deemed as suc-

Table 3.5 The TpR O for all the eight activities performed by actor2 in experiment2
Activity | Make Make Make Make Wash Brush Have Watch

tea coffee choco- | pasta hands teeth bath TV
late
Objects |5 6 7 4

TpROs |2.4 22 2.5 2.4 3 3.7 2.6 2.5

72 3 An Ontology-Based Approach to Activity Recognition

Table 3.6 Fine-grained activity recognition results

Activities Actorl Actor2
Make tea TP1 Y Y

TP2 Y Y
Make pasta TP1 Y Y

TP2 Y Y
Make coffee TP1 Y Y

TP2 Y Y

cessful if it meets the following two criteria. The first is that the activity should
be initially correctly recognised at some stage during the activity performance as a
generic activity, i.e., coarse-grained recognition. The second is that once the activity
is recognized, the system can discover the user’s profile and remind users of the
specific objects they could use for performing the activity. Table 3.6 shows that the
system achieves 100% recognition accuracy for the type 1 experiment. For type 2
experiment, the success of recognition needs to meet another criterion, i.e., when
the same type but different object from the preferred object is used, the system
should be able to recommend the preferred object. Again, the system achieves 100%
recognition accuracy.

Figure 3.9 shows a fragment of system logs that contain sensor activation and activ-
ity recognition traces. The highlighted trace text (by the three circles) indicates that
the system recommended using WholeMilk for making tea. While the SkimmedMilk
was actually used, the system still recommended the use of the preferred WholeMilk.

Searching for tasks
involving this sensor ..0
12.34.12: Task can be one
or: 0

---0YOU m; kFe~tqQ use:
Sandsu arﬂﬁm‘]
19:34:34: SENST
{#sandsugar} has been

Fig. 3.9 A log trace fragment

3.5 An Example Case Study 73

Table 3.7 Interaction recognition rate

Sensor types Total interaction Captured interaction | Accuracy (%)
Contact 624 611 97.92
Tilt 126 119 94.44
Pressure 36 32 88.89
Sound 18 17 94.44

In a real use case, the system can issue a warning to stop the use of SkimmedMilk.
This is the feature of assistance provisioning that is not the focus of this chapter.
User-object Interaction Recognition: Throughout the experiment of 144 activities,
a total of 804 user-object interactions were performed. We used the User-object
Interaction Recognition Accuracy (UoIR), defined as the system’s correctly captured
interactions against the total occurred interactions, as the metric to evaluate the
reliability and performance of the activity monitoring mechanism. This metric takes
into account not only unfired or misreads interactions caused by faulty sensors but
also those circumstances caused by wireless receivers, communication, and system
sampling and conversion mechanisms. As such it is more accurate to reflect the
system monitoring performance. Table 3.7 shows the UolR for different types of
sensors with an overall average UolR of 96.89%. This proves the monitoring and
acquisition mechanism of the system as being very reliable.

A detailed examination of the UoIR of individual sensors indicated that the contact
sensors had the highest UolIR (97.92%) while the pressure sensor had the lowest UoIR
(88.89%). This is consistent with our observation that pressure sensors tend to be very
sensitive to the weight variation and the change of sitting posture or other movements
can easily generate noise activations.

3.6 Summary

This chapter elaborates a knowledge-driven approach to activity recognition based
on ontological modelling and semantic reasoning. We have analysed the nature and
characteristics of ADLs upon which argue the necessity of domain knowledge for
pattern recognition using multi-source sensor data. Following knowledge engineer-
ing practices, we have developed context and ADL ontologies for SH. We have
conceived and designed an agent based integrated system architecture to illustrate
the realisation of the proposed approach. The compelling feature of the system is the
unified ontological modelling and representation for both sensor data and activities,
which not only facilitates domain knowledge reuse but also allows the exploitation of
semantic reasoning for activity recognition. In particular, a novel activity recognition
algorithm is presented that allows continuous activity recognition at multiple levels of
abstraction, thus enabling course-grained and fine-grained activity assistance. The
mechanism for evolving initial ontological activity models through learning pro-

74 3 An Ontology-Based Approach to Activity Recognition

vides a way of marrying the strengths of traditional data-driven approaches with
knowledge-driven practices, making our approach flexible, applicable and scalable
in terms of rapid system development and deployment.

The implementation of the approach was developed in a feature-rich recognition
and assistance system, and a case study has been conducted to demonstrate the
use of proposed approach and methods in both real-world and simulated activity
scenarios. While the full evaluation of this approach awaits further investigation and
user feedback, the initial results have demonstrated the approach is viable and robust
in real-world use cases. The approach and the example application scenario have both
been developed in a specific application context, namely that of SH-based assistive
living. We have not seen any reasons to prevent this approach from being applied to
other types of sensorised applications.

The importance of domain knowledge is nowhere more apparent than in the field
of assistive living—every individual has their own way of performing activities.
We have demonstrated this with respect to one aspect of expertise, namely domain
knowledge-driven activity recognition from multi-source sensor data. Future work
will focus on large-scale experimentation of a diversity of activity scenarios, multi-
user concurrent activity recognition and handling of temporal information such as
sequence and duration.

References

1. Chen D, Yang J, Wactlar HD (2004) Towards automatic analysis of social interaction patterns in
anursing home environment from video. In: Proceedings of the 6th ACM SIGMM international
workshop on multimedia information retrieval - MIR *04

2. Hakeem A, Shah M (2004) Ontology and taxonomy collaborated framework for meeting clas-
sification. In: Proceedings - international conference on pattern recognition

3. Georis B (2004) A video interpretation platform applied to bank agency monitoring. In: Intel-
ligent distributed surveillance systems (IDSS-04)

4. Nevatia R, Hobbs J, Bolles B (2004) An ontology for video event representation. In: IEEE
computer society conference on computer vision and pattern recognition workshops

5. Francois ARJ, Nevatia R, Hobbs J, Bolles RC (2005) VERL: an ontology framework for
representing and annotating video events. IEEE Multimed 12:76-86

6. Akdemir U, Turaga P, Chellappa R (2008) An ontology based approach for activity recognition
from video. In: Proceeding of the 16th ACM international conference on multimedia - MM
"08

7. Tapia EM, Choudhury T, Philipose M (2006) Building reliable activity models using hierarchi-
cal shrinkage and mined ontology. In: Lecture notes in computer science (including subseries
Lecture notes in artificial intelligence and lecture notes in bioinformatics)

8. Yamada N, Sakamoto K, Kunito G, Isoda Y, Yamazaki K, Tanaka S (2007) Applying ontology
and probabilistic model to human activity recognition from surrounding things. IPSJ Digit
Cour

9. LatfiF, Lefebvre B, Descheneaux C (2007) Ontology-based management of the telehealth smart
home, dedicated to elderly in loss of cognitive autonomy. In: CEUR workshop proceedings

10. Klein M, Schmidt A, Lauer R (2007) Ontology-centred design of an ambient middleware for
assisted living: the case of SOPRANO. Context

11. Chen L, Nugent C, Mulvenna M, Finlay D, Hong X (2009) Semantic smart homes: towards
knowledge rich assisted living environments. Stud Comput Intell

References 75

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

25.
26.

217.

28.
29.

James AB (2014) Activities of daily living and instrumental activities of daily living. In: Willard
and spackman’s occupational therapy, 12th edn. Wolters Kluwer Health/Lippincott Williams
& Wilkins, Philadelphia

Chan M, Esteve D, Escriba C, Campo E (2008) A review of smart homes—present state and
future challenges. Comput Methods Programs Biomed 91:55-81

Cook DJ, Hagras H, Callaghan V, Helal A (2009) Making our environments intelligent. Per-
vasive Mob Comput 5(5):556-557

Helal S, Mann W, El-Zabadani H, King J, Kaddoura Y, Jansen E (2005) The gator tech smart
house: a programmable pervasive space. Computer (Long Beach, California) 38:50-60
Espinilla M, Martinez L, Medina J, Nugent C (2018) The experience of developing the UJAmI
Smart Lab. IEEE Access

Dundalk Institute of Technology: Home | Netwell CASALA. https://www.netwellcasala.org/
Cook DJ, Das SK (2007) How smart are our environments? An updated look at the state of the
art. Pervasive Mob Comput 3(2):53-73

Chen L, Nugent C, Mulvenna M, Finlay D, Hong X, Poland M (2008) A logical framework
for behaviour reasoning and assistance in a smart home. Lecture notes in computer science
(including subseries Lecture notes in artificial intelligence and lecture notes in bioinformatics)
Philipose M, Fishkin KP, Perkowitz M, Patterson DJ, Fox D, Kautz H, Hidhnel D (2004)
Inferring activities from interactions with objects. IEEE Pervasive Comput 4(2004):50-57
Sanchez D, Tentori M, Favela J (2008) Activity recognition for the smart hospital. IEEE Intell
Syst 23(2):50-57

Bao L, Intille SS (2004) Activity recognition from user-annotated acceleration data. In: Ferscha
A, Mattern F (eds) Pervasive computing. Springer, Berlin, pp 1-17

Brdiczka O, Crowley JL, Reignier P (2009) Learning situation models in a smart home. IEEE
Trans Syst Man Cybern Part B Cybern

Hoey J, Poupart P (2005) Solving POMDPs with continuous or large discrete observation
spaces. In: IJCAI international joint conference on artificial intelligence

Stanford University: Protégé. https://protege.stanford.edu/

Tsarkov D, Horrocks I (2006) FaCT++ description logic reasoner: system description. In:
Furbach U, Shankar N (eds) Automated reasoning. Springer, Berlin, pp 292-297

Horrocks I, Sattler U (2005) A tableaux decision procedure for SHOIQ. In: IICAI international
joint conference on artificial intelligence

Krotzsch M, Simancik F, Horrocks I (2014) Description logics. IEEE Intell Syst

Motik B, Shearer R, Horrocks I (2009) Hypertableau reasoning for description logics. J Artif
Intell Res

https://www.netwellcasala.org/
https://protege.stanford.edu/

Chapter 4 ®
A Hybrid Approach to Activity Modelling | <

4.1 Introduction

Activity models play a crucial role in the realization of the SH concept. They are
required to support reasoning over real-time streaming sensor data in order to infer
the current activity for application-level functions, e.g. to predict the next action or
to detect anomalies in ADLs. As a result, the completeness and accuracy of ADL
models is critical for an assistive system to function correctly. If an activity is not
modelled or the model is not accurate, the activity will not be recognised by an
assistive system. Subsequently the system will not be able to provide assistance
and/or prediction with regard to this activity.

Modelling ADLs is a challenging task due to their unique characteristics. For
example, there are a large number of ADLs in a diversity of categories and they can
be modelled at multiple levels of granularity [1]. In addition, most ADLs involve
performing a number of actions. The sequence of the actions to be performed is
usually dependent on an individual own preference. Furthermore, the manner an
ADL is performed is dynamically evolving, such as the change of duration or the
order of objects used. This is particularly the case for older people and those suffering
from decline of cognitive capabilities.

Currently there are two mainstream approaches to modelling ADLs. One
approach, i.e., the data-driven approach, is to learn an individual’s activity models
from existing behavioural datasets using data mining and machine learning tech-
niques. With this approach activity models are created in two tasks, namely the
creation of a probabilistic or statistical activity model, and the training of the model
to decide its parameters or mappings [2, 3]. Data-driven approach to ADL mod-
elling has two major drawbacks. The first is the well-known cold-start problem, i.e.
requiring a large representative dataset to support model training for each ADL. This
problem is exacerbated in the context of assistive living as people are reluctant to
disclose their behavioural data due to privacy and ethical considerations. The second
drawback is related to model applicability and reusability. Data-driven approach is
sensitive to unseen data which makes it difficult to apply the ADL models learnt for

© Springer Nature Switzerland AG 2019 77
L. Chen and C. D. Nugent, Human Activity Recognition
and Behaviour Analysis, https://doi.org/10.1007/978-3-030-19408-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19408-6_4&domain=pdf
https://doi.org/10.1007/978-3-030-19408-6_4

78 4 A Hybrid Approach to Activity Modelling

one person to another person. This means that with the data-driven approach every
activity model for all ADLs for every user needs to be learnt in order to create com-
plete ADL models. Given the large number of ADLs and the cold-start problem, this
is a huge challenge, if not impossible, in practice. To mitigate the aforementioned
problems, researchers have recently started applying transfer learning techniques
to activity modelling and recognition by reusing resources and knowledge, i.e. the
source datasets, or features or models, from one user to another in different settings
[4-6]. Nevertheless, such research is at its infancy and there are still many open
challenges [7].

An alternative to the data-driven approach is to manually define activity models
by making use of rich, priori knowledge and domain heuristics. This approach is
motivated by the observation that most ADLSs are daily routines which normally take
place within a specific circumstance of time, location and space with relatively fixed
types of objects. Using formal knowledge acquisition and modelling technologies
activity models can be created by means of various knowledge modelling tools [8,
9]. As this approach is closely related to knowledge engineering, it is referred to as
knowledge-driven approach. Knowledge-driven approach overcomes the cold-start
problem and can model activities at multiple levels of abstraction, thus providing
the capability to create both generalized and specialized ADL models. For example,
ontological activity modelling can model a generic ADL as an ontological activity
class and an individual-specific ADL as an instance of the corresponding activity
class. Nevertheless, given that ADL models are created manually by domain experts
on a case-by-case basis, the approach is questioned about its scalability to generate
complete ADL models. In addition, ADL models created by the knowledge-driven
approach are perceived as being generic and static. Adapting an individual’s ADL
models to their changing behaviours is still an open problem.

Rather than trying to reuse resources and knowledge among different users like
the transfer learning based research, this chapter introduces an ontology-based hybrid
approach by incorporating data-driven learning capabilities into knowledge-driven
approach to address the aforementioned problems of activity modelling. The ratio-
nale is to provide generic activity models suitable for all users and then create indi-
vidual activity models through incremental learning. The approach uses semantic
technologies as conceptual backbone and technology enablers for ADL modelling,
classification and learning. The distinguishable feature of the approach from existing
approaches is that ADL modelling is not a one-off effort, instead, a multi-phase iter-
ative process that interleaves knowledge-based model specification and data-driven
model learning. The process consists of three key phases. In the first phase the initial
seed ADL models are created through ontological engineering by leveraging domain
knowledge and heuristics, thus solving the cold-start problem. Ontological activity
modelling creates activity models at two levels of abstractions, namely as ontological
activity concepts and their instances respectively. Ontological activity concepts rep-
resent generic coarse-grained activity models applicable and reusable for all users,
thus solving the reusability problem. The seed ADL models are then used in appli-
cations for activity recognition at the second phase. In the third phase, the activity
classification results from the second phase are analysed to discover new activities

4.1 Introduction 79

and user profiles. These learnt activity patterns are in turn used to update the ADL
models, thus solving the incompleteness problem. Once the first phase completes,
the remaining two-phase process can iterate many rounds to incrementally evolve
ADL models, leading to complete, accurate and up-to-date ADL models.

Itis worth pointing out that the research presented in this chapter is based on single-
user single-activity scenarios. While complex activity scenarios, e.g. interleaved and
concurrent activities, pose many research problems, it is beyond the scope of this
chapter. In addition, activity monitoring in this study is based on dense sensing,
i.e. one miniaturized sensor is attached to each individual object that are used for
performing ADLs. As such, by analysing an inhabitant’s interactions with objects of
interest it is possible to infer the inhabitant’s activity.

4.2 The Hybrid Approach to Activity Modelling

In an attempt to marrying the advantages of both knowledge-based and data-driven
approaches, a hybrid approach to activity modelling is developed to incorporate data-
driven learning capabilities into knowledge-based framework as described in Chap. 3.
The rationale is to provide generic activity models suitable for all users and then create
individual activity models through incremental learning. The hybrid approach uses
semantic technologies as conceptual backbone and technology enablers for ADL
modelling, classification and learning. The distinguishable feature of the hybrid
approach from existing approaches is that ADL modelling is not a one-off effort,
instead, a multi-phase iterative process that interleaves knowledge-based model spec-
ification and data-driven model learning.

The process consists of four key phases depicted in Fig. 4.1. In the phase I,
Ontological Activity Modelling, the initial seed ADL models are created through
ontological engineering by leveraging domain knowledge and heuristics, thus solv-
ing the cold-start problem. Ontological activity modelling creates activity models at
two levels of abstractions, namely as ontological activity concepts and their instances
respectively. Ontological activity concepts represent generic coarse-grained activity
models applicable and reusable for all users, thus solving the reusability problem.
For this, ontological knowledge engineering techniques, are utilised to extract and
create the initial seed activity models based on domain heuristics and prior knowl-
edge. In phase II, the seed activity models are used as classifiers by activity-based
application systems, e.g., an ambient assisted living system, to classify sensor data
for the purposes of activity recognition. If an activity has been accurately modelled
in the seed activity models, the activity should be recognised. On the other hand,
if an activity is not modelled or the model is not accurate, the activity will not be
recognised. In the phase III, Activity Learning is performed with the activity classi-
fication results from the phase II to discover new activities and user profiles. For this,
Data-driven Activity Learning within which data mining-based learning methods are
used to learn new activities and a user’s activity profile. The learning results from
Phase III can then be used to expand or update the seed activity models created in

80 4 A Hybrid Approach to Activity Modelling

; : Semantic-based g
ﬂ:>[Reasoning Engine Netivity Rectgnition Temporal Handling
.

- [Ontology Versioning] Activity Model Evolution{ Change Management]]<:U

-

) -~ :

e Lg & E H
g & c Context & i;" § E
> 2 0 0-’)({.* Generator s £ 2|2
23 gy o™ 2all:
= 0 0}0 . 5@5\ _\\O -
22 Ly __..--—————-_ﬁ o p
Seusors @ o |

—_ =1] QD e -
| & £ E g £2 |
2291 7 2 o) euvtenmens (o) £ £ 1 B3
= E < 2.8 ctuators | po oo ments | Heuristics E <4 |
= = = .
8= 2 B § :
e Inhabnanls - .
z o3) z .
5 o 6‘ 2, = 2|z
< E, S P{;@ /"o-, KD ~EAE
) ot Jo? Model Evaluation O ‘,P"” EE||
52 o Tools and GUI s Eo|l:
<8 . < &ffs
.*“ - .

Knowledge-Driven "% Data-Driven
Activity Recognition *i+2¢ Behaviour Analysis

Fig. 4.1 Hybrid framework for activity recognition using knowledge- and data-driven approaches

Phase I. The knowledge evolution or updates to seed ontology is versioned and man-
aged in Phase I'V. Thus, Phase IV solves the incompleteness problem in knowledge
modelling. The four-phase process can be iterated periodically, thus incrementally
evolving and improving the completeness and accuracy of activity models. Among
these four phases, Phase I requires human intervention. This includes initial inputs
of domain knowledge, manual specification of the seed ontological activity models,
and human validation and update of learnt activities at the end of a single iteration.
Both Phase II and III are data-driven and completely automatic.

In our previous chapters, we have introduced ontological activity modelling and
recognition, the main tasks in Phase I and Phase II. In this chapter, we concentrate
on methods and algorithms for learning activity models and user profiles in Phase
III. While details of Phase I and II can be found in the aforementioned work, to aid
in the understanding of the discussion of the following sections, we briefly outline
the rationale and mechanisms of ontology-based activity modelling and recognition.

4.2 The Hybrid Approach to Activity Modelling 81

4.2.1 Ontological Activity Modelling

Ontological activity modelling relates to explicitly specifying activity models using
the description logics formalism [10]. It defines an activity as an ontological concept
and all actions that are required to perform the activity as the properties of the
concept. In addition to action-based properties which are hereafter referred to action
properties, an activity model also contains a number of descriptive properties to
characterize the manner in which an activity is performed. For example, making
tea involves taking a cup from the cupboard, putting a teabag into the cup, adding
hot water to the cup, then milk and/or sugar. The ontological model of making tea,
i.e., MakeTea concept, can be defined by action properties hasContainer, hasTeabag,
hasHotwater, hasMilk, and hasFlavor in conjunction with descriptive properties such
as an activity identifier actID, start time actStartTime, duration actDuration, and the
sequential order of these objects in performing an activity actObjSequence. As action
properties are mainly used for defining an activity, they play a crucial role in activity
recognition. Descriptive properties, on the other hand, are not determinants in activity
recognition. For example, making tea can happen at any time, it can be performed in
different sequences and it may take variable amounts of time. Descriptive properties
are mainly used to define user’s activity profiles, namely to characterize the manner
an activity is performed.

Activities can be modelled at different levels of abstraction. As such, ontological
activity concepts are usually organized in a hierarchical structure to form superclass
and subclass relationships. For example, MakeTea, Make Coffee, and MakeHotChoco-
late activities can be modelled as the subclasses of MakeHotDrink activity, which is
in turn the subclass of MakeDrink. Properties establish the relations between onto-
logical activity concepts and the actions required for performing the activities. For
example, the hasContainer property links the action of preparing a cup to the activity
of making tea. Subclasses can inherit properties from superclasses. A leaf node of
the hierarchy denotes a primitive activity that cannot be further classified. Figure 4.2
presents an excerpt of activity ontologies and associated SH contextual concepts.

Ontological activity concepts define high-level generic activity models which are
applicable to anyone. In addition to this, ontological activity modelling can also
define the specific way that a person performs an activity, which is usually referred
to as user activity profiles. For example, a user always makes English tea at 10
am using skimmed milk and brown sugar. User activity profiles can be defined by
creating an instance of a generic ontological activity concept in terms of the user’s
preference and habits. Ontological activity modelling in Phase I can generate both
generic activity models and user activity profiles, thus providing activity models
at different levels of abstraction. Aside from activity concepts, other major entities
from the domain will also be ontologically modelled. For example, a sensor concept
and related properties are developed to establish the relationships between physical
sensors, objects, and their locations in addition to the sensor activation time. Further
details of these concepts can be found in Chap. 8.

82 4 A Hybrid Approach to Activity Modelling

(@) (b) (c)
» ©container m=activatedAt v O ADLActivity
v ODevice m=attachedTo » O BasicADLActivity
© Actuator ®machieve ¥ ©FunctionalADLActivity
¥ @ Sensor mdependenOn » O DoHousework
@ ContactSensor ==hasActor ¥ ©KitchenADL
@ DoorBell "= hasAdding ¥ © MakeDrink
@ FireAlarm =hasColdMealType » @ MakeColdDrinl
@ PressureSensor =hasContainer » O MakeHotDrink
@ Thermometer mhasCookingApplian » O MakeMeal
» @ DrinkType » ®hasDrinkType @ ManageMoney
¥ @ HomeEntities mhasEntities @ TakeMedicine
» D Addings ==hasEntityState » G UsePhones
» O ElectriElectroApplianc ™hasHotMealType » O RecreativeADLActivity
» ©Furniture ==hasLocation » ©Container
» O MedicalDevice ==hasMaterial » ODevice
» ©Location =hasSensor » @ DrinkType

Fig. 4.2 An excerpt of the activity ontologies with a entities b relationships, and ¢ ADLs

4.2.2 Semantics-Based Activity Recognition

In dense sensing based activity monitoring an action of a user interacting with an
object is detected through the sensor attached to the object. As such, the activation
of a sensor implies that an action has been taken and subsequently an action property
relating to the object will be assigned a value. Suppose that a number of sensors
are activated along a time line and these sensor observations have been linked to
corresponding action properties. At a specific time point, the aggregation of these
action properties will create a context denoting an ontological activity description.
For example, the activation of the contact sensors on a cup and milk bottle can
link the cup and milk to the activity being performed through hasContainer and
hasFlavor properties. Assume that at a specific time, i.e., hasTime(10 am), sensor
observations hasLocation(kitchen), hasContainer(cup), hasTeabag (English Teabag),
and hasFlavor(sand sugar) are generated, in aggregation, this represents a context
for an ongoing activity. If an activity concept in the ADL ontologies, e.g., MakeTea,
has been defined by this set of action properties, then the activity can be deemed as
the type of activity for the perceived context.

The rationale of inferring an activity from sensor observations described above
can be formulated as follows: Given a set of action properties instantiated by sensor
observations, identify the activity concept in the ADL ontologies that has the same
set of action properties. Conceptually, this problem of activity recognition can be
mapped to the classification of the activity description using activity ontologies as
the classifiers. Technically, the problem can be solved using the subsumption reason-
ing in description logic, i.e., to decide if a concept description C created from sensor
observations is subsumed by a concept description D within the activity models.
Details of the theoretical foundation, reasoning algorithm, and continuous recogni-
tion mechanisms for ontology-based activity recognition can be found in Chaps. 2

4.2 The Hybrid Approach to Activity Modelling 83

and 3. It is worth pointing out that the sensor data stream will be first partitioned
into segments so that sensor activations within a segment can be aggregated to cre-
ate an ontological activity description for activity recognition. We have developed
a dynamic segmentation model based on the notion of varied time windows for
real-time sensor data partition. The model can shrink and expand the window size
of segmentation by using temporal information of activity models and sensor data.
Further details as discussed in Chap. 7.

To facilitate discussion, we refer to the sequence of sensor observations within
a segment as an action trace, i.e., the actions being undertaken within the segment.
An action trace is equivalent to a set of action properties in an ontological activ-
ity description. With activity models from Phase I and streaming sensor data from
applications within a SH, activity recognition in Phase II can produce two types of
action traces. If an action trace has a corresponding activity concept in the ADL
models, this type of action trace is referred to as a labelled action trace or LAT in
short. Otherwise it is an unlabelled action trace or UAT. LATs can be recognised
from the set of action properties while UATs cannot be recognised as there are no
corresponding activity models in the ADL ontologies or the models are not accurate.

The initial seed activity models generated in Phase I are inevitably incomplete
due to the large number of ADLs, the different manner of users performing the
ADLs, and the changing user behaviours. As such, when an application within a SH
performs activity recognition over a period of time, it will generate large amount of
LATs and UATs that contain information relating to unmodelled activities and the
changing behaviours of a user. These action traces can be analysed in Phase III to learn
new activities and user activity profiles. New activities increase the completeness of
activity models while user activity profiles improve the accuracy of activity models.
Sections 4.3 and 4.4 describe the details of the learning mechanisms and methods
for Phase III.

4.3 Learning Unmodelled Activities

Activity learning aims to discover the activities that a user performs, however, which
have not been modelled in the seed activity ontologies. As there are no models for
these activities, they will not be recognised by the activity recognition process in
Phase II. Subsequently, they are classified as unlabelled action traces, i.e., UATSs.
The essence of the activity learning is therefore to extract regular activities from
UATs so that they can be modelled to improve activity models.

We have developed a three-step learning method for this purpose. In the first step,
a semantic similarity metric is defined to measure the semantic similarity between
two UATs. Based on this, an algorithm is then developed to compute the semantic
similarity. In the second step, the semantic similarity between any individual UAT
among all UATs is calculated. Based on the similarity metrics, all UAT's are classified
into a number of subsets where each subset contains semantically similar UATs. In
essence, each subset corresponds to one unmodelled activity and the number of

84 4 A Hybrid Approach to Activity Modelling

UATs within each subset is the number of occurrences of the unmodelled activity
during activity monitoring. Given that an unmodelled activity could be a one-off or
random behaviour, it would be necessary to determine which discovered activities are
regular activities and should be formally modelled. In the third step, the frequency
of the occurrence of these discovered unmodelled activities are calculated, and a
threshold is specified based on domain heuristics. If the occurrence frequency of an
unmodelled activity is equal or greater than the threshold, then the activity will be
formally modelled to update the ADL models.

As previously discussed, central to the activity learning method is the defini-
tion and computation of semantic similarity between UATs. We define sim,,,,(UAT ;,
UAT ;) as the semantic similarity measure between two UATs and denote each UAT
as a set of action property-value pairs represented as follows:

UAT; = {prop, — value,, prop, — value,, . .. prop, — valuey}

UAT; = {prop, — valuey, prop, — value,, . .. prop, — value,}. 4.1

By semantic similarity, we refer to the similarity of two UATs in terms of the
types of the property values rather than the values themselves. This is because in
ontological activity modelling, an activity model is defined by the types of object
rather than the objects themselves. For example, the MakeTea activity is specified by
hasContainer(x), hasTeabag(y) . . . and hasFlavor(z). It is the types of the property
values, rather than the specific x, y, or z objects that define the activity. The value of
a property, e.g., x, y, or z, can be any object, e.g., cupl or cup?2 for x. English tea or
Indian tea for y, white sugar or brown sugar for z. As such, the types of objects are
the key discriminants to decide if two UATs refer to the same type of activity.

We have developed a method to compute the semantic similarity of two UAT's in
terms of the similarity of the two sets of property-value pairs in the two UATs. The
method works as follows. We first map the set of action properties in a UAT to a
corresponding set of objects and then derive the corresponding object type for each
individual object. Both mappings from action properties to objects and from objects
to object types are conducted by recursively unfolding the semantic relations based
on ontological relationships modelled in the ADL ontologies. As a result of these
mappings, a UAT can be transformed into a description of a set of object types, as
denoted in the formula below

UAT; = {objectType of prop, — value,,
objectType of prop, — value,, . ..
objectType of prop, — valuey}. 4.2)

Following this semantic explication and transformation, the similarity of two sets
of property-value pairs is equal to the similarity of two sets of object types. As each
object type is modelled as a concept in the ADL ontologies, the semantic similarity
between two object types (concepts) can be computed based on the signatures of
the object concepts. Specifically, the similarity measure can be calculated using the

4.3 Learning Unmodelled Activities 85

Jaccard coefficient [11] which is the ratio of the number of shared elements from the
intersection of the two sample sets to the number of total elements from the union
of the two sets. This is represented as follows:

simyq (UAT;, UAT}) = (JUATo; 0\ UAT o1 | /|UAT or U UAT 1| - (4.3)

Here, UAT;,; and UATj,, refer to the set of object types in UAT; and UAT;, respec-
tively.

Example 4.1 illustrates the transformation of two UAT s and their semantic sim-
ilarity. Even though the order and specific objects used for each activity is different,
the semantic similarity measure equals one, indicating they refer to the same type of
activities.

Example 4.1 UATs are in the form of property-value pairs.

UAT; hasContainer(mugy), hasTeabag (Englishteabag), hasFlavor(brownsugar),
! hasHotwater (kettley), hasMilk (semiskimmedmilk)

UAT: hasContainer(mug,), hasTeabag (Indiateabag), hasFlavor(whitesugar),
7 hasHotwater (kettle,), hasMilk (skimmedmilk)

UATs are in the form of sets of objects.

UAT; = {mug,, English teabag, brown sugar, kettle,, semiskimmed milk}
UAT; = {mugy, India teabag, kettle,, skimmed milk, white sugar}

UATs are in the form of sets of object types.

UAT; = {Container, Tea, Sugar, Kettle, Milk}

UAT; = {Container, Tea, Kettle, Milk, Sugar}

simyq, (UATI, UATj) = 1.

We can compute the semantic similarity of any two UAT's using the described
method and then use the resulting similarity metrics to classify all UAT's into a
number of subsets of UAT s. For each subset, the semantic similarity sim,, between
any two UAT's is equal to 1, hence each subset denotes a specific type of activity.

Once distinct activities are discovered through semantic classification, it is neces-
sary to decide whether they are regular activities, random or one-off activities. To this
end, we use the daily frequency of occurrence of a UAT as the significance measure
for the activity it represents. For example, if the daily frequency of occurrence of
UAT is n, this means the activity UAT . occurs on average n times a day during the
period of monitoring, e.g., once a day for n = 1, twice a day for n = 2, and once
every two days for n = 0.5. A threshold value can then be specified for the daily
frequency of occurrence based on domain knowledge and heuristics. For example,
given that most ADLs are performed on a daily basis, we can reasonably set 0.5 as
the threshold value, namely a UAT happening once every two days can be regarded
as aregular activity. If the daily frequency of occurrence of a UAT is greater or equal
to the threshold value, the UAT can be formally designated as a regular activity.
Subsequently, this activity will be modelled to update the activity models. Table 4.1

86 4 A Hybrid Approach to Activity Modelling

Table 4.1 The algorithm for learning unmodelled activities

Variables Descriptions
SU the whole set of UATs
SSU; the i"" subset of UATs within which all UATs are
semantically similar
Jouen the daily frequency of occurrence of an UAT
T the threshold value specified for f0,q
D the duration of activity monitoring in days

1. set SU, D, Ty, from Phase II outputs
2. for any UAT;, UAT;eSU, do

3. semantic unfolding and transformation as illustrated in Example 1
4. enddo

5. set a counter actNum = 0, representing the number of new activities
6. while (|SU| > 0)

7. set UATp,, to an arbitrary member of SU

8 create a new subset SSU v with UA Ty, as the only member
9. for (1< i < |SU))

10. calculate simy o UA Thyse, UAT;), where UAT;eSU
1] 2 if(Simmf(UA Thr.-se» UA TJ) =il }

12. put UAT; into the set SSUuenvum

13. remove UAT; from SU

14. else

15. leave UAT; in SU

16. endif

17. endfor

18. Increase the counter actNum = actNum + 1

19. endwhile // this will create actNum subsets SSU;

20.for (1 < i < actNum)

21. calculate fo,,{UAT, UAT € SSU;) = |SSU; |/ D
22: if (foua(UAT) = Ty,) recommend to an expert

23. SSU; represents a regular activity

24, else

25. SSU; represents a random / one-off activity
26. endif

27. Endfor

summarizes the variables, their descriptions and the pseudo code of the algorithm
for the presented activity learning method.

4.4 Learning User Activity Profiles

An activity can be performed in many different ways, e.g., using different items of
the same object types, in different sequence of actions, at different times and within
variable durations. A user activity profile is referred to the specific way of a user

4.4 Learning User Activity Profiles 87

performing activities which is the key to personalised assistance in assistive living.
To formally specify a user activity profile, we use three attributes, namely an object
pattern, duration, and an activity pattern, to characterize the manner that an activity
is performed. An object pattern refers to the unique order of objects that an activity
is performed whilst an activity pattern describes the frequency and regularity of an
activity occurrence, including the starting time(s). Ontological activity modelling
can model an activity profile as an instance of the corresponding generic activity
concept. Nevertheless, the initial seed activity models do not contain user profile
models. This is because the model of a user activity profile is user specific, it can
only be defined once a user is identified. In addition, a user’s behaviour can change
due to physical or mental conditions, thus leading to the change of activity profiles.
As such, learning user behaviour from their activity observations is an effective way
to create user profiles. An LAT represents an activity that has been modelled in the
ADL ontologies and recognised in Phase II. Each LAT has a corresponding activity
label and a sequence of sensor observations denoting the specific undertaking of
the activity. Over time for each activity, there will be a set of accumulated LATs,
which provide a valuable source for user profile discovery. In the following sections,
we describe the processes and methods of learning user profiles from real time
observations of activity performance, i.e., the LATs generated in Phase II.

4.4.1 Object Patterns Detection

We have developed a three-step learning method to discover whether or not a user
follows a unique object pattern in performing an activity. In the first step, we define
a similarity measure sim; (LAT,-, LAT]) in terms of object sequences and develop an
algorithm to calculate the similarity of two LATs. In the second step, we compute the
similarity among all LATs of a specific activity and based on the similarity measures,
a classification algorithm is developed to classify the set of LATs into subsets of
LATs of the same object pattern. In the third step, we calculate the distribution of
frequency of occurrences of all object patterns for the specific activity. The dominant
object pattern can then be used to characterize the user activity profile for the specific
activity.

Similar to a UAT, an LAT can be denoted as a set of action property-value
pairs, i.e., LATi = {prop; — valuey, prop; — value; ...propy — value;}. We
define simy,; (LAT,-, LATJ) as the similarity measure in terms of object sequences
of the two LATs. To calculate the similarity measure, we transform an LAT from
a sequence of action property-value pairs to a sequence of objects through semantic
unfolding of ontological concepts. The resulting LAT can be represented as a
sequence of objects, i.e., LAT = {objectlofpropl — valuey, objectyofprop, —
value, . . . objectiofprop, — valuek}, where each element object, is a specific object
denoted by its signature. After this transformation, an LAT can be treated as an object
signature vector, and the similarity of two LAT s is essentially the similarity between

88 4 A Hybrid Approach to Activity Modelling

two vectors in a high dimensional space. This can be computed using the generic
cosine similarity algorithm [12], as formulated in the Eq. 4.4:

simia (LAT;, LAT;) = (LAT;, LAT;) /(||LAT;||||LAT;]|)
2

=) ATy x LATp)/| | Y LATw | x | D (LATy)? (44)
k=0 k=0 k=0

The numerator is the dot product of the two LAT vectors and the denominator is the
product of the magnitudes of the two vectors. i and j are an LAT respectively, i # j,
and n is the total number of LAT s. A value in the range [—1, 1] can be generated,
where —1 signifies the exact opposite object pattern and 1 signifies exactly the same
pattern.

In order to make use of the cosine similarity algorithm to compute similarity of
LAT's, we convert the text notation of the elements of an LAT to numerical values by
allocating each object an object identifier number. The object identifier numbers do
not have any meaning, they are simply used to facilitate the similarity computation
based on object sequences. Example 4.2 below illustrates three LATs, their object
signatures, corresponding exemplar object identifier numbers and the similarity mea-
sures between them.

Example 4.2 LAT|, {mug,(1), teabag (2), hotwater(3), sand sugar(4), skimmed
milk(5)}

LAT; {mugy, (9),teabag(2), whole milk(8), hotwater(3), sand sugar(4)}

LAT; {mug, (1),teabag(2), hotwater(3), sand sugar(4), skimmed milk(5)}

simlm (LAT/, LATQ) =0.7053

simlm (LAT], LATj) =1.

As shown in the above example, LAT; and LAT; will be classified into the same
subset because they follow the same object sequences. Similarly, we can compute the
similarity measures for all LAT s and classify the LAT s that their similarity measures
are equal to 1 into a subset. Each subset represents a unique object pattern.

To determine if there is a dominant object pattern for performing a specific activity,
we calculate the probability of the occurrence of a unique object pattern for all object
patterns within the set of LAT's for the activity. We then specify a threshold value for
the probability of occurrence so that when the occurrence probability of a specific
object pattern is greater than or equal to the threshold value, the corresponding subset
can be viewed as the dominant object pattern. For example, suppose that there are
five object patterns for performing an activity and the occurrence probability of the
third object pattern is 0.83. This means that the activity is performed 83% of the time
using the third object pattern and only 17% using the other patterns. In this case, the
third object pattern can be reasonably regarded as the user profile for this specific
activity. On the other hand, if all probability values are roughly evenly distributed
and each value is very small, it can be assumed that the activity is performed in a
random manner and there is not a specific preferred way of performing the activity. In

4.4 Learning User Activity Profiles

our study, we define 2/3 as the threshold value of the occurrence frequency. Table 4.2
summarizes the variables, their descriptions, and the pseudo code of the algorithm

for this object pattern learning method.

Table 4.2 The algorithm for learning object patterns

Variables Descriptions
SL(z) The set of all LATs for the specific activity z
POPk The probability of occurrence of the object pattern k
Toop The threshold of pop = 2/3

Eh bl b e

alin B

b

10.
11.
12.
13.
14.
15:
16.
17.
18.
19.
20.
21.
22
23:
24.
25.
26.
27.

/! discover unique object patterns

set SL(z) and T}, from Phase II outputs
for any LAT;, LAT;e SL(z), do
semantic unfolding as illustrated in step 2 in Example 1
enddo
set a counter uopNum = 0, which represents the number of the
unique object patterns in SL(z)
while (|SL(z)| > 0)
set LATpa to an arbitrary member of SL(z)
create a new subset SSL(z)uopnum With LAT pase as the only member
for(1<i < |SL(z)|)
calculate simyy(LATpase, LAT;), where LAT;e SL(z)
if (simya(LAT base, LAT}) = 1)
put LAT; into the subset SSL(z)yopnium
remove LAT; from SL(z)
else
leave LAT; in SL(z)
endif
endfor
Increase the counter uopNum = uopNum + 1
endwhile // this will create wopNum subsets SSL(z)
for (1< i < uopNum)
calculate pop; = | SSL(z); |/ | SL(z) |
if (popi) 2 Tpop)
SSL(z); represents a dominant object pattern
else
No user profile for this activity
endif
Endfor

90 4 A Hybrid Approach to Activity Modelling

4.4.2 Activity Duration Detection

Duration information of an activity model is useful in continuous activity recognition.
It helps define the sliding time window for dynamic sensor data segmentation (more
details in Chap. 5). It is also a key indicator of a user’s behavioural changes, which
provide personalised assistance, e.g., specifying the waiting time for a reminder.
We calculate duration information using all LATs of an activity based on the time
points at which the first and last sensor activations of the LATi are received. Table 4.3
displays the algorithm for calculating the minimum, maximum, and average duration
of a user performing an activity. The algorithm is a continuum of the object pattern
learning algorithm in Table 4.2.

4.4.3 Activity Patterns Detection

An activity pattern is crucial for providing proactive personalised activity assistance.
For example, if an assistive system knows that a user takes medicine twice a day at 10
am and 5 pm respectively, then it can prompt the user to take medicine at these times.
Nevertheless, itis difficult to decide an activity pattern and starting time as most ADLs
could be carried out randomly dependent on personal preferences. Even with some
kind of regularity, ADLs are most likely performed within a time period rather than at
an exact time point. We have developed a two-stage approach to discover an activity
pattern and starting time from LATs. In the first stage, we calculate the daily frequency
of occurrence of an activity, namely the average number of activity occurrences in a
day during the period of monitoring. The daily frequency of occurrence is used as a
criterion to decide if the activity is carried out on a regular basis. It can be determined
based on domain knowledge during the initial LAT modelling. For example, it could

Table 4.3 The algorithm for learning activity duration

Variables Descriptions
t, te the first and last sensor activation times
Dtyin, Dityar, Dtigye the minimum, maximum and average duration

// discover the duration information

28. Set Du,,,=initial value, Du,q,and Du = (0

29. for (1< i < |SL(z)|)/ forall LATs of an activity
30. if (Dumin = (tei — t5i)) Dutmin = (tei — £5i)

31. if (Dﬂmar < (tef' = fs:')) Duyax = (fei = tsf')
32. Du = Du +(toi — t57)
33. endfor

34. Dugye = Du /| SL(z) |

4.4 Learning User Activity Profiles 91

be 1/7, implying that it covers all weekly activities. A regular activity does not
necessarily support an activity pattern. For example, a user makes tea twice a day,
every day, however, the activity is always carried out at different times. This is a
regular activity but does not have a pattern.

In the second stage, we decide if a regular activity follows an activity pattern. To
this end, we first partition the 24 h of a day into a number of fixed-length time slots.
For example, if the duration of a time slot is 30 min, then a day can be partitioned
into 48 time slots. Second, we map the starting time of all LAT's of an activity into the
corresponding time slots. Third, we calculate the probabilities of the occurrence of
the activity within each time slot against the total occurrence of the activity. Based on
the probability distribution of occurrence and the threshold values of the occurrence
probabilities, we can infer whether or not there is an activity pattern.

Table 4.4 displays the algorithm of learning activity patterns, which is a continuum
of the algorithms in Tables 4.2 and 4.3. Three inference rules for learning activity
patterns have been defined below, which are explained using the example depicted
in Fig. 4.3.

Rule I: If an activity is a regular activity based on the daily frequency of the
activity fo;,; (LAT); and fo,, (LAT) is n < 1; and the occurrence probability of the
activity in the pth time slot is equal or greater than Prob,p.sn014; then the activity has
a pattern—it happens once 1/n day(s) in the pth time slot. The starting time S, for
the activity pattern can be estimated as the average time of the first sensor activation
of all LATs within the pth time slot. The bath activity in Fig. 4.3 illustrates this case.
For example, if fo,,; (bath) = 0.5, Probyeshoia = 70%, as Probpam) = 80% > 70%,
then it can be inferred that the bath activity happens once every two days in the time
slot starting from 7 pm.

Rule 2: If an activity is aregular activity; and fo;,; (LAT)isn > 1; and the occurrence
probability for each time slot is greater than Prob,esnoia X (1/n), i.e., the aggregated
occurrence probability in the n time slots is greater than Prob,.sn014; then the activity
has a pattern—it is performed n times a day within the n time slots. The starting time
S:ime Of the nth occurrences can be estimated as the average time of the first sensor
activation of all LATs within the nth time slot. The tea activity in Fig. 4.3 illustrated
this case, i.e., it happens three times a day in three-time slots with the occurrence
probability of each timeslot being greater than 23.3%.

Rule 3: If an activity is a regular activity and the occurrence of an activity is
dispersed evenly among a number of time slots k where k is significantly greater
than fo,,, (LAT); and the occurrence probability in each time slot is significantly less
than Proby.snoiq; then the activity is arandom activity during a day. As such, it makes
no sense to infer the starting time of the activity. The phone call activity in Fig. 4.3
illustrates the nature of a random activity.

92

4 A Hybrid Approach to Activity Modelling

Table 4.4 The algorithm for learning activity patterns

Variables Descriptions
foia the daily frequency of occurrence of an activity
Stime the starting time(s) of an activity
prob the probability of an activity occurrence in a time

slot

Pr Obfha'eshoa’d

the threshold values for prob

Isior

the fixed-length duration of a time slot in minutes

D

the duration of activity monitoring in days

53. Endif

// discover activity patterns and starting time(s)

35. calculate fo,(LAT, LATe SL(z)) = | SL(z) | /D

36. partition a day into time slots based on #,,

37. map the ¢ of all LATs in SL(z) into corresponding time slots
38. for (1< i < 24x60/ tyy) // for all time slots

39. prob; = (number of occurrence in the i time slot) / |SL(z)|
40. endfor

41. // apply the pattern learning rules

42. if (foju <1 and prob at a time slot p = probpyeshoia)

43. LAT is a regular activity with an activity pattern

44. Stime =(£¥. ., t;) / K, K = number of occurrence in time slot p
45. else (foj < I and prob at any time slot p < probyeshoid)

46. LAT is a random activity, no need to calculate Stime

47. endif

48. if (foi, =n > 1 and each prob at n time slots> probpyeshota * (1/n))
49. LAT is a regular activity with an activity pattern

50. Stime(at the n™ occurrence) =(ZL . ts:) / K, K = number of

occurrence in time slot p;, i=1, 2...n.
51. else (foj, =n > I and all prob at n time slots< probyeshota % (1/1))
52. LAT is a random activity, no need to calculate Stime

4.4.4 Activity Knowledge Model Evolution

Once a new activity is discovered as described in Sect. 4.4.3, it is necessary to
decide the location of the activity in the hierarchy of the activity ontologies and
also an appropriate label that should be assigned to the activity. The label should
be meaningful and compliant with other activities’ labelling rationale and also the
ontological modelling conventions so that it can be easily referred to and understood
later. The location of a newly discovered activity in the ontological activity hierarchy
can be recommended through the subsumption reasoning of the UAT description.

4.4 Learning User Activity Profiles 93

1 -
Mtea M bath phone call
08+

0.6
04

M| 11 51 1. b . j_ 1
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Time slots between 6am and 8pm

Percentage of LAT

0 -

Fig. 4.3 Probability distribution of three ADLs over a period of time

Nevertheless, human intervention is required to validate and finalise the position
and label of an activity model in order to maintain the quality of the model. As
such, the classification and naming process have been carried out manually using the
standard practice of ontological engineering, i.e., a knowledge engineer encodes the
new activities and edits the ontologies using an ontology editor.

Similarly, once a user’s behavioural features, i.e., activity profiles, are learnt as
described in the previous subsections, the activity models should be evolved to reflect
the unique manner a user performs activities, e.g., for the purpose of personalised
assistance. Given that a user’s activity profile is equivalent to an instance of a generic
activity model, i.e., an ontological activity class, and for any LAT there is a corre-
sponding ontological activity class, activity profile evolution amounts to creating a
new instance or updating an existing instance. This can be undertaken automatically
by using the standard APIs of the underlying semantic frameworks.

4.5 An Example Case Study

When an actor interacts with objects in sequence in real time, sensor activations are
continuously fed into the system. To test and evaluate the presented approach we have
created the seed activity ontologies in Phase [using the Protégé ontology editor —refer
to Fig. 4.2, through knowledge engineering practice. We have implemented a feature-
rich system for activity recognition and model learning in Phase II, as shown in
Fig. 4.4. Full detail of the system implementation can be seen in Chap. 9 and Sect. 9.2.
When an actor interacts with objects in sequence in real time, sensor activations are
continuously fed into the system. Sensor data series are dynamically segmented,
will be discussed in next two chapters, and recognition operations are repeatedly
performed to carry out continuous, progressive activity recognition. As depicted
in Fig. 4.4, the system can dynamically display the activated sensor sequence, the
incrementally recognised activities and the system status in real time.

94 4 A Hybrid Approach to Activity Modelling

Home SmartSampler Real-Time History Preferences About Logout

< ACTIVATED SENSORS [} recoroinG sTaTUS

ClosePort | OpenPort | i Recording Status - @)

LEARNING OUTPUT &
SensorID Sensor Name Signal D .

035428 #KitchenObjDoors |#SensorOn 20:38:25: De-activating ~

3ensors ..
20:38:25: All active sensors
has been de-activated ..

ol[el

035501 =PenneOby) =SensorOn

035430 =CookerObjs #SensorOn

035443 |=Drainerobjs =Sensoroff Usihgicomuunicationspor il

035443 =DrainerObjs #SensorOn User {ryan)}

035453 =PlatterObjs #SensarOn Loading Ontology

035445 =SaucepanObjs #SensorOn

20:38:25: Graph parsed
successfully .
20:38:25: Ontology imported

«/ recocnizepacrvimies @ Cuccecesuily ..

B #KitchenDoor 20:38:38: Sensor
| I?_‘-#Mal:eMea! {#K}:chenOthaorS} has been
H #MakeDrink activated ..
e 20:38:40: Searching for tasks
E-#KitchenDoor -> #ChinaCup involving this sensor ..
| #MakeSoup 20:38:40: Task can be one of:
B} #MakeDrink
I > 5 #lakeMeal (entails) --> {
B-#KitchenDoor -> #ChinaCup -> #ChineseTea #MakeDrink {encails) —-> (3
L-#MakeTea

Fig. 4.4 The system interface operating in real time mode

Figure 4.4 depicts the system interface operating in the real time mode. In the
left-hand side, the top panel is used for communication port setup; the middle panel
displays the sequence of activated objects; and the bottom panel presents progres-
sively recognised activities in a tree-like hierarchy. In the right-hand side, the top
panel contains function buttons for data recording and playback; the bottom panel
presents a temporal trace of events during the system operation. The system can
import activity ontologies, specify reasoning and learning parameters, select the
modality of audio reminder, configure hardware and define event priorities and user
activity profiles (Table 4.5).

4.5.1 Experiment Design and Data Collection

To systematically test and evaluate activity and profile learning in Phase III, eight
typical ADLs as presented in Table 4.6, were selected for the purposes of experi-

4.5 An Example Case Study 95

Table 4.5 Two examples of activity specifications

Activity Activity specification
(sequence of user-object interactions)
Maketea TP1 GetCup, GetTea, PourWater, GetMilk, GetSugar
TP2 GetCup, PourWater, GetMilk, GetTea, GetSugar
TP3 GetCup*, GetTea, PourWater, GetMilk, GetSugar
BrushTeeth | TP1 RunSink, GetToothbrush, GetToothpaste, GetMouthwash
TP2 GetToothbrush, GetToothpaste, RunSink, GetMouthwash
TP3 RunSink, GetToothbrush, getSoap**, GetToothpaste, GetMouthwash

*faulty sensors that do not fire; ** false or extra sensor reading

mentation. For each activity, the required objects for performing the activity were
identified and for each of them a contact sensor was attached. Each activity was
designed to be performed in three different ways, leading to three different types of
activity specification as illustrated in Table 4.5. The Type 1 activity specification,
namely TP1 in short, can be viewed as the “standard” way of performing a specific
activity. The Type 2 activity specification has the same set of objects; however, they
are interacted with in a different order. The Type 3 activity specification has a differ-
ent set of objects as it is intended to simulate noise on the sensor data, i.e. a faulty
sensor by omitting a user-object interaction or a false sensor reading by adding an
irrelevant object interaction. In addition, in order to test the activity learning capa-
bility, we deliberately remove activity models, MakeChocolate and BrushTeeth, two
of the eight selected activities from the seed activity ontologies.

Three actors took part in the experiments. Each of the participants interacts with
the objects of each activity of the eight activities in accordance to the activity specifi-
cations for two rounds. This leads to a total of 3 (types) x 8 (activities) x 2 (rounds)
x 3 (actors) = 144 action traces. After activity recognition in Phase II the system
produced 100 LATs and 44 UATs as presented in Table 4.6.

4.5.2 Analysis and Evaluation

Our evaluation has focused on the performance of learning distinct activities from
UATs, and the performance of discovering the dominant object pattern from LATs in
activity profile learning. This is because semantic based similarity calculation and
classification are the central underpinning mechanisms for the presented methods.
In addition, evaluation of time-related metrics, e.g. duration or activity patterns will
only make sense if the data are generated by real users performing real ADLs over
a relatively long period of time. This has been proven to be difficult due to techni-
cal, privacy and ethical issues. Furthermore, temporal information in these learning

96 4 A Hybrid Approach to Activity Modelling

Table 4.6 Recognition results of the 144 activities

Activities Actorl Actor2 Actor3 Sum
L/U
Exp 1 2 1 2 1 2
Make tea TP1 L L L L L L 6/0
TP2 L L L L U L 5/1
TP3 L L L U 8] 8] 3/3
Brush teeth | TP1 U U U U U U 0/6
TP2 U U U U U U 0/6
TP3 6] U U 8] 0] 8] 0/6
Make coffee | TP1 L L L L L L 6/0
TP2 L L U L U L 4/2
TP3 L L L L L L 6/0
Have bath TP1 L L L L L L 6/0
TP2 L L L L L L 6/0
TP3 L L L L L L 6/0
Watch TV TP1 L L L L L L 6/0
TP2 L L L L L L 6/0
TP3 L L L L L L 6/0
Make TP1 U U 8] 8] 8] U 0/6
chocolate fpy |y U U U U U 0/6
TP3 U U U U U U 0/6
Make pasta | TP1 L L L L L L 6/0
TP2 L L L L 8] L 51
TP3 L L U L L L 5/1
Wash hands | TP1 L L L L L L 6/0
TP2 L L L L L L 6/0
TP3 L L L L L L 6/0
Sum L/U All 18/6 18/6 16/8 1717 14/1010 |17/7 100/44
TPs

Here TP—the type of activity, Expl and Exp2—the two rounds of experiments respectively, L and
U—a LAT and UAT respectively, and Sum—the number of L and U for a particular type of activity
and a particular actor respectively

4.5 An Example Case Study

Table 4.7 The activity discovery results from UATs

97

Ground truth UAT Subsets SSU;
Activity label UAT LAT Total 21 subsets, SSU{-SSUjy;
MakeChocolate 18 0 12 in SSUj, 1 in each SSUg_1
MakeTea 4 14 1in each SSU;g 9
MakeCoffee 2 16 2 in SSU3
BrushTeeth 18 0 12 in SSU3, 1 in each SSUj5_17
MakePasta 2 16 1 in each SSUy4_5

Please refer to Table 4.5 for the definition of SSU;

methods is mainly used for numerical calculation, i.e. the duration, starting time and
frequencies, which has already clearly illustrated in previous discussions.

Results and analysis on learning new activities: We apply the activity learn-
ing algorithm in Table 4.4 to the UAT dataset in Table 4.6 to learn new activities.
Table 4.7 displays the activity learning results. The “Ground Truth” column presents
what actually happened in the experiment whereas the “UAT Subset” column lists
the classified subsets of the 44 UATs. Among six modelled activities three of them,
i.e. WashHands, WatchTV and HaveBath, have been fully recognised without gen-
erating any UATS, so they are not listed in Table 4.7. The other three modelled
activities, i.e. MakeTea, MakePasta and MakeCoffee, have generated four, two and
two UATs respectively. This is because we randomly introduce a sensor noise into
the Type 3 activity specification, the activity traces from TP3 may be recognised or
not depending on the nature of the noise, thus leading to UATS.

For the two unmodelled activities, MakeChocolate and BrushTeeth, each consists
of 18 UATs which are classified into 7 subsets SSU. One subset has 12 UATs and
other six subsets each have one UAT. This is because both Type 1 and Type 2 activity
specifications use the same set of objects, thus leading to 12 UATs in SSU1. The Type
3 activity specification simulates random sensor noise by introducing an irrelevant
object into the activity, thus leading to 6 different action traces. The comparison
between the UAT classification results and the ground truth proved that the semantic
similarity based UAT classification is 100% accurate in terms of similarity criteria
simyuq(UAT;, UAT;) = 1. In the case that the duration of observation D is available,
it is straightforward to follow the activity learning algorithm to identify the distinct
regular activities.

We apply the algorithm in Table 4.2 to all LAT's in Table 4.6 to learn object patterns.
Table 4.8 presents the analysis results for three of the six modelled activities. From
left to right the first and second columns contain the activities and the total number
of LATs in the corresponding activity. The third column displays the unique object
patterns among all LAT's of the activity while the fourth one shows the number of
LATs for each unique object pattern. The fifth column presents the probabilities
of occurrence of a unique object pattern. As can be viewed from the results, each
activity has two major activity patterns with a similar percentage of occurrences. In

98 4 A Hybrid Approach to Activity Modelling

Table 4.8 Part of the activity learning results from LATs

Activities | LAT No. Unique object LAT No. for each popx (%) for each
oatterns (UOP) UOP UOP
MakeTea 14 UOP, 6 42.86
vuopr, 5 35.71
UOP3-UOPs 1 7.14 each
MakePasta | 16 UOP; 6 37.5
UoP, 5 31.25
UOPs-UOP7 1 6.25 each
WashHands | 18 UOP, 6 33.33
UoP, 6 33.33
UOP3-UOPqg 1 5.55 each

addition, a number of patterns are also identified for each activity with each pattern
having only one LAT. The learning results are in line with the ground truth of the
experiment. The two major activity patterns correspond to the Type 1 and Type
2 activity specifications. The occurrence of a number of one-LAT pattern in each
activity corresponds to the Type 3 activity that is performed randomly by introducing
random noise, thus no sequence of objects are identical. The matching of the analysis
results with the ground truth of the experiment proves the method for learning object
patterns is effective.

There are a number of object patterns for each activity in Table 4.8. This is
because the activity specifications are deliberately designed to contain two major
object patterns, i.e. Type 1 and Type 2, and a number of random patterns in Type
3, to test and evaluate various aspects of activity and profile learning methods. In
a real situation a user may have one dominant object pattern or simply perform in
a random way. Nevertheless, the experiments and analysis results demonstrate the
learning method and process. For example, if we set the threshold of the probability
of occurrence of the object pattern (pop,) to 36%, then the unique object pattern
UOP, for both MakeTea and MakePasta will be identified as the dominant object
patterns. For the WashHands activity there is no object pattern.

Sensor noise such as faulty sensors, communication and processing errors is
inevitable in real use scenarios. In our experiments we simulate sensor noise in Type
3 activity specifications, leading to six occurrences of sensor noise for each activity
among its eighteen activity occurrences, equivalent to 33.33% data accuracy. As can
be seen from the results in Table 4.8 a sensor noise does not have to affect activity
recognition, i.e. generating an UAT. It will be up to the nature of sensor noise that
determines whether or not an action trace with a sensor noise could be recognised.
The impact of sensor noise on recognition accuracy has been discussed in [13].

Sensor noise: affects activity and profile learning. The analysis results in Table 4.7
show that the two unmodelled activities, MakeChocolate and BrushTeeth each have
18 UATs but only 12 of them are classified into one set due to sensor noise, equivalent

4.5 An Example Case Study 99

to a 66.67% classification rate, which is resulted from our simulation of sensor noise
for exactly one third of activities in the experiments. Nevertheless, the extent to which
the noise affects the classification rate is dependent on the similarity threshold which
is used to decide whether or not two traces are deemed as similar. For example, our
study only classifies absolutely similar traces, i.e. sim,q;(UAT;, UAT;) = 1, into a set.
If we reduce the similarity threshold, e.g. to 0.8, then any traces with simuat(UAT;,
UAT;) > 0.8 will be classified to the same set. In this case the classification rate
(66.67%) and the noise level (33.33%) will both be changed. This actually means
that two activity traces with one of them having sensor noises such as a missing
sensor observation or a wrong object can still be classified to a set if other objects are
the same. Understandably, the lower of the similarity threshold, e.g. 0.65, the more
sensor noises can be accommodated. From this perspective, activity learning is not
sensitive to sensor noises supposed the noise level is relatively low.

Though the determination of appropriate similarity threshold which is essentially
to decide the noise level the presented approach can handle requires further investiga-
tion, current study has shown that our approach itself is conceptually and theoretically
correct without specific limitations. The impact of sensor noise on profile learning
as depicted in Table 4.8 can be discussed and explained in the same way as above.
We shall not elaborate here due to limited space.

Computational performance: In the 3-phase iterative process of the hybrid
approach to activity model learning, real-time continuous activity recognition
requires high computational performance to ensure dynamic on-the-fly situation gen-
eration and reasoning against the activity models. The experiments and evaluation in
Chap. 3 have shown the computational performance for real-time activity recognition
is satisfactory. As activity and profile learning are intended to be performed periodi-
cally offline, and most computation in these learning algorithms involves linear time
complexity with regard to dataset volume, we believe that the technical correctness of
these learning algorithms is more important than their computational performance.
As such, our experiments and evaluation have focused on technical assessment.
Knowledge-driven versus data-driven: The presented hybrid approach combines
knowledge-driven manual model specification with data-driven automatic model
learning. One question arising from the study is to what extent models should be
manually specified in advance. Should we specify as many models as possible with
few to be learnt or the reverse? Relying on manual specification too much will have the
disadvantages of the knowledge-driven approach. On the other hand, relying on auto-
matic model learning too much will have the drawbacks of data-driven approaches.
While the approach allows flexible specification of the initial seed activity models, it
is an interesting research question on how to strike an optimal balance between the
two ways of activity modelling.

Experiences and initial findings from our current studies suggest that we should
specify as many generic coarse-grained activity models as possible as the models
at this level of abstraction are generic and applicable to all users, thus insensitive
to low-level special behaviour of individual users. On the other hand, we should
learn as many fine-grained activity models as possible as the models at this level of
abstraction reflect the uniqueness and dynamics of an individual user’s behaviour.

100 4 A Hybrid Approach to Activity Modelling

Data-driven activity learning plays more important role in improving activity model
accuracy and addressing the changing nature of activity models.

4.6 Summary

This chapter introduced a hybrid approach to creating complete, accurate activ-
ity models through incremental activity discovery and profile learning. We have
described a 4-phase iterative process and discussed the methodology of each phase
of the lifecycle. While Chap. 3 described the details of ontological activity modelling
and recognition, this chapter has presented the details of activity and profile learning
methods by which activity models can be expanded, personalised and adapted. The
compelling feature of the approach is that it combines the strengths of traditional
data mining-based activity modelling with that of ontology based explicit activity
modelling, making our approach flexible, applicable and scalable in terms of reusabil-
ity, rapid system development and deployment. We implemented the approach in a
feature-rich assistive system and conducted systematic controlled experiments in a
number of well-designed activity scenarios. Initial results have demonstrated that
the approach and algorithms are technically correct, viable and robust. Though the
experiment dataset is not very large, it is representative and serves the purposes well.

References

1. WHO | International Classification of Functioning, Disability and Health (ICF). WHO (2018)

2. Liao L, Fox D, Kautz H (2007) Hierarchical conditional random fields for GPS-based activity
recognition. In: Thrun S, Brooks R, Durrant-Whyte H (eds) Robotics research. Springer, Berlin,
pp 487-506

3. Lester J, Choudhury T, Kern N, Borriello G, Hannaford B (2005) A hybrid discrimina-
tive/generative approach for modeling human activities. In: Proceedings of the 19th inter-
national joint conference on artificial intelligence. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, pp 766-772

4. HuDH, Yang Q (2011) Transfer learning for activity recognition via sensor mapping. In: IJCAI
international joint conference on artificial intelligence

5. Rashidi P, Cook DJ (2011) Activity knowledge transfer in smart environments. Pervasive Mob
Comput

6. Van Kasteren TLM, Englebienne G, Krose BJA (2010) Transferring knowledge of activity
recognition across sensor networks. In: Lecture notes in computer science (including subseries
Lecture notes in artificial intelligence and lecture notes in bioinformatics)

7. Cook D, Feuz KD, Krishnan NC (2013) Transfer learning for activity recognition: a survey.
Knowl Inf Syst 36:537-556

8. Perkowitz M, Philipose M, Fishkin K, Patterson DJ (2004) Mining models of human activities
from the web. In: Proceedings of the 13th conference on World Wide Web - WWW *04

9. Tapia EM, Choudhury T, Philipose M (2006) Building reliable activity models using hierarchi-
cal shrinkage and mined ontology. In: Lecture notes in computer science (including subseries
Lecture notes in artificial intelligence and lecture notes in bioinformatics)

References 101

10. Mann CJH (2003) The description logic handbook — theory, implementation and applications.
Kybernetes (2003)

11. Jain AK, Dubes RC (1988) Algorithms for clustering data, Englewood Cliffs, N.J.: Prentice
Hall, ISBN:0-13-022278-X

12. Witten IH, Frank E, Hall MA (2011) Data mining: practical machine learning tools and tech-
niques, 3rd ed., Elsevier, ISBN:978-0-12-374856-0

13. Hong X, Nugent CD (2013) Segmenting sensor data for activity monitoring in smart environ-
ments. Pers Ubiquitous Comput 17:545-559

Chapter 5 ®)
Time-Window Based Data Segmentation oo

5.1 Introduction

Dense sensor-based activity monitoring and recognition has received increasing
attention in SH environments due to privacy and ethical considerations. In such
environments, sensors are attached to objects in the environment, e.g. fridges, cup-
boards, and an inhabitant’s interactions with these objects are monitored and used
to identify the ongoing activities of daily living (ADLs). A key problem in dense
sensor-based activity recognition when sensors are activated along a timeline is how
sensor data are segmented so that the set of sensor interactions represents exactly a
unique activity.

Existing works on knowledge-driven activity recognition do not clearly articulate
the mechanism about how and what sensor data are selected from a live data stream
for performing activity inference. In some research experiments that support on-
line continuous activity recognition, the experiments restart manually each time an
ADL is identified. For the approach to be applicable to real-world use scenarios it
is necessary that after an ADL is identified, the activity recognition process should
continue on fresh sensor data and decide what to exclude from those already used
in the previously identified ADL(s). Obviously, this is not a trivial task and requires
the development of a suitable discriminating strategy.

To dynamically decide an appropriate set of sensor data from a live sensor data
stream for real-time activity recognition, we introduce a segmentation approach that
makes use of temporal information associated with sensor data and temporal charac-
teristics of an activity. The approach addresses two important issues: ‘segmentation
and aggregation’ and ‘the conditions that trigger ontological reasoning’. Segmenta-
tion breaks down a sensor data stream into fragments that can be mapped to activity
descriptions, while aggregation combines a finite collection of sensor data items
available in a segment for activity inference. As such, the approach is able to support
continuous segmentation and aggregation along a timeline, thus allowing real-time
ongoing activity recognition. To achieve this goal, in this chapter we (1) describe a
time window based segmentation model and related algorithms for real-time onto-

© Springer Nature Switzerland AG 2019 103
L. Chen and C. D. Nugent, Human Activity Recognition
and Behaviour Analysis, https://doi.org/10.1007/978-3-030-19408-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19408-6_5&domain=pdf
https://doi.org/10.1007/978-3-030-19408-6_5

104 5 Time-Window Based Data Segmentation

logical activity recognition; (2) develop various mechanisms for dynamically manip-
ulating time window parameters; (3) implement the proposed model and reasoning
algorithms; (4) develop tools to obtain temporally-rich ADL data for testing and
evaluation; and (5) evaluate the performance of the proposed model and algorithms
in supporting real-time activity recognition. The research is based on typical ADL
activities that an inhabitant can perform in the kitchen, lounge and bathroom of a
smart home, e.g. cooking, watching television, and showering.

This chapter presents a development of a systematic approach to dynamic sen-
sor data segmentation for real-time continuous activity recognition. This dynamic
sensor segmentation approach number of benefits. Firstly, a time window-based seg-
mentation model that is applicable to a wide range of activity recognition scenarios.
Secondly, we illustrate various mechanisms for dynamic model parameter manipu-
lation during activity recognition, such as the setting, shrinking, and expansion of
the time window’s length, thus adapting the segmentation model in terms of the way
activities are performed. Thirdly, we integrate the dynamic sensor data segmentation
approach into an ontology-based algorithm for real-time, progressive activity recog-
nition. This provides a basis for the implementation of re-usable knowledge-driven
algorithms and applications for real-time activity recognition. In addition, we develop
a synthetic ADL data generator that can be used to quickly generate temporally-rich
synthetic ADL data for evaluation of activity recognition algorithms. It is believed
that the time window based segmentation model and associated algorithms in activ-
ity recognition provide a realistically scalable, reusable approach to continuously
recognising activities of different complexities in a Smart Home context.

5.2 Recent Work on Temporal Data Segmentation

The issue of sensor data segmentation in knowledge-driven activity recognition has
received little attention in existing work. For instance, in [1] the authors present a
knowledge-driven activity recognition approach but do not provide the details of
the method for sensor data selection. Despite showing that ontology-based activity
recognition is feasible, the absence of a suitable method for sensor data selection
makes the presented method difficult to replicate. However, another knowledge-
driven activity recognition method presented in [2] uses competing hidden Markov
models to segment a sensor data stream. The selected sensor data is used to perform
spatiotemporal and context reasoning for activity recognition. They use a variable
window length and the window moves over a sequence of observations. The main
weakness of this approach is that it requires a pre-existing dataset to determine the
optimal size of the time windows and the segmentation rules that it uses. Since
the same individual or different individuals may perform the same activity in many
different ways, this method will be difficult to reuse. In addition, the derived optimal
window lengths have to be revised to deal with new situations.

The use of one-minute time slices to evaluate the effectiveness of ontology-based
activity recognition is presented in [2]. Sets of sensor data are selected every minute

5.2 Recent Work on Temporal Data Segmentation 105

for activity inference. The work is based on van Kasteren dataset [3] and the main
limitation is that the ontology used is modelled on and closely tied to the dataset
making it difficult to re-use. In addition, the fixed-size time slices used may lead
to a huge computational expense since the activity inference engine is forced to
periodically sample the data stream even when no new sensors have been activated.
Furthermore, its ability to support real-time activity recognition has not been dis-
cussed. Ontologies and video are used for activity recognition in [9], whereby an
ontology-based knowledge base supports the recognition of human activities from
video sequences. The ontology models human activities, in terms of entities, envi-
ronments and interactions, and creates semantic links between events and activities.
Vision-based techniques are used to select the input data for activity inference based
on a pre-existing dataset. Our work is modelled on a dense sensing framework, and
as a result the computer vision based techniques used in [4] are less suitable. How-
ever, the authors adopt a method to select the input data used in activity recognition
which is comparable to the problem that we aim to address, i.e., to select a subset
of sensor data for activity inference. From the foregoing, it is clear that in most
knowledge-driven activity recognition work the method used to select sensor data
is either non-existent or, at best, ad hoc. There is a need to develop a systematic
approach that can be applicable in different knowledge-driven activity recognition
approaches to help segment and then aggregate sensor data.

In the data-driven activity recognition community, the problem of sensor data seg-
mentation has been widely explored has discussed in Chap. 2 (Sect. 2.2). The notion
of time windows is adopted to provide a basis for handling time-dependent data,
e.g., the sensor data stream. However, some sensor data segmentation approaches
use static sliding windows to segment the data stream [3, 5, 6] while others use
dynamically derived time window lengths [7-9]. The notion of time slices is used
in [10] to derive segments used to perform activity recognition. In [5, 6], a sliding
window method is used to derive features used in activity inference by the proposed
algorithms. The time windows used in [5] are made to have 50% overlap. The main
criticism for static sliding windows is that incorrect lengths can truncate an activity
instance or overlap activity instances leading to recognition failure. Due to the above
problem, this chapter is closely related to [7-9] whereby time window parameters
are varied.

The work in [7] uses temporal information (i.e., the average activity duration) to
set different length values to the time windows at initialization; however, once a time
window is activated its length cannot be dynamically modified. This can cause the
time window to overlap the end of one activity and the beginning of the next one, thus
leading to recognition failures. The notion of time contiguity in sensor data is used
together with location context to segment sensor data from state change sensors in [8].
Any noted changes in location context between two consecutive sensors are used to
signify a break point. The break point then helps identify the start and end of segments
on which activity inference is eventually performed by evidential fusion [11]. This
approach will work well when consecutive activities occur in different locations;
however, segmenting the sensor data stream arising from the same location may
prove difficult if the break point is not detected. Since, recognition is only attempted

106 5 Time-Window Based Data Segmentation

on a segment after the start and end points are identified, this approach assumes that
the user always performs activities correctly, making diagnosis that is necessary for
activity assistance difficult or impossible.

Although our work is in the area of knowledge driven activity recognition, it
is slightly similar to the work in [9] since it uses dynamic windows. In [9], the
length of the window is dynamically derived at runtime based on the occurrence of
specified low-level events, e.g. the change of sensor state. The key difference with
our work is that while they use primitive events to dynamically manipulate time
window parameters, we use high level context information such as activity duration,
and the current status of recognition resulting from a high-level activity inference
event. As a result, our approach is able to utilize high quality knowledge in sensor
data segmentation.

Following the above discussion, we contend that by capturing some temporal
features of sensor data and by extension that of activities, the sensor data stream
can be broken into segments for real-time activity recognition. We use dynamically
varied time windows based on the temporal information of activities to support this
segmentation, and activity recognition is then performed on these segments. The main
strengths of the proposed approach are that it is systematic, simple, well-defined and
easy to implement; and applicable to any user or dataset; hence, can be replicated.

5.3 Real-Time Activity Recognition Analysis

5.3.1 Concept and Architecture

Continuous, real-time activity recognition helps to identify ongoing ADLs as they
occur, thus offering the possibility to provide timely assistance for SH inhabitants.
In ontology-based activity recognition, when an ADL is performed along a timeline,
the contextual information associated with the ADL is captured incrementally and
subsumption reasoning is used to infer the ongoing ADL. At the initial stages of
an ADL, subsumption reasoning may only classify the contextual information to
a generic ADL class. However, as more contextual information is obtained over
time, and reasoning is continuously performed, it would be possible to recognize the
specific ongoing ADL.

In a dense sensing based SH, contextual information is captured through a variety
of sensors, with each sensor representing a particular view of the prevailing situation.
From the activated sensors, an agent can infer physical and contextual entities, e.g.
objects, locations, times, and events. For example, a pressure sensor can be attached
to the sofa in the lounge. Given that this knowledge is explicitly encoded in the
ADL ontology, whenever this pressure sensor is activated it is possible to infer
that the inhabitant is in the lounge and is sitting on the sofa. Consequently, this
allows the inference of an activity that occurs in the lounge while sitting on the sofa,
e.g. reading a book or watching television. Since most ADLSs require the fusion of

5.3 Real-Time Activity Recognition Analysis 107

data from multiple sensors over time to infer high-level activities, it is necessary to
first aggregate a sequence of sensor activations in order to generate a situation at a
particular time point during activity recognition. For a more detailed description of
the ontology-based activity recognition approach, we refer the interested reader to
[4] due to space limitations.

While work in [12] described the rationale and algorithm for semantic reasoning
for activity recognition, it did not present any details about sensor data segmentation
that is critical for continuous real-time activity recognition. In this chapter, we focus
on extending the ontology-based approach in [12] with a sensor data segmentation
mechanism so as to support real-time activity recognition. Figure 5.1 shows the
three-layer architecture for the extended approach, namely context selection, iterative
action inference, and activity recognition layers.

Whenever activities are performed, the incoming sensor data is received as a sen-
sor data stream and segmented in the context selection layer. Context selection refers
to the process by which the stream is divided into a set of fragments using temporal
segmentation. In temporal segmentation, the stream is analysed along a temporal
dimension using the temporal properties (of both sensor data and activities) captured

High-level Activity Inference

Aggregation

(Conte)(t Activity Description ACtI\."It\f Tlme‘wmdow
. fusion) Inference Manipulator

Activity Inference|Layer

Action (s)

Iterative Action Inference 1

Layer
ADL

Ontology

Data stream segment (s)

Dynamic
Segmentation |

4

Shrink/Expand|status

Activity
Monitoring
A

Context Selection Layer
i 4

T
sensordata

Fig. 5.1 Architecture of real-time activity recognition approach

108 5 Time-Window Based Data Segmentation

by time windows. This ensures that only those sensor activations occurring within a
given time window are included in the segment. To achieve its goal, this layer uses
activity monitoring and dynamic segmentation components. The activity monitoring
component allows sensor data to be received, while dynamic segmentation compo-
nent implements the temporal segmentation algorithm. We model the notion of a time
window as a data structure made up of a number of parameters. Section 5.3 provides
the formal model of the time window mechanism, provides a detailed description,
and the algorithm that utilizes it in activity recognition.

The iterative action inference layer analyses the segments of the data stream that
are generated in the context selection layer to identify a collection of actions (also
called low-level activities) associated with the activated sensors. Typically, a time
window’s sensor activations are processed against the ADL ontology to determine
the ongoing primitive action, e.g. ‘cup is used’. This action can be represented as
context information in the ontology by a property assertion that is equivalent to
the description: ‘hasContainer property associated with unknown ADL activity X
has value cup’. This process is repeated for all sensor activations that have so far
been received in the time window. A collection of such low-level (simple) activities
may combine to constitute the activity description of one or more high-level (com-
plex) activities. The activity inference layer is responsible both for the inference of
ongoing activities and the initiation of dynamic modification of time window param-
eters. To this end, it is made up of two main components, namely aggregation and
high-level inference components. The aggregation component collects the individ-
ual property assertions from the iterative action inference layer together to derive the
overall description of the current activity. The resulting activity description is passed
on to the high-level activity inference component. The high-level activity inference
component is made of activity inference and time window manipulator components.
The action inference component uses the activity description, ADL ontology, and
ontological reasoning to infer the ongoing ADL, e.g. ‘make tea’. If a specific ADL is
inferred, the recognition process is considered successful and the result is reported.
Otherwise, a generic ADL is reported, and the system will wait for additional sen-
sors to be activated before attempting recognition again. In this way, ongoing ADLs
can be progressively inferred. The system can dynamically initiate the shrinking or
expansion of time windows whenever necessary through the time window manip-
ulator component. The mechanism for shrinking and expansion is described in the
next section. To ensure perpetual, real-time activity recognition, the entire process
continues to run with new time windows continuously and dynamically generated.

5.3.2 Data Stream Segmentation Characterisation

A key factor in continuous real-time activity recognition is how to select the set of
activated sensor data to be aggregated for activity classification. In a typical Smart
Home, sensors will be continuously activated, and the resulting sensor data sequence
needs to be broken down into fragments that can be mapped to specific ADL activ-

5.3 Real-Time Activity Recognition Analysis 109

ities. To segment a sensor data stream, this work presents a number of scenarios
and configurations that can be considered. The scenarios are divided into two main
categories: overlapping and non-overlapping time windows. In overlapping time win-
dows, two or more distinct time windows can share some activated sensors. On the
other hand, whenever non-overlapping time windows are used, no single activated
sensor is shared by two or more time windows.

Under each category, there are four scenarios to be considered. The first scenario
uses fixed-sized time windows, whereby all time windows are created of the same
size (i.e., given the initial time window has size w, any newly created window will
also have its size set to wg). The second scenario uses variable-sized time windows.
In this case, the lengths of newly created time windows are dynamically derived at
run-time such that the length of any new window is a multiple of that of the initial
window (i.e., given the initial window has length w(, any new window will have its
length set to a*wy, where a is a positive real number). Regarding both scenarios, a key
challenge is how to choose optimal sizes at runtime. The third and fourth scenarios
allow time windows to be dynamically shrunk and/or expanded at runtime as a result
of activity inference. Scenario three is a variation of scenario one because it uses
fixed-sized time windows. Similarly, scenario four is a variant of scenario two. A
key challenge is the criteria for triggering shrinking or expansion of a time window.
The resulting eight distinct configurations are depicted in Fig. 5.2a-h.

From the scenarios provided, it is clear that although the task of segmenting a
sensor data stream with time windows is complex, there are various methods that can
be used to achieve it. However, choosing the most suitable method for segmentation
is a non-trivial task. Providing support for the different configurations described
requires careful design of the time windows together with an appropriate choice
of the parameters and strategies for manipulation. In the next sections, we present a
time window-based approach and algorithms that model and implement the presented
scenarios.

5.4 Sensor Data Segmentation Modelling

This chapter presents a mechanism that uses time windows to decide on which
sensor activations to use for activity inference. The mechanism utilizes a sensor data
segmentation model that is modelled by a time window data structure. To implement
the different configurations shown in Fig. 5.2, the time window data structure provides
various parameters. Some parameters can be present but can remain unchanged or
be varied, while others are dynamically set at runtime. The time window model and
its parameters are described in the next section.

To illustrate the use of the time window model, the scenario in Fig. 5.2¢ that
allows windows to be shrunk and/or expanded was selected. The lines marked in
the form TW — N indicate that the corresponding initial time window has been
shrunk or expanded. In the diagram, we have two windows that are not modified
(TW-1, TW-4), two that are shrunk (TW-0, TW-2), and one window (TW-3) that is

110 5 Time-Window Based Data Segmentation

— - ———
t=0 tmdm@
a) Fixed size, no overlap (wg = wq = wp = ws)

Al) "ﬂ=""0| vy = by : “'3”“0'
I s Wt Twez o Twes

Tirmeh e

=]

b) Dynamic sizing, no overlap

- — — — — e— e— e— — Tmﬁu-
d) Dynamic sizing, with overlap
———p s
[N IR
f———— s
k=" e 4
M T P

----------------- el P

e) Fixed sizing plus shrinking and/or expansion, no overlap (wg = wy =
Wy = w3 =w,)

- | rws
Py
PR
B s
- pfrwed
(L L SEP
TR T

) Dynamic sizing plus shrinking and/or expansion, no overlap

| s

f—
[

g) Fixed sizing plus shrinking and/or expansion, with overlap (wg = wq =
Wy = W3 = Wy)

o I
I N
e e rwee

— |rwer
T TE—
[P
S v
[_| ozl
v s S v et e O e e o
with overlap

h) Dynamic sizing plus shrinking and/or expansion,

Fig. 5.2 Representation of time-based sensor data segmentation scenarios

5.4 Sensor Data Segmentation Modelling 111

expanded. In the current work, only non-overlapping time windows are investigated.
During expansion, the time window’s length is extended so as to accept further sensor
data. This occurs whenever additional sensor data is required to successfully infer
an activity but the pending window length would be inadequate to cover the given
activity’s duration as provided in the activity ontologies. In addition, a window can
be expanded whenever a generic activity has been identified but the pending window
length is inadequate and thus requiring additional time to successfully infer any of
the specific descendants of the activity.

Conversely, during shrinking the time window is truncated before its present
length is exhausted. Typically, as soon as an ADL is recognized, the ADL ontology
is used to determine whether additional sensor activations should be anticipated or
not. In addition, the identified activity’s duration information available in the activity
ontologies can also be used to determine if the time window should be truncated. If
there are no further sensor activations expected or the duration has been exhausted,
the current time window is closed and a fresh time window activated. Alternatively, if
it requires additional sensor activations or the duration has not been exhausted, then
the time window will continue to be active until either its present length is exhausted
or further sensor activations are obtained. In addition, an assistive system can be
invoked to provide some interventions, e.g. prompts and suggestions, to the user in
an Ambient Assisted Living (AAL) environment.

5.4.1 Formal Time Window Modelling

A formal time window model is proposed whose characteristics and operation are
described below. We define a number of parameters to describe how the time win-
dow is manipulated. Significant parameters include start time, end time, window
length, the enclosed collection of sensor data, and overlap, shrinking and expansion
capabilities. Other parameters are used to provide a means for manipulating the time
window data structure. Some (dependent) parameters (e.g. end time) are assigned
dynamically during recognition processes, while the independent ones (e.g. window
length) are present.
Let:

o the start time for a time window.

o the end time for a time window.

w: the length of a time window.

€,: a time window whose start time is a.

Q4: sensor data set. This is a data structure for storing the set of sensor data
belonging to a given time window.

A: a vector of activity labels assigned to the time window after activity inference.
y: reasoning start mode. Used to determine when to trigger activity inference.

p: time window factor. Used to derive the size of a new time window from the
initial time window.

112 5 Time-Window Based Data Segmentation

e : sliding factor. Used to determine the size of the slide applied to the active time
window to move it over the sensor data stream.

e J: change factor. Used to determine the magnitude used to expand or shrink the
length of a time window.

We can define a time window, €24, as a 9-tuple with nine properties: 2,, o, ,
W,Y, P, I, O, and A as shown in the expression below:

Q, 1< Ea,a, W, W, Y 0y 1L 0, A > (5.1)

The end time, w, can be computed from the start time, o, and window length, w,
as shown below:

w=a+w (5.2)

Given that a sensor activation arriving at time, t, is denoted by say; 50, can be
defined below:

Qu : {sala <t < o, Vi) (5.3)

5.4.2 Time Window Manipulation

A number of operations can be performed on the time window model, namely sizing,
activation, deactivation, sliding, shrinking, expansion and overlapping.

Sizing: This sets the initial length of the time window. To determine the length of
time windows, let the length of the initial time window, Qg, be set to wy. The length
of each time window is delimited by a minimum size, Wy, , and a maximum size,
wmax. The values of wy,;, and wmax are obtained from activity duration information
that is derived from prior domain knowledge. For instance, wy,i,, is set to the duration
of the shortest activity, while wmax is set to that of the longest activity plus some
slack time. Typically, given the initial time window, Q0, then the length of any new
window, QL, can be assigned using the formula below:

Wi = 0 * Wo, Wpin < Wi < Wmax,1=1,2,...n 5.4

The value of p is chosen such that the resulting time window length lies between
Wminand Wmax. To minimize computational complexity, both Wi, and wmax are
set constant for all time windows. In this chapter, the value of p = 1 is chosen to
set the default size of all time windows as equivalent to the initial time window.
However, the default size is dynamically varied through the shrinking or expansion
operations.

5.4 Sensor Data Segmentation Modelling 113

Activation/Deactivation: A Boolean flag, activated, is used to activate or deactivate
a time window. It is set to true to indicate that the time window is active and false
to show deactivation. By default, the flag is set to false and must be changed to true
so as to use the time window model to segment a sensor data stream. Before the
deactivation operation, the state of the time window must be logged in a suitable
storage.

Sliding: The sliding operator allows the shifting of the current time window by
some factor in order to derive a new time window. To determine the criteria for
sliding, a sliding factor, |, is defined. The sliding factor is a value that satisfies the
constraint 0 < p < 1. In this way we can obtain the size of the slide that needs to
be applied to the current time window. The slide determines by how much the start
time for the current time window, €2, is shifted forward to determine the start time
of the new time window, €, . Let the slide to be applied to the current window to
obtain the start time for the next time window be denoted by ¢;. We can compute ¢;
by using the following formula:

oi=wnxw;,1=0,1,2,...,n... (5.5)

Given that the start time for the current time window is denoted by «; and that of
the succeeding time window by a;. |, we can apply the slide to derive o using the
formula:

Qiy1 = O + @i (5.6)

Overlapping: This refers to the process of having two or more-time windows
active at the same time. By choosing a sliding factor value less than one (. < 1)
two-time windows are made to overlap. A value of one (. = 1) means that the time
windows are successive and non-overlapping. Furthermore, by examining the time
windows being created and activated we can identify two properties:

Property (1): Two time windows, €2,, and Qi< j, and Q[,j starts before Qaj, are
said to overlap in time if the start time, o;, of Qaj is less than the end time, w;, for
Q. This is denoted by the expression below:

aj < oj 5.7
Property (2): Two time windows, €2, and QL, i < j, are said to overlap in acti-
vations if property (1) is true and the intersection between the data sets in the two

time windows is non-empty, i.e., at least one sensor activation belongs to both time
windows. The non-emptiness is denoted by the following expression:

QN £ 0 (5.8)

Whenever property (2) is satisfied, sensor activations can be used in two or more
time windows during activity inference. This scenario can be used to facilitate the

114 5 Time-Window Based Data Segmentation

recognition based on complex activity patterns such as interleaved and concurrent
activities.

Shrinking/Expansion: Given that the time window size is present, an ADL may
be identified before the expiry of the window. Whenever this happens, the time
window length may be reduced dynamically (this is called shrinking). Conversely,
whenever it can be established that the time window may expire before an ongoing
ADL is conclusively identified, the window length can be increased (this is called
expansion) to keep the time window active for a little longer. To perform the shrinking
operation and to compute the new window length, W;, we define the shrink time, st.
Shrink time, dynamically derived at runtime, refers to the time at which the decision
to shrink the current time window is made. The new window length, w;, is then
computed using the formula below:

W, = st — (5.9)

Similarly, to expand we define the length of expansion, exp. The new window
length is then computed using the formula below:

W; = wj + exp (5.10)

5.5 Real-Time Data Segmentation for Continuous Activity
Recognition

Once sensor activations are received, then by using the ADL ontology, each of them
is converted into the corresponding ADL property assertion and added to a set of
property assertions. At an appropriate time, the reasoning engine attempts to recog-
nize the ongoing ADL. There are three modes that can be used to trigger reasoning.
In the first mode, y = 0 and each time a sensor is activated, activity recognition
is performed. Using the second mode y = 1 and reasoning occurs periodically at
regular intervals during the length of the time window. The intervals can be set at
configuration time. The activity inference engine should check the existence of new
sensor activations before further attempts at reasoning. This requires that the current
and previous sensor states are tracked to determine whether or not fresh activations
have been obtained. Finally, using the third mode y = 2 and reasoning occurs only at
the expiry of the time window. The success of this mode depends entirely on optimal
choice of time window lengths. At the deactivation of each time window, all sensor
activations used within it are discarded.

5.5 Real-Time Data Segmentation for Continuous Activity Recognition 115

5.5.1 Recognition Algorithms

In order to support continuous, real-time activity recognition we modify the algorithm
discussed in Chaps. 3 and 4 [1, 12]. To manipulate the time window data structure
the ontology-based activity recognition algorithm is enhanced with temporal seg-
mentation ability as shown in Tables 5.1 and 5.2. Table 5.1 shows the pseudo-code
for the time-window based algorithm, and Table 5.2 shows the pseudo-code for the
ontological reasoning component of the algorithm.

Three operation modes are proposed to support the manipulation of time windows
and to demonstrate the impact of dynamic manipulation. The first is no-shrink-no-
expand, whereby the time window is effectively static and the size is not reduced
or extended at runtime. The second is shrink-only mode for which the length of a
time window can be reduced but cannot be extended. Finally, in shrink-and-expand
mode, the length of a time window can be extended, reduced or both. The shrink-only
and shrink-and-expand modes show the use of dynamic time windows. The mode
used can be specified at configuration time. The pseudo-code in Table 5.2 supports
both shrinking and expansion whenever shrink-only or shrink-and-expand modes are
selected.

Table 5.1 Time-window segmentation based ontological activity recognition algorithm

Input: Receives the time window data structure (£,) and the ADL ontology (ADL-0)
Output: A matrix of time windows and corresponding text strings representing the
likely activity labels, V.
RECOGNIZE-ADL (£2,, ADL-O)
Set the initial time window
While active Do
If initial window Then Activate time window End
While time window unexpired Do
Obtain and add sensor activations to £,
If overlapping=true And overlapping window not active Then
Compute slide and derive next time window
Activate newly derived window
End
If reasoning mode =on-sensor Or at-intervals Then
DO-ONTOLOGICAL-AR (£, ,ADL-0)
Else If reasoning mode = at-intervals And interval-elapsed
Then
DO-ONTOLOGICAL-AR ({2, ,ADL-0)
End
End (inner loop)
If reasoning mode =on-expiry Then
DO-ONTOLOGICAL-AR (£, ,ADL-0)
End
Update matrix (V)
Discard previous time window’s sensor activations
If overlapping=false Then
Derive new window
Activate time window
End
End (outer loop)
Return (V)

116 5 Time-Window Based Data Segmentation

Table 5.2 Ontological reasoning algorithm (adapted from [4])

Input: Receives the time window data structure (Q,) with sensor
activations and the ADL ontology (ADL-O)
Output: A vector of text strings representing the likely
activity labels,z.
DO-ONTOLOGICAL-AR (f2,, ADL-O)
Derive property assertions
Derive activity description, A desc
Perform equivalency and subsumption reasoning with A_desc to
determine underlying activity (ies), activity-1, activity-2,..,
activity-n
If only one activity, e.g. activity-n, is obtained Then
Check whether activity-n is abstract or specific
If activity-n is specific Then
Report activity-n is successfully identified
If shrinkable Or shrinkable-and-expandable Then
ATTEMPT-SHRINK (., ADL — 0, activity —n)
If window is not shrunk Then
Report that more sensor data are needed
ATTEMPT-EXPANSION (Q., ADL — O,activity —n)

End
End
Add the activity-n label to vector,K
Else

Report that more sensor data are needed
If shrinkable-and-expandable Then
ATTEMPT-EXPANSION (Q,, ADL — O, activity —n)
End
Else

Add all activity labels to vector,K
If shrinkable-and-expandable Then
ATTEMPT-EXPANSION ()
End
End

Return (A)

5.5.2 The Algorithm for Shrinking Time Window

A time window can be shrunk under two conditions. Firstly, if all property assertions
needed to describe a leaf activity have been specified, then the recognition system can
truncate the current time window and spawn a new window. This is done by checking
the activity description derived from the time window against the restrictions that
have been defined for the given ADL class in the ontology. Secondly, the recognition
system can choose to truncate the current time window if it determines that the
ongoing activity has exhausted its duration and hence it is least likely to generate
further sensor activations. Both cases have been captured by the pseudo-code in
Table 5.2.

5.5 Real-Time Data Segmentation for Continuous Activity Recognition 117

Table 5.3 Listing to shrink a time window

Input: Receives the time window data structure (Q4) with sensor activations, the
ADL ontology (ADL-O), and the ADL ontology (activity-n)
Output: A truncated time window ﬂ;
ATTEMPT-SHRINK (,, ADL-O, activity-n)
If all properties of activity-n are asserted Then
Shrink the window
Else If activity-n duration exhausted Then
Shrink the window
Else
If time-needed-to-complete-activity-n >= pending-window-length Then
ATTEMPT-EXPANSION (f,, ADL-O, activity-n)
End
End
Return (ﬂ;)

Table 5.4 Listing to expand a time window

Input: Receives the time window data structure (Q4) with sensor activations, the
ADL ontology (ADL-0), and activity label (activity-n)
Output: An expanded time window
ATTEMPT-EXPANSION (f,, ADL-O, activity-n)
If activity-n is specific Then
If some properties of activity-n are missing And needed time to complete ADL >=
pending time window length Then
Expand the window
End
Else
If some activations have been obtained Then
Obtain subclasses of activity-n
Derive maximum duration from the durations of these subclasses
Obtain remaining duration to complete longest subclass, remainderADL
If remainderADL >= pending time window length Then
Expand the window

End
End
End
Return (ﬂ;)

5.5.3 The Algorithm for Expanding Time Window

A time window can be expanded under two conditions. Firstly, given that a leaf
activity has already been identified but the pending time window length is inadequate
to complete the activity description, the window is expanded to allow additional
activated sensors to be obtained (Table 5.3). Secondly, given that a leaf activity has
not been identified, information about the currently identified generic activity is used
to determine how much additional time would be needed to recognise its subclass
that has the longest duration. The pseudo-code in Table 5.4 depicts this scenario.

5.6 An Example Case Study

The proposed approach has been developed in a SH-based activity recognition sys-
tem. The system is implemented using Java language and a raft of semantic tech-
nologies and tools. Specifically, we developed ADL ontologies based on OWL-DL

118 5 Time-Window Based Data Segmentation
[13] using Protégé editor [14] as shown in Fig. 5.3. The ADL ontology captures
information about ADLs such as ADL concepts, hierarchical relationships among
concepts, property restrictions for ADLs and contextual information, and sensor
related concepts.

To support ontological reasoning, we have used Pellet [15] OWL reasoner,
accessed through application programming interfaces (APIs) in Java, to provide
reasoning capabilities for activity inference. In addition, we implemented the time
window-based segmentation model as part of an activity recognition module.
Figure 5.4 shows four system interfaces of the implemented system. Firstly, on the
top-left it shows the interface that displays the set of all sensors that are currently
deployed in the environment. Secondly, the top-right of Fig. 5.4 displays the config-
uration window that is used to add sensors to the SH environment, set the initial time
window parameters, and to initialize the activity monitoring task. Thirdly, the dialog
for choosing whether to monitor sensor activations in real-time or to play them back
from a file is shown on the bottom-left. Finally, the list of all sensors that have been
activated during a particular time window as well as the status of activity recognition
is provided at the bottom-right of Fig. 5.4.

- s I - |
= © ADLACtivity | ® MakeHotDrink
= O BasicADLACKVI |
s m‘;{ | ® hasAdding only (Milk or Sugar)
@ Bathing | © hasAdding some Milk Contextual
@ BrushTeeth |
S isatiisiis | @ hasadding some Sugar property
© @ BedroomADL » hasContainer some Cup restrictions
@ Eating =
+ @ Grooming | ® hasHotDrinkType some Tea
2 Toileting |
© walking | [
% © FunctionalADLACtivity |
+ @ DoHousework | ® hasContainer some (Cup or Glass or Jug or Mug or Plate)
= O KitchenADL ® ocation some Kit
= O MakeDrink | @hasL, chen
ADL + O MakeColdDrink | ©MakeDrink or MakeMeal
concept = O MakeHotDrink =
o b o 28 © MakeChocolate | #MakeColdDrink or MakeHotDrink
@ MakeCoffee | @ hasDrinkType some DrinkType
5 O MakeMeal | @ hasContainer some (Cup or Glass or Jug or Mug)
s O MakeColdMeal | ik UseDh
b M:keHutMt::l | @ DoHousework or KitchenADL or g y or T or
© Mak BedRice | O ype some | inkType
© MakePasta |
@ MakeSoup | hasUtensil some Kettle
O MakeToast | @ hasContainer some (Cup or Mug)
e aceored Sty | @ MakeChocolate or MakeCoffee or MakeTea
DrinkT | ® BasicADLActivity or Functh LActivity or Recr DLActivity
s 1
+ O Addings hasLocation some Location
= O CookingUtensil lan " . some hlager

O ElectriElectn
= O Furniture
' HygieneAppliance
P Hygleneltem
1O MedicalDevice
= readingMaterial
+ O Location
+ O MealMaterial
O MealType

Objectsin
environment

Fig. 5.3 Fragment of ADL ontology

Associate sensor with object

mhasSensor PlasticCupObj

5.6 An Example Case Study 119

Initakred Sensor List Time Window Parameters

Sensor Name Sensor [0 | Choose Action Sanscr lemar: rr—— it
BrrshTealn 34035442 Dedete Window leagth (in secoads): 300000 .
) ! | It =
ChinaCup0B) 34035440 Edn Delets.
1 Time Window lactor: 1

KitchenDoorb) 34015488 Desete

. Add Semsor
Configurationinterface

KemeOty 34005471 Delete

— Shaing factor:]
SancSugar0ey 34035481 Delete
WholehblkD) 34005472 Delete
| || Changetactor: 0
Delete

Coffee0ty 34035432

Reasoneng Stan factor 10

Display of deployed sensors
Start Reasosing criteria: | On Sensor -

Dynamic Modes: NO SHRINK WO EXPAND | ¥ | pon Configuration
port: oM

G
SHRAK NO EXPAND
Setup-And.Start Moailoring LY SHRINK
SHRINK AND EXPAND

Status

Select the mode: [Sirnula!ed Y|| StatMode || Close [“Time Window #1——2011-06-22 13.08.04.082

2011-01-03 06:00:00.082 KitchenDoorObjOM

L:xj
lsaecmodegrlunm;v] Ok || Cancel i " Recognition Status
p=—=Time Window #1—2011-06-22 13:08:04.082
Dialog to choose mode of Display of activations and
experiment recognition progress

Fig. 5.4 System configuration and status display interfaces

5.6.1 Experiment Design

To evaluate and demonstrate the feasibility of the proposed approach, we developed
a synthetic data generator that can be used to generate synthetic ADL data. This pro-
vides ADL data items that possess the necessary temporal information and allows us
to quickly evaluate the feasibility of the developed approach before deployment in a
real-world environment. Another advantage is that we are able to test the approach
on different datasets. To facilitate data generation, we specified ‘seed” ADL patterns
at the start. Each seed ADL pattern is described by a sequence of ADLs. The syn-
thetic ADL data generator then derives different permutations of these patterns. To
select the permutation to use, it uses a random number generator. In this way, each
permutation is given an equal chance of being considered an ADL pattern during
dataset generation.

To generate the synthetic ADL data, eight typical ADLs related to meals (e.g.
MakeTea, MakeCoffee, MakeChocolate, and MakePasta), hygiene (e.g. HaveBath,
BrushTeeth, WashHands) and recreation (e.g. WatchTelevision) were used. In addi-
tion, to ensure that data is rich with useful temporal information, synthetic ADL data
is generated corresponding to three-time periods per day: morning (6 am—9 am),
midday (12 pm-2 pm), and evening (6 pm—10 pm). To facilitate this, the time period
to which the ADL can be performed is specified when adding possible seed ADLs

120 5 Time-Window Based Data Segmentation

to the synthetic data generator. Similarly, when specifying seed patterns, the time
period to which an ADL pattern belongs is provided. Finally, the transition time (in
seconds) between ADLs is specified for each ADL pattern. For example, the pattern
MakeTea-0, BrushTeeth-600, implies that MakeTea is the first ADL in the pattern,
while the ADL BrushTeeth will occur 600 s after MakeTea is completed. Currently,
we have made the assumption that only one ADL can be performed at the same time.
As a result, no two sensors can be activated concurrently during data generation.

For each ADL considered, we provide one or more patterns of sensor activations.
Given that the same ADL may be performed in a variety of ways; these patterns depict
the various ways. To incorporate more temporal meaning, each sensor in a pattern
is activated after a given amount of time after the immediately preceding activation.
By implication, this ensures that duration information of ADLs is included when
synthetic ADL data is generated. The text SensorObj@n in a pattern means that the
sensor object labelled SensorObj is activated n seconds after the preceding sensor
object is activated. As an example, MakeTea is represented by the following patterns
of activated sensors.

e Pattern#1: KitchenDoorObj@0, KettleObj@20, CupObj@180, TeaObj@20,
MilkObj @20, SugarObj@20 (duration = 260 s)

e Pattern#2: KitchenDoorObj@0, KettleObj@20, CupObj@180, TeaObj@20,
MilkObj@20 (duration = 240 s)

e Pattern#3: KitchenDoorObj@0, KettleObj@20, CupObj@ 180, MilkObj@20,
TeaObj @20, SugarObj @20 (duration = 260 s)

Each sensor pattern is captured in a collection data structure; with a collection
available for each ADL. Similar sensor activation patterns are specified for the other
ADLs too. To select the sensor pattern for any ADL, the synthetic data generator uses
a random number generator to randomly select the index of the sensor pattern for
the relevant ADL from the relevant collection. This eliminates bias and gives each
pattern a fair chance of being selected.

To test the time window approach and associated algorithms, a simulation tool
has been built to mimic the activation of sensors in a dense sensor-based deployment.
The simulation tool plays back the synthetic ADL data generated described above
and feeds the sensor data to the activity recognition system as if the sensor activation
is occurring in real-time. As the data is played back, the recognition engine tries
to identify the ongoing ADL and displays the status on the interface shown at the
bottom-right of Fig. 5.4.

5.6.2 Time-Window Model Configuration

To carry out the experiments, the duration of the default time window is initially set to
avalue slightly greater than the longest ADL - in the experiments the longest ADL by
duration is MakePasta. The reasoning start mode (y) is set to zero (0) so that activity
inference is attempted each time sensor activation is obtained. The sliding factor (u)

5.6 An Example Case Study 121

is set to one (1) to indicate that time windows are consecutive and non-overlapping.
The time window factor (p) is set to one (1) so that each time window is by default
the same size as the initial window. Finally, the change factor (8) is computed at
runtime during shrinking and expansion operations. Similarly, the other parameter

(iﬂ.e. start time (@), end time (w), sensor data set (€,) and the vector of activity labels
(A) are dynamically computed at runtime.

5.6.3 Ground-True Synthetic ADL Data

To facilitate analysis, we generated synthetic ADL data for four weeks based on
the eight ADLs above. The dataset contains a total of 154 ADL activities and a
summary of the ADLs is provided in Table 5.5. Three variables are used to describe
the dataset. These are: (1) %in-pattern ADLs- describes proportion of the ADL
that appear in ADL patterns that have at least two ADLs; (2) %standalone ADLs-
describes the proportion of the ADL that appear in single-ADL patterns and; (3)
the total number of times a given ADL occurs in the dataset. Generally, ADLs that
participate in many ADL patterns (i.e., MakeTea,MakePasta, BrushTeeth, HaveBath
and WatchTelevision) have more instances. Conversely, those that appear in just one
ADL pattern (i.e., MakeCoffee, MakeChocolate and WashHands) typically have just
a few instances. Using the real-time activity recognition system, we played back
these synthetic ADL data and present the results in the next section.

Table 5.5 Summary of synthetic ADL datasets

ADL name Description of dataset
% Standalone ADLs | % In—pattern ADLs Total instances

MakeTea 10 90 41
MakeCoffee 100 0

MakeChocolate 100 0 3
MakePasta 10 90 29
BrushTeeth 30 70 19
HaveBath 10 90 28
WashHands 100 0 6
WatchTelevision 10 90 24
Num. Of ADLs 154

122 5 Time-Window Based Data Segmentation

5.6.4 Experiment Result Analysis

In order to evaluate the performance and therefore the feasibility of the approach,
we used the metric accuracy. Accuracy measures the correctness of the algorithm,
i.e. the ability of the algorithm to return correct results. We compute the accuracy
of the recognition performance and provide the results in Table 5.6. The accuracy is
computed from the values of true positive (tp), false positive (fp), true negative (tn),
and false negative (fn) using the formula:

tp +tn

accuracy = ———————
tp+fp+tn+fn

We report results for three experiments and the first experiment was to evalu-
ate recognition performance for static time windows, i.e., given that time windows
cannot be shrunk or expanded. The results are shown in Table 5.6. The second exper-
iment evaluated recognition performance when shrink-only is enabled. The results
are presented in Table 5.7. Finally, the third experiment evaluated the performance
given that shrink-and-expand is selected. The results are shown in Table 5.8. The
second and third experiments relate to dynamically manipulated time windows.

5.6.5 Findings and Discussions

As can be seen in Table 5.6, the recognition accuracy of MakeTea, MakePasta,
MakeCoffee, MakeChocolate and WashHands is quite encouraging and attests to
the feasibility of the presented approach. However, it is important to note that the
recognition accuracy for BrushTeeth, HaveBath and WatchTelevision is low compared
to the other ADLs. This can be attributed to the fact that these ADLs occur in very
few standalone patterns; instead they mostly appear in sequential patterns. Given that

Table 5.6 Recognition accuracy without shrinking or expansion

ADL Values from dataset
TP FP TN FN Accuracy

MakeTea 39 0 0 2 0.951
MakeCoffee 4 0 0 0 1.000
MakeChocolate 0 0 0 1.000
MakePasta 28 0 0 1 0.966
BrushTeeth 14 0 0 5 0.737
HaveBath 19 0 0 9 0.679
WashHands 6 0 0 0 1.000
WatchTelevision 10 0 0 14 0.417
Average accuracy 0.844

5.6 An Example Case Study 123

Table 5.7 Recognition accuracy with only shrinking enabled

ADL Values from dataset
TP FP TN FN Accuracy
MakeTea 39 0 0 2 0.951
MakeCoffee 4 0 0 0 1.000
MakeChocolate 0 0 0 1.000
MakePasta 26 0 0 3 0.897
BrushTeeth 17 0 0 2 0.895
HaveBath 24 0 0 4 0.857
‘WashHands 6 0 0 0 1.000
WatchTelevision 18 0 0 6 0.750
Average accuracy 0919
Table 5.8 Recognition accuracy with both shrinking and expansion enabled
ADL Values from dataset
TP FP TN FN Accuracy
MakeTea 39 0 0 2 0.951
MakeCoffee 4 0 0 0 1.000
MakeChocolate 0 0 0 1.000
MakePasta 21 0 0 8 0.724
BrushTeeth 17 0 0 2 0.895
HaveBath 24 0 0 4 0.857
‘WashHands 6 0 0 0 1.000
WatchTelevision 16 0 0 8 0.667
Average accuracy 0.887

the time window does not dynamically vary once created, sensor data belonging to
more than one ADL in the pattern may be merged within a time window, thus leading
to poor recognition accuracy.

Results in Table 5.8 show that there is a significant improvement on overall recog-
nition accuracy. However, compared to Table 5.6, there is a reduction in the accu-
racy for MakePasta and a corresponding increase for BrushTeeth, HaveBath and
WatchTelevision. Similarly, results in Table 5.7 indicate that the overall recognition
accuracy was highest compared to the Tables 5.6 and 5.8. Just like in Table 5.8,
the recognition accuracy of MakePasta reduced while that of BrushTeeth, HaveBath
and WatchTelevision increased. However, despite the reduced recognition accuracy
observed for MakePasta in both in Tables 5.7 and 5.8, there is an overall improved
average accuracy. The direct comparison of recognition accuracy per ADL is shown
in Fig. 5.5. In addition, Fig. 5.6 shows a direct comparison of average recognition
accuracy.

124 5 Time-Window Based Data Segmentation

1.2
B No-shrink-no-

1
expand
0.8 P
0.6 ® Only-shrink
0.4
0.2 Shrink-and-
0 0 o o /e n expand
[
~ 8 8 2 - o T S
s O 8 ¢ = > v
Qo O x 3 ©m £ =
S x £ ®© 5§ Tr ¥ o
o O S e =
=g s =5
o ©
= 2
Fig. 5.5 Comparison of recognition accuracy per activity
Average Accuracy
0.94
0.92
0.9
0.88 M Average
0.86 Accuracy
0.84
0.82 I
0.8
7,06 \é\g{- 'b‘\b
Qj‘“Q P 6\9
o N ¥
BN [e) N
N i
& &
x$ &
S B

eo

Fig. 5.6 Comparison of average recognition accuracy

In all experiments, the activity recognition system recognized all the instances of
all standalone ADLs. The reduced recognition accuracy was only observed regarding
the in-pattern instances. As a result, we have reason to believe that the performance of
activity recognition regarding BrusthTeeth, HaveBath and WatchTelevision may have
been affected by the fact that they occur with other ADLSs, and more so as ubsequent
ADLs in the ADL patterns. In addition, the transition times from one ADL to another
in an ADL pattern could also have made it possible for sensor data belonging to two
distinct ADLs to be aggregated into one description, resulting in non-recognition.
Another reason is the fact that several variants of ADLs were generated in the dataset.
Whenever shrinking was allowing, a window could be shrunk before all the sensor
activations associated with an ADL are obtained, hence the activations that arrive
later could be merged with subsequent activations thus causing recognition failures.

5.6 An Example Case Study 125

In the no-shrink-no-expand case, the recognition failure could be attributed to the
chosen time window sizes.

We believe that by handling transitions between adjacent activities the recognition
accuracy can be improved. This explains better recognition accuracy when shrinking
and expansion are allowed. However, to minimize the failures whenever shrinking
and expansion are supported, we believe that explicit relationships between ADLs
in a pattern should be defined. This should involve a characterization of additional
temporal relationships for the ADLs that could occur in patterns.

An interesting finding from the comparison of experiment results in Table 5.3
is that shrink-only had the best recognition accuracy. The shrink-and-expand case
is the next best performer. We attribute lower recognition accuracy of shrink-and-
expand compared to shrink-only to the fact that the maximum duration was used to
derive time window lengths, thereby favouring activities with longer duration at the
expense of those with shorter durations. However, we believe that by incorporating
information about how inhabitants perform activities that can be captured through
continuous use will improve the recognition accuracy of both shrink-only and shrink-
and-expand mode. In future we plan to integrate the activity learning and model
evolution approaches described in [16] so that feedback from how an inhabitant
performs tasks is used by the recognition system for adaptation.

The average accuracy for all the experiments is above 83% using the provided
dataset as well as with other datasets that we generated. This demonstrates that the
approach is feasible in supporting real-time activity recognition.

5.7 Summary

This chapter presented an approach based on dynamically varied time windows to
support sensor data segmentation for use in continuous, real-time activity recognition.
It characterises activity recognition and sensor data segmentation from which it for-
mally defines a time window-based segmentation model. The chapter has detailed the
rationale and operation algorithms of the model in the context of knowledge-driven
activity recognition. In addition, different scenarios regarding dynamic manipulation
of time windows were discussed. The model allows rich temporal information asso-
ciated with sensor data and activities to be exploited in real-time activity recognition.

As a case study to illustrate the approach, an implementation of a prototype to
evaluate the approach was also described. The prototype consists of a synthetic ADL
data generator, ADL ontology, sensor data simulator for ADL data playback, and a
real-time activity recognition system. To establish the feasibility of this approach,
this chapter has presented evaluation results from three experiments. Accuracy was
chosen as an evaluation metric and the resulting average accuracy has demonstrated
the feasibility of the approach. The average recognition accuracy was lowest, at 84%,
when no-shrink-no-expand mode was activated. It was highest, at over 91%, when
shrink-only mode was enabled.

126 5 Time-Window Based Data Segmentation

References

1. Chen L, Nugent C (2009) Ontology-based activity recognition in intelligent pervasive environ-
ments. Int J] Web Inf Syst 5(4):410-430

2. Riboni D, Pareschi L, Radaelli L, Bettini C (2011) Is ontology-based activity recognition really
effective? In: 2011 IEEE international conference on pervasive computing and communications
workshops, PERCOM workshops 2011

3. van Kasteren T, Noulas A, Englebienne G, Krose B (2008) Accurate activity recognition in a
home setting. In: Proceedings of the 10th international conference on Ubiquitous computing,
UbiComp’08

4. Akdemir U, Turaga P, Chellappa R (2008) An ontology based approach for activity recognition
from video. In: Proceeding of the 16th ACM international conference on multimedia, MM’08

5. BaolL, Intille SS (2004) Activity recognition from user-annotated acceleration data. In: Ferscha
A, Mattern F (eds) Pervasive Computing. Springer, Berlin, pp 1-17

6. Huynh T, Blanke U, Schiele B (2007) Scalable recognition of daily activities with wearable
sensors. In: Hightower J, Schiele B, Strang T (eds) Location- and context-awareness. Springer,
Berlin, pp 50-67

7. Tapia EM, Intille SS, Larson K (2004) Activity recognition in the home using simple and
ubiquitous sensors. In: Ferscha A, Mattern F (eds) Pervasive computing. Springer, Berlin, pp
158-175

8. Hong X, Nugent CD (2009) Partitioning time series sensor data for activity recognition. In:
2009 9th international conference on information technology and applications in biomedicine,
pp 14

9. Ortiz Laguna J, Olaya AG, Borrajo D (2011) A dynamic sliding window approach for activity
recognition. In: Lecture notes in computer science (including subseries Lecture notes in artificial
intelligence and lecture notes in bioinformatics)

10. van Kasteren T, Noulas A, Englebienne G, Krose B (2008) Accurate activity recognition in a
home setting. In Proceedings of the 10th international conference on Ubiquitous computing,
UbiComp’08, pp 1-9

11. Hong X, Nugent C, Mulvenna M, McClean S, Scotney B, Devlin S (2009) Evidential fusion
of sensor data for activity recognition in smart homes. Pervasive Mob Comput

12. Chen L, Nugent CD, Wang H (2012) A knowledge-driven approach to activity recognition in
smart homes. IEEE Trans Knowl Data Eng 24(6):961-974

13. Horrocks I (2005) OWL: A description logic based ontology language. In International con-
ference on principles and practice of constraint programming, pp 5-8

14. Stanford Center for Biomedical Informatics Research (2011) The protege ontology editor and
knowledge acquisition system. Available from: https://protege.stanford.edu/

15. Stardog-union: Pellet: OWL 2 Reasoner for Java. https://github.com/stardog-union/pellet

16. Okeyo G, Chen L, Wang H, Sterritt R (2010) Ontology-enabled activity learning and model
evolution in smart homes. In: Lecture notes in computer science (including subseries Lecture
notes in artificial intelligence and lecture notes in bioinformatics)

https://protege.stanford.edu/
https://github.com/stardog-union/pellet

Chapter 6 ®)
Semantic-Based Sensor Data Chack or
Segmentation

6.1 Introduction

Activity recognition can be conceptualised in five-phases as depicted in Fig. 6.1.
The segmentation phase is responsible for organising the observed sensor events
based when a single inhabitant performs one or more activities in a sequential or
interweaving scenario. In order to make segmentation decisions, prior knowledge
model is required to verify association links such as what everyday object is the sensor
attached to, contextual information (i.e., location, time and ambient attributes) of the
object and what ADL(s) is this object used for. The data from the set of segmented
sensor observations for a given activity is later analysed by the AR algorithms to
determine whether the actions were completed with a satisfactory evidence (i.e., if
the cooker knob rotated to low, medium, high or off state) and provide effective
assistance when necessary. Therefore, a correctly segmented set of sensors can boast
AR algorithm accuracy, performance and reduces computational resources being
wasted on irrelevant sensor data.

Recent studies have applied time series (discussed in Chap. 5), statistical and
probabilistic [1] analysis approaches to sensor data segmentation, which failed to
separate sensor observations based on the relation to ongoing activities in real time.
This chapter explores the relationships and metadata of sensor data to activities
to segment unfolding sensor events into relevant set of activities of daily living
(ADL). In addition, it also presents methods on how individual preferences can be
incorporated within the semantic segmentation process.

Knowledge-driven (KD) approach has received an increasing amount of interest
to express complex relationships between sensors and domain-specific knowledge.
The process of defining complex sets of relationships has been investigated in the past
studies and they can be categorised as syntactical, semantic and pragmatic in infor-
mation theory [2]. In syntactical approach, a concept represented in a two or more
non-syntactically equivalent statements are assumed to be statements of indepen-
dent concepts. In contrary, the semantic approach is concerned about representing
the meaning of a concept using relationships [2, 3], hence, the same concept can

© Springer Nature Switzerland AG 2019 127
L. Chen and C. D. Nugent, Human Activity Recognition
and Behaviour Analysis, https://doi.org/10.1007/978-3-030-19408-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19408-6_6&domain=pdf
https://doi.org/10.1007/978-3-030-19408-6_6

128 6 Semantic-Based Sensor Data Segmentation

(1 Data Collection +->{2J Segmentation (4) Activity
Time tn Recognition
f+e d c+b=+a Al i __V?”f?f
r J—‘ J -y | Validate
Gwbiwd g :454__1; A2
Z=Y~+X A3 (5) Activity
Parallel Concurrent Incremental Eeaming
(3) Knowledge Modelling Q Generic Preferences l‘.l_‘/' +-

Fig. 6.1 Illustrating five interdependent phases of activity recognition

be syntactically represented in more than one statements but mean the same thing.
The pragmatics approach studies the relations between a concept and inhabitant
in a given context of interest. The benefit of adapting syntactical approach is that
knowledge can be structured using defined syntax, queried and interpreted by the
machine, however, suffer from the flexibility of expressing intricacy of relationships
and meaning between two concepts that pragmatic and semantic approaches can pro-
vide. The semantic theory has its roots from semiotics in philosophy which in general
is a study of signs and its significations (meaning) [4]. These signs can be words,
images, sounds, gestures and objects. Hence, the semantic theory is studied heavily
in cognitive philosophy, natural language and machine learning [5]. The following
sections highlight recent studies proposed to segment sensor events that adapt the
aforementioned notions of the three information theories.

6.1.1 Semantic Approach: Indirect Query and Rules

Work in [6, 7] adopted ontological models to describe ADLs, environmental entities
and their relations along with other methods to classify and infer unfolding activities.
However, they do not directly inspect each arrived sensor event and then segment to
the appropriate queue related to ongoing activities. Instead, the continuous queries
or rules are executed on events stored in the database and knowledge model with-
out using any automatic reasoners to determine the relationship between events and
ADLs. Similarly, work in [8] proposed C-SPARQL, an extension to SPARQL Proto-
col and RDF Query Language (SPARQL) where individual sensor events in a stream
are annotated with a timestamp and continuously queried using a specific window
size. The key limitations of the approach are the classical multi-query optimisation
problem where the challenge is to identify the common parts, adapting/reformulating
the order in which queries are executed with the ability to dynamically change the
window size. Another stem of work, [9, 10], used Semantic Web Rule Language
(SWRL) based inferencing rules to define the nature of activities with a temporal

6.1 Introduction 129

representation technique. These SWRL rules and Java Expert System Shell (JESS)
rule engines were used to segment the sensor events using their timestamp informa-
tion and perform entailments for the complexity of the ongoing activities. One of the
major limitations of this approach is that an attempt to use generic ontology reasoner
is made, however, it is unclear if reclassification of the whole ontology is done incre-
mentally or not. In the case of the non-incremental reclassification approach, the
performance and scalability can degrade exponentially as the size of an ontological
model and data grows. Furthermore, rules can be generated for general purpose and
also for inhabitant specific preferences as provided in the study in [11]. However,
each time the new rules are added or updated to enrich the knowledge base (KB),
the whole ontological model is reclassified. In addition, managing models generated
using generic and inhabitant specific rules exclusively adds to the complexity further.

6.1.2 Syntactical Approach: RDBMS and Semantic KB
Mapping

Similarly, work in [12] presents a layered ontology and complex event process-
ing (CEP) engine based framework, namely, AALISABETH, to segment the sensor
observations. The framework integrates temporal based reasoning with a dynamic
time window sizing mechanism to segment the incoming data and perform AR in
real-time. The approach leverages Esper solution for CEP and D2RQ engine to map
data into RDF graphs. Although the framework utilises highly optimised, scalable
Esper CEP engine solution and is open source, the system falls short in directly
segmenting the incoming sensor data semantically in real-time as it arrives from the
sensor network. This limits the client applications to receive an event-based noti-
fication which is critical in an emergency situation such as fall detection. Another
key limitation of the framework is that the event data from the sensor network is
stored directly into a traditional relational database management system (RDBMS)
without inspecting individual events and segmenting them appropriately or append-
ing to an ongoing activity queue. Instead, to filter or segment sensor events for a
given ADL, continuous queries are required to be executed in order to obtain a set
of sensor events between a specific time range/number of records and then perform
Web Ontology Language (OWL) based reasoning capabilities to find any relevance
to the activity of interest. Alternatively, the Pellet reasoner which has incremental
reasoning support (i.e., only affected changes in the ontology are classified) could be
further utilised instead of creating an overhead to query and map each of the events
from the RDBMS database using the D2RQ tool. Furthermore, the framework is not
intended to cater for inhabitant’s preferences when performing a generic ADL.

130 6 Semantic-Based Sensor Data Segmentation

6.1.3 Pragmatic Approach: Precondition and Evidential
Theory

Work in [13] presents an event filtering approach by adding preconditions with prob-
abilities on the phases when carrying out each ADL in order to segment the incoming
events. Itis unclear how the algorithm can detect new activity when an action is shared
amongst more than one activities and it can either be part of a main activity or pre-
condition actions for another activity. For instance, MozzarellaCheese can be part of
the precondition of MakePizza ADL and postcondition for MakeCheesyToast ADL.
This approach has achieved good accuracy in segmenting and recognising compos-
ite activities but there is the scope for improvement in terms of recognising other
scenarios. Another work in [14] leveraged evidential theory and proposed three seg-
mentation algorithms based on location, activity model and dominant-centred (key
actions for a activity) for non-interleaved and interleaved activities. The location and
activity model-based segmentation algorithms fall short in distinguishing activities
when performed in the same location and with similar everyday objects for activities
compared to the dominant algorithm. There is a little implementation detail pro-
vided by the authors, however, one of the key limitations of all the three algorithms
is the lack of support for user preferences and a reasoner to automatically detect and
recognise the activity.

This chapter presents five contributions: (i) a semantic-enabled segmentation
approach which combines generic and personalised ADL knowledge that enables
simple and composite ADLs to be recognised in real-time; (ii) a KB model captur-
ing the relationships between entities in the house and ADLs; (iii) a pragmatic and
light-weight mechanism to manage inhabitants specify preferences for conducting a
given ADL; (iv) a semantic decision engine algorithm; (v) system implementation
details and a prototype to evaluate the approach and present the findings.

6.2 Semantic-Based Approach to Sensor Data
Segmentation

The semantic theory-based segmentation approach analyses relationships between
sensor events and an everyday object and its significance as an action to a set of
known ADLs. This will enable disentangling composite activities with actions per-
formed in no particular order and organise them separately to allow further activity
classification and learning tasks. A knowledge modelling building block is devel-
oped in Sect. 6.2.1 which conceptualises and captures the environmental context
(i.e., ambient attributes, everyday objects, location, sensors), generic and inhabi-
tant specific preferences to perform ADLs and their semantic relationships into an
ontological model. A semantic decision engine is developed in Sect. 6.2.2 to make
segmentation decisions based on three inputs: the new observed sensor event, the
ontological model and a set of previously segmented sensors for a given activity. A

6.2 Semantic-Based Approach to Sensor Data Segmentation 131

notion of multithreading is adapted to separate tasks of buffering sensor data stream,
eventrecycling, decision engine, managing ADL threads and manipulating data from
the graph-based database. This multithreading mechanism to semantically segment
sensor event is described with a pseudo algorithm in Sect. 6.2.3.

Figure 6.2 depicts the overall segmentation approach. As the sensor events are
initially added to the data stream, multiple ADL threads, generic and preference,
analyse the sensor events using decision engine and store the relevant events inde-
pendently. Therefore, one sensor event can be shared between two different activity
threads with different ADL goals. For instance, opening Fridge action detected by
sensor e at T, can be shared with MakeTea ADL and MakePasta ADL thread. The
ADL threads manager creates a new ADL thread (NEW_ACTIVITY) only when the
sensor event is not part of any ongoing ADL threads otherwise the event recycler
thread updates the sensor data stream. There are two types of ADL threads being
created to capture generic actions (sensor b attached to PastaBag), for a given activity
(MakePasta), and if the observed event (sensor d attached to HotSauce at T,) is part
of the personalised actions for that activity (i.e., PrefMakeVegPasta). The decision
engine determines if the new sensor event, along with the previous set of sensors
for a given activity is part of the pre-defined generic set of actions by performing
semantic reasoning and invoking queries to the TDB for personalised actions. The
new preference thread (NEW_PREF_THREAD) is only created when the new sensor
event is part of a personalised action for a given ongoing activity and there is no
active preference thread. Moreover, each ongoing activity thread with the segmented
set of sensors data will enable further validation of AR accuracy, timeout and com-
pletion procedures, i.e. storing relevant information and prompting the inhabitant
when appropriate in future work.

6.2.1 Object, ADL and Context Relationships Modelling

The key building block of ADL modelling consists of three phases; (1) environmental
context (EC) modelling, (2) semantic relationships (SR;) modelling and (3) person-
alised (Pref;) object interactions. In the first phase, the object-oriented notion (classes
and instances) is adapted to conceptually describe the physical or metaphysical enti-
ties (ETy) and their attributes as classes (C) to form an overall environmental context
(EC) for a given smart home environment. The key entities considered are a person
(X4y), rooms (Location, Ly,) and ambient characteristic (AC,), sensor characteristics
(S,) and everyday fixed/portable objects (Objy); see Eq. (6.1):

EC = X,, Ln, AC,, So, Obj, (6.1)
The second phase records semantic relationship (SR) properties between EC

classes and ADLs. The instances of EC classes (i.e., everyday objects) are then
created for sensor environment (SE) to create a relationship (R.) between sensor

132 6 Semantic-Based Sensor Data Segmentation

Yes Update Sensor Data Stream
Event - >
Recycler (][4 [o] (=] l
No
Generic Knowledge Decision Engine Preferences v
MakeTea |- PrefMakeSpicyTea |-
: : : Is Generic Yes; picy :
5 InPrefThreads? 5 .
:|_MakePasta |: Knowledge? : [prefM akeSweetTea];
KitchenADL | ;lPrefMake\fegPasta
ADL : . : ;

+NEW_PREF_THREAD|:

Threads * (New_acTIVITY|: Preference?

Manager - -

Complete /
Timeout?

Fig. 6.2 Overview of the semantic segmentation approach with 7-box and .4-box KB

event, object it is attached to and this object’s use in ADLs; see Eq. (6.2). This
abstraction in ADL actions description encourages decoupling, reuse and adding the
further meaning of the actions to the activity using R.. For example, MakeTeaADL
(subset of MakeHotDrinkADL) class describes the actions using hasHotDrinkType
(R) relationship property with Tea (C) and the characteristics of the property are
described to be only used for MakeHotDrinkADL (domain) and everyday objects
that are used for HotDrinkType (range). This means if no other ADL that is a sub-
set of MakeHotDrinkADL that has a hasHotDrinkType property with Tea, it can be
deduced that this action is potentially a part of MakeTeaADL. Similarly, other actions
for MakeTeaADL can be described using hasUtensil, hasContainer and hasAddings
properties for using the kettle and adding sugar and milk to the teacup. Figure 6.3
show the relationships between a set of EC classes and MakeTea ADL to show the
meaning of inhabitant’s action.

Moreover, the sensor environment (SE) information is then encoded to describe
existing set of EC items available in the given residential environment and the sensor
attached to it as instances (I,). Therefore, instances of EC IECy) such as environ-
mental objects (i0bjy) and sensor (iSy,) with their relevant classes (C,) are explicitly
described with the relationship (Re) between them initially. For example, tol is an
instance of ContactSensor (S) that isAttachedTo (R) a RedKettleObjl (10bjy,) which
is a class type of Kettle (Objy). The observed values/states of an iS,, are stored
as primitive data types (pt,) for a single observation or creating another instance
of an observation class containing the primitive data for multiple observations; see
Eq. (6.3).

SR = ADL,(R., EC,) — R, — SE; 6.2)

6.2 Semantic-Based Approach to Sensor Data Segmentation 133

Thing

Object Properties. MakeTea Class
: Sensor ——— ContactSensor
P R - :hasUtensil only
:hasUtensils] HaLeNADL Kettle
(KitchenADL/ -~ - -4 MakeHotDrink -w— MakeTea —:hasAdding only
CookingUtensil) t=--=-1! e (Milk or Sugar)
WE , stk ik :hasHotDrinkType
“UAddings) -t i1 ¢ CookingUtensil only (HotWater
| : orTea) ...
H —CommonTools—— Kettle
:hasHotDrinkType b) e
{MakeHotDrink/ = =--* — Containers——— Mug
HotDrinkType) i Material
HasSensoi | P -.i.‘.‘: Addings —— Milk Class bk
(Device or ' | Sugar : Description
MonitoredEntity/ i i Relationships
Sensor) C ™% HotDrinkType = HotWater =~ Domain
I_. Tea : Range

Fig. 6.3 Semantic relationship properties between MakeTea ADL, objects, and sensor character-
istics

SE = Iy(Re, So) = Re > Iu(Re, ETY)|I1w(Re, {pt,}) (6.3)

The final phase is to capture inhabitant specific preferences (Pref;) that are sub-
jective to individual’s cultural background and rituals followed to carry out a given
ADL. It is important to keep the generic (factual and commonly accepted by the
wider community) and personalised sets of ADL description disjointed to avoid gen-
eralising or assuming both must be actioned to complete the activity. Therefore,
instances that are members (R.) of Preference and ADL,, classes are created to cap-
ture actions or ambient attributes using iEC,, that are specific to a person (X); see
Egs. (6.4) and (6.5). For example, an individual Bob (I) who is a type of Male (C)
has set of instances of Preferences} that are linked with hasPreference relationship
(R). An example of a preference instance is BobMakeSpicyTeaPref (Pref’) which is
a type of Preference (C) and MakeTeaADL (ADL) with a set of iEC instances, i.e.,
GingerObj(1) and CinnamonObj(I). This statement means that Bob has a preference
to make tea and he may/like to put a ginger and cinnamon in his tea.

Xy = Iw(Re, Human C Male) - R, — {Prefl, ... Prefj} (6.4)

Pref; = I,(R., ADL, HPreference) — R, — Iy (Re, IECy) (6.5)

134 6 Semantic-Based Sensor Data Segmentation

6.2.2 Semantic Decision Engine

The role of the semantic-based decision engine is to identify relationships between
the sensor, everyday object and actions described in ADLs based on ontological
model and triplestore querying. This allows decision engine to distinguish ADL
actions occurring in any order for a single or multiple ADLs in a composite man-
ner. The common ADL actions are automatically recognised using terminology box
(7 -box) reasoning method with incremental Pellet reasoner and inhabitant specific
actions using assertion box (A-box) reasoning method. The decision engine is utilised
by individual activity threads in order to find an association with new, previously
observed events and candidate ADL class. The classification of candidate ADL class
is continuously updated and refined with further evidence of actions that satisfies the
ADL descriptions.

The decision engine takes three inputs, processes them into two stages and outputs
the updated results. The three inputs are (1) semantic-based KB model created in
Sect. 6.2.1, (2) activity thread (AT),) attempting to find relations with the (3) new
sensor event (ey,). Each AT, contains structured information about generic and pre-
ferred actions observed as sensor events, ADL class and list of preferences matched
that are associated to the inhabitant. The two-stage decision-making process updates
the activity thread accordingly as the new sensor events are inspected incrementally
for any association.

AT, = {tbox[class:someADL, s{..., en}}],
& abox[Prefj[name:somePref, sf{.. ., en}}1} (6.6)

In the first stage of the decision-making process, generic semantic relationships
are traced from EC to SR and SR to SE compared to inverse when developing the
KB model [15]. Therefore, the metadata of a sensor observation ey, is analysed to
find the ET the sensor is attached to and deduce the potential R, with a set of ADL,,
description. This metadata within KB consists relationship properties such as domain
and range for a given ET. Therefore, the association between ETy, (i.e., everyday
objects) and ADLs can be automatically inferred using semantic reasoners or simply
querying the KB model. This process is known as terminology box (7 -box) reasoning
[16].

The second stage is only executed when the result returned from 7 -box reasoning
identifies any conflicts with the ADL class description. The conflicts can be raised
when a given sensor attached to an ET is forced to be part of a given ADL which
is outside the restricted set of ETy. In this case, it is assumed that ET is part of
inhabitant’s preferences or part of a new set of actions for ADL,. The preferences
are currently pre-defined and stored as individuals containing a list of iEC; that an
inhabitant prefers to use to perform a given ADL. Therefore, semantic queries are
made to extract all preferences of the inhabitant (userID) for a given ADL (adlName)
that as sensor observation (devicelID) as an action. This process is known as assertion
box (A-box) reasoning.

6.2 Semantic-Based Approach to Sensor Data Segmentation 135

The semantic reasoner carries out several tasks using 7 -box and .A-box knowledge
which includes but not limited to: satisfiability, subsumption, consistency checking
equivalence, disjointness, and instance checking [15, 17]. The satisfiability task is
to ensure the class description (axioms) is not contradictory. The subsumption task
ensures class B satisfies all the inheriting properties (R) of parent class A. The
consistency checking ensures classes and their instances do not violate the axioms
descriptions. The instance checking ensures the relationships with other instances are
within the boundary of a set of classes it can subsume. The equivalence task is to match
the two concepts with respect to its properties in contrary to disjointness tasks. The
conjunctive querying answering is performed at the second phase of decision engine
to identify inhabitant’s preferences with a given ET using relationships between
instances of EC and ADLs.

Figure 6.4 illustrates the three inputs taken by the decision engine to verify if
the new sensor observation Ginger(es) is part of the generic/personalised action of
the ongoing MakeTea activity (AT1). Initially, a new activity thread, AT1, is created
to add the first sensor observation, Fridge (el), into the empty set of sensors and
the results returned from two-stage reasoning process. In this case, el is inferred by
the generic 7 -box reasoner to be part of KitchenADL in the first stage of decision
engine. As the new sensor event, e, occurs, the current AT1, temporarily add it to the
list {e}, e;} and perform the generic reasoning again with the same activity result.
This means that the action is part of A1, however, more than one sub-activities share
the same actions. Similarly, other events are added to AT1 = {ey, e;, e3, e4} as they
occurred with new MakeTea activity name which is a descendant class of MakeDrink
and KitchenADL. Until now, only first stage of decision process is performed due
to generic nature of the ADL actions. The next sensor observation, es, is attached
to Ginger running any personalised actions. The activity name, MakeTea of Al and
the new sensor observation Ginger(es) is used to perform subsumption reasoning
in the first stage of decision engine and returned inconsistency in ADL description
error. In the second phase, the decision engine checks if the Ginger(es) sensor is
part of an inhabitant’s preference(s) stored in the triplestore and add it to A1. In this
case, spicyTea preference was identified and as there were no sub-activity preference
threads already active for A1, new thread Pref| was created along with other missing
spicyTea actions.

AT1 ={tbox{name : makeTea, s: e, €, €3, €4}},

& abox[Prefi[name : spicyTea,s : {es}}, missing : {...}]11}. (6.7)

6.2.3 Semantic Segmentation Algorithm

The algorithm in Table 6.1 illustrates the segmentation process, use of decision
engine (DE) and multithreading mechanism discussed in Sect. 6.2 to separate sensor

136 6 Semantic-Based Sensor Data Segmentation

Input Decision Engine Output
© Hansg Qosarvetion (1) Yes New Activity: MakeTea (ATs)
Time: ts, De‘wceID €5, Generic t-box: [e1, €2, 3, e4]
; Value: true : ADL? a-box:[{Prefs, ... Prefq}]
e Current AT1: MakeTea o
part
Sensors: [TeaBag(e:), Mug(e:)m No;
Kettle(ez), Fridge(et)] 9 Yes Yes Prefy
. : : name: spicyTea
@ semantical ADL Model 2 rreronces T altve? . (Ginger(es)...)
: No missing: {...}
® - Generic

\m}‘; NewPrefa)
o] Query (userlD, name : “newPrefName”,

adIName, devicelD) s: (...}, missing: {...}

Fig. 6.4 Example of semantic-based decision engine with input and output data

observations. The algorithm is performed by the ADL threads manager and it is
broken down into three stages. The first stage is to iterate over all the active 7 -box
threads (AT,) and use the current list of sensor observations in each thread along
with the observed sensor event (e,,) being investigated to refine a ADL inferencing
result or assume start of new ADL. For simplicity, Algorithm Table 6.1 shows only
the first iteration AT, is conducted.

The line 1 checks if there is =3 e, in AT1 then perform 7 -box and .4-box
reasoning in stage two and three. Otherwise, ey, is assumed to be start of new ADL
activity. Hence, new AT, is created with e, in line 12. The 7 -box reasoning task
in line 2 is performed by calling DE by taking three inputs: ey, set of current sensor
events in AT1 and T ={EC, SR, ET} in KB. The new deduced ADL result (Class c) is
evaluated for conflicts and if ¢ T currentAT class then AT, is updated with ¢ along
with e, ; see lines 3 and 9. In the second stage, inhabitant’s preferences are checked
when conflicts in result is detected. All the A-box threads are checked if ey, is part
of active preference thread then add the event to AboxT, thread. Otherwise, any
inhabitant (userID) preferences (AboxT,) of a given ADL class ¢ inferred for AT,
is queried from the triplestore database (TDB) and new .A-box threads are created
if matched; see lines 4-7. The final stage is where all the housekeeping for the sub-
threads and the process of re-evaluating the session timeout window size and timeout
cases based on the data of the segmented set of observations. Details of the semantic
segmentation mechanism can be found in work [18, 19].

6.3 Semantic Segmentation Lifecycle 137

Table 6.1 The pseudocode of the semantic segmentation algorithm

Algorithm 1: Pseudocode for Semantical Segmentation Algorithm

Input: ¢,,, T = EC,SR,ET, AT\
Output: void
1 if —3e,, : AT\(e,,) then

2 Class ¢ = DE.runThox(e,,, ATy, T) /* 1) T-box reasoning */
3 if =c 2 AT, then

4 if 3AT,.AboaT,(e,,) then

5 ‘ ATy . AboxT,.add(e,,) /* 2) A-box reasoning */
6 else if 3DE.queryT DB(e,,, AT\.name, userID) then

7 ‘ ATy.addAboxT (e,,) /* 2.1) create A-box thread */
8 else

9 I AT = cley) /* 1.1) update ADL classification */
10 end

11 else

12 ‘ AT, 1(em) /* 1.2) create T-box thread */
13 end

14 closure(ATy) /* 3) completion and timeout procedures */

6.3 Semantic Segmentation Lifecycle

This semantic segmentation approach has been implemented in a SOA based system.
Key ontology modelling knowledge, multithreading process and reasoning tools has
been highlighted in this section. Other technical details of the system are provided
in Chap. 9 and Sect. 9.3.

6.3.1 Ontological Modelling

The generic knowledge for segmentation is represented using semantic web frame-
work. This framework provides web ontology language OWL to formally express
the complex knowledge into classes, relationships (object & data properties) and
data (individuals) [20]. In addition, common vocabularies are used to represent the
KB and encourage sharing across applications to create an ever-growing, human and
machine-readable web of knowledge. There are a number of automatic reasoning
tools available to read this KB to identify inexplicit facts based on relationship defi-
nition and the selection of a reasoner is elaborated in Sect. 6.3.3. The main goal of
the ontological model is to express what, where and how the actions are required

138 6 Semantic-Based Sensor Data Segmentation

in order to satisfy a given ADL. For this, EC, SR, and Pref are modelled in three
phases using ontology editor tool named Protégé [21]. Initially, EC concepts such as
everyday objects (Objy), person (X,), sensor characteristics (S,) and location (Ly,)
were modelled as classes. Figure 6.5 illustrates the fragments of EC classes and their
subclasses.

In the second phase, the EC classes are used to define SR between ADL classes
and describe their actions iteratively using object properties. Figure 6.6 partially
describes the MakeTea ADL in Protégé. The MakeTea ADL class inherit the prop-
erties described from super-classes and uses “rdfs:subclassOf” object property to
define actions or the context to carry out the activity. The actions properties and the
classes of everyday objects for the MakeTea ADL are described using object prop-
erties hasAdding, hasContainer, hasHeatingAppliances, hasHotMealMaterial and
so on. These object properties can have characteristics and relationships between
everyday objects classes and the ADLs. For instance, hasHotDrinkType object prop-
erty has a domain of MakeHotDrink ADL class and HotDrinkType material as range
property. This means that any everyday object that is a subclass of HotDrinkType
is part of the actions defined for MakeHotDrink ADL class or its subclasses. These
object properties are used to add further restrictions such as universal and existential
quantification (V, 3) using some and only, logical operations such as not, and, or
(=, A, V), and cardinality restrictions (<, >, =). Other common operators are also
available and can be used to increase the expressivity of the ADL model in terms of
class, relationships and data. Similarly, the other 12 subclasses of MakeDrink and
MakeMeal ADL classes are also described with relevant relationships. As multiple
relationships with ADLs and everyday objects are created, the observed data (defined
as individuals) with a set of assertation statements containing everyday object and
object properties are used by the reasoning engine to automatically infer the type of
the ADL class the actions in the individual belongs to.

Finally, the inhabitant specific preferences (A-Box) are captured by creating indi-
viduals with a direct relationship with instances of sensors in order to avoid the
inconsistency in ontology description for generic knowledge. In the generic knowl-
edge, not all adding (ingredient) for MakeTea ADL are defined and ingredients such
as FreshGinger and CinnamonSticks are subjective to the individual. Hence, force-
fully adding ingredients in an instance that is the type of MakeTea ADL will result

(a) (b) (c) (d)
¥ MonitoredEntity ¥ 0 Sensor v Person ¥ @ Location
» COI‘ItaiI'IEI.') ContactSensor Inhabitant LocationCoordinate
¥ @ HomekEntities DoorBell ¥ ® ProfessionalStaff v ©Place
» @ CookingUtensil FireAlarm MedicalCarer BathRoom
» @ EatingCutlery MoistureSensor SocialWorker Kitchen
» @ ElectriElectroAppliance :;!I!Slss‘rureSensnr SystemAdministrator Lounge
» @ Furniture > ag St
» @ HygieneAppliance Thermometer SystemMaintainer g RoPm
» @ Hygieneltem SensorState Volunteer TOI|et'
v @ Material WashingRoom

Fig. 6.5 Conceptualising environmental context (EC) with Protégé

6.3 Semantic Segmentation Lifecycle 139

\ i Functional ADLActivity =
> Appointment
» @ DoHousework
HeartRateMonitoring

¥ O KitchenADL MakeHotDrink

¥ ' MakeDrink and (hasHotDrinkType some Tea)
v MakeColdDrink
MakeJuice
MakeWater f
¥ © MakeHotDrink hasAdding only
MakeChocolate (Milk or Sugar)
MakeCoffee .
hasCont I
asContainer only
(Cup or Jar or Mug)
¥ O MakeMeal = = = =
v O MakeColdMeal hasCoolingAppliance exactly 1 CoolingAppliance
MakeQuinoaSalad hasHeatingAppliance exactly 1 HeatingAppliance
MakeSandwich hasHeatingAppliance only
¥ MakeHotMeal (Cooker or Microwave)
MakeBakedBeans >
MakeBoiledRice hasHotDrinkType only
MakeChicken (HotWater or Tea)
MakePasta hasUtensil only Kettle
MakeSoup MakeHotDrink
MakeToast

Fig. 6.6 An excerpt of MakeTea ADL with semantic relationship (SR) between EC in Protégé

in the inconsistent ontology as highlighted by the explanation window in Fig. 6.7.
Therefore, instances of preferences are associated with the inhabitant and to a given
ADL class which has a list of sensors that are attached to the everyday objects and
other attributes. Figure 6.8 presents an example of three inhabitant preferences. The
top section presents individual named, Patientl_Preferences_IndianTea, which has
a type of Preference class for MakeTea ADL class along with a list of sensors using
hasSensor object properties and data properties to describe other attributes such as
preference name and creation timestamp. Similarly, other preferences are shown in
the middle and bottom of the Fig. 6.8 to describe MakeToast and MakeBakedBeans
preference.

Another method is available to layer the inhabitant specific and generic ADL ontol-
ogy descriptions along with SWRL rules. This can be achieved by using the OWL
API and Jena API to create and manipulate the model once generic and inhabitant
specific models are combined, and rules are loaded into the memory. The reasoning
can be performed using the Pellet reasoner and JESS rule engine after combining
the generic and inhabitant specific ontology that is managed dynamically. However,
the main limitation of this method is that the changes made to the inhabitant specific
ontologies will need to be tracked along with the mechanism to resolve any conflicts
in the knowledge that may arise. In addition, inhabitant specific reasoner will need to
be created and maintained [22] at run-time. Hence, the amount of in-memory space,
number of processing cores and computation power required can grow exponentially.
This can potentially create high latency in segmenting individual sensor events and
undermine the scalability of the approach. Therefore, the first method is selected as
it is lightweight, and no inhabitant specific reasoner is required to be running. The
SPARQL Inferencing Notation (SPIN) [23] rules or just a SPARQL query language

140 6 Semantic-Based Sensor Data Segmentation

== NASHOTUMNKIYpe Brimsniea
& Thursday ame Individual As = hasAdding BrownCubicSugar
@ toastDish1 m=hasAdding CinnamonSticks
& Toilet Different Individuals mm hasAdding FreshGinger

& toothbrush m hasAdding SkimmedMilk
:m:::;how = hasUtensil kettle

- —

® Show regular justifications @ All justifications
Show laconic justifications Limit justifications to

Explanation 1 Display laconic explanation

Explanation for: owd:Th Sub lothing
ThreadTest1 hasHotDrinkType BritishTea

MakeCoffee SubClassOf hasadding only (Milk or Sugar)

ThreadTest1 hasAdding CinnamonSticks

hasHotDrnkType Domain MakeHotDrink

MakeHotDrink SubClassOf MakeChocolate or MakeCoffee or MakeTea

CinnamonsSticks Type CinnamonStick

MakeChocolate SubClassOf hasadding only (Milk or Sugar)

MakeTea SubClassOf hasadding only (Milk or Sugar)

DisjointClasses: BlackPeppercomns, Butter, CinnamonStick, FennelSeed, Ginger, IceCubic, Milk, Salt, Sugar

Fig. 6.7 Inconsistency on hasAdding object property due to the restrictions in MakeTea ADL class

* Pnu:ml:meerenm
Patientl_Preferences_BakedBear
Patientl_Preferences_BritishTea

Types Object property asserions

O MakeTea h BlackP obj

Patientl_Preferences_CheeseyTc

Patientl_Preferences_IndianTea @ Preferences ®mhasSensor IndianTeaObj
Patient1_ShoppingCheckLists mhasSensor FreshGingerObj
penne ame Individual As (g h Ci teibi
PenneObj mhasSensor FennelSeedObj
PishoriRice Diffarent Individuals
. Pismﬂrlt M Data property assertions
: :::M::DM mhasName “Indian Tea™~~rdfs:Literal
Platel m hasDurationInMinutes 15
Plate10bj m hasCreationDateTime
@ platter 2015-09-02T10:00:00"~ ~xsd:dateTime

® Patientl_Notilications
Patient1_Preferences
Patient1_Preferences_BakedBear bject property asserions

* p"t“—wm—smlﬂ"r“ O MakeToast - mhasSensor MozzarellaCheeseObj
@Prelerences _ h llach obj
Patientl_Preferences_IndianTea
Patient1_ShoppingCheckLists

Patientl_Preferences

Patientl_Preferences_BritishTea
Patientl_Preferences_CheeseyTo
Patient1_Preferences_IndianTea

Fig. 6.8 Inhabitant preferences as individuals with a list of sensors

6.3 Semantic Segmentation Lifecycle 141

can be executed on the triplestore to retrieve multiple inhabitant’s preferences for a
given ADL class simultaneously. Therefore, this method is considered appropriate
during the segmentation phase as the inhabitant’s preferences can be scalable and
has lower latency in terms of query time and there are no additional overheads for
running multiple reasoners per inhabitant.

6.3.2 Multithread Segmentation Process

The multithread segmentation process is depicted in Fig. 6.9 where actions for
MakeTea and MakeToast ADLs are performed concurrently. The generic and pre-
ferred actions are observed at a given time (t,). The 7 -box activity thread (AT1) is
initially created when the cupObj sensor is activated at t;. The AT1 continuously
stores the events into the thread if the decision engine infers an association with
generic ADL class in the ontological model or personalised preference(s). The object
attached to the cupObj sensor is queried from the triplestore, added to new individual
and incremental 7 -box reasoning is conducted. The 7 -box reasoning result indicates
that the object is related to ADLActivity class with no conflicts with the model, hence
the A-box reasoning is not required to be executed. Next, the sensor event at t; is
received and AT1 performs 7 -box reasoning with observed sensor fridgeObj along
with previous sensor(s), in this case, cupObj. The decision engine returned a new
result, KitchenADL class and it was compared against the current ADLActivity class
for equivalent or subsuming class. In this case, the subsuming condition is satisfied
and stores the cupObj and fridgeObj sensor events in the AT1.

Similarly, milkObj, kettleObj and indianTeaObj sensor events are processed by
AT1 where the ADL classes are incrementally classified, and the sensor events are
stored in the thread. Since, the freshGingerObj sensor event is not described as part
of a set of adding in the generic MakeTea ADL description, the decision engine
returns with traceable conflicts. The decision engine then performs .A-box reasoning
to find any inhabitant’s preferences related to MakeTea ADL containing freshGin-
gerObj. Multiple preferences could be returned, in this case, only one preference
named, Patient]_Pref IndianTea (P is returned as a result of SPARQL query. A
single A-box sub-thread (ABT1) is created with other missing sensors and other
relevant information from the preference into the thread. The ABT1 thread then
inspects the incoming sensor events and updates the missing and matched sensors
list independently. AT1 thread and the sub-thread(s) for .4-box reasoning can con-
tinue inspecting unfolding events in the data stream until the completion criteria are
satisfied i.e. having no child ADL class and missing sensors in .4-box threads or a
dynamic timeout mechanism for the ADL. The completion/timeout criteria for the
ADL will be inspected in future work.

The next set of actions for MakeToast ADL are observed between tg-t;4 and
inspected by AT1 but only one shared fridgeObj event is stored. The ADL manager
running in parallel inspects the sensor events in the queue and detects toastObj is
not part of the MakeTea ADL class in AT1 and ABT1 threads. Therefore, another

142 6 Semantic-Based Sensor Data Segmentation

Time t- Eamal Activity Thread 1 (AT1) |

t (1) T-box prefurencesr (2) A-DOX
-> cupotf [al |t. v ADLActivity
fridgeObj bl |t v » KitchenADL ABT1
milkObj [C| |t v - MakeDrink Matched
kettleObj |d| |t v -MakeHotDrink sensors
indianTeaObj (g |t: v -MakeTea -) Missing
* freSthngerObj f t. v Conflicts Yes pl - 99:‘.3::‘"3
— toasterobj 1 |t x | Conflicts _ No No match |
t. KitchenADL - ABT2
margarineObj 2 |t x | * MakeMeal - T
breadSlice10b) 3 |t= x v | ~MakeToast sensors
fridgeObj 4 |t= v v *MakeToast - Missing
ey, M %) | Copficls: Yoo PRPER T
eatingKnifeObj 6 |t: x v -MakeToast -
- [Activity Thread 2 (AT2) |

W "Note: P1: Patient1_Pref_IndianTea, P2: Patientd_Pref_Cheesey_Toast -
E = start of new T-box thread, *: start of A-box thread :

Fig. 6.9 Semantical segmentation process with concurrent actions for MakeTea and MakeToast
ADL

T -box activity thread (AT2) is created MakeToast ADL as depicted at the bottom-
right of Fig. 6.9. The same process is described for AT1 is executed for the AT2
thread to capture events from tjo-t;5 to AT2 thread with one conflicting mozzarel-
laCheeseObj observation. Therefore, the ABT2 thread is created when identified by
decision engine that mozzarellaCheeseObj is part Patientl_Pref _CheeseyToast (P2)
to perform the MakeToast activity.

6.3.3 Reasoner and Supporting Tools

A reasoner is a software tool developed to perform .A-box and 7 -box reasoning by
the decision engine to perform tasks such as consistency check of the ontological
model and derive new facts from the KB dataset. There are a number of reasoners
developed over the years and most of them support first-order predicate logic [15]
reasoning or procedural reasoning (perform forward and backward chaining). Some
of the key requirements for selecting a reasoner are that it supports the incremental
classification for only the part of ontology that was affected by the changes [24],
full description logics (DLs) family support for higher expressivity, rules support,
justification of conflicts, low latency in classification and support both 7-Box and
A-Box reasoning. Studies in [15, 16] describe a number of popular reasoners using

6.3 Semantic Segmentation Lifecycle 143

large ontologies, compare against their key features and categorise according to
their characteristics. The incremental Pellet reasoner has been selected as it supports
most requirements stated above along with being open source and supported by a
number of application programming interfaces (APIs) and ontology editors such as
Protégé and NeOn toolkit. OWL API and Jena API both support the Pellet reasoner
to programmatically perform reasoning, querying and KB manipulation. Jena API
further supports other reasoners to be Integrated easily. Although, the pellet reasoner
takes up higher heap space and has higher delay time than FaCT + when performing
concept satisfiability checking after classification but outperforms in subsumption

query.

6.4 An Example Case Study

6.4.1 Experiment Design

The actions for three ADLs are scripted in no particular order to perform with only
generic actions and another with the inhabitant’s preferences; namely, MakeTea,
MakeToast and MakeBakedBeans. The relevant actions for the generic(G) ADL and
some inhabitant’s preferences (P) are described in Table 6.2. These three ADLs are
first tested individually in random order and then combined to create composite
activity scenario; incremental, concurrent and parallel; see Table 6.3. A total of 30
activity scenarios (6 for single and 24 for composite ADLs for both G, and G + P
actions) were created for the experiment and a thread simulated each scenario with
sensor events occurring at 10 ms interval. The sensor events contained a timestamp,
name, sensor type, and binary data. The degree of accuracy to recognise an activity
scenario is calculated in percentage by matching and tallying actual sensors events
segmented correctly and it divided by the total number of sensors events activated for
each ADL. The average classification time is calculated by taking sensor observation
segmented time by the reasoner minus the sensor observation time recorded for each
activity scenario. The unexpected sensor observations within the activity scenario
are omitted and recorded separately when calculating the accuracy and average clas-
sification time for the activity. In addition, a number of duplicate activity threads
created in the activity scenario are also recorded to see the effect on the overall clas-
sification times. The Samsung S6 edge smartphone running 6.0.1 Android OS was
used and the web service was deployed on the HP EliteBook Folio 1040 G2 with
the 17 2.60 GHz processor, 2 cores, 4 logical processors and 8§ GB RAM. The binary
sensor events are currently simulated due to a limited number of sensors and time.

144 6 Semantic-Based Sensor Data Segmentation

Table 6.2 Examples of sequential actions of single activities

Activity | Type Related actions/sensors attached to objects #
Make G KettleObj, Cup10bj, TeaJarObj, IndianTeaObj,
tea KitchenSinkTap10bj, SugarJarObj, FridgeObj, Milk10bj,
Spoon20bj
P [FreshGingerObj], [CinnamonSticksObj], 4
[BlackPeppercornsObj], [FennelSeedObj]
Make G Spoon10bj, HenzBeansCan10bj, HenzBeansObyj, 8
baked CanOpener10bj, MicrowaveBowl10bj, MicrowaveObj,
beans Plate10bj, EatingKnifeObj
P [SaltObj] 1
Make G Plate10bj, BreadPacket1Obj, BreadSlice1 Obj, ToasterObj, 7
toast FridgeObj, MargarineObj, EatingKnifeOb;j
P [MozzerellaCheeseBagObj], [MozzarellaCheeseObj] 2

Note Generic (G)/Preference (P) actions, [SensorName]—User preference item, #—number
of sensors

Table 6.3 Combinations of simple activities

Activity ADL sequences Expected no. threads | Actions
comb. Gen. (G) +pref. (G +
P)

ACl1 MakeTea, MakeToast 2 16 22

AC2 MakeTea, 2 17 22
MakeBakedBeans

AC3 MakeToast, 2 15 18
MakeBakedBeans

AC4 MakeToast, 3 24 31
MakeBakedBeans,
MakeTea

AC5 MakeBakedBeans, 3 24 31
MakeTea, MakeToast

AC6 MakeTea, MakeToast, 3 24 31
MakeBakedBeans

Total 15 120 155

6.4.2 Results and Discussions

The average segmentation time taken per sensor event for single activity is 3971 ms
in contrast to 62183 ms for composite ADL scenarios as shown in Tables 6.4 and
6.5. The result in Table 6.4 shows that all the sensor events for a single activity case
scenario were adequately placed in the correct thread with 100% accuracy. Only
the MakeTea activity case scenario created additional threads with more than dou-
ble the average time when processing 9 generic actions and 4 preferred actions. On

6.4 An Example Case Study 145

Table 6.4 Single activity performed in no specific order with generic and personal preferences

Activity Type In relevant Unexp. actions | Excess thread | Avg. time
thread in thread(s)* (s) (ms) +

MakeTea G 9 0 0 2394.67
MakeToast G 7 0 0 2468.57
MakeBaked G 8 0 0 2372.25
Beans

MakeTea G+P |13 0 1 10828.85
MakeToast G+P 9 0 0 3786.87
MakeBaked G+P 9 0 0 1972.44
Beans

Total 6 55/55 0 1 3970.61

(avg)

Note * excludes additional thread(s) actions, + including excess threads

the other hand, Table 6.5 shows 20 out of 24 activities performed in a composite
manner or 572 out of 585 sensor events were added to the relevant thread, giving
97.8% accuracy. However, the segmented activity threads captured a total of 71 addi-
tional unexpected sensor events in the segmented threads which are not necessarily
incorrect, i.e., multiple spoon objects or heating/cooling appliances when performing
multiple activities interweavingly. Furthermore, 29 additional threads were created
and failed to classify any ongoing activity.

Although, previous studies use varying ADL models, datasets, sensors and plat-
forms, use scenarios, and etc., the key features and final outcomes for the recent
KD studies presented in Sect. 6.1.1 is discussed instead. The accuracy of single and
composite activity segmentation for evidential theory-based approach [14] is 81.8%
and 76.2% on average and ontology and temporal [10] achieved 100% and 88.3%,
respectively. Therefore, there is a significant evidence that the proposed approach
improves the accuracy of sensor segmentation with 100% and 97.8%, respectively.
In addition, user-preferences are taken into consideration by adopting basic query-
based approach and automatic Pellet reasoner for generic KB reasoning compared
to their counterparts which adapt solely query-based approach inheriting classical
multi-query optimisation problem in [8, 12]. Nevertheless, one of the benefits for
adapting multi-query approach is that higher performance and scalability can be
achieved, however, suffer from the expressivity capabilities of KB due to explicit
query development/maintenance efforts and the ability to use automatic reasoners.

The proposed method in this chapter seeks to strike a balance between automation
by taking advantage of expressive ontology with incremental Pellet reasoning feature
and performance of query-based approach to manage the changing user-preferences.
The average segmentation time information is not available in the presented KB stud-
ies; however, the proposed approaches observes 3971 ms and 62183 ms with sensors
events activated at the 10s interval for simple and composite activities scenarios.
These results are still not suitable for the real-time system at this stage. However, the

146 6 Semantic-Based Sensor Data Segmentation

optimisation opportunities such as multi-thread safe reasoning [25], ADL threads
management, parallel programming, partitioning workload to graphics processing
units (GPUs) [26] Scaling parallel rule-based reasoning [26] and using a machine
with higher number of cores (i.e., quad-core, octa-core CPU or higher) to support
more concurrent or parallel threads execution at same time remain an open chal-
lenge. Table 6.6 presents a summary of the key components of the recent KB studies
presented in Sect. 6.1.1 against the proposed semantic segmentation approach in this
chapter.

6.5 Summary

The semantic-based segmentation approach combines generic knowledge concep-
tualised as an ontological model and inhabitant specific preferences to conduct a
specific ADL as asserted individual. Upon sensor activation, the event is inspected
by one or more active ADL threads running in parallel. Each ADL thread relies on
a two-stage decision engine to find any association with observed sensor event. The
decision engine conducts 7 -box reasoning with generic KB in the first stage and
A-box reasoning with observed sensor event and inhabitant specific preferences by
querying the triplestore in the second stage. The second stage of decision engine is
only invoked when the use of entity on which observed sensor is attached to has a
contradiction or not been explicitly specified in generic ADL description. The ADL

Table 6.5 Multiple activities performed in a composite manner

Activity Type | All actions Excess Unexpected Total avg.
Comb. in threads? thread(s) actions in the | time (ms)
threads*
Inc. |ACI G v 16 1 1 36330.64
AC2 G v 17 1 4 41543.17
AC3 G v 15 1 1 30354.98
AC4 G X 15/24 |3 3 95819.25
AC5 G v 24 1 5 60742.14
AC6 G v 24 1 6 72690.97
AC1 G+ |V 22 1 1 54949.21
P

AC2 G+ |v 22 0 5 21905.05
P

AC3 G+ v 18 0 1 12561.28
P

AC4 G+ | X 31 3 3 99807.19
P

(continued)

6.5 Summary

Table 6.5 (continued)

147

Activity Type | All actions Excess Unexpected Total avg.
Comb. in threads? thread(s) actions in the | time (ms)
threads*

AC5 G+ | X 30/31 | 1 4 62016.20
P

AC6 G+ |v 31 1 3 87298.32
P

Con. | ACl1 G+ |V 22 1 0 56752.83

P

AC2 G+ |V 22 1 5 23993.51
P

AC3 G+ |V 18 2 1 64074.61
P

AC4 G+ |V 31 1 1 70289.79
P

ACS5 G+ |V 31 2 6 131784.92
P

AC6 G+ |V 31 2 5 181894.97
P

Par. | ACl G+ | X 21722 |2 0 43055.55

P

AC2 G+ |V 22 0 3 8309.10
P

AC3 G+ | X 16/18 | 1 0 35944.94
P

AC4 G+ |V 31 1 4 63737.04
P

AC5 G+ |V 31 1 5 77355.87
P

AC6 G+ |V 31 1 4 59173.90
P

Total 24 572/585 29 71 62182.73

(avg.)

Note * excludes additional thread(s) actions, ++ including excess threads

thread discards the observed event when decision engine has failed to find any rela-
tionship. When the whole set of active ADL threads fail to find any relevance for a
given sensor event, a new ADL thread is created. The approach leverages between
the incremental Pellet reasoner, OWL & Jena API, and the notion of multithreading.
The proposed method was implemented and tested against 30 test scenarios. The
results indicate an improvement in segmentation accuracy compared to the counter-
part studies with 100% and 88.3% for single and composite ADL scenarios with an
average time of 3971 ms and 62183 ms. The main bottlenecks for high processing

148 6 Semantic-Based Sensor Data Segmentation

Table 6.6 Summary of recent KB approaches

Studies/features| C-SPARQL Evidential Onto. and AALISABETH Proposed

[8], 2010 theory [14], temporal [9], |[12],2015

2013 2014

Knowledge High High High High High
expressivity
SPARQL Yes Yes Yes Yes Yes
query support
Automatic No No Yes No Yes
reasoner
support
Direct stream | No Yes Yes No Yes
inspection
RDF stored Yes NA Yes No Yes
User prefs. No No No No Yes
support
Sliding Yes (Fixed No Yes Yes No (Future
window size) work)
support
Potential Low Med.—High | Med. Low Med.—High
scalability
issue
Accuracy: S; 81.8;76.2 100; 88.3 - 100; 97.8
C (%)
Average time: | — - - - 3971; 62183
S; C (ms)

time are the synchronised incremental reasoning and duplicate ADL threads creation
which ultimately created additional reasoning tasks and slowed down the overall
process on the machine which was limited to two cores. This could be addressed by
adapting Fork/Join parallelism framework [27] to efficiently split and manage tasks
over multiple cores machine and utilise graphical processing unit (GPU) to increase
performance.

References

1. Faria DR, Vieira M, Premebida C, Nunes U (2015) Probabilistic human daily activity recog-
nition towards robot-assisted living. 2015 24th IEEE international symposium on robot and
human interactive communication (RO-MAN), pp 582-587

2. Zhong Y (2017) A theory of semantic information. China Commun 14:1-17

3. Tarski A (1944) The semantic conception of truth: and the foundations of semantics. http://
www.jstor.org/stable/2102968?0origin=crossref

4. Vickers P (2013) Understanding visualisation: a formal foundation using category theory and
semiotics. IEEE Trans Vis Comput Graph X, 1-14

http://www.jstor.org/stable/2102968?origin=crossref

References 149

5.

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.
22.

23.
24.

25.

26.

27.

Wang Y (2017) Formal rules for concept and semantics manipulations in cognitive linguistics
and machine learning. In: 2017 IEEE 16th international conference on cognitive informatics
cognitive computing (ICCI*CC), pp 43-50

. Rafferty J, Nugent CD, Liu J, Chen L (2016) From activity recognition to intention recognition

for assisted living within smart homes. IEEE Trans Human-Mach Syst 1-12

. Meditskos G, Dasiopoulou S, Kompatsiaris I (2015) MetaQ: a knowledge-driven framework for

context-aware activity recognition combining SPARQL and OWL 2 activity patterns. Pervasive
Mob Comput

. Della Valle E, Grossniklaus M (2010) C-SPARQL: a continuous query language for RDF data

streams. Int J Semant Comput 04:3-25

. Okeyo G, Chen L, Wang H, Sterritt R (2012) A hybrid ontological and temporal approach for

composite activity modelling. In: Proceedings - 12th IEEE international conference on trust,
security and privacy in computing, trustcom-2012 - 11th IEEE int. conference on ubiquitous
computing and communications, [IUCC-2012, pp 1763-1770

Okeyo G, Chen L, Wang H (2014) Combining ontological and temporal formalisms for com-
posite activity modelling and recognition in smart homes. Futur Gener Comput Syst 39:29-43
Skillen KL, Chen L, Nugent CD, Donnelly MP, Burns W, Solheim I (2014) Ontological user
modelling and semantic rule-based reasoning for personalisation of help-on-demand services
in pervasive environments. Futur Gener Comput Syst 34:97-109

Culmone R, Giuliodori P, Quadrini M (2015) Human activity recognition using a semantic
ontology-based framework. Int J Adv Intell Syst 8:159-168

Naeem U (2015) Activities of daily life recognition using process representation modelling to
support intention analysis. Int J Pervasive Comput Commun 11:347

Hong X, Nugent CD (2013) Segmenting sensor data for activity monitoring in smart environ-
ments. Pers Ubiquitous Comput 17:545-559

Abburu S (2012) A survey on ontology reasoners and comparison. Int] Comput Appl 57:33-39
Dentler K, Cornet R, Ten Teije A, De Keizer N (2011) Comparison of reasoners for large
ontologies in the OWL 2 EL profile. Semant Web 2:71-87

De Giacomo G, Lenzerini M (1996) TBox and ABox reasoning in expressive description logics.
In: Proceedings of fifth international conference on the principles of knowledge representation
and reasoning, pp 316-327 (1996)

Triboan D, Chen L, Chen F, Wang Z (2017) Semantic segmentation of real-time sensor data
stream for complex activity recognition. Pers, Ubiquitous Comput

Triboan D, Chen L, Chen F, Fallmann S, Psychoula I (2017) Real-time sensor observation
segmentation for complex activity recognition within smart environments. In: 2017 IEEE 14th
international conference on ubiquitous intelligence and computing (UIC 2017), San Francisco
Riboni D, Bettini C (2011) OWL 2 modeling and reasoning with complex human activities.
Pervasive Mob Comput 7(3):379-395

Stanford University, University, S Protégé

Volz R, Staab S, Motik B (2003) Incremental maintenance of materialized ontologies. Lect
Notes Comput Sci 2888(2003):707-724

W3C: SPIN - overview and motivation. https://www.w3.org/Submission/spin-overview/
Cuenca Grau B, Halaschek-Wiener C, Kazakov Y (2007) History matters: incremental ontology
reasoning using modules. Lecture notes in computer science (including subseries Lecture notes
in artificial intelligence (LNAI) and lecture notes in bioinformatics). LNCS, vol 4825, pp
183-196

Ren Y, Pan JZ, Guclu I, Kollingbaum M (2016) A combined approach to incremental reasoning
for EL ontologies. Lecture notes in computer science (including subseries Lecture notes in
artificial intelligence (LNAI) and lecture notes in bioinformatics). LNCS, vol 9898, pp 167-183
Peters M, Brink C, Sachweh S, Ziindorf A (2014) Scaling parallel rule-based reasoning. Lecture
notes in computer science (including subseries Lecture notes in artificial intelligence (LNAI)
and lecture notes in bioinformatics). LNCS, vol 8465, pp 270-285

Ponge J Fork and join: java can excel at painless parallel programming too!. http://www.oracle.
com/technetwork/articles/java/fork-join-422606.html

https://www.w3.org/Submission/spin-overview/
http://www.oracle.com/technetwork/articles/java/fork-join-422606.html

Chapter 7 ®)
Composite Activity Recognition oo

7.1 Introduction

Inhabitants within smart homes (SH) typically perform Activities of Daily Living
(ADLs) in complex patterns. For instance, an inhabitant may perform two (or more)
activities in sequence or in parallel. Whenever activities are performed sequentially
or in parallel, there will be underlying inter-activity dependencies among the activ-
ities involved. These inter-activity dependencies should be encoded during activity
modelling so as to support activity recognition in the presence of complex activity
patterns, e.g. composite activities. Applications that provide SH inhabitants with
services, e.g. assistive services, should be able to correctly identify both simple and
composite activities. Activity recognition is the process of tracking users and identify-
ing the activities they are performing. It involves activity sensing, activity modelling,
and activity inference. Activity sensing is responsible for monitoring users and their
situated environment to obtain sensor data streams. Activity modelling creates com-
putational activity models that are used to analyse and classify collections of sensor
data into activities. Activity inference uses relevant algorithms to process sensor data
against computational activity models to identify the ongoing activity.

In this chapter we categorise activities as actions, simple activities, and composite
activities. An action is an atomic (or indivisible) activity, e.g. grasping the fridge door.
A simple activity is an ordered sequence of actions, e.g. preparing coffee. Finally, a
composite activity is a collection of two or more simple activities occurring within a
given time interval, e.g. preparing dinner and washing dishes. Composite activities
can be further categorised as sequential or multi-task activities. A sequential activity
is a sequence of activities that occur in consecutive time intervals, i.e., there is
temporal dependency between constituent activities. A multi-task activity occurs
when a single user performs two or more activities simultaneously or when multiple
residents occupy a smart environment and perform activities concurrently.

Activity recognition has been widely investigated using three categories of
approaches, namely, data-driven (DD), knowledge-driven (KD), and hybrid activ-
ity recognition approaches as discussed in previous chapters. In data-driven activ-

© Springer Nature Switzerland AG 2019 151
L. Chen and C. D. Nugent, Human Activity Recognition
and Behaviour Analysis, https://doi.org/10.1007/978-3-030-19408-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19408-6_7&domain=pdf
https://doi.org/10.1007/978-3-030-19408-6_7

152 7 Composite Activity Recognition

ity recognition, activity models are learnt from pre-existing datasets using existing
well-developed machine learning techniques. Activity inference is then performed
against the learnt activity models whenever sensor data is obtained. In knowledge-
driven activity recognition, knowledge engineers and domain experts specify activ-
ity models using a knowledge engineering process. The activity models capture
common-sense and domain knowledge about activities. Artificial intelligence-based
reasoning techniques are then used to infer activities from the models whenever sen-
sor data is obtained. Hybrid activity recognition approaches combine data-driven and
knowledge-driven techniques.

Simple activity recognition has been widely explored in DD, KD, and hybrid
activity recognition. However, composite activity recognition is only investigated to
alimited extentin DD [1-6] and hybrid [7-9] activity recognition communities. In the
KD activity recognition research community, the recognition of composite activities
still remains largely unexplored. This challenge can be attributed to the two tasks of
activity modelling and activity inference. Composite activity modelling is a challenge
because activity models must capture and reason with inter-activity dependencies
that are typically encoded as temporal knowledge [10]. Moreover, mechanisms are
needed to process sensor data against the resulting composite activity models to infer
the ongoing activities [11].

The use of ontologies in activity modelling and activity recognition has spurred
interest but the focus has largely been on simple activities [11-13]. Ontological activ-
ity modelling can be used to define activity ontologies that describe activities and their
characteristics [12, 13]. The resulting activity ontologies represent activity models
for mostly simple activities and support semantic reasoning for activity recognition.
To support composite activity modelling and recognition, we have developed a novel
activity modelling approach that combines ontologies and temporal knowledge to
create activity models that represent inter-activity dependencies using temporal rela-
tionships. The approach enhances ontological activity models by adding qualitative
temporal knowledge based on Allen’s temporal logic relations [14]. It is worth point-
ing out that the study presented in this chapter is contextualised in a single-resident
SH environment within which the user performs both simple and composite activities.

In this chapter we introduce a novel hybrid approach to composite activity mod-
elling and recognition. The combination of ontological and temporal knowledge rep-
resentation formalisms provides a more expressive representation formalism required
for representing and modelling the complex ontological and temporal relationships
of composite activities. We also develop generic activity models for composite activ-
ities based on the presented approach. These include three core elements, namely
ontological activity models, temporal activity models and entailment rules; each ele-
ment models a specific aspect of composite activities. The generic models can be
applied to modelling composite activities in different application scenarios. In addi-
tion, we create reusable activity models for ADLSs in the context of smart homes for
the purpose of illustration, testing and evaluation. Finally, we develop an integrated

7.1 Introduction 153

system architecture for composite activity recognition and a unified activity recogni-
tion algorithm. The algorithm can reason over sensor data streams against composite
activity models to perform real-time progressive activity recognition for both simple
and composite activities.

7.2 Related Work

In the DD activity recognition community, existing approaches capable of both sim-
ple and composite activity modelling and recognition include hidden Markov models
(HMM) [2], interleaved HMM [1], factorial conditional random fields (FCRF) [4],
skip-chain conditional random fields (SCCRF) [3, 5, 6] and mining of emerging
patterns [15]. DD approaches have the ability to handle uncertain knowledge and
are based on well-explored machine learning based techniques. They also have the
advantage to handle temporal information that can capture short- and long-term
temporal dependencies, e.g. inter-activity relationships and activity history, thereby
making them suited to composite activity recognition. The main drawback is that
large amounts of initial training data are needed to learn the activity models. As users
perform activities in a variety of ways, all these activity variants must be present in
the data set if they are to be successfully learnt, modelled and subsequently recog-
nized. In most cases it is difficult to obtain representative and sufficient data sets
to be used for learning activity models, thus leading to the “cold start” problem. In
addition, users perform activities in different manners; as a result, models learnt from
one user’s datasets would not be reused by another user, which results in reusability
problem.

KD activity recognition approaches use knowledge representation formalisms to
provide explicit activity models which can be processed by artificial intelligence-
based inference for activity recognition. The KD has a number of strengths. For
instance, it is grounded in logic theory making it possible to capture the seman-
tics of a domain and support automated reasoning. It also allows common sense
domain knowledge and heuristics associated with activities to be incorporated into
activity models. Domain knowledge is especially important in modelling complex
real-world activity scenarios, e.g. interleaved and concurrent activities. Moreover, it
can support reuse and knowledge sharing between applications. Domain knowledge
and common-sense knowledge is essentially common across applications, hence the
ability to encode and share it would make application development easier through
reuse. The KD approach has been used for simple activity modelling and recognition,
but little work has been done in composite activity recognition. Saguna et al. [16]
addressed both simple and composite activity recognition by combining ontological
and spatio-temporal modelling and reasoning. It uses the notion of context-driven
activity theory (CDAT) to encode context information in order to model both primi-
tive actions and simple activities. The resulting models are combined with ontological
situation models and used to infer interleaved and concurrent activities. The authors
derive models of situations, based on spatio-temporal information, from the context

154 7 Composite Activity Recognition

spaces theory [17], and use the resulting situations in activity inference. Essen-
tially, it uses a layered approach to activity recognition consisting of atomic activity
recognition (using machine learning techniques), simple activity recognition (using
ontological inference), and finally interleaved and concurrent activity recognition
(using rule-based inference).

Hybrid approaches to activity recognition combine techniques from data-driven
and knowledge-driven activity recognition. So far, only Markov logic networks
(MLN) [8] and HMMs with Allen logic [9] have been used to support activity recog-
nition of simple activities, and interleaved and concurrent activities. Both approaches
encode and use temporal knowledge but rely on automatically extracting the relevant
temporal patterns from data sets. The main strength of the hybrid approaches is that
they can model and recognize a range of simple and composite activities due to their
ability to encode rich domain knowledge, e.g. temporal knowledge, and still utilize
well-developed learning and probabilistic models. However, they suffer the “cold
start” problem just like the DD approaches. Since our approach requires activity
models to be specified based on domain knowledge, it overcomes the “cold start”
problem.

Our work follows the KD approach but differs from Saguna’s work, in two main
aspects. First, the former requires the training of atomic activity recognition models
from data sets. Secondly, it uses an ad hoc method to encode both temporal and spatial
knowledge into activity ontologies. Basically, it simply captures temporal and spatial
knowledge as properties of ontology concepts, a strategy that ignores reasoning and
querying challenges arising from processing temporal or spatial knowledge in ontolo-
gies. Our work adopts a systematic and clear method for encoding and reasoning with
temporal knowledge based on 4D-fluents [18] and therefore provides a clear mech-
anism for seamlessly integrating and exploiting qualitative temporal knowledge in
activity recognition for both simple and composite activities. We believe this research
enriches the literature and advances the research frontiers of the knowledge-driven
approach to activity recognition.

7.3 A Hybrid Approach to Composite Activity Modelling

ADLs possess several unique characteristics that make activity modelling a difficult
task. Firstly, there are over 20 categories of ADLs [19-21]. These include dental
care, hygiene, bathing, dressing, using the toilet, drinking, transferring, mobility,
orientation to time, driving/ using public transport, managing finances, drink prepa-
ration, use of the telephone, food preparation, housework, communication, shopping,
eating, orientation to space, and games and hobbies [19, 22, 23]. Furthermore, each
category can be classified to activities at multiple levels of granularity. For example,
the activity Food Preparation can be broken down to child activities such as ‘Pre-
pare Coffee’, ‘Prepare Toast, etc. Also, ‘Prepare Coffee can further be classified
into its child activities ‘Prepare Espresso, ‘Prepare Latte’, etc. Thus, Food Prepara-
tion is coarse grained, whereas ‘Prepare Coffee is fine grained. Therefore, activity

7.3 A Hybrid Approach to Composite Activity Modelling 155

modelling approaches should support the different categories and granularities of
activities.

Secondly, most ADLs involve performing a number of actions, with the order-
ing of actions dependent on an individual’s preferences or abilities leading to a
large number of ADL variants. Activity models should encode this activity diver-
sity. Thirdly, the performance of activities may continuously change, e.g. activity
duration or the sequence of objects can change, based on the users’ abilities or
preferences. Activity models, therefore, should be flexible to accommodate these
variations. Fourthly, users also perform activities using complex patterns, such as
interleaved and concurrent activities. Therefore, activity models should encode such
complex relationships. Fifthly, activities are performed under different contexts, e.g.
specific locations, objects, time, space, and goals. This is even more evident in com-
posite activities. The resulting contextual information should be used to characterize
activities. For instance, composite activities can be described by specifying inter-
activity relationships using temporal or spatial information. In general, activities are
characterized by rich temporal information, e.g. repetitive time patterns, temporal
sequences, temporal duration, and time instants or intervals. For example, the occur-
rence of two activities A and B within the same time interval can represent a temporal
inter-activity dependency that signals the occurrence of a composite activity.

The range of characteristics discussed above constitutes domain knowledge and
heuristics upon which we have built a high-level conceptual activity model, as shown
in Fig. 7.1, for composite activities based on the conceptual activity model that was
proposed by Chen and Nugent [13]. The conceptual activity model in [24] describes
an activity based on contextual elements (i.e., identity, time, space, actor, related
activities, resources, environment elements, and goals) and properties that support
inference (i.e., conditions and effects). However, its main limitation is that it does
not explicitly provide a means to encode temporal inter-activity dependencies that
typically characterize composite activities. This is because it ignored the important
role that the model of change plays in composite activity modelling. Therefore, to
support both simple and composite activity modelling, we have added two properties
to the Time concept, i.e., temporal reference and model of change, to produce the
revised model. The temporal reference is needed for both simple and composite
activities, whereas the model of change is only mandatory for composite activity
modelling. The temporal reference indicates the time interval or time instant that
a given simple or composite activity occurs. The model of change represents the
property that within a given temporal inference, a composite activity consists of
two or more simple activities, whereby each simple activity can be identified by its
respective temporal reference.

Ontological activity modelling has been used to create simple activity models as
ADL ontologies [11, 25]. In this case, ADL activities are structured in a hierarchical
tree with the most specific ADL descriptions represented as leaf concepts—all leaf
concepts have no child classes. Each concept is associated with a number of role
(property) restrictions. All child concepts inherit all the roles of their parent concepts
but may specify further constraints. A generic activity refers to an ADL class that has
associated descendant classes; whereas, a specific activity (the so-called leaf activity)

156 7 Composite Activity Recognition

Activity
Temporal Reference

Resources

Bntities

Environment
Entities

Fig. 7.1 The enhanced conceptual activity model

is an activity with no descendant classes in the ontology. For instance, ‘Bathroom
ADL’ is a generic activity, while its descendants ‘Have Bath’ and ‘Brush Teeth’ can
be specific activities. Nevertheless, the aforementioned approach does not work for
modelling composite activities. Despite capturing temporal information, e.g. time
and duration, pure ontological modelling does not support temporal inference. For
instance, OWL DL [26] only allows ontologies to capture temporal knowledge but
does not support temporal reasoning and querying. To model composite activities,
the approach to activity modelling has to be able to capture and model temporal inter-
activity dependencies, and further support temporal reasoning. For this purpose, we
have proposed the ontological and temporal approach to activity modelling, which
are described in detail below.

7.3.1 Representing Temporal Knowledge in Ontologies

Description logics (DL) [27, 28] provide a mechanism that uses concepts, relations,
and axioms for representing and reasoning with domain knowledge. Web ontology
language (OWL) [26], a semantic web ontology language based on DL, provides a set
of constructors and axioms for creating ontologies. In addition, it allows axioms for
specifying subsumption, equivalence, disjointness, as well as property characteristics
to be defined. The constructors, axioms, and DL equivalents are shown in Table 7.2.

7.3 A Hybrid Approach to Composite Activity Modelling 157

The symbols used in DL formulas are C and D for concepts; r; for role or property
names; @ ; for an instances; and n. a non-negative integer.

On the other hand, temporal logic allows representation of and reasoning with
temporal knowledge. Qualitative temporal knowledge naturally occurs in humans’
activities, e.g. the user performs two activities, one after the other. Such qualitative
temporal knowledge can be used to model complex relationships between activities
that represent composite activities, e.g., sequential, and interleaved and concurrent
relationships. In essence, each composite activity can be viewed as an activity that
has changing relationships with other simple or composite activities. For instance, a
composite sequential activity relates to two activities that occur in consecutive time
intervals. In general, temporal knowledge allows knowledge at a particular moment
of time and the notion of change in knowledge to be encoded and reasoned with.
Therefore, a temporal representation specifies a temporal reference and model of
change. The temporal reference captures order in the sequence of events using either
point-based or interval-based time representation. The model of change captures
the changing relationships between individuals relative to the temporal reference.
The two aspects (i.e. change and temporal reference) can be used to capture com-
plex relationships between activities, e.g., sequential, and interleaved and concur-
rent relationships. This can be achieved by using an appropriate temporal knowledge
representation mechanism to encode qualitative temporal knowledge that naturally
occurs in humans’ activities, e.g. the user performs two activities, one after the other.

7.3.2 A Hybrid Ontological and Temporal Approach

Representing temporal knowledge in OWL is a challenge because OWL only supports
unary and binary relations, while adding a temporal dimension requires at least
a ternary relation. Therefore, we adopt the 4D-fluents approach [35, 18] to add a
temporal model as a layer on top of the underlying DL. The 4D-fluents approach
uses two fundamental building blocks, namely, time slices and fluents, to provide a
vocabulary to represent dynamic temporal parts of individuals. It represents concepts
that have a temporal extent as 4-dimensional objects, with the fourth dimension being
the time, captured as time slices. The time slices represent the temporal parts of a
specific entity at specific moments of time and the concept itself is then defined as an
aggregate of all of its time slices. Time instances and time intervals are represented as
instances of a time interval class. The instances are then associated with time slices to
relate them with concepts varying in time. On the other hand, fluents are properties
that hold at specific moments in time, whether interval or instant. In essence, the
fluent property holds among two time slices. Changes occur on the properties of the
temporal part of the ontology while keeping the entities of the other parts of the
ontology unchanged. The 4D-fluents approach is chosen because it preserves OWL
semantics when incorporating temporal knowledge into OWL ontologies and can
therefore exploit existing OWL reasoning support. By combining ontological and

158 7 Composite Activity Recognition

temporal representation we can obtain a hybrid representation that not only encodes
temporal knowledge but also supports inference with such knowledge.

The main idea that the hybrid approach uses for composite activity modelling
is that within a time interval (a temporal reference), a composite activity can be
characterised by one or more simple activities, and the simple activities involved can
vary within sub-intervals of the main interval (model of change). We refer to models
in which it is not mandatory to represent the model of change as static activity models,
whereas those that encode both the temporal reference and change are denoted as
dynamic activity models.

When the 4D-fluents approach is extended with qualitative relations [14], e.g.
Allen temporal logic relations [14], it can model relations that are necessary for
encoding composite activities. Allen’s temporal logic refers to a constraint-based
representation that uses a temporal interval as a primitive to support qualitative
temporal knowledge representation and reasoning. It is based on the idea that much
of the temporal knowledge is relative and so can be mapped into relations between
intervals. The approach uses thirteen interval relations (shown in Table 7.1) that
are considered adequate to express any relationship that can hold between two time
intervals.

In this work we combine ontologies and temporal knowledge representation to
create activity models for both simple and composite activities. To enable the result-
ing models to be exploited in composite activity recognition, interval relations and
inference rules are used to provide procedural inference. In the next section, we
apply this approach to generate activity models of simple and composite activities
(Table 7.2).

Table 7.1 Thirteen interval relations

Relation Symbol Inverse symbol Pictorial illustration
X before Y < > XXX YYY
Xequal Y = = XXX
YYY
X meets Y m mi XXXYYY
X overlaps Y o oi XXX
YYYYY
X during Y d di XXX
YYYYYYY
X starts Y s si XXX
YYYYYYY
X finishes Y f fi XXX
YYYYY

7.4 Composite Activity Modelling

Table 7.2 OWL constructors, axioms and dl syntax

159

OWL constructor DL syntax OWL axiom DL syntax
IntersectionOf CnD SubClassOf CCD
UnionOf CubD EquivalentClass C=D
ComplementOf -C SubPropertyOf rlC 2

One of {x1...xn} EquivalentProperty rl=r2
AllValuesFrom vr.C DisjointWith CCE—-D
SomeValuesFrom ar.C SameAs {x1} = {x2}
HasValue Ir{x1} DifferentFrom {x1} E ={x2}
MinCardinality (=nr)

MaxCardinality (Znr)

InverseOf -

7.4 Composite Activity Modelling

7.4.1 Concept and Terminology

This section provides a set of definitions for concepts that are used to specify activity
models in subsequent sections

7.4.1.1 Characterization of the Contextual Information of Smart
Environments

To model smart environments, we identify and define the following sets and transfor-
mations between sets: environmental entities (O), sensors (S), sensor observations
(S0), and associated context information (C).

Definition 1 The set of all sensors, S, lists all physical sensors installed in the envi-
ronment. It is defined in (7.1).

S:{sl,s2,...,54} (7.1)
Definition 2 The set of all possible sensor observations, SO, lists all sensor obser-

vations that are made in the environment. Each physical sensor can generate one or
more sensor observations over time. It is defined in (7.2).

SO: {sol, s02, ..., s0;} (7.2)

Definition 3 The set of all objects, O, lists all objects that the user can interact with
in the smart environment. It is defined in (7.3).

160 7 Composite Activity Recognition
0:{01,02, ..., 0m) (7.3)

Definition 4 The set of all context elements, C, lists all context elements that are
monitored during activity recognition. For example, it can include temporal or spatial
context. It is defined in (7.4).

C:{cl,c2,...,c,} (7.4)

Definition S The function, f, maps a sensor observation to the corresponding object
that the user just interacted with. By iteratively applying the function, f, to the set
of sensor observations, the list of objects that the user has interacted with in a given
time interval can be derived and used to describe a user activity. It is defined in (7.5).

f:soi — o0j,s0i € SO,0j € O (7.5)

7.4.1.2 Characterization of Activities of Daily Living

To help understand and characterize the human activities, we introduce various termi-
nologies, namely, action, activity description, simple activity, and static and dynamic
composite activities. These terms are used to derive composite activity models in the
next section.

Definition 6 Primitive action (a): A single indivisible activity performed by the
user. A primitive action is specified as a 2-tuple consisting of a collections of sensor
observations and context information as provided in (7.6).

a: (SO,, CO,), SO, € SO,C,EC (7.6)
Definition 7 Activity description (AD): A collection of primitive actions, ai, over

a specific time interval. An activity description may fully or partially describe an
activity and is specified using a set as shown in (7.7).

AD:{ay,ay,...,a,} (7.7)

Definition 8 ADL: This is the set that lists all activities of daily living (ADL) con-

cepts, A,, for defining simple activities in the activity model and is specified in
(7.8).

ADL:{A, Aa, ..., Ay} (7.8)

Definition 9 TADL: This set provides a list of all leaf ADL concepts, i.e., ADL
concepts with no child concepts. It is defined in (7.9).

IADL: {I Ay, [As, ..., 1A}, k <n, IADLCADL (7.9)

7.4 Composite Activity Modelling 161

Definition 10 Simple Activity (IAi): An ordered sequence of primitive actions. It is
specified in (7.10).

IA; i< ADL,L > (7.10)

where L is a text string to act as the label for the ongoing activity and ADL is an
activity description for activity L.

Definition 11 Composite activity: A collection of two or more simple activities
occurring within a given time interval.

Definition 12 Dynamic composite activities (dCA) set: lists a collection of all
sequential, or interleaved and concurrent activities. It is specified in 7.11.

dCA:{dcA;, dcA,, ..., dcA,} (7.11)

Definition 13 Single dynamic composite activity (dcA;): A composite activity that
has properties whose values vary in time, implying the notion of change. It is defined
in (7.12).

deA;: < ¢, 1, L >, dcA; € dCA, (7.12)

where L is a text string to act as a label for the pattern and ® is a collection of leaf
ADLs or a collection of dynamic composite activities such that ¢ ©Z IADL UdCA.
In addition, 7 a subset of C, is the union of temporal contexts for all activities in
dCAl'.

To illustrate a dynamic composite activity, consider the activity labelled ‘make
dinner and watch television’. We can specify ® as & = {make dinner, watch tele-
vision}. In addition, t can be specified by T = {time-interval-of-make-dinner, time-
interval-of-watch-television}.

Definition 14 Static composite activity (sSCA) set: defines a set of all sequential, or
interleaved and concurrent activities as shown in (7.13).

sCA: {scAy, scA,, ..., scA,} (7.13)
Definition 15 A single static composite activity (scAi): This is a composite activity
whose properties take values that do not change in time. It is specified as a 3-tuple
in (7.14).

SCA;: {¢,0,L),scA; e sCA (7.14)
where, ¢ is a collection of leaf ADLSs or a collection of static composite activities such

that ¢ © IADL UsCA. 6 is an aggregate of task contexts associated with contained
activities and it is a subset of C.

162 7 Composite Activity Recognition

To illustrate a static composite activity, given the activity ‘make dinner and watch
television’, we have ¢ = {make dinner, watch television}. Also, 6 is specified by
task context given by descriptions, i.e., ‘make dinner begins’; ‘as make dinner contin-
ues watch television begins’; ‘make dinner continues and ends’ and the relationship
is parallelism.

7.4.2 Ontological Composite Activity Modelling

Based on the definitions in the previous sub-section and the revised conceptual activ-
ity model, we have developed ontological concepts for specifying simple and com-
posite activity models which are discussed. Table 7.3 lists the properties of these
concepts and Table 7.4 displays a fragment of the DL formulas for selected con-
cepts.

7.4.2.1 Ontological Modelling of Activities, Temporal
and Environmental Context

Activity: This concept is the overall concept for all types of activities.

e MonitoredEntity: This is a general concept to represent the set of all entities in the
environment occupied by an actor. Each MonitoredEntity relates to sub-concepts
of Activity using the hasMonitoredEntity property.

e Location: This is a context concept that is used to indicate the location of interest
to the actor. For instance, in a SH environment, it can be used to represent locations
like the kitchen, bedroom, bathroom, living room, lounge, etc. Each Location con-
cept can relate to the MonitoredEntity and Activity concepts using the hasLocation
property.

e Sensor: This concept is used to denote the class of all sensors that are deployed in a
smart environment. To link sensors to environment entities and objects, instances
of Sensor are associated with instances of MonitoredEntity using the hasSensor
property. Instances of the Sensor concept are used to encode the runtime state of the
SH environment when the user is performing activities. Such runtime information
can be used to derive contextual information.

e Timelnterval: This concept defines a time interval and indicates the moment of
time that a time slice refers to.

e TimeSlice: This encodes the temporal extent of activities as a collection of time

slices. The temporal extent is specified by associating Activity concept with

TimeSlice using timeSliceOf property. In addition, instances of TimeSlice relate to

instances of Timelnterval through the hasTimelnterval property.

163

7.4 Composite Activity Modelling

SISIX0 uonePI TATIVIV

10 FONANOFS © Iayloym sajedrpuy TeuoT3onung butais A3TAaTioyelTsodwopoTiels adArdTysuoTjeTsx
[opou Y}
ur Ayanoyasodwo)onels Surpuodsariod
e sey Aianoyaysodwo)orueuiq A3TATIOV
UQAIS © JI QJeJIpUT 0) PAs() A3TAaTi0V93 TsoduoDo TweuiAq AjtaTioyeaTsodwopoTiels 23Ttsodwo) sTTeluxd
‘Ananoe aisodwod KataTioyelTsodwo)doTlels
JO pud oy SHIeW Jey) AITATIOR SajedIpuy SATXSTFOIII ‘A TATIOVIAY A3TATIOYS3TSodwoDD TR S Agpspus
Ainanoe A3TaTioyeiTsodwopoTiels
ansodwod e Jo A)ranoe Sunies sayeorpuy SATXSTFOIII ' A TATIOVIAY A3TATIOYS3TSodwoDOTIe]S Agpsijaeas
Ananoe A3TAaTioye3TsodwopoTiels
sodwos e Jo syusuoduwod sapraoig SATXSTJIOIIT ‘A TATIOVIAY A3TATIOYe3TsodwodoT3e]s A3TATIOYSEY
*a3ueypd jo uonou ay) SIA3TATIOY@] Tsoduo) A3TATIOV
sarmdeo jey) Ayredoid (Juony) orwreukp v OATXSTJOIIT ‘SIAITATIOVIAY SILA3TATIDY2] Tsoduo) BuTtobupsey
[EAIJUIOWIL], O AOI[SIWIL], SALIOOSSY TeuoTioung TeAIDUISWTL SOTTSAWTL TeAIjuUIBWTLSeY
A3TAT30Y 93Tsodwo)dTweulq
sydoouod ‘A3 TATIOVIAY SLA3TATIOY2]3 Tsoduo)
Ky1anoe Jo Judxo [erodwo) sajedsrpuy TeuoTioung ‘A3TATIOY @3TsodwoDdoTlels 'SIAITATIOYOTSEd ‘©0TTSOWTL JOSOTTSaWT)
*SIOSUS 9A10AdSAT) 0) paIOjIUOW
2Q 0} SANNUL JUIWUOIIAUD SAYILNY I0SuULS A3 TIUEPOI0] TUOR IOosusssey
1X)u0d [eneds 1oy yim
AINUgPaIONUOIA pue AJATIOR SIJRIOOSSY uUOT3eD07] A3TIUGPSIOITUON ‘AJTATIOV uoT3eD0TSeY
Anoy1av A3T3um
ue AQ pasn SaNNUD) SABIIPUT A3 TIUgPSI0] TUOR A3 TATIOVIAY POI107] TUOSBY
uonduosoqg sonzadoid 110 a3uey urewo(q QweN

sfopow A)1anoe ayy ur sydeouod oy 1o senzedold €'/ dqeL

164 7 Composite Activity Recognition

Table 7.4 DL formulas for a select set of concepts used in activity models

* Monitored EntityC3hasSensor.Sensorn3hasLocation.Location

e ActivityC3hasLocation.Locationn(ADLActivityuComposite Activity)

e ADLActivityC Activityn3hasMonitored Entity.Monitored Entity

e TimeSliceC3timeSliceOf.Activityn =
1timeSlice O fm3hasTimelnterval.Intervaln = lhasTimelnterval

* BasicActivityT SETimeSlicemn3timeSliceOf.ADLActivityn = 1timeSliceO f

e CompositeActivityT SETimeSlicerAtimeSlice O f.DynamicComposite Activityn =
1timeSlice O fr13has Ongoing Activity.TimeSlicer > 2hasOngoingActivity

StaticCompositeActivity =
JhasActivity.(ADLActivityuStaticComposite Activity)rn >
2hasActivitynastarted By (ADL ActivityUStaticCompositeActivity)Ndended By.
(ADLActivityuStaticCompositeActivity)ndentailsComposite Activity.
DynamicCompositeActivitynarelationshipType.string

7.4.2.2 Concepts for Simple Activities

e ADLActivity: This concept is the parent concept to all simple activity concepts. All
simple activities are defined as subclasses of the ADLActivity concept. In general,
given that the hypothetical ADL, SimpleADL, is a subclass of ADLActivity, it can
be declared in DL as:

Simple ADLCTADLActivityndpropertyl.Rangen3property2.Range?2 . ..
M3propertyN.RangeN (7.15)

e In the above example, propertyl...propertyN are sub-properties of hasMonitore-
dEntity, and Rangel...RangeN are sub-concepts of MonitoredEntity associated
with SimpleADL. The sensor observations and context specified in Definitions 2
and 3 are realised by property restrictions that are defined on ADLActivity. For
example, a typical observation, e.g. ‘using the kettle’ can be represented by a has-
Kettle property restriction that is defined on the relevant subclasses of ADLActivity.
In this example, hasKettle is a sub-property of hasMonitoredEntity; whereas the
concept for kettle is a sub-concept of MonitoredEntity. Further details on simple
activity concepts will be provided in Sect. 7.5.1. since the concepts are dependent
on the application domain.

e BasicActivityTS: This is a sub-class of TimeSlice and is used to add a temporal
dimension to instances of ADLActivity.

7.4.2.3 Concepts for Composite Activities

This section defines various entities and terms, and their relationships for representing
composite activities, which is depicted in Fig. 7.2.

7.4 Composite Activity Modelling 165

haslocation e hassensor
T —
StaticSequentialActivity

! startedBy/endedBy/hasActivity i

1
U
]
CompositeActivity

Location

timeSticeOf

StaticC ivity
1 strin

startedBy/enda dBy/ hasActivity

“ TimesticeOf

e
~ CompasiteActivityTs

~
~ '
i — = Flugntproperty < Concept
hasTimelntercal Objectproperty —— Datatype
_____ > Subclass proparty

» Datatypepropenty

TimeSlice

Fig. 7.2 A fragment of the activity models showing concepts and their inter-relationships

e CompositeActivity: This concept represents a dynamic or static composite activity.
It is used to denote sequential and interleaved or concurrent activities.

e DynamicCompositeActivity: This is a sub-concept of CompositeActivity and rep-
resents a dynamic composite activity corresponding to Definition 13. Property
restrictions to encode change are defined on this concept. For instance, the notion of
change is represented by implications derived from the fluent property hasOngoin-
gActivity. The instances of this concept are intended to be derived at runtime.

e CompositeActivityTS: This is a subclass of TimeSlice that relates to DynamicCom-
positeActivity. It explicitly captures the notion of change by defining a restriction
on the fluent property hasOngoingActivity. Essentially, objects of CompositeAc-
tivityTS associate with objects of BasicActivityTS or another CompositeActivityTS
through the fluent property hasOngoingActivity to denote change. Each compos-
ite activity can be derived from the activities whose TimeSlice objects have been
associated with the hasOngoingActivity over a given time interval. It associates
with DynamicCompositeActivity using the timeSliceOf property.

e DynamicConcurrentActivity: Sub-concept of DynamicCompositeActivity whose
instances are dynamic concurrent or interleaved activities.

e DynamicSequentialActivity: Sub-concept of DynamicCompositeActivity whose
instances are dynamic sequential activities.

e StaticCompositeActivity: This is a sub-concept of CompositeActivity and defines
a static composite activity as per Definition 15. It simply captures the activities
(whether simple or composite) that constitute a composite activity. It typically cap-
tures inter-activity relations using the hasActivity property to specify the activities
that constitute the composite activity. It associates with DynamicCompositeAc-
tivity through the entailsCompositeActivity property. This concept can specify a

166 7 Composite Activity Recognition

time slice but does not encode the notion of change, hence, it relates to TimeSlice
concept using timeSliceOf property.

e StaticConcurrentActivity: Sub-concept of StaticCompositeActivity whose
instances are static concurrent or interleaved activities.

e StaticSequentialActivity: Sub-concept of StaticCompositeActivity whose instances
are static sequential activities.

7.4.3 Interval Temporal Logic in Composite Activity
Modelling

In addition to ontological modelling of relationships between activities and entities
described above, we use Allen interval relations to model temporal relationships
between simple activities of composite activities. The models show how to relate
temporal intervals of composite activities to the temporal intervals of their compos-
ing activities. The resulting models can be used to infer composite activities from
temporal intervals of simple activities or other composite activities.

7.4.3.1 Models of Sequential Composite Activities

Sequential activities are modelled by associating their respective intervals using the
Allen relations before/after and meets/met-by. The relation before/after signifies that
there is a gap between the two intervals, while meets/met-by indicates that the two
intervals follow each other with no gap between them. These two relations (marked
by solid arrows) and their implications (marked by dotted arrows) are represented in
Fig. 7.3a.

7.4.3.2 Models of Interleaved and Concurrent Composite Activities

The models of interleaved and concurrent activities encode the notion that activ-
ities can occur simultaneously only if their time intervals overlap fully or par-
tially. The models of interleaved and concurrent activities are created using nine
temporal relations, i.e., overlaps/overlapped-by, during/contains, starts/started-by,
finishes/finished-by and equals as described below. The resulting temporal models
are shown in Fig. 7.3a—f:

a. Before-/after — show activity two occurring after activity one has finished.

b. Overlaps/overlapped-by- this shows that two activities have components of their
intervals that are shared, but with one interval starting or ending before the other
interval.

7.4 Composite Activity Modelling 167

c. Contains/during- this model a composite activity made up of simple activities,
e.g. ‘prepare meal’ that contains ‘prepare soup’ and ‘prepare vegetable’. The
longer interval encloses the shorter one;

d. Starts/started-by-shows the simple/composite activity that starts another sim-
ple/composite activity.

e. Finishes/finished-by- shows the simple/composite activity that finishes another
simple/composite activity.

f. Equals- Theoretically, this scenario only applies to concurrency by parallelism.
The two intervals start and end at the same time.

7.4.3.3 Entailment Rules for Activity Modelling

The previous section describes interval-based temporal interrelationships between
simple activities of a composite activity using ontological concepts. Nevertheless,
the mechanism for interpreting the temporal relationships is still missing, which is
required in order to infer composite activities. To this end, we have defined a set
of entailment rules as an essential part of the composite model, based on Semantic
Web Rule Language (SWRL) [29], which can infer complex dependencies among

(a) sequential Activity (b) { ConcurrentActivity 9%
i T - - 4 '_

firvis hpdiby',

{ Y fnishes
(c) - (d) ConcurrentActivity »

tartedby '. finishedty’

5, finishes

4 ety
) containg

ORI W o o

Lartedby

tinishedby

 startedby

 fimishe
.ﬂctivllyz -
equals
startedby

Fig. 7.3 Temporal relationship models of composite activities

168 7 Composite Activity Recognition

activities and therefore the ongoing composite activities. These rules can be used
to derive the ongoing composite activities by identifying the existing relationships
between temporal intervals of ongoing activities. Three categories of entailment rules
have been designed, namely, rules to derive interval relations and assert dynamic
composite activities; rules to assert instances of fluent property; and rules to derive
and assert static composite activities. Due to limitation of space, in the following
we use three entailment rules based on the overlaps/overlapped-by relationship to
illustrate the development of rules and their use for activity inference.

7.4.3.4 Derive Interval Relations and Assert Dynamic Composite
Activity Intervals

Given two existing intervals for a pair of primary activities that have a qualitative
temporal relationship, the rules in Table 7.5a, b are used to assert interval end-
points of a dynamic composite activity. The rule in Table 7.5a derives the interval
relation intervalOverlaps by using the interval end-points of two primary activities.
Table 7.5b provides the rule for obtaining the inferred values of intervalOverlaps
property. The left-hand side (LHS) of the rule in Table 7.5b obtains three TimeSlice
objects and determines the beginning and ending points for each primary activity’s
interval. Finally, it derives the existing interval relationship for the primary activities.
The right-hand side (RHS) of the rule uses the facts established on LHS to assert the
beginning and ending points of the time interval for the dynamic composite activity.

7.4.3.5 Assert Instances of Fluent Property

This is based on Table 7.5b, and the rule allows the TimeSlice objects linked to the
ongoing primary activities to be related with the ZimeSlice object of the Dynamic-
CompositeActivity through the fluent property, hasOngoingActivity. The LHS obtains
three TimeSlice objects, i.e., the two for primary activities and one for the dynamic
composite activity, checks for the temporal dependency between the primary activ-
ities, and asserts instances of the fluent property. If two TimeSlice objects share a
temporal relation, then they are associated with the TimeSlice object of the dynamic
composite activity using the fluent property.

7.4.3.6 Derive and Assert Static Composite Activities

This is based on Table 7.5¢ above and the rule’s LHS checks that there exists an
instance of DynamicCompositeActivity, an instance of StaticCompositeActivity, as
well as instances of the fluent property that are defined on the former’s instance. The
RHS then uses the facts established by the LHS to assert instances of the entailsCom-
positeactivity that is defined as a property of the concept StaticCompositeActivity (see
Table 7.3). Essentially, this rule is used to infer and validate the ongoing compos-

7.4 Composite Activity Modelling 169

ite activity that is subsequently reported to the user. Validation fails if instances of
DynamicCompositeActivity do not have corresponding instances of StaticCompos-
iteActivity. Whenever validation fails the resulting composite activity described by
the instance of DynamicCompositeActivity should be suggested for addition into the
static model of activities.

Similar rules are defined for other qualitative temporal relations (i.e., equals,
during/contains, starts/started-by, finishes/finished-by, before/after, and meets/met-
by) but due to space limitations we do not provide them here.

Table 7.5 Entailment rules for inferring composite activities

(a) ProperInterval (?x), ProperInterval (?y), before(?a,?c),
before(?b, ?d), before(?c,?b), hasBeginning(?x, ?a),
hasBeginning (?y, ?c), hasEnd(?x,?b), hasEnd(?y,?d) ->
intervalOverlaps (?x, ?y)

(b) ADLActivity(?ax), ADLActivity(?ay),

ComplexActivityTS (cplxConcurrentTsS) ,
DynamicConcurrentActivity (dynConcurrentActivity),
TimeSlice(?tsx), TimeSlice(?tsy),

Interval (dynConcurrentInterval), ProperInterval (?x),
ProperInterval (?y), hasTimeInterval (?tsx, ?x),
hasTimeInterval (?tsy, ?y),

hasTimeInterval (cplxConcurrentTS, ?w), timeSliceOf (?tsx, ?ax),
timeSliceOf (?tsy, ?ay), timeSliceOf (cplxConcurrentTsS,
dynConcurrentActivity), hasBeginning (?x,?a), hasEnd(?y,?d),
intervalOverlaps (?x,?y) - >

hasOngoingActivity (cplxConcurrentTS, ?tsx) ,
hasOngoingActivity (cplxConcurrentTS, ?tsy) ,
hasBeginning (?w, ?a), hasEnd(?w, ?d), intervalFinishes (?y, ?w),
intervalStarts (?x, ?w)

(c) ComplexActivityTS(?tsw), ConcurrentActivity(?sa),
DynamicConcurrentActivity(?aw), TimeSlice(?tsx),
TimeSlice(?tsy), endedBy(?sa,?ay), hasActivity(?sa, ?ax),
hasActivity(?sa, ?ay), hasOngoingActivity(?tsw, ?tsx),
hasOngoingActivity(?tsw, ?tsy), hasTimelInterval (?tsw, ?w),
hasTimeInterval (?tsx, ?x), hasTimeInterval (?tsy, ?y),
startedBy (?sa, ?ax), timeSliceOf (?tsw, ?aw),
timeSliceOf (?tsx, ?ax), timeSliceOf (?tsy, ?ay),
intervalFinishes (?y, ?w), intervalOverlaps(?x,?y),
intervalStarts(?x,?w), relationshipType(?sa, “PARALLEL”) ->
entailsCompositeActivity (?aw, ?sa) .

170 7 Composite Activity Recognition

7.5 Simple and Composite Activity Recognition Methods

7.5.1 Ontological and Temporal ADL Models

To support SH-based activity recognition, we have aggregated the models created
above including concepts and properties for simple and composite activities, and
the entailment rules to form the ADL Ontology. The ADL ontology is constructed
based on common ADL activities related to food preparation, recreation, and hygiene.
Table 7.6 shows a list of simple ADL activity models, namely ADL concepts, their
properties, and the range concepts representing the objects used by the users to per-
form respective ADLs. All the Range concepts are sub-concepts of MonitoredEntity.
The super concepts are listed in the order from the immediate super-concept to the
most general super-concept. These simple activities can form composite activities if
a user performs them in sequence or concurrently, as discussed in Sect. 7.6

7.5.2 Composite Activity Recognition Architecture

Whenever a user performs activities along a timeline, the sensor data stream can
be analysed to recognize the ongoing activities based on the extracted contextual
information. A sensor data stream can be partitioned to obtain segments of sensor
data and associated contextual information. To partition a sensor data stream, the
time window-based segmentation method described in Chap. 5, has been used to
support dynamic segmentation. The segmentation approach uses information from
the activity ontologies, e.g. activity duration, and feedback from activity inference. It
generates segments from streaming sensor data that can be further analysed to infer
the ongoing activities.

We propose the architecture shown in Fig. 7.4 to support both simple and com-
posite activity recognition. The architecture supports three main tasks, namely, activ-
ity modelling, activity recognition, and sensor data stream segmentation. In activ-
ity modelling, two types of models (i.e., static and dynamic models as previously
described) are created as described in Sect. 0. To create the two models, activity
modelling involves two processes, i.e., static activity modelling and dynamic activ-
ity modelling. Static activity modelling involves creating static models of simple
and composite activities. Dynamic activity modelling is used to create the dynamic
model of composite activities. Activity recognition is modelled as three interdepen-
dent tasks, namely, action recognition, simple activity recognition, and composite
activity recognition. The action recognition task is tightly coupled with and sub-
sumed in the simple activity recognition task. By separating activity recognition
into interdependent tasks, it is possible to use different techniques for each task. In
this work, instance retrieval, subsumption reasoning and equivalence reasoning are
used for action and simple activity recognition. For composite activity recognition,
rule-based inference techniques are exploited. Finally, segmentation is used to aid

7.5 Simple and Composite Activity Recognition Methods

Table 7.6 Summary of ADL concepts in the ADL ontology

171

Concept Super concept Property Range concepts
Have BathRoomADL, hasHygieneltem BathBrush, BathSoap,
bath BasicADLActivity, BodyWash, Towel
ADLActivity, Activity hasHygieneAppliance BathTap
hasLocation BathRoom
Brush BathRoomADL, hasHygieneAppliance Toothbrush,
teeth BasicADLActivity, WashingSinkTap
ADLActivity, Activity hasHygieneltem Toothpaste,
MouthWash
hasLocation BathRoom
Wash BathRoomADL, hasHygieneAppliance WashingSinkTap
hands BasicADLActivity, hasHygieneltem Towel, HandWash
ADLActivity, Activity -
hasLocation BathRoom
Make MakeHotDrink, hasFlavoring Milk, Sugar
tea MakeDrmk, . hasContainer Cup
KitchenADL, Function- -
alADLActivity, hasHotDrinkType Tea
ADLActivity, Activity | hasLocation Kitchen
Make MakeHotDrink, hasFlavoring Milk, Sugar
chocolate MakeDrink, hasContainer Cup
KitchenADL, Function- -
alADLActivity, hasHotDrinkType Chocolate
ADLActivity, Activity hasLocation Kitchen
Make MakeHotDrink, hasFlavoring Milk, Sugar
coffee MakeDrink, hasContainer Cup
KitchenADL, Function- -
alADLActivity, hasHotDrinkType Tea
ADLActivity, Activity hasLocation Kitchen
Make MakeHotMeal, hasFlavoring Salt
pasta MakeMeal, hasContainer Plate
KitchenADL, - -
Functional ADLActiv- hasCookingAppliance Cooker
ity, ADLActivity, hasHygieneAppliance KitchenSinkTap
Activity hasMaterial Pasta
hasUtensil Drainer, Pan
hasLocation Kitchen
Watch LoungeADL, Recre- hasEntertainmentAppliance | TV, TVRemote
television ational ADL Activity, hasFurniture Sofa
ADLActivity, Activity -
hasLocation Lounge

172 7 Composite Activity Recognition

real-time processing by supporting online segmentation of streaming sensor data.
The resulting segments are processed during activity recognition and mapped to
corresponding simple or composite activities.

7.5.3 Composite Activity Recognition Algorithm

Given a segment of sensor data stream, we describe the algorithm that derives the cor-
responding simple or composite activities. The steps described here are summarized
in the algorithm listing in Table 7.7.

In the first step, the enclosed observations are converted into primitive actions
by checking property restrictions specified in the ADL Ontology through ontolog-
ical reasoning. The second step groups primitive actions into one or more activity
descriptions corresponding to the simple activities that are defined in the ADL Ontol-
ogy. Each activity description is constructed such that it contains only sensor data
and context information that can be mapped to a single specific simple activity or to
a general class of simple activities. For instance, an activity description can match
the definition of the general class ‘MakeHotDrink’ (a super activity for ‘MakeTea,
‘MakeCoffee’, and ‘MakeChocolate’) or that of the simple class ‘MakeTea’. There-
fore, an activity description is considered more general if it corresponds to a general
class of activities and more specific otherwise. A more general activity description
signifies that more sensor data and context information is still needed to identify the
correct sub-activity.

To group primitive actions, the algorithm checks the ontology to determine the
ADL concepts that are in the domain of the corresponding property restriction. For
instance, given the knowledge that the user is in the kitchen, the algorithm can obtain

- *u
4 goox oy .Y
! Activity Recognition i — ~
4

Activity Modelling

Simple
Activity Static Activity
Recognition Modelling

Composite Dynamic Activity

Activity Modelling
Recognition

Results

Fig. 7.4 A logical architecture for composite activity modelling and recognition

7.5 Simple and Composite Activity Recognition Methods

Table 7.7 Temporal reasoning algorithm for composite activity recognition

173

INPUT: sensor data stream (£2), ADL ontology (ADL-O), inference rule base (RB)
OUTPUT: Composite activity (CA) or simple activity (SA)

RECOGNIZE-ACTIVITY (Q, ADL-O, RB)
BEGIN:
WHILE data stream is active DO
Segment data stream () into a set of segments S={s, s, ..., s }
/*for each segment map observations to activities*/
FOR each s €S DO
/*Create activity descriptions to form set AD={AD,, AD,,...AD}*/
Extract observations from segment s, 0={0,,0,,...0,
FOR cach 0,0 DO //for each observation
Retrieve all activities described by 0, A(0)={A, A, ..A}
ENDFOR
Create a set of all activities A=A(0,)U ...A(o)U ... A(0,)
FOR each xeA DO/*for all activities*/
Collect all observations constituting the definition of x as activity descriptions AD_
Add AD_to AD
ENDFOR
FOR each AD€AD DO /*classify activity*/
Map AD, to a simple activity /*use ontological inference*/
IF a leaf activity is returned THEN
Report it (SA)
ELSE
IF goal is still valid THEN
Wait for updated activity description (go to start of current loop)
ELSE Communicate status report and terminate
ENDIF
ENDIF
Update classification status into recognition status RS= {st, st,, ... st }
ENDFOR
/*to help aggregate results for composite activities*/
Define the set of time intervals TI
FOR cach st € RS DO Obtain temporal interval I, and add it to T ENDFOR
IF only one interval is present THEN
Report it (SA) /*SA-activity in interval I*/
ELSE
Infer interval relations using RB
Derive ongoing composite activity relationships
Check corresponding instances of static composite activities
IF instance in static model THEN Report it (CA)
ELSE Recommend the activity ontology be updated to accommodate it
ENDIF
ENDIF
IF results are conclusive THEN Convey results (SA or CA)
ELSE Update segment and window ENDIF
ENDFOR
ENDFOR
ENDWHILE
END

174 7 Composite Activity Recognition

the triples < MakeTea, hasLocation, kitchen > , < MakeCoffee, hasLocation, kitchen
> , and < MakeChocotate, hasLocation, kitchen > , and so on, for all the activities
that can take place in the kitchen. As a result, it will form a number of partial activity
descriptions with one description per possible activity and each activity will be
associated with the primitive action representing ‘in the kitchen’. Since each activity
description contains only sensor data and context information corresponding to an
activity or class of activities, several activity descriptions can be generated for a given
segment of the sensor data stream.

As more sensor data is obtained new activity descriptions will be created or
the existing ones will be modified and enriched. For example, if the next sensor
observation relates to the user using the tea bag, only the partial activity description
corresponding to MakeTea will be updated to accommodate the new primitive action.
During this process, a few partial activity descriptions will become complete when
all the relevant primitive actions have been executed. However, all the existing partial
or complete activity descriptions will remain valid until sensor observations within
a given segment are discarded.

In the third step, simple activity recognition is performed to map activity descrip-
tions into activity labels. To perform simple activity recognition, we adopt and mod-
ify the ontological reasoning approach described in Chaps. 3 and 4. The original
approach progressively aggregates sensor data within a data stream segment and
performs subsumption and equivalence reasoning to infer the entailed activity. In
the modified approach, the algorithm processes each activity description obtained as
previously described against the ADL Ontology. Basically, it compares each activity
description with activity models in the ADL Ontology using semantic reasoning and
the activity label for the model that is closest to the activity description is reported as
the ongoing simple activity. The activity model returned by instance retrieval is con-
sidered the closest model. In the absence of a model returned by instance retrieval,
then the model returned by equivalence reasoning is taken as the closest. Otherwise,
the model returned by subsumption is the closest. Given the possibility of multiple
activity descriptions per data stream segment, parallel simple activity recognition
processes can be initiated with each process dedicated to a single activity descrip-
tion.

The fourth and last step performs composite activity recognition by using the
inference rules to aggregate the results of simple activity recognition. The strategy
is to progressively aggregate the results of simple activity recognition in order to
recognize composite activities. If only one simple activity has been identified for
a sensor data segment, this can be reported to the user. Alternatively, if more than
one simple activity is identified from corresponding activity descriptions, the results
are processed to determine if ongoing simple activities share qualitative tempo-
ral relationships. The simple activities that share qualitative temporal relationships
are inferred as components of a composite activity. However, before the composite

7.5 Simple and Composite Activity Recognition Methods 175

activity is reported to the relevant applications, the ontology is checked for a cor-
responding instance in the static activity model. If a corresponding instance exists,
it is reported to the user; otherwise, it is considered a novel composite activity and
recommended for inclusion in the ontology. To perform this analysis, the approach
uses temporal inference rules. The rules can infer qualitative temporal relationships
and derive corresponding composite activities from the activity models using the
temporal inference mechanism.

7.6 An Example Case Study

7.6.1 System Prototype

As a case study for testing and evaluation, we developed the proposed approach into
a system prototype for simple and composite activity recognition. The prototype
consists of the ADL Ontology and a multi-agent system. The multi-agent system
consist is built using Java Agents Development Framework (JADE) [30]. Overall,
four types of agents were implemented as follows: (a) an agent to receive sensor
input and to segment the sensor data stream; (b) an agent to manage action inference,
generate activity descriptions, and to oversee summarization of activity information;
(c) an agent to manage inference rule execution to aggregate the results from simple
activity recognition to infer composite activities and, finally; (d) multiple agents to
infer simple activities. The benefit of choosing agent as an implementation artefact is
because agents provide the different components with autonomy needed to perform
their respective tasks. In addition, each component can continuously review and react
to changes in its goals. Also, there is massive parallelism involved in executing the
various tasks involved in the framework and these tasks are implemented as agent
behaviours. The ADL Ontology was built using OWL 2 [6] constructs in Protégé
[31] ontology editor. The prototype implements Java-based code interacting with the
Pellet [32] OWL reasoner to provide ontological reasoning support. The inference
rules were implemented as Semantic Web Rule Language (SWRL) [29] rules. To
facilitate the execution of the inference rules we translated the activity ontology
and the SWRL rules to Java Expert System Shell (JESS) [33] fact and rule bases,
respectively. We used the OWL2Jess and SWRL2Jess translators based on [34]. In
the prototype, the JESS fact and rules bases are accessed and processed by a JESS
rule engine. The engine is accessed by behaviours in the JADE agent responsible
for aggregating the results of simple activity recognition. A segment of the activity
ontology and a runtime snapshot of the agent system are shown in Fig. 7.5.

176 7 Composite Activity Recognition

- Segment of Ontology | | Agent system

+ B2 AgentPiatforms
. B -

i Y endedBy some (ADUACHy or StabcCompostectivly)
= | i Compostehcy hashctivty min 2 (ADLAGHky or taiComposkeAtity)
m | Vst iy « SutCopeci)

D ConcurentActivty edRice@10.25.10.7 1099/ ADE
DateTmeDescription 7] /
B Dok o TimeSice 25.10.7-10991ADE
= © DurationDescription ¥ hasOngoingActivity min 2 TimeSice

imeShceOf exactly 1 Dynamict

Simple activity specific agent

WashHands@10.25.10.7:1099/JADE

Predefined instances

Fig. 7.5 A snapshot of the interactions between activity ontologies and runtime agent system

7.6.2 Experiment Design

To evaluate and demonstrate the feasibility of the proposed approach, we used the
synthetic data generator developed and described in Chap. 5 (Sect. 5.6.1) to gener-
ate synthetic ADL data. To generate the synthetic ADL data, seven typical simple
ADLs related to meals (e.g. MakeTea, MakeCoffee, MakeChocolate, and MakePasta),
hygiene (e.g. HaveBath, WashHands) and recreation (e.g. WatchTelevision) were
used. The synthetic ADL data possesses the necessary temporal information and
allows us to evaluate the feasibility of the developed approach. To generate synthetic
ADL data, we specified ‘seed” ADL patterns for both simple activities (e.g. MakeTea,
HaveBath) and composite activities (e.g. MakePastaAndMakeTea). The synthetic
ADL data generator then derives different permutations of these patterns. To select
the permutation to use, it uses a random number generator to guarantee fairness in
pattern selection. The transition time (in seconds) between ADLs is specified for each
ADL pattern. For example, the pattern WashHands-0, MakePastaAndMakeTea-600,
implies that WashHands is the first ADL in the pattern, while the ADL MakePas-
taAndMakeTea will occur 600 s after WashHands is completed. As described in
Chap. 5 (Sect. 7.6.1), one or more patterns of sensor activations is provided for each
simple ADL with each sensor in the pattern activated after a specific amount of time.
It is therefore possible to derive the approximate activity duration from the tempo-
ral information associated with the sensor activations. We generated eight weeks of

7.6 An Example Case Study

Table 7.8 Summary of simple activities in synthetic data set

177

Simple activity #In parallel #In sequential #Standalone Sub-total
MakeTea 8 18 0 26
MakeCoftee 1 0 2

MakeChocolate 1 0 6 7
MakePasta 18 7 0 25
HaveBath 8 7 0 15
‘WashHands 0 10 0 10
WatchTelevision | 10 8 0 18
Total 104

Table 7.9 Summary of composite activities in synthetic data set

Concurrent and # Of occurrences Sequential # Of occurrences

interleaved

MakePasta and 3 MakePasta then 6

MakeTea (a) HaveBath (g)

MakePasta and 5 MakeTea then 4

WatchTelevision (b) WashHands (h)

MakePasta and 8 ‘WashHands then 6

HaveBath (¢) MakeTea (i)

WatchTelevision and 5 MakeTea then 3

MakeTea (d) WatchTelevision (j)

MakePasta and 1 WatchTelevision then |5

MakeChocolate (e) MakeTea (k)

MakePasta and 1 HaveBath then 1

MakeCoffee (f) MakePasta (1)

Total 23 (46 simple Total 25 (50 simple
activities) activities)

synthetic ADL data consisting of 56 episodes of simple or composite activities. A
total of 104 activities were generated consisting of 23 interleaved and concurrent
activities (46 simple activities), 25 sequential activities (50 simple activities), and
eight standalone simple activities to provide the ground truth. Table 7.8 presents an
analysis of all simple activities while Table 7.9 provides a summary of composite
activities.

7.6.3 Results and Discussions

To test the approach and associated algorithms for activity recognition, we use the
simulation tool presented in Chap. 5 to play back the synthetic ADL data described

https://doi.org/10.1007/978-3-030-19408-6_7

178 7 Composite Activity Recognition

14 s
0.8 + i i — .
B Precision
ﬂs + - - - . " » Recall
W Accuracy
04+
0.2 { —
0 ' - <
2 b 4 d e f E h i j

Fig. 7.6 Summary of results for composite activities

above. The sensor data is then fed to the activity recognition system as if the sensor
activations are occurring in real-time. As the data is played back, the recognition
system will attempt to identify the ongoing simple or composite activities. A total of
104 activities were played back in real-time and processed by the system prototype
for activity recognition. The overall accuracy value obtained for simple activities
is 100% since all 104 simple activities were successfully recognized. Figure 7.6
shows the precision, recall, and accuracy values for composite activities. An overall
accuracy value of 88.26% was obtained.

We observed with interest that the accuracy for simple activities was 100%. We
attribute this to the decision we made to derive all possible activity descriptions for
each data stream segment. By deriving activity descriptions as presented by the algo-
rithm in Table 7.7, the approach guarantees that only sensor observations that are
relevant to a particular type of activity are included in its activity recognition. Essen-
tially, primitive actions are used to derive activity descriptions before mapping the
resulting descriptions to activity labels. As a result, each simple activity recognition
unit can correctly classify its activity based on the sensor observations that it obtains.

The overall recognition accuracy for composite activities is 88.26% which is
quite encouraging. It is important to note that recognition accuracy is lower when
the composite activity consists of activities that are executed in sequence. This can
be attributed to the transitions between activities and how well the system keeps
track of the previously recognized activities. We believe that this can be increased by
using feedback from composite activity recognition in segmentation. On the other

7.7 Summary 179

hand, impressive accuracy results for concurrent and interleaved activities can be
attributed to the absence of temporal transitions between the activities involved.

7.7 Summary

This chapter presented a hybrid approach and associated system architecture, mod-
els, methods and algorithms for composite activity modelling and recognition. The
approach combines ontological and temporal knowledge representation formalisms
to provide required modelling and representation capabilities for composite activity
modelling. In this chapter, we have developed a generic conceptual activity model
that encodes the characteristics of simple and composite activities and from which
activity models can be specified. We have developed a unified activity recognition
algorithm that processes streaming sensor data against composite activity models to
support the identification of both simple and composite activities, e.g. interleaved
and concurrent activities. We have described an integrated system architecture for
composite activity recognition in smart homes and further developed a system proto-
type that was used to evaluate the approach. Using the prototype, we have conducted
well-designed experiments which have observed average accuracy values of 100 and
88.26% for simple and composite activities, respectively. This research enriches the
literature and advances the research frontiers of the knowledge-driven approach to
activity recognition.

References

1. Modayil J, Bai T, Kautz H (2008) Improving the recognition of interleaved activities. In:
Proceedings of the 10th international conference on Ubiquitous computing — UbiComp 2008

2. Patterson DJ, Fox D, Kautz H, Philipose M (2005) Fine-grained activity recognition by aggre-
gating abstract object usage. In: Proceedings of international symposium on wearable comput-
ers, ISWC

3. van Kasteren T, Noulas A, Englebienne G, Krose B (2008) Accurate activity recognition in a
home setting. In: Proceedings of the 10th international conference on Ubiquitous computing -
UbiComp 2008

4. WuT,Lian C,HsuJYY (2007) Joint recognition of multiple concurrent activities using factorial
conditional random fields. In: Proceedings of 22nd conference artificial intelligence

5. Hao DH, Pan SJ, Zheng VW, Liu NN, Yang Q (2008) Real world activity recognition with
multiple goals. In: Proceedings of the 10th international conference on Ubiquitous computing
— UbiComp 2008

6. Hu DH, Yang Q (2008) CIGAR: Concurrent and interleaving goal and activity recognition. In:
AAAI conference on artificial intelligence

7. Helaoui R, Niepert M, Stuckenschmidt H (2011) Recognizing interleaved and concurrent activ-
ities: A statistical-relational approach. In: 2011 IEEE international conference on pervasive
computing and communications. PerCom 2011

8. Helaoui R, Niepert M, Stuckenschmidt H (2011) Recognizing interleaved and concurrent activ-
ities using qualitative and quantitative temporal relationships. In: Pervasive and mobile com-
puting

180 7 Composite Activity Recognition

9. Steinhauer H, Chua S (2010) Utilising temporal information in behaviour recognition.In: AAAI

Spring Symposium

10. Okeyo G, Chen L, Wang H, Sterritt R (2012) A hybrid ontological and temporal approach
for composite activity modelling.In: Proceedings of 11th IEEE international conference on
trust, security and privacy in computing and communications trust. - 11th IEEE international
conference ubiquitous computing and communication. [IUCC-2012, pp. 1763-1770

11. Chen L, Nugent CD, Wang, H (2012) A knowledge-driven approach to activity recognition in
smart homes. IEEE Trans Knowl Data Eng

12. Riboni D, Bettini C (2011) OWL 2 modeling and reasoning with complex human activities.
Pervasive Mob, Comput

13. Chen L, Nugent C (2009) Ontology-based activity recognition in intelligent pervasive environ-
ments. Int J] Web Inf Syst

14. Allen JF (2013) Maintaining knowledge about temporal intervals. In: Readings in qualitative
reasoning about physical systems

15. Gu T, Wang L, Wu Z, Tao X, Lu J (2011) A pattern mining approach to sensor-based human
activity recognition. IEEE Trans Knowl Data Eng

16. Saguna S, Zaslavsky A, Chakraborty D (2011) Recognizing concurrent and interleaved activ-
ities in social interactions. In: Proceedings IEEE 9th international conference on dependable,
autonomic and secure computing, DASC 2011

17. Padovitz A, Loke SW, Zaslavsky A (2004) Towards a theory of context spaces. In: Proceedings
second IEEE annual conference on pervasive computing and communications. Workshops,
PerCom

18. Welty C, Fikes R, Makarios S (2006) A reusable ontology for fluents in OWL. In: Formal
ontology in information systems. IOS Press

19. Bucks RS, Ashworth DL, Wilcock GK, Siegfried K (1996) Assessment of activities of daily
living in dementia: development of the bristol activities of daily living scale. age ageing

20. Lawton MP, Brody EM (1969) Assessment of older people: Self-maintaining and instrumental
activities of daily living. Gerontologist

21. Katz S, Downs TD, Cash HR, Grotz RC (1970) Progress in development of the index of ADL.
Gerontologist

22. Bartos A, Martinek P, Ripova D (2010) The bristol activities of daily living scale BADLS-CZ
for the evaluation of patients with dementia

23. Bucks RS, Haworth J (2002) Bristol activities of daily living scale: a critical evaluation. Expert
Rev Neurother

24. Philipose M, Fishkin KP, Perkowitz M, Patterson DJ, Fox D, Kautz H, Hiahnel D (2004)
Inferring activities from interactions with objects

25. Riboni D, Pareschi L, Radaelli L, Bettini C (2011) Is ontology-based activity recognition really
effective? In: 2011 IEEE international conference on pervasive computing and communications
workshops, PERCOM Workshops 2011

26. Horrocks I (2005) OWL: A description logic based ontology language. In: Lecture notes in
computer science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics)

27. Mann CJH (2003) The description logic handbook — theory, implementation and applications.
Kybernetes

28. Baader F, Calvanese D, McGuinness DL, Nardi D, Patel-Schneider PF (2010) The description
logic handbook: theory implementation and applications. Cambridge University Press, New
York

29. Horrocks I, Patel-Schneider PF, Bechhofer S, Tsarkov D (2005) OWL rules: A proposal and
prototype implementation. Web Semant

30. Bellifemine F, Poggi A, Rimassa G (2001) JADE: a FIPA2000 compliant agent development
environment. In: international conference on autonomous agents and multiagent systems

31. Stanford University, University, S.: Protégé

32. Stardog-union: Pellet: OWL 2 Reasoner for Java, https://github.com/stardog-union/pellet

33. Friedman-Hill E (2008) Jess The rule engine for Java Platform

https://github.com/stardog-union/pellet

References 181

34. Jing Mei, EP Bontas: Technical Reports: Reasoning Paradigms for Owl Ontologies. http://
www.ag-nbi.de/research/owltrans/

35. Chan M, Campo E, Esteve D, Fourniols JY (2009) Smart homes---Current features and future
perspectives

http://www.ag-nbi.de/research/owltrans/

Chapter 8)
Semantic Smart Homes: Towards Geda
a Knowledge-Rich Smart Environment

8.1 Introduction

Recently the provision of health and social care is undergoing a fundamental shift
towards the exploitation of technologies to support independent living. These efforts
have been driven by the ever-growing ageing population and the increasingly over-
stretched healthcare resources. Smart Homes (SH) have emerged as a mainstream
approach to enable the use of technologies in an individual’s living environment to
facilitate independent living. SH are augmented environments equipped with sensors,
actuators and devices, inhabited by the elderly or disabled and monitored/supported
by professionals and health services. The primary impetus for SH research and devel-
opment stems from the personal preferences of people to remain in their own home
even if they appreciate that they may be at risk. Additionally, SH are able to sup-
port user-centred personalised healthcare, thus offering the potential to enhance the
quality of life for people at home.

There are currently a number of SH [1-5] in development for the purposes
of demonstration as well as for the establishment of real living environments.
Researchers are using a multitude of technologies that can provide individual aspects
of the functionality required for SH. For example, technologies in sensor networks,
wearable systems, smart devices and Information and Communication Technologies
(ICT) have all been developed for the capture, communication and analysis of data
pertaining to environments, inhabitants and events within smart homes. In the com-
munication layer, open standards and protocols [6, 7] have been developed to address
data exchange and compatibility issues among different types of devices and services.
In activity tracking, monitoring and recognition, approaches and technologies have
been researched and experimented aiming to capture, re-construct and further advise
the behaviour of smart home inhabitants [8-10].

It may, however, be considered that current endeavours in both technologies and
solutions are ad hoc, environment dependent and scenario specific. In most cases,
data collected from one sensor are used only for one purpose and then discarded.
Technological solutions are often developed for well-defined specific cases. It is

© Springer Nature Switzerland AG 2019 183
L. Chen and C. D. Nugent, Human Activity Recognition
and Behaviour Analysis, https://doi.org/10.1007/978-3-030-19408-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19408-6_8&domain=pdf
https://doi.org/10.1007/978-3-030-19408-6_8

184 8 Semantic Smart Homes: Towards a Knowledge-Rich Smart Environment

therefore difficult, if not impossible, for them to be applied in a similar situation,
usually requiring substantial re-engineering. At present, large-scale sensory data
from sensors, inhabitants, environments and external sources can be captured and
collected. Nevertheless, these raw data are too primitive to be processed, used and
reused, effectively and intelligently. Though many data processing technologies have
been developed, the provisioning and deployment of a generic solution by integrating
these fragmented, disjointed technologies is clumsy. And, they are not scalable and
feasible in real-world situations.

The reason for the aforementioned problems can be associated with the fact that
existing SH technologies and infrastructure are not built upon a commonly agreed
SH data model at both data and application levels, together with an expressive rep-
resentation. This gives rise to three direct consequences in the development and
deployment of SH-based solutions:

e Data heterogeneity hinders seamless exchange, integration and reuse of data.

e Application heterogeneity disallows component (i.e., middleware services) reuse
in different application scenarios.

e Without the support of formal data models and expressive representation for-
malisms, current SH technologies are incapable of dealing with rich metadata and
their semantics.

The lack of semantics and inability of data sharing, and integration reduce the
potential to carry out deep, intelligent data analysis and knowledge discovery from
multiple data sources, such as trend discovery, pattern recognition and knowledge-
based decision making. This ultimately leads to the difficulty of developing and
deploying systematic SH solutions with seamless data integration and advanced
high-levels of intelligent capabilities.

As such, there is currently a major gap between these endeavours and the aspi-
ration of what SH should achieve. A vision which can bridge this gap embraces
technical solutions with a high degree of easy-to-use and seamless automation along
with flexibility and scalability in system reconfiguration and deployment, and with
adaptation, personalisation and context-awareness in assistance provisioning. In this
chapter, we propose the concept of the Semantic Smart Homes (SSH). This concept
may be viewed as going beyond current SH technologies through the creation and
management of large-scale, rich semantic information, thus enabling and supporting
high-level intelligent capabilities. The cornerstone for the SSH is the ontology-based
approach to data modelling for SH entities, including inhabitants, environments,
devices and services. Semantic modelling offers realistic solutions to a number of
research issues faced by SH based assisted living such as data interoperability, inte-
gration and semantic/knowledge-based intelligent decision-making support.

8.2 Semantic Smart Homes 185

8.2 Semantic Smart Homes

8.2.1 The Concept

We define SSH as an extension of the current SH in which data, devices and services
are given well-defined meaning. This will better enable the environment, devices,
services/applications and people (inhabitants and professional carers) to work in
cooperation through the extraction of more meaning from the data collected and
more appropriate support measures offered to the inhabitant. The essence of a SSH
is to have data within and across SH defined and linked in a way that it can be
used for more effective discovery, processing, automation, integration and reuse
across various applications. Specifically, with semantics and relationships in place
we can exploit advanced semantic or Artificial Intelligence (Al) based information
processing techniques to provide value-added data processing capabilities such as
data integration, interoperability and high-level decision support within and across
SH communities [11, 12]. We envisage that the SSH notion will bring the seman-
tic dimension into SH solutions, enable semantic-based knowledge discovery and
intelligent processing as has been witnessed within the general Semantic Web com-
munity. This will allow us to ultimately move from the current state of the art of
SH technologies to the next generation SH infrastructure that is required to address
current shortcomings.

Central to the SSH concept and its realisation is semantic data modelling and
representation. The rationale associated with this concept is that the more semantics
and knowledge the data model can hold and represent, the more capabilities and
flexibilities that SSH technologies and applications can achieve in the processing of
data.

We contend that ontologies and the Semantic Web infrastructure are the enabling
technologies for the realisation of SSH. An ontology is an explicit, shared specifi-
cation of the various conceptualisations in a problem domain. It defines commonly
agreed data/knowledge structures, i.e., domain concepts, their attributes and the rela-
tions between them. In addition, it also provides a shared vocabulary for describing
these structures. This means that data providers, no matter where they are, can use
these same structures to preserve and publish semantic-rich data and equally consume
data from other sources. Ontologies provide a common medium for inter-agent infor-
mation exchange, interoperation and integration. As ontologies specify the semantics
of terms at the conceptual level based on the explicit conceptualisation of a domain,
they are understandable and easily processed by both humans and machines, thus
increasing the potential of automation.

186 8 Semantic Smart Homes: Towards a Knowledge-Rich Smart Environment

8.2.2 Related Work

Ontology-based modelling has been extensively explored in the domain of context
modelling. This strand of work concentrates on the modelling of high-level abstract
contextual concepts and/or facts, such as person, location, activity and computa-
tional entity, either sensed, static or profiled, with constraints and annotations. While
it provides some general guidance as a type of upper-level ontology, it fails to cap-
ture specific characteristics of SH. Already, there have been several attempts to use
ontologies to model context in an assistive living scenario [13, 14]. The use of exist-
ing ontologies is primarily restricted to specific pervasive aspects and usually for
reasoning purposes only.

Using ontologies for SH modelling can be viewed as a recent development. Latfi
et al. [15] proposed an ontological architecture for a Telehealth Smart Home (TSH)
and developed prototype ontologies. Klein et al. [16] proposed a context ontology for
ambient middleware as part of the European Union funded SOPRANO project. They
claimed that ontologies will be used as a central reference document for SOPRANO
middleware. Both studies are at concept level. It is not clear how large-scale semantic
content is created and used in real-world scenarios.

While our research shares some consensus with [17] in ontology modelling and
with [15] in the role and use of ontologies, it is fundamentally different from these
works in that we take a broad, integrated and systematic view towards SSH. In
this case, ontology-based semantic modelling and representation is not just used
for separate, stand-alone components for some specific purposes. Rather, ontologies
are regarded as a conceptual backbone and a common vehicle for enabling and
supporting communication, interaction, interoperability, integration and reuse among
devices, environments, inhabitants and external sources. Our focus is on how to
capture and model rich semantic metadata with the emphasis being placed on the
effective use and reuse of intelligent content for supporting assistive living. We also
address issues pertaining to semantic data lifecycle management, namely modelling,
creation, storage, use/reuse and maintenance.

There have been previous projects such as European Union projects ASK-IT [18]
and SAPHIRE [19], which intend to use Semantic Web technologies for interoper-
ability and integration. Until now the SSH concept, and in particular, the idea of using
ontologies as the conceptual backbone for integration, interoperability and high-level
intelligent processing, has not been witnessed.

8.2.3 The Conceptual Architecture

We propose a layered conceptual architecture for the SSH, as shown in Fig. 8.1.
The Physical Layer consists of physical hardware such as sensors, actuators, and
various devices including medical equipment, household appliances and network
components. This layer provides the means to monitor and capture the events and

8.2 Semantic Smart Homes 187

Reusable Third-Party Application Layer Advanced Interaction
Services Apps & Tools P Monitoring & Directing
=0
Intelligent Processing Layer
W 02 A1 0o 0“&06
© s ; D \\ <©
ned N v\'\ﬁ\‘(\% T SRR 1

RDF Data Bus (RDF+OWL+HTTP+SPARQL)
O
{ = =P Semantic Layer =3 7

SH1, SH2 in 1nst1tut10n1- LI -SHl SH2 in 1nst1tut10n2-

Data Flat Files l.)a.ta. L.a;'er]

@ Multimedia
Outputs

Fig. 8.1 The conceptual architecture of the SSH

actions in a SH, and subsequently traverse data to the Data Layer. The Data Layer
archives collected raw data in a number of data stores. These stores are usually
disparate in data formats and access interfaces, with each of them being dedicated
to individual sensor-based application scenarios. The Application Layer contains
various capabilities, tools and (sub)systems for assistive living. Within this layer
applications process sensory data which has been passed via the Data Layer and can
be used to control actuators and/or multimedia facilities in the Physical Layer to offer
assistive living as required. These three layers have so far been the core conceptual
components underpinning SH application design and development. While each layer
is indispensable for any SH application, the close coupling among sensors, data and
applications, often having one to one, ad hoc relationships, causes many challenges
as discussed in the introduction.

The SSH addresses these challenges by incorporating a Semantic Layer, a RDF
(Resource Description Framework') Data Bus and an Intelligent Service Layer in
the proposed systems architecture. These layers break down the direct links between
the Data and Application Layers and provide underpinning technologies for data
sharing, reuse and application development. The goal of the Semantic Layer is to
provide a homogeneous view over heterogeneous data, thus enabling seamless data
access, sharing, integration and fusion across multiple organisations. It achieves
this by using SH ontologies as a unified conceptual backbone for data modelling

IRDF, RDFS, OWL, HTTP, SPARQL and URI that will be mentioned later are all W3C standards.
Detailed information can be found at https://www.w3.org.

http://www.w3.org

188 8 Semantic Smart Homes: Towards a Knowledge-Rich Smart Environment

and representation. Semantic modelling allows the markup of various data with rich
metadata and semantics to generate semantic content. Multiple SH in geographically
distributed locations supported by various organisations can then aggregate and fuse
their SH data. No matter if the data are archived in a centralised repository or in
each institution’s individual repository as shown in Fig. 8.1 the uniform data models
and representation, e.g. RDF or Web Ontology Language (OWL), allow seamless
data access through the RDF Bus based on the standard communication protocol
HTTP and RDF query language SPARQL. The Semantic Layer is also responsible
for providing tools and APIs for semantic data retrieval and reasoning. Details will
be presented in next section.

The Intelligent Service Layer is built upon the semantic content and functionali-
ties of the Semantic Layer. Its purpose is to exploit semantics and descriptive knowl-
edge to provide advanced processing and presentation capabilities and services. The
former provides added-values to the query interfaces of the RDF Bus, by further
searching, analysing and reasoning over recorded SH data. The latter essentially
visualises the contents of the repositories and the outputs of the processing services.
Table 8.1. lists some examples of processing and presentation services. Such a list of
processing and presentation services is illustrative and not exhaustive; furthermore,
it does not mean that each SH will use all these services. In fact, the selection and use
of such services will depend on the nature and availability of collected data as well
as the personal needs of inhabitants and care providers, hence exploiting further the
concepts of personalisation. These services can be realised using industry standards
such as Web services [20] and are given well-defined meaning, e.g. semantic Web
services [21]. They are accessible to third-party developers, thus interoperable and
reusable at both the service and application level.

Table 8.1 A list of examples processing and presentation services

Processing services Presentation services

Compare activities of daily living (ADL) of Browsing and navigation facilities over a

subjects in the same group and/or different single or federated SH repositories

groups

Aggregate multiple data sources to create a Visualise ADL and their differences of

single virtual large data set for data mining subjects in the same group and/or different
groups

Offer semantic based search and discovery Illustrate relationships of ADL from a more

semantic viewpoint

Extract user profiles and ADL patterns Present graphically the results of the various
statistical and probabilistic analysis in mining
and learning

Create inhabitant communities for social or Allow professional carers to specify
medical purposes inhabitants’ ADLs in a graphical manner

Re-construct an ADL trace from a living
context

Semantic Smart Homes 189

The Semantic Layer essentially achieves data interoperability and machine under-
standability, whereas the Intelligent Service Layer delivers the capability of interoper-
ability and high-level automation. As such, the proposed architecture enables a novel
and flexible paradigm of SH system development and deployment. In this paradigm
services in the Intelligent Service Layer are responsible for data access and the pro-
vision of processing and presentation capabilities. They have well-defined interfaces
and can be boxed as primitive off-of-shelf building blocks. SH systems shall have
little direct interaction with data at the lower layers. SH system development will be
accomplished by the aggregation and assembling of various on-demand services in
terms of SH system requirements. New functionalities, i.e. capabilities and services,
can be made available whenever needed. Eventually, a robust feature-rich techno-
logical infrastructure will be in place to facilitate the delivery and agile deployment
of assistive living solutions, e.g. plug and play and open system development.

8.3 Semantic Smart Home Analysis

A SH is a complex ecosystem typically consisting of a physical environment with
various furniture, household appliance and rooms, one or more inhabitants that per-
form various ADLSs within the environment, and sensors and devices (actuators) to
sense and act on environmental changes and inhabitant behaviours. At any specific
time, it will generate data/information about the environment such as temperature,
humidity, the status of doors, windows and lights, about the behaviours of inhabitants
such as sleeping, cooking or watching TV and about events within the smart home
such as alarm-fired, cooker-turn-on or tap-turn-on. Such information once monitored
and collected can be aggregated to denote a situation against which an assistive sys-
tem should be able to carry out interpretation and reasoning to make just-in-time
assistance for the inhabitant. As such, the central issue is therefore how to aggregate
data from multiple data sources to form a meaningful situation and further interpret
them at a higher level of automation, i.e., by software agents.

The nature of SH presents a number of challenges to situation formation and
comprehension. Firstly, most sensor data are primitive numerical data such as 3-D
coordinates for motion detectors, 2-state values for contact sensors. They lack formal
descriptions and can only be consumed by humans through hard-coded operation
logics in ad hoc data processing components. It is difficult, if not impossible, for
machines or soft-agents to interpret and reason their high-level situational meaning.
Secondly, sensor data are increasingly available in a variety of diverse forms, such
as unstructured textual data, audio and surveillance videos. They are heterogeneous
in data formats and representation, and conceptually isolated from each other. For
example, a location sensor (or a video monitor) can detect an inhabitant in front of
the cooker. An event sensor detects the turn-on of a cooker and a contact sensor
detects the movement of a spaghetti pack. While each sensory data reflects one facet
of the situation, it requires the interlinking and fusion of data from multiple, disparate
information sources in order to comprehend and understand such a complex situation.

190 8 Semantic Smart Homes: Towards a Knowledge-Rich Smart Environment

In addition to perceived data, the third challenge is how to model and represent
normal routine ADLs and an inhabitant’s profiles. ADLs are actually the common-
sense knowledge and heuristics of daily living, which provides interrelationships
among environments, events and activities within an SH. For instance, cooking takes
place in the kitchen using a cooker around three times a day. Making a cup of tea
involves the preparation of hot water, tea bag, milk and/or sugar. User profiles, on
the other hand, describe personal information including an inhabitant’s personal
medical data, hobbies, favourite activities and activity patterns. User profiles can be
used to provide inhabitant dependent personalised assistance. Formal modelling and
representation of ADLs and user profiles, in essence, provide a recognition context
for an assistive system to interpret perceived situational data for the provision of
personalised assistance.

8.3.1 Semantics, Semantic Modelling and Representation

Semantics refers to meaning. Semantic modelling refers to the process of defining
the meaning of data, devices and services. The basic formalism used for semantic
modelling is the RDF. RDF is a graph data model for describing resources and
relations between them. An RDF graph contains a set of triples, each triple consisting
of the subject, predicate (property) and object. This structure can be considered
as a natural way to describe the vast majority of the data processed by machines.
A triple can make assertions that particular things (such as sensors, inhabitants)
have properties (such as “is used for”, “has a type”) with certain values (thermostat,
dementia). Figure 8.2 shows the RDF graph that represents the group of statements
“there is a Contact Sensor identified by http://www.ulster.ac.uk/ssh2008/ssh#Trail_
lab_contact_sensor_9, and it is located in the second cupboard kitchen_cupoard_2 of
the kitchen, attached to the bottle milkBottle of milk and it activates the milk_moved
event.

[http://www.ulster.ac.uk/ssh2008/ssh#ContactSensor]

milkBottle
df-syntax-ns#type

https//www.ulster.ac.uk/ssh2008/ssh#attachedTo

http://www.w3.0rg/1999/02/2

[http://www.ulster.ac.uk/ssh2008/ssh#Trail_lab_contact_sensor_9]

http://www.ulster.ac.uk/ssh2008/ssh#atLocatig

kitchen_cupoard_2

Fig. 8.2 An RDF graph describing a concrete contact sensor

n

http://www.ulsterac.uk/ssh2008/ssh#leadToEvent

[http://www.ulster.ac.uk/ssh2008/ssh#milk_moved]

http://www.ulster.ac.uk/ssh2008/ssh#Trail_lab_contact_sensor_9

8.3 Semantic Smart Home Analysis 191

RDF encodes meaning in their triple statements. A single separate data item does
not stand for anything. Its meaning can only be interpreted against a context in which
the term appears. In an RDF expression, the subject, predicate and object are all
identified by a Universal Resource Identifier (URI)—see Table 8.2. This ensures that
concepts and properties are not just terms (keywords) in a domain but can be tied to a
context where their unique definitions can be interpreted. The context is in essence,
the ontologies that formally define all core concepts and the relations between them.
A typical ontology usually contains a hierarchical structure of concepts and subcon-
cepts. Relations between concepts are established by assigning properties to concepts
and allowing subconcepts to inherit such properties from their parent concepts. In
the above example, the ontology is defined in http://www.ulster.ac.uk/ssh2008/ssh.

Ontology languages such as the RDF Schema (RDFES) and OWL are used to
specify domain concepts and relationships between these concepts. RDFS defines a
vocabulary (terms) for describing the properties and classes of RDF resources, with
semantics for generalisation hierarchies of such properties and classes. Table 8.2 is
the RDF representation of the RDF graph in Fig. 8.2. On top of RDFS OWL adds more
vocabulary for describing properties and classes: among others, relations between
classes (e.g. disjointness), cardinality (e.g. “exactly one”), equality, richer typing
of properties, characteristics of properties (e.g. symmetry), and enumerated classes.
This gives OWL more expressive power for representing complex data semantics.

Ontology languages carry built-in inference rules from underlying data models
such as RDF graphs or OWL’s Description Logics. This subsequently gives seman-
tic representation further power to enable inference and reasoning via the notion
of entailments. An ontology may express the rule “If an inhabitant’s action is in
response to an event, and a sensor generates that event from one change, then the
inhabitant’s action can be associated with that change”. A program could then deduce,
for instance, that the action is the direct reaction to the change. The computer doesn’t
truly “understand” any of this information, however, it can now manipulate the terms
much more effectively in ways that are useful and meaningful to human users.

8.3.2 Smart Home Ontology Engineering

Ontology development is a formal process of knowledge acquisition and mod-
elling. It requires the close cooperation of domain experts and knowledge workers.

Table 8.2 The RDF representation of the RDF graph in Fig. 8.2

<ContactSensor rdf:ID="Trail lab contact sensor 9">
<leadToEvent rdf:resource="#milk moved"/>
<attachedTo
rdf:datatype="http://www.w3.0rg/2001/XMLSchema#string">milkBottle
</attachedTo>
<atLocation rdf:resource="#kitchen cupoard 2"/>

</ContactSensor>

http://www.ulster.ac.uk/ssh2008/ssh

192 8 Semantic Smart Homes: Towards a Knowledge-Rich Smart Environment

Domain experts identify and describe concepts, properties, their relations, instances
and role-playing actors within a problem domain, and domain-specific, application-
dependent problem-solving processes. Knowledge workers, who do not have domain
background, will use extensive knowledge engineering techniques to capture useful
knowledge based on the experts’ expertise and will develop knowledge-preserving
structures, i.e. models, which can hold and share reusable information. As such,
domain analysis and characterisation is essentially the first step of ontology devel-
opment.

A SH is a complex micro-ecosystem that usually consists of the following con-
stituents:

e a physical environment with various pieces of furniture, electrical/electronic
household appliances, and rooms which provide a living space,

e inhabitants that perform various activities within the environment,

e sensors, actuators and medical devices to sense and act on environmental changes
and inhabitant behaviours,

e assistive resources including actors (care-providers or family members), middle-
ware services or applications to respond to events and situations.

Each of these constituents plays an indispensable role and provides specific func-
tions. Overall, they deliver ‘just-in-time’ assistance for inhabitants through inter-
communication and causal interactions.

Based on the above characterisation a SH can be modelled in seven ontologies.
They include an ontology for the physical equipment such as sensors, actuators, med-
ical devices and home electronic or electrical appliances; an ontology for actions and
ADLs such as watching television and making drinks; an ontology for living spaces
and environments such as the kitchen, sitting rooms; an ontology for actors such as
inhabitants, care-providers; an ontology for medical information; an ontology for
software components such as services and applications and an ontology for time in
order to model temporal information. Each ontology is used to explicitly conceptu-
alise a specific aspect and overall, they provide a semantic model for smart homes.
Details of semantic modelling, semantic data management and activity recognition
are described in Chap. 9. It is worth noting that existing well-defined ontologies
could be imported and reused directly, for example some medical ontologies and a
time-based ontology [22].

8.4 Semantic Enabled Processing Capabilities

Semantic modelling gives data many characteristics that are otherwise not avail-
able. Firstly, it enables the data to be exchangeable, interoperable and accessible at
both intra- and inter-institutional levels based on the commonly accepted ontolog-
ical schema. Secondly, it makes data understandable and easily processed by both
humans and machines (or software agents). Thirdly, semantic data supports reasoning
and inference by incorporating entailment rules in expressive representation. These

8.4 Semantic Enabled Processing Capabilities 193

attributes make semantic data amenable for flexible and complex manipulation, thus
enabling many advanced processing capabilities such as automated processing and
knowledge discovery, and novel application scenarios such as data sharing, reuse,
integration, and situation-aware assistance.

Given the manner in which semantic data are used is only limited by the appli-
cation’s requirements and the developer’s imagination, it is unwise and practically
impossible for us to try to elaborate all usage mechanisms. As such this section will
omit discussions relating to the basic use of semantic data, for example how to facili-
tate data sharing and exchange, how to carry out semantic retrieval and searching, as
these features have already been elaborated and illustrated through research results
in various domains. Instead, we shall discuss some core innovations brought specif-
ically to SH through the combination and synergy of these semantic data properties.

8.4.1 Towards a Paradigm of Extensible and Flexible
Assistance Provisioning

The SSH concept can support an open, plug-and-play paradigm that makes assistance
provisioning extensible and flexible, and facilitates rapid prototyping and is easy-
to-deploy. This paradigm is enabled by the explicit separation and management of
entities, i.e. devices, inhabitants and individual SH, and functionalities, i.e. services
and applications. It distinguishes services, i.e. high-level functional components that
are used as building blocks for multiple applications, from applications, i.e. systems
that are used by end users, either care providers or inhabitants for providing assis-
tance. In particular, it unties the direct links between services and applications and
specific devices, environments (individual SH) and inhabitants.

As shown in Fig. 8.3, entities in all smart homes within an institution and services
(i.e. functions) that are applicable to various data are semantically described and
placed in a registry. Care providers in the Central Assistance Provisioning Environ-
ment in an Institution can discover applications from the registry based on require-
ments of individual inhabitants. The discovered applications are then linked to sen-
sory data and provide assistance through data processing. In this paradigm, new
entities and functions, such as a newly installed sensor, a new resident or a new
function, can then be added into the registry anytime for discovery and reuse while
the whole system is still working. Therefore, it supports the plug-and-play concept
and makes the system extensible. Application developers can discover and reuse
available services to develop new applications, and can then publish the application
in the registry for further reuse. This paradigm will significantly reduce the needs
for developing new services and applications when new SH or devices are added.
Equally services and applications requiring sensory data can search the registry to
discover available devices that provide the required data. This paradigm saves not
only effort for the development and cost for new devices, but, also facilitates rapid
prototyping and easy deployment.

194 8 Semantic Smart Homes: Towards a Knowledge-Rich Smart Environment

4 N\
Central Assistance Provisioning Environment

[Query & Discovery Interfaces]:[Application Execution]

N == 74—
e L
Registry
= Application
2 [Inhabitants] [Applications Providers Dynamic
= Sensory
3 [Devices] [Services Data

Service
Providers V

1
a . . o N\
A Care Institution or Multiple Care Institutions
Smart Home 1 Smart Home 2
| Devices] Inhabitants [Devices] [Inhabitants] seee
&

%

Fig. 8.3 An open paradigm for assistance provision

The above discussion is made in the context of an SH based care institution(s). It
is actually applicable to more generic scenarios. For example, individual SH could
be geographically dispersed across a wide area without belonging to any specific
care institutions. In an extreme case, ordinary family homes could be connected to
such assistive systems through broadband, passing data and receiving advice. The
key point we wish to make is that the SSH concept enables an open home paradigm
for assistance provision.

8.4.2 Cognitive ADL Monitoring and Recognition

Current SH can provide reminding assistance through pre-defined instructions, such
as the instruction to take medicines as a specific time [23], to perform ADLs such
as prepare a meal [24] and reactive emergency handling, for example, calling for a
fire engine when a fire breaks out. In the future, however, it is increasingly expected
that assistance at a behavioural level is provided for the elderly. A particular group
within this cohort who would benefit from the deployment of SH technology would
be those suffering from cognitive deficiencies such as Alzheimer’s disease. For these
persons, it then becomes necessary to monitor their behaviour and recognise their
intended ADLs so that just-in-time assistance can be provided.

Semantic modelling and reasoning can achieve this in a scalable and automatic
way by building ontological behavioural models. The basic idea is that through

8.4 Semantic Enabled Processing Capabilities 195

semantic modelling we can build an ADL ontology as shown in Fig. 8.4 with each
node denoting a type of ADL. Each ADL class is described with a number of prop-
erties and sub-classes can inherit all properties from its parent class. A property is
defined by specifying its domain and range. The domain refers to all classes that can
be described by the property and the range refers to all classes whose instances can
be assigned to the property. A property describes a class using either a literal or an
instance of another class as its value, thus linking two classes. This essentially gives
rise to a description based behavioural model, i.e., an ADL is described by various
properties.al model, i.e., an ADL is described by various properties.

The underlying mechanisms for ADL monitoring and recognition are straightfor-
ward and natural. If we can identify a number of properties, then we could infer and
recognise an ADL or ADLs based on the described ontological behavioural model.
In semantic modelling, the perception of an event and/or the detection of sensory
signals imply the identification of a concrete instance of a class. For example, the
activation of a contact sensor in a cup means that the cup, as an instance of Container,
is used in an ADL. As the Container class is the range of the hasContainer property,
it can be inferred that the hasContainer property is assigned the value cup. Since
the hasContainer property is used to describe the MakeDrink class, it can be further
inferred that a MakeDrink ADL has taken place. Nevertheless, it is not possible to
ascertain whether the ADL is MakeHotDrink or MakeColdDrink as both ADLs have
the hasContainer property. This is exactly one of the advantages of the description-
based ADL recognition because based on limited sensory information the system
can still identify uncertain high-level ADLs. In the given example, though we can-
not tell the concrete ADL, i.e. the MakeHotDrink or the MakeColdDrink, we can at
least know that the inhabitant is performing a MakeDrink ADL. When more sensory
becomes available, concrete ADL(s) can be identified. Suppose that a contact sensor
in a tea container is activated, this implies that an instance of the HotDrinkType class,

CookingAppliance

useCookingAppliance

MakeMeal

MakeSpaghetti

MakeSandwich
ColdDrinkType

hasColdDrinkType

Addings

CookingMaterial

NoCookMeal

MakeColdDrink
MaktHotDrink
inLocation
hasAdding
HotDrinkType

Fig. 8.4 A fragment of the graphical hierarchy of the ADL ontology

hasMaterial

hasActor

hasHotDrinkType

196 8 Semantic Smart Homes: Towards a Knowledge-Rich Smart Environment

i.e. the tea, has been specified, and the hasHotDrinkType is assigned the value tea. In
this case, it is reasonable to assume that an ADL or ADLSs that happen, though we do
not know yet, must have at least the two properties hasContainer and hasHotDrink-
Type. Based on the ontological ADL model we can infer that it is the MakeHotDrink
ADL.

The ADL monitoring and recognition process can be summarised as follows:
Sensory inputs are used to identify concrete items that have already been specified as
instances of classes in SH ontologies. In terms of the scope of a property’s range, the
property that takes the identified item as its value can be inferred. In terms of the scope
of a property’s domain the ADL(s) that can be described by the inferred properties
can then be recognised. As properties can be inherited from super-classes (higher
level abstract ADLSs) to sub-classes (lower level concrete ADLs), the lower a class
is in the ADL class tree the more properties it has. This means that the more sensory
data that are available, the more accurately ADLs can be recognised. For example, if
we only have the location sensory data as inKitchen, we can only infer the inhabitant
might perform a KitchenADL at that specific point in time, without knowing what
ADL itis. If further data become available, for example cup sensory data, then we can
infer the inhabitant might perform the MakeDrink ADL at that specific point in time.
Nevertheless, we still do not know what drink the inhabitant will make. If we obtain
the coffee sensory data, then we can determine that the inhabitant is making coffee,
but we still do not know if it is a white coffee or a black coffee. Hence the sensory data
from milk or sugar sensors can further help to recognise the details of the performed
ADL. From what we have described above, it is apparent that the proposed approach
can monitor the unfolding of an ADL and incrementally recognise the ultimate ADL,
which may be considered as not previously possible. The monitoring and recognition
process conceptually corresponds to the subsumption operation of description logic
based reasoning, which can be realised using reasoners such as FaCT or RACER
[25].

The semantic model which enables behaviour monitoring and recognition has
a number of compelling advantages: Firstly, the scalability of SH ADL modelling
has been a bottleneck to effective behavioural recognition. It is often the case that
proof-of-concept experiments, either state-based or process-based approaches, work
well but fail to scale up. Ontological ADL modelling does not have this problem
with the extensive technological support which is offered in ontology engineering,
which includes tools, APIs, storage and reasoners. Ontologies of thousands of classes
have been developed in other domains, e.g., 7,000 concepts in the gene ontology, and
semantic data repository of 25 million triples is also practiced in TripleStore [26]. For
smart homes, ADL classes and associated instances are simply not present in such
scale. Secondly, semantic ADL models contain explicit rich semantics and built-in
logical entailment rules. This allows not only humans but also software agents (such
as assistive systems) to interpret, comprehend and reason against captured semantic
ADL data. As such, behaviour monitoring and recognition can be realised at higher
levels of automation. Thirdly, description-based reasoning provides a mechanism to
incrementally predict ADLs by interpreting limited or incomplete sensor data. This

8.4 Semantic Enabled Processing Capabilities 197

capability is particularly important because assistive systems are supposed to provide
reminding or suggestive assistances with limited sensory data.

8.4.3 Knowledge-Based Assistive Living Systems

Ontologies are knowledge models. ADL classes and their hierarchical structure in
SSH ontologies are in essence the explicit model and representation of the common-
sense knowledge of a human’s daily activities and their classification. In addition to
these generic ADLs, individual inhabitants have their own living habits, regular ADL
patterns, preferences and unique ways to respond to various events. Such individual
lifestyles may further vary with age profile, culture and personality. Using semantic
modelling we can formally capture, model and represent an individual inhabitant’s
personal specialties in semantic repositories. These heuristics and knowledge can
then be exploited for intelligent living assistance. A typical example is personalised
assistance. Consider that a MakeDrink ADL is recognised as described in Sect. 9.3
for a person with dementia. An example of general assistance provided would be
to advise the person to make either a cold drink or a hot drink. Then the assistive
system will monitor the person’s behaviour and advise its actions accordingly. If
the person’s preferences on making a drink are known, e.g., she/he likes hot white
coffee, then the assistive system can directly remind the person what she/he should
do in order to make their coffee hot with milk. Similar assistance can be offered for
recommending other ADLs, for example TV channels, etc.

Another knowledge-based use scenario is adaptive assistance. Rather than mod-
elling an inhabitant’s behavioural preferences a priori, an assistive system can derive
an inhabitant’s ADL patterns through data mining and pattern recognition against
collected semantic data. This will capture the evolution of an inhabitant’s daily life
and incorporate changes into behavioural models. An assistive system can then rea-
son against learnt ADL patterns to provide adaptive assistance.

8.5 Summary

Research on SH and assistive living has come to a critical point where novel
paradigms and technologies are needed in order for the approach to be useful in real-
world scenarios in terms of applicability, scalability and ease of use. This chapter
has introduced the concepts of SSH that aims to break down barriers (heterogene-
ity) and isolations (hardwired) among devices, data, capabilities and applications,
and to unleash the potential of the approach through semantics, rules and expressive
representation. We have proposed an integrated systems architecture for SSH and dis-
cussed its core functional components and interplay. We have described in detail the
methodology and related technologies for semantic modelling and semantic content
management.

198 8 Semantic Smart Homes: Towards a Knowledge-Rich Smart Environment

While the SSH concept, its enabled assisted living paradigm and underpinning
technologies await further investigation, development and evaluation through real
world use case studies, the work presented in this chapter has laid a solid architectural
and methodological foundation. Initial results have demonstrated the potential and
value of the approach and further clarify future research directions. We believe that
SSH are the next generation of technological infrastructures for assisted living that
facilitates the innovative exploitation of research results from Al, Web technologies
and information processing.

References

1. Rochester University: University Creates Medical "Smart Home" To Study
Future Health Technology - Newsroom - University of Rochester Medical Cen-
ter. https://www.urmc.rochester.edu/news/story/-103/university-creates-medical-smart-home-
to-study-future-health-technology.aspx

2. Nugent CD, Mulvenna MD, Hong X, Devlin S (2009) Experiences in the development of a
smart lab. Int J Biomed Eng Technol 2:319-331

3. MIT: House_n The PlaceLab. http://web.mit.edu/cron/group/house_n/placelab.html

4. Georgia Institute of Technology: Aware Home Research Initiative. http://www.awarehome.
gatech.edu/

5. Espinilla M, Martinez L, Medina J, Nugent C (2018) The experience of developing the UJAmI
Smart Lab. IEEE Access 6:34631-34642

6. OSGi Alliance: OSGi™ Alliance — The Dynamic Module System for Java. https://www.osgi.
org/

7. KNX: KNX Internet of things KNX Association. https://www.knx.org/knx-en/for-
professionals/benefits/knx-internet-of-things/index.php

8. Salguero AG (2018) Using ontologies for the online recognition of activities of daily living.
Sensors (Basel) 18:1-22

9. Bibi S, Anjum N, Sher M (2018) Automated multi-feature human interaction recognition in
complex environment. Comput Ind 99:282-293

10. Almeida A, Azkune G (2018) Predicting human behaviour with recurrent neural networks.
Appl Sci 8:305

11. Davies J, Studer R, Warren P (2006) Semantic Web technologies: trends and research in
ontology-based systems. Wiley, New York

12. Pollack ME, Pollack ME (2005) Intelligent technology for an aging population: the use of Al
to assist elders with cognitive impairment. Al Mag 26(2):9

13. Noor MHM, Salcic Z, Wang KIK (2018) Ontology-based sensor fusion activity recognition. J
Ambient Intell Humaniz Comput 1-15 (2018)

14. Meditskos G, Kompatsiaris 1 (2017) iKnow: ontology-driven situational awareness for the
recognition of activities of daily living. Pervasive Mob Comput 40:17-41

15. Latfi F, Lefebvre B, Descheneaux C (2007) Ontology-based management of the telehealth smart
home, dedicated to elderly in loss of cognitive autonomy. In: CEUR workshop proceedings

16. Klein M, Schmidt A, Lauer R (2007) Ontology-centred design of an ambient middleware
for assisted living: the case of SOPRANO. In: Towards ambient intelligence: methods for
cooperating ensembles in ubiquitous environments (AIM-CU), 30th annual German conference
on artificial intelligence

17. Roussaki I, Strimpakou M, Pils C, Kalatzis N, Anagnostou M (2006) Hybrid context modeling:
a location-based scheme using ontologies. In: Proceedings - fourth annual IEEE international
conference on pervasive computing and communications workshops, PerCom workshops 2006

https://www.urmc.rochester.edu/news/story/-103/university-creates-medical-smart-home-to-study-future-health-technology.aspx
http://web.mit.edu/cron/group/house_n/placelab.html
http://www.awarehome.gatech.edu/
https://www.osgi.org/
https://www.knx.org/knx-en/for-professionals/benefits/knx-internet-of-things/index.php

References 199

18.

19.

20.

21.

22.
23.

24.

25.

26.

European Commission - CORDIS: ASK-IT - Ambient intelligence system of agents for
knowledge-based and integrated services for mobility impaired users. https://cordis.europa.
eu/project/rcn/72134/factsheet/en

European Commission - CORDIS: Final Report Summary - SAPPHIRE (System Automation
of PEMFCs with Prognostics and Health management for Improved Reliability and Economy).
https://cordis.europa.eu/project/rcn/10848 1/reporting/en

W3C: Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language. https://
www.w3.org/TR/wsdl20/

Johnston WE (2004) Semantic services for grid-based, large-scale science. IEEE Intell Syst
19:34-39

The time ontology in OWL. https://www.w3.org/TR/owl-time/

Nugent C, Finlay D, Davies R (2007) The next generation of mobile medication management
solutions. Int J Electron Healthc 3(1):7-31

Philipose M, Fishkin KP, Perkowitz M, Patterson DJ, Fox D, Kautz H, Hidhnel D (2004)
Inferring activities from interactions with objects. IEEE Pervasive Comput 1(4):50-57
Dentler K, Cornet R, Ten Teije A, De Keizer N (2011) Comparison of reasoners for large
ontologies in the OWL 2 EL profile. Semant Web 2:71-87

Harris S, Gibbins N (2003) 3store: efficient bulk RDF storage. In: Proceedings of the Ist
international workshop on practical and scalable semantic systems (PSSS’03)

https://cordis.europa.eu/project/rcn/72134/factsheet/en
https://cordis.europa.eu/project/rcn/108481/reporting/en
https://www.w3.org/TR/wsdl20/
https://www.w3.org/TR/owl-time/

Chapter 9 ®)
Semantic Smart Homes: Situation-Aware | oo
Assisted Living

9.1 Introduction

With the advance and prevalence of low-cost low-power sensors, computing devices
and wireless communication networks, pervasive computing has evolved from a
vision to a realistically achievable and deployable computing paradigm. Research
is now being conducted in all related areas, ranging from low-level data collec-
tion, intermediate-level information processing, to high-level applications and ser-
vice delivery. It is becoming increasingly evident that the prevalence of intelligent
environments to work and to live in within which flexible multimodal interactions,
proactive service provisioning, and situation aware personalized activity assistance,
will be commonplace.

At the moment the provision of healthcare is undergoing a fundamental shift
towards the exploitation of technologies in pervasive computing to support indepen-
dentliving, as the ever-growing ageing population increasingly over-stretches limited
healthcare resources. SH has emerged as one of the mainstream approaches to pro-
viding ADL assistances for the elderly, in particular those suffering from cognitive
deficiencies such as Alzheimer’s disease [1, 2]. A SH is an augmented environment
equipped with sensors, actuators, devices and information processing components,
inhabited by the elderly or disabled. The rationale is that assisted systems can mon-
itor, collect and process environmental events and user’s behaviour through sensors,
and respond through actuators or health services, e.g., audio/video outputs or care
professionals, to advise the inhabitant the most suitable actions based on the dynamic
situation and the inhabitant’s ADL profiles.

SH generate massive amounts of data from sensors and mobile devices around
the people and entities. Existing research has concentrated on sensor networks, data
collection and communication, and can provide low-level ad hoc responsive assis-
tances based on the simple processing of low-level raw sensor data. For example,
if a room temperature is lower than a specific value, the air conditioner will start.
However, it still remains a challenge to provide just-in-time behavioural and cogni-
tive assistance for cognitively deficient inhabitants such as dementia patients who

© Springer Nature Switzerland AG 2019 201
L. Chen and C. D. Nugent, Human Activity Recognition
and Behaviour Analysis, https://doi.org/10.1007/978-3-030-19408-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19408-6_9&domain=pdf
https://doi.org/10.1007/978-3-030-19408-6_9

202 9 Semantic Smart Homes: Situation-Aware Assisted Living

often get lost during their ADL due to bad memory and/or cognitive problems. For
instance, to remind a dementia patient to add milk to a cup after a tea bag and hot
water have been added. To achieve this, assistive systems have to be able to observe,
interpret and reason the dynamic situations in a SH, both temporally and spatially. In
other words, assistive systems should have cognitive capabilities to compensate the
loss of the inhabitants’ cognition capabilities and to guide the inhabitant’s behaviour
as normal care providers can do. This further requires that the situational data of a
smart home be interpretable and processable by assistive systems.

9.2 Related Work

Making computer systems adaptable to the changes of their operating environments
has been previously researched in the context of agent technologies [3]. An intelligent
agent is a software system operating in an environment. It senses the changes of the
environment, makes a plan in terms of its goal and domain knowledge and takes
actions accordingly. An intelligent agent can respond to changes of the environment
it inhabits in a number of ways, notably reactive, proactive and adaptive.

Recently technology advances in pervasive computing and ambient intelligence
have provoked considerable interest in context-aware applications [4, 5]. Context
awareness in pervasive computing refers to a general class of software systems that
can sense their physical environments, i.e., their context of use, and adapt their
behaviour accordingly. Here contextual information mainly consists of location, time,
the entities the system interacts with and the surrounding events and resources. How-
ever, context awareness and situation awareness have different research focuses. The
former is mainly concerned with linking changes in the environments with software
systems. The latter rather concentrates on the knowledge and understanding of the
environment that is critical to decision making. Situation awareness pays particular
attention on the mental model and cognitive processes from the system’s perspective.

Some recent and ongoing work on context aware assistive technologies has
adopted an ontology based approach [5, 6]. Nevertheless, ontologies are primar-
ily treated as data models for data/service integration, exchange and sharing in these
practices. In contrast, our work uses ontologies as conceptual level knowledge models
to support automated situational data interpretation and reasoning.

The use of semantic technologies for situation awareness has been studied in
military operational context [7, 8]. While our research shares consensus with these
endeavours in using ontologies as the situational data models, the fundamental dif-
ference is on how such semantic situational data are used. They have concentrated on
semantically enabled data fusion and retrieval. Our work focuses on the innovative
exploitation of semantic situational data for the provision of high-level cognitive
capabilities with the purpose of delivering cognitive assistance for SH patients. As
such we have introduced an agent-based approach to automated situational data com-
prehension and reasoning. The synergy of semantically enhanced situation awareness

9.3 A Systematic Approach to Situation-Aware ADL Assistance 203

with intelligent agents for cognitive ADL assistance has not been seen so far in related
research communities.

9.3 A Systematic Approach to Situation-Aware ADL
Assistance

A situation is often conceptualized as a snapshot of states at a specific time point
in a physical or conceptual environment. Situation awareness has commonly been
referred to as “the perception of elements in the environment within a volume of time
and space, the comprehension of their meaning, and the projection of their status in
the near future” [9]. From this definition we can figure out that situation awareness
is a cognitive process that consists of three operational functions. Firstly, it involves
the sensing and recognition of different elements in the environment as well as their
characteristics and behaviours. Secondly, it needs the interpretation and compre-
hension of the significance associated with perceived elements in the environment.
And thirdly it requires the ability to anticipate the actions of elements and predict
future states of the environment. For entities, either human beings or robots or soft-
ware systems, operating in complex, dynamic and uncertain environments, situation
awareness is the determinant of making informed right decisions at the right time in
the right place.

Human beings with normal cognitive capabilities are situation aware when they
make decisions in their ADL. Nevertheless, SH inhabitants, esp. those suffering
from cognitive deficiencies such as Alzheimer’s disease, are incapable of doing this.
As such a basic requirement of assistive systems is that they should be situation
aware. Current SH infrastructure has provided sensor networks for perception, but
the interpretation and understanding of perceived data and the realization of high-
level cognitive capabilities such as prediction, explanation and planning are still
missing.

We propose a systematic approach to enhanced situation awareness for assistive
systems, as shown in Fig. 9.1. The approach is grounded on three technological
pillars, corresponding to the realization of the three operational functions for situa-
tion awareness respectively. The first technological underpinning is based on sensor,
device and actuator networks that are responsible for monitoring and collecting sit-
uational data. They are mainly embedded in a SH physical environment—see the
left Smart Home component in Fig. 9.1. The second pillar is semantic data manage-
ment as shown in the Semantic Management component, which includes sensor data,
ADLs and an inhabitant’s ADL profiles. The use of ontologies for data modelling
and representation serves two purposes: Firstly, it provides a formal way to model
and represent interrelations between data from multiple sources, thus facilitating
data fusion and construction of situations. Secondly, it gives data rich metadata and
well-defined meaning, thus enabling automated comprehension of the significance of
situational data. The third technological pillar is intelligent Assistive Agent that pro-

204 9 Semantic Smart Homes: Situation-Aware Assisted Living

4 Smart Home) / Assistive Agent \ S/emantlc Managem«h‘
f Inhabitant J » Personalised ADL]v\ =@
;) ' - -
Actuators }\ Deliberative Layer) ADL Ontologies
> —— s I &
Care Providers]‘/ Reactive Layer l= Domain Knowledge
; 1 . ' :
SH Environment } [Siluation Recognition[¢ | Context Ontologies
: a— J
Sensors & Devices] Semantic Context /

\ J

Fig. 9.1 The proposed system architecture

vides high level cognitive capabilities such as prediction, explanation and planning
based on reasoning and manipulation of semantic situational data and knowledge.
Given the considerable existing work on the physical aspects of SH such as sensors
and underlying communication networks, we focus on semantic data management
and assistive agent for the realization of situation-aware ADL assistance, which are
described in detail below.

9.4 Semantic Data Management

This section describes semantic modelling, semantic content creation and manip-
ulation—the key enabler for the proposed approach. Figure 9.2 depicts the core
components and technologies in which ontologies are used as commonly agreed
uniform data models to imbue raw data from various data sources with rich meta-
data and semantics. Both ontologies and generated semantic content are represented
using expressive Web ontology languages such as RDF or OWL and are stored in
data repositories in which all data are semantically interlinked. Semantic content
can be understood and processed by machines or agents, thus allowing a high level
of automation, seamless data access, retrieval and reasoning. Details are described
below.

9.4 Semantic Data Management 205

;
ey P
I

\Semantic Enrichment

Ontologies /
<> N
. Sensory
Devices Data

Semantic technologies provide a potential solution to the aforementioned challenges.
Firstly, ontologies could provide a mechanism for making the meaning of per-
ceived sensor data explicit. This can be achieved through semantic enrichment to
create semantic content. Such machine understandable and processable situational
data allow assistive systems for automated comprehension of situations. Secondly,
semantic modelling and representation facilitate semantically enabled data integra-
tion and fusion because situation awareness of complex dynamic environments like
SHs often require to fuse information from multiple, disparate information sources
for the recognition of a situation [10]. Thirdly, the embedded knowledge such as
activity patterns, heuristics and causal relations in ontologies allow assistive systems
to reason over perceived situational data with respect to the prediction of future states
of SHs or next action of the inhabitant.

Based on the characterisation in Fig. 9.2 we model a SH in seven ontologies. These
include an ontology for the physical equipment such as sensors, actuators, medical
devices and home electronic or electrical appliances; an ontology for actions and
ADLs such as watching television and making drinks; an ontology for living spaces
and environments such as the kitchen, sitting rooms; an ontology for actors such as
inhabitants, care-providers; an ontology for medical information; an ontology for
software components such as services and applications and an ontology for time
in order to model temporal information. Each ontology is used to explicitly con-
ceptualise a specific aspect and overall, they provide a semantic data model for the
construction of SH situations. Figure 9.3 shows some classes and properties of SH
ontologies which have been developed using the Protégé tool. It is worth noting that

Commonsense
ADL Knowledge

Fig. 9.2 The core components for semantic management

9.4.1 Semantic Data Modelling

206 9 Semantic Smart Homes: Situation-Aware Assisted Living

Asserted Hierarchy M Properties o
» @ Behaviour (M activatedBy
v) HomeErtity [atLocation
V¥ () Device M sttachedTo
p O Actustor M directedBy
| 2 Sensor I GeneralDescriptions

p () TeleHealthDevice M hasAddress
p () ElectriElectrosppliance [hasADLHabit

p) Furniture M hasAge

> ' LivingSpace M hasBinthDate
) Location (M hasCarer

» @ Person (MM hasDevice

Fig. 9.3 A fragment of the SH ontology

existing well-defined ontologies could be imported and reused directly, for example
the time ontology [11].

9.4.2 Semantic Data Creation

Ontologies are knowledge models that can be used to create semantic data. There
are two major approaches for this purpose. One is to use generic ontology editing
tools such as the Protégé OWL Plugin [12]. These tools can usually be used to per-
form several activities in one go, such as knowledge acquisition, ontology editing,
knowledge population as well as knowledge base creation. They are feature rich
but require professional knowledge engineering expertise. So this method is suitable
for knowledge engineers. Another approach is to develop domain specific dedicated
lightweight annotation tools for domain experts or resource (data) providers to carry
out semantic annotation and create knowledge repositories. Such tools are often
designed to provide intelligent semi(automatic) support for knowledge acquisition
and modelling, including automated information extraction, classification and com-
pletion, to help create instances.

Given the nature of data in SH we propose a two phase semi-automatic approach to
semantic descriptions. In the first phase data sources such as sensors and devices are
manually semantically described. As the number of data sources in a SH is relatively
limited, though large, it is manageable to create all semantic instances manually
by generic ontology editors such as the Protégé OWL Plugin. Figure 9.4 shows an
instance of SSH inhabitant that is created in the Protege and represented in OWL.
In the second phase dynamically collected sensory data are first converted to textual
descriptors. For example, a contact sensor returns a two-state binary value. It can be
pre-processed to literals sensible for denoting two states such as on/off or open/close
or used/unused, etc. The concrete interpretation of the state depends on the purpose

9.4 Semantic Data Management 207

<Inhabitant rdf:ID="UU_Trail Occupier">
<hasFavouriteADL rdf:resource="#WatchUEFAFinal"/>
<hasPersonalDetail>
<PersonalDetail rdf:ID="Jemma">
<hasGender rdf:datatype="http://www.w3.0rg/2001/XMLSchema#string">Female
</hasGender>
<hasTelephone rdf:datatype="http://www.w3.0rg/2001/XMLSchema#string">
028 90366666</hasTelephone>
<hasNextKin rdf:datatype="http://www.w3.0rg/2001/XMLSchema#string">
Jogh Health</hasNextKin>
</PersonalDetail>
</hasPersonalDetail>
<performAction>
<Call999 rdf:ID="Call999 forFireEngine">
<activatedBy> <AlarmFired rdf:ID="AlarmFired 6"/> </activatedBy>
</Call999>
</performAction>
<hasADLHabit rdf:resource="#MakeABreakfastTea"/>
<atLocation>
<Location rdf:ID="Location_ 6">
<withinLivingSpace> <Kitchen rdf:ID="Jemma_ Kitchen"/></withinLivingSpace>
<onCoordinates>
<LocationCoordinate rdf:ID="oven_Coordinate">
<hasZCoordinate rdf:datatype="http://www.w3.0rg/2001/XMLSchema#float">
30.0 </hasZCoordinate>
</onCoordinates>
</Location>
</atLocation>
</Inhabitant>

Fig. 9.4 A fragment of the OWL representation of the inhabitant instance

of the sensor. For example, the two states of a contact sensor in a microwave could be
open/close. If the contact sensor is attached to a milk bottle, the literal might be used
or unused. The conversion of numerical values to descriptive terms is to facilitate
interpretation and comprehension for both humans and machines. Pre-processed data
can then be automatically attached to semantic instances of the corresponding data
source to create a data repository.

9.4.3 Semantic Content Storage and Retrieval

Once semantic data are generated, they can be archived in semantic repositories for
later exchange or consumption by various applications (e.g., mining and integration).
Semantic repositories are essentially knowledge bases consisting of millions of RDF
triples. They are built on top of traditional database management systems by adding
a semantic processing layer for semantic manipulation. Several semantic repository
technologies such as Apache Jena Fuseki [13] and Neo4j [14]. are available, which
could be inspiring and motivating for SSH.

Repositories may be centralised in one location or distributed in geographically
dispersed sites. As all repositories share the same model, i.e. ontologies, and often
use the same type of access APIs, there is little difference in the retrieval of semantic
data. Nonetheless, distributed repositories are required to deal with issues pertaining

208 9 Semantic Smart Homes: Situation-Aware Assisted Living

to security and communication bandwidth. Within SH based assisted living, data
may be exchanged and shared between institutions in different countries at a global
scale. It would be desirable for each institution to have a repository and its own
authorisation and authentication control for the enforcement of local data usage
policies and ethical issues. On the other hand, as the volume of various data in a single
SH is expected to be reasonably low, a centralised repository should be cost effective
and easy for management. Therefore, it is suggested that the SSH infrastructure
adopts distributed repositories at the inter-institution level and a centralised repository
within an institution.

A centralised repository may be conceptually divided into two interlinked com-
ponents, as shown in Fig. 9.5, based on the nature of SH data. The first component
contains semantic descriptions relating to the various devices, inhabitants, individual
SH and the services offered within an institution. These entities and their semantic
descriptions are relatively stable for a care institution, i.e. static data. This component
can functionally serve as a registry so that new SH once built within the institution,
devices once added to any individual SH, inhabitants once they take residence in a
SH and new services once developed can all be registered for later discovery and
reuse. The second component is dedicated to the storage of dynamically generated
sensory data and derived high-level ADL data, which are time-dependent, varying
and extensive, i.e. dynamic data. Static data only need to be described and recorded
once while dynamic data have the requirement to be recorded whenever they are
generated. The separation of their storage saves storage space and also increases
recording efficiency. Another advantage with this design is its ability to supports
dynamic, automatic discovery of devices, device data, services and inhabitants, thus
facilitating reuse of data and services. Further details of these concepts will be pre-
sented in the following section.

[Semantic Repository Interface]

Samantic Désﬂip‘ﬁms on Semantic Desapnms on

Device Data, ADLs

Devices, Inhabitants,
Individual SHs & Services

[Semantic Smart Homes Ontologies]

Fig. 9.5 The semantic repository within the SSH

9.5 Semantic Enabled Intelligent Assisted Agent 209

9.5 Semantic Enabled Intelligent Assisted Agent

As semantic data are machine understandable and processable, the assistive sys-
tem is able to use an intelligent agent to automatically interpret situational data
for activity recognition. The Assistive Agent is responsible for the interpretation of
the significance of perceived data and the provision of decision support for just-
in-time ADL assistance. It performs reasoning against domain knowledge and sub-
sequently advises corresponding actions to inhabitants. In the context of situation-
aware assisted living, domain knowledge such as ADL and user profiles is formalised
as Description Logic (DL) based formulae in the form of subject-predicate-object
triples, e.g. the event “FireAlarm” leads to “leadTo” the action “Call999”. They can
be described in ontological relationships and represented in RDF' or OWL. The
perception of an event and/or the detection of sensory signals are equivalent to the
identification of a concrete instance of a class. For example, the activation of a con-
tact sensor in a cup means that the cup, as an instance of Container, is used in an
ADL. Suppose the Container class is the range of the hasContainer property, it can
be inferred that the hasContainer property is assigned the value cup. If the hasCon-
tainer property is used to describe the MakeDrink class, it can be further inferred
that a MakeDrink ADL has taken place. In this way the sensing of an agent amounts
to the retrieval of the situational data periodically from the semantic repositories.
Central to situation-aware ADL assistance is the comprehension and reasoning
capabilities of the Assistive Agent. In terms of the nature of a SH’s situations the
Assistive Agent can be internally designed in a two-layer framework. The Reactive
Layer is used to deal with emergency situations such as an alarm fires or a pre-defined
action takes place such as taking medicine at a specific time. Such situations usually
involve fewer sensor data but require quick responses. The Deliberative Layer is
responsible for the recognition of complex non-emergency situations that involve
multiple sensory inputs. For example, sensors attached to a milk bottle, a kettle and
a cup have been activated within a short time interval, how to decide the situation
and further to assist the inhabitant with the completion of the ADL being performed.
An Assistive Agent comprehends perceived situational data by interpreting
the data against their ontological context, i.e. ontologies. For instance, a smoke
sensor in a lounge can be semantically described using two property-value
pairs—[hasConsequence, fire] and [hasLocation, lounge]. Whenever the sensor is
activated, an agent can interpret the occurrence against the above semantic context
in the ontologies and recognize the situation ““a fire breaks in the lounge”. With rec-
ognized situation the future states of a SH can then be predicted and ADL assistance
is subsequently provided through reasoning and inference. For example, a fire event
can be semantically described with three property-value pairs—[takeAction, toE-
vacuate], [takeAction, callFireEngine] and [hasEffect, homeEvacuated]. Whenever
a fire event is detected, the agent can reason against the above knowledge to advise
inhabitant to evacuate the home and call fire engines. It can further deduce that the

IRDF and OWL are W3C standards. Detailed information can be found at W3C web site—www.
w3.org.

http://www.w3.org

210 9 Semantic Smart Homes: Situation-Aware Assisted Living

home is empty. Reasoning at the Reactive Layer can be directly realised via built-in
entailment rules in DL based ontologies.

A single sensor input can sometimes decide a specific situation, in particular for
those emergency situations as discussed above. Nevertheless, most situations may
involve perception inputs from multiple sources. In this case, a situation requires
joint formation and interpretation of multiple perceived sensor data. For example, if
sensors attached to a milk bottle, a teabag and a cup have all be activated within a
short period, by linking what have happened it is reasonable to assume a situation
that involves cup, sugar, milk and tea. It is straightforward for humans to figure out
that this is a situation in which “MakingTea” ADL takes place. However, for software
agents to recognize the situation as humans do, it requires an explicit representation of
these situations and reasoning mechanisms. The reasoning mechanism will combine
all sensor inputs to derive the corresponding situation by interpreting the aggregated
perceived data against the abstract knowledge representation.

As an ADL can be viewed as a sequence of situations along the temporal dimen-
sion, we can model situations through semantic ADL modelling, i.e., to build an ADL
ontology as discussed in Chap. 3. The ADL ontology consists of an ADL hierarchy
in which each node, also called as a class, denotes a type of ADL. Each ADL class
is described with a number of properties and sub-classes can inherit all properties
from its parent class. A property is defined by specifying its domain and range. The
domain refers to all classes that can be described by the property and the range refers
to all classes whose instances can be assigned to the property. A property describes a
class using either a literal or an instance of another class as its value, thus linking two
classes. This essentially gives rise to a description-based activity/situation model, i.e.
an ADL/situation is described by various properties. The underlying idea is that if a
number of properties can be identified and linked, then the corresponding situation
and ADL can be inferred.

The agent monitors and collects perceived sensor inputs by periodically retrieving
semantic situational data from semantic repositories. These situational data have
already been enriched with ontological relationships, thus ready for reasoning. The
agent performs reasoning at the Deliberative Layer to derive the situation and its
corresponding ADL. The process is as follows: Sensor inputs are used to identify
concrete items that have been involved in ADLs. These items should have already
been specified as instances of classes in SH ontologies. In terms of the scope of a
property’s range, the property that takes the identified item as its value can be inferred.
In terms of the scope of a property’s domain, the ADL(s) that can be described by the
inferred properties can then be recognized. As properties can be inherited from super-
classes (higher level abstract ADLs) to sub-classes (lower level concrete ADLSs), the
lower a class is in the ADL class tree the more properties it has. This means that the
more sensor data that are available, the more accurately ADLs can be recognized.
Conceptually the process amounts to the gathering of multiple sensor data at a specific
time to form a situation. The situation is then used to identify the corresponding
ADL and further identify these items in order to complete the ongoing ADL. This is
actually a DL-based subsumption reasoning whose theoretical foundation, algorithm
and implementation can be found in Chaps. 2 and 3.

9.5 Semantic Enabled Intelligent Assisted Agent 211

9.5.1 An Example Case Study

We use the Kitchen ADL class hierarchy in 9.4.1 to delineate how our approach
works. As can be seen, KirchenADL is the top class of kitchen ADL with two prop-
erties—inLocation and HasActor. It has two subclasses, MakeDrink and MakeMeal.
Apart from inherited properties, MakeDrink has a property of the class Container that
could be a cup, a mug or a bowl. Similarly, MakeDrink has two subclasses, Make-
HotDrink and MakeColdDrink and each with some more properties. For example,
MakeHotDrink ADL has two properties of the class HotDrinkType and Addings
respectively. The HotDrinkType can assume one of tea, coffee or chocolate and the
Addings can assume sugar and milk. Situation recognition that is denoted as corre-
sponding ADLs is performed as follows:

We have implemented the proposed approach to situation-aware ADL assisted
living in a feature-rich prototype assistive system. Figure 9.6 shows the front-end
interface of the system. The system is developed with C# language as the scripting
language while the front-end is developed using ASP.NET with Ajax and Silverlight
support for better user experience. We use the SemWeb semantic library for C#
[15] to read and write RDF, manage RDF in persistent storage, query persistent
storage via simple graph matching and SPARQL, and make SPARQL queries to
remote endpoints. SemWeb provides built-in general-purpose inference, but we use
an implementation of the Euler proof mechanism for reasoning [16]. Euler is an
inference engine supporting logic-based proofs. It is a backward-chaining reasoner
enhanced with Euler path detection.

The system works as follows: A user first logs into the system and uploads the SH
ontologies from the BASE ONTOLOGY panel. By registration and login page, the
user establishes his/her identity. As such the user’s ADL preferences can be browsed
in the USER PREFERENCES panel. Once SH ontologies are loaded, the system
can display sensors that are semantically described. At this stage the system can
operate in two modes—simulated and real-time ADL monitoring. In the simulated

#AmencanCofee

Getting current state for
ensor (#ChinaCup] ..
20:5%:30- Currmnt state for sendor —
sensor (#ChineseTea] ..
| Reset Al 20:58:38: Current state for sensor
oroif} ..

SENSOR STATE

@ #sensorOn O #sensord wKitchenBeder 20:5 [
been activated ..

20:58:42: Searching for tasks
i g this sensor ..

: Task can be one of:

eseTea) has

SENSOR STATE
RECOGNIZED ACTIV

RECOGNIZED ACTIVITIES TN

The following preference has been
stored:

Fig. 9.6 The incremental situation formation and ADL recognition process

212 9 Semantic Smart Homes: Situation-Aware Assisted Living

scenario, the system does not need to be connected to sensors. Sensor activation is
simulated by the selection of a sensor, e.g. KitchenDoor, in the SENSOR SOCIETY
panel and the set-on of the sensor in the SENSOR STATE panel, see Fig. 9.6. This is
equivalent to the activation and perception of real sensors. Once a sensor activation is
observed, either simulated or triggered in real time, it will be used to form a situation
to reason against the semantic ADL descriptions. The LEARNING OUTPUT panel
displays the inference process of the assistive agent as sensors are activated and
events perceived. The RECOGNISED ACTIVITIES panel displays the recognized
ADL and its location in an ADL tree structure. Both are shown in Fig. 9.6.

Figure 9.6 illustrates the dynamic situation formation and incremental ADL recog-
nition process. When a KitchenDoor sensor is activated, only high-level ADL such
as MakeMeal and MakeDrink can be inferred—see c. When ChinaCup and Chine-
seTea sensors are activated sequentially, situations with more contextual details can
be dynamically formed. By reasoning these situations an assistive agent can recog-
nise the ongoing ADL progressively in increasing details, e.g., MakeDrink initially
and then MakeTea as depicted in Fig. 9.6.

Suppose that a user has a pre-defined, semantically described preferred ADL
MakeTea. By comparing the user’s MakeTea profile with the perceived situation,
an assistive agent can infer what shall be done next in order to complete the ongo-
ing ADL, thus providing situation-aware ADL assistance for users. For example, if
“abashrawi-preferred-tea” ADL contains sugar, the agent may remind the user to
add sugar if it does not detect the activation of the sugar container for a pre-defined
period of time.

On the other hand, if a user activity has been recognized repeatedly over arelatively
long period of time, and there is no corresponding matching ADL profile, the activity
can be recorded as a user’s preferred ADL profile. This is the learning process. We
shall not discuss it here in details due to space limits.

In addition, to evaluate the approach and system in the simulated scenario, we
have designed an experiment in our smart home environment—see Fig. 9.7, for
evaluation of the proposed approach and the implemented system in a real-world use
case. We attach contact sensors to teabag, sugar, kettle, milk and cup containers—see
Fig. 9.8. Then we connect the prototype ADL assistive system to the sensors via the
Tynetec wireless receiver. The experiment runs as a user performs making tea activity
following the scenario discussed above, i.e., first coming to the kitchen, then taking
a cup, etc. Each time the user takes an action/item, the sensor activation is perceived
and passed to the assistive system. The system operates and produces results nearly
the same as we discussed in the simulated scenario. This proves the approach and
system are applicable in real-world application scenarios.

Semantically enhanced situation-aware ADL assistance has a number of com-
pelling advantages: Firstly, the scalability of situation modelling has been a bot-
tleneck to effective situation-aware applications. It is often the case that proof-of-
concept experiments, either state-based or process-based approaches, work well but
fail to scale up. The use of ontological ADL modelling as a way of situation modelling
overcomes this problem. Ontology engineering offers extensive technological sup-
port, including tools, APIs, storage and reasoners. Ontologies of thousands of classes
have been developed in other domains, e.g. 7,000 concepts in the gene ontology, and

9.5 Semantic Enabled Intelligent Assisted Agent 213

Fig. 9.7 The smart home and connected assistive system

| e P R it T |

Fig. 9.8 Sensor network design in the experiment

semantic data repository of 25 million triples has been practiced in TripleStore [17].
For smart homes, ADL classes and associated instances are simply not present in
such a scale. Secondly, semantic ADL models contain explicit rich semantics and
built-in logical entailment rules. This allows not only humans but also assistive soft-
ware agents to interpret, comprehend and reason against semantic situational data.
As such, situation monitoring, and ADL recognition can be realised at higher lev-
els of automation. Thirdly, description-based reasoning provides a mechanism to
dynamically construct situations by interpreting limited or incomplete sensor data
that ultimately leads to the incremental recognition of the corresponding ADL. This
capability is particularly important because assistive systems are supposed to provide
reminding or suggestive assistances with limited sensory data.

214 9 Semantic Smart Homes: Situation-Aware Assisted Living

9.6 Summary

The SSH concept, its enabled assisted living paradigm and underpinning technolo-
gies await further investigation, development and evaluation through real-world use
case studies. Nevertheless, our work has laid a solid architectural and methodological
foundation. Initial results have demonstrated the potential and value of the approach
and further clarify future research directions. We believe that SSH are the next gener-
ation of technological infrastructures for assisted living that facilitates the innovative
exploitation of research results from Al, Web technologies and information pro-
cessing. In this chapter a semantic-enabled agent-based novel approach is discussed
for enhanced situation-aware assisted living assisted living. We have discussed the
concept of situation awareness and introduced an integrated system architecture for
semantically enhanced situation awareness and intelligent just-in-time ADL assis-
tance provision. We have analysed the nature and characteristics of SH-based assisted
living assisted living. Based on the analysis we describe semantic data management
including SH ontologies, semantic data creation and storage. We have presented the
use of assistive agents for situation comprehension and ADL recognition with spe-
cial emphases on the agent’s internal structure and its interpretation and reasoning
mechanisms. A simple yet convincing example scenario from a real-world ADL
assistance context has been used to illustrate our approach.

We have implemented a prototype assistive system for the proposed approach
using the latest semantic technologies and toolkits. We have carried out both sim-
ulated and real-world use case study. While the full evaluation of the proposed
approach and system awaits further extensive implementation and user feedback,
initial research results have been promising. Our future work aims to address tempo-
ral issues such as parallel/concurrent ADL recognition. We shall extend the existing
assistive system with capabilities of taking actions, e.g., playing audio/video or switch
on/off devices/appliances through actuators.

References

1. Boger J, Poupart P, Hoey J, Boutilier C, Fernie G, Mihailidis A (2005) A decision-theoretic
approach to task assistance for persons with dementia. In: IJCAI international joint conference
on artificial intelligence

2. Bouchard B, Giroux S, Bouzouane A (2006) A smart home agent for plan recognition of
cognitively-impaired patients. J Comput 1(5):53-62

3. Jennings NR, Wooldridge MJ (1998) Agent technology: foundations, applications and markets

4. Tang Z, Guo J, Miao S, Acharya S, Feng JH (2016) Ambient intelligence based context-
aware assistive system to improve independence for people with autism spectrum disorder. In:
Proceedings of the annual Hawaii international conference on system sciences, pp 3339-3348

5. Meditskos G, Kompatsiaris I (2017) iKnow: ontology-driven situational awareness for the
recognition of activities of daily living. Pervasive Mob Comput 40:17-41

6. Zolfaghari S, Zall R, Keyvanpour MR (2016) SOnAr: Smart Ontology Activity recognition
framework to fulfill Semantic Web in smart homes Samaneh. In: Proceedings of the annual
hawaii international conference on system sciences, pp 3339-3348

References 215

7.

10.

11.
12.
13.
14.
15.

16.
17.

Sycara K, Paolucci M, Lewis M (2003) Information discovery and fusion: semantics on the
battlefield. In: Proceedings of the 6th international conference on information fusion, FUSION
2003

. Laskey KB, Haberlin R, Costa P, Carvalho RN (2011) PR-OWL 2 case study: a maritime

domain probabilistic ontology. CEUR Workshop Proceedings, vol 808, pp 76-83

. Endsley MR (1995) Toward a theory of situation awareness in dynamic systems. Hum Factors

J Hum Factors Ergon Soc 37(1):32-64

Noor MHM, Salcic Z, Wang KIK (2018) Ontology-based sensor fusion activity recognition. J
Ambient Intell Humaniz Comput 1-15

W3C: The time ontology in OWL. https://www.w3.org/TR/owl-time/

Stanford University, University, S.: Protégé

Apache: Apache Jena. https://jena.apache.org/

Neo4j: Neo4j graph platform — the leader in graph databases. https://neo4j.com/

Semantic Web: semantic Web/RDF liberary for C#.NET. http://semanticweb.org/wiki/
SemWeb-DotNet.html

W3C: Euler proof mechanism. http://www.agfa.com/w3c/euler/

Harris S, Gibbins N (2003) 3store: efficient bulk rdf storage. In: Proceedings of the 1st inter-
national workshop on practical and scalable semantic systems (PSSS’03)

https://www.w3.org/TR/owl-time/
https://jena.apache.org/
https://neo4j.com/
http://semanticweb.org/wiki/SemWeb-DotNet.html
http://www.agfa.com/w3c/euler/

Chapter 10 ®)
Human Centred Cyber Physical Systems oo

10.1 Introduction

Previous chapters introduce core underlying technologies for human activity recog-
nition, covering approaches, models, methods, algorithms and mechanisms for the
main functionalities of the lifecycle of activity recognition. They also cover different
scenarios, i.e. single-user sequential activities, single-user interleaved or concurrent
activities and multi-user collaborative activities, focusing particularly on knowledge-
driven approaches. In undertaking the research under various application scenarios,
four human-centred smart cyber-physical systems for assisted living have been devel-
oped to test and evaluate the research outputs. This chapter will describe the four
cyber physical system (CPS) prototypes and their key components, features, applica-
tions and the technologies in detail. The first two systems follow a standalone system
architecture while the latter two on a distributed system architecture.

The first standalone system, dubbed as SMART [1, 2], was developed with a
direct sensor interface to the SH environment and feature rich web-based human-
machine interface using dotNet programming language. The SMART system consists
of six functionality classes, namely speech core, reasoning core, preferences core,
communication core, simulation recording core and database management core. The
speech core class is used to output pre-recorded audio messages to the user when the
assistance is triggered, which also support pre-recorded personalised messages. The
reasoning core and preferences core classes are the core components of this system.
The reasoning core class is used to infer the user’s activity from their preferences. The
user preferences are administered via basic or advance learning methods presented
by the system. The sensor’s activation data are stored in the database management
core and retrieved via the communication core. The data from the sensor activations,
inferred activities from reasoning can be recorded using simulation recording core
class. This data can then be exported to the user’s local disk or stored in the repository
database as a history log.

The second standalone system, namely agent-mediated AR system, introduce
modular components that work in parallel. This prototype investigated methods to

© Springer Nature Switzerland AG 2019 217
L. Chen and C. D. Nugent, Human Activity Recognition
and Behaviour Analysis, https://doi.org/10.1007/978-3-030-19408-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19408-6_10&domain=pdf
https://doi.org/10.1007/978-3-030-19408-6_10

218 10 Human Centred Cyber Physical Systems

recognise composite activities such as interleaved and concurrent activities. The
approach combines the recognition of single and composite activities into a unified
framework. To support composite activity modelling, it combines ontological and
temporal knowledge modelling formalisms. In addition, it exploits ontological rea-
soning for simple activity recognition and qualitative temporal inference to support
composite activity recognition. The approach is organised as a multi-agent system
to enable multiple activities to be simultaneously monitored and tracked.

In the third implementation, the SOA approach was introduced with open source
components. This approach essentially follows a client-server pattern, to resolve
some of the technical challenges mentioned above in building an assisted system
within SH environments. The key benefit of this approach is that it allows one or
more clients to communicate with the SMART system simultaneously irrespective
to their operating platforms. SOA can take advantage of cloud computing to increase
the scalability and resources to perform complex reasoning or computation tasks
with less time [3].

The core system of the third system was written in a popular Java programming
language. The main reasons were to move away from a standalone environment, lim-
ited community support and proprietary components. This approach allows multiple
users from multiple devices to communicate simultaneously with platform indepen-
dence. The system further addresses the monolithic code structure of the source code
by logically separating it into three web services. The Enterprise Service Bus (ESB)
is used to bind these services together, enabling better maintainability, reuse and
debugging. The system still has a web-based interface that uses JavaScript, Asyn-
chronous JavaScript and XML (AJAX) features to request and load data from the
ESB. In addition, the Simple Object Access Protocol (SOAP) and Hypertext Transfer
Protocol (HTTP) has been used for exchanging data between different devices. One
of the disadvantages of using this system is that it has multiple web services with
an ESB which requires it to be hosted on the network. This can create unnecessary
overheads and delays to the system.

The last prototype extends SOA SMART implementation by proposing multi-
layer system architecture and Representational State Transfer (REST) based web
service. The REST-based web service allows communication between clients or
sensing devices with lower overhead and energy consumption. The multi-layered
web service enables components to be decoupled and deployed as single instances
on the server. The multilayer approach caters for increasing features to be added
to the system by organising and decoupling components for a better reusability and
maintainability. In comparison to ESB approach in third prototype, multiple web ser-
vices are required to be hosted on the network which can be subjected to additional
overheads and data transmission delays. The sensor events or results in previous
SOA implementation were stored in traditional RDBMS compared to graph-based
database in multi-layered system. The graph-based database enables semantic meta-
data to be extend the new connections and attributes infinitely instead of modifying
existing table schema and redefining entity relationships between tables in RDBMS.
The sensor event processing in previous SOA system adapted continuous querying
approach with RDBMS and then perform semantic reasoning tasks. On the other

10.1 Introduction 219

hand, the multi-layered system inspects sensor events as received and segmented at
run time. The data is stored using graph-based database to preserve the semantical
metadata of the sensors and AR results. A multi-threading process enable progressive
reasoning to be performed as activities unfold. The incremental reasoning feature
from Pellet is leveraged to reason with only the affected changes. This process reduces
bespoke querying effort to obtain sensor data from traditional database and then per-
form semantic reasoning with whole ontology file. Finally, Android application and
web interface has been developed to utilise the lightweight web service to view sen-
sor events, AR results, manage user preferences, and other features. Compared to
third prototype, the key limitation of the fourth prototype is the run-time memory and
number of cores required to conduct all the data collection, reasoning and storage
tasks on a single machine.

10.2 SMART: A Standalone System for Sequential Activity
Recognition

SHs have emerged as a commonly agreed, technically viable solution for ambient
assisted living. While early work concentrated on physical SH prototyping, support-
ive technology development and the experimentation with activity assistance, trends
are now moving towards context modelling, activity recognition and cognitive assis-
tance. Though progress has been made in individual areas, an optimum solution
offering a scalable, flexible, easy-to-deploy solution has not been produced which
can assist a SH inhabitant to perform the “right” activity at the “right” time in the
“right” place. Specifically, a SH is expected to be able to (i) monitor the behaviour
of the inhabitant, (ii) learn his/her preferences and (iii) provide assistance on what,
where and when an activity is performed.

In our research, we have developed a function-rich cyber-physical system for
assisted living that has the potentials of assisting people to perform the right activities
at the right time and in the right place. The system is able to monitor the behaviour
of an inhabitant, learn his/her preferences and provide context-aware assistance. It is
based on formal ontological activity models that make use of markup languages for
semantic and knowledge modelling and utilises their expressive representation power
for reasoning. The resulting ontologies are essentially shared knowledge models
that facilitate interoperability and integration in terms of the shared structure and
terminology. They enhance automatic processing and the level of automation. The
proposed reasoning algorithm can not only deal with every sub-activity as an isolated
concept and carry out reasoning but also use knowledge acquired from previous sub-
activities to obtain the most specific activity being performed by the user. By grouping
these concepts together, the system can achieve a more accurate outcome with less
processing time. Moreover, the system can learn from a user’s behaviour and adapt
itself according to the user’s activity profile; such as enabling personalized assistance

220 10 Human Centred Cyber Physical Systems

based on the way the activity is performed before. We describe the system in detail
below, so researchers interested can use the system or follow the rationale for their
own research.

10.2.1 The SMART System Architecture

Figure 10.1 shows the conceptual architecture of the SMART system. The bottom
layer data model contains the ontological activity model which are shared knowledge
across the commonly shared terms in the problem community. This shared knowledge
is separated from the preferences specific to individual users. As can be seen in the
architecture, users interact with smart devices present in the SH and this information
needs to be monitored by the system and processed for activity recognition. Based on
the ADL ontology model, activity(s) matching the input from the user are specified.
Once this is done, assistance is provided by comparing sensors activated so far in this
activity against the sensors found from this user’s preferred way of conducting this
activity as found in the ADL ontology. The list of sensors not used yet is carried to the
user in the form of assistance. Meanwhile, the system should update preferences when
necessary to adapt with users’ changing lifestyles. Table 10.1 gives more detailed
information about this concept.

The main components and their relationships among environmental objects, sen-
sors, ADLs and users are shown in Fig. 10.2. Central to this knowledge representation
is the ontological modelling and representation of SH domain knowledge in the left
column. The Context Ontologies are used to semantically describe contextual entities

Users User A User B
A | A

Activity Assistance Activity Assistance

| Y |

Smart

. Sensors and Actuators
Environment

log + * notify

AR/Assistance Activity Recognition Activity Assistance

T
Store/update

LActivities recognised? Recommend

Sequence

ADL Assistance Preferences of sensors .
/ . ADL Assistance
Preferences Learning
-~ : T
Activity matchm‘g Contents of activity
]
Data model Data Model

Fig. 10.1 The SMART system architecture

10.2 SMART: A Standalone System for Sequential Activity Recognition 221

Table 10.1 Description of different layers in the conceptual model

Layer

Information

Users

Users will interact with the sensors and expect to receive
assistance on what is the activity being performed and what
to do next

Smart environment

The smart environment consists set of sensors and actuators
to enable monitoring of the user activities and notify for any
assistance

Activity recognition/assistance

Receives a list of sensors activated and uses the ADL
ontologies to find activities matching the list. Using ADL
Assistance/Preferences, it conducts assistance needed to end
users

ADL
assistance/
preferences

Receives activity(s) identified and uses the ADL ontologies
to find sensors associated with the activity(s) identified. The
set of sensors not activated yet is carried to the Activity
Recognition/Assistance. New knowledge obtained about the
user’s preferred way of conducting this activity is updated in
the ADL Ontology Model

Data model

Models activities and preferences in a hierarchical structure.
Explicitly specifies key concepts and the relationships among
them for a problem domain. Also splits common knowledge
from specific knowledge

ADL Ontologies

<+

Personalised
ADL <+ Users

— |

Users
Preferences

Recognition &

e

Context
Ontologies

Domain
Knowledge

<+

Assistance Assistance
Semantic .
ensors
Context
Description Environment &

Logic reasoner Services

Fig. 10.2 The relationships between various entities within a SH

and sensor observations. The generated semantic contexts, i.e. situations are used by
the Recognition and Assistance component for reasoning, activity recognition and
assistance. The ADL ontologies are used, on one hand, to create ADL instances for
an inhabitant in terms of their ADL preferences, and on the other hand, to serve as a
generic ADL model for activity recognition and coarse-grained activity assistance.
The components in the right column denote the physical environment, sensors,
devices and assistive services in a SH. The sensors monitor an inhabitant’s ADL
and use their observations, together with context ontologies, to generate semantic

222 10 Human Centred Cyber Physical Systems

contexts. Assistive Services receive instructions from the Recognition and Assistance
component and further acts on the environment and/or the inhabitant through various
actuators.

Activity recognition and assistance is performed through a description logic-based
reasoner as shown in the middle column. The reasoner takes as inputs the semantic
descriptions of a situation and performs reasoning against the ADL ontologies to
provide incremental progressive activity recognition and coarse-grained ADL assis-
tance. To support fine-grained assistance, concrete sensor observations will be bound
with context models to create an activity’s description. By reasoning the descriptions
against an inhabitant’s personal ADL profile, specific personalized assistance can be
suggested and passed onto Assistive Services in a SH.

10.2.2 The SMART System Implementation and Operation

SMART is a feature-rich context-aware assistive system as shown in Fig. 10.3. It is
developed using C#, ASP.NET, Ajax and Silverlight support for audio and graphical
user experience. The creation, management and query of the semantic data was
handled using the SemWeb semantic technologies for C# [4] and SPARQL [5].
Semantic reasoning was implemented using the Euler inference engine [6].

To support the rich functionalities and features, the system provides a set of
configuration tools, multiple graphical views and quick-access function buttons (refer
to Fig. 10.3). These tools are used to import activity and context ontologies, specify
reasoning and learning parameters, select the modality of audio reminder, configure
hardware, e.g., communication ports, and define event priorities and user activity
profiles. The views are used to show the deployed sensor network in the environment,
display the sequence of activated objects, output a temporal trace of events during
the system operation and present the recognised activity within a tree-like activity
hierarchy. The function buttons allow a user to initiate operations, e.g., to record
sensor activations in XML files or to put the system into the simulation mode using
previously recorded sensor activations in a XML file.

The system was deployed in a computer in a smart home laboratory [7]. The
spec of the computer used was as follows: Dell Optiplex755, Intel Duo CPU E6750
2.66GHZ, 3.25 GB RAM, Windows XP SP3. The SH environment used for exper-
imentation contains various objects for performing ADLs. A number of sensors,
including contact sensors, motion sensors, tilt sensors and pressure sensors, all from
the Tynetec ZP0532 series, are available. A Tynetec receiver (www.tynetec.co.uk) is
used to collect sensor activation signals through wireless communication which is
subsequently processed by the computer system.

When the system is in operation, it obtains real-time sensor activations from a des-
ignated communication port that is connected to an external Tynetec receiver. Each
time a sensor is activated, it will aggregate the information with previously collected
activated sensors to generate an activity description. The description is then fed to the
reasoning engine to infer the potential activity against activity models and profiles.

http://www.tynetec.co.uk

10.2 SMART: A Standalone System for Sequential Activity Recognition 223

Home Smart Sampler Real-Time History Preferences About Logout

«~ ACTIVATED SENSORS ﬂ RECORDING STATUS (&)

Close Port | Open Port Refresh Recording Status - (@)

U o .
| | e l DmaRccordmﬂ

B 035428 | =KrchenobiDoors |=sensoron |

[5] Learning ourpur

B [o5501 [moemecty | wsemsoron | ST T 4
B)[050%0 |cooterobs | wsensoron | AOIRAERE ALl aceive puuvecs
BlonssLoormeons o jgeiicon Deing commnication port ()
Kﬂi-mm_ =, :;__\qubﬂ’: 5 lv',rmowrn l

ﬁ &Q(‘\‘ﬂ‘ =PlatterObyS | #sensoron | User (ryan)

ﬁ: 35445 .l‘S.mf.fp.lnl_'hj'; [ﬂ\cllaf.\!i.‘rij Urireert L Loading Ontology

20:38:25: Graph parsed
/ successfully ..
«/ RECOGNIZED ACTIVITIES 20:38:25: Oncology impocead

successtfully ..

= #KtchenDoo:
N :I:;'M:I The recognised activities based on only 20:38:38: Sensor g
. : door sensor - (#KitchentbiDoorS) has W
| @-#MakeDrink }/‘7 B Sesivmon activated .. o Mo
= > - S 20:38:40: £ ks
S Oy St P Cop The recognised activities based on sensor 1 YA this “:O,QT_Y_“
Fhiakntoup }/) activation of both kitchen door and a cup ims:w: Task can be one of:
| rhiakalidnk 1.
= #KitchenDoor -> #ChinaCup > #ChineseTea #lakeNeal (entails) --> (
#MakeTea > The y 7 ._.E lon all acti . #BakeDrink (entails) -=-> (-

Fig. 10.3 The system interface in real time mode

As an actor interacts with the objects in sequence in real time, sensor activations
are continuously fed into the system. As such, recognition operations are repeatedly
performed to realise continuous progressive activity recognition. As can be seen in
Fig. 10.3, the system can dynamically display the activated sensor sequence, the
incrementally recognised activities, and system status and data. Figure 10.4 enables
the user to browser different sensors located in the house (a), update their status
activate and store/open the simulation activities from the local disk.

10.2.3 SMART Limitations and Opportunities

The SMART system implementation has four disadvantages. One disadvantage is the
limitation imposed on technologies that can be efficiently used to produce the system.
More specifically, as the standalone system is developed using dotNET technologies
it is limited to using components either developed for dotNET or implementation
technologies that have a software compatibility layer developed for them, this is
generally inefficient [8]. Many semantic ontology modelling and reasoning tools are

224 10 Human Centred Cyber Physical Systems

Home Seart Sampler

SENSOR STATE AND ACTIVATION SEQUENCE

lnformation Sensor Status Set/Reset Sensor/Activity Prev

¥ 25ensorOn #SenzorOff

Urgency: Low
0 SENSOR SOCIETY
Activation Sequence
Activation sequence of this sensor: 0
Category List of Sensars)
(b) Updating sensor status

B e mrartrakam | stachesTemshcre
= LM Sermors e s rhmcatia \) NI AT i
LD Kachen Sermons #omenTan wCrranaTo ==
= L) BeRoom Serscrs P P CT—
» DB TRoom Sereart Tools

& L Ofer Sersors . B ® B8
Reset all Sensors E=mA
(a) Sensor simulation (c) Simulation scripts/actions stored

Fig. 10.4 Sensor simulation interface to activate sensors, store and reload actions from local disk

not developed in dotNET technologies [9] and so will not be able to operate with
(e.g. PERL has no such method to directly interoperate with Objective-C running in
a different address space [10, 11]) or efficiently integrate with the current system.

In order to increase the semantic modelling capability of this system more
advanced semantic ontology tools such as Pellet or Fact++ would need to be incor-
porated in an efficient manner [10]. The use of web services would allow expansion
of this system using components containing these advanced tools using a native
technology hosted web service.

The second disadvantage is that for every instance of a SMART environment
functionality is duplicated and hosted locally. In a monolithic code base, there is a
need to provide a complete system for each assisted living environment. A better
solution would be to move some functionality to a shared resource which is acces-
sible via web services and so would allow Internet Protocol enabled sensing and
interaction equipment to communicate with external web services. Use of web ser-
vices in this fashion would remove the need to have a locally hosted assisted living
server computer.

Web services have an additional advantage related to their shared nature, in the
monolithic deployment scenario if a software update is developed for the assisted
living service software needs to be applied to each instance of the software (each
computer hosting this system in a residence). A mass update may produce issues
depending on deployment mechanism or simply if there is a power outage during

10.2 SMART: A Standalone System for Sequential Activity Recognition 225

the update of a critical file. In a web service orientated system, the software update
would simply need to be applied to the relevant web service node [12].

The third limitation is the monolithic code structure has a potentially constrained
future development lifecycle. A large single code base requires coordination between
developers who are expanding system functionality in different components as the
final compiled product has a single address space any changes to a component has the
ability to affect other components potentially leading to corruption in the operation
of other components. It would be better if developers of components could work on
a single component in its own address space and offer an accessible interface to its
functionality, this is the facilitated by use of web services. Web services also intro-
duce an additional aspect of software reusability as any existing published service
functionality (e.g. authentication) can be used without writing the business logic to
do so.

The fourth disadvantage is that this SMART system requires a licencing fee for
its hosted OS. The standalone system is based on the Microsoft dotNET framework
which is only fully supported on Microsoft Server platforms (IIS) which carries a
licencing fee in order to legally use them [13]. The standalone system implementation
does not require connectivity with hosted web services. Being a locally hosted mono-
lithic system there is no requirement to be able to communicate with the web service
components and so a monitored environment would need to ensure that connectivity
with the relevant web service nodes are guaranteed.

This initial SMART system can be enhanced by adopting agent or SOA approach
to remove all dotNET technology to avoid licensing costs. The current system does
have one notable advantage over a web service-based solution. In a scenario where
many residential units are connected to a locally hosted web service that does not
require internet access, this should not introduce much of a problem. However, if
the local assisted living equipment connects to an internet hosted web service com-
ponents then the functionality of the assisted living environment is not guaranteed,
in such cases redundant networking would help to ensure connectivity and system
functionality [14] (e.g. use of a combined cellular and DSL gateway).

10.3 An Agent-Based System for Composite Activity
Recognition

Composite activity recognition can be divided into three interdependent sub-tasks,
namely, action recognition, simple activity recognition, and composite activity recog-
nition. Action recognition processes the sensor data available in sensor data segments
using ontological reasoning to derive primitive actions. The action recognition task is
performed as part of simple activity recognition. For simple activity recognition, we
adopt and modify the ontological activity recognition approach described in Chap. 3.
Ontological activity recognition uses a logic-based ontology language, e.g. OWL, to
structure and describe activities during activity modelling. It encodes activity models

226 10 Human Centred Cyber Physical Systems

as activity ontologies, and then uses semantic reasoning (e.g. subsumption and equiv-
alence reasoning or instance retrieval) to process sensor data against the ontological
activity models during activity recognition. To support composite activity recogni-
tion, we modify the ontological approach by including a step to generate activity
descriptions. We define an activity description as a collection of primitive actions
that together, partially or fully, describe a simple activity. An activity description can
be created by grouping the primitive actions into one or more activity descriptions
corresponding to the simple activities that are defined in the activity models. As more
sensor data is obtained new activity descriptions are created or the existing ones are
updated. The modified ontological approach then compares each activity descrip-
tion with activity models using semantic reasoning and reports the activity model
that is closest to the activity description as the ongoing simple activity. The activity
model returned by instance retrieval is considered the closest model. In the absence
of a model returned by instance retrieval, then the model returned by equivalence
reasoning is taken as the closest. Otherwise, the model returned by subsumption
is the closest. Thereafter, the results of simple activity recognition are aggregated
using the mechanism described in the next section. By separating activity recogni-
tion into interdependent tasks, it is possible to use different techniques for each task.
In this way instance retrieval or subsumption and equivalence reasoning is used for
action and simple activity recognition. For composite activity recognition, rule-based
inference techniques are exploited.

10.3.1 The Conceptual Architecture

The approach described above can be depicted in a modular architecture as shown in
Fig. 10.5. It consists of a number of core components that interact with each other to
provide intended functions. Core to the architecture is three knowledge bases (KB),
namely, static activity model KB (StatSKB), dynamic model of composite activities
KB (DynaCAKB), and context-driven rule-base (ContextRB), which are utilized by
the different components during operation. StatSKB provides the static model of
activities and includes definitions of activities of daily living as well as predefined
composite activities. DynaCAKB encodes the dynamic model of activities. Contex-
tRB encodes the rules for inferring qualitative temporal relations between activities
and therefore deriving the ongoing composite activities. At runtime DynaCAKB and
ContextRB are used to derive the temporal dependencies that exist among ongoing
activities. The presence of temporal dependencies among activities implies the exis-
tence of composite activities. The knowledge bases are encoded as an activity of daily
living (ADL) ontology. The data monitoring and segmentation component monitors
and collects contextual and sensory data whenever a user interacts with objects in
performing daily activities and then segments the sensor data stream.

The integrated activity inference component performs three tasks, namely itera-
tive action inference, activity inference and activity analysis and refinement. These
tasks are performed in complex activity recognition unit (CARU) and simple activity

10.3 An Agent-Based System for Composite Activity Recognition 227

Applications/Users

|~ Dynamic
Activity =7
el cE ivity(i T
Model KB 2 Activity(ies) © common -
e Activity Analysis & Refinement Output \
] _ !
I I
i i i . Activity '
! Iterative Action Inference & Fusion |i ivitwli i
i ! Description(s) Activtylles) '
V i Action Fusion (Aggregation) e —— gy
| R Inference 1
Context- i Action(s, . *x !
oo : t (s) | Simple ARU !
| il . . St
_Rul_e_-base :| Iterative Action Inference :
L} I
i Complex ARU / :
! i
l'i'
- "
Static
i fensasisanan > Activity
i Model KB
i A
1

1 Key: **-lmplies the
: possibility of having more
' thanone simple ARL.

Fig. 10.5 The modular architecture of the proposed approach

recognition unit (SARU). CARU performs its task using iterative action inference
and fusion, and activity analysis and refinement components based on the StatSKB,
DynaCAKB, and ContextRB. The iterative action inference and fusion component
uses the sensory information contained in the data segment and the StatSKB to derive
primitive actions and activity descriptions. The activity analysis and refinement com-
ponent is used to discover complex dependencies among ongoing activities. It uses
various elements of context information, e.g. task-related context and temporal con-
text encoded in ContextRB. The analysis and refinement component outputs simple
activities or composite activities together with feedback that is used in the segmenta-
tion component to modify the parameters used in the segmentation mechanism. On
the other hand, SARU performs the necessary activity inference autonomously and
communicates its status. It uses its activity inference component to derive the activity
that corresponds to a given activity description. Activity inference uses StatSKB as
well as recognition algorithms.

The conceptual modular architecture has been realised in a multi-agent system.
An agent refers to a software system that is situated in a dynamic, complex envi-
ronment, and is capable of sensing the changes in the environment and interacting
with other entities in order to take actions that achieve its design objectives. An
agent should exhibit four basic properties, namely, autonomy, social ability, reac-
tivity (responsiveness) and pro-activity [15]. An agent that is autonomous is able to

228 10 Human Centred Cyber Physical Systems

act with no direct intervention from humans or other agents and has control over
both its internal state and actions. Social ability refers to the ability of an agent to
interact with other agents, including humans. Generally, an agent is situated in an
environment, and the ability to perceive the environment and respond in a timely
fashion to environmental changes is referred to as reactivity. Pro-activeness indi-
cates an agent’s capability to exhibit goal-directed behaviour by taking initiative to
achieve its set goals and design objectives. The four features and other features (e.g.
adaptability, intelligence, rationality, mobility, flexibility, temporal continuity, etc.),
can be exploited to design agents for use in applications in the AAL domain.
Agents can be used to structure solutions in application areas that are character-
ized by complexity, ubiquity, and distributed data, control, expertise, and resources
[16]. One such application area is the smart home and by extension the task of
activity recognition. The smart home is characterized by various components, e.g.
sensors, actuators, people, activities, and interactions, making it complex. In addi-
tion, the smart home is by definition ubiquitous. Moreover, activity recognition can be
characterised as distributed because it involves various interdependent tasks such as
environment and behaviour monitoring, segmentation, and activity inference. Also,
each task requires its own data, resources, control and expertise. A multi-agent sys-
tem (MAS) refers to a system consisting of a group of agents capable of interacting
with each other to achieve their design objectives [17]. Therefore, the multi-agent

e
namicActivity
Model KB

J

Context-driven AAA
Rule-base agent

A
D4
ps 1
I
I
'
-~ e
D? . Py
ety CARA
o Applications €—————> PENMN— StaticActivity =
e = R agent | Model KB
S 5 - ~ D3
5 & LAy > b3
= D6 - -~ ~ -~
T O ' ~ -
c = 7’ ’ D2~ ~
o S ” ” *-...\ ~
g S o’ b1 S SARA
E MSA e agent*
agent
1
-KEY: * implies zero or more copies of the agent may be created.

Fig. 10.6 The multi-agent architecture for unified activity recognition

10.3 An Agent-Based System for Composite Activity Recognition 229

approach can be used to model, structure, and implement a complex software system
as a collection of interacting, autonomous agents [18]. From the foregoing, we adopt
the multi-agent approach to specify a system for unified activity recognition.

To realise the modular architecture shown in Fig. 10.6, four agent roles are iden-
tified, namely, segment the sensor data stream, generate activity descriptions and
convey recognition results, infer simple activities, and manage inference rule execu-
tion and infer composite activities. The resulting multi-agent system consists of four
types of agents that play the roles stated and the agents include monitor and segment
agent (MSA), composite activity recogniser agent (CARA), simple activity recog-
niser agent (SARA), and activity analysis agent (AAA). The messages exchanged
between four agents convey the following: D1-data segments; D2-activity descrip-
tions; D3-simple activity labels; D4-activity data; D5-simple and composite activity
labels; D6-recognition status; D7-identified activity labels. Using the agents, the
CARU component as described in Fig. 10.6 is implemented using the two agents,
i.e., CARA, and AAA; SARU is implemented by the SARA agent; and the data
monitoring and segmentation component implemented by the MSA agent.

We have chosen agent as an implementation artefact because agents provide the
different components with autonomy needed to perform their respective tasks. In
addition, each component can continuously and proactively review and react to
changes in its goals. There is also massive parallelism involved in executing the vari-
ous tasks involved and the MAS can implement the tasks as parallel agent behaviours
or tasks. The resulting multi-agent architecture is shown in Fig. 10.6. Each of the
agents in the architecture is described below.

Monitor and segment agent (MSA). The monitor and segment agent plays the
role ‘segment the sensor data stream’. Essentially, MSA receives streaming sensor
data from the environment and uses time windows to segment the stream in real-time.
It then sends the resulting segments to the CARA agent for further processing.

Composite activity recogniser agent (CARA). The composite activity recog-
niser agent plays the role ‘generate activity descriptions and convey recognition
results’. The CARA agent obtains segments from MSA agent and processes them to
determine the actions entailed. Consequently, it uses the actions to generate activ-
ity descriptions that approximate the activities that are likely to be occurring. The
CARA agent then spawns the SARA agents, and provides each with the relevant
activity description. It will keep updating the activity descriptions and communi-
cating the descriptions to SARA agents. In addition, it receives feedback related to
activity labels from SARA agents, and conveys activity data to AAA agent. Finally,
it obtains the results from AAA agent and provides results, i.e., identified simple and
composite activity labels, to applications. Moreover, it sends information about the
recognition status to MSA agent to facilitate dynamic segmentation.

Simple activity recogniser agent (SARA). The simple activity recogniser agent
plays the role ‘infer simple activities’. The SARA agent receives activity descriptions
and their revisions from CARA agent and performs ontological inference to deter-
mine associated activity labels. It then conveys its recognition status—a specific or
generic activity label—to CARA agent. In addition, the SARA agent continuously
reviews its status and can terminate if a predefined upper temporal duration threshold

230 10 Human Centred Cyber Physical Systems

is exceeded. At runtime, zero or multiple SARA agents can be created and executed,
with each agent corresponding to exactly one activity description. Whenever activ-
ities are performed in parallel during a particular time interval, multiple activity
descriptions will be derived, and corresponding SARA agents will be executed thus
allowing the entailed activities to be recognised. The results from these multiple
SARA agents are used as input to composite activity recognition.

Activity analysis agent (AAA). The activity analysis agent plays the role ‘manage
inference rule execution and infer composite activities’. It receives activity data from
the CARA agent, and executes inference rules to determine the presence of inter-
activity dependencies, e.g. sequence or concurrency. It only signals the presence of
composite activities if it can determine that inter-activity dependencies exist. Finally,
the AAA agent conveys the results—simple or composite activity labels—to the
CARA agent.

10.3.2 Multi-agent System Implementation

The multiagent system has been implemented using Java Agents Development
Framework (JADE) [19]. JADE is a Foundation of Intelligent Physical Agents (FIPA)
compliant agent development environment. The basic standards for FIPA include
agent communication, agent management, and agent/software integration. The stan-
dard for agent management is aimed at allowing agents to register, deregister, be
searched, and be modified. The standard for agent communication is concerned with
the message transport protocol, message content, and communication language.

Four types of agents have been developed to play the roles described in the previous
section. Each agent advertises its capabilities by registering with JADE’s Directory
Facilitator so that other agents can search for it. The agents communicate with each
other by exchanging messages represented as serialized objects. Each agent decides
on the type of agent that should receive a particular message. In addition, the multi-
agent system uses a communicative act theory to manage conversations between
agents.

The ADL Ontology is designed using OWL 2 in Protégé ontology editor. This
includes an implementation of the entailment rules as Semantic Web Rule Language
(SWRL) [20] rules as part of the ADL Ontology. The prototype system uses Java-
based application programming interfaces (APIs) to interact with the Pellet [21] OWL
reasoner for ontological reasoning. To facilitate the execution of the inference rules
the ADL Ontology and the SWRL rules are translated to Java Expert System Shell
(JESS) [22] fact and rule bases. We used the OWL2Jess and SWRL2Jess translators
based on the guidelines provided by Mei and Bontas [23]. In the prototype, the JESS
fact and rules bases are accessed and processed by a JESS rule engine. The rule engine
is accessed and manipulated by the AAA agent that is responsible for aggregating
the results of simple activity recognition.

10.3 An Agent-Based System for Composite Activity Recognition 231

10.3.3 Multi-agent System Interface

The interface for the multi-agent assisted living system described above
and in Chap. 7 can be viewed in Fig. 10.7. Figure 10.7a shows five sen-
sor observations for the MakePasta activity. At the same time Fig. 10.7b
shows the agent instances as obtained from JADE’s remote management
agent (RMA) facility. RMA provides a graphical user interface (GUI) facil-
ity for visualizing and managing JADE agents. In the main container, we
can observe CARA agent (maincaru@193.61.148.129:1099/JADE), MSA
agent (chunker@193.61.148.129:1099/JADE), and AAA agent (aggrega-
tor@193.61.148.129:1099/JADE). From the five sensor observations that have
been obtained, the CARA agent has spawned various agents to monitor the
ongoing activity or activities and these are launched in agent containers- i.e.
Container-1 to Container-10. For instance due to the fact that the user is in the
kitchen (given by the observation Mon 18-Feb-2013 14:12:40 KitchenDoorObj
SensorOn), it can be observed that CARA launches various SARA agents to
monitor kitchen-based activities e.g., MakeTea@193.61.148.129:1099/JADE
on Container-1, MakeSoup@193.61.148.129:1099/JADE on Container-3,
MakePasta@193.61.148.129:1099/JADE on Container-9, etc. Figure 10.7¢c
shows the observation Mon 18-Feb-2013 14:15:00 BathroomDoorObj Sen-
sorOn has been made. At this stage, the CARA agent is shown to launch
further SARA agents to monitor bathroom-based activities as shown in
Fig. 10.7d, e.g. BrushTeeth@]93.61.148.129:1099/JADE on Container-
12, Bathing@193.61.148.129:1099/JADE on Container-13, and Wash-
Hands@193.61.148.129:1099/JADE on Container-14. In the meantime, Fig. 10.7c
displays the result that the simple activity MakePasta has been identified, showing
that it started at 14:12:40, when the first observation was made, and the current time
is 14:15:14. This process proceeds as long as sensor data continues to be obtained.

10.4 A Service-Oriented SOAP-Based Smart System

The SMART system presented in Sect. 10.2 has a number of disadvantages which are
outlined in Sect. 10.4.4 The main deficiency in the SMART implementation is that the
system is a monolithic dotNET based software structure hosted on a single computer
system, this is a traditional deployment scenario for web-accessible systems.

A more complex but flexible deployment solution would be a separation of the
functionality of the SMART system into a collection of web servers that can com-
municate via standard web service communication technologies. This reengineering
and reimplementation process is the focus of this section. A distributed collection
of web services would allow system functions to be reused by a large number of
smart home clients. The distributed nature also allows redundant service nodes to be
deployed to provide greater system reliability. It also offers the possibility of multi-

232 10 Human Centred Cyber Physical Systems

(b)

‘
+B.

AgentPatiorms
1719361 148 129 1099UADE"
+ 88 Man-Container

2 2ggregaton@193 61,148 129 10900ADE
B ams@103 61148 1201099UADE
@ chunker@193 61.148.120. 1000UADE
B d12193 61,145,120 1099A0E
B maincans@193 61,148.129 109UADE
B mag193 61,1481 20 1040UADE
@ Container-1
B MakeTea@193 61,148 120 10994ADE
+ @ Container-2
+ @ Container-3
@ MakeSoup@193 51148 120 10991406
+ @ Container-4
+ @ Container-5
@ Container£
@ Container-7
Recognition - + @ Container-8
oz B uakeSandiscn@103 61,148,120 1000UADE
+ 8 Container-§
B LakePasta@193 61 148 129.1000UADE

o ? + @ Container-10
—shetidy=llatePasts Recopnized-ue StaTime=lon, 18-Feb-2013 141240 Cumenl Tima=lhon, 13Feb-2013 4414280 B LakeComee 193 61 148 129 10000A0E

(d)

| Fie Acocas Tools Remote Plations Help
seddfdf oc BE S

3 AgentPatioms:
+ B3 7153 61148 120 10994ADE"
+ B Man-Container

@ ams@193 61,148 120 1090UADE
@ chunker@193 61,148 129 1090ADE
@ 210361148120 1090UADE
@ mancani@ 193 61 148 129 1060UADE
8 ma@iea 61,145 120-1090ADE
+ B Contamer-1
@ MakeTea@ 193 61 145 120 10000ADE
+ @ Container-2
+ B Container-3
@ MakeSoup@193 61148 126 1095ADE
= @ Contamer-&
+ B Contamner-8
1@ MakeSancech193.61.148. 129 1000UADE
+ B Contamner9
& MakePasta@u93 61 148 120 10900ADE
+ @ Container-10
& MakeCoslea @153 61,148 120 1090/ ADE
+ B Container-11
B appregaionagentiS 93 61,148, 128 1009ADE
+ B Contamer-12

Recognibion Status|0tsenvatons=Pasta iichen, Fan KicheaSinkTap, Cosker] s 2] m::lmnu.m 120 1099 IADE
—>AdidyllaiePasta Recopnizedben Sta Time=lion, 18-Feb-2013 141240 Comend Time=lion, 18-Fel-2013 140420) & @ Balning193 61.148.129.1009ADE
+ B Container-14
Recognition StabisiObsenatons=Pasta Kichen, Pan KichenSinitTap, Cosker] 18 WashHands @193 61,145,120 10V00ADE
=hefidyllaiePasta Recopnizedbos Stat Time=lion, 18-Feb-2013 141240 Comend Time=lion, 18-Feb-2013 1415.04)

Fig. 10.7 A snapshot of the runtime agent system

ple smart home systems to use a single collection of service nodes, thus increasing
the reuse of deployed technology and increasing the overall efficiency of a system.
For example, there could be five servers serving ten smart environments as opposed
to one server per smart environment. The original dotNET based smart implemen-
tation uses a semantic reasoning engine called SEMWERB, to store information in
a semantic ontology and allow information to be extracted by use of rules. These
rules group related data by leveraging descriptions of desired patterns present in the
semantic database storage structure. This SEMWEB semantic reasoning and storage

10.4 A Service-Oriented SOAP-Based Smart System 233

mechanism is less advanced, capable and efficient than some competing solutions
which have been developed in non dotNET technologies. A goal of this project is also
to integrate an alternative semantic storage and reasoning system into this project
by using a web service-based communication mechanism to integrate technologies
that are not implemented with dotNET and are compatible with these more capable
semantic tools (e.g. Java).

10.4.1 The Service-Oriented System Architecture

Figure 10.8 shows the SOA-based SMART system architecture. It uses an enterprise
service bus (ESB) to provide an interface between three Java-based web service
nodes and an AJAX-based web interface with communication occurring with SOAP
messages. All of the service nodes, the ESB and HTML interface of the system
are designed to be deployed in a single exclusive server each. Nevertheless, this
distributed deployment is flexible enough that it can be reconfigured to host all of
these elements on a shared single server if required, any scenario between these two
deployment extremes can be catered for by modifying the ESB configuration.

The purpose of the presentation service node is to interact with other nodes
in this system and submit requests to and present data returned from them in a
human-readable form which is formatted with HTML. An example of the use of
this service would be a web interface requesting an integrity check of the semantic
ontology present in the Reasoner service. The Web interface sends a locally logged
integrity check request to the presentation service. The Presentation service receives
the integrity check request and then contacts the Reasoner service to perform the
check. The Reasoner service performs this integrity check and returns a response
which is designed to be consumed by another computer agent, the response to this
request is simply a true, false or error signal. The presentation service processes
these true, false or error messages to produce a meaningful message for human

Multiple
i Server Smart
Clients Environment
Presentation Proximity Touch
Service Sensor Sensor
Reasoner .
ESB . Microcontroller
Service I
Data Service — pB
... Other Sensors

Fig. 10.8 The SOAP-based system architecture

234

10 Human Centred Cyber Physical Systems

e Y4 Y4 N
s Y s Y ' 7
Metro/JWS web service Metro/JWS web service Metro/JWS web service
Web service node logic Web service node logic Web service node logic
PELLET | | JENA
\ SOAP CONSUMER LOGIC) SOAP CONSUMER LOGIC) H2 RDBMS
Glassfish Server Glassfish Server Glassfish Server

g Web service node PN Web service node PN Web service node)

» Presentation Service

» Reasoner Service

» Data Service

Fig. 10.9 Key services view of the ESB SOA system architecture view

consumption (e.g. “ontology valid”) this message is relayed to the AJAX call the
web interface made which adds this information to its local log. This Service node
consumes both the Reasoner and Data Service nodes via the ESB. Figure 10.9 is
a graphical representation of the Presentation service, Reasoner service and Data
service components.

The Reasoner service node integrates the Semantic knowledge tools (PELLET),
hosts the semantic repository (JENA) and contains the all the required supporting
logic to perform all necessary SMART system operations on this semantic data (e.g.
set a sensors state, determine an activity). This service is arguably the core of this
reimplementation of the SMART system as it contains the most important and com-
plex logic of any one component in this development effort. This service consumes
the Data Service and interacts with the Presentation service via the ESB, the Data
Service is primarily consumed to provide a persistent record of semantic reasoning
operations between requests (providing state between web service requests) and log
operations. The functionality of this service node is covered in detail in the technical
supplement.

The Data service node provides a mechanism for this system to store, modify
and access non-semantic information and importantly provides the facility to keep
the state of operations between web service requests. This service consumes no
other and interacts with the Presentation and Reasoner Service via the ESB. Some
of the non-semantic information these stores includes: activity logs, non-semantic
representation of activity preferences and system preferences.

10.4.2 The SOA Based System Implementation

This system leverages an embedded implementation of the high performance H2
relational database management system to provide a convenient and standard manner
to store, manipulate and retrieve data using SQL queries. In addition to providing

10.4 A Service-Oriented SOAP-Based Smart System 235

specialised operations to provide the functionality described above this data service
also provides an interface to H2 relational database which allows any data to be
stored and retrieved as uniquely keyed pairs providing a readable expandable use
case for this node. For example, a future web service could need to persistent storage
to record its previous operation, in that scenario a key pair with the unique name
of “furtureServicePrevOp” could be set and retrieved from this service without any
modification to its logic thus a section of a framework for future development.

The web interface is implemented using HTML, JavaScript, image files and CSS.
No server-side programming technologies are required to host an instance of this
interface. This reduces the complexity of this deployment. As discussed previously
there the interface uses AJAX technology to send and receive SOAP requests exclu-
sively to and from the Presentation service. This web interface has been partially
complete as it only provides interfaces to functionality that was developed during
this reimplementation effort. These interfaces are Smart sampler, History and Pref-
erences.

10.4.3 The SOA Based System Interface

Figure 10.10 shows the main interface page entitled “Smart Sampler” for the SOA
SMART implementation. The Smart Sampler page shows the state of the currently
registered sensors and provides functionality to manually trigger sensor activations
in order to check the reasoning functionality of this smart home system. In an ideal
development scenario, these activations would be sent to the presentation/reasoning
service directly. In addition, Smart Sampler page enables users to activate individual
sensors and view recognised activities. The history view offers the ability to view
and modify logs that were created when sensor interactions where set to be recorded
(using “Start Recording” button on right panel). These historical records are designed
to be used in future to replay a series of sensor interactions. These records are stored
on the Data service which is returned to the web interface using the Presentation
service via the ESB as shown in Fig. 10.11.

Figure 10.12 presents an interface to enable the user to add and update new
activity preferences. The activity preferences are used for activity identification in the
SMART system. For example, the following activity preference specifies parameters
for the act of making green tea, which normally takes under 210s to perform and
occurs at 08:20. This act involves activations of the #ChinaCup, #GreenTea and
#KitchenBoiler sensors. This preference is stored in both non-semantic forms stored
in the Data Service node and semantic form in the Reasoner service node. The
record in the Data service is used to view preferences as this is a more efficient
method than extracting the details (i.e., sensors involved, duration, and time) from
the Semantic store. During update operations the original semantic preference listing
is completely removed from the semantic service store and reconstructed with the
necessary modifications from the data service store.

236 10 Human Centred Cyber Physical Systems

'."'Eummwntum«m- X .
l(-' ¢ 127001 o0 A

Smart Sampler

‘SENSOR SOCIETY SIMULATION MODE

| RECORDING STATUS
#AmericanCoffes #BritishTea #BrownCubicSugar

Current Status is | Not Recording

#ChinaCup #ChineseTea #GreenTea
g
Start Recordi
Door ireAlarm i
#KitchenHotWater p #PlasticCup LEARNING OUTPUT
Sensor state: $SensorOff Sensor
urgeney:
Sensor #¥itchenHorWater set to
$Sensorin
Senscr [#KitchenMorWater] has been
R all Sen: activated ..

Searching for tasks involving this
sensor ..

SENSOR STATE AND ACTIVATION SEQUENCE

Current Stale - #SensorOn PakeTea (enzails} --> ()

#MakeHorDrink [entaila) ==
Urgency : Low {#ttakeChocelate, BMakeCoffen,
akeTea)

Change State #SensorOff e —

1

RECOGNIZED ACTIVITIES

fiMakeChocolate
#MakeCoffes
#MakeTea
#MakeHotDrink

Fig. 10.10 SOA ESB Smart re-implementation Ul—sensor sampler, AR and learning

10.4.4 SOA Based System Benefits and Limitations

The SOA based prototype system provides facilities to expand system resources
available to a system component. In a non-distributed system, all system compo-
nents are hosted in a single computer system which may not have the capacity to
concurrently perform all possible operations, e.g., reasoning with a semantic knowl-
edge tool, accessing a large data store and rendering a complex HTML interface,
which may introduce a bottleneck to system performance. Notably, in the original
monolithic design of this smart home system, the Reasoner service has the poten-
tial to consume 100% of CPU time on a host computer which could interfere with
the operation of other processes hosted on that system, e.g., The HTML interface
becomes unresponsive during semantic reasoning operation. In contrast, a distributed
web service implementation such as the SOAP-based SOA system discussed in this
chapter has the possibility of moving resource intensive operations to an independent
dedicated computer host so that the overall system does not have any performance
bottlenecks and remains responsive.

10.4 A Service-Oriented SOAP-Based Smart System 237

I
| Home Sampler Realtime Preferences Aboul

History 1
VIEW LOGS
name: 1315273779642 dale: 2011.09.06 02 49.39.694 View Log Delete Log
LOG CONTENT

»#PlasticCup/senaor> -
tSensorOfee/states

<fevents

cevenes

<10>20110006025927¢/1d>

sCup</sensar>
<state»iSensorOn</states
cfeventy
<avent>

€10>20110906025942</ 1d>

¥itohenBoiler</sensor>

<cevent>
<44>20110906030003</ 14>
CTyparastivATienc/Types
<after>20</after>

<sen. >#XicchenSoriater</sensory
<sraterdensorlnc/state>

<fevent>

Save Log

Fig. 10.11 SOA ESB Smart re-implementation Ul—sensor logs

C © 127001/ %

SMARTHOME

Home Smart Sampler Realtime History

Preferences
MAKE PREFERENCE
Prefrence Name Make GreenTea Devices
= = #ChinaCup remove
DevicesUsed | #ChinaCup = > o
Has Time 08[-]: 20[+] #KitchenBoiler remove

Has Duration 210
Clear Sensor Save Preference

CURRENT PREFERENCES

Fig. 10.12 SOA ESB Smart re-implementation Ul—explicit user preferences

238 10 Human Centred Cyber Physical Systems

Secondly, the SOAP-based SOA prototype has the ability to share the capacity of
deployed instances system resources. A system consisting of distributed web service
nodes can allow multiple processes to use these service nodes to access functionality
presented by these nodes. Sharing of the functionality of system components as web
service nodes is of great benefit to this project as it introduces the scenario where
the deployment of multiple instances of a smart home can be powered by a single
or reduced set of computer systems without needing to replicate functionality or
hardware requirements for each smart home instance.

The third advantage is that individual components can be developed in a variety
of technologies. By deploying and developing this web service-based system and
its supporting web service framework there is a new ability to integrate system
components based on numerous differing and otherwise incompatible technologies.
This allows this system to potentially use any already developed tools as part of a
system component by integrating with their peers via web service messages.

The fourth advantage is the ability to independently maintain/modify individual
functional due to decoupled components without affecting the whole system. As
system components in a distributed system interact via web service messages they
are not directly affected by changes to the internal operation and consistent code of
its peer component services unless changes are made to the interfaces of an expected
operation of web service functions hosted by peer web service nodes. This web
service-based abstraction allows the development of web service components to be
undertaken with much less coordination and compatibility testing that is required
with traditional software development methods. This facilitates more independent
and isolated development model for these web service nodes leading to a more
efficient and less error-prone development cycle (assuming web service interfaces
and responses are consistent amongst development revisions of the web service node).

Finally, the SOAP-based SOA implementation enables system functionality to
be evolved in a more abstract and efficient manner. This system was developed
alongside a web service development framework consisting of hardware, conceptual
and software components. Production of this web service framework means that in
the event that the functionality of the system needs to be expanded by the addition
of new components and features there is a documented and existing ecosystem of
services and tools to make this development easier. For example, in future, there
may be a need to add an analytic service component to this system in order to profile
usage of consumables, e.g., coffee, in each smart home environment to coordinate
resupply of a geographically close set of homes to reduce costs. By use of this
framework development and integration of this service could take place with only
a minor amount of additional effort that is required to produce this logic in a set of
Java classes.

10.5 A Multi-layered Service-Oriented REST-Based Smart System 239

10.5 A Multi-layered Service-Oriented REST-Based Smart
System

The fourth system continues with the SOA approach but develops the web services
using lightweight Representational State Transfer (REST) protocol instead of SOAP.
REST-based protocol enables clients to retrieve and post information to web services
without requiring a constant connection or an additional layer of information in data
packets. REST-based protocol is particularly useful for sensing devices within a smart
environment to post their data more efficiently. In addition, a single web service
has been layered using combinations of the design patterns. In contrast to the third
prototype, ESB is made redundant and communication overhead is further reduced.
Another key difference is that a graph-based database (triplestore) replaces RDMS
to preserve semantical data. The Apache Jena Fuseki server [24] as a triplestore was
selected as it can be embedded with web services and deployed on a single server or
externally on cloud servers for improved scalability and reusability. This contributes
to the semantic content of linked data and subsequently supporting semantic fusion
and automatic reasoning.

10.5.1 A Multi-layered SOA Based Framework

Figure 10.13 presents a multi-layered SOA based framework independent of the
standalone SMART system. The framework consists of four types of actors: client
devices, REST-based web service, triplestore and smart environment. The client
devices running on different platforms make HTTP interactions with web services.
This human-computer interface has enhanced the original SMART system by build-
ing a mobile application along with a browser-based interface. By creating the mobile
application, it supports patients, carers and other stakeholders to connect with each
other on the move, i.e. family members and relatives. A mobile application can
further act as a sensing device utilising onboard sensors or an aggregator for other
sensing devices. An Android operating system (OS) based application was devel-
oped because of its availability, popularity and large community support. However,
other OS with internet access are also compatible as the data is communicated using
standard messaging format. The Android application adapts simple model-view-
controller (MVC) design pattern to organise the classes for visualising content from
web service and make them interactive.

As can be seen in Fig. 10.13, this SOA contains five major layers: REST web ser-
vice API, facade, repository, domain, and utility, which are logically separated based
on the types of tasks they perform. The REST web service API exposes services to
enable external client devices to consume the features/data using the HTTP asyn-
chronously. The facade layer contains classes that perform high-level commands for
complex operations by utilising multiple repository classes. It includes data access
and reasoning components. The role of the data access component is to perform mul-

240 10 Human Centred Cyber Physical Systems

Clients 1 1 1

Multiple == E] %

Web Service
REST Web Service API
v v
Facade ‘ Domain
Data . | Domain
Access Reasoning ‘ Class N
T v
Repository
Sensing Reasoning CRUD
Logic Repository operations
T
Utility
fffff . Sensor Ontology
» TDB Utils Utils Utils
.
Environment ' Proximity Sensors

Touch
Sensor

Sensor

Fig. 10.13 The multilayer SOA using REST-based web service protocol

tiple operations with the triplestore in order to answer simple of complex answers.
More specifically, a function in a class located in the data access’s package can retrieve
all unrecognised activities from the AR process and related sensors activated within
a fixed period of time interval using one or more queries from the triplestore. How-
ever, the data access classes do not write queries to perform “creates, reads, updates
and deletes” (CRUD) operations as this task is delegated to the repository layer.
Likewise, the reasoning component makes use of reasoning functions available from
the repository layer to perform activity recognition tasks. The repository layer is
the core component which performs CRUD operations, parses the results retrieved
from the triplestore and provides functions from the reasoner repository to enable
inference using rules and variances of reasoners. The domain layer contains a set of
classes that can be instantiated at run-time to temporarily store data, pass between
four layers and help mapping data to and from multiple formats. Finally, the utility
layer conducts low-level processes and directly communicate with triplestore via an
HTTP connection, collect data from devices in the sensing environment, and support
loading, manipulating and reasoning with ontology models.

Applications for assisting inhabitant’s independent living in a care home can
be added, such as these derived from recent inspection reports carried out by the
Care Quality Commission [30]. They include managing medication dose, doctor’s
appointments, bedwetting assistance, and detecting inactiveness. A real-time ADL
inference and simulation engine as well as the preference management and medicine
dose management interfaces have been implemented to demonstrate this architecture.

10.5 A Multi-layered Service-Oriented REST-Based Smart System 241

10.5.2 The Multi-layered SOA Based System Implementation

The web service is central to the Android application and Apache Fuseki Server
(triplestore). The Android application makes standard HTTP requests (i.e., GET,
PUT, POST, and DELETE) to the web service to perform several tasks, such as
CRUD operations, inference, reasoning, and other complex application-based logics.
Semantic data and ontologies stored in the triplestore are retrieved and manipulated
using SPARQL query language with the support of Apache Jena library. The Jersey
library plays a key role in developing the RESTful web services for the function
and parameter mappings of the incoming requests from the clients, as well as in
producing and consuming data in various formats dynamically. In general, Jersey
library is used to bind the web services with the Android application and mapping
data into various object classes.

As discussed in Chap. 2 (Sect. 2.2), a diverse number of sensors and commu-
nication protocols are currently available in the market. The “Utility” layer in the
system framework consists of packages and classes that enable extraction, storage,
and processing of the data from the sensing hardware devices. In particular, the
“Sensor Utils” component contains packages and classes that interact with third-
party APIs and hardware libraries (i.e., “*.almond” and “.arduino”). Some of the
key Java libraries used are WebSocket API (for Almond + router), XBee, and com-
Port (both for Arduino). The parallel thread classes use these classes to log the events
(“EventLogThread”), perform device management (“DeviceManagementThread”),
and store the data in the triple-store (“TDBStorageThread”). Figure 10.14 illustrates
the aforementioned utility library structure.

The multi-layered SOA system uses the Securifi Almond + router to perform
ambient sensing, Arduino boards for embedding sensors to objects, and Amazon
Echo for voice interaction (see Fig. 10.15). The Securifi Almond + router serves
as a main “/OT Router” because it supports multiple communication protocols, e.g.
ZigBee, Z-wave and Wi-Fi, thus making it compatible with a wide range of sensor
devices developed by multiple manufacturers. This makes adding and updating new
sensor devices within a SH environment more easily. Similar routers supporting a
wide range of sensors also include Libelium Waspmote [49], SmartThing Hub, and
VeraLite. The sensors embedded within everyday objects is made possible using
miniature Arduino microcontrollers with wireless (radio frequency (RF), ZigBee,
or Wi-Fi) or wired (Universal Serial Bus (USB)) capabilities to transmit and col-
lect analogue/digital sensor data; more details in [28]. One key limitation of using
microcontroller-based sensing technique is that it requires expert knowledge in pro-
gramming to add new sensors and configure individual components. The “Sensor
Utils” layer enables flexible integration with other sensing devices using third-party
APIs and software libraries.

The data collected from sensors are stored using classes from “TDB Utils” pack-
age and added to the event log queue. A class in “TDB Utils” performs a query
and an update request in three simple steps: (1) building SPARQL query/update
string, (2) using Jena classes/standard HTTP post methods to execute the request,

242 10 Human Centred Cyber Physical Systems

Parallel Threads

[com.utils.sensorutils. *

4 v
TDBStorageThr EventLog L
- <-» Management
ead Thread
Thread
A
v
Third-Party APIs/Libraries
1 *almond £H *.arduino £ *others
1 L' '-‘
AlmondWeb S
Socketutils g [Ardunioutlle
- 4 o
v v
EventListener ComPort
Reader .
o &
v
v
DataParser Utils XBeeReader
¥ e
Fig. 10.14 Software: sensor utility package
Dense Sensing Ambient Sensing Keys
Multimodal Senssrs y 1 ', R~ L
= . Cj% I\‘ " E 0 Fywave E
sensor H -~ [¢ #=> Bluetooth :
Load Cell - 200kg A o - 2 i =i
. = wik
m | <o (B S e
Nt (._- Pereoysg
Touch (capacitive] Motion sensor Y @) geps -

sensor

Routers

aillle Ay -

Coardinatar

’
[4

Fig. 10.15 Hardware: connectivity diagram of sensing devices

A Gransnnnnnsp

%

PR

- Arduing Uno + >
Ardunio Uno + SMART Web Service
ZigBee shialds +

Sensors

10.5 A Multi-layered Service-Oriented REST-Based Smart System 243

and (3) parsing the responses. The SPARQL queries are performed on the triple-
store endpoint and parse the result using the ResultSet and QuerySolution classes.
The standard HTTP post request can be made to perform SPARQL update using
the HitpPost, HttpClient, and HttpResponse classes. However, the request content
type is set to “application/sparql-update” and a static variable already defined in the
Jena’s WebContent class (“WebContent.contentTypeSPARQLUpdate’) can be used.
Furthermore, these sensor events are logged in a queue which is used by repository
and fagade layers to prepare, analyse and reason with the data. The “Ontology Utils”
component in the “Utility” layer, provide the main support for loading ontological
model, adding new assertions, and performing incremental reasoning using the Pellet
reasoner.

The sensor observations and the activity reasoning results are broadcasted to
the clients by the REST web service API using server-sent events (SSE) proto-
col. SSE protocol enables multiple clients to create a WebSocket connection results
simultaneously. The web service broadcasts two SSE to the clients: one for broad-
casting real-time sensor events and another with inferencing results for the clients
with a session token. This sequence of events between the client device and the
key components in the web service is illustrated in Fig. 10.16. As can be seen, the
client Android application can listen to the sensor events in the background asyn-
chronously by making an SSE call to “EventBroadcaster” function in the SensorsCall
class located in “SmartWebServiceAPI” (A). To receive client-specific inferencing
results, the client must obtain the session identity from the “ReasonerCall” first
(B). The “ReasonerCall” is responsible for the task of listening to the sensor events
from the given time, performing inferencing and then broadcast the result using
“ResultsBroadcaster” function (B.1). Once the client receives the session token, a
request can be made to “ResultsBroadcaster” after which the task of listening to
the inferencing results associated with their session identity is initiated. Meanwhile,
the client device is responsible for closing the session (C) and, if required, storing
the session data separately. One key limitation of adapting SSE protocol is that all
the clients will receive all the messages which can create privacy implications. An
alternative messaging pattern such as publish and subscribe is also available where
client subscribes to messages for a specific topic only. One such popular tool that sup-
ports publish and subscribe protocol is message queuing telemetry transport (MQTT)
protocol [29].

The Android application and web browser interface can make the requests to the
REST web service API using the standard HTTP protocol, currently, set to JSON
format; hence the request headers need to be set appropriately. Figure 10.17 pro-
vides an example of the response messages upon executing the two HrtpGet requests
methods from the web browser for viewing the (a) notifications and (b) Patientl’s
appointments lists. The Android application receives the same data in the JSON
format and by using org.codehaus.jackson.map.ObjectMapper class, the data can
be remapped into its respective java object instance automatically; see Jersey and
Jackson libraries.

244 10 Human Centred Cyber Physical Systems

ReasonerCall

ResultsBroadcaster()

Sensor Events Broadcast

eventBroadcastRequest() ; A
y eventData i
Client Inferencing Results Broadcast
startinferencing(userindividualName. startTime) [B
sessionlD-

Session Results Listener |

put nf y *Resu |
resultsBroadcastRequest()

resultsData(sessionlD, data)

stopinferencingSession(}

response(status)

Legends

r I
] I
: Client erver :
| |
i

Fig. 10.16 Server-sent event (SSE) mechanism to communicate between client and web service

10.5.3 The Multi-layered SOA Based System Interface

The REST-based SOA system developed a mobile application to not only allow
the inhabitant to have a better Human Computer Interface (HCI) but also act as a
sensor/actuator by utilisation of the embedded sensors within the device or attach
external devices using wireless connectivity (i.e. Bluetooth). The devices such as
Smartwatch and Shimmer sensing devices can be used to obtain additional con-
textual information about the inhabit to increase accuracy in activity recognition
and providing adequate assistance. Providing every patient in the care home with a
smartphone may not be financially feasible. Getting the elderly to use it will pose
further challenges. Therefore, providing efficient and natural HCI methods for an
elderly can waiver those problems to a degree. For instance, the recent introduction
of devices such as Amazon Echo that provides voice-based interaction to the system
and the ability to interconnect with the smartphone and other smart devices using
SmartThings can be advantageous.

10.5 A Multi-layered Service-Oriented REST-Based Smart System 245

C # localhest8084/SmartWebyrest/notificati
MU [MScProgect | 0] MSc| [BSc [TV.Chanewes B YouTube

& Asks
dividualinme™: =7,
“notificationsbetails™: [
{
Svidusliame™:
"¢
scripti orking

reportediylise
“eresticnDateTing”
“lasthodifiedDat
“notificationStatu:
rotificationType: (-}

widualiame™

description”

“individualiame™: *
tenlD” b

“individualiase™: “N

C H 10.3.203.184:3084

WU] MScProject [MSc] 85¢] TV Channels B YouTube &

“individuslName™:
“appointmentdateTi
“locationPostcode”
locationhiame"
“locationaddress”

patientRemindertiote
rershotes™: “Aeq
sllocationstat {
“description”
“individusliame”
“itemCategoryDetails”
“description”
“in

vidualName'
“itemCategoryID™: "07,
e

“individualNase™:
“sppointmentdateTime
“locaticnPostcode

"locationName’
“locationaddr:
“patientRenindertior
“carershotes™: "R

(a) Notifications list data

(b) Patient1’s Appointments list

Fig. 10.17 Response data from web service android application

PatientUiSegmentation

PatientUISegmentation

PatientUISegmentation

Starting multiple SSE connections
ENeR0FICHRT VDY true, 1AVL/LS1 L
BreadShoe 100 true. 1492723114555
TossterOfy troe, 1492723115640
FridpeOty, true, 1452723116704

true, 1852720117754
Moy, e, TSIV 18802
MorrsrelaChoeseOty, true, 1492770119053
E rue, Wl

BreaoHaCaet IUDy WUl

Moz rerelalhes

MakeToast

[Y

Starting multiple SSE connections
VAYLILINI SN
BreadShce 100 true, 149272311453
ToasterObj, true. 1492723115640
FridgeCly, tree, 192723116708
MargarineOby, wue, 1492720117754

aellagits L 149272 10802 MozrersliaChesselloglty, troe, 1492723118802
MotzarelaCheeseOty, trom, 14%2723119852 Mozz.
EstinghnfeCty, o, 1492720120003

Starting multiple SSE connections
BREIOFBCEETIVDY, true, EVL/LI1
BreadShoe1 00y true. 1492721114553
TossterOby true, 1492723115440
FridgeORy, true, 1492720116703

Make Toast

- MEANS, ActivanonTime = Bovaa 3k wine 4
l' (I o—

Fig. 10.18 Android application displaying semantical segmentation results three activities

246 10 Human Centred Cyber Physical Systems

The android application was developed for a smartphone with a number of fea-
tures. One of which is to display the semantical segmentation results (discussed in
Chap. 6) from the continuous sensor stream made available by the REST web service
API. Multithreading concepts have been employed to segment each sensor events
into relevant ADL threads. A single ADL thread runs the T-Box reasoning and one
or more A-Box thread(s). The reasoning result and sensor events are broadcasted to
the clients and the Android application continuously capture and presents the infor-
mation to the inhabitant. Figure 10.18 shows a snapshot of how concurrent actions
of three activities are separated into different threads and presented on the Android
application. The screenshot on the left show sensor events logs on the top and an
expandable list on the bottom showing MakeToast, MakeBakedBeans, and MakeTea
activities. The expandable list shows respective ADL’s image, thread names, and a
total number of sensors segmented. As the user expand each ADL element in the
expandable list, all the relevant sensors get displayed below showing sensor name,
activation time, and if the action is generic or specific to the user. The partial list of
segmented sensors for ADLs are illustrated at the bottom of half of all three screen-
shots. The MakeTea activity actions highlighted in yellow on the right screenshot
show inhabitant’s preferences being recognised during the A-box reasoning process.

imEBE®

ADL Simulation

Recognised Activity "

ference Name
_Preferences_BritishTea

(a) Simulation result (1) (b) Simulation result (2)

Fig. 10.19 ADL simulation environment for ADL preferences matching

10.5 A Multi-layered Service-Oriented REST-Based Smart System 247

Another key feature developed was the simulation interface to load a set of actions
for one or more activities and perform SPARQL based activity inferencing. The
requests are made from the Android application to perform the simulation and rea-
soning tasks on the web service. The activation of simulated sensors and results are
displayed in Fig. 10.19. The Text-to-Speech feature is also used to utter the resul-
tant output (using speaker icon). The activity recognition algorithm is performed
by the web service using a knowledge-driven approach. Currently, only pre-defined
user ADL preferences are used to match against the activated sensors. The aim of
the matching process is to find the related user preference(s) and other inactivated
sensor object(s) from those individual preference(s) to complete the activity. The
user can create and manage their preferences using the interactive forms depicted in
Fig. 10.20. Moreover, a user can browse through all the sensors by location and type,
add new sensors or update individual sensors using the interface in Fig. 10.20b.

EwaEHEHy®

€ User Preferences

ContactSensor
DoorBell

FireAlarm

BritishTeaObj Thermometer

BritishTeaOk

MoistureSensor

PressureSensor

ADD

(a) Creating a new preference (b) Adding sensors to the
preference

Fig. 10.20 User preference management interface

248 10 Human Centred Cyber Physical Systems

10.6 Summary

This chapter presents four prototype systems which were developed for testing and
evaluating various activity recognition approaches investigated in previous chap-
ters. These prototype systems are categorised based on their architecture styles into
standalone, multi-agent and SOA with SOAP protocol and multi-layered SOA with
REST protocol. This reflects and closely corresponds to the evolution of the latest
technologies in software engineering and smart cyber-physical systems. The ini-
tial standalone SMART system was feature rich, simple and efficient to recognise
single-user sequential activities with user preferences. Nevertheless, the nature of
standalone restricted the ability for the system to be reused by other systems, add
new features in unmanageable monolithic coding style and components with licenc-
ing cost. The second prototype system introduced agent-based system architecture
with a Java-based application to recognise activities. The latter two systems adopted a
distributed architecture with open source components to make the system more acces-
sible for other platforms over the internet connection. The third system implemented
a SOAP-based service-oriented architecture with multiple web services collabora-
tively sharing tasks. It uses an enterprise service bus to communicate with internal
web services and external clients. The fourth system extends the previous system by
adopting the lightweight REST-based communication protocol with a multi-layered
web service. In addition to the web interface, a mobile application was also devel-
oped to enhance the interface to receive real-time sensor data and AR results. The
key limitation of the fourth prototype is the single use of a machine which requires
very high run-time memory and number of cores in order to conduct AR tasks. This
chapter describes implementation details of each system prototype, and discuss their
strengths and limitations based on their accuracy and performance. Future work will
focus on scalability and performance of the third and fourth systems.

References

1. Chen L, Nugent C, Al-Bashrawi A (2009) Semantic data management for situation-aware
assistance in ambient assisted living. In: Proceedings of the 11th international conference on
information integration and web-based applications and services - iiWAS *09

2. Chen L, Nugent C, Rafferty J (2013) Ontology-based activity recognition framework and
services. In: Proceedings of international conference on information integration and web-based
applications and services - IIWAS *13, pp 463—469

3. Wang X, Wang J, Wang X, Chen X (2017) Energy and delay tradeoff for application offloading
in mobile cloud computing. IEEE Syst J 11:858-867

4. Semantic Web: Semantic Web/RDF Liberary for C#NET. http://semanticweb.org/wiki/
SemWeb-DotNet.html

5. Della Valle E, Grossniklaus M(2010) C-SPARQL.: a continuous query language for rdf data
streams. Int J Semant Comput 04:3-25

6. W3C: Euler proof mechanism. http://www.agfa.com/w3c/euler/

7. Nugent CD, Mulvenna MD, Hong X, Devlin S (2009) Experiences in the development of a
smart lab. Int J Biomed Eng Technol 2:319-331

http://semanticweb.org/wiki/SemWeb-DotNet.html
http://www.agfa.com/w3c/euler/

References 249

8.

10.
11.
12.

13.
14.

16.
17.
18.

20.

21.

22.

23.

24.
25.

26.

27.

28.

29.
30.
31.
32.

Lohr KP (2003) Automatic mediation between incompatible component interaction styles. In:
Proceedings of the 36th annual HAWAII international conference on system sciences, HICSS
2003

. W3C: W3C semantic web knowledge base, Listing of tools by programming. https://www.w3.

org/2001/sw/wiki/Category:Programming_language

Apple: Objective- C programming Documentation. https://developer.apple.com/library/
archive/documentation/Cocoa/Conceptual/ObjectiveC/Introduction/introObjectiveC.html
Perl: Perl Programming Documentation. http://perldoc.perl.org/

Abu-Eid V (2008) Raising web service updates efficiency with dynamic technologies. In:
Proceedings - international conference on next generation web services practices, NWeSP
2008

Microsoft: Microsoft dotNET technology information website. http://www.microsoft.com/net/
Jensen PA (1969) The design of multiple-line redundant networks. IEEE Trans Reliab R-
18:39-44

. Wooldridge M, Jennings NR (1995) Intelligent agents: theory and practice. Knowl Eng Rev

10(2):115-52

Srivastava SK (1999) Applications of Intelligent agents. Electron Inf Plan

Jennings NR, Wooldridge MJ (1998) Agent technology: foundations, applications and markets.
Jennings NR (2002) An agent-based approach for building complex software systems. Commun
ACM

. Bellifemine F, Poggi A, Rimassa G (2001) JADE: a FIPA2000 compliant agent development

environment. In: International conference on autonomous agents and multiagent systems
Horrocks I, Patel-Schneider PF, Bechhofer S, Tsarkov D (2005) OWL rules: a proposal and
prototype implementation. Web Semant

Khan JA, Kumar S (2015) OWL, RDF, RDFS inference derivation using Jena semantic frame-
work and pellet reasoner. In: 2014 International conference on advanced engineering and tech-
nology research. ICAETR 2014. 0-7

Friedman-Hill E (2008) Jess the rule engine for java platform

Mei J, Bontas EP Technical Reports: reasoning paradigms for owl ontologies. http://www.ag-
nbi.de/research/owltrans/

Apache Apache Jena. https://jena.apache.org/

Science C, Lanka S (2013) Application of design pattern in the JDBC programming. In: 2013
8th international conference on computer science & education, pp 1037-1040

Ali M, Elish MO (2013) A comparative literature survey of design patterns impact on software
quality. International conference on information science and applications (ICISA), pp 1-7
Zhang C, Budgen D, Drummond S (2012) Using a follow-on survey to investigate why use
of the visitor, singleton & facade patterns is controversial. In: Proceedings of the ACM-IEEE
international symposium on empirical software engineering and measurement - ESEM 12, p
79

Triboan D, Chen L, Chen F, Wang Z (2016) Towards a service-oriented architecture for a mobile
assistive system with real-time environmental sensing. TSINGHUA Sci Technol 21:581-597
MQTT: Message queuing telemetry transport (MQTT). http://mqtt.org/

Care Quality Commission: Care Quality Commission. https://www.cqc.org.uk/about-us
Abburu S (2012) A survey on ontology reasoners and comparison. Int] Comput Appl 57:33-39
Jersey: Chapter 15. Server-Sent Events (SSE) Support. https://jersey.java.net/documentation/
latest/sse.html#d0e11582

https://www.w3.org/2001/sw/wiki/Category:Programming_Language
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjectiveC/Introduction/introObjectiveC.html
http://perldoc.perl.org/
http://www.microsoft.com/net/
http://www.ag-nbi.de/research/owltrans/
https://jena.apache.org/
http://mqtt.org/
https://www.cqc.org.uk/about-us
https://jersey.java.net/documentation/latest/sse.html#d0e11582

Index

0-9
4D-fluents approach, 157
4-Dimensional objects, 157

A

Abnormal activities, 17

Accelerometer sensors, 24

Action-based properties, 81

Active Assisted Living (AAL), 6

Activities of Daily Living (ADL), 10, 50

Activity Analysis Agent (AAA), 229

Activity learning, 83

Activity recognition, 3

ADL activities, 170

ADL concepts, 118

ADL pattern, 119

ADL Repositories, 52

ADLs possess several unique characteristics,
154

Ageing population, 183

Allen temporal logic, 158

Alzheimer’s, 201

Ambient Assisted Living (AAL), 10, 19, 26

Ambient sensor, 26

Apache Jena Fuseki, 207

Apache Jena library, 241

Application heterogeneity, 184

Application Programming Interface (API), 243

Artificial Intelligence (Al), 2, 18, 185

Artificial intelligence techniques, 16

Assertion box, 134

Assisted living, 19

Assistive agent, 209

© Springer Nature Switzerland AG 2019

Assistive services, 222

Asynchronous JavaScript and XML, 218
Atomic activity recognition models, 154
Audio, 189

Augmented living environments, 10
Automated reasoning, 153

Axioms, 156

B

Bayes networks, 8

Behaviour and environment monitoring, 4
Biosensors, 25

C

Central Assistance Provisioning Environment,
193

Characterize composite activities, 155

Client-server pattern, 218

Coarse grained, 154

Complex Activity Recognition Unit (CARU),
226

Complex activity scenarios, 51

Complex Event Processing (CEP), 129

Complex micro-ecosystem, 192

Complex real-world activity scenarios, 153

Composite Activity Recogniser Agent
(CARA), 229

Composite activity TS, 165

Computational reasoning, 37

Computer vision, 4, 18

Concepts, 156

Conditional Random Field (CRF), 27, 30

Context-aware, 1

251

L. Chen and C. D. Nugent, Human Activity Recognition
and Behaviour Analysis, https://doi.org/10.1007/978-3-030-19408-6

https://doi.org/10.1007/978-3-030-19408-6

252

Context-aware assistance, 12

Context-Driven Activity Theory (CDAT), 153

Context management, 16

Continuous activity recognition, 104

Continuous recognition, 82

Course-grained activity models, 15

Creates, Reads, Updates and Deletes (CRUD),
240

C-SPARQL, 128

Cyber Physical System (CPS), 1, 18, 217

D

Data analytics, 2

Data-driven approach, 7

Data fusion, 6, 8

Data heterogeneity, 184

Data integration, 16, 38

Data mining, 7

Data processing, 4

Dead-reckoning method, 25

Decision making, 16

Decision trees, 8

Dense sensing, 23

Dense sensing-based, 26

Dense sensing-based activity recognition
community, 37

Description-based conceptual activity model,
57

Description-based reasoning, 196

Description Logic (DL), 9, 36, 81

Descriptive properties, 81

Detecting anomalies, 10

Detecting user-object interactions, 26

Discriminating strategy, 103

Discriminative, 27

Distributed architecture, 248

Distributed web service, 236

Domain analysis and characterisation, 192

Domain knowledge and common-sense
knowledge, 153

Dominant object pattern, 88

Dynamically varied time windows, 106

Dynamic Bayesian Networks (DBNs), 28

Dynamic composite activity, 165

Dynamic concurrent activity, 165

Dynamic sensor data segmentation, 90, 104

Dynamic sequential activity, 165

E

Entailment rules, 167
Enterprise service bus, 218
Environmental contexts, 55
Environmental entities, 128

Index

Environment context, 2

Euler inference engine, 222
Event Calculus (EC), 36
Expanding time window, 117
Explicit conceptualisation, 185

F

FaCT, 196

Fine-grained activity models, 15

Fine-grained activity recognition, 27

Finite-state machines, 49

Formal data models, 184

Formalism, 81

Foundation of Intelligent Physical Agents
(FIPA), 230

Fusion of data, 55

Fuzziness, 37

Fuzziness and uncertainty, 9

G

Generated semantic data and metadata, 59
Generative, 27

Generic ADL models, 52

Graph-based database, 218, 239

H

Healthcare, 183

Heuristic (rule-based) approaches, 27

Heuristics associated with activities, 153

Hidden Markov Model (HMM), 8, 28

Hierarchical relationships, 118

High-level (complex) activities, 108

HomeML for smart home data modelling and
exchange, 18

Human Activity Recognition (HAR), 2

Human behaviours, 2

Human Computer Interface (HCI), 2, 4, 244

Human intervention, 93

Human physical activities, 2

Hybrid approach to activity modelling, 79

Hypertext Transfer Protocol (HTTP), 218

1

Incompleteness problem, 80

Independent Lifestyle Assistant (ILSA), 31

Independent living, 50

Inertial measurement units, 6

Information and Communication Technology
(ICT), 1, 50

Inhabitant specific reasoner, 139

Intelligent processing, 18

Inter-agent information exchange, 185

Interleaved and concurrent activities, 12

Index

Internet of Things (IoT), 1

Interoperability, 10, 38

Interoperation, 16

Interval-based temporal interrelationships, 167

J

Java Agents Development Framework (JADE),
230

Java Expert System Shell (JESS), 129

JavaScript Object Notation (JSON), 243

JESS rule engine, 139

Just-in-time ADL assistance, 209

K

Knowledge Base (KB), 129
Knowledge-based decision making, 184
Knowledge-driven, 9
Knowledge-driven approach, 7
Knowledge modelling, 9

Knowledge repository, 59

Knowledge representation formalism, 9

L

Labelled action trace, 83

Labelled annotations, 8

Leaf ADL concepts, 160

Learning mechanisms, 83

Learning new activities, 10

Learnt activity patterns, 79

Linear or non-linear discriminative learning, 28
Location-based activities, 25

Logical approaches, 35

Logical entailment rules, 213
Logical knowledge representation, 35
Logical reasoning, 9

Low-cost low-power sensors, 201
Low-level activities, 108

Low-level (simple) activities, 108

M

Machine learning, 7

Markov Decision Processes (MDPs), 16

Mechanism for shrinking and expansion, 108

Message Queuing Telemetry Transport
(MQTT), 243

Microsoft Server platforms (IIS), 225

Mining-based activity modelling, 34

Model-View-Controller (MVC), 239

Modular architecture, 226

Monitor and Segment Agent (MSA), 229

Monolithic code structure, 225

Multi-Agent System (MAS), 227, 228

253

Multi-layered SOA system, 241
Multi-layered system, 218

Multi-level activity modelling, 15
Multimodal interactions, 201
Multimodal sensor information, 27
Multi-modal sensors, 11

Multiple levels of granularity, 77
Multi-query optimisation problem, 128
Multithreading mechanism, 131

N

Naive Bayes classifier, 28

Nearest Neighbour (NN), 8, 29
Neo4j, 207

Neural networks, 27

Noise elimination, 8
Non-incremental reclassification, 129
Non-overlapping time windows, 109

(o)

Object-based activity recognition, 6
Object-Oriented Programming (OOP), 15
On-body and near-body networks, 25
On-line continuous activity recognition, 103
Ontological activity hierarchy, 92
Ontological activity models, 37
Ontological engineering, 93

Ontologies, 37

Ontology-based modelling, 38

Ontology editing tools, 206

Ontology engineering, 212

Open source components, 248

Operating System (OS), 239
Overlapping, 113

OWL and RDF Schema, 59

OWL API, 139

P

Pattern recognition, 4, 184

Pellet reasoner, 139

Personalised ADL, 52

Personalised assistance, 10

Personalised preference, 141

Personalized activity assistance, 201

Personalized context-aware, 17

Pervasive computing, 2, 201

Planning and Execution Assistant and Trainer
(PEAT), 31

POMDPs, 16

Primitive action, 108, 161

Priori domain knowledge, 18

Proactive service provisioning, 201

254

Probabilistic, 6
Procedural inference, 158
Publish and subscribe protocol, 243

Q

Qualitative temporal knowledge, 157
Quality of life, 183

R

RACER, 196

Radio Frequency Identification (RFID), 27

RDF Schema, 191

RDF triples, 207

Real-time activity recognition, 104

Real-time streaming sensor data, 77

Reasoning algorithm, 82

Reclassification, 129

Relational Database Management System
(RDBMS), 129

Relations, 156

Representational State Transfer (REST) based
web service, 218

Resource Description Framework (RDF), 187

Reuse, 38

Rich temporal information, 155

Rule-based systems, 49

S

Scalable ambient middleware, 50

Seed ontology, 80

Segmentation and aggregation, 103

Segmenting the raw data stream, 10

Semantic-based decision engine, 134

Semantic data fusion, 18

Semantic data management, 204

Semantic data repository, 196

Semantic decision engine, 130

Semantic/knowledge-based intelligent
decision-making, 184

Semantic modelling, 192

Semantic modelling and reasoning, 194

Semantic Relationship (SR), 131

Semantic repositories, 210

Semantic repository technologies, 207

Semantic segmentation, 135

Semantic situational data, 210

Semantic Smart Homes (SSH), 184

Semantic technologies, 78

Semantic theory-based, 130

Semantic Web Rule Language (SWRL), 128

Semi-automatic approach to generating
semantic descriptions, 59

SemWeb semantic technologies, 222

Index

Sensor data and temporal characteristics, 103

Sensor data stream, 103

Sensor data stream segmentation, 170

Sensor networks, 2, 18

Sequential, Interleaved and Concurrent
Activity Recognition, 13

Sequential segmentation, 35

Service-Oriented Architecture (SOA), 218

Server-Sent Events (SSE), 243

Shared vocabulary, 185

Sharing, 16, 18

SH environments, 103

Shrinking/Expansion, 114

Shrinking time window, 116

Simple Activity Recogniser Agent (SARA),
229

Simple Activity Recognition Unit (SARU),
227

Simple and composite, 154

Simple Object Access Protocol (SOAP), 218

Single-user and multi-user activities, 13

Single-user single-activity scenarios, 51

Situation-aware assistance, 193

Situation model, 52

Sliding time window, 90

Sliding window, 105

Smart City, 1

Smart environments, 18

Smart Home (SH), 1, 50

Software agents, 192

SPARQL Protocol and RDF Query Language
(SPARQL), 128

Spatial, 55

State-based or process-based approaches, 212

Static and dynamic composite activities, 160

Static and dynamic models, 170

Static composite activity, 165

Static concurrent activity, 166

Static sequential activity, 166

Statistical, 6

Supervised, 7

Support dynamic segmentation, 170

Support Vector Machine (SVM), 8, 28, 30

Surveillance videos, 189

Synthetic data generator, 120

T

Temporal, 55

Temporal information, 103
Temporal or spatial knowledge, 154
Temporal segmentation, 107
Terminology box, 134
Time-dependent data, 105

Index

Timely decisions, 50

Time slices, 105

Time window-based segmentation, 170
Time window manipulation, 112

Time window mechanism, 108

Trend discovery, 184

Triple statements, 191

TripleStore, 196

U

Ubiquitous and mobile computing, 23
Uncertainty, 11, 37

Universal Resource Identifier (URI), 191
Unlabelled action trace, 83
Unmodelled activities, 83
Unstructured textual data, 189
Unsupervised learning, 7

User activity profiles, 81
User-centred personalised, 183
User-object interaction, 55

255

User-object interaction recognition, 73
User profiles, 52

User’s activity preferences, 52

User’s behavioural features, 93

\%

Video event ontology, 49
Vision-based, 37

Vision-based activity recognition, 4
Visual surveillance, 49

w

Wearable sensors, 6, 23

‘Web-based human-machine interface, 217
Web Ontology Language (OWL), 129, 188
Web service interface, 10

Web services, 218

Wireless communication networks, 201

	Preface
	Acknowledgements

	Contents
	About the Authors
	Abbreviations
	List of Figures
	List of Tables
	1 Introduction
	1.1 Background
	1.2 Basic Concepts on Activity Recognition
	1.2.1 Action and Activity
	1.2.2 Activity Recognition

	1.3 Activity Recognition Approaches
	1.3.1 Vision-Based Activity Recognition
	1.3.2 Sensor-Based Activity Recognition

	1.4 Activity Recognition Methods
	1.4.1 Data-Driven Activity Recognition
	1.4.2 Knowledge-Driven Activity Recognition

	1.5 Activity Recognition Applications
	1.5.1 A Typical Application Scenario: Ambient Assisted Living
	1.5.2 Activity Recognition Challenges in Ambient Assisted Living

	1.6 Research Trends and Directions
	1.6.1 Complex Activity Recognition
	1.6.2 Domain Knowledge Exploitation
	1.6.3 Multi-level Activity Modelling for Scalability and Reusability
	1.6.4 Infrastructure Mediated Activity Monitoring
	1.6.5 Intent or Goal Recognition
	1.6.6 Abnormal Activity Recognition
	1.6.7 Sensor Data Reuse and Repurposing

	1.7 Summary
	References

	2 Sensor-Based Activity Recognition Review
	2.1 Introduction
	2.2 Sensor-Based Activity Monitoring
	2.2.1 Wearable Sensor Based Activity Monitoring
	2.2.2 Ambient Sensor Based Activity Monitoring

	2.3 Data-Driven Approaches to Activity Modelling and Recognition
	2.3.1 Generative Methods
	2.3.2 Discriminative Methods
	2.3.3 Heuristic and Other Methods

	2.4 Knowledge-Driven Approaches to Activity Modelling and Recognition
	2.4.1 Mining-Based Approach
	2.4.2 Logic-Based Approach
	2.4.3 Ontology-Based Approach

	2.5 Discussions on Activity Recognition Approaches
	2.5.1 Activity Recognition Approach Comparison
	2.5.2 The Influence of Activity Monitoring on Activity Recognition

	2.6 Summary
	References

	3 An Ontology-Based Approach to Activity Recognition
	3.1 Introduction
	3.1.1 Application Context: Smart Home Based Assisted Living

	3.2 The Ontology-Based System Architecture
	3.3 Ontological Modelling for Activity Recognition
	3.3.1 Smart Home Characterisation
	3.3.2 Ontological Context Modelling
	3.3.3 Ontological ADL Modelling

	3.4 Ontology-Based Mechanisms for Activity Recognition
	3.4.1 Theoretical Foundation
	3.4.2 Semantic Inference for Activity Recognition
	3.4.3 Real-Time, Continuous Activity Recognition

	3.5 An Example Case Study
	3.5.1 A Prototype System
	3.5.2 Experiment Setup
	3.5.3 Experiment Procedure
	3.5.4 Results and Discussions

	3.6 Summary
	References

	4 A Hybrid Approach to Activity Modelling
	4.1 Introduction
	4.2 The Hybrid Approach to Activity Modelling
	4.2.1 Ontological Activity Modelling
	4.2.2 Semantics-Based Activity Recognition

	4.3 Learning Unmodelled Activities
	4.4 Learning User Activity Profiles
	4.4.1 Object Patterns Detection
	4.4.2 Activity Duration Detection
	4.4.3 Activity Patterns Detection
	4.4.4 Activity Knowledge Model Evolution

	4.5 An Example Case Study
	4.5.1 Experiment Design and Data Collection
	4.5.2 Analysis and Evaluation

	4.6 Summary
	References

	5 Time-Window Based Data Segmentation
	5.1 Introduction
	5.2 Recent Work on Temporal Data Segmentation
	5.3 Real-Time Activity Recognition Analysis
	5.3.1 Concept and Architecture
	5.3.2 Data Stream Segmentation Characterisation

	5.4 Sensor Data Segmentation Modelling
	5.4.1 Formal Time Window Modelling
	5.4.2 Time Window Manipulation

	5.5 Real-Time Data Segmentation for Continuous Activity Recognition
	5.5.1 Recognition Algorithms
	5.5.2 The Algorithm for Shrinking Time Window
	5.5.3 The Algorithm for Expanding Time Window

	5.6 An Example Case Study
	5.6.1 Experiment Design
	5.6.2 Time-Window Model Configuration
	5.6.3 Ground-True Synthetic ADL Data
	5.6.4 Experiment Result Analysis
	5.6.5 Findings and Discussions

	5.7 Summary
	References

	6 Semantic-Based Sensor Data Segmentation
	6.1 Introduction
	6.1.1 Semantic Approach: Indirect Query and Rules
	6.1.2 Syntactical Approach: RDBMS and Semantic KB Mapping
	6.1.3 Pragmatic Approach: Precondition and Evidential Theory

	6.2 Semantic-Based Approach to Sensor Data Segmentation
	6.2.1 Object, ADL and Context Relationships Modelling
	6.2.2 Semantic Decision Engine
	6.2.3 Semantic Segmentation Algorithm

	6.3 Semantic Segmentation Lifecycle
	6.3.1 Ontological Modelling
	6.3.2 Multithread Segmentation Process
	6.3.3 Reasoner and Supporting Tools

	6.4 An Example Case Study
	6.4.1 Experiment Design
	6.4.2 Results and Discussions

	6.5 Summary
	References

	7 Composite Activity Recognition
	7.1 Introduction
	7.2 Related Work
	7.3 A Hybrid Approach to Composite Activity Modelling
	7.3.1 Representing Temporal Knowledge in Ontologies
	7.3.2 A Hybrid Ontological and Temporal Approach

	7.4 Composite Activity Modelling
	7.4.1 Concept and Terminology
	7.4.2 Ontological Composite Activity Modelling
	7.4.3 Interval Temporal Logic in Composite Activity Modelling

	7.5 Simple and Composite Activity Recognition Methods
	7.5.1 Ontological and Temporal ADL Models
	7.5.2 Composite Activity Recognition Architecture
	7.5.3 Composite Activity Recognition Algorithm

	7.6 An Example Case Study
	7.6.1 System Prototype
	7.6.2 Experiment Design
	7.6.3 Results and Discussions

	7.7 Summary
	References

	8 Semantic Smart Homes: Towards a Knowledge-Rich Smart Environment
	8.1 Introduction
	8.2 Semantic Smart Homes
	8.2.1 The Concept
	8.2.2 Related Work
	8.2.3 The Conceptual Architecture

	8.3 Semantic Smart Home Analysis
	8.3.1 Semantics, Semantic Modelling and Representation
	8.3.2 Smart Home Ontology Engineering

	8.4 Semantic Enabled Processing Capabilities
	8.4.1 Towards a Paradigm of Extensible and Flexible Assistance Provisioning
	8.4.2 Cognitive ADL Monitoring and Recognition
	8.4.3 Knowledge-Based Assistive Living Systems

	8.5 Summary
	References

	9 Semantic Smart Homes: Situation-Aware Assisted Living
	9.1 Introduction
	9.2 Related Work
	9.3 A Systematic Approach to Situation-Aware ADL Assistance
	9.4 Semantic Data Management
	9.4.1 Semantic Data Modelling
	9.4.2 Semantic Data Creation
	9.4.3 Semantic Content Storage and Retrieval

	9.5 Semantic Enabled Intelligent Assisted Agent
	9.5.1 An Example Case Study

	9.6 Summary
	References

	10 Human Centred Cyber Physical Systems
	10.1 Introduction
	10.2 SMART: A Standalone System for Sequential Activity Recognition
	10.2.1 The SMART System Architecture
	10.2.2 The SMART System Implementation and Operation
	10.2.3 SMART Limitations and Opportunities

	10.3 An Agent-Based System for Composite Activity Recognition
	10.3.1 The Conceptual Architecture
	10.3.2 Multi-agent System Implementation
	10.3.3 Multi-agent System Interface

	10.4 A Service-Oriented SOAP-Based Smart System
	10.4.1 The Service-Oriented System Architecture
	10.4.2 The SOA Based System Implementation
	10.4.3 The SOA Based System Interface
	10.4.4 SOA Based System Benefits and Limitations

	10.5 A Multi-layered Service-Oriented REST-Based Smart System
	10.5.1 A Multi-layered SOA Based Framework
	10.5.2 The Multi-layered SOA Based System Implementation
	10.5.3 The Multi-layered SOA Based System Interface

	10.6 Summary
	References

	Index

