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10.1 Introduction and Applications of Phylogeny

Study of relationships among individuals or groups of organisms or species or pop-
ulations is called phylogeny. The relationships among the individuals are estimated
or assessed based on the evolutionary signals present in the genetic material of any
organism. The evolutionary signals or footprints among these individuals or entities
are used to construct the evolutionary history. The evolutionary history based on the
evolutionary signals can be modeled or represented in the form of graphical
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representation or tree, which is known as phylogenetic tree. Phylogenetics is an
ever-evolving field that promises to give more insights into understanding biodiver-
sity, evolution, ecology, and genomes. Phylogenetics has several applications like
affiliating taxonomy to an organism, studying reproductive biology in lower organ-
isms, assessing the process of cryptic speciation in a species, understanding the
history of life, resolving controversial history of life, reconstructing the paths of
infection in an epidemiology to understand the evolution of pathogen, classifying
proteins or genes into families, and many more.

10.1.1 Affiliating Taxonomy to an Organism

Every living organism which is known or identified till date should be classified and
affiliated to a taxonomic group. When the taxonomy of the species identified is not
known, it is left as an orphan or classified into a special group. The traditional
approach for identification of an organism includes studies based on microscopy,
morphology, biochemical tests, physiological tests, fruit bodies, mating behavior
experiments, and others. The drawbacks associated with the traditional approach
are time consuming and of low to moderate in precision. In these cases, phylogeny
can be used to affiliate taxonomy to a taxa or an organism.

Phylogeny has been proposed and widely accepted to affiliate taxonomy for a spe-
cies. Several reports were there on entomopathogenic fungi (Neelapu et al. 2009),
Echinococcus (Thompson 2008), catfishes (Teugels 1996), Borrelia burgdorferi
(Margos et al. 2011), Trichinella (Pozio et al. 2009), and many more. This case study
provides with details that how phylogeny can be used to affiliate taxonomy for ento-
mopathogenic fungi (Neelapu et al. 2009). When the taxonomy of the species is not
known, it is left as an orphan or classified into a special group. The fungi which are
not classified into any fungal divisions such as Ascomycota, Zygomycota, and
Basidiomycota were classified into a special group known as Deuteromycota.
Neelapu et al. (2009) studied phylogeny of mitosporic or asexual or conidiogenous
entomopathogenic fungi of Deuteromycota belonging to the genera Beauveria,
Nomuraea, Metarhizium, Paecilomyces, and Lecanicillium. One hundred forty-seven
fungal entries covering 94 species related to Ascomycota, Zygomycota, and
Basidiomycota were analyzed. The partial amino acid sequences of the f-tubulin
gene were aligned using AlnExplorer of MEGA ver. 3.014. The statistical procedures
minimum evolution (ME), maximum parsimony (MP), and neighbor joining (NJ) of
MEGA ver. 3.014; maximum likelihood of PAUP ver. 4b; Bayesian inference of
MrBayes ver. 3.04b10; and Metropolis-coupled Markov chain Monte Carlo
(MCMCMC) were used to construct phylogenetic tree. “Phylogenetic analysis
placed all the asexual entomopathogenic fungal species analyzed in the family
Clavicipitaceae of the order Hypocreales of Ascomycota” (Fig. 10.1). Thus, when-
ever the identity of the organism is in crisis, phylogeny can be used to affiliate the
organism to the known traditional taxonomic group.
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Fig.10.1 The phylogenetic affiliation of the asexual entomopathogenic Beauveria spp., Nomuraea
spp., Metarhizium spp., and Paecilomyces spp. (Source: Neelapu et al. 2009)

10.1.2 Studying Reproductive Biology in Lower Organisms

Understanding the reproductive biology in lower organisms where sexual organs are
not observed is a challenge. Genetic tests based on phylogenetic concordance and
gene genealogies offer an indirect means of identifying recombination. When phy-
logeny is applied, different genes show different genealogies within a species due to
recombination. Therefore, phylogenetic trees generated from the data show phylo-
genetic concordance among the multiple gene genealogies in recombining species,
whereas non-phylogenetic concordance among the multiple gene genealogies in a
clonal species (Fig. 10.2).

The reproductive biology in Beauveria bassiana (Neelapu 2007; Devi et al. 2006)
and Nomuraea rileyi (Neelapu 2007; Devi et al. 2007) was studied. Devi et al. (2006)
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Fig. 10.2 Phylogenetic concordance and gene genealogies: (a) clonal species (b) recombining
species

applied indirect means of genetic tests which are based on phylogenetic concordance
of gene genealogies to identify reproductive biology (recombination or clonal) in a
localized epizootic population of entomopathogenic fungi B. bassiana. Nucleotide
sequence data of different allelic forms of three genes (large and small subunits of
mitochondrial ribosomal RNA (mt rRNA) and p-tubulin) were evaluated to assess
phylogenetic concordance among the multiple gene genealogies. Lack of phyloge-
netic concordance among three gene genealogies in the epizootic of B. bassiana
indicates prevalence of recombination within the clonal structure of the population
(Fig. 10.3). Thus, whenever the mating tests cannot be applied in lower organisms
like bacteria and fungi where sexual organs are not observed, phylogenetic concor-
dance among multiple gene genealogies can be used for understanding the repro-
ductive biology.

10.1.3 Assessing the Process of Cryptic Speciation in a Species

Entomopathogenic fungi of Deuteromycota belonging to the genera Beauveria,
Nomuraea, Metarhizium, and Paecilomyces are recognized as a “species complex”
comprising of genetically diverse lineages. Devi et al. (2006) used amplified frag-
ment length polymorphism (AFLP) and single-stranded confirmation polymorphism
(SSCP) data of worldwide population and generated unweighted pair group method
with arithmetic mean (UPGMA) tree. The worldwide sample of B. bassiana isolates
represented cryptic phylogenetic species (Fig. 10.4). Literature reports the use of
powerful approach—genealogical concordance phylogenetic species recognition
(GCPSR)—to uncover cryptic speciation. “GCPSR detects genetically isolated
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groups from a number of different loci by comparing the gene trees. Different genes
have different genealogies within a species establishing gene flow delimiting species
by identifying the unshared polymorphisms, and thus branches that are incompatible,
with all genealogies at all loci. Thus, branches that are incompatible with all genealo-
gies at all loci represent different species” (Neelapu et al. 2009).

Neelapu et al. (2009) used GCPSR to uncover cryptic speciation in B. bassiana.
Epizootic population of B. bassiana from Burgenland, Austria, are sequenced for
partial sequences of the three genes, f-tubulin gene and large and small subunit of
rRNA genes of mitochondria, and were aligned using AlnExplorer of MEGA ver.
3.1. A consensus maximum parsimony tree was generated using PAUP ver. 4.0.
“The tree topology of each species tree indicates the presence of cryptic speciation.
Incongruity of gene genealogies within a given group indicates gene flow and
delimits a species. As the approach detects reproductive isolation, the resulting
groups also fulfill the criteria of a biological species” (Fig. 10.3).

10.1.4 Studying the Evolution of Proteins or Gene Families

Phylogeny is used in establishing the origin and evolutionary pattern of a gene of
particular species with respect to the other species. Similar set of genes are required
for studying or understanding the phylogeny. The genes, which are similar in their
structure or function, are known as homologous sequences. If the genes are similar
in function but are from different organisms, then they are believed to be orthologous
sequences. If the genes are from the same organism, then they are known as
paralogous sequences. It is believed that orthologous sequences are due to speciation
from a common ancestor, whereas paralogous sequences are due to duplication.

Though there are many reports on the evolution of proteins or gene families, we
would like to throw some light on evolution of globin and V-PPases (Hardison 2012;
Suneetha et al. 2016). Globin genes diverged to form hemoglobin (oxygen transport
in blood), myoglobin (oxygen metabolism in muscle), cytoglobin (oxygen donator
during synthesis and cross-linking of collagen or acting as a protector of the free
radicals formed in the fibrosis process), and neuroglobin (acts as an oxygen reservoir
releasing oxygen in stressful situations, such as hypoxia). So, the plausible explana-
tion for gene evolution can be duplication of the existing gene like globin followed
by divergence in function as described above for hemoglobin, myoglobin, cytoglo-
bin, and neuroglobin (Figs. 10.3 and 10.4) (Hardison 2012). The best example for
both orthologous and paralogous sequence is globin genes. a-Globin and f-globin
genes found in different species are orthologous genes (Fig. 10.5), whereas the a, f3,
v, and 6 globin genes due to duplication in the same organism are paralogous genes
(Fig. 10.6) (Hardison 2012; Opazo et al. 2008).

V-PPase is a heat-stable single polypeptide, coexisting along with V-ATPase on
the plant vacuolar membrane in plants, algae, photosynthetic bacteria, protozoa,
and archaebacteria (Rea et al. 1992; Maeshima 2000). V-PPase uses ATP and inorganic
pyrophosphate (PPi), respectively, as energy sources for generating an electrochemical
gradient of protons across the tonoplast. This facilitates the functioning of the Na*/H*



10 Phylogenetic Trees: Applications, Construction, and Assessment 173

HBA1 .
' o-Globin
HBA2 Gnathostome

O, transport
HBB  B-Globin

MB Myoglobin

—Gnathostome cytoglobin

CYGB —Cyclostome Hb (O, transport)

NGB  Neuroglobin
| | | |

800 540 400 0 Million years ago
| I Major separations
Vertebrate— Tetrapod—
invertebrate fish
Gnathostome—
cyclostome

Fig. 10.5 Phylogenetic tree showing duplication and divergence of globin genes, an example for
evolution of vertebrate globin genes. (Source: Hardison 2012)
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Fig. 10.7 Phylogenetic tree showing relationships among land plants, archae, and bacterial
V-PPases. (Source: Suneetha et al. 2016)

antiporter and helps in Na* compartmentation. Suneetha et al. (2016) carried out phy-
logenetic studies on land plants, archaea, and bacterial V-PPases (Fig. 10.7). V-PPases
are highly conserved among land plants and less among archaeon, protozoan, and
bacteria (Suneetha et al. 2016). Phylogeny with respect to other land plants revealed
that V-PPases of A. thaliana (AtVPP), H. vulgare (HvVPP), B. vulgaris (BvVPP), N.
tabacum (NtVPP), and O. sativa (OsVPP) are highly conserved.

10.1.5 Classifying Proteins or Genes into Families

Classification of genes into gene families is important for understanding function
and evolution of gene. There are three methods to infer gene families: (1) using
phylogenetic trees for classification, (2) using similarities with known sequence
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signatures like motifs or domains, and (3) pairwise comparisons involving the use
of clustering techniques (Frech and Chen 2010).

Phylogenetic tree was used for effective classification of ABC transporter gene
families. Multiple sequence alignment of both known and putative new ABC
transporter family C genes using ClustalW with default parameters was per-
formed. The phylogenetic tree was produced by the minimum evolution method
and 1000 bootstrap iteration. In phylogenetic analysis, the three new genes
grouped nicely within known ABC transporters of family C (Fig. 10.8). Thus,
phylogenetic analysis can be used to classify new genes into ABC transporter
family C (Frech and Chen 2010).

10.1.6 Understanding the History of Life

Understanding the systematics of living organisms in the world is a challenging
task. Literature reports several studies carried out to understand the kingdom-level
phylogeny. Carl Woese established a molecular sequence-based phylogenetic tree
by comparing ribosomal RNA (rRNA) sequences that could relate all organisms and
reconstruct the history of life (Woese 1987; Woese and Fox 1997). Woese articulated
and recognized three primary lines of evolutionary descent, termed “urkingdoms”
or “domains”: ... “Eucarya (eukaryotes), Bacteria (eubacteria), and Archaea
(archaebacteria)”..... (Woese et al. 1990). Pace (1997) used molecular phylogeny to
compile the robust map of life domains: Archaea, Bacteria, and Eucarya (Fig. 10.9).
The universal phylogenetic tree based on 64 SSU rRNA sequences was aligned, and
a tree was produced using FASTDNAML. Baldauf et al. (2000) used concatenated
amino acid sequences of four protein-encoding genes to produce a phylogenetic tree
for 14 higher-order eukaryote taxa (Fig. 10.10). Thus, phylogeny was used to under-
stand the kingdom-level relations.

10.1.7 Estimating the Time of Divergence Using Molecular
Clock

Molecular dating techniques were used to estimate the time of species divergences.
Literature reports several research studies used to determine the time of species diver-
gences. Molecular dating requires standard sequence datasets; statistical distributions to
model; and prior divergence times to find out the time of divergence during the course
of evolution. Hasegawa et al. (1985) developed a method for estimating divergence
dates of humans from species by a molecular clock approach. The molecular clock of
mitochondrial DNA (mt DNA) was calibrated ~65 million years ago and a generalized
least squares method was applied. The divergence dates were 92.3 = 11.7, 13.3 = 1.5,
109 £ 1.2, 3.7 £ 0.6, and 2.7 + 0.6 million years ago for mouse, gibbon, orangutan,
gorilla, and chimpanzee, respectively (Figs. 10.11 and 10.12). Thus, phylogeny can be
used to estimate time of divergence for species of interest.



176 S. Challa and N. R. R. Neelapu

78 — CBG01916|Cbr-mrp-4
96 [ L— CRE03284|Cre-mrp-4
100 F21G4.2|mrp-4
CBG08354 «¢—
| 84 CRE25095 ¢—

Y43F8C.12|mrp-7
o —E1 00 [— CBG23578
53L— CRE06044|Cre-mrp-7

CRE14222 4—
—— F57C12.4|mrp-2
87 CBG08146|Cbr-mrp-2
CRE17133|Cre-mrp-2
61 CBG08145|Cbr-mm-1
05 F57C12.5e|mrp-1
85 CRE17131|Cre-mrp-1
— E03G2.2|mrp-3
100 CBG15993|Cbr-mrp-3
80 '— CRE16789|Cre-mrp-3
CBG00495|Cbr-mrp-8

100 L[Y7588A.26|mrp-8
97 L— CRE03108|Cre-mrp-8

77 CBG14361|Cbr-mrp-6
100 _L CRE00343|Cre-mrp-6
F20B6.3|mm-6
F14F4.3bjmrp-5

99

100 _|: CBGO07659|Cbr-mrp-5
77 CRE15405|Cre-mrp-5

—— C18C4.2[cft-1

100 _|—_CBG09374|Cbr-cﬂ-1
67 CRE30790|Cre-cft-1

0.1

Fig. 10.8 The phylogenetic tree shows the evolutionary relationship of the three new ABC trans-
porter genes CBG08354, CRE25095, and CRE14222 (indicated by arrows) with known C. elegans,
C. briggsae, and C. remanei ABC transporters of family C. (Source: Frech and Chen 2010)
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10.1.8 Evolution of Pathogen

Viruses are with high mutation rate and adapt quickly to environmental changes
leading to the high genetic diversity. On the other hand, this fast evolution leaves
behind significant marks in the genome of virus that can be connected with trans-
mission dynamics and epidemiology. Evolutionary theory and sequence analysis
played a role in understanding epidemiology of virus by figuring out the origin of
time and geographical site of a virus. Analysis was able to provide information on
transmission linkages or chains for a population.

Huet et al. (1990) inferred the origin and classified HIV into types, groups, and
subtypes (Fig. 10.13). Epidemiological, physiological, and clinical evidences
favored cross-species transmission of HIV from chimpanzee to humans (Castro-
Nallar et al. 2012). Further, phylogenetic evidence corroborates this fact that HIV-1
and HIV-2 are due to several cross-species transmission events (Huet et al. 1990;
Gao et al. 1992, 1999; Hahn et al. 2000; Plantier et al. 2009; Van Heuverswyn and
Peeters 2007) (Fig. 10.14).
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Fig. 10.13 Phylogenetic tree representation of HIV-1 and its subtypes. (Source: Castro-Nallar
et al. 2012)

Fig. 10.14 Phylogenetic tree showing HIV cross-species transmission. (Source: Castro-Nallar
etal. 2012)
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Intensive studies were carried out on the evolution and divergence of HIV-1 and
HIV-2 using phylogeny. The divergence time of HIV-1, HIV-2 (subtype A), and
HIV-2 (subtype B) dated to the 1920s (Worobey et al. 2008), 1940 + 16 (Lemey
et al. 2003), and 1945 + 14 (Lemey et al. 2003), respectively. Introduction of clade
B of HIV-1 into North America dated to 1968 (1966—-1970) (Gilbert et al. 2007;
Pérez-Losada et al. 2010).

The emerging field of phylodynamics—*the melding of immunodynamics, epide-
miology, and evolutionary biology ...”"—was used to understand the transmission
dynamics, population dynamics, and within-host dynamics of virus or bacteria
(Grenfell et al. 2004). Transmission dynamics helps in understanding diversity of an
organism in transmission network constructed during a transmission event for poten-
tial therapy development. Population dynamics increases our understanding on pat-
terns of diversity among populations throughout the length and breadth of infection,
within host and transmission events. Within-host dynamics provide information on
evolution of virus in the host which is associated with disease progression. There are
two aspects within host dynamics which are observed in case of HIV. The first one is
that evolution of HIV is different in specific tissues. It was revealed that HIV evolves
at different rates in different compartments of the brain, which cannot be attributed
to selective pressure, but can be related to viral expansion due to immune failure
(Salemi et al. 2005). The second aspect is that HIV genetic diversity (variation) in the
host leads to evolution of quasispecies (Holmes 2009). So, phylodynamics can be
useful in relating epidemiological and evolutionary information which can be used
for monitoring surveillance programs of a virus especially in case of HIV. Thus,
phylogenetics can be used to identify evolution of virus in terms of origin, time of
divergence, pathogen evolution, and understand phylodynamics.

10.2 Construction of Phylogenetic Trees

Data and tree construction methods used for construction of phylogenetic tree
effect topology of the tree; therefore, it is worth to discuss on data and tree construc-
tion methods.

10.2.1 Data

Data generated via fingerprinting techniques such as rapid amplification polymor-
phic DNA (RAPD), restriction fragment length polymorphism (RFLP), AFLP,
SSCP, and sequence data (nucleotide and protein sequence data) are used for phylog-
eny. Data from fingerprinting techniques such RAPD, AFLP, and SSCP is converted
to binary data (0/1). The “Os” represent the absence of band in the DNA fingerprint-
ing techniques, whereas “1s” represent the presence of band in the DNA fingerprint-
ing techniques. DNA or protein sequence data is generated by Sanger’s method.
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This binary or sequence data is either converted to distance or used directly in the
form of character used to construct a phylogenetic tree. The fingerprinting data or
the sequence data (DNA or protein) was known to influence the tree topology of the
phylogenetic tree (Neelapu 2007; Devi et al. 2006, 2007; Padmavathi et al. 2003).

10.2.2 Tree-Constructing Methods

Broadly, there are two fundamental methods for constructing phylogenetic trees:
distance or discrete character methods. Distance methods first convert data or
aligned sequences into pairwise distance matrix. A correction is needed for these
raw distances. These corrections are based on the assumptions of various substitu-
tion models proposed for both nucleic acid and protein sequence methods. A phylo-
genetic tree building method is then used to construct an evolutionary tree. Some of
the tree-building methods are unweighted pair group method with arithmetic means
(UPGMA), minimum evolution, neighbor joining, and Fitch-Margoliash.

UPGMA (Sokal and Michener 1958; Nei 1975) clusters data based on similarity
and assumes that changes are accumulated at a constant rate among the lineages.
In neighbor-joining method (Saitou and Nei 1987), a star tree in which terminal taxa
are equidistant, is first established; then, two taxa are temporarily taken from the
star to a new node, and the total distance in the new tree is recalculated; and the taxa
are returned to the star and another pair of taxa is taken to repeat the operation. This
process is continued until all the taxa are jointed in a completely resolved tree with
the lowest total distance. In minimum evolution method (Takahashi and Nei 2000),
the initial tree is created by clustering taxa using neighbor-joining method. Then,
every possible tree is examined and one tree with minimum branch length is
selected, thereby minimizing the total distance in a tree.

Discrete methods directly consider the state of each nucleotide or amino acid site
in each sequence under comparison. The two discrete character methods are
maximum likelihood and maximum parsimony. Maximum likelihood method
(Cavalli-Sforza and Edwards 1967; Felsenstein 1973; Felsenstein 1981; Swofford
etal. 1996) uses data to determine the probability of substitution, relative frequencies,
and the different probabilities of transitions and transversions. It then selects the tree
that maximizes the probability of good fit of the data. Maximum likelihood method
presents an additional opportunity to evaluate trees with variations in mutation rates
in different lineages; and also to use explicit evolutionary models such as the jukes-
cantor and Kimura models.

Parsimony is another discrete character method that creates evolutionary trees
based on a systematic search among possible trees for the fewest plausible mutational
steps from a common ancestor necessary to account for two diverged lineages, and
those trees that require the fewest changes are said to be most parsimonious
(i.e., optimal) trees. The sum of the minimum possible substitutions over all sites is
known as the tree length for that topology. The topology with the minimum tree
length is known as the maximum parsimony tree. Three different types of searches
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the max-mini branch-and-bound search, min-mini heuristic search, and close-
neighbor-interchange heuristic search are performed to generate maximum
parsimony tree. The maximum parsimony method (Fitch 1971) produces many
equally parsimonious trees. A majority-rule consensus method is used to produce a
composite tree that is a consensus among all such trees.

10.2.3 Phylogeny Program Packages

All these clustering methods are available in various phylogenetic packages such as
PHYLIP (Felsenstein 1989), PAUP (Swofford 1991), MEGA (Kumar et al. 2004),
TreePuzzle (Schmidt et al. 2002), etc. (Table 10.1). The computational limits that
were faced in running maximum parsimony and maximum likelihood method with
increase in number of species and increase in length of the sequence in most
packages are overcome in MEGA. Moreover, best tree editing options such as Tree
Explorer program are available in MEGA, which makes phylogenetic inference
from sequence data much easier.

10.3 Methods to Assess the Confidence of Phylogenetic Tree

The tree generated based on the input data and tree construction method is known
as inferred tree. This inferred tree need not be the true tree for the given phylogenetic
data. So, there is a requirement to test the reliability of the phylogenetic tree or
portion of the tree. In methods like minimum evolution, maximum parsimony, and
maximum likelihood, increase in tree number is observed as the sample size
increases (Table 10.2). In these conditions, whether the tree is significant/better than
another tree is to be confirmed. The reliability of the phylogenetic tree or portion of
the tree is tested by sampling methods, whereas the significant difference of a tree
over the other is confirmed by statistical tests.

10.3.1 Sampling Methods

The reliability of the phylogenetic tree or portion of the tree is tested by sampling
methods such as bootstrapping, jackknifing, and Bayesian simulation.

10.3.1.1 Bootstrapping
Bootstrapping is random sampling with replacement of data (distances or sequence:

nucleotide or protein) which addresses if any sampling errors occurred for the
required analysis. In molecular phylogeny, bootstrapping repeatedly samples the
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Table 10.2 The number of rooted trees and unrooted trees for n sequences

Number of unrooted trees ‘ Number of rooted trees
Formula
Nu - Sin—s)! N = Sn—3)!
Number of taxa 2" (n-3)! 27 (n-2)!
3 3
4 3 15
5 15 105
6 105 945
7 945 10,395
8 10,395 135,135
9 135,135 2,027,025
10 2,027,025 34,459,425

data to construct the phylogenetic tree and gives us the chance to assess the strength
of the original tree. If the data resampling generates different trees when compared
with the original tree, then the tree topology is based on the data with weak phylo-
genetic signals. If the data resampling generates tree similar to the original tree,
then the tree topology is based on the data with enough phylogenetic signals. Thus,
bootstrapping (resampling data) provides insights on the confidence of the tree
topology.

Two types of bootstrapping are used in phylogenetic analysis: parametric or non-
parametric bootstrapping. If the data is disturbed by random sampling generating
new dataset, then it is nonparametric bootstrapping. If the data is disturbed by par-
ticular order to generate new dataset, then it is parametric bootstrapping. The other
types of bootstrapping are case resampling, Bayesian bootstrap, smooth bootstrap,
resampling residuals, Gaussian process regression bootstrap, wild bootstrap, and
block bootstrap (time series: simple block bootstrap, time series: moving block
bootstrap, cluster data: block bootstrap).

If bootstrapping is repeated 100—1000 times or even more to reconstruct phylo-
genetic trees, then certain parts of the tree have different topology when compared
with the original inferred tree. All these bootstrapped trees are summed up into a
consensus tree based on a majority rule. The most supported branching patterns
shown at each node are labeled with bootstrap values. Thus, bootstrap offers a mea-
sure for estimating the confidence levels of the tree topology.

10.3.1.2 Jackknifing

Jackknifing is another resampling technique where half of the dataset is randomly
deleted, generating datasets half-original. Initially, a phylogenetic tree is constructed
with the original dataset, then with each new dataset generated by jackknifing, a
phylogenetic tree is constructed using the same method as the original. Sampling
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generates different trees when phylogenetic signals are weak, whereas sampling
generates similar tree when phylogenetic signals are strong. Thus, jackknifing (resa-
mpling data) can also be used to assess the confidence of the tree topology.

10.3.1.3 Bayesian Method

Bayesian method based on MCMC approach resamples data thousands or millions
of steps or iterations. The sample datasets are used to reconstruct phylogenetic trees
similar to original inferred tree. The posterior probabilities designated at each inter-
section of a best Bayesian tree measure the confidence levels of the tree topology.

10.3.2 Statistical Methods

The significant difference of a tree over the other is confirmed by statistical tests
such as Kishino-Hasegawa Test and Shimodaira-Hasegawa Test.

10.3.2.1 Kishino-Hasegawa Test

Kishino-Hasegawa (KH) test compares two tree topologies to differentiate one tree
over the other (Kishino and Hasegawa 1989). Though KH test can be used for
differentiating trees generated through methods such as distance, parsimony, and
likelihood, Kishino-Hasegawa developed this test specifically for parsimonious
trees. The KH test (statistical method) is paired Student r-test based on null
hypothesis that the “two competing tree topologies are not significantly different....”
The standard deviation of the difference between branch lengths at each informative
site between two trees is estimated. Then the derived #-value is compared with the
t-distribution values either to accept or reject the null hypothesis at certain significant
levels (with probability e.g., P < 0.05).

_Da-Dt

t=
SD/n

df = (n — 1) where t is the test statistical value, Da is the average site-to-site differ-
ence between the two trees, Dt is the total difference of branch lengths of the two
trees, SD is the standard deviation, 7 is the number of informative sites, and df is the
degree of freedom.

10.3.2.2 Shimodaira-Hasegawa Test

Shimodaira-Hasegawa (SH) developed a statistical test for ML trees based on likeli-
hood ratio using the y2 test to estimate the goodness of fit of two competing trees
(Shimodaira and Hasegawa 1999). The log likelihood scores InLLA and InLB for tree
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A and tree B are obtained first, for the two competing trees. Then the log ratio of the
two scores is obtained by d = 2(InLA — InLB) = 2 In (LA/LB) and used to test
against the y2 distribution from a table. The resulting probability value (P-value)
determines whether the difference between the two trees is significant or
nonsignificant.

10.4 Conclusion

Molecular phylogeny establishes the relationships among the set of objects in the
study. Binary data (“0”/“1”) from RAPD, RFLP, AFLP, SSCP, and sequence data
(DNA or protein) from the set of objects are used to construct phylogenetic tree. The
different tree construction methods are UPGMA, NJ, ME, FM, MP, and ML.
Molecular phylogeny has a wide range of applications and if the interpretation of
the evolutionary patterns is not appropriate, then the inference of the study may be
misleading. The interpretation of the tree is always dependent on assessing the con-
fidence of the phylogenetic tree. Sampling methods (bootstrapping, jackknifing, and
Bayesian simulation) and statistical methods (KH test and SH test) can be used to
assess the confidence of the phylogenetic tree. Thus, if the confidence of the phylo-
genetic tree generated is good, then the interpretation or inference of the study will
not be misleading.
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