
1© Springer Nature Switzerland AG 2019 
K. R. Hakeem et al. (eds.), Essentials of Bioinformatics, Volume III, 
https://doi.org/10.1007/978-3-030-19318-8_1

Chapter 1
Proteoinformatics and Agricultural 
Biotechnology Research: Applications 
and Challenges

Jameel R. Al-Obaidi

Contents

1.1  �Introduction�     1
1.2  �Proteoinformatics in Plant Disease Management�     2
1.3  �Proteoinformatic Databases and Tools�     8
1.4  �Protein-Protein Interaction Software and Database�   10
1.5  �Proteoinformatics of Edible Mushroom�   14
1.6  �Proteoinformatics of Animal Breeding Programs�   14
1.7  �Conclusion�   15
�References�   16

1.1  �Introduction

Bioinformatics is a multidisciplinary field incipient from the interaction of informa-
tion, statistics, and biological sciences to analyze genome and/or proteome con-
tents, sequence information, and predict the function and structure of cellular 
molecules that are used in construing genomics and proteomics information from an 
agricultural organism (Benton 1996; Bruhn and Jennings 2007). Bioinformatics is 
considered relatively new yet is a significant discipline within the biological sci-
ences that has offered scientists and agrobiologists to interpret and handle huge 
amounts of information (Bartlett et al. 2016). This amount of data produced lead to 
the advancement and development of bioinformatics. The multi-“omics,” together 
with computational biology are considered important tools in understanding genom-
ics and its products which trigger several animal, plant, and microbial functions 
(Mochida and Shinozaki 2011). The functional analysis for those organisms includes 
profiling of gene products, prediction of interaction between proteins and their sub-
cellular location, and also the prediction of protein metabolism pathway simulation 
(Xiong 2006). Bioinformatics as a tool is not isolated but frequently interacts with 
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other biological sections to produce assimilated results. For example, prediction of 
the structure of a protein depends on gene sequence and gene expression profiles, 
which require the use of phylogeny tools in sequence analysis. Therefore, the field 
of bioinformatics has developed in a way that the most important duty now include 
the interpretation of different types of information, including nucleotide and protein 
sequence and protein structures and function (Moorthie et al. 2013; Merrill et al. 
2006). The analysis of DNA/RNA sequences, protein sequences and function, 
genome analysis and gene expression, and protein involvement in physiological 
functions can all make use of bioinformatic methods and tools and cannot be done 
without it (Collins et al. 2003). Protein sequence information and its related nucleic 
acid and data from many agricultural species deliver a substance for agricultural 
research leading to a better understanding of global agricultural needs and chal-
lenges (Kumar et al. 2015). Utilizing the available information allows and assists 
the identification of expression of a gene which may help to understand the relation-
ship between phenotype and genotype (Orgogozo et al. 2015). The involvement of 
proteomic applications for analyses of crop, animals, and microorganisms has rap-
idly increased within the last decade (Mochida and Shinozaki 2010). Although pro-
teomic approaches are regularly used in plant research worldwide, and establish 
powerful tools, there is still a significant area for improvement.

Proteoinformatics could be defined as “utilization of computational biology tools 
in the study of the proteome.” Proteoinformatics is a field involving mathematics, 
programing sciences, statistics, and protein biology and biochemistry to predict and 
analyze their structure, function, and role in cell physiology (Cristoni and Mazzuca 
2011; Hamady et  al. 2005). Since the data obtained from agricultural proteomic 
research are complex and massive in size, the role of proteoinformatics is essential 
to reduce the time for investigation and to deliver statistically significant results and 
that will help to improve the plant/animal quality based on healthy growth and high 
productivity. Thus, proteoinformatics is a dynamic field for the development of new 
breed’s diagnostic tools in order to develop pathogen-free/resistance and abiotic 
stress tolerance, high-quality traits, and higher quantity production (Koltai and 
Volpin 2003).

1.2  �Proteoinformatics in Plant Disease Management

Among different plant pathogens, such as viruses, bacteria, and oomycetes, fungi 
are considered the most destructive (Dangl and Jones 2001). The growth, propaga-
tion, and survival strategies of pathogens are varied, but the strategies, in general, 
are similar, which start by colonization and progress to overcome host defense sys-
tem and then finally infection establishment (Pegg 1981; Lawrence et al. 2016). As 
a result, the host-pathogen systems have led to a complex relationship between the 
host and the pathogen molecules, resulting in relationship with a high degree of 
variation (Hily et al. 2014). Proteomic studies focused mainly on the response of 
host plant upon pathogen attack that opened up a new era for biology in general and 
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for agriculture in particular (Lodha et al. 2013; Alexander and Cilia 2016). Along 
with the use of proteomic approaches in agricultural research and the progress in 
sequencing agriculturally important organisms, the combination of bioinformatics 
and proteomics generally enhance the research in this area. This kind of multidisci-
plinary research is likely to fill in the gap toward the understanding of host-pathogen 
interaction network (Koltai and Volpin 2003). Two-dimensional gel electrophoresis 
has been initially used for rapidly identifying major proteome differences in control 
versus inoculated plants. Although many proteins identified during host-pathogen 
interactions have been highlighted, majority are known previously and are mainly 
in host immunity mechanism (Memišević et al. 2013). However, those results that 
arise from proteomic-based research are of great significance for the validation of 
gene expression in genomic or transcriptomic studies (Nesvizhskii 2014). 
Nevertheless, by using the gel-based proteomic tools, little novel information has 
been obtained, especially due to the lack of sufficient bioinformatics-related infor-
mation such as genome sequences (Cho 2007). Indeed, only the most abundant 
proteins are detected in two-dimensional gels and successfully identified by mass 
spectrometry (MS). Therefore, a gap seems to be in the bioinformatics channel for 
the proteomics research of organisms without complete genome sequencing 
(Sheynkman et al. 2016). These information-related limitations in agricultural pro-
teomic research need to be overcome to increase our knowledge on protein expres-
sion during plant-microbe interactions. However, proteomic tools have grown 
rapidly, and new approaches and apparatus are being developed (Mehta et al. 2008; 
Pérez-Clemente et  al. 2013). Previous agricultural proteomics research, which 
mainly focused on model crops, has provided fundamental understandings into dif-
ferent protein families in agri-organism systems’ modification and regulation (Hu 
et al. 2015; Vanderschuren et al. 2013). Nonetheless, model crop research itself does 
not retain all the information and data of interest to agricultural biology (Mirzaei 
et al. 2016; Carpentier et al. 2008). Therefore, those crops without complete genome 
sequence or sufficient genomic/EST information freely available need to be investi-
gated (Ke et al. 2015; Ekblom and Wolf 2014). In comparison to the model organ-
isms related to agriculture, such as rice (Koller et al. 2002), maize (Pechanova et al. 
2010), chicken (Burgess 2004), cattle (Assumpcao et  al. 2005), brewer’s yeast 
(Khoa Pham and Wright 2007), and the plant pathogen Botrytis cinerea (Fernández-
Acero et al. 2009), non-model species with little or no “bioinformation” was largely 
affected when it comes to proteomic analysis (Armengaud et al. 2014). Economic 
significance and the complexity of the genome make it necessary to sequence that 
organism (Bolger et al. 2014), but that is not enough to make it as a model organism 
if that information is not reachable by the scientific community (Canovas et  al. 
2004), Table 1.1 shows proteomic study of non-model organism. Most mass spec-
trometry proteomic methods depend on complete sequence for identification; for 
that reason, the analysis of these non-model species remains a challenge. Thus, 
relying on complete and comprehensive established database for the closely related 
model species “conserved genome region within the species of family” will be the 
only choice (Hutchins 2014; Zhu et  al. 2017; Bischoff et  al. 2016). However, 
sequence variation remains an issue, especially for quantitative proteomics 

1  Proteoinformatics and Agricultural Biotechnology Research: Applications…



4

Table 1.1  Proteomic studies on non-model-pathogen interaction (2008–2018)

Plant-pathogen 
interaction

Proteomic 
platform Main findings References

Phaseolus vulgaris-
Uromyces 
appendiculatus

LC-MS/MS Resistance-genes are part of the basal 
system and repair disabled defenses 
to reinstate strong resistance

Lee et al. 
(2009)

cacao leaves-
Moniliophthora 
perniciosa

1-DE and 2-DE Protocols described in the study 
could help to develop high-level 
proteomic and biochemical studies in 
cacao also being applicable to other 
recalcitrant plant tissues

Pirovani et al. 
(2008)

Capsicum chinense-
pepper mild mottle 
virus (PMMoV)

2-DE and 
MALDI-TOF/
TOF

Evidence is presented for a 
differential accumulation of C. 
chinense PR proteins and mRNAs in 
the compatible (PMMoV-I)-C. 
chinense and incompatible (PMMoV-
S)-C. chinense interactions for 
proteins belonging to all PR proteins 
detected

Elvira et al. 
(2008)

Citrus-citrus sudden 
death virus (CSDaV)

2-DE and 
MALDI-TOF/
TOF

Downregulation of chitinases and 
proteinase inhibitors in CSD-affected 
plants is relevant since chitinases are 
well-known pathogenesis-related 
proteins, and their activity against 
plant pathogens is largely accepted

Cantú et al. 
(2008)

Beta vulgaris -Beet 
necrotic yellow vein 
virus (BNYVV)

MALDI-
TOF-MS

Involvement of systemic resistance 
components in Rz1-mediated 
resistance and phytohormones in 
symptom development

Larson et al. 
(2008)

Glycine max- 
Heterodera glycines

2DE and ESI/
MS-MS

Differed in resistant and susceptible 
Soybean Roots without cyst 
nematode (SCN) infestation and may 
form the basis of a new assay for the 
selection of resistance to SCN in 
soybean

Afzal et al. 
(2009)

Glycin max- 
Bradyrhizobium 
japonicum and 
Phytophthora sojae

2DE and 
quadrupole 
TOF MS/MS

Sap proteins from soybean that are 
differentially induced in response to 
B. japonicum and P. sojae elicitor 
treatments and most them were 
secreted proteins

Subramanian 
et al. (2009)

Phoenix dactylifera - 
Beauveria bassiana, 
Lecanicillium 
dimorphum and L. cf. 
psalliotae

2DE and 
MALDI/
TOF-TOF

Proteins related with photosynthesis 
and energy metabolism in date palm 
were affected by entomopathogenic 
fungi colonization

Gómez-Vidal 
et al. (2009)

(continued)
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Table 1.1  (continued)

Plant-pathogen 
interaction

Proteomic 
platform Main findings References

Solanum 
lycopersicum—
Cucumber Mosaic 
Virus (CMV)

DIGE and MS/
MS analysis

The study demonstrated that virus 
infection in transgenic tomato is 
restricted to the inoculated leaves. 
The study contributes to defining the 
role played by key proteins involved 
in plant-virus interaction and to 
studying antibody-mediated 
resistance

Di Carli et al. 
(2010)

Saccharum 
officinarum- 
Gluconacetobacter 
diazotrophicus

SDS-PAGE and 
ESI-Q-TOF

30 identified bacterial proteins in the 
roots of the plant samples; from 
those, 9 were specifically induced by 
plant signals

Lery et al. 
(2010)

Brassica juncea 
-Albugo candida

2DE and 
Q-TOF MS/MS

The study demonstrates that the 
timing of the expression of defense-
related genes plays a crucial role 
during pathogenesis and 
incompatible interactions and that 
the redox balance within the 
chloroplast may be of crucial 
importance for mounting a successful 
defense response

Kaur et al. 
(2011)

Citrus aurantifolia - 
Candidatus 
Phytoplasma 
aurantifolia

2-DE and MS The study provided proteomic view 
of the molecular basis of the 
infection process and identify genes 
that could help inhibit the effects of 
the pathogen

Taheri et al. 
(2011)

Gossypium 
barbadense-
Verticillium dahliae

2-DE, EST 
database-
assisted PMF 
and MS/MS

Infection causes elevation in ethylene 
biosynthesis, Bet v 1 family proteins 
may play an important role in the 
defense reaction against Verticillium 
wilt, and wilt resistance may 
implicate the redirection of 
carbohydrate flux from glycolysis to 
pentose phosphate pathway (PPP)

Wang et al. 
(2011)

Vitis vinifera-Uncinula 
necator

2-D DIGE High levels of Mn concentration in 
grapevine leaves triggered protective 
mechanisms against pathogens in 
grapevine

Yao et al. 
(2012)And

Brassica napus 
-Sclerotinia 
sclerotiorum

2-DE and 
MALDI TOF/
TOF

The study showed new insights into 
the resistance mechanisms within B. 
napus against S. sclerotiorum

Garg et al. 
(2013)

Citrus unshiu- 
Penicillium italicum

2-DE and 
LC-QToF-MS

Lignin plays important roles in heat 
treatment-induced citrus fruit 
resistance to pathogens

Yun et al. 
(2013)

Solanum 
lycopersicum - 
Pseudomonas syringae

iTRAQ The study provided an insight into 
tomato’s response to Pseudomonas 
syringae

Parker et al. 
(2013a)

(continued)
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Table 1.1  (continued)

Plant-pathogen 
interaction

Proteomic 
platform Main findings References

Mentha spicata 
-Alternaria alternata

2-DE and 
MALDI 
TOF–TOF 
MSMS

The study deciphers the mechanism 
by which a foreign metabolite 
mediates stress tolerance in plant 
under control and infected condition

Sinha et al. 
(2013)

Beta vulgaris- Beet 
necrotic yellow vein 
virus

LC-MS/MS The study identified proteins 
associated with systemic acquired 
resistance and general plant defense 
response

Webb et al. 
(2014)

Phytophthora 
infestans- Solanum 
tuberosum

LC-MS/MS Proteins involved in sterol 
biosynthesis were downregulated, 
whereas several enzymes involved in 
the sesquiterpene phytoalexin 
biosynthesis were upregulated

Bengtsson 
et al. (2014)

Anacardium 
occidentale- 
Lasiodiplodia 
theobromae

2DE- SI-Q-TOF 
MS/MS

Cashew responsive proteins indicate 
modulation of various cellular 
functions involved in metabolism, 
stress/defense, and cell signaling

Cipriano 
et al. (2015)

Lactuca sativa-
Salmonella enterica

2DE and nano 
LC-MS/MS

Proteins involved in lettuce’s defense 
response to bacterium were 
upregulated, such as pyruvate 
dehydrogenase, 2-cys peroxiredoxin, 
and ferredoxin-NADP reductase

Zhang et al. 
(2014b)

Oil palm-Ganoderma 
interaction

2DE, MALDI 
TOF/TOF

Proteins related to lignin synthesis 
were downregulated up on 
interaction

Al-Obaidi 
et al. (2014)

Amorpha fruticosa- 
Glomus mosseae

iTRAQ and 
LC-MS/MS

77 proteins were classified according 
to different functions during the 
interaction

Song et al. 
(2015)

Vitis vinifera-Xylella 
fastidiosa

2DE, MALDI 
TOF/TOF

Muscadine and Florida hybrid bunch 
grapes express novel proteins in 
xylem to overcome pathogen attack

Katam et al. 
(2015b)

Solanum tuberosum - 
Ralstonia 
solanacearum

2DE and 
MALDI-TOF/
TOF

The study showed involvement of the 
identified proteins in the bacterial 
stress tolerance in potato

Park et al. 
(2016)

Malus domestica-
Botryosphaeria 
berengeriana

2DE and 
MALDI-TOF-
TOF

The study speculated that the 
upregulation of abscisic stress 
ripening-like protein and the 
dramatic decrease of 
-adenosylmethionine synthetase in 
the resistant host could be related to 
its better disease resistance

Cai-xia et al. 
(2017)

Paulownia 
fortunei-Phytoplasma

iTRAQ Paulownia witches’ broom (PaWB) 
proteins may help in developing a 
deeper understanding of how PaWB 
affects the morphological 
characteristics of P. fortunei

Wei et al. 
(2017)
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approaches, which will lead to low coverage of protein identification (Chandramouli 
and Qian 2009; Zhan et  al. 2017). Moreover, “conserved genome” regions may 
produce similar protein sequence with different cellular functions and may increase 
the number of mismatch protein identities (Khan et al. 2014). Gel-based proteomics 
is considered the most dominant platform used for agricultural proteomic research 
(Tan et al. 2017). However, the use of gel-free proteome analysis is increasing rap-
idly in agricultural research with the presence of more proteoinformatics data 
(Porteus et al. 2011; Komatsu et al. 2013). Pathogen proteins that are used to sup-
press host defenses are of high importance in agricultural host-pathogen interaction, 
as these proteins may play a role in virulence, pathogenicity, and effector molecules 
(Van De Wouw and Howlett 2011). Pathogen characteristics are of primary interest 
in crop development programs (Fletcher et al. 2006). The contribution of proteoin-
formatic advances has helped the sequencing of the entire genomes of many patho-
gens in the last 10 years (Land et al. 2015). Classical biochemistry and molecular 
biology, as well as the modern omic platform techniques coupled with bioinfor-
matic tools research, have been conducted on agricultural-related pathogens and 
their interactions with crops (Barah and Bones 2014). Recently, the study of patho-
gens have been significantly promoted by the availability of bioinformatic data and 
the resources for multi-“omics” research (Bhadauria 2016). These approaches, in 
combination with gene-targeting studies such as targeted mutations and gene silenc-
ing studies, are explained in molecular host-pathogen communications and the 
complex mechanisms involving pathogenesis and virulence (Allahverdiyeva et al. 
2015; McGarvey et al. 2009; Fondi and Liò 2015). The present efforts to provide 
sufficient “proteoinformation” to determine related proteins and their function have 
improved the capacity to understand the core causes of crop and animal diseases 
and develop new possibilities of treatments (Chen et al. 2010). Proteoinformatics 
has many practical applications in current agricultural-related disease management 
with respect to the study of host-pathogen interactions, understanding the nature of 
the disease genetics, pathogenicity, and/or virulence factor of a pathogen which 
eventually aid in designing better disease control and drive the infection process 
which has also been identified, using molecular biological technologies and genet-
ics in identifying the interaction with bacteria such as tomato and Pseudomonas 
syringae (Parker et al. 2013b; Balmant et al. 2015) and rice and Xanthomonas ory-
zae (Wang et al. 2013b) or with virus such as potato and potato virus (PVY) (Stare 
et al. 2017) or with phytopathogenic fungi such as apple and Alternaria alternate 
(Zhang et al. 2015), strawberry and Fusarium oxysporum (Fang et al. 2013), cotton 
and rot fungus Thielaviopsis basicola (Coumans et  al. 2009), and coffee and 
Hemileia vastatrix. Proteoinformatic tools and databases related to agricultural dis-
eases need to be further developed and expanded. Obviously, tools, software, and 
databases are adapted from human and more specifically medical analysis systems, 
and these may not necessarily be a model for analysis of crop proteomic data; there-
fore, more information regarding those crops and their pathogens will be very help-
ful to fill in the proteoinformation gap in agricultural research and also to verify the 
protein information predicted in the literature (Dennis et al. 2008; Thrall et al. 2011; 
Van Emon 2016). Generally, the proteoinformation is larger and more complicated 
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than the genoinformation, especially in crops, since there are more proteins than 
genes. That is mainly because of the post-translational enzymatic modification. 
The nucleotide sequence can represent the genome of an organism; on the other 
side, peptide sequence cannot represent the proteome for that organism unless the 
structure of an interaction between those proteins revealed (Gupta et  al. 2007; 
Khan 2015).

1.3  �Proteoinformatic Databases and Tools

Sequencing projects of crops and animals related to agriculture bring the number of 
proteomic research in this field higher. Proteoinformatic methods and tools could be 
used to identify a specific protein of interest within the proteome of an organism 
which could be valuable for community related to agriculture and to interpret their 
cellular functions. The different and unusual protein information might be used to 
develop drought- and salt-tolerant crops, for diseases resistance and improvement 
of livestock, and higher productivity (Fears 2007; Gong et al. 2015; Ahmad et al. 
2016). As discussed, a closely related sequence for a specific crop or animal can be 
used if genome information is not accessible. The ever-growing databases of whole 
genome sequence remain to accelerate capabilities of proteoinformatics, till the 
time of writing this chapter; there are more than 500 plants with whole genome 
sequence from more than 5000 eukaryotic sequence since the first genome sequence 
of plant (Arabidopsis) in the year 2000 (Kaul et al. 2000). Bioinformatic investiga-
tions of the genome-based information from important commercial crops revealed 
that gene organization over evolutionary time has remained constant and conserved, 
which means that knowledge obtained from model plants such as Oryza sativa and 
Arabidopsis thaliana may be exploited to propose food improvement programs for 
monocot and dicot crops, respectively (Ong et al. 2016; Jayaswal et al. 2017).

In proteoinformatics, the term “peptide/protein sequence” implies subjecting 
those sequences or its related databases or other methods of bioinformatics on a 
computer. Sequence alignment in proteoinformatics is ordering the sequences of 
protein/peptide, RNA, or DNA to find similar regions that may be a sign of func-
tional and structural relationship (Pearson 2013), some important proteoinformatics 
databases listed in Table 1.2.

Proteoinformatics is considered as an evolving field of agricultural research. 
Interpreting particular functions of crops/animals is essential to determine useful 
proteins to improve agricultural traits (Newell-McGloughlin 2008). The integration 
of proteoinformatics and other omic platforms databases from agricultural species 
is of high importance to promote/enhance crops/animals system to solve global 
issues such as food, water stress, and climate changes (Katam et al. 2015a). For 
Asia, for instance, the Asia Pacific Bioinformatics Network (www.apbionet.org) is 
a good regional source (Khan et al. 2013).

Besides the classical well-known database, many website-based database or plat-
form content have served proteomics and have been used in agricultural research. 

J. R. Al-Obaidi
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The ExPASy Proteomics site, for instance, is considered as a tool developed for 
human proteomic research (Gasteiger et al. 2003; Hoogland et al. 2007); however, 
it is widely used to compute isoelectric point (pI) and molecular weight (Mw) for 
agricultural proteomic studies (Imam et al. 2014; Dahal et al. 2010; Guijun et al. 
2006; Schneider et al. 2004; Lande et al. 2017). In general, regarding agricultural 
proteomics, there are a number of web-based proteomics databases that hold a 
plenty of efficient information (Martens 2011). Recently, a new website was devel-
oped for tracking information and articles related to the changes in plant proteomes 
in response to stress (PlantPReS; www.proteome.ir). Organelle proteomic analyses 
have also been performed in animal and plant databases such as Organelle DB 
(http://labs.mcdb.lsa.umich.edu/organelledb/) (Agrawal et  al. 2011). Organelle 
expression proteomics was considered as successful tools focusing on subcellular 
proteins rather than total proteins (Yates Iii et al. 2005) such as mitochondrial pro-
teome research in potato (Salvato et al. 2014), chloroplast in tomato (Tamburino 
et al. 2017), endoplasmic reticulum in rice (Qian et al. 2015), peroxisomes in spin-
ach (Babujee et al. 2010), vacuoles in cauliflower (Schmidt et al. 2007), and nucleus 
in soybean (Cooper et al. 2011) because they have fewer proteins which can easily 
be identified since they contain a limited number of proteins; thus, protein identifi-
cation will be more appropriate. In the last 30 years, gel-based proteomics has been 
used as a main platform for agricultural proteomics. The gel is stained to visualize 

Table 1.2  Proteoinformatics online databases/resources

Database/resources Website link References

Protein Information Resource http://pir.georgetown.edu/ Wu et al. (2003)
Protein Knowledgebase www.uniprot.org/ The UniProt 

Consortium (2017)
Protein domain database http://prosite.expasy.org/ Hulo et al. (2008)
Database of Interacting Proteins http://dip.doe-mbi.ucla.edu/dip/Main.

cgi
Salwinski et al. 
(2004)

Large collection of protein 
families

http://pfam.xfam.org/ Finn et al. (2016)

 Protein fingerprints http://130.88.97.239/PRINTS/index.
php

Attwood et al. (2012)

Protein data bank http://www.wwpdb.org/ Gore et al. (2017)
Server and Repository for 
Protein Structure Models

https://swissmodel.expasy.org/ Biasini et al. (2014)

Database of Comparative Protein 
Structure Models

https://modbase.compbio.ucsf.edu/
modbase-cgi/index.cgi

Pieper et al. (2014)

A General Repository for 
Interaction Datasets

https://thebiogrid.org/ Chatr-aryamontri 
et al. (2017)

Comprehensive Enzyme 
Information System

http://www.brenda-enzymes.org/ Placzek et al. (2017)

Encyclopedia of Genes and 
Genomes

http://www.kegg.jp/ Kanehisa et al. 
(2012)

Interacting Genes/Proteins https://string-db.org/ Szklarczyk et al. 
(2017a)
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the proteins that have travelled to specific locations in the gel. For complex samples, 
proteins are analyzed after enzymatic digestion (Padula et al. 2017). Many software 
programs were developed for gel analysis (single stained and 2D-DIGE) and used 
in many agricultural-related proteomic research, most of which are commercial 
software such as Delta2D (http://www.decodon.com/delta2d.html), ImageMaster 
2D Platinum, Melanie 9 (http://2d-gel-analysis.com/), PDQuest (http://www.bio-
rad.com/en-ch/product/pdquest-2-d-analysis-software), Samspots, SpotsQuest and 
SpotMap (http://www.cleaverscientific.com), and Dymension (http://www.syn-
gene.com/dymension). While some of the free available software have not survived 
and they are either not available for download or totally discontinued such as Gel IQ 
from (http://ludesi.com/), there are few software which are still available and func-
tioning (Maurer 2016; Singh 2015) such as Gel2DE, SDA for DIGE analysis, and 
RegStatGel (http://www.mediafire.com/FengLi/2DGelsoftware).

Followed by protein separation, the peptide MS/MS fragmented spectra are 
matched against the available sequence in the database for protein identification. 
The peptide sequence identification is obtained based on the similarity score among 
the experimental MS/MS and the theoretical MS/MS spectra. The mass spectra 
obtained during protein identification are matched with the hypothetical one exist-
ing in the database and a statistical score, based on the spectrum resemblance, is 
associated with the protein identification. The restraint of this approach is that only 
known proteins/genes reported in the database can be identified (Nilsson et  al. 
2010). Recently, NCBI dropped “gi number” identifier and replaced the NCBInr 
database with a newer database named NCBIProt which is more complicated yet 
more comprehensive (Disruption ahead for NCBI databases 2016). The only disad-
vantage of this new database is that it is time-consuming to search for non-model 
organism although slight improvement was noticed (data not shown). De novo 
sequencing can be the method of choice when the protein, in this case, the sequence 
is obtained directly from the MS/MS spectra to skip the step of database spectrum 
search. The resulted sequences are then compared with those contained in the data-
base so to detect homologies (Ekblom and Wolf 2014).

Database search software programs/tools is listed in Table 1.3 together with 
those employed for de novo searching. An example of software used for de 
novo peptide sequencing is the Novor (www.rapidnovor.org/novor), which is 
capable of performing real-time de novo sequence analysis with high accuracy 
(Ma 2015).

1.4  �Protein-Protein Interaction Software and Database

Physiological and molecular cell processes are mainly carried out through the inter-
actions between different proteins. Interactions are physical relations between dif-
ferent protein structures via weak bonds (Khazanov and Carlson 2013; Chang et al. 
2016). In agricultural proteomic research, identifying protein identities binding or 
interacting with each other during certain defined circumstances and determining 
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the protein-binding site are of very high importance for a better understanding of the 
bases of many biological/physiological activities.

Protein interactions play a significant role in protein characterization and the 
discovery of protein functions and the pathways they are involved in (Rao et  al. 
2014). This is especially true during mutualism (symbiotism), commensalism, and 
parasitism interaction which is caused by specific protein-protein interactions (PPI) 
between organisms (Leung and Poulin 2008). The precision of experimental results 
in revealing protein-protein interactions, however, is rather doubtful, and the avail-
ability of high-throughput platforms has shown inaccuracy and false-positive infor-
mation for protein interaction. Considering experimental restrictions and limitation 
to find all interactions in a specific proteome, computational prediction of protein 

Table 1.3  List of mass spectrometry search-related software/websites

Software Description Website/download link References

Maxquant A quantitative 
proteomics aimed at 
high-resolution MS 
data

http://www.coxdocs.org/doku.
php?id=maxquant:common:download_
and_installation

Cox et al. 
(2011)

Byonic™ Full MS/MS search 
engine providing 
comprehensive peptide 
and protein 
identification

https://www.proteinmetrics.com/products/
byonic/

Bern et al. 
(2002)

Mascot A platform able to read 
various binary mass 
spectrometry data files

http://www.matrixscience.com/ Cottrell 
(2005)

MassMatrix Database search 
algorithm for tandem 
mass spectrometric 
data

www.massmatrix.bio Xu and 
Freitas 
(2009)

MS Amanda 
& Elutator

Scoring system to 
identify peptides out of 
tandem mass 
spectrometry

http://ms.imp.ac.at/i Doblas 
et al. 
(2017)

Cyclobranch De novo engine for 
identification of 
nonribosomal peptides

http://ms.biomed.cas.cz/cyclobranch/docs/
html/

Novák 
et al. 
(2015)

Maxquant Quantitative 
proteomics software 
for analysis of 
label-free and 
SILAC-based 
proteomics

https://web.archive.org Tyanova 
et al. 
(2016a)

SWATH Commercial software 
processing tool within 
PeakView data can be 
exported for statistical 
analysis after false 
discovery rate analysis

https://sciex.com/technology/
swath-acquisition

Kang et al. 
(2017)
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interactions is a requirement to proceed on the way to complete interactions at the 
proteome level (Keskin et al. 2016). Affordability of high-throughput machines and 
the development of computational-based prediction methods have produced vast 
numbers of protein-protein interactions. Computational methods for protein-protein 
interaction predictions can use a variety of biological data gene and protein 
sequences, evolution, and expression. Algorithms and statistics are commonly used 
to assimilate these data and deduce PPI predictions (Clark et al. 2011). This ability 
to provide comprehensive and reliable sets of PPIs prompted the development of 
many databases, aiming to gather and unify the available data, each with a different 
focus and different strengths. List of PPI database and examples in agriculture are 
presented in Table 1.4. Protein-protein interaction has been investigated and studied 
in many agricultural-related research such as rice with specific network (http://bis.
zju.edu.cn/prin/)(Gu et al. 2011; Zhu et al. 2011), Rhizoctonia solani-rice interac-
tion (Lei et  al. 2014), maize (http://comp-sysbio.org/ppim/) (Zhu et  al. 2015), 
chicken, and cattle (Fen et al. 2016).

One of the most common databases in agricultural research is the Search Tool for 
the Retrieval of Interacting Genes/Proteins (STRING) (Szklarczyk et  al. 2015, 
2017b); it is another database that incorporates both known and predicted network 
between proteins. Currently, STRING database covers more than 2000 species, and 
it is expected to cover more than 4000 in its 11th version (current version 10.5). 
STRING can give 3D structure besides the interaction network of a given proteome, 
the database used widely in prediction of protein interaction in agricultural 
proteomic-related research such as crop under biotic stress (Liu et al. 2015; Vu et al. 
2016; Al-Obaidi et al. 2016a; Wu et al. 2015), oil-crop metabolism (Raboanatahiry 
et  al. 2017), phytopathogenic fungi (Chu et  al. 2016; Li et  al. 2017), mushroom 
cultivation (Rahmad et  al. 2014), poultry (Broiler chicken) (Zheng et  al. 2016; 

Table 1.4  List of protein-protein interaction (PPI) software/website

STRING Provide a critical assessment and 
integration of protein-protein 
interactions

https://string-db.org/ Szklarczyk 
et al. (2017b)

MENTHA Provides protein-protein interaction 
(PPI) data for many species

http://mentha.uniroma2.it/ Calderone and 
Cesareni 
(2012)

GPS-Prot Computational prediction of 
phosphorylation sites

http://gps.biocuckoo.org/ Xue et al. 
(2008)

Compass This tool is applicable to proteomic 
investigations ranging from focused 
studies on a small number of selected 
proteins

http://www.proteinsimple.
com/compass/downloads/

Wenger et al. 
(2011)

Perseus Shotgun proteomics data analyses http://www.coxdocs.org/
doku.php?id=perseus:start

Tyanova et al. 
(2016b)

Struct2Net Structure-based protein-protein 
extraction

http://cb.csail.mit.edu/cb/
struct2net/webserver/

Hosur et al. 
(2012)
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Zheng et al. 2014), and buffalo (Ashok and Aparna 2017). The interactive STRING 
network can be recalculated based on user setting and cut-off values as well as 
interaction score, the maximum number of shown interactions, and expended based 
on user selected. Currently, it is not clear whether protein-protein interaction net-
works and database are representing the true biological interactomes. For that rea-
son, agricultural proteomic researchers should depend on their own valuation of 
biases and consider them when inferring any knowledge based on protein interac-
tion networks. Besides the freely available database which predict the protein-pro-
tein interaction, commercially available software platforms such as Ingenuity 
Pathway Analysis (IPA) (https://www.qiagenbioinformatics.com/products/ingenu-
ity-pathway-analysis/) and Metacore (https://clarivate.com/products/metacore/) are 
also considered great inclusive applications that enable analysis of many “omics” 
(Bessarabova et al. 2012; Yin et al. 2015) and agricultural proteomics as well; how-
ever, those software applications are mainly applied in medical proteomics rather 
than agricultural proteomics (Chen et al. 2013).

Proteomic analysis, in general, depends on data imaging which plays a serious 
role in understanding new results of proteomic research. In agricultural proteomic 
research especially for high-throughput experiments, heat maps are particularly 
suitable to achieve this mission, as they allow us to find measurable forms of result 
presentation across proteins concurrently. It is very useful to use heat maps for pre-
senting comparative proteomic results organized in a simple yet expressive way. 
The superiority of a presented heat map can be highly improved by understanding 
and utilizing the options available in the online tools/software to organize the data 
in the heat map (Key 2012; Acton 2013). The idea of a heat map style of presenta-
tion appears to be originated from the use of color-based heat maps, which used to 
differentiate changes in temperatures. List of used websites/software to create heat 
maps used in proteomic research is listed in Table 1.5.

Table 1.5  Heat map generating tools/software/website

Heatmapper Freely available web server 
that allows users to 
interactively visualize their 
data in the form of heat maps

http://www.heatmapper.ca (Babicki et al. 
2016)

ComplexHeat 
map

Software allow users to 
customize heatmaps

https://bioconductor.org/
packages/release/bioc/html/
ComplexHeatmap.html

Gu et al. 
(2016)

InCHILB Open source interactive 
JavaScript

https://openscreen.cz/
software/inchlib/home/

Škuta et al. 
(2014)

InfernoRDN Multi-omics heat map 
generation

https://omics.pnl.gov/
software/infernordn

Sadler and 
Wright (2015)

Clustergrammer Web-based tool for 
visualizing high-dimensional 
data

https://www.npmjs.com/
package/clustergrammer

Fernandez 
et al. (2017)
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1.5  �Proteoinformatics of Edible Mushroom

Information regarding the life cycles and metabolisms of edible mushroom is of 
high importance for designing workable, fruitful, and effective cultivation process, 
especially with fungal species that are hard to propagate and need a special medium, 
temperature, etc. (Zhang et al. 2014a). Research on edible mushrooms’ physiologi-
cal changes, growth stages, development, interactions with the environment, and 
contribution in human diet used several different approaches from cell biology, 
physiology, and chemistry to the current and multi-omic techniques such as genom-
ics (Chen et al. 2016), transcriptomics (Fu et al. 2017), proteomics (Rahmad et al. 
2014), and metabolomics (Pandohee et al. 2015). Recently, the availability of bioin-
formation related many edible mushrooms species helped to conduct many pro-
teomic researches, thanks to the availability of their genome sequencing (Shim et al. 
2016; Yang et  al. 2017) due to the high request for edible mushrooms and their 
importance in food industry, medicine, and healthcare (Yap et al. 2014).

The availability of genome sequencing for those edible mushrooms allow 
researchers to run genome-based proteomics (Yap et  al. 2015), which provided 
esteemed information for initiating molecular-based markers that can be used to 
improve the quality and usage of edible fungi. Recently, the importance of applying 
proteomic platforms in edible mushroom research has been highlighted, especially 
with nutraceutical and medicinal application possibilities (Al-Obaidi 2016b). 
Mushroom genome sequences make it possible for researchers to conduct research 
on mushroom growth (Tang et al. 2016; Wang et al. 2013a), developmental stages 
(Rahmad et al. 2014; Yin et al. 2012), and higher fungi medicinal properties (Yap 
et al. 2014).

1.6  �Proteoinformatics of Animal Breeding Programs

The final products of terrestrial (cattle, poultry, and sheep) rigorous animal agro-
farming systems have conventionally been mainly meat and milk products, fish, and 
other products from the aquaculture segment where both gained importance in 
terms of capacity and nutritional properties. Fundamental proteomics can be 
considered a promising tool for the discovery of protein diagnostic biomarkers for 
different and animal product quality markers.

Recently, the interest in studying livestock animals having proteomic and metab-
olomic platforms have increased rapidly (Suravajhala et al. 2016). Biomarker devel-
opment in chicken was identified for different research goals, while in dairy cattle, 
numerous potential biomarkers were detected for meat and milk production 
(Goldansaz et al. 2017; Ortea et al. 2016). In domestic livestock and animal pro-
teomics, the database search identification method in general is not an issue, since a 
comprehensive database of protein sequences is most probably available, databases 
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such as MetasSecKB (http://bioinformatics.ysu.edu/secretomes/animal/index.php) 
can be considered as a good reference. On the other side, in the cases that the animal 
genome has not been sequenced or not complete, other approaches such as de novo 
peptide sequencing is usually used (Blakeley et al. 2011). Commonly in the absence 
of enough proteoinformation, search against a protein sequence from closely related 
organisms. Small differences in peptide sequence from the sample and the genome/
proteome database entries may guide to a big difference in protein identities. This 
issue obscures proteome analysis for non-sequenced species and between different 
subspecies, where the difference in the amino acid sequence of proteins is high-
lighted possible (Ignatchenko et al. 2017). These approaches are considered signifi-
cant bioinformatic challenges because there are several aspects that affect or add 
inconsistency to determine protein identities. The availability of sufficient proteoin-
formatics data, the study of protein identification and metabolomic changes research 
considered the source for building models of whole systems. Such systems will 
permit investigators to understand the function of the protein complex in response 
to disease and environmental changes (Romero-Rodríguez et al. 2014). In the animal 
breeding proteomic research, proteomics may help in the search of animal biomarkers 
and offer more accurate health measures for livestock, which are essential for 
improving the breeding program, disease resistance, stress tolerance, and environ-
mental changes (Marco-Ramell et al. 2016).

1.7  �Conclusion

This chapter has concentrated mainly on the application of software programs and 
databases of proteomics in agricultural sciences, where the organism with no or 
incomplete genomic sequence data makes the identification of proteins more chal-
lenging in comparison to those highly studied organisms. The power of multi-omic 
methods for high-throughput identification and characterization of candidate genes 
tends to be lost in non-model organisms due to the lack of sufficient biological 
information. It is likely that the availability and accessibility of more sequence in 
plant/fungi and other agricultural-related organisms will ease some of these difficul-
ties by making genomic data available for many non-model organisms. However, 
proteomic studies accumulatively produce huge amounts of data. It is usually done 
collecting protein annotations from databases. Answering biological questions 
using these data is still a great challenge. In conclusion, key objectives for agricul-
tural proteoinformatics include the encouragement of sequence submission and 
make it available to the public research community. Finally, proteoinformatic data-
bases, software programs, and methods need to be designated and utilized in a better 
way. Many tools and databases are adapted from human and specifically medical-
related examination systems, and these may not be perfect for the analysis of plant, 
fungal, and other related agricultural proteomic data.
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