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Foreword

Bioinformatics is an interdisciplinary area of study 
and merges the various fields of biological sciences, 
mathematics, computers, statistics, physics, and 
chemistry. It is essentially used to develop methods, 
tools, and databases to analyze and interpret the bio-
logical data, which has seen a steep increase in the last 
two decades. The upsurge of this biological data is 
attributed to the expeditious advancements in sequenc-
ing, microarray, and proteomic technologies. This 
data has huge potential to serve as a basic platform for 

biological knowledge discovery, possible only with the help of advanced compu-
tational methods that are capable to tackle the data of this magnitude.

Plants have huge impact on our lives as well as the global environment. With the 
accumulation of diverse types of data from plants with agricultural implications, 
some of the main challenges in agricultural sciences are to improve the crop produc-
tivity and predict the response of plants under stressful environmental conditions. 
The voluminous quantity of data generated from multi-omics studies offers poten-
tial in achieving these objectives by understanding the functionality of the agricul-
turally important crops. The increase in the amount of biological data from plants 
has also seen a spectacular emergence in the development of plant-specific data-
bases and tools. These bioinformatics resources enable the researchers to investigate 
the molecular differences in plants at various stages and conditions at a large scale. 
This would in turn lead to necessary genome modifications in the plants of agricul-
tural significance with a possible improved productivity. Other key elements in 
regulating the overall development of plants are the microbes associated with them. 
With the advancements in metagenomics, it is now possible to profile the taxonomic 
composition and functional roles of these microbial communities, thereby provid-
ing opportunities for the discovery of novel genes, secondary metabolites, or 
even novel microorganisms that may affect plant growth or productivity. Each step 
aimed at improving the plant productivity will witness a crucial contribution from 
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bioinformatics. Therefore, bioinformatics will not only be an important tool in agri-
cultural research, but it will serve as a major driving force for designing future stud-
ies in this leading field of plant science.

This book highlights some of the major areas of agricultural research in which 
bioinformatics has been applied to address certain specific questions. For example, 
in addition to the topics related to crop productivity, stress, and heavy metal toler-
ance, the book also focusses on the recent trends in medicinal plant research, evolu-
tionary analysis, and sequencing technologies. The book is of interest to the students 
as well as researchers with deep interest in both agricultural sciences and bioinfor-
matics who either employ or develop these computational methods for better under-
standing of the resultant data.

I strongly endorse this volume series to the young students and promising 
researchers wishing to enter this exciting era of agricultural and biomedical revolu-
tionary research. I am assured that this volume series (Essentials of Bioinformatics 
I–III) will provide the confidence to science students in different corners of the 
world, especially from the developing world with limited resources, to dream up the 
careers in this field to make an impact on the world.

Department of Microbiology and Molecular Biology
Adeel Malik

College of Bioscience and Biotechnology  
Chungnam National University
Daejeon, Republic of Korea

Foreword
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Preface

Bioinformatics is an integrative field of computer science, genetics, genomics, pro-
teomics, transcriptomics, metabolomics, and statistics, which has certainly trans-
formed the agriculture, biology and medicine in current times. It mainly assists in 
modeling, predicting, and interpreting large multidimensional biological data by 
utilizing advanced computational methods. Currently, agricultural sciences wit-
nessed a huge progress, where a massive data is getting generated using Omic tech-
nologies. Bioinformatics tools are essential in agricultural sciences in view of trait 
improvement, disease control and plant disease management, nutritional content. 
High-performance bioinformatics facilities in agriculture, and various bioinformat-
ics software programs/databases are important for biotechnologists and pathologists 
as well as breeders.

This volume, like the first two volumes, is targeting the young researchers to 
make them aware of the recent developments in plant sciences, where bioinformat-
ics along with the other multi-omics technologies changed the scientific world and 
is making a large impact. This volume focusses on the key development in multi-
omics technologies and their impact in many aspects of plant science. Moreover, the 
elaboration of the database, algorithms, and software development that have been 
implemented to overcome the difficulties of the protein analysis are discussed.

We would also like to thank the Chairman of the Department of Biological 
Sciences, Prof. Khalid M. AlGhamdi, and the Head of Plant Sciences Section, Dr. 
Hesham F. Alharby, for providing us the valuable suggestions and encouragement 
to complete this task. We sincerely thank the management, faculty members, staff, 
and students at Princess Al-Jawhara Center of Excellence in Research of Hereditary 
Disorders (PACER-HD), Department of Genetic Medicine, of the Faculty of 
Medicine and Department of Biology of the Faculty of Science at King Abdulaziz 
University (KAU) for supporting our effort in bringing this book series a reality. We 
also appreciate the support of Prof. Jumana Y. Al-Aama, Director of PACER-HD, 
KAU, who, realizing the importance of bioinformatics in clinical practice, encour-
aged excellent scientific discussions and for supporting our work throughout this 
long process. We are highly grateful to all our contributors for readily accepting our 
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invitation and for not only sharing their knowledge and research but for venerably 
integrating their expertise in dispersed information from diverse fields in composing 
the chapters and enduring editorial suggestions to finally produce this venture. We 
greatly appreciate their commitment. We are also thankful to Dr. Adeel Malik for his 
suggestions and writing the foreword for this volume. Last but not the least, we 
would like to acknowledge Springer Nature publishers, especially Mr. Rahul 
Sharma for his patience and regular communication with us to move the project 
forward.

Jeddah, Saudi Arabia�   Khalid Rehman Hakeem
Jeddah, Saudi Arabia�   Noor Ahmad Shaik
Jeddah, Saudi Arabia�   Babajan Banaganapalli
Jeddah, Saudi Arabia�   Ramu Elango

Preface
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Chapter 1
Proteoinformatics and Agricultural 
Biotechnology Research: Applications 
and Challenges

Jameel R. Al-Obaidi
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1.1  �Introduction

Bioinformatics is a multidisciplinary field incipient from the interaction of informa-
tion, statistics, and biological sciences to analyze genome and/or proteome con-
tents, sequence information, and predict the function and structure of cellular 
molecules that are used in construing genomics and proteomics information from an 
agricultural organism (Benton 1996; Bruhn and Jennings 2007). Bioinformatics is 
considered relatively new yet is a significant discipline within the biological sci-
ences that has offered scientists and agrobiologists to interpret and handle huge 
amounts of information (Bartlett et al. 2016). This amount of data produced lead to 
the advancement and development of bioinformatics. The multi-“omics,” together 
with computational biology are considered important tools in understanding genom-
ics and its products which trigger several animal, plant, and microbial functions 
(Mochida and Shinozaki 2011). The functional analysis for those organisms includes 
profiling of gene products, prediction of interaction between proteins and their sub-
cellular location, and also the prediction of protein metabolism pathway simulation 
(Xiong 2006). Bioinformatics as a tool is not isolated but frequently interacts with 

J. R. Al-Obaidi (*) 
Agro-Biotechnology Institute Malaysia (ABI), National Institutes of Biotechnology  
Malaysia (NIBM), 43400, Serdang, Selangor, Malaysia
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other biological sections to produce assimilated results. For example, prediction of 
the structure of a protein depends on gene sequence and gene expression profiles, 
which require the use of phylogeny tools in sequence analysis. Therefore, the field 
of bioinformatics has developed in a way that the most important duty now include 
the interpretation of different types of information, including nucleotide and protein 
sequence and protein structures and function (Moorthie et al. 2013; Merrill et al. 
2006). The analysis of DNA/RNA sequences, protein sequences and function, 
genome analysis and gene expression, and protein involvement in physiological 
functions can all make use of bioinformatic methods and tools and cannot be done 
without it (Collins et al. 2003). Protein sequence information and its related nucleic 
acid and data from many agricultural species deliver a substance for agricultural 
research leading to a better understanding of global agricultural needs and chal-
lenges (Kumar et al. 2015). Utilizing the available information allows and assists 
the identification of expression of a gene which may help to understand the relation-
ship between phenotype and genotype (Orgogozo et al. 2015). The involvement of 
proteomic applications for analyses of crop, animals, and microorganisms has rap-
idly increased within the last decade (Mochida and Shinozaki 2010). Although pro-
teomic approaches are regularly used in plant research worldwide, and establish 
powerful tools, there is still a significant area for improvement.

Proteoinformatics could be defined as “utilization of computational biology tools 
in the study of the proteome.” Proteoinformatics is a field involving mathematics, 
programing sciences, statistics, and protein biology and biochemistry to predict and 
analyze their structure, function, and role in cell physiology (Cristoni and Mazzuca 
2011; Hamady et  al. 2005). Since the data obtained from agricultural proteomic 
research are complex and massive in size, the role of proteoinformatics is essential 
to reduce the time for investigation and to deliver statistically significant results and 
that will help to improve the plant/animal quality based on healthy growth and high 
productivity. Thus, proteoinformatics is a dynamic field for the development of new 
breed’s diagnostic tools in order to develop pathogen-free/resistance and abiotic 
stress tolerance, high-quality traits, and higher quantity production (Koltai and 
Volpin 2003).

1.2  �Proteoinformatics in Plant Disease Management

Among different plant pathogens, such as viruses, bacteria, and oomycetes, fungi 
are considered the most destructive (Dangl and Jones 2001). The growth, propaga-
tion, and survival strategies of pathogens are varied, but the strategies, in general, 
are similar, which start by colonization and progress to overcome host defense sys-
tem and then finally infection establishment (Pegg 1981; Lawrence et al. 2016). As 
a result, the host-pathogen systems have led to a complex relationship between the 
host and the pathogen molecules, resulting in relationship with a high degree of 
variation (Hily et al. 2014). Proteomic studies focused mainly on the response of 
host plant upon pathogen attack that opened up a new era for biology in general and 
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for agriculture in particular (Lodha et al. 2013; Alexander and Cilia 2016). Along 
with the use of proteomic approaches in agricultural research and the progress in 
sequencing agriculturally important organisms, the combination of bioinformatics 
and proteomics generally enhance the research in this area. This kind of multidisci-
plinary research is likely to fill in the gap toward the understanding of host-pathogen 
interaction network (Koltai and Volpin 2003). Two-dimensional gel electrophoresis 
has been initially used for rapidly identifying major proteome differences in control 
versus inoculated plants. Although many proteins identified during host-pathogen 
interactions have been highlighted, majority are known previously and are mainly 
in host immunity mechanism (Memišević et al. 2013). However, those results that 
arise from proteomic-based research are of great significance for the validation of 
gene expression in genomic or transcriptomic studies (Nesvizhskii 2014). 
Nevertheless, by using the gel-based proteomic tools, little novel information has 
been obtained, especially due to the lack of sufficient bioinformatics-related infor-
mation such as genome sequences (Cho 2007). Indeed, only the most abundant 
proteins are detected in two-dimensional gels and successfully identified by mass 
spectrometry (MS). Therefore, a gap seems to be in the bioinformatics channel for 
the proteomics research of organisms without complete genome sequencing 
(Sheynkman et al. 2016). These information-related limitations in agricultural pro-
teomic research need to be overcome to increase our knowledge on protein expres-
sion during plant-microbe interactions. However, proteomic tools have grown 
rapidly, and new approaches and apparatus are being developed (Mehta et al. 2008; 
Pérez-Clemente et  al. 2013). Previous agricultural proteomics research, which 
mainly focused on model crops, has provided fundamental understandings into dif-
ferent protein families in agri-organism systems’ modification and regulation (Hu 
et al. 2015; Vanderschuren et al. 2013). Nonetheless, model crop research itself does 
not retain all the information and data of interest to agricultural biology (Mirzaei 
et al. 2016; Carpentier et al. 2008). Therefore, those crops without complete genome 
sequence or sufficient genomic/EST information freely available need to be investi-
gated (Ke et al. 2015; Ekblom and Wolf 2014). In comparison to the model organ-
isms related to agriculture, such as rice (Koller et al. 2002), maize (Pechanova et al. 
2010), chicken (Burgess 2004), cattle (Assumpcao et  al. 2005), brewer’s yeast 
(Khoa Pham and Wright 2007), and the plant pathogen Botrytis cinerea (Fernández-
Acero et al. 2009), non-model species with little or no “bioinformation” was largely 
affected when it comes to proteomic analysis (Armengaud et al. 2014). Economic 
significance and the complexity of the genome make it necessary to sequence that 
organism (Bolger et al. 2014), but that is not enough to make it as a model organism 
if that information is not reachable by the scientific community (Canovas et  al. 
2004), Table 1.1 shows proteomic study of non-model organism. Most mass spec-
trometry proteomic methods depend on complete sequence for identification; for 
that reason, the analysis of these non-model species remains a challenge. Thus, 
relying on complete and comprehensive established database for the closely related 
model species “conserved genome region within the species of family” will be the 
only choice (Hutchins 2014; Zhu et  al. 2017; Bischoff et  al. 2016). However, 
sequence variation remains an issue, especially for quantitative proteomics 

1  Proteoinformatics and Agricultural Biotechnology Research: Applications…
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Table 1.1  Proteomic studies on non-model-pathogen interaction (2008–2018)

Plant-pathogen 
interaction

Proteomic 
platform Main findings References

Phaseolus vulgaris-
Uromyces 
appendiculatus

LC-MS/MS Resistance-genes are part of the basal 
system and repair disabled defenses 
to reinstate strong resistance

Lee et al. 
(2009)

cacao leaves-
Moniliophthora 
perniciosa

1-DE and 2-DE Protocols described in the study 
could help to develop high-level 
proteomic and biochemical studies in 
cacao also being applicable to other 
recalcitrant plant tissues

Pirovani et al. 
(2008)

Capsicum chinense-
pepper mild mottle 
virus (PMMoV)

2-DE and 
MALDI-TOF/
TOF

Evidence is presented for a 
differential accumulation of C. 
chinense PR proteins and mRNAs in 
the compatible (PMMoV-I)-C. 
chinense and incompatible (PMMoV-
S)-C. chinense interactions for 
proteins belonging to all PR proteins 
detected

Elvira et al. 
(2008)

Citrus-citrus sudden 
death virus (CSDaV)

2-DE and 
MALDI-TOF/
TOF

Downregulation of chitinases and 
proteinase inhibitors in CSD-affected 
plants is relevant since chitinases are 
well-known pathogenesis-related 
proteins, and their activity against 
plant pathogens is largely accepted

Cantú et al. 
(2008)

Beta vulgaris -Beet 
necrotic yellow vein 
virus (BNYVV)

MALDI-
TOF-MS

Involvement of systemic resistance 
components in Rz1-mediated 
resistance and phytohormones in 
symptom development

Larson et al. 
(2008)

Glycine max- 
Heterodera glycines

2DE and ESI/
MS-MS

Differed in resistant and susceptible 
Soybean Roots without cyst 
nematode (SCN) infestation and may 
form the basis of a new assay for the 
selection of resistance to SCN in 
soybean

Afzal et al. 
(2009)

Glycin max- 
Bradyrhizobium 
japonicum and 
Phytophthora sojae

2DE and 
quadrupole 
TOF MS/MS

Sap proteins from soybean that are 
differentially induced in response to 
B. japonicum and P. sojae elicitor 
treatments and most them were 
secreted proteins

Subramanian 
et al. (2009)

Phoenix dactylifera - 
Beauveria bassiana, 
Lecanicillium 
dimorphum and L. cf. 
psalliotae

2DE and 
MALDI/
TOF-TOF

Proteins related with photosynthesis 
and energy metabolism in date palm 
were affected by entomopathogenic 
fungi colonization

Gómez-Vidal 
et al. (2009)

(continued)

J. R. Al-Obaidi
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Table 1.1  (continued)

Plant-pathogen 
interaction

Proteomic 
platform Main findings References

Solanum 
lycopersicum—
Cucumber Mosaic 
Virus (CMV)

DIGE and MS/
MS analysis

The study demonstrated that virus 
infection in transgenic tomato is 
restricted to the inoculated leaves. 
The study contributes to defining the 
role played by key proteins involved 
in plant-virus interaction and to 
studying antibody-mediated 
resistance

Di Carli et al. 
(2010)

Saccharum 
officinarum- 
Gluconacetobacter 
diazotrophicus

SDS-PAGE and 
ESI-Q-TOF

30 identified bacterial proteins in the 
roots of the plant samples; from 
those, 9 were specifically induced by 
plant signals

Lery et al. 
(2010)

Brassica juncea 
-Albugo candida

2DE and 
Q-TOF MS/MS

The study demonstrates that the 
timing of the expression of defense-
related genes plays a crucial role 
during pathogenesis and 
incompatible interactions and that 
the redox balance within the 
chloroplast may be of crucial 
importance for mounting a successful 
defense response

Kaur et al. 
(2011)

Citrus aurantifolia - 
Candidatus 
Phytoplasma 
aurantifolia

2-DE and MS The study provided proteomic view 
of the molecular basis of the 
infection process and identify genes 
that could help inhibit the effects of 
the pathogen

Taheri et al. 
(2011)

Gossypium 
barbadense-
Verticillium dahliae

2-DE, EST 
database-
assisted PMF 
and MS/MS

Infection causes elevation in ethylene 
biosynthesis, Bet v 1 family proteins 
may play an important role in the 
defense reaction against Verticillium 
wilt, and wilt resistance may 
implicate the redirection of 
carbohydrate flux from glycolysis to 
pentose phosphate pathway (PPP)

Wang et al. 
(2011)

Vitis vinifera-Uncinula 
necator

2-D DIGE High levels of Mn concentration in 
grapevine leaves triggered protective 
mechanisms against pathogens in 
grapevine

Yao et al. 
(2012)And

Brassica napus 
-Sclerotinia 
sclerotiorum

2-DE and 
MALDI TOF/
TOF

The study showed new insights into 
the resistance mechanisms within B. 
napus against S. sclerotiorum

Garg et al. 
(2013)

Citrus unshiu- 
Penicillium italicum

2-DE and 
LC-QToF-MS

Lignin plays important roles in heat 
treatment-induced citrus fruit 
resistance to pathogens

Yun et al. 
(2013)

Solanum 
lycopersicum - 
Pseudomonas syringae

iTRAQ The study provided an insight into 
tomato’s response to Pseudomonas 
syringae

Parker et al. 
(2013a)

(continued)
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Table 1.1  (continued)

Plant-pathogen 
interaction

Proteomic 
platform Main findings References

Mentha spicata 
-Alternaria alternata

2-DE and 
MALDI 
TOF–TOF 
MSMS

The study deciphers the mechanism 
by which a foreign metabolite 
mediates stress tolerance in plant 
under control and infected condition

Sinha et al. 
(2013)

Beta vulgaris- Beet 
necrotic yellow vein 
virus

LC-MS/MS The study identified proteins 
associated with systemic acquired 
resistance and general plant defense 
response

Webb et al. 
(2014)

Phytophthora 
infestans- Solanum 
tuberosum

LC-MS/MS Proteins involved in sterol 
biosynthesis were downregulated, 
whereas several enzymes involved in 
the sesquiterpene phytoalexin 
biosynthesis were upregulated

Bengtsson 
et al. (2014)

Anacardium 
occidentale- 
Lasiodiplodia 
theobromae

2DE- SI-Q-TOF 
MS/MS

Cashew responsive proteins indicate 
modulation of various cellular 
functions involved in metabolism, 
stress/defense, and cell signaling

Cipriano 
et al. (2015)

Lactuca sativa-
Salmonella enterica

2DE and nano 
LC-MS/MS

Proteins involved in lettuce’s defense 
response to bacterium were 
upregulated, such as pyruvate 
dehydrogenase, 2-cys peroxiredoxin, 
and ferredoxin-NADP reductase

Zhang et al. 
(2014b)

Oil palm-Ganoderma 
interaction

2DE, MALDI 
TOF/TOF

Proteins related to lignin synthesis 
were downregulated up on 
interaction

Al-Obaidi 
et al. (2014)

Amorpha fruticosa- 
Glomus mosseae

iTRAQ and 
LC-MS/MS

77 proteins were classified according 
to different functions during the 
interaction

Song et al. 
(2015)

Vitis vinifera-Xylella 
fastidiosa

2DE, MALDI 
TOF/TOF

Muscadine and Florida hybrid bunch 
grapes express novel proteins in 
xylem to overcome pathogen attack

Katam et al. 
(2015b)

Solanum tuberosum - 
Ralstonia 
solanacearum

2DE and 
MALDI-TOF/
TOF

The study showed involvement of the 
identified proteins in the bacterial 
stress tolerance in potato

Park et al. 
(2016)

Malus domestica-
Botryosphaeria 
berengeriana

2DE and 
MALDI-TOF-
TOF

The study speculated that the 
upregulation of abscisic stress 
ripening-like protein and the 
dramatic decrease of 
-adenosylmethionine synthetase in 
the resistant host could be related to 
its better disease resistance

Cai-xia et al. 
(2017)

Paulownia 
fortunei-Phytoplasma

iTRAQ Paulownia witches’ broom (PaWB) 
proteins may help in developing a 
deeper understanding of how PaWB 
affects the morphological 
characteristics of P. fortunei

Wei et al. 
(2017)

J. R. Al-Obaidi
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approaches, which will lead to low coverage of protein identification (Chandramouli 
and Qian 2009; Zhan et  al. 2017). Moreover, “conserved genome” regions may 
produce similar protein sequence with different cellular functions and may increase 
the number of mismatch protein identities (Khan et al. 2014). Gel-based proteomics 
is considered the most dominant platform used for agricultural proteomic research 
(Tan et al. 2017). However, the use of gel-free proteome analysis is increasing rap-
idly in agricultural research with the presence of more proteoinformatics data 
(Porteus et al. 2011; Komatsu et al. 2013). Pathogen proteins that are used to sup-
press host defenses are of high importance in agricultural host-pathogen interaction, 
as these proteins may play a role in virulence, pathogenicity, and effector molecules 
(Van De Wouw and Howlett 2011). Pathogen characteristics are of primary interest 
in crop development programs (Fletcher et al. 2006). The contribution of proteoin-
formatic advances has helped the sequencing of the entire genomes of many patho-
gens in the last 10 years (Land et al. 2015). Classical biochemistry and molecular 
biology, as well as the modern omic platform techniques coupled with bioinfor-
matic tools research, have been conducted on agricultural-related pathogens and 
their interactions with crops (Barah and Bones 2014). Recently, the study of patho-
gens have been significantly promoted by the availability of bioinformatic data and 
the resources for multi-“omics” research (Bhadauria 2016). These approaches, in 
combination with gene-targeting studies such as targeted mutations and gene silenc-
ing studies, are explained in molecular host-pathogen communications and the 
complex mechanisms involving pathogenesis and virulence (Allahverdiyeva et al. 
2015; McGarvey et al. 2009; Fondi and Liò 2015). The present efforts to provide 
sufficient “proteoinformation” to determine related proteins and their function have 
improved the capacity to understand the core causes of crop and animal diseases 
and develop new possibilities of treatments (Chen et al. 2010). Proteoinformatics 
has many practical applications in current agricultural-related disease management 
with respect to the study of host-pathogen interactions, understanding the nature of 
the disease genetics, pathogenicity, and/or virulence factor of a pathogen which 
eventually aid in designing better disease control and drive the infection process 
which has also been identified, using molecular biological technologies and genet-
ics in identifying the interaction with bacteria such as tomato and Pseudomonas 
syringae (Parker et al. 2013b; Balmant et al. 2015) and rice and Xanthomonas ory-
zae (Wang et al. 2013b) or with virus such as potato and potato virus (PVY) (Stare 
et al. 2017) or with phytopathogenic fungi such as apple and Alternaria alternate 
(Zhang et al. 2015), strawberry and Fusarium oxysporum (Fang et al. 2013), cotton 
and rot fungus Thielaviopsis basicola (Coumans et  al. 2009), and coffee and 
Hemileia vastatrix. Proteoinformatic tools and databases related to agricultural dis-
eases need to be further developed and expanded. Obviously, tools, software, and 
databases are adapted from human and more specifically medical analysis systems, 
and these may not necessarily be a model for analysis of crop proteomic data; there-
fore, more information regarding those crops and their pathogens will be very help-
ful to fill in the proteoinformation gap in agricultural research and also to verify the 
protein information predicted in the literature (Dennis et al. 2008; Thrall et al. 2011; 
Van Emon 2016). Generally, the proteoinformation is larger and more complicated 

1  Proteoinformatics and Agricultural Biotechnology Research: Applications…



8

than the genoinformation, especially in crops, since there are more proteins than 
genes. That is mainly because of the post-translational enzymatic modification. 
The nucleotide sequence can represent the genome of an organism; on the other 
side, peptide sequence cannot represent the proteome for that organism unless the 
structure of an interaction between those proteins revealed (Gupta et  al. 2007; 
Khan 2015).

1.3  �Proteoinformatic Databases and Tools

Sequencing projects of crops and animals related to agriculture bring the number of 
proteomic research in this field higher. Proteoinformatic methods and tools could be 
used to identify a specific protein of interest within the proteome of an organism 
which could be valuable for community related to agriculture and to interpret their 
cellular functions. The different and unusual protein information might be used to 
develop drought- and salt-tolerant crops, for diseases resistance and improvement 
of livestock, and higher productivity (Fears 2007; Gong et al. 2015; Ahmad et al. 
2016). As discussed, a closely related sequence for a specific crop or animal can be 
used if genome information is not accessible. The ever-growing databases of whole 
genome sequence remain to accelerate capabilities of proteoinformatics, till the 
time of writing this chapter; there are more than 500 plants with whole genome 
sequence from more than 5000 eukaryotic sequence since the first genome sequence 
of plant (Arabidopsis) in the year 2000 (Kaul et al. 2000). Bioinformatic investiga-
tions of the genome-based information from important commercial crops revealed 
that gene organization over evolutionary time has remained constant and conserved, 
which means that knowledge obtained from model plants such as Oryza sativa and 
Arabidopsis thaliana may be exploited to propose food improvement programs for 
monocot and dicot crops, respectively (Ong et al. 2016; Jayaswal et al. 2017).

In proteoinformatics, the term “peptide/protein sequence” implies subjecting 
those sequences or its related databases or other methods of bioinformatics on a 
computer. Sequence alignment in proteoinformatics is ordering the sequences of 
protein/peptide, RNA, or DNA to find similar regions that may be a sign of func-
tional and structural relationship (Pearson 2013), some important proteoinformatics 
databases listed in Table 1.2.

Proteoinformatics is considered as an evolving field of agricultural research. 
Interpreting particular functions of crops/animals is essential to determine useful 
proteins to improve agricultural traits (Newell-McGloughlin 2008). The integration 
of proteoinformatics and other omic platforms databases from agricultural species 
is of high importance to promote/enhance crops/animals system to solve global 
issues such as food, water stress, and climate changes (Katam et al. 2015a). For 
Asia, for instance, the Asia Pacific Bioinformatics Network (www.apbionet.org) is 
a good regional source (Khan et al. 2013).

Besides the classical well-known database, many website-based database or plat-
form content have served proteomics and have been used in agricultural research. 

J. R. Al-Obaidi
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The ExPASy Proteomics site, for instance, is considered as a tool developed for 
human proteomic research (Gasteiger et al. 2003; Hoogland et al. 2007); however, 
it is widely used to compute isoelectric point (pI) and molecular weight (Mw) for 
agricultural proteomic studies (Imam et al. 2014; Dahal et al. 2010; Guijun et al. 
2006; Schneider et al. 2004; Lande et al. 2017). In general, regarding agricultural 
proteomics, there are a number of web-based proteomics databases that hold a 
plenty of efficient information (Martens 2011). Recently, a new website was devel-
oped for tracking information and articles related to the changes in plant proteomes 
in response to stress (PlantPReS; www.proteome.ir). Organelle proteomic analyses 
have also been performed in animal and plant databases such as Organelle DB 
(http://labs.mcdb.lsa.umich.edu/organelledb/) (Agrawal et  al. 2011). Organelle 
expression proteomics was considered as successful tools focusing on subcellular 
proteins rather than total proteins (Yates Iii et al. 2005) such as mitochondrial pro-
teome research in potato (Salvato et al. 2014), chloroplast in tomato (Tamburino 
et al. 2017), endoplasmic reticulum in rice (Qian et al. 2015), peroxisomes in spin-
ach (Babujee et al. 2010), vacuoles in cauliflower (Schmidt et al. 2007), and nucleus 
in soybean (Cooper et al. 2011) because they have fewer proteins which can easily 
be identified since they contain a limited number of proteins; thus, protein identifi-
cation will be more appropriate. In the last 30 years, gel-based proteomics has been 
used as a main platform for agricultural proteomics. The gel is stained to visualize 

Table 1.2  Proteoinformatics online databases/resources

Database/resources Website link References

Protein Information Resource http://pir.georgetown.edu/ Wu et al. (2003)
Protein Knowledgebase www.uniprot.org/ The UniProt 

Consortium (2017)
Protein domain database http://prosite.expasy.org/ Hulo et al. (2008)
Database of Interacting Proteins http://dip.doe-mbi.ucla.edu/dip/Main.

cgi
Salwinski et al. 
(2004)

Large collection of protein 
families

http://pfam.xfam.org/ Finn et al. (2016)

 Protein fingerprints http://130.88.97.239/PRINTS/index.
php

Attwood et al. (2012)

Protein data bank http://www.wwpdb.org/ Gore et al. (2017)
Server and Repository for 
Protein Structure Models

https://swissmodel.expasy.org/ Biasini et al. (2014)

Database of Comparative Protein 
Structure Models

https://modbase.compbio.ucsf.edu/
modbase-cgi/index.cgi

Pieper et al. (2014)

A General Repository for 
Interaction Datasets

https://thebiogrid.org/ Chatr-aryamontri 
et al. (2017)

Comprehensive Enzyme 
Information System

http://www.brenda-enzymes.org/ Placzek et al. (2017)

Encyclopedia of Genes and 
Genomes

http://www.kegg.jp/ Kanehisa et al. 
(2012)

Interacting Genes/Proteins https://string-db.org/ Szklarczyk et al. 
(2017a)
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the proteins that have travelled to specific locations in the gel. For complex samples, 
proteins are analyzed after enzymatic digestion (Padula et al. 2017). Many software 
programs were developed for gel analysis (single stained and 2D-DIGE) and used 
in many agricultural-related proteomic research, most of which are commercial 
software such as Delta2D (http://www.decodon.com/delta2d.html), ImageMaster 
2D Platinum, Melanie 9 (http://2d-gel-analysis.com/), PDQuest (http://www.bio-
rad.com/en-ch/product/pdquest-2-d-analysis-software), Samspots, SpotsQuest and 
SpotMap (http://www.cleaverscientific.com), and Dymension (http://www.syn-
gene.com/dymension). While some of the free available software have not survived 
and they are either not available for download or totally discontinued such as Gel IQ 
from (http://ludesi.com/), there are few software which are still available and func-
tioning (Maurer 2016; Singh 2015) such as Gel2DE, SDA for DIGE analysis, and 
RegStatGel (http://www.mediafire.com/FengLi/2DGelsoftware).

Followed by protein separation, the peptide MS/MS fragmented spectra are 
matched against the available sequence in the database for protein identification. 
The peptide sequence identification is obtained based on the similarity score among 
the experimental MS/MS and the theoretical MS/MS spectra. The mass spectra 
obtained during protein identification are matched with the hypothetical one exist-
ing in the database and a statistical score, based on the spectrum resemblance, is 
associated with the protein identification. The restraint of this approach is that only 
known proteins/genes reported in the database can be identified (Nilsson et  al. 
2010). Recently, NCBI dropped “gi number” identifier and replaced the NCBInr 
database with a newer database named NCBIProt which is more complicated yet 
more comprehensive (Disruption ahead for NCBI databases 2016). The only disad-
vantage of this new database is that it is time-consuming to search for non-model 
organism although slight improvement was noticed (data not shown). De novo 
sequencing can be the method of choice when the protein, in this case, the sequence 
is obtained directly from the MS/MS spectra to skip the step of database spectrum 
search. The resulted sequences are then compared with those contained in the data-
base so to detect homologies (Ekblom and Wolf 2014).

Database search software programs/tools is listed in Table 1.3 together with 
those employed for de novo searching. An example of software used for de 
novo peptide sequencing is the Novor (www.rapidnovor.org/novor), which is 
capable of performing real-time de novo sequence analysis with high accuracy 
(Ma 2015).

1.4  �Protein-Protein Interaction Software and Database

Physiological and molecular cell processes are mainly carried out through the inter-
actions between different proteins. Interactions are physical relations between dif-
ferent protein structures via weak bonds (Khazanov and Carlson 2013; Chang et al. 
2016). In agricultural proteomic research, identifying protein identities binding or 
interacting with each other during certain defined circumstances and determining 
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the protein-binding site are of very high importance for a better understanding of the 
bases of many biological/physiological activities.

Protein interactions play a significant role in protein characterization and the 
discovery of protein functions and the pathways they are involved in (Rao et  al. 
2014). This is especially true during mutualism (symbiotism), commensalism, and 
parasitism interaction which is caused by specific protein-protein interactions (PPI) 
between organisms (Leung and Poulin 2008). The precision of experimental results 
in revealing protein-protein interactions, however, is rather doubtful, and the avail-
ability of high-throughput platforms has shown inaccuracy and false-positive infor-
mation for protein interaction. Considering experimental restrictions and limitation 
to find all interactions in a specific proteome, computational prediction of protein 

Table 1.3  List of mass spectrometry search-related software/websites

Software Description Website/download link References

Maxquant A quantitative 
proteomics aimed at 
high-resolution MS 
data

http://www.coxdocs.org/doku.
php?id=maxquant:common:download_
and_installation

Cox et al. 
(2011)

Byonic™ Full MS/MS search 
engine providing 
comprehensive peptide 
and protein 
identification

https://www.proteinmetrics.com/products/
byonic/

Bern et al. 
(2002)

Mascot A platform able to read 
various binary mass 
spectrometry data files

http://www.matrixscience.com/ Cottrell 
(2005)

MassMatrix Database search 
algorithm for tandem 
mass spectrometric 
data

www.massmatrix.bio Xu and 
Freitas 
(2009)

MS Amanda 
& Elutator

Scoring system to 
identify peptides out of 
tandem mass 
spectrometry

http://ms.imp.ac.at/i Doblas 
et al. 
(2017)

Cyclobranch De novo engine for 
identification of 
nonribosomal peptides

http://ms.biomed.cas.cz/cyclobranch/docs/
html/

Novák 
et al. 
(2015)

Maxquant Quantitative 
proteomics software 
for analysis of 
label-free and 
SILAC-based 
proteomics

https://web.archive.org Tyanova 
et al. 
(2016a)

SWATH Commercial software 
processing tool within 
PeakView data can be 
exported for statistical 
analysis after false 
discovery rate analysis

https://sciex.com/technology/
swath-acquisition

Kang et al. 
(2017)
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interactions is a requirement to proceed on the way to complete interactions at the 
proteome level (Keskin et al. 2016). Affordability of high-throughput machines and 
the development of computational-based prediction methods have produced vast 
numbers of protein-protein interactions. Computational methods for protein-protein 
interaction predictions can use a variety of biological data gene and protein 
sequences, evolution, and expression. Algorithms and statistics are commonly used 
to assimilate these data and deduce PPI predictions (Clark et al. 2011). This ability 
to provide comprehensive and reliable sets of PPIs prompted the development of 
many databases, aiming to gather and unify the available data, each with a different 
focus and different strengths. List of PPI database and examples in agriculture are 
presented in Table 1.4. Protein-protein interaction has been investigated and studied 
in many agricultural-related research such as rice with specific network (http://bis.
zju.edu.cn/prin/)(Gu et al. 2011; Zhu et al. 2011), Rhizoctonia solani-rice interac-
tion (Lei et  al. 2014), maize (http://comp-sysbio.org/ppim/) (Zhu et  al. 2015), 
chicken, and cattle (Fen et al. 2016).

One of the most common databases in agricultural research is the Search Tool for 
the Retrieval of Interacting Genes/Proteins (STRING) (Szklarczyk et  al. 2015, 
2017b); it is another database that incorporates both known and predicted network 
between proteins. Currently, STRING database covers more than 2000 species, and 
it is expected to cover more than 4000 in its 11th version (current version 10.5). 
STRING can give 3D structure besides the interaction network of a given proteome, 
the database used widely in prediction of protein interaction in agricultural 
proteomic-related research such as crop under biotic stress (Liu et al. 2015; Vu et al. 
2016; Al-Obaidi et al. 2016a; Wu et al. 2015), oil-crop metabolism (Raboanatahiry 
et  al. 2017), phytopathogenic fungi (Chu et  al. 2016; Li et  al. 2017), mushroom 
cultivation (Rahmad et  al. 2014), poultry (Broiler chicken) (Zheng et  al. 2016; 

Table 1.4  List of protein-protein interaction (PPI) software/website

STRING Provide a critical assessment and 
integration of protein-protein 
interactions

https://string-db.org/ Szklarczyk 
et al. (2017b)

MENTHA Provides protein-protein interaction 
(PPI) data for many species

http://mentha.uniroma2.it/ Calderone and 
Cesareni 
(2012)

GPS-Prot Computational prediction of 
phosphorylation sites

http://gps.biocuckoo.org/ Xue et al. 
(2008)

Compass This tool is applicable to proteomic 
investigations ranging from focused 
studies on a small number of selected 
proteins

http://www.proteinsimple.
com/compass/downloads/

Wenger et al. 
(2011)

Perseus Shotgun proteomics data analyses http://www.coxdocs.org/
doku.php?id=perseus:start

Tyanova et al. 
(2016b)

Struct2Net Structure-based protein-protein 
extraction

http://cb.csail.mit.edu/cb/
struct2net/webserver/

Hosur et al. 
(2012)
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Zheng et al. 2014), and buffalo (Ashok and Aparna 2017). The interactive STRING 
network can be recalculated based on user setting and cut-off values as well as 
interaction score, the maximum number of shown interactions, and expended based 
on user selected. Currently, it is not clear whether protein-protein interaction net-
works and database are representing the true biological interactomes. For that rea-
son, agricultural proteomic researchers should depend on their own valuation of 
biases and consider them when inferring any knowledge based on protein interac-
tion networks. Besides the freely available database which predict the protein-pro-
tein interaction, commercially available software platforms such as Ingenuity 
Pathway Analysis (IPA) (https://www.qiagenbioinformatics.com/products/ingenu-
ity-pathway-analysis/) and Metacore (https://clarivate.com/products/metacore/) are 
also considered great inclusive applications that enable analysis of many “omics” 
(Bessarabova et al. 2012; Yin et al. 2015) and agricultural proteomics as well; how-
ever, those software applications are mainly applied in medical proteomics rather 
than agricultural proteomics (Chen et al. 2013).

Proteomic analysis, in general, depends on data imaging which plays a serious 
role in understanding new results of proteomic research. In agricultural proteomic 
research especially for high-throughput experiments, heat maps are particularly 
suitable to achieve this mission, as they allow us to find measurable forms of result 
presentation across proteins concurrently. It is very useful to use heat maps for pre-
senting comparative proteomic results organized in a simple yet expressive way. 
The superiority of a presented heat map can be highly improved by understanding 
and utilizing the options available in the online tools/software to organize the data 
in the heat map (Key 2012; Acton 2013). The idea of a heat map style of presenta-
tion appears to be originated from the use of color-based heat maps, which used to 
differentiate changes in temperatures. List of used websites/software to create heat 
maps used in proteomic research is listed in Table 1.5.

Table 1.5  Heat map generating tools/software/website

Heatmapper Freely available web server 
that allows users to 
interactively visualize their 
data in the form of heat maps

http://www.heatmapper.ca (Babicki et al. 
2016)

ComplexHeat 
map

Software allow users to 
customize heatmaps

https://bioconductor.org/
packages/release/bioc/html/
ComplexHeatmap.html

Gu et al. 
(2016)

InCHILB Open source interactive 
JavaScript

https://openscreen.cz/
software/inchlib/home/

Škuta et al. 
(2014)

InfernoRDN Multi-omics heat map 
generation

https://omics.pnl.gov/
software/infernordn

Sadler and 
Wright (2015)

Clustergrammer Web-based tool for 
visualizing high-dimensional 
data

https://www.npmjs.com/
package/clustergrammer

Fernandez 
et al. (2017)
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1.5  �Proteoinformatics of Edible Mushroom

Information regarding the life cycles and metabolisms of edible mushroom is of 
high importance for designing workable, fruitful, and effective cultivation process, 
especially with fungal species that are hard to propagate and need a special medium, 
temperature, etc. (Zhang et al. 2014a). Research on edible mushrooms’ physiologi-
cal changes, growth stages, development, interactions with the environment, and 
contribution in human diet used several different approaches from cell biology, 
physiology, and chemistry to the current and multi-omic techniques such as genom-
ics (Chen et al. 2016), transcriptomics (Fu et al. 2017), proteomics (Rahmad et al. 
2014), and metabolomics (Pandohee et al. 2015). Recently, the availability of bioin-
formation related many edible mushrooms species helped to conduct many pro-
teomic researches, thanks to the availability of their genome sequencing (Shim et al. 
2016; Yang et  al. 2017) due to the high request for edible mushrooms and their 
importance in food industry, medicine, and healthcare (Yap et al. 2014).

The availability of genome sequencing for those edible mushrooms allow 
researchers to run genome-based proteomics (Yap et  al. 2015), which provided 
esteemed information for initiating molecular-based markers that can be used to 
improve the quality and usage of edible fungi. Recently, the importance of applying 
proteomic platforms in edible mushroom research has been highlighted, especially 
with nutraceutical and medicinal application possibilities (Al-Obaidi 2016b). 
Mushroom genome sequences make it possible for researchers to conduct research 
on mushroom growth (Tang et al. 2016; Wang et al. 2013a), developmental stages 
(Rahmad et al. 2014; Yin et al. 2012), and higher fungi medicinal properties (Yap 
et al. 2014).

1.6  �Proteoinformatics of Animal Breeding Programs

The final products of terrestrial (cattle, poultry, and sheep) rigorous animal agro-
farming systems have conventionally been mainly meat and milk products, fish, and 
other products from the aquaculture segment where both gained importance in 
terms of capacity and nutritional properties. Fundamental proteomics can be 
considered a promising tool for the discovery of protein diagnostic biomarkers for 
different and animal product quality markers.

Recently, the interest in studying livestock animals having proteomic and metab-
olomic platforms have increased rapidly (Suravajhala et al. 2016). Biomarker devel-
opment in chicken was identified for different research goals, while in dairy cattle, 
numerous potential biomarkers were detected for meat and milk production 
(Goldansaz et al. 2017; Ortea et al. 2016). In domestic livestock and animal pro-
teomics, the database search identification method in general is not an issue, since a 
comprehensive database of protein sequences is most probably available, databases 
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such as MetasSecKB (http://bioinformatics.ysu.edu/secretomes/animal/index.php) 
can be considered as a good reference. On the other side, in the cases that the animal 
genome has not been sequenced or not complete, other approaches such as de novo 
peptide sequencing is usually used (Blakeley et al. 2011). Commonly in the absence 
of enough proteoinformation, search against a protein sequence from closely related 
organisms. Small differences in peptide sequence from the sample and the genome/
proteome database entries may guide to a big difference in protein identities. This 
issue obscures proteome analysis for non-sequenced species and between different 
subspecies, where the difference in the amino acid sequence of proteins is high-
lighted possible (Ignatchenko et al. 2017). These approaches are considered signifi-
cant bioinformatic challenges because there are several aspects that affect or add 
inconsistency to determine protein identities. The availability of sufficient proteoin-
formatics data, the study of protein identification and metabolomic changes research 
considered the source for building models of whole systems. Such systems will 
permit investigators to understand the function of the protein complex in response 
to disease and environmental changes (Romero-Rodríguez et al. 2014). In the animal 
breeding proteomic research, proteomics may help in the search of animal biomarkers 
and offer more accurate health measures for livestock, which are essential for 
improving the breeding program, disease resistance, stress tolerance, and environ-
mental changes (Marco-Ramell et al. 2016).

1.7  �Conclusion

This chapter has concentrated mainly on the application of software programs and 
databases of proteomics in agricultural sciences, where the organism with no or 
incomplete genomic sequence data makes the identification of proteins more chal-
lenging in comparison to those highly studied organisms. The power of multi-omic 
methods for high-throughput identification and characterization of candidate genes 
tends to be lost in non-model organisms due to the lack of sufficient biological 
information. It is likely that the availability and accessibility of more sequence in 
plant/fungi and other agricultural-related organisms will ease some of these difficul-
ties by making genomic data available for many non-model organisms. However, 
proteomic studies accumulatively produce huge amounts of data. It is usually done 
collecting protein annotations from databases. Answering biological questions 
using these data is still a great challenge. In conclusion, key objectives for agricul-
tural proteoinformatics include the encouragement of sequence submission and 
make it available to the public research community. Finally, proteoinformatic data-
bases, software programs, and methods need to be designated and utilized in a better 
way. Many tools and databases are adapted from human and specifically medical-
related examination systems, and these may not be perfect for the analysis of plant, 
fungal, and other related agricultural proteomic data.
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2.1  �Introduction

Crops play a significant and diverse role in our economy, environment and feeding 
the increasing world population. Increased demand for biofuel crops, population 
explosion and global climate change have become a challenge for current plant bio-
technology, and sustainable agricultural production is an urgent issue in this response 
(Brown and Funk 2008; Ozturk 2010; Hakeem et al. 2012). Climate change will 
severely influence the world’s food supply, and it is predicted to have immense 
negative effects on both the yield and the quality of crop plants (Kumar 2016), 
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unless steps are taken to increase crop resilience. Plant genomics is a potentially 
powerful defence against this looming threat. Now to solve these issues and increase 
crop yields, breeding of novel crops and adaptation of current crops to the new envi-
ronment based on a better molecular understanding of gene function, and on the 
regulatory mechanisms involved in crop production (Takeda and Matsuoka 2008), 
have become a primary necessity. Crop yields have increased during the past century 
and will continue due to enhanced breeding and new biotechnological-engineered 
strategies. Some of the important gene sequences and their function have been des-
ignated, many of which are related to crop yields (production), crop quality, toler-
ance to biotic and abiotic stresses and development of molecular markers (De Filippis 
2012). One vital tool of bioinformatics is “genomics”, which is commonly used to 
identify genotypic and phenotypic changes in plants, and this information helps in 
improving the overall performance of crop plants (Ahmad et al. 2011).

Modern technologies of bioinformatics have enhanced the study of plant biology 
to a higher level than before and have assisted in unravelling genetic and molecular 
networks (Schuster 2007). After a rapid surge in genome sequencing through inno-
vative high-throughput methods, scientists have an opportunity to exploit the struc-
ture of the plant genetic material at the molecular level which is known as “plant 
genomics” (Govindaraj et al. 2015). Some of the latest applications of bioinformat-
ics in plant science research field (Fig. 2.1) are as follows:

•	 Integrated “omics” strategies clarify the molecular system of the plant which is 
used to improve the plant productivity. Innovations in omics-based research 
improve plant-based research.

•	 Genomics strategy, especially comparative genomics, helps in understanding the 
genes and their functions and the biological properties of each species.

•	 Bioinformatics databases are also used in designing new techniques and experi-
ments for increased plant production (Mochida and Shinozaki 2010).

•	 Advancement in the bioinformatics tools has enabled us in providing informa-
tion about the genes present in the genome of microorganisms (role in agricul-
ture). These tools have also made it possible to predict the function of different 
genes and factors affecting these genes, and this information is used by scientists 
to produce enhanced species of plants which have a drought, herbicide and 
pesticide resistance in them (Mochida and Shinozaki 2010).

•	 Nowadays, genomics provides breeders with a new set of tools and techniques 
that allow the study of the whole genome, and which represents a paradigm shift, 
by facilitating the direct study of the genotype and its relationship with the phe-
notype (Tester and Langridge 2010). The present genomics is leading to a new 
revolution in plant breeding at the beginning of the twenty-first century.

At the most fundamental level, the advances in genomics will greatly acceler-
ate the acquisition of knowledge and that, in turn, will directly affect many aspects 
of the processes associated with plant improvement. Bioinformatics information 
and databases have become ready-to-use tools for crop scientists and breeders in 
gene data mining and linking this knowledge to its biological significance 
(Mochida and Shinozaki 2010). Knowledge of the function of all plant genes, in 
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conjunction with the further development of tools for modifying and interrogating 
genomes, will lead to the development of a genuine genetic engineering paradigm 
in which rational changes can be designed and modelled from the first principles. 
Bioinformatics, when combined with genomics, has the potential to help maintain 
food security in the face of climate change through the accelerated production of 
climate-ready crops (Batley and Edwards 2016). Based on these understandings, 
this chapter focuses on challenges and opportunities, which knowledge and skills 
in bioinformatics can bring to plant scientists in present plant genomics era as 
well as future aspects in critical need for effective tools to facilitate the translation 
of knowledge from new sequencing data to the improvement of plant productivity. 
This chapter emphasizes on a number of applications of bioinformatics in agricul-
ture in view of crop improvement, breeding programmes, fruit breeding, over-
viewing the main bioinformatics strategies and challenges, as well as perspectives 
in this field and various bioinformatics tools/databases important for breeders and 
plant biotechnologists.

Fig. 2.1  Application of bioinformatics in crop improvement
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2.2  �Role of Bioinformatics in Crop Improvement

To understand and unravel the genetic and molecular basis of all biological pro-
cesses in plants have become a key objective for plant and crop biologists. This 
understanding helps in the practical utilization of plants as biological resources in 
the development of new cultivars with improved quality and at reduced economic 
costs (Schlueter et al. 2003). Since climate change and population explosion have 
increased pressure on our ability to produce sufficient food, the breeding of novel 
crops and the adaptation of current crops to the new environment are required to 
ensure continued food production. At the most fundamental level, advances in 
genomics have accelerated the acquisition of knowledge and that, in turn, has helped 
in providing rational annotation of genes, proteins and phenotypes, and this omics 
data can now be envisioned as a highly important tool for plant improvement 
(Fig.  2.1). Several new gene-finding tools are tailored for applications to plant 
genomic sequences, which have resulted in enhancing the nutritional quality and 
composition of food crops, increasing agricultural production for food, feed and 
energy (Schlueter et al. 2003; Van Emon 2016). This amalgam of bioinformatics 
with genomic tools has potential to maintain food security in the face of climate 
change through the accelerated production of new cultivars with improved quality 
and reduced economic and environmental cost (Batley and Edwards 2016).

The onset of research in the field of sequence analysis and genome annotation 
has played a significant role in the area of crop improvement. Whole-genome 
sequencing of several species permits to define their organization and provides the 
starting point for understanding their functionality (Ellegren 2014), therefore 
favouring human agriculture practice. An extremely large amount of genomics data 
is available from plants due to the tremendous improvements in the field of omics 
(Fig. 2.1), and nowadays function of different genes in the plant and the factors 
affecting these genes can be predicted (Morrell et al. 2012). This information has 
helped scientists to generate plant species resistant to abiotic and biotic stresses, 
herbicides and pesticides. In recent years, a number of latest sequencing technolo-
gies, which are adaptations of already existing pyro-sequencing methods (Ansorge 
2009), have provided us with new opportunities to be addressed at the entire genome 
level in the fields of comparative genomics, meta-genomics and evolutionary 
genomics (Varshney et al. 2009). Indeed, the contribution of genomics to agricul-
ture spans the identification and the manipulation of genes linked to specific pheno-
typic traits (Zhang et al. 2014) as well as genomics breeding by marker-assisted 
selection of variants (Organization 2005). Efforts addressed to the achievement of 
appropriate knowledge of associated molecular information, such as the one arising 
from transcriptome, metabolome and proteome sequencing (Fig.  2.2), are also 
essential to better depict the gene content of a genome and its main functionalities.

Current advances in genomics and bioinformatics provide opportunities for 
accelerating crop improvement (Fig. 2.2) in the following areas:

•	 “Gene finding” refers to the prediction of introns and exons in a segment of DNA 
sequence. Bioinformatics has aided in genome sequencing, and it has shown its 
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success in locating the genes, in phylogenetic comparison and in the detection 
of transcription factor binding sites of the genes. Such an approach to identify 
key genes and understand their function will result in a “quantum leap” in quan-
titative and qualitative trait improvement in commercially important crops 
(Morrell et al. 2012).

•	 “Comparative genetics” (model and non-model plant) with computational tools 
can reveal an organization of agronomically important genes with respect to each 
other which can be further used for transferring information from the model crop 
systems to other food crops. Species-specific nucleotide sequences are now pro-
viding information related to phenotypic characters, even when based on genome 
comparative analyses from the few model plants available (Cogburn et al. 2007; 
Paterson 2008).

•	 “Cheminformatics” for designing of agrochemicals is based on an analysis of the 
components of signal perception and transduction pathways to select targets and 
to identify potential compounds that can be used as herbicides, pesticides or 
insecticides, thereby improving plant quality and quantity (Bennetzen et  al. 
1998).

•	 “Agricultural genomics” leads to the global understanding of plant and pathogen 
biology, and its application would be beneficial for agriculture and in providing 
massive information to improve the crop phenotype. Further, whole-genome 
sequencing in plants allows chromosome-scale genetic comparisons, thereby 
identifying conserved genetic areas, which can facilitate identification and docu-
mentation of similar genomic sequences in related plant species (Haas et  al. 
2004; De Bodt et al. 2005).

•	 “Microarray technology” has been widely adopted in gene expression analysis in 
crop plants to clarify the function of key genes and uncover the regulation mech-
anism through dissecting regulatory elements and the interaction of responsible 
genes. These gene expression studies allow us to understand how plants respond 
to and interact with the physical environment and management practices. These 
data may become a crucial tool of future breeding decision management systems 
(Langridge and Fleury 2011).

Fig. 2.2  General description of a standard workflow in omics’ data analyses
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•	 “Full-length cDNA libraries” serve as primary sequence resources for designing 
microarray probes and as clone resources for genetic engineering to improve 
crop efficiency (Futamura et al. 2008). These libraries have been used to identify 
biological features through comparisons of target sequences with those of model 
organisms.

•	 “Multiple alignments” provide a method to estimate the number of genes in the 
gene families and in the identification of the previously undescribed genes. The 
multiple alignment information helps in studying the gene expression pattern in 
plants.

•	 “Mutant analysis” is an effective approach for the investigation of gene function 
(Stanford et al. 2001). Comprehensive collections of mutant lines are also essen-
tial bioresources for radically accelerating forward and reverse genetics.

•	 “Gene pyramiding” or gene stacking implies multiple desirable genes are 
assembled from different parent crops to enhance trait and develop elite lines 
and varieties. It is mainly used in improving existing elite cultivars for a few 
unsatisfactory traits, for which genes with large positive effects are identified 
(Malav et al. 2016).

•	 “Molecular DNA marker” identification and location have contributed signifi-
cantly to marker-assisted studies and selection (MAS) in plant breeding, and in a 
wider range of research, including species identification and evolution (Feltus 
et al. 2004; Varshney et al. 2005).

•	 “Genetic markers” constructed to cover the complete genome may allow identi-
fication of individual genes associated with complex traits by QTL (quantitative 
trait loci) analysis and the identification of genetic diversity and induced varia-
tions (Feltus et al. 2004; Varshney et al. 2005).

•	 In silico genomics technology has made it easier for researchers (working on 
plant-pathogen interactions) to identify defence/disease-resistant gene-enzyme 
with their promoter region and transcription factor which help to enhance the 
immunity and defence mechanisms (Pandey and Somssich 2009).

•	 Bioinformatics has also enabled scientists to improve the nutritional quality of 
the plants by making changes in its genome. Researchers have been successful in 
inserting genes in the genome of rice to increase vitamin A levels. The geneti-
cally modified rice contains more vitamin A (essential to maintain healthy eyes) 
that has helped in reducing the blindness rate worldwide (Ye et al. 2000).

•	 Bioinformatics tools are also indispensable to agriculture and horticulture from 
the climate change perspective. Some varieties of cereal have been modified to 
be drought/submergence resistant and enhanced to grow in infertile soils.

•	 “Host-pathogen interactions” help in understanding the disease genetics and 
pathogenicity factor of a pathogen, which ultimately helped in designing best 
management options. Metagenomics and transcriptomics approaches are 
used to understand the genetic architecture of microorganism and pathogens 
to check how these microbes affect the host plant so that pathogen−/insect-
resistant crop is generated and in the identification of host beneficial microbes 
(Schenk et al. 2012).
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•	 “Insect genomics” helps in the identification of resistance mechanisms and find-
ing the novel target sites (Cory and Hoover 2006). By mapping the genome for 
Bacillus thuringiensis (bacteria that increases soil fertility and protects the 
plants from pests), scientists were able to incorporate these genes into the plant 
(e.g. cotton, maize and potato), which made them insect resistant. This resulted 
in a decrease in insecticide usage, enhancing productivity and nutritional value 
of crops.

•	 Improving crops through breeding is a sustainable approach to increase yield and 
yield stability without intensifying the use of fertilizers and pesticides. Third-
generation sequencing technologies are assisting to overcome challenges in plant 
genome assembly caused by polyploidy and frequent repetitive elements. As a 
result, high-quality crop reference genomes are increasingly available, benefit-
ting downstream analyses such as variant calling and association mapping that 
identify breeding targets in the genome (Hu et al. 2018).

•	 Machine learning also helps identify genomic regions of agronomic value by 
facilitating functional annotation of genomes and enabling real-time high-
throughput phenotyping of agronomic traits in the glasshouse and in the field.

•	 Crop databases integrate the growing volume of genotype and phenotype data, 
providing a valuable resource for breeders and an opportunity for data mining 
approaches to uncover novel trait-associated candidate genes (Hu et al. 2018).

2.3  �Crop Breeding: Bioinformatics and Preparing 
for Climate Change

Plant breeding has been practised for thousands of years, since near the beginning 
of human civilization (Kingsbury 2009), “plant breeding is the art and science of 
changing the genetic structure of plants in order to produce desired characteristics” 
(Sleper and Poehlbman 2006). Bioinformatics has been involved in different aspects 
of sciences including plant breeding, and a large portion of these tools and tech-
niques are related to the omics category (Barh et al. 2013). From the past few years, 
plant breeding has been extended through development and deployment of a large 
number of methods and tools with respect to specific objectives (Al-Khayri et al. 
2015). With the use of omics, the consistency and predictability of plant breeding 
programmes have been improved, reducing the time and the expense of stress-
tolerant varieties (Van Emon 2016). The field of genomics and its application to 
plant breeding are developing very quickly, and this boom in plant breeding has 
started after genome sequencing of Arabidopsis and rice (Kaul et  al. 2000; 
Matsumoto et al. 2005), followed by many genome sequencing projects of different 
plant species (Skuse and Du 2008). The combination of conventional breeding tech-
niques with genomic tools and approaches is leading to a new genomics-based plant 
breeding (Fig. 2.3). A fully assembled and well-annotated genome will allow breeders 
to discover genes related to agronomic traits, determine their location and function as 
well as develop genome-wide molecular markers (Hu et al. 2018).
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One of the most substantial transformation of bioinformatics’ techniques in plant 
breeding is that it had replaced the conventional molecular marker technology with 
high-throughput DNA sequencing technologies and has developed a number of 
databases (Mochida and Shinozaki 2010) (Table  2.1). These and other technical 
revolutions provide genome-wide molecular tools for breeders (large collections of 
markers, high-throughput genotyping strategies, high-density genetic maps, etc.) 
that can be incorporated into existing breeding methods (Tester and Langridge 
2010; Lorenz et al. 2011). With the progress of genome sequencing and large-scale 

Fig. 2.3  Reaping benefits of omics in crop breeding. Discovery of the genes and the genetic archi-
tecture by different omics underlying critical traits provides insights for crop improvement. 
Identification of genes and quantitative trait loci (QTL) and genome-wide association study 
(GWAS) enhances rice yield, quality and stress tolerance in a wide range of environments. Genetic 
maps help to locate genes and provide molecular/genetic markers for selection. Gene discovery 
provides knowledge of genetic mechanisms and interactions. Databases provided (barcoded) sam-
ple tracking and breeding history (pedigrees). Phenotypes (trait measurements) are stored with 
experimental design and environmental data and can be connected to individual and genotype 
(marker). All these constitute a toolbox for plant breeders
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Table 2.1  GWAS acceleration tools and molecular marker database

S. No. Databases Information Reference

1. Heap SNP detection tool for NGS data with special 
reference to GWAS and detects a larger number of 
variants taking advantage of the information whether 
the samples are inbred homozygosity assumption or 
not

Kobayashi 
(2015)

2. GnpIS-Asso A generic database for managing and exploiting plant 
genetic association studies. It provides tools that allow 
plant scientists or breeders to get association values 
between traits and markers obtained in several 
association studies. This database is currently used to 
conduct GWAS on tomato and maize

Steinbach 
(2015)

3. BioGPU A high-performance computing tool for GWAS, 
BioGPU, effectively controls false positives caused by 
population structure and unequal relatedness among 
individuals and improves statistical power when 
compared to mixed linear model methods

Wang (2015)

4. BHIT Bayesian high-order interaction toolkit (BHIT) first 
builds a Bayesian model on both continuous data and 
discrete data, which is capable of detecting high-order 
interactions in SNPs related to case-control or 
quantitative phenotypes. BHIT effectively detects the 
high-order interactions associated with phenotypes

Huang 
(2015)

Databases for molecular and genetic markers
5. Plant markers A genetic marker database that contains predicted 

molecular markers, such as SNP, SSR and conserved 
ortholog set (COS) markers, from various plant 
species

Heesacker 
et al. (2008)

6. GrainGenes A popular site for Triticeae genomics, it provides 
genetic markers and linkage map data on wheat, 
barley, rye and oat

Carollo et al. 
(2005)

7. Gramene A database for plant comparative genomics that 
provides genetic maps of various plant species

Liang et al. 
(2008)

8. Triticeae mapped 
EST database

(TriMEDB) provides information regarding mapped 
cDNA markers that are related to barley and their 
wheat homologs

Mochida 
et al. (2008)

9. The Panzea It describes the genetic architecture of complex traits 
in maize and teosinte. Two common types of markers, 
SNP and SSR, can be searched

Canaran 
et al. (2006)

10. MaizeGDB A search engine to identify ESTs, AFLPs and RAPD 
probes and sequence data for maize. The legume 
information system (LIS) provides access to markers 
such as SNP, SSR, RFLP and RAPDs for diverse 
legumes, including peanut, soya bean, alfalfa and 
common bean

Lawrence 
et al. (2007)

(continued)
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EST analysis in various species, these sequence datasets have become quite efficient 
sequence resources for designing molecular markers covering the entire genomes 
(Feltus et al. 2004). Recent advances in genomics are producing new plant breeding 
methodologies, improving and accelerating the breeding process in many ways 
(e.g. association mapping, marker-assisted selection, “breeding by design”, gene 
pyramiding, genomic selection, etc.) (Lorenz et al. 2011). Some of these molecular 
and genetic markers, which have played a significant role in improving plant breed-
ing, are as follows:

	 1.	 Crop breeders have known the complexity of multiple alleles for decades. 
However, with the advent of molecular markers, genetic diversity and other forms 
of genetic structure in breeding populations are possible. For high-throughput 
genotyping, a number of platforms have been developed that have been applied to 
genetic map construction, marker-assisted selection and QTL cloning using mul-
tiple segregation populations (Hori et al. 2007). Such genotyping systems have 
also been used in post-genome sequencing projects such as genotyping of genetic 
resources, accessions to evaluate population structure and association studies to 
identify genetic loci involved in phenotypic changes of species. Listed in Table 2.1 
are the most important web-based sites for DNA markers.

Table 2.1  (continued)

S. No. Databases Information Reference

11. Sol genomics 
network database

The data types range from chromosomes and genes to 
phenotypes and accessions in the Solanaceae and their 
close relatives. SGN hosts more than 20 genetic and 
physical maps for tomato, potato, pepper and tobacco 
with thousands of markers. Genetic marker types in 
the database include SNP, SSR, AFLP, PCR and RFLP

Bombarely 
et al. (2011)

12. SoyBase 
database

Hosts genomic and genetic data for soya bean. The 
markers include SNP, SSR, RFLP, RAPD and AFLP

Grant et al. 
(2010)

13. MoccaDB An integrative database for functional, comparative 
and diversity studies in the Rubiaceae family, which 
includes coffee. It provides easy access to markers, 
such as SSR, SNP and RFLP

Plechakova 
et al. (2009)

14. The cotton 
microsatellite 
database (CMD)

A curated and integrated web-based relational 
database providing centralized access to publicly 
available cotton SSRs. CMD contains publication, 
sequence, primer, mapping and homology data for 
nine major cotton SSR projects, collectively 
representing 5484 SSR markers

Blenda et al. 
(2006)

15. ICRISAT A chickpea (Cicer arietinum L) root EST database 
hosted at ICRISAT provides access to over 2800 
chickpea ESTs from a library constructed after 
subtractive suppressive hybridization (SSH)

Jayashree 
et al. (2005)

16. SSR primer 2 It provides the real-time discovery of SSRs within 
submitted DNA sequences, with the concomitant 
design of PCR primers for SSR amplification. The 
success of this system has been demonstrated in 
Brassica and strawberry

Robinson 
et al. (2004)
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	 2.	 Molecular DNA markers have contributed significantly to marker-assisted 
studies and selection (MAS) in plant breeding and in a wider range of research, 
including species identification and evolution (Feltus et al. 2004).

	 3.	 Genetic markers designed to cover a genome extensively allow not only identi-
fication of individual genes associated with complex traits by QTL analysis but 
also the exploration of genetic diversity with regard to natural variations (Feltus 
et al. 2004; Varshney et al. 2005).

	 4.	 A number of attempts to design polymorphic markers from accumulated 
sequence datasets have been made for various species, e.g., genome-wide rice 
(Oryza sativa) DNA polymorphism datasets have been constructed based on 
alignment between japonica and indica rice genomes (Han and Xue 2003; 
Shen et al. 2004).

	 5.	 The most important database EST (expressed sequence tag) consists of ESTs 
drawn from the multiple cDNA. Large-scale EST datasets are also important 
resources for the discovery of sequence polymorphisms, especially for allocat-
ing expressed genes onto a genetic map (Heesacker et al. 2008).

	 6.	 The Illumina GoldenGate Assay allows the simultaneous analysis of up to 1536 
SNPs in 96 samples and has been used to analyse genotypes of segregation 
populations in order to construct genetic maps allocating SNP (single nucleo-
tide polymorphism) markers in crops (Hyten et al. 2008).

	 7.	 Diversity Arrays Technology (DArT) is a high-throughput genotyping system 
that was developed based on a microarray platform (Wenzl et al. 2007). These 
DArT markers have been used together with conventional molecular markers to 
construct denser genetic maps and/or to perform association studies in various 
crop species.

	 8.	 Affymetrix Gene Chip Arrays have been used to discover nucleotide polymor-
phisms as single-feature polymorphisms based on the differential hybridiza-
tion of Gene Chip probes in barley and wheat (Rostoks et al. 2005; Bernardo 
et al. 2009).

	 9.	 Transcriptomics subcategories of omics attract a large number of biologists, 
especially in plant breeding area (Hakeem et al. 2016).

	10.	 The most powerful application of third-generation sequencing for breeding is 
the assembly of improved contiguous crop genomes (Hu et al. 2018).

Further, as the resolution of genetic maps in the major crops increases, and as the 
molecular basis for specific traits or physiological responses becomes better eluci-
dated, it will be increasingly possible to associate candidate genes, discovered in 
model species, with corresponding loci in crop plants (Fig. 2.3). Appropriate rela-
tional databases will make it possible to freely associate across genomes with 
respect to the gene sequence, putative function and genetic map position. Once such 
tools have been implemented, the distinction between breeding and molecular 
genetics will fade away. Breeders will routinely use computer models as toolbox to 
formulate predictive hypotheses to create phenotypes of interest from complex 
allele combinations (Fig.  2.3) and then construct those combinations by scoring 
large populations for very large numbers of genetic markers (Walsh 2001).
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2.3.1  �Informative Bioinformatics Databases/Tools for Crop 
Breeders

Crop breeding has long relied on cycles of phenotypic selection and crossing, which 
generate superior genotypes through genetic recombination. When genome sequences 
are available, all genes and genetic variants contributing to agronomic traits can be 
identified, and changes made during breeding processes can be assessed at the geno-
type level (Hu et al. 2018). Availability of ready-to-go genomic data for breeders today 
plays an increasingly important role in all aspects of crop breeding, such as quantitative 
trait loci (QTL) mapping and genome-wide association studies (GWAS), where 
genomic sequencing of crop populations can allow gene-level resolution of agronomic 
variation. The progress made in genomics-based breeding has even assisted in identifi-
cation of genetic variation in crop species, which can be applied to produce climate-
resilient varieties (Mousavi-Derazmahalleh et al. 2018; Dwivedi et al. 2017).

GWAS (comparative genomic analysis, phylogenomics, evolutionary analysis 
and genome-wide association study) is presently a favourable tool to explore the 
allelic variation in a broader scope for extensive phenotypic diversity and higher 
resolution of QTL mapping. GWAS is an alternative to overcome the disadvantages 
of existing classical crop breeding methods, e.g. a biparental cross-mapping method 
for genetic dissections of the agronomically important traits (Myles et al. 2009). 
GWAS has a powerful application in plant breeding for identifying phenotypic 
diversity in trait-associated loci, as well as allelic variation in candidate genes 
addressing quantitative and complex traits (Kumar et al. 2013). GWAS has been 
successfully applied to study Arabidopsis thaliana, where more than 1300 distinct 
accessions have been genotyped for 250,000 SNP (Kozlov et al. 2015) phenotypes. 
A few rice genes having large effects in controlling traits are involved in determin-
ing yield, morphology and stress tolerance, and nutritional quality was also identi-
fied (Famoso et al. 2011). GWAS has been widely used to dissect complex traits in 
some other major crops, e.g. maize and soya bean (Li et  al. 2013; Hwang et  al. 
2014). Several bioinformatics approaches have been introduced as GWAS accelera-
tion tools (Table 2.1).

Advances in genomics offer the potential to accelerate the genomics-based breed-
ing of crop plants (Fig. 2.3). However, relating genomic data to climate-related agro-
nomic traits for use in breeding remains a huge challenge and one which will require 
coordination of diverse skills and expertise. Bioinformatics, when combined with 
genomics, has the potential to help maintain food security in the face of climate 
change through the accelerated production of climate-ready crops (Batley and 
Edwards 2016). The vast breeding knowledge gathered over the last several decades 
will become directly linked to basic plant biology and enhance the ability to elucidate 
gene function in model organisms (Hospital et  al. 2002). The expected dramatic 
improvements in phenotypes of commercial interest include both the improvement 
of factors that traditionally limit agronomic performance (input traits) and the altera-
tion of the amount and kinds of materials that crops produce (output traits). 
Examples include:
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•	 Abiotic stress tolerance
•	 Biotic stress tolerance
•	 Improving nutrient use efficiency
•	 Manipulation of plant architecture and development (size, organ shape, number 

and position, the timing of development and senescence)
•	 Metabolite partitioning (redirecting of carbon flow among existing pathways or 

shunting into new pathways)

Appropriate relational databases will make it possible to freely associate across 
genomes with respect to the gene sequence, putative function or genetic map position. 
Once such tools have been implemented, the distinction between breeding and molec-
ular genetics will fade away. Breeders will routinely use computer models to formu-
late predictive hypotheses to create phenotypes of interest from complex allele 
combinations and then construct those combinations by scoring large populations for 
very large numbers of genetic markers (Walsh 2001; Deckers and Hospital 2002).

2.4  �Application of Bioinformatics in Fruit Breeding

During the last three decades, the world has witnessed a rapid increase in the knowl-
edge about the plant genome sequences and the physiological and molecular roles 
of various plant genes, which have revolutionized the molecular genetics and its 
efficiency in plant breeding programmes. Since bioinformatics has application in 
every field of science, genome programme can now be envisioned as a highly 
important tool for fruit breeding. Identifying key genes and understanding their 
function will result in a “quantum leap” in improving fruit quality and quantity 
(Meyer and Mewes 2002). The revolution in life sciences brought on by genomics 
dramatically increases the scale and scope of our experimental enquiry and applica-
tions in fruit plant breeding. The scale and high-resolution power of genomics make 
possible a broad and detailed genetic understanding of plant performance at multi-
ple levels of aggregation (Meyer and Mewes 2002).

The primary goal of fruit plant genomics is to understand the genetic and molec-
ular basis of all biological processes in plants that are relevant to the species. This 
understanding is fundamental to allow efficient exploitation of fruit plants as bio-
logical resources in the development of new cultivars of improved quality and 
reduced economic and environmental costs (Fig. 2.1). This knowledge is also vital 
for the development of new diagnostic tools and traits of primary interest like patho-
gen resistance and abiotic stress, fruit quality and yield. Moreover, gene expression 
analysis will allow us to understand how fruit plants respond to and interact with the 
physical environment and management practices. This information, in conjunction 
with appropriate technology, may provide predictive measures of plant health and 
fruit quality and become part of future breeding decision management systems. 
Current genome programmes generate a large amount of data that will require pro-
cessing, storage and distribution to the international research community. The data 
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include not only sequence information but also information on mutations, markers, 
maps and functional discoveries.

The key objectives for fruit plant bioinformatics include:

•	 Integrating phenotypes, genomics and bioinformatics tools and resources in pub-
lic and private breeding pipelines will address this challenge and help deliver 
breeding targets

•	 Providing rational annotation of genes, proteins and phenotypes.
•	 Elaborating relationships both within the data on individual fruits and between 

fruits and other organisms.

2.5  �Future Prospects

Bioinformatics era and high-throughput sequencing (HTS) are revolutionizing the 
experimental design in molecular biology, strikingly contributing to increasing scien-
tific knowledge while affecting relevant applications in many different aspects of agri-
culture. Bioinformatics plays a significant role in the development of the agricultural 
sector, agro-based industries, agricultural by-product utilization and better manage-
ment of the environment. With the increase of sequencing projects, bioinformatics 
continues to make considerable progress in biology by providing scientists with 
access to the genomic information and plays a big role to analyse the data properly. 
Recent wealth of plant genomic resources, along with advances in bioinformatics, 
have enabled plant researchers to achieve a fundamental and systematic understand-
ing of economically important plants and plant processes, critical for advancing crop 
improvement. The scale and high-resolution power of genomics enable to achieve a 
broad as well as a detailed genetic understanding of plant performance at multiple 
levels of aggregation. Advances in genomics are providing breeders with new tools 
and methodologies that allow a great leap forwards in plant breeding, including the 
“super domestication” of crops and the genetic dissection and breeding for complex 
traits. The ability to represent high-resolution physical and genetic maps of crops has 
been one of the paramount implications of bioinformatics. Plant scientists have an 
opportunity to use these resources to the full, to ensure that bench work, both in the 
present and in the future, can be combined with bioinformatics to fully reap the 
rewards of the genomics revolution. By applying novel technologies and methods in 
concert, future plant breeding can achieve the crop improvement rate required to 
ensure food security. Despite these exciting achievements, there remains a critical 
need for effective tools and methodologies to advance plant biotechnology, to tackle 
questions that are hardly solved using current approaches and to facilitate the transla-
tion of this newly discovered knowledge to improve plant productivity. Overall, due to 
great impact of plant breeding in order to provide the world food security through 
improving current staple food crops and also overcome the current harsh environmen-
tal situation (as a result of climate change), it is necessary to assess the role and 
achievements of bioinformatics in breeding science of crop plants.
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3.1  �Introduction

In nature, plants are simultaneously exposed to a wide range of stresses (abiotic and 
biotic), which is a major threat towards the living world more precisely to the plants. 
This stress leads to various physiological and metabolic changes, which in turn 
negatively hinder growth, development and productivity of plants (Tardieu and 
Tuberosa 2010). Based on the climate change study, the occurrence and severity of 
stresses will surge, resulting in a loss (nearly 70%) of agricultural production 
(Ghosh and Xu 2014). Thus, an important solution for plant protection and yield 
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increase is by designing plants based on a molecular understanding of gene function 
and on the regulatory networks involved in stress tolerance, growth and develop-
ment (Shafi et al. 2014, 2015a, b, 2017). Technological advancement has offered a 
holistic view on systems organization and functionality; however, the ever-growing 
extensive data poses great challenges for its efficient analysis and interpretation and 
finally the integration into different crop improvement schemes (Esposito et  al. 
2016). Latest, ultrahigh-throughput computational studies are crucial to know about 
the molecular crosstalks of stress conditions on agricultural crop production. Now 
the challenge is how to integrate multidimensional biological information in a net-
work and model leading to the development of system biology. Most of the plant 
system biology strategies rely on four main axes, viz. genomics, proteomics, tran-
scriptomics and metabolomics, which provide us with a better platform to identify 
and understand the molecular systematics and mechanism under stress conditions 
(Yuan et  al. 2008). Genomics deals with the study of genome; transcriptomics 
includes structural and functional analyses of coding and non-coding RNA or tran-
scriptome; proteomics deals with protein and post-translational protein modifica-
tion along with their regulatory pathway and metabolomics, a powerful tool to 
analyse various metabolites and help in identifying the complex network involved 
in stress tolerance when analysed in an integrated way. Multifaceted molecular reg-
ulatory system and biochemical properties which are specifically involved in stress 
tolerance and adaptation in plants can be easily deciphered with the help of com-
bined ‘omics’ study (Chawla et al. 2011). Further, bioinformatics has many practi-
cal applications in current plant disease management with respect to the study of 
host-pathogen interactions, understanding the disease genetics, pathogenicity factor 
of a pathogen and plant-pathogen biological network, which ultimately help in 
designing best disease management options (Koltai and Volpin 2003).

Plant amends its ‘omics’ profiles to cope with the changing environment for their 
survival, tolerance and growth. The main aim of this ‘omic’ approach is to find out 
the molecular interaction and their relationship with the signalling cascade and to 
process the information which in turn connects specific signals with specific molec-
ular responses (Esposito et al. 2016). The era of genomics, proteomics, metabolo-
mics and phenomics of crop stress biology involves transformation, mining and 
functional ontology annotation, promoter and SNP analysis, gene expression, path-
way enrichment analysis, microRNA prediction, subcellular localization, gene 
structure analysis, comparative analysis, interactome, protein function analysis, 
tissues-specific and developmental stage expression analysis and simulation and 
focused on morpho-molecular differences in stress-exposed and stress-affected 
crop/model plants. These omics approaches can provide new insights and open new 
horizons for understanding stresses and responses as well as the improvement of 
plant responses and resistance to stresses (Duque et al. 2013).

Little is known about the ‘omics’ characterization of abiotic and biotic stress 
combinations, but recently, several reports have addressed this issue (Suzuki et al. 
2014; Kissoudis et al. 2014). The three main domains that must be addressed to 
take full advantage of plant systems biology are the development of omics technol-
ogy, integration of data in a usable format and analysis of data within the domain 
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of bioinformatics. This explicit omics knowledge could subsequently be harnessed 
by researchers to develop improved crop plants in terms of quality and productivity, 
showing the enhanced level of abiotic stress tolerance and disease resistance (Singh 
et al. 2011). In the present chapter, we will introduce the key omics technologies 
and contemporary innovative technology employed in plant biology and the bioin-
formatics platforms associated with them (Fig. 3.1). Since the focus of this chapter 
is the integrated omics approaches in plant stress tolerance, we will describe some of 
the key concepts, techniques and databases used in bioinformatics, with an empha-
sis on those relevant to plant stress. It also covers some aspects with regard to the 
role of application of this endeavour science in today’s plant disease management 
strategies, molecular diagnosis of plant disease in particular to see the application 
of bioinformatics in detection and diagnosis of plant pathogenic microorganisms.

3.2  �Plant Genomics-Related Computational Tools 
and Databases Under Abiotic Stress

Developments over the past decade, arising predominantly from the human genome 
project, have led to a new phase of plant genetics known as genomics. ‘Genomics’ 
study of all the genes in a given genome includes the identification of gene 
sequences, intragenic sequences, gene structures and annotations (Duque et al. 2013). 
This field is the application of the newly available vast amounts of genomic DNA 
sequence, using a range of novel high-throughput, parallel and other technologies. 

Fig. 3.1  Schematic outline of main ‘omics’ approaches, their technologies and databases as well 
as expected outcomes in plant biology and stress research
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The innovation of high-throughput sequencing methods gives scientists the ability 
to exploit the structure of the genetic material at the molecular level which is known 
as ‘genomics’. Genome sequencing technologies have enabled us to study this part 
of omics, and it has commenced with the first generation (the 1970s), followed by 
the next-generation sequencing (NGS) technologies (1990s) as well as the latest 
third-generation sequencing technologies (El-Metwally et al. 2014b, c). These NGS 
technologies have got huge impact in plant genome research for the improvement of 
economically important crops and the understanding of model plant biology. 
Substantial innovations in platforms for omics-based research and application 
development provide crucial resources to promote stress-related research in the 
model and applied plant species (Feuillet et al. 2011). Recent advancement in plant 
genomics has allowed us to discover and isolate important genes and to analyse 
functions that regulate yields and tolerance to environmental stress (Govind et al. 
2009). Genomics mainly helped in identifying the functional relevance of genes 
involved in abiotic and biotic stress responses in plants via functional genomic 
approaches (Ramegowda and Senthil-Kumar 2015). Combinatorial approach using 
multiple omics platforms and integration of their outcomes is now an effective strat-
egy for clarifying molecular systems integral to improving plant stress tolerance and 
productivity; this combo approach has helped plant breeders in creating new breeds 
that can tolerate several biotic and abiotic stresses and, consequently, have increased 
crop yields as well as pathogen resistance (Shankar et al. 2013; Agarwal et al. 2014). 
Thus an understanding of plant response towards stresses is enhanced with the 
application of genomic techniques such as high-throughput analysis of expressed 
sequence tags (ESTs), large-scale parallel analysis of gene expression, targeted or 
random mutagenesis and gain-of-function or mutant complementation (Cushman 
and Bohnert 2000).

Plant genomics study has exploded recently and has become the major boom in 
plant research due to the rapid increase in plant genomic sequences (Govindaraj 
et al. 2015). This plant genomic period started from whole-genome sequencing of 
Arabidopsis thaliana (The Arabidopsis Genome Initiative 2000), followed by a 
draft genome sequence of rice, both japonica and indica (Yu et al. 2002). Afterwards, 
the genome sequence of japonica rice was completed and published by the 
International Rice Genome Sequencing Project (International Rice Genome 
Sequencing Project 2005). Subsequently, the National Science Foundation (NSF) 
Arabidopsis project (USA) was launched with the stated goal of determining the 
functions of the 25,000 genes of Arabidopsis by 2010. This accumulation of nucleo-
tide sequences of model plants, as well as of applied species such as crops, has 
provided fundamental information for the design of sequence-based research appli-
cations in functional genomics (Somerville and Dangl 2000). Technologies which 
are included under the canopy of ‘genomics’ are:

•	 Automatic DNA sequencing (the machine can read two million base pairs a day)
•	 Microarrays and DNA chips (tens of thousands of genes can be scanned for 

activity levels at the same time)
•	 Automated genotyping machines (assay tens of thousands of DNA diagnostic 

points a day)
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Bioinformatics remains obligatory to projects that seek deciphering of the whole 
genome of an organism. In fact, soon it will be possible to monitor whole genomes 
for gene expression on single chips. Once genome sequencing is achieved, one aims 
to identify and delineate the genomic elements of functional relevance contained 
within the genome, i.e. ‘structural annotation’ and assigning biological functions to 
these elements, referred to as ‘functional annotation’.

3.2.1  �Genomics Applications in Relation to Abiotic Stress 
Tolerance

In order to employ applications of genomics field to address the problems of abiotic 
stress in mandate crops and model plants, approaches like genomic-scale expressed 
sequence tags (ESTs), genomic sequencing and cDNA microarray analyses have 
tremendous potentiality in rapidly isolating the candidate genes involved in toler-
ance mechanisms under stress conditions. Some of the latest techniques used for 
genomic analysis under stress conditions are as follows:

•	 Expressed sequence tags (ESTs) are created by partial ‘one-pass’ sequencing of 
randomly picked gene transcripts that have been converted into cDNA (Adams 
et al. 1993). ESTs are often used to be relative collections from stressed and non-
stressed plant tissues. A comparison of ESTs of the stressed and non-stressed 
sample will identify genes that are up-regulated in the stressed tissues and those 
which are down-regulated or switched off.

•	 The presence of various key functionalities of full-length cDNA resources in 
omic space is also essential to establish relevant information resources that pro-
vide gateways to these resources as well as to integrate related datasets derived 
from other omics fields and species (Sakurai et al. 2005).

•	 cDNA libraries also serve as primary sequence resources for designing microar-
ray probes and as clone resources for genetic engineering to improve crop effi-
ciency (Futamura et al. 2008). Further, candidate genes (induced by stress) which 
emerge from microarray analyses are ideal for comparative analysis.

•	 Mini-arrays which are built from collections of ESTs assembled from random 
cDNA libraries, or from more targeted collections made from cDNAs collected 
from stressed tissues. Even more targeted will be the special ‘stress arrays’ made 
up of all the expressed genes for which there is any evidence of implication.

Omics platforms and their associated databases are also essential for the effective 
design of approaches making the best use of genomic resources, including resource 
integration. Various bioinformatics software and tools are being increasingly used 
to maintain, analyse and retrieve the massive-scale molecular data under stress and 
non-stressed conditions (Table  3.1). Some of those involved specifically under 
stress are as follows:

•	 Plant Stress Gene Database (PSGD): It provides information about the genes 
involved in stress conditions in plants (Prabha et al. 2011). This database includes 
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Table 3.1  Genomic repositories and stress-related databases

S. No. Genomics database Information References

1. PlantGDB – resources for 
Plant Comparative 
Genomics

Molecular sequence data for all plant species 
with significant sequencing efforts

Dong et al. 
(2004)

2. TAIR (The Arabidopsis 
Information Resource)

Complete genome sequence, gene structure, 
expression and product information of 
Arabidopsis

Rhee et al. 
(2003)

3. Gramene Online web database resource for plant 
comparative genomics and pathway analysis 
based on Ensembl technology

Gupta et al. 
(2016)

4. Plant Genome DataBase 
Japan (PGDBj)

A website that contains information related 
to genomes of model and crop plants from 
databases

Nakaya et al. 
(2017)

5. PLAZA Online resource for comparative genomics 
that integrates plant sequence data and 
comparative genomic methods

Vandepoele 
(2017)

6. Legume Information 
System (LIS)

Genomic database for the legume family Dash et al. 
(2016)

7. Ensembl Genomes Analysis and visualization of genomic data 
and provides access to a variety of data 
obtained from various sources and analyses, 
anchored on reference genome sequences

Bolser et al. 
(2016)

8. Plant Stress Gene 
Database

Information about the genes involved in 
stress conditions in plants

Prabha et al. 
(2011)

9. Stress-responsive 
transcription factor 
database (STIFDB)

A comprehensive collection of biotic and 
abiotic stress-responsive genes in 
Arabidopsis thaliana and Oryza sativa L. 
with options to identify probable 
transcription factor binding sites in their 
promoters

Shameer 
et al. (2009)

10. An Updated Version of 
Plant Stress-Responsive 
Transcription Factor 
database (STIFDB2)

Additional stress signals, stress-responsive 
transcription factor binding sites and 
stress-responsive genes in Arabidopsis and 
Rice

Naika et al. 
(2013)

11. STIF Recognition of binding sites of stress-
upregulated transcription factors and genes in 
Arabidopsis

Ambika et al. 
(2008)

12. Plant Stress-Responsive 
Gene catalogue (PSRGC)

Database of relationship stress-responsive 
genes for drought and water with orthologous 
and paralogous relationships

Wanchana 
et al. (2018)

13. PESTD Database for transcripts with annotated 
tentative orthologs from crop abiotic stress 
transcripts

Jayashree 
et al. (2006)

14. Arabidopsis Stress-
Responsive Gene 
Database

ASRGD database for stress-responsive genes 
in Arabidopsis thaliana

Borkotoky 
et al. (2013)

(continued)
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259 stress-related genes of 11 species along with all the available information 
about the individual genes. Stress-related ESTs were also found for Phaseolus 
vulgaris. The database also includes ortholog and paralog of proteins which are 
coded by stress-related genes.

•	 Stress-Responsive Transcription Factor Database (STIFDB V2.0): It is a com-
prehensive collection of biotic and abiotic stress-responsive genes in Arabidopsis 
thaliana and Oryza sativa L. with options to identify probable transcription fac-
tor binding sites in their promoters. In response to biotic stress like bacteria and 
abiotic stresses like ABA, drought, cold, salinity, dehydration, UV-B, high light, 
heat, heavy metals, etc., ten specific families of transcription factors in 
Arabidopsis thaliana and six in Oryza sativa L. are known to be involved 
(Shameer et al. 2009).

•	 Stress-Responsive Transcription Factor Database (STIFDB2): Currently it has 
38,798 associations of stress signals, stress-responsive genes and transcription fac-
tor binding sites predicted using the Stress-responsive Transcription Factor (STIF) 
algorithm, along with various functional annotation data. As a unique plant stress 
regulatory genomics data platform, STIFDB2 can be utilized for targeted as well 
as high-throughput experimental and computational studies to unravel principles 
of the stress regulome in dicots and gramineae (Naika et al. 2013).

Table 3.1  (continued)

S. No. Genomics database Information References

15. Pathogen Receptor Genes 
Database (PRGDB)

Open and updated space about Pathogen 
Receptor Genes (PRGs), in which all 
information available about these genes is 
stored, curated and discussed

Osuna-Cruz 
et al. (2018)

16. Rice SRTFDB The database which provides information on 
rice transcription factors drought, salt stress 
conditions and various developmental stages

Priya and 
Jain (2013)

17. QlicRice A web interface for abiotic stress-responsive 
QTL and loci interaction channel in rice

Smita et al. 
(2011)

18. Drought stress gene 
database (DroughtDB)

Database for a number of drought stress-
associated genes encoding transcription 
factors that in turn control other various 
genes involved in diverse physiological and 
molecular reactions to drought stress

Alter et al. 
(2015)

19. MIPS Oryza sativa 
database (MOsDB)

Resource for publicly available sequences of 
the rice (Oryza sativa L.) genome

Wojciech 
et al. (2003)

20. MSU rice Genome 
Annotation Project

Database and Resource is a National Science 
Foundation project and provides sequence 
and annotation data for the rice genome

Kawahara 
et al. (2013)

21. Plant Genome and 
Systems Biology (PGSB)

Focuses on the analysis of plant genomes, 
using bioinformatic techniques, provides a 
platform for integrative and comparative 
plant genome research

Spannagl 
et al. (2016)
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•	 STIF (Hidden Markov Model-Based Search Algorithm): It is used for the 
recognition of binding sites of stress-upregulated transcription factors and genes 
in Arabidopsis (Ambika et al. 2008).

•	 PESTD: A comparative genomics study on plant responses to abiotic stresses 
and is a dataset of orthologous sequences. A large amount of sequence informa-
tion, including those derived from stress cDNA libraries, are used for the identi-
fication of stress-related genes and orthologs associated with the stress response. 
Availability of annotated plant abiotic stress ortholog sets will be a valuable 
resource for researchers studying the biology of environmental stresses in plant 
systems, molecular evolution and genomics (Jayashree et al. 2006).

•	 Arabidopsis Stress-Responsive Gene Database (ASRGD): It is a powerful mean 
for manipulation, comparison, search and retrieval of records describing the 
nature of various stress-responsive genes in Arabidopsis thaliana. About 44 
types of different stress factors are related to Arabidopsis thaliana, and the data-
base contains 636 gene entries related to stress response with their related infor-
mation like gene ID, nucleotide and protein sequences and cross-response. The 
database is based exclusively on published stress-responsive and stress-tolerant 
genes associated with plants (Borkotoky et al. 2013).

•	 The Arabidopsis Information Resource (TAIR): It contains genetic and molecular 
biology data for the Arabidopsis thaliana, which is more widespread to different 
aspects apart from the stress response, which makes it difficult to look for only 
stress-related genes (Swarbreck et al. 2008).

•	 Pathogen Receptor Genes Database (PRGDB): It allows easy access not only to 
the plant science research community but also to breeders who want to improve 
plant disease resistance. It offers 153 reference resistance genes and 177,072 
annotated candidate pathogen receptor genes (PRGs). Plant diseases display use-
ful information linked to genes and genomes to connect complementary data and 
better address specific needs. Through a revised and enlarged collection of data, 
the development of new tools and a renewed portal, PRGdb 3.0 engages the plant 
science community in developing a consensus plan to improve knowledge and 
strategies to fight diseases that afflict main crops and other plants (Osuna-Cruz 
et al. 2018).

•	 Rice SRTFDB: It provides comprehensive expression information on rice tran-
scription factors (TFs) during drought and salinity stress conditions and various 
stages of development. It will be useful to identify the target TF(s) involved in 
stress response at a particular stage of development. It also provides curated 
information for cis-regulatory elements present in their promoters, which will be 
important to study the binding proteins. This database aims to accelerate func-
tional genomics research of rice TFs and understand the regulatory mechanisms 
underlying abiotic stress responses (Priya and Jain 2013).

•	 QlicRice: This database is designed to host publicly accessible, abiotic stress-
responsive quantitative trait loci (QTLs) in rice (Oryza sativa) and their corre-
sponding sequenced gene loci. It provides a platform for the data mining of 
abiotic stress-responsive QTLs, as well as browsing and annotating associated 
traits, their location on a sequenced genome, mapped expressed sequence tags 
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(ESTs) and tissue- and growth stage-specific expressions on the whole genome. 
An appropriate and spontaneous user interface has been designed to retrieve 
associations to agronomically important QTLs on abiotic stress response in rice 
(Smita et al. 2011).

•	 Drought Stress Gene Database (DroughtDB): It is a manually curated compila-
tion of molecularly characterized genes that are involved in drought stress 
response. It includes information about the originally identified gene, its physi-
ological and/or molecular function and mutant phenotypes and provides detailed 
information about computed orthologous genes in nine model and crop plant 
species. Thus, DroughtDB is a valuable resource and information tool for 
researchers working on drought stress and will facilitate the identification, analysis 
and characterization of genes involved in drought stress tolerance in agricultur-
ally important crop plants (Alter et al. 2015).

3.2.2  �Platforms and Resources in the Transcriptome of Plants 
Under Abiotic Stress/Plant Transcriptomics-Related 
Computational Tools and Databases

Transcriptome (RNA sequencing or expression profile of an organism) is highly 
dynamic and involves capturing of the RNA expression profile in spatial and tem-
poral plant organs, tissues and cells within particular conditions (Duque et  al. 
2013; El-Metwally et al. 2014a). In response to various abiotic stresses, the plant 
constantly adjusts their transcriptome profile. Thus, transcriptomics study assists 
in finding genes that are associated with alterations in the plant phenotype under 
different abiotic or biotic stress conditions (Kawahara et al. 2013). This compre-
hensive and high-throughput RNAseq analysis finds its applications in plant stress 
response and tolerance such as searching for abiotic stress candidate genes, pre-
dicting tentative gene functions, discovering cis-regulatory motifs and providing 
a better understanding of the plant-pathogen relationship (De Cremer et al. 2013; 
Agarwal et  al. 2014). The recent boom in the availability of online resources, 
databases and archives of transcriptome data allows for performing novel genome-
wide analysis of plant stress responses and tolerance (Duque et al. 2013). Several 
studies on the transcriptome of different organs and developmental stages of 
plants under different environmental conditions were observed (Narsai et  al. 
2010; Zhou et al. 2008). Narsai et al. (2010) identified an exclusively new set of 
reference genes in rice that are of immense significance, and analysis of their 
promoter sequence shows the prevalence of some stress regulatory cis-element 
(Zhou et al. 2008).

Different techniques exist to analyse transcriptomic changes in a system under 
different stress conditions and these are as follows:

•	 RNA/gene expression profiling is mostly accomplished using microarray, RNA 
sequencing (RNAseq) through next-generation sequencing (NGS), serial analysis 
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of gene expression (SAGE) and digital gene expression profiling (Kawahara 
et al. 2013; Duque et al. 2013; De Cremer et al. 2013).

•	 Hybridization-based method, such as that used in microarrays and GeneChips, 
has been well established for acquiring large-scale gene expression profiles for 
various species (De Cremer et al. 2013).

•	 Next-generation DNA sequencing application, deep sequencing of short frag-
ments of expressed RNAs, including sRNAs, is quickly becoming an effective 
tool for use with genome-sequenced species (Harbers and Carninci 2005).

•	 Quantitative PCR analyses up to a few genes at a time, while microarray analysis 
allows the simultaneous measurement of transcript abundance for thousands of 
genes (Joshi et al. 2012).

•	 Tiling arrays cover the genome at regular intervals to measure transcription with-
out bias towards known or predicted gene structures, the discovery of polymor-
phisms, analysis of alternative splicing and identification of transcription factor 
binding sites (Coman et al. 2013). Transcriptome analysis in Arabidopsis under 
abiotic stress conditions using a whole-genome tiling array resulted in the discov-
ery of antisense transcripts induced by abiotic stresses (Matsui et al. 2008).

In the post-genomic era, RNA-Seq provides a global transcriptome profile, 
which could cover lncRNAs, coding genes and their alternatively spliced isoforms 
in stress response, and aids plant biologists to expand new insights into molecular 
mechanisms and responses to biotic and abiotic stress events. Several data portals 
contain a vast amount of plant RNA-Seq data, such as the National Center for 
Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) and the 
Sequence Read Archive (SRA). However, these data portals mainly serve as raw 
biological data archives. Large-scale stress-specific RNA-Seq database that can pro-
vide comprehensively visualized transcriptome expression profiles and statistical 
analysis for differential expression has been listed in Table 3.2. Some of these data-
bases are as follows:

•	 Plant Stress RNA-Seq Nexus (PSRN): It is a comprehensive database which 
includes 12 plant species, 26 plant stress RNA-Seq datasets and 937 samples. 
PSRN is an open resource for intuitive data exploration, providing expression 
profiles of coding-transcript/lncRNA and identifying which transcripts are dif-
ferentially expressed between different stress-specific subsets, in order to sup-
port researchers generating new biological insights and hypotheses in molecular 
breeding or evolution. PSRN was developed with the goal of collecting, pro-
cessing, analysing and visualizing publicly available plant RNA-Seq data (Li 
et al. 2018).

•	 PlantExpress: It is a web database as a platform for gene expression network 
(GEN) analysis with the public microarray data of rice and Arabidopsis. 
PlantExpress has two functional modes: single-species mode is specialized for 
GEN analysis within one of the species, while the cross-species mode is opti-
mized for comparative GEN analysis between the species. It stores data obtained 
from three microarrays, namely, the Affymetrix Rice Genome Array, the Agilent 
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Table 3.2  Transcriptomic repositories and stress-related databases

S. No.
Transcriptomic 
database Information References

1. Plant Stress 
RNA-Seq Nexus 
(PSRN)

Stress-specific transcriptome database in plant cells Li et al. 
(2018)

2. TENOR 
(Transcriptome 
Encyclopedia Of 
Rice)

Database for comprehensive mRNA-Seq 
experiments in rice

Kawahara 
et al. (2016)

3. PlantExpress A database integrating OryzaExpress and 
ArthaExpress for single-species and cross-species 
gene expression network analyses with microarray-
based transcriptome data

Kudo et al. 
(2017)

4. RiceArrayNet A database for correlating gene expression from 
transcriptome profiling, and its application to the 
analysis of co-expressed genes in rice

Lee et al. 
(2009)

5. PLEXdb (Plant 
Expression 
Database)

Unified gene expression resource for plants and 
plant pathogens

Dash et al. 
(2012)

6. EGENES Transcriptome-based plant database of genes with 
metabolic pathway information and expressed 
sequence tag indices in KEGG, provides gene 
indices for each genome

Masoudi-
Nejad et al. 
(2007)

7. MOROKOSHI Transcriptome database in Sorghum bicolor Makita et al. 
(2015)

8. AgBase Genome-wide structural and functional annotation 
and modelling of microarray and other functional 
genomics data in agricultural species

McCarthy 
et al. (2006)

9. Tiling arrays Measure transcription without bias towards known 
or predicted gene structures, the discovery of 
polymorphisms, analysis of alternative splicing and 
identification of transcription factor binding sites

Coman et al. 
(2013)

10. Chickpea 
Transcriptome 
Database (CTDB)

Comprehensive information about the chickpea 
transcriptome. The database contains various 
information and tools for transcriptome sequence, 
functional annotation, conserved domain(s), 
transcription factor families, molecular markers 
(microsatellites and single nucleotide 
polymorphisms)

Verma et al. 
(2015)

11. TodoFirGene Omics information of gymnosperms and connect 
researchers from forest sciences with those in 
comparative bioinformatics and evolutionary 
sciences

Ueno et al. 
(2018)

12. ROSAcyc Resource pathway database that allows access to the 
putative genes and enzymatic pathways, provides 
useful information on Rosa-expressed genes, with 
thorough annotation and an overview of expression 
patterns for transcripts with good accuracy

Dubois et al. 
(2012)

(continued)
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Rice Gene Expression 4x44K Microarray and the Affymetrix Arabidopsis ATH1 
Genome Array, with respective totals of 2,678, 1,206 and 10,940 samples. 
PlantExpress will facilitate understanding of the biological functions of plant 
genes (Kudo et al. 2017).

•	 RiceArrayNet (RAN): It provides information on co-expression between genes in 
terms of correlation coefficients (r values). A correlation pattern between 
Os01g0968800, a drought-responsive element-binding transcription factor; 
Os02g0790500, a trehalose-6-phosphate synthase; and Os06g0219500, a small 
heat shock factor, reflecting the fact that genes responding to the same biological 
stresses is regulated together (Lee et al. 2009).

•	 Transcriptome Encyclopedia of Rice (TENOR): It is a database that encompasses 
large-scale mRNA sequencing (mRNA-Seq) data obtained from rice under a 
wide variety of stress conditions. Since the elucidation of the ability of plants to 
adapt to various growing conditions is a key issue in plant sciences, it is of great 
interest to understand the regulatory networks of genes responsible for environ-
mental changes. All the resources (novel genes identified from mRNA-Seq data, 
expression profiles, co-expressed genes and cis-regulatory elements) are avail-
able in TENOR (Kawahara et al. 2016).

3.2.3  �Platforms and Resources in Proteomic of Plants 
Under Abiotic Stress/Plant Proteomics-Related 
Computational Tools and Databases

‘Proteome’ referred to the total expressed protein under certain circumstances in a 
given organism, organ, cell, tissue or microorganism population, and it comprises 
all the techniques used in profiling the expressed proteins in a specific context 
(Tyers and Mann 2003). Similar to the transcriptome, it is an informative approach 
used to reveal invaluable information when studying plant stress response and toler-
ance, either in a whole genome or sample scale (Nakagami et al. 2012). It is used for 
profiling all the expressed proteins under multiple stress conditions and cross-com-
paring these different sets to identify the proteins which are specifically involved in 
stress tolerance (Yan et al. 2014). This is an evolving technology for the qualitative 
large-scale identification and quantification of all protein types in a cell or tissue, 

Table 3.2  (continued)

S. No.
Transcriptomic 
database Information References

13. KEGG PATHWAY 
Database (Univ. of 
Kyoto)

Database resource for understanding high-level 
functions and utilities of the biological system, such 
as the cell, the organism and the ecosystem, from 
molecular-level information, especially large-scale 
molecular datasets generated by genome sequencing 
and other high-throughput experimental technologies

Kanehisa 
and Goto 
(2000)
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analysis of post-translational modifications and association with other proteins, and 
characterization of protein activities and structures (Jorrín-Novo et al. 2009).

Proteomics is associated with two types of studies: proteome characterization 
(identification of all the proteins expressed) and differential proteomics (compara-
tive proteome analysis of control and stressed plants). The proteomic approach has 
been largely adopted to explore the protein profiles in plants in response to abiotic 
stress that might lead to the development of new strategies for improving stress 
tolerance (Helmy et  al. 2011). Several types of proteomes can be measured, but 
whole proteome and the phosphoproteome are the most common proteomes quanti-
fied in plant stress tolerance (Helmy et al. 2011, 2012a, b). The main focus of quan-
titative proteomics is to identify the proteins that are differentially expressed under 
certain stress response condition (Liu et  al. 2015), while phosphoproteomics is 
closely associated with the identification of proteins activated and functioning in 
response to particular stress (Zhang et al. 2014). Both whole proteomics and phos-
phoproteomics can be combined in one comprehensive study to provide a better 
understanding of the stress (Hopff et al. 2013). The main goal of functional pro-
teomics is the high-throughput identification of all proteins that appeared in cells 
and/or tissues, but recent rapid technical advances in proteomics have enabled us to 
progress to the second generation of functional proteomics, including quantitative 
proteomics, subcellular proteomics and various modifications and protein-protein 
interactions (Jorrín-Novo et al. 2009).

Two main techniques that are mostly used for quantitative and/or qualitative pro-
filing are protein electrophoresis and protein identification with mass spectrometry. 
The technology of choice for proteomics is mass spectrometry (MS) including sev-
eral approaches such as liquid chromatography-mass spectrometry (LC-MS/MS), 
ion trap-mass spectrometry (IT-MS) and matrix-assisted laser desorption/ionization-
mass spectrometry (MALDI-MS) (Helmy et al. 2011, 2012a). These technologies 
are basically used in measuring the mass and charge of small protein fragments (or 
‘peptides’) that result from protein enzymatic digestion (Helmy et  al. 2011; 
Nakagami et al. 2012). Furthermore, several proteomics labs use protein electro-
phoresis technologies such as two-dimensional electrophoresis and difference gel 
electrophoresis (DIGE) in plant proteomics (Duque et al. 2013).

As genome sequencing projects for several organisms have been completed, pro-
teome analysis, which is the detailed investigation of the functions, functional net-
works and 3D structures of proteins, has gained accumulative consideration. 
Large-scale proteome datasets available serve as an imperative resource for a better 
understanding of protein functions in cellular systems, which are controlled by the 
dynamic properties of proteins (Table 3.3). These properties reflect cell and organ 
states in terms of growth, development and response to environmental changes. 
Functional and experimental validation of proteins associated with biotic and abi-
otic stresses has been employed as the sole criterion for inclusion in the database 
(Singh et al. 2015). Due to the challenges faced in text/data mining, there is a large 
gap between the data available to researchers and the hundreds of published plant 
stress proteomics articles. There are a large number of stress-related databases for 
proteins (Table 3.3):
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Table 3.3  Proteomic databases and resources

S. No. Proteomic database Information References

1. Protein-Protein 
Interaction Inhibition 
Database (2PI2db)

A database containing the structures of 
protein-protein and protein-modulator 
complexes that have been characterized by 
X-ray crystallography or NMR

Basse et al. 
(2016)

2. PPDB is a Plant 
Proteome DataBase

National science foundation-funded project 
to determine the biological function of each 
protein in plants. It includes data for two 
plants that are widely studied in molecular 
biology, Arabidopsis thaliana and maize 
(Zea mays)

Sun et al. (2009)

3. Plant stress proteome 
database (PlantPReS)

Enables researchers to perform multiple 
analyses on the database; the results of each 
query indicate a series of proteins for which 
a set of selected criteria are met

Mousavi et al. 
(2016)

4. Arabidopsis Nucleolar 
Protein Database 
(AtNoPDB)

Information on the plant proteins identified 
to date with a comparison to human and 
yeast proteins and images of cellular 
localizations for over a third of the proteins

Brown et al. 
(2005)

5. Plant Protein 
Phosphorylation 
Database (P3DB)

Integrated database for plant protein 
phosphorylation can help identify 
functionally conserved phosphorylation sites 
in plants using a multi-system approach

Gao et al. (2009)

6. PhosPhAt (Plant 
Protein 
Phosphorylation 
DataBase)

A database that specifically maintains 
experimental phosphorylation site data for 
Arabidopsis

Heazlewood 
et al. (2008) and 
Durek et al. 
(2010)

7. PSPDB (Plant Stress 
Protein Database)

Current plant stress databases report plant 
genes without protein annotations specific to 
these stresses

Singh et al. 
(2015)

8. MANET database 
Molecular Ancestry 
Network

The database is a bioinformatics database 
that maps evolutionary relationships of 
protein architectures directly onto biological 
networks

Kim et al. (2006)

9. PhytAMP Database of plant natural antimicrobial 
peptides

Hammami et al. 
(2009)

10. PRINTS Compendium of protein fingerprints Attwood et al. 
(1994)

11. PROSITE Database of protein families and domains Hulo et al. 
(2006)

12. Swiss-Prot Protein knowledgebase Bairoch and 
Apweiler (2000)

13. Protein DataBank in 
Europe (PDBe)

European part of the wwPDB for the 
collection, organization and dissemination 
of data on biological macromolecular 
structures

Mir et al. (2018)

(continued)
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•	 Plant Stress Proteome Database (PlantPReS; www.proteome.ir): It is an open 
online proteomic database, which currently comprises >35,086 entries from 577 
manually curated articles and contains >10,600 unique stress-responsive pro-
teins (Mousavi et al. 2016).

•	 Plant Stress Protein Database (PSPDB): It is one of the largest repositories and 
a web-accessible resource that covers 2064 manually curated plant stress pro-
teins from a wide array of 134 plant species with 30 different types of biotic and 
abiotic stresses. Functional and experimental validation of proteins associated 
with biotic and abiotic stresses has been employed as the sole criterion for inclu-
sion in the database (Singh et al. 2015).

‘Proteogenomics’ is another comprehensive combo approach of large-scale 
proteomic data with genomic and/or transcriptomics data to elucidate various 
innovative regulatory mechanisms (Helmy et  al. 2012a). The proteomics data 
generated by means of MS-based proteomics (high throughput and accuracy) 
provides a rich source of translation-level information about the expressed pro-
teins that can be used as a source of large-scale experimental evidence for sev-
eral predictions (Helmy et al. 2012a, b). In a proteogenomics study, the naturally 
expressed proteins are identified using MS-based proteogenomics followed by 
mapping them back to the genomic or transcriptomic data (Helmy et al. 2012a). 
This field has facilitated in elevating our understanding of the biology of plants 
in general as well as plant stress research in particular. For instance, a large-scale 
proteogenomics study of Arabidopsis thaliana identified 57 new genes and cor-
rected the annotations of hundreds of its genes using intensive sampling from the 
Arabidopsis organs under several conditions (Baerenfaller et al. 2008). Another 
study reported corrections and new identifications in about 13% of the annotated 
genes in Arabidopsis (Castellana et  al. 2008). It also gives information on the 

Table 3.3  (continued)

S. No. Proteomic database Information References

14. ProteinDatabank in 
Japan (PDBj)

Maintains a centralized PDB archive of 
macromolecular structures and provides 
integrated tools

Kinjo et al. 
(2017)

15. Research 
Collaboratory for 
Structural 
Bioinformatics 
(RCSB)

Protein Data Bank archive information about 
the 3D shapes of proteins, nucleic acids and 
complex assemblies that helps students and 
researchers understand all aspects of 
biomedicine and agriculture

Rose et al. 
(2017)

16. Structural 
Classification of 
Proteins (SCOP)

The database is a largely manual 
classification of protein structural domains 
based on similarities of their structures and 
amino acid sequences

Murzin et al. 
(1995)

17. InterPro Classifies proteins into families and predicts 
the presence of domains and sites

Hunter et al. 
(2009)

18. Pfam Protein families database of alignments and 
HMMs

Finn et al. (2013)
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investigation of the host-pathogen relationship (Delmotte et al. 2009), identifying 
novel effectors in fungal diseases (Cooke et al. 2014), as well as shedding light on 
the mechanisms of environmental adaptation.

3.2.4  �Platforms and Resources in Metabolomics of Plants 
Under Abiotic Stress/Plant Metabolomics-Related 
Computational Tools and Databases

The metabolome is the complete pool of metabolites in a cell at any given time and 
metabolomics refers to techniques and methods used to study the metabolome 
(Duque et al. 2013). Plants are able to synthesize a diverse group of chemical and 
biological compounds with different biological activity that is crucial for regulating 
the response to different types of biotic and abiotic stress (Bino et  al. 2004). 
Therefore, identifying the metabolites produced by the plant under each stress con-
dition by metabolomics plays a significant role to gather information not only about 
the phenotype but changes in it induced by stress, thereby bridging the gap between 
phenotype and genotype (Badjakov et al. 2012). Metabolomics may prove to be 
particularly important in plants due to its ability to elucidate plant cellular systems 
and permits engineering molecular breeding to improve the growth and productiv-
ity of plants in stress tolerance (Fernie and Schauer 2009). Metabolomic approaches 
allow us to conduct parallel assessments of multiple metabolites, and it is notable 
that the plant metabolome represents an enormous chemical diversity due to the 
complex set of metabolites produced in each plant species (Bino et al. 2004). A 
strong connection between stress metabolites and a particular protein indicates the 
role of this gene in the stress response process (Urano et  al. 2010; Duque et  al. 
2013; Jogaiah et al. 2013). Metabolic profiling of plants involves a combo of sev-
eral analytical, separation techniques and with other omics analysis (e.g. transcrip-
tomics or proteomics) to investigate the correlation between metabolite levels and 
the expression level of genes/proteins (Jogaiah et al. 2013). Thus, metabolomics 
provides a better understanding of the stress response and tolerance process in 
model plants such as Arabidopsis (Cook et al. 2004) as well as in crops like a com-
mon bean (Phaseolus vulgaris) (Broughton et  al. 2003), and other food crops 
(Duque et al. 2013).

This is one of the most rapidly developing technologies, and many notable tech-
nological advances have recently been made in instrumentation related to metabo-
lomics; some of them are as follows:

•	 Major approaches that are used in plant metabolomics research include meta-
bolic fingerprinting which involves separation of metabolites based on the physi-
cal and chemical properties using various analytical tools and technologies 
(Jogaiah et al. 2013).

•	 Metabolite profiling which includes the study of the alterations in metabolite 
pool that are induced by stress and finally target analyses.
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•	 Capillary electrophoresis-liquid chromatography-mass spectrometry (CE-MS) is 
considered the most advanced metabolomics technology (Soga et al. 2002).

•	 Analytical instruments and separation technologies are employed in metabolo-
mics such as gas chromatography (GC), mass spectrometry (MS) and nuclear 
magnetic resonance (NMR) (Duque et al. 2013).

•	 Metabolomics experiment (MIAMET) gives reporting requirements with the 
aim of standardizing experiment descriptions, particularly within publications 
(Ernst et al. 2014).

•	 Standard Metabolic Reporting Structures (SMRS) working group has developed 
standards for describing the biological sample origin, analytical technologies 
and methods used in a metabolite profiling experiment (Chen et al. 2015).

•	 ArMet (architecture for metabolomics) proposal gives a description of plant 
metabolomics experiments and their results along with a database schema 
(Castillo-Peinado and de Castro 2016).

•	 Metabolic flux analysis measures the steady-state flow between metabolites. 
FluxAnalyzer is a package for MATLAB that integrates pathway and flux analy-
sis for metabolic networks (Rocha et al. 2008).

A number of studies of metabolic profiling in plant species have been performed 
that have resulted in the publication of related databases (Table 3.4). For instance, 
metabolic pathways that act in response to environmental stresses in plants were 
investigated by metabolome analysis using various types of MS coupled with micro-
array analysis of overexpressors of genes encoding two TFs, DREB1A/CBF3 and 
DREB2A (Maruyama et al. 2009). Metabolomic profiling was also used to investi-
gate chemical phenotypic changes between wild-type Arabidopsis and a knockout 
mutant of the NCED3 gene under dehydration stress conditions (Urano et al. 2010). 
These databases are vast information resources and repositories of large-scale data-
sets and also serve as tools for further integration of metabolic profiles containing 
comprehensive data acquired from other omics research (Akiyama et al. 2008). One 
of the huge databases for metabolites is PlantMetabolomics.org (PM), which is a 
web portal and database for exploring, visualizing and downloading plant metabo-
lomics data. Widespread public access to well-annotated metabolomics datasets 
(Table 3.4) is essential for establishing metabolomics as a functional genomics tool. 
PM can be used as a platform for deriving hypotheses by enabling metabolomic 
comparisons between genetically unique Arabidopsis (Arabidopsis thaliana) popu-
lations subjected to different environmental conditions (Bais et al. 2015).

3.2.5  �Micro RNAs: Attributes in Plant Abiotic Stress 
Responses and Bioinformatics Approaches on MicroRNA

MicroRNA (miR) represents a major subfamily of endogenously transcribed 
sequences (21–24 bp) and has been acknowledged as a major regulatory class that 
inhibits gene expression in a sequence-dependent manner (Eldem et al. 2013). miRs 
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Table 3.4  Metabolomic databases and resources

S. No. Metabolomics database Information References

1. Metabolome Tomato 
Database (MoTo DB)

LC-MS-based metabolome database Moco et al. 
(2006)

2. KOMICS (Kazusa-omics) 
database

Annotations of metabolite peaks detected 
by LC-FT-ICR-MS and containing a 
representative metabolome dataset for the 
tomato cultivar (Micro-tom)

Iijima et al. 
(2008)

3. Golm Metabolome 
Database (GMD)

Provides public access to custom mass 
spectra libraries and metabolite profiling 
experiments as well as to additional 
information and related tools

Kopka et al. 
(2005)

4. MS/MS spectral tag 
(MS2T) libraries at the 
Platform for Riken 
Metabolomics (PRIMe) 
website

Provides access to libraries of 
phytochemical LC-MS2 spectra obtained 
from various plant species by using an 
automatic MS2 acquisition function of 
LC-ESI-Q-TOF/MS

Matsuda et al. 
(2009)

5. Armec Repository Project Metabolome data on the potato and serves 
as a data repository for metabolite peaks 
detected by ESI-MS

Gomez-Casati 
et al. (2013)

6. Plant metabolomics The NSF-funded multi-institutional project 
aimed at the development of the 
Arabidopsis metabolomics database

Bais et al. 
(2015)

7. Minimum information 
about a metabolomics 
experiment (MIAMET)

Reporting requirements with the aim of 
standardizing experiment descriptions, 
particularly within publications

Ernst et al. 
(2014)

8. Standard Metabolic 
Reporting Structures 
(SMRS)

Standards for describing the biological 
sample origin, analytical technologies and 
methods used in a metabolite profiling 
experiment

Chen et al. 
(2015)

9. ArMet (architecture for 
metabolomics)

The proposal gives a description of plant 
metabolomics experiments and their results 
along with a database schema

Castillo-
Peinado and de 
Castro (2016)

10. MATLAB (Metabolic 
flux analysis) 
FluxAnalyzer

Measures the steady-state flow between 
metabolites. It is a package that integrates 
pathway and flux analysis for metabolic 
networks

Rocha et al. 
(2008)

11. BiGG Models Knowledge base of genome-scale 
metabolic network reconstructions, 
integrating more than 70 published 
genome-scale metabolic networks into a 
single database with a set of standardized 
identifiers called BiGG IDs

King et al. 
(2016)

12. BioCyc Database 
Collection

Microbial genome web portal that 
combines thousands of genomes with 
additional information inferred by 
computer programmes, imported from 
other databases, and curated from the 
biomedical literature by biologist curators

Karp et al. 
(2017)

(continued)
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are small regulators of gene expression in the numerous developmental and signal-
ling pathways and are emerging as important post-transcriptional regulators that 
may regulate key plant genes responsible for stress tolerance. Plants combat envi-
ronmental stresses by activating several gene regulatory pathways and studies with 
different model plants have revealed the role of these miRNAs in response to abiotic 
stress (Zhou et al. 2010). Plant exposed to abiotic stress causes over- or underex-
pression of certain miRNA and might even lead to the synthesis of new miRNAs to 
withstand stress (Khraiwesh et  al. 2012). Several studies identified species- and 
clades-specific miRNA families associated with plant stress-regulated genes (Zhang 
et  al. 2013). The functions of stress-responsive miRNAs can only be studied by 
understanding the regulatory interaction within the network (Jeong and Green 
2013). Identification of a huge number of stress-responsive miRNAs might be help-
ful in developing new strategies to withstand stress, thereby improving the stress 
tolerance in plant. With the drastic improvement in genomic tools and methods, 
novel miRNAs in various plant species involved in abiotic stress response are 
increasing and are providing us with a better understanding of miRNAs-mediated 
gene regulation (Wang et al. 2014).

Sequence-based profiling along with computational analysis has played a key 
role in the identification of stress-responsive miRs. sRNA blot and RT-PCR analysis 
have played an equally important part in systematically confirming the profiling 
data (Jagadeeswaran et al. 2010). This has also enabled quantification of their effect 
on the genetic networks, such that many of the stress-regulated miRs have emerged 
as potential candidates for improving plant performance under stress. The develop-
ment and integration of plant computational biology tools and approaches have 
added new functionalities and perspectives in the miR biology to make them rele-
vant for genetic engineering programmes for enhancing abiotic stress tolerance. So 
far, three major strategies have been employed for the identification and expression 
profiling of stress-induced miRs:

•	 The first approach involves the classical experimental route that included direct 
cloning, genetic screening or expression profiling.

•	 The second method involved computational predictions from genomic or EST loci.
•	 The latest one employed a combo of both as it was based on the prediction of 

miRs from high-throughput sequencing (HTS) data.

Table 3.4  (continued)

S. No. Metabolomics database Information References

13. BRENDA (The 
Comprehensive Enzyme 
Information System)

Comprehensive enzyme information 
system, including FRENDA, AMENDA, 
DRENDA, and KENDA

Scheer et al. 
(2011)

14. WikiPathways Community resource for contributing and 
maintaining content dedicated to biological 
pathways

Pico et al. 
(2008)

15. Metabolomics at 
Rothamsted (MeT-RO)

Large- and small-scale metabolomic 
analyses of any plant or microbial material

Rothamsted 
Ltd
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Each of these was followed by experimental validations by northern analysis, 
PCRs or microarrays. In recent years, high-throughput sequencing and screening 
protocols have caused an exponential increase in a number of miRs, identified and 
functionally annotated from various plant species (Jagadeeswaran et al. 2010). The 
first biological database generated for miR was miRBase, which acts as an archive 
of miR sequences and annotations (Griffiths-Jones et  al. 2008). With the future 
advancement of genomic tools and methods to identify novel miRNAs in various 
plant species, the number of miRNAs involved in abiotic stress response is increas-
ing, thus providing us with a better understanding of miRNAs-mediated gene regu-
lation during various abiotic stresses (Table 3.5). Some of the databases comprising 
miRNAs-related information are:

•	 PASmiR: This database is a complete repository for miRNA regulatory mecha-
nisms involved in plant response to abiotic stresses for the plant stress physiol-
ogy community. It is a literature-curated and web-accessible database and was 
developed to provide detailed, searchable descriptions of miRNA molecular 
regulation in different plant abiotic stresses. It currently includes data from ~200 
published studies, representing 1038 regulatory relationships between 682 miR-
NAs and 35 abiotic stresses in 33 plant species (Zhang et al. 2013).

•	 PmiRExAt: It is a new online database resource that caters plant miRNA expres-
sion atlas. The web-based repository comprises of miRNA expression profile and 
query tool for 1859 wheat, 2330 rice and 283 maize miRNA. The database inter-
face offers open and easy access to miRNA expression profile and helps in iden-
tifying tissue preferential, differential and constitutively expressing miRNAs 
(Table 3.5).

•	 Plant MicroRNA Database (PMRD): miRNA expression profiles are provided in 
this database, including rice oxidative stress-related microarray data and the pub-
lished microarray data for poplar, Arabidopsis, tomato, maize and rice. The plant 
miRNA database integrates available plant miRNA data deposited in public data-
bases, gathered from the recent literature, and data generated in-house (Zhang 
et al. 2010).

•	 WMP: It is a novel resource that provides data related to the expression of abiotic 
stress-responsive miRNAs in wheat. This database allows the query of small RNA 
libraries, including in silico predicted wheat miRNA sequences and the expres-
sion profiles of small RNAs identified from those libraries (Remita et al. 2016).

3.3  �Role of Bioinformatics in Plant Disease Management

Omics studies focused on whole-genome analysis have unlocked a new era for biol-
ogy in general and for agriculture in particular. Combination of bioinformatics and 
functional genomics globally has paved way towards a better understanding of 
plant-pathogen biological interaction which eventually leads to breaking thoughts 
in the promotion of plant resistance to pests (Koltai and Volpin 2003). Bioinformatics 
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Table 3.5  Major microRNA repositories and stress databases

S. No. Databases Information References

1. miRcheck The tool requires the input of putative hairpin 
sequences and their secondary structures; the 
algorithm was first used for identifying 
conserved miRs in Arabidopsis and rice

Jones-Rhoades and 
Bartel (2004)

2. PmiRExAt Plant miRNA expression atlas database and 
web applications

Gurjar et al. (2016)

3. UEA sRNA 
Workbench

It predicts miR from HTS data, trans-acting 
RNA prediction, the secondary structure of 
RNA sequences, expression patterns of sRNA 
loci, alignment of short reads to the genome

Moxon et al. (2008)

4. TAPIR Characterizes miR-target duplexes with large 
loops which are usually not detectable by 
traditional target prediction tools, fast and 
canonical FASTA local alignment programme 
and RNAhybrid for detection of miR-mRNA 
duplexes

Pearson (2004), 
Krüger and 
Rehmsmeier (2006), 
and Bonnet et al. 
(2010)

5. CLCGenomics 
Workbench

Calculating abundances of sRNA libraries. 
Workbench provides an interactive 
visualization to the differential expression 
and statistical analysis of RNA-Seq and 
sRNA data

Matvienko et al. 
(2013)

6. C-mii Tool aligns known miRs from different plant 
species to the EST sequences of the query 
plant species using blast homology search 
and has a unique feature of predicting the 
secondary structures of the miR-target 
duplexes

Numnark et al. 
(2012)

7. miRDeep-P Specialized tool for identification of plant 
miR collection of PERL scripts that are used 
for prediction of novel miRs from deep 
sequencing data

Friedländer et al. 
(2008) and Yang and 
Li (2011)

8. CleaveLand The general pipeline, available as a 
combination of PERL scripts, for detecting 
miR-cleaved target transcripts from 
degradome datasets

Addo-Quaye et al. 
(2008)

9. ARMOUR Datasets of rice miRs from various deep 
sequencing datasets for examining the 
expression changes with respect to their 
targets, a valuable tool to biologists for 
selecting miRs for further functional studies

Tripathi et al. (2015)

10. PASmiR Database for the role of miRNA in response 
to plant abiotic stress

Zhang et al. (2013)

11. PMRD – plant 
microRNA 
database

Plant miRNA database integrates available 
plant miRNA data deposited in public 
databases, gleaned from the recent literature, 
and data generated in-house

Zhang et al. (2010)

12. WMP Novel comprehensive wheat miRNA 
database, including related bioinformatics 
software

Remita et al. (2016)
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has played a great role in plant disease management by understanding the molecular 
basis of the host-pathogen interaction (Koltai and Volpin 2003). Modern genomics 
tools, including applications of bioinformatics and functional genomics, allow sci-
entists to interpret DNA sequence data and test hypotheses on a larger scale than 
previously possible (Anonymous 2005). From past few years, numerous compo-
nents of the plant signalling system have also been identified that function down-
stream of the detection molecules such as the pathogen proteins that are used to 
suppress host defences and drive the infection process (so-called effector proteins) 
by using molecular biological technologies and genetics approaches (Anonymous 
2005). Disease resistance is only one of the several traits under selection in a breed-
ing programme. Thus, bioinformatics has to play an increasing role in integrating 
phenotypic and pedigree information for agronomic as well as resistance traits 
(Vassilev et al. 2006). Improved algorithms and increased computing power have 
made it possible to improve selection strategies as well as to model the epidemiol-
ogy of pathogens (Michelmore 2003). Some of the key roles of bioinformatics for 
plant improvements has been enlisted by Vassilev et  al. (2005): submitting all 
sequence data information generated from experimentation into the public domain, 
through repositories; providing rational annotation of genes, proteins and pheno-
types; elaborating relationships both within the plants’ data and between plants and 
other organisms; providing data including information on mutations, markers, 
maps, functional discoveries; and others.

From past few years, there have been many technological advances in the under-
standing of plant-pathogen interaction. Omics techniques (genomics, proteomics 
and transcriptomics) have provided a great opportunity to explore plant-pathogen 
interactions from a system’s perspective and studies on protein-protein interactions 
(PPIs) between plants and pathogens (Delaunois et al. 2014). Identification of the 
molecular components as well as the corresponding pathways has provided a rel-
atively clear understanding of the plant immune system. In particular, the study 
of plant-pathogen interactions has also been stimulated by the emergence of vari-
ous omics techniques, such as genomics, proteomics and transcriptomics (Schulze 
et  al. 2015). With the availability of massive amounts of data generated from 
high-throughput omics techniques, network interactions have become a powerful 
approach to further decipher the molecular mechanisms of plant-pathogen interac-
tions through network biology:

•	 Genomics is particularly important, and with the rapid development of next-
generation sequencing (NGS) technique, numerous plant and pathogen genomes 
have been fully sequenced.

•	 Proteomics is a key technique for the analysis of the proteins involved in plant-
pathogen interactions (Delaunois et al. 2014).

•	 DNA microarray and RNA sequencing are two key transcriptomics techniques 
for acquiring the expression profile of genes on a large scale. Transcriptomics is 
also important to investigate plant-pathogen interactions and has been employed 
to learn how plants respond to the pathogen invasion and how pathogens counter 
the plant defence at the transcript level (Schulze et al. 2015).
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Genomic approaches always have a significant impact on efforts to improve plant 
diseases by increasing the definition of and access to gene pools available for crop 
improvement (Vassilev et  al. 2005). Such an approach to identify key genes and 
understand their function will result in a quantum leap in plant improvement. 
Moreover, the ability to examine gene expression will allow us to understand how 
plants respond to and interact with the physical environment and management prac-
tices (Vassilev et al. 2006). This approach will involve the detailed characterization of 
the many genes that confer resistance, as well as technologies for the precise manipu-
lation and deployment of resistance genes. Plant-pathogen interactions are sophisti-
cated and dynamic in the continually evolving competition between pathogens and 
plants. Thus genomic studies on pathogens are providing an understanding of the 
molecular basis of specificity and the opportunity to select targets for more durable 
resistance (Michelmore 2003). This understanding is fundamental to allow efficient 
exploitation of plants as biological resources in the development of new cultivars with 
improved quality and reduced economic, pathogen and abiotic stress resistance and is 
also vital for the development of new plant diagnostic tools (Vassilev et al. 2006). 
When plants respond to biotic stress, a series of biological processes rather than a 
single gene or protein will be changed. Therefore, it is necessary to explore plant-
pathogen interactions from a systems perspective (e.g. network level (Mine et  al. 
2014)). Bioinformatics thus plays several roles in breeding for disease resistance and 
is important for acquiring and organizing large amounts of information. Some of the 
databases/repositories (Table 3.6) of plant-pathogen interactions are:

•	 PHI-base: A new database for pathogen-host interactions. It is designed for 
hosting any type of pathogen-host interaction, and its focus is on genes with 
functions that have been experimentally verified. These genes are compiled and 
curated in a way that can be used to bridge the genotype-phenotype gap under-
lying the interactions between hosts and pathogens (Winnenburg et al. 2006). 
The mission of PHI-base is to provide expertly curated molecular and biological 
information on genes proven to affect the outcome of pathogen-host interactions.

•	 PathoPlant: A database on plant-pathogen interactions. This is a relational data-
base to display relevant components and reactions involved in signal transduc-
tion related to plant-pathogen interactions. On the organism level, the tables 
‘plant’, ‘pathogen’ and ‘interaction’ are used to describe incompatible interac-
tions between plants and pathogens or diseases (Bülow et al. 2004).

3.4  �Conclusion and Future Prospects

Bioinformatics is an exclusive approach capable of exploiting and sharing a large 
amount of omics data. This approach has given a more holistic view of the molecu-
lar response in plants when exposed to biotic and abiotic stress, and the integration 
of various omics studies has revealed a new zone of interactions and regulation 
(Fig.  3.2). This system biology approach has enabled the identification, 
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characterization and functional analysis of plant genes that determine plant’s 
response to various biotic and abiotic factors and understanding of the plant stress 
interaction. However, so many efforts are still required for detailed analysis of the 
omic modulation induced by abiotic stress and its interacting partners. This requires 
the development of reliable and rigorous techniques for firm characterization of the 
spatiotemporal regulation of omics under stress conditions. The three main domains 
that must be addressed to take full advantage of systems biology are the develop-
ment of omics technology, integration of data in a usable format and analysis of data 
within the domain of bioinformatics. Thus, the perspective of computational/system 
biology needs to be tapped for performing an extensive analysis among agricultur-
ally important crops for improving crop tolerance to environmental stress. The cur-
rent surge of affordable omics data encourages researchers to create improved, more 
integrated and easily accessible plant stress pathway databases. Despite the draw-
backs, there is no doubt that bioinformatics is a field that holds great potential for 
transforming biological research in the coming decades. The expansion and integra-
tion of bioinformatics tools and approaches will certainly add new functionalities 
and perspectives in the stress biology to make them applicable for genetic engineering 
programmes for enhancing stress tolerance.

Table 3.6  Abiotic stress databases

S. No Databases Information References

1. PHI-base (Pathogen-
Host Interactions)

First online resource devoted to the 
identification and presentation of information on 
fungal and oomycete pathogenicity genes and 
their host interactions

Winnenburg 
et al. (2006)

2. PathoPlant (Plant-
Pathogen Interactions)

A new database that combines information of 
specific plant–pathogen interactions on 
organism level and data about signal 
transduction on molecular level related with 
plant pathogenesis

Bülow et al. 
(2004)

3. Fungal Plant Pathogen 
Database

An internet-based database that crosslinks the 
digitized genotypic and phenotypic information 
of individual pathogens at both the species and 
population levels may allow us to effectively 
address these problems by coordinating the 
generation of data and its subsequent archiving

Kang et al. 
(2002)

4. Phytopathogenic Fungi 
and Oomycete EST 
Database of COGEME

Provides sequences of expressed sequence tags 
(ESTs) and consequences (cluster assembled 
ESTs) from 15 plant pathogenic species

Soanes et al. 
(2002)

5. fuGIMS database Integrate functional and sequence information 
from several plants and animal pathogenic fungi 
with similar information from Saccharomyces 
cerevisiae available from the GIMS database

Cornell et al. 
(2003)

6. DRASTIC Insight Collates signal transduction information 
between plants, pathogens, and the environment, 
including both biotic and abiotic influences on 
plant disease resistance at the molecular level

Newton et al. 
(2002)
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4.1  �Introduction

Abiotic pressure, such as drought, temperature extremes, waterlogging, salinity, 
heavy metal toxicity, and nutritive deficiency, directly and indirectly alters plant 
physiology, affecting plant growth and productivity and therefore, causing eco-
nomic losses in agriculture worldwide. Consequently, the underdeveloped or devel-
oping countries discover it extremely difficult to keep countrywide food protection. 
Climate change might have an effect on all dimensions of food protection, together 
with food availability, accessibility, usage, and stability. Food production 
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agrosystems must be adapted to climate change to ensure food security and stability. 
Biotechnological and breeding techniques need to reap, maintain, evaluate, file, and 
disseminate plant genetic assets for various crop species. Adaptive traits with stress-
resistant genes need to be diagnosed fast. Breeders must infuse new germplasm into 
adapted cultivars to enhance productiveness. Discover adaptive traits expressed in 
exclusive environments more hastily and boom the possibilities of locating genes 
controlling resistance to heavy metal and different abiotic stress. In an effort to 
achieve sustainable productivity and improve yield performance, stress-tolerant 
crops ought to be evolved. Genetic engineering and transgenic techniques have 
spread out novel ways to diminish the detrimental effect of stress. However, appro-
priate knowledge of the candidate genes/proteins, their interactions to other genes/
proteins, and cross talk to other physiological pathways is needed for developing 
successful transgenic crops with improved tolerance to stress(s). Techniques com-
bining genomics and proteomics allow for speedy scanning, identification, charac-
terization, and assessment of target genes/proteins for introgression in plants to 
develop stress tolerance. A number of impressive techniques are available in the 
functional genomics to decipher functions of genes. At the level of expression, 
study of all proteins expressed in an organism will be helpful to study the functions 
of all genes of the organism. Proteomics, which allows for a large-scale examination 
of proteins, is one of the substantial components of functional genomics. It has 
gained enormous importance because of its utility in techniques that permits exami-
nation of hundreds of proteins in parallel. It is far complementary to genomics, as it 
targets gene products that are active players of the cell and therefore potential tar-
gets for any crop-improvement program in regard to environmental stress (Hossain 
et al. 2012a). Proteomics has made the approach of reverse genetics truly possible, 
because by examining the proteins, one can deduce the function of the correspond-
ing gene and the trait that which this gene regulates. Substantial studies have been 
carried out with impressive achievements in genome and expressed sequence tag 
(EST) sequencing, containing a wealth of data for many model creatures like plants 
Arabidopsis thaliana, Oryza sativa, Zea mays, Lotus japonicus, Hordeum vulgare, 
Sorghum bicolor, Camellia sinensis, and Medicago truncatula. On the other hand, 
genome sequence information alone is inadequate to explain the facts concerning 
gene activity, developmental/regulatory biology, and the biochemical kinetics of 
life. Proteomic approaches unravel the direct identification and measurement of 
protein molecules. This specific advantage lets us get over the difficulties associated 
with disparity between proteomes and genomes, which result from one gene trans-
lated into multiple protein products by alternative splicing or posttranslational mod-
ifications or expression is spatiotemporally regulated. Therefore, proteome analysis 
connected to genome sequence information will very likely be highly useful for 
functional genomics so as to define the function of their associated genes from 
another aspect (Ohyanagi et al. 2012). In order to better understand the abiotic stress 
in plants, scientists focus on the multi-omic approaches by combining proteomics 
with genomics, ionomics, and metabolomics that will give us a clear picture of can-
didate genes/proteins associated with stress signaling pathways. Proteome varia-
tions related to physiological and phenotypic modifications made viable the identity 
of genes and alleles of interest for development of plants in an effort to keep crop 
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yield as high as possible under adverse environments. Combined approach of omic 
data is a valuable tool to elucidate the pathways at cellular level (Singh et al. 2016). 
In the recent past, strategies of protein evaluation accompanied through identity, 
isolation, cloning, and characterization of genes, promoter analysis, genetic trans-
formation, and new research within the genomic and proteomic platform have cul-
minated in the production of more than a few transgenic for various traits, and they 
are also correctly applied as evidence-of-concept tools to examine and symbolize 
the functionality and cross talk of signaling pathways for abiotic stress resistance 
(Singh et al. 2016). The present review focuses on proteomic profiling of plants in 
response to HM oxidative stress with emphasis on proteins, especially the antioxi-
dant enzymes and transcription factors, which could be helpful in exploring plant 
genomic and proteomic elements functional under environmental stress so as to 
impart tolerance. It additionally analyzes the work carried out thus far, with genomic 
and proteomic techniques, on plant tolerance to abiotic stress and discusses the vari-
ous bioinformatics tools for proteome profiling.

4.2  �Approaches to Study Plant Responses to Stress

There are two main approaches, specifically, functional genomics and proteomics, 
to observe the reaction of plants to abiotic stress conditions (Fig. 4.1). Functional 
genomic targets the evaluation of transcripts with the intention to analyze differen-
tially transcribed mRNAs within stressed plants. The technique is called as DNA 
microarrays in which RNAs are used to synthesize cDNAs for further analysis. On 
the other hand, proteomics evaluates proteins with the purpose to target and recog-
nize differentially translated (synthesized) necessary protein in stressed plants over 
the control ones, and the technique is referred as protein microarrays. The func-
tional genomics and proteomics thus constitute collectively an important tool 
reverse genetics (Fig. 4.2).

4.3  �How Functional Genomics Play a Role to Combat 
Abiotic Stress in Plants

Molecular biology offers several strategies to assess gene characteristics, and efforts 
had been made to broaden novel strategies to illustrate the expression and character-
istic of unique genes. Functional genomics is right now widely seen as offering 
satisfactory tools for looking into the abiotic stress reactions in plants through which 
usually networks of stress perception, signal transduction, and protective responses 
can be analyzed from gene transcription, via protein complements of cells, to the 
metabolite information of stressed tissues. Functional genomics employs multiple 
parallel approaches, including global transcript profiling coupled with using mutants 
and transgenics, in order to study gene function within a high-throughput setting. 
The provision of a huge volume of genomic data (database) has provided 
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information regarding the gene content of plants. Partial or whole sequences regarding 
cDNA often provide a firm basis of the dimension of the transcriptome, typically the 
total mRNA content in the organism at given moment. Three important databases, 
viz. National Center for Biotechnology Information (NCBI) UniGene, http://www.
ncbi.nlm.nih.gov/; The Institute of Genomic Research (TIGR) Gene Indices, http://
www.tigr.org; and Sputnik, http://mips.gsf.de/proj/sputnik, serve to manage the 
available plant expression sequence tags (ESTs), collectively with properly charac-
terized genes, into nonreductant gene clusters. ESTs have formed the key of studies 
within the international gene expression of numerous stress tolerance traits in some 
plants including Arabidopsis and rice (Rensink et al. 2005). The evaluation of ESTs 

Fig. 4.1  Integrated omic 
approach to study heavy 
metal stress in plants. 
Genomics, proteomics, and 
bioinformatics are useful 
tools that can help us to 
elucidate and analyze 
active regulatory networks 
controlling heavy metal 
stress responses and 
tolerance
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produced from cDNA libraries of salt-stressed rice showed that there was an incre-
ment in transcripts associated with cell rescue, protection, transport, energy, and 
metabolism, but the majority of stress-inducible genes could not be assigned any 
activity (Bohnert et al. 2001). In a study performed to identify salt-stress-inducible 
ESTs obtained from polymerase chain reaction (PCR) subtraction in salt-tolerant 
rice, 384 genes were recognized as salt responsive, <5% of which have been addi-
tionally confirmed by Northern blotting. Almost 50% of these genes were recog-
nized for involvement in detoxification, stress response, growth, and development 
(Shiozaki et al. 2005). Baisakh et al. (2008) used cDNA-AFLP as an RNA imaging 
technique to discover transcripts that accumulated strongly and have been triggered 
de novo in Spartina alterniflora (smooth cordgrass) in response to salinity stress. Of 
the 213 cDNAs isolated, 28 have been diagnosed belonging to diverse sets of genes 
involved inside ion transport and compartmentalization, cell division, and metabo-
lism, in addition to protein synthesis. At distinct degrees of salt stress, the expres-
sion patterns of 14 such genes were analyzed via RT-PCR, and their direct and 
oblique relationship with salinity tolerance was established. Apart from cDNA-
AFLP, differential display approach is based on typically the synthesis of cDNA 
using an oligo dT primer (3′) and an arbitrary oligonucleotide primer for the 5′-end 
and amplifies rare cDNA. In Gossypium arboreum, Venkatesh et al. (2005) used the 
differential display reverse transcriptase (DDRT) PCR to compare the total dissimi-
larities in gene expression between water-stressed and control plants. By screening 
93 primer-pair combinations, the DDRT approach brought out upregulation of 30 
cDNA transcripts. By means of reamplification and quality control assay, 10 cDNA 
transcripts appeared false positive, while the rest of the 20 cDNA transcripts had 
been excised from the gel, reamplified, cloned, and sequenced. Homology search 
discovered that six transcripts confirmed extensive homology with known genes. 
RT-PCR confirmed that, among six transcripts, five had been substantially overex-
pressed in water-stressed leaves with respect to control. This finding is crucial, 

Fig. 4.2  Genomics and their correlation to proteomics
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due to the fact there is only couple of reports of the common stress protein; trans-
posable factors were available in plants but none in cotton under drought stress. 
Serial analysis of gene expression (SAGE) is likewise a dominant technique that can 
be used to quantify the global gene expression. The tool, developed first to quantify 
gene expression in yeast, includes production of brief 10–14 nucleotide tags, with 
every tag representing a unique transcript present within a cell (Velculescu et al. 
1995). Determining the sequence of a tag concedes for recognition of the analogous 
gene, and the frequency regarding tag represents the stable state of the mRNA from 
which it is extracted. SAGE technique was utilized for the quantification of global 
gene expression especially in rice by Matsumura et al. (1999); 10,122 tags from 
5921 expressed genes of rice seedlings were analyzed, 18 genes had been deter-
mined to be anaerobically induced, and 6 genes were suppressed. The anaerobically 
induced genes had been those coding for prolamin, expansins, and glycine-rich cel-
lular wall protein. Jung et al. (2003) carried out an experiment using SAGE tech-
nique to unravel the changes in gene expression in the leaves of Arabidopsis 
subjected to cold stress. For the transcription profiling on a genome-wide scale, 
tools like massive parallel signature sequencing (MPSS) are also used. This tool, 
like SAGE, can be used to acquire an illustration of the mRNA population in a 
sample, which can be associated with ESTs, mRNA, or the whole genome sequence, 
but the magnitude of the generated data is much larger (Brenner et al. 2000). The 
MPSS resource for rice consists of 20 MPSS libraries generated from varied tissues, 
including 3 from abiotic stress, particularly cold, dehydration, and salt (Nakano 
et al. 2006). Recently, a DNA-chip technological innovation, based on the ability to 
bind either DNA fragments or previously characterized oligonucleotides on a 
microscope slide, has been developed to examine gene expression profiles. To 
examine and compare the global gene expression patterns especially in plants like 
rice, maize, strawberry, petunia, ice plants, and lime bean, cDNA and oligonucle-
otide microarrays have been widely used. Kawasaki et al. (2001) first reported the 
use of microarray technique to study the global gene expression among two rice 
varieties (var. Pokkali-salt-tolerant and var. IR29-salt sensitive) subjected to salt 
stress. The evaluation was carried out using cDNA microarray comprising 1728 
cDNA clones developed from control or salt-stressed roots of Pokkali. The principle 
distinction between the expression patterns of the two varieties was the deferred 
timing of the IR29 response in terms of kinetics of gene expression, which could be 
responsible for its salt sensitivity (Kawasaki et al. 2001). An additional approach for 
functional genomics is the utilization of insertional mutagenesis, which involves 
possibly transposon mutagenesis or T-DNA mutagenesis. In both instances, a known 
DNA sequence is introduced, which might be randomly inserted at many places 
within genome that in turn causes loss of function mutation or gene knockouts and 
rarely develop gain-of-function mutation. Insertional mutagenesis has been 
employed broadly to signify the abiotic stress-responsive genes, such as those cod-
ing for AtHKT1 (a high-affinity potassium transporter), CIPK3 (calcium-associated 
protein kinase), CBL1 (calcineurin B-like protein kinase), OSM1/SYP61 (syntaxin), 
and HOS10 (R2R3-type MYB transcription factor) (Rus et al. 2001; Zhu et al. 2002, 
2005; Cheong et al. 2003; Kim et al. 2003). As a result the strategies associated 

T. B. Pirzadah et al.



85

with the functional genomics are effective and high yielding molecular-biology 
techniques, which are currently being used to identify the transcripts susceptible to 
the abiotic stress.

4.4  �Proteomic Tools to Study Heavy Metal Stress in Plants

High-throughput omic tools are thoroughly being exploited these days to dissect 
plants’ molecular strategies of heavy metal (HM) stress tolerance. The plants grow-
ing in heavy metal contaminated sites have the innate ability to develop homeostatic 
mechanisms to modify the uptake, mobilization, and intracellular toxic metal con-
centration to alleviate oxidative stress. As the functional translated portion of the 
genome plays an essential role in plant stress response, proteomic research caters a 
finer picture of protein networks and metabolic pathways mostly involved in cellu-
lar detoxification and tolerance mechanism against HM toxicity. Over the past 
decade, thorough research on plants’ response to HM stress has been conducted to 
unravel the tolerance mechanism. Genomic technologies have been useful in 
addressing abiotic stress responses in plants, including HM toxicity (Bohnert et al. 
2006). One of the drawbacks of genomic approach is that the changes in gene 
expression at the transcript level have not always been reflected at protein level 
(Gygi et al. 1999). Thus, an exhaustive proteomic evaluation is of great significance 
to perceive target proteins that are actively involved in HM detoxification. It is 
reported that plant response to HM stress has been reviewed extensively during the 
last decade (Hossain et al. 2012b). Proteomic approach helps to identify the proteins 
in plants subjected to HM stress and their role in mitigation. Majority of the pro-
teomic studies carried out thus far on HM-associated toxicity disclose positive cor-
relation among tolerance and increased abundance of scavenger proteins, for 
instance, increased expression of superoxide dismutase (SOD) isoforms (Cu/
Zn-SOD, Fe-SOD) in plants subjected to Cd (Hossain et al. 2012b) and Al stress 
(Yang et al. 2007). Alvarez et al. (2009) carried out a proteome analysis of B. juncea 
exposed to Cd stress and found upregulation of only Fe-SOD, while as Cu/Zn-SOD 
gets downregulated and at the same time, this protein is considered to play a pivotal 
role in the defense system. An exhaustive proteomic work conducted by Hajduch 
et al. (2001) in rice seedlings subjected to HM stress unravels the drastic reduction 
in abundance/fragmentation of a number of subunits of RuBisCO small subunit 
(SSU) and large subunit (LSU), suggesting thorough interruption of photosynthetic 
machinery. Proteomic study by Lee et al. (2010) discovered induction of vacuolar 
proton-ATPase in rice roots and leaves depicting their positive role in Cd detoxifica-
tion through vascularization. Shin et al. (2010) performed the proteomic evaluation 
of two buckwheat species under light and dark conditions and concluded that the 
sprouting leaves of 7-day-old etiolated common buckwheat seedlings turned to light 
yellow, suggesting the inhibition of light-dependent protochlorophyllide reductase 
by proteome evaluation. Duressa et al. (2011) carried out a proteomic evaluation 
among Al-tolerant and Al-sensitive soybean genotypes and concluded that there 
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occurs accumulation of enzymes in the Al-tolerant genotypes that are involved in 
the synthesis of citrate-a the main player in the detoxification of Al metal ions, 
whereas in case of Al-sensitive genotypes, general stress proteins get induced. 
Bagheri et al. (2015) carried out a comparative proteomic evaluation in spinach to 
better understand the protein players responding not only to particular stress of Cd 
or salinity but also to their combination. They reported that proteome modulation, 
by all combinations (metal and salinity) of stressors, signifies that spinach does not 
depend on any particular set of proteins and pathways, but a multitude of responses 
is initiated. Upon enhancing tolerance to stress, the plant can induce novel proteins 
and sometimes inhibit the synthesis of others after equipping itself in an appropriate 
way against any specific or a group of stresses. Because the information on func-
tioning mechanisms of most stress proteins provides planning strategies for recon-
structing stress tolerance via transgenic approach, it is the need of the hour to 
identify, isolate, and characterize a number of stress proteins. The stress-responsive 
proteins act as important elements of abiotic stress tolerance, and a further study 
related to their functions would lead to a deeper insight with novel discoveries 
related to abiotic stress tolerance in plants.

4.5  �How Bioinformatics Softwares Play a Lead Role to Study 
Proteome Maps

To unravel the proteome profile of the sample, the primary step involves fraction-
ation of the sample by 2-D gel activity. The distinct protein spots are removed, 
digested by trypsin, and then analyzed by mass spectrometry followed by database 
searching for protein identification. In major proteomic projects, the data on sam-
ples used in 2-D gel is usually recorded as a part of a laboratory information man-
agement system (LIMS). The other access to 2-D gel analysis sometimes involves 
direct digestion of the protein or protein mixture with a site-specific protease, viz., 
trypsin, followed consecutively by liquid chromatography (LC) or capillary electro-
phoresis (CE) conjugated with online tandem mass spectrometry (MS/MS).

4.6  �Image Analysis Software

Image analysis software is a crucial tool to generate images of the sample gels and 
was introduced in the mid-1970s, and additional advancements were created within 
the late 1980s (Henzel et al. 1993). Few commercially accessible 2-D gel image 
analysis softwares are presented in Table 4.1. These softwares are devised with the 
aim to digitize images from 2-D gels, identify and quantify spots of different inten-
sities among gels by matching the control and the sample gel(s), and develop 
reports listing the differentially expressed protein spots. However, the software 
depends upon various parameters, viz., the computer program, the file format, or 
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Table 4.1  Some commercially available 2-D gel image analysis software

Name of software Source

DeCyder™ 2D Analysis Amersham Biosciences  
(www.apbiotech.com)

Delta2D™ (www.decodon.com/Solutions/Deltta2D.
html)

DECODON GmbH  
(www.decodon.com)

GELLAB II+ (www.scanalytics.com/product/gel/
Gellab.html)

Scanalytics (www.scanalytics.com)

GD Impressionist™ (www.genedata.com/products/
impressionist)

GeneData (www.genedata.com)

ImageMasterTM 2D Elite Amersham Biosciences  
(www.apbiotech.com)

ImagepIQ™ (www.proteomesystems.com/product/
profile.asp?Category=gel+image+analysis)

Proteome Systems Ltd.  
(www.proteomesystems.com)

Investigator™ HT PC Analyzera (www.
genomicsolutions.com/proteomics/2dgelanal.html)

Genomic Solutions  
(www.genomicsolutions.com)

Melanie 3 (www.genebio.com/Melanie.html) GeneBio (www.genebio.com)
PDQuest™ 2-D Analysis Software Bio-Rad Laboratories  

(www.bio-rad.com)
Phoretix™ 2D (www.phoretix.com/products/2d_
products.htm)

Nonlinear Dynamics  
(www.nonlinear.com)

Progenesis™ (www.nonlinear.com/2D/progenesis) Nonlinear Dynamics  
(www.nonlinear.com)

ProteinMine™ (www.scimagix.com/products-
ProteinMine.html

Scimagix (www.scimagix.com)

ProteomeWeaver (www.definiens-imaging.com/
proteomeweaver)

Definiens Imaging GmbH  
(www.defeniens-imaging.com)

TotalLab (www.totallab.com) Nonlinear Dynamics  
(www.nonlinear.com)

Z3 2D-Gel Analysis System (www.2dgels.com) Compugen Ltd.  
(www.compugen.co.il)

ImageQuant TL GE Healthcare
Quantity One Bio-Rad Laboratories  

(www.bio-rad.com)
GelAnalyzer Freely available on WWW
GelScape Freely available on WWW
ImageMaster 2D Platinum GE Healthcare
REDFIN Ludesi
Dymension Syngene
Proteovue Eprogen

aDeveloped in collaboration with nonlinear dynamics

the graphical user interface. Another step in proteomics is the protein identification 
by means of mass spectrometry. Few 2-D gel image analysis packages are accom-
panied with automated robotic systems to direct the excision of spots of choice for 
subsequent MS analysis. For putting in place an advert or high-throughput tech-
nique for proteomics, it’s mandatory that the softwares for 2-D gel image analysis 
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support robust database tools for storing images and identification and quantifica-
tion of data from a particular protein spot. However, several 2-D gel image analysis 
softwares lack sturdy integration with the powerful relative databases that presently 
store most enterprise data. The different proprietary storage formats employed at 
commercial level further complicate the accessibility and online handiness of help-
ful data generated by the image analysis software. In the present scenario, for 
instance, Scimagix (San Mateo, CA, USA) has developed its 2-D gel image analy-
sis product, ProteinMine®, on the commercial Oracle® relative database system 
(Oracle Corporation, Redwood Shores, CA, USA) used by the company for their 
scientific image management system (SIMS). This sort of open storage design may 
be of significant value to laboratories seeking to integrate with other LIMS pack-
ages they are using.

4.7  �Mass Spectrometry Analysis Software in Proteomics

The MS analysis wasn’t appropriate for the biomolecules till the invention of soft 
ionization techniques like MALDI (matrix-assisted laser desorption ionization) 
(Tanaka et al. 1988) and ESI (electrospray ionization) (Yamashita and Fenn 1984). 
While MALDI is appropriate for solid samples, ESI is appropriate for the samples 
dissolved in distinct solvents. MALDI or ESI sources could be conjugated with 
various types of analyzers like ToF (time of flight), LTQ (linear trap quadrupole), 
Orbitrap, and Quadrupole to attain distinct types of MS analysis with varying sen-
sitivity and precision. The mass spectrum of every protein species is unique, and 
because of such uniqueness, it is known as peptide mass fingerprint (PMF) (Pappin 
et al. 1993). PMFs are searched in a database by using software like Mascot® or 
Sequest® to find out the identity of a particular protein. The PMF only includes 
masses of the peptides only but lacks amino acid sequences. The success rate of the 
PMF matches to the database can be enhanced by the addition of amino acid 
sequence data obtained by collision-induced dissociation (CID) mechanism by 
which the gas-phase ions are further fragmented by colliding neutral molecules, 
viz., helium, argon, and nitrogen. With the help of CID from the fragments of the 
peptides, amino acid sequences could be predicted. The PMF data in conjugation 
with sequence information results in higher protein identification. To obtain a CID 
data, an MS system has to have two mass analyzer divided by a collision-induction 
cell, and this type of MS systems is known as MS/MS or tandem MS (Wells and 
McLuckey 2005). Table 4.2 represents the list of several software tools for database 
searches using MS data for protein identification. Most of these softwares have free 
access over the Internet, but we are able to conjointly use them offline through a 
sound license. Among the tools depicted in Table 4.2, Mascot and Sequest can be 
run on computer clusters. Even though the details regarding the computer clusters 
and computer farms in large-scale industry-based proteomics are often proprietary, 
some data is available on their scope and magnitude. For example, it has been 
reported that GeneProt’s large-scale proteomic discovery center in Geneva, 
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Switzerland, will use 1420 Compaq® Alpha-based Tru64 UNIX computer processors 
to capture, store, and analyze the terabytes of proteomic data that will be generated 
by 51 mass spectrometers (Genome Web News 2001).

4.8  �Conclusion and Future Perspective

About 3.1 billion individuals from developing countries reside in rural areas, and 
out of this population, ~2.5 billion individuals rely on agrarian practices for their 
livelihood, which constitutes 30% of economic growth because of the gross domes-
tic product obtained from agricultural sector (FAO 2012). World population is 

Table 4.2  Some database search tools for protein identification based on mass spectrometric data

Name of software Source

Peptide mass fingerprint or peptide mass map analysis

Mascota (www.matrixscience.com) Matrix Science Ltd.
MassSearcha (cbrg.inf.ethz.ch/Server/MassSearch.html) ETH
Mowsea (www.hgmp.mrc.ac.uk/Bioinformatics/Webapp/
mowse)

UK Human Genome Mapping 
Project Resource Centre

MS-FITa (prospector.ucsf.edu) UCSF
PepMAPPERa (wolf.bms.umist.ac.uk/mapper) UMIST
PepSeaa (195.41.108.38/PepSeaIntro.html) Protana
PeptideSearcha (www.narrador.embl-heidelberg.de/
GroupPages/PageLink/peptidesearchpage.html)

EMBL

PeptIdenta,b (www.expasy.ch/tools/peptident.html) ExPASy
ProFounda (prowl.rockefeller.edu/PROWL/prowl.html), (also 
at service.proteometrics.com/prowl/profound.html)

Rockefeller University and 
Proteometrics

Peptide sequence or peptide sequence tag query

Mascota (www.matrixscience.com) Matrix Science Ltd.
MS-Seqa (prospector.ucsf.edu) UCSF
PepSeaa (195.41.108.38/PepSeaIntro.html) Protana
PeptideSearcha (www.narrador.embl-heidelberg.de/.
GroupPages/PageLink/peptidesearchpage.html)

EMBL

TagIdenta (www.expasy.ch/tools/tagident.html) ExPASy
MS/MS ion search analysis

Mascota (www.matrixscience.com) Matrix Science Ltd.
MS-Taga (prospector.ucsf.edu) UCSF
PepFraga (prowl.rockefeller.edu/PROWL/prowl.html) Rockefeller University
Sequestc (fields.scripps.edu/sequest) Scripps Research Institute
Sonars MS/MSa (www.proteometrics.com) Proteometrics

aAvailable for data search over the Internet
bPeptIdent2 (now called SmartIdent) is a completely different tool from PeptIdent. PeptIdent2 
utilizes a rather unique approach involving a generic algorithm using a training set of protein mass 
spectra. However, it is not yet available on the publicly available ExPASy server
cSequest is commercially available through Thermo Finnigan, San Jose, CA, USA
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gaining a rapid momentum, and it is expected that by the middle of the twenty-first 
century, it will be around 10 billion which in turn leads to severe food crises all over 
the world. Moreover, due to the increasing trend in various anthropogenic activities, 
the quality of the environment gets deteriorated that pose a great threat to the global 
crop productivity, and therefore, it is the need of the hour to select such crops that 
are going to adapt and resist enormous abiotic stress conditions. Abiotic stress toler-
ance in plants is not regulated by a monogenic trait but is complex and multigenic 
in nature and involves different signaling components and therefore is more chal-
lenging to control and engineer. Thus, engineering approaches for heavy metal 
resistance involve expression of genes, whose metabolite(s) play a pivotal role in 
signaling and regulate the biosynthesis of various compounds that impart the heavy 
metal tolerance in plants. Nowadays research should be focused on signal transduc-
tion pathways induced by HMs as they can utilize common signal elements that can 
also be elicited by other environmental stresses to better understand the metal 
homeostasis. In the future, multiple stress factors will be investigated as it happens 
in real environmental conditions. An interdisciplinary approach with well-integrated 
“omics,” viz., genomics, proteomics, ionomics, metabolomics, and bioinformatics, 
is necessary to unravel the molecular mechanisms involved in HM stress; besides, it 
provides a concrete understanding of the metallo-proteome synergistic action.
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5.1  �Introduction

The statistical principles underlying design of experiments were pioneered by R. A. 
Fisher in the 1920s and 1930s at Rothamsted Experimental Station, an agricultural 
research station around 40 km north of London. Fisher had shown the way on how 
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to draw valid conclusions from field experiments where nuisance variables such as 
temperature, soil conditions, and rainfall are present. He had shown that the known 
nuisance variables usually cause systematic biases in results of experiments and the 
unknown nuisance variables usually cause random variability in the results and are 
called inherent variability or noise. He introduced the concept of analysis of vari-
ance (ANOVA) for partitioning the variation present in data due to (a) attributable 
factors and (b) chance factors. The methodologies he and his colleague Frank Yates 
developed are now widely used. No doubt, these methodologies have a profound 
impact on agricultural sciences research.

It may be emphasized in the beginning itself that experimental design is first 
about agriculture, animal science, biology, chemistry, industry, education, etc. and 
then about statistics and mathematics. In fact, experimental design forms the 
backbone of agricultural sciences; it is an integral component of every research 
endeavor in agricultural sciences. To design a good experiment, the researcher first 
needs to outline questions to be answered or needs one or more well-defined 
hypotheses.

Therefore, the application of advanced multivariate analyses and decision sup-
port tools or approaches are necessary and suggested so that researchers can better 
evaluate and present the results of different studies related to agricultural system. 
Thus the aim of this study is to provide a new support for analyses based on advanced 
multivariate approaches, concerning to the main statistical analyses used in agricul-
tural system, as well as to provide better ways to show and manipulate the data 
graphically, enhancing the publication potential of the studies.

5.2  �Methodology

 Data used in this chapter were acquired from agricultural studies with the authors’ 
authorization. For Sects. 5.4 and 5.5, we used data related to the chickpea (Cicer 
arietinum Medik) production. In this study, the authors analyzed the chickpea 
growth based on different soil treatments. The five treatments were (A) diammonium 
phosphate (DAP) half dose (12  g) + biofertilizer; (B) ammonium molybdate 
(0.236  g) + zinc sulphate (0.096  g) + biofertilizer; (C) ammonium molybdate 
(0.165  g) + zinc sulphate (0.144  g) + biofertilizer; (D) ammonium molybdate 
(0.236 g) + zinc sulphate (0.096 g); and (E) ammonium molybdate (0.165 g) + zinc 
sulphate (0.144  g). The parameters analyzed were plant height (PH) (cm), root 
length (RL) (cm), plant fresh weight (PFW) (g), plant dry weight (PDW) (g), root 
fresh weight (RFW) (g), number of flowers per plant (NoFPP), number of pods per 
plant (NoPPP), number of branches per plant (NoBPP), stem diameter (SD) (cm), 
and number of leaves per plant (NoLPP). For Sect. 5.6, we used data-related bands 
and genotypes.

All analyses and graphs elaborated were assembled in CANONO and RStudio 
3.5.1 software at a level of 5% significance. The packages and main functions used 
in R are described in each topic addressed.
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5.3  �Ordination Analyzes

Overview  Ordination techniques are used to describe relationships between 
dependent and independent variables. Principal Components Analysis (PCA) is 
one of the earliest ordination technique invented by Karl Pearson in 1901 (Dunn 
and Stearns 1987). Currently, it is mostly used as a tool in exploratory data analysis 
and for making predictive models. PCA uses a rigid rotation to derive orthogonal 
axes, which maximize the variance in the data set. Computationally, Principal 
components analysis is the basic eigen analysis technique. It maximizes the vari-
ance explained by each successive axis. The sum of the eigen values will equal the 
sum of the variance of all variables in the data set. PCA is relatively objective and 
provides a reasonable but crude indication of relationships i.e. in an indirect non-
canonical way.

Example  From PCA (Fig. 5.1), three groups, A–B, C–D, and E can be distinguished. 
These groups are separated by the analyzed characteristics of each treatment, where 
NoLPP (number of leaves per plant) and PH (plant height) seem to be the main 
factors that explain this grouping.
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Fig. 5.1  PCA showing correlation of treatments in three groups (A–B, C–D, and E) based on the 
characteristics analyzed for each treatment, where NoLPP and PH seem to have a major influence 
in this grouping. PH plant height (cm), RL root length (cm), PFW plant fresh weight (g), PDW 
plant dry weight (g), RFW root fresh weight (g), NoFPP number of flowers per plant, NoPPP 
number of pods per plant, NoBPP number of branches per plant, SD stem diameter (cm), NoLPP 
number of leaves per plant. Packages: ggfortify (Tang et al. 2016), cluster (Maechler et al. 2018); 
Functions: autoplot, clara
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5.4  �Correlograms, Heatmaps, and Scatterplot Matrix

Overview  Correlogram is a kind of correlation matrix, which shows the relation-
ship between each pair of numerical variables analyzed based on the degree of asso-
ciation. Heatmap (Fig. 5.2) is a graphical tool based on a color-coding system to 
represent the relationship between pairs of variables and calculated by dissimilarity. 
A scatterplot matrix (Fig. 5.2) is a set of scatterplots organized in a matrix or grid 
and shows the relationship between pairs of variables. Scatterplot matrix is very 
useful for exploratory data analysis, especially for linear correlation between 
multiple variables.

Example  From correlogram (Fig. 5.2, top left), it may be observed that in general 
there is a strong correlation among all parameters analyzed, except for SD. The lower 
part of the correlogram is the R2 values, the diagonal is the parameter names, and the 
upper part is pie graph showing the same relation presented in the lower part. The 
color in both lower and upper parts represents the positive and negative relationship. 
In this example, we can see that blue color shows a positive relation, red color pres-
ents a negative relation, and white color represents no relation. The heatmap shows 
the relation among the parameters through distance of dissimilarity (in our case, 
Euclidian distance). Three different clusters may be seen in the heatmap of Fig. 5.2, 
top right. The first cluster, in green, is represented by treatments A and B (see 
Methodology for differences among treatment), the second is represented by treat-
ments C and D, and the third is represented by treatment E.  Thus, from the ten 
parameters analyzed, differences among treatments may be seen, and the chickpea 
growth has been strongly influenced by soil components (see Sect. 5.5). Lastly, simi-
lar to correlogram, the scatterplot (Fig. 5.2, bottom) shows the relation between two 
variables, where we can see the absolute value (correlation coefficient – “r”) of the 
correlation between variables and the significance of the relationship discriminated 
by asterisks (∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05) on top, the bivariate scatterplots 
with fitted line on bottom, and histograms with kernel density estimation and rug 
plot on diagonal (Fig. 5.2, bottom). For instance, we can observe that SD presents a 
low correlation value with all other parameters.

5.5  �Violin and Box Plot

Overview  Box plot is a simple and standardized way to display data distribution. 
This plot is usually based on five elements: minimum, maximum, first and third 
quartile, and median. In addition, individual points can be plotted, especially if the 
data present outliers. This kind of graphic representation is very useful for analyzing 
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Fig. 5.2  Correlogram (top left), heatmap (top right), and scatterplot (bottom) of an agricultural 
data set based on chickpea (Cicer arietinum) growth in different soil moisture. PH plant height, RL 
root length, PFW plant fresh weight, PDW plant dry weight, RFW root fresh weight, NoFPP 
number of flowers per plant, NoPPP number of pods per plant, NoBPP number of branches per 
plant, SD stem diameter, NoLPP number of leaves per plant. For treatments A, B, C, D, and E, see 
Methodology. Packages: corrplot (Wei and Simko 2017), PerformanceAnalytics (Peterson and 
Carl 2018); Functions: coorplot, heatmap, chart.Correlation
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variation in samples, for example, the degree of dispersion (spread) and skewness. 
Violin plot is a combination between box plot and density plot. In addition to all box 
plot features, violin plot shows the distribution shape of the data, that is, showing 
the kernel probability density of the data at different values, similar to histograms 
(see Rosenblatt 1956). Violin plot is specifically useful to see if the data is having 
multimodal (more than one peak) distribution or where the data have points that 
are more frequent.

Example  The box plot (Fig. 5.3, left) shows variation in plant height among the 
treatments. In a general, we can observe that chickpea individuals that were seeded 
in treatments A and B were larger, with slightly higher values for treatment 
A. Similarly, plants with intermediate growth for treatments C and D and plants 
with low height for treatment E are indicated. The box plot with “notch” (Fig. 5.3, 
middle) is similar to box plot (Fig. 5.3, left), but it shows the confidence interval. 
Usually if we have overlap of notches between two groups, it means that there is no 
difference between them. Thus, comparing the treatments in Fig. 5.3 with notch, no 
differences between A and B or between C and D are obsorved. However, it may 
be assumed that there is a difference between A–B and C–D, A–B and E, and C–D 
and E. Furthermore, the violin plot (Fig. 5.3, right) shows the distribution of the data 
based on the kernel probability density. Analyzing the treatment B, we can see that 
there is no multimodal distribution of data, where most of the values are distributed 
around the median. On the other hand, treatment C, for instance, presents two peaks 
of distribution, showing a bimodal distribution.

Fig. 5.3  Box plot (left), box plot with notch (middle), and violin plot (right) of an agricultural data 
set based on chickpea (Cicer arietinum) growth in different soil moisture. PH plant height, RL root 
length, PFW plant fresh weight, PDW plant dry weight, RFW root fresh weight, NoFPP number of 
flowers per plant, NoPPP number of pods per plant, NoBPP number of branches per plant, SD 
stem diameter, NoLPP number of leaves per plant. For treatments A, B, C, D, and E, see 
Methodology. Package: ggplot2 (Wickham 2016); Function: ggplot
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5.6  �Chord Diagram and Bipartite Networks

Overview  Chord diagram is a graphical method to visualize the inter  relation-
ships between groups in a matrix, and it is very useful to see and compare connec-
tions, similarities, and differences among groups. Lines or arcs link one group to 
the other, and the width of the arc is proportional to the “importance” of the flow 
(if weighted). In a similar way, Bipartite Networks show connections (links) among 
nodes from two distinct sets and can be binary (presence/absence) or quantitative 
(weighted). In addition, different metrics (e.g., nestedness, connectance) can be 
used to evaluate the network. For this, one can use the network-level function in 
package “bipartite.”

Example  The chord diagram (Fig. 5.4, left) shows that the majority of bands pres-
ent a high number of bindings with genotypes, except B1 and B2, which have links 

Fig. 5.4  Chord diagram showing the relationship between bands (B) and genotypes (MC)
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Fig. 5.5  Bipartite network 
showing the relationship 
between bands and 
genotypes in plant species. 
B bands (orange), MC 
genotype (blue). Observe 
the decreasing order of 
bands in relation to the 
number of connections 
with the genotypes. 
Package: circlize (Gu et al. 
2014), bipartite (Dormann 
et al. 2008); Functions: 
chord diagram, plotweb

with only a few genotypes. Similarly, we can observe the same pattern of interactions 
in the bipartite network (Fig. 5.5). However, the network is more informative, since 
provides details of the decreasing order of interactions, showing the bands that have 
the greatest and the least number of interactions.
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5.7  �Hierarchical Clustering

Overview  Hierarchical clustering or hierarchical cluster analysis is an algorithm 
that clusters similar objects into specific groups. These clusters have a predeter-
mined ordering from top to bottom from distance measures, such as Euclidean 
distance.

Example  The cluster dendrogram, based on Euclidean distance (Fig. 5.6), shows 
the grouping of treatments according to the characteristics of each group. In our 
case, three groups, A–B, C–D, and E are obsorved, which are in agreement with the 
graphics made in Sect. 5.5. Thus it may be  suggested that there are differences 
between these three groups based on the Euclidean distance of the characteristics 
analyzed in the treatments.

5.8  �Final Remarks

Many research studies in agricultural systems have been developed so far. However, 
the studies did not present adequate statistical approaches or graphical methods 
that explain and better represent the results obtained. This directly influences the 
visualization and dissemination of the works, and limits the scope and visibility of 

Cluster Dendrogram
Euclidean Distance
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Fig. 5.6  Cluster dendrogram showing the grouping of treatments according to the characteristics 
of each group. Groups of different colors differ by the Euclidean distance applied in the analyzed 
characteristics of each treatment (see Sect. 5.5). Package: cluster (Maechler et al. 2018), factoextra 
(Kassambara and Mundt 2017); Functions: dist, hclust, fviz_dend
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valuable contributions in magazines of high impact and potential. Therefore, the 
application of advanced statistical approaches is necessary and suggested so that 
researchers can better evaluate and present the results of different studies related to 
the agricultural system.
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6.1  �Introduction

The fundamental feature of DNA and protein molecules is that they can be organized 
in the form of digital symbols and digitally stored as a data (De Silva and Ganegoda 
2016). Nucleotides (adenine, guanine, thymine, and cytosine) and amino acids 
(tyrosine, glycine, histidine, lysine, etc.) are distinct, although chemically modified 
sometimes (Akhtar et al. 2017). Scientists are continuously stepping up their efforts 
to understand the genetic or biological processes that are connected clinically with 
the initiation and progression of various diseases. There is a flood of genomic and 
protein sequence data, which provides a clue on various biological processes, 
protein interactions, and disease paths. Thus, exploiting these sequence data can 
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benefit from gaining new understanding. However, for clinical applications, the 
possible complications of digital data analysis have to be overcome. Biologists 
encounter some of the practical challenges, including data handling, data comput-
ing, and integrating different data resources, in the present genomic age. Therefore, 
experimentally determined sequences in principle have complete certainty. As a 
result, there is no limit of uncertainty associated with the efficiency of measure-
ment. If we have enough economic resources, the nucleotide sequence in genomic 
DNA and the associated amino acid sequences can be revealed completely. However, 
in genomic projects that carry out large-scale sequencing, the purpose, relevance, 
ethics, and economics decide the quality of data. In this chapter, the fundamental 
aspects of database annotation quality, database redundancy, genomics diversity, 
and gene contents are discussed. The information will enable biologists and clinical 
experts to make a significant interpretation of a wide range of heterogeneous data 
for pharmaceutical applications.

6.2  �Database Annotation Quality

The sequencing is the process of determining the accurate order of nucleotide bases 
such as A, G, C, and T in the strand of the DNA molecule. It is used to determine the 
sequence of individual genes, full chromosomes, or entire genomes of an organism. 
Although a lot of sequence data are determined for a range of different individuals 
accurately, all are not accessible to the researcher because of incorrect interpretation 
of experiments or incorrect handling and storage of public databases. The various 
reasons are as follows: (i) public databases are curetted by highly diverse people; (ii) 
they are annotated by highly diverse people; (iii) error rate of subsequent handling 
is more; (iv) there is some amount of experimental error; and (v) the way sequence 
or any biological data is stored in various biological databases.

A nucleus of plant cells and human brain both are supposed to handle a large 
amount of data accumulated throughout the life cycle of individual organisms, and 
the information is recalled by the content-addressable system, but the computers do 
not work in this fashion. A computer searches an address passport by name, profes-
sion, or hair color and needs perfect spelling. In contrast, a biological sequence 
search algorithm often has to use a fuzzy representation of its content. This is rep-
resented by numbers that indicate positions. A numeric representation cannot be 
reviewed by visual inspection. In sequence databases, the result is junk and random 
noise. It would mess up coding and noncoding regions, and the bioinformaticians 
should only take into account these potential sources of errors.

6.3  �Database Redundancy

The most important problem in the biological data application is database 
redundancy. Many entries in DNA and protein databases represent members of 
the same family or versions of homologous genes found in different organisms. 
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Several groups might have submitted the same sequence. Annotation of the similar 
sequences would show close to identical results, but there may be significant differ-
ences between species and tissues. Redundancy may also result from different 
experimental approaches. In the same gene, this may produce variation. In a large 
part of c-DNA splicing, the spliced form of pre-mRNA means that genes are under-
going alternate splicing. A given piece of DNA may be associated with several 
c-DNA, which would lead to sequence discontinuous with genomic DNA.  As a 
result, there would be different ways of joining the coding and noncoding regions. 
Data redundancy plays a nontrivial role in massive parallel gene expression. The 
sequence of genes being spotted on glass plates or synthesized on DNA chip is typi-
cally based on the sequences or clusters deposited in databases. Microarray would 
end up in sequences more than the number of genes.

Biological data may also represent protein sequences. It is possible that protein 
sequence may not directly correlate with genomic wild-type sequence due to modi-
fications or requirement for crystallization. A redundant data set may result in (i) 
biased statistical analysis and (ii) correlation between different positions, which 
may be an artifact of biased sampling. Predictions or calibrations of too closely 
related data sets may be wrong. However, one should be very careful in attempting 
to discard valuable information of too closely related sequences. One way to avoid 
redundancy is to give weightage based on novelty. Another way is to develop a 
sequence profile, i.e., position-by-position amino acid variation.

6.4  �Genomes: Diversity, Size, and Structure

Genome differs in size and storage principle (DNA or RNA) and may be single- or 
double- stranded. Cellular genomes are made up of DNA, while phage and viruses 
may be single- or double-stranded DNA or RNA. Bacteriophage Φ × 174 was the 
first genome to be sequenced, having 5386 base pairs (Table 6.1). Small genomes 
usually come in one piece. However, archaean Methanocaldococcus jannaschii 
completed in 1996 has several chromosomes. In chimpanzees, there are 23 chromo-
somes in addition to the 2 sex chromosomes. Similarly, cauliflower mosaic virus has 
7 genes and the yeast has 5800 genes.

6.5  �Gene Content in Genomes

Genes are one or several segments that constitute expressed units. It is revealed 
from the human genome project that the number of genes is quite small (30,000). 
The fruit fly has 14,000 genes. The mass of nuclear DNA in the haploid genome is 
called a C-value. The number of bases in gene bank for a most sequenced organism 
is tabulated in table form (Table 6.2). The chromosomal sizes do not appear as the 
original order of chromosomes. The total reference human genome sequence seems 
to contain 11,953,879,540 base pairs, while the numbers of sequence bases are 
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1,780,527,217 and 1,171,720,224 for maize and rice plants, respectively. However, 
it is estimated as 648,235,477 bases for Arabidopsis thaliana.

6.6  �Protein and Proteomics

At the level of protein, large-scale analysis of complete genome is known as proteome 
analysis. It is the total protein expression as a number of chromosomes in multicellular 
organisms. It may change with the cell type and time. The protein undergoes 
glycosylation and phosphorylation. There are many other types of posttranslational 
modifications such as addition of fatty acids and cleavage of signal peptides in the 
N-terminal of secretory proteins. These are experimentally determined examples 
which are deposited in public databases. The prediction of posttranslational 
modifications in proteins is an area of interest for bioinformaticians.

Table 6.1  Estimated number 
of genes and genome sizes in 
different organisms

Organisms Genes
Genome size 
(in Mbp)

Bacillus subtilis 3700 4.200
Bacteriophage 270 0.166
Cauliflower mosaic virus 7 0.008
Escherichia coli 4243 4.600
HIV type 2 9 0.009
Homo sapiens 30,000–40,000 3100
Methanocaldococcus jannaschii 1729 1.66
Mycoplasma genitalium 477 0.580
Mycoplasma pneumoniae 716 0.820
Mus musculus 30,000 3300
Myxococcus xanthus 7311 9.100
Saccharomyces cerevisiae 5800 12.10

Table 6.2  Number of bases 
in gene bank for the most 
sequenced organisms

Species Number of bases Number of entries

Arabidopsis thaliana 648,235,477 9,81,930
Brassica oleracea 404,132,383 5,96,255
Gallus gallus 684,548,519 7,87,971
Homo sapiens 11,953,879,540 98,99,176
Macaca mulatta 434,454,818 68,350
Medicago truncatula 420,276,295 3,87,953
Mus musculus 7,917,536,708 66,25,240
Oryza sativa 1,171,720,224 3,57,923
Sorghum bicolor 463,997,658 7,84,734
Triticum aestivum 349,010,415 6,12,712
Xenopus tropicalis 954,916,818 11,79,107
Zea mays 1,780,527,217 26,78,230
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6.7  �Protein Length, Distribution, and Function

Statistical analysis plays a vital role in the evolution of protein sequences, especially 
the local and nonrandom patterns. By using the data on soluble proteins, one can 
formulate 10,112 natural sequences with 100 amino acids. The functional aspect is 
determined mainly by local characteristics. It does not depend critically on the 
structure maintained in long-range order. Functionally identical proteins are evolu-
tionary related or homologous and have similar folds. A typical example is serine 
proteases (Geer 1981). However, it is possible to conserve the function when the 
sequence is not evolutionary related, e.g., transaldolase fructose-1,6-bisphosphate 
aldolase, urease catalytic domain, and phosphotriesterase. Enterotoxin and chlorera 
toxins are closely homologous. The fold is similar to TSS toxins, which is remote 
homology. However, aminoacyl tRNA synthetase has the same fold, but 4.4% 
homology is not understood (Russell et al. 1997).

6.8  �Conclusions and Future Prospects

The exploitation of genomic and proteomic data sequence benefited us in multiple 
ways. The clinical observations of these digital data analysis have solved the chal-
lenges, including data handling and computing and integration. The experimentally 
determined sequences have complete certainty and efficiency in data measurement. 
Therefore, the future researchers will be more focused on the large-scale sequencing, 
relevance, ethics, and quality of data.
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7.1  �Introduction

Plant metabolomics is a relatively new and emerging field in parallel with advances 
in genomics, transcriptomics, epigenomics, proteomics, and phenomics. In an era of 
these rapidly evolving “omics” fields, crop metabolomics was among the list of 
neglected domains particularly for agronomic trait mapping and selection of plants 
(Parry and Hawksford 2012; Kumar et al. 2017).

Plant metabolites are complex in nature and have huge diversity, varying in num-
ber from 200,000 to 1,000,000 (Fiehn 2002; Saito and Matsuda 2010; Afendi et al. 
2012). However, only a small percentage of diversity is known; among 350,000 
plant species, only 15% have been characterized for their chemical/biochemical 
signatures (Cragg and Newman 2013). Yet, this metabolomics potential could be 
beneficial to decipher complex and superior traits for plant breeding (Hegeman 
et al. 2010; Zivy et al. 2015).

Collaborative efforts among the international plant metabolomics scientific com-
munity were boosted after an “International Plant Metabolomics Congress” held in 
2002, at Wageningen, the Netherlands. A website (www.metabolomics.nl) was 
developed for access of abstracts and papers and is still functional for future col-
laborations and updates in plant metabolomics. Since then, many databases, tools, 
and web servers are available with the help of in silico efforts, for metabolomics 
analysis (Fukushima and Kusano 2013). Bioinformatics is playing a central role in 
system biology approaches, since computer-aided data systems were already inte-
grated with mass spectrometers in the 1970s (Meier et al. 2017). Thereafter, rapid 
advances led to coupling of digital mass spectra with MS instruments (such as GC 
or LC) for fine separation of small molecules. The most significant task for any 
metabolomics experiment is interpretation of biological data to gain meaningful 
information about metabolites (Johnson and Lange 2015). Computational metabo-
lomics is becoming popular with involvement of bioinformatics tools for carrying 
out statistical analyses and designing tools for aid in data processing to speed up 
workflow, developing metabolomics platforms and databases. 

Computer-aided identification, screening and minimizing feature redundancy, 
workflow automation, meta-analysis for deconvulation of feature list, and mapping 
of identified metabolites on their pathways are the major tasks of computational 
metabolomics at present. They are extending and becoming more complex but more 
comprehensive with generation of huge amounts of data from various “omics” plat-
forms (Wanichthanarak et al. 2015; Wen et al. 2018). Various analytical platforms 
are being used for analysis of metabolites, giving choices for metabolite target anal-
ysis to metabolome profiling, and can cover both known and unknown metabolites 
(Dettmer et al. 2007; Zhang et al. 2012; Jorge et al. 2016). However, single experi-
ment cannot uncover the complete metabolic composition of a plant sample. 
Integrated strategies from sample preparation to its quantitation coupled with other 
“omics” are the key to unlock this complex world.

Recent advances in analytical and computational tools for metabolomics as well 
as computational tools developed for integration of metabolomic with other omics 
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(particularly genomics) are discussed in the present chapter. In addition, we discuss 
their importance in model as well as cultivated crop species, and we also highlight 
the challenges and future prospectives of present-day agricultural metabolomics.

7.2  �Plant Metabolites and Their Types

Plants have been used as sources of food and medicine since the beginning of civi-
lization. These nutritional and medicinal properties are due to the presence of a wide 
variety of compounds which are known as metabolites (Gupta et al. 2017). Plants 
are sedentary organisms and are constantly interacting with a huge variety of poten-
tially detrimental abiotic and biotic factors in their habitat. Hence, complex defense 
mechanisms are needed for their survival within the ecosystem. Among these 
mechanisms is their inherent immune system which is a type of chemical defense 
to cope with the hostile environmental conditions. This innate system of defense, 
which is of adaptive significance for the plants to survive in diverse ecological 
niches, creates a rich repertoire of complex compounds called metabolites (Ncube 
and Staden 2015).

Metabolites are the by-products of metabolism and occur naturally within the 
cells and are the products of enzyme-catalyzed reactions. For a compound to be 
classified as a metabolite, it must meet some specific criteria. These criteria include 
the following: (a) the compound must be present inside the cell, (b) it can be fol-
lowed up by the enzymes to enter further reactions, and (c) it must assist some 
beneficial biological reactions taking place inside cells (Herwig and Ludwig-
Muller 2014).

Enzyme-catalyzed reactions known as metabolic pathways result in these small, 
organic compounds, naturally found in plants (Edward 2014). Metabolites can be 
primary or secondary depending on their function inside the plant. Primary metabo-
lites are crucial for essential plant functions such as growth and development, while 
secondary metabolites have specific functions (Paupière et al. 2014; Kumar et al. 
2015). These are the compounds that help in the interaction of plants with other 
organisms. These include plant-pollinator, plant-pathogen, plant-herbivore interac-
tions, etc. One of the best properties of metabolites is that they have a limited survival 
in the cell and they do not accumulate in the cell.

7.2.1  �Primary Metabolites

These are the heavy-molecular-weight compounds which include metabolites, such 
as lipids, carbohydrates, proteins, amino acids and nucleic acids, which are synthe-
sized by the cell via central metabolisms such as glycolysis, Kreb’s cycle, and Kelvin 
cycle. In plants, these are results of essential metabolic pathways and so are termed 
as essential metabolites (Caretto et al. 2015).
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Primary metabolites are important for plant survival as they are directly involved 
in normal growth, development, and reproduction. They also play an important role 
in normal physiological processes, synthesis assimilation, and degradation of 
organic compounds (Aharoni and Galili 2011; Wurtzel and Kutchan 2016).

 Although primary metabolites are generally extracted using methanol-water-
based solutions, various precautions are necessary to avoid possible artifacts. 
Contamination with natural metabolites of biological systems and storage tempera-
ture of extracted metabolites before their measurement are the two critical factors to 
consider for accurate measurements (Sauerschnig et al. 2018).

7.2.2  �Secondary Metabolites

Secondary metabolites are biosynthetically derived from primary metabolites 
(Fig. 7.1) and are beneficial for plants in various aspects such as defense chemicals 
and detoxifying agents (Ncube and Staden 2015; Shitan 2016). Secondary metabo-
lites are gaining attention as potential sources of beneficial contributors for cure of 
various diseases in humans as well (Chandra et al. 2017). Examples include alka-
loids found in the plants of family Amaryllidaceae, e.g., galanthamine, which not 
only exhibit antimalarial, antitumor, antiviral, and immune-stimulatory activities 
but also could help in the cure of Alzheimer’s disease (Conforti et al. 2010; Castillo-
Ordóñez et al. 2017).

In spite of their importance in plants for several benefits, their participation in 
normal plant growth/development is limited to specific taxonomic groups (Noel 
et al. 2005; Ncube et al. 2012). More importantly they not only regulate communi-
cation between plants and their biotic or abiotic environment but also arbitrate many 
physiological aspects of growth and development, reproduction, and symbiosis and 
are also important constituents of secondary cell walls in the form of lignin (Brown 
et al. 2001). They are produced by pathways that are not common (unlike primary 

Fig. 7.1  Metabolite synthesis: primary to secondary metabolite production
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metabolites) to all plants and have a limited survival in the cell, being not only specific 
to plant species but also specific to a plant developmental stage.

Interestingly, secondary metabolites are diverse in their structure, but their syn-
thesis is carried out by the primary metabolism products, which are conserved in 
plant species. Immense research in biochemistry, molecular biology, and genomics 
elucidates that the diversification in the few central intermediates is the cause of 
secondary metabolites specificity at various levels. It involves the diversification of 
enzymatic pathways and enzyme families from substrate to products (Hartmann 
et al. 2005; Ncube et al. 2012). Synthesis of secondary metabolites also needs many 
transcriptional factors which are involved in the activation and concurrent expres-
sion of primary metabolism pathway genes. For example, in Arabidopsis thaliana, 
the regulation of glucosinolate biosynthesis needs not only the metabolic space but 
also the metabolic network from the primary metabolism. By the overexpression of 
two clades of genes such as ATR1-like and MYB28-like genes, the regulation of 
aliphatic and indole glucosinolate biosynthesis pathways is carried out, and as a 
result, the induced genes carried out assimilation of sulfur but also induce the for-
mation of both glucosinolate molecules (Malitsky et al. 2008). These metabolites 
are grouped into three classes based on their structures and biosynthetic origins; 
these include terpenoids, phenolics, and alkaloids.

7.3  �Metabolomics

Metabolomics is a term that is used for the quantification and identification of small 
molecules known as metabolites of the biological organization such as cells, tissues, 
organs, organic fluids, and organisms at a certain period of time (Daviss and Bennett 
2005). Metabolites are the end products of metabolism; more precisely any molecule 
whose size is less than 1 kDa comes under this category (Samuelsson and Larsson 
2008). The interaction of these metabolites with a biological system is known as 
metabolome (Jordan et al. 2009). To measure the whole metabolome with a single 
extraction and analytical tool is difficult because of the diverse nature of these mol-
ecules. The extraction method and analytical tools used in metabolomics, depends 
mainly on research objectives (Last et  al. 2007). General experimental procedure 
used in plant metabolomics is illustrated in Fig. 7.2. Consequently analytical strate-
gies could be (1) metabolic profiling (nontargeted or also called metabolomics), (2) 
metabolite target analysis (targeted), and (3) metabolite fingerprinting (Fiehn 2001; 
Nielsen and Oliver 2005; Patti et al. 2012).

7.3.1  �Metabolic Profiling (Nontargeted Metabolomics)

This approach aims to identify as many metabolites as possible to conduct compara-
tive analyses among related predefined groups such as amino acids, carbohydrates, 
organic acids, etc. The nontargeted metabolomics provides a complete examination 
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of all the quantifiable analytes in a sample, including those that are novel (Daskalchuk 
et al. 2006). For unknown/novel metabolites, different experiments can be carried 
out with functional assays to check the novel metabolite for its biological activity 
and role, and finally addition to a database (Vinayavekhin and Saghatelian 2010).

Due to the inclusive nature of nontargeted metabolomics, this approach must be 
combined with some advanced techniques such as the examination of multivariate 
in order to divide the wide sets of data produced into smaller sets of convenient 
signals. Annotations such as in silico libraries or experimental studies are required 
with these manageable signals for the identification of metabolites. In addition this 
system could also help in fast processing of data, which indeed is a big challenge for 
this approach (Roberts et al. 2012).

7.3.2  �Metabolite Target Analysis (Targeted Metabolomics)

Targeted metabolomics is a method in which a class of known metabolites is quanti-
fied. These methods need precision, rapid throughput, and consistency. Through the 
procedure of internal standards, examination can be assumed in a quantifiable or 
semi-quantifiable way. This method takes advantage of the complete understanding 
of a massive collection of metabolic enzymes, the kinetics of these metabolic 
enzymes, the end products of these enzymes, as well as the biological pathways 
that are known for these enzymes to which they contribute. When using targeted 
metabolomics, the preparation of sample needs to be optimized, in order to reduce 
the supremacy of high-abundance metabolites, as all the examined species will 
evidently be demarcated and rational archaeology will not be passed through to 
downstream examination (Roberts et al. 2012).

Fig. 7.2  Metabolomics workflow for high-throughput data analysis
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The key point which can lead to experimental accomplishment in targeted 
metabolomics is analytical reproducibility. If analytical reproducibility is high, 
results can be considered as due to certain biological alterations. It also reduces the 
number of experimental replicates necessary (Zhou et al. 2016).

The two most important advantages of targeted metabolomics are:

•	 An approach that can be used to examine very large sets of samples, reducing the 
time necessary for the study.

•	 The exact identity of each molecule is determined with the aid of multiple reac-
tion monitoring (MRM) examination. These kinds of MS examinations are made 
with the assistance of a tool called as triple quadrupole (George 2005).

7.3.3  �Metabolic Fingerprinting

This approach does not intend to quantify individual metabolites but rather to pro-
vide a broadscale comparison of results. This conceptual procedure requires a fin-
gerprint of all measureable chemicals which are necessary for comparison of 
samples and for differentiation analysis. For optimal data acquisition, many instru-
ments (see Sect. 7.7) are in use depending on experimental strategy (Krishnan et al. 
2005; Scott et al. 2010).

At present, with advancement of technology, a huge amount of data is available 
in data banks. Previously, in the 1990s, Henry Nix’s famous statement depicted the 
situation as below (Nix 1990):

Data does not equal information; information does not equal knowledge; and, most impor-
tantly of all, knowledge does not equal wisdom. We have oceans of data, rivers of informa-
tion, small puddles of knowledge, and the odd drop of wisdom.

This challenge is becoming more and more serious day by day. Metabolomics is 
also facing the similar challenge of making sense of data produced from metabolo-
mics centers. If we compare the above three strategies, targeted metabolomics is 
less challenging since metabolites are preselected, have high detection rate (as they 
are known), and are easy to quantify (Sawada and Hirai 2013; Mahdavi et al. 2015). 
For quantification, we can use either standard solutions for external calibration or 
internal standards for internal calibration. On the contrary, as untargeted metabolo-
mics deals with both known and unknown metabolites, data operation is more com-
plex and requires statistical and bioinformatics tools (see Sects. 7.5 and 7.6) to make 
the process less intensive, less time-consuming, and more efficient compared to 
manual data handling.

7.4  �Environmental Metabolomics

Environmental metabolomics is also one of the emerging applications of metabolo-
mics to study the interactions of organisms with their environment. This approach 
also helps in assessing the function and health of an organism at the molecular level 
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(Bundy et al. 2008). Metabolomics also have the wide range of applications in the 
environmental sciences, ranging from considerate response of organisms to abiotic 
stresses, in order to examine the responses of organisms to other biota (Bundy et al. 
2008; Jorge et al. 2016). This approach is attained by determining the numerous 
small molecules within an organism, cell, tissue, or fluid, which can give the 
researchers a complete picture of their efficient metabolic phenotype (Viant 2008).

Environmental science is considered as an “easygoing” science as these studies 
are being accompanied with the most innovative instruments that are available now-
adays. During the past few decades, research on environmental metabolomics has 
been carried out on a number of species, including freshwater and sea fishes and 
various  species of aquatic and terrestrial invertebrates, as well as on plants and 
microorganisms. This approach has covered ideal or non-ideal organisms as well as 
the research laboratory and the field-based examinations.

7.5  �Plant Metabolome Data Processing

7.5.1  �Metabolomics Databases

A database is the collection of interrelated information or data on a specified subject 
that are stored in an organized way. Generally, a database is accessed and analyzed 
by the end users through a computer software application termed as database man-
agement system (DBMS). DBMS offers various features and functionalities that 
help in the administration and control of database such as creation, modification, 
and deletion of information, leading to an easy access and efficient data retrieval 
scheme for further analysis by a program. Some of the computer languages for 
DBMS include Oracle, MySQL, dBase, FoxPro, MS Access, etc.

A good database plays a key role in the improvement of all aspects of modern 
life. A database for science and education has a great impact on business as well. 
Understanding and extraction of useful information from the enormous amount of 
data produced by advanced technologies in the field of metabolomics necessitates 
the development of metabolomics databases. Below are few available metabolomics 
databases that help in metabolomics research:

•	 Plantmetabolomics.org
Data related to plant metabolomics can be easily searched, visualized, and down-
loaded via the Plantmetabolomics.org web portal and database. This database 
assimilates data collected from multiple platforms and laboratories along with 
their comparative analysis using visualization tools. Each metabolite in 
Plantmetabolomics.org is associated with relevant experimental data from mul-
tiple annotation databases. Furthermore, this web portal also provides detailed 
tutorials on plant metabolomics experiments (Bais et al. 2010).
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•	 Plant Metabolome Database (PMDB)
Secondary metabolites of plants in 3D structures, available on other structural 
databases, are integrated in Plant Metabolome Database. It has a user-friendly 
interface along with integration of JME editor for visualization of metabolites in 
graphical as well as documented formats. PMDB also contains internal and 
external links to various relevant databases, i.e., KEGG, PubChem, and CAS 
Number (Udayakumar et al. 2012).

•	 KEGG Pathways
One of the most popular and widely used databases, containing metabolic path-
ways from an extensive range of organisms, is known as KEGG (Kyoto 
Encyclopedia of Genes and Genomes). These pathways are hyperlinked to 
metabolite and protein/enzyme information (Kanehisa and Goto 2000).

•	 KNApSAcK
KNApSAcK is a compound database that represents the correlation of metabo-
lites with taxonomic information of different species. This database integrates 
information of reported metabolites from various organisms, particularly focus-
ing on plants (Afendi et al. 2012).

•	 Plant Metabolic Network (PMN)
Plant Metabolic Network (PMN) comprehensively integrates individual spe-
cies-/taxon-specific databases which comprise of enzyme, pathways, and other 
information. PlantCyc database is one of the PMN’s databases that indexes com-
putationally prophesied and experimentally supported metabolic pathways and 
enzymes in over 350 plant species. The website can be accessed at https://www.
plantcyc.org.

•	 METLIN
METLIN is a comprehensive high-resolution tandem mass spectrometry (MS/
MS) database which integrates over a million compounds including plant and 
bacteria metabolites as well as steroids, lipids, carbohydrates, central carbon 
metabolites, small peptides, and toxicants. Empirical and in silico MS/MS data 
has been calculated by the individual analysis of each metabolite and small mol-
ecules. This database also provides the facility of multiple searching options like 
batch, precursor ion, mass, or fragment searches (Smith et al. 2005).

•	 NMR Metabolomics Database of Linkoping (NMR-MDL)
NMR-MDL (Metabolomics Database of Linkoping) is a freely accessible data 
repository that is devoted to the omics of small biomolecules. Metabolites that 
portray the primary cellular metabolism in various animals, plants, fungi, etc. 
comprise of the major part of this database. However, some of the metabolites 
that depict secondary cellular metabolism are also included in minority. 
Moreover, NMR-MDL also facilitates its users to access NMR parameters of 
metabolites particularly in aqueous phase (Lundberg et al. 2005).

•	 Madison-Qingdao Metabolomics Consortium Database (MMCD)
Madison-Qingdao Metabolomics Consortium Database (MMCD) integrates 
metabolites from various biological samples that are identified and quantified 
using NMR and MS approaches. It also gathers information concerning small 
molecules of interest from scientific literature and other databases. The information 
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for each metabolite in MMCD is described in 50 separate data fields, i.e., chemical 
formula, synonyms, structure, NMR and MS data, physical and chemical proper-
ties, etc. Links to other databases like KEGG and PubChem are also present on 
this platform (Cui et al. 2008).

•	 Bio-MassBank and MassBank
This depository encompasses a mass spectrum of identified as well as unidenti-
fied metabolites from plant and microbial samples through LC-MS, GC-MS, and 
CE-MS analyses. The metabolites identified could help to discover the existence 
of unidentified metabolites. Currently Bio-MassBank indexes approximately 
664 entries from Arabidopsis leaf and 636 entries of Lotus japonicus flower, 
analyzed by LC-MS and MS/MS, respectively (Horai et al. 2010).

•	 KomicMarket (Kazusa Omics Data Market)
Annotations of metabolite peaks detected by mass spectrometers are cited in the 
KomicMarket database. These peaks were obtained from high-resolution liquid 
chromatography MS.  Until 2013, 75 samples from 10 plant species and 215 
other standard chemicals were reported to be stated in this database (Iijima et al. 
2008).

•	 MassBase
MassBase is another database where experimentally known or predicted peaks 
found in biological samples are detailed. The database is also linked to other 
databases MassBank and KNApSAcK. The website of database is accessible at 
http://webs2.kazusa.or.jp/massbase.

•	 Metabolome Activity DB
This database includes data about the activity of metabolites, i.e., how they may 
affect other organisms. The data describes affected organisms and the mode of 
action of metabolites in these organisms. The website of database is accessible at 
http://kanaya.naist.jp/MetaboliteActivity/top.jsp.

•	 Metabolomics.jp
Metabolomics data is maintained and curated in the Metabolomics.jp database 
by Arita Lab at the University of Tokyo. This web portal contains the databases 
comprising data related to drugs, basic metabolites, flavonoids, and plant taxa. 
The wiki is accessible at http://metabolomics.jp/wiki/Main_Page.

•	 ReSpect
ReSpect is a plant metabolite-specific MS2 database. All the spectral records in 
this database are annotated with taxonomic information, i.e., from where that 
metabolite was extracted and to which structural class it belongs (Sawada et al. 
2012).

•	 ChemDP
ChemDP is a natural product-based chemical database of Pakistan that contains 
high-quality 3D structure of plant metabolites isolated and elucidated from 
X-ray, NMR, MS, and other techniques. The database offers ready-to-use struc-
tures in various file formats for computational docking and simulation studies. 
The database currently contains over 1000 compounds along with their reported 
bioassay data (Mirza et al. 2015).
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7.6  �Data Handling

Metabolomics is an extensive study of metabolite profiling, with the following work-
flow: sample preparation, data processing and pre-treatment, data analysis, metabolite 
identification, and interpretation of the data generated (Defernez and Le Gall 2013). A 
colossal range of data is produced by metabolomic experiments; therefore, handling 
and analyzing the data have a huge impact on the identification and quantification of 
particular metabolites (Boccard et al. 2010). In this topic, strategies for handling and 
analyzing metabolomic data are discussed as given in Fig. 7.3.

7.6.1  �Data Processing and Pre-treatment

The phrase “garbage-in, garbage-out” is more relevant to the era of undeniably 
advanced digital and computer technology, where the fast and powerful computers 
can produce a large amount of erroneous data or information in a short period of 

Fig. 7.3  Schematic representation of steps involved in metabolomics data processing and methods 
used in data analysis
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time due to flawed input or inexperienced technologists. Therefore, the data pre-
treatment or preprocessing is fundamentally the most important step in data mining 
and data analysis. The following are some methods that are used in pre-treatment of 
raw data for metabolomics profiling:

•	 Data Format Conversion
File format conversion of collected raw data is the initial step in data processing. 
Commonly, the mass spectrometry (MS) vendor-dependent binary format is con-
verted into other common formats that enable independent software and operat-
ing systems to carry out processing. Hyphenated mass spectrometry-based data 
is commonly saved in NetCDF and mzXML file formats. These common formats 
allow mutual sharing of data among laboratories. Owing to advances in resolu-
tion and throughput of MS data, the resulting data production has increased 
exponentially, causing difficulty in handling such enormous datasets. The easiest 
way to reduce data size is to apply irreversible filtering methods that remove 
small intensity peaks and compressions, as applied in open-source software for 
mass spectrometry data processing like mzMine and mzMine2; however, it 
comes with a severe shortcoming of distorting data analysis. Some other MS 
data analysis software like Mass++ facilitate direct import of binary files pro-
vided by MS vendors into the software; however, these are vulnerable to access 
binary data files from application programming interface (API). Moreover, 
most of the hyphenated MS binary data files, e.g., .wiff files or .D formats, 
contain mass spectra data, and if the points in the mass spectra are not unique 
on the chromatograph, then this kind of data structure takes much longer to 
yield a chromatograph or electropherogram. However, despite a trade-off 
between quick data access and accessibility of a standard file format, there is a 
need for development of standardized file formats without the limitation of quick 
access (Sugimoto et al. 2012).

•	 Feature Detection
Feature or peak detection is one of the important steps in data processing. The 
main objective of peak detection is to diminish false positive detection and to 
provide precise quantitative information of ion concentrations. True signals can 
be distinguished from noise in three following ways. In the first technique, the 
independent peak detection is carried out in two directions, namely, mass-to-
charge ratio (m/z) and retention time. This method sets a threshold level in both 
directions based on all intensity values along the vector, and data points above 
the threshold level are called peaks. The second approach involves the examina-
tion of single ion chromatograms, where each chromatogram covers a small 
range of m/z; thus the problem of searching peaks in m/z direction is reduced. A 
threshold level of these chromatograms can be calculated based on mean or 
median of the chromatogram or by applying a Gaussian filter. The third way for 
feature detection is model fitting of a three-dimensional standard isotope to the 
raw signal followed by removing noise from the real signals. Background reduc-
tion of false peaks is conducted by repeated iterations of this procedure. Detection 
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of entire isotope model pattern instead of single peaks can reduce the detection 
of false positive peaks (Katajamaa and Orešič 2007; Boccard et al. 2010).

•	 Alignment
The key procedure of data processing is the alignment of multiple datasets in 
both m/z and retention time dimensions to combine outputs. The purpose of 
alignment is to diminish migration shifts among datasets. For this purpose, mul-
tiple alignment techniques have been established (Sugimoto et  al. 2012). 
Migration shifts along m/z axis are relatively easily reduced using advanced 
chromatographic techniques; however, minimizing shifts in retention times are 
more challenging. The alignment of algorithmic techniques requires a reference 
chromatogram to reduce retention time shifts. Several problems need to be 
addressed while performing reducing shifts. For instance, the choice of a refer-
ence chromatogram is of utmost importance, as it has a great impact on the 
results. Moreover, chemical selectivity must be preserved among samples of dif-
ferent composition, and it is expected that peaks should be shifted by reduced 
distance among adjacent peaks. Additionally, alignment algorithms need to be 
fast enough to align large datasets rapidly, without affecting the resultant quality 
of output.

Generally, three approaches are used to align multiple chromatograms. The 
simplest approach introduces the binning of false data along the chromatographic 
dimension. In this way, none of the information is compromised, and all the false 
peaks or errors are summed back toward the boundaries. The second technique is 
automatic and needs minimal manual work. In this method, alignment is carried 
out by stretching the retention time axis of all samples to a standard reference. 
This approach is one of the most investigated alignment approaches (Boccard 
et al. 2010). Additionally, various warping algorithms are used as alternatives of 
this method, but two algorithms were initially established, i.e., “Time Correlation 
Optimized Warping” and “Dynamic Time Warping” (Nielsen et  al. 1998; 
Pravdova et al. 2002). The Time Correlation Optimized Warping (COW) works 
by dividing chromatograms into smaller segments and increasing the correlation 
coefficient between reference and sample chromatograph by shifting each seg-
ment. In contrast, Dynamic Time Warping (DTW) detects matching peaks among 
multiple sample chromatographs. Previously, this algorithm was used for homol-
ogy searching of genes and genomes. Unfortunately, both of these algorithms 
have a limitation, as they are only applicable to smaller datasets because they 
consume a great deal of time in aligning larger datasets (Sugimoto et al. 2012). 
Furthermore, detection of signals using curve resolution technique is another 
solution for matching corresponding peaks among samples. Various algorithms 
like GENTLE (Shen et al. 2001), MEND (Andreev et al. 2003), and progressive 
clustering (De Souza et al. 2006) are available to detect and rearrange the corre-
sponding peaks of different samples by the use of time and mass/charge toler-
ance. Components with high spectral similarity can be matched for the 
assimilation of similar peaks (Boccard et al. 2010).
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•	 Normalization/Scaling
Normalization or scaling is an indispensable step, as it removes the unwanted 
systemic bias while upholding biological variation among datasets. It is a rela-
tively challenging task due to chemical diversity of complex data, leading to 
incongruities in the ionization productivities. Deviation in signal strengths due to 
measurement errors must also be eliminated. Two strategies are commonly appli-
cable for normalization of metabolomics data. Statistical models symbolize sim-
ple methods to evaluate scaling factors among metabolomics samples, i.e., 
scaling by unit norm or median intensities. The second mode to perform normal-
ization is the addition of a set of internal (added to sample before extraction) and 
external (added to sample after extraction) standards that are based on specific 
regions of retention time (Katajamaa and Orešič 2007; Boccard et al. 2010).

•	 Quality Control
Various algorithms and techniques have been developed for data processing and 
alignment. However, the selection of best algorithm is a difficult task. Therefore, 
quality control performs comparison tests to check the output of each algorithm. 
In a study, the feature detection algorithm for high-resolution LC-MS datasets, 
centWave, was compared with filters employed in XCMS and MZmine software, 
and the results indicated that the peaks obtained from these software did not 
overlap; rather some peaks were only detected by one software. Similarly, the 
alignment of LC-MS data was conducted on four different software, namely, 
XCMS (Smith et al. 2006), MZmine (Katajamaa et al. 2006), msInspect (Bellew 
et al. 2006), and OpenMS (Bertsch et al. 2011), and it was observed that no single 
software produced perfect alignment of the data. Therefore, several means are 
required to improve output quality. One of the solutions to improve performance 
is to develop an iterative framework with machine learning technology that 
would allow improvement of parameters to generate high-throughput results 
(Sugimoto et al. 2012).

7.6.2  �Data Analysis

When the data matrix along with peaks is generated from raw data, various statistical 
analysis procedures are conducted in order to identify metabolites and their biologi-
cal significance. Analytical procedure comprises of two phases. In the first phase, the 
multivariate analysis is used to generate an overview of the datasets followed by 
grading of individual peaks by univariable analysis in the second phase (Sugimoto 
et al. 2012). These analytical methods are also divided into two categories, namely, 
unsupervised and supervised methods.

7.6.2.1  �Analysis by Unsupervised Methods

Unsupervised learning method is a type of machine learning algorithm that attempts 
to analyze a dataset without measuring any related response. Unsupervised learning 
helps to understand the relationship among the dataset partitions and also focuses 

A. T. Tahir et al.



123

on the variables accountable for these interactions. The following are the two types 
of clustering techniques that fall in this category:

•	 Principle Component Analysis (PCA)
Principal component analysis (PCA) is the most extensively used multivariate, 
unsupervised statistical analysis technique. It was developed prior to other ana-
lytical techniques like pattern recognition, clustering, etc. and was used as the 
first analytical technique. Specific variables called the “Principle components” 
are defined in this technique, to describe the maximum variance in the distribu-
tion of structures. It is iteratively performed until the high-dimensional data is 
presented in least dimensional space. The data is visually exemplified in score 
plots. The relative distance among the samples in scores and loading plots depict 
the degree of systemic variation among metabolite samples (Boccard et al. 2010; 
Sugimoto et al. 2012).

•	 Hierarchical Cluster Analysis (HCA)
Partitioning a dataset into several subclasses or clusters is the key role of cluster-
ing analysis technique. Although there are two types of cluster analysis, namely, 
hierarchical and nonhierarchical, both have the same function of dividing metab-
olomic data into subgroups of same profiles (Blekherman et  al. 2011). These 
subgroups can unravel the inner mechanism by uncovering the underlying pat-
terns in the data structure. A workflow of hierarchical cluster analysis can be 
either agglomerative or divisive, i.e., grouping objects iteratively or dividing a 
dataset, respectively. However, agglomerative workflow is used more often. 
Initially, HCA processes by calculating similarity measures among two observa-
tions followed by placing the most similar samples in same group. Once the 
clusters for related samples are generated, it calculates similarity among two 
clusters. The similarity measure is calculated using a certain metrix based on 
Pearson correlation, Euclidean disctance, or covariance. This procedure is per-
formed repetitively until all the samples are aligned. A dendrogram is the graphi-
cal representation of the outcome generated, where the leaves relate to the objects 
and the branches portray hierarchy of clusters (Beckonert et al. 2003; Tikunov 
et al. 2005; Boccard et al. 2010; Sugimoto et al. 2012).

7.6.2.2  �Analysis by Supervised Methods

A supervised learning method deliberates each sample with respect to observed 
outcome. It includes regression and classification problems based on the type of 
output under investigation. Multiple techniques based on machine learning or statis-
tics have been developed for analysis under supervised conditions:

•	 Partial Least Squares Regression
Partial least squares (PLS) regression is a linear regression-based method. It is 
particularly useful with a dataset that has fewer observations (samples) com-
pared to variables (metabolites). The mechanism of PLS works on highly multi-
dimensional data with a small number of factors, where the linear regression is 
then applied to these factors (Blekherman et  al. 2011). PLS forms a low-
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dimensional topological space based on linear combinations of X variables. Later 
it adjusts the model by comprehending the Y-related information in original X 
variables. In metabolomics, PLS-Discriminant Analysis (PLS-DA) has been 
most widely used due to its capability to refine the distance between different 
samples. PLS-DA is considered an effective tool for grouping of metabolomic 
data (Jonsson et al. 2005; Boccard et al. 2010). The refinement of data separa-
tion is achieved by moving the principal components to the maximum extent 
and then removing the variables carrying information of class separation. The 
graphical representation is depicted in S-plots that are similar to loading plots in 
PCA and allow visualization of covariance and correlation between metabo-
lites. However, unlike PCA, it is a supervised learning technique. The S-plots 
contribute to the identification of potentially significant metabolites (Wiklund 
et al. 2008; Sugimoto et al. 2012).

•	 Random Forests
Random Forests (RF) is categorized as a machine learning process which is usu-
ally used for depicting distinction of two datasets. As indicated by name, the 
“Random Forests” is basically grouping of multiple trees. The algorithm to build 
trees was proposed by Leo Breiman in 2001 (Breiman 2001). Each classification 
tree is assembled by input of sample data into the machine, and at each division 
the candidate set of variables is a random subset of the variables. Hence, the RF 
technique uses two kinds of input for tree building, i.e., bootstrap aggregation/
bagging and random variable selection. Due to bagging and random variable 
selection, individual trees represent low correlation (Díaz-Uriarte and De Andres 
2006; Sugimoto et al. 2012). Random Forests machine learning technique has an 
advantage, as it is vigorous toward outliers and noise, and is simpler to interpret 
(Breiman 2001).

•	 Artificial Neural Networks
Artificial neural network (ANN) is a computational model comprising of multi-
ple units called neurons that are interlinked to form a network of connections. 
This technique is inspired by the structure and functions of biological neural 
network. The neurons in this network share similarity with biological neurons 
which receive an input that is a combined output of other components. Input 
units receive the signals which are then propagated to the output units through 
the network connections. When these signals arrive at the output units, they regu-
late activation values. Initially, random numbers are assigned to the connection 
weights and then gradually adjusted as the signals move toward the right output. 
Despite being the most popular artificial intelligence program, the output of 
ANNs is difficult to comprehend. Multilayer perceptron (Taylor et al. 2002) and 
radial basis functions (Poggio and Girosi 1990) are the most widely used algo-
rithms of ANNs (Boccard et al. 2010). Artificial neural networks have become 
the most commonly used technique in MS-based studies for the identification, 
classification, and optimization of metabolites (Sugimoto et al. 2012).

•	 Probabilistic and Instance-Based Learning Algorithms
Probabilistic learning algorithms are based on the probability models. A proba-
bility is assigned to each group during the training step. This algorithm works by 
predicting the group labels which directly correlate with the group of the highest 

A. T. Tahir et al.



125

probability. Naïve Bayes classifier is one of the well-known methods of statisti-
cal learning among Bayesian networks. Although it is the simplest statistical 
learning method, many complex problems can be easily resolved by Naïve Bayes 
(Boccard et al. 2010).

In contrast, instance-based learning algorithms work on the principle of nearest 
neighbor classification. Instances with similar properties are regrouped in high-
dimensional space prior to the application of k-nearest neighbor rule (Aha et  al. 
1991). Multiple differences among instance-based classifiers are balanced by 
Euclidian distances (Wettschereck et al. 1997; Boccard et al. 2010).

7.7  �Analytical Techniques in Metabolomics

Metabolomics, an emerging discipline in systems biology, deals with the quantita-
tive and qualitative analysis of a diverse class of low-molecular-weight molecules 
including organic compounds, vitamins, nucleic acids, lipids, carbohydrates, amino 
acids, and their polymers. These metabolites are either produced as an outcome of a 
metabolic response or synthesized in a pathophysiological condition. Owing to the 
diverse properties and complexity of metabolites, a single instrumental technique 
cannot completely analyze the whole plant metabolome. Therefore, separation tech-
niques such as chromatography and electrophoresis integrated with detection tech-
niques, i.e., mass, NMR, and vibrational spectroscopy, are applied, which enable 
quick separation, efficient isolation, reliable detection, systematic characterization, 
and precise quantification of metabolites in a bio-fluid sample. The following are 
the details of few techniques which are frequently used in metabolome analysis:

7.7.1  �Mass Spectrometry-Based Methods (MS)

Mass spectroscopy (MS) is one of the most frequently used techniques in metabolo-
mics. Coupled with other separation techniques, this analytical method is very sensi-
tive and covers a wide range of metabolites. The MS technique follows three 
fundamental steps, namely, (1) ion formation, (2) ion separation, and (3) ion detec-
tion. The formation of ions can be carried out by either hard or soft ionization sources. 
The hard ionization process involves electron bombardment to the gaseous or vapor-
ous state of analytes, also known as electron ionization-mass spectrometry (EI-MS) 
technique, invoking a high degree of fragmentation. Although this technique offers a 
detailed mass spectrum which, following careful analysis, can provide important 
information regarding structure elucidation of unknown metabolite, it is generally 
not coupled with HPLC owing to different characteristics of HPLC and EI-MS, 
where the former technique works under high atmospheric pressure for efficient 
separation, while in the later technique, the ionization is fundamentally accomplished 
under high vacuum. The EI technique is, therefore, mostly used in GC-MS tech-
niques where the entire system is under high vacuum. Contrary to hard ionization, 
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soft ionization sources produce fewer fragmentations and, therefore, can conclu-
sively yield the molecular mass peak of the compound. Soft ionization is achieved 
through a wide range of techniques, such as (1) electrospray ionization (ESI), where 
a high voltage (i.e., strong electric field) is applied to a liquid analyte passing through 
a capillary tube in order to create fine aerosol; (2) chemical ionization (CI), in which 
the ions of some reagent gas such as methane or ammonia present at the source strike 
with analyte to produce fragments; (3) fast-atom bombardment (FAB) and liquid 
secondary ion mass spectrometry (LSIMS) methods that use a beam of high-energy 
Xe or Ar atoms and Cs+ ions under vacuum, respectively, that strike with the analytes 
dissolved in a liquid matrix such as glycerol or m-nitrobenzyl alcohol (NBA) and 
generates ions; and (4) matrix-assisted laser desorption/ionization (MALDI), unlike 
FAB/LSIMS, which uses a laser beam that is fired at the crystalline matrix in the 
dried-droplet spot-containing analyte to produce ions. Various kinds of laser sources 
can be used such as UV laser (nitrogen lasers), neodymium-doped yttrium aluminum 
garnet, IR laser (such as erbium-doped yttrium aluminum garnet), etc. The matrix 
crystals are generally made up of 3,5-dimethoxy-4-hydroxycinnamic acid (sinapinic 
acid), α-cyano-4-hydroxycinnamic acid (α-CHCA, alpha-cyano, or alpha-matrix), or 
2,5-dihydroxybenzoic acid (DHB or gentisic acid). As soon as the ions are formed, 
they are accelerated through the mass analyzer where the ions are separated according 
to their mass-to-charge (m/z) ratio, a unitless entity. The acceleration of ions is 
achieved by electrical and/or magnetic field(s) which affect ion trajectory and veloc-
ity. The separation of ions is governed by Lorentz force law and Newton’s second law 
of motion. The mass analyzer can be of six general types:

Mass analyzer
Ion acceleration 
method Principle of ion separation

Magnetic 
sector mass 
analyzer

Magnetic fields The applied magnetic field bends the ion beam in an arc with 
a unique radius. The separation of ions is based on its 
momentum, i.e., ions with greater momentum will follow an 
arc with a larger radius. In other words, ions with constant 
kinetic energy but different mass are separated by their 
trajectories in magnetic field

Electrostatic 
sector mass 
analyzer

Electric fields As the ions travel through the electric field, they are deflected 
and follow the curve of the analyzer. The radius of the 
trajectory of ions depends on the kinetic energy of the ions 
and the potential field applied across the plates. Generally, the 
electrostatic sector analyzer is not useful alone. When 
electrostatic and magnetic sector analyzers are separately 
employed as a stand-alone unit in MS, they are termed as 
single-focusing instruments. When both analyzers are 
combined in MS, they are called a double-focusing 
instrument, as the instrument focuses on both the energies 
and the angular dispersions
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Mass analyzer
Ion acceleration 
method Principle of ion separation

Time-of-flight 
(TOF) mass 
analyzer

Electric fields In TOF, separation is based on the kinetic energy and velocity 
of the ions. Initially all ions are accelerated in an electric 
field, and as a result identically charged ions have the same 
kinetic energy. However, in the field free flight tube ions 
acquire different velocities depending on their masses. The 
lighter mass ions get faster and, therefore, reach the detector 
in a shorter period of time

Quadrupole 
mass analyzer

Electric fields In quadrupole, the oscillating electric fields along with static 
direct current are applied that lead to the separation of ions 
based on the stability of their trajectories. In high radio-
frequency (RF) voltage, the trajectories of light mass ions 
become unstable and collide with the wall of rod, while the 
heavier mass ions produce stable trajectories and reach the 
detector

Quadrupole 
ion trap mass 
analyzer

Electric fields It works on the same principle as quadrupole mass analyzer 
except that the analyzer is made with a doughnut-shaped ring 
electrode and two grounded endcap electrodes instead of 
metal rods. Ions are trapped for a fixed period of time in a 
central chamber, and later they are sequentially released 
based on their m/z values and reach the detector.

Ion cyclotron 
resonance 
(ICR) mass 
analyzer

Magnetic fields In ICR, the mass-to-charge ratio (m/z) of ions is determined 
based on the cyclotron frequency of ions in a magnetic field. 
Unlike quadrupole ion trap mass analyzer, the ions in ICR are 
trapped in a penning trap under magnetic field. The ions are 
then excited in a larger cyclotron radius by an oscillating 
electric field. As the excitation field is removed, the ions 
rotate at their cyclotron frequency and induce a charge, which 
is detected as an image current that results in a signal called 
free induction decay (FID)

These separated ions enter the detector, which records either the ionic charge or 
the current produced when an ion passes by or hits a surface. There are various types 
of detectors which are used in mass spectroscopy. Faraday cup collector – a simple 
metallic conductive cup attached to a circuit - is perhaps the oldest detector, which 
measures the current produced when an ion strikes the cup in a vacuum and becomes 
neutralized. Electron multipliers are among the most commonly used detectors in 
modern mass spectrometry, where the ion beam strikes the dynode plate and initi-
ates secondary electron emission process. The electrons emitted hit the next dynode 
surface to induce the next process of secondary emission, leading to more electrons. 
The amplification process is repeated until a large number of electrons are collected 
by a metal anode, and it can generate a measurable voltage pulse. Another com-
monly used detector in MS is called photomultiplier or scintillation counter, where 
the ions first strike a dynode and induce the secondary electron emission process. 
These emitted electrons then impinge upon a thin disk of crystalline phosphor and 
thus produce scintillation. The resultant photons enter a photomultiplier tube and 
impact on photocathode, which ultimately produces photoelectrons through a 
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phenomenon known as photoelectric effect followed by electronic amplification 
and detection as achieved in electron multipliers.

•	 Gas chromatography-mass spectrometry (GC-MS)
GC-MS is among the widely used analytical techniques in metabolomics that inte-
grates the features of gas chromatography with mass spectroscopy. The method is 
highly sensitive, reproducible, and well established, and it can detect and identify 
minute quantity of small organic compounds from a test sample. This method, 
therefore, finds a wide range of applications in metabolomic profiling, medicine, 
astrochemistry, chemical engineering, food and beverages, drug and narcotic 
detection, environment analysis, criminal forensics, explosive, chemical warfare 
detection, etc. The method uses the gas chromatography technique for compound 
separation; only those compounds which are volatile or can be made volatile 
through derivatization are detected by MS. The fact that plant metabolites contain 
a number of functional groups, the derivatization is carried out in two steps. In the 
first step, the carbonyl functional groups that are present in metabolites are pro-
tected by converting them into oximes with O-alkylhydroxylamine followed by the 
reaction with silylating reagents such as N-methyl-N-(trimethylsilyl) trifluoroacet-
amide, etc. that replace exchangeable protons and form trimethylsilyl (TMS) 
esters. Metabolites such as amino acids and carbohydrates contain a number of 
exchangeable protons, and therefore, a range of derivatized products are formed, 
whereas organic acids often yield one product. GC-MS has been successfully 
used to study the effects of genetic or environmental modifications and stressors 
in several plants including Arabidopsis, potatoes, and tomatoes by analyzing 
either intracellular or volatile metabolites (Lisec et  al. 2006; Roessner et  al. 
2000; Fiehn et al. 2000; Roessner-Tunali et al. 2003).

•	 Liquid chromatography-mass spectrometry (LC-MS)
LC-MS is another powerful and widely employed analytical technique used to 
separate, detect, and quantify metabolites that may or may not be amenable to 
GC-MS analysis, thereby increasing the applicability of this technique in metab-
olomics. The method combines the separation capability of liquid chromatogra-
phy such as HPLC with MS.  The ultra-performance liquid chromatography 
(UPLC) can also be used instead of HPLC to further improve the separation 
efficiency and peak resolution.

The LC uses a highly pressurized liquid mobile phase, while the mass ana-
lyzer in spectrometer operates under high vacuum; both devices are fundamen-
tally incompatible unlike GC-MS, and therefore an interface is required to 
transfer the separated compounds from LC device to mass spectrometer source 
smoothly. The LC-MS interface removes the mobile phase from elute while pre-
serving the analyte by using strategies of atmospheric pressure ionization (API) 
techniques such as electrospray ionization (ESI), atmospheric pressure chemical 
ionization (APCI), and atmospheric pressure photoionization (APPI). Several 
plant-based metabolomics studies have been performed using LC-MS techniques 
(De Vos et al. 2007; van der Hooft et al. 2012). Moco and co-workers have also 
developed a Metabolome Tomato Database (MoTo DB) that is dedicated to 
LC-MS-based metabolomics of tomato fruit (Moco et al. 2006).
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•	 Capillary electrophoresis-mass spectrometry (CE-MS)
CE-MS is another powerful analytical technique in metabolomics that permits 
the separation of charged metabolites in liquid electrolytic solution under the 
influence of a spatially uniform electric field. Metabolites are separated based on 
their electrophoretic mobility, where their size, viscosity, and charge play a key 
role. CE is generally coupled with electrospray mass spectrometry; however, it 
could also be combined with FAB, MALDI, and APCI. The CE-MS finds broad 
applications in proteomics, environmental science, forensics, and clinical medi-
cine as well as in quantitative analysis of biomolecules.

7.7.2  �Nuclear Magnetic Resonance (NMR) Spectroscopy

NMR spectroscopy is an extremely powerful technique in metabolomics and natu-
ral product chemistry, which is widely used in the elucidation of metabolite struc-
ture. Unlike mass spectrometry, NMR is a nondestructive technique and is based on 
the magnetic properties of the atomic nuclei which can provide significant informa-
tion about a metabolite. However, only few atoms with either odd atomic number or 
odd mass number such as 1H, 13C, 15N, 19F, and 31P are NMR active, as they possess 
nuclear spin in the presence of a magnetic field. Depending on the chemical envi-
ronment of these atoms, their nuclei absorb energy at different radio frequencies 
(RF) causing the nuclei to be promoted from low-energy spin states to high-energy 
spin states, something similar to electronic excitation. The subsequent release of 
energy over a period of time, known as relaxation process, is measured in the form 
of free indication decay (FID). A Fourier transformation is then applied to convert 
the time domain FID into a frequency domain dataset, which leads to the construc-
tion of NMR chemical shift (in ppm) against the intensity of peak. The 1H-NMR is 
the most frequently used technique in metabolomics, where the chemical shift val-
ues of sample molecule are normalized against a reference D2O solution of tetra-
methylsilane (TMS), which is set to as 0  ppm. The typical range of measured 
chemical shift for 1H-NMR is 0–10 ppm, and for 13C it varies from 0 to 250 ppm. 
The intensity of the peak depends on the number of identical nuclei and thus allows 
the quantification of an atom. Typically, multiple peaks at different chemical shift 
values are observed for a single metabolite; for instance, a glucose molecule may 
have roughly 30 peaks referring to 1H and 13C atoms at different positions. Generally, 
for the structure elucidation of a metabolite, different NMR experiments are 
required, such as one-dimensional and two-dimensional 1H-NMR, 13C NMR, as 
well as standard 1H, J-resolved, 1H-1H correlation spectroscopy (COSY), 1H-1H 
total correlation spectroscopy (TOCSY), 1H-13C heteronuclear single-quantum cor-
relation (HSQC), heteronuclear multiple bond correlation (HMBC), etc. NMR has 
been used for many years in the analysis of primary (e.g., sugars and amino acids) 
and secondary metabolites such as phenolic compounds of plant (Kim et al. 2010). 
Likewise, the metabolic profile of the seeds of seven chia (Salvia hispanica L.) 
populations has been also successfully investigated by NMR spectroscopy 
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integrated with principal component analysis and chemometrics (de Falco et  al. 
2017). Also, NMR has been also used in the analysis of various plant extracts such 
as tobacco and Arabidopsis (Ward et al. 2003; Kikuchi et al. 2004; Choi et al. 2004). 
Sekiyama et al. have recently reported the NMR-based metabolic profiling of field-
grown leaves for 12 genotypes of sugar beet (Beta vulgaris L.) exhibiting different 
levels of Cercospora leaf spot (CLS) resistance (Sekiyama et al. 2017).

Recently, researchers have also worked on combining two powerful analytical 
approaches in metabolomics such as NMR and MS (Bingol  and Brüschweiler 
2015; Farag et  al. 2012) to improve metabolomics sample characterization in 
terms of identification and quantification, as well as in accelerating new metabo-
lite discovery.

7.7.3  �Vibrational Spectroscopy

When compounds are exposed to an electromagnetic (EM) radiation such as UV or 
IR, they absorb light of different wavelengths. The absorbed light causes the chemi-
cal bond to vibrate in various ways such as stretching and bending, etc. The fact that 
one specific bond or angle vibrates in a specific way by absorbing a specific wave-
length of EM can help in the identification of functional group present in the metab-
olites. For instance, in fatty acid molecules, the stretching vibrations of C-H bond in 
-CH3 and -CH2- groups can range from 2800 to 3050 cm−1 in IR spectra. Likewise, 
the region between 1500 and 1800 cm−1 is dominated by amide I (>C=O) and amide 
II (>C-NH) stretching, indicating the predominance of either alpha-helix or beta-
sheet structures. Similarly a sharp band around 2200–2400 cm−1 indicates the pres-
ence of -C≡N or -C≡C- bonds. A typical absorption region for covalent bonds 
ranges from 600 to 4000 cm−1. Due to its holistic nature and the ability to identify 
functional groups, vibrational spectroscopy, such as Fourier transform infrared (FT-
IR) and Raman spectroscopy, is a valuable, nondestructive, analytical technique for 
metabolic profiling and can analyze a range of primary and secondary metabolites 
including amino acids, carbohydrates, lipids, and fatty acids as well as many other 
organic compounds.

7.8  �Metabolomics: The Apogee in Realm of OMICS

Over the past decades, with the advent of OMICS techniques (such as genomics, 
proteomics, and metabolomics), the concept of system biology and integrated 
OMICS is gaining attention for unraveling complex processes at molecular and 
organismal levels (Wanichthanarak et al. 2015).

Metabolomics is downstream of transcriptomics and proteomics. Unlike two 
others, the size of metabolome of a species cannot be hypothesized by tools that use 
existing genomic information on central dogma principle. Analysis of intricate 

A. T. Tahir et al.



131

metabolite interactions for key players of pathways leads to significant understand-
ing of individual genomic information and metabolic outputs (Toubiana et al. 2013). 
Similarly, while moving toward the concept of system biology, metabolites, pro-
teins, and genes data should be analyzed in an integrated way to build the complete 
picture of pathways for plant regulatory responses under question.

Low-cost, efficient, and high-yielding approaches and software tools are magi-
cally increasing omics data by adding new plant species and sequence information 
(Kleessen and Nikoloski 2012; Rai and Saito 2016). Various approaches are in use 
to integrate multiple omic datasets such as:

•	 Pathway- or Biochemical-Ontology-Based Integration
Examples of software/tools: Impala, iPEAP

•	 Biological-Network-Based Integration
Examples of software/tools: SAMNetWeb, pwOmics, MetaMapR, MetScape

•	 Empirical Correlation Analysis
Examples of software/tools: WGCNA, MixOmic, DiffCorr, qpgraph

Metabolites are direct impressions of biochemical activity and hence have higher 
correlation with phenotype than genes and proteins (Tohge et al. 2014). It is a well-
known fact that phenotypic diversity is determined by genetic as well as environmen-
tal contributions. To find out underlying associations among genetic variation (mostly 
qualitative) and phenotypic variation (mostly quantitative), various approaches have 
been proposed. This association laid the foundation for quantitative trait locus (QTL) 
mapping and genome-wide association studies (GWAS). Such analyses are most 
widely used to explore phenotypic impact, number, and interaction of genes respon-
sible for targeted quantitative trait (Wu et al. 2016)

Microarrays offer efficient data for small populations as they are expensive and 
hence not suitable for complex physiological traits where large populations are 
required to be analyzed. Moreover, traits with moderate to low heritability are not 
dissectible as only those with higher heritability are easy to be phenotyped with 
microarrays. On the contrary, higher-throughput and low-cost metabolomics plat-
forms made these an ideal choice for genetic and genomic studies. Choice of experi-
ment design, population, variables for mapping, and platform is very important for 
target achievement (Weckwerth 2003; Wen et al. 2018)

Metabolites have been phenotyped in various plant species, to unveil related 
genes. Metabolic QTL (mQTL) and metabolome-genome-wide association studies 
(mGWAS) started on model plants and extended to crop species and gained atten-
tion with advent of high-throughput metabolic platforms and sequencing technolo-
gies. The number of studies with mQTLs and mGWAS is increasing every day. 
MS-based primary metabolites were profiled using Arabidopsis recombinant inbred 
line (RIL) populations (Col-0 × Col-24) which resulted in important genetic signa-
tures. This study provided the basis for identification of hitherto valuable unknown 
genes for improving seed metabolism (Knoch et al. 2017). The Arabidopsis 1001 
genome project, which started in 2008, presents a rich source of information for 
scientists. Sequence data offers a huge opportunity of performing GWAS in such 
big collections of natural populations. Targeted (Francisco et al. 2016) and nontar-
geted (Wu et al. 2018) metabolite-based GWAS have identified various important 
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genetic loci. In addition, abiotic stress-related metabolite profiling in control and 
stressed plants using 309 Arabidopsis accessions resulted in 70 putative associa-
tions among metabolites and structural genes. Eight of the associations were experi-
mentally validated using tDNA knockouts, out of which two (related to purine 
nucleotide metabolism and lysine degradation) were found with differential expres-
sion under two different experimental conditions (Wu et al. 2018).

Cereals are the most important dietary components and are a direct or indirect 
focus of quality and quantity improvement research. Genes related to variation in rice 
secondary metabolism have been identified using mGWAS. Metabolite data for 175 
rice accessions revealed that one third of metabolites are controlled by major mQTLs, 
while for intraspecies diversity of metabolites, few loci were detected. This study 
further highlighted the diversity of phytochemicals in this plant species (Matsuda 
et al. 2015). In wheat, 197 metabolic features in flag leaves were identified using 179 
doubled haploid lines. This data together with mapping of agronomic traits helped in 
understanding the genetic basis of variations, covariations, and correlations among 
agronomic traits, metabolic signatures, and plant phenology (Hill et  al. 2015). 
Moreover, in maize mGWAS were performed on various tissues such as kernel, leaf, 
and seed using various methods such as UPLC, GC-MS, and HPLC (Riedelsheimer 
et al. 2012; Lipka et al. 2013; Luo 2015; Ramalingam et al. 2015). Wen et al. reported 
GWAS based on metabolome profiling of primary metabolites in four different tis-
sues: seedling leaf, leaf at reproductive stage, young kernel, and mature kernel. 38 of 
61 identified metabolites were found common among abovementioned tissues. Many 
known alongwith less recognized genes were identified that were tissue specific as 
well as common among all tissues (Wen et al. 2018). Fruit primary metabolites were 
studied in tomato using 163 accessions. Forty-four associations were identified in 36 
traits using multi-locus mixed model GWAS (Sauvage et al. 2014).

In addition to experimental integrated studies, various databases for inter-species 
analysis, integrated as well as individual OMICS levels has also been developed for 
both model and crop species (Mutwil et al. 2011; Hamada et al. 2011; Sato et al. 
2013; Obayashi et al. 2014). The Plant Omics Data Center was developed as gene 
expression network (GEN) repository, initially for eight plant species and now 
updated for ten species with addition of Zea mays, Nicotiana tabacum, and 
Physcomitrella patens (Ohyanagi et al. 2015). Databases for individual species with 
multi-omics information such as TAIR for Arabidopsis (Lamesch et  al. 2012), 
TOMATOMICS for tomato (Kudo et al. 2017), and UniVIO for rice (Kudo et al. 
2013) are also contributing significantly for system biology research.

7.9  �Challenges and Perspective in Agricultural 
Metabolomics

Metabolomics is characterized as an effective strategy for distinguishing proof and 
evaluation of low-atomic weight metabolites in an organic sample (Saito and 
Matsuda 2010). This approach is increasingly applied in many crop species in the 
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last two decades, regardless of transgenic system availability (Fernie and Schauer 
2009; Simó et al. 2014; kumar et al. 2017).

It is a powerful omics tool for selection of beneficial traits, eventually for 
improvement of crop species (Tian et al. 2016; Zivy et al. 2015). In addition, metab-
olomics also facilitates study of systems biology, particularly by providing impor-
tant clues in understanding interactions of plants and their interacting environments 
as well as humans and plants by unraveling the medicinal plants’ beneficial com-
pounds (Shyur and Ynag 2008; Taketo et al. 2010).

Since plant metabolomics is an emerging field, many challenges are still faced by 
researchers, and consequently various aspects in analytical, systematics, and compu-
tational level need to be addressed. These include the fact that data obtained after 
metabolite profiling is itself not sufficient to build pathways or to determine regula-
tory elements. This calls for integrated omics studies (Fig. 7.4); however this task is 
even more challenging due to the complexity of omics relationships (Zierer et al. 
2015; Bersanelli et al. 2016; Huang et al. 2017).

Metabolites are influenced by many external as well as internal factors that are 
faced by a plant during its life. They are beneficial for providing opportunities to 

Fig. 7.4  Workflow for 
OMICS data integration. 
Only metabolomics 
interactions are depicted
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acclimatize the plants to extreme environmental conditions (Fernie and Klee 2011). 
This could be done via metabolite engineering, but it would be difficult to alter 
expression of all controlling metabolites. Metabolomics could also be used as 
taxonomic tool for plant phylogenetic analysis too. In addition, some new 
species-metabolites relations have also been reported in result of this analysis 
(Liu et al. 2017).

Taking the challenges detailed above into account, future strategies are needed 
with a strong focus on computational metabolomics tools for high-resolution and 
broader metabolome coverage (Johnson et al. 2015). Development of metabolomic 
platforms is required for efficient and accurate qualitative as well as quantitative 
identification of as many as possible molecules (metabolites). Bioinformatics tools, 
as a backbone for analysis and integration of data, will also help to increase preci-
sion of data interpretation and development/correction of metabolic pathways as 
well as more systematic plant phylogenetic analyses.
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8.1  �Introduction

Bioinformatics has become essentially a multidisciplinary field owing to amalga-
mation of several different branches of science, thereby utilizing their applications 
in data analysis, interpretation and management. It has evolved as a fast-growing 
branch of biosciences with its impact on almost every aspect of research. Due to its 
growing requirement in analysing the vast amounts of data generated in day-to-day 
research, it has become a cornerstone for basic science research involving genom-
ics, metabolomics, pharmacogenomics, transcriptomics, metagenomics, pro-
teomics, etc. It has undoubtedly accelerated the process of knowledge dissemination 
and interpretation through its multifarious tools, online/web servers, databases, 
algorithms, computational analysis, etc. (Gu and Chen 2013). Bioinformatics has 
remarkably influenced several phases involved in the process of drug designing 
such as drug assessment, target identification, screening, refinement, development 
and resistance (Katara 2013). However, it is quite surprising that commercially 
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available drugs (approximately one-third) are mostly derived from medicinal plants 
which make it mandatory to exploit the unearthed potential of this area of research 
where potential application of high-throughput bioinformatics approaches has 
largely been ignored (Miller 2011; Strohl 2000).

Medicinal plants continue to offer innumerable chemical compounds in the form 
of herbal formulations or herbal medicines which have been in use for human appli-
cations since ancient times as they tend to be renewable and comparatively safer for 
use (Newman and Cragg 2016; Saxena et al. 2013). They tend to be valuable plant-
derived products in natural form with significant therapeutic potential making them 
quite preferable options for drugs in different systems of medicines (Karunamoorthi 
et al. 2013; Pye et al. 2017). They have been finding increasing use in treating basic 
health problems ranging from common cold to various skin ailments due to which 
their demand has increased tremendously in the present pharmaceutical set-up 
(Cowan 1999; Patwardhan et al. 2005). Different parts of the medicinal plants have 
been utilized for medicinal uses by human beings (Chanda 2014) as they tend to 
contain several valuable primary and secondary metabolites with therapeutic poten-
tial (Agyare et al. 2013; Incarbone and Dunoyer 2013). At the same time, there is a 
pressing demand for medicinal plants from the pharmaceutical companies because 
of their low-cost availability and commercial as well as healing benefits in contem-
porary medicine, but due to the adoption of traditional manual methods for initial 
screening of plants and subsequent processing, this area of research is lagging 
behind due to which market requirements remain largely unmet (Leonti 2013).

Based on the ethnobotanical data, there is tremendous potential for new drug 
development from these medicinal plants as there is much more scope to explore 
about them (Clarkson et al. 2004; Fabricant and Farnsworth 2001). There are certain 
challenges in exploiting medicinal plants for synthetic drug development due to 
inherent limitations pertaining to this area of research, which mainly includes costly 
and labour-intensive conventional manual bioscreening approaches (DiMasi et al. 
2003; Fabricant and Farnsworth 2001). To harness the potential of medicinal plants 
for drug discovery, bioinformatics is appearing to play a substantial role in several 
aspects ranging from computational approaches to high-throughput screening 
involving computer-aided drug design (Jorgensen 2004). Different bioinformatics 
approaches have been utilized for studying diverse aspects of plants ranging from 
genomics to metabolomics which include genes, proteins, expression profiling of 
genes, metabolic processes such as metabolic profiling, biomolecular annotation 
and validation (Champagne and Boutry 2013; Gu and Chen 2013; Lagunin et al. 
2014; Li et al. 2015; Saito 2013; Yang et al. 2014; Wolfender et al. 2013). A large 
number of research studies are being carried out around the world to employ several 
biotechnological approaches for deeper understanding of the molecular mecha-
nisms behind metabolite synthesis so as to amplify the production of potent and 
valuable medicinal plant products (Ritala et al. 2014).

Bioinformatics-driven era will have extensive consequences on the overall 
advancement of medicinal plant research in the upcoming decades. So far, only a 
small facet of this area has been explored, and therefore, there is an urgent need for 
interdisciplinary research on medicinal plants (Chakraborty 2018). As a result, this 
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chapter highlights our endeavour in providing comprehensive summary on the current 
scenario of the important applications of bioinformatics resources in the field of 
medicinal plants, which could provide significant help in tapping the hidden potential 
of this golden treasure for the future drug designing. Several dimensions of bioinfor-
matics are discussed wherein different computational methods are being exploited to 
derive valuable, effective and timely information from medicinal plants. We present 
a concise and updated summary on the utility and potential applications of commonly 
used bioinformatics tools and databases in driving the field of medicinal plant research 
by performing thorough analysis of data as well as integrating the scattered data.

8.2  �Bioinformatics Resources in Medicinal Plant Research

There exists ginormous ethnobotanical data that could have high potential for serv-
ing as source of contemporary medicine. However, at the same time, this data is 
highly scattered and unlinked which certainly impedes the usefulness of the knowl-
edge on medicinal plants. So, there has to be some automatic system for medicinal 
plant data storage, its organization, interpretation and extraction in a user-friendly 
format. Bioinformatics in this context has a crucial role to play as it provides tools to 
handle segregated data generated from high-throughput “omics” technologies that 
certainly aid in extraction of meaningful information and lead to rapid drug discov-
ery and development from medicinal plants (Babar et al. 2017). Figure 8.1 pro-
vides the schematics of the role of bioinformatics in integrating “omics approaches” 

Fig. 8.1  The application 
of bioinformatics on the 
data integration and 
analysis generated from 
“omics” approaches of 
medicinal plants aids in 
quicker discovery and 
generation of novel herbal 
drugs
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in the area of medicinal plant research. Data mining approaches can be used for 
introducing bioprospecting and screening of medicinal plants (Harishchander 2017; 
Sharma and Sarkar 2012). So far, there are very less number of plants whose whole 
genome sequence data is available, and the first attempt to digitize plant-based data 
comes from the Biodiversity Heritage Library (http://www.biodiversitylibrary.org/) 
and the China-US Million Book Digital Library Project (http://www.cadal.zju.edu.
cn). However, there were certain challenges inherent to these libraries in terms of 
data extraction from them. Later on, with the usage of automated algorithms, data 
extraction could be simplified by applying these advanced approaches on the histori-
cal texts, and one such application was based on herbal text of the seventeenth cen-
tury, Ambonese Herbal (Buenz et al. 2005). However, at the same time, there are 
certain issues in analysing the historic texts especially due to diversity in taxonomic 
recognition of the plants across different historical texts owing to the usage of differ-
ent names and the languages or scripts in the text (Sarkar 2000; Wagner et al. 1998). 
To circumvent such issues, Samwald et al. proposed a semantic-based approach for 
clubbing scattered and diverse data sources (Samwald et al. 2010). Based on similar 
lines, several valuable compounds from Chinese medicine have been found to have 
pharmaceutical value in treating a wide continuum of psychological problems 
(Samwald et al. 2010). Another similar approach based on such technology for large-
scale data integration is the semantic e-Science infrastructure for Traditional Chinese 
Medicine (TCM) system (Chen et al. 2007).

The primary bioinformatics approach for the study of medicinal plants is through 
development of easily accessible databases and programs by different government 
and private research organizations through international collaborations as a part of 
consortia. These databases are being maintained and updated on a regular basis. Some 
databases provide exclusive information on medicinal plants like commonly used lit-
erature databases etc. (Sayers et al. 2010). Another category of databases is commu-
nity-based depending on the molecular aspect to be explored such as studying 
molecular networks, pathway mapping, protein interactions, metabolic pathways, 
genome sequence analysis, gene expression, subcellular localization, domain identifi-
cation and comparative analysis between different plant species (Babar et al. 2017; 
Lagunin et al. 2014). There are specific databases also available on medicinal plants, 
although information can even be retrieved through primary bioinformatics resources 
including National Centre for Biotechnology Information (NCBI) at the US National 
Library of Medicine (NLM) (Sayers et al. 2010), Kyoto Encyclopedia of Genes and 
Genomes (KEGG) (Kanehisa and Goto 2000) and KNApSAcK (Afendi et al. 2012). 
These provide easy access to other databases like GenBank (Benson et  al. 2013), 
Research Collaboratory for Structural Bioinformatics (RCSB)-Protein Data Bank 
(PDB) (Rose et al. 2013), UniProt (Magrane and Consortium 2011; UniProt 2014) 
and Gene Expression Omnibus (GEO) (Edgar et al. 2002). Further, there are several 
other databases which provide exclusive information on medicinal plants. One such 
non-commercial database on ethnobotanical data is International Ethnobotany 
Database (ebDB) (http://ebdb.org). It provides data retrieval options in different 
languages and exhibits a wide spectrum of options for accessing complete information 
from location to robust searching with unique data export options.
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Furthermore, there are several databases serving the purpose of data analysis for 
medicinal plants and their products, functions, composition, adverse effects includ-
ing toxicity as well as their therapeutic applications. One such example is 
NAPALERT (Loub et al. 1985), Dr. Park’s United States Department of Agriculture 
(USDA) database (http://www.pl.barc.usda.gov/usda_info/disease_intro.
cfm?id=39) and Dr. Duke’s Phytochemical and Ethnobotanical Database at USDA 
(http://www.ars-grin.gov/duke/). Another comprehensive compilation on medicinal 
plants is TCM Information Database (TCM-ID) (Ji et al. 2006; Wang et al. 2005; 
Xue et al., 2013) and Herb Ingredient’s Target (HIT) (Ye et al. 2011). HIT has been 
developed for providing therapeutic targets to the potential herbal leads from 
TCM. It provides links to several other resources like NCBI (Sayers et al. 2010), 
PDB (Bernstein et  al. 1978), UniProt (Magrane and Consortium 2011; UniProt 
2014), Pfam (Punta et  al. 2012), Therapeutic Target Database (TTB) (Liu et  al. 
2011), TCM-ID (Ji et  al. 2006; Wang et  al. 2005; Xue et  al. 2013) and KEGG 
(Kanehisa and Goto 2000). For more specific information, text mining is being 
employed in creation of databases like MedMiner, PathBinder and PreBIND 
(Donaldson et al. 2003; Tanabe et al. 1999; Zhang et al. 2009) and developing gene 
ontology (GO) annotation platforms (Consortium 2013). There exist several other 
databases based on the geographic distribution of medicinal plants, thus making 
them region specific like Australian medicinal knowledge base CMKb (Gaikwad 
et al. 2008). It provides users with different information modules linked to several 
sources including NCBI and PubChem. Another recent approach in this direction 
has been the creation of manually curated comprehensive openly accessible online 
database exclusively for Indian medicinal plants called Indian Medicinal Plants 
Phytochemicals and Therapeutics (IMPPAT) (Mohanraj et  al. 2018). It has been 
established with the help of cheminformatic approaches to provide a platform on the 
phytochemistry of 1742 medicinal plants from Indian origin, particularly from 
Himalayan region. It will serve as harbinger for plant-based drug discovery through 
in silico approaches. Another similar resource is Raintree (http://rain-tree.com/eth-
nic.htm) database providing exclusive information on medicinal plants habituating 
Amazon rainforest.

After literature study on different aspects of medicinal plants, the molecular 
study at different “omics” levels follows, which includes genomics, transcriptomics, 
proteomics and metabolomics. These approaches can become more advanced and 
efficient due to the latest myriad of interventions in bioinformatics field for data 
analysis. The first intervention of bioinformatics at the molecular level is through 
full-length genome sequencing involving next-generation sequencing approaches 
(NGS), and there are several databases which store plant-specific full-length 
genomes (Benson et al. 2013). Most of the genomic information is managed and 
analysed through expressed sequence tags (EST) (Ueno et al. 2012). After sequence 
analysis, a lot of bioinformatics approaches are being used for the sequence assem-
bly, and later on comparative analysis of the sequences is being performed with the 
help of bioinformatics softwares (Drezen and Lavenier 2014). These techniques 
provide cost- and time-effective huge volumes of genomic data. Other latest 
sequencing techniques based on advanced bioinformatics suites include comparative 
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hybridization of probes, polymorphism ratio sequencing and the 454 method, all of 
which require very less quantity (in picolitre) of sample to be sequenced (Li and 
Quiros 2001; Schena et al. 1995; van Dijk et al. 2014). Sequence analysis provides 
clues for further validation of data at mRNA level, protein and phylogenetics 
(Caetano-Anollés and Gresshoff 2013). However, sequence analysis is prone to 
errors since it depends on the algorithms used in developing a particular bioinfor-
matics program. There are several other programs based on advanced computational 
algorithms available for studying genetic elements associated with medicinal plants 
including exonic and intronic sequences which could be actually exploited for iden-
tification of genetic elements involved in secondary metabolite production as well 
as gene characterization of medicinal plants for their propagation (Babar et  al. 
2017). After sequence assembly, sequence annotation is done using several plat-
forms like KEGG (Kanehisa and Goto 2000), SwissProt (Boeckmann et al. 2003), 
The Arabidopsis Information Resource (TAIR) (Berardini et al. 2015) and nucleo-
tide databases at NCBI (Sharma and Sarkar 2012). Annotation of sequenced data is 
exclusively done for the detection of genome-specific signatures, which includes 
some repetitive sequences such as simple sequence repeat (SSR) markers (Childs 
2014; Tatusova et al. 2016). The identification and characterization of SSRs are car-
ried out using computational platform of SSRLocator (da Maia et  al. 2008). 
Molecular marker recognition helps in establishing linkage studies, evolutionary 
relationship, comparative genomics, gene function prediction and genome organi-
zation (Davies et al. 2013; Varshney et al. 2005).

Most of the genomic and transcriptomic resources are available at NCBI through 
Plant Genome Central; however, EST-related resources provide a major drawback 
as the available data is of poor quality and present in highly unorganized form 
(Sharma and Sarkar 2012). On the other hand, efficient transcriptomic analysis of 
few plant species is performed on the platform of EGENES database by clubbing 
together EST-based genomic data with information at RNA level (Masoudi-Nejad 
et al. 2007). Another similar platform providing exclusive transcriptome and metab-
olome information for medicinal plants is the Medicinal Plant Genomics Resource 
(MPGR) (http://medicinalplantgenomics.msu.edu/) maintained by the Buell Lab in 
the Plant Biology Department at Michigan State University, but it provides informa-
tion pertaining to taxonomically different species only. Transcriptome analysis is 
useful in determining the regulatory sequences and networks, in identifying tran-
scription factors and their role, in determining the activity of intronic sequences and 
also in deciphering the function and expression of medicinal plant proteins at tran-
script level (Dhondt et al. 2013). The primary molecular biology techniques involved 
in studying transcriptome of medicinal plants include DNA microarray (Singh and 
Kumar 2013), whole genome array (WGA) (Xu et al. 2012) and immunoprecipitation 
(Ren et al. 2000), and data generated thereafter is thoroughly analysed using differ-
ent bioinformatics programs. There are several medicinal plant-based resources 
available for analysing the gene expression data such as Plant Expression Database 
(PLEXdb) (Dash et al. 2012; Wise et al. 2007), GEO (Barrett and Edgar 2006) and 
EBI ArrayExpress (Rocca-Serra et al. 2003). Bioinformatics suites provide a vast 
range of options for data retrieval and employ a complex exhaustive computational 
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and statistical approach for establishing the networks and pathways (Babar et al. 
2017). Bioinformatics approaches have even been used to generate co-expression 
networks as has been done with barley and triticale for revealing regulatory net-
works related to drought stress and cellulose biosynthesis (Mochida et al. 2011). 
Other tools involved in comparing transcriptomics data generated from different 
experiments are Affycomp (Irizarry et al. 2006) and Bioconductor (Durinck et al. 
2005). Furthermore, there are several meta-analysis databases and programs avail-
able for profile comparison of medicinal plant genes (Hegde et al. 2000; Engelhorn 
and Turck 2017). Table 8.1 provides an overview of bioinformatics tools and data-
bases available for the study of medicinal plants.

Moreover, the outcomes from proteomics studies of medicinal plants ranging from 
determination of the protein structure and function to interacting partners and subcel-
lular localization are being analysed and interpreted with the help of bioinformatics 
approaches (Wetie et al. 2014). Presently, more advanced and refined computational 
tools are being developed for understanding proteomics data to enable better analysis 
of plant proteins. There are some tools meant for thorough evaluation of gel images 
at the level of gel electrophoresis (Caccia et al. 2013). Similarly, there are yet other 
tools meant for analysing and interpreting high-throughput data generated through 
mass spectrometry (Bensimon et al. 2012). These tools are used for predicting better 
outcomes as well as molecular weight of the characterized proteins based on proba-
bility score. However, the overall output has low confidence value due to inherent 
program errors, which make computational evaluations relatively error prone. 
Variations at the level of proteomics data can have significant impact on the function 
of the protein, which necessitates the need for collaborating proteomics and bioinfor-
matics data for better understanding of the functionality (Yang et al. 2013). One such 
freely accessible manually curated database is TarNet, which provides in-depth net-
work construction analysis of biological pathways and aids in deciphering protein–
protein interactions and plant–compound–protein relationships (Hu et al. 2016). The 
proteomics data can also be used for molecular docking approaches involved in the 
process of drug designing and discovery. The docking approaches are employed for 
studying kinetic and stability parameters of protein–ligand complex formation 
between phytochemicals and other proteins (London et  al. 2013). Another crucial 
application of bioinformatics can be seen at the level of plant metabolomics studies 
wherein computational approaches are used for data interpretation which can be used 
later on for the generation of correlation networks (Kempinski et al. 2015). One such 
approach has been the genome-wide prediction of metabolic enzymes, pathways and 
gene clusters in plants through Plant Metabolic Network (PMN) (Schläpfer et  al. 
2017). Metabolic profiling is very crucial step for a prospective phytochemical before 
entering into pharmacological screening stage. Bioinformatics approaches for study-
ing metabolomics are quite complex as they are based on the stoichiometry parame-
ters. However, they are being modelled to address the complexity issues of large 
metabolic networks so as to predict the localization pattern of a particular metabolite 
by mimicking the in vivo cellular conditions (Boudon et al. 2015).

Interestingly, there is another approach for determining gene interaction and 
their possible roles through pathway analysis of plant secondary metabolites using 
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platform of KEGG (Kanehisa and Goto 2000; Kanehisa et al. 2010). KEGG Drug 
database provides the crucial information on molecular networks including biosyn-
thetic pathways involved in the production of bioactive molecules within the plants, 
and it also shows the interaction between prospective drug compounds and their 
possible targets (Kanehisa 2009). It contains the structures of drug compounds from 
over-the-counter (OTC) drugs and TCM (Kanehisa et  al. 2010; Kanehisa 2009). 
Another similar platform like KEGG is PathPred, which is a web server exclusively 
used for predicting common pathways associated with structurally related com-
pounds (Moriya et al. 2010). There are some other computational approaches for 
drug discovery from unexplored medicinal plants. Some of the examples include 
TCM@Taiwan (Chen 2011), Cardiovascular Disease Herbal Database (CVDHD) 
(Gu et al. 2013), Naturally occurring Plant-based Anti-cancer Compound-activity-
Target database (NPACT) (Mangal et  al. 2013), NutriChem (Jensen et al. 2015), 
Phytochemica (Pathania et al. 2015), TCM-Mesh (Zhang et al. 2017) and Natural 
Product Activity and Species Source database (NPASS) (Zeng et al. 2018). The ulti-
mate role of bioinformatics approaches in studying medicinal plants is reflected 
through ethnopharmacology at the level of drug discovery. The computational 
approaches have dramatically resulted in quicker drug discovery owing to virtual 
screening. It is very difficult to establish a particular property and or activity for 
whole plant extracts as they are known to contain more than one constituent. There 
has to be some optimization and rationalization of herbal drugs, which can be 
addressed through application of computational techniques. There are two 
approaches in this direction, Quantitative Composition-Activity Relationship 
(QCAR) (Zhao et  al. 2004) and Quantitative Structure–Activity Relationship 
(QSAR) (Nantasenamat et al. 2009), however the former one being commonly used 
in drug designing. In this manner, biological and pharmacological activity of herbal 
drugs can be predicted quantitatively based on the composition and structure of the 
potent drug compounds. These approaches can be effectively optimized and mod-
elled to improve overall accuracy of their computational predictions by applying 
machine-learning techniques including Genetic Algorithm-Artificial Neural 
Network, Multiple Linear Regression, Artificial Neural Network and Support Vector 
Machines (Nayak et al. 2010; Wang et al. 2006).

Before directly testing drugs (plant products-natural, synthetic and semi-
synthetic) on humans during clinical trials, preclinical testing in cell lines and ani-
mal models is carried out for establishing their biochemical properties and 
therapeutic potential of compounds as well as checking their toxicity and adverse 
effects which is really an expensive and time-consuming process (Babar et al. 2017). 
Here, bioinformatics resources are employed for correlating “omics” data with drug 
intervention response. There has been a tremendous progress in the development of 
medicinal plant databases with the prime focus on the phytochemistry of natural 
plant products, key active plant metabolites and their constituents, pharmacokinet-
ics of potential herbal drug compounds, drug interactions, structural information, 
remedial applications, toxicity and adverse effects, all of which can certainly pro-
vide a platform for high-throughput virtual screening of prospective drug com-
pounds (Chakraborty 2018; Jensen et al. 2014; Mangal et al. 2013). The application 
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of computational methods can yield in better understanding of the pharmacokinetic 
and pharmacodynamic aspects of phytochemical drugs. In the process of drug 
screening and compound characterization through systems biology, multipathway 
approach should be employed against high-throughput virtual screening, which 
considers only one pathway as former approach and enables biological activity-
based classification of the hits and leads (Pei et al. 2014).

Furthermore, toxicological and safety evaluations of drug compounds form a 
crucial part of herbal drug development and standardization process (Wu et  al. 
2004). In fact, there have been very limited studies on toxicological profile of plant-
based drugs as it is a quite time-consuming and expensive process (Wu et al. 2004). 
However, computational toxicology assessment approaches are offering better 
means by providing cost-effective modelling and prediction options for eliminating 
toxic natural products at early stages of screening (Rusyn and Daston 2010; Valerio 
et al. 2010). In this direction, two QSAR-based tools (LMA and MC4PC) have been 
used for testing carcinogenicity of plant products in rodents by comparing with 
standard phytochemicals whose carcinogenicity was known (Valerio et  al. 2010; 
Yang et  al. 2008). Apart from this, toxicogenomics and statistical learning 
approaches have also been employed in toxicology assessment, as they are more 
reliable because they depend only on basic structural features and physiochemical 
properties of compounds (Li et al. 2005; Youns et al. 2010). In this way, bioinfor-
matics can really transform medicinal plant research by primarily governing 
drug development process through computationally derived hypothesis involving 
exhaustive algorithms and statistical methods, thus making drug designing and dis-
covery much better in terms of time and money.

8.3  �Conclusion

Medicinal plants offer a great deal of benefits in the form of herbal drugs to man-
kind; however, research in this field encounters many challenges due to expensive, 
slow and tedious conventional approaches being adopted in plant-based drug dis-
covery. Even if there are huge volumes of data available on medicinal plants, data 
remains highly dispersed and unlinked which certainly hinders the drug develop-
ment process as it depreciates the information pertaining to potential drug sources 
and bioactive metabolites. Nonetheless, to increase the potential of research in the 
area of medicinal plants, bioinformatics has come to rescue as it has enabled appli-
cation of high-throughput computational tools and approaches for plant-based 
drug discovery which has particularly lead to discovery of new genes, different 
omics pathways and networks pertaining to bioactive metabolite production in 
medicinal plants. Bioinformatics in the present era has become the backbone of 
biological sciences and has revolutionized different aspects of biological research. 
It has evolved as a fast-growing branch of biosciences with its impact on almost 
every aspect of research.
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In the present chapter, we attempted to put forth a comprehensive but updated 
summary on the role of different bioinformatics approaches in studying medicinal 
plants. This has really revolutionized the area of medicinal plant research by auto-
mation of plant-based drug discovery process. Bioinformatics to some extent has 
acted as a bridge by integrating scattered data and converting it to useful informa-
tion. It has more or less developed more refined and targeted approaches for medici-
nal plant-based searches. The interaction of “omics” technologies with bioinformatics 
would definitely assist in exploring plant systems in a better way as it can provide 
us controlled information about several pathways involved in the synthesis of differ-
ent valuable plant metabolites. Later on, these pathways can also be manoeuvred as 
per human requirements in terms of production of pharmacologically valuable com-
pounds. There are certain limitations inherent to the field of bioinformatics, yet it 
has provided a platform for significant progress in the area of medicinal plant 
research. So far, there has been no approach for exploring genotype-phenotype cor-
relations. However, it still continues to provide a whole lot of benefits in the field of 
medicinal plant research. To get an in-depth understanding of the plant-based mech-
anisms behind various cellular processes, bioinformatics can be helpful by provid-
ing information on plant genomics, transcriptomics, proteomics and metabolomics 
through an array of computational tools, thereby facilitating identification of novel 
plant sources for future drug development.
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9.1  �Introduction

Genome sequencing is developing rapidly as a revolutionizing field due to advances 
in DNA sequencing technologies and started the new era in the field of molecular 
biology (Kelley and Salzberg 2010; Ruperao et al. 2014; Khan et al. 2016; Visendi 
et al. 2016). The scientist working in this arena has gained the popularity by manip-
ulating the DNA molecules for the study of genes and their harness toward the 
development sparking a new revolution in biological investigations (Fuller et  al. 
2006; Hsu et al. 2014). These recent advances in genome sequencing served as an 
important tool in basic and translational research, drug development, and clinical 
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trials (Fontana et  al. 2012; Readhead and Dudley 2013; Roychowdhury and 
Chinnaiyan 2016). Nowadays, the sequencing cost and a high-throughput data gen-
eration are not limiting factors due to development of modern sophisticated tech-
nologies, but a big core facility is still needed to operate the procedures of genome 
sequencing (Buermans and den Dunnen 2014; Head et al. 2014). Since, the genome 
analysis is increasingly used to address various problems related to the genotyping, 
diagnosis, environmental and microbiome profiling, and mutation and evolutionary 
studies. The number of challenges in genome analysis is associated with sequencing 
methods. There has been very fast development in genome sequencing. A good 
example was the completion of human genome project in record time. The human 
body has about 100 trillion cells. Inside each cell is the nucleus that contains the 
genome (46 human chromosomes), which governs human development (Kothekar 
and Nandi 2007). Similarly, the tomato genome identified an esterase responsible 
for differences in volatile ester content in different tomato species (Goulet et  al. 
2012). In general, the chromosomes comprise millions of copies of the four-letter 
genetic code—the DNA bases (A, C, G, and T) which are arranged into genes and 
noncoding sections (Akhtar et al. 2017). Finding the order or sequence of these four 
letters is the goal in genomics. The entire human genome is made up of about 3.5 
billion bases. To read the DNA sequence, the chromosomes are cut into tiny pieces 
and read individually. When all the segments have been read, they assembled in 
the correct order. The properties of a biological system are studied through the 
expression of many genes simultaneously. Simple interpretation strategies are 
useful. A typical example is protein p53, an early component in cells which respond 
to DNA damage (Goeman et al. 2017). Thus, the aim of this chapter is to provide 
the in-depth knowledge of various experimental approaches used for sequencing of 
the genome.

9.2  �Genome Sequencing Approaches

There are fundamentally two ways to sequence the genome, namely BAC (bacterial 
artificial chromosome)-to-BAC approach and shotgun approach.

9.2.1  �BAC-to-BAC Approach

BAC-to-BAC approach is also referred to as the map-based approach. It was first 
employed in human genome studies during the late 1980s and continues its expan-
sion till date. The BAC-to-BAC approach first creates a crude physical map of the 
whole genome (Becker 1998; Bolger et al. 2014). Constructing a map requires cut-
ting the chromosomes into pieces and figuring out the order of the big chunks of 
DNA before sequencing all the fragments. The BAC sequences were individually 
assembled and arranged according to the physical map, creating a very high-quality 
genome sequence (Fig. 9.1a).
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Several copies of the genome are randomly cut into pieces of about 150,000 base 
pairs (bp), and each of these fragments is inserted into a BAC. A BAC is an artificial 
piece of DNA that can replicate inside the bacterial cell. The whole collection of 
BACs containing the entire human genome is called a BAC library. Each BAC is 
like a book in the library that can be accessed and copied. Each piece is finger-
printed to give a unique identification tag that determines the order of the fragments. 
Fingerprinting involves cutting each BAC fragment with a single enzyme and find-
ing common sequence landmarks in overlapping fragments that determine the loca-
tion of each BAC along the chromosome. Each BAC is then broken randomly into 
pieces of 1500 bp and is placed in another artificial piece of DNA called M13. The 
collection is known as M13 library. All the M13 libraries are sequenced. A 500 bp 
from one end of the fragment is sequenced to generate millions of sequences. 
Compute algorithms assemble millions of sequenced fragments into a continuous 
stretch of the chromosome. These sequences are fed into a computer program called 
PHRAP, which looks for common sequences that join two fragments.

9.2.2  �Shotgun Approach

It is a speedy approach to genome sequencing, which may enable the researchers to 
complete their job in a short time. Venter (1996) developed the shotgun approach at 
The Institute for Genomic Research (TIGR). The approach of sequencing bypasses 
the need for a physical map and goes straight into the job of decoding (Fig. 9.1b). 
This is the main reason for this speedy technique. Multiple copies of the genome are 
randomly shredded into pieces of 2000 bp by squeezing the DNA through a pressur-
ized syringe. This is done a second time to generate pieces of 10,000 bp long. 

Fig. 9.1  Whole genome sequencing; (a) BAC-to-BAC approach; (b) Shotgun approach
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Each 2000 and 10,000 bp fragment is inserted into a plasmid, which is a piece of 
DNA that replicates in bacteria. The two collections of plasmids containing 2000 
and 10,000 bp chunks of human DNA are known as plasmid libraries. Both 2000–
10,000 bp plasmid libraries are sequenced. A 500 bp from each end of a fragment is 
decoded to generate millions of sequences. Sequencing both ends is critical for 
assembling the entire chromosome; computer algorithms assemble millions of 
sequenced fragments into a continuous stretch of the chromosome.

9.2.3  �Other Sequencing Approaches

9.2.3.1  �Large-Scale Approach

It includes hybridization and sequencing approaches. Hybridization has evolved 
from early membrane-based radioactive detection embodiments to parallel quantita-
tive methods using fluorescence detection (Lee 2007).

9.2.3.2  �cDNA Microarray Detectors

It is a very sensitive technique. It requires only 2–5 nl of DNA solution coating with 
poly L-lysine and aminocialines. The cDNA libraries provide a flexible sequence 
probe. The choice of fluoroprobe is important. The biological samples (or their 
cDNA derivatives) are hybridized to the range and are referred to as the target. 
Labeling with fluorescent dyes with different excitation and emission characteristics 
allows the simultaneous hybridization of two contrasting targets on a single array 
(Aharoni and Vorst 2001; Campos-De Quiroz 2002). Microarrays can be based on 
cDNA molecules, and their basic features are represented in tabular form (Table 9.1).

9.2.3.3  �PCR Method

PCR is used to amplify the single copy or copies of a DNA segments across several 
orders of magnitude to generate millions of copies of a desired DNA sequences. 
It is an easy, cheap, and reliable technique to replicate a focused segment of DNA, 
and most widely used in molecular biology for biomedical research, criminal forensics, 
and molecular archaeology. Now, it is commonly used in clinical and research 

Table 9.1  Some common features of cDNA microarray

Features cDNA microarray

Array preparation Direct or indirect spotting
Target cDNA
Target labeling Cy3-dCTP and Cy5-dCTP incorporation through reverse transcription
Type of hybridization DNA-DNA
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laboratories for a broad variety of applications including DNA cloning and manipu-
lation, gene mutagenesis, construction of DNA-based phylogenies, or functional 
analysis of genes; diagnosis and monitoring of hereditary diseases; amplification of 
ancient DNA; analysis of genetic fingerprints; and detection of pathogens in nucleic 
acid tests for the diagnosis of infectious diseases. The majority of PCR methods rely 
on thermal cycling, which involves exposing the reactants to cycles of repeated 
heating and cooling, permitting different temperature-dependent reactions specifi-
cally DNA melting and enzyme-driven DNA replication to quickly proceed many 
times in sequence. Primers contain sequences complementary to the target region, 
along with a DNA polymerase to enable selected and repeated amplifications. In 
PCR, the choice of template is important. As the PCR progresses, the DNA gener-
ated is itself used as a template for replication, setting in motion a chain reaction in 
which the original DNA template is exponentially amplified. Almost all PCR appli-
cations employ a heat-stable DNA polymerase, such as Taq polymerase. If heat-
susceptible DNA polymerase is used, it will denature every cycle at the denaturation 
step. Before the use of Taq polymerase, DNA polymerase had to be manually added 
every cycle, which was a tedious and costly process. This DNA polymerase enzy-
matically assembles a new DNA strand from free nucleotides by using single-
stranded DNA as a template and DNA oligonucleotides to initiate DNA synthesis. In 
the first step, the two strands of the DNA double helix are physically separated at a 
high temperature in a process called DNA melting. In the second step, the tempera-
ture is lowered and the two DNA strands become templates for DNA polymerase to 
selectively amplify the target DNA. Selectivity of PCR results from the use of prim-
ers that are complementary to sequence around the DNA region targeted for amplifi-
cation under specific thermal cycling conditions. PCR has an enormous impact in 
both basic and diagnostic aspects of molecular science because it produces large 
amounts of a specific DNA fragments from small amounts of a complex template. 
PCR represents a form of in vitro cloning that can generate or modify the DNA frag-
ments of definite length and sequence in a simple automated reaction. In addition, 
PCR plays a critical role in the identification of medically important sequences as 
well as an important diagnostic one in their detection.

9.2.3.4  �Image Analysis

Intensity evaluation (100–400 μ2 pixels) allows 50–200 sampling at each spot. Data 
normalization is done. Statistical analysis is important. Assay reliability has to be 
tested.

9.2.3.5  �Functional Proteomics

Phene is the functional protein contained in the total protein data. Phene is to “phe-
notype” as a gene is to “genotype.” In multicellular organisms, the set of proteins 
would differ from cell type to cell type. Proteins normally undergo large-scale 
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modifications. Proteome analysis is concerned with biochemical changes like post-
translational modifications, phosphorylation, etc. In general, the phosphorylation is 
a reversible enzymatic reaction and plays an important role in various cellular pro-
cesses, viz., division, function of target proteins, immunity metabolism, membrane 
transport, and organelle trafficking (Bolger et al. 2014). It can activate and inhibit 
enzyme activity through allosteric conformational changes, facilitate the recogni-
tion of other proteins, promote protein-protein association or dissociation, and also 
induce order to disorder transition.

9.3  �Conclusions and Future Prospects

Genome sequencing has a major impact on molecular biological research and 
improvement in the comparatively small period of time. Although a rapid develop-
ment has been observed in the preparation of library in the past decades with the 
performances of some small genome studies, still the breakthrough researches are 
expected. Therefore, in the future, more studies are needed on the deep phenotyping 
platforms to overcome the issues and the elucidation of mechanisms to complete 
enormity of the available data.
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10.1  �Introduction and Applications of Phylogeny

Study of relationships among individuals or groups of organisms or species or pop-
ulations is called phylogeny. The relationships among the individuals are estimated 
or assessed based on the evolutionary signals present in the genetic material of any 
organism. The evolutionary signals or footprints among these individuals or entities 
are used to construct the evolutionary history. The evolutionary history based on the 
evolutionary signals can be modeled or represented in the form of graphical 

S. Challa · N. R. R. Neelapu (*) 
Department of Biochemistry and Bioinformatics, Institute of Science, Gandhi  
Institute of Technology and Management (GITAM) (Deemed to be University),  
Visakhapatnam, Andhra Pradesh, India

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19318-8_10&domain=pdf


168

representation or tree, which is known as phylogenetic tree. Phylogenetics is an 
ever-evolving field that promises to give more insights into understanding biodiver-
sity, evolution, ecology, and genomes. Phylogenetics has several applications like 
affiliating taxonomy to an organism, studying reproductive biology in lower organ-
isms, assessing the process of cryptic speciation in a species, understanding the 
history of life, resolving controversial history of life, reconstructing the paths of 
infection in an epidemiology to understand the evolution of pathogen, classifying 
proteins or genes into families, and many more.

10.1.1  �Affiliating Taxonomy to an Organism

Every living organism which is known or identified till date should be classified and 
affiliated to a taxonomic group. When the taxonomy of the species identified is not 
known, it is left as an orphan or classified into a special group. The traditional 
approach for identification of an organism includes studies based on microscopy, 
morphology, biochemical tests, physiological tests, fruit bodies, mating behavior 
experiments, and others. The drawbacks associated with the traditional approach 
are time consuming and of low to moderate in precision. In these cases, phylogeny 
can be used to affiliate taxonomy to a taxa or an organism.

Phylogeny has been proposed and widely accepted to affiliate taxonomy for a spe-
cies. Several reports were there on entomopathogenic fungi (Neelapu et al. 2009), 
Echinococcus (Thompson 2008), catfishes (Teugels 1996), Borrelia burgdorferi 
(Margos et al. 2011), Trichinella (Pozio et al. 2009), and many more. This case study 
provides with details that how phylogeny can be used to affiliate taxonomy for ento-
mopathogenic fungi (Neelapu et al. 2009). When the taxonomy of the species is not 
known, it is left as an orphan or classified into a special group. The fungi which are 
not classified into any fungal divisions such as Ascomycota, Zygomycota, and 
Basidiomycota were classified into a special group known as Deuteromycota. 
Neelapu et al. (2009) studied phylogeny of mitosporic or asexual or conidiogenous 
entomopathogenic fungi of Deuteromycota belonging to the genera Beauveria, 
Nomuraea, Metarhizium, Paecilomyces, and Lecanicillium. One hundred forty-seven 
fungal entries covering 94 species related to Ascomycota, Zygomycota, and 
Basidiomycota were analyzed. The partial amino acid sequences of the β-tubulin 
gene were aligned using AlnExplorer of MEGA ver. 3.014. The statistical procedures 
minimum evolution (ME), maximum parsimony (MP), and neighbor joining (NJ) of 
MEGA ver. 3.014; maximum likelihood of PAUP ver. 4b; Bayesian inference of 
MrBayes ver. 3.04b10; and Metropolis-coupled Markov chain Monte Carlo 
(MCMCMC) were used to construct phylogenetic tree. “Phylogenetic analysis 
placed all the asexual entomopathogenic fungal species analyzed in the family 
Clavicipitaceae of the order Hypocreales of Ascomycota” (Fig. 10.1). Thus, when-
ever the identity of the organism is in crisis, phylogeny can be used to affiliate the 
organism to the known traditional taxonomic group.
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10.1.2  �Studying Reproductive Biology in Lower Organisms

Understanding the reproductive biology in lower organisms where sexual organs are 
not observed is a challenge. Genetic tests based on phylogenetic concordance and 
gene genealogies offer an indirect means of identifying recombination. When phy-
logeny is applied, different genes show different genealogies within a species due to 
recombination. Therefore, phylogenetic trees generated from the data show phylo-
genetic concordance among the multiple gene genealogies in recombining species, 
whereas non-phylogenetic concordance among the multiple gene genealogies in a 
clonal species (Fig. 10.2).

The reproductive biology in Beauveria bassiana (Neelapu 2007; Devi et al. 2006) 
and Nomuraea rileyi (Neelapu 2007; Devi et al. 2007) was studied. Devi et al. (2006) 

Fig. 10.1  The phylogenetic affiliation of the asexual entomopathogenic Beauveria spp., Nomuraea 
spp., Metarhizium spp., and Paecilomyces spp. (Source: Neelapu et al. 2009)
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applied indirect means of genetic tests which are based on phylogenetic concordance 
of gene genealogies to identify reproductive biology (recombination or clonal) in a 
localized epizootic population of entomopathogenic fungi B. bassiana. Nucleotide 
sequence data of different allelic forms of three genes (large and small subunits of 
mitochondrial ribosomal RNA (mt rRNA) and β-tubulin) were evaluated to assess 
phylogenetic concordance among the multiple gene genealogies. Lack of phyloge-
netic concordance among three gene genealogies in the epizootic of B. bassiana 
indicates prevalence of recombination within the clonal structure of the population 
(Fig. 10.3). Thus, whenever the mating tests cannot be applied in lower organisms 
like bacteria and fungi where sexual organs are not observed, phylogenetic concor-
dance among multiple gene genealogies can be used for understanding the repro-
ductive biology.

10.1.3  �Assessing the Process of Cryptic Speciation in a Species

Entomopathogenic fungi of Deuteromycota belonging to the genera Beauveria, 
Nomuraea, Metarhizium, and Paecilomyces are recognized as a “species complex” 
comprising of genetically diverse lineages. Devi et al. (2006) used amplified frag-
ment length polymorphism (AFLP) and single-stranded confirmation polymorphism 
(SSCP) data of worldwide population and generated unweighted pair group method 
with arithmetic mean (UPGMA) tree. The worldwide sample of B. bassiana isolates 
represented cryptic phylogenetic species (Fig.  10.4). Literature reports the use of 
powerful approach—genealogical concordance phylogenetic species recognition 
(GCPSR)—to uncover cryptic speciation. “GCPSR detects genetically isolated 

Fig. 10.2  Phylogenetic concordance and gene genealogies: (a) clonal species (b) recombining 
species

S. Challa and N. R. R. Neelapu



ARSEF-1640

ARSEF-1635
ARSEF-1533
ARSEF-1535

ARSEF-1538
ARSEF-1540

ARSEF-1537

ARSEF-1640
ARSEF-1533

ARSEF-1538
ARSEF-1535
ARSEF-1540
ARSEF-1635

ARSEF-1635

ARSEF-1640
ARSEF-1540

ARSEF-1538
ARSEF-1535

ARSEF-1533

ARSEF-1537

ARSEF-1537

55

66

63

54

100

52
52

a

b

c

Fig. 10.3  Maximum parsimony tree generated from the sequences of (a) partial sequence of β-tubulin 
gene, (b) large subunit of mt rRNA gene, and (c) small subunit of mt rRNA genes derived from the 
isolates of an epizootic B. bassiana population from Burgenland, Austria. The tree topology of each 
species tree indicates the presence of recombination and cryptic speciation. (Source: Devi et al. 2006)

Fig. 10.4  Phylogenetic tree derived and generated from SSCP data of three genes: β-tubulin gene, 
and large and small subunits of mt rRNA genes of a sample of isolates of B. bassiana of worldwide 
distribution, representing cryptic phylogenetic species (Neelapu et al. 2009)
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groups from a number of different loci by comparing the gene trees. Different genes 
have different genealogies within a species establishing gene flow delimiting species 
by identifying the unshared polymorphisms, and thus branches that are incompatible, 
with all genealogies at all loci. Thus, branches that are incompatible with all genealo-
gies at all loci represent different species” (Neelapu et al. 2009).

Neelapu et al. (2009) used GCPSR to uncover cryptic speciation in B. bassiana. 
Epizootic population of B. bassiana from Burgenland, Austria, are sequenced for 
partial sequences of the three genes, β-tubulin gene and large and small subunit of 
rRNA genes of mitochondria, and were aligned using AlnExplorer of MEGA ver. 
3.1. A consensus maximum parsimony tree was generated using PAUP ver. 4.0. 
“The tree topology of each species tree indicates the presence of cryptic speciation. 
Incongruity of gene genealogies within a given group indicates gene flow and 
delimits a species. As the approach detects reproductive isolation, the resulting 
groups also fulfill the criteria of a biological species” (Fig. 10.3).

10.1.4  �Studying the Evolution of Proteins or Gene Families

Phylogeny is used in establishing the origin and evolutionary pattern of a gene of 
particular species with respect to the other species. Similar set of genes are required 
for studying or understanding the phylogeny. The genes, which are similar in their 
structure or function, are known as homologous sequences. If the genes are similar 
in function but are from different organisms, then they are believed to be orthologous 
sequences. If the genes are from the same organism, then they are known as 
paralogous sequences. It is believed that orthologous sequences are due to speciation 
from a common ancestor, whereas paralogous sequences are due to duplication.

Though there are many reports on the evolution of proteins or gene families, we 
would like to throw some light on evolution of globin and V-PPases (Hardison 2012; 
Suneetha et al. 2016). Globin genes diverged to form hemoglobin (oxygen transport 
in blood), myoglobin (oxygen metabolism in muscle), cytoglobin (oxygen donator 
during synthesis and cross-linking of collagen or acting as a protector of the free 
radicals formed in the fibrosis process), and neuroglobin (acts as an oxygen reservoir 
releasing oxygen in stressful situations, such as hypoxia). So, the plausible explana-
tion for gene evolution can be duplication of the existing gene like globin followed 
by divergence in function as described above for hemoglobin, myoglobin, cytoglo-
bin, and neuroglobin (Figs. 10.3 and 10.4) (Hardison 2012). The best example for 
both orthologous and paralogous sequence is globin genes. α-Globin and β-globin 
genes found in different species are orthologous genes (Fig. 10.5), whereas the α, β, 
γ, and δ globin genes due to duplication in the same organism are paralogous genes 
(Fig. 10.6) (Hardison 2012; Opazo et al. 2008).

V-PPase is a heat-stable single polypeptide, coexisting along with V-ATPase on 
the plant vacuolar membrane in plants, algae, photosynthetic bacteria, protozoa, 
and archaebacteria (Rea et al. 1992; Maeshima 2000). V-PPase uses ATP and inorganic 
pyrophosphate (PPi), respectively, as energy sources for generating an electrochemical 
gradient of protons across the tonoplast. This facilitates the functioning of the Na+/H+ 
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Fig. 10.5  Phylogenetic tree showing duplication and divergence of globin genes, an example for 
evolution of vertebrate globin genes. (Source: Hardison 2012)

Fig. 10.6  Phylogenetic tree showing relationships among the β-like globin genes of vertebrates. 
(Source: Opazo et al. 2008)
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antiporter and helps in Na+ compartmentation. Suneetha et al. (2016) carried out phy-
logenetic studies on land plants, archaea, and bacterial V-PPases (Fig. 10.7). V-PPases 
are highly conserved among land plants and less among archaeon, protozoan, and 
bacteria (Suneetha et al. 2016). Phylogeny with respect to other land plants revealed 
that V-PPases of A. thaliana (AtVPP), H. vulgare (HvVPP), B. vulgaris (BvVPP), N. 
tabacum (NtVPP), and O. sativa (OsVPP) are highly conserved.

10.1.5  �Classifying Proteins or Genes into Families

Classification of genes into gene families is important for understanding function 
and evolution of gene. There are three methods to infer gene families: (1) using 
phylogenetic trees for classification, (2) using similarities with known sequence 
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signatures like motifs or domains, and (3) pairwise comparisons involving the use 
of clustering techniques (Frech and Chen 2010).

Phylogenetic tree was used for effective classification of ABC transporter gene 
families. Multiple sequence alignment of both known and putative new ABC 
transporter family C genes using ClustalW with default parameters was per-
formed. The phylogenetic tree was produced by the minimum evolution method 
and 1000 bootstrap iteration. In phylogenetic analysis, the three new genes 
grouped nicely within known ABC transporters of family C (Fig.  10.8). Thus, 
phylogenetic analysis can be used to classify new genes into ABC transporter 
family C (Frech and Chen 2010).

10.1.6  �Understanding the History of Life

Understanding the systematics of living organisms in the world is a challenging 
task. Literature reports several studies carried out to understand the kingdom-level 
phylogeny. Carl Woese established a molecular sequence-based phylogenetic tree 
by comparing ribosomal RNA (rRNA) sequences that could relate all organisms and 
reconstruct the history of life (Woese 1987; Woese and Fox 1997). Woese articulated 
and recognized three primary lines of evolutionary descent, termed “urkingdoms” 
or “domains”: .....“Eucarya (eukaryotes), Bacteria (eubacteria), and Archaea 
(archaebacteria)”..... (Woese et al. 1990). Pace (1997) used molecular phylogeny to 
compile the robust map of life domains: Archaea, Bacteria, and Eucarya (Fig. 10.9). 
The universal phylogenetic tree based on 64 SSU rRNA sequences was aligned, and 
a tree was produced using FASTDNAML. Baldauf et al. (2000) used concatenated 
amino acid sequences of four protein-encoding genes to produce a phylogenetic tree 
for 14 higher-order eukaryote taxa (Fig. 10.10). Thus, phylogeny was used to under-
stand the kingdom-level relations.

10.1.7  �Estimating the Time of Divergence Using Molecular 
Clock

Molecular dating techniques were used to estimate the time of species divergences. 
Literature reports several research studies used to determine the time of species diver-
gences. Molecular dating requires standard sequence datasets; statistical distributions to 
model; and prior divergence times to find out the time of divergence during the course 
of evolution. Hasegawa et  al. (1985) developed a method for estimating divergence 
dates of humans from species by a molecular clock approach. The molecular clock of 
mitochondrial DNA (mt DNA) was calibrated ~65 million years ago and a generalized 
least squares method was applied. The divergence dates were 92.3 ± 11.7, 13.3 ± 1.5, 
10.9 ± 1.2, 3.7 ± 0.6, and 2.7 ± 0.6 million years ago for mouse, gibbon, orangutan, 
gorilla, and chimpanzee, respectively (Figs. 10.11 and 10.12). Thus, phylogeny can be 
used to estimate time of divergence for species of interest.
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Fig. 10.8  The phylogenetic tree shows the evolutionary relationship of the three new ABC trans-
porter genes CBG08354, CRE25095, and CRE14222 (indicated by arrows) with known C. elegans, 
C. briggsae, and C. remanei ABC transporters of family C. (Source: Frech and Chen 2010)
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Fig. 10.9  The phylogenetic tree shows the robust map of life domains: Archaea, Bacteria, and 
Eucarya. (Source: Pace 1997)
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10.1.8  �Evolution of Pathogen

Viruses are with high mutation rate and adapt quickly to environmental changes 
leading to the high genetic diversity. On the other hand, this fast evolution leaves 
behind significant marks in the genome of virus that can be connected with trans-
mission dynamics and epidemiology. Evolutionary theory and sequence analysis 
played a role in understanding epidemiology of virus by figuring out the origin of 
time and geographical site of a virus. Analysis was able to provide information on 
transmission linkages or chains for a population.

Huet et al. (1990) inferred the origin and classified HIV into types, groups, and 
subtypes (Fig.  10.13). Epidemiological, physiological, and clinical evidences 
favored cross-species transmission of HIV from chimpanzee to humans (Castro-
Nallar et al. 2012). Further, phylogenetic evidence corroborates this fact that HIV-1 
and HIV-2 are due to several cross-species transmission events (Huet et al. 1990; 
Gao et al. 1992, 1999; Hahn et al. 2000; Plantier et al. 2009; Van Heuverswyn and 
Peeters 2007) (Fig. 10.14).

Fig. 10.10  The phylogenetic tree shows the 14 higher-order eukaryote taxa. (Source: Baldauf 
et al. 2000)
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Fig. 10.13  Phylogenetic tree representation of HIV-1 and its subtypes. (Source: Castro-Nallar 
et al. 2012)

Fig. 10.14  Phylogenetic tree showing HIV cross-species transmission. (Source: Castro-Nallar 
et al. 2012)
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Intensive studies were carried out on the evolution and divergence of HIV-1 and 
HIV-2 using phylogeny. The divergence time of HIV-1, HIV-2 (subtype A), and 
HIV-2 (subtype B) dated to the 1920s (Worobey et al. 2008), 1940 ± 16 (Lemey 
et al. 2003), and 1945 ± 14 (Lemey et al. 2003), respectively. Introduction of clade 
B of HIV-1 into North America dated to 1968 (1966–1970) (Gilbert et al. 2007; 
Pérez-Losada et al. 2010).

The emerging field of phylodynamics—“the melding of immunodynamics, epide-
miology, and evolutionary biology …”—was used to understand the transmission 
dynamics, population dynamics, and within-host dynamics of virus or bacteria 
(Grenfell et al. 2004). Transmission dynamics helps in understanding diversity of an 
organism in transmission network constructed during a transmission event for poten-
tial therapy development. Population dynamics increases our understanding on pat-
terns of diversity among populations throughout the length and breadth of infection, 
within host and transmission events. Within-host dynamics provide information on 
evolution of virus in the host which is associated with disease progression. There are 
two aspects within host dynamics which are observed in case of HIV. The first one is 
that evolution of HIV is different in specific tissues. It was revealed that HIV evolves 
at different rates in different compartments of the brain, which cannot be attributed 
to selective pressure, but can be related to viral expansion due to immune failure 
(Salemi et al. 2005). The second aspect is that HIV genetic diversity (variation) in the 
host leads to evolution of quasispecies (Holmes 2009). So, phylodynamics can be 
useful in relating epidemiological and evolutionary information which can be used 
for monitoring surveillance programs of a virus especially in case of HIV.  Thus, 
phylogenetics can be used to identify evolution of virus in terms of origin, time of 
divergence, pathogen evolution, and understand phylodynamics.

10.2  �Construction of Phylogenetic Trees

Data and tree construction methods used for construction of phylogenetic tree 
effect topology of the tree; therefore, it is worth to discuss on data and tree construc-
tion methods.

10.2.1  �Data

Data generated via fingerprinting techniques such as rapid amplification polymor-
phic DNA (RAPD), restriction fragment length polymorphism (RFLP), AFLP, 
SSCP, and sequence data (nucleotide and protein sequence data) are used for phylog-
eny. Data from fingerprinting techniques such RAPD, AFLP, and SSCP is converted 
to binary data (0/1). The “0s” represent the absence of band in the DNA fingerprint-
ing techniques, whereas “1s” represent the presence of band in the DNA fingerprint-
ing techniques. DNA or protein sequence data is generated by Sanger’s method. 
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This binary or sequence data is either converted to distance or used directly in the 
form of character used to construct a phylogenetic tree. The fingerprinting data or 
the sequence data (DNA or protein) was known to influence the tree topology of the 
phylogenetic tree (Neelapu 2007; Devi et al. 2006, 2007; Padmavathi et al. 2003).

10.2.2  �Tree-Constructing Methods

Broadly, there are two fundamental methods for constructing phylogenetic trees: 
distance or discrete character methods. Distance methods first convert data or 
aligned sequences into pairwise distance matrix. A correction is needed for these 
raw distances. These corrections are based on the assumptions of various substitu-
tion models proposed for both nucleic acid and protein sequence methods. A phylo-
genetic tree building method is then used to construct an evolutionary tree. Some of 
the tree-building methods are unweighted pair group method with arithmetic means 
(UPGMA), minimum evolution, neighbor joining, and Fitch-Margoliash.

UPGMA (Sokal and Michener 1958; Nei 1975) clusters data based on similarity 
and assumes that changes are accumulated at a constant rate among the lineages. 
In neighbor-joining method (Saitou and Nei 1987), a star tree in which terminal taxa 
are equidistant, is first established; then, two taxa are temporarily taken from the 
star to a new node, and the total distance in the new tree is recalculated; and the taxa 
are returned to the star and another pair of taxa is taken to repeat the operation. This 
process is continued until all the taxa are jointed in a completely resolved tree with 
the lowest total distance. In minimum evolution method (Takahashi and Nei 2000), 
the initial tree is created by clustering taxa using neighbor-joining method. Then, 
every possible tree is examined and one tree with minimum branch length is 
selected, thereby minimizing the total distance in a tree.

Discrete methods directly consider the state of each nucleotide or amino acid site 
in each sequence under comparison. The two discrete character methods are 
maximum likelihood and maximum parsimony. Maximum likelihood method 
(Cavalli-Sforza and Edwards 1967; Felsenstein 1973; Felsenstein 1981; Swofford 
et al. 1996) uses data to determine the probability of substitution, relative frequencies, 
and the different probabilities of transitions and transversions. It then selects the tree 
that maximizes the probability of good fit of the data. Maximum likelihood method 
presents an additional opportunity to evaluate trees with variations in mutation rates 
in different lineages; and also to use explicit evolutionary models such as the jukes-
cantor and Kimura models.

Parsimony is another discrete character method that creates evolutionary trees 
based on a systematic search among possible trees for the fewest plausible mutational 
steps from a common ancestor necessary to account for two diverged lineages, and 
those trees that require the fewest changes are said to be most parsimonious 
(i.e., optimal) trees. The sum of the minimum possible substitutions over all sites is 
known as the tree length for that topology. The topology with the minimum tree 
length is known as the maximum parsimony tree. Three different types of searches 
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the max-mini branch-and-bound search, min-mini heuristic search, and close-
neighbor-interchange heuristic search are performed to generate maximum 
parsimony tree. The maximum parsimony method (Fitch 1971) produces many 
equally parsimonious trees. A majority-rule consensus method is used to produce a 
composite tree that is a consensus among all such trees.

10.2.3  �Phylogeny Program Packages

All these clustering methods are available in various phylogenetic packages such as 
PHYLIP (Felsenstein 1989), PAUP (Swofford 1991), MEGA (Kumar et al. 2004), 
TreePuzzle (Schmidt et al. 2002), etc. (Table 10.1). The computational limits that 
were faced in running maximum parsimony and maximum likelihood method with 
increase in number of species and increase in length of the sequence in most 
packages are overcome in MEGA. Moreover, best tree editing options such as Tree 
Explorer program are available in MEGA, which makes phylogenetic inference 
from sequence data much easier.

10.3  �Methods to Assess the Confidence of Phylogenetic Tree

The tree generated based on the input data and tree construction method is known 
as inferred tree. This inferred tree need not be the true tree for the given phylogenetic 
data. So, there is a requirement to test the reliability of the phylogenetic tree or 
portion of the tree. In methods like minimum evolution, maximum parsimony, and 
maximum likelihood, increase in tree number is observed as the sample size 
increases (Table 10.2). In these conditions, whether the tree is significant/better than 
another tree is to be confirmed. The reliability of the phylogenetic tree or portion of 
the tree is tested by sampling methods, whereas the significant difference of a tree 
over the other is confirmed by statistical tests.

10.3.1  �Sampling Methods

The reliability of the phylogenetic tree or portion of the tree is tested by sampling 
methods such as bootstrapping, jackknifing, and Bayesian simulation.

10.3.1.1  �Bootstrapping

Bootstrapping is random sampling with replacement of data (distances or sequence: 
nucleotide or protein) which addresses if any sampling errors occurred for the 
required analysis. In molecular phylogeny, bootstrapping repeatedly samples the 

10  Phylogenetic Trees: Applications, Construction, and Assessment
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Table 10.2  The number of rooted trees and unrooted trees for n sequences

Number of taxa

Number of unrooted trees Number of rooted trees
Formula

Nu =
−( )
−( )−

2 5

2 33

n

nn

!

!
Nr =

−( )
−( )−

2 3

2 22

n

nn

!

!

3 1 3
4 3 15
5 15 105
6 105 945
7 945 10,395
8 10,395 135,135
9 135,135 2,027,025
10 2,027,025 34,459,425

data to construct the phylogenetic tree and gives us the chance to assess the strength 
of the original tree. If the data resampling generates different trees when compared 
with the original tree, then the tree topology is based on the data with weak phylo-
genetic signals. If the data resampling generates tree similar to the original tree, 
then the tree topology is based on the data with enough phylogenetic signals. Thus, 
bootstrapping (resampling data) provides insights on the confidence of the tree 
topology.

Two types of bootstrapping are used in phylogenetic analysis: parametric or non-
parametric bootstrapping. If the data is disturbed by random sampling generating 
new dataset, then it is nonparametric bootstrapping. If the data is disturbed by par-
ticular order to generate new dataset, then it is parametric bootstrapping. The other 
types of bootstrapping are case resampling, Bayesian bootstrap, smooth bootstrap, 
resampling residuals, Gaussian process regression bootstrap, wild bootstrap, and 
block bootstrap (time series: simple block bootstrap, time series: moving block 
bootstrap, cluster data: block bootstrap).

If bootstrapping is repeated 100–1000 times or even more to reconstruct phylo-
genetic trees, then certain parts of the tree have different topology when compared 
with the original inferred tree. All these bootstrapped trees are summed up into a 
consensus tree based on a majority rule. The most supported branching patterns 
shown at each node are labeled with bootstrap values. Thus, bootstrap offers a mea-
sure for estimating the confidence levels of the tree topology.

10.3.1.2  �Jackknifing

Jackknifing is another resampling technique where half of the dataset is randomly 
deleted, generating datasets half-original. Initially, a phylogenetic tree is constructed 
with the original dataset, then with each new dataset generated by jackknifing, a 
phylogenetic tree is constructed using the same method as the original. Sampling 
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generates different trees when phylogenetic signals are weak, whereas sampling 
generates similar tree when phylogenetic signals are strong. Thus, jackknifing (resa-
mpling data) can also be used to assess the confidence of the tree topology.

10.3.1.3  �Bayesian Method

Bayesian method based on MCMC approach resamples data thousands or millions 
of steps or iterations. The sample datasets are used to reconstruct phylogenetic trees 
similar to original inferred tree. The posterior probabilities designated at each inter-
section of a best Bayesian tree measure the confidence levels of the tree topology.

10.3.2  �Statistical Methods

The significant difference of a tree over the other is confirmed by statistical tests 
such as Kishino-Hasegawa Test and Shimodaira-Hasegawa Test.

10.3.2.1  �Kishino-Hasegawa Test

Kishino-Hasegawa (KH) test compares two tree topologies to differentiate one tree 
over the other (Kishino and Hasegawa 1989). Though KH test can be used for 
differentiating trees generated through methods such as distance, parsimony, and 
likelihood, Kishino-Hasegawa developed this test specifically for parsimonious 
trees. The KH test (statistical method) is paired Student t-test based on null 
hypothesis that the “two competing tree topologies are not significantly different….” 
The standard deviation of the difference between branch lengths at each informative 
site between two trees is estimated. Then the derived t-value is compared with the 
t-distribution values either to accept or reject the null hypothesis at certain significant 
levels (with probability e.g., P < 0.05).

	
t

n
=

−Da Dt

SD / 	

df = (n − 1) where t is the test statistical value, Da is the average site-to-site differ-
ence between the two trees, Dt is the total difference of branch lengths of the two 
trees, SD is the standard deviation, n is the number of informative sites, and df is the 
degree of freedom.

10.3.2.2  �Shimodaira-Hasegawa Test

Shimodaira-Hasegawa (SH) developed a statistical test for ML trees based on likeli-
hood ratio using the χ2 test to estimate the goodness of fit of two competing trees 
(Shimodaira and Hasegawa 1999). The log likelihood scores lnLA and lnLB for tree 
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A and tree B are obtained first, for the two competing trees. Then the log ratio of the 
two scores is obtained by d = 2(lnLA −  lnLB) = 2  ln  (LA/LB) and used to test 
against the χ2 distribution from a table. The resulting probability value (P-value) 
determines whether the difference between the two trees is significant or 
nonsignificant.

10.4  �Conclusion

Molecular phylogeny establishes the relationships among the set of objects in the 
study. Binary data (“0”/“1”) from RAPD, RFLP, AFLP, SSCP, and sequence data 
(DNA or protein) from the set of objects are used to construct phylogenetic tree. The 
different tree construction methods are UPGMA, NJ, ME, FM, MP, and ML. 
Molecular phylogeny has a wide range of applications and if the interpretation of 
the evolutionary patterns is not appropriate, then the inference of the study may be 
misleading. The interpretation of the tree is always dependent on assessing the con-
fidence of the phylogenetic tree. Sampling methods (bootstrapping, jackknifing, and 
Bayesian simulation) and statistical methods (KH test and SH test) can be used to 
assess the confidence of the phylogenetic tree. Thus, if the confidence of the phylo-
genetic tree generated is good, then the interpretation or inference of the study will 
not be misleading.
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11.1  �Introduction

Drought, salinity, and extreme temperatures are the major abiotic stress factors that 
adversely affect plant growth, development, and crop productivity. They alleviate the 
photosynthetic activity and induce nutrient scarcity and ionic and osmotic stress con-
ditions in plants (Munns and Tester 2008; Rehman et al. 2005; Ashraf et al. 2008).

Salinity leads to degradation of soil fertility as a result of both natural and anthro-
pogenic activities such as irrigation in arid and semiarid regions. Approximately 
20% of the irrigated lands, i.e., 45 million hectares, is affected by soil salinization 
worldwide (Yeo 1999; Munns and Tester 2008). Moreover the change in global 
climate made rainfall less predictable and caused a drastic shift in the general rain-
fall pattern. This is of serious concern as there is much decrease in rainfed farm 
lands which produce one third of the world’s food supply.
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Under high salinity, plants experience both osmotic and ionic stress. The salt 
concentrations outside the roots rise rapidly, thereby leading to inhibition of water 
uptake by the roots, cell expansion, and lateral bud development (Munns and Tester 
2008). Ionic stress develops when excess Na+ accumulates particularly in leaves 
leading to increase in leaf mortality with chlorosis and necrosis and subsequently 
decrease in essential cellular metabolism activities such as photosynthesis (Yeo and 
Flowers 1986; Glenn et al. 1999). As NaCl is the most soluble and widespread salt, 
all plants have evolved mechanisms to regulate its accumulation.

Under salinity stress, plant cells need to maintain low cytosolic Na+ level and 
high K+ levels, resulting in a high cytosolic K+/Na+ ratio that is crucial for vital 
cellular metabolisms (Jeschke 1984; Blumwald 2000). The strategies generally 
employed by plants for the maintenance of a high K+/Na+ ratio in the cytosol 
include Na+ extrusion and/or the intracellular compartmentalization of Na+ (mainly 
in the plant vacuole). These mechanisms are vital for detoxification of cellular Na+ 
levels and cellular osmotic adjustment which are needed to tolerate salt stress and 
plant survival (Blumwald 2000; Gaxiola et  al. 2001; Li et  al. 2010; Wei et  al. 
2011). The compartmentalization of Na+ into vacuoles prevents the deleterious 
effects of Na+ in the cytosol and allows the plants to use NaCl as an osmoticum. 
NaCl generates an osmotic potential that drives water into the cells (Gutiérrez-Luna 
et al. 2018).

The plant cell vacuole performs important biological functions such as recycling 
of cell components, regulation of turgor pressure, detoxification of xenobiotics, and 
accumulation of many useful substances. A large number of vacuolar proteins are 
known to be involved in support of the above multifaceted functions (Ohnishi et al. 
2018). They include active pumps, carriers, ion channels, receptors, and structural 
proteins. Several major proteins of the tonoplast have been extensively investigated, 
and it was found that the three most abundant proteins of the tonoplast are vacuolar 
H+-ATPase (V-ATPase), H+-pyrophosphatase (V-PPase) (Maeshima 2000, 2001; 
Meng et al. 2017), and water channels (aquaporins) (King et al. 2004).

V-ATPase and VPPase coexist on the plant vacuolar membrane and use ATP and 
inorganic pyrophosphate (PPi), respectively, as energy sources for generating an 
electrochemical gradient of protons across the tonoplast. This facilitates the func-
tioning of the Na+/H+-antiporter. The V-ATPase enzyme is a multisubunit proton 
pump found in all eukaryotes consisting of the peripheral (V1) complex responsible 
for ATP hydrolysis and the membrane-integral (Vo) complex responsible for proton 
translocation. V-ATPase is the largest complex in the tonoplast, with a total molecu-
lar size of about 750 kDa.

VPPase is a heat stable single polypeptide found in plants, algae, photosynthetic 
bacteria, protozoa, and archaebacteria (Rea et al. 1992; Maeshima 2000). It functions 
as a tonoplast proton pump and helps in Na+ compartmentation. In plants, two 
isoforms of VPPase have been identified; one is potassium-dependent, while the 
other is potassium-independent (Belogurov and Lahti 2002; Schilling et  al. 
2017). Aquaporins are referred to as intercellular water channels imbedded in the 
membranes, and they facilitate transport of water, small solutes, and ions across 
membranes (Aharon et al. 2003; Porcel et al. 2005).
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In this chapter, the vacuolar transporter VPPase has been reviewed with respect 
to its structure, function, phylogeny, and mode of action. This provides us with an 
understanding how plants tolerate and survive under salt-stressed environments.

11.2  �Molecular Phylogeny of VPPase

VPPases have been reported to be highly conserved among land plants and less 
among archaeon, protozoan, and bacteria (Suneetha et al. 2016). VPPase from 
R. rubrum (Baltscheffsky et  al. 1998), Acetabularia acetabulum (marine algae) 
(Ikeda et al. 1999), and Chara coralline (green algae) (Nakanishi et al. 1999) pre-
dicted the overall identities of amino acid sequences among these three phyloge-
netically separated organisms. It was reported that R. rubrum PPase synthase (660 
residues) exhibited 36–39% with V-PPases of land plants and 40% with A. acetab-
ulum V-PPase. Moreover A. acetabulum V-PPase shared 47% identity with land 
plant VPPases. However, the highest identity was observed in case of C. corallina 
(71%) with respect to land plants. These observations of sequence similarity 
suggest that C. corallina is evolutionarily closer to land plant than R. rubrum and 
A. acetabulum. Phylogeny with respect to other land plants revealed that VPPase of 
A. thaliana (AtVPP), H. vulgare (HvVPP), B. vulgaris (BvVPP), N. tabacum 
(NtVPP), and O. sativa (OsVPP) ranged from 761 to 771 amino acids in length. 
The amino acid sequences were found to be highly conserved with 86–91% 
sequence similarity among the land plants.

Phylogeny is used in establishing the origin and evolution pattern of a gene of 
particular species with respect to the other species. Generally phylogenetic tree is 
constructed using neighbor-joining (NJ) or maximum parsimony (MP) or maximum 
likelihood (ML) method (Saitou and Nei 1987). Suneetha et al. (2016) carried out 
phylogenetic studies on land plants, archaea, and bacterial V-PPases (Fig. 11.1).

Suneetha (2015) generated three phylogenetic trees in land plants using NJ, MP, 
and ML which showed similar topologies in both distance and character methods 
but differed in their branching order. Topological similarity of the trees obtained by 
different methods (NJ, MP, and ML) indicates that these clusters are not incidental 
and branching order reflected the expected pattern in all plants. The MP tree was 
constructed from 772 characters, out of which 515 were observed as conserved and 
255 were variable, and of these 183 were parsimony informative. The tree length 
(L), consistency index (CI), and retention index (RI) in land plants were found to be 
677, 0.61, and 0.77. The ML tree has a significant maximum likelihood tree length 
(−6594.00) (Fig. 11.2).

Similarly, Liu et al. (2011) reported that VPPase isolated from Suaeda corniculata 
showed highest similarity with Kalidium foliatum (96%), Suaeda salsa (94%), 
Chenopodium rubrum (89%), Beta vulgaris (89%), Chenopodium glaucum (88%), 
and Arabidopsis thaliana (87%). Dong et  al. (2011) reported that apple VPPase 
(MdVHP1) shared highest similarity with peach VPPase (94%) followed by 87% 
similarity with VPPases of tobacco, grapevine, and Arabidopsis. Similarly, VPPase 
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Fig. 11.1  Relationship of 28 VPPases among land plants, land plant precursor, and bacteria as 
represented in a phylogenetic tree. (Source: Suneetha et al. 2016)

of H. caspica showed high sequence similarity with VPPases from Chenopodiaceae 
family and shared 95% sequence identity with VPPase of K. foliadum. All the stud-
ies reported the evolutionary history and relationship of VPPase gene among bacte-
ria, land plants, and its precursor. The studies also provided enough evidence to 
conclude that VPPase gene is highly conserved among plant family members.

11.3  �Motifs of VPPase

The structural model of VPPase showing N- and C-terminals in vacuolar end, trans-
membrane helices, and three conserved regions (CS1, CS2, and CS3) was reported 
by Maeshima (2001). Immunochemical analysis confirmed that these conserved 
sequences are located in the cytosolic loops (Takasu et al. 1997).
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Fig. 11.2  Relationship of VPPases among land plants. The phylogenetic tree was generated using 
maximum likelihood method. (Source: Suneetha 2015)

Comparison of all VPPase genes from C. coralline, A. acetabulum, R. rubrum, 
and land plants reported with three highly conserved regions called motifs. The 
conserved motifs have been designated as CS1, CS2, and CS3 motifs (Rea and 
Poole 1993; Baltscheffsky et  al. 1999; Maeshima 2000; Mimura et  al. 2004; 
Suneetha 2015). Plant VPPase are characterized by the presence of cytosolic loops 
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(CLs), vacuolar loops (VLs), and transmembrane domains (TMDs) besides the N- 
and C-terminals residues (Zhen et al. 1997). Site-directed mutagenesis and immu-
nochemical analysis revealed that the cytosolic domains are more conversed than 
the vacuolar domains and thus are crucial for VPPase enzyme activity.

The first conserved segment (CS1) has consensus sequence of DVGADLVGKVE 
and functions as the catalytic domain for substrate hydrolysis (Rea and Poole 1993; 
Schocke and Schink 1998). In addition to the catalytic site, there are binding sites for 
Mg2+, K+, and reagents, such as N,N-dicyclohexylcarbodiimide (DCCD), 7-chloro-
4-nitrobenzo-2-oxa- 1,3-diazole (NBDCl), and N-ethylmaleimide (NEM) (Maeshima 
2000; Sanders et al. 1999). Fukuda et al. (2004) validated the presence of NEM bind-
ing site at Cys-635 position, and Glu-306, Asp-505, and Glu-752 positions were iden-
tified as DCCD binding residues in barley. Zhen et al. (1997) conducted mutation and 
biochemical assays and revealed that Glu305 and Asp504 of A. thaliana V-PPase 
directly participate in DCCD binding and are presumably critical for catalysis.

The second conserved segment (CS2) is highly conserved and is located in a 
hydrophilic loop in the cytosol end. Suneetha (2015) reported that the CS2 motif 
has consensus sequence GSAALVSL and is approximately located at amino acid 
positions 543–550 in Sorghum bicolor. Suneetha (2015) reported that CS2 motif 
has function similar to rhodopsin like G-protein-coupled receptors (GPCRs) and is 
equipped with unique calcium signaling signature property that senses the high 
cytosolic Ca2+ levels and initiates V-PPase activity.

The third conserved segment (CS3) is located in the carboxyl-terminal part and 
contains 12 charged residues. It has consensus sequence GDTIGD exposed to the 
cytosol and plays a critical role in catalytic function in association with CS1 and 
CS2 segments (Liu et al. 2011; Rea et al. 1992). The position of these conserved 
regions change from one plant VPPase to others. For example, CS1 functional 
motifs DDPR and VGDN are located at 271 and 285 amino acid positions in mung 
bean, whereas in S. corniculata they are located at 266 and 280 amino acid posi-
tions, and in S. bicolor they occupy the 266 and 281 amino acid positions (Fig. 11.3). 
Similarly, the other conserved sequences CS2 and CS3 motifs are also highlighted 
in amino acid sequence alignment.

11.4  �Structure of VPPase

Vacuolar H+-pyrophosphatase (VPPase) catalyzes electrogenic H+-translocation 
from the cytosol to the vacuolar lumen at the expense of hydrolysis of inorganic 
pyrophosphate (PPi). PPi is produced as a by-product of several metabolic processes, 
such as polymerization of DNA and RNA and synthesis of aminoacyl-tRNA (protein 
synthesis), ADP-glucose (starch synthesis), UDP-glucose (cellulose synthesis), and 
fatty acyl- CoA (L-oxidation of fatty acid).
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11.4.1  �Topology

VPPase consists of a single polypeptide, and its substrate, inorganic pyrophosphate 
(PPi), is one of the simplest high-energy compounds (Baltscheffsky et  al. 1999; 
Maeshima 2000; Rea and Poole 1993). V-PPase gene encodes a polypeptide with 
761–771 amino acids. Various V-PPase genes have been analyzed from different 
plant and bacterial species (Table 11.1). It was reported that VPPase gene isolated 
from H. capsica encodes 764 amino acids, apple VPPase gene encodes 771 amino 
acids, S. corniculata encodes 764, and S. bicolor encodes 763 amino acids.

Hydropathic and membrane topological analyses indicated that VPPase in 
general consists of 4–17 transmembrane domains (Table  11.2). Suneetha (2015) 
predicted that S. bicolor VPPase has 16 transmembrane regions using TMpred and 

Fig. 11.3  Three conserved motifs CS1, CS2, and CS3 highlighted in (a) amino acid alignment are 
generated for sequences of VPPases; (b) region of conserved sequences of CS1, CS2, and CS3 are 
highlighted taking S. bicolor VPPase (meta-analysis of motifs was carried out)
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Table 11.1  List of VPPase genes and corresponding transmembrane helices

Sl 
no Plant species Accession ID

Transmembrane 
helices

No. of 
amino 
acids ReferencesI  O O  I

1 Arabidopsis 
thaliana L.

BAA32210 14 14 770 Sarafian et al. (1992)
AAF31163 17 16 800
AAG09080 17 16 802

2 Beta vulgaris L. AAA61609 13 14 761 Kim et al. (1994a, b)
AAA61610 14 15 765

3 Vigna radiata L. P21616 14 13 766 Nakanishi and 
Maeshima (1998)

4 Cucurbita 
moschata

BAA33149 14 14 768 Maruyama et al. 
(1998)

5 Nicotiana tabacum 
L.

Q43797 13 13 766 Lerchl et al. (1995)
Q43798 13 15 765

6 Oryza sativa L. BAA08232 14 15 771 Sakakibara et al. 
(1996)BAA31524 15 16 767

7 Hordeum vulgare 
L.

BAA02717 14 15 762 Tanaka et al. (1993)

8 Triticum aestivum 
L.

AAP55210 14 15 762 Brini et al. (2005)

9 Cucumis sativus L. ABN48304 3 3 161 Kabala et al. (2008)
10 Vitis vinifera L. NP001268155 14 14 764 Da Silva et al. (2013)

CAD89675 14 14 764 Venter et al. (2006)
11 Medicago 

truncatula
AES91661 12 14 624 Young et al. (2011)
AES91660 13 14 765
KEH28512 17 17 799

12 Triticum urartu EMS67279 9 9 414 Ling et al. (2013)
EMS65629 14 15 762
EMS53286 14 14 700

13 Zea mays L. NP001168714 1 1 97 Schnable et al. 
(2009)AFW77254 13 15 765

AFW70478 13 15 766
14 Salicornia 

europaea L.
AEI17666 14 15 763 Lv et al. (2012)
AEI17665 14 14 764

15 Aeluropus littoralis ALO51665 14 16 763 Ebrahimi et al. 
(2015)

16 Ipomoea babatas 
L.

AFQ00710 13 14 767 Fan (2011)

17 Oxybasis rubra L. AAM97920 14 14 764 Kranewitter et al. 
(2002)

18 Sorghum bicolor 
L.

ACV74424 15 16 763 Anjaneyulu et al. 
(2014)

(continued)
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Table 11.1  (continued)

Sl 
no Plant species Accession ID

Transmembrane 
helices

No. of 
amino 
acids ReferencesI  O O  I

19 Solanum 
lycopersium L.

NP_001307479 14 15 767 Mohammed et al. 
(2012)BAM65603 13 13 765

BAM65604 17 16 800
20 Kalidium foliatum ABK91685 14 14 764 Yao et al. (2012)
21 Chara corallina AB018529 15 16 793 Nakanishi et al. 

(1999)
22 Acetabularia 

acetabulum
D88820 13 14 721 Ikeda et al. (1999)

23 Rhodospirillum 
rubrum

AF044912 14 15 660 Baltscheffsky et al. 
(1998)

Table 11.2  Sequence positions of possible transmembrane helices from inside to outside and vice 
versa in VPPase of S. bicolor

Inside to outside helices Outside to inside helices
From To Score Centre From To Score Centre

11(14) 31 (28) 2024 221 11 (14) 31 (28) 2589 21
95 (95) 111 (111) 2670 104 92 (92) 111 (108) 2664 101
136 (138) 156 (153) 2054 146 136 (136) 156 (156) 2109 146
188 (188) 206 (204) 2150 197 188 (191) 206 (206) 2147 198
229 (229) 244 (244) 682 236 223 (227) 244 (242) 860 234
296 (296) 314 (310) 1049 303 293 (293) 314 (309) 1058 302
325 (325) 342 (342) 2139 335 326 (326) 342 (342) 2143 333
366 (366) 383 (383) 1886 373 361 (361) 381 (379) 1974 372
401 (401) 417 (415) 2725 408 401 (402) 418 (418) 2629 409
456 (460) 476 (476) 2120 467 456 (456) 475 (475) 2120 466
476 (476) 494 (490) 1990 483 471 (473) 490 (488) 1997 481
539 (541) 557 (557) 2092 550 539 (542) 557 (557) 1991 549
573 (573) 589 (589) 1938 581 572 (572) 588 (588) 1672 581
644 (644) 659 (659) 1324 652 639 (642) 659 (657) 1609 649
661 (661) 681 (678) 1216 669 661 (664) 680 (678) 1256 671
740 (743) 760 (757) 1314 750 740 (740) 760 (757) 1238 750

TMHMM. The results obtained showed that the sequences has 16 inside to outside 
helices orientations and 16 outside to inside helices orientations of the transmem-
branes (Fig. 11.4a, b).

The 3D structure of VPPase is a vacuolar membrane-bound protein compactly 
folded in rosette manner in two concentric walls (Lin et al. 2012; Suneetha et al. 
2016; Suneetha 2015) (Fig. 11.5). Lin et al. (2012) reported that mung bean VPPase 
has 16 transmembrane helices, but it exists as a homodimer, and Suneetha (2015) 
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Fig. 11.4  Transmembrane helices of VPPase in S. bicolor (a) TM pred, (b) TMHMM. (Source: 
Suneetha 2015)

reported that S. bicolor VPPase exists as monomer with 16 transmembrane helices. 
The core has six transmembrane helices surrounded by ten transmembrane helices 
which form the inner and outer walls of the pump which is displayed in cylinders 
(Fig. 11.6). Two short helices are present on the cytosolic side; two helices and 
two antiparallel β-strands are present on the luminal side of the protein (Fig. 11.7). 
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Fig. 11.5  VPPase protein compactly folded as membrane-bound protein. (Source: Suneetha et al. 2016)
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Fig. 11.6  Sixteen 
transmembrane helices 
(blue cylinders) with six 
helices in the core 
surrounded by ten 
transmembrane helices to 
form inner and outer walls 
of the pump. (Source: 
Suneetha 2015)

The core of the model has one IDP molecule surrounded by five Mg2+ ions which 
are essential for the activity of V-PPases and one K+ ion which acts as stimulator 
(Fig. 11.8). The above elements are highly conserved among the VPPases which 
forms a hydrophobic door to the hydrophilic surroundings of the vacuolar lumen. 
The hydrophobic gate prevents the reflux of H+ ions and helps in maintaining the 
translocation of H+ from cytosol to vacuolar lumen (Fig. 11.9). The space-fill repre-
sentation of VPPase model is considered to analyze electrostatic surface potential. 
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Fig. 11.7  Ribbon structure 
of VPPase containing 16 
transmembrane helices 
(colored in blue) and 
antiparallel β-strands 
(colored in red). (Source: 
Suneetha 2015)

Fig. 11.8  VPPase model 
of S. bicolor rotated to 600 
to visualize the core with 
one imidodiphosphate 
(IDP), five Mg2+ (colored 
in green), and one K+ ions 
(colored in purple). 
(Source: Suneetha 2015)
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Fig. 11.9  Working model of the VPPase showing the pumping of protons into vacuole to generate 
electrochemical gradient against which sodium is taken in under stress conditions. (Source: 
Suneetha 2015)

Fig. 11.10  The space-fill 
representation of modeled 
VPPase showing 
electrostatic surface 
potential. The electrostatic 
surface negative potential 
(red), positive (blue), and 
neutral (white) are 
represented. The core of 
the model contains IDP 
binding site. (Source: 
Suneetha 2015)

The surface potential is indicated by colors as in Fig.  11.10. The core of model 
which contains IDP binding site is represented within the circle the core of VPPase 
(Fig. 11.10).

11.4.2  �Metal Geometry

V-PPase requires free Mg2+ as an essential cofactor. MgCl2 and MgSO4 are added to 
the buffers for solubilization and purification of the enzyme during its isolation 
(Maeshima and Yoshida 1989; Britten et al. 1989; Rea and Poole 1986). Binding of 
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Mg2+ stabilizes and activates the enzyme. Baykov et al. (1993) reported the presence 
of high-affinity and low-affinity Mg2+ binding sites of mung bean. Binding of Mg2+ 
to VPPase not only activates the enzyme but also protects it from heat inactivation 
(Baykov et al. 1993). Suneetha (2015) reported that the core has five Mg2+ and one 
K+ ions along with one IDP which play an important role in activating VPPases by 
transphosphorylation reaction involving ATP’s. Each Mg2+ ion interacts with sur-
rounding amino acids like aspartic acid, asparagines, and glutamic acid (Fig. 11.11). 
Potassium ion acts as stimulator of VPPase and is surrounded by amino acids like 
asparagine and glycine. K+ stimulates VPPase activity by more than threefold in 
most cases (Gordon-Weeks et  al. 1999). The maximal activity of VPPase was 
obtained in the presence of more than 30 mM KCl in most cases. Suneetha (2015) 
also reported that there are eleven phosphate binding sites represented in yellow 
color balls and interacting residues with green color (Fig. 11.12).

11.4.2.1  �Regulation of VPPase Enzyme Activity

Studies on VPPase from various plant species revealed the relationship between 
the enzyme activity of the proton pump with respect to varying concentrations of 
cytosolic ions and chemical compounds. K+ ions have been associated with increased 
VPPase enzyme activity in A.thaliana type 2 VPPase (AVP2). Ca2+ reversibly inhib-
its VPPase activity through formation of Ca-PPi which is a strong, competitive 
inhibitor for the soluble PPases (Baykov et al. 1999). Changes in free cytosolic 
Ca2+ levels have also been associated with negative inhibition of VPPase activity in 
bean guard cells (Darley et  al. 1998) and barley (Swanson and Jones 1996). 

Fig. 11.11  The core of VPPase showing coordinating amino acids from IDP molecule to five 
Mg2+ ions. (Source: Suneetha 2015)
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Cytosolic Mg2+ concentration has also been reported for optimum enzyme activity 
in S. bicolor, mung bean, and barley. Moreover excessive Na+ concentrations have 
been reported to inhibit enzyme activity in red beet (Rea and Poole 1985).

Among the artificial substances tested, it reported that amino methylene bisphos-
phonate (AMBP) is a potent inhibitor of VPPase in mung bean and A. thaliana 
VPPase AVP2 and AVP1 (Zhen et al. 1994). The effectiveness of bisphosphonates 
as an inhibitor of VPPase was carried out, and it was concluded that a nitrogen atom 
in the carbon chain of bisphosphonates increased the inhibitory effect of the enzyme 
(Gordon-Weeks et al. 1999).

11.5  �VPPase and Its Activity

Proton pump VPPase gets activated upon signals perceived by plants. The sequences 
of events occurring during the activation of proton pump are as follows:

Abiotic stress (high salinity, drought, high temperatures, etc.) in plants is per-
ceived by root tissues and cells. The cells activate receptor-bound G-proteins to 
activate protein kinases by the breakdown of membrane-bound phosphatidylinositol 
bisphosphate (PIP2) to diacylglycerol (DAG) and inositol triphosphate (IP3) 
(Mahajan and Tuteja 2005; Tuteja 2007). IP3 induces endoplasmic reticulum in 
release of Ca2+ and other side; it also makes calcium channels to open to increase 
intracellular Ca2+ levels. CS1 and CS3 motifs form the core catalytic domain and are 

Fig. 11.12  Eleven 
phosphate binding sites of 
VPPase are represented in 
yellow colored balls and 
interacting residues in 
green color. (Source: 
Suneetha 2015)
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essential for hydrolyzing PPi and transport protons (Fig.  11.13). CS2 motif of 
VPPase, similar to rhodopsin-like G-protein-coupled receptor (GPCR) with calcium 
signaling signature property, senses these high cytosolic Ca2+ levels and transduces 
extracellular signal. The free available cytosolic Ca2+ may be phosphorylated to 
Ca-PPi by Ca2+-dependent membrane-bound protein kinase and PPi (Johannsen 
et al. 1996). The substrate PPi of Ca-PPi is exchanged with Mg2+ to form Mg-PPi 
at the core catalytic site from CS1 and CS3.

The above elements are highly conserved among the VPPases that form hydro-
phobic door to the hydrophilic surroundings of vacuolar lumen. The acidic residues 
in the core catalytic site help in PPi hydrolysis and proton transport into vacuole. 
The hydrophobic gate prevents the reflux of H+ ions and helps in maintaining the 
translocation of H+ from cytosol to vacuolar lumen. The pumping of H+ into vacu-
ole builds electrochemical gradient (proton motive force, PMF) which changes its 
pH (2–4 pH units, equivalent to −120 to –240 mV) (Isayenkov et al. 2010). The 
PMF can energize various antiporters such as Na+ and K+: H+ exchanger, NO3

− and 
Cl−: H+ exchanger, etc. resulting in influx of Na+, K+, NO3

−, and Cl− from cytosol to 
vacuole. This influx reduces the toxicity of cytosol to protect the cell against delete-
rious effects thus caused due to abiotic stress. Therefore, overall signaling web 
plays an important role in providing stress tolerance to plants.

11.6  �Conclusion

Vacuolar transporters are vital components of cellular network. They enable the 
plant to respond to the changing environmental conditions, store nutrients and 
energy during surplus production, and maintain optimal metabolic conditions in the 
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Fig. 11.13  Web of events which show saline shock initiating cascade of signals to generate PMF 
that drives sodium into vacuole leading to salt tolerance in plants
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cytosol. Plant vacuolar VPPase, a model of proton pump, is considered as integral 
enzyme due to its structure-function relationship.

Structural analysis using both laboratory and bioinformatic approaches revealed 
the functional domains along with the conserved segments (CS1, CS2, and CS3) 
that play an active role in the translocation of H+ ions into the vacuole from the 
cytosol. Phylogenetic analysis of all known VPPase across land plants, archaea, 
protozoan, and bacteria increased our knowledge of the tonoplast dramatically over 
the past decade. Studies established that during evolution of organisms, ancestral 
plant species obtained VPPase in addition to vacuolar-type V-ATPase.

However, more information is required on protein-ligand interactions and the molec-
ular evolution of VPPase. It has been reported that the expression levels of VPPase 
change according to the physiological conditions and in response to environmental 
stresses. However, the regulatory mechanism and the posttranslational regulations of 
VPPase are yet to be studied. Thus, these analyses are extremely important toward estab-
lishing the role of VPPase as effective proton pump dedicated toward alleviating salt 
stress. The VPPase gene has been successfully used to engineer transgenic plants. 
Overexpression of the VPPase gene was able to confer effective Na+ compartmentation 
into the vacuole. Moreover, various VPPase from other species can be isolated to study 
their functional properties and development of transgenic plants. Thus enabling the plant 
to survive during salt stress and maintain an optimum osmoticum of the cytosol.
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