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Abstract. In this paper we present a comparative study using several
supervised machine learning techniques, including homogeneous and het-
erogeneous ensembles, to solve the problem of classifying content and
noise in web pages. We specifically tackle the problem of detecting con-
tent in semi-structured data (e.g., e-commerce search results) under two
different settings: a controlled environment with only structured content
documents and; an open environment where the web page being pro-
cessed may or may not have structured content. The features are auto-
matically obtained from a preexisting and publicly available extraction
technique that processes web pages as a sequence of tag paths, thus the
features are extracted from these sequences instead of the DOM tree.
Besides comparing the performance between different models we have
also conducted extensive feature selection/combination experiments. We
have achieved an average F-score of about 93% in a controlled setting
and 91% in an open setting.

Keywords: Web mining - Content detection - Noise removal -
Record extraction + Structure detection - Information retrieval

1 Introduction

The web is an invaluable source of data and information about virtually any
subject we can think of. Some of this information is made available to the public
in a structured fashion (e.g., shopping items, news, search engine results, etc.),
providing some level of organization that can be exploited and leveraged: one can
use it to detect/find structured content in a document. But there are other parts
of a document, besides the main content, that can have some sort of organization
(template and menus, for instance), this organized “non-content” information
adds noise to the extraction process, decreasing precision. How can we distinguish
between them? This is the problem we tackle in this paper.

Extracting structured information, by itself, is an important task, but we
must also be able to identify content, distinguish it from noise, so we do not
end up with an unusable, bloated database, full of unimportant information
(i.e., noise). According to [5,16] between 40%-50% of a web document refers to
noise (menus, template, ads), this amount is more than enough to completely
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compromise extraction precision. Since structured data can exist in any kind of
web document, whether main content is structured or not, we must be able to
identify it correctly independently from its source, even when there is no struc-
tured content, i.e. we must be able to identify noise in a document whose main
content is textual as well as in a document whose main content is structured.
So, once we have extracted the structured content from a document, how can
we classify it as content or noise? We could not find in the literature, nor did
we reach a deterministic and closed form way of solving this problem (classify
content and noise), for this reason we decided to characterize (create conjec-
tures for the features) content and noise the best we could and try out machine
learning models to approximate a solution. Our goal is to classify structured
data, specifically, as content or noise, but without restricting ourselves just to
structured content documents (i.e., we also want to detect structured noise
in textual content documents). This is a desirable property in order to avoid
manual intervention (selecting only certain types of documents for processing)
for the web is completely heterogeneous in all aspects. But we also evaluated
the models in a controlled setting, when the web pages are known beforehand to
have structured content. This scenario is not unrealistic (e.g., a focused crawler
that retrieves only search result records from e-commerce sites), although it does
demands more manual intervention.

Previous attempts at this problem, such as [6,7,17,19], were targeted at
textual content, their performance is measured in tasks such as clustering and
classification of web pages, not in terms of records extracted. It is also not clear
whether or not these approaches can be used with structured content, they might
remove part of the content, believing it is noise, without affecting clustering,
but this removal would most likely impair record extraction. Other attempts
([15,16]), targeted at structured content, can not be used in an open environment
(i.e., an environment where we encounter any kind of content: textual, structured
or hybrid), they assume only structured content will be processed. Although this
is not completely unrealistic, it is also not as general, demanding more controlled
environments of execution (i.e., more manual intervention needed).

In this paper, we analyze several possible supervised machine learning mod-
els for structured content detection. Our investigation considered eight machine
learning techniques (Logistic Regression, Gaussian Naive Bayes, k Nearest
Neighbours, Support Vector Machine, Extra Trees, Gradient Boosting, Voting
and Stacking Ensembles) and all possible combinations of features within each
approach to find the one that suited best in each case and at the same time
investigate feature importance. For the extraction phase we choose the method
proposed in [15] because of the good quality of the results, its feasibility in a
production environment (it is unsupervised and computationally efficient com-
pared to other state-of-the-art approaches) and also because its source code is
freely available for download, allowing reproducibility of results. This extraction
method uses a signal processing approach to detect repetitive structural patterns
in the document by means of stability and spectral analysis. The web page is
converted to a sequence (or signal) representation, prior to extraction, and it is
from this sequence that we derive the features used in our work.



Web Page Structured Content Detection 5

The features proposed here are generated during the extraction phase. We
just normalize their values, adding no overhead to the pipeline (once we have
the model trained). We have attained 93% F-Score in a dataset consisting of
266 different HTML documents from various domains with structured content
and 91% F-Score in a dataset with 327 different HTML documents, some with
unstructured content (same 266 structured documents, plus 61 unstructured
documents mostly from blogs, news, etc.). The novelty presented here lies in the
nature of the features. We are using an alternative representation for the web
documents, to the best of our knowledge this representation was first introduced
in [11], and until now we have not found any content/noise detection proposal
using features derived from this representation. Moreover, these features are
automatically extracted, meaning that, once we have a trained classifier, no more
human intervention is needed. These automatically acquired features contrast
with [8], where human intervention is needed for feature extraction. At last, our
investigation showed these features can be used to solve this problem effectively
and efficiently using a simple and direct ML approach.

The rest of this paper is organized as follows: in Sect.2, we present a brief
review of related works; in Sect. 3, we reproduce some concepts needed for the
understanding of our work; in Sect. 4, we describe and illustrate each feature used
in solving the problem of content detection; in Sect. 5, we detail and discuss the
experiments conducted; in Sect. 6, we analyze the results achieved and; in Sect. 7,
we present our conclusions.

2 Related Work

In our research we have encounter quite a few proposals for web page noise
removal, dating as far back as 1999 [9]. Most early works focused in textual
content, where main applications were web page clustering and classification.

In [3,6,7,17] the main content of a web page is assumed to be textual, they
might be a fit for a web page with structured content, but that is unlikely and
we have no results published using these techniques for this purpose, as far as
we know.

On the other hand, if we assume content is structured ([15,16]) we loose gen-
erality and became confined in this setting. An approach biased toward struc-
tured content works great in a controlled environment but can not perform well
in an open environment where we may encounter textual and hybrid content
as well, precision would drop drastically. There is a cost (usually manual inter-
vention and usually high) associated with maintaining such a well controlled
environment.

We also found many proposals that do not assume content to be structured
or textual ([2,4,8,19,20]), but each has some limitation we intend to overcome
in our work. In [4,19,20] several samples from the same template are necessary
to train the model, and it only works for that particular template; in [8] human
intervention is needed to define a priori rules; and in [2] predefined knowledge
bases are required.
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Much has changed, since this area of research has started, new applications
have arisen, web development culture has changed, among other things. Due to
the web’s ever changing nature, any proposal based on too specific assumptions
(content form, predefined knowledge, template specific, static heuristics rules,
etc.) is deemed to rapidly become outdated.

3 Preliminaries

Since we are proposing a way of identifying structured content and noise, we
need to build our work on top of an extraction technique. We chose the app-
roach reported in [15] for two reasons: (i) the results reported are equivalent
to other state-of-the-art approaches and; (ii) the computational complexity is
lower, especially when compared to rendering-based approaches. This extraction
technique uses an alternative representation for the web documents, a tag path
sequence (or TPS), and here we detail this representation. The understanding
of this alternate representation is needed because the features we use to classify
content and noise are derived from it. For a more thorough explanation we refer
the reader to the work in [15].

Definition 1. (Tag Path) is a string describing the path from the root node
of the DOM tree to another node in the tree. For example:
“html/body/table/tr/td/#text”.

Definition 2. (Tag Path Code — TPCode) is a numeric ascending code
assigned to every different tag path string encountered in the document tree, in
order of appearance. If a given path has already occurred, it is assigned the same
code as before. The paths are built in depth first order. Figure 1 shows an example
of this definition.

Definition 3. (Tag Path Sequence — TPS) is a sequence of TPCodes in the
same order as they were built from the DOM tree. Figure 1 shows the resulting
TPS for an HTML snippet as well as the set of TPCodes used in that sequence.
In this paper we also refer to TPS as simply “sequence”.

The translation process from DOM tree representation to tag path sequence
is depicted in Fig. 1. The HTML code is converted to a DOM tree in Step 1; the
DOM tree is converted to a sequence of tag paths in Step 2 and; in Step 3 the
TPS is built by assigning TPCodes to each tag path.

Figure 2 illustrates a real web page converted to its sequence representation
with its structured regions encircled and its main content region highlighted.
We will use this specific sequence and its main content region throughout Sect. 4
to characterize the features. The sequence was constructed according to the
definitions in this section. Every point in the sequence (Definition 3) corresponds
to a specific node in the DOM tree and has a TPCode value (Definition 2) that
encodes the node’s Tag Path (Definition 1).
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- HTML Code - Tag Paths
<body> TPS[1]%1}; /body
<table> i
<tr><td></td><td></td></tr>
<tr><td></td><td></td></tr>

</table>
</body>
{ - DOM Tree 4
body [i=1] T
. g Py
+"tablT [i=2] H TPCode
+--tr[i=3]
| | - Tag Path Sequence
| +--td[i=4] TPS = {1,2,3,4,4,3,4,4}
| | z = {1,2,3,4}
| +--td[i=5]
|
+--tr[i=6]
|
+--td[i=7]
|
\ +--td[i=8]

Fig. 1. Conversion of HTML snippet into a tag path sequence.
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Fig. 2. Web page converted to sequence representation and its structured content.

Definition 4. (Structured Region) is a region of the document that contains
contiguous structured data (either content or noise) and, because of its struc-
tured nature, when converted to a TPS, exhibits a cyclic behaviour. This cyclic
behaviour is a consequence of structure: the records are contiguous and have
similar structure so the TPCs forming the structured region’s TPS will repeat
throughout the sequence, in cycles. This is illustrated in Fig. 2 where a document
containing 20 SRRs (search result records) is converted to its TPS representation
and we can see that each record becomes a cycle in the encircled main content
region.

4 Content Detection

In order to distinguish which structured regions are content and which are noise
we consider six region features, extracted from the document sequence, such
as: region size, center position, horizontal position, vertical position, region
range and record proportion (record count vs record size). All features refer
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to the document sequence, as opposed to the DOM tree as other works do. The
region size and range are the size and range of the subsequence that represents
a given structured region; all position features are relative to the document
sequence and record proportion is retrieved from the spectral analysis of the
region’s subsequence.

These features were chosen because we believe (that is our hypothesis) they
characterize the problem well and thus, can be helpful solving it. As an extra,
they can also be easily acquired from the extraction technique we are relying
on. We will discuss each feature (size, positions, range and record proportion) in
Subsects. 4.1, 4.2, 4.3 and 4.4 respectively.

4.1 Size Feature

The region size feature is a real number, between 0 and 1, that represents the
size of the region relative to the entire document, i.e., the percentage of the
document occupied by the region.

The idea behind this feature is that if a web document was designed with
the purpose of depicting a specific content, then this content (the reason the
document was created in the first place) should occupy a considerable portion
of the document. That is, our conjecture is that the likelihood of a region being
content (and not noise) is directly proportional to its size.

400 T
—TPS

——Main Content Region
- - Region Size = 1336/618 = 46.26%
- - TPS Size

300 [0 = 1336

TPCode
5
1S3
T

100 [~ 1

. . . . . !
0 200 400 600 800 1000 1200 1400
Sequence position

Fig. 3. Size feature example.

Figure 3 shows an example where the entire document sequence has size equal

to 1,336 and the main content region subsequence has size 618. The size feature
618

in this case, using Eq. 1, is equal to 1555 = 46.25%.

regionSize
sizeFeat = — JWONINEC (1)
sequenceSize
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4.2 Position Features

The region position features are actually comprised of three position features:
center, horizontal and vertical positions. All three are real numbers between 0
and 1. The center position represents the distance from the center of the region
to the center of the document; the horizontal position is the distance from
the center of the region to the end of the document and; the vertical position
is the distance from the vertical center of the region to the maximum value of
the sequence.

With respect to the center position, the maximum possible distance is equal
to half sequence size (e.g., when a region has size one and sits at the start/end of
the document). The value of this feature is a percentage representing how close
a region is from the center of the document (i.e., it is the distance complement).
The rationale of our conjecture for this feature is similar to the size feature
(Subsect. 4.1): the closer a region is to the center of the document, the higher
the probability it refers to real content.
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Fig. 4. Position feature example. (Color figure online)

Figure4 shows an example where the document center (dark blue dashed
line) is at position 667 (this is the maximum distance allowed) and main content
region subsequence center (red dashed line) is at position 783, at a distance of
117 from document center (green dashed line). The value of this feature, using

Eq.2, is equal to 1 — £ = 82.46%

|regionCenter — sequenceCenter|

center PositionFeat =1 — (2)
sequenceCenter
With respect to the vertical and horizontal position, we believe they are

needed to provide a better indication of a region’s position, especially when a
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document has no structured content (only structured noise), in this situation a
noise region will be closer to the center of the sequence and further away from its
extremes. If we were concerned only about documents with structured content,
these two features would, probably, be of little value to us.

Figure 4 shows how the horizontal and vertical positions are calculated. The
horizontal position is the distance from the center of the region to the end of
the sequence (light blue dashed line). Using Eq.4, the value of the horizontal

position, in this example, is equal to % = 41.47%.

sequenceSize — regionCenter

horizPositionFeat = . (3)
sequenceSize

The vertical position (black dashed line) is the distance from the vertical
center of the region (i.e., its average value) to the vertical end of the sequence

(i.e., its maximum value). Using Eq. 4, the value of the vertical position, in this

example, is equal to % = 67.26%.
vertPositionFeat = _avglregion) (4)
mazx(sequence)

Throughout this paper we will refer to these three features simply as “center”,
“horizontal” and “vertical” features.

4.3 Range Feature

The range feature is a real number, between 0 and 1, that represents the percent-
age of the region range relative to the entire sequence. It is analogous to the Size
Feature (Subsect.4.1) only it is vertical instead of horizontal. The region range
is simply the maximum value found in the sequence (or subsequence) minus the
minimum value. The full sequence range is equivalent to its maximum value.
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Fig. 5. Range feature example.
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Figure 5 shows an example where region range is equal to 29 and document
range is equal to 391. The value of this feature, using Eq. 5, is equal to 28?‘;’9% =
29

591 = 7-42% of document range.

regionRange
rangeFeat = J J

(5)

maz(sequence)

4.4 Record Feature

We use the ratio between the number of records and their average size as a
feature to indicate if a region is content or noise. We hypothesize that the lack
of proportion! between this two measures (record count and record size) indicates
noise and, conversely, the closer they are from one another the more likely the
region is content. We calculate this value as shown in Eq. 6.

man(numRecs, recCount
recRatioFeat = ( )

(6)

The value of this feature is also a real number between 0 and 1, since the
denominator in Eq. 6 is always greater or equal to the numerator.

This two measures are obtained as documented in [15], using the region’s
power spectrum density (PSD) [12]. Figure 6b shows the PSD of the main con-
tent region in Fig.6a and its detected record count and average record size.
The sequence in Fig. 6a is the extracted main content region from the sequence
depicted in Fig. 2. In this example the number of records (represented by the red
peak in Fig. 6b) detected is 20 and their average size is 31, therefore the value
of the record feature, using Eq. 6, is equal do g—? =64.51%

max(numRecs, recCount)

a- structured data region and record boundary

— Region
O Records

700
position

b - data region PSD

15 T T T T —psD
SRRy gt =20 =2

. . . . .
0 50 100 150 200 250 300 350
frequency

Fig. 6. Record count & size feature example.

Throughout this paper we will refer to this feature as “record” feature.

Lie., a lot of small records or few large records.
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5 Experiments

In this section we detail the experiments we conducted using supervised machine
learning techniques with the features from Sect.4. We also characterize the
dataset used in the experiments, its statistical properties, features correlation,
etc. The objectives of this experiments are to determine the parameters and the
subset of features which are important in this classification problem and measure
the classification performance in terms of precision, recall, accuracy and F-Score.

We have considered, in our study, the following machine learning techniques:
Gaussian Naive Bayes (GNB), Logistic Regression (LR), k Nearest Neighbours
(kNN), Gradient Boosting (GB), Extra-trees (EXT), Support Vector Machine
(SVM), Voting Ensemble (VOT) and Stacking Ensemble (STCK). The voting
and stacking ensembles are heterogeneous ensembles and are built from combi-
nations of all the other models (GNB, LR, kNN, SVM, GB and EXT). These
experiments were conducted using scikit-learn [13] framework. For the gradient
boosting we used XGBoost [1] and for the ensembles we used MLxtend’s [14]
implementation.

We have conducted experiments to determine the best combination of param-
eters and features, within each approach, for solving the problem of distinguish-
ing noise from content. To do so we ran a grid search for each algorithm with
all feature combinations. We did so because the number of all possible combina-
tions, for six features, is not prohibitive (only 26 — 1 = 63 in total). After that
we applied grid search, again, to select the best parameters for each algorithm.
The feature set for each algorithm is documented in Table8 (more details on
that in Sect. 6).

For these experiments we have used a dataset consisting of 266 HTML doc-
uments with structured content from various domains (news, banking, hotels,
car rental, tickets, electronics), plus 61 documents without structured content,
totalizing 327 documents. The documents without structured content were added
to the dataset to investigate the behaviour of the classifiers in the presence of
this type of input. We use only one page per site to avoid introducing bias
towards specific sites and /or templates®. These documents were processed using
the technique proposed in [15], resulting in a total of 533 regions. We acknowl-
edge that the size of our dataset is relatively small. The reason is that all regions,
from every extracted document, have to be manually labeled as content or noise.
To compensate this limitation we kept the dataset as diverse as possible: every
document comes from a different web site, with different template and content.
All documents were collected from production web sites of real-world companies
(e.g., Booking, Google, Amazon, Wikipedia, etc.). We believe that this diversity
contributes to the overall representativeness of our dataset, making this study
relevant. Also, all pages were collected recently, to guarantee they are all using
modern and up to date templates.

2 This is possible because the extraction approach used also works with a single page
input.
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Table 1. Input dataset summary

13

Table 2. Feature importance (vs class)

# Content regions 254 |47.65%  Feature X’ ANOVA

# Noise regions 279 1 52.35%  Size 51.6426225 | 487.50116318

Total 533 100% Center 25.8025951 | 260.93679423

# Structured documents 266 | 81.35% Range 23.1719961 232.44608713

# Unstructured documents | 61 |18.65% Record 4.71168623 26.59572956

Total 3271 100% Vertical 1.16942710 12.38250104
Horizontal | 0.433793117 3.63505065

That is our input dataset® used for training and cross-validation and it is
summarized in Table 1. Figure 7 shows a scatter plot of each feature, separately,
with respect to the target class (content vs noise), it gives a rough idea of how
content and noise are intertwined within each feature. Table 2 shows the features
relative importance according to two different criteria (ANOVA and x?), both
yielding the same results. Table4 shows mean, coefficient of variation (CV),
skewness and kurtosis for all features with respect to the target class. Table 3
shows the correlation between all features. We see that “size” vs “position”,
“size” vs “range” and “position” vs “range” have a stronger correlation compared
to others, this fact reflected in feature selection for some models and these same
three features (size, position and range), according to Table 2, are also the most

important ones.

Range feat. value Size feat. value

Vertical feat. value

Case number

Case number

O Content

100 200 300 400 500 600

o -
0 100 200 300 400 500 600

Case number

Fig. 7. Input dataset features:

0 100 200 300 400 500 600

Case number

0 100 200 300 400 500 600

Case number

0 100 200 300 400 500 600

Case number

content vs noise.

3 Our dataset is available at https://bit.ly/2D3IWFk.
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Table 3. Feature correlation Table 4. Feature statistics

‘ Size ‘ Record ‘ Range ‘ Horiz. ‘ Vert. Feature ‘ Mean ‘ CV ‘ S kewness Kurtosis

Content & Noise Content & Noise
Center 0.63 | 0.08 0.45 —0.11 | 0.01 Size 0.27 |0.87 0.92 2.90
Size 0.08 0.68 —0.02 | 0.11 Center 0.57 |0.51| —0.18 1.71
Record 0.08 0.04 | 0.03 Range 0.11 |1.12 1.98 7.46
Range —0.01 | 0.08 Record 0.40 |0.68 0.52 2.15
Horizontal 0.85 Vertical 0.59 |0.40| —0.49 2.42
Content Horizontal | 0.55 | 0.47 | —0.26 2.14
Center 0.58 | —0.11 0.21 | —0.37 | —0.07 Content
Size —0.10 0.53 | —0.12 0.12 Size 0.44 0.49 0.28 2.47
Record —0.04 0.04 | —0.04  Center 0.74 |0.27| —0.81 2.95
Range —0.03 0.08 Range 0.19 |0.74 1.49 5.51
Horizontal 0.65 Record 0.46 |0.61 0.22 1.89
Noise Vertical 0.63 |0.24| —0.80 3.58
Center 0.25 | —0.01 0.22 | —0.15 | —0.11  Horizontal | 0.57 | 0.26 | —0.45 3.63
Size —0.12 0.39 | —0.15 | —0.11  Noise
Record —0.08 0.01 0.01  Size 0.12 |0.94 2.32 9.37
Range —0.13 | —0.09  Center 0.41 |0.65| 0.58 2.16
Horizontal 0.89 Range 0.05 |1.40 4.37 26.83
Record 0.34 |0.74 0.81 2.74
Vertical 0.56 |0.53| —0.15 1.69
Horizontal | 0.53 | 0.61 | —0.06 1.44
6 Results

We have used 5-fold cross-validation to evaluate the performance of each model
with respect to precision, recall, accuracy and F-Score. The average result of 200
runs is shown in Tables5 and 6.

When we omit the documents without structured content we get the results
shown in Table5. The model with the best performance, in our experiments,
was the Logistic Regression (LR), with 93.57% F-Score. In this application we
should prioritize precision (the web is vast and full of noise), with that in mind
kNN performed a little better, with almost 94% precision. So, in a controlled
environment, where we can guarantee the input will always contain structured
content, the features we elected were enough to achieve very good results with
relatively simple models (kNN and LR). There is, probably, no need to use more
elaborate approaches and/or ensembles in this setting.

When we consider the full dataset, including the documents without struc-
tured content, we get the results shown in Table6. As expected there is a drop
in F-Score (column “Drop” in Table 6). The amount of unstructured documents
corresponds, roughly, to 18% of the entire dataset (see Table 1) and yet we were
able attain negative variations in F-Score lower than 1%, for this reason we
consider this results to be very significant as they show it is possible, using the
proposed approach, to identify noise no matter the content is structured or not.
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Table 5. Results using dataset containing only structured content documents.

Model | Precision | Recall | Accuracy | F-Score
LR 93.30% | 93.85% |93.02% | 93.57%
GNB [91.97% |90.55% |90.62% |91.26%
kNN [93.83% [92.21% |92.59% |93.01%
SVM |93.60% | 92.20% |92.37% 92.90%
EXT |91.88% |91.87% |91.23% |91.88%
GB 90.75% 1 90.14% |89.74% | 90.44%
VOT [9241% |92.20% 91.71% |92.31%
STCK [ 92.97% |92.20% | 92.06% | 92.59%

The most prominent drop, ironically, occurs with Logistic Regression (which per-
formed best with only structured content documents). Gradient Boosting (GB),
although not the best performing model in either setting, showed the lowest
impact in F-Score. Another interesting result we see is that all ensembles (VOT,
STCK and GB) have relatively low drop in F-Score (the lowest ones, in fact),
with the exception of ExtraTrees (EXT) ensemble, which is the second largest.
For this setting, where we have no guarantee that the documents have structured
content (only that they may have structured noise), the best option would be
the Voting heterogeneous ensemble with F-Score of 91.47% and largest precision
(above 90%).

Table 6. Results using complete dataset (including unstructured documents).

Model | Precision | Recall | Accuracy | F-score | Drop

LR 87.97% 192.13% |89.45% | 90.00% | —3.57%
GNB [89.69% |88.99% |89.47% |89.34% | —1.92%
kNN | 89.72% |90.56% |90.02% |90.14% | —2.87%
SVM [89.51% |92.12% | 90.77% |90.79% | —2.11%
EXT |88.80% |88.43% |88.71% |88.61% | —3.27%
GB 90.13% | 88.97% |89.65% |89.55% | —0.89%
VOT |90.45% |92.52% |91.33% |91.47%  —1.38%
STCK | 89.93% |91.81% |90.73% | 90.86% | —1.73%

For the sake of precision score we have investigated the false positives and
concluded that they are borderline cases, i.e., they are structured noise regions
that we can not clearly classify, even when we visually inspect the document’s
TPS (without considering semantics, of course). These region’s features are in a
gray area, half way between content and noise. Fortunately, these cases seem to
be a minority.
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Table 7. Comparison w/other Table 8. DBest set of features
approaches p/algorithm.

Algorit.  |Prec. |Recall |[F-Score | Acc. Model|Size| Center Range Record|Ver.|Hor.
BERyL [8]n/d  n/d  |90.00% n/d LR |v ¥ oo X |
SIG [15] (92.02% 94.11%93.05% |n/d GNB v |V v v v |/
TPC [11] 90.40% (93.10% 91.73% n/d EXT |v v vl o
MDR [10] |59.80% |61.80%60.78% |n/d SVM |v |x oo Vol
Our models kNN |v |V v v v [/
LR 95.45%/95.45%|95.45%94.80% GB v [V v v v |/
VvOT 93.02%/90.91%|91.95%/90.91%

In Table7 we have compared our results with other, state-of-the-art,
approaches found in the literature. We have compared the performance of our
classifiers in both settings (Logistic Regression from Table 5, trained only with
structured content, and Voting Ensemble from Table6 trained with our full
dataset) with the results published in [8,11,15], using their reference dataset
(from [18]) as our test data, except for [8] for which the dataset is not publicly
available, in this case we compare only against raw published results. The work
in [11,15] deals specifically with structured content, no assessment was made in
the presence of noise as we did in Table 6. We can see, in Table 7, that our work
outperformed the other approaches (MDR [10] by a large margin). We’ve out-
matched BERyL, TPC and MDR even in the presence of unstructured content
documents. BERyL uses hand tailored rules to extract relevant features to train
the classifiers and we have outperformed its results with automatically extracted
features. With respect to the SIG [15] approach, we have achieve superior results
in a controlled setting and better precision in an open environment.

We show in Table 8 the best performing features for each model, for the sake
of documentation and reproducibility. Almost all models used all features, this
shows that all features are relevant to the problem and somehow contribute
to the solution. The exceptions are the Logistic Regression and Support Vector
Machine. The Logistic Regression achieved the best results without “center” and
“vertical” features, and SVM without “center” feature, that is probably due to
the high correlation with other features as shown in Table 3: “center” feature has
a considerable correlation with “size” and “vertical” feature with “horizontal”.

7 Conclusion and Future Work

In our research, through observation, we have come up with the conjectures
depicted here, for each feature and, through experimentation, we have confirmed
these conjectures in two different situations: in a controlled setting (with 93.57%
F-Score using Logistic Regression) and; in an open environment (with 91.47%
F-Score using a heterogeneous voting ensemble). We believe these to be very
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good results, especially considering we are using only very basic information
(size, position, etc.) to distinguish between content and noise and a direct ML
approach.

We have also demonstrated the relevance of these features to the problem
by testing every possible combination of features. Moreover, we have also shown
that our proposal effectively solves the problem and is superior to other state-
of-the-art approaches found in the literature.

Nonetheless, there is always room for improvements. Adding other features to
the problem, perhaps using semantic features combined with the ones proposed
here could yield some interesting results, especially when we consider borderline
false positives where semantics could help improve precision even further. With
an increased number of features though, testing all combinations becomes pro-
hibitive, other approaches should then be employed (e.g., genetic algorithms) to
find a good (maybe the best) combination of features. About the dataset size,
more documents should be gathered, in the future, to improve confidence on our
analysis and results, especially the relative performance of various models tested
here.
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