
AutoCVSS: An Approach for Automatic
Assessment of Vulnerability Severity

Based on Attack Process

Deqing Zou1,2, Ju Yang1, Zhen Li1,3(B), Hai Jin1, and Xiaojing Ma1

1 National Engineering Research Center for Big Data Technology and System,
Services Computing Technology and System Lab, Cluster and Grid Computing Lab,

Big Data Security Engineering Research Center,
Huazhong University of Science and Technology, Wuhan, China

lizhen hust@hust.edu.cn
2 Shenzhen Huazhong University of Science and Technology Research Institute,

Shenzhen, China
3 School of Cyber Security and Computer, Hebei University, Baoding, China

Abstract. Vulnerability severity assessment is an important research
problem. Common Vulnerability Scoring System (CVSS) has been widely
used to quantitatively assess the vulnerability severity, but its assessment
process relies on human experts to determine metric values, which makes
the assessment process tedious and subjective. This calls for tools that
can assess the vulnerability severity automatically and objectively. In this
paper, we move a step forward in this direction by proposing an approach
for automatic assessment of vulnerability severity based on attack process,
dubbed Automatic Common Vulnerability Scoring System (AutoCVSS).
The key insight is to leverage characteristics and rules we define to model
the CVSS base metrics, and assess the vulnerability severity more auto-
matically and objectively by capturing the attributes related to the char-
acteristics during the attack process. In order to evaluate AutoCVSS, we
reproduce the attacks for 98 vulnerabilities from Linux kernel, FTP ser-
vice, and Apache service with their exploits. The experimental results
show that the vulnerability severity scores automatically obtained by
AutoCVSS are basically in accordance with those assessed manually by
security experts in the National Vulnerability Database (NVD), which ver-
ifies the effectiveness of our approach.

Keywords: CVSS · Vulnerability severity assessment ·
Software vulnerability · Attack process

1 Introduction

Most of security incidents are caused by vulnerabilities. A variety of security
vulnerabilities have brought huge economic losses around the world each year,
and the situation becomes more and more serious. Prioritizing vulnerabilities

c© Springer Nature Switzerland AG 2019
R. Miani et al. (Eds.): GPC 2019, LNCS 11484, pp. 238–253, 2019.
https://doi.org/10.1007/978-3-030-19223-5_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19223-5_17&domain=pdf
https://doi.org/10.1007/978-3-030-19223-5_17

AutoCVSS 239

that are in urgent need of patching can be used to minimize the losses [21].
Therefore, many security vendors and security agencies have done researches on
the vulnerability severity assessment and put forward their own vulnerability
severity assessment systems and evaluation criteria [17–19]. In order to solve the
inconsistency and incompatibility problems caused by various security assess-
ment systems, National Infrastructure Advisory Council (NIAC) proposes an
open and common vulnerability assessment system called Common Vulnerabil-
ity Scoring System (CVSS) [1] which uses a value between 0–10 to represent
the vulnerability severity. A higher score value indicates a greater vulnerability
severity [17].

However, CVSS relies on human experts to determine metric values during
the process of vulnerability severity assessment, which makes the assessment pro-
cess tedious and subjective [15,20–22]. In principle, the subjective problem can
be alleviated by asking multiple experts, and then select the majority opinion.
But this imposes even more tedious work. As a matter of fact, it is desirable to
reduce, or even eliminate whenever possible, the reliance on the intense labor of
human experts. This calls for tools that can automatically and objectively assess
the vulnerability severity to prioritize vulnerabilities that are in urgent need of
patching. The research problem can be described as follows: When a vulnerability
is discovered and its exploits or Proof of Concepts (PoCs) are submitted to the
security authority, how can the vulnerability severity be assessed automatically
and objectively?

In order to answer the above question, we present the first app-
roach for automatic assessment of vulnerability severity, dubbed Automatic
Common Vulnerability Scoring System (AutoCVSS). The goal is to reduce the
reliance on the intense labor of human experts and make the assessment process
of CVSS more automatically and more objectively. Specifically, we propose a
group of characteristics and rules to model each CVSS base metric according to
its description. The characteristics reflect the features of each CVSS base metric,
and the rules show its evaluation basis. The characteristics of each CVSS base
metric are represented by a group of attributes, which can be captured during
the attack process and used to evaluate the vulnerability severity according to
the rules.

In order to evaluate AutoCVSS, we reproduce the attacks for 98 vulnerabil-
ities of Linux kernel, FTP service, and Apache service with their exploits from
Exploit Database (EDB) [2]. The experimental results show that the vulnerability
severity scores automatically obtained by AutoCVSS are basically in accordance
with those assessed manually by security experts in the National Vulnerability
Database (NVD) [3].

2 Background

In this section, we briefly describe the background on CVSS, an open and com-
mon vulnerability severity assessment system provided by NIAC. CVSS has three
groups of metrics: base metrics, temporal metrics, and environmental metrics [1].

240 D. Zou et al.

In this paper, we mainly focus on base metrics reflecting the inherent characteris-
tics of a vulnerability which are not influenced by time and users’ environments.
On one hand, the vulnerability severity assessment for CVSS must involve base
metrics, while temporal metrics and environmental metrics are optional. On the
other hand, for a vulnerability, the values of base metrics are fixed and available
in the NVD, while the values of temporal metrics and environmental metrics
vary with time or users’ environments and are not available in the NVD. There-
fore, the base metrics can be used as benchmarks for comparison. In addition,
NVD uses the CVSS version 2 (i.e., CVSS v2) to evaluate vulnerabilities before
CVSS version 3 (i.e., CVSS v3) was put forward in 2015, and uses both CVSS
v2 and CVSS v3 for vulnerability assessment now. That is to say, almost all
vulnerabilities in the NVD provide CVSS v2, and many of them do not provide
CVSS v3 at the time of writing. In this paper, we select the version(s) of CVSS
for each vulnerability as the NVD does.

Base metrics involve two sets of metrics: exploitability metrics and impact
metrics [1]. In CVSS v2, exploitability metrics contain three metrics: Attack Vec-
tor (AV), Attack Complexity (AC), and Authentication (AU). These metrics
are used to show how the vulnerability is accessed and whether extra conditions
are required to exploit it. Impact metrics also contain three metrics: Confiden-
tiality Impact (C), Integrity Impact (I), and Availability Impact (A). These
metrics represent the impact of a successfully exploited vulnerability. In CVSS
v3, exploitability metrics, different from those in CVSS v2, contain Attack Vec-
tor (AV), Attack Complexity (AC), Privileges Required (PR), User Interaction
(UI), and Scope (S), and impact metrics are the same as those in CVSS v2. A
vulnerability is assigned a CVSS base score ranging from 0 to 10. A higher score
indicates a greater vulnerability severity.

3 Design of AutoCVSS

AutoCVSS has two phases: the monitoring program generation and the vul-
nerability severity assessment, as shown in Fig. 1. In the monitoring program
generation phase, the characteristics and rules are defined to model the CVSS
base metrics. For each characteristic, analyze the attributes that are captured
during the attack, and then generate the monitoring program. In the vulnerabil-
ity severity assessment phase, the probes of attributes involved in the monitoring
program are used to instrument the exploits/PoCs, capture the attributes, and
monitor the state of vulnerable software. After the process of hierarchical eval-
uation, the vulnerability severity is output.

3.1 Input and Output

The input of AutoCVSS consists of the description of CVSS base metrics, the
Common Vulnerabilities and Exposures IDentifier (CVE ID), the exploits/PoCs,
and the vulnerable software. The description of CVSS base metrics is used to

AutoCVSS 241

Vulnerable
software

Hierarchical
evaluation

 Vulnerability
severity

INPUT OUTPUT

Attribute instrumentation
and capture

Monitoring program generation Monitoring
program

Description of
CVSS base

metrics

CVE ID

Exploits/PoCs

Attribute monitor

Vulnerability severity assessment

Monitoring
program
generator

Monitoring
program

Attribute
analysis

Metrics
modeling

Fig. 1. Overview of AutoCVSS: the first phase generates the monitoring program and
the second phase assesses the vulnerability severity. The characteristics and rules for
metrics modeling in the first phase need to be defined, and the subsequent process of
AutoCVSS does not involve human interaction.

model the CVSS base metrics. The CVE ID is the unique identifier of vulnerabil-
ity and is used to obtain the exploits/PoCs and the vulnerable software related
to the vulnerability. The exploits/PoCs for the CVE ID can be gathered from the
public websites such as EDB [2]. The vulnerable software can be obtained from
the relevant official websites. Besides, the monitoring program, as the output of
the monitoring program generation phase, is another input of the vulnerability
severity assessment phase.

The final output of AutoCVSS is the vulnerability severity, which involves
the vulnerability security score and the assessment process. The vulnerability
security score ranges between 0 and 10. The higher the score is, the greater the
vulnerability severity is. The assessment process shows the process of hierarchical
evaluation clearly, such as the level of each base metric and the evaluation basis.

It is worth noting that if the CVE ID corresponds to multiple exploits/PoCs,
we use one exploit/PoC as an instance at a time to assess the vulnerability
severity, and then the highest score of all instances for the CVE ID is selected
as the severity of this vulnerability.

3.2 Monitoring Program Generation

In the monitoring program generation phase, there are three modules: metric
modeling, attribute analysis, and monitoring program generator.

Metrics Modeling. We model the base metrics of CVSS v2 and CVSS v3
according to the description of CVSS base metrics. Base metrics are represented

242 D. Zou et al.

as a set B = {EM, IM}, where EM represents the exploitability metrics and
IM represents the impact metrics. EM = {AV,PR,AC,AU,UI, S}, where AV
represents the attack vector, PR represents the privileges required, AC repre-
sents the attack complexity, AU represents the authentication, UI represents the
user interaction, and S represents the scope. The exploitability metrics reflect the
features of vulnerability, such as how the vulnerability is accessed and whether
or not extra conditions are required to exploit it. IM = {C, I,A}, where C,
I, and A represent the confidentiality impact, integrity impact, and availability
impact respectively. The impact metrics represent the impact of a successfully
exploited vulnerability.

Each metric in EM and IM is modeled by one or several characteristics and
corresponding rules. Table 1 shows the set of characteristics for each base metric,
the meanings of characteristics, and the corresponding rules. We take exploitabil-
ity metric AV and impact metric C for examples to explain the characteristics
and their corresponding rules in detail.

AV reflects how the vulnerability is exploited. We define the characteristic
Mode to represent the attack mode that the attacker could choose. The value
of Mode involves network attack (N), adjacent attack (A), local attack (L),
and physical attack (P). The rules for evaluating the level of AV are defined
as follows. AV has four levels: network, adjacent, local, and physical. If Mode
is N , level(AV) = network, where function level(AV) represents the level of
base metric AV ; if Mode is A, level(AV) = adjacent; if Mode is L, level(AV)
= local; if Mode is P , level(AV) = physical. The default initial level of AV is
local.

C refers to confidentiality. If the attacker illegally reads the data, the confi-
dentiality is affected. We define the characteristic IR to represent whether the
read permission of the file is modified. The rules for evaluating the level of C are
defined as follows. C has three levels: high, low, and none. If the user privilege
is root, level(C) = high. If IR is true and the file is sensitive, level(C) = high.
If IR is true and the file is non-sensitive, level(C) = low. Otherwise, level(C)
= none. The default initial level of C is none.

Attribute Analysis. After modeling the base metrics, each characteristic is
depicted by several attributes which can be monitored during the attack process.
Considering that these attributes are related to the system that AutoCVSS is
implemented on, we will provide the attributes for base metrics in Sect. 4. In
this subsection, we take an attribute of an exploitability metric AV related
to IP information for example to show the process of attribute analysis before
generating the monitoring program.

First of all, when the attribute t of AV is captured, the IP address in t
is obtained. By comparing the IP obtained from t with the IP of server, we
can get the attack mode, and then obtain the temporary level of AV . Then
a separate judgment is made to obtain the temporary level of AV , since the
physical attack requires the access to physical devices. Finally, the temporary
level of AV returns. It should be noted that the temporary level of AV does

AutoCVSS 243

Table 1. Base metrics modeling involves characteristics and corresponding rules.
level(bm) represents the level of base metric bm.

Base

metric

Characteristics Meaning of characteristics Rules

AV Mode Mode denotes the attack mode that

the attacker could choose. The value

of Mode involves network attack (N),

adjacent attack (A), local attack (L),

and physical attack (P)

If Mode is N , level(AV) = network.

If Mode is A, level(AV) = adjacent.

If Mode is L, level(AV) = local. If

Mode is P , level(AV) = physical

AC Cond, Action Cond denotes the conditions under

which the attack occurs. Action

denotes the actions performed by the

attack

The number of conditions and actions

that occur during the attack is

counted. If #Cond = 0 or 1, and

#Action ≤ 3, level(AC) = low. If

#Cond = 0 or 1, and

3 < #Action ≤ 5, level(AC) =

medium. If #Cond > 1 and

#Action > 5, level(AC) = high. The

default initial level of AC is low

PR Fp, Up Fp denotes the file privilege, and

contains three file permissions: read,

write, and execution. Up denotes the

user privilege, and contains three

user-level permissions: root, user, and

guest

If Up is root, or Fp is the privileges

of sensitive files for reading and

writing, level(PR) = high. If Up is

not root, or Fp is the privileges of

non-sensitive files for reading and

writing, level(PR) = low. Otherwise,

level(PR) = none. The default initial

level of PR is none

AU Os, Sw Os denotes the operating system

authentication, and reflects the

attacker needs to authenticate the

operating system. Sw denotes the

software authentication, and reflects

the attacker needs to authenticate the

software

The number of operating system

authentications and software

authentications is counted. If

#Os ≥ 2 or #Sw ≥ 2, level(AU) =

multiple. If #Os = 1 or #Sw = 1,

level(AU) = single. Otherwise,

level(AU) = none. The default initial

level of AC is none

UI sh sh denotes the interactive interface

with the operating system. If the

exploit/PoC successfully creates an

interactive interface or opens an

interactive interface, it indicates that

the exploit/PoC needs interaction

If sh is required, level(UI) =

required. Otherwise, level(UI) =

none. The default initial level of UI

is none

S V c, Im V c denotes the vulnerable

component, and its privilege belongs

to the authorization scope s1. Im

denotes the affected component, and

its privilege belongs to the

authorization scope s2. The

authorization scope is the collection

of privileges defined by a computing

authority

If s2 − (s1 ∩ s2) �= ∅, and the

privilege of V c and Im does not

belong to (s1 ∩ s2), level(S) =

changed. Otherwise, level(S) =

unchanged. The default initial level of

S is unchanged

C and I IR, IW IR indicates whether the read

permission of the file is modified. IW

indicates whether the write

permission of the file is modified

If the user privilege is root, level(C)

= high. If IR is true and the file is

sensitive, level(C) = high. If IR is

true and the file is non-sensitive,

level(C) = low. Otherwise, level(C)

= none. The default initial level of C

is none. The rules of I is basically

similar to those of C, but I concerns

whether there is illegal writing

A Nu, Mu, Du,

Cu

Nu denotes the network utilization,

Mu denotes the memory utilization,

Du denotes the disk utilization, and

Cu denotes the CPU utilization

If the user privilege is root, level(A)

= high. If Nu (or Mu, or Du, or Cu)

≥ 80%, level(A) = high. If

60% ≤ Nu (or Mu, or Du, or Cu)

< 80%, level(A) = low. Otherwise,

level(C) = none. The default initial

level of A is none

244 D. Zou et al.

not mean the final level of AV which will be obtained from the hierarchical
evaluation in the vulnerability severity assessment phase (Sect. 3.3).

Monitoring Program Generator. Based on the metrics model and the
attribute analysis, the monitoring program can be generated by the probes of
attributes. It is used to monitor the attributes during the attack process. These
attributes can reflect not only the features of the attack, but also the impact of
the system or software caused by the attack. The generated monitoring program
is as one input of both attribute instrumentation and attribute monitor in the
vulnerability severity assessment phase.

3.3 Vulnerability Severity Assessment

In the vulnerability severity assessment phase, the probes of attributes involved
in the monitoring program are used to instrument the exploits/PoCs, capture
the attributes, and monitor the state of vulnerable software and its environment.
Then the vulnerability severity is obtained by hierarchical evaluation. The pro-
cess involves three modules: attribute instrumentation and capture, attribute
monitor, and hierarchical evaluation.

Attribute Instrumentation and Capture. The exploits/PoCs are instru-
mented with the attributes involved in the monitoring program. These attributes
are related to the exploitability metrics AV , AC, PR, UI, AU , S and impact
metrics C, I. The exploitability metrics mainly reflect the features of attack
behavior, and the impact metrics monitor the impact of the system caused by
the exploits/PoCs. The attributes that reflect impact metrics C and I are closely
related to the exploitability metric PR, therefore the impact of C and I can be
obtained based on the attributes of PR. The instrumentation does not affect the
execution of the exploits/PoCs, and can be used to obtain the values of attributes
accurately. In this paper, the instrumentation mainly focuses on system calls.

With the aid of instrumentation tool, the probes for attributes that are mon-
itored in the monitoring program instrument the running exploits/PoCs. If the
exploits/PoCs call the attributes monitored, the information on these attributes
can be intercepted. The dynamic instrumentation approach to attribute cap-
ture can reflect the features of attack behavior and the impact of the system
more objectively and accurately. Finally, the captured attributes are input to
the hierarchical evaluation.

Attribute Monitor. Monitoring attributes is mainly related to the characteris-
tics of impact metric A. The purpose is to monitor the impact of the system and
vulnerable software caused by exploits/PoCs. A mainly reflects the availability
of the system or vulnerable software throughout the attack process. Attributes
related to A need to monitor the running status of the system or vulnerable

AutoCVSS 245

software in real time. Finally, the monitored attributes are input to the hierar-
chical evaluation. It should be noticed that monitoring the attributes is signifi-
cantly different from instrumenting and capturing the attributes. Capturing the
attributes occurs only when the instrumented attributes are encountered, while
monitoring the attributes needs to continue throughout the attack process.

Hierarchical Evaluation. There are two inputs to the hierarchical evaluation:
the captured attributes from the attribute instrumentation and capture module,
and the monitored attributes from the attribute monitoring module. The output
is the set Result which involves two parts: the vulnerability severity score and
the assessment process involving the captured attributes and the final level of
each base metric. The process of hierarchical evaluation has three steps.

Step 1: Deal with attributes related to exploitability metrics AV , AC, AU ,
PR, S, and UI. Each captured attribute is processed by the attribute anal-
ysis corresponding to the exploitability metric. The temporary level of the
exploitability metric is generated and compared with the level of the exploitabil-
ity metric previously stored in the Result. If the temporary level of the
exploitability metrics is greater than the level stored in Result, store the tempo-
rary level and other related information of the exploitability metric into Result,
then go to Step 3. In addition, if the attributes contain read or write permission
on the file, the attributes are selected and then go to Step 2.

Step 2: Deal with attributes related to impact metrics C, I, and A. The
relevant path name of the file is extracted from the attribute selected in Step
1. It is compared with the path of the system sensitive files to get the levels of
impact metrics C and I. If the attribute contains the read (write) permission, it
is related to C (I). If the level of the impact metric is greater than the level of
the impact metric previously stored in Result, the level and other information
of impact metric override the previous information in Result. In addition, the
evaluation method for impact metric A is similar to that for C and I. The only
difference is that the level of A can be read directly from monitored attributes.

Step 3: Generate the vulnerability severity. The values of each base metric
(i.e., exploitability metric and impact metric) are extracted from Result, and
are used to generate the vulnerability severity. Finally, the vulnerability severity
score and the information about assessment process are stored into Result.

4 Experiments and Results

In the experiments, we select the attributes to depict the characteristics related
to each base metric according to the established model, and monitor the pro-
grams by using the dynamic instrumentation tool Pin [14]. We use the API
given by Pin to instrument the exploits/PoCs and monitor the attributes for
Linux. Since the experiments are based on the Linux and the tool Pin requires
a binary executable file, the exploits/PoCs we choose are limited to those which
are written by C or C++ and can run on Linux.

246 D. Zou et al.

We divide the base metrics into three types according to the nature of their
attributes. The first type contains base metrics AV , AC, AU , PR, UI, C, and I
whose attributes are mainly related to system calls, the paths of sensitive files,
and so on. These metrics can be evaluated by capturing related system calls and
their parameters. The attributes related to this type of base metrics are shown in
Table 2. The second type involves the base metric A which needs to monitor the
status of system continuously. The specific attributes of A is shown in Table 3.
The third type involves the base metric S, which change can be determined by
the change of authority domain. It can be obtained during the attack process
directly. Therefore, we do not provide the specific attributes for S.

In practice, human experts who assess the vulnerability severity can get the
exploits/PoCs from the vulnerability discoverers for the first time to carry out
the vulnerability assessment. In our experiments, we collect vulnerabilities and
their corresponding exploits/PoCs from the public website EDB [2] to reproduce
the attacks for the vulnerabilities. Figure 2 shows the number of exploits (written
by C or C++) for Linux kernel, Apache service, and FTP service published by
EDB from 1999 to 2016. We select vulnerabilities from Linux kernel, FTP service,
and Apache service because they have more exploits and most of these software
are open source. From Fig. 2, we can see that in recent years, most of the exploits
are for Linux kernel and few exploits are for Apache service and FTP service.
In the NVD, almost all vulnerabilities provide CVSS v2, and many of them do
not provide CVSS v3 at the time of writing. We select the version(s) of CVSS
for each vulnerability as the NVD does in our experiments.

Our experiments involve 98 vulnerabilities from the above three products
(i.e., 74 Linux kernel vulnerabilities, 8 FTP service vulnerabilities, and 16 Apache
service vulnerabilities) whose exploits provided in the EDB can be used to suc-
cessfully reproduce the attacks. We adopt AutoCVSS to assess their severity. The
result is that only two vulnerability severity scores assessed by AutoCVSS are
obviously different from those in the NVD for CVSS v2, as shown in Fig. 3. One

Table 2. Attributes for the first type of base metrics

Base
metric

Attributes

AV socket, connect, hub nport nconnect nchange, usb nprobe ninterface

AC setregid, umount,mkdir, umount2, socketcall,
open, link, symlink, setresuid, setreuid, setuid, setfsuid,
setgroups, setgid, setfsgid, setfsgid, setresgid, chmod, fchmod, chown,
fchown, lchow

AU execle, execl

PR chmod, fchmod, chown, fchown, lchown, setresuid, setreuid, setuid,
setfsuid, setgid, setfsgid, setfsgid, setresgid, setregid

UI clone, execute, fork

C and I /bin, /boot, /dev, /etc, /lib, /proc, /root, /srv, /sys

AutoCVSS 247

Table 3. Attributes for base metric A

Attribute Operations

CPU utilization Access the file /proc/stat to extract the relevant data of CPU

Disk utilization Use the shell command to the disk and extract the relevant
data

Network bandwidth
utilization

Use the shell command to obtain the network bandwidth
usage and extract the relevant data

Memory utilization Access the file /proc/meminfo to extract the relevant data
of memory

1998 2000 2002 2004 2006 2008 2010 2012 2014 2016
0

5

10

15

20

25

N
um

be
r o

f e
xp

lo
its

Years

 Linux kernel
 Apache service
 FTP service

Fig. 2. The number of exploits (written by C or C++) for Linux kernel, Apache service,
and FTP service published by EDB from 1999 to 2016

deviation is caused by the inaccurate level of AU . Specifically, the authentication
may be occurred before the exploit. For example, the attacker may log into the
system before exploiting the vulnerability. Therefore, the authentication infor-
mation which the exploit does not contain cannot be captured. Another deviation
is caused by the incomplete attributes we consider during the implementation,
which will be improved in our future work.

In what follows, we select two vulnerabilities (CVE-2016-5195 for Linux ker-
nel and CVE-2011-3192 for Apache HTTP Server) with three exploits from EDB
(EDB-ID 40611 and 40847 for CVE-2016-5195, and EDB-ID 18221 for CVE-
2011-3192) to illustrate the specific process of AutoCVSS.

248 D. Zou et al.

0 20 40 60 80 100
0

2

4

6

8

10

Vu
ln

er
ab

ilit
y

se
ve

rit
y

sc
or

e

Vulnerability sequence number

 CVSS in the NVD
 AutoCVSS

Fig. 3. Comparison between the CVSS v2 scores in the NVD and the vulnerability
severity scores obtained by AutoCVSS for 98 vulnerabilities

4.1 CVE-2016-5195

CVE-2016-5195, also known as “Dirty COW”, is caused by the race condition in
Linux kernel 2.x through 4.x before 4.8.3. It allows local users to gain privileges
by leveraging incorrect handling of a copy-on-write (COW) feature to write to
a read-only memory mapping [3]. There are two exploits (EDB-ID 40611 and
40847). The first exploit changes the permission of a file, and the second exploit
can get the root privilege.

As shown in Fig. 4, the exploit EDB-ID 40611 creates two threads: madvise
and procselfmemThread. Thread madvise is responsible for the memory page
allocation, and thread procselfmemThread mainly tries to write the data to
memory. The exploitation process is as follows. For the first time, the write
operation could cause page fault, then Linux deals with this page fault. For
the second time, Linux deals with the write permission error by removing the
write permission requirements and calling madvise to overwrite the previous
cow pages. For the third time, Linux finds the page fault, but this page has no
FOLL nWRITE permission requirements, then the memory page mapped can
be directly accessed, leading to permission issues.

The exploit EDB-ID 40847 is to gain the root privilege. The exploitation
process mainly has three steps. First, “bin/bas” information is written to the
file tmp/.pwn. Second, the permission of pwn file is modified, so that this file has
the executable permission. Third, the shell in /etc/passwd is modified to point
to “root:x:0:0:root:/root:/tmp/.pwn”, that is, point to tmp/.pwn executable file.
At last, the shell can be run under the authority of root.

In both attack processes, AutoCVSS does not catch system call connect,
which indicates that it is a local attack. The non-sensitive file pwn is created,

AutoCVSS 249

main()

map=mmap(NULL,st.st_size,
PROT_READ,MAP_PRIVATE,f,0);

lseek()
write()

Capture
attribute

Capture
attribute

pthread_create(&pth2,NULL,
procselfmemThread,argv[2]);

pthread_create(&pth1,NULL,
madviseThread,argv[1]);

pthread_join(pth1,NULL);
pthread_join(pth2,NULL);

mprotect()
futex()

advise()

mmap()
fstat()

End

Capture
attribute

Fig. 4. The attack flow of CVE-2016-5195 (EDB-ID 40611) and the main attributes
captured by AutoCVSS

and its permission is modified, thus the level of AC and PR is low. There is no
interaction with Linux, no system authentication and software authentication,
and the authorization scope is unchanged, which indicates the level of UI is
none, the level of AU is none, and the level of S is unchanged. For the first
exploit, only the permissions and contents of a non-sensitive file are changed,
and the system can run properly without impact. Therefore, the level of C and
I is low and the level of A is none. While for the second exploit, the root privilege
is obtained after the attack, thus the level of C, I, and A is high. As the impact
caused by the second exploit is more serious, the vulnerability severity assessed
by the second exploit is selected as the severity of this vulnerability. As NVD
provides the vulnerability with both CVSS v2 score and CVSS v3 score, we list
base metrics for both CVSS v2 and CVSS v3 in Table 4. The result obtained by
AutoCVSS is 7.2 for CVSS v2 and 7.8 for CVSS v3, which are the same as the
results in the NVD.

4.2 CVE-2011-3192

CVE-2011-3192 is a vulnerability in the Apache HTTP Server 1.3.x, 2.0.x
through 2.0.64, and 2.2.x through 2.2.19. It allows an attacker to cause a denial of
service attack via a Range header that expresses multiple overlapping ranges [3].

The attack flow in function thread nstart() is as follows. The request packet
is send to Apache HTTP Server continuously by function write(). The HTTP
header information in the request packet contains the range option, which defines
how to request fragmented resource files. If a large number of overlapping range
specification commands are set in the range option, Apache HTTP Server will

250 D. Zou et al.

Table 4. Levels of base metrics obtained by AutoCVSS

Base
metric

CVE-2016-5195 CVE-2011-3192

Level Assessment basis Level Assessment basis

AV Local Default level Network IP is not on the same
network segment as the
IP of server

AC Low Write some information,
modify file permissions

Low Send a message

AU None Relevant attributes are
not captured

None Relevant attributes are
not captured

PR Low Need to user permission - -

UI None Relevant attributes are
not captured

- -

S Unchanged The vulnerable
component and the
impacted component are
the same

- -

C High Get root privilege None Capture read(), but there
is no file path matched in
read()

I High Get root privilege None Capture write(), but
there is no file path
matched in write()

A High Get root privilege High Complete memory is
exhausted

consume a lot of memory and CPU resources to construct the response data,
causing the operating system to run out of resources.

In this process, AutoCVSS can intercept the main system calls socket,
connect, and write. Since connect can be successfully connected, it indicates
that a remote connection is made. In the server system, AutoCVSS monitors
the network utilization, disk utilization, and CPU utilization, which basically
remain unchanged. But the memory utilization continues to increase, basically
more than 80%. From this perspective, we can see that when the memory is
low, it would cause the system to deny service. At last, the vulnerability severity
score obtained by AutoCVSS is 7.8, which is the same as the CVSS v2 in the
NVD. Table 4 shows the level of each base metric for AutoCVSS.

5 Related Work

AutoCVSS is used to assess the vulnerability severity based on CVSS and attack
process. In what follows, we review the prior works from two aspects: CVSS and
attack process.

AutoCVSS 251

Prior Work Related to CVSS. CVSS is proposed by NIAC to solve the
inconsistency and incompatibility problems caused by various security assess-
ment systems. There are many studies about CVSS. Some studies [15,20] pointed
out that the factors considered by CVSS were not comprehensive enough and
the scores obtained could not truly reflect the vulnerability severity. Younis et
al. [20] proposed to use the attack surface to increase the accuracy of assess-
ment. For the assessment problems of CVSS, some approaches were presented
to improve the CVSS [7,9,16]. In addition, there are also some approaches to
the prediction or assessment of vulnerability [4,5,10,13]. For example, Khaz-
aei e al. [13] proposed an automated approach to assess vulnerabilities. Their
vulnerability features were generated from the vulnerability description infor-
mation. However, the above studies about CVSS are basically static approaches.
They do not involve the attack process which has more valuable information for
vulnerability severity assessment.

Prior Work Related to Attack Process. Many researches used the attack
graph to evaluate or predict the level of network security. Huang et al. [12]
extracted the characteristics from the attack graph. These characteristics were
combined with CVSS to statically evaluate the network security. However, our
characteristics are based on attack process and our approach to vulnerability
severity assessment is dynamic, which can more accurately obtain the attack
data. Hu et al. [11] provided more information about the future of network
attack behaviors by dynamic Bayesian attack graph. The information is lim-
ited to network attack behaviors, and the evaluation method does not apply to
the severity assessment of vulnerabilities without network attack. Besides, some
attack models [6,8] were also used to predict the attack behaviors.

The previous studies show that there is few concern about the combination
of CVSS and the attack process to dynamically assess the vulnerability severity.
Our goal is to use the attack process to make the assessment process of CVSS
automatically and objectively, and the experimental results show the effective-
ness of AutoCVSS.

6 Conclusion

We present AutoCVSS, an approach for automatic assessment of vulnerability
severity based on attack process. It leverages the characteristics and rules we
define to model the CVSS base metrics, and assesses the vulnerability severity
automatically and objectively by capturing the attributes related to the char-
acteristics during the attack process. Our results show that the vulnerability
severity scores automatically obtained by AutoCVSS are basically in accordance
with those assessed manually by security experts in the NVD, which verifies
the effectiveness of AutoCVSS. For future research, we will improve the char-
acteristics and rules of AutoCVSS for more comprehensive vulnerability sever-
ity assessment and strive to assess the vulnerability severity through multiple
exploits/PoCs more effectively.

252 D. Zou et al.

Acknowledgments. This paper is supported by the National Key Research & Devel-
opment (R&D) Plan of China under grant No. 2017YFB0802205, the National Sci-
ence Foundation of China under grant No. 61672249, and the Shenzhen Fundamental
Research Program under grant No. JCYJ20170413114215614.

References

1. Common Vulnerability Scoring System. https://www.first.org/cvss/
2. Exploit database. https://www.exploit-db.com/
3. National Vulnerability Database. https://nvd.nist.gov/
4. Allodi, L., Banescu, S., Femmer, H., Beckers, K.: Identifying relevant information

cues for vulnerability assessment using CVSS. In: Proceedings of the 8th ACM
Conference on Data and Application Security and Privacy (CODASPY), pp. 119–
126. ACM (2018)

5. Allodi, L., Biagioni, S., Crispo, B., Labunets, K., Massacci, F., Santos, W.: Esti-
mating the assessment difficulty of CVSS environmental metrics: an experiment.
In: Dang, T.K., Wagner, R., Küng, J., Thoai, N., Takizawa, M., Neuhold, E.J.
(eds.) FDSE 2017. LNCS, vol. 10646, pp. 23–39. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70004-5 2

6. Almasizadeh, J., Azgomi, M.A.: A stochastic model of attack process for the eval-
uation of security metrics. Comput. Netw. 57(10), 2159–2180 (2013)

7. Cheng, P., Wang, L., Jajodia, S., Singhal, A.: Aggregating CVSS base scores for
semantics-rich network security metrics. In: Proceedings of the 31st Symposium
on Reliable Distributed Systems (SRDS), pp. 31–40. IEEE (2012)

8. Del Valle, S., Hethcote, H., Hyman, J.M., Castillo-Chavez, C.: Effects of behavioral
changes in a smallpox attack model. Math. Biosci. 195(2), 228–251 (2005)

9. Gallon, L.: On the impact of environmental metrics on CVSS scores. In: Proceed-
ings of the 2nd International Conference on Social Computing (SocialCom), pp.
987–992. IEEE (2010)

10. Ghani, H., Luna, J., Khelil, A., Alkadri, N., Suri, N.: Predictive vulnerability scor-
ing in the context of insufficient information availability. In: Proceedings of 2013
International Conference on Risks and Security of Internet and Systems (CRiSIS),
pp. 1–8. IEEE (2013)

11. Hu, H., Zhang, H., Liu, Y., Wang, Y.: Quantitative method for network security
situation based on attack prediction. Secur. Commun. Netw. 2017, 1–19 (2017)

12. Huang, H., Zhao, F., Ye, M.: Estimate the influential level of vulnerability instance
based on hybrid ranking for dynamic network attacking scenarios. In: Proceedings
of the 10th International Conference on Information Sciences Signal Processing
and their Applications (ISSPA), pp. 586–589. IEEE (2010)

13. Khazaei, A., Ghasemzadeh, M., Derhami, V.: An automatic method for CVSS
score prediction using vulnerabilities description. J. Intell. Fuzzy Syst. 30(1), 89–
96 (2016)

14. Luk, C., et al.: Pin: building customized program analysis tools with dynamic
instrumentation. In: Proceedings of Conference on Programming Language Design
and Implementation, pp. 190–200. ACM (2005)

15. Luo, J., Lo, K., Qu, H.: A software vulnerability rating approach based on the
vulnerability database. J. Appl. Math. 2014, 932397:1–932397:9 (2014)

16. Ross, D.M., Wollaber, A.B., Trepagnier, P.C.: Latent feature vulnerability ranking
of CVSS vectors. In: Proceedings of the Summer Simulation Multi-Conference, pp.
19:1–19:12. Society for Computer Simulation International (2017)

https://www.first.org/cvss/
https://www.exploit-db.com/
https://nvd.nist.gov/
https://doi.org/10.1007/978-3-319-70004-5_2
https://doi.org/10.1007/978-3-319-70004-5_2

AutoCVSS 253

17. Spanos, G., Sioziou, A., Angelis, L.: WIVSS: a new methodology for scoring infor-
mation systems vulnerabilities. In: Proceedings of the 17th Panhellenic Conference
on Informatics, pp. 83–90. ACM (2013)

18. Tripathi, A., Singh, U.K.: Estimating risk levels for vulnerability categories using
CVSS. Int. J. Internet Technol. Secured Trans. 4(4), 272–289 (2012)

19. Younis, A.A., Malaiya, Y.K.: Comparing and evaluating CVSS base metrics and
Microsoft rating system. In: Proceedings of the IEEE International Conference on
Software Quality, Reliability and Security (QRS), pp. 252–261. IEEE (2015)

20. Younis, A.A., Malaiya, Y.K., Ray, I.: Using attack surface entry points and reacha-
bility analysis to assess the risk of software vulnerability exploitability. In: Proceed-
ings of the 15th International Symposium on High-Assurance Systems Engineering
(HASE), pp. 1–8. IEEE (2014)

21. Younis, A.A., Malaiya, Y.K., Ray, I.: Assessing vulnerability exploitability risk
using software properties. Software Qual. J. 24(1), 159–202 (2016)

22. Younis, A., Malaiya, Y.K., Ray, I.: Evaluating CVSS base score using vulnerability
rewards programs. In: Hoepman, J.-H., Katzenbeisser, S. (eds.) SEC 2016. IAICT,
vol. 471, pp. 62–75. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
33630-5 5

https://doi.org/10.1007/978-3-319-33630-5_5
https://doi.org/10.1007/978-3-319-33630-5_5

	AutoCVSS: An Approach for Automatic Assessment of Vulnerability Severity Based on Attack Process
	1 Introduction
	2 Background
	3 Design of AutoCVSS
	3.1 Input and Output
	3.2 Monitoring Program Generation
	3.3 Vulnerability Severity Assessment

	4 Experiments and Results
	4.1 CVE-2016-5195
	4.2 CVE-2011-3192

	5 Related Work
	6 Conclusion
	References

