
Core-Boosted Linear Search for
Incomplete MaxSAT

Jeremias Berg1(B), Emir Demirović2, and Peter J. Stuckey3,4

1 HIIT, Department of Computer Science, University of Helsinki, Helsinki, Finland
jeremias.berg@cs.helsinki.fi

2 University of Melbourne, Melbourne, Australia
emir.demirovic@unimelb.edu.au

3 Monash University, Melbourne, Australia
peter.stuckey@monash.edu

4 Data61, CSIRO, Canberra, Australia

Abstract. Maximum Satisfiability (MaxSAT), the optimisation exten-
sion of the well-known Boolean Satisfiability (SAT) problem, is a com-
petitive approach for solving NP-hard problems encountered in various
artificial intelligence and industrial domains. Due to its computational
complexity, there is an inherent tradeoff between scalability and guaran-
tee on solution quality in MaxSAT solving. Limitations on available com-
putational resources in many practical applications motivate the develop-
ment of complete any-time MaxSAT solvers, i.e. algorithms that compute
optimal solutions while providing intermediate results. In this work, we
propose core-boosted linear search, a generic search-strategy that com-
bines two central approaches in modern MaxSAT solving, namely linear
and core-guided algorithms. Our experimental evaluation on a prototype
combining reimplementations of two state-of-the-art MaxSAT solvers,
PMRES as the core-guided approach and LinSBPS as the linear algo-
rithm, demonstrates that our core-boosted linear algorithm often out-
performs its individual components and shows competitive and, on many
domains, superior results when compared to other state-of-the-art solvers
for incomplete MaxSAT solving.

Keywords: Maximum Satisfiability · MaxSAT ·
SAT-based MaxSAT · Incomplete solving · Linear algorithm ·
Core-guided MaxSat

1 Introduction

Discrete optimisation problems are ubiquitous throughout society. When solving
a discrete optimisation problem, the goal is to find the best solution according to

The first author is financially supported by the University of Helsinki Doctoral Pro-
gram in Computer Science and the Academy of Finland (grant 312662). We thank the
University of Melbourne and the Melbourne School of Engineering Visiting Fellows
scheme for supporting the visit of Jeremias Berg.

c© Springer Nature Switzerland AG 2019
L.-M. Rousseau and K. Stergiou (Eds.): CPAIOR 2019, LNCS 11494, pp. 39–56, 2019.
https://doi.org/10.1007/978-3-030-19212-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19212-9_3&domain=pdf
https://doi.org/10.1007/978-3-030-19212-9_3

40 J. Berg et al.

a given objective function among a finite, but potentially large set of possibilities.
Examples of such problems include scheduling, routing, timetabling, and other
forms of management decision problems. The solution approaches to discrete
optimisation can be divided into complete and incomplete methods. The aim of
complete methods is to find the best possible solution and prove its optimality.
However, in many real world applications complete solving is a difficult, and in
many cases, a practically infeasible task. Hence, in practice, one might resort
to incomplete solving, i.e. computing the best possible solution within a limited
time, rather than exclusively searching for an optimal solution.

There is a wide range of technologies available for discrete optimisation.
The focus of this work is on the Boolean optimisation paradigm of Maximum
(Boolean) Satisfiability (MaxSAT), the optimization extension of the well-known
Boolean satisfiability (SAT) problem. MaxSAT can be used to solve any NP-hard
discrete optimisation problem that can be formulated as minimising a linear
objective over Boolean variables subject to a set of clausal constraints. Mod-
ern MaxSAT solving technology builds on the exceptional performance improve-
ments of SAT solvers, starting in the late 90s [39,49]. Most MaxSAT solvers used
in real-world applications are SAT-based, i.e. reduce the discrete optimisation
problem into a sequence of satisfiability queries of Boolean formulas conjunc-
tive normal form (CNF), and tackle the queries with SAT solvers. In the last
decade, MaxSAT solving technology has matured significantly, leading to suc-
cessful applications of MaxSAT in a wide range of AI and industrial domains,
such as timetabling, planning, debugging, diagnosis, machine learning, and sys-
tems biology [3,10,15,19,20,22,24,36,51]. See [5,6,42] for more details.

SAT-based MaxSAT solvers can be roughly partitioned into linear [28,29],
core-guided [4,8,25,41,41,44], and implicit hitting-set-based [21,45] algorithms.
The two most relevant ones for this work are the linear and core-guided algo-
rithms. Linear algorithms are upper bounding approaches that encode the
MaxSAT instance, along with its pseudo-Boolean objective function, into con-
junctive normal form (CNF) and iteratively query a SAT solver for a solution
better than the current best one. In contrast, core-guided algorithms are lower-
bounding approaches that use a SAT solver to extract a series of unsatisfiable
cores, i.e. sets of soft constraints that cannot be simultaneously satisfied, and
reformulate the underlying MaxSAT instance to rule out each core as a source
of unsatisfiability. Both search strategies have shown strong performance in the
annual MaxSAT evaluations, linear search is particularly effective for incomplete
solving while many of the best performing complete solvers are core-guided.

As our main contribution, we propose core-boosted linear search for incom-
plete MaxSAT solving, a novel search strategy that combines linear and core-
guided search with the aim of achieving the best of both worlds. A core-
boosted solver initially reformulates an input instance with a core-guided solver
and then solves the reformulated instance with a linear search solver. The
exchange of information from the core-guided phase to the linear phase tight-
ens the gap between the lower and upper bound, allowing the use of a simpler

Core-Boosted Linear Search for Incomplete MaxSAT 41

pseudo-Boolean encoding. As a result, the approach is often more effective than
either a pure linear or a pure core-guided search.

To demonstrate the potential of core-boosted linear search we report on an
experimental evaluation of a prototype solver that combines reimplementations
of two state-of-the-art MaxSAT solvers, PMRES [44] as the core-guided algo-
rithm and LinSBPS [14] as the linear algorithm. We compare core-boosted linear
search to its individual components on a standard set of benchmarks. Our results
indicate that core-boosted linear search is indeed more effective that either core-
guided or linear search for incomplete solving. An in-depth look at the search
progression on three selected instances demonstrates the ability of core-boosted
linear search to both avoid the worst-case executions of its components, and
make use the information flow between them to more quickly find solutions of
higher quality.

The rest of the paper is organised as follows. After the preliminaries in
Sect. 2, we give a detailed discussion of core-guided and linear search methods
for MaxSAT in Sect. 3. Core-boosted linear search is then presented in Sect. 4.
We discuss related work in Sect. 5, after which we present our experimental
evaluation in Sect. 6. Lastly, we give concluding remarks in Sect. 7.

2 Preliminaries

For a Boolean variable x there are two literals, the positive x and the negative
¬x. The negation ¬l of a literal l satisfies ¬¬l = l. A clause C is a disjunction
(∨) of literals (represented as a set of its literals), and a CNF formula F a
conjunction (∧) of clauses (represented as a set of its clauses). The set Var(F)
of the variables of F contains all variables x s.t. x ∈ C or ¬x ∈ C for some
C ∈ F . We assume familiarity with other logical connectives and denote by
CNF(φ) a set of clauses logically equivalent to the formula φ. We also assume
without loss of generality, that the size of CNF(φ) is linear in the size of φ [47].

A truth assignment τ is a function mapping Boolean variables to 1 (true)
or 0 (false). A clause C is satisfied by τ (denoted by τ(C) = 1) if τ(l) = 1
for a positive or τ(l) = 0 for a negative literal l ∈ C, otherwise C is falsified
by τ (denoted τ(C) = 0). A CNF formula F is satisfied by τ (τ(F) = 1) if τ
satisfies all clauses in the formula and falsified otherwise (τ(F) = 0). If some
τ satisfies a CNF formula F , then F is satisfiable, otherwise it is unsatisfiable.
The NP-complete Boolean Satisfiability problem (SAT) asks to decide if a given
CNF formula F is satisfiable [17].

A (weighted partial) MaxSAT instance F consists of two sets of clauses: the
hard Hard(F), the soft Soft(F), and a function wF : Soft(F) → N associating
a positive integral cost to each soft clause. The set Var(F) of the variables of
F is Var(Hard(F)) ∪ Var(Soft(F)). An assignment τ is a solution to F if
τ(Hard(F)) = 1. The cost COST(F , τ) of a solution τ to F is the sum of the
weights of the soft clauses it falsifies i.e. COST(F , τ) =

∑
C∈Soft(F) wF (C)×(1−

τ(C)). A solution τ is optimal if COST(F , τ) ≤ COST(F , τ ′) for all solutions τ ′

42 J. Berg et al.

Algorithm 1. Lin-Search
Input: A MaxSAT instance F
Output: An optimal solution τ to F
begin

n ← |Soft(F)|, τ� ← InitialSolution(F)

R ← {r1, . . . , rn}, F R
s = {Ci ∨ ri | Ci ∈ Soft(F), ri /∈ Var(F)}

while true do
if Resource-Out then return τ�

PB ← ∑n
i=1 wF (Ci) × ri < COST(F , τ�)

Fw ← Hard(F) ∪ F R
s ∪ CNF(PB)

(res, τ) ← SATSolve(Fw)
if res=”satisfiable” then τ� ← τ
else return τ�

to F . We denote the cost of the optimal solutions to F by COST(F). The NP-
hard (weighted partial) MaxSAT problem asks to compute an optimal solution
to a given instance F . In the rest of the paper we will assume that all MaxSAT
instances have solutions, i.e. that Hard(F) is satisfiable.

A central concept in many SAT-based MaxSAT algorithms is that of an
(unsatisfiable) core. For a MaxSAT instance F , a subset κ ⊆ Soft(F) of soft
clauses is an unsatisfiable core of F iff Hard(F) ∧ κ is unsatisfiable.

3 Core-Guided and Linear Search for Incomplete
MaxSAT

We detail two abstract MaxSAT solving algorithms, Lin-Search (Algorithm 1)
and Core-Guided (Algorithm 2), representing linear and core-guided search,
respectively. Both use SAT-solvers to reduce MaxSAT solving into a sequence of
satisfiability queries. However, the manner in which the SAT solver is used dif-
fers significantly. We present both algorithms as complete any-time algorithms,
i.e. algorithms that, given enough resources, compute the optimal solution to a
MaxSAT instance while also providing intermediate solutions during search.

In the following descriptions of the MaxSAT algorithms, we abstract the
use of the SAT-solver into two functions. The function SATSolve represents
a basic SAT-solver query. Given a CNF formula F , the query SATSolve(F)
returns a tuple (res, τ), where res denotes whether the formula is satisfi-
able and τ is a satisfying assignment to F if one exists. The extended func-
tion Extract-Core(Hard(F),Soft(F)) takes as input the hard and soft
clauses of a MaxSAT instance F and returns a triplet (res, κ, τ), where res
indicates if Hard(F) ∧ Soft(F) is satisfiable, τ is a satisfying assignment
for Hard(F) ∧ Soft(F) if one exists, and κ ⊂ Soft(F) is a core of F if
Hard(F)∧Soft(F) is unsatisfiable. Practically all SAT-solvers used in MaxSAT
solving offer a so-called assumption interface [43] that can be used to implement
SATSolve and Extract-Core.

Core-Boosted Linear Search for Incomplete MaxSAT 43

The pseudocode of Lin-Search, is detailed in Algorithm1. When solving an
instance F , Lin-Search refines an upper bound on COST(F) by maintaining
and iteratively improving a best known solution τ� to F . Initially, τ� is set to
any solution of F , for example by invoking the SAT solver on Hard(F). During
search, the existence of a solution τ having cost less that τ� is checked by query-
ing the internal SAT solver. If no such solution is found, then τ� is optimal and
Lin-Search terminates. Otherwise τ� is updated and the search continues. In
more detail, the existence of a solution τ for which COST(F , τ) < COST(F , τ�)
is checked by querying the SAT-solver for the satisfiability of a working formula
Fw = Hard(F)∪FR

s ∪CNF(PB) consisting of the hard clauses, the soft clauses
each extended with a unique relaxation variable ri and a CNF-encoding of a
pseudo-Boolean (PB) constraint PB =

∑n
i=1 wF (Ci) × ri < COST(F , τ�) that

is satisfied by an assignment τ iff
∑n

i=1 wF (Ci) × τ(ri) < COST(F , τ�). The
intuition underlying Fw is that setting a relaxation variable ri to true allows fal-
sification of the corresponding soft clause Ci. Thus the PB constraint essentially
limits the sum of the weights of the soft clauses falsified by an assignment τ to
be less than the current best known upper bound COST(F , τ�) on COST(F).
In other words, Fw is satisfied by an assignment τ iff τ is a solution to F for
which COST(F , τ) < COST(F , τ�).

Before proceeding with core-guided search, we make two observations regard-
ing the effectiveness of Lin-Search that are important for understanding core-
boosted linear search. As the search in Lin-Search is focused on decreasing the
best known upper bound, we expect it to be most effective for solving an instance
F when the difference between COST(F) and the cost COST(F , τ�) of the ini-
tial solution τ� is small. Thus, a high quality, i.e. low cost, initial solution can
have a significant impact on the overall performance of Lin-Search. The sec-
ond observation concerns the PB constraint

∑n
i=1 wF (Ci)× ri < COST(F , τ�).

Similar constraints are encountered in many different domains, as such a lot of
research has been put into developing efficient CNF encodings of them [11,27,46].
Even so, the PB constraint is arguably the main bottleneck of the overall perfor-
mance of Lin-Search and we expect any further techniques that allow the use
of simpler, and more compact (encodings) PB constraints to improve the overall
performance of Lin-Search.

The pseudocode of Core-Guided, basic core-guided search extended with
stratification [7,37], is detailed in Algorithm 2. Stratification is a heuristic
designed to steer the core extraction of Core-Guided toward cores κ for which
the minimum weight of the clauses in κ is high. Stratification is a standard tech-
nique in modern core-guided solvers. Importantly for this work, stratification
allows us to treat core-guided search as an any-time method for MaxSAT.

When solving an instance F , Core-Guided maintains a working instance
initialised to F and a stratification bound bSTRAT initialised to the highest weight
of the soft clauses in F . During iteration i of the main search loop, the SAT
solver is queried for a core κi of a subset of the current working instance F i

containing all hard clauses and STRAT, all soft clauses with weight greater
than or equal to bSTRAT. If no such core exists, an intermediate solution τ is

44 J. Berg et al.

Algorithm 2. Core-Guided

Input: A MaxSAT instance F
Output: An optimal solution τ to F
begin

τ� ← InitialSolution(F), bSTRAT ← max{wF (C) | C ∈ Soft(F)}
F1 ← F , i ← 1
while true do

if Resource-Out then return τ�

STRAT ← {C | C ∈ Soft(F i), wFi

(C) ≥ bSTRAT}
(res, κi, τ) ← Extract-Core(Hard(F i),STRAT)
if res=”satisfiable” then

if COST(F , τ) < COST(F , τ�) then τ� ← τ

if STRAT = Soft(F i) then return τ

else bSTRAT ← max{wFi

(C) | C ∈ Soft(F i), wFi

(C) < bSTRAT}
else

F i+1 ← Reformulate(F i, κi)
i ← i + 1

obtained and compared to the best known solution τ�. If all soft clauses were
considered in the SAT call, the obtained solution is also optimal and the algo-
rithm terminates. If not, the bound bSTRAT is lowered and the search continues.
When a core κi is extracted, the working instance is updated by the function
Reformulate. Informally speaking, Reformulate reformulates F i in a way
that rules out κi as a source of unsatisfiability and allows falsifying one clause in
κi without incurring cost. Most of the core-guided MaxSAT solvers that fit the
Core-Guided abstraction [4,8,25,41,44] differ mainly in the implementation
of Reformulate. The correctness of such solvers is often established by show-
ing that F i is MaxSAT-reducible to F i+1 and that Var(F i) ⊂ Var(F i+1) [6].
While a precise treatment of MaxSAT-reducibility is outside the scope of this
work, the next proposition summarises the consequences of it that are important
for understanding core-boosted linear search.

Proposition 1. Let F be a MaxSAT instance, κ a core of F , wκ =
min{wF (C) | C ∈ κ} and FR = Reformulate(F , κ). Assume that F is
MaxSAT reducible to FR and that Var(F) ⊂ Var(FR). Then the following
hold: (i) any solution τ to F can be extended into a solution τR to FR s.t.
COST(F , τ) = COST(FR, τR) + wκ and (ii) any solution τR to FR is a solu-
tion to F for which COST(FR, τR) = COST(F , τR) − wκ.

An alternative intuition to core-guided search offered by Proposition 1 is thus a
search strategy that lowers the optimal cost of its working instance by extracting
cores that witness lower bounds and reformulating the instance s.t the cost of
every solution to the instance is lowered exactly by the identified lower bound.
Core-guided search terminates once the optimum cost of the working instance
has been lowered to 0.

Core-Boosted Linear Search for Incomplete MaxSAT 45

Example 1. Let F be a MaxSAT instance having Hard(F) = {(x1 ∨ x2), (x3 ∨
x4)} and Soft(F) = {(¬xi) | i = 1 . . . 4} with wF ((¬x1)) = wF ((¬x2)) = 1 and
wF ((¬x3)) = wF ((¬x4)) = 2. We sketch one possible execution of the PMRES
algorithm [44], an instantiation of Core-Guided, when invoked on F . First, the
initial working formula F1 is set to F and the stratification bound bSTRAT is set
to the highest weight of soft clauses, i.e. 2. Thus STRAT = {(¬x3), (¬x4)} in
the first iteration. The formula Hard(F1) ∧ STRAT is unsatisfiable, the only
core obtainable at this point is κ1 = {(¬x3), (¬x4)}. Using the PMRES algo-
rithm, the next working instance F2 = Reformulate(F1, κ1) has Hard(F2) =
Hard(F1)∪{(¬x3 ∨¬r1),CNF(d1 ↔ ¬x4)}, Soft(F2) = {(¬x1), (¬x2), (¬r1 ∨
¬d1)} with wF2

(x1) = wF2
(x2) = 1 and wF2

((¬r1 ∨ ¬d1)) = 2. The strat-
ification bound is not altered so STRAT = {(¬r1 ∨ ¬d1)} during the next
iteration. Now Hard(F2) ∧ STRAT is satisfiable so bSTRAT is lowered to 1.
In the next iteration STRAT = Soft(F2) and the SAT solver obtains the
core κ2 = {(¬x1), (¬x2)}. The instance is again reformulated and the next
working instance F3 = Reformulate(F2, κ2) has Hard(F3) = Hard(F2) ∪
{(¬x1 ∨ ¬r2),CNF(d2 ↔ ¬x2))} and Soft(F3) = {(¬r2 ∨ ¬d2), (¬r1 ∨ ¬d1)}
with wF3

((¬r2 ∨ ¬d2)) = 1 and wF3
((¬r1 ∨ ¬d1)) = 2. In the final iter-

ation STRAT = Soft(F3) and since Hard(F3) ∧ Soft(F3) is satisfiable,
Core-Guided terminates.

We conclude this section with a few observations regarding Core-Guided that
are important for understanding core-boosted linear search. When solving an
instance F , Core-Guided focuses its search on the lower bound of COST(F).
Thus, we expect Core-Guided to be effective if COST(F) is low and, in par-
ticular, to not be significantly affected by the quality of the initial solution. The
main bottleneck of Core-Guided is instead the increased complexity of the
core-extraction steps. Note that the core κi extracted during the i:th iteration
of Core-Guided is a core of the i:th working instance F i and not necessarily
of the original instance F . While the effects of reformulation on the complexity
of the Extract-Core calls are not fully understood, it has been shown that
extracting a core of F i can be exponentially harder than extracting a core of
F [13].

4 Core-Boosted Linear Search for Incomplete MaxSAT

In this section, we propose and discuss core-boosted linear search, the main contri-
bution of our work. The execution of a core-boosted (linear search) algorithm is
split into two phases. On input F , the algorithm begins search in a core-guided
phase by invoking Core-Guided on F . If Core-Guided is able to find an
optimal solution within the resources allocated to it, then the core-boosted algo-
rithm terminates. Otherwise Core-Guided returns its final working instance
Fw along with the best solution τ� it found. The core-boosted algorithm then
moves on to its linear phase by invoking Lin-Search on Fw using τ� as the
initial solution. The linear phase runs until either finding the optimal solution

46 J. Berg et al.

to Fw, or running out of computational resources. By Proposition 1, the best
solution τ� to Fw found by Lin-Search is also a solution to F . Specifically, an
optimal solution of Fw is also an optimal solution to F implying the complete-
ness of core-boosted linear search for MaxSAT. We emphasize that the linear
component Lin-Search of a core-boosted algorithm is invoked on Fw, the final
working instance of Core-Guided, and not on F , the initial input instance.
As we discuss next and demonstrate in our experiments, this allows the linear
phase of core-boosted linear search to benefit from the core-guided phase in a
non-trivial manner.

The discussion on Lin-Search and Core-Guided in Sect. 3 serves as useful
basis for understanding the potential benefits of core-boosted linear search. Since
core-boosted linear search makes use of both core-guided and linear search, we
expect it to be effective both on the same instances as linear search, and as core-
guided search, or at least not significantly worse. For example, if the instance
F being solved has low optimal cost, then we expect a core-boosted algorithm
to be able to solve the instance effectively during its initial core-guided phase.
Similarly, if COST(F) is close to the cost COST(F , τ�) of the initial solution
τ�, then COST(Fw) is also close to COST(Fw, τ�). Hence we expect a core-
boosted algorithm to be effective during its linear phase, even factoring in the
reformulations done during the core-guided phase.

The potential benefits of core-boosted linear search go beyond merely aver-
aging out the performance of core-guided and linear search. As discussed in the
previous section, one of the main drawbacks of core-guided search is the increased
complexity of core extraction over time. Thus stopping the core-guided phase and
solving the working instance by linear search should be beneficial. Further, the
linear phase can also benefit from the reformulation steps performed by the core-
guided phase. Specifically, such reformulations can decrease the size of the PB
constraint PB =

∑n
i=1 wF (Ci) × ri < COST(F , τ�) that needs to be encoded

during linear search. Depending on the specific encoding used, the number of
clauses resulting from encoding PB into CNF depends either on the magnitudes
of the weights of the soft clauses and the right-hand side [23] or on the number
of unique sums that can be created from those weights [27]. The reformulation
steps performed during the core-guided phase of a core-boosted algorithm can
affect both of these factors. By Proposition 1 COST(Fw, τ�) ≤ COST(F , τ�)
which implies that both the magnitude of the weights in Fw and the initial right
hand side COST(Fw, τ�) of PB are smaller in the reformulated Fw than in the
original F . Additionally, the core-guided phase can also decrease the number of
soft clauses in the instance; the second working instance of Example 1 has one
less soft clause than the first one. Finally, the so-called hardening rule [7] com-
monly used in conjunction with core-guided search, can also decrease the number
of soft clauses of the instance, and thus allow the linear phase of a core-boosted
algorithm to use a more compact PB constraint.

Core-Boosted Linear Search for Incomplete MaxSAT 47

5 Related Work

We begin by detailing the instantiations of Lin-Search and Core-Guided that
we use in the prototype core-boosted linear search algorithm experimented with
in the next section. As the linear search component we use the basic Lin-Search
extended with varying resolution and solution-based phase-saving in the style of
LinSBPS, the best performing solver of the incomplete 300s track of the 2018
MaxSAT evaluation [14]. Solution-based phase-saving is a heuristic designed
to steer the search towards the currently best known solution by modifying
the branching heuristic of the internal SAT solver to always prefer setting the
polarity of a literal it branches on to equal its polarity in the currently best
known solution. Varying resolution is a heuristic designed to alleviate the issues
that Lin-Search has with large PB constraints. When invoked on an instance
F a linear search algorithm using varying resolution starts its search by creating
a lower resolution version of F by dividing all weights of soft clauses by some
constant d and removing all clauses C ∈ Soft(F) for which �wF (C)/d� = 0.
The low resolution version is then solved by standard linear search. When an
optimal solution is found, the value of d is decreased and the search continued in
higher resolution. Following LinSBPS, we used the generalized totalizer encoding
(GTE) [27] to convert the PB constraints to CNF. Given a set of input literals
L = {l1, . . . , ln} and their corresponding weights {w1, . . . wn} the GTE creates
a set of output literals o1, . . . , ok s.t. each oi corresponds to a sum si formable
with the weights in W for which si < sj if i < j. The sum of weights of the
literals in L set to true is then restricted to be less than si with the unit clause
(¬oi).

As the instantiation of Core-Guided we use the PMRES algorithm [44]
extended with weight aware core extraction (WCE) [16] and the hardening rule.
Weight aware core extraction is a heuristic designed to allow Core-Guided
to extract multiple cores before reformulating the instance and increasing its
complexity. When extracting a new core κ PMRES with WCE first computes
cκ = min{wF (C) | C ∈ κ}, then lowers the weight of all clauses in κ by cκ

(removing all clauses with weight 0). When no new cores can be extracted, the
Reformulate function is invoked on all of the found cores and the stratifica-
tion bound is reset. The search continues until no new cores can be found after a
reformulation step. This strategy corresponds to the S/to/WCE strategy of [16].
While an alternative strategy that prefers reformulating to lowering the strati-
fication bound was deemed more effective for complete MaxSAT solving in [16],
we found that S/to/WCE is more effective for incomplete solving. For lower-
ing the stratification bound, we use the diversity heuristic [7] that balances the
amount that bSTRAT is lowered with the number of new soft clauses introduced.

In the next section, we report on a comparison of core-boosted linear search
and all of the solvers that participated in the incomplete track of the 2018
MaxSAT Evaluation: LinSBPS, maxroster, SATLike, Open-WBO and Open-
WBO-Inc and their variations. Most of them implement variations of an app-
roach where: (i) a heuristic of some kind if used to find a good initial solu-
tion to the instance being solved and (ii) that solution is used to initialise a

48 J. Berg et al.

complete any-time algorithm. In most cases, the complete algorithm is some
variant of Lin-Search. The solver SATLike [30] deviates from this description
and instead uses local-search techniques in order to quickly traverse the search
space and look for solutions of increasing quality. A more detailed description of
the solvers can be found on the evaluation homepage [14].

For related work from the field of complete MaxSAT solving, the Primal-
Dual MaxSAT algorithm [18] extends PMRES with a second instance reformu-
lation used to rule out solutions that falsify the same clauses as an intermediate
solution obtained during search. The main two differences between Primal-Dual
and core-boosted linear search are that Primal-Dual reformulates the instance
on each iteration, thus increasing the complexity of core extraction steps, and
that the reformulation only rules out solutions that falsify a particular set of
clauses. In contrast, lowering the bound on the PB constraint in Lin-Search
rules out all solutions that have higher cost than the best known solution. The
WMSU3 [38] algorithm maintains a cardinality constraint over soft clauses sim-
ilar to Lin-Search but only relaxes a soft clause C after extracting a core
κ for which C ∈ κ. The similar WPM3 [9] uses linear-search as a subroutine
within core-guided search in order to obtain tighter bounds on the cardinality
constraints.

In addition to core-guided and linear search, a third central approach to SAT-
based MaxSAT solving is based on implicit-hitting sets [21,45]. When solving,
such solvers maintain a set of cores of the input instance. During each iteration,
a minimum-cost hitting set over the set of cores is computed. The clauses in the
hitting set are then removed from the instance and the SAT solver invoked on
the remaining clauses. If the SAT solver reports satisfiable, the obtained solution
is optimal. Otherwise, a new core is obtained and the search continues. Finally,
MaxSAT solvers based on branch and bound have been shown to be effective on
random MaxSAT instances as well as challenging instances of smaller size. Such
instances are encountered for example in combinatorics [1,2,31–35,48].

6 Experimental Evaluation

Next we present the results on a experimental evaluation of a prototype core-
boosted linear search algorithm that combines the instantiations of Lin-Search
and Core-Guided discussed in Sect. 5. We refer to our implementation of
Lin-Search extended with varying resolution and solution-guided phase saving
by Linear-Search. Similarly, we use Core-Guided to refer to our implementa-
tion of PMRES extended with WCE and hardening. Finally, Core-Boosted-XXs
is the core-boosted algorithm that first runs Core-Guided until either XX sec-
onds have passed or no more cores can be found with the stratification bound
at 1, then reformulates the instance and solves the reformulated instance with
Linear-Search. The state of the internal SAT solver of Core-Boosted-XXs is kept
throughout the core-guided phase, but reset (that is learned clauses are elimi-
nated and activities of all variables reset to 0) when execution is switched to the
linear search phase and whenever resolution is increased during the linear phase.

Core-Boosted Linear Search for Incomplete MaxSAT 49

All three algorithms were implemented on top of the publicly available Open-
WBO system [40] using Glucose 4.1 [12] as the back-end SAT solver. The initial
solution of all three algorithms is obtained by invoking the SAT solver on the
hard clauses of the instance being solved. We emphasise that core-boosted linear
search is a general idea applicable with all implementations and extensions of
Lin-Search and Core-Guided that we are aware off. The goal of these exper-
iments is to show that core-boosting can be used to improve performance of
modern core-guided and linear search solvers, not to evaluate different instanti-
ations and extensions of Core-Guided and Lin-Search.

Our experimental setup is similar to the 300s weighted incomplete track of
the 2018 MaxSAT evaluation [14]. In most of the experiments, we use the 172
benchmarks from the weighted incomplete track of the evaluation, available from
https://maxsat-evaluations.github.io/2018/benchmarks.html. We enforce a per-
instance time limit of 300 s and memory limit of 32 GB. All of the experiments
were run on the StarExec cluster (https://www.starexec.org) that has 2.4-GHz
Intel(R) Xeon(R) E5-2609 0 quad-core machines with 128-GB RAM.

As the metric for comparing solvers we use the same incomplete score as
the evaluation. For an instance F let BEST-COST(F) denote the lowest cost
found in 300 s by any of (the variants of) the solvers Linear-Search, Core-Guided,
Core-Boosted-XXs or the solvers that participated in the evaluation. The score
a solver S on F is defined as the ratio between BEST-COST(F) and the cost
of the best solution τS to F found by S, i.e. Score(S,F) = BEST-COST(F)+1

COST(F,τS)+1
. In

other words, the score of S is the ratio between the cost of the solution of the
virtual-best-strategy (VBS) among our methods and the MaxSAT Evaluation
2018 solvers, and the cost obtained by S. Hence the score difference between
two solvers shows the percentage points by which the better solver is closer to
the VBS.

The first experiment we report on evaluates effect of different time limits on
the core-guided phase of Core-Boosted-XXs. As limits we chose 30 s (10% of the
total time), 75 s (25%), 150 s (50%), 225 s (75%) and 300 s (100%), respectively.
An important fact to keep in mind is that the core-guided phase can end earlier
than the limit. For example, the solver Core-Boosted-150s runs its core-guided
phase until no more cores can be found with the stratification bound at 1 or
150 s have elapsed.

Table 1 lists the average score obtained by the Core-Boosted-XXs (CB-XXs
in the table) solver for different values of XX. Overall we observe a decrease in the
average score when the time limit is increased, even if the effect is small in most
domains. A possible explanation for this behavior is offered by Fig. 1 showing
the duration of the core-guided phase of the Core-Boosted-300s solver on all
benchmarks. On 107 out of the 172 benchmarks, the core-guided phase ended
within 30 s and on 38 benchmarks Core-Boosted-300s did not enter its linear
search phase at all. In other words, on a clear majority of the benchmarks, the
duration of core-guided phase was either very short or very long, which explains
the good performance of Core-Boosted-30s. For the rest of the experiments, we
fix the time limit for the core-guided phase to 30 s. Table 1 also lists the average

https://maxsat-evaluations.github.io/2018/benchmarks.html
https://www.starexec.org

50 J. Berg et al.

Table 1. Average score obtained by Core-Boosted-XXs with different maximum times
for the core-guided phase as well as its core-guided and linear search components. In
the table CB-XXs refers to the Core-Boosted-XXs solver, Lin to the Linear-Search
solver and CG to the Core-Guided solver.

Domain
(#benchmarks)

CB-30s CB-75s CB-150s CB-225s CB-300s CG Lin

BTBNSL (16) 0.996 0.995 0.996 0.995 0.965 0.956 0.959

abstraction-
refinement (2)

1.000 1.000 1.000 1.000 1.000 1.000 0.517

af-synthesis (19) 0.990 0.990 0.990 0.990 0.990 0.944 0.991

causal-discovery (14) 0.776 0.776 0.799 0.803 0.795 0.563 0.454

cluster-expansion (20) 0.941 0.941 0.941 0.941 0.941 0.941 0.941

correlation-
clustering (12)

0.953 0.956 0.953 0.953 0.953 0.736 0.675

hs-timetabling (13) 0.701 0.655 0.566 0.459 0.144 0.076 0.717

lisbon-wedding (12) 0.582 0.582 0.582 0.582 0.582 0.544 0.582

maxcut (11) 0.892 0.892 0.892 0.892 0.892 0.594 0.884

min-width (16) 0.961 0.965 0.962 0.956 0.962 0.825 0.898

miplib (5) 0.587 0.587 0.584 0.584 0.444 0.309 0.571

power-distribution (2) 0.704 0.704 0.704 0.704 0.704 0.497 0.484

railway-transport (4) 0.927 0.923 0.916 0.920 0.935 0.708 0.906

relational-inference (2) 0.041 0.041 0.041 0.041 0.429 0.414 0.041

robot-nagivation (3) 0.943 0.943 0.943 0.943 0.000 0.000 0.943

spot5 (3) 0.990 0.990 0.990 0.990 0.990 0.914 0.999

staff-scheduling (10) 0.895 0.895 0.863 0.840 0.493 0.385 0.877

tcp (7) 1.000 0.998 0.998 1.000 1.000 0.864 0.988

timetabling (1) 0.667 0.148 0.130 0.131 0.131 0.026 0.941

Total (172) 0.870 0.864 0.857 0.847 0.785 0.680 0.807

score obtained by the two components of Core-Boosted individually. The scores
clearly demonstrate the potential of core-boosted linear search. The average
score of Core-Boosted-30s is higher than either Core-Guided (CG in the table)
or Linear-Search (Lin in the table) on 10 out of 19 domains and equal to its
better component on 3 more.

Figure 2 shows a detailed analysis on the behaviour of core-boosted lin-
ear search in the form of plots showing the evolution of the gap between the
upper and lower bound (in logscale) of Core-Boosted-30s, Linear-Search and
Core-Guided on three hand-picked benchmarks. The benchmark on the left
shows a case where core-guided search is effective. During the first 30 s, both
Core-Boosted-30s and Core-Guided rapidly decrease the gap. After 30 s, Core-
Boosted-30s switches to its linear search phase, which on this benchmark slows

Core-Boosted Linear Search for Incomplete MaxSAT 51

 0

 10

 20

 30

 40

 50

 60

 70

 80

0-9
10-19
20-29
30-39
40-49
50-59
60-69
70-79
80-89
90-99
100-109
110-119
120-129
130-139
140-149
150-159
160-169
170-179
180-189
190-199
200-209
210-219
220-229
230-239
240-249
250-259
260-269
270-279
280-289
290-299
300+

B

en
ch

m
ar

ks

Core-guided phase ended between (s)

Fig. 1. Time spent in core-guided phase by Core-Boosted-300s.

its search progression. Core-Guided continues with the same search strategy,
finding (and proving optimality of) a solution of cost 76250 in just under 190 s.
Even if the gap of Core-Boosted-30s is larger due to a smaller lower bound, it
still finds an “almost optimal” solution having cost 76251. On this benchmark
Linear-Search is unable to improve on its initial solution at all and returns a solu-
tion with cost 226338. An important observation to make is that, in contrast to
Linear-Search, Core-Boosted-30s did manage to improve its solution also in the
linear phase. This indicates that the linear search phase of core-boosted search
can indeed benefit from the reformulation steps performed and the best solution
obtained during the core-guided phase.

The benchmark in the middle of Fig. 2 demonstrates the opposite behaviour
to the one on the left. On this benchmark Core-Guided is unable to improve on
its initial solution having cost 651, while Linear-Search continuously improves it
and ends up finding one that has cost 17. Core-Boosted-30s is initially unable
to make progress, but starts decreasing its gap when switching to the linear
phase after 30s and ends up finding a solution of cost 23. Finally, the benchmark
on the right demonstrates a best-case scenario for core-boosted search. On this
benchmark Linear-Search is unable to improve at all on its initial solution that
has cost 311544. Core-Guided is able to decrease the gap by increasing the lower
bound to 104585, but is unable to find a single better solution and returns the
initial solution of cost 311544 as well. Core-Boosted-30s is able to use the best
of both worlds by first increasing the lower bound during the core-guided phase
and then switching to the linear phase in order to find a solution of cost 171437,
significantly better than either of its components. Notice that the initial solution
given to the linear phase of Core-Boosted-30s is the same as the one found by
Linear-Search, so the performance difference between the two is only due to the
reformulation steps done during core-guided search.

The results shown in Fig. 2 suggest, that a more sophisticated strategy for
deciding when to switch from the core-guided to the linear phase could be used
to further improve the empirical performance of core-boosted linear search. Even
though the instances in Fig. 2 are hand-picked, the average scores over all bench-
marks in the corresponding domains listed in Table 1 support the observations.
For example, the instances in the hs-timetabling domain (Fig. 2, middle) tend

52 J. Berg et al.

to contain only a few very large cores that are difficult to extract, making them
well suited for approaches that compute solutions. On the other hand, instances
in the causal-discovery domain (Fig. 2, right) contain very many small cores that
make finding good intermediate solutions to them difficult without first ruling
out some of the cores with core guided search.

 100

 1000

 10000

 100000

 0 50 100 150 200 250 300

Time (s)

 10

 100

 0 50 100 150 200 250 300

Time (s)

 100000

 0 50 100 150 200 250 300

Time (s)

Core-Boosted30s
Core-Guided

Linear-Search

Fig. 2. Evolution of the gap between the upper and lower bound during search.
The specific benchmarks shown are abstraction-refinement-downcast-antlr (left) [50],
hs-timetabling-BrazilInstance5.xml (middle) [22], causal-discovery-causal carpo 8 100
(right) [26].

Figure 3 shows a per-instance comparison of the score obtained by Core-
Boosted-30s and four variants of it: (1) Core-Boosted-30s-no-reformulation that
ignores the reformulated instance and invokes the linear phase on the origi-
nal instance, (2) Core-Boosted-30s-no-solution that ignores the best solution
obtained during the core-guided phase in the linear phase and instead initialises
a new solution by invoking the SAT-solver on the hard clauses of the reformu-
lated instance, (3) Core-Boosted-30s-keep-SAT-solver that keeps the state of the
internal SAT solver throughout the entire search and (4) Core-Boosted-30s-wce-
to-strat that uses of the original search strategy proposed in [16] during the
core-guided phase. In all plots Core-Boosted-30s is on the y-axis, so any data
points in the upper left triangle correspond to benchmarks on which the baseline
performed better than the variant. We observe that the baseline solver performs
better than all of its variants, justifying our design choices. The results suggest
that using the reformulated instance and initialising the Linear Search with the
best solution obtained during core-guided search are especially important for the
overall performance.

Finally, we compare Core-Boosted-30s and its components to the other
solvers that participated in the 2018 evaluation. Due to running our experi-
ments in the same environment as the evaluation, we did not rerun the other
solvers but instead compared our solvers directly to the results of the evaluation.
Figure 4 demonstrates the performance of our solvers on the 300s weighted (left)
and unweighted (right) tracks1. We observe that Core-Boosted-30s performs very
well in the weighted track, improving the previous state-of-the-art (LinSBPS) by

1 A consequence of the metric we use is that the scores of the other solvers we report
are lower than in the evaluation. Their relative ranking is however the same.

Core-Boosted Linear Search for Incomplete MaxSAT 53

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Core-Boosted-30s-no-reformulation
 0 0.2 0.4 0.6 0.8 1

Core-Boosted-30s-no-solution

 0 0.2 0.4 0.6 0.8 1

Core-Boosted-30s-keep-SAT-solver
 0 0.2 0.4 0.6 0.8 1

Core-Boosted-30s-wce-to-strat

Fig. 3. The effect of different factors of Core-Boosted-30s on the overall performance.

approximately 2% while also finishing 3rd in the unweighted category. In more
detail, out of the 172 weighted instances, Core-Boosted-30s and LinSBPS are
equal on 63 instances (36%), Core-Boosted-30s finds a solution of strictly lower
cost on 65 (37%), and LinSBPS on 44 (25%). We also evaluated our solvers in
the 60s track of the evaluation, i.e. with the time out set to 60 s. In the weighted
track, Core-Boosted-30s gets the average score 0.814 which is again highest of
all solvers followed by Open-WBO-Inc-BMO (0.793). In the unweighted track,
the average score of Core-Boosted-30s is 0.696 which is second highest after
SATLike-c (0.699).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160

Instances

Core-Boosted-30s (0.870)
LinSBPS (0.854)

Open-WBO-Inc-BMO (0.815)
Linear-Search (0.807)

maxroster (0.785)
Open-WBO-Inc-Cluster (0.742)

SATLike-c (0.687)
SATLike (0.730)

Core-Guided (0.680)
Open-WBO-Gluc (0.665)
Open-WBO-Riss (0.648)

 0 20 40 60 80 100 120 140 160

Instances

SATLike-c (0.810)
maxroster (0.788)

Core-Boosted-30s (0.777)
Linear-Search (0.756)

LinSBPS (0.741)
Open-WBO-Inc-OBV (0.681)

SATLike (0.680)
Open-WBO-Inc-MCS (0.658)

Open-WBO-Gluc (0.641)
Open-WBO-Riss (0.606)

Core-Guided (0.505)

Fig. 4. Performance of Core-Boosted-30s, Linear-Search and Core-Guided compared
to the results of the 300s weighted (left) and unweighted (right) track of the 2018
MaxSAT Evaluation.

7 Conclusions

We proposed core-boosted linear search, a novel search strategy for incomplete
MaxSAT solving, that combines the strengths of core-guided and linear search
and is, to the best of our knowledge, the first effective application of core-
guided reformulation techniques in incomplete MaxSAT solving. Our experi-
mental evaluation on a prototype implementation indicates that the information
flow between the two phases of a core-boosted linear search solver often allows
it to perform better than either of its individual components, while very rarely

54 J. Berg et al.

performing significantly worse. Furthermore, our comparison to other incomplete
solvers shows that core-boosted linear search can be used to obtain state-of-the-
art performance in weighted incomplete MaxSAT solving. As future work we
plan to develop more dynamic ways of deciding when to switch between the
core-guided and the linear search phase. Another interesting research directions
to consider is the inclusion of MaxSAT preprocessing before, or even in-between,
the core-guided and linear phases. Finally we also plan to look into extensions
of core-boosted linear search to other constraint optimization paradigms.

References

1. Abramé, A., Habet, D.: AHMAXSAT: description and evaluation of a branch and
bound MaxSAT solver. J. Satisf. Boolean Model. Comput. 9, 89–128 (2015)

2. Abramé, A., Habet, D.: Learning nobetter clauses in MaxSAT branch and bound
solvers. In: Proceedings of the 28th International Conference on Tools with Artifi-
cial Intelligence, pp. 452–459. IEEE Computer Society (2016)

3. Achá, R.J.A., Nieuwenhuis, R.: Curriculum-based course timetabling with SAT
and MaxSAT. Ann. Oper. Res. 218(1), 71–91 (2014)

4. Alviano, M., Dodaro, C., Ricca, F.: A MaxSAT algorithm using cardinality con-
straints of bounded size. In: Proceedings of IJCAI, pp. 2677–2683. AAAI Press
(2015)

5. Ansótegui, C., Bonet, M.L., Levy, J.: Solving (Weighted) partial MaxSAT through
satisfiability testing. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 427–
440. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2 39

6. Ansótegui, C., Bonet, M., Levy, J.: SAT-based MaxSAT algorithms. Artif. Intell.
196, 77–105 (2013)

7. Ansótegui, C., Bonet, M.L., Gabàs, J., Levy, J.: Improving SAT-based weighted
MaxSAT solvers. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-33558-7 9

8. Ansótegui, C., Didier, F., Gabàs, J.: Exploiting the structure of unsatisfiable cores
in MaxSAT. In: Proceedings of IJCAI, pp. 283–289. AAAI Press (2015)

9. Ansótegui, C., Gabàs, J.: Wpm3: an (in)complete algorithm for weighted partial
maxsat. Artif. Intell. 250, 37–57 (2017)

10. Argelich, J., Le Berre, D., Lynce, I., Marques-Silva, J., Rapicault, P.: Solving Linux
upgradeability problems using Boolean optimization. In: Proceedings of LoCoCo.
Electronic Proceedings in Theoretical Computer Science, vol. 29, pp. 11–22 (2010)

11. Aśın, R., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E.: Cardinality
networks and their applications. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol.
5584, pp. 167–180. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-02777-2 18

12. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers.
In: Proceedings of IJCAI, pp. 399–404. Morgan Kaufmann Publishers Inc. (2009)

13. Bacchus, F., Narodytska, N.: Cores in core based MaxSat algorithms: an analysis.
In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 7–15. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-09284-3 2

14. Bacchus, F., Järvisalo, M., Martins, R., et al.: MaxSat evaluation 2018 (2018).
https://maxsat-evaluations.github.io/2018/. Accessed 05 Sept 2018

15. Berg, J., Järvisalo, M.: Cost-optimal constrained correlation clustering via
weighted partial maximum satisfiability. Artif. Intell. 244, 110–143 (2017)

https://doi.org/10.1007/978-3-642-02777-2_39
https://doi.org/10.1007/978-3-642-33558-7_9
https://doi.org/10.1007/978-3-642-02777-2_18
https://doi.org/10.1007/978-3-642-02777-2_18
https://doi.org/10.1007/978-3-319-09284-3_2
https://maxsat-evaluations.github.io/2018/

Core-Boosted Linear Search for Incomplete MaxSAT 55

16. Berg, J., Järvisalo, M.: Weight-aware core extraction in SAT-based MaxSAT solv-
ing. In: Beck, J.C. (ed.) CP 2017. LNCS, vol. 10416, pp. 652–670. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66158-2 42

17. Biere, A., Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satisfi-
ability. Frontiers in Artificial Intelligence and Applications., vol. 185. IOS Press,
Amsterdam (2009)

18. Bjørner, N., Narodytska, N.: Maximum satisfiability using cores and correction
sets. In: Proceedings of IJCAI, pp. 246–252. AAAI Press (2015)

19. Bunte, K., Järvisalo, M., Berg, J., Myllymäki, P., Peltonen, J., Kaski, S.: Optimal
neighborhood preserving visualization by maximum satisfiability. In: Proceedings
of AAAI, vol. 3, pp. 1694–1700. AAAI Press (2014)

20. Chen, Y., Safarpour, S., Marques-Silva, J., Veneris, A.: Automated design debug-
ging with maximum satisfiability. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst. 29(11), 1804–1817 (2010)

21. Davies, J., Bacchus, F.: Exploiting the power of mip solvers in MaxSAT. In:
Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 166–181.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39071-5 13

22. Demirović, E., Musliu, N.: MaxSAT based large neighborhood search for high
school timetabling. Comput. Oper. Res. 78, 172–180 (2017)

23. Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into SAT. J. Satisf.
Boolean Model. Comput. 2(1–4), 1–26 (2006)

24. Guerra, J., Lynce, I.: Reasoning over biological networks using maximum satisfi-
ability. In: Milano, M. (ed.) CP 2012. LNCS, pp. 941–956. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-33558-7 67

25. Heras, F., Morgado, A., Marques-Silva, J.: Core-guided binary search algorithms
for maximum satisfiability. In: Proceedings of AAAI. AAAI Press (2011)

26. Hyttinen, A., Eberhardt, F., Järvisalo, M.: Constraint-based causal discovery: con-
flict resolution with answer set programming. In: Proceedings of UAI, pp. 340–349.
AUAI Press (2014)

27. Joshi, S., Martins, R., Manquinho, V.: Generalized totalizer encoding for pseudo-
boolean constraints. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 200–209.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23219-5 15

28. Koshimura, M., Zhang, T., Fujita, H., Hasegawa, R.: QMaxSat: a partial Max-Sat
solver. J. Satisf. Boolean Model. Comput. 8, 95–100 (2012)

29. Le Berre, D., Parrain, A.: The Sat4j library, release 2.2 system description. J.
Satisf. Boolean Model. Comput. 7, 59–64 (2010)

30. Lei, Z., Cai, S.: Solving (weighted) partial MaxSat by dynamic local search for
SAT. In: Proceedings of IJCAI, pp. 1346–1352 (2018)

31. Li, C.M., Manyà, F., Planes, J.: Exploiting unit propagation to compute lower
bounds in branch and bound Max-SAT solvers. In: van Beek, P. (ed.) CP 2005.
LNCS, vol. 3709, pp. 403–414. Springer, Heidelberg (2005). https://doi.org/10.
1007/11564751 31

32. Li, C.M., Manya, F., Planes, J.: New inference rules for MaxSAT. J. Artif. Intell.
Res. 30(1), 321–359 (2007)

33. Li, C.M., Quan, Z.: An efficient branch-and-bound algorithm based on MaxSAT
for the maximum clique problem. In: Proceedings of AAAI, vol. 10, pp. 128–133.
AAAI Press (2010)

34. Lin, H., Su, K., Li, C.M.: Within-problem learning for efficient lower bound com-
putation in MaxSAT solving. In: Proceedings of AAAI, pp. 351–356. AAAI Press
(2008)

https://doi.org/10.1007/978-3-319-66158-2_42
https://doi.org/10.1007/978-3-642-39071-5_13
https://doi.org/10.1007/978-3-642-33558-7_67
https://doi.org/10.1007/978-3-319-23219-5_15
https://doi.org/10.1007/11564751_31
https://doi.org/10.1007/11564751_31

56 J. Berg et al.

35. Liu, Y.L., Li, C.M., He, K., Fan, Y.: Breaking cycle structure to improve lower
bound for MaxSAT. In: Zhu, D., Bereg, S. (eds.) FAW 2016. LNCS, vol. 9711, pp.
111–124. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39817-4 12

36. Marques-Silva, J., Janota, M., Ignatiev, A., Morgado, A.: Efficient model based
diagnosis with maximum satisfiability. In: Proceedings of IJCAI, pp. 1966–1972.
AAAI Press (2015)

37. Marques-Silva, J., Argelich, J., Graça, A., Lynce, I.: Boolean lexicographic opti-
mization: algorithms & applications. Ann. Math. Artif. Intell. 62(3–4), 317–343
(2011)

38. Marques-Silva, J., Planes, J.: On using unsatisfiability for solving maximum satis-
fiability. CoRR abs/0712.1097 (2007)

39. Marques-Silva, J., Sakallah, K.A.: GRASP - a new search algorithm for satisfiabil-
ity. In: Proceedings of ICCAD, pp. 220–227. IEEE Computer Society (1996)

40. Martins, R., Manquinho, V., Lynce, I.: Open-WBO: a modular MaxSAT solver,.
In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 438–445. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-09284-3 33

41. Morgado, A., Dodaro, C., Marques-Silva, J.: Core-duided MaxSAT with soft cardi-
nality constraints. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 564–573.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10428-7 41

42. Morgado, A., Heras, F., Liffiton, M.H., Planes, J., Marques-Silva, J.: Iterative and
core-guided maxsat solving: a survey and assessment. Constraints 18(4), 478–534
(2013)

43. Nadel, A., Ryvchin, V.: Efficient SAT solving under assumptions. In: Cimatti, A.,
Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 242–255. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31612-8 19

44. Narodytska, N., Bacchus, F.: Maximum satisfiability using core-guided MaxSAT
resolution. In: Proceedings of AAAI, pp. 2717–2723. AAAI Press (2014)

45. Saikko, P., Berg, J., Järvisalo, M.: LMHS: a SAT-IP hybrid MaxSAT solver.
In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 539–546.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2 34

46. Sinz, C.: Towards an optimal CNF encoding of boolean cardinality constraints. In:
van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg
(2005). https://doi.org/10.1007/11564751 73

47. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Siek-
mann, J.H., Wrightson, G. (eds.) Automation of Reasoning: 2: Classical Papers
on Computational Logic 1967–1970. Symbolic Computation (Artificial Intelli-
gence), pp. 466–483. Springer, Heidelberg (1983). https://doi.org/10.1007/978-3-
642-81955-1 28

48. Xing, Z., Zhang, W.: MaxSolver: an efficient exact algorithm for (weighted) maxi-
mum satisfiability. Artif. intell. 164(1–2), 47–80 (2005)

49. Zhang, L., Madigan, C.F., Moskewicz, M.H., Malik, S.: Efficient conflict-driven
learning in a Boolean satisfiability solver. In: Proceedings of ICCAD, pp. 279–285.
IEEE Computer Society (2001)

50. Zhang, X., Mangal, R., Grigore, R., Naik, M., Yang, H.: On abstraction refinement
for program analyses in datalog. In: Proceedings of PLDI, PLDI 2014, pp. 239–248.
ACM, New York (2014)

51. Zhu, C., Weissenbacher, G., Malik, S.: Post-silicon fault localisation using maxi-
mum satisfiability and backbones. In: Proceedings of FMCAD, pp. 63–66. FMCAD
Inc. (2011)

https://doi.org/10.1007/978-3-319-39817-4_12
https://doi.org/10.1007/978-3-319-09284-3_33
https://doi.org/10.1007/978-3-319-10428-7_41
https://doi.org/10.1007/978-3-642-31612-8_19
https://doi.org/10.1007/978-3-319-40970-2_34
https://doi.org/10.1007/11564751_73
https://doi.org/10.1007/978-3-642-81955-1_28
https://doi.org/10.1007/978-3-642-81955-1_28

	Core-Boosted Linear Search for Incomplete MaxSAT
	1 Introduction
	2 Preliminaries
	3 Core-Guided and Linear Search for Incomplete MaxSAT
	4 Core-Boosted Linear Search for Incomplete MaxSAT
	5 Related Work
	6 Experimental Evaluation
	7 Conclusions
	References

