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Abstract. Interest in the channel assignment problem (CAP) has been
growing rapidly with both the spread of wireless data networks and the
increasing scarcity of electromagnetic (EM) spectrum. The ability to effi-
ciently reuse available EM channels is heavily dependent on co-channel
interference, i.e., interference occurring between two radios using the
same channel but not communicating on the same network. The vast
majority of CAP research considers only the interference between any
pair of radios, but many radio systems – including the mobile ad-hoc net-
works we consider – are sensitive to the effects of cumulative interference.
In previous work, we describe the vast computational challenges of con-
sidering cumulative interference within a CAP. We present a new method
to solve this problem via heuristics, integer optimization, and constraint
programming techniques. We apply our methods to realistic data sets
from a large U.S. Marine Corps operational scenario and provide detailed
performance results. To our knowledge, we are the first to describe algo-
rithms for solving realistic, large-scale cumulative-interference minimum-
order and minimum-cost channel assignment problems to global or near-
global optimality.

Keywords: Constraint programming · Integer optimization ·
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1 Introduction

Interest in the channel assignment problem (CAP) has been growing rapidly
with both the spread of wireless data networks and the increasing scarcity of
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electromagnetic (EM) spectrum [1,13,35]. Efficient channel allocation schemes
leverage channel reuse, where a channel is a contiguous block of EM spectrum.
The ability to reuse a channel is dependent on (among other things) co-channel
interference, i.e., interference occurring between two radios assigned the same
channel but that do not wish to communicate. The vast majority of research
on the CAP considers only pairwise interference constraints [1] due to the com-
putational challenges of explicitly representing cumulative interference, and the
ease with which the problem can be represented as a graph-coloring problem
[4,9,25,27,38]. This seemingly simple problem is NP-complete [6], and yet the
realistic cumulative interference constraints we model are much more difficult
[26–28].

We consider the challenge of a spectrum manager who must determine an
efficient channel allocation scheme to support radio communications over a cer-
tain period of time for mobile units operating on rough terrain. We specifically
consider the use of wideband mobile ad-hoc network (MANET ) radios fielded
by the United States Marine Corps (USMC), but our approach generalizes to
other military services and any EM transceiver system requiring a discrete chan-
nel assignment. The spectrum manager knows the capabilities of each radio and
their starting locations, and has a rough understanding of their future locations
within the operating area. Using this information and terrain elevation data, the
spectrum manager must determine the minimum number of channels required
to support communications with an acceptable level of co-channel interference.
Further, since each radio requires manual assignment, the spectrum manager is
responsible for the reallocation of channels whenever the situation changes, and
therefore desires to minimize the number of channel changes over time.

Due to the computational difficulties of exactly solving the CAP, heuristics
are often used to solve the problem [1,23]. While heuristics may provide usable
solutions in reasonable amounts of time, we feel that optimality bounds are
important for understanding the goodness of a particular solution, especially
since spectrum is increasingly crowded and scarce, and communications may be
critical to the success of a military operation.

Dunkin et al. [9] describe the challenge of using cumulative interference con-
straints, and instead use simple binary and tertiary constraints (i.e., groups of
three interfering radios) using a constraint satisfaction approach. Daniels et al.
[7] formulate an integer CAP that considers cumulative interference and estab-
lish the NP-hardness of the problem. Fischetti et al. [11] use pre-processing and
branch-and-cut to solve their cumulative interference CAP, but their problem
sizes are much smaller than those studied here and they consider relatively few
sources of interference, i.e., they have a relatively small number of constraints.

We use integer and constraint programming methods to develop more efficient
methods of channel allocation. Our first problem minimizes the number of required
channels (i.e.,minimumorder), subject to cumulative co-channel interference con-
straints for any given instance in time, and the second problem minimizes the num-
ber of channel assignment changes over time (i.e., minimum cost). We use realistic
radio performance data from large-scale, high-fidelity simulations of U.S. Marine
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Corps operational scenarios (the data are available to the research community at
[12]). To our knowledge, we are the first to solve to global- or near-global optimal-
ity the minimum-order and minimum-cost channel assignment problems for large,
realistic datasets while also considering the effects of cumulative co-channel inter-
ference and the costs of manual channel changes. We believe that the tools created
for this application are likely to be appropriate for other complex graph-coloring
problems, as well.

This paper is organized as follows. Section 2 provides an overview of our
model of MANET operations. Section 3 describes our formulation and compu-
tational results in solving the minimum-order channel assignment problem, and
Sect. 4 does the same for the minimum-cost CAP. Section 5 provides conclusions
and suggestions for future research.

2 Model of MANET Communications

We create a network model to simulate the key aspects of a MANET formed by
tactical wideband radios at a given moment in time (i.e., time step). Let r ∈ R
(alias s) represent each MANET radio. Each radio is permanently assigned to
a MANET unit u ∈ U , indicated by the set of logical arcs (r, u) ∈ L. In a
military scenario, a unit may represent a tactical military organization, such as
an infantry company or battalion headquarters. Let the set of nodes N (indexed
by n) consist of both radios R and units U , i.e., n ∈ N = R ∪ U . Let a channel
c ∈ C be a contiguous range of EM frequencies, where C is the set of available
orthogonal (i.e., non-interfering) channels. Each unit u and the radios assigned
to it require a channel assignment.

Let (r, s) ∈ W indicate the set of arcs representing wireless transmissions
between all radios r, s ∈ R. A unit u ∈ U forms a separate MANET among its
assigned radios using the available wireless arcs (r, s) ∈ W : (r, u) ∈ L, (s, u) ∈ L.
Figure 1 shows two separate units (indicated in blue and green) and their
assigned radios. The solid lines indicate bidirectional wireless arcs (r, s) ∈ W
between radios. Any radio (e.g., radio r in Fig. 1) communicates with its net-
work control radio (e.g., radio s) via these arcs (a radio may route through other
radios in the same unit to reach the network control radio). All radios are sub-
ject to co-channel interference from any other radios assigned to different units
but operating on the same channel and geographically close enough to cause
interference; this is indicated by dashed gray arrows directed to r (other lines
withheld for clarity).

To calculate both co-channel interference and the strength of desired wireless
transmissions between intra-unit radios, we calculate the received signal strength
(RSS ) along all wireless arcs (r, s) ∈ W in dBm (power ratio in decibels relative
to milliwatts). We instantiate our scenarios in Systems Toolkit (STK) [3] and
then use Python and the Terrain Integrated Rough Earth Model (TIREM) of
Alion Science & Technology Corporation [2] to calculate path loss considering
the technical specifications of each radio and the effects of terrain, atmospheric
absorption, etc.
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Fig. 1. Simple example of two units (indicated in blue and green) with network control
radios (solid circles) and other radios (open circles). Wireless arcs are indicated by
arrows. The radios within each unit must be capable of bi-directional communication
with their unit’s network control radio via direct communication or routing through
other radios in the same network. All radios are subject to co-channel interference
(dashed arrows) from other radios assigned to different units but operating on the
same channel. (Color figure online)

For each radio s ∈ R, we follow [1] and pre-calculate the maximum allowable
interference in watts max interferencecs. This calculation is based on the RSS
between radios and each particular radio’s required signal-to-interference ratio
(SIR), a measure of signal quality [33]. Any co-channel interference above this
level severs the shortest path and thus disconnects the radio from its assigned
network control radio. Among radios not assigned to the same unit but operating
on the same channel, the RSS represents co-channel interference. The magnitude
of co-channel interference along all arcs (r, s) ∈ W for each available channel
c ∈ C is pre-calculated in watts, and is indicated by interferencecrs.

We use realistic datasets generated from high-fidelity simulations of U.S.
Marine Corps operations. We find the largest scenario, depicting a Marine Expe-
ditionary Force (MEF) of 60,000 Marines conducting a large amphibious opera-
tion and based on Integrated Security Construct B [8], to be the most compu-
tationally interesting. We generate separate datasets at 20 different time steps
(i.e., discrete moments) within the scenario (each containing the locations of 118
units comprising 1887 total radios). See [26] for full details of our scenarios.

3 Minimum-Order Channel Assignment Problem
(MO-CAP)

3.1 Problem Formulation

The MO-CAP aims to minimize the total number of channels required to support
MANET operations at a given moment in time.
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Variables:

Xc
n =

{
1, if node n uses channel c
0, otherwise ∀n ∈ N, c ∈ C (1)

Y c =
{

1, if channel c is used
0, otherwise ∀c ∈ C (2)

Constraints:
We enforce the definition of Y c via:

Xc
u ≤ Y c ∀u ∈ U, c ∈ C. (3)

Each radio is assigned the same channel as its associated unit:

Xc
r = Xc

u ∀c ∈ C, (r, u) ∈ L. (4)

To ensure each unit u is assigned one and only one channel, we add the con-
straints: ∑

c∈C

Xc
u = 1 ∀u ∈ U. (5)

Two radios from different units are subject to interference if they are both
assigned to the same channel. This assignment will only be allowed if the received
interferencecrs between these two radios is less than the precalculated allowable
total interference, max interferencecs. One way of representing this pairwise
interference is:

interferencecrsX
c
rX

c
s ≤ max interferencecs ∀ (r, s) ∈ W, c ∈ C. (6)

To model the total aggregate interference that a radio receives, we follow the
lead of [19], and assume the cumulative effects of jamming sources on the same
channel are additive (in watts). That is, a radio s ∈ R may be unable to use
a channel c ∈ C because the total sum of interference exceeds the threshold
max interferencecs, even if the interference received from any single radio is
less than the threshold. Summing along all arcs yields:

∑
r:(r,s)∈W

interferencecrsX
c
rX

c
s ≤ max interferencecs ∀s ∈ R, c ∈ C. (7)

To linearize these constraints, we introduce the binary variable Zc
rs where:

Zc
rs =

{
1, if Xc

r = Xc
s = 1

0, otherwise ∀r, s ∈ R, c ∈ C (8)

which is enforced via:

Zc
rs ≥ Xc

r + Xc
s − 1 ∀r, s ∈ R, c ∈ C (9)

Zc
rs ≤ Xc

r ∀r, s ∈ R, c ∈ C (10)
Zc
rs ≤ Xc

s ∀r, s ∈ R, c ∈ C. (11)
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Our cumulative co-channel interference constraints are thus represented:
∑

r:(r,s)∈W

interferencecrsZ
c
rs ≤ max interferencecs ∀s ∈ R, c ∈ C. (12)

Given the results of radio propagation simulation in a military scenario, we pre-
calculate the max interferencecs values (using the method described above),
and fix the assignment of radios to their respective units (indicated by arcs
(r, u) ∈ L).

Since the goal is to minimize the total number of channels required, our
objective function is:

min
∑
c∈C

Y c. (13)

3.2 Computational Challenges

The MO-CAP is relatively easy to understand and describe. However, it suffers
from several serious computational difficulties when the full problem is simply
provided to a commercial solver (e.g., CPLEX or Gurobi) with our realistic
datasets. First, commercial solvers may be sensitive to vast differences in input
parameters. In our simulated datasets, our interference values vary by 24 orders
of magnitude, and are generally quite small. Also, non-integral input data may
result in highly fractionalized LP solutions, as the solver will attempt to pack
the most units (including fractions of units) onto the same channel.

Another computational problem (also observed by [32]) is that of symmetry,
which occurs when channel assignments may be changed among units with no
corresponding change in the objective function value [24]. The very near symme-
try that is characteristic of our datasets (as opposed to exact symmetry) results
from some units being located near each other, and is especially difficult for
solvers to detect and mitigate [31].

Some of these computational problems could be avoided if we considered
only pairwise interference constraints, as IP and constraint satisfaction solvers
reformulate these pairwise constraints into clique constraints and then handle
these structures very efficiently. Unfortunately, these constraints alone do not
adequately represent our real-world problem, and will cause at least a few radios
to be disconnected from their respective MANETs.

A simple “brute force” IP method (i.e., using CPLEX to solve the full prob-
lem as-is, without providing any initial solution or conducting preprocessing)
fails to obtain useful answers to the Marine Corps scenario, even after two weeks
of computation on a cluster of 14 high-performance desktop computers. In an
attempt to improve the solution process, we create a simple greedy heuristic that
iteratively “packs” units onto channels until the channel is “full,” and then starts
with the next channel. We provide the heuristic solution as an initial feasible
solution to CPLEX and attempt to solve the problem for a single time step. We
find that after 60 h of runtime, CPLEX improves upon the initial feasible solu-
tion, but the obtained solution has an optimality gap of 77%. This indicates that
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our heuristic may not be finding very good solutions and/or the lower bounding
technique is not very effective, and that we require more sophisticated methods
if we are going to solve realistic instances of this problem with certifiably-good
solutions.

3.3 Integer Programming Solution Method and Results

Rather than simply “throw” the computationally-challenging cumulative inter-
ference constraints (12) at a solver, we preprocess the constraints to create sim-
plified and more computationally tractable packing constraints. For example,
suppose two specific nodes r and s (not assigned to the same unit) are not both
allowed to be assigned to channel c because to do so would violate the associated
interference constraint. This may be represented as:

Xc
r + Xc

s ≤ 1. (14)

We use Python and the mpmath library [18], which allows the use of arbitrary-
precision floating point mathematics, to identify unacceptable pairs of radios
and handle the extremely small interference values present in our realistic data
sets.

To generalize for larger n-tuples of units above pairs (triplets, quadruplets,
etc.), let S ⊂ U be a subset of units that cannot all be assigned to the same
channel c. We can represent such a restriction of assignments as:

∑
r∈S

Xc
r ≤ |S| − 1. (15)

Preprocessing all such unacceptable combinations and adding them as con-
straints would effectively replace the cumulative co-channel interference con-
straints (12). However, identifying all combinations would be computationally
prohibitive (as they grow exponentially with both the number of units and avail-
able channels) and unnecessary, as many combinations will be redundant and/or
represent negligible levels of co-channel interference.

Instead, we dynamically add these higher-order constraints to the formulation
only as needed via lazy constraints, which are constraints that are checked for
violation whenever an integer solution to the current formulation is found. They
are added on an as-needed basis [17]. This approach avoids the problem of very
small numbers in CPLEX, as we can process the constraints outside of the solver
(e.g., in Python), and then add the much-simplified packing constraints (15)
dynamically. Also, since the solver is no longer required to calculate cumulative
interference at each radio, the formulation no longer requires the index r ∈ R.
That is, we are now concerned only with the cumulative interference received
at each unit. By removing the index r ∈ R, we reduce the number of decision
variables in the problem by an order of magnitude.

After building an initial problem instance with pairwise constraints using
Python and Pyomo [15], we send the problem to CPLEX via the Python API
and indicate to the solver that we wish to initiate lazy constraint callbacks. Upon
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Table 1. MO-CAP results by time step using pairwise and lazy constraints. “Time”
indicates the time at which the displayed solution and optimality gap is obtained,
during a total runtime of 9,000 s.

Time Step Number lazy
constraints

Highest- order
lazy constraint

Solution
value

Time (s) Gap Improvement
over heuristic

1 49 5 46 1356.53 2.17% 9.80%

2 25 5 37 1333.92 0% 22.92%

3 87 6 36 4432.53 5.56% 21.74%

4 62 5 34 7828.09 5.88% 27.66%

5 9 5 33 678.23 0% 23.26%

6 104 6 36 4086.04 2.78% 29.41%

7 67 5 37 1737.45 0% 24.49%

8 57 5 31 8614.79 6.45% 26.19%

9 21 8 32 271.19 0% 25.58%

10 0 0 34 248.16 0% 30.61%

11 121 11 33 5997.82 3.03% 26.67%

12 29 5 36 927.38 2.78% 16.28%

13 104 6 32 2510.22 3.12% 25.58%

14 69 6 31 1780.48 3.23% 27.91%

15 147 6 38 1669.23 2.63% 22.45%

16 119 8 36 4194.86 5.56% 23.40%

17 128 6 37 3092.38 2.70% 24.49%

18 8 4 31 245.20 0% 22.50%

19 99 5 30 1673.56 3.33% 25.00%

20 47 5 37 1268.30 0% 24.49%

Aver 67.6 5.6 34.9 2697.32 2.46% 24.02%

finding an integer solution that is feasible with the current constraints, the solver
runs our lazy constraint callback code. The code checks the feasibility of the
current solution in the full problem, i.e., it checks if the solution satisfies each
of the constraints (12). This can be calculated in polynomial time, specifically
O (|R|2|C|). If infeasibility exists, we add the lowest-order constraint (15) to the
constraint set to prevent the same units from being assigned the same channel
again. CPLEX then continues the search process with these new constraints
added into the formulation. The process repeats until optimality is achieved or
a time limit is reached.

Table 1 displays results for each time step in the Marine Corps scenario,
including the number of lazy constraints (and the order of the highest-order
lazy constraint), and solution results. Each time step is run for 9,000 s, or until
optimality is obtained. The times in Table 1 indicate the time when the displayed
solution value and optimality gap is obtained; those time steps with a non-zero
optimality gap fail to converge within 9,000 s. Our results are obtained using
a Dell Mobile Precision 6800 laptop with 32 GB of RAM and an Intel Core
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i7-4940MX processor running at 3.1 GHz. We use IBM ILOG CPLEX version
12.6.2 and Python 2.7.

The lazy constraint approach to solving the MO-CAP yields results far supe-
rior to our previous methods. The solutions are on average 24% lower than the
heuristic, and each solution has an associated optimality gap. On seven time
steps, optimality is achieved. Even for those for which optimality is not proven,
the method finds solutions within one or two channels of optimality.

We next improve on our lazy constraint method by adding the constraints
specifying the maximum clique, which is the largest complete sub-graph formed
from among the pairwise interference constraints. We use the NetworkX Python
library [14] to find the maximum clique, which relies on the algorithm of [5] as
adapted by [36]. Let M ⊂ U be the subset of units in the maximum clique. The
maximum clique constraint takes the form:

∑
u∈M

Xc
u ≤ 1 ∀c ∈ C. (16)

That is, only one unit in the clique may be assigned any given channel. Adding
this constraint forces the lower bound up significantly and allows the optimiza-
tion engine to search in a much smaller feasible region. After we add the maxi-
mum clique, we then add all remaining pairwise constraints that are not included
in this clique constraint. The lazy constraint method is used again to generate
any higher-order interference constraints.

The results of this method are displayed in Table 2, where bolded values
indicate an improvement over the previously-described technique. Again, each
time step is run for 9,000 s, or until optimality is obtained, and “Time” indicates
solver time when the displayed solution value and optimality gap is obtained.
Overall, inclusion of the maximum clique reduces average runtime to obtain
solutions within one channel of optimality. For the problem associated with time
step 3, this method obtains a solution that requires one less channel than that
identified without use of the maximum clique. On eight time steps, this method
reduces the known optimality gap, and on 12 time steps, the method obtains the
provably-optimal solution (five more time steps than the previous method). It is
interesting to note that the size of the maximum clique (which itself provides a
lower bound on the number of required channels) is within one of the best-known
solution for each time step. This is indicative of the power of the maximum clique
constraint. We note that there is a clique constraint generator within CPLEX,
but this procedure does not find this very strong clique; the overall solution times
obtained when the maximum clique constraint is removed and CPLEX clique
generator is turned on to aggressive yields results no better than those obtained
with default parameters for CPLEX.

We also note that we do not obtain shorter solutions times or better bounds
when we provide CPLEX with our feasible solution obtained using our greedy
heuristic. This indicates that the solutions found with the heuristic are of little
use to CPLEX.
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3.4 Constraint Programming Solution Method and Results

We reformulate MO-CAP as a constraint programming (CP) problem in an
attempt to quickly find lower bounds to the problem. We use the Optimization
Programming Language (OPL) to formulate the problem using integer variables,
where each variable wu ∈ C indicates the channel number that unit u ∈ U is
assigned, and the domain of each variable is equal to the number of available
channels |C|. (We originally formulate this problem using binary variables, but
find that the CP solver is much less efficient in determining feasibility using
binary variables for this particular problem.)

Table 2. MO-CAP results by time step using pairwise and lazy constraints, and a
maximum clique constraint. Bold values indicate an improvement over the previous
method. “Time” indicates the time at which the displayed solution and optimality gap
is obtained, during a total runtime of 9,000 s.

Time
Step

Max
Clique
Size

Number lazy
constraints

Highest-
order lazy
constraint

Sol’n
value

Time (s) Gap Improvement
over heuristic

1 46 45 6 46 552.68 0% 9.80%

2 37 4 4 37 273.40 0% 22.92%

3 34 143 7 35 4338.21 0% 23.91%

4 33 85 6 34 3831.19 2.94% 27.66%

5 33 10 3 33 1010.00 0% 23.26%

6 35 95 6 36 3128.34 2.78% 29.41%

7 37 13 6 37 266.68 0% 24.49%

8 30 45 5 31 4415.48 3.23% 26.19%

9 32 2 4 32 226.37 0% 25.58%

10 34 6 4 34 323.08 0% 30.61%

11 33 42 8 33 856.69 0% 26.67%

12 35 30 5 36 1577.96 2.78% 16.28%

13 31 131 6 32 3172.95 3.12% 25.58%

14 30 214 9 31 2702.16 3.23% 27.91%

15 38 105 6 38 1047.00 0% 22.45%

16 35 16 5 36 600.91 2.78% 23.40%

17 36 89 5 37 1495.15 2.70% 24.49%

18 31 13 4 31 322.90 0% 22.50%

19 30 74 6 30 1653.29 0% 25.00%

20 37 33 4 37 1387.28 0% 24.49%

Aver 34.4 59.8 5.5 34.8 1659.09 1.18% 24.13%

We add all pairwise constraints to the problem by indicating that two given
units u and v are not allowed to be assigned the same channel, for all pairs
(u, v) ∈ P . We solve the problem using IBM ILOG CPLEX CP Optimizer [17].
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We begin with a small (infeasible) number of available channels |C| (i.e., the
domain of each wu ∈ C), and iteratively increase |C| until the solver either
determines that the problem is feasible, or it cannot resolve the problem within
12 h. At each |C|, we have a relaxation of the original MO-CAP. If a problem is
infeasible with the given number of channels, then we have established that the
original MO-CAP (with all constraints) is also infeasible. This indicates that at
least |C| + 1 channels are required, establishing a MO-CAP lower bound. If the
lower bound equals the upper bound (obtained using CPLEX), we have obtained
an optimal solution.

Table 3. MO-CAP results by time step using constraint programming. “Optimal solu-
tion?” indicates whether the obtained value proves the optimality of a solution, and
bolded values indicate new lower bounds (i.e., not found in the previous analyses.

Time step Infeasible Optimal solution?

1 45 Yes

2 36 Yes

3 33

4 32

5 32 Yes

6 34

7 36 Yes

8 29

9 31 Yes

10 33 Yes

11 32 Yes

12 34

13 31 Yes

14 29

15 37 Yes

16 34

17 36 Yes

18 30 Yes

19 29 Yes

20 36 Yes

The results are displayed in Table 3, where “Infeasible” indicates the largest
value at which the solver detects infeasibility, i.e., at least one more channel is
required for the problem to be feasible. “Optimal solution?” indicates whether
the obtained value proves the optimality of a solution, where bolded values
indicate new lower bounds (i.e., not found in the previous analyses). While the
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solver does not find the exact lower bound at each time step, it does establish
two new exact lower bounds (for the problems associated with time steps 13 and
17). When infeasibility is detected by the solver, it is detected extremely quickly
(less than a tenth of a second in each case).

On the other hand, the constraint programming procedure was not capable
of proving optimality. In general, one can quickly determine that one needs at
least k channels (because one can establish that k− 1 channels are not feasible).
If the CP solver cannot establish whether k channels are infeasible within a few
seconds, one is likely to find that the solver will not establish the satisfiability
of these constraints within 12 h. In order to improve the solver’s capabilities to
prove optimality, we try adding symmetry-breaking constraints (following [34])
but that does not alter the performance result. Next, we try adding all triplet
constraints and the known maximum clique constraint (via CP allDifferent
constraints), as well as adding constraints iteratively, to no avail.

Thus, we conclude that the CP approach is very efficient at finding infeasi-
bilities (and thus establishing lower bounds), but is incapable of finding feasible
solutions close to or at the actual lower bound. We conclude that a very good
approach to obtaining optimal or near-optimal solutions to the problem is to
integrate CP and IP in a complementary fashion ([16]), where IP is used to
search for good solutions and establish upper bounds, and CP is used to quickly
tighten lower bounds. Similar techniques have been used for large-scale spectrum
auctions [20] and scheduling [30,37].

4 Minimum-Cost Channel Assignment Problem over
Time (MC-CAP-T)

4.1 Problem Formulation

Given the number of channels needed at a moment in time (established using
MO-CAP), a spectrum manager may now wish to reduce the total number of
times a radio must change channels. Excessive channel changes waste the time of
radio operators and require coordination and synchronization among potentially
many dispersed units, which may be difficult to achieve in battlefield conditions.

The minimum-cost channel assignment problem over time (MC-CAP-T )
aims to minimize the cost incurred by channel changes over time, given the
number of channels required at each time step. Let the index t ∈ T represent
each time step, and let g ∈ G (alias h) be a group of units that must be assigned
the same channel at a given time step. Groups are obtained at each time step
from the MO-CAP. A näıve approach would simply assign channel numbers
to the groups as they appear in order. In practice, this produces surprisingly
bad solutions as group membership (i.e., the units assigned to each group) may
change significantly from time step to time step, and thus an excessively large
cost is incurred if one simply dictates that group 1 is always assigned channel
1, etc. We instead use a decomposition approach that takes the solutions from
each MO-CAP time step and minimizes the “distance” (i.e., number of channel
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changes) from one time step to the next. We obtain globally-optimal solutions
to this problem in polynomial time using our decomposition approach.

We wish to associate each group g at time t to a group h at time t + 1 at
least cost. Let the binary variable Y t

gh indicate if group g at t is associated with
group h at t+ 1, and let (g, h, t) ∈ A be the arcs representing the set of possible
associations between g and h. One could simplify this formulation further by
dropping the t ∈ T index, but we retain the notation to aid in describing our
solution approach. At each time step, each group g at t must be assigned a group
h at t + 1, and vice versa, which is enforced via the assignment constraints:∑

h∈G

Y t
gh = 1 ∀ (g, ·, t) ∈ A (17)

∑
g∈G

Y t
gh = 1 ∀ (·, h, t) ∈ A. (18)

The cost of associating a group g at time t to a group h at time t+1, costtgh,
is a function of the difference in unit membership between g and h. Specifically,
if radiosu is the number of radios assigned to unit u,

costtgh =
∑

u∈h\g
radiosu ∀ (g, h, t) ∈ A. (19)

That is, the cost from g to h is the number of radios from units that are in group
h but not in group g. This method of calculating costs prevents double-counting
when a unit moves from an existing channel to a new channel. Our objective
function minimizes the sum total costs of associating each group g at t with
group h at t + 1:

min
Y

∑
(g,h,t)∈A

costtghY
t
gh. (20)

Note this cost function assumes all units and radios have the same importance,
but that need not be the case: one could associate scalar weights with each radio
or to an entire unit to model its relative importance.

t t+1 t+2 t+3

Fig. 2. Example of the association of groups (blue boxes) at each time step. Virtual
groups (comprising no units) are represented by dashed boxes. (Color figure online)
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4.2 Decomposition Solution Method and Results

To solve the MC-CAP-T, we use a decomposition approach based on the key
insight that the actual channel number (or color, or any other label) is arbitrary.
We also observe that the cost of changing assignment of a group from t to t+ 1
depends only on the unit membership of each group at t and t+1; i.e., the costs
can be decomposed by time step. These properties allow us to decompose the
problem by time step while maintaining global convergence.

Figure 2 provides a visual representation of the process of associating groups
at each time step, where for each time step the column of squares on the left
represents groups g and on the right groups h. The number of groups (and their
unit membership) is determined by the solutions from the MO-CAP, so some
time steps may have more or fewer groups than others. For those time steps with
fewer groups than the maximum, we create virtual groups (indicated in Fig. 2
by dashed boxes), representing a placeholder group with no assigned units. In
this sense, a group represents both a collection of units to be assigned the same
channel, and a placeholder for the channel itself, i.e., |G| is equal to the maximum
number of available channels across all time steps in the scenario.

At each time step, each group g must be associated with a group h, indicated
by gray lines between groups in Fig. 2. When a real group g (i.e., comprising
units) is associated with a virtual group h, no cost is incurred because the units
in g are assigned to other groups (not in h) at t + 1. When a virtual group g
is associated with a real group at h, the cost equals the number of radios in h,
since, according to (18), each unit in h was previously assigned a different group.

We implement our solution in Python. We first calculate all of the costtgh
values for each possible (g, h, t) ∈ A, and then solve a classic integer assignment
problem at each time step using a variation of the Hungarian (or Munkres)
algorithm [21], which solves to optimality in O (

n3
)

time. Global convergence
is maintained because at each time step, the cost of channel changes depends
only on the assignments at t and t + 1. The actual assigned channel (i.e., its
number) is arbitrary, since all channels provide the same performance and each
group must have a channel. Thus this formulation exhibits optimal substructure
that allows us to efficiently solve each time step to optimality and then combine
our results to solve the entire problem to optimality.

Note that in this approach, there is no variable or index representing a par-
ticular channel; the association Y t

gh implies one. After solving the problem, the
paths created by associating each g with an h at the next time step represent
discrete channels. By assigning a channel number to each of these paths (i.e., the



Efficient Solution Methods for the Channel Assignment Problem 457

gray lines in Fig. 2), we effectively solve the MC-CAP-T. The following pseudo-
code describes our algorithm for solving the problem:

Algorithm 1. MC-CAP-T
Input: MO-CAP solutions at each time step

Output: Xct
u , ∀u ∈ U, c ∈ C, t ∈ T (unit channel assignments for all time steps)

begin

Calculate costtgt, ∀ (g, h, t) ∈ A

channel ← 1

for g ∈ G : t = 1

Γg ← channel // Assign channels to groups during first time step

channel ← channel + 1

next;

for t = 1, 2, . . . , t − 1

Solve the MC-CAP-T for t using Hungarian / Munkres algorithm

Store Y t
gh values

for g, h ∈ (g, h, t)

if Y t
gh = 1

Γh ← Γg // Assign channels to groups for time step t

endif;

next;

next;

for g ∈ G

for u ∈ g

X
Γ t
g

u ← 1 // Assign channels to units

next;

next;

end;

We solve for each time step in the Marine Corps scenario. The näıve method
requires a total of 33, 340 channel changes, whereas our decomposition method
(which solves to optimality in less than 53 s) requires 21, 915 channel changes, a
reduction of 34%. Figure 3 is a method of visualizing the results of this compar-
ison. For both the näıve and decomposition methods, a row represents a unit,
where reddish units are larger (comprising up to 25 radios each) and greenish
units are smaller, each column represents a time step, and a blank entry indi-
cates that no channel change is required for that unit at that time step. This
visualization provides a qualitative sense of how much better the decomposi-
tion method (which provides an exact solution) is at reducing channel changes,
especially for larger (and thus more penalizing) units.
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Fig. 3. Results of MC-CAP-T, where each row represents a unit, and each column
represents a time step. White indicates that the channel assignment remains the same
(i.e., no cost), and color indicates that a different channel is assigned at the next time
step. Red indicates larger units (more radios); green indicates smaller units. (Color
figure online)

5 Conclusions and Future Research

We present new integer optimization and constraint programming methodolo-
gies that solve large, realistic instances of the minimum-order and minimum-
cost channel assignment problems to global or near-global optimality in reason-
able amounts of time. Our approach can be used to support military spectrum
managers who must quickly make spectrum allocation decisions in congested
EM environments. Our ongoing and future research explores robustness and
resiliency in the presence of an adversary determined to jam portions of the EM
spectrum (see, e.g., [10,22,29,39]).

References

1. Aardal, K.I., Van Hoesel, S.P., Koster, A.M., Mannino, C., Sassano, A.: Models and
solution techniques for frequency assignment problems. Ann. Oper. Res. 153(1),
79–129 (2007)

2. Alion Science and Technology Corporation: TIREM RF Modeling (2017). https://
www.alionscience.com/terrain-integrated-rough-earth-model-tirem/

3. Analytical Graphics Inc.: Engineering Tools (2018). http://www.agi.com/
products/engineering-tools

4. Berry, L.: The potential contribution of optimum frequency assignment to effi-
cient use of the spectrum. In: IEEE International Symposium on Electromagnetic
Compatibility, pp. 409–412. IEEE (1990)

https://www.alionscience.com/terrain-integrated-rough-earth-model-tirem/
https://www.alionscience.com/terrain-integrated-rough-earth-model-tirem/
http://www.agi.com/products/engineering-tools
http://www.agi.com/products/engineering-tools


Efficient Solution Methods for the Channel Assignment Problem 459

5. Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an undirected graph.
Commun. ACM 16(9), 575–577 (1973)

6. Cuppini, M.: A genetic algorithm for channel assignment problems. Eur. Trans.
Telecommun. 5(2), 285–294 (1994)

7. Daniels, K., Chandra, K., Liu, S., Widhani, S.: Dynamic channel assignment with
cumulative co-channel interference. ACM SIGMOBILE Mob. Comput. Commun.
Rev. 8(4), 4–18 (2004)

8. Department of Defense: Integrated Security Construct-B. Multi-Service Force
Deployment, scenario 3 (2013)

9. Dunkin, N., Bater, J., Jeavons, P., Cohen, D.: Towards high order constraint rep-
resentations for the frequency assignment problem. University of London, Egham,
Surrey, UK, Technical report (1998)

10. El-Bardan, R., Brahma, S., Varshney, P.K.: Power control with jammer location
uncertainty: a game theoretic perspective. In: 48th Annual Conference on Infor-
mation Sciences and Systems, pp. 1–6. IEEE (2014)

11. Fischetti, M., Lepschy, C., Minerva, G., Romanin-Jacur, G., Toto, E.: Frequency
assignment in mobile radio systems using branch-and-cut techniques. Eur. J. Oper.
Res. 123(2), 241–255 (2000)

12. Github: CAP datasets (2019). https://github.com/nickelpickle1/cap dataset/
13. Goldstein, P.: Pentagon strikes deal with broadcasters, clearing way for 1755–1780

MHz auction. Fierce Wireless, February 2013. http://www.fiercewireless.com
14. Hagberg, A.A., Schult, D.A., Swart, P.J.: Exploring network structure, dynam-

ics, and function using NetworkX. In: Proceedings of the 7th Python in Science
Conference (SciPy 2008), pp. 11–15. Pasadena, CA USA, August 2008

15. Hart, W.E., Laird, C., Watson, J.P., Woodruff, D.L.: Pyomo-Optimization mod-
eling in Python, vol. 67. Springer Science & Business Media, New York (2012).
https://doi.org/10.1007/978-1-4614-3226-5

16. Hooker, J.N., Ottosson, G.: Logic-based Benders decomposition. Math. Program.
96(1), 33–60 (2003)

17. IBM: IBM CPLEX Optimization Studio (2018). http://www-01.ibm.com/
software/commerce/optimization/CPLEX-optimizer/

18. Johannson, F., et al.: mpmath: A Python library for arbitrary-precision floating-
point arithmetic (version 0.18) (2013). http://mpmath.org

19. Katzela, I., Naghshineh, M.: Channel assignment schemes for cellular mobile
telecommunication systems: a comprehensive survey. IEEE J. Pers. Commun. 3(3),
10–31 (1996)

20. Kiddoo, J., et al.: Operations research enables auction to repurpose television spec-
trum for next-generation wireless technologies. INFORMS J. Appl. Anal. (2018,
submitted)

21. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logis-
tics Q. 2(1–2), 83–97 (1955)

22. London, J.P.: The new wave of warfare-Battling to dominate the electromagnetic
spectrum. J. Electron. Defense (JED) 38(9), 68–76 (2015)

23. Mannino, C., Sassano, A.: An enumerative algorithm for the frequency assignment
problem. Discrete Appl. Math. 129(1), 155–169 (2003)

24. Margot, F.: Symmetry in integer linear programming. In: Jünger, M., et al. (eds.)
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