®

Check for
updates

A Computational Comparison
of Optimization Methods for the Golomb
Ruler Problem

Burak Kocuk!®)@® and Willem-Jan van Hoeve?

1 Sabanci University, 34956 Istanbul, Turkey
burakkocuk@sabanciuniv.edu
2 Carnegie Mellon University, Pittsburgh, PA 15213, USA
vanhoeve@andrew.cmu.edu

Abstract. The Golomb ruler problem is defined as follows: Given a pos-
itive integer n, locate n marks on a ruler such that the distance between
any two distinct pair of marks are different from each other and the
total length of the ruler is minimized. The Golomb ruler problem has
applications in information theory, astronomy and communications, and
it can be seen as a challenge for combinatorial optimization algorithms.
Although constructing high quality rulers is well-studied, proving opti-
mality is a far more challenging task. In this paper, we provide a com-
putational comparison of different optimization paradigms, each using
a different model (linear integer, constraint programming and quadratic
integer) to certify that a given Golomb ruler is optimal. We propose sev-
eral enhancements to improve the computational performance of each
method by exploring bound tightening, valid inequalities, cutting planes
and branching strategies. We conclude that a certain quadratic inte-
ger programming model solved through a Benders decomposition and
strengthened by two types of valid inequalities performs the best in terms
of solution time for small-sized Golomb ruler problem instances. On the
other hand, a constraint programming model improved by range reduc-
tion and a particular branching strategy could have more potential to
solve larger size instances due to its promising parallelization features.

Keywords: Golomb ruler - Integer programming -
Constraint programming

1 Introduction

For a given positive integer n, let us denote the positions of n marks on a ruler as
T1,T2,...,T,. Without loss of generality, we assume that the position of the first
mark is zero, i.e. z1 = 0, and the locations are ordered, i.e. 11 < zo < --- < x,. A
Golomb ruler satisfies the property that the pairwise distances between distinct
marks are all different, in other words, z; — z; # x) — 2; unless ¢ = [and
j = k. The optimal Golomb ruler is the one with the smallest length, that is, a
© Springer Nature Switzerland AG 2019

L.-M. Rousseau and K. Stergiou (Eds.): CPAIOR 2019, LNCS 11494, pp. 409-425, 2019.
https://doi.org/10.1007/978-3-030-19212-9_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19212-9_27&domain=pdf
http://orcid.org/0000-0002-4218-1116
http://orcid.org/0000-0002-0023-753X
https://doi.org/10.1007/978-3-030-19212-9_27

410 B. Kocuk and W.-J. van Hoeve

Golomb ruler with the minimum z,,. The Golomb ruler problem has interesting
applications in several fields [3], including information theory [14], astronomy,
and communications [1,2,4,12].

In general, constructing a Golomb ruler with a given number of marks is
an easy task, and there are many heuristic methods that provide high quality
rulers. For instance, previous literature on heuristics has focused on affine and
projective plane constructions [7,15], genetic algorithms [19], and local search
[6,13] while exact methods based on constraint programming [8,17] or hybrid
methods [16] exist as well. Although not proven to be NP-hard yet, solving the
Golomb ruler problem exactly proved to be notoriously difficult. For instance, the
optimal rulers for n = 24,25,26,27 have been proven by a parallel search with
thousands of workstations coordinated by the website distributed.net, and it
took approximately 4, 4, 1, and 5 years to complete, respectively. Currently, a
search for the 28-mark problem is under way for more than 4 years.

As summarized above, most of the effort to prove that a given Golomb ruler
is an optimal one is devoted to explicit enumeration techniques. However, such
brute force approaches seem to be the only viable option since it is very difficult
to establish strong valid lower bounds for the Golomb ruler problem.

At this point, we would like to state the main purpose of this paper, which
is to certify the optimality of a given Golomb ruler through optimization meth-
ods. Most optimization algorithms inherently solve relaxations and hence, nat-
urally provide lower bounds for minimization type problems. Therefore, it is
worth focusing on optimization models to better understand the structure of the
Golomb ruler problem, and hopefully, propose efficient methods which we can
use to solve the Golomb ruler problem instances.

In this paper, we consider three classes of optimization problems to carry
out the aforementioned analysis. In particular, we formulate the Golomb ruler
problem as linear integer programming, constraint programming and quadratic
integer programming problems. Some of these models exist in the literature while
and the others are introduced, to the best of our knowledge, by us. Since the
performance of the basic models is not satisfactory to solve instances with more
than 10 marks, we propose several enhancements to improve the scalability of
each method by means of bound tightening, valid inequalities, cutting planes
and effective search strategies. Our computational experiments show that linear
integer programming models scale up to 13 marks given a budget of 8 h while
constraint programming models can solve up to 13-mark instances in about
an hour and 14-mark problem in about 10h. Quadratic integer programming
models, on the other hand, are able to solve 14-mark instance in about four
hours, all using a modest personal computer. As a comparison, it took 2.8 h for
the constraint programming model in [8] to find an optimal ruler for the 13-mark
instance and another 11.8 h to prove its optimality. The lean implementation of
the search method in [16] reduced the respective computational effort to 0.6 and
1.3 h, albeit at the expense of a significantly larger search tree.

The rest of the paper is organized in three sections, which respectively cover
the linear integer programming, constraint programming and quadratic integer

A Computational Comparison of Optimization Methods for Golomb Ruler 411

programming models in detail. Each section contains a formulation, enhance-
ments and computational experiments subsections together with some discus-
sions and comparisons of these different optimization paradigms.

2 Linear Integer Programming Models

2.1 Two Formulations

In this section, we present two known linear integer programming formulations
for the Golomb ruler problem with n marks. One of these formulations is exact
and the other one is only a relazation but can be made exact by the use of
additional features as detailed later. For both of the models, we assume that
an upper bound, say L, on the optimal length is known (such a bound can be
obtained as the length of any feasible Golomb ruler with n marks).

“d 4+ e” Formulation. We first present an exact linear integer programming
model for the Golomb ruler problem [9]. In this formulation, there are two sets
of decision variables: Let e;;, be one if the distance between marks ¢ and j is v,
and zero otherwise. Also, we define d;; as the distance between marks ¢ and j.
Then, the optimization problem is given as follows:

n—1
min di,i-‘rl (1&)
d,e P
L
stY eijy =1 1<i<j<n (1b)
v=1
Zeijvgl v=1,...,L (1c)
1<j
L
Zveijv = dij 1<q <] <n (ld)
v=1
Jj—1
de,k+1:dij 2<i+1l<j<n (le)
k=i
eijUG{O,l},dij€Z+ 1§Z<]SR7U:1,7L (lf)

Here, the objective function (1a) minimizes the length of the Golomb ruler (alter-
natively, it can be simply given as dj ;). Constraint (1b) assigns a distance
between 1,...,L to every pair of marks ¢ and j while constraint (1c) ensures
that each distance between 1,..., L is assigned at most once. Constraint (1d) is
simply a definition of the d variables in terms of the e variables. Finally, con-
straint (le) is an identity guaranteeing that the distance between the marks i
and j is the sum of the basic distances between consecutive marks. We note that
d variables can be projected out by substituting the definition given in (1d) into
constraint (le) although the resulting lower dimensional model does not seem to
be more advantageous empirically in terms of computational efficiency.

412 B. Kocuk and W.-J. van Hoeve

“d” Formulation. Now, we present a relaxation of the Golomb ruler prob-
lem by eliminating the e variables from the “d + e¢” Formulation. The resulting
optimization problem is defined as follows:

n—1

mdln Z di,i+1 (23‘)
i=1

s.t. (le)

1
> di > SRR +1) RC{(k1) e 7?:1<k<l<n}. (2b)
(i,4)ER

The constraint set (2b), called “Subset Sum Inequalities”, was introduced in [9]
to strengthen the integer programming (IP) formulation, and defines the facets of
the convex hull of the all-different constraint [20]. In practice, the model (2) can
be solved with a constraint generation scheme in which the subset sum inequal-
ities are gradually added. We also note that the complexity of the separation of
these inequalities is polynomial-time as it requires sorting () many numbers.

As opposed to the “d + e¢” Formulation, the “d” Formulation is not an exact
representation of the Golomb ruler problem. However, it is known that the opti-
mal value of the “d” Formulation is equal to the linear programming (LP) relax-
ation value of “d 4 ¢” Formulation [11].

We note that even if the “d” Formulation is solved as an IP, it is still not an
exact formulation since it does not guarantee that d;; # dy; for i # k and j # I,
i.e., the uniqueness of the distances. However, this observation leads to a natural
way to make the “d” Formulation exact: We can solve the problem (2) as an
LP with two callbacks: Firstly, we add lazy constraint callbacks to ensure that
subset sum inequalities (2b) are satisfied. Secondly, we add a branch callback
such that the missing constraint d;; # dj; is enforced by the solver as we go
down the branch-and-bound tree. In particular, once d;; = dy; for i # k and
J # 1, we can create a dichotomy as d;; < dp; — 1 and d;; > dpy + 1.

2.2 Enhancements

We propose several enhancements to the models presented above based on bound
tightening and branching strategies. We also carried out a preliminary polyhedral
study of the Golomb ruler problem with the hope of obtaining strong valid
inequalities. Although we have discovered several families of valid inequalities,
they have not helped solving the problem more efficiently. Therefore, we leave
this line of research as future work for further inquiry.

In the sequel, let G, denote the length of the optimal Golomb ruler of order
m, m = 1,...,n — 1. We assume that all the G,,, values are known for m < n
when we are trying to solve the n-mark problem.

Bound Tightening. Bound tightening is a widely used strategy in optimiza-
tion algorithms to reduce the range of the decision variables in order to save

A Computational Comparison of Optimization Methods for Golomb Ruler 413

computational effort. It can also be used as a way to strengthen relaxations and
improve the performance of search methods (see [8] for an application to the
Golomb ruler problem). Our bound tightening procedure starts with the follow-
ing simple observation: If the difference between marks i and j is small (large),
then d;; cannot be too large (small). In particular, we can infer the following
initial bounds on d;; variables:

Gjoiv1 =1d;; <dij <dij:=L—Gi —Gp_jy1. (3)

After this initialization step, we can further improve the bounds d;; and d;j
by solving bounding LPs. In particular, we can minimize/maximize d;; variables
over a suitable relaxation (for instance, over the feasible region of the LP relax-
ation of (1)) to try to improve the bounds iteratively. Once new bounds d;; and

Eij are obtained after rounding up and down the minimum and maximum values,
we repeat this procedure until the fixed point is reached, that is, none of the
bounds are improved further. We will refer to this procedure as LP Bounding.

As an additional mechanism to tighten the variable bounds on the d variables,
we extend the LP Bounding approach in the following sense. Now, we optimize
the d variables over the feasible region of (1) (not its LP relaxation as in the
LP Bounding approach) with a limited computational budget. We will refer to
this procedure as IP Bounding. Although this approach requires an additional
non-trivial effort, it pays off in terms of reducing the solution time of the “d+e”
formulation.

We also use the bounds d,; and Eij to fix some of the binary variables e;;,
to zero as follows:

eijo = 0 if v <d;; orv >Eij.

This procedure reduces the total range of the d variables and the number of e
variables considerably although it does not improve the LP relaxation bound.

Branching Strategies. The choice of branching strategies may significantly
affect the computational performance of the mixed-integer programming solvers.
Branching decisions made by the solvers can be altered by either explicitly choos-
ing the variables to be branched on through branch callbacks, or implicitly by
assigning priorities to the integer variables. We experimented with both of these
choices by exploiting the structure of the Golomb ruler problem.

In terms of imposing explicit branching decisions, we experimented with two
strategies which can be applied to both “d+ e” and “d” Formulations. The first
strategy, which we will call as “Left Branching”, is described as follows: We
first branch on the variable di5 by creating di2 — d;, + 1 many child nodes,
each taking an integer from the interval [dij,aij]. Then, we proceed by solving
the node relaxations. Whenever we have to make another branching decision,
we decide on the next variable still undecided from the left of the ruler (for
instance, the second variable would be ds3). Such an algorithm is based on
the intuition that the classical dichotomy branching is probably ineffective for
the Golomb ruler problem since assigning particular values to d;; variables can

414 B. Kocuk and W.-J. van Hoeve

help detecting infeasibility of more branches than simply branching on d;; by
assigning intervals, or traditional binary branching on the e;j;, variables. The
shortcoming of this strategy is of course the increased number of child nodes for
each level of the branch-and-bound tree.

Table 1. Results of the “d+¢e” Formulation with LP and IP Bounding strategies. Here,
BTT, OT, TT and #BBN respectively represent the bound tightening, optimization,
total time (in seconds unless otherwise stated), and the number of branch-and-bound
nodes.

n |LP Bounding IP Bounding after LP Bounding
BTT|OT TT #BBN BTT oT TT #BBN

9 10.10 0.36 0.46 0 41.35]0.60 42.05 615

10/0.11 |1.42 1.53 333 37.69 0.68 38.48 337

11/0.12 [199.87 199.99 155,421 20.55 140.38 161.05 138,820
1210.19 |297.62 297.81 153,244 68.27 208.39 276.85 126,405
13/0.26 |32,435.0432,435.30|13,949,6792,874.62|24,993.13|27,868.01 13,363,776
14/0.32 |>10h - - 3,721.56|>10h - -

The second strategy for imposing explicit branching decisions is called “Dif-
ference Branching”, and implemented with the inclusion of a branch callback
function. Suppose that in a certain node in the branch-and-bound tree, we have
two variables d;; and dy;, @ # k and j # [, such that |d;; — dii| < 1. Then,
we can branch on constraints d;; < di; — 1 and d;j > di; + 1 as this is a valid
partitioning of the feasible region.

In terms of imposing implicit branching decisions, we experimented with
different priority assignment strategies. The most successful strategy seems to
be the one that assigns higher priorities to e;;,, variables with smaller u indices.
Here, the intuition is that if smaller distances are decided first, then we can
either find feasible solutions or detect infeasibility faster.

2.3 Computations

We first report the results of our computational experiments with the “d + e”
formulation in Table1 for n =9,...,14. We compare the following two settings
(we note that the bound tightening techniques are only applied at the root node
assuming that L = G,,):

— LP Bounding: Bound tightening is applied over the LP Relaxation of the
“d 4+ €” formulation in parallel for five rounds.

— IP Bounding after LP Bounding: Bound tightening is applied over the “d+e”
formulation with a budget of 1s for n < 12 and 1min for n > 13 in parallel
for five rounds.

A Computational Comparison of Optimization Methods for Golomb Ruler 415

CPLEX 12.8 is used as the mixed-integer linear programming (MILP) solver on
a 64-bit computer with Intel Core i7 CPU 2.60GHz processor and 16 GB RAM.
Since our aim to prove the optimality of the n-mark ruler of length G,,, we set
L = G,, — 1 while solving the MILPs.

We note that the LP Bounding scheme is quite cheap to obtain better variable
bounds than the initial bounds derived in (3). On the other hand, IP Bounding
requires an additional nontrivial effort to further improve those bounds. We
observe that this additional computational effort can be justified when n > 12
as the reduction in the optimization step overweighs the increase in the bound
tightening step and the 13-mark instance can be solved in less than 8 h in total.
Due to the sharp increase in the CPU time necessary, we were not able to solve
the Golomb ruler problem with 14 marks in less than 10 h.

Table 2. Results of the “d” Formulation with different variable bounding and branch-
ing strategies.

n |LP Bounding IP Bounding after LP Bounding

Diff. Branching Left Branching Diff. Branching Left Branching
TT #BBN |TT #BBN |TT #BBN |TT #BBN

9 |1.45 3,277 3.05 5310 42.59 |3,257 44.45 15,338
10/0.55 805 2.00 3248 38.21 785 39.74 13,297
11/9,915.67|4,256,165|1,920.96 | 1,651,695 |9,785.72 | 4,285,299 1,862.69 1,655,038

We report the results of our experiments with the “d” formulation in Table 2
for n =9,10,11. We compare the Difference (Diff.) Branching and Left Branch-
ing strategies as introduced in Sect. 2.2 in combination with LP Bounding and
IP Bounding. We observe that the Left Branching becomes significantly better
than the Difference Branching approach as the number of marks increases. Since
we were able to solve only very small Golomb ruler problem instances with the
“d” Formulation in comparison to the “d+ ¢” Formulation, we have not pursued
this direction further. Nevertheless, the Left Branching strategy has proved to
be quite effective and is utilized multiple times in this paper.

3 Constraint Programming Model

In the previous section, we presented two linear integer programming models to
solve the Golomb ruler problem. Although several enhancement of these models
are introduced and the computational effort is reduced significantly, we were not
able prove the optimality of a given 14-mark ruler in a reasonable amount of
time. In this section, we switch our attention to constraint programming models
which prove to be more successful for the Golomb ruler problem.

416 B. Kocuk and W.-J. van Hoeve

3.1 Formulation

A constraint programming model of the Golomb ruler problem can be formulated
as follows [16,18]:

mdin dy (4a

s.t.alldiff({d;; : 1 <i<j<n}) (
dij—‘rdjk:dik 1<i<j<k<n (40
dee{dz_png} 1§Z<]STL (4d

Here, constraint (4b) ensures that each distance d;; are different from each other.
Constraint (4c) guarantees that the distances respect the “triangle” constraint,
that is, the distance between marks i,k is the sum of the distances between
marks 4, j and j, k, where j is strictly between i and k. Finally, constraint (4d)
specifies the ranges of the decision variables.

3.2 Enhancements

The constraint programming model (4) can easily solve small instances of the
Golomb ruler problem, e.g., n < 10, but runs into slow convergence issues for
even slightly larger instances. Similar to the integer programming models con-
sidered in the previous sections, we propose some enhancements to improve the
scalability of the constraint programming model. These enhancements utilize
bound tightening, table constraints and search strategies.

Bound Tightening. The bound tightening procedures proposed in Sect. 2.2
based on LPs and IPs are quite effective in reducing the ranges of the d vari-
ables. We now discuss another similar procedure based on constraint program-
ming techniques (see [10] for a related method called “shaving”). The proposed
idea is quite simple: We fix a d;; variable to its current lower or upper bound and
solve the feasibility version of the constraint programming model (4) for a limited
amount of time. If the infeasibility of this restricted model can be proven, this
implies that we can tighten the range of the d;; variable by excluding the value
that we have fixed. We will refer to this procedure as CP Bounding. This app-
roach is implemented in an iterative fashion with limited computational budget
and proved to be helpful to further reduce the range of the decision variables.

Table Constraints. Table constraints can be crucial to speed up constraint
programming solvers. By exploiting the specific structure of the Golomb ruler
problem, we also define certain “forbidden assignments”. The construction is as
follows: Consider the subruler with marks numbered as {i,...,7 + 4}. We first
enumerate the set S; of all triplets (d; j+1,d 41,42, dj+2,;+3) that constitute
a feasible subruler with respect to the variable bounds and all-different con-

straints, for j = ¢ and j = i + 1. Now, suppose that for some (d; i1, dit+1,i+2,

A Computational Comparison of Optimization Methods for Golomb Ruler 417

dit2,it3) € Si, there does not exists any d; 13,14 such that (dij1it2,dit2,it3,
dit3,i+4) belongs to the set S;11. In this case, we can declare the triplet (Ji,i+1a
Ji+1,i+2» Ji+2,i+3) as “forbidden”. We can repeat this procedure for a few rounds
across different subrulers to identify more forbidden assignments.

Table 3. Results with LP Bounding, IP Bounding and CP Bounding strategies.

n | LP Bounding IP Bounding after LP | CP Bounding after LP and IP
oT TT oT TT BTT oT TT

9 [2.82 2.92 0.27 41.71 1.03 0.06 42.54

10| 11.95 12.06 0.28 38.08 1.17 0.07 39.04

11 140.30 140.42 19.63 40.30 11.85 0.54 33.07

12| 554.71 554.90 23.39 91.85 27.77 1.52 97.75
13111,615.19|11,615.45 | 1,780.54 |4,655.42 1,665.97 | 209.87 4,750.71
14| >10h - 31,839.14 | 35,561.02 | 3,872.62 | 29,795.25 | 37,389.74

Search Strategies. Search strategies are extremely important in constraint
programming as they significantly alter the performance of the solvers. Inspired
by the Left Branching for the linear integer programming model and its adap-
tation to the quadratic integer model, we have decided to employ a variable
selection rule based on lexicographical ordering. We also set the search phase
parameter to depth first search as our aim is to prove the optimality of a given
ruler efficiently. Finally, we experiment with different value selection strategies
and decide to use the one based on the smallest impact.

3.3 Computations

We report the results of our computational experiments with the constraint
programming formulation in Table3 for n = 9,...,14. In addition to the
“LP Bounding” and “IP Bounding after LP Bounding” settings introduced in
Sect. 2.3, we also experimented with the following version:

— CP Bounding after LP and IP Bounding: Bound tightening is applied over
the constraint programming formulation with a budget of 1s for n < 12 and
1min for n > 13 in parallel for five rounds. This includes the generation of
forbidden assignments based on the table constraints.

CPLEX CP Optimizer is used as the constraint programming solver with the
default settings unless otherwise stated.

We now summarize our observations: Firstly, a comparison with Tables 1 and
3 indicates that the constraint programming formulation takes less time than the
“d + e” formulation under the same version of bounding for n > 11. This allows
us to solve the 14-mark problem with the constraint programming approach

418 B. Kocuk and W.-J. van Hoeve

with IP Bounding in 10 h, which was not possible with the “d + ¢” formulation.
Secondly, the overhead of the CP Bounding approach is quite large, hence, the
reduction in the optimization time compared to the IP Bounding may not be fully
justified always. However, we believe that further inquiry along this direction
should be pursued. For instance, we extended the CP Bounding approach for
the 14-mark problem by allowing 10 min of budget for each subruler length.
This increases the total bounding time to 18,251s but reduces the optimization
time to 16,851 s. Although the total time remains more or less unchanged, this
additional experiment shows that a carefully executed bounding mechanism may
have a potential to be efficient overall.

4 Quadratic Integer Programming Models

So far, we presented classical linear integer and constraint programming formu-
lations for the Golomb ruler problem. In this section, we focus on a less-explored
approach based on quadratic integer programming.

4.1 Two Formulations

In this section, we discuss two possible quadratic integer programming formula-
tions for the Golomb ruler problem with n marks, one based on an optimization
model and the other based on a feasibility version. To the best of our knowledge,
such formulations have not been proposed before in the literature.

Let us define a single set of binary variables y;, which takes value one if there
is a mark at location [and zero otherwise, [= 1,..., L. Here, L is again an
upper bound on the length of a shortest Golomb ruler with n marks.

Optimality Version. We first present an alternative integer programming for-
mulation of the Golomb ruler problem as follows:

I’Ilyll’l l:rgl’:‘ifc’L Ixy (5a)
L—v

s.t. Zylva <1 v=1,...,L (5b)
1=0
y € {0,1} l=1,...,L. (5¢)

Here, the objective (5a) minimizes the position of the last mark on a ruler of
length L, which corresponds to the length of an optimal ruler. We note that
the objective function can be easily linearized using an auxiliary variable and
enforcing L additional constraints. Constraint (5b) guarantees that each distance
v is used at most once in a feasible solution. Observe that the model (5) can be
reformulated as a quadratically constrained program, which contains two types
of nonconvexities, one due to the bilinear inequalities (5b), and another due to
the integrality of the y variables.

A Computational Comparison of Optimization Methods for Golomb Ruler 419

Convexification techniques can be utilized to solve or approximate the non-
convex problem (5). We note that this formulation admits a straightforward
semidefinite programming (SDP) relaxation given as follows:

min 2 (6a)
st. lxy <z l=1,...,L (6b)
L—v
ZYLHU§1 v=1,...,L (6¢)
1=0
o<y <1 I=1,...,L (6d)
T
Byy} = 0. (6e)

Unfortunately, the dual bound obtained from solving the SDP relaxation (6) is
extremely weak (for instance, the bound obtained for the 10-mark instance is
only 15.14 while the length of the optimal Golomb ruler is 55). Therefore, we
have not pursued this line of research direction further.

Feasibility Version. Now, we consider a “complementary” version of the prob-
lem defined as follows: Given the length of a ruler L, maximize the number of
marks that can be located onto such a ruler that satisfies the Golomb ruler
requirements. This version of the problem can be formulated as follows:

L

ng 1= max Z Yl (7a)
1=0

s.t. (5b) — (5¢). (7b)

Note that the formulation (7) can be seen as the feasibility version of the
model (5) in the following sense: If n;, = n but n,_; = n — 1, then we can
certify that G,, = L. Hence, in order to obtain the length of a shortest Golomb
ruler with n marks, that is G,,, we can first solve problem (7) with L = G,,_1,
and then increase the value of L until we can locate all of the n marks. Such a
procedure gives an indirect way of solving the Golomb ruler problem.

Problem (7) is again a nonconvex, quadratically constrained integer program.
Below, we propose two linearization methods that can be used to solve prob-
lem (7) via an appropriate branch-and-bound method.

Linearization via SDP The problem (7) can be reformulated as a mixed-integer
SDP as follows:

420 B. Kocuk and W.-J. van Hoeve

Since the problems in this class are not typically supported by commercial
solvers, we implemented our own branch-and-bound algorithm. In this algo-
rithm, we solve the SDP relaxation of the model (8), which replaces the binary
restriction (5¢) with its continuous relaxation (6d), at each node of the tree. Our
algorithm decides which y variables to choose for branching, which is discussed
in more detail in Sect. 4.2.

Linearization via LP. The problem (7) can be also reformulated as a mixed-
integer LP as follows:

L
wax) v (92)
s.t. (6¢), (5c)
Yitye —1<Yi Lk=1,...,L (9b)
0< Vi <y Lk=1,...,L (9¢)

Here, constraints (9b)—(9¢) correspond to the McCormick envelopes for the equa-
tion Yir = yiyk. In general, solving problem (9) directly as an MILP is quite
expensive, partly due to the fact that its LP relaxation is highly degenerate.
Therefore, we adopt a Benders decomposition approach, whose problem specific
details are presented in Sect. 4.2.

4.2 Enhancements

We again propose some enhancements to speed up the solution procedure of the
feasibility version of the quadratic formulation of the Golomb ruler problem. In
particular, we develop two types of valid inequalities, Benders decomposition
for the linearized model (9) and branching strategies. Improved variable bounds
obtained via the bound tightening procedure presented in Sect. 2.2 are also used
whenever applicable.

Valid Inequalities. In this section, we present two families of valid inequalities,
which we refer to as “Golomb” and “Clique” inequalities. Below, we present their
precise formulations together with the intuition behind them.

Golomb Inequalities. Since the number of marks that can be placed onto any
subruler of length ¢ is upper bounded by n;, the following inequalities are valid
and are added to the root node relaxation:
I+min{G;41,L}+1
> y; <i i=2,...,np; 1=0,...,L — (min{Gy1, L} +1). (10)
j=l
More inequalities of this kind can be obtained as follows: Instead of summing
the consecutive y variables, we can consider any subset of these variables whose
indices are separated by exactly the same integer ¢, ¢ = 2,...,|L/2], such as
YisYj+er Yj+2¢)-- -

A Computational Comparison of Optimization Methods for Golomb Ruler 421

Clique Inequalities In order to better explain the construction of the clique
inequalities, it is more suitable to present the Golomb ruler problem as a special
mazimum cardinality clique problem defined as follows: Let us consider a com-
plete graph G = (V, E), where the set of vertices is V' := {0, ..., L}. We partition
the edge set F into L subsets E; defined as E; := {(i,i+1) : ¢ =0,...,L—1} for
l=1,...,L. Then, in order to solve the Golomb ruler problem, we search for a
largest clique G’ = (V’, E’) in this graph such that at most one edge from each
subset E; belongs to E’, that is, |E; N E’'| < 1.

Motivated by the above construction, let us introduce the clique inequal-
ities, which are easily implementable in a cutting plane framework. Consider
a fractional solution g, and construct two sets £y := {l : ¢ = 1} and
L f ={l:9; € (0,1)}. Let us define the distances induced by the solution § as

={|k—1]: k,1 € L1}. We will now construct an auxiliary graph G=(V,E),
Where V:=L;and E:={(k,]) €V x V : |k — 1| € D}. We also associate node
weights §; for each | € E. Then, each maximal clique C' in the graph G whose
weight is more than 1 gives rise to a cutting plane of the following form:

<t (11)

leC

We note that the set of all maximal cliques in a graph can be found by the
Bron-Kerbosch algorithm [5] in reasonable time for such small graphs, and the
inequalities (11) can be added as local user cuts in a branch-and-cut algorithm.

Benders Decomposition. Since we observe that solving problem (9) directly
is not computationally efficient, we employ a Benders decomposition technique
instead. In this approach, we solve the following master problem

L
max Z Y (12a)

Z|Cu Ny < ‘C|+1 ccio,....L}hu=1,...,L, (12b)
leC

where constraints (12b) are added in lazy fashion until feasibility is proven. Here,
Cu(l) == {k : |k — | = u}. This is achieved through the separation procedure
(feasibility check) described as follows: Given a binary vector g, we first define
the set of marks as M := {l : ¢, = 1}. For this candidate ruler to be a Golomb
ruler, the distances between each pair of mark should be distinct. Therefore, the
cardinality of the set M, (1) := {k € M : |k — [| = u} should be 1 for I € M and
u=1,...,L. Otherwise, we detect infeasibility and can add the following cut:

> ol < 4 (13)

leM

422 B. Kocuk and W.-J. van Hoeve

In other words, we expand the constraint set (12b) by the inclusion of the set M,,.
We note that our approach allows to add multiple cuts of the form (13) corre-
sponding to different u values for a given solution.

What we described so far amounts to a classical implementation of the Ben-
ders decomposition technique in which a “multi-tree” approach is employed, that
is, at each iteration, we solve the master problem (12) as an MILP. Therefore,
multiple branch-and-bound trees are created. An alternative approach would be
to use a single branch-and-bound tree, and add the Benders feasibility cuts (13)
via lazy constraint callbacks. Such an approach is commonly referred to as a
“one-tree” approach, branch-and-cut or “branch-and-check” and works much
better than its multi-tree counterpart for model (12).

Table 4. Results of the “y” Formulation (linearization via LP) with and without
Golomb and Clique cuts using one-tree Benders decomposition. Total time and branch-
and-nodes for each mark n and different ruler lengths L are reported.

n | L without Golomb Cuts with Golomb Cuts
w/o Clique Cuts with Clique Cuts | w/o Clique Cuts with Clique Cuts
TT #BBN TT #BBN | TT #BBN TT #BBN
9 | 35-43 7.91 17,753 2.63 278 5.73 12,630 3.49 597
10 | 45-54 32.24 81,036 11.45 354 17.73 59,770 5.80 846
11 | 56-71 3,850.04 | 1,712,947 | 730.56 824 619.7 1,384,860 | 35.49 2,101
12| 73-84 >10h - 5,576.83 | 674 4,119.82 | 4,710,139 | 57.80 1,661
13| 86-105 | >10h - >10h - >10h - 1,689.52 | 4,869
14| 107-126 | >10h - >10h - >10h - 12,960.17 | 7,776

Branching Strategy. The branching decisions are extremely important for
both the SDP and LP based branch-and-bound algorithms. Following the intu-
ition from Left Branching idea from linear integer programming models as men-
tioned in Sect. 2.2, we propose a similar scheme that decides the next mark from
the left of the ruler. In particular, suppose that the first m marks from the left
are located at the positions ¢4, ..., ¥¢,,. Then, the location of the mark m+ 1 can
be chosen from the set

{U5d1,m+1§U§81,m+1a v—Zk¢{€j—£i:1§i<j§m}Vk:17...,m}.

Therefore, we again prefer to create multiple child nodes rather than the more
traditional dichotomous branching.

4.3 Computations

We report the results of our computational experiments with the quadratic inte-
ger programming formulation with LP linearization in Table4 for n =9, ..., 14.
Since quadratic integer programming formulations are based on feasibility ver-
sion of the Golomb ruler problem, we solve a sequence of models with increasing

A Computational Comparison of Optimization Methods for Golomb Ruler 423

ruler length to certify that a given ruler is optimal (see the explanation at the
end of Sect. 4.1). For instance, to prove that Gg = 44, we solve problem (9) with
L =35,...,43 and certify that n;, = 8 (here, we assume that Gy is known as 34).
We report the computational results with and without the Golomb and Cliques
cuts giving rise to four different settings.

We observe that both types of cuts are quite effective to solve the subproblems
from different perspectives: Golomb cuts are especially helpful in reducing the
computational time more directly whereas Clique cuts significantly lowers the
number of branch-and-bound nodes and indirectly reduces the total time. The
reason that these two cuts behave differently is that Golomb cuts are added from
scratch and their number is limited whereas Clique cuts are added on the fly at
each node of the tree and their number can be quite large. We believe that the
separation of Clique cuts can be made more efficient and selective so that the
total computational effort can be further improved.

Finally, we report the results of our computational experiments with the
quadratic integer programming formulation with SDP linearization in Table 5
for n = 9,10,11 with and without Golomb cuts (MOSEK 8.1 is used as the
SDP solver). Although the total number of branch-and-bound nodes is reduced
by solving the SDP relaxation of the model (8) at each node, the total time
increases quite significantly which prevents this line of research to be practical.
However, we point out that our implementation is quite naive and perhaps the
value of stronger relaxations provided by the SDP relaxations can be made useful.

Table 5. Results of the “y” Formulation (linearization via SDP) with and without
Golomb cuts.

n | L w/o Golomb Cuts | with Golomb Cuts
TT #BBN | TT #BBN

9 35-43|21.38 227 22.58 209

10 | 45-54 | 33.03 231 40.77 200

11| 56-716,776.11 | 25,591 | 6,607.07 | 24,737

5 Concluding Remarks

In this paper, we provided a comprehensive comparison of computational meth-
ods to solve the Golomb ruler problem using optimization techniques. In par-
ticular, we analyzed three formulations based on linear integer programming,
constraint programming and quadratic integer programming, and proposed sev-
eral enhancements based on valid inequalities, variable bounding and branch-
ing strategies. According to our experiments with a budget of 10h, integer lin-
ear programming models can solve up to 13-mark instances whereas constraint
programming and quadratic integer programming formulations can scale up to
14-mark instance, with the latter being faster. We observed that proposed

424 B. Kocuk and W.-J. van Hoeve

enhancements significantly alter the solution procedures and provide substantial
savings in terms of computational effort.

Although the methods in this paper can solve relatively small-size instances
of the Golomb ruler problem, we think that there are some promising research
directions which might utilize them more effectively. As an example, if a large
number of processors is available, then bound tightening subproblems can be
parallelized asynchronously so that they can exchange information whenever a
new bound is improved. Since the availability of tight variable bounds seems
to accelerate the constraint programming solver, this can potentially enable us
to solve larger instances. Another potential line of research would be to make
the cut generation procedure for the quadratic integer programming model more
efficient and selective so that the overhead associated with solving large MILPs
is reduced while keeping the strength of the relaxations intact.

References

1. Babcock, W.C.: Intermodulation interference in radio systems. Bell Labs Tech. J.
32(1), 63-73 (1953)

2. Biraud, F., Blum, E.J., Ribes, J.C.: On optimum synthetic linear arrays with
application to radioastronomy. IEEE Trans. Antennas Propag. 22, 108-109 (1974)

3. Bloom, G.S., Golomb, S.W.: Applications of numbered undirected graphs. Proc.
IEEE 65(4), 562-570 (1977)

4. Blum, E.J., Ribes, J.C., Biraud, F.: Some new possibilities of optimum synthetic
linear arrays for radioastronomy. Astron. Astrophys. 41, 409-411 (1975)

5. Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an undirected graph.
Commun. ACM 16(9), 575-577 (1973)

6. Dotd, 1., Van Hentenryck, P.: A simple hybrid evolutionary algorithm for finding
Golomb rulers. In: The 2005 IEEE Congress on Evolutionary Computation, vol. 3,
pp- 2018-2023. IEEE (2005)

7. Drakakis, K., Gow, R., O’Carroll, L.: On some properties of Costas arrays gen-
erated via finite fields. In: 40th Annual Conference on Information Sciences and
Systems, pp. 801-805. IEEE (2006)

8. Galinier, P., Jaumard, B., Morales, R., Pesant, G.: A constraint-based approach
to the Golomb ruler problem. Montréal: Centre for Research on Transportation =
Centre de recherche sur les transports (CRT) (2003)

9. Lorentzen, R., Nilsen, R.: Application of linear programming to the optimal dif-
ference triangle set problem. IEEE Trans. Inf. Theor. 37(5), 1486-1488 (1991)

10. Martin, P., Shmoys, D.B.: A new approach to computing optimal schedules
for the job-shop scheduling problem. In: Cunningham, W.H., McCormick, S.T.,
Queyranne, M. (eds.) IPCO 1996. LNCS, vol. 1084, pp. 389—403. Springer, Heidel-
berg (1996). https://doi.org/10.1007/3-540-61310-2_29

11. Meyer, C., Jaumard, B.: Equivalence of some LP-based lower bounds for the
Golomb ruler problem. Discrete Appl. Math. 154(1), 120-144 (2006)

12. Oshiga, O., Abreu, G.: Design of orthogonal Golomb rulers with applications in
wireless localization. In: 2014 48th Asilomar Conference on Signals, Systems and
Computers, pp. 1497-1501, November 2014

https://doi.org/10.1007/3-540-61310-2_29

13.

14.

15.

16.

17.

18.

19.

20.

A Computational Comparison of Optimization Methods for Golomb Ruler 425

Prestwich, S.: Trading completeness for scalability: hybrid search for cliques and
rulers. In: Proceedings of the Third International Workshop on Integration of Al
and OR Techniques in Constraint Programming for Combinatorial Optimization
Problems, pp. 159-174 (2001)

Robinson, J., Bernstein, A.: A class of binary recurrent codes with limited error
propagation. IEEE Trans. Inf. Theor. 13(1), 106113 (1967)

Singer, J.: A theorem in finite projective geometry and some applications to number
theory. Trans. Am. Math. Soc. 43(3), 377-385 (1938)

Slusky, M.R., van Hoeve, W.-J.: A Lagrangian relaxation for golomb rulers. In:
Gomes, C., Sellmann, M. (eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 251-267.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38171-3_17
Smith, B.M., Stergiou, K., Walsh, T.: Modelling the Golomb ruler problem.
Research Report Series-University of Leeeds School of Computer Studies LU SCS
RR (1999)

Smith, B.M., Stergiou, K., Walsh, T.: Using auxiliary variables and implied con-
straints to model non-binary problems. In: Proceedings of AAAI/TAAI, pp. 182—
187 (2000)

Soliday, S.W., Homaifar, A., Lebby, G.L.: Genetic algorithm approach to the search
for Golomb rulers. In: ICGA, pp. 528-535 (1995)

Williams, H.P., Yan, H.: Representations of the all_different predicate of constraint
satisfaction in integer programming. INFORMS J. Comput. 13(2), 96-103 (2001)

https://doi.org/10.1007/978-3-642-38171-3_17

	A Computational Comparison of Optimization Methods for the Golomb Ruler Problem
	1 Introduction
	2 Linear Integer Programming Models
	2.1 Two Formulations
	2.2 Enhancements
	2.3 Computations

	3 Constraint Programming Model
	3.1 Formulation
	3.2 Enhancements
	3.3 Computations

	4 Quadratic Integer Programming Models
	4.1 Two Formulations
	4.2 Enhancements
	4.3 Computations

	5 Concluding Remarks
	References

