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Abstract. Recently a robustness notion for matching problems based
on the concept of a (a, b)-supermatch is proposed for the Stable Marriage
problem (SM). In this paper we extend this notion to another match-
ing problem, namely the Stable Roommates problem (SR). We define
a polynomial-time procedure based on the concept of reduced rotation
poset to verify if a stable matching is a (1, b)-supermatch. Then, we
adapt a local search and a genetic local search procedure to find the
(1, b)-supermatch that minimises b in a given SR instance. Finally, we
compare the two models and also create different SM and SR instances
to present empirical results on the robustness of these instances.

1 Introduction

Robustness to change is an important property that has a variety of definitions
in different settings [15]. There exist many robustness notions within the context
of matching problems. These robustness notions mostly focus on handling uncer-
tainty and erroneous data in the input [1–3,12]. Genc et al. introduced a novel
notion of robustness for the Stable Marriage problem (SM) where the robust-
ness of a solution refers to its capability to be repaired at a small bounded
cost in case of an unforeseen event [4]. The notion of (a, b)-supermatches dif-
fers from the other robustness notions in this context since it specifies a degree
of repairability. This property is often referred as fault-tolerance. The (a, b)-
supermatch concept defines the notion of robustness for matching problems by
using the fault-tolerance framework [8,9].

The SM is defined by a set of men and a set of women, each of which has a set
of preferences over people of opposite sex. The task is to find a (monogamous)
matching between men and women that is stable. A matching is said to be stable
if there are no two pairs that are not matched to each other, but they prefer
being together than being with their current partners. The robust variant of the
problem is called Robust Stable Marriage (RSM) [4], in which the robustness of
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a stable matching is measured by the minimum number of changes required to
obtain another stable matching in the case of break-up of some pairs. If a pair
appears in all the stable matchings, the pair is said to be fixed, otherwise, non-
fixed. An (a, b)-supermatch is a stable matching such that if any a non-fixed
agents (men/women) break-up, it is possible to find another stable matching
by changing the partners of those a agents and also changing the partners of
at most b others. The previous work on the RSM includes the proposal of the
problem, a complexity study, a polynomial-time verification procedure for a given
(1, b)-supermatch, and three different models (constraint programming, genetic
algorithm, local search) to find the (1, b)-supermatch that minimises b for a given
SM instance [4,6]. We investigate in this paper this robustness concept further
on a generalised version of the SM, namely the Stable Roommates problem (SR).
The Stable Roommates problem is a one-sided generalisation of SM, where any
two agents regardless of their gender can be matched. We define the Robust
Stable Roommates problem (RSR) analogous to the RSM. To the best of our
knowledge, there is no previous research on finding the (a, b)-supermatches of
the SR.

The motivation behind studying RSR is due to the large applicability of
SR and the importance to handle the dynamism of the real world. Take the
example of P2P networks where peers (computers for instance) are connected to
each other for file sharing purposes [14]. Each peer has a preference list towards
the other peers and a matching that respect stability is required. However, as the
network evolves during time, peers continuously seek new partners. That is, if a
peer that provides the file loses the connection, an alternative peer is needed for
downloading a file. In this situation, we have to maintain stability with possibly
the minimum changes to the current solution. An (a, b)-supermatch guarantees
finding other peers to the broken ones at a small number of additional changes
while preserving stability.

The paper is organised as follows: In Sect. 2, we give a formal background and
introduce the robust stable roommates problem. Then, in Sect. 3, we show that
one can verify in polynomial time if a given stable matching (in the SR context)
is a (1, b)-supermatch. Next, we adapt a local search procedure and a hybrid
(genetic local search) model for finding robust solutions in Sect. 4. Finally, we
present in Sect. 5 our empirical study.

2 Background and Notation

The Stable Roommates problem (SR) consists of a set of 2×n agents, where each
agent has a preference list in which he/she ranks all other agents in strict order
of preference. In this context, given a set of people P , a matching corresponds to
a partition of P into disjoint pairs (or partners). A matching is stable if it admits
no blocking pairs. A pair {pi, pj} blocks a matching if: pi is unassigned or prefers
pj to his/her current partner, or pj is unassigned or prefers pi to his/her current
partner. The solution to an SR instance is a stable matching. If such a solution
does not exist, then the instance is unsolvable. A pair is stable if it appears in
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some stable matching. If a pair appears in all stable matchings, it is called a
fixed pair. If a person p has at least two different partners among all stable
matchings, p is said to be non-fixed. We measure the distance between any two
stable matchings M,M ′ by the number of different pairs d(M,M ′) =| M \ M |.
The stable matching M ′ among all the stable matchings of the instance that has
the minimum distance to M is said to be the closest stable matching to M.

Irving defines an O(n2) procedure to find a solution to SR or to report if
none exists [10]. The procedure consists of two phases. Let us first define some
notations to describe these phases. A preference table (denoted by T ) is, for a
given problem instance, a set of preference lists for which zero or more entries
have been deleted. We use Tinit to denote the initial preference table. During
the two phases, some pairs are removed from Tinit. We denote the preference
list of a person pi in a table T by LT (i). Let fT (pi), sT (pi), lT (pi) denote the
first, second and last entries of LT (i). The first phase is based on each person
proposing to the first available person in their lists starting from Tinit until every
person has made a proposal that has been accepted, i.e. became semi-engaged.
If a person pi becomes semi-engaged to pj , all pairs {pj , pk} such that pj prefers
pi to pk are deleted from the table. The table obtained after applying the Phase
1 algorithm is called the Phase-1 table and is denoted by T0.

The second phase of the algorithm is based on finding and eliminating
rotations starting from T0. A rotation ρ is a circular list denoted as ρ =
(x0, y0), (x1, y1), . . . , (xr−1, yr−1), where all xi, yj ∈ P . Each rotation has the
property that yi = fT (xi) and yi+1 = sT (xi) in a table T for all i, 0 ≤ i ≤ r − 1,
where i+1 is taken modulo r. The set of people {x0, . . . , xr−1} is called the X-set
of ρ, denoted by X(ρ). Similarly, {y0, . . . , yr−1} is called the Y-set of ρ, denoted
by Y (ρ). Additionally, given a set of rotations R, X(R) = ∪ρ∈RX(ρ). Similar
for the Y-set. The elimination of a rotation ρ from a table T means for each
pair {pi, pj}, where pi = xm and pj = ym and (xm, ym) ∈ ρ, the deletion of
{pi, pj} and all pairs {ym, z} such that ym prefers xm−1 to z from T . In this
case, ρ is said to be exposed on T and the table after eliminating ρ is denoted by
T/ρ. If after Phase 1 or Phase 2, all lists in T contain exactly one entry, then T
represents a stable matching. Note that sometimes we use (pi, pj) and (xm, ym)
interchangeably. The notation (xm, ym) is used for denoting the position of the
pair (pi, pj) in ρ. Lemma 4.4.1 from [7] states that {pi, pj} is a stable non-fixed
pair if and only if (pi, pj) or (pj , pi) is in a non-singular rotation.

There are two types of rotations: singular and non-singular. A rotation
ρ = (x0, y0), (x1, y1), . . . , (xr−1, yr−1) is called a non-singular rotation if ρ̄ =
(y1, x0), (y2, x1), . . . , (y0, xr−1) is also a rotation. In this case, ρ and ρ̄ are called
as duals of each other. If a rotation does not have a dual, then it is a singular
rotation. We denote by TS the table where all singular rotations are eliminated
from T0. A rotation ρ′ is said to precede another rotation ρ (denoted by ρ′ ≺ ρ)
if ρ′ is eliminated for ρ to become exposed. In this case, we say ρ′ is a predecessor
of ρ and ρ is a successor of ρ′. A rotation ρ′ is an immediate predecessor of ρ,
and ρ is an immediate successor of ρ′, if ρ′ ≺ ρ and there does not exist a ρ∗ such
that ρ′ ≺ ρ∗ ≺ ρ. All predecessors and successors of a rotation, not necessarily



An Approach to Robustness in the SR and Its Comparison with the SM 323

immediate, are denoted by N−(ρ) and N+(ρ). The set of both singular and
non-singular rotations under ≺ defines the roommates rotation poset. The set of
non-singular rotations under ≺ defines the reduced rotation poset and is denoted
by Π = (V, E). We refer to any two rotations as incomparable if none of them
precede the other one, comparable otherwise. Let us illustrate these concepts on
an SR instance I. We use a sample instance of 10 people from page 180 in [7].
Figure 1 represents the TS of I. Figure 2 represents the reduced rotation poset of
I, where the pairs involved in the rotations are given next to their corresponding
rotations for convenience.

Fig. 1. The TS for an SR
instance I of size 10.

Fig. 2. Reduced rotation poset of I given in Fig. 1.

Table 1. A list of all the stable matchings and their corresponding complete closed
subsets of I.

M1 = {(1, 3), (2, 4), (5, 7), (6, 8), (9, 10)} S1 = {ρ̄3, ρ4, ρ5, ρ6, ρ7}
M2 = {(1, 7), (2, 8), (3, 5), (4, 9), (6, 10)} S2 = {ρ3, ρ̄4, ρ5, ρ̄6, ρ̄7}
M3 = {(1, 4), (2, 9), (3, 6), (5, 7), (8, 10)} S3 = {ρ3, ρ4, ρ̄5, ρ6, ρ̄7}
M4 = {(1, 4), (2, 3), (5, 7), (6, 8), (9, 10)} S4 = {ρ3, ρ4, ρ5, ρ6, ρ7}
M5 = {(1, 4), (2, 8), (3, 6), (5, 7), (9, 10)} S5 = {ρ3, ρ4, ρ5, ρ6, ρ̄7}
M6 = {(1, 7), (2, 3), (4, 9), (5, 10), (6, 8)} S6 = {ρ3, ρ4, ρ5, ρ̄6, ρ7}
M7 = {(1, 7), (2, 8), (3, 6), (4, 9), (5, 10)} S7 = {ρ3, ρ4, ρ5, ρ̄6, ρ̄7}

A subset of the rotations in Π, containing one of each dual rotations and
all their predecessors, is called a complete closed subset, denoted by S. There
exists a 1-1 correspondence between the complete closed subsets of Π and the
stable matchings of the underlying instance [7]. Any stable matching can be
obtained by eliminating one of each dual rotations starting from TS . A rotation
ρ is said to eliminate {pi, pj} if there exists a table T such that {pi, pj} ∈ T and
{pi, pj} �∈ T/ρ. On the other hand, a rotation ρ is said to produce {pi, pj} if there
exists a table T such that |LT (i)| > 1, |LT (j)| > 1, LT/ρ(i) contains only pj ,
and LT/ρ(j) contains only pi. We use the term flipping ρ from S as the process
of removing ρ ∈ S from S and adding its dual ρ̄ to S. A neighbour rotation
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ρ is ρ �∈ S and either the rotation has no predecessors (N−(ρ) = ∅) or for all
predecessors ρ′ ∈ N−(S), ρ′ ∈ S. The set N(S) denotes the set of neighbour
rotations. The set of all sink nodes of the graph induced by S is referred as the
sink rotations of S, denoted as L(S). Table 1 presents all the 7 stable matchings
of I given in Fig. 1 and their corresponding complete closed subsets.

Throughout the paper, we denote by M a given stable matching, and its
corresponding complete closed subset by S. If there are any subscripts or super-
scripts for M such as M∗

i , then they are applied to the corresponding complete
closed subset (i.e. S∗

i ). Lemmas 1 and 2 are included here to be used in our
proofs later.

Lemma 1 (Lemma 4.1.1 [7]). Given an instance of the stable marriage prob-
lem involving n men and n women, there is an instance (in fact there are many
instances) of the stable roommates problem involving those 2n persons such that
the stable roommates matchings are precisely the stable matchings for the original
SM instance.

Lemma 2 (Lemma 4.3.7 [7]). If ρ, σ are non-singular and π is a singular
rotation, then: (1) ρ �≺ ρ̄; (2) ρ ≺ σ ⇐⇒ σ̄ ≺ ρ̄; (3) τ ≺ π =⇒ τ is singular.

Robust Stable Roommates: We refer the problem of finding an (a, b)-supermatch
to a given SR instance as the Robust Stable Roommates problem (RSR). A stable
matching of an RSR instance is called an (a, b)-supermatch if any a non-fixed
pairs do not want to be partners anymore (i.e. leave the stable matching), it is
possible to find another stable matching by changing the partners of the people
involved in those a pairs and at most b other pairs.

Definition 1 ((a, b)-supermatch). Given an SR instance I, and two positive
integers a, b ∈ N, a stable matching M of I is said to be an (a, b)-supermatch if
for any set Ψ ⊆ M of non-fixed stable pairs, where |Ψ | = a, there exists a stable
matching M ′ such that M ′ ∩ Ψ = ∅ and d(M,M ′) ≤ b + a.

The intractability result of the RSM is lifted to the RSR as the SR is a
generalisation of the SM.

Theorem 1. RSR is NP-hard.

Proof. The proof is straightforward as it is possible to create an SR instance
ISR from any given SM instance ISM with the exact same stable matchings in
polynomial-time by padding every other person of the same sex to the preference
list of each person (see Lemma 1). Every (a, b)-supermatch in the ISM is also an
(a, b)-supermatch in the ISR and vice versa. Hence, RSR is NP-hard because
RSM is NP-hard [6]. �
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3 Verification of (1, b)-supermatch in Polynomial Time

We prove in this section that checking if a stable matching M is a (1, b)-
supermatch can be done in polynomial time. Indeed, we show in Theorem 3
how to construct the closet matching to M if any non-fixed pair in M wants to
leave.

In order to show our main result, we first prove in Theorem 2 that any non-
fixed pair can be:(1) produced by a unique rotation and eliminated by another
one; or (2) eliminated by two different rotations and produced by two others (see
later Example 1). In the first case, we shall denote by ρe the elimination rotation
and by ρp the production rotation. In the second case, we shall denote by ρp1, ρp2

the two production rotations and by ρe1, ρe2 the two elimination rotations.
We assume w.l.o.g that the input instance admits at least two stable matchings.

For any non-fixed stable pair (pi, pj), there are two possible cases to consider:

Case 1: (A) fTS
(i) = pj and lTS

(j) = pi, or (B) lTS
(i) = pj and fTS

(j) = pi;
Case 2: Otherwise.

Case 1 is a special case indicating that if one of the persons in the pair is the
other ones’ most preferred person in TS (respectively, the other one is the least
preferred person in TS). Note that, in both cases LTS

(i) > 1 and LTS
(j) > 1,

because the pairs are non-fixed. Later, we refer to these cases for identifying
scenarios. In Lemma 3, we show how to identify the elimination rotation(s) for
a given pair regardless of its case.

Lemma 3. A non-fixed stable pair {pi, pj} is eliminated by a rotation ρ if and
only if (pi, pj) ∈ ρ or (pj , pi) ∈ ρ.

Proof. → Let ρ = (x0, y0), (x1, y1) . . . , (x|ρ|−1, y|ρ|−1) be a rotation that elim-
inates {pi, pj}. Observe first that ρ is non-singular (otherwise {pi, pj} is not
stable). Recall that the elimination of ρ from a table T means for each pair
(xm, ym) ∈ ρ, the deletion of {xm, ym} and all pairs {ym, z} such that ym prefers
xm−1 to z from T . Table 2 gives an illustration of the preferences of xm and ym.
The eliminating ρ moves xm from ym to ym+1 and deletes some {ym, z}. In a
similar way, eliminating ρ̄ moves ym from xm−1 to xm and deletes some {xm, z′}.
Since every close complete subset contains either ρ or ρ̄, then any pair {ym, z}

Table 2. An illustration of the preferences

p Preference lists

. . . . . .

xm . . . , ym, z′, ym+1 . . .

. . . . . .

ym . . . , xm−1, z, xm, . . .

. . . . . .
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and {xm, z′} cannot be part of any solution. Therefore, if ρ eliminates {pi, pj}
and {pi, pj} /∈ ρ then {pi, pj} is not stable. This contradicts the fact that our
pair {pi, pj} is a non-fixed stable pair.

← By the definition of eliminating a rotation ρ from a table T , where
(pi, pj) ∈ ρ, the elimination results in the deletion of pj from pi’s list. Simi-
larly, if (pj , pi) ∈ ρ then it results in the deletion of pi from pj ’s list. �

Lemma 4 identifies the production rotations.

Lemma 4. If a non-fixed stable pair {pi, pj} is eliminated by ρe, then {pi, pj}
is produced by the dual of it, ρp = ρ̄e.

Proof. A rotation is said to produce {pi, pj} if eliminating it from a table T
reduces LT/ρ(i) to a single entry, namely to pj and LT/ρ(j) to pi. We prove the
existence of the production rotations over the two cases (Case 1 and Case 2)
identified above.

We have two sub-cases in Case 1. First case is when fTS
(i) = pj , lTS

(j) = pi.
In order to reduce pi’s list to only pj , we need a rotation that moves pi from
his/her second best choice up to the first choice. We refer to this operation as lim-
iting pi from right . Similarly, to reduce the pj ’s list to only pi, we need a rotation
that moves pj from his/her second least-preferred person to the least preferred
person. We refer to this operation as limiting pj from left . Referring back to
Table 2 for notation, the production rotation ρp of the pair {pi, pj} = (xm, ym)
must contain the pair (ym+1, xm) ∈ ρp to limit xm from right. Additionally,
it must contain (ym, xm−1) to limit ym from left. To illustrate, the production
rotation has the shape: ρp = . . . , (ym, xm−1), (ym+1, xm), . . .. Note that, each
ordered pair can only appear in exactly one rotation. Observe that, the dual
of ρp contains the pair (xm, ym) by definition of dual. By Lemma 3, we know
that the rotation that contains (xm, ym) is the elimination rotation of the pair
{pi, pj}. Therefore, ρp = ρ̄e The proof for the second sub-case is similar, where
(ym, xm) ∈ ρe.

For a pair {pi, pj} of Case 2, each person has both more and less preferred
people in their lists. Therefore, in order to produce a pair, their lists must be
limited from both left and right. Let ρp1 denote the rotation that limits pi from
left and pj from right, and ρp2 denote the rotation that limits pi from right and
pj from left, respectively. Let the preference lists for the pair {pi, pj} denoted
by LTS

(i) = [. . . , ym−1, ym, ym+1] and LTS
(j) = [. . . , xm−1, xm, xm+1] where

{pi, pj} = (xm, ym). The pair (xm, ym−1) must be in ρp1 to limit pi from left
and (xm+1, ym) be in ρp1 to limit pj from right. Additionally, the pair (ym+1, xm)
must be in ρp2 to limit pi from right and (ym, xm−1) to limit pj from left. Note
that, the dual of ρp1 contains (ym, xm), the dual of ρp2 contains (xm, ym) by
the definition of a dual rotation. By Lemma 3, we know these rotations are
elimination rotations of the pair {pi, pj}.

Note that the two rotations ρp1 and ρp2 do not require one of them to be
eliminated from the table first; they are incomparable. Therefore, depending on
the order of elimination, both of them are production rotations. �
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We sum up the findings above for the non-fixed stable pairs. If a pair is of
Case 1, then there exists only one elimination rotation for this pair and only one
production rotation as the dual of the elimination one. Because the preference
list needs to be limited in only one direction. However, for the pairs of Case 2,
there exist two elimination rotations for this pair, and also two other produc-
tion rotations. Observe that, for each non-fixed stable pair {pi, pj} in a stable
matching M, the corresponding complete closed subset of M contains all produc-
tion rotations of {pi, pj}. It is important to note that, especially for the pairs of
Case 2, including one production rotation in the complete closed subset and not
the other one, results in producing other partners for that pair. Subsequently,
Theorem 2 is an immediate result of Lemmas 3 and 4.

Theorem 2. Let {pi, pj} be a non-fixed stable pair. If {pi, pj} is of Case
1, then there exists a unique elimination rotation ρe, where (pi, pj) ∈ ρe or
(pj , pi) ∈ ρe, and a unique production rotation ρp, where ρp = ρ̄e. Otherwise
(Case 2), there exist two different elimination rotations ρe1 and ρe2, where
(pi, pj) ∈ ρe1, (pj , pi) ∈ ρe2 and two rotations ρp1 = ρ̄e1, ρp2 = ρ̄e2 that produce
the pair.

Let SP denote the set of all the complete closed subsets for the underlying
SR instance. Lemma 5 gives a characterisation for the complete closed subsets.

Lemma 5. Let S ∈ SP . For each sink rotation ρ of S, the set S\{ρ}∪{ρ̄} ∈ SP .

Proof. By definition of closed subset, every predecessor ρ′ ∈ N−(ρ) is in S.
Since ρ is a sink rotation, any successor ρ∗ ∈ N+(ρ) is not in S. Therefore, by
definition of the complete closed subset, we have ρ̄∗ ∈ S and ρ̄ is not in S. Using
Lemma 2, we know that ρ̄∗ ≺ ρ̄. Hence, all predecessors of ρ̄ are already in S,
making ρ̄ a neighbour rotation and results in S \ {ρ} ∪ {ρ̄} ∈ SP . �

The distance between two stable matchings d(M,M ′) is previously defined
in Sect. 2 as the number of different pairs between M and M ′. Observe that
the distance can be calculated by also using their corresponding complete closed
subsets. If S \ S′ = {ρ}, it means ρ ∈ S and ρ̄ ∈ S′. We know that, X({ρ}) =
Y ({ρ̄}) and Y ({ρ}) = X({ρ̄}). Therefore, between M and M ′, only the people in
ρ (or ρ̄) have different partners. This can also be generalised to a set of rotations.
Hence, the distance can also be denoted as d(S, S′) = |X(S \ S′) ∪ Y (S \ S′)|/2.
Note that d(S′, S) = d(S, S′).

Lemma 6 identifies the closest stable matching to a stable matching M, when
a rotation from its corresponding complete closed subset is to be removed.

Lemma 6. Given a stable matching M and its corresponding complete closed
subset S, if ρ ∈ S is a rotation to remove from S, the closest stable matching
M ′ to M such that ρ �∈ S′ is found by the formula1:

C(S, ρ) = S′ = (S \ ({ρ} ∪ N+(ρ))) ∪ {ρ̄} ∪
⋃

ρ∗∈N+(ρ)

ρ̄∗ (1)

1 The parentheses are used to indicate priority.
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Proof. The proof of the defined set S′ being a complete closed subset is obvious
by using Lemmas 2 and 5 as flipping a sink rotation of S yields in another
complete closed subset. However, if ρ is not a sink rotation in S, we must flip
all the successors of ρ to obtain a complete closed subset.

Let M∗ denote the stable matching after flipping ρ ∈ S. Then, d(M,M∗) =
d(S, S∗) = |X({ρ}) ∪ Y ({ρ})|/2. Now, let M∗ denote the stable matching
after flipping both ρ, σ ∈ S. Then, d(M,M∗) = |X({ρ}) ∪ Y ({ρ}) ∪ X({σ}) ∪
Y ({σ})|/2. Observe that, flipping more rotations can only increase the distance
between matchings. In Formula 1, the required number of flips is minimum.
Therefore the function C(S, ρ) returns the closest stable matching to M when
ρ ∈ S to be removed from S. �

Finally, Theorem 3 concludes how to find the closest stable matching M ′ to
M if {pi, pj} ∈ M wants to leave the M.

Theorem 3. Given a stable matching M and a pair {pi, pj} to leave M, the
closest stable matching M ′ to M is identified by its corresponding S′ using the
Formula 1 as follows:

1. If Case 1, then S′ = C(S, ρp).
2. If Case 2, let M1 and M2 be the two stable matchings s.t. S1 = C(S, ρp1) and

S2 = C(S, ρp2). Then S′ = S1 if d(M,M1) < d(M,M2), otherwise S′ = M2.

Proof. The proof is immediate from Theorem 2 and Lemma 6. �
In order to verify if a given M is a (1, b)-supermatch, all closest stable match-

ings to the given stable matching are found under the assumption that each
non-fixed pair wants to leave the stable matching, one at a time. For each pair,
its production rotation is identified and then Theorem 3 is applied to find the
closest stable matching. Among all the closest stable matchings, the match-
ing that results in the maximum distance to M sets the robustness of M, i.e.
b = d(M,M ′) − 1, where 1 denotes the pair that wants to leave.

Example 1. [Computing robustness] Let us calculate the closest matching to M6

given in Table 1. In Table 3, we identify the cases, and the production/elimination
rotation(s) for assuming each pair leaves the M6 at a time, and we apply
Theorem 3 to find the robustness. The pair that has the maximum cost to be
repaired sets the robustness value of the matching. Therefore, for this case, the
robustness of M6 is 3.

The production and elimination rotations of each pair can be identified in
a preprocessing step. We show that checking if a stable matching is a (1, b)-
supermatch can be performed in O(n × |V|) time after the O(n3log(n)) prepro-
cessing step for an instance where 2 × n people are involved. The preprocessing
step consists in identifying the rotations and building the reduced rotation poset
(O(n3logn)) [7]; identifying all the predecessors and successors of each rotation
ρ (O(|V|2)); and identifying elimination and production rotations for each pair
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Table 3. Computing the closest matching to M6

{pi , pj} Case ρp ρe C(S, ρ) S d(M, M ′) S′ b

{p1, p7} 1 ρp = ρ̄6 ρe = ρ6 {ρ3, ρ4, ρ5, ρ6, ρ7} S4 4 S4 3

{p2, p3} 2 ρp1 = ρ7

ρp2 = ρ3

ρe1 = ρ̄7

ρe2 = ρ̄3

{ρ3, ρ4, ρ5, ρ̄6, ρ̄7}
{ρ̄3, ρ4, ρ5, ρ6, ρ7}

S7

S1

2
4

S7 1

{p4, p9} 1 ρp = ρ̄6 ρe = ρ6 {ρ3, ρ4, ρ5, ρ6, ρ7} S4 4 S4 3

{p5, p10} 2 ρp1 = ρ4

ρp2 = ρ̄6

ρe1 = ρ̄4

ρe2 = ρ6

{ρ3, ρ̄4, ρ5, ρ̄6, ρ̄7}
{ρ̄3, ρ4, ρ5, ρ6, ρ7}

S2

S1

3
4

S2 2

{p6, p8} 1 ρp = ρ7 ρe = ρ̄7 {ρ3, ρ4, ρ5, ρ̄6, ρ̄7} S7 2 S7 1

{pi, pj} whenever applicable in (O(n2)). Given a stable matching M, its corre-
sponding complete closed subset S is found by finding and adding the production
rotation(s) of each pair and their predecessors into S by starting from an empty
set (O(n×|V|)). Conversely, given a closet complete S, M can be constructed by
eliminating all the rotations in S from TS by respecting their precedence order.
The order is found by applying sorting (O(|V| × log|V|)). The main algorithm is
to compute for each pair in M, the closest stable matching M ′ by using Theo-
rem 3. Observe that computing the distance between two stable matchings takes
O(n) time and flipping a rotation takes a constant time. Moreover, the worst
case of finding the closest stable matching is to flip all the non-singular rotations
in S, where the number of all non-singular rotations is |V|/2. Therefore, this
computation takes O(|V|) time.

4 Finding Robust Solutions to the SR

We consider in this section two meta-heuristic approaches to solve the problem of
finding a (1, b)-supermatch to a given Stable Roommates instance that minimizes
the value of b.

4.1 Local Search

Considering the structural similarities between the RSM and the RSR, we tai-
lored the local search model (LS) for the RSM, as it is shown that the LS model
produces near optimal solutions for RSM and is better than the proposed genetic
algorithm [4]. In the generic LS model, there exists a neighbourhood N for the
current solution. The algorithm works by searching the neighbourhood of the
current solution, finding the best neighbour Mn in the neighbourhood and then
proceeding the search by checking the neighbourhood of Mn. The aim is to find
the stable matching that has the minimum b value. The search is restarted by a
random stable matching at every few iterations to avoid getting stuck at a local
optimum. The search continues until a termination criterion is met.

In our model, we have four termination criteria. The first one is a cut-off
limit limcutoff , which “counts” the number of steps since the last best solution
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is found. The second one is the depth limit limdepth, which indicates the depth
of the neighbourhood search starting from a random stable matching. Another
criterion is the optimality opt, which indicates if the algorithm has already found
a solution with b = 1. Finally, we use a time limit limtime for each instance.

The procedure starts by creating a random stable matching Mc as follows.
We first mark all the non-singular rotations as available. Let A denote the set of
rotations that are available. Then, we randomly select a rotation ρ from A and
add it to the initially empty Sc. Subsequently, we remove ρ and ρ̄ from A. We
also add all predecessors ρ′ of ρ that are not in Sc to Sc and remove ρ′ and ρ̄′
from A. This operation operates in a loop until |Sc| = |V|/2. Once the complete
closed subset Sc is found, its corresponding stable matching is computed by
eliminating all rotations in Sc from TS by respecting their precedence order.

After creating a random stable matching Mc, the neighbourhood N of Mc is
found by checking all the sink rotations in Sc. By using Lemma 5, we know that
flipping any sink rotation in Mc creates another stable matching Mn, which we
refer as a neighbour of the Mc. The general procedure is the same as the one
developed for the RSM [5]. In brief, the process starts by descending from the
Mc by finding N of Mc. The next iteration descends from the neighbour of Mc

that has the lowest b value. This loop is restarted every limdepth iteration by
a random Mc. The stable matching that has the minimum value of b as found
during the search is returned as the solution.

The complexity of the LS procedure depends on the computation of the b
values. Finding neighbours is based on the identification of the sink rotations of
Sc, where there can be at most |V|/2 sink rotations and then a constant cost
for flipping each sink rotation. The best neighbour is identified after computing
b values of |N | stable matchings. This procedure takes O(k × n × |V| × |N |),
where k is the number of iterations and n is the number of non-fixed people.

4.2 Genetic Local Search (Hybrid)

Combining different search techniques to enhance the performance of a single
model is proven to improve solution quality and the models [13,18]. Genc et al.
propose three different models (constraint programming, local search and genetic
algorithm) for finding (1, b)-supermatches to the RSM in [4]. The results indicate
that genetic algorithm (GA) procedure has poor performance when compared to
the LS. In this work, we consider combining the two metaheuristics: the genetic
algorithm and the local search to provide a hybrid procedure. We denote this
hybrid model as HB. The overview of the GA procedure we use in the HB model
is the same as the one used for RSM (details can be found in [5]).

The procedure begins by initialising a population of random stable match-
ings. Then, the population is evolved by randomly selecting individuals from
the population, applying crossover, searching for neighbours of the products of
crossover, applying mutation. This process is repeated until some termination
criteria is met (no improvement, time-limit exceeded, optimal solution found).
The procedure below gives a pseudo-code of the evolution phase of HB.
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1: procedure Evolution()
2: M1 ← Selection()
3: M2 ← Selection()
4: if M1 �= M2 then
5: (Mc1, Mc2) ← Crossover(M1, M2)
6: N ←FindNeighbours(Mc1)
7: Mc1 ← Best(N )
8: N ←FindNeighbours(Mc2)
9: Mc2 ← Best(N )

10: Refine(Mc1, Mc2)
11: Evaluation()

12: Mfit ← GetFittest(P )
13: Mm ← Selection()
14: rand ← Random(0, 1)
15: if Mm �= Mfit and rand < pm then
16: Mutation(Mm)

As can be seen from the procedure, the only LS enhancement to the GA
algorithm is the search for the neighbours of the stable matchings after crossover
(see Lines 6–9). Let Mc1,Mc2 be the two stable matchings produced by the
crossover. We update Mc1 by its best neighbour after the neighbour search (same
applies to the Mc2). Creating a random stable matching and finding neighbours
are already discussed in Sect. 4.1.

If the original methods from LS and GA as described in [5], where the evo-
lution phase is updated with the one here are used, we obtain the HB model for
the RSM. In the RSR model, only the crossover and mutation operations are
different than the original GA model defined for RSM. Instead of defining the
crossover by adding rotations to the closed subset or removing them as we did for
the RSM, we use the terminology flip for the RSR. Considering the Lemma 6, we
define the crossover procedure for two stable matchings M1,M2 as follows. First,
we find a random rotation ρ1 ∈ S1, and a random rotation ρ2 ∈ S2. If ρ1 /∈ S2,
then ρ̄1 ∈ S2 due to the completeness property of the closed subsets in SR.
Therefore, we flip ρ̄1 in S2 and the duals of all of its predecessors ρ′ ∈ N−(ρ) if
ρ′ is not included in S2. We apply the same procedure to the other stable match-
ing as well. Moreover, for the mutation operation, we select a random rotation
ρ from the reduced rotation poset of the underlying instance and also a stable
matching M. If ρ ∈ S, we flip ρ and all the required predecessors. If its dual
ρ̄ ∈ S, then we flip ρ̄ and the predecessors.

5 Experiments

In this section, we first compare the performances of the HB and the LS pro-
posed for the RSR. Then, we investigate the robustness of different sets of
RSM and RSR instances2. The code is implemented in Java, reusing the RSM
2 Our datasets are publicly available at: github.com/begumgenc/rsmData.

http://github.com/begumgenc/rsmData
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experiments from [4]. All experiments are performed on a Dell M600 with 2.66
GHz processors under Linux, using three different randomisation seeds and fix-
ing time limit limtime = 20 min, number of iterations without improvement
limcutoff = 10000, the number of stable matchings in LS that descend from a
random stable matching limdepth = 50. We use the population size for the HB
as |P | = 30 and the mutation probability as pm = 0.7. We use a high pm as GA
is suffering from getting stuck at local minima and randomisation helps with it.
We discuss the size of the population for HB later.

HB v. LS for the RSR. Our first experiment is about the comparison of LS and
HB models. Random SR instances have only a small number of stable matchings
as we verify on the dataset Random later [16]. For the comparison of HB and LS
models, we look for instances that are likely to contain many stable matchings
to gain more insight on their performances. For this purpose, we first created a
dataset of purely random SM instances as each SM instance contains at least one
stable matching, then we converted these instances to the SR. This conversion
tackles the problem of random SR instances having only a few stable match-
ings, while preserving the randomness. Our SM dataset consists of 30 random
instances of each size n ∈ {100 × k | k ∈ {1, . . . , 10}}. Note that, the resulting
SR instances have size 2 × n.

Figures 3 and 4 provide detail on the comparison between the LS and the
HB.3 Figure 3 compares the average minimum b value found by the two models
for each instance in the set. In the x-axis, the range shows the size of the instances
such that all the instances that have x-values between [0, 200] is of size 200, [201–
400] is of size 400, etc. We confirm by our experiments and also observe in Fig. 4
that for each instance that has size 200 ≤ n ≤ 600, both models complete the
search within the given time limit. Additionally, they either produce similar
results (b values) or HB performs slightly better as can be observed in Fig. 3.
The reason for exceeding the time limit in Fig. 4 is due to us not interrupting the
construction of a stable matching. The construction of a stable matching consists
of exposing all rotations in its complete closed subset in order starting from TS .
Then, the b value is computed. For large stable matchings, this computation
becomes very costly. We can conclude that for small instances, both HB and
LS perform well in terms of finding solutions with low b values. If the time is
essential, HB model can be preferred over LS as it converges faster. Additionally,
HB is able to find better solutions for larger instances.

Random RSM v. Random RSR. Next, we perform some tests for SM-SR com-
parison on our dataset random. Our dataset Random consists of 30 purely ran-
domly created SM and SR instances for each size n ∈ {100×k | k ∈ {1, . . . , 10}}.
Note that, for an SM instance of size n, there exists n men and n women in the
problem. We have 2×n people in the corresponding SR instance. However, both
have n pairs. All SR instances in Random have at least two stable matchings.
Considering the good performance of LS for small instances, we used the LS
models for both RSM and RSR.
3 The reader is referred to the online version for coloured version.
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Fig. 3. Avg min b value found by
LS and HB.

Fig. 4. Average time spent by LS
and HB.

Table 4. Results on uniformly random
instances for RSM.
n |V| sm np b ratio tbest

100 22.02 47.9 75.12 48.27 0.64 0.02

200 41.59 116.9 166.19 115.34 0.69 0.10

300 60.22 182.4 263.94 193.08 0.73 0.37

400 74.51 244.1 356.58 265.98 0.74 0.77

500 91.47 322.5 456.00 350.16 0.76 2.18

600 103.82 394.9 551.10 425.51 0.77 3.67

700 117.08 449.6 646.69 505.61 0.78 5.89

800 131.81 527.6 749.98 595.64 0.79 9.09

900 146.34 585.5 848.32 679.82 0.80 14.60

1000 156.00 632.4 943.23 758.82 0.80 21.16

Table 5. Results on uniformly
random instances for RSR.
n |V| sm np b ratio tbest

100 3.91 3.78 17.91 5.31 0.3 0.003

200 3.87 3.94 26.76 8.52 0.32 0.003

300 4.36 4.56 35.53 11.22 0.32 0.017

400 4.71 5.92 37.64 10.93 0.29 0.048

500 4.29 4.81 37.62 11.70 0.31 0.066

600 4.16 4.48 42.44 14.47 0.34 0.130

700 4.58 5.50 48.71 16.02 0.33 0.312

800 4.93 5.99 55.02 17.39 0.32 0.498

900 4.82 7.07 57.64 18.50 0.32 0.662

1000 4.60 5.19 55.16 18.36 0.33 0.557

Tables 4 and 5 present a summary of the robustness of random RSM and RSR
instances. The columns report for each size the average value of: the total number
of pairs in the instance (n), the number of rotations in the rotation poset or the
reduced rotation poset (|V|), the number of different stable matchings found
during the search of LS (sm), the number of non-fixed pairs (np), the b value
of the solution found (b), the ratio b

np (ratio), and the time spent until finding
the best solution by LS in seconds (tbest).

Observe from the tables that the random RSM instances contain many more
stable matchings than the random RSR instances of similar sizes. Recall that, the
value of sm denotes only the number of a subset of the stable matchings found
during the search. However, we can confirm the RSR instances not containing
many stable matchings by looking at the number of rotations in their rotation
posets. Note that, for the RSR instances, when 1000 pairs are included, the
corresponding rotation posets, on the average, contain |V| ≈ 5 rotations. This is
mainly caused by the large numbers of fixed-pairs in the random RSR instances.
For instance, the average number of non-fixed pairs in the RSM instances of
size 100 is np = 75.12. However, we observe in the large RSR instances that
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Table 6. Summary of the results on large instances for RSM.

Instance LS HB, |P | = 10 HB, |P | = 60

n np |V| b t (min) b t (min) b t (min)

16 15.99 100.43 1.12 0.003 1.21 0.003 1.1 0.004

32 31.99 447.26 1.03 0.054 1.30 0.024 1.04 0.029

64 64 1889.95 1.685 3.158 1.74 0.824 1.28 0.916

128 128 7788.02 14.055 8.367 1.02 13.989 1.01 17.609

contain 1000 pairs that there are only 55.16 non-fixed pairs on the average,
which is less than the smallest sized RSM instances that we tested. Note that,
we measure the robustness ratio over the non-fixed pairs of the instances. It is
desirable to obtain a smaller value for the ratio to indicate a better robustness
for the instance. Because a smaller ratio indicates that a smaller proportion of
the people that have alternative partners need to change their partners for a
repair. Observe that, the ratio of the RSR instances is lower when compared to
RSM. The ratio shows that the breakage of the pairs in the RSR instances are
less costly to be repaired. Thus, we conclude that purely random RSR instances
require a smaller proportion of the people to change their partners in the case
of a breakage, when compared to the RSM.

Large RSM and RSR Instances. In this experiment, we search for instances with
potentially many number of stable matchings and low b values. Therefore, we
generated a dataset called many consisting of 100 SM instances for each size
n = {16, 32, 64, 128} using the family described by Irving and Leather [11], and
then used in [17]. Note that, each SM instance in this set has a corresponding
SR instance (see Lemma 1), where the corresponding SR instance has a reduced
rotation poset of twice the size of the rotation poset of the SM instance. First, let
us introduce this family of instances described by Irving and Leather. They prove
that any instance in the original family contains at least 2n−1 stable matchings
for an instance of size n = 2i. They define this family over two matrices for
the preferences of each gender, and the preference lists of these large instances
are obtained recursively by appending the following matrices until the desired
instance size is found. In our dataset many, we slightly modify each instance of
this original family by first randomly selecting two random men mi,mj . Then, we
modify mi’s preference list by swapping the positions of two randomly selected
women within the list. We repeat the same for mj . We also modify the prefer-
ence lists of two random women in the same way. In other words, the original
preference set between the original and the modified instances have a Hamming
Distance of 8.

Table 6 reports for each size the average value of: the number of all men or
women (n), the number of non-fixed men (np), the number of rotations in the
rotation poset (|V|). Additionally, it reports the average minimum b found by
the model LS, HB where population size |P | = 10, and HB where population
size |P | = 60 (b); followed by the total time spent in minutes for each of the
three models (t (min)).
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This dataset shows that the robustness of instances that have many stable
matchings is very high (i.e the value of b is low). For each instance size, our best
model for that size is able to find solutions whose average b values evaluate to a
b value that is opt = 1 < b < 2. For instance, for size n = 16, the LS model finds
solutions such that for the breakage of any man on the solution, on the average,
1.12 other men need to break-up from their current partners. Similarly, for size
n = 128, HB models find that the solution is guaranteed to be repaired by only
1.02 additional men’s break-up.

As one can observe from Table 6, we ran the HB model by using different
sizes of population. Observe that, reducing the number of individuals in the
population of HB (60 to 10) causes the algorithm to find slightly worse solutions
(i.e. larger b). For instance, for size n = 64 , the average minimum b is found
as 1.74 by a population of size 10, and 1.28 by a population of size 60. This
is due to having an increased chance of getting stuck at local minima for a
smaller population. On the other hand, LS finds competitive values for b for
sizes 16 ≤ n ≤ 64. However, as we can see for n = 128, LS finds solutions that
are far away from the optimal solution. We conclude that, an improvement for
HB by changing population size is possible in exchange of obtaining slightly
worse solutions. LS performs well for smaller instances.

Recall that, each SM instance in many has a corresponding SR instance that
has exactly the same stable matchings. We do not run the RSR models on this
dataset as they are much slower. However, this test provides an insight to some
RSM and RSR instances that are repairable at low additional costs.

6 Conclusions

We study the notion of (a, b)-supermatch in the context of Stable Roommates
problem. We propose a polynomial-time algorithm based on the reduced rotation
poset to verify if a stable matching is a (1, b)-supermatch. Next, we use this pro-
cedure to design local search (LS) and hybrid genetic local search (HB) models
to find robust solutions for the (1, b) case (i.e., (1,b)-supermatch with (possibly)
the minimum b). We empirically show that the HB model usually performs bet-
ter than LS for RSR. Furthermore, we perform an RSM/RSR comparison and
identify a family of instances that are rich in stable matchings and very robust.
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