
Evaluating Ising Processing Units
with Integer Programming

Carleton Coffrin(B), Harsha Nagarajan, and Russell Bent

Los Alamos National Laboratory, Los Alamos, NM, USA
cjc@lanl.gov

Abstract. The recent emergence of novel computational devices, such
as adiabatic quantum computers, CMOS annealers, and optical paramet-
ric oscillators, present new opportunities for hybrid-optimization algo-
rithms that are hardware accelerated by these devices. In this work, we
propose the idea of an Ising processing unit as a computational abstrac-
tion for reasoning about these emerging devices. The challenges involved
in using and benchmarking these devices are presented and commercial
mixed integer programming solvers are proposed as a valuable tool for
the validation of these disparate hardware platforms. The proposed vali-
dation methodology is demonstrated on a D-Wave 2X adiabatic quantum
computer, one example of an Ising processing unit. The computational
results demonstrate that the D-Wave hardware consistently produces
high-quality solutions and suggests that as IPU technology matures it
could become a valuable co-processor in hybrid-optimization algorithms.

Keywords: Discrete optimization · Ising model ·
Quadratic unconstrained binary optimization · Integer programming ·
Large Neighborhood Search · Adiabatic quantum computation

1 Introduction

As the challenge of scaling traditional transistor-based Central Processing Unit
(CPU) technology continues to increase, experimental physicists and high-tech
companies have begun to explore radically different computational technologies,
such as adiabatic quantum computers (AQCs) [1], gate-based quantum comput-
ers [2–4], CMOS annealers [5–7], neuromorphic computers [8–10], memristive
circuits [11,12], and optical parametric oscillators [13–15]. The goal of all of
these technologies is to leverage the dynamical evolution of a physical system
to perform a computation that is challenging to emulate using traditional CPU
technology (e.g., the simulation of quantum physics) [16]. Despite their entirely
disparate physical implementations, AQCs, CMOS annealers, memristive cir-
cuits, and optical parametric oscillators are unified by a common mathematical
abstraction known as the Ising model, which has been widely adopted by the
physics community for the study of naturally occurring discrete optimization

c© Springer Nature Switzerland AG 2019
L.-M. Rousseau and K. Stergiou (Eds.): CPAIOR 2019, LNCS 11494, pp. 163–181, 2019.
https://doi.org/10.1007/978-3-030-19212-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19212-9_11&domain=pdf
https://doi.org/10.1007/978-3-030-19212-9_11

164 C. Coffrin et al.

processes [17]. Furthermore, this kind of “Ising machine” [13,14] is already com-
mercially available with more than 2000 decision variables in the form of AQCs
developed by D-Wave Systems [18].

The emergence of physical devices that can quickly solve Ising models is par-
ticularly relevant to the constraint programming, artificial intelligence and oper-
ations research communities, because the impetus for building these devices is to
perform discrete optimization. As this technology matures, it may be possible for
this specialized hardware to rapidly solve challenging combinatorial problems,
such as Max-Cut [19] or Max-Clique [20]. Preliminary studies have suggested
that some classes of Constraint Satisfaction Problems may be effectively encoded
in such devices because of their combinatorial structure [21–24]. Furthermore,
an Ising model coprocessor could have significant impacts on solution methods
for a variety of fundamental combinatorial problem classes, such as MAX-SAT
[25–27] and integer programming [28]. At this time, however, it remains unclear
how established optimization algorithms should leverage this emerging technol-
ogy. This paper helps to address this gap by highlighting the key concepts and
hardware limitations that an algorithm designer needs to understand to engage
in this emerging and exciting computational paradigm.

Similar to an arithmetic logic unit (ALU) or a graphics processing unit
(GPU), this work proposes the idea of an Ising processing unit (IPU) as the
computational abstraction for wide variety of physical devices that perform opti-
mization of Ising models. This work begins with a brief introduction to the IPU
abstraction and its mathematical foundations in Sect. 2. Then the additional
challenges of working with real-world hardware are discussed in Sect. 3 and an
overview of previous benchmarking studies and solution methods are presented
in Sect. 4. Finally, a detailed benchmarking study of a D-Wave 2X IPU is con-
ducted in Sect. 5, which highlights the current capabilities of such a device. The
contributions of this work are as follows,

1. The first clear and concise introduction to the key concepts of Ising models
and the limitations of real-world IPU hardware, both of which are necessary
for optimization algorithm designers to effectively leverage these emerging
hardware platforms (Sects. 2 and 3).

2. Highlighting that integer programming has been overlooked by recent IPU
benchmarking studies (Sect. 4), and demonstrating the value of integer pro-
gramming for filtering easy test cases (Sect. 5.1) and verifying the quality of
an IPU on challenging test cases (Sect. 5.2).

Note that, due to the maturity and commercial availability of the D-Wave IPU,
this work often refers to that architecture as an illustrative example. However,
the methods and tools proposed herein are applicable to all emerging IPU hard-
ware realizations, to the best of our knowledge.

2 A Brief Introduction to Ising Models

This section introduces the notations of the paper and provides a brief intro-
duction to Ising models, the core mathematical abstraction of IPUs. The Ising

Evaluating Ising Processing Units with Integer Programming 165

model refers to the class of graphical models where the nodes, N , represent spin
variables (i.e., σi ∈ {−1, 1} ∀i ∈ N) and the edges, E , represent interactions of
spin variables (i.e., σiσj ∀i, j ∈ E). A local field hi ∀i ∈ N is specified for each
node, and an interaction strength Jij ∀i, j ∈ E is specified for each edge. Given
these data, the energy of the Ising model is defined as,

E(σ) =
∑

i,j∈E
Jijσiσj +

∑

i∈N
hiσi (1)

Applications of the Ising model typically consider one of two tasks. First, some
applications focus on finding the lowest possible energy of the Ising model, known
as a ground state. That is, finding the globally optimal solution of the following
binary quadratic optimization problem:

min : E(σ)
s.t.: σi ∈ {−1, 1} ∀i ∈ N (2)

Second, other applications are interested in sampling from the Boltzmann dis-
tribution of the Ising model’s states:

Pr(σ) ∝ e
−E(σ)

τ (3)

where τ is a parameter representing the effective temperature of the Boltzmann
distribution [29]. It is valuable to observe that in the Boltzmann distribution, the
lowest energy states have the highest probability. Therefore, the task of sampling
from a Boltzmann distribution is similar to the task of finding the lowest energy
of the Ising model. Indeed, as τ approaches 0, the sampling task smoothly trans-
forms into the aforementioned optimization task. This paper focuses exclusively
on the mathematical program presented in (2), the optimization task.

Frustration: The notion of frustration is common in the study of Ising models
and refers to any instance of (2) where the optimal solution, σ∗, satisfies the
property,

E(σ∗) >
∑

i,j∈E
−|Jij | −

∑

i∈N
|hi| (4)

A canonical example is the following three node problem:

h1 = 0, h2 = 0, h3 = 0, J12 = −1, J23 = −1, J13 = 1 (5)

Observe that, in this case, there are a number of optimal solutions such that
E(σ∗) = −2 but none such that E(σ) =

∑
i,j∈E −|Jij | = −3. Note that frustra-

tion has important algorithmic implications as greedy algorithms are sufficient
for optimizing Ising models without frustration.

166 C. Coffrin et al.

Gauge Transformations: A valuable property of the Ising model is the gauge
transformation, which characterizes an equivalence class of Ising models. For
illustration, consider the optimal solution of Ising model S, σs∗. One can con-
struct a new Ising model T where the optimal solution is the same, except that
σt∗
i = −σs∗

i for a particular node i ∈ N is as follows:

J t
ij = −Js

ij ∀i, j ∈ E(i) (6a)

ht
i = −hs

i (6b)

where E(i) indicates the neighboring edges of node i. This S-to-T manipulation
is referred to as a gauge transformation. Given a complete source state σs and
a complete target state σt, this transformation is generalized to all of σ by,

J t
ij = Js

ijσ
s
i σ

s
jσ

t
iσ

t
j ∀i, j ∈ E (7a)

ht
i = hs

iσ
s
i σ

t
i ∀i ∈ N (7b)

It is valuable to observe that by using this gauge transformation property, one
can consider the class of Ising models where the optimal solution is σ∗

i = −1 ∀i ∈
N or any arbitrary vector of −1, 1 values without loss of generality.

Bijection of Ising and Boolean Optimization: It is also useful to observe that
there is a bijection between Ising optimization (i.e., σ ∈ {−1, 1}) and Boolean
optimization (i.e., x ∈ {0, 1}). The transformation of σ-to-x is given by,

σi = 2xi − 1 ∀i ∈ N (8a)
σiσj = 4xixj − 2xi − 2xj + 1 ∀i, j ∈ E (8b)

and the inverse x-to-σ is given by,

xi =
σi + 1

2
∀i ∈ N (9a)

xixj =
σiσj + σi + σj + 1

4
∀i, j ∈ E (9b)

Consequently, any results from solving Ising models are also immediately appli-
cable to the following class of Boolean optimization problems:

min :
∑

i,j∈E
cijxixj +

∑

i∈N
cixi

s.t.: xi ∈ {0, 1} ∀i ∈ N (10)

The Ising model provides a clean mathematical abstraction for understanding
the computation that IPUs perform. However, in practice, a number of hardware
implementation factors present additional challenges for computing with IPUs.

Evaluating Ising Processing Units with Integer Programming 167

3 Features of Analog Ising Processing Units

The core inspiration for developing IPUs is to take advantage of the natural
evolution of a discrete physical system to find high-quality solutions to an Ising
model [1,6,11,13]. Consequently, to the best of our knowledge, all IPUs devel-
oped to date are analog machines, which present a number of challenges that
the optimization community is not accustomed to considering.

σ4 σ5 σ6 σ7

σ0 σ1 σ2 σ3

σ12 σ13 σ14 σ15

σ8 σ9 σ10 σ11

σ20 σ21 σ22 σ23

σ16 σ17 σ18 σ19

σ28 σ29 σ30 σ31

σ24 σ25 σ26 σ27

Fig. 1. A 2-by-2 chimera graph illustrating the variable product limitations of a D-
Wave 2X IPU.

Effective Temperature: The ultimate goal of IPUs is to solve the optimization
problem (2) and determine the globally optimal solution to the input Ising model.
In practice, however, a variety of analog factors preclude IPUs from reliably
finding globally optimal solutions. As a first-order approximation, current IPUs
behave like a Boltzmann sampler (3) with some hardware-specific effective tem-
perature, τ [30]. It has also been observed that the effective temperature of an
IPU can vary around a nominal value based on the Ising model that is being
executed [31]. This suggests that the IPU’s performance can change based on
the structure of the problem input.

Environmental Noise: One of the primary contributors to the sampling nature
of IPUs are the environmental factors. All analog machines are subject to faults
due to environmental noise; for example, even classical computers can be affected
by cosmic rays. However, given the relative novelty of IPUs, the effects of envi-
ronmental noise are noticeable in current hardware. The effects of environmental
noise contribute to the perceived effective temperature τ of the IPU.

Coefficient Biases: Once an Ising model is input into an IPU, its coefficients are
subject to at least two sources of bias. The first source of bias is a model program-
ming error that occurs independently each time the IPU is configured for a compu-
tation.This bias is oftenmitigated byprogramming the IPUmultiple timeswith an
identical input and combining the results from all executions. The second source of
bias is a persistent coefficient error, which is an artifact of the IPU manufacturing

168 C. Coffrin et al.

and calibration process. Because this bias is consistent across multiple IPU execu-
tions, this source of bias is often mitigated by performing multiple gauge transfor-
mations on the input and combining the results from all executions.

Problem Coefficients: In traditional optimization applications, the problem coef-
ficients are often rescaled to best suit floating-point arithmetic. Similarly, IPUs
have digital-to-analog converters that can encode a limited number of values;
typically these values are represented as numbers in the range of −1 to 1. Some
IPUs allow for hundreds of steps within this range, [1,6] whereas others support
only the discrete set of {−1, 0, 1} [13]. In either case, the mathematical Ising
model must be rescaled into the IPU’s operating range. However, this mathe-
matically equivalent transformation can result in unexpected side effects because
the coefficients used in the IPU hardware are perturbed by a constant amount
of environmental noise and hardware bias, which can outweigh small rescaled
coefficient values.

Topological Limitations: Another significant feature of IPUs is a restricted set of
variable products. In classical optimization (e.g., (2)), it is assumed that every
variable can interact with every other variable, that is, an Ising model where
an edge connects every pair of variables. However, because of the hardware
implementation of an IPU, it may not be possible for some variables to interact.
For example, the current D-Wave IPUs are restricted to the chimera topology,
which is a two-dimensional lattice of unit cells, each of which consist of a 4-by-4
bipartite graph (e.g., see Fig. 1). In addition to these restrictions, fabrication
errors can also lead to random failures of nodes and edges in the IPU hardware.
Indeed, as a result of these minor imperfections, every D-Wave IPU developed
to date has a unique topology [32–34]. Research and development of algorithms
for embedding various kinds of Ising models into a specific IPU topology is still
an active area of research [21,35–37].

3.1 Challenges of Benchmarking Ising Processing Units

These analog hardware features present unique challenges for benchmarking
IPUs that fall roughly into three categories: (1) comparing to established bench-
mark libraries; (2) developing Ising model instance generators for testing and;
(3) comparing with classical optimization methods.

Benchmark Libraries: Research and development in optimization algorithms has
benefited greatly from standardized benchmark libraries [38–40]. However, direct
application of these libraries to IPUs is out of scope in the near term for the
following reasons: (1) the Ising model is a binary quadratic program, which is
sufficiently restrictive to preclude the use of many standard problem libraries; (2)
even in cases where the problems of interest can be mapped directly to the Ising
model (e.g., Max-Cut, Max-Clique), the task of embedding given problems onto
the IPU’s hardware graph can be prohibitive [41]; and (3) even if an embedding
can be found, it is not obvious that the problem’s coefficients will be amenable
to the IPU’s operating range.

Evaluating Ising Processing Units with Integer Programming 169

Instance Generation Algorithms: Due to these challenges, the standard practice
in the literature is to generate a collection of instances for a given IPU and use
these cases for the evaluation of that IPU [33,34,42,43]. The hope being that
these instances provide a reasonable proxy for how real-world applications might
perform on such a device.

Comparison with Classical Algorithms: Because of the radically different hard-
ware of CPUs vs IPUs and the stochastic nature of the IPUs, conducting a fair
comparison of these two technologies is not immediately clear [43–45]. Indeed,
comparisons of D-Wave’s IPU with classical algorithms have resulted in vigor-
ous discussions about what algorithms and metrics should be used to make such
comparisons [34,46,47]. It is widely accepted that IPUs do not provide optimal-
ity guarantees and are best compared to heuristic methods (e.g. local search)
in terms of runtime performance. This debate will most likely continue for sev-
eral years. In this work, our goal is not to answer these challenging questions
but rather to highlight that commercial mixed integer programming solvers are
valuable and important tools for exploring these questions.

4 A Review of Ising Processing Unit Benchmarking
Studies

Due to the challenges associated with mapping established optimization test
cases to specific IPU hardware [41], the IPU benchmarking community has
adopted the practice of generating Ising model instances on a case-by-case basis
for specific IPUs [33,34,42,43] and evaluating these instances on a variety of solu-
tion methods. The following subsections provide a brief overview of the instance
generation algorithms and solution methods that have been used in various IPU
benchmarking studies. The goals of this review are to: (1) reveal the lack of
consistency across current benchmarking studies; (2) highlight the omission of
integer programming methods in all of the recent publications and; (3) motivate
the numerical study conducted in this work.

4.1 Instance Generation Algorithms

The task of IPU instance generation amounts to finding interesting values for
h and J in (1). In some cases the procedures for generating these values are
elaborate [33,48] and are designed to leverage theoretical results about Ising
models [42]. A brief survey reveals five primary problem classes in the literature,
each of which is briefly introduced. For a detailed description, please refer to the
source publication of the problem class.

Random (RAN-k and RANF-k): To the best of our knowledge, this general
class of problem was first proposed in [27] and was later refined into the RAN-k

170 C. Coffrin et al.

problem in [34]. The RAN-k problem consists simply of assigning each value of
h to 0 and each value of J uniformly at random from the set

{−k,−k + 1, . . . ,−2,−1, 1, 2, . . . ,k − 1,k} (11)

The RANF-k problem is a simple variant of RAN-k where the values of h are
also selected uniformly at random from (11). As we will later see, RAN-1 and
RANF-1, where h,J ∈ {−1, 1}, are an interesting subclass of this problem.

Frustrated Loops (FL-k and FCL-k): The frustrated loop problem was originally
proposed in [42] and then later refined to the FL-k problem in [48]. It consists
of generating a collection of random cycles in the IPU graph. In each cycle,
all of the edges are set to −1 except one random edge, which is set to 1 to
produce frustration. A scaling factor, α, is used to control how many random
cycles should be generated, and the parameter k determines how many cycles
each edge can participate in. A key property of the FL-k generation procedure
is that two globally optimal solutions are maintained at σi = −1 ∀i ∈ N and
σi = 1 ∀i ∈ N [48]. However, to obfuscate this solution, a gauge transformation
is often applied to make the optimal solution a random assignment of σ.

A variant of the frustrated loop problem is the frustrated cluster loop prob-
lem, FCL-k [43]. The FCL-k problem is inspired by the chimera network topol-
ogy (i.e., Fig. 1). The core idea is that tightly coupled variables (e.g., σ0...σ7

in Fig. 1) should form a cluster where all of the variables take the same value.
This is achieved by setting all of the values of J within the cluster to −1. For
the remaining edges between clusters, the previously described frustrated cycles
generation scheme is used. Note that a polynomial time algorithm is known for
solving the FCL-k problem class on chimera graphs [45].

It is worthwhile to mention that the FL-k and FCL-k instance generators
are solving a cycle packing problem on the IPU graph. Hence, the randomized
algorithms proposed in [42,43] are not guaranteed to find a solution if one exists.
In practice, this algorithm fails for the highly constrained settings of α and k.

Weak-Strong Cluster Networks (WSCNs): The WSCN problem was proposed in
[33] and is highly specialized to the chimera network topology. The basic building
block of a WSCN is a pair of spin clusters in the chimera graph (e.g., σ0...σ7 and
σ8...σ15 in Fig. 1). In the strong cluster the values of h are set to the strong force
parameter sf and in the weak cluster the values of h are set to the weak force
parameter wf. All of the values of J within and between this cluster pair are set
to −1. Once a number of weak-strong cluster pairs have been placed, the strong
clusters are connected to each other using random values of J ∈ {−1, 1}. The
values of sf = −1.0 and wf = 0.44 are recommended by [33]. The motivation for
the WSCN design is that the clusters create deep local minima that are difficult
for local search methods to escape.

4.2 Solution Methods

Once a collection of Ising model instances have been generated, the next step
in a typical benchmarking study is to evaluate those instances on a variety of

Evaluating Ising Processing Units with Integer Programming 171

solution methods, including the IPU, and compare the results. A brief survey
reveals five primary solution methods in the literature, each of which is briefly
introduced. For a detailed description, please refer to the source publications of
the solution method.

Simulated Annealing: The most popular staw-man solution method for compar-
ison is Simulated Annealing [49]. Typically the implementation only considers a
neighborhood of single variable flips and the focus of these implementations is
on computational performance (e.g. using GPUs for acceleration). The search is
run until a specified time limit is reached.

Large Neighborhood Search: The state-of-the-art meta-heuristic for solving Ising
models on the chimera graphs is a Large Neighborhood Search (LNS) method
called the Hamze-Freitas-Selby (HFS) algorithm [50,51]. The core idea of this
algorithm is to extract low treewidth subgraphs of the given Ising model and
then use dynamic programming to compute the optimal configuration of these
subgraphs. This extract and optimize process is repeated until a specified time
limit is reached. A key to this method’s success is the availability of a highly
optimized open-source C implementation [52].

Integer Programming: Previous works first considered integer quadratic pro-
gramming [27] and quickly moved to integer linear programming [53,54] as a
solution method. The mathematical programming survey [55] provides a useful
overview of the advantages and dis-advantages of various integer programming
(IP) formulations.

Based on some preliminary experiments with different formulations, this work
focuses on the following integer linear programming formulation of the Ising
model, transformed into the Boolean variable space:

min :
∑

i,j∈E
cijxij +

∑

i∈N
cixi + c (12a)

s.t.:
xij ≥ xi + xj − 1, xij ≤ xi, xij ≤ xj ∀i, j ∈ E (12b)
xi ∈ {0, 1} ∀i ∈ N , xij ∈ {0, 1} ∀i, j ∈ E

where the application of (8) leads to,

cij =
∑

i,j∈E
4Jij ∀i, j ∈ E (13a)

ci =
∑

i,j∈E(i)
2Jij +

∑

i∈N
2hi ∀i ∈ N (13b)

c =
∑

i,j∈E
Jij −

∑

i∈N
hi (13c)

In this formulation, the binary quadratic program defined in (10) is converted
to a binary linear program by lifting the variable products xixj into a new

172 C. Coffrin et al.

variable xij and adding linear constraints to capture the xij = xi ∧ xj ∀i, j ∈ E
conjunction constraints. Preliminary experiments of this work confirmed the
findings of [55], that this binary linear program formulation is best on sparse
graphs, such as the hardware graphs of current IPUs.

Table 1. A chronological summary of IPU benchmarking studies

Publication Problem classes Solution methods

RAN RANF FL FCL WSCN IP SA LNS QMC AQC

[27] � �
[53] � �
[54] � �
[42] � � � �
[48] � � � �
[60] � � � � �
[33] � � � �
[43] � � � � �

This work � � � � � � � �

Adiabatic Quantum Computation: An adiabatic quantum computation (AQC)
[56] is a method for solving an Ising model via a quantum annealing process [57].
This solution method has two notable traits: (1) the AQC dynamical process
features quantum tunneling [58], which can help it to escape from local minima;
(2) it can be implemented in hardware (e.g. the D-Wave IPU).

Quantum Monte Carlo: Quantum Monte Carlo (QMC) is a probabilistic algo-
rithm that can be used for simulating large quantum systems. QMC is a very
computationally intensive method [33,59] and thus the primary use of QMC is
not to compare runtime performance but rather to quantify the possible value
of an adiabatic quantum computation that could be implemented in hardware
at some point in the future.

4.3 Overview

To briefly summarize a variety of benchmarking studies, Table 1 provides an
overview of the problems and solution methods previous works have considered.
Although there was some initial interest in integer programming models [27,
53,54], more recent IPU benchmark studies have not considered these solution
methods and have focused exclusively on heuristic methods. Furthermore, there
are notable inconsistencies in the type of problems being considered. As indicated
by the last row in Table 1, the goal of this work is revisit the use of IP methods
for benchmarking IPUs and to conduct a thorough and side-by-side study of
all problem classes and solution methods proposed in the literature. Note that,

Evaluating Ising Processing Units with Integer Programming 173

because this paper focuses exclusively on the quality and runtime of the Ising
model optimization task (2), the study of SA and QMC are omitted as they
provide no additional insights over the LNS [48] and AQC [33] methods.

5 A Study of Established Methods

This section conducts an in-depth computational study of the established
instance generation algorithms and solution methods for IPUs. The first goal
of this study is to understand what classes of problems and parameters are the
most challenging, as such cases are preferable for benchmarking. The second
goal is to conduct a validation study of a D-Wave 2X IPU, to clearly quantify its
solution quality and runtime performance. This computational study is divided
into two phases. First, a broad parameter sweep of all possible instance gen-
eration algorithms is conducted and a commercial mixed-integer programming
solver is used to filter out the easy problem classes and parameter settings. Sec-
ond, after the most challenging problems have been identified, a detailed study
is conducted to compare and contrast the three disparate solution methods IP,
LNS, and AQC.

Throughout this section, the following notations are used to describe the
algorithm results: UB denotes the objective value of the best feasible solution
produced by the algorithm within the time limit, LB denotes the value of the
best lower bound produced by the algorithm within the time limit, T denotes
the algorithm runtime in seconds1, TO denotes that the algorithm hit a time
limit of 600 s, μ(·) denotes the mean of a collection of values, sd(·) denotes the
standard deviation of a collection of values, and max(·) denotes the maximum
of a collection of values.

Computation Environment: The classical computing algorithms are run on HPE
ProLiant XL170r servers with dual Intel 2.10 GHz CPUs and 128 GB memory.
After a preliminary comparison of CPLEX 12.7 [61] and Gurobi 7.0 [62], no
significant difference was observed. Thus, Gurobi was selected as the commercial
Mixed-Integer Programming (MIP) solver and was configured to use one thread.
The highly specialized and optimized HFS algorithm [52] is used as an LNS-
based heuristic and also uses one thread.

The IPU computation is conducted on a D-Wave 2X [63] adiabatic quantum
computer (AQC). This computer has a 12-by-12 chimera cell topology with
random omissions; in total, it has 1095 spins and 3061 couplers and an effective
temperature of τ ∈ (0.091, 0.053) depending on the problem being solved [64,65].
Unless otherwise noted, the AQC is configured to produce 10,000 samples using
a 5-µs annealing time per sample and a random gauge transformation every 100
samples. The best sample is used in the computation of the upper bound value.
The reported runtime of the AQC reflects the amount of time used on the IPU
hardware; it does not include the overhead of communication or scheduling of
the computation, which adds an overhead of about three seconds.
1 For MIP solvers, the runtime includes the computation of the optimally certificate.

174 C. Coffrin et al.

Table 2. Parameter settings of various problems.

Problem First param. Second param.

RAN-k k ∈ (1..5 : 1) NA

RANF-k k ∈ (1..5 : 1) NA

FL-k k ∈ (1..5 : 1) α ∈ (0..1 : 0.1)

FCL-k k ∈ (1..5 : 1) α ∈ (0..1 : 0.1)

WSCN wf ∈ (−1..1 : 0.2) sf ∈ (−1..1 : 0.2)

Table 3. MIP runtime on various IPU benchmark problems (seconds)

Problem Cases μ(|N |) μ(|E|) μ(T) sd(T) max(T)

RAN 1250 1095 3061 TO — TO

RANF 1250 1095 3061 TO — TO

FL 6944 1008 2126 1.82 1.06 16.80

FCL 8347 888 2282 4.19 2.81 41.40

WSCN 30250 949 2313 0.25 0.87 17.90

All of the software used in this benchmarking study is available as open-
source via: bqpjson, a language-independent JSON-based Ising model exchange
format designed for benchmarking IPU hardware; dwig, algorithms for IPU
instance generation; bqpsolvers, tools for encoding bqpjson data into various
optimization formulations and solvers.2

5.1 Identifying Challenging Cases

Broad Parameter Sweep: In this first experiment, we conduct a parameter sweep
of all the inputs to the problem generation algorithms described in Sect. 4.1.
Table 2 provides a summary of the input parameters for each problem class.
The values of each parameter are encoded with the following triple: (start..stop :
step size). When two parameters are required for a given problem class, the cross
product of all parameters is used. For each problem class and each combination
of parameter settings, 250 random problems are generated in order to produce
a reasonable estimate of the average difficulty of that configuration. Each prob-
lem is generated using all of the decision variables available on the IPU. The
computational results of this parameter sweep are summarized in Table 3.

The results presented in Table 3 indicate that, at this problem size, all vari-
ants of the FL, FCL, and WSCN problems are easy for modern MIP solvers.
This is a stark contrast to [33], which reported runtimes around 10,000 s when
applying Simulated Annealing to the WSCN problem. Furthermore, this result

2 The source code is available at https://github.com/lanl-ansi/ under the repository
names bqpjson, dwig and bqpsolvers.

https://github.com/lanl-ansi/

Evaluating Ising Processing Units with Integer Programming 175

Table 4. MIP runtime on RAN-k and RANF-k IPU benchmark problems (seconds)

k Cases μ(|N |) μ(|E|) μ(T) sd(T) max(T) μ(T) sd(T) max(T)

Problems of increasing k RAN-k RANF-k

1 250 194 528 340.0 195.0 TO 14.10 15.20 82.70

2 250 194 528 89.3 64.3 481 2.97 3.41 22.70

3 250 194 528 64.8 28.3 207 1.67 1.48 10.70

4 250 194 528 58.0 29.5 250 1.25 0.83 6.10

5 250 194 528 49.0 23.0 131 1.12 0.77 6.98

6 250 194 528 49.0 22.4 119 1.05 0.59 4.47

7 250 194 528 45.0 22.8 128 1.04 0.75 7.60

8 250 194 528 44.8 23.7 121 1.01 0.62 5.43

9 250 194 528 42.3 22.3 110 0.98 0.60 5.08

10 250 194 528 39.8 22.1 107 0.91 0.43 3.09

suggests that these problems classes are not ideal candidates for benchmarking
IPUs. In contrast, the RAN and RANF cases consistently hit the runtime limit of
the MIP solver, suggesting that these problems are more useful for benchmark-
ing. This result is consistent with a similar observation in the SAT community,
where random SAT problems are known to be especially challenging [66,67]. To
get a better understanding of these RAN problem classes, we next perform a
detailed study of these problems for various values of the parameter k.

The RAN and RANF Problems: In this second experiment, we focus on the
RAN-k and RANF-k problems and conduct a detailed parameter sweep of k ∈
(1..10 : 1). To accurately measure the runtime difficulty of the problem, we also
reduce the size of the problem from 1095 variables to 194 variables so that the
MIP solver can reliably terminate within a 600 s time limit. The results of this
parameter sweep are summarized in Table 4.

The results presented in Table 4 indicate that (1) as the value of k increases,
both the RAN and RANF problems become easier; and (2) the RANF problem is
easier than the RAN problem. The latter is not surprising because the additional
linear coefficients in the RANF problem break many of the symmetries that exist
in the RAN problem. These results suggest that it is sufficient to focus on the
RAN-1 and RANF-1 cases for a more detailed study of IPU performance. This
is a serendipitous outcome for IPU benchmarking because restricting the prob-
lem coefficients to {−1, 0, 1} reduces artifacts caused by noise and the numeral
precision of the analog hardware.

5.2 An IPU Evaluation Using RAN-1 and RANF-1

Now that the RAN-1 and RANF-1 problem classes have been identified as the
most interesting for IPU benchmarking, we perform two detailed studies on these

176 C. Coffrin et al.

problems using all three algorithmic approaches (i.e., AQC, LNS, and MIP).
The first study focuses on the scalability trends of these solution methods as the
problem size increases, whereas the second study focuses on a runtime analysis
of the largest cases that can be evaluated on a D-Wave 2X IPU hardware.

Scalability Analysis: In this experiment, we increase the problem size gradually
to understand the scalability profile of each of the solution methods (AQC, LNS,
and MIP). The results are summarized in Table 5. Focusing on the smaller prob-
lems, where the MIP solver provides an optimality proof, we observe that both
the AQC and the LNS methods find the optimal solution in all of the sampled
test cases, suggesting that both heuristic solution methods are of high quality.

Table 5. A comparison of solution quality and runtime as problem size increases on
RAN-1 and RANF-1.

AQC LNS MIP

Cases μ(|N |) μ(|E|) μ(UB) μ(T) μ(UB) μ(T) μ(UB) μ(LB) μ(T)

RAN-1 problems of increasing size

250 30 70 −44 3.53 −44 10 −44 −44 0.05

250 69 176 −110 3.57 −110 10 −110 −110 0.48

250 122 321 −199 3.60 −199 10 −199 −199 15.90

250 194 528 −325 3.64 −325 10 −325 −327 340.00

250 275 751 −462 3.68 −462 10 −461 −483 TO

250 375 1030 −633 3.73 −633 10 −629 −673 TO

250 486 1337 −821 3.77 −822 10 −814 −881 TO

250 613 1689 −1038 3.77 −1039 10 −1021 −1116 TO

250 761 2114 −1296 3.76 −1297 10 −1262 −1401 TO

250 923 2578 −1574 3.77 −1576 10 −1525 −1713 TO

250 1095 3061 −1870 3.80 −1873 10 −1806 −2045 TO

RANF-1 problems of increasing size

250 30 70 −53 3.53 −53 10 −53 −53 0.02

250 69 176 −127 3.56 −127 10 −127 −127 0.13

250 122 321 −229 3.61 −229 10 −229 −229 0.67

250 194 528 −370 3.66 −370 10 −370 −370 14.10

250 275 751 −526 3.71 −526 10 −526 −527 128.00

250 375 1030 −719 3.76 −719 10 −719 −727 471.00

250 486 1337 −934 3.81 −934 10 −933 −954 588.00

250 613 1689 −1179 3.82 −1179 10 −1178 −1211 TO

250 761 2114 −1472 3.82 −1472 10 −1470 −1520 TO

250 923 2578 −1786 3.82 −1787 10 −1778 −1856 TO

250 1095 3061 −2121 3.86 −2122 10 −2110 −2212 TO

Evaluating Ising Processing Units with Integer Programming 177

Focusing on the larger problems, we observe that, in just a few seconds, both
AQC and LNS find feasible solutions that are of higher quality than what the
MIP solver can find in 600 s. This suggests that both methods are producing
high-quality solutions at this scale. As the problem size grows, a slight qual-
ity discrepancy emerges favoring LNS over AQC; however, this discrepancy in
average solution quality is less than 1% of the best known value.

Detailed Runtime Analysis: Given that both the AQC and the LNS solution
methods have very similar solution qualities, it is prudent to perform a detailed
runtime study to understand the quality vs. runtime tradeoff. To develop a
runtime profile of the LNS algorithm, the solver’s runtime limit is set to values
ranging from 0.01 to 10.00 s. In the case of the AQC algorithm, the number
of requested samples is set to values ranging from 10 to 10,000, which has the
effect of scaling the runtime of the IPU process. The results of this study are
summarized in Fig. 2. Note that the stochastic sampling nature of the IPU results
in some noise for small numbers of samples. However, the overall trend is clear.

The results presented in Fig. 2 further illustrate that (1) the RAN problem
class is more challenging than the RANF problem class, and (2) regardless of
the runtime configuration used, the LNS heuristic slightly outperforms the AQC;
however, the average solution quality is always within 1% of each other. Com-
bining all of the results from this section provides a strong validation that even
if the D-Wave 2X IPU cannot guarantee a globally optimal solution, it produces
high quality solutions reliably across a wide range of inputs.

−1
87

5
−1

87
0

−1
86

5
−1

86
0

RAN−1 Runtime Trend

Runtime (seconds, log)

Av
er

ag
e

O
bj

ec
tiv

e
Va

lu
e

(n
 =

 2
00

)

1e−02 1e−01 1e+00 1e+01

AQC
LNS

−2
12

1
−2

11
9

−2
11

7

RANF−1 Runtime Trend

Runtime (seconds, log)

Av
er

ag
e

O
bj

ec
tiv

e
Va

lu
e

(n
 =

 2
00

)

1e−02 1e−01 1e+00 1e+01

AQC
LNS

Fig. 2. Detailed runtime analysis of the AQC (D-Wave 2X) and LNS heuristic (HFS)
on the RAN-1 (left) and RANF-1 (right) problem classes.

6 Conclusion

This work introduces the idea of Ising processing units (IPUs) as a compu-
tational abstraction for emerging physical devices that optimize Ising models.

178 C. Coffrin et al.

It highlights a number of unexpected challenges in using such devices and pro-
poses commercial mixed-integer programming solvers as a tool to help improve
validation and benchmarking.

A baseline study of the D-Wave 2X IPU suggests that the hardware specific
instance generation is a reasonable strategy for benchmarking IPUs. However,
finding a class of challenging randomly generated test cases is non-trivial and an
open problem for future work. The study verified that at least one commercially
available IPU is already comparable to current state-of-the-art classical methods
on some classes of problems (e.g. RAN and RANF). Consequently, as this IPU’s
hardware increases in size, one would expect that it could outperform state-
of-the-art classical methods because of its parallel computational nature and
become a valuable co-processor in hybrid-optimization algorithms.

Overall, we find that the emergence of IPUs is an interesting development for
the optimization community and warrants continued study. Considerable work
remains to determine new challenging classes of test cases for validating and
benchmarking IPUs. We hope that the technology overview and the validation
study conducted in this work will assist the optimization research community
in exploring IPU hardware platforms and will accelerate the development of
hybrid-algorithms that can effectively leverage these emerging technologies.

References

1. Johnson, M.W., et al.: Quantum annealing with manufactured spins. Nature
473(7346), 194–198 (2011)

2. International Business Machines Corporation: IBM building first universal quan-
tum computers for business and science (2017). https://www-03.ibm.com/press/
us/en/pressrelease/51740.wss. Accessed 28 Apr 2017

3. Mohseni, M., et al.: Commercialize quantum technologies in five years. Nature 543,
171–174 (2017)

4. Chmielewski, M., et al.: Cloud-based trapped-ion quantum computing. In: APS
Meeting Abstracts (2018)

5. Yamaoka, M., Yoshimura, C., Hayashi, M., Okuyama, T., Aoki, H., Mizuno, H.:
24.3 20k-spin Ising chip for combinational optimization problem with CMOS
annealing. In: 2015 IEEE International Solid-State Circuits Conference - (ISSCC)
Digest of Technical Papers, pp. 1–3, February 2015

6. Yoshimura, C., Yamaoka, M., Aoki, H., Mizuno, H.: Spatial computing architecture
using randomness of memory cell stability under voltage control. In: 2013 European
Conference on Circuit Theory and Design (ECCTD), pp. 1–4, September 2013

7. Fujitsu: Digital annealer, May 2018. http://www.fujitsu.com/global/digital
annealer/. Accessed 26 Feb 2019

8. Modha, D.S.: Introducing a brain-inspired computer (2017). http://www.research.
ibm.com/articles/brain-chip.shtml. Accessed 28 Apr 2017

9. Davies, M., et al.: Loihi: a neuromorphic manycore processor with on-chip learning.
IEEE Micro 38(1), 82–99 (2018)

10. Schuman, C.D., et al.: A survey of neuromorphic computing and neural networks
in hardware (2017). arXiv preprint: arXiv:1705.06963

11. Caravelli, F.: Asymptotic behavior of memristive circuits and combinatorial opti-
mization (2017)

https://www-03.ibm.com/press/us/en/pressrelease/51740.wss
https://www-03.ibm.com/press/us/en/pressrelease/51740.wss
http://www.fujitsu.com/global/digitalannealer/
http://www.fujitsu.com/global/digitalannealer/
http://www.research.ibm.com/articles/brain-chip.shtml
http://www.research.ibm.com/articles/brain-chip.shtml
http://arxiv.org/abs/1705.06963

Evaluating Ising Processing Units with Integer Programming 179

12. Traversa, F.L., Di Ventra, M.: MemComputing integer linear programming (2018)
13. McMahon, P.L., et al.: A fully-programmable 100-spin coherent Ising machine

with all-to-all connections. Science 354, 614–617 (2016). https://doi.org/10.1126/
science.aah5178

14. Inagaki, T., et al.: A coherent Ising machine for 2000-node optimization problems.
Science 354(6312), 603–606 (2016)

15. Kielpinski, D., et al.: Information processing with large-scale optical integrated
circuits. In: 2016 IEEE International Conference on Rebooting Computing (ICRC),
pp. 1–4, October 2016

16. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21(6),
467–488 (1982)

17. Brush, S.G.: History of the lenz-ising model. Rev. Mod. Phys. 39, 883–893 (1967)
18. D-Wave Systems Inc.: Customers (2017). https://www.dwavesys.com/our-

company/customers. Accessed 28 Apr 2017
19. Haribara, Y., Utsunomiya, S., Yamamoto, Y.: A coherent Ising machine for MAX-

CUT problems: performance evaluation against semidefinite programming and sim-
ulated annealing. In: Yamamoto, Y., Semba, K. (eds.) Principles and Methods of
Quantum Information Technologies. LNP, vol. 911, pp. 251–262. Springer, Tokyo
(2016). https://doi.org/10.1007/978-4-431-55756-2 12

20. Lucas, A.: Ising formulations of many NP problems. Frontiers Phys. 2, 5 (2014)
21. Bian, Z., Chudak, F., Israel, R.B., Lackey, B., Macready, W.G., Roy, A.: Mapping

constrained optimization problems to quantum annealing with application to fault
diagnosis. Frontiers ICT 3, 14 (2016)

22. Bian, Z., Chudak, F., Israel, R., Lackey, B., Macready, W.G., Roy, A.: Discrete
optimization using quantum annealing on sparse Ising models. Frontiers Phys. 2,
56 (2014)

23. Rieffel, E.G., Venturelli, D., O’Gorman, B., Do, M.B., Prystay, E.M.,
Smelyanskiy, V.N.: A case study in programming a quantum annealer for hard
operational planning problems. Quantum Inf. Process. 14(1), 1–36 (2015)

24. Venturelli, D., Marchand, D.J.J., Rojo, G.: Quantum annealing implementation of
job-shop scheduling (2015)

25. de Givry, S., Larrosa, J., Meseguer, P., Schiex, T.: Solving Max-SAT as weighted
CSP. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 363–376. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45193-8 25

26. Morgado, A., Heras, F., Liffiton, M., Planes, J., Marques-Silva, J.: Iterative and
core-guided maxsat solving: a survey and assessment. Constraints 18(4), 478–534
(2013)

27. McGeoch, C.C., Wang, C.: Experimental evaluation of an adiabiatic quantum sys-
tem for combinatorial optimization. In: Proceedings of the ACM International
Conference on Computing Frontiers, CF 2013, pp. 23:1–23:11. ACM (2013)

28. Nieuwenhuis, R.: The IntSat method for integer linear programming. In:
O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 574–589. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-10428-7 42

29. Zdeborova, L., Krzakala, F.: Statistical physics of inference: thresholds and algo-
rithms. Adv. Phys. 65(5), 453–552 (2016)

30. Bian, Z., Chudak, F., Macready, W.G., Rose, G.: The Ising model: teaching
an old problem new tricks (2010). https://www.dwavesys.com/sites/default/files/
weightedmaxsat v2.pdf. Accessed 28 Apr 2017

31. Benedetti, M., Realpe-Gómez, J., Biswas, R., Perdomo-Ortiz, A.: Estimation of
effective temperatures in quantum annealers for sampling applications: a case study
with possible applications in deep learning. Phys. Rev. A 94, 022308 (2016)

https://doi.org/10.1126/science.aah5178
https://doi.org/10.1126/science.aah5178
https://www.dwavesys.com/our-company/customers
https://www.dwavesys.com/our-company/customers
https://doi.org/10.1007/978-4-431-55756-2_12
https://doi.org/10.1007/978-3-540-45193-8_25
https://doi.org/10.1007/978-3-319-10428-7_42
https://www.dwavesys.com/sites/default/files/weightedmaxsat_v2.pdf
https://www.dwavesys.com/sites/default/files/weightedmaxsat_v2.pdf

180 C. Coffrin et al.

32. Boixo, S., et al.: Evidence for quantum annealing with more than one hundred
qubits. Nat. Phys. 10(3), 218–224 (2014)

33. Denchev, V.S., et al.: What is the computational value of finite-range tunneling?
Phys. Rev. X 6, 031015 (2016)

34. King, J., Yarkoni, S., Nevisi, M.M., Hilton, J.P., McGeoch, C.C.: Benchmarking a
quantum annealing processor with the time-to-target metric (2015). arXiv preprint:
arXiv:1508.05087

35. Boothby, T., King, A.D., Roy, A.: Fast clique minor generation in chimera qubit
connectivity graphs. Quantum Inf. Process. 15(1), 495–508 (2016)

36. Cai, J., Macready, W.G., Roy, A.: A practical heuristic for finding graph minors
(2014)

37. Klymko, C., Sullivan, B.D., Humble, T.S.: Adiabatic quantum programming: minor
embedding with hard faults. Quantum Inf. Process. 13(3), 709–729 (2014)

38. Koch, T., et al.: MIPLIB 2010: mixed integer programming library version 5. Math.
Program. Comput. 3(2), 103–163 (2011)

39. Gent, I.P., Walsh, T.: CSPLib: a benchmark library for constraints. In: Jaffar, J.
(ed.) CP 1999. LNCS, vol. 1713, pp. 480–481. Springer, Heidelberg (1999). https://
doi.org/10.1007/978-3-540-48085-3 36

40. Hoos, H.H., Stutzle, T.: SATLIB: An online resource for research on SAT (2000)
41. Coffrin, C., Nagarajan, H., Bent, R.: Challenges and successes of solving binary

quadratic programming benchmarks on the DW2X QPU. Technical report, Los
Alamos National Laboratory (LANL) (2016)

42. Hen, I., Job, J., Albash, T., Rønnow, T.F., Troyer, M., Lidar, D.A.: Probing for
quantum speedup in spin-glass problems with planted solutions. Phys. Rev. A 92,
042325 (2015)

43. King, J., et al.: Quantum annealing amid local ruggedness and global frustration
(2017)

44. Mandrà, S., Zhu, Z., Wang, W., Perdomo-Ortiz, A., Katzgraber, H.G.: Strengths
and weaknesses of weak-strong cluster problems: a detailed overview of state-of-
the-art classical heuristics versus quantum approaches. Phys. Rev. A 94, 022337
(2016)

45. Mandrà, S., Katzgraber, H.G., Thomas, C.: The pitfalls of planar spin-glass bench-
marks: raising the bar for quantum annealers (again) (2017)

46. Aaronson, S.: D-wave: Truth finally starts to emerge, May 2013. http://www.
scottaaronson.com/blog/?p=1400. Accessed 28 Apr 2017

47. Aaronson, S.: Insert d-wave post here, March 2017. http://www.scottaaronson.
com/blog/?p=3192. Accessed 28 Apr 2017

48. King, A.D., Lanting, T., Harris, R.: Performance of a quantum annealer on range-
limited constraint satisfaction problems (2015). arXiv preprint: arXiv:1502.02098

49. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220(4598), 671–680 (1983)

50. Hamze, F., de Freitas, N.: From fields to trees. In: Proceedings of the 20th Con-
ference on Uncertainty in Artificial Intelligence, UAI 2004, Arlington, Virginia,
United States, pp. 243–250. AUAI Press (2004)

51. Selby, A.: Efficient subgraph-based sampling of Ising-type models with frustration
(2014)

52. Selby, A.: Qubo-chimera (2013). https://github.com/alex1770/QUBO-Chimera
53. Puget, J.F.: D-wave vs cplex comparison. Part 2: Qubo (2013). https://www.ibm.

com/developerworks/community/blogs/jfp/entry/d wave vs cplex comparison
part 2 qubo. Accessed 28 Nov 2018

http://arxiv.org/abs/1508.05087
https://doi.org/10.1007/978-3-540-48085-3_36
https://doi.org/10.1007/978-3-540-48085-3_36
http://www.scottaaronson.com/blog/?p=1400
http://www.scottaaronson.com/blog/?p=1400
http://www.scottaaronson.com/blog/?p=3192
http://www.scottaaronson.com/blog/?p=3192
http://arxiv.org/abs/1502.02098
https://github.com/alex1770/QUBO-Chimera
https://www.ibm.com/developerworks/community/blogs/jfp/entry/d_wave_vs_cplex_comparison_part_2_qubo
https://www.ibm.com/developerworks/community/blogs/jfp/entry/d_wave_vs_cplex_comparison_part_2_qubo
https://www.ibm.com/developerworks/community/blogs/jfp/entry/d_wave_vs_cplex_comparison_part_2_qubo

Evaluating Ising Processing Units with Integer Programming 181

54. Dash, S.: A note on qubo instances defined on chimera graphs (2013). arXiv
preprint: arXiv:1306.1202

55. Billionnet, A., Elloumi, S.: Using a mixed integer quadratic programming solver for
the unconstrained quadratic 0-1 problem. Math. Program. 109(1), 55–68 (2007)

56. Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum computation by adi-
abatic evolution (2018)

57. Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model.
Phys. Rev. E 58, 5355–5363 (1998)

58. Farhi, E., Goldstone, J., Gutmann, S., Lapan, J., Lundgren, A., Preda, D.: A
quantum adiabatic evolution algorithm applied to random instances of an NP-
complete problem. Science 292(5516), 472–475 (2001)

59. Nightingale, M.P., Umrigar, C.J. (eds.): Quantum Monte Carlo Methods in Physics
and Chemistry. Nato Science Series C, vol. 525. Springer, Netherlands (1998)

60. Parekh, O., Wendt, J., Shulenburger, L., Landahl, A., Moussa, J., Aidun, J.: Bench-
marking adiabatic quantum optimization for complex network analysis (2015)

61. IBM ILOG CPLEX Optimizer. https://www.ibm.com/analytics/cplex-optimizer.
Accessed 2010

62. Gurobi Optimization, Inc.: Gurobi optimizer reference manual (2014). http://www.
gurobi.com

63. D-Wave Systems Inc.: The D-wave 2X quantum computer technology overview
(2015). https://www.dwavesys.com/sites/default/files/D-Wave%202X%20Tech%
20Collateral 0915F.pdf. Accessed 28 Apr 2017

64. Vuffray, M., Misra, S., Lokhov, A., Chertkov, M.: Interaction screening: effi-
cient and sample-optimal learning of Ising models. In: Lee, D.D., Sugiyama, M.,
Luxburg, U.V., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Pro-
cessing Systems, vol. 29, pp. 2595–2603. Curran Associates, Inc. (2016)

65. Lokhov, A.Y., Vuffray, M., Misra, S., Chertkov, M.: Optimal structure and param-
eter learning of Ising models (2016)

66. Mitchell, D., Selman, B., Levesque, H.: Hard and easy distributions of sat problems.
In: Proceedings of the Tenth National Conference on Artificial Intelligence, AAAI
1992, pp. 459–465. AAAI Press (1992)

67. Balyo, T., Heule, M.J.H., Jarvisalo, M.: Sat competition 2016: recent developments.
In: Proceedings of the Thirty-First National Conference on Artificial Intelligence,
AAAI 2017, pp. 5061–5063. AAAI Press (2017)

http://arxiv.org/abs/1306.1202
https://www.ibm.com/analytics/cplex-optimizer
http://www.gurobi.com
http://www.gurobi.com
https://www.dwavesys.com/sites/default/files/D-Wave%202X%20Tech%20Collateral_0915F.pdf
https://www.dwavesys.com/sites/default/files/D-Wave%202X%20Tech%20Collateral_0915F.pdf

	Evaluating Ising Processing Units with Integer Programming
	1 Introduction
	2 A Brief Introduction to Ising Models
	3 Features of Analog Ising Processing Units
	3.1 Challenges of Benchmarking Ising Processing Units

	4 A Review of Ising Processing Unit Benchmarking Studies
	4.1 Instance Generation Algorithms
	4.2 Solution Methods
	4.3 Overview

	5 A Study of Established Methods
	5.1 Identifying Challenging Cases
	5.2 An IPU Evaluation Using RAN-1 and RANF-1

	6 Conclusion
	References

