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Preface

This volume contains the papers that were presented at the 16th International
Conference on the Integration of Constraint Programming, Artificial Intelligence, and
Operations Research (CPAIOR 2019), held in Thessaloniki, Greece, June 4–7, 2019.

The conference received a total of 111 submissions, including 99 regular paper and
12 extended abstract submissions. The regular papers reflect original unpublished
work, whereas the extended abstracts contain either original unpublished work or a
summary of work that was published elsewhere. Each regular paper was reviewed by at
least three Program Committee members, which was followed by an author response
period and a general discussion by the Program Committee. The extended abstracts
were reviewed for appropriateness for the conference. At the end of the review period,
43 regular papers were accepted for presentation during the conference and publication
in this volume, and all abstracts were accepted for presentation at the conference.

In addition to the regular papers and extended abstracts, four invited talks were
given, by Tobias Achterberg (Gurobi Optimization), Zico Kolter (Carnegie Mellon
University), Martine Labbé (Université Libre de Bruxelles), and Thomas Schiex
(Université de Toulouse, INRA). The abstracts of the invited talks can also be found in
this volume.

The conference program included a Master Class on the topic “CP, AI, and OR for
Social Good,” organized by Bistra Dilkina and Phebe Vayanos, with invited talks by
Christopher Beck (University of Toronto), Bistra Dilkina (University of South Cali-
fornia), John Hooker (Carnegie Mellon University), Marie-Éve Rancourt (HEC
Montreal), Sibel Salman (Koc University), Pascal Van Hentenryck (Georgia Institute of
Technology), Phebe Vayanos (University of South California), and Joann de Zegher
(MIT).

The organization of this conference would not have been possible without the help
of many individuals. First, we would like to thank the Program Committee members
and external reviewers for their hard work. Several Program Committee members
deserve additional thanks because of their help with timely reviewing of fast-track
papers, shepherding regular papers, or overseeing the discussion of papers for which
we had a conflict of interest. We are also particularly grateful to Bistra Dilkina and
Phebe Vayanos (Master Class Chairs) and Nikolaos Ploskas (Sponsorship Chair) for
their help in organizing this conference. Special thanks goes to Nikolaos Samaras
(Conference Chair), whose support has been instrumental in making this event a
success.

Lastly, we want to thank all sponsors for their generous contributions. At the time of
writing, these include: the International Conference on Automated Planning and
Scheduling (ICAPS), the Association for Constraint Programming (ACP), Springer, the
Artificial Intelligence Journal, AIMMS, COSLING, Dimoulas Special Cables, the
European Association for Artificial Intelligence (EurAI), FICO, General Algebraic



Modeling System (GAMS), Gurobi, Lindo, The Optimization Firm, Marathon Data
Systems, the University of Macedonia, and the University of Western Macedonia.

June 2019 Louis-Martin Rousseau
Kostas Stergiou
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Products in Mixed Integer Programming

Tobias Achterberg

Gurobi Optimization
achterberg@gurobi.com

Abstract. Products of problem variables appear naturally in pseudo-Boolean
programs as well as in quadratic programs. Special preprocessing, linearization
and cutting plane techniques are available to deal with such products.
If at least one of the two variables in a product is binary, then the product can

be modeled using a set of linear constraints. As a consequence, there are many
mixed integer linear programs (MILPs) that actually contain products of vari-
ables hidden in their constraint structure. Rediscovering these product rela-
tionships between the variables enables us to exploit the solving techniques for
product terms.
In this talk, we will explain how such product relationships can be detected in

a given mixed integer linear program. Furthermore, we present some ideas how
they can then be exploited to improve the performance of an MILP solver. In
particular, we describe cuts from the Reformulation Linearization Technique
(RLT) and cuts for the Boolean Quadric Polytope (BQP). These techniques have
been implemented in the upcoming Gurobi version 9.0. Some preliminary
computational results will be presented.



Leveraging Optimization and Convexity
Within Deep Learning

Zico Kolter

Computer Science Department, Carnegie Mellon University
zkolter@cs.cmu.edu

Abstract. Deep learning is frequently seen as the “breakthrough” AI technology
of recent years, revolutionizing areas spanning computer vision, natural lan-
guage processing, and game playing. However, it is also often viewed as a
largely heuristic-driven field, where advances occur not through rigorous anal-
ysis, but through experimentation alone. And indeed, major problems exist in
modern deep learning: the systems are brittle (sensitive to adversarial manipu-
lation and a general lack of robustness), opaque (difficult to interpret and debug
their components), and expensive (often requiring vastly more data than prac-
tical in real-world settings). I this talk, I will present ways in which we can
leverage techniques from optimization and convexity to overcome these prob-
lems in deep learning. First, I will discuss our approaches to designing provably
robust deep networks using tools from convex relaxations and duality. I also
highlight recent work on scaling these methods to much larger domains,
including some initial work on provable robustness at ImageNet scale. Second, I
will present our work on integrating more complex modules as interpretable
layers within deep learning architectures. I show how modules such as opti-
mization solvers, physical simulation, model-based control, and game equilib-
rium solvers can all be integrated as layers within a deep network, enabling more
intuitive architectures that can learn from vastly less data. Last, I will highlight
some additional ongoing directions and open questions in both these areas.



Bilevel Optimisation, Stackelberg Games
and Pricing Problems

Martine Labbé

Université Libre de Bruxelles
mlabbe@ulb.ac.be

Abstract. Bilevel optimisation problems consist in constraint optimisation
problems in which a subset of variables constitutes the optimal solution of
second optimisation problem. They correspond to situations in which two
groups of decisions are taken sequentially. A first part of this talk will present
the main aspects, properties and algorithms for bilevel optimization problems
with a particular attention to the bilevel linear ones. The second part will focus
on bilevel problems with bilinear objectives and in particular on applications
such as Stackelberg games and pricing problems.



Optimization in Graphical Models

Thomas Schiex

MIAT, Université de Toulouse, INRA UR 875, Castanet-Tolosan, France
thomas.schiex@inra.fr

Abstract. Graphical models (GMs) describe a function of many variables as the
combination of many functions of smaller scope, or size. This idea of “de-
composable” functions has been used in many areas. We restrict ourselves here
to functions of discrete variables with Boolean (CSP/SAT) or numerical (Valued
CSP, Cost Function Networks – CFNs) output. Interpreting cost as energy and
using the Boltzmann probability law, CFNs can also describe probability dis-
tributions as Markov Random Fields or Bayesian Networks do. CFNs can also
be represented as Integer Linear or Quadratic Programs. Over the last decades,
the main ingredients of Constraint Programming: backtrack search, arc consis-
tency and global constraints have been extended to “efficiently” optimize
functions described as CFNs using Branch and Bound, soft arc consistencies and
global cost functions, all implemented in the open source solver toulbar2. The
talk will introduce soft arc consistency, show its tight relation with LP and
so-called convergent Message Passing in stochastic GMs. I will also give a
quick description of the many bells and whistles inside toulbar2. Ultimately, the
connection between CFNs and stochastic GMs can be leveraged to learn the soft
part of CFNs from data, and I will illustrate this on one hot scientific application
area for toulbar2: protein design.
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Constraint Programming for Dynamic
Symbolic Execution of JavaScript

Roberto Amadini1(B), Mak Andrlon1, Graeme Gange2, Peter Schachte1,
Harald Søndergaard1, and Peter J. Stuckey2

1 University of Melbourne, Melbourne, VIC, Australia
roberto.amadini@unimelb.edu.au

2 Monash University, Melbourne, VIC, Australia

Abstract. Dynamic Symbolic Execution (DSE) combines concrete and
symbolic execution, usually for the purpose of generating good test suites
automatically. It relies on constraint solvers to solve path conditions and
to generate new inputs to explore. DSE tools usually make use of SMT
solvers for constraint solving. In this paper, we show that constraint
programming (CP) is a powerful alternative or complementary technique
for DSE. Specifically, we apply CP techniques for DSE of JavaScript,
the de facto standard for web programming. We capture the JavaScript
semantics with MiniZinc and integrate this approach into a tool we call
Aratha. We use G-Strings, a CP solver equipped with string variables,
for solving path conditions, and we compare the performance of this
approach against state-of-the-art SMT solvers. Experimental results, in
terms of both speed and coverage, show the benefits of our approach,
thus opening new research vistas for using CP techniques in the service
of program analysis.

1 Introduction

Dynamic symbolic execution (DSE), also known as concolic execution/testing,
or directed automated random testing [21,35], is a hybrid technique that inte-
grates the concrete execution of a program with its symbolic execution [28]. The
main application is the automated generation of test suites with high coverage
relative to their size. In a nutshell, DSE collects the constraints (or path condi-
tions) encountered at conditional statements during concrete execution; then, a
constraint solver or theorem prover is used to detect alternative execution paths
by systematically negating the path conditions. This process is repeated until all
the feasible paths are covered or a given threshold (e.g., a timeout) is exceeded.

Key factors for the success of DSE are the efficiency and the expressiveness of
the underlying constraint solver. The significant advances made by satisfiability
modulo theories (SMT) solvers over recent years have stimulated interest in
DSE and led to the development of many popular tools [11,15,36,43,45,47].
In particular, improvements in expressive power (due the ability to combine
different theories) and solver performance have made SMT solvers very attractive

c© Springer Nature Switzerland AG 2019
L.-M. Rousseau and K. Stergiou (Eds.): CPAIOR 2019, LNCS 11494, pp. 1–19, 2019.
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2 R. Amadini et al.

for DSE, to the point that they are considered the de facto standard for DSE
tools. Alternatives such as constraint programming (CP) exist, however.

Constraint programming [40] is a declarative paradigm aimed at solving com-
binatorial problems consisted of variables (typically having finite domains) and
constraints over those variables. CP is applied in fields like resource allocation,
scheduling, and planning, but apart from some dedicated approaches [14,16,23],
it has seen limited use in software analysis. Arguably, the main impediment has
been lack of support for common data structures such as dynamic arrays, bit
vectors, and strings.

In this paper, we show that DSE can benefit from modern CP solving. In
particular, we apply CP techniques to solve the path conditions generated by
the dynamic symbolic execution of JavaScript programs. JavaScript is nowadays
the standard programming language of the web, extensively used by developers
on both the client and server side, and supported by all common browsers. Its
dynamic nature can easily lead to programming errors and security vulnerabil-
ities. This makes the dynamic symbolic execution of JavaScript an important
task, but also a highly challenging one. Hence, it is not surprising that only a
small number of DSE tools are available for JavaScript.

To capture JavaScript semantics, we first modelled the main language con-
structs with the CP modelling language MiniZinc [38]. It is essential to note that
we are using the MiniZinc extension with string variables defined by Amadini
et al. [3]. Strings play a central role in JavaScript because each JavaScript object
is a map from string keys to values, and hence coercions to strings frequently
occur in JavaScript programs (notably, arrays are objects and hence array indices
are converted to their corresponding string values). Moreover, JavaScript pro-
grams often use regular expressions to match string patterns [6].

We then developed Aratha, a DSE tool using the Jalangi analysis frame-
work [44]. Aratha can generate path conditions in our MiniZinc encoding, and
solve them with G-Strings [7], a recent extension of the CP solver Gecode [20]
able to handle string variables. Aratha is also able to generate path conditions
in the form of SMT-LIB assertions, allowing us to empirically evaluate our CP
approach against the state-of-the-art SMT solvers CVC4 [32] and Z3str3 [13].

Results indicate that a CP approach can easily be competitive with SMT
approaches, and in particular the techniques can be used in conjunction. We
emphasize that this technique can be replicated and extended to analyze lan-
guages other than JavaScript by using different MiniZinc encodings and different
solvers (MiniZinc is a solver-independent language). We are not aware of any
similar existing approaches for dynamic symbolic execution.

Paper structure. Section 2 introduces the basics of CP and DSE. Section 3
explains how we use MiniZinc to model JavaScript semantics. Section 4 describes
Aratha. Section 5 presents our experimental evaluation. Section 6 discusses
related work. Section 7 concludes by outlining possible future research directions.
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2 Preliminaries

We begin by summarizing some basic notions related to constraint programming,
string solving, DSE, and JavaScript.

For a given finite alphabet Σ, we denote by Σ∗ the set of all finite strings
over Σ. The length of a string x ∈ Σ∗ is denoted |x|.

2.1 Constraint Programming and String Constraint Solving

Constraint programming [40] comprises modelling and solving combinatorial
problems. This often means to define and solve a constraint satisfaction problem
(CSP), which is a triple 〈X ,D, C〉 where: X = {x1, . . . , xn} is a finite set of vari-
ables, D = {D(x1), . . . , D(xn)} is a set of domains, where each D(xi) is the set
of the values that xi can take, and C is a set of constraints over the variables of
X defining the feasible assignments of values to variables. The goal is typically
to find an assignment ξ ∈ D(x1)×· · ·×D(xn) of domain values to corresponding
variables that satisfies all of the constraints of C.

Most CSPs found in the literature are defined over finite domains, i.e., D only
contains finite sets. This guarantees the decidability of these problems, that are
in general NP-complete. Typically, only integer variables and constraints are
considered. However, some variants have been proposed. In this work, we also
consider constraints over bounded-length strings. Fixing a finite alphabet Σ and
a maximum string length λ ∈ N, a CSP with bounded-length strings contains a
number k > 0 of string variables {x1, . . . , xk} ⊆ X such that D(xi) ⊆ Σ∗ and
|xi| ≤ λ. The set C contains a number of well-known string constraints, such
as string length, (dis-)equality, membership in a regular language, concatena-
tion, substring selection, and finding/replacing. In the following, we will refer to
constraint solving involving string variables as string (constraint) solving.

Different approaches to string constraint solving have been proposed, based
on: automata [25,31,46], word equations [13,32], unfolding (using either bit-
vector solvers [27,41] or CP [42]), and dashed strings [7,8]. In particular, dashed
strings are a recent CP approach that can be seen as “lazy” unfolding. Thanks
to dedicated propagation, dashed strings enable efficient “high-level” reasoning
on string constraints, by weakening the dependence on λ [5,6].

Several modelling languages have been proposed for encoding CP problems
into a format understandable by constraint solvers. One of the most popular
nowadays is MiniZinc [38], which is solver-independent (the motto is “model
once, solve anywhere”), enabling the separation of model and data. Each MiniZ-
inc model (together with corresponding data, if any) is translated into FlatZ-
inc—the solver-specific target language for MiniZinc—in the form required by
a solver. From the same MiniZinc model, different FlatZinc instances can be
derived.

MiniZinc was equipped with string variables and constraints by Amadini
et al. [3]. A MiniZinc model with strings can be solved “directly” by CP solvers
natively supporting string variables (Gecode+S [42] and G-Strings [7]) or
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“indirectly” via the static unfolding into integer variables. Clearly, direct resolu-
tion is generally more efficient—especially as λ grows.

2.2 Dynamic Symbolic Execution

Symbolic execution is a static analysis technique that has its roots in the
1970s [28].

The idea of symbolic execution is to assume symbolic values for input and
to interpret programs correspondingly, i.e., to use a concept of “value” that is
in fact an expression over the variables representing possible input values. The
symbolic interpreter can then explore the possible program paths by reasoning
about the conditions under which execution will branch this way or that. The set
of constraints leading to a particular path being taken is a path condition, so that
a given path is feasible if and only if the corresponding constraint is satisfiable.
The test for satisfiability (and the generation of a witness in the affirmative case)
is delegated to a constraint solver.

Symbolic execution can be useful to automatically prove a given property of
interest, provided that: (i) the whole program—including libraries—is available
to the interpreter, and (ii) the underlying constraint solver is expressive and
efficient enough to handle the generated path conditions. Unfortunately, these
conditions are often not met.

Dynamic symbolic execution (DSE) is a software verification approach that
performs symbolic execution along with concrete (or dynamic) execution of a
given program. Concrete execution is straightforward: concrete input values are
generated according to some heuristics and tested by executing the program.

DSE can mitigate the above issues by: (i) directly invoking unavailable func-
tions (a complete symbolic interpreter is not required), and (ii) ignoring or
approximating unsupported constraints. The idea is to use symbolic values along-
side concrete values: during a concrete execution of the program on a given input,
symbolic expressions are tracked as in the symbolic execution.

However, in general DSE cannot guarantee full coverage (e.g., in presence of
loops or recursion), whereas symbolic execution tries to cover all the possible
paths (although still executing a path at a time, e.g., using interpolation to
collapse identical or subsumed paths).

After each run, the recorded path conditions are used to generate inputs for
the next concrete execution. Indeed, negating a constraint of a path condition
will generate a new set of constraints that can either be satisfiable (in which
case a new input will be generated to explore the new path) or unsatisfiable (we
found an unreachable path in the program). By repeating the process, we can
ideally reach the maximum code coverage.

Note that the constraints of the path conditions can be unsupported or too
hard to solve in a reasonable time. This can result in over-approximated solutions
(when a constraint is ignored or relaxed) or timeouts. This does not compromise
the soundness of DSE, however, as it only means that in the worst case, fewer
paths might be explored.
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2.3 JavaScript

Dynamic symbolic execution is language-independent, but the definition and the
resolution of path conditions clearly depends on the semantics of the target lan-
guage. Although this work only considers the JavaScript language, our approach
is flexible enough to encode the semantics of other well-known languages.

Designed in mid 1990’s by Brendan Eich in only ten days, JavaScript has
now become a de facto standard for web applications. This dynamic, weakly
typed language has a number of unconventional rules and pitfalls that some-
times make its behaviour surprising. For instance, there is no concept of class:
JavaScript uses prototype-based inheritance between objects. Its weak typing
implies a lot of—often implicit—coercions. In particular, coercions to strings
are very common because apart from few primitive types, in JavaScript every-
thing is an object, which is a dictionary with string keys. Each key-value pair is
called a property, and the key is called a property’s name. The syntax to access
property “x” of object O is, equivalently, O[“x”] or O.x. For example, JavaScript
arrays are actually objects where instead of indices 0, 1, 2, . . . we have proper-
ties "0","1","2", . . . . The same applies for strings. For instance, the value of
property "1" of string "hello" is its second character (indexing is 0-based), i.e.,
"hello"["1"] is "e".

The weakness of the semantic rules for JavaScript is an obstacle for pro-
gram analysis. Static analysis tools have been proposed [9,26,29,41], but the
dynamism of the language makes static reasoning difficult and often ineffective.
Dynamic techniques such as fuzzing seem more suitable for the analysis of this
language. The DSE approach aims to combine the best of the static and dynamic
worlds, by orchestrating the dynamic execution via symbolic reasoning.

Fig. 1. Example of JavaScript program annotated with symbolic variables.

We conclude this section by providing an example of how DSE works on a
snippet of JavaScript code. In Fig. 1, variable x is symbolic, i.e., it can take any
JavaScript value, while y is a concrete variable initialised to "length". When
a property of a string primitive is accessed, JavaScript automatically creates a
temporary String wrapper object to resolve the property access.1 This wrapper
1 Similarly, Booleans and numbers are wrapped into Boolean and Number objects.
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inherits all the string methods (e.g., indexOf, toUpperCase, . . . ) and also has
an immutable length property containing the length of the string.

Dynamic symbolic execution starts by initialising x to an arbitrary default
value. Let us assume for simplicity that we start with the empty string: {x ← ""}.
The first concrete iteration is then executed. Line 3 checks if the "length" prop-
erty of (the String object wrapping) x is at least 2. Since |x| = 0, this condition
is false and the constraint ¬(|x| ≥ 2) is added to the path condition. Then, in line
6 we check if property x of y is equal to string "g". But string "length" has no
property named "", so this check also fails and constraint ¬("length"[x] = "g")
is added. We thus reach line 9 by finding that path condition (3), reached with
{x ← ""}, is {¬(|x| ≥ 2),¬("length"[x] = "g")}. This path condition charac-
terizes all inputs x that would take us along a path identical to that of "".
It is now used to generate a new path. By negating its first constraint we get
|x| ≥ 2∧¬("length"[x] = "g"). A suitable solver can find a feasible assignment,
e.g., {x ← "aa"}. This input leads to path condition (1). Similarly, we negate the
second constraint of path condition (3) to get ¬(|x| ≥ 2) ∧ "length"[x] = "g".
The assignment {x ← "3"} satisfies this constraint: |x| = 1 
≥ 2 and the fourth
character of "length", i.e., the one with index 3, is the string "g" (of length
1). At this stage, there are no new constraints that can be generated: the set of
inputs {{x ← ""}, {x ← "aa"}, {x ← "3"}} covers all the lines of Fig. 1.

3 Modelling JavaScript Semantics

Understanding, and then modelling, the semantics of JavaScript is not always
straightforward. For example, the comparison [] == [] between empty arrays
fails because JavaScript actually compares their memory locations, which are
distinct because two different temporary objects are created. Faithfully mod-
elling the JavaScript semantics also requires the full support of data types like
strings, arrays and floating-point numbers. The lack of proper support for these
types is probably the main reason CP solvers are not widely used in software
analysis, where SMT solvers are typically preferred. However, recent progress in
CP (in particular clause learning) makes the modelling and solving tasks more
feasible.

In this section we explain how we encode the path conditions generated by
DSE as CP models, focusing in particular on how we handle JavaScript variables
and objects. It is important to note that correctness and completeness are not
strict requirements in this particular context. Indeed, the nature of JavaScript
requires a compromise between a faithful mapping of the language’s semantics
and the complexity of the resulting CP model. Fortunately, difficult JavaScript
constructs can be ignored or approximated. While this affects the correctness of
the resolution, the ramifications are not dramatic for test data generation: the
worst case outcome is that we fail to achieve optimal test coverage. This should
be acceptable if “good enough” coverage is reached in a relatively short time.
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3.1 JavaScript Variables

JavaScript is dynamic and weakly typed. Variables in JavaScript do not have
statically defined types, but refer to heterogeneous values that may vary dur-
ing program execution. A variable can have a primitive type (null, undefined,
Boolean, number or string) or an object type. In particular, null and unde-
fined types each have only one possible value (null and undefined respec-
tively), a Boolean is either true or false, strings are encoded in UTF-16 for-
mat, and numbers are represented as 64-bit IEEE 754 floating-point values.
Objects are collections of properties mapping a name (a string) to an arbitrary
JavaScript value. For each symbolic JavaScript variable x, we define a triple
〈type(x), sval(x), addr(x)〉 of CP variables such that: (i) type(x) encodes the
type of x; (ii) sval(x) represents the string value of x; (iii) addr(x) models the
memory address of x.

The domain of type(x) is T = {Null ,Undef ,Bool ,Num,Str ,Obj}.2 Note that
T can be arbitrarily extended; e.g., the current implementation also considers
JavaScript global objects like Array and Function as standalone types. How-
ever, for simplicity, in this paper we do not consider extensions of T. The string
variable sval(x) defines the string representation of x, i.e., the value returned
by JavaScript when coercing x to a string. As aforementioned, these coercions
frequently occur during JavaScript program executions. For example, we have
that type(x) ∈ {Null ,Bool} ⇒ sval(x) ∈ {"null", "true", "false"}, while
sval(x) = "42" ⇒ type(x) ∈ {Num,Str} because x can be either the number 42
or the string "42". The value of addr(x) is instead a natural number that can
be seen as a logical address of x. If addr(x) = 0 then x is a constant, primitive
value; otherwise, addr(x) uniquely identifies object x (see Sects. 3.2, 3.3).

Fig. 2. Invariants for type(x), sval(x), addr(x).

Figure 2 shows some of the invariants we enforce to keep type(x), sval(x),
addr(x) in a consistent state. Implications 1 and 2 handle the cases where x is
undefined or null (addr(x) = 0 because x is a constant having no properties). If
x is a Boolean variable (implication 3) then sval(x) is either "true" or "false".
Note that we do not impose any condition on addr(x). If addr(x) = 0, we refer
to a Boolean constant; otherwise, to the corresponding wrapper object. For our

2 We treat T as an enumeration where Null = 1,Undef = 2, . . . ,Obj = 6.
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purposes, wrappers are only necessary when we explicitly access a property of
x (e.g., x["length"] when type(x) = Str). Otherwise, we can safely treat x as
a constant value. Invariant 4 says that if x is a number, then its string value
must represent a number. In the current implementation, the language NS of
numeric strings is denoted by the following regular expression:

(NaN | (ε | -)Infinity | 0 | (ε | -)[1-9][0-9]∗).
However, NS can be extended to handle exponentials, hexadecimal, and
floats. Implication 5 defines the string representation of objects according to
ECMAScript specifications [17]. Note that if we also consider other global
objects, this invariant is no longer true (e.g., the string value of an Array object
is the comma-separated concatenation of the array elements). Finally, invariant
6 defines the address space. The constant Naddr is the upper bound for each
address (no greater than the number of symbolic variables involved in the path
condition).

3.2 JavaScript Objects

A JavaScript object is essentially a dictionary that maps strings to JavaScript
values. While SMT has a well-defined theory of arrays, parametric in the types
of keys and values, CP offers no native encodings for array variables and con-
straints. Thus, in order to model the semantics of JavaScript objects, we devised
a proper CP encoding of arrays. Assuming for the moment a fixed and finite set
of attributes, a simple encoding would be to introduce a variable for the value
of each attribute in each object. Inspecting the value of an attribute just returns
the corresponding variable; destructive updates involve creating a new object,
equal to the original in all attributes except the updated one. Unfortunately,
this encoding is rather large, and tends to propagate poorly.

Francis et al. [18] invert this model: instead of storing the state of each object
at each time, the model records the history of evolution of the attribute of inter-
est. In this representation, encoding an attribute write write(O, attr , val) simply
appends a cell to the “history of writes”—basically, an array storing subsequent
attribute writes. The encoding of read(O, attr) must then select the most recent
(if any) write to attr on object O from the history array. If no matching write
occurred, the read falls through to a default value.

JavaScript poses a further difficulty: since attributes are arbitrary strings,
the set of indices is unbounded. Further, because of aliasing, we cannot even
determine statically which objects are being written to. To handle non-fixed
indices, Plazar et al. [39] exploit the observation that, because a finite sequence
of reads and writes can only affect a bounded number of indices, it is possible
to emulate an unbounded mapping with bounded arrays using an indirection.

To encode destructive update of JavaScript objects, we combine these two
approaches: we record the evolution of the program as a sequence of 〈O, attr , val〉
tuples, plus a bounded number of additional entries which are read without
being written (and for built-in attributes, discussed later). Then encoding a
read amounts to identifying the latest 〈O, attr , val〉 tuple for a given O and attr .
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We define five arrays of CP variables OAddr ,PName,PType,PSval and
PAddr such that: OAddr stores the address of the objects to uniquely identify
them, PName stores the property names (i.e., the keys), while PType,PSval ,
and PAddr store the property values. We model each property write O[x] ← y
with a predicate write(O, x, y, i) such that:

write(O, x, y, i) ⇐⇒ OAddr [i] = addr(O) ∧ PName[i] = sval(x) ∧
PType[i] = type(y) ∧ PSval [i] = sval(y) ∧ PAddr [i] = addr(y)

where i > 0 is a property index necessary to handle property overwriting: if
O[x] ← y happens before a write O[x] ← y′ then we have two corresponding
writes write(O, x, y, i) and write(O, x, y′, i′) such that i < i′. Hence, we have to
track the temporal order of the writes: a property index is nothing but a sequence
number identifying the time instant of a given write. Each time we have a new
write, this sequence number must be incremented.

A property read y ← O[x] is modelled by a function read(O, x, T ) returning
the proper index 0 ≤ i ≤ T for O[x]. Formally:

read(O , x ,T ) = i ⇐⇒ 0 ≤ i ≤ T ∧ type(O) 
∈ {Null ,Undef } ∧
O = [O,OAddr [1], . . . ,OAddr [T ]][i] ∧
x = [x,PName[1], . . . ,PName[T ]][i] ∧
∀j=1,...,T : (O = OAddr [j] ∧ x = PName[j]) ⇒ j ≤ i

where the upper bound T is needed to exclude property reads that still are to
happen. Note that T is an input constant that can be pre-computed before the
solving with a counter incremented at each property write.

Index 0 is returned if O[x] is not defined: since in this case JavaScript returns
undefined, we set OAddr [0] = PAddr [0] = 0,PType[0] = Undef ,PSval [0] =
"undefined". Let us suppose, e.g., that O is a symbolic object and after i
property writes the following statements are executed sequentially:

y ← O[x]; O[x] ← z; y′ ← O[x]

This is modelled by:

j = read(O, x, i) ∧ write(O, x, z, i + 1) ∧ j′ = read(O, x, i + 1) ∧
type(y) = PType[j] ∧ sval(y) = PSval [j] ∧ addr(y) = PAddr [j] ∧

type(y′) = PType[j′] ∧ sval(y′) = PSval [j′] ∧ addr(y′) = PAddr [j′]

It is fundamental to set a precise upper bound for reads: e.g., if the first read
was j = read(O, x, i + 1), the above constraint would hold only if z = y.

JavaScript has a number of builtin properties (e.g., the length property
for strings and arrays) that can be read and overwritten. We handle them by
simulating their writing before the program execution, i.e., the index of a builtin
property will always be lower than the index of the first property accessed in the
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program execution. For example, we treat the indices 0, 1, 2, . . . of a symbolic
string ω as builtin properties "0", "1", "2", . . . of a String object wrapping ω.

We approximate the deletion of O[x] with a write O[x] ← undefined. This
does not agree exactly with the JavaScript semantics but, as already mentioned,
we need some relaxations to avoid overloading the solver. For example, although
prototype chains are allowed, if object O does not have property x, the function
read(O, x, T ) returns 0 without checking if there exists a prototype O′ of O
having property x.

3.3 Other JavaScript Constructs

From the encodings described above we can model most of the other JavaScript
operations. For example, a common JavaScript operation is the strict comparison
x === y. This relation holds if x and y have the same type, the same value
(different from NaN) and, if one is a non-wrapper object, x and y must be exactly
the same object (see the example in Fig. 1). We encode the strict comparison as:

x === y ⇐⇒ type(x) = type(y) ∧ sval(x) = sval(y) ∧
(type(x) = Num ⇒ sval(x) 
= "NaN") ∧
(type(y) = Num ⇒ sval(y) 
= "NaN") ∧
((type(x) = Obj ∨ type(y) = Obj ) ⇒ addr(x) = addr(y))

We model the semantics of other JavaScript operations such as ==, !==, !=,
<, ≤, >, ≥, +, −, /, %, indexOf, charAt, concat, slice, substr, and regular
expression testing. Some of them need special attention because the semantics of
the operation depends on the type of the operators. For example, x < y refers to
lexicographic order if type(x) = type(y) = Str , otherwise arithmetic comparison
is performed (via coercion to numbers). Analogously, z = x + y can refer to
either the string concatenation or arithmetic addition. Note that in the current
implementation we use channelling functions to convert strings to integers and
vice versa. An alternative solution might be to use, in addition to the string value
sval(x), a CP integer variable ival(x) to keep track of the integer value of x. For
example, if x = true then ival(x) = 1. The tricky part in this representation
is to encode a non-integer value: if we use a special integer υ ∈ Z to represent
a JavaScript value x not convertible to integers, then we have to discriminate
whether ival(x) = υ means “not an integer” or the actual number υ.

The CP encoding we propose is implemented in the MiniZinc language.3 Each
solver supporting MiniZinc can therefore solve the resulting model. We remark
that, due to the fundamental role played by strings in JavaScript, we are using
the MiniZinc extension with string variables [3]. Clearly a dedicated string solver
like G-Strings is currently the best candidate to solve these models, but other
solvers could be used by essentially converting strings to arrays of integers.

3 Publicly available at https://bitbucket.org/robama/g-strings/src/master/gecode-5.
0.0/gecode/flatzinc/javascript.

https://bitbucket.org/robama/g-strings/src/master/gecode-5.0.0/gecode/flatzinc/javascript
https://bitbucket.org/robama/g-strings/src/master/gecode-5.0.0/gecode/flatzinc/javascript
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4 Implementation: Aratha

We implemented our DSE framework into a tool we call Aratha.4 We followed
the standard implementation strategy of DSE systems. After annotating the
program with symbolic inputs, we begin by running the program with a concrete
seed input. During this execution, we record which branches were taken and
then construct the path condition corresponding to the input. A set of new path
conditions is obtained by negating the last element of each non-empty prefix of
the current path condition, which are then appended to the exploration queue.
We then take the next path condition in the queue, use a constraint solver to
obtain a satisfying input, and repeat the process. Figure 3 presents a graphical
summary of the system.

Fig. 3. The architecture of Aratha.

4.1 Extracting Path Conditions

Branching information is extracted by running an instrumented program. This
is performed via source-to-source rewriting using Jalangi2, the successor to
Jalangi [44]. That is, instead of writing or modifying a JavaScript interpreter,
we insert instrumentation into the source code itself. The instrumenter is invoked
whenever new code is accessed, allowing us to analyze code executed using
the eval() function. We then use the analysis interface of Jalangi2 to inter-
cept, rewrite and record all operations involving symbolic values. All conditional
branches depending on symbolic values are added to the current path condi-
tion. Apart from if-then-else statements and loops, the logical operators are also
treated as conditionals, owing to short-circuit evaluation. This does cause some
loss of efficiency, as it pessimistically assumes that any logical operation might
involve an expression containing side effects.

In the program, symbolic variables are obtained by calling J$.readInput(),
returning a pair containing the concrete value to be used in the current run, and
a symbolic value representing an input variable. Essentially, any concrete value
can have a symbolic expression associated to it. That expression is a record of the
operations that produced the associated concrete value. If the program performs
an operation we cannot trace symbolically (e.g., a call to a library function), or
an operation that we cannot model properly, we return only the concrete result
and we throw away the symbolic expression. This is a common approach in DSE.
4 Publicly available at https://github.com/ArathaJS/aratha.

https://github.com/ArathaJS/aratha
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4.2 Source-to-Source Translation

Source-to-source translation brings with it two advantages. Firstly, the analy-
sis is independent of any particular interpreter, and is therefore not sensitive
to changes in system architecture. This is especially valuable, as JavaScript
interpreters are a moving target, due to the never-ending search for improved
performance. Secondly, this allows us to reap the efficiency benefits of those
same optimized interpreters. Although instrumentation introduces some over-
head, modern interpreters can nearly eliminate its impact. The cost is, however,
that our analysis relies on having as much code instrumented as possible.

Though concretization allows DSE to be run on programs containing un-
instrumented code, coverage quickly becomes limited as more and more sym-
bolic expressions become concrete. Notably, though primitive values can be con-
cretized with little impact, any object that is passed to an un-instrumented
function must have its entire object graph concretized. This can result in a cas-
cade effect that strips almost all symbolic information from that point.

One thing to note is that, regardless of method, it is difficult to fully mask
the presence of instrumentation. As we instrument all JavaScript operations, we
can rewrite operations such as introspection functions which could reveal the
presence of instrumentation. However, a timing-sensitive program might still be
disrupted by the overhead of instrumentation. As most JavaScript programs do
not interrogate their execution environment, we have not attempted to handle
such things in much depth.

4.3 Backend Solving and Optimizations

Aratha can model path conditions in both the MiniZinc and the SMT-LIB [12]
constraint languages. This means it is compatible with any constraint solver sup-
porting either of those languages, as long as it also supports the string extensions.
The SMT-LIB output relies on a partial axiomatization of JavaScript’s seman-
tics. This axiomatization is itself written in the SMT-LIB 2 language, and is
hence independent of any particular solver.

To the best of our knowledge, the only mature SMT solvers that currently
support all the theories it requires are Z3 and CVC4. Note that previous systems
such as Kudzu [41], Jalangi [44], SymJS [30] and ExpoSE [34] were all designed
for use with particular constraint solvers. As such, our implementation is the first
multi-solver DSE tool. By enabling the use of both CP and SMT solvers, we can
potentially benefit from the strengths of both.

Our analysis runs on Node.js, which uses the highly efficient V8 JavaScript
interpreter. However, it is constraint solving rather than program execution that
dominates execution time in DSE. As such, we implemented a number of opti-
mizations in an attempt to make solving more efficient. To reduce the number
of solver queries and mitigate the memory impact of storing symbolic expres-
sion trees, we perform computations concretely whenever it is possible to do so
without losing precision. For instance, the unary void operator always returns
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undefined, regardless of its argument. Similarly, we eagerly simplify read oper-
ations on properties of symbolic objects. In many such cases, we can determine
the property’s value unambiguously and hence return just that particular value.

We also attempt to use type information to simplify expressions whenever pos-
sible. Though Aratha fully supports JavaScript’s type system, it is beneficial for
both performance and understandability to simplify type-dependent operations
as early as possible. As many functions only return values of a specific type, we
can frequently choose which “overload” of a function to invoke. For instance, if
both of the arguments of a + operation are numbers, we can use the more specific
numeric addition instead of the general JavaScript addition function.

In terms of back-end optimizations, Aratha can submit constraint queries
incrementally to a supporting solver. Constraint solvers which support incremen-
tal solving can reuse previous work when answering a query, potentially yielding
a result much more quickly. However, such functionality is at present generally
provided only by SMT solvers because CP does not handle incremental solving.

Aratha deals with loops and recursions by setting a parameter that limits
the maximum number of iterations allowed. This is a common approach in DSE.

5 Evaluation

We now use Aratha to assess the performance of CP and SMT solvers within
our tool. We emphasize that it is not our goal to make a comparison of different
DSE tools. Such a comparison would be difficult because of the limited availabil-
ity and development of JavaScript DSE tools so far. Rather, we have wanted to
test the hypothesis that CP is a valuable option for software analysis, when used
in synergy with (not necessarily in place of) SMT or SAT solving technologies.
We also underline that the performance of the individual solvers also depends on
the SMT/CP encoding we chose for the JavaScript semantics: different models
may lead to a different performance.

We compared four different solvers: the CP-based string solver G-
Strings and the SMT solvers CVC4 [32], Z3 [37], together with Z3’s most
recent string solver extension Z3str3 [13]. For each path condition, we set a
small timeout of Tpc = 10 s. This is because DSE implies a high number of path
conditions having a limited number of constraints. Moreover, setting a too high
value of Tpc would be unnecessarily harmful given the heavy-tailed nature of
solving: these problems are typically either solved in few seconds, or not solvable
at all within hours of computation. We set a maximum number of N = 1024 DSE
iterations for each problem, and also an overall timeout Ttot = 300 s, because
sometimes reaching N iterations can take too long.5 We ran all the experiments
on an Ubuntu 15.10 machine with 16 GB of RAM and 2.60 GHz Intel R© i7 CPU.

Unfortunately, there are no standard benchmarks for JavaScript DSE. More-
over, retrieving large JavaScript benchmarks is tedious because the source-to-
source rewriting of Aratha needs a manual instrumentation for the symbolic
5 Ttot is also useful because CVC4 may get stuck in presolving regardless of Tpc limit.

(see http://cvc4.cs.stanford.edu/wiki/User_Manual#Resource_limits).

http://cvc4.cs.stanford.edu/wiki/User_Manual#Resource_limits
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input. We therefore tested Aratha on the test suite of ExpoSE, consisting of
197 already annotated JavaScript sources. This is not a DSE benchmark in the
strict sense, but it is however very useful in this context. We did not compare
Aratha against ExpoSE because Aratha does not yet fully support complex
JavaScript operations such as backreferences and greedy matching.

Table 1. Average results and cross comparisons between solvers

Solver % statements Time [s] Inputs Timeouts G-Strings CVC4 Z3 Z3str3

G-Strings 82.85 4.74 3.54 0 — 41 73 112
CVC4 77.25 33.08 2.83 21 3 — 51 98
Z3 72.81 3.06 3.01 1 11 19 — 66
Z3str3 62.69 0.46 1.80 0 0 2 11 —

The results are shown in Table 1, where we see the average coverage of state-
ments in the entire test suite, the average time to process each problem in the
suite, the average number of unique inputs generated, and the total number
of times the overall timeout Ttot was reached. Clearly the CP approach imple-
mented by G-Strings is competitive with SMT methods: it is fast and provides
the best coverage. Note that being fast is not always good in this context, because
a solver can terminate its execution in a few seconds without yielding signifi-
cant inputs. This is the case of Z3 and Z3str3: they are the fastest solvers,
but they have the smallest coverage (in particular Z3str3 appears unstable on
these problems). However, we remark that this performance should not be taken
as an absolute value because it also depends on the SMT encodings we chose.

The average coverage of CVC4 is closer to that of G-Strings. Its high
average time is slightly misleading, as it is mainly due to the high number of
timeouts. In fact, for 130 cases CVC4 is faster in reaching (at least) the same
coverage as G-Strings. This suggests that CP and SMT solvers should not be
seen as mutually exclusive, but possibly cooperating via a portfolio approach [4,
10] that aims to select and run the best solver(s)—possibly in parallel and by
exchanging information—for a given path condition.

The second part of the table shows the number of times the solver for that
row reaches a strictly better coverage than the solver for that column. On this
measure, G-Strings has the best performance. However, there are cases where
CVC4 and Z3 achieve a better coverage.

6 Related Work

The main ideas behind DSE go back to Godefroid, Klarlund and Sen’s DART
project [21]. Since then, advances in solver technology saw DSE tools improve
rapidly, in some cases finding large-scale use. For example, Microsoft’s SAGE [22]



Constraint Programming for Dynamic Symbolic Execution of JavaScript 15

DSE tool reportedly detected up to one third of all bugs discovered during the
development of Windows 7—bugs that were missed by other testing methods.

DSE was first applied to JavaScript programs in the Kudzu project [41].
Existing solvers were found inadequate for the task of reasoning about JavaScript
behaviour, for a number of reasons, including JavaScript’s orientation towards
strings as a default data structure. Hence a major part of the Kudzu project
turned out to be the development of a dedicated string + bitvector solver, Kaluza.

SymJS [30] is a symbolic execution and fuzzing tool for JavaScript. It
relies on the PASS [31] solver, and it uses a model of the DOM combined
with an intelligent, feedback-driven event generator to automatically test web
applications.

ExpoSE [34] is the first JavaScript DSE tool able to reason about string
matching via (extended) regular expressions, although in a limited fashion. It
uses Z3 for constraint solving and it has been applied successfully to several
important Node.js libraries, though overall coverage is relatively low because of
the limited nature of the analysis.

Aratha is the first JavaScript DSE tool capable of reasoning about inputs
without resorting to unsound heuristic type assignments or requiring the user to
commit to the type of each input in advance. It allows for easy replacement of
constraint solver. It is built using Jalangi 2 [44], a framework for implementing
dynamic analyses for JavaScript.

Meaningful comparison of the JavaScript DSE tools discussed here is ham-
pered by their limited availability. Comparison of different DSE backends, i.e.,
constraint solvers focused on the types of constraints typically generated in
dynamic analysis of JavaScript, is a simpler task, provided we have a DSE tool
that allows for easy backend plugging and unplugging. Aratha does exactly
that.

String solvers are still in their infancy and current solvers naturally show
varying degrees of robustness. Many are based on the DPLL(T) paradigm [19],
including CVC4 [33], Z3str* family [13,51,52], S3* family [48–50], and Norn [2].
More recent proposals are Sloth [24] and Trau [1]. These solvers handle con-
straints over strings of unbounded length; however, they are known to be incom-
plete. Z3str in particular claims to be complete for the set of positive formulas
in the theory of concatenation and linear integer arithmetic in length, however,
its successors are of a different design and have not made such promises.

Some solvers provide finite decision procedures by stipulating an upper bound
on the length of strings (e.g., HAMPI [27] and Kaluza [41]). G-Strings [7,
8] takes a propagation based approach to bounded string solving, where the
complexity weakly depends on the length bound.

7 Conclusions

In this paper we have described how to build a dynamic symbolic execution tool
for JavaScript, utilising an underlying CP solver. Critical to this approach is
the ability to translate the complex object behaviour of JavaScript into a set of
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constraints that are handled by a CP solver. In particular for JavaScript, since
strings are essential to almost any operation in the language, our tool makes
use of string extensions of the MiniZinc language [3] and the efficient string
constraint solving capabilities of the dashed-string solver G-Strings [8].

Our experiments suggest that CP solvers can be competitive with state-of-
the-art SMT solvers, for the kind of constraints that arise in dynamic symbolic
execution of JavaScript. In particular, a portfolio consisting of both SMT and
CP solvers might turn out to be a good strategy for maximizing code coverage
and minimising the DSE time.

Important future work to improve the CP approach is to extend CP con-
straints to do equality propagation, to propagate more information from object
constraints. Extending the string solver to be usable in a nogood solver should
also significantly improve CP solving times.

Acknowledgments. This work is supported by the Australian Research Council
(ARC) through Linkage Project Grant LP140100437 and Discovery Early Career
Researcher Award DE160100568.

References

1. Abdulla, P.A., et al.: Flatten and conquer: a framework for efficient analysis of
string constraints. In: Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2017, Barcelona, Spain,
18–23 June 2017, pp. 602–617 (2017)

2. Abdulla, P.A., et al.: Norn: an SMT solver for string constraints. In: Kroening, D.,
Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 462–469. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21690-4_29

3. Amadini, R., Flener, P., Pearson, J., Scott, J.D., Stuckey, P.J., Tack, G.: MiniZ-
inc with strings. In: Hermenegildo, M.V., Lopez-Garcia, P. (eds.) LOPSTR 2016.
LNCS, vol. 10184, pp. 59–75. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-63139-4_4

4. Amadini, R., Gabbrielli, M., Mauro, J.: A multicore tool for constraint solving. In:
Proceedings 24th International Joint Conference Artificial Intelligence, pp. 232–
238. AAAI Press (2015)

5. Amadini, R., Gange, G., Stuckey, P.J.: Propagating lex, find and replace with
dashed strings. In: van Hoeve, W.-J. (ed.) CPAIOR 2018. LNCS, vol. 10848, pp.
18–34. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93031-2_2

6. Amadini, R., Gange, G., Stuckey, P.J.: Propagating regular membership with
dashed strings. In: Hooker, J. (ed.) CP 2018. LNCS, vol. 11008, pp. 13–29. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-98334-9_2

7. Amadini, R., Gange, G., Stuckey, P.J.: Sweep-based propagation for string con-
straint solving. In: Proceedings 32nd AAAI Conference Artificial Intelligence, pp.
6557–6564. AAAI Press (2018)

8. Amadini, R., Gange, G., Stuckey, P.J., Tack, G.: A novel approach to string con-
straint solving. In: Beck, J.C. (ed.) CP 2017. LNCS, vol. 10416, pp. 3–20. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-66158-2_1

9. Amadini, R., et al.: Combining string abstract domains for JavaScript analysis: an
evaluation. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp.
41–57. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54577-5_3

https://doi.org/10.1007/978-3-319-21690-4_29
https://doi.org/10.1007/978-3-319-63139-4_4
https://doi.org/10.1007/978-3-319-63139-4_4
https://doi.org/10.1007/978-3-319-93031-2_2
https://doi.org/10.1007/978-3-319-98334-9_2
https://doi.org/10.1007/978-3-319-66158-2_1
https://doi.org/10.1007/978-3-662-54577-5_3


Constraint Programming for Dynamic Symbolic Execution of JavaScript 17

10. Amadini, R., Stuckey, P.J.: Sequential time splitting and bounds communication
for a portfolio of optimization solvers. In: O’Sullivan, B. (ed.) CP 2014. LNCS,
vol. 8656, pp. 108–124. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10428-7_11

11. Artzi, S., et al.: Finding bugs in web applications using dynamic test generation and
explicit-state model checking. IEEE Trans. Software Eng. 36(4), 474–494 (2010)

12. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB standard: Version 2.6. Tech-
nical report, Department of Computer Science, University of Iowa (2017). www.
SMT-LIB.org

13. Berzish, M., Ganesh, V., Zheng, Y.: Z3str3: a string solver with theory-aware
heuristics. In: Stewart, D., Weissenbacher, G. (eds.) Proceedings 17th Conference
Formal Methods in Computer-Aided Design, pp. 55–59. FMCAD Inc. (2017)

14. Blanc, B., Junke, C., Marre, B., Gall, P.L., Andrieu, O.: Handling state-machines
specifications with GATeL. Electr. Notes Theor. Comput. Sci. 264(3), 3–17 (2010).
https://doi.org/10.1016/j.entcs.2010.12.011

15. Cadar, C., Dunbar, D., Engler, D.: KLEE: unassisted and automatic generation of
high-coverage tests for complex systems programs. In: Proceedings 8th USENIX
Conference Operating Systems Design and Implementation, OSDI, vol. 8, pp. 209–
224 (2008)

16. Delahaye, M., Botella, B., Gotlieb, A.: Infeasible path generalization in dynamic
symbolic execution. Inf. Softw. Technol. 58, 403–418 (2015)

17. ECMA International: Ecmascript 2018 language specification (2018). https://www.
ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf

18. Francis, K., Navas, J., Stuckey, P.J.: Modelling destructive assignments. In: Schulte,
C. (ed.) CP 2013. LNCS, vol. 8124, pp. 315–330. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40627-0_26

19. Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(T ):
fast decision procedures. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol.
3114, pp. 175–188. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-27813-9_14

20. Gecode Team: Gecode: Generic constraint development environment (2016).
http://www.gecode.org

21. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing.
In: Proceedings ACM SIGPLAN Conference Programming Language Design and
Implementation (PLDI 2005), pp. 213–223. ACM (2005)

22. Godefroid, P., Levin, M.Y., Molnar, D.: SAGE: whitebox fuzzing for security test-
ing. Commun. ACM 55(3), 40–44 (2012)

23. Gotlieb, A.: TCAS software verification using constraint programming. Knowl.
Eng. Rev. 27(3), 343–360 (2012). https://doi.org/10.1017/S0269888912000252

24. Holík, L., Janku, P., Lin, A.W., Rümmer, P., Vojnar, T.: String constraints with
concatenation and transducers solved efficiently. PACMPL 2(POPL), 4:1–4:32
(2018)

25. Hooimeijer, P., Weimer, W.: StrSolve: solving string constraints lazily. Autom.
Softw. Eng. 19(4), 531–559 (2012)

26. Kashyap, V., et al.: JSAI: a static analysis platform for JavaScript. In: Proceedings
22nd ACM SIGSOFT International Symposium Foundations of Software Engineer-
ing, pp. 121–132. ACM (2014)

27. Kieżun, A., Ganesh, V., Artzi, S., Guo, P.J., Hooimeijer, P., Ernst, M.D.: HAMPI:
a solver for word equations over strings, regular expressions, and context-free gram-
mars. ACM Trans. Softw. Eng. Methodol. 21(4) (2012). Article 25

https://doi.org/10.1007/978-3-319-10428-7_11
https://doi.org/10.1007/978-3-319-10428-7_11
www.SMT-LIB.org
www.SMT-LIB.org
https://doi.org/10.1016/j.entcs.2010.12.011
https://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
https://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
https://doi.org/10.1007/978-3-642-40627-0_26
https://doi.org/10.1007/978-3-540-27813-9_14
https://doi.org/10.1007/978-3-540-27813-9_14
http://www.gecode.org
https://doi.org/10.1017/S0269888912000252


18 R. Amadini et al.

28. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976)

29. Lee, H., Won, S., Jin, J., Cho, J., Ryu, S.: SAFE: formal specification and imple-
mentation of a scalable analysis framework for ECMAScript. In: Proceedings 19th
International Workshop on Foundations of Object-Oriented Languages (FOOL
2012) (2012)

30. Li, G., Andreasen, E., Ghosh, I.: SymJS: automatic symbolic testing of JavaScript
web applications. In: Proceedings 22nd ACM SIGSOFT International Symposium
Foundations of Software Engineering, pp. 449–459. ACM (2014)

31. Li, G., Ghosh, I.: PASS: string solving with parameterized array and interval
automaton. In: Bertacco, V., Legay, A. (eds.) HVC 2013. LNCS, vol. 8244, pp.
15–31. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03077-7_2

32. Liang, T., Reynolds, A., Tinelli, C., Barrett, C., Deters, M.: A DPLL(T ) theory
solver for a theory of strings and regular expressions. In: Biere, A., Bloem, R. (eds.)
CAV 2014. LNCS, vol. 8559, pp. 646–662. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-08867-9_43

33. Liang, T., Reynolds, A., Tsiskaridze, N., Tinelli, C., Barrett, C., Deters, M.: An
efficient SMT solver for string constraints. Formal Methods Syst. Des. 48(3), 206–
234 (2016)

34. Loring, B., Mitchell, D., Kinder, J.: ExpoSE: practical symbolic execution of stan-
dalone JavaScript. In: Proceedings 24th ACM SIGSOFT International SPIN Sym-
posium Model Checking of Software, pp. 196–199. ACM (2017)

35. Majumdar, R., Sen, K.: Hybrid concolic testing. In: Proceedings 29th International
Conference Software Engineering (ICSE 2007), pp. 416–426. IEEE (2007)

36. Majumdar, R., Xu, R.-G.: Reducing test inputs using information partitions. In:
Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 555–569. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4_41

37. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

38. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc:
towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS,
vol. 4741, pp. 529–543. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74970-7_38

39. Plazar, Q., Acher, M., Bardin, S., Gotlieb, A.: Efficient and complete FD-solving
for extended array constraints. In: Sierra, C. (ed.) Proceedings 26th International
Joint Conference Artificial Intelligence, pp. 1231–1238 (2017). ijcai.org

40. Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming.
Elsevier, New York (2006)

41. Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., Song, D.: A sym-
bolic execution framework for JavaScript. In: Proceedings 2010 IEEE Symposium
Security and Privacy, pp. 513–528. IEEE Computer Socience (2010)

42. Scott, J.D., Flener, P., Pearson, J., Schulte, C.: Design and implementation
of bounded-length sequence variables. In: Salvagnin, D., Lombardi, M. (eds.)
CPAIOR 2017. LNCS, vol. 10335, pp. 51–67. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-59776-8_5

43. Sen, K., Agha, G.: CUTE and jCUTE: concolic unit testing and explicit path
model-checking tools. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144,
pp. 419–423. Springer, Heidelberg (2006). https://doi.org/10.1007/11817963_38

https://doi.org/10.1007/978-3-319-03077-7_2
https://doi.org/10.1007/978-3-319-08867-9_43
https://doi.org/10.1007/978-3-319-08867-9_43
https://doi.org/10.1007/978-3-642-02658-4_41
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-540-74970-7_38
http://www.ijcai.org
https://doi.org/10.1007/978-3-319-59776-8_5
https://doi.org/10.1007/978-3-319-59776-8_5
https://doi.org/10.1007/11817963_38


Constraint Programming for Dynamic Symbolic Execution of JavaScript 19

44. Sen, K., Kalasapur, S., Brutch, T.G., Gibbs, S.: Jalangi: a selective record-replay
and dynamic analysis framework for JavaScript. In: Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium Foundations
of Software Engineering, pp. 488–498 (2013)

45. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In:
Proceedings 10th European Software Engineering Conference, pp. 263–272. ACM
(2005). https://doi.org/10.1145/1081706.1081750

46. Tateishi, T., Pistoia, M., Tripp, O.: Path- and index-sensitive string analysis based
on monadic second-order logic. ACM Trans. Softw. Eng. Methodol. 22(4) (2013).
Article 33

47. Tillmann, N., de Halleux, J.: Pex–white box test generation for.NET. In: Beckert,
B., Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 134–153. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-79124-9_10

48. Trinh, M.T., Chu, D.H., Jaffar, J.: S3: a symbolic string solver for vulnerability
detection in web applications. In: Proceedings 2014 ACM SIGSAC Conference
Computer and Communications Security, pp. 1232–1243. ACM (2014)

49. Trinh, M.-T., Chu, D.-H., Jaffar, J.: Progressive reasoning over recursively-defined
strings. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 218–
240. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4_12

50. Trinh, M.-T., Chu, D.-H., Jaffar, J.: Model counting for recursively-defined strings.
In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 399–418.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9_21

51. Zheng, Y., Ganesh, V., Subramanian, S., Tripp, O., Dolby, J., Zhang, X.: Effec-
tive search-space pruning for solvers of string equations, regular expressions and
length constraints. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS,
vol. 9206, pp. 235–254. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21690-4_14

52. Zheng, Y., Zhang, X., Ganesh, V.: Z3-str: a Z3-based string solver for web appli-
cation analysis. In: Proceedings 9th Joint Meeting on Foundations of Software
Engineering, pp. 114–124. ACM (2013)

https://doi.org/10.1145/1081706.1081750
https://doi.org/10.1007/978-3-540-79124-9_10
https://doi.org/10.1007/978-3-319-41528-4_12
https://doi.org/10.1007/978-3-319-63390-9_21
https://doi.org/10.1007/978-3-319-21690-4_14
https://doi.org/10.1007/978-3-319-21690-4_14


Sequential and Parallel Solution-Biased
Search for Subgraph Algorithms

Blair Archibald1 , Fraser Dunlop2 , Ruth Hoffmann2 ,
Ciaran McCreesh1(B) , Patrick Prosser1 , and James Trimble1

1 University of Glasgow, Glasgow, Scotland
ciaran.mccreesh@glasgow.ac.uk

2 University of St Andrews, St Andrews, Scotland

Abstract. The current state of the art in subgraph isomorphism solving
involves using degree as a value-ordering heuristic to direct backtracking
search. Such a search makes a heavy commitment to the first branching
choice, which is often incorrect. To mitigate this, we introduce and eval-
uate a new approach, which we call “solution-biased search”. By combin-
ing a slightly-random value-ordering heuristic, rapid restarts, and nogood
recording, we design an algorithm which instead uses degree to direct the
proportion of search effort spent in different subproblems. This increases
performance by two orders of magnitude on satisfiable instances, whilst
not affecting performance on unsatisfiable instances. This algorithm can
also be parallelised in a very simple but effective way: across both satis-
fiable and unsatisfiable instances, we get a further speedup of over thirty
from thirty-six cores, and over one hundred from ten distributed-memory
hosts. Finally, we show that solution-biased search is also suitable for
optimisation problems, by using it to improve two maximum common
induced subgraph algorithms.

1 Introduction

The subgraph isomorphism problem is to decide whether a copy of a small
“pattern” graph occurs inside a larger “target” graph. The problem is broadly
applicable, arising in areas including bioinformatics [2], chemistry [46], computer
vision [11,49], law enforcement [8], model checking [47], malware detection [4],
compilers [1,43], pattern recognition [12], program similarity comparison [10],
the design of mechanical locks [50], and graph databases [37].

Although the problem is NP-complete, by combining design techniques from
artificial intelligence with careful algorithm engineering, modern subgraph iso-
morphism solvers can often produce exact solutions quickly even on graphs with
thousands of vertices. The current single strongest subgraph isomorphism solver
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uses “highest degree first” as a value-ordering heuristic to direct a constraint pro-
gramming style search [25,35,37]. This heuristic is much better than branching
randomly, but is still far from perfect. To offset mistakes made by this heuristic,
this paper proposes a new perspective on value-ordering: rather than defining a
search order, we use degree to direct what proportion of the search effort should
be spent in each subproblem. By combining rapid restarts and nogood recording,
and introducing a small amount of randomness into the value-ordering heuristic,
we make a state-of-the-art subgraph algorithm perform two orders of magnitude
better on a large number of satisfiable instances, whilst performing worse only
rarely on satisfiable instances, and never on unsatisfiable instances. This strategy
is also effective in an optimisation setting, producing benefits in two maximum
common induced subgraph algorithms.

This new form of search can also be parallelised, with a much simpler imple-
mentation than conventional work-stealing. By running many threads with dif-
ferent random seeds but the same restart schedule, and sharing nogoods only
following restarts, we can achieve aggregate speedups [20] of thirty-one from a
thirty-six core machine, or over one hundred by using ten such machines.

1.1 Background

The non-induced subgraph isomorphism problem is to find an injective mapping
from the vertices of a pattern graph P to the vertices of a target graph T , such
that adjacent vertices in P are mapped to adjacent vertices in T (including that
vertices with loops in P may only be mapped to vertices with loops in T ). The
induced problem additionally requires that non-adjacent vertices are mapped to
non-adjacent vertices. The degree of a vertex is the number of other vertices to
which it is adjacent.

This paper looks at improving the Glasgow Subgraph Solver1, which can
solve both the non-induced and the induced subgraph isomorphism problems.
The solver is very closely based upon the k↓ algorithm of Hoffmann et al. [21]
with k = 0, and we refer the reader to that paper for full technical details;
that algorithm, in turn, is a simplification and re-engineering of an older Glas-
gow algorithm [25,35]. Essentially, the solver is a dedicated forward-checking
constraint programming implementation specifically for subgraph problems. It
works with a model having a variable per pattern graph vertex, with domains
ranging over the target graph vertices, and performs a backtracking search to
map each pattern vertex to a target vertex whilst propagating adjacency and
injectivity constraints (together with further implied constraints based upon
degrees and paths). However, it uses specialised bit-parallel data structures and
algorithms, and propagates constraints in a fixed order rather than using a queue.

1.2 Experimental Setup

Our experiments are performed on the EPCC Cirrus HPC facility, on systems
with dual Intel Xeon E5-2695 v4 CPUs and 256GBytes RAM, running Centos
1 https://github.com/ciaranm/glasgow-subgraph-solver/.

https://github.com/ciaranm/glasgow-subgraph-solver/
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7.3.1611. We use GCC 7.2.0 as the compiler. For parallelism, we use C++ native
threads, and for distributed parallelism we also use the SGI MPT implementation
of MPI. All timing measurements are steady-clock, and we use a deterministic
pseudo-random number generator for reproducibility.

We use the dataset introduced by Kotthoff et al. [25] for evaluation. This
dataset brings together a range of randomly-generated and application instance
families from earlier papers:

BVG(r), M4D(r), and Rand are families of randomly generated graphs
using different models (bounded degree, regular mesh, and uniform), where
each pattern is a permuted random connected subgraph of the target (and so
each instance is satisfiable) [9]. These benchmark instances are widely used,
but have unusual properties and so broad conclusions should not be drawn
based solely upon behaviour of these instances [37].

SF contains randomly generated scale-free graphs using a similar method [52].
LV consists of various kinds of graph gathered by Larrosa and Valiente [27] from

the Stanford Graph Database. We include both the 50 small graphs, and the
50 large graphs.

Phase contains hand crafted instances that lie near the satisfiable / unsatisfi-
able phase transition [37].

PR contains graphs generated from segmented images, corresponding to a com-
puter vision problem [49].

Images and Meshes contain graphs representing 2D segmented images and
3D object models, again representing a computer vision problem [11].

Other studies use a random selection of 200 of each of the instances from the
“meshes” and “images” families because some earlier solvers find many of these
instances extremely hard. We would like to have a larger number of satisfiable
instances in our test set, and so we include all pattern/target pairs. This gives a
total of 14,621 instances (rather than the original 5,725). At least 2,150 of these
instances are known to be satisfiable for the non-induced problem, and at least
12,348 are unsatisfiable.

2 Improving Sequential Search

We begin with a set of baseline performance measurements. In the top two plots
of Fig. 1 we show the cumulative number of instances solved over time for the
non-induced and induced problems respectively. We compare the Glasgow Sub-
graph Solver using depth-first search (DFS) and with the modifications described
in the remainder of this paper (solution-biased search, SBS), the PathLAD vari-
ation of the LAD algorithm [25,48], VF2 [9], RI [2], and VF3 [5] (which only
supports the induced problem), in each case using the original implementation
provided by the algorithm’s authors. The plots show that our starting point
comfortably beats PathLAD, VF2, VF3 and RI, except for very low choices of
timeout. For each algorithm, the y value gives the cumulative number of instances
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Fig. 1. On the top row, the cumulative number of instances solved over time, comparing
the Glasgow Subgraph Solver (both in its basic form, and with the improvements
introduced in the remainder of the paper) to other solvers, for the non-induced and
induced problems. On the bottom row, the same, considering only satisfiable instances.

which (individually) can be solved in no more than x milliseconds. The verti-
cal distance between two lines therefore shows how many more instances can
be solved by one solver than another, if every instance is run separately with
the chosen x timeout. The horizontal distance shows how many times longer
the per-instance timeout would need to be to allow the rightmost algorithm to
succeed on y out of the 14,621 instances (bearing in mind that the two sets of y
instances could be different), and gives a measure called aggregate speedup [20].

The dataset includes many instances which are extremely easy for a good
solver, and so it can be hard to see the differences between the stronger solvers
at higher runtimes. This paper focusses upon improving the performance on the
remaining hard satisfiable instances, and so in the bottom two plots in Fig. 1
(and in subsequent cumulative plots for sequential algorithms) we show only
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Fig. 2. Comparing depth-bounded discrepancy search (DDS) to depth-first backtrack-
ing search (DFS), both using degree as the value-ordering heuristic.

satisfiable instances, and use a reduced range on both axes. For the remainder
of this paper, we show only the non-induced problem, which tends to be harder;
results with the induced variant are similar.

2.1 Discrepancy Searches

A discrepancy is where search goes against the advice of a value-ordering heuris-
tic. Discrepancy searches [19,23,24,51] are alternatives to backtracking search
that initially search disallowing all discrepancies, and then retry search allowing
an increasing number of discrepancies at each iteration until either a solution
is found or unsatisfiability is proven. These schemes assume that value-ordering
heuristics are usually reliable, and that most solutions can be found with only
a small number of discrepancies. In such cases, the heavy commitment to early
branching choices made by backtracking search can be extremely costly.

Figure 2 shows the effects of adding Walsh’s [51] depth-bounded discrepancy
search (DDS) to the solver (results with other discrepancy search variants are
similar). On the scatter plot, each point represents the solving time for one
instance—to avoid noise for easier instances, we measure only time spent during
search, and exclude time spent in preprocessing and initialisation. Points below
the x − y diagonal are speedups, whilst points on the top and right axes repre-
sent instances which timed out after one thousand seconds with one algorithm,
but not the other. For satisfiable instances, the different point styles show the
different families, whilst all unsatisfiable instances are shown as dark dots. The
points well below the diagonal line and along the right-hand axis on the scat-
ter plot show that DDS can sometimes be extremely beneficial on satisfiable
instances. However, on both unsatisfiable and most satisfiable instances, the
overheads can be extremely large, and DDS is much worse in aggregate and is
not a viable approach (even when only considering satisfiable instances). These
large overheads are to be expected: discrepancy searches are aimed primarily at
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getting better feasible solutions in optimisation problems which are too large for
a proof of optimality to be a realistic prospect, and they are not well-suited for
unsatisfiable decision problems. Despite this, the extremely large gains on some
satisfiable instances confirm our suspicions that we should find an alternative to
heavy-commitment backtracking search.

Fig. 3. On the left, the cumulative number of satisfiable instances solved over time,
using four different value-ordering heuristics. On the right, an instance by instance
comparison of the degree and biased heuristics on all instances. Points on the outer
axes are timeouts, and point style shows instance family.

2.2 Value-Ordering Heuristics

Traditionally, value-ordering heuristics are designed to drive search towards the
most promising region of the search space [14], or the most constrained [15], or
the region with the highest solution density [44]. In subgraph isomorphism, this
is done by selecting vertices from highest degree to lowest [37]. The left-hand plot
of Fig. 3 demonstrates that this is indeed a good choice: the Degree heuristic’s
line shows much better performance on satisfiable instances than the Random
(branch randomly) or Anti (branch from lowest degree to highest) heuristic
lines. Meanwhile, on unsatisfiable instances, the value-ordering heuristic has no
effect on performance, because a complete search must be performed.

But what happens if our value-ordering heuristic has to choose between map-
ping a pattern vertex to one of, for example, three target vertices of degree ten,
two vertices of degree nine, or five of degree two? When driving conventional
backtracking search, the degree heuristic would pick one of the vertices of degree
ten, and we would commit all of our search effort to the exponentially large
search tree underneath it, not considering any other choice until this tree has
been fully explored and eliminated. We will show that this is not a wise choice,
and that instead, we should commit equal search effort to each of the three
subproblems found by mapping to vertices of degree ten. And similarly, should
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we be certain that a vertex of degree ten is so much better than a vertex of
degree nine that we should commit no effort to degree nine vertices until all the
degree ten subproblems have been explored? Or might it be better to commit,
say, twice as much effort to each degree ten subproblems as to each degree nine
subproblems, and only a very small amount of effort to the degree two sub-
problems? To test this hypothesis, we will now introduce a new alternative to
backtracking search, which we call solution-biased search. This search is made
up of three components: a new slightly-random value-ordering heuristic, rapid
restarts, and nogood recording. The aim is to perform a complete search, but
spending proportionally more time in parts of the search tree that are preferred
by the value-ordering heuristic.

2.3 Biased Value-Ordering

We first define a new Biased value-ordering heuristic, as follows. When branch-
ing, we select a vertex v′ from the chosen domain Dv with probability

p(v′) =
2deg(v

′)
∑

w∈Dv
2deg(w)

.

This heuristic is now equally likely to pick between vertices of equal degree, is
twice as likely to pick a vertex of degree d as one of degree d − 1, and is over a
thousand times more likely to pick a vertex of degree d than degree d − 10.

Figure 3 confirms that this heuristic, when used with backtracking search,
will solve close to the same number of instances as the degree heuristic would
for any given choice of timeout. In other words, we can introduce an element of
randomness into the degree value-ordering heuristic without adversely affecting
its performance in aggregate. The right-hand plot gives a detailed comparison.
It shows that despite the aggregate performance being similar, on a case by
case basis, the two heuristics can make a large difference to the performance for
individual satisfiable instances. This justifies our belief that although degree is
a good heuristic, we should perhaps not commit heavily to a single vertex of
highest degree, but also consider vertices of the same or similar degree.

2.4 Restarting Search and Nogood Recording

Having introduced a new value-ordering heuristic, we must now also move away
from depth-first backtracking search. We do this by using restarts and nogood
recording. The general idea is to perform a certain amount of search, and then if
no solution has been found (and unsatisfiability has not been proven), to aban-
don search and restart from the beginning. Such an approach can only be benefi-
cial if something changes after restarting—in a constraint programming setting,
this is usually the variable-ordering heuristic [13,16,28,29]. In this paper, we
instead rely upon randomness in our new value-ordering heuristic, and continue
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to use smallest domain first with static tiebreaking for variable-ordering.2 Using
restarts on value-ordering heuristics is uncommon (although Razgon et al. [45]
look at learning value-ordering heuristics from restarts, Chu et al. [6] use a sim-
ilar scheme in the context of parallel search, and an early approach by Gomes
et al. [17] does so in an optimisation context).

Preliminary experiments directed us to use the Luby scheme [33] to deter-
mine when to restart. Following convention, we multiply each item in the Luby
sequence by a constant—we used the SMAC automatic parameter tuner [22] to
select the value 660.

To avoid exploring portions of the search space that we have already visited,
every time we restart, we add new constraints to the problem which eliminate
already-explored subtrees—such a constraint is called a nogood. We generate sim-
ple decision nogoods. That is, upon backtracking due to a decision to restart,
we post a nogood of the form (v �→ v′) ∧ (w �→ w′) ∧ (x �→ x′) ⇒ ⊥ for every
branch to the left of the current (incomplete) branch at every level of the search
tree, and when we first make a decision to restart before backtracking, we post a
similar nogood eliminating the entire subtree explored. We use the two watched
literals technique [42] to propagate stored nogoods. This has two benefits: the
propagation complexity does not particularly depend upon the number of stored
nogoods, and it does not require any work upon backtracking. Other more sophis-
ticated nogood generation and propagation schemes exist [16,29], but these are
not helpful in this setting (our solver does not maintain arc consistency or use
a propagation queue).

2.5 Solution-Biased Search in Practice

In Fig. 4 we show the effects of adding restarts and nogood recording to the
algorithm. With restarts and nogood recording (random search with restarts,
RSR), the random value-ordering heuristic comfortably beats the degree strategy
with depth-first search. In other words, although having a good value-ordering
heuristic is beneficial, introducing randomness into the search is better, if it
is done alongside a mechanism to avoid heavy commitment to any particular
random choice. However, the biased heuristic together with restarts (solution-
biased search, SBS) is better still—that is, if we are introducing restarts, then
it is better to add a small amount of randomness to a tailored heuristic than
it is to throw away the heuristic altogether. Indeed, the original algorithm can
solve 1983 satisfiable instances by 909 s, whilst the biased and random restarting
algorithms require only 12 s and 35 s respectively to solve the same number.

In the more detailed view in the right-hand plot of Fig. 4, comparing the
original algorithm to solution-biased search, all of the unsatisfiable instances

2 It may be possible to further improve the solver by also introducing randomness or
some form of learning into its variable-ordering heuristic. However, simultaneously
introducing a second change would considerably complicate the empirical analysis.
Additionally, the solver’s current hand-crafted variable-ordering heuristics already
beat adaptive heuristics like impact or activity-based search.
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Fig. 4. On the left, the number of satisfiable instances solved over time, comparing
solution-biased search (SBS), random search with restarts (RSR), and the three value-
ordering heuristics with conventional depth-first search. To the right, a comparison
between the original algorithm and solution-biased search.

are very close to the x − y diagonal, showing that their performance is nearly
unchanged. On the other hand, there are large numbers of satisfiable instances
well below the diagonal line, indicating large speedups. Better yet, there are only
a handful of satisfiable instances that are more than a factor of ten times worse.
In other words, as well as improving performance, we have made up most of the
consistency we lost by introducing randomness.

As we might expect, these properties do not hold if any of the combination
of changes are disabled. In the left-hand plot of Fig. 5, we see large slowdowns on
unsatisfiable instances when disabling nogood recording, and on the right-hand
plot we see many more satisfiable instances above the x−y diagonal when using
the random value-ordering heuristic as opposed to the degree-biased heuristic.

2.6 Solution-Biased Search in Theory

Although we have shown that it provides good results, we have yet to justify
where the biased formula comes from, or indeed why we call this approach
“solution-biased”. Our goal is to use biased randomness in a value-ordering
heuristic to spend time in subproblems proportional to an estimate of their solu-
tion density [44]. Such an approach is better than committing entirely to the
area of maximum solution density because estimators only give a probability—
although we may estimate that one subtree has twice the solution density of
another, in reality the “better” subtree may contain no solutions at all.

To estimate solution density, we need an estimate of how big different sub-
problems are likely to be, and of how many solutions each subproblem is likely
to contain. Of course, obtaining exact (or even approximate) values for these fig-
ures is at least as hard as solving the problem in its entirety, but we may obtain
usable approximations. For pairs of Erdős-Rényi random graphs with large solu-
tion counts (i.e. chosen from within the “easy satisfiable” region [37]), we can
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Fig. 5. On the left, not using nogood recording introduces slowdowns, particularly on
unsatisfiable instances. On the right, using a random value-ordering gives much worse
performance on many satisfiable instances.

observe a linear relationship between subproblem size and number of solutions.
Thus, for graphs from this distribution, we need only an estimator of subproblem
size. Measurements also suggest that, for pairs of Erdős-Rényi graphs, subprob-
lems under a target vertex of degree d tend to contain a small constant times
more search nodes than those under a target vertex of degree d−1. This empirical
analysis suggests that an estimator that is exponential in d will give our method
the desired behaviour, at least for Erdős-Rényi graphs. We expect it may be
possible to derive better estimators for particular input classes, although over
the full range of problem instances, we have verified that exponential estimators
substantially outperform polynomial and factorial weightings.

3 Parallel Search

Exploiting multiple cores to speed up constraint programming solvers remains
an active area of research, with no universally perfect solution being available.
Four of the more common approaches are based upon decompositions [26,34],
work-stealing [6,20,35,39], parallel discrepancy searches [40,41], and algorithm
portfolios [32]. Decomposition approaches are unsuitable for decision problems,
or problems where we have good value-ordering heuristics, because the decom-
position interferes strongly with the shape of the search tree [34]. Work-stealing,
traditionally, also interferes with value-ordering [36], although specially designed
exceptions exist [6,20,35]. However, these have very complicated implementa-
tions. Parallel discrepancy searches are aware of value-ordering heuristics, but
have other limitations: they struggles on search trees with heavy filtering, and
rely upon inner search tree nodes being orders of magnitude less expensive to
process than leaf nodes. Portfolios, meanwhile, typically rely upon running mul-
tiple models or heuristics simultaneously, and selecting whichever finishes first,
whereas here we have a known good model and set of heuristics.
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Fig. 6. Above, the cumulative number of instances solved over time, comparing the
sequential algorithm to results using 32 threads on a single machine, and using five,
ten or twenty distributed memory hosts. Below, instance by instance comparisons.

3.1 Shared Memory Parallelism

Solution-biased search allows for a much simpler parallel implementation. We
create a number of threads, and give each thread its own random seed; other-
wise each thread performs the same sequential search. Threads synchronise on
restarts, a simple barrier causing each thread to wait for every other thread to
also restart. Nogoods from all threads are then gathered and combined before
search resumes, now with a larger set of nogoods than in a sequential run. Finally,
whenever any single thread terminates, either due to having found a solution or
proved unsatisfiability, then every other thread may immediately terminate.

This technique requires only limited changes to the top level search driver,
and none whatsoever to the main recursive search algorithm. Notably, it does
not require any locking or communication during the recursive search, aside from
a single atomic boolean flag to assist early termination. A number of factors
combine to make this approach feasible:
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– Each thread will be run with the same restart schedule, and so will spend
approximately the same amount of time between restarts. Because the only
synchronisation between threads is at a restart, we expect threads to be busy
doing search. (This is in contrast to an alternative method for paralellising
restarting search [7], which packs together successive sequence values to pro-
duce a balanced workload.) This approach therefore avoids the irregular task
size issues which usually arise in parallel combinatorial search.

– Sequentially, on non-trivial instances the algorithm will restart often (many
tens of thousands, for instances that reach the thousand second timeout).

– Because the search trees we explore are exponentially large, the randomness
in the value-ordering heuristic is sufficient to ensure that most of the time,
threads are exploring different parts of the search tree.

– The gathering of nogoods to describe the work done so far provides an alter-
native to requiring either a specific mechanism to allocate work, or expensive
synchronisation between threads. Notably, this completely bypasses the typ-
ical difficulties of sharing all learned nogoods in learning solvers [18].

– If sometimes threads do happen to explore part of the same subproblems,
this is not a problem: if the instance is satisfiable, either thread might find a
solution first, and if the instance is unsatisfiable, we merely introduce some
redundancy into the proof.3 The combination of rapid restarts and nogood
recording is enough to ensure that this is only a small overhead.

Figure 6 shows how this scheme performs in practice. Sequentially, we can
solve 14,357 instances within the thousand second timeout, with the last instance
being solved at 939.0 s. Using thirty-six threads on machines with two eighteen
core processors, we can solve 14,357 instances with a timeout of only 74.2 s,
giving an aggregate speedup [20] of 12.7.

Closer inspection of the results reveals that with this many threads, a consid-
erable proportion of the overall search time is spent with threads waiting at the
barrier for synchronisation. This is because the time taken to carry out search
until 660 backtracks are encountered is only roughly a constant (in practice
it usually varies by around a factor of two). Furthermore, the Luby sequence
includes occasional large multipliers, and if unsatisfiability is proved during
towards the end of one of these runs, each thread will end up duplicating a
large amount of work.

Because we are using nogood recording, an alternative approach is possible.
Rather than using the Luby sequence for restarts, we could restart after either
a constant number of backtracks, or simply after a certain time interval has
passed—this bounds the maximum possible idle time that threads could spend at
a barrier. Figure 6 also shows the effects of restarting every 100ms. Sequentially,
this approach is slightly better than using the Luby sequence, being able to solve
14,370 instances, with the last at 996.4 s. With thirty-six threads, solving this
many instances takes 31.8 s, giving an aggregate speedup of 31.4.

3 For solving a counting or enumeration problem, matters become slightly more com-
plicated, but not devastatingly so.
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It is important to emphasise that there is no expectation of a linear speedup
from this approach [3,30,31], particularly for satisfiable instances. Due to the
biased random nature of the value-ordering heuristic, one of our extra threads
may “get lucky” and find a solution much quicker than we would sequen-
tially, leading to a superlinear speedup. Conversely, our extra threads may con-
tribute nothing to finding a solution—or worse, due to new nogoods altering the
choice made by the random branching heuristic, we could even get an absolute
slowdown. We can see both of these effects in the bottom left plot of Fig. 6:
although we achieve roughly a linear speedup on unsatisfiable instances, satis-
fiable instances show much greater variability. However, this approach does at
least mirror our intuition of allocating search effort in proportion to where the
value-ordering heuristic believes it will be most fruitful, and so we should not
be too surprised that we see roughly a linear speedup on average on harder
instances.

Additionally, for easy instances, most of the algorithm’s execution time is
spent in a preprocessing phase. We have not parallelised this, which is why our
results are poor below the one second mark.

3.2 Distributed Memory Parallelism

To further test the scalability of this technique, we also used MPI to implement
a distributed-memory parallelism layer on top of the threaded layer. In contrast
to the huge difficulties of implementing work-stealing in a distributed memory
setting, this required only the addition of two MPI calls: an “all gather” operation
to communicate nogoods, and a “gather” to collect and combine the results of
each host. Termination, meanwhile, was handled by posting an empty nogood
(and so termination can only occur on a restart).

Figure 6 also shows the results of these experiments, using five, ten, and
twenty hosts. Because each host has two CPU sockets, the five host results use
ten MPI ranks, each with eighteen threads, and the ten and twenty host results
use twenty and forty MPI ranks respectively. The supercomputing service we
use is not designed for huge numbers of very short problems, and so we ran
only instances whose sequential runtime was at least one second; for the sake
of plotting results, we treat skipped instances as taking one second. Due to the
job launcher used, it is also not possible to accurately measure “total” runtime
including startup costs, and so instead we report the runtime of the rank zero
process—this figure is somewhat optimistic for very easy instances. With these
caveats in mind, when seeing how long a timeout is needed to solve any 14,370
instances, we get aggregate speedups of 57.1 from five hosts and 95.5 from ten
hosts over a sequential baseline; using twenty hosts is slightly slower, due to
increased overheads. Finally, if we look at harder instances, by allow a longer
sequential timeout, we can solve 14,415 instances sequentially with the last at
8,549 s; at this difficulty level, we achieve aggregate speedups of 82.6, 103.2, and
144.9 from five, ten and twenty hosts.
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Fig. 7. Above, the cumulative number of maximum common induced subgraph
instances solved by k↓ and McSplit↓ over time, with the two forms of search. Below,
comparing k↓ (left) and McSplit↓ (right) on an instance by instance basis.

4 Maximum Common Subgraph Algorithms

Having looked at subgraph isomorphism in detail, we now briefly discuss the
maximum common induced subgraph problem, to see whether our new approach
to search has more general applicability. Two recent algorithms for this problem
also make use of backtracking search with degree as a value-ordering heuristic.
The k↓ algorithm [21] attempts to solve the problem by first trying to solve the
induced subgraph isomorphism problem, and then if that fails, retries allowing a
single unmatched vertex (and thus using weaker invariants), and so on. Due to
its similarity to the Glasgow Subgraph Solver, we can introduce the same bias
and restart strategy.

Meanwhile, the McSplit↓ algorithm [38] uses a constraint programming style
search, but with special propagators and backtrackable data structures that
exploit special properties of the problem. The unconventional domain store
used by McSplit↓ precludes the use of arbitrary unit propagation, and so when
introducing restarts, we cannot propagate using nogoods. Instead, we can only
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detect when we are inside an already-visited branch. We must therefore use the
one watched literal scheme instead, and we also introduce a basic subsumption
scheme to prune redundant clauses.

Performance results from these two modified algorithms, using the same fam-
ilies of instances as in the previous section, are shown in Fig. 7. Although we have
moved from a decision problem to an optimisation problem, the same changes
remain clearly beneficial. For the k↓ algorithm, the change has a minimal effect
on many instances (typically, where the k = 0 subproblem is unsatisfiable and
hard, and the k = 1 subproblem is satisfiable and easy), but gives large benefits
on many more instances than it penalises: it is over an order of magnitude better
on over three hundred instances, whilst being an order of magnitude worse on
only seven.

With McSplit↓, the inability to use two watched literals means that in many
cases we introduce a small slowdown. However, the overall pattern is the same:
when introducing restarts and a biased value ordering heuristic, it is much more
common to see a large speedup than a large slowdown.

5 Conclusion and Future Work

The conventional view of value-ordering heuristics is that they define a search
order. We have proposed an alternative perspective, where value-orderings define
a weighting specifying how much search effort should be put into different sub-
problems, based upon a rough estimate of solution densities. We have also shown
how to turn this perspective into an algorithm, by combining a biased random
value-ordering heuristic with rapid restarts and nogood recording. This combi-
nation of techniques gives us, for the first time, a practical alternative to back-
tracking search where we have a strong value-ordering heuristic, and where we
care both about satisfiable and unsatisfiable instances.

A further benefit is the ease with which such a search can be parallelised. By
having each thread carry out the same search with a different random seed, and
sharing nogoods only on restarts, we remove the need for intrusive changes to
the core search algorithm, eliminate the irregularity problem, and still respect
the advice of the value-ordering heuristic.

We believe that these technique are broadly applicable, beyond subgraph
algorithms, and we intend to implement them in a full constraint programming
solver. We are also interested in making better use of statistical knowledge (either
a priori or learned during search) to further refine the biased randomisation
process. And finally, we are trying hard to work out whether our new perspective
also has some relevance to variable ordering heuristics.
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46. Régin, J.: Développement d’outils algorithmiques pour l’Intelligence Artificielle.
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Abstract. Maximum Satisfiability (MaxSAT), the optimisation exten-
sion of the well-known Boolean Satisfiability (SAT) problem, is a com-
petitive approach for solving NP-hard problems encountered in various
artificial intelligence and industrial domains. Due to its computational
complexity, there is an inherent tradeoff between scalability and guaran-
tee on solution quality in MaxSAT solving. Limitations on available com-
putational resources in many practical applications motivate the develop-
ment of complete any-time MaxSAT solvers, i.e. algorithms that compute
optimal solutions while providing intermediate results. In this work, we
propose core-boosted linear search, a generic search-strategy that com-
bines two central approaches in modern MaxSAT solving, namely linear
and core-guided algorithms. Our experimental evaluation on a prototype
combining reimplementations of two state-of-the-art MaxSAT solvers,
PMRES as the core-guided approach and LinSBPS as the linear algo-
rithm, demonstrates that our core-boosted linear algorithm often out-
performs its individual components and shows competitive and, on many
domains, superior results when compared to other state-of-the-art solvers
for incomplete MaxSAT solving.

Keywords: Maximum Satisfiability · MaxSAT ·
SAT-based MaxSAT · Incomplete solving · Linear algorithm ·
Core-guided MaxSat

1 Introduction

Discrete optimisation problems are ubiquitous throughout society. When solving
a discrete optimisation problem, the goal is to find the best solution according to
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a given objective function among a finite, but potentially large set of possibilities.
Examples of such problems include scheduling, routing, timetabling, and other
forms of management decision problems. The solution approaches to discrete
optimisation can be divided into complete and incomplete methods. The aim of
complete methods is to find the best possible solution and prove its optimality.
However, in many real world applications complete solving is a difficult, and in
many cases, a practically infeasible task. Hence, in practice, one might resort
to incomplete solving, i.e. computing the best possible solution within a limited
time, rather than exclusively searching for an optimal solution.

There is a wide range of technologies available for discrete optimisation.
The focus of this work is on the Boolean optimisation paradigm of Maximum
(Boolean) Satisfiability (MaxSAT), the optimization extension of the well-known
Boolean satisfiability (SAT) problem. MaxSAT can be used to solve any NP-hard
discrete optimisation problem that can be formulated as minimising a linear
objective over Boolean variables subject to a set of clausal constraints. Mod-
ern MaxSAT solving technology builds on the exceptional performance improve-
ments of SAT solvers, starting in the late 90s [39,49]. Most MaxSAT solvers used
in real-world applications are SAT-based, i.e. reduce the discrete optimisation
problem into a sequence of satisfiability queries of Boolean formulas conjunc-
tive normal form (CNF), and tackle the queries with SAT solvers. In the last
decade, MaxSAT solving technology has matured significantly, leading to suc-
cessful applications of MaxSAT in a wide range of AI and industrial domains,
such as timetabling, planning, debugging, diagnosis, machine learning, and sys-
tems biology [3,10,15,19,20,22,24,36,51]. See [5,6,42] for more details.

SAT-based MaxSAT solvers can be roughly partitioned into linear [28,29],
core-guided [4,8,25,41,41,44], and implicit hitting-set-based [21,45] algorithms.
The two most relevant ones for this work are the linear and core-guided algo-
rithms. Linear algorithms are upper bounding approaches that encode the
MaxSAT instance, along with its pseudo-Boolean objective function, into con-
junctive normal form (CNF) and iteratively query a SAT solver for a solution
better than the current best one. In contrast, core-guided algorithms are lower-
bounding approaches that use a SAT solver to extract a series of unsatisfiable
cores, i.e. sets of soft constraints that cannot be simultaneously satisfied, and
reformulate the underlying MaxSAT instance to rule out each core as a source
of unsatisfiability. Both search strategies have shown strong performance in the
annual MaxSAT evaluations, linear search is particularly effective for incomplete
solving while many of the best performing complete solvers are core-guided.

As our main contribution, we propose core-boosted linear search for incom-
plete MaxSAT solving, a novel search strategy that combines linear and core-
guided search with the aim of achieving the best of both worlds. A core-
boosted solver initially reformulates an input instance with a core-guided solver
and then solves the reformulated instance with a linear search solver. The
exchange of information from the core-guided phase to the linear phase tight-
ens the gap between the lower and upper bound, allowing the use of a simpler
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pseudo-Boolean encoding. As a result, the approach is often more effective than
either a pure linear or a pure core-guided search.

To demonstrate the potential of core-boosted linear search we report on an
experimental evaluation of a prototype solver that combines reimplementations
of two state-of-the-art MaxSAT solvers, PMRES [44] as the core-guided algo-
rithm and LinSBPS [14] as the linear algorithm. We compare core-boosted linear
search to its individual components on a standard set of benchmarks. Our results
indicate that core-boosted linear search is indeed more effective that either core-
guided or linear search for incomplete solving. An in-depth look at the search
progression on three selected instances demonstrates the ability of core-boosted
linear search to both avoid the worst-case executions of its components, and
make use the information flow between them to more quickly find solutions of
higher quality.

The rest of the paper is organised as follows. After the preliminaries in
Sect. 2, we give a detailed discussion of core-guided and linear search methods
for MaxSAT in Sect. 3. Core-boosted linear search is then presented in Sect. 4.
We discuss related work in Sect. 5, after which we present our experimental
evaluation in Sect. 6. Lastly, we give concluding remarks in Sect. 7.

2 Preliminaries

For a Boolean variable x there are two literals, the positive x and the negative
¬x. The negation ¬l of a literal l satisfies ¬¬l = l. A clause C is a disjunction
(∨) of literals (represented as a set of its literals), and a CNF formula F a
conjunction (∧) of clauses (represented as a set of its clauses). The set Var(F )
of the variables of F contains all variables x s.t. x ∈ C or ¬x ∈ C for some
C ∈ F . We assume familiarity with other logical connectives and denote by
CNF(φ) a set of clauses logically equivalent to the formula φ. We also assume
without loss of generality, that the size of CNF(φ) is linear in the size of φ [47].

A truth assignment τ is a function mapping Boolean variables to 1 (true)
or 0 (false). A clause C is satisfied by τ (denoted by τ(C) = 1) if τ(l) = 1
for a positive or τ(l) = 0 for a negative literal l ∈ C, otherwise C is falsified
by τ (denoted τ(C) = 0). A CNF formula F is satisfied by τ (τ(F ) = 1) if τ
satisfies all clauses in the formula and falsified otherwise (τ(F ) = 0). If some
τ satisfies a CNF formula F , then F is satisfiable, otherwise it is unsatisfiable.
The NP-complete Boolean Satisfiability problem (SAT) asks to decide if a given
CNF formula F is satisfiable [17].

A (weighted partial) MaxSAT instance F consists of two sets of clauses: the
hard Hard(F), the soft Soft(F), and a function wF : Soft(F) → N associating
a positive integral cost to each soft clause. The set Var(F) of the variables of
F is Var(Hard(F)) ∪ Var(Soft(F)). An assignment τ is a solution to F if
τ(Hard(F)) = 1. The cost COST(F , τ) of a solution τ to F is the sum of the
weights of the soft clauses it falsifies i.e. COST(F , τ) =

∑
C∈Soft(F) wF (C)×(1−

τ(C)). A solution τ is optimal if COST(F , τ) ≤ COST(F , τ ′) for all solutions τ ′
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Algorithm 1. Lin-Search
Input: A MaxSAT instance F
Output: An optimal solution τ to F
begin

n ← |Soft(F)|, τ� ← InitialSolution(F)

R ← {r1, . . . , rn}, F R
s = {Ci ∨ ri | Ci ∈ Soft(F), ri /∈ Var(F)}

while true do
if Resource-Out then return τ�

PB ← ∑n
i=1 wF (Ci) × ri < COST(F , τ�)

Fw ← Hard(F) ∪ F R
s ∪ CNF(PB)

(res, τ) ← SATSolve(Fw)
if res=”satisfiable” then τ� ← τ
else return τ�

to F . We denote the cost of the optimal solutions to F by COST(F). The NP-
hard (weighted partial) MaxSAT problem asks to compute an optimal solution
to a given instance F . In the rest of the paper we will assume that all MaxSAT
instances have solutions, i.e. that Hard(F) is satisfiable.

A central concept in many SAT-based MaxSAT algorithms is that of an
(unsatisfiable) core. For a MaxSAT instance F , a subset κ ⊆ Soft(F) of soft
clauses is an unsatisfiable core of F iff Hard(F) ∧ κ is unsatisfiable.

3 Core-Guided and Linear Search for Incomplete
MaxSAT

We detail two abstract MaxSAT solving algorithms, Lin-Search (Algorithm 1)
and Core-Guided (Algorithm 2), representing linear and core-guided search,
respectively. Both use SAT-solvers to reduce MaxSAT solving into a sequence of
satisfiability queries. However, the manner in which the SAT solver is used dif-
fers significantly. We present both algorithms as complete any-time algorithms,
i.e. algorithms that, given enough resources, compute the optimal solution to a
MaxSAT instance while also providing intermediate solutions during search.

In the following descriptions of the MaxSAT algorithms, we abstract the
use of the SAT-solver into two functions. The function SATSolve represents
a basic SAT-solver query. Given a CNF formula F , the query SATSolve(F )
returns a tuple (res, τ), where res denotes whether the formula is satisfi-
able and τ is a satisfying assignment to F if one exists. The extended func-
tion Extract-Core(Hard(F),Soft(F)) takes as input the hard and soft
clauses of a MaxSAT instance F and returns a triplet (res, κ, τ), where res
indicates if Hard(F) ∧ Soft(F) is satisfiable, τ is a satisfying assignment
for Hard(F) ∧ Soft(F) if one exists, and κ ⊂ Soft(F) is a core of F if
Hard(F)∧Soft(F) is unsatisfiable. Practically all SAT-solvers used in MaxSAT
solving offer a so-called assumption interface [43] that can be used to implement
SATSolve and Extract-Core.
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The pseudocode of Lin-Search, is detailed in Algorithm1. When solving an
instance F , Lin-Search refines an upper bound on COST(F) by maintaining
and iteratively improving a best known solution τ� to F . Initially, τ� is set to
any solution of F , for example by invoking the SAT solver on Hard(F). During
search, the existence of a solution τ having cost less that τ� is checked by query-
ing the internal SAT solver. If no such solution is found, then τ� is optimal and
Lin-Search terminates. Otherwise τ� is updated and the search continues. In
more detail, the existence of a solution τ for which COST(F , τ) < COST(F , τ�)
is checked by querying the SAT-solver for the satisfiability of a working formula
Fw = Hard(F)∪FR

s ∪CNF(PB) consisting of the hard clauses, the soft clauses
each extended with a unique relaxation variable ri and a CNF-encoding of a
pseudo-Boolean (PB) constraint PB =

∑n
i=1 wF (Ci) × ri < COST(F , τ�) that

is satisfied by an assignment τ iff
∑n

i=1 wF (Ci) × τ(ri) < COST(F , τ�). The
intuition underlying Fw is that setting a relaxation variable ri to true allows fal-
sification of the corresponding soft clause Ci. Thus the PB constraint essentially
limits the sum of the weights of the soft clauses falsified by an assignment τ to
be less than the current best known upper bound COST(F , τ�) on COST(F).
In other words, Fw is satisfied by an assignment τ iff τ is a solution to F for
which COST(F , τ) < COST(F , τ�).

Before proceeding with core-guided search, we make two observations regard-
ing the effectiveness of Lin-Search that are important for understanding core-
boosted linear search. As the search in Lin-Search is focused on decreasing the
best known upper bound, we expect it to be most effective for solving an instance
F when the difference between COST(F) and the cost COST(F , τ�) of the ini-
tial solution τ� is small. Thus, a high quality, i.e. low cost, initial solution can
have a significant impact on the overall performance of Lin-Search. The sec-
ond observation concerns the PB constraint

∑n
i=1 wF (Ci)× ri < COST(F , τ�).

Similar constraints are encountered in many different domains, as such a lot of
research has been put into developing efficient CNF encodings of them [11,27,46].
Even so, the PB constraint is arguably the main bottleneck of the overall perfor-
mance of Lin-Search and we expect any further techniques that allow the use
of simpler, and more compact (encodings) PB constraints to improve the overall
performance of Lin-Search.

The pseudocode of Core-Guided, basic core-guided search extended with
stratification [7,37], is detailed in Algorithm 2. Stratification is a heuristic
designed to steer the core extraction of Core-Guided toward cores κ for which
the minimum weight of the clauses in κ is high. Stratification is a standard tech-
nique in modern core-guided solvers. Importantly for this work, stratification
allows us to treat core-guided search as an any-time method for MaxSAT.

When solving an instance F , Core-Guided maintains a working instance
initialised to F and a stratification bound bSTRAT initialised to the highest weight
of the soft clauses in F . During iteration i of the main search loop, the SAT
solver is queried for a core κi of a subset of the current working instance F i

containing all hard clauses and STRAT, all soft clauses with weight greater
than or equal to bSTRAT. If no such core exists, an intermediate solution τ is



44 J. Berg et al.

Algorithm 2. Core-Guided

Input: A MaxSAT instance F
Output: An optimal solution τ to F
begin

τ� ← InitialSolution(F), bSTRAT ← max{wF (C) | C ∈ Soft(F)}
F1 ← F , i ← 1
while true do

if Resource-Out then return τ�

STRAT ← {C | C ∈ Soft(F i), wFi

(C) ≥ bSTRAT}
(res, κi, τ) ← Extract-Core(Hard(F i),STRAT)
if res=”satisfiable” then

if COST(F , τ) < COST(F , τ�) then τ� ← τ

if STRAT = Soft(F i) then return τ

else bSTRAT ← max{wFi

(C) | C ∈ Soft(F i), wFi

(C) < bSTRAT}
else

F i+1 ← Reformulate(F i, κi)
i ← i + 1

obtained and compared to the best known solution τ�. If all soft clauses were
considered in the SAT call, the obtained solution is also optimal and the algo-
rithm terminates. If not, the bound bSTRAT is lowered and the search continues.
When a core κi is extracted, the working instance is updated by the function
Reformulate. Informally speaking, Reformulate reformulates F i in a way
that rules out κi as a source of unsatisfiability and allows falsifying one clause in
κi without incurring cost. Most of the core-guided MaxSAT solvers that fit the
Core-Guided abstraction [4,8,25,41,44] differ mainly in the implementation
of Reformulate. The correctness of such solvers is often established by show-
ing that F i is MaxSAT-reducible to F i+1 and that Var(F i) ⊂ Var(F i+1) [6].
While a precise treatment of MaxSAT-reducibility is outside the scope of this
work, the next proposition summarises the consequences of it that are important
for understanding core-boosted linear search.

Proposition 1. Let F be a MaxSAT instance, κ a core of F , wκ =
min{wF (C) | C ∈ κ} and FR = Reformulate(F , κ). Assume that F is
MaxSAT reducible to FR and that Var(F) ⊂ Var(FR). Then the following
hold: (i) any solution τ to F can be extended into a solution τR to FR s.t.
COST(F , τ) = COST(FR, τR) + wκ and (ii) any solution τR to FR is a solu-
tion to F for which COST(FR, τR) = COST(F , τR) − wκ.

An alternative intuition to core-guided search offered by Proposition 1 is thus a
search strategy that lowers the optimal cost of its working instance by extracting
cores that witness lower bounds and reformulating the instance s.t the cost of
every solution to the instance is lowered exactly by the identified lower bound.
Core-guided search terminates once the optimum cost of the working instance
has been lowered to 0.
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Example 1. Let F be a MaxSAT instance having Hard(F) = {(x1 ∨ x2), (x3 ∨
x4)} and Soft(F) = {(¬xi) | i = 1 . . . 4} with wF ((¬x1)) = wF ((¬x2)) = 1 and
wF ((¬x3)) = wF ((¬x4)) = 2. We sketch one possible execution of the PMRES
algorithm [44], an instantiation of Core-Guided, when invoked on F . First, the
initial working formula F1 is set to F and the stratification bound bSTRAT is set
to the highest weight of soft clauses, i.e. 2. Thus STRAT = {(¬x3), (¬x4)} in
the first iteration. The formula Hard(F1) ∧ STRAT is unsatisfiable, the only
core obtainable at this point is κ1 = {(¬x3), (¬x4)}. Using the PMRES algo-
rithm, the next working instance F2 = Reformulate(F1, κ1) has Hard(F2) =
Hard(F1)∪{(¬x3 ∨¬r1),CNF(d1 ↔ ¬x4)}, Soft(F2) = {(¬x1), (¬x2), (¬r1 ∨
¬d1)} with wF2

(x1) = wF2
(x2) = 1 and wF2

((¬r1 ∨ ¬d1)) = 2. The strat-
ification bound is not altered so STRAT = {(¬r1 ∨ ¬d1)} during the next
iteration. Now Hard(F2) ∧ STRAT is satisfiable so bSTRAT is lowered to 1.
In the next iteration STRAT = Soft(F2) and the SAT solver obtains the
core κ2 = {(¬x1), (¬x2)}. The instance is again reformulated and the next
working instance F3 = Reformulate(F2, κ2) has Hard(F3) = Hard(F2) ∪
{(¬x1 ∨ ¬r2),CNF(d2 ↔ ¬x2))} and Soft(F3) = {(¬r2 ∨ ¬d2), (¬r1 ∨ ¬d1)}
with wF3

((¬r2 ∨ ¬d2)) = 1 and wF3
((¬r1 ∨ ¬d1)) = 2. In the final iter-

ation STRAT = Soft(F3) and since Hard(F3) ∧ Soft(F3) is satisfiable,
Core-Guided terminates.

We conclude this section with a few observations regarding Core-Guided that
are important for understanding core-boosted linear search. When solving an
instance F , Core-Guided focuses its search on the lower bound of COST(F).
Thus, we expect Core-Guided to be effective if COST(F) is low and, in par-
ticular, to not be significantly affected by the quality of the initial solution. The
main bottleneck of Core-Guided is instead the increased complexity of the
core-extraction steps. Note that the core κi extracted during the i:th iteration
of Core-Guided is a core of the i:th working instance F i and not necessarily
of the original instance F . While the effects of reformulation on the complexity
of the Extract-Core calls are not fully understood, it has been shown that
extracting a core of F i can be exponentially harder than extracting a core of
F [13].

4 Core-Boosted Linear Search for Incomplete MaxSAT

In this section, we propose and discuss core-boosted linear search, the main contri-
bution of our work. The execution of a core-boosted (linear search) algorithm is
split into two phases. On input F , the algorithm begins search in a core-guided
phase by invoking Core-Guided on F . If Core-Guided is able to find an
optimal solution within the resources allocated to it, then the core-boosted algo-
rithm terminates. Otherwise Core-Guided returns its final working instance
Fw along with the best solution τ� it found. The core-boosted algorithm then
moves on to its linear phase by invoking Lin-Search on Fw using τ� as the
initial solution. The linear phase runs until either finding the optimal solution
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to Fw, or running out of computational resources. By Proposition 1, the best
solution τ� to Fw found by Lin-Search is also a solution to F . Specifically, an
optimal solution of Fw is also an optimal solution to F implying the complete-
ness of core-boosted linear search for MaxSAT. We emphasize that the linear
component Lin-Search of a core-boosted algorithm is invoked on Fw, the final
working instance of Core-Guided, and not on F , the initial input instance.
As we discuss next and demonstrate in our experiments, this allows the linear
phase of core-boosted linear search to benefit from the core-guided phase in a
non-trivial manner.

The discussion on Lin-Search and Core-Guided in Sect. 3 serves as useful
basis for understanding the potential benefits of core-boosted linear search. Since
core-boosted linear search makes use of both core-guided and linear search, we
expect it to be effective both on the same instances as linear search, and as core-
guided search, or at least not significantly worse. For example, if the instance
F being solved has low optimal cost, then we expect a core-boosted algorithm
to be able to solve the instance effectively during its initial core-guided phase.
Similarly, if COST(F) is close to the cost COST(F , τ�) of the initial solution
τ�, then COST(Fw) is also close to COST(Fw, τ�). Hence we expect a core-
boosted algorithm to be effective during its linear phase, even factoring in the
reformulations done during the core-guided phase.

The potential benefits of core-boosted linear search go beyond merely aver-
aging out the performance of core-guided and linear search. As discussed in the
previous section, one of the main drawbacks of core-guided search is the increased
complexity of core extraction over time. Thus stopping the core-guided phase and
solving the working instance by linear search should be beneficial. Further, the
linear phase can also benefit from the reformulation steps performed by the core-
guided phase. Specifically, such reformulations can decrease the size of the PB
constraint PB =

∑n
i=1 wF (Ci) × ri < COST(F , τ�) that needs to be encoded

during linear search. Depending on the specific encoding used, the number of
clauses resulting from encoding PB into CNF depends either on the magnitudes
of the weights of the soft clauses and the right-hand side [23] or on the number
of unique sums that can be created from those weights [27]. The reformulation
steps performed during the core-guided phase of a core-boosted algorithm can
affect both of these factors. By Proposition 1 COST(Fw, τ�) ≤ COST(F , τ�)
which implies that both the magnitude of the weights in Fw and the initial right
hand side COST(Fw, τ�) of PB are smaller in the reformulated Fw than in the
original F . Additionally, the core-guided phase can also decrease the number of
soft clauses in the instance; the second working instance of Example 1 has one
less soft clause than the first one. Finally, the so-called hardening rule [7] com-
monly used in conjunction with core-guided search, can also decrease the number
of soft clauses of the instance, and thus allow the linear phase of a core-boosted
algorithm to use a more compact PB constraint.
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5 Related Work

We begin by detailing the instantiations of Lin-Search and Core-Guided that
we use in the prototype core-boosted linear search algorithm experimented with
in the next section. As the linear search component we use the basic Lin-Search
extended with varying resolution and solution-based phase-saving in the style of
LinSBPS, the best performing solver of the incomplete 300s track of the 2018
MaxSAT evaluation [14]. Solution-based phase-saving is a heuristic designed
to steer the search towards the currently best known solution by modifying
the branching heuristic of the internal SAT solver to always prefer setting the
polarity of a literal it branches on to equal its polarity in the currently best
known solution. Varying resolution is a heuristic designed to alleviate the issues
that Lin-Search has with large PB constraints. When invoked on an instance
F a linear search algorithm using varying resolution starts its search by creating
a lower resolution version of F by dividing all weights of soft clauses by some
constant d and removing all clauses C ∈ Soft(F) for which �wF (C)/d� = 0.
The low resolution version is then solved by standard linear search. When an
optimal solution is found, the value of d is decreased and the search continued in
higher resolution. Following LinSBPS, we used the generalized totalizer encoding
(GTE) [27] to convert the PB constraints to CNF. Given a set of input literals
L = {l1, . . . , ln} and their corresponding weights {w1, . . . wn} the GTE creates
a set of output literals o1, . . . , ok s.t. each oi corresponds to a sum si formable
with the weights in W for which si < sj if i < j. The sum of weights of the
literals in L set to true is then restricted to be less than si with the unit clause
(¬oi).

As the instantiation of Core-Guided we use the PMRES algorithm [44]
extended with weight aware core extraction (WCE) [16] and the hardening rule.
Weight aware core extraction is a heuristic designed to allow Core-Guided
to extract multiple cores before reformulating the instance and increasing its
complexity. When extracting a new core κ PMRES with WCE first computes
cκ = min{wF (C) | C ∈ κ}, then lowers the weight of all clauses in κ by cκ

(removing all clauses with weight 0). When no new cores can be extracted, the
Reformulate function is invoked on all of the found cores and the stratifica-
tion bound is reset. The search continues until no new cores can be found after a
reformulation step. This strategy corresponds to the S/to/WCE strategy of [16].
While an alternative strategy that prefers reformulating to lowering the strati-
fication bound was deemed more effective for complete MaxSAT solving in [16],
we found that S/to/WCE is more effective for incomplete solving. For lower-
ing the stratification bound, we use the diversity heuristic [7] that balances the
amount that bSTRAT is lowered with the number of new soft clauses introduced.

In the next section, we report on a comparison of core-boosted linear search
and all of the solvers that participated in the incomplete track of the 2018
MaxSAT Evaluation: LinSBPS, maxroster, SATLike, Open-WBO and Open-
WBO-Inc and their variations. Most of them implement variations of an app-
roach where: (i) a heuristic of some kind if used to find a good initial solu-
tion to the instance being solved and (ii) that solution is used to initialise a
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complete any-time algorithm. In most cases, the complete algorithm is some
variant of Lin-Search. The solver SATLike [30] deviates from this description
and instead uses local-search techniques in order to quickly traverse the search
space and look for solutions of increasing quality. A more detailed description of
the solvers can be found on the evaluation homepage [14].

For related work from the field of complete MaxSAT solving, the Primal-
Dual MaxSAT algorithm [18] extends PMRES with a second instance reformu-
lation used to rule out solutions that falsify the same clauses as an intermediate
solution obtained during search. The main two differences between Primal-Dual
and core-boosted linear search are that Primal-Dual reformulates the instance
on each iteration, thus increasing the complexity of core extraction steps, and
that the reformulation only rules out solutions that falsify a particular set of
clauses. In contrast, lowering the bound on the PB constraint in Lin-Search
rules out all solutions that have higher cost than the best known solution. The
WMSU3 [38] algorithm maintains a cardinality constraint over soft clauses sim-
ilar to Lin-Search but only relaxes a soft clause C after extracting a core
κ for which C ∈ κ. The similar WPM3 [9] uses linear-search as a subroutine
within core-guided search in order to obtain tighter bounds on the cardinality
constraints.

In addition to core-guided and linear search, a third central approach to SAT-
based MaxSAT solving is based on implicit-hitting sets [21,45]. When solving,
such solvers maintain a set of cores of the input instance. During each iteration,
a minimum-cost hitting set over the set of cores is computed. The clauses in the
hitting set are then removed from the instance and the SAT solver invoked on
the remaining clauses. If the SAT solver reports satisfiable, the obtained solution
is optimal. Otherwise, a new core is obtained and the search continues. Finally,
MaxSAT solvers based on branch and bound have been shown to be effective on
random MaxSAT instances as well as challenging instances of smaller size. Such
instances are encountered for example in combinatorics [1,2,31–35,48].

6 Experimental Evaluation

Next we present the results on a experimental evaluation of a prototype core-
boosted linear search algorithm that combines the instantiations of Lin-Search
and Core-Guided discussed in Sect. 5. We refer to our implementation of
Lin-Search extended with varying resolution and solution-guided phase saving
by Linear-Search. Similarly, we use Core-Guided to refer to our implementa-
tion of PMRES extended with WCE and hardening. Finally, Core-Boosted-XXs
is the core-boosted algorithm that first runs Core-Guided until either XX sec-
onds have passed or no more cores can be found with the stratification bound
at 1, then reformulates the instance and solves the reformulated instance with
Linear-Search. The state of the internal SAT solver of Core-Boosted-XXs is kept
throughout the core-guided phase, but reset (that is learned clauses are elimi-
nated and activities of all variables reset to 0) when execution is switched to the
linear search phase and whenever resolution is increased during the linear phase.
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All three algorithms were implemented on top of the publicly available Open-
WBO system [40] using Glucose 4.1 [12] as the back-end SAT solver. The initial
solution of all three algorithms is obtained by invoking the SAT solver on the
hard clauses of the instance being solved. We emphasise that core-boosted linear
search is a general idea applicable with all implementations and extensions of
Lin-Search and Core-Guided that we are aware off. The goal of these exper-
iments is to show that core-boosting can be used to improve performance of
modern core-guided and linear search solvers, not to evaluate different instanti-
ations and extensions of Core-Guided and Lin-Search.

Our experimental setup is similar to the 300s weighted incomplete track of
the 2018 MaxSAT evaluation [14]. In most of the experiments, we use the 172
benchmarks from the weighted incomplete track of the evaluation, available from
https://maxsat-evaluations.github.io/2018/benchmarks.html. We enforce a per-
instance time limit of 300 s and memory limit of 32 GB. All of the experiments
were run on the StarExec cluster (https://www.starexec.org) that has 2.4-GHz
Intel(R) Xeon(R) E5-2609 0 quad-core machines with 128-GB RAM.

As the metric for comparing solvers we use the same incomplete score as
the evaluation. For an instance F let BEST-COST(F) denote the lowest cost
found in 300 s by any of (the variants of) the solvers Linear-Search, Core-Guided,
Core-Boosted-XXs or the solvers that participated in the evaluation. The score
a solver S on F is defined as the ratio between BEST-COST(F) and the cost
of the best solution τS to F found by S, i.e. Score(S,F) = BEST-COST(F)+1

COST(F,τS)+1
. In

other words, the score of S is the ratio between the cost of the solution of the
virtual-best-strategy (VBS) among our methods and the MaxSAT Evaluation
2018 solvers, and the cost obtained by S. Hence the score difference between
two solvers shows the percentage points by which the better solver is closer to
the VBS.

The first experiment we report on evaluates effect of different time limits on
the core-guided phase of Core-Boosted-XXs. As limits we chose 30 s (10% of the
total time), 75 s (25%), 150 s (50%), 225 s (75%) and 300 s (100%), respectively.
An important fact to keep in mind is that the core-guided phase can end earlier
than the limit. For example, the solver Core-Boosted-150s runs its core-guided
phase until no more cores can be found with the stratification bound at 1 or
150 s have elapsed.

Table 1 lists the average score obtained by the Core-Boosted-XXs (CB-XXs
in the table) solver for different values of XX. Overall we observe a decrease in the
average score when the time limit is increased, even if the effect is small in most
domains. A possible explanation for this behavior is offered by Fig. 1 showing
the duration of the core-guided phase of the Core-Boosted-300s solver on all
benchmarks. On 107 out of the 172 benchmarks, the core-guided phase ended
within 30 s and on 38 benchmarks Core-Boosted-300s did not enter its linear
search phase at all. In other words, on a clear majority of the benchmarks, the
duration of core-guided phase was either very short or very long, which explains
the good performance of Core-Boosted-30s. For the rest of the experiments, we
fix the time limit for the core-guided phase to 30 s. Table 1 also lists the average

https://maxsat-evaluations.github.io/2018/benchmarks.html
https://www.starexec.org
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Table 1. Average score obtained by Core-Boosted-XXs with different maximum times
for the core-guided phase as well as its core-guided and linear search components. In
the table CB-XXs refers to the Core-Boosted-XXs solver, Lin to the Linear-Search
solver and CG to the Core-Guided solver.

Domain
(#benchmarks)

CB-30s CB-75s CB-150s CB-225s CB-300s CG Lin

BTBNSL (16) 0.996 0.995 0.996 0.995 0.965 0.956 0.959

abstraction-
refinement (2)

1.000 1.000 1.000 1.000 1.000 1.000 0.517

af-synthesis (19) 0.990 0.990 0.990 0.990 0.990 0.944 0.991

causal-discovery (14) 0.776 0.776 0.799 0.803 0.795 0.563 0.454

cluster-expansion (20) 0.941 0.941 0.941 0.941 0.941 0.941 0.941

correlation-
clustering (12)

0.953 0.956 0.953 0.953 0.953 0.736 0.675

hs-timetabling (13) 0.701 0.655 0.566 0.459 0.144 0.076 0.717

lisbon-wedding (12) 0.582 0.582 0.582 0.582 0.582 0.544 0.582

maxcut (11) 0.892 0.892 0.892 0.892 0.892 0.594 0.884

min-width (16) 0.961 0.965 0.962 0.956 0.962 0.825 0.898

miplib (5) 0.587 0.587 0.584 0.584 0.444 0.309 0.571

power-distribution (2) 0.704 0.704 0.704 0.704 0.704 0.497 0.484

railway-transport (4) 0.927 0.923 0.916 0.920 0.935 0.708 0.906

relational-inference (2) 0.041 0.041 0.041 0.041 0.429 0.414 0.041

robot-nagivation (3) 0.943 0.943 0.943 0.943 0.000 0.000 0.943

spot5 (3) 0.990 0.990 0.990 0.990 0.990 0.914 0.999

staff-scheduling (10) 0.895 0.895 0.863 0.840 0.493 0.385 0.877

tcp (7) 1.000 0.998 0.998 1.000 1.000 0.864 0.988

timetabling (1) 0.667 0.148 0.130 0.131 0.131 0.026 0.941

Total (172) 0.870 0.864 0.857 0.847 0.785 0.680 0.807

score obtained by the two components of Core-Boosted individually. The scores
clearly demonstrate the potential of core-boosted linear search. The average
score of Core-Boosted-30s is higher than either Core-Guided (CG in the table)
or Linear-Search (Lin in the table) on 10 out of 19 domains and equal to its
better component on 3 more.

Figure 2 shows a detailed analysis on the behaviour of core-boosted lin-
ear search in the form of plots showing the evolution of the gap between the
upper and lower bound (in logscale) of Core-Boosted-30s, Linear-Search and
Core-Guided on three hand-picked benchmarks. The benchmark on the left
shows a case where core-guided search is effective. During the first 30 s, both
Core-Boosted-30s and Core-Guided rapidly decrease the gap. After 30 s, Core-
Boosted-30s switches to its linear search phase, which on this benchmark slows
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Fig. 1. Time spent in core-guided phase by Core-Boosted-300s.

its search progression. Core-Guided continues with the same search strategy,
finding (and proving optimality of) a solution of cost 76250 in just under 190 s.
Even if the gap of Core-Boosted-30s is larger due to a smaller lower bound, it
still finds an “almost optimal” solution having cost 76251. On this benchmark
Linear-Search is unable to improve on its initial solution at all and returns a solu-
tion with cost 226338. An important observation to make is that, in contrast to
Linear-Search, Core-Boosted-30s did manage to improve its solution also in the
linear phase. This indicates that the linear search phase of core-boosted search
can indeed benefit from the reformulation steps performed and the best solution
obtained during the core-guided phase.

The benchmark in the middle of Fig. 2 demonstrates the opposite behaviour
to the one on the left. On this benchmark Core-Guided is unable to improve on
its initial solution having cost 651, while Linear-Search continuously improves it
and ends up finding one that has cost 17. Core-Boosted-30s is initially unable
to make progress, but starts decreasing its gap when switching to the linear
phase after 30s and ends up finding a solution of cost 23. Finally, the benchmark
on the right demonstrates a best-case scenario for core-boosted search. On this
benchmark Linear-Search is unable to improve at all on its initial solution that
has cost 311544. Core-Guided is able to decrease the gap by increasing the lower
bound to 104585, but is unable to find a single better solution and returns the
initial solution of cost 311544 as well. Core-Boosted-30s is able to use the best
of both worlds by first increasing the lower bound during the core-guided phase
and then switching to the linear phase in order to find a solution of cost 171437,
significantly better than either of its components. Notice that the initial solution
given to the linear phase of Core-Boosted-30s is the same as the one found by
Linear-Search, so the performance difference between the two is only due to the
reformulation steps done during core-guided search.

The results shown in Fig. 2 suggest, that a more sophisticated strategy for
deciding when to switch from the core-guided to the linear phase could be used
to further improve the empirical performance of core-boosted linear search. Even
though the instances in Fig. 2 are hand-picked, the average scores over all bench-
marks in the corresponding domains listed in Table 1 support the observations.
For example, the instances in the hs-timetabling domain (Fig. 2, middle) tend
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to contain only a few very large cores that are difficult to extract, making them
well suited for approaches that compute solutions. On the other hand, instances
in the causal-discovery domain (Fig. 2, right) contain very many small cores that
make finding good intermediate solutions to them difficult without first ruling
out some of the cores with core guided search.
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Fig. 2. Evolution of the gap between the upper and lower bound during search.
The specific benchmarks shown are abstraction-refinement-downcast-antlr (left) [50],
hs-timetabling-BrazilInstance5.xml (middle) [22], causal-discovery-causal carpo 8 100
(right) [26].

Figure 3 shows a per-instance comparison of the score obtained by Core-
Boosted-30s and four variants of it: (1) Core-Boosted-30s-no-reformulation that
ignores the reformulated instance and invokes the linear phase on the origi-
nal instance, (2) Core-Boosted-30s-no-solution that ignores the best solution
obtained during the core-guided phase in the linear phase and instead initialises
a new solution by invoking the SAT-solver on the hard clauses of the reformu-
lated instance, (3) Core-Boosted-30s-keep-SAT-solver that keeps the state of the
internal SAT solver throughout the entire search and (4) Core-Boosted-30s-wce-
to-strat that uses of the original search strategy proposed in [16] during the
core-guided phase. In all plots Core-Boosted-30s is on the y-axis, so any data
points in the upper left triangle correspond to benchmarks on which the baseline
performed better than the variant. We observe that the baseline solver performs
better than all of its variants, justifying our design choices. The results suggest
that using the reformulated instance and initialising the Linear Search with the
best solution obtained during core-guided search are especially important for the
overall performance.

Finally, we compare Core-Boosted-30s and its components to the other
solvers that participated in the 2018 evaluation. Due to running our experi-
ments in the same environment as the evaluation, we did not rerun the other
solvers but instead compared our solvers directly to the results of the evaluation.
Figure 4 demonstrates the performance of our solvers on the 300s weighted (left)
and unweighted (right) tracks1. We observe that Core-Boosted-30s performs very
well in the weighted track, improving the previous state-of-the-art (LinSBPS) by

1 A consequence of the metric we use is that the scores of the other solvers we report
are lower than in the evaluation. Their relative ranking is however the same.
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Fig. 3. The effect of different factors of Core-Boosted-30s on the overall performance.

approximately 2% while also finishing 3rd in the unweighted category. In more
detail, out of the 172 weighted instances, Core-Boosted-30s and LinSBPS are
equal on 63 instances (36%), Core-Boosted-30s finds a solution of strictly lower
cost on 65 (37%), and LinSBPS on 44 (25%). We also evaluated our solvers in
the 60s track of the evaluation, i.e. with the time out set to 60 s. In the weighted
track, Core-Boosted-30s gets the average score 0.814 which is again highest of
all solvers followed by Open-WBO-Inc-BMO (0.793). In the unweighted track,
the average score of Core-Boosted-30s is 0.696 which is second highest after
SATLike-c (0.699).
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Fig. 4. Performance of Core-Boosted-30s, Linear-Search and Core-Guided compared
to the results of the 300s weighted (left) and unweighted (right) track of the 2018
MaxSAT Evaluation.

7 Conclusions

We proposed core-boosted linear search, a novel search strategy for incomplete
MaxSAT solving, that combines the strengths of core-guided and linear search
and is, to the best of our knowledge, the first effective application of core-
guided reformulation techniques in incomplete MaxSAT solving. Our experi-
mental evaluation on a prototype implementation indicates that the information
flow between the two phases of a core-boosted linear search solver often allows
it to perform better than either of its individual components, while very rarely
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performing significantly worse. Furthermore, our comparison to other incomplete
solvers shows that core-boosted linear search can be used to obtain state-of-the-
art performance in weighted incomplete MaxSAT solving. As future work we
plan to develop more dynamic ways of deciding when to switch between the
core-guided and the linear search phase. Another interesting research directions
to consider is the inclusion of MaxSAT preprocessing before, or even in-between,
the core-guided and linear phases. Finally we also plan to look into extensions
of core-boosted linear search to other constraint optimization paradigms.
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1. Abramé, A., Habet, D.: AHMAXSAT: description and evaluation of a branch and
bound MaxSAT solver. J. Satisf. Boolean Model. Comput. 9, 89–128 (2015)
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Abstract. Bin Packing withMinimumColor Fragmentation (BPMCF)
is an extension of the Bin Packing Problem in which each item has a size
and a color and the goal is to minimize the sum of the number of bins con-
taining items of each color. In this work, we introduce the BPMCF and
present a decomposition strategy to solve the problem, where the assign-
ment of items to bins is formulated as a binary decision diagram and an
optimal integrated solutions is identified through a mixed-integer linear
programming model. Our computational experiments show that the pro-
posed approach greatly outperforms a direct formulation of BPMCF and
that its performance is suitable for large instances of the problem.

Keywords: Bin packing · Binary decision diagrams ·
Integer programming

1 Introduction

In this work, we investigate Bin Packing with Minimum Color Fragmentation
Problem (BPMCF), an extension of the Bin Packing Problem in which each
item is associated with a color and one wishes to identify assignments where
items of a common color are placed in the fewest number of bins possible. The
BPMCF provides a characterization of event seating problems (e.g., wedding)
where parties of people (e.g., individuals of the same family) belong to groups
(e.g., bride’s relatives, groom’s relatives, bride’s friends, and groom’s friends)
and the goal is to seat parties of the same group in as few tables as possible;
similarly, the goal is to maximize the number of parties of the same group sharing
tables. In this application bins represent tables of fixed capacity (number of
seats) and items represent parties whose sizes are the number of individuals and
colors indicate the groups. Similar problems can also be observed in production
planning, where the execution of jobs of a certain type enforce the availability
of specific processing modules on the assigned plants, and in logistics, where
transportation of certain types of goods may require specific instrumentation in
the vehicles (e.g., temperature or pressure-controlling devices).
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Colored extensions of the bin packing problem have been studied in the
literature, but typically with a different objective. In the colored bin packing
problem (CBPP, also investigated as the class constrained bin packing problem),
commonly colored items are not allowed to be packed next to each other in the
same bin [2,3,14,35,36,38]; Approximation results have been obtained for the
variant where bins may have different sizes and the goal is to minimize the
sum of the sizes of the used bins [17,38]. Jansen introduced the bin packing
problem with conflicts (BPPC), a generalization of the CBPP where we are
given a graph on the items, with edges indicating pairs of elements that cannot
be placed in the same bin [23,24]. Several algorithms have been introduced in
the literature to address the BPPC [19,20,31,34], such as a branch-and-price
algorithm for general conflict graphs [34]. Another variant of the CBPP is the
co-printing problem, in which bins are bounded both in terms of weight and
number of colors they may contain [32]; both heuristic and exact algorithms
have been proposed to solve this problem [26,27]. To the best of our knowledge,
the BPMCF is yet to be investigated in the literature.

In this article, we introduce the BPMCF, show how to cast the assign-
ment of items to bins as binary decision diagrams (BDDs) [15,16], and present
a mixed-integer linear programming (MIP) formulation to solve the problem.
BDDs and their multivalued extension have been successfully applied in differ-
ent applications for optimization [1,12,29,30], especially discrete optimization
problems [9–12,22]. Decomposition strategies relying on the combination of deci-
sion diagrams and integer programming, such as the one employed in this work,
have been applied to other optimization problems [6,8,13,28]. Our experiments
suggest the efficiency of the proposed algorithm, with a clear superiority over a
direct MIP formulation of the BPMCF.

2 Problem Overview

A formal definition of the BPMCF is presented below. Note that the problem
definition and its algorithms can be adapted to differentiate solutions based also
on the total number of bins being used.

Definition 1 (Bin Packing with Minimum Color Fragmentation). Let B
denote the set of bins available for packing (|B| = k ∈ N), B ∈ N be the capacity
of each bin, C ⊆ N be a set of colors, and O = {o1, o2, . . . , on} be a set of
indivisible items such that, for each o ∈ O, w(o) ∈ N denotes its size and c(o) ∈
C its color. A feasible solution for the problem consists of a partition of O into
disjoint sets O1,O2, . . . ,Ok such that ∀i ∈ [k],

∑
o∈Oi

w(o) ≤ B. Let nc denote
the number of bins containing items of color c. A feasible solution is said to be
optimal if it minimizes

∑
c∈C nc.

Proposition 1. Deciding whether an arbitrary instance of the BPMCF with
at least 2 bins is feasible is NP-complete.
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Proof. The result follows from a reduction of the partition problem (PP), which
is NP-complete [25]. Given an instance I of the PP with a set A of elements,
with each a ∈ A of size s′(a), we create an instance I ′ of the BPMCF such that
each item i in I ′ is associated with an element i(a) of A, has size w(i(a)) = s′(a),
and color c(i(a)) = 1, i.e., all items have the same color. Moreover, I ′ consists
of two bins, each of size 1

2

∑
a∈A s′(a). A feasible solution for I can be directly

converted into a solution for I ′ and vice-versa, so the reduction follows. �

Proposition 2. If each bin can contain at most two items, an optimal solution
of the BPMCF can be computed in polynomial time.

Proof. For every instance admitting feasible solutions, for each item o in O there
is at least one item o′ for which w(o) + w(o′) ≤ B. A feasible solution should
contain at least q = |O|−|B| pairs of items being placed in the same bin. For each
possible value of q, we create the following instance of the maximum weighted
matching problem. Let G = (V,E,w) be a graph where V = V (O) ∪ V ′, each
vertex in V (O) is associated with an item in O and vertices in V ′ contains
|O| − 2q artificial elements. Set E contains an edge for each pair {u, v} ⊆ V (O);
if c(u) = c(v), w({u, v}) = 2 + |O|, and otherwise we have w({u, v}) = 1 + |O|.
E also contains an edge for each pair {u, v} ∈ V (O)×V ′, each with weight |O|2.

By construction, any optimal solution contains a set of edges covering all the
artificial vertices, and solutions with q edges covering all the remaining elements
have higher value than others with q−1 or less. The maximum weighted matching
problem can be computed in polynomial time [18], and the number of values of q
that need to be inspected is bounded by |O|, so the result follows. �

3 Direct Formulation

The following binary program is the direct formulation of the BPMCF used for
a baseline algorithm in our computational experiments.

(IP) min
∑

(b,c)∈B×C

yb,c
∑

b∈B
xb,o = 1 ∀o ∈ O

∑

o∈O
w(o)xb,o ≤ B ∀b ∈ B

xb,o ≤ yb,c ∀(b, c, o) ∈ B × C × Oc

xb,o ∈ {0, 1} ∀(b, o) ∈ B × O
yb,c ∈ {0, 1} ∀(b, c) ∈ B × C

In IP, the assignment of each item o to each bin b is defined by binary decision
variable xb,o. Additionally, we use yb,c to indicate whether bin b contains at least
one item of color c. The first family of constraints of IP asserts that each item is
assigned to exactly one bin. The second family of constraints avoids assignments
where the sum of the sizes of the selected items exceeds the capacity of the bin.
The last set of constraints is used to set yb,c; if xb,o = 1 for some o ∈ Oc, yb,c = 1,
whereas the objective function drives yb,c to zero otherwise.
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4 Binary Decision Diagram-Based Algorithm

Our algorithm relies on a decomposition strategy in which the assignment of
items to each bin b is represented as a BDD Db, with feasible assignments being
associated with paths connecting the root node to the terminal node in Db.
The structure of a BDD depends solely on the capacity B of the associated
bin. The BPMCF can be solved through the construction of these BDDs and
the identification of a mutually exclusive and collectively exhaustive collection
of paths (with respect to items selected) that minimizes

∑
b∈B C(pb), where

C(pb) equals the number of colors associated with the objects covered by pb; this
problem is known in the literature as the consistent path problem [8,13,28,33].

A BDD Db = (N b, Ab, vb, db) is a layered-acyclic graph composed of a set
of nodes N b, a set of arcs Ab, together with a cost function vb : Ab → R

and arc-domain function db : Ab → {0, 1} defined on the arcs. Nodes in N b are
partitioned into a set Lb = {0, 1, ..., |O|, |O| + 1} of layers. For every node u ∈ N b,
lb(u) denotes the layer where u belongs. Layers 0 and |O| + 1 contain only the root
node rb and the terminal node tb of N b, respectively. Each layer l ∈ {1, ..., |O|}
is associated with an item o(l); analogously, we define o(u) = o(lb(u)) for each
node u ∈ N . We assume the layers are ordered by colors first (any arbitrary
ordering of C may be employed) and then arbitrarily in each color. Each arc
a ∈ Ab connects two nodes in consecutive layers, being directed from a start-
node us(a) to an end-node ue(a); the item associated with ue(a) is denoted
by o(a). Every node in N b\{tb} is the start-node of a zero-arc a such that
d(a) = 0 and may be the start-node an one-arc a′ such that d(a′) = 1.

In our BDD formulation, each arc a represents the decision about the inclu-
sion of the item associated with its end-node us(a); namely, one-arcs indicate
the inclusion (or coverage) of us(a), whereas zero-arcs indicate exclusion. Every
root-to-terminal arc-specified path p = (a1, . . . , a|O|) therefore encodes a collec-
tion of items O(p) := {o(l) : d(al) = 1}, defined by the one-arcs on the path,
and the cost of this assignment is given by C(p) :=

∑|O|
l=1 d(a

l)vb(al). For any
exact BDD for a bin b of size B, there is a one-to-one mapping between each
collection of items Õ ⊆ O such that

∑
o∈Õ s(o) ≤ B and root-to-terminal paths

p with O(p) = Õ. The dynamic programming-based construction algorithm of a
BDD representing such a set of solutions is well-known [4,5,7,37]. We adopt this
algorithm, but with additional care required because of the objective function;
namely, for every path p, C(p) must equal the number of colors present in O(p)
(i.e., C(p) = |{g : g(o) = g for o ∈ O(p)}|).

Each node u of the BDD is associated with a state z(u) = (B′, d) ∈ Z ∪ B.
The first coordinate of z(u) contains the remaining capacity in the bin for any
partial solution defined by a path starting from the root node rb and ending at
u. The second coordinate indicates whether any item with the color of the object
in layer l(u) has been selected.

We build each BDD by assigning state (B, 0) to the root node rb and gener-
ating layer l + 1 iteratively by processing the nodes in layer l as follows. Given
a node u with state z(u) = (B′, d), we create a zero-arc a0 directed to a node
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u0 with state s(u0) = (B′, d′). If object o(u0) is the first of its color in the order
by layers, we set d′ = 0 (as, by construction, no other object of this color could
have been covered by any path from the root to u0); otherwise, we set d′ = d.
The cost of arc a0 is always 0.

If B′′ = B′ − s(l(o)) ≥ 0 we create a one-arc a1 directed to a node u1 with
state s(u1) = (B′′, 1); note that a one-arc represents the selection of an item, so
the color of o(u1) is necessarily covered if a1 is traversed. The cost of a1 is 0 if u
and u1 are associated with objects of same color and s(u) = (B′, 1); otherwise,
a1 represent the incorporation of the first object with the color of u1, so its cost
equals 1. If B′′ < 0, a1 is not created, as the resulting paths would exceed the
capacity of the bin.

Finally, if the state of the resulting node u0 or u1 equals some other state ũ
that was previously generated, the respective arc is directed out of u to ũ; we
employ this technique in order to avoid the duplication of states across nodes of
a layer. After constructing all layers, each node in layer l = n+ 1 is merged into
a single terminal node.

o1

o2

o3

o4

o5

r (5,0)

u1(5,0) u2 (3,1)

u3(5,0) u4 (2,1) u5 (3,1) u6 (0,1)

u7(5,0) u8(3,1) u9(2,1) u10(0,1) u11(1,1)

u12(5,0) u13(2,1) u14(3,0) u15(0,1) u16(2,0) u17(0,0) u18(1,0)

t

(0,0)

0 1

0 1 0 0

0 1 0 0 0
0 0

0 1 0 1 0 0 0

0

1 0

0

1

0

0 0

1

0 0

Fig. 1. Example BDD

Example: Consider an instance with 5 items of sizes 2, 3, 2, 3, 2 and colors 1,
1, 1, 2, 2, respectively, with bin capacity 5. A BDD for this bin is presented in
Fig. 1. Each layer corresponds to an item. The solid/dashed arcs correspond to
one-arcs/zero-arcs. The arc costs are specified next to each arc. Note that there
can be one-arcs with zero cost (e.g., the arc from u4 to u10). Also, any solution
corresponds to a path. For example, selecting items o1 and o3 is a feasible solution
that corresponds to the arc-directed path r − u2 − u5 − u11 − u18 − t.

Network Flow Model: The BDDs allow us to formulate the consistent path prob-
lem through ANF, an Arc-based Network Flow MIP to solve the problem (for
other examples where the same approach was employed, see [6,8]).
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(ANF) min
∑

b∈B

∑

a∈Ab

vb(a)yb,a
∑

a∈Ab;
ue(a)=u

yb,a − ∑

a∈Ab;
us(a)=u

yb,a = 0 ∀b ∈ B, u ∈ N\{rb, tb}

∑

a∈Ab;

us(a)=rb

yb,a = 1 ∀b ∈ B

∑

a∈Ab;

ue(a)=tb

yb,a = 1 ∀b ∈ B

∑

b∈B

∑

a∈Ab;
o(a)=o;
d(a)=1

yb,a = 1 ∀o ∈ O

yb,a ∈ {0, 1} ∀b ∈ B, a ∈ Ab

ANF employs binary variables yb,a, which indicate whether arc a composes the
path selected for Db. The first three families of equalities model the network
flow constraints for each bin b in B. The last family of constraints asserts that
each item is picked exactly once, so they are the joint constraints of ANF.

5 Computational Experiments

For our computational experiments we implemented IP and ANF using C++
and Gurobi 8.0.0 [21]; we used all default settings of the solver. All experiments
were executed on an Intel CPU Core i7-4770 with 3.4 GHz, 32 GB of RAM.
Each execution was restricted to a single thread and to a time limit of 30 min.

Instance Generation: Two families of synthetic instances were generated for the
experiments. In the first family, for each selected combination of k ∈ {10, 20, 30}
and B ∈ {8, 10, 12}, 10 instances were generated; in each individual instance,
all bins have the same capacity. Item sizes are randomly generated according
to the following distribution: size 2 with probability 0.4; size 3 with probability
0.3; size 4 with probability 0.2; and size 5 with probability 0.1. This distribution
was selected because of the authors’ experience with group seating optimization
applications. Items are generated uniformly and independently at random from
the above distribution until 85% of the overall capacity is occupied. We then
sequentially assign colors to the items by selecting p items to form each color
class. With probability 0.6 we selected p ∈ {2, 3, 4} items, and with probability
0.4 we select between p ∈ {5, 6, 7, 8}, in both cases sampled uniformly at random.
If only one item remains, we assign it to the last color.

In order to test the scalability of ANF, we also generated instances with k =
50 and B = 12 as well as a second family with combinations of k ∈ {10, 20, 30, 40}
and B = 20 where items of size 2 were generated with probability 0.2 and items
of size x are generated with probability 0.1 for each x ∈ [3, 11]. Finally, we
restrict our experiments to scenarios where B ≥ 8, as instances with smaller
bins can be efficiently solved (see Proposition 2).
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Results: The results of our experiments are shown in Table 1 in aggregation.
Each row corresponds to a configuration of instances with k,B, as indicated by
the first and second columns. The next eight columns report solution statistics,
first for IP and then for ANF. In sequence, we report the average solution times
for those instances that were solved within 1800 s, with the number of instances
solved within 1800 s in superscript, the average ending lower bound, the average
ending upper bound, and the average gap.

Table 1. Aggregate summary of results.

Instances IP ANP

k B Time LB UB Gap Time LB UB Gap

10 8 58.6410 10.1 10.1 0 0.0910 10.1 10.1 0

10 10 524.328 11.2 11.4 0.02 0.3310 11.4 11.4 0

10 12 429.626 11.2 11.7 0.04 8.6510 11.7 11.7 0

20 8 - 16.4 21.2 0.22 0.7610 21.2 21.2 0

20 10 - 18.9 22.6 0.16 81.4010 22.6 22.6 0

20 12 - 19.4 23.7 0.18 341.1610 23.7 23.7 0

30 8 - 23.1 31.9 0.28 69.9910 31.9 31.9 0

30 10 - 27.7 34.1 0.19 699.919 33.9 34.1 0.01

30 12 - 28.0 34.6 0.19 1357.462 30.9 34.6 0.10

50 10 - 40.9 56.2 0.27 - 50.8 56.2 0.10

10 20 232.823 11.1 11.8 0.058 1.6910 11.8 11.8 0

20 20 - 18.8 23.9 0.21 682.478 23.4 23.9 0.02

30 20 - 28.1 36.1 0.22 - 32.6 36.1 0.10

40 20 - 34.1 46.5 0.27 - 41.3 46.5 0.11

We see a considerable superiority of ANF over IP, both in terms of gap and
running time. IP solves only those instances with k = 10 (and only solves 24 of
the 30 instances with this k) while ANF solves all instances with k = 10 and
k = 20, and even 10 with k = 30. Additionally, the ending gap and quality of
solutions are significantly better, even for those instances unsolved by both.

A depiction of the solution time and ending gaps is provided in the Fig. 2
through a cumulative distribution plot of performance. For both algorithms, the
left half provides a plot with height equal to the cumulative number of instances
solved at the time given on the horizontal axis. In the right half, the height of
the plot corresponds to the number of instances with at most the optimality gap
given on the horizontal axis by the time limit of 1800 s. Figure 2 more readily
depicts the overall performance of ANF. After any amount of time, ANF solves
more instances than IP, with smaller gaps at time limit.
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Fig. 2. Cumulative distribution plot comparing BDD with IP.

6 Conclusion and Future Work

In this work, we have introduced the bin packing with minimum color frag-
mentation and presented an algorithm consisting of the integration of decision
diagrams and mixed-integer linear programming. Namely, we showed how to
represent the assignment of items to individual bins as binary decision diagrams
and formulated the integration of the sub-problems using a network flow model.
Our computational experiments have shown that the proposed algorithm scales
well and is clearly superior to a direct formulation of the BPMCF.

In future work, we intend to investigate the performance of the proposed
algorithm in real-world scenarios. Additionally, we also would like to investigate
alternative advanced solution approaches that have been successfully applied
to other variants of the colored bin packing problem, such as branch and price.
Finally, we believe that the present work motivates further investigation on deci-
sion diagram decomposition techniques to variants of the bin packing problem.
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Abstract. Conflict learning algorithms are an important component of
modern MIP and CP solvers. But strong conflict information is typi-
cally gained by depth-first search. While this is the natural mode for CP
solving, it is not for MIP solving. Rapid Learning is a hybrid CP/MIP
approach where CP search is appliedat the root to learn information to
support the remaining MIP solve. This has been demonstrated to be ben-
eficial for binary programs. In this paper, we extend the idea of Rapid
Learning to integer programs, where not all variables are restricted to
the domain {0, 1}, and rather than just running a rapid CP search at the
root, we will apply it repeatedly at local search nodes within the MIP
search tree. To do so efficiently, we present six heuristic criteria to predict
the chance for local Rapid Learning to be successful. Our computational
experiments indicate that our extended Rapid Learning algorithm sig-
nificantly speeds up MIP search and is particularly beneficial on highly
dual degenerate problems.

1 Introduction

Constraint programming (CP) and integer programming (IP) are two comple-
mentary ways of tackling discrete optimization problems. Hybrid combinations of
the two approaches have been used for many years, see, e.g., [2,9,10,17,22,37,42].
Both technologies have incorporated conflict learning capabilities [1,21,27,35,38]
that derive additional valid constraints from the analysis of infeasible subprob-
lems extending methods developed by the SAT community [33].

Conflict learning is a technique that analyzes infeasible subproblems encoun-
tered during a tree search algorithm. In a tree search, each subproblem can be
identified by its local variable bounds, i.e., by local bound changes that come
from branching decisions and propagation at the current node and its ancestors.
If propagation detects infeasibility, conflict learning will traverse this chain of
decisions and deductions reversely, reconstructing which bound changes led to
which other bound changes. In this way, conflict learning identifies explanations
for the infeasibility. If it can be shown that a small subset of the bound changes
c© Springer Nature Switzerland AG 2019
L.-M. Rousseau and K. Stergiou (Eds.): CPAIOR 2019, LNCS 11494, pp. 67–83, 2019.
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suffices to prove infeasibility, a so-called conflict constraint is generated that can
be exploited in the remainder of the search to prune parts of the tree.

In the context of constraint programming, conflict constraints are also
referred to as no-goods. For binary programs (BPs), i.e., mixed integer (lin-
ear) programs for which all variables have domain {0, 1}, conflict constraints
will have the form of set covering constraints. These are linear constraints of the
form “sum of variables (or their negated form) is greater than or equal to one”.

Rapid Learning [13] is a heuristic algorithm for BPs that searches for valid
conflict constraints, global bound reductions, and primal solutions. It is based
on the observation that a CP solver can typically perform an incomplete search
on a few thousand nodes in a fraction of the time that a MIP solver needs for
processing the root node. In addition, CP solvers make use of depth-first search,
as opposed to the hybrid best-first/depth-first search of MIP solvers, which more
rapidly generates strong no-goods. Typically CP solvers do not differentiate the
root node from other nodes. They apply fast (at least typically) propagation
algorithms to infer new information about the possible values variables can take,
and then take branching decisions. In contrast, a MIP solver invests a substantial
amount of time at the root node to gather global information about the problem
and to initialize statistics that can help for the search. A significant portion of
root node processing time comes from the computational effort needed to solve
the initial LP relaxation from scratch. Further aspects are the LP resolves during
cutting plane generation, strong branching [7] for branching statistic evaluation,
and primal heuristics, see, e.g., [11].

The idea of Rapid Learning is to apply a fast CP depth-first branch-and-
bound search for a few hundred or thousand nodes, generating and collecting
valid conflict constraints at the root node of a MIP search. Using this, the MIP
solver is already equipped with the valuable information of which bound changes
will lead to an infeasibility, and can avoid them by propagating the derived con-
straints. Just as important, the partial CP search might find primal solutions,
thereby acting as a primal heuristic. Furthermore, the knowledge of conflict con-
straints can be used to initialize branching statistics, just like strong branching.
In this paper, we will extend Rapid Learning to integer programs and to nodes
beyond the root.

The remainder of the paper is organized as follows. In Sect. 2, we provide
more background on conflict learning for MIPs, in particular the extension to
general integer variables, which is important for our extended Rapid Learning
algorithm. In Sect. 3, we describe details of the Rapid Learning algorithm for
general integer programs, extending the work of Berthold et al. [13]. In Sect. 4,
we discuss what special considerations have to be taken when applying Rapid
Learning repeatedly at local subproblems during the MIP tree search instead
of using it as a onetime global procedure. We introduce six criteria to predict
the benefit of local Rapid Learning. Section 5 presents our computational study,
in which we apply our extended Rapid Learning algorithm to a set of integer
programs from the well-known benchmark sets of Miplib 3, Miplib 2003, and
Miplib 2010 [28]. The experiments have been conducted with the constraint



Local Rapid Learning for Integer Programs 69

integer programming solver SCIP [24] and indicate that a significant speed-up
can be achieved for (pure) integer programs, when using Rapid Learning locally.
In Sect. 6, we conclude.

2 Conflict Learning in Integer Programming

A mixed integer program is a mathematical optimization problem defined as
follows.

Definition 1 (mixed integer program). Let m,n ∈ Z≥0. Given a matrix
A ∈ R

m×n, a right-hand-side vector b ∈ R
m, an objective function vector c ∈ R

n,
a lower and an upper bound vector l ∈ (R ∪ {−∞})n, u ∈ (R ∪ {+∞})n and a
subset I ⊆ N = {1, . . . , n}, the corresponding mixed integer program (MIP) is
given by

min cTx

s.t. Ax ≤ b

lj ≤ xj ≤ uj for all j ∈ N
xj ∈ R for all j ∈ N \ I
xj ∈ Z for all j ∈ I.

(1)

Mixed integer programs can be categorized by the classes of variables that
are part of their formulation:

– If N = I, problem (1) is called a (pure) integer program (IP).
– If N = I, lj = 0, j ∈ N and uj = 1, j ∈ N , problem (1) is called a (pure)

binary program (BP).
– If I = ∅, problem (1) is called a linear program (LP).

Conflict analysis techniques were originally developed by the artificial intelli-
gence research community [40] and, later extended by the SAT community [33];
they led to a huge increase in the size of problems modern SAT solvers can han-
dle [31,33,43]. The most successful SAT learning approaches use so-called one-
level first unique implication point (1-UIP) [43] learning which in some sense
captures the conflict constraint “closest” to the infeasibility. Conflict analysis
also is successfully used in the CP community [25,26,35] (who typically refer to
it as no-good learning) and the MIP world [1,21,38,41]. Nowadays, commercial
MIP solvers like FICO Xpress [23] employ conflict learning by default.

Constraint programming and mixed integer programming are two comple-
mentary ways of tackling discrete optimization problems. Because they have dif-
ferent strengths and weaknesses hybrid combinations are attractive. One notable
example, the software SCIP [3], is based on the idea of constraint integer pro-
gramming (CIP) [2,6]. CIP is a generalization of MIP that supports the notion
of general constraints as in CP. SCIP itself follows the idea of a very low-level
integration of CP, SAT, and MIP techniques. All involved algorithms operate on
a single search tree and share information and statistics through global storage
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of, e.g., solutions, variable domains, cuts, conflicts, the LP relaxation and so
on. This allows for a very close interaction amongst CP and MIP (and other)
techniques.

There is one major difference between BPs and IPs in the context of Rapid
Learning: in IP, the problem variables are not necessarily binary. To deal with
this, the concept of a conflict graph needs to be extended. A conflict graph gets
constructed whenever infeasibility is detected in a local search node; it represents
the logic of how the set of branching decisions led to the detection of infeasibility.

More precisely, the conflict graph is a directed acyclic graph in which the
vertices1 represent bound changes of variables, e.g., xi ≤ λi or xi ≥ μi. The
conflict graph is built such that when the solver infers a bound change v as a
consequence of a set of existing bound changes U , i.e., U → v, then we have
an arc (u, v) from each u ∈ U to v. Bound changes caused by branching deci-
sions are vertices without incoming edges. Finally the conflict graph includes a
dummy vertex false representing failure which is added when the solver infers
unsatisfiability.

Given a conflict graph, each cut that separates the branching decisions from
the artificial infeasibility vertex false gives rise to a valid conflict constraint. A
unique implication point (UIP) is an (inner) vertex of the conflict graph which
is traversed by all paths from the branching vertices to the conflict vertex. Or,
how Zhang et al. [43] describe it: “Intuitively, a UIP is the single reason that
implies the conflict at [the] current decision level.” UIPs are natural candidates
for finding small cuts in the conflict graph. The 1-UIP is the first cut separat-
ing the conflict vertex from the branching decisions when traversing in reverse
assignment order.

For integer programs, conflict constraints can be expressed as so-called bound
disjunction constraints:

Definition 2. For an IP, let L ⊆ I,U ⊆ I be disjoint index sets of variables,
let λ ∈ Z

L with li ≤ λi ≤ ui for all i ∈ L, and μ ∈ Z
U with li ≤ μi ≤ ui for all

i ∈ U . Then, a constraint of the form

∨
i∈L

(xi ≥ λi) ∨∨
i∈U

(xi ≤ μi)

is called a bound disjunction constraint.

For details on bound disjunction constraints, see Achterberg [1]. If all involved
conflict values λ, μ correspond to global bounds of the variables, the bound
disjunction constraint can be equivalently expressed as a knapsack constraint of
form

∑

i∈U
xi −

∑

i∈L
xi ≤

∑

i∈U
ui −

∑

i∈L
li − 1. (2)

Note that for BPs all conflicts only involve global bounds.
1 For disambiguation, we will use the term vertex for elements of the conflict graph,

as opposed to nodes of the search tree.
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The power of conflict learning arises because often branch-and-bound based
algorithms implicitly repeat the same search in a slightly different context in
another part of the tree. Conflict constraints help to avoid redundant work in
such situations. As a consequence, the more search is performed by a solver and
the earlier conflicts are detected, the greater the chance for conflict learning to be
beneficial. Note that conflict generation has a positive interaction with depth-
first search. Depth-first search leads to the creation of no-goods that explain
why a whole subtree contains no solutions, and hence the no-goods generated
by depth-first search are likely to prune more of the subsequent search.

3 Rapid Learning for Integer Programs

The principle motivation for Rapid Learning [13] is the fact that a CP solver
can typically search hundreds or thousand of nodes in a fraction of the time
that a MIP solver needs for processing the root node of the search tree. Rapid
Learning applies a fast CP search2 for a few hundred or thousand nodes, before
starting the MIP search. Using this approach, conflict constraints can be learnt
before, and not only during, MIP search. Very loosely speaking: while the aim
of conflict learning is to avoid making mistakes a second time, Rapid Learning
tries to avoid making them the first time (during MIP search).

Rapid Learning is related to large neighborhood search heuristics, such as
rins and rens [12,20]. But, rather than doing an incomplete search on a sub-
problem using the same (MIP search) algorithm, Rapid Learning performs an
incomplete search on the same problem using a much faster algorithm (CP
search). Rapid Learning differs from primal heuristics in that it aims at improv-
ing the dual bound by collecting information on infeasibility rather than search-
ing for feasible solutions.

Each piece of information collected in a rapid CP search can be used to guide
the MIP search or even deduce further reductions during root node processing.
Since the CP solver is solving the same problem as the MIP solver

– each generated conflict constraint is valid for the MIP search,
– each global bound change can be applied at the MIP root node,
– each feasible solution can be added to the MIP solver’s solution pool,
– the branching statistics can initialize a hybrid MIP branching rule, see [4], and
– if the CP solver completely solves the problem, the MIP solver can abort.

All five types of information may be beneficial for a MIP solver, and are
potentially generated by our algorithm which we now describe more formally.

The Rapid Learning algorithm is outlined in Fig. 1. Here, l(P ) and u(P ) are
lower and upper bound vectors, respectively, of the problem at hand, P . For the
moment we assume P is the root problem, in the next section we will examine
the use of Rapid Learning at subproblem nodes. The symbol C refers to a sin-
gle globally valid conflict constraint explaining the infeasibility of the current
2 By CP search we mean applying a depth-first search using only propagation for

reasoning, no LP relaxation is solved during the search.
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subproblem. Rapid Learning is an incomplete CP search: a branch-and-bound
algorithm which traverses the search space in a depth-first manner (Line 3),
using propagation (Line 4) and conflict analysis (Line 7), but no LP relaxation.
Instead, the pseudo-solution [2], i.e., an optimal solution of a relaxation consist-
ing only of the variable bounds (Line 5), is used for the bounding step.

Propagation of linear constraints is conducted by the bound strengthening
technique of Brearley et al. [18] which uses the residual activity of linear con-
straints within the local bounds. For special cases of linear constraints, SCIP
implements special, more efficient propagators. Knapsack constraints use effi-
cient integer arithmetic instead of floating point arithmetic, and sort by coeffi-
cient values to propagate each variable only once. SCIP also features methods to
extract clique information about the binary variables of a problem. A clique is
a set of binary variables of which at most one variable can take the value 1 in a
feasible solution. Clique information can be used to strengthen the propagation
of knapsack constraints. Set cover constraints are propagated by the highly effi-
cient two-watched literal scheme [33], which is based on the fact that the only
domain reduction to be inferred from a set cover constraint is to fix a variable
to 1 if all other variables have already been fixed to 0.

Variable and value selection takes place in Line 14; inference branching [2] is
used as branching rule. Inference branching maintains statistics about how often
the fixing of a variable led to fixings of other variables, i.e., it is a history rule,
its essentially a MIP equivalent of impact-based search [29,36]. Since history
rules are often weak in the beginning of the search, we seed the CP solver with
statistics that the MIP solver has collected in probing [39] during MIP presolving.

We assume that the propagation routines in Line 4 may also deduce global
bound changes and modify the global bound vectors l(P ) and u(P ). Single-clause
conflicts are automatically upgraded to global bound changes in Line 9. Note
that it suffices to check constraint feasibility in Line 11, since the pseudo-solution
x̄ (see Line 5) will always take the value of one of the (integral) bounds for each
variable.

Our implementation of the Rapid Learning heuristic uses a secondary SCIP
instance to perform the CP search. Only a few parameters need to be altered
from their default values to turn SCIP into a CP solver, an overview is given in
Table 1. Most importantly, we disabled the LP relaxation and use a pure depth-
first search with inference branching (but without any additional tie breakers).
Further, we switch from All-UIP to 1-UIP in order to generate only one con-
flict per infeasibility. This is a typical behavior of CP solvers, but not for MIP
solvers. Expensive feasibility checks and propagation of the objective function
as a constraint are also avoided.

In order to avoid spending too much time in Rapid Learning, the number
of nodes explored during the CP search is limited to at most 5000. The actual
number of allowed nodes is determined by the number of simplex iterations
iterLP performed so far in the main SCIP but at least 500, i.e.,

limnode = min{5000,max{500, iterLP}}.
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Table 1. Settings for Rapid Learning sub-SCIP.

Parameter name Value Effect

lp/solvefreq −1 Disable LP

conflict/fuiplevels 1 Use 1-UIP

nodeselection/dfs/stdpriority INT MAX/4 Use DFS

branching/inference/useweightedsum FALSE Pure inference, no VSIDS

constraints/disableenfops TRUE No extra checks

propagating/pseudoobj/freq −1 No objective propagation

conflict/maxvarsfac 0.05 Only short conflicts

history/valuebased TRUE Extensive branch. Statistics

Fig. 1. Rapid Learning algorithm
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The idea is to restrict Rapid Learning more rigorously for problems where pro-
cessing of a single MIP node is cheap already. The number of simplex iterations
is a deterministic estimate for node processing cost.

We aim to generate short conflict constraints, since these are most likely
to frequently trigger propagations in the upcoming MIP search. Thus, we only
collect conflicts that contain at most 5% of the problem variables. Finally, we
adapt the collection of branching statistics such that history information on
general integer variables are collected per value in the domain rather than having
one counter for down- and one for up-branches regardless of the value on which
was branched. This can be essential for performing an efficient CP search on
general integer variables, and was a building block that enabled us to use Rapid
Learning on IPs rather than solely on BPs, as in [13].

In addition to the particular parameters listed in Table 1, we set the
emphasis3 for presolving to “fast”. Emphasis settings for cutting are not neces-
sary, since no LP relaxation is solved, from the armada of primal heuristics only
a few are applied that do not require an LP relaxation, see [5]. Note that since
Rapid Learning will be called at the end of the MIP root node, or even locally,
see next Section, the problem that the CP solver considers has already been pre-
solved, might contain cutting planes as additional linear constraints and have
an objective cutoff constraint if a primal solution has been found by a primal
heuristic during root node processing.

4 Local Rapid Learning

The original Rapid Learning algorithm [13] was used as part of a root prepro-
cessing, i.e., for every instance it was run exactly once at the end of the root
node. But only running Rapid Learning at the root limits its effectiveness. We
now discuss the factors that arise when we allow Rapid Learning to be run at
local nodes inside the search tree.

When running in the root only all information returned by the CP solver is
globally valid, and the overhead to maintain the information gathered by Rapid
Learning is negligible [13]. In contrast, when applying Rapid Learning at a local
node within the tree conflicts and bound changes will only be locally valid in gen-
eral. Since Rapid Learning uses a secondary SCIP instance to perform the CP
search, all local information of the current node becomes part of the initial prob-
lem formulation for the CP search. Thus, conflicts gathered by Rapid Learning
do not include bound changes made along the path from the root to the current
node, they are simply considered as valid for this local node. As a consequence,
these conflicts will only be locally valid and hence only applied to the current
node of the MIP search. Using an assumption interface [34], local conflicts could
be lifted to be globally valid. However, this is subject to future investigation and
not considered in the current implementation of Rapid Learning.

3 In SCIP, emphasis settings correspond to a group of individual parameters being
changed.
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In practice, all local information needs to be maintained when switching
from one node of the tree to another. In CP solvers, switching nodes is typically
very cheap, because depth-first search is used. However, a MIP solver frequently
“jumps” within the tree. Therefore, two consecutively processed nodes can be
quite different. In what follows, we will refer to the time spent for moving from
one node to another node as switching time. The switching time can be used as
an indicator to quantify the overhead introduced by all locally added information
found by Rapid Learning.

To ensure that the amount of locally added information does not increase
the switching time too much, we apply Rapid Learning very rarely by using a
exponentially decreasing frequency of execution. Rapid Learning is executed at
every node of depth d with

logβ(d/f) ∈ Z, (3)

where β and f are two parameters to control the speed of decrease. For example,
if β = 1 Rapid Learning is executed at every depth d = i · f with i ∈ Z+.

Unfortunately, the amount of locally valid information produced by Rapid
Learning still leads to an increase of switching time by 21%. Consequently, the
overall performance decreased by 20% in our first experiments. At the same
time the number of explored branch-and-bound nodes decreased by 16%. This
indicates the potential gains possible using local Rapid Learning.

To control at which subproblem Rapid Learning is applied we propose six
criteria to forecast the potential of Rapid Learning. These criteria aim at iden-
tifying one of two situations. The first is to estimate whether the (sub)problem
is infeasible or a pure feasibility problem. In these cases propagating conflicts is
expected to be particularly beneficial. The second is to estimate the dual degen-
eracy of a problem. In this case, VSIDS branching statistics are expected to
be particularly beneficial. The VSIDS [31] (variable state independent decaying
sum) statistics takes the contribution of every variable (and its negated comple-
ment) in conflict constraints found so far into account. For every variable, the
number of clauses (in MIP speaking: conflict constraints) the variable is part of
is counted. In the remainder of the search the VSIDS are periodically scaled by
a predefined constant. By this, the weight of older clauses is reduced over time
and more recent observations have a bigger impact.

A basic solution of an LP is called dual degenerate, when it has nonbasic
variables with zero reduced costs. One can define the dual degeneracy of a MIP
as the average number of nonbasic variables with zero reduced costs appearing in
a basic solution of its LP relaxation. The higher the dual degeneracy, the higher
the chance that the LP objective will not change by branching and hence many
of the costs involved in the pseudo-cost computation are zero. Therefore, for
highly dual degenerate problems, using other branching criteria, such as VSIDS
or inference scores, is crucial for solving the problem.

We now describe the six criteria we use to identify infeasible or dual degener-
ate problems, already using the criteria abbreviations from the tables in Sect. 5.
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Criterion I: Dual Bound Improvement. During the tree search a valid lower
bound for each individual subproblem is given by the respective LP solution.
A globally valid lower bound is given by the minimum over all individual lower
bounds. This global bound is called the dual bound. If the dual bound has not
changed after processing a certain number of nodes, i.e., the dual bound is equal
to the lower bound of the root node, it might be the case that the MIP lies inside
a level plane of the objective, i.e., all feasible LP (and MIP) solutions will have
the same objective. In other words, the instance might be a feasibility instance for
which Rapid Learning was already shown to be very successful [13]. Feasibility
instances are typically highly dual degenerate. The dualbound criterion means
to call local Rapid Learning if the dual bound never changed during the MIP
search.

Criterion II: Leaves Pruned by Infeasibility or Exceeding the Cutoff Bound. Dur-
ing the tree search every leaf node either provides a new incumbent solution (the
rare case), is proven to be infeasible or to exceed the current cutoff bound which
is given by the incumbent solution. The ratio of the latter two cases is used
in SCIP’s default branching rule. Hybrid branching [4] combines pseudo-costs,
inference scores, and conflict information into one single branching score. The
current implementation in SCIP puts a higher weight on conflict information,
e.g., VSIDS [31], and a lower weight on pseudo-costs when the ratio of infeasi-
ble and cutoff nodes is larger than a predefined threshold. The leaves criterion
means to call local Rapid Learning if the ratio of infeasible leaves over those
exceeding the cutoff bound is larger than 10. The rationale is that we expect
(local) conflicts to be most beneficial, when infeasibility detection appears to be
the main driver for pruning the tree.

Criterion III: LP Degeneracy. As mentioned above, the more nonbasic variables
are dual degenerate, the less information can be gained during strong branching
or pseudo-cost computation. As a consequence, Berthold et al. [14] introduced a
modification to strong branching that considers the dual degeneracy of the LP
solution. In rough terms, if either the share of dual degenerate nonbasic vari-
ables or the variable-constraint ratio of the optimal face exceed certain thresh-
olds, strong branching will be deactivated. We adapt this idea of using the dual
degeneracy of the current LP solution. The degeneracy criterion means to call
local Rapid Learning if more than 80% of the nonbasic variables are degenerate
or the variable-constraint ratio of the optimal face is larger than 2, as proposed
in [14]. In both cases we expect that “strong conflict generation” will be useful.

Criterion IV: (Local) Objective Function. If all variables with non-zero objec-
tive coefficients are fixed at the local subproblem, i.e., the objective is constant,
Criteria I and II will apply: every LP solution is fully dual degenerate and the
only possibility to prune a leaf node is by infeasibility. If there are only very few
unfixed variables with nonzero objective are left, the criteria might not apply.
However, it is likely that the targeted situations occur frequently in the tree
rooted at the current subproblem, at the latest, when all the variables occurring
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in the objective are fixed. The obj criterion means to call local Rapid Learning
once the objective support is small enough, in anticipation of the current sub-
problem turning into a feasibility problem. In our implementation we apply this
criterion very conservatively, and call Rapid Learning only if the local objective
is zero.

Criterion V: Number of Solutions. The most obvious evidence, and indeed a
necessary one, that a MIP instance is infeasible, is that no feasible solution has
been found during the course of the MIP search. Note that for most (feasible)
MIP instances, primal heuristics find a feasible solution at the root node [11] or
at the latest during the first dive in the branch-and-bound. The nsols criterion
means to call local Rapid Learning if no feasible solution has been found so far.

Criterion VI: Strong Branching Improvements. In the beginning of the tree
search it is very unlikely that enough leaf nodes are explored to reliably guess
whether the actual MIP is a feasibility instance. Therefore, we consider the
subproblems evaluated during strong branching, which are concentrated at the
top of the search tree. Similarly to Criterion II, we compute the ratio between the
number of strong branching problems that gave no improvement in the objective
or went infeasible to the number of strong branching problems where we observed
an objective change. The sblps criterion means to call local Rapid Learning if
this ratio exceeds a threshold of 10, hence strong branching does not appear to
be efficient for generating pseudo-cost information.

In addition to the exponentially decreasing frequency and the six criteria
above, we applied the following three changes to the original implementation of
Rapid Learning used in [13].

– We limited the number of conflict constraints transferred from Rapid Learn-
ing back to the original search tree to ten. This corresponds to the SCIP
parameter conflict/maxconss for the maximal allowed number of added
conflicts per call of conflict analysis. We greedily use the shortest conflicts.

– We prefer conflict constraints that have a linear representation over bound
disjunction constraints (see Definition 2).

– To exploit performance variability [19,30] every CP search is initialized with
a different pseudo-random seed.

5 Computational Results

To evaluate how local Rapid Learning impacts IP solving performance we
used the academic constraint integer programming solver SCIP 6.0 [24] (with
SoPlex 4.0 as LP solver) and extended the existing code of Rapid Learning. The
original implementation of Rapid Learning was already shown to significantly
improve the performance of SCIP 1.2.0.5 on pure binary instances [13]. In this
setting, Rapid Learning was applied exactly once at the root node. However, dur-
ing the last eight years SCIP has changed in many places. In SCIP 6.0, Rapid
Learning is deactivated by default, since it led to a big performance variability.
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Therefore, we use SCIP without Rapid Learning (as it is the current default)
as a baseline. We will refer to this setting as default. In our computational
experiments we evaluate the impact of local Rapid Learning if one or more of
the criteria described in Sect. 4 are fulfilled. In the following, we will refer to
the criteria I–VI as dualbound, leaves, degeneracy, obj, nsols, and sblps,
respectively. Within the tree, Rapid Learning is applied with an exponentially
decreasing frequency (see Sect. 4). In our experiments, we used f = 5 and
β = 4, i.e., Rapid Learning is called at depths d with log4(d/5) ∈ Z, i.e.,
d = 0, 5, 20, 80, 320 . . ., if one of the six criteria is fulfilled.

As a test set we used all pure integer problems of Miplib 3 [16],
Miplib 2003 [8] and the Miplib 2010 [28] benchmark set. This test set con-
sists of 71 publicly available instances, which we will refer to as MMM-IP. The
experiments were run on a cluster of identical machines, each with an Intel
Xeon E5-2690 with 2.6 GHz and 128 GB of RAM; a time limit of 3600 s was set.

In a first experiment we evaluated the efficacy of each individual criterion
and global Rapid Learning as published in [13]. Aggregated results are shown in
Table 2, section Exp.1. For detailed results we refer to the appendix of [15]. For
every setting, the table shows the number of solved instances out of 71 (solved),
shifted geometric means [3] of the absolute solving time in seconds (time, shift
= 1) and number of explored nodes (nodes, shift = 100), as well as the rela-
tive solving time (timeQ) and number of nodes (nodesQ) w.r.t. to default as a
baseline. Local Rapid Learning without any of the presented criteria (nochecks)
leads to a performance decrease of 21% on the complete test set MMM-IP com-
pared to default. Always applying Rapid Learning only at the root (onlyroot),
which corresponds to Rapid Learning as published in [13], leads to slowdown of
10% but solves one instance more. For this settings, we could observe a per-
formance decrease of 29% on the group of instances that are not affected4 by
Rapid Learning. To avoid a computational overhead and performance variability
on instances where Rapid Learning is not expected to be beneficial, we apply
the criteria degeneracy, obj, and nsols at the root node, too. Afterwards, the
performance decrease of global Rapid Learning reduced to 3%. The computa-
tional results indicate that almost all individual criteria are useful on their own.
The solving time and generated nodes can be reduced by up to 7% and 14%,
respectively, on the complete test set of 71. The exception is the obj criterion,
which leads to a slowdown of 2%, but solves one more instance than default.
These results can be confirmed when repeating the experiments with five differ-
ent random seeds [15]. On the group of affected instances the solving time can
be reduced by up to 21%, using the leaves criterion. The number of generated
nodes can be reduced by up to 39% (for degeneracy) on the same group of
instances.

The impact of the individual criteria on the solving time is illustrated in
Fig. 2. For each criterion, the box plot [32] shows the median (dashed line),
and the 1st and 3rd quartile (shaded box) of all observations. For all criteria the
median time ratio is at most one; only for degeneracy and leaves the median is

4 An instance is called affected when the solving path changes.
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strictly smaller than one. Hence, these two settings improve the performance on
more than 50% of the affected instances. Furthermore, degeneracy and leaves
have by far the smallest 1st and 3rd quartile, indicating that the corresponding
settings often improve performance and rarely deteriorate it.

Fig. 2. Box-plot of the performance ratios of the individual criteria compared to
default on the set of affected instances.

Grouping all instances of MMM-IP based on the degeneracy at the end of the
root node shows the importance of this criterion. On the group of instances
where at least 1% of the variables is dual degenerate at the end of the root node
Rapid Learning leads to a performance improvement of 9.1%. On all instances
where at least 80% of the variable are dual degenerate at the root node, we could
observe a reduction of solving time by 28.8%. Note that this was one of the two
thresholds for the degeneracy criterion.

In a second experiment (Table 2, section Exp.2) we combined all individual
criteria. Combining two or more criteria leads to more aggressive version of
Rapid Learning since it runs if at least one of the chosen criteria is satisfied. The
two (out of fifteen) best pairwise combinations as well as the (most aggressive)
combination of all six criteria are shown in Table 2. Interestingly, no combined
setting is superior to degeneracy. The combination of degeneracy and leaves,
which were the two outstanding criteria in the individual test, performs almost
the same as the degeneracy criterion alone. These results can be confirmed
when repeating the experiments with five different random seeds [15].

For a final experiment we choose degeneracy as the best criterion, since it
was one of two criteria that solved an additional instance, clearly showed the best
search reduction, and was a close second to leaves with respect to running time.
Our final experiment evaluates the impact of the individual information gained
from local Rapid Learning. To this end, we individually deactivated transferring
variable bounds, conflict constraints, inference information, and primal feasible
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Table 2. Computational results for every individual heuristic criterion on MMM-IP.

solved time nodes timeQ nodesQ

Exp.1 default 61 50.34 2428 – –

degeneracy 62 47.23 2078 0.938 0.856

dualbound 61 49.00 2284 0.973 0.941

leaves 61 46.88 2199 0.931 0.906

obj 62 51.51 2432 1.023 1.002

nsols 61 47.95 2194 0.952 0.904

sblps 61 48.14 2178 0.956 0.897

nochecks 59 60.81 1995 1.208 0.822

onlyroot 62 55.71 2476 1.107 1.020

Exp.2 degeneracy + leaves 62 47.37 2080 0.941 0.857

leaves + obj 62 47.26 2167 0.939 0.893

all6criterion 62 47.88 2104 0.951 0.867

solutions (see Table 3). This experiment indicates that primal solutions are the
most important information for the remainder of the MIP search. When ignor-
ing solutions found during the CP search, the overall solving time increased by
10.4% (primsols). When ignoring conflict constraints, the original motivation
of Rapid Learning, solving time increased by 2.4% (conflicts). Both transfer-
ring variable bounds and inference information proved beneficial, with a 2.1%
(variablebounds) and 2.8% (infervals) impact on performance, respectively.
To take performance variability into account, we repeated the experiment with
five different random seeds, see [15] for detailed results. This experiment indi-
cated that conflict constraints are the second most important criterion. Over five
seeds the solving time increased by 9.9% (primsols), 4.4% (conflicts), 1.4%
(variablebounds), and 0.6% (infervals). It is not surprising that finding pri-
mal solutions has the largest effect. Firstly, they are applied globally, in contrast
to bound changes and conflicts. Secondly, highly dual degenerate problems are
known to be cumbersome not only for MIP branching but also for primal heuris-
tics [11], which means that solution-generating procedures that do not rely on
solving LPs are particularly promising for such problems.

Table 3. Performance impact of individual gained information on MMM-IP.

solved time nodes timeQ nodesQ

Exp.3 degeneracy 62 47.23 2078 – –

variablebounds 62 48.23 2180 1.021 1.049

conflicts 63 48.38 2213 1.024 1.065

infervals 62 48.53 2230 1.028 1.073

primsols 62 52.15 2400 1.104 1.155
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6 Conclusion

In this paper, we extended the idea of Rapid Learning [13]. Firstly, we gener-
alized Rapid Learning to integer programs and described the details that were
necessary for doing so: value-based inference branching, additional propagators
and generalized conflict constraints, most of which were already available in
SCIP. Secondly, we applied Rapid Learning repeatedly during the search. This
generates a true hybrid CP/MIP approach, with two markedly different search
strategies communicating information forth and back. To this end, we introduced
six heuristic criteria to decide when to start local Rapid Learning. Those criteria
are based on degeneracy information, branch-and-bound statistics, and the local
structure of the problem. Our computational experiments showed a speed-up
of up to 7% when applying local Rapid Learning in SCIP. Calling local Rapid
Learning depending on the local degree of dual degeneracy is the best strategy
found in our experiments.

Interesting future work in this direction includes: extending the CP search to
generate global conflicts at local nodes using an assumption interface, running
the CP search in a parallel thread where whenever the MIP solver moves to a
new node the CP search restarts from that node, and extending the method to
handle problems that include continuous variables.
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Abstract. Mixed integer nonlinear programs (MINLPs) are arguably
among the hardest optimization problems, with a wide range of appli-
cations. MINLP solvers that are based on linear relaxations and spatial
branching work similar as mixed integer programming (MIP) solvers in
the sense that they are based on a branch-and-cut algorithm, enhanced
by various heuristics, domain propagation, and presolving techniques.
However, the analysis of infeasible subproblems, which is an important
component of most major MIP solvers, has been hardly studied in the
context of MINLPs. There are two main approaches for infeasibility anal-
ysis in MIP solvers: conflict graph analysis, which originates from artifi-
cial intelligence and constraint programming, and dual ray analysis.

The main contribution of this short paper is twofold. Firstly, we
present the first computational study regarding the impact of dual ray
analysis on convex and nonconvex MINLPs. In that context, we introduce
a modified generation of infeasibility proofs that incorporates lineariza-
tion cuts that are only locally valid. Secondly, we describe an extension
of conflict analysis that works directly with the nonlinear relaxation of
convex MINLPs instead of considering a linear relaxation. This is work-
in-progress, and this short paper is meant to present first theoretical
considerations without a computational study for that part.

1 Introduction

In this paper, we consider mixed integer nonlinear programs (MINLPs) of the
form

min{cTx | Ax ≥ b, gk(x) ≤ 0 ∀k ∈ K, � ≤ x ≤ u, xj ∈ Z ∀j ∈ I} (1)

with objective coefficient vector c ∈ R
n, linear constraint matrix A ∈ R

m×n,
nonlinear constraint functions gk : Rn �→ R, k ∈ K := {1, . . . , p}, continuously
differentiable, and possibly nonconvex, and variable bounds �, u ∈ R

n
, where

R := R∪ {±∞}. Furthermore, let N = {1, . . . , n} be the index set of all variables
and I ⊆ N the set of variables that need to be integral in every feasible solution.
Without loss of generality, we assume the objective function to be linear. A
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nonlinear objective function can be transformed into a constraint bounded by
an artificial variable z that needs to be minimized. We call an MINLP convex
when all of its constraint functions gk are convex. Otherwise, we call the MINLP
nonconvex. When omitting the integrality requirements, we obtain the nonlinear
programming (NLP) relaxation of (1)

min{cTx |Ax ≥ b, gk(x) ≤ 0∀k ∈ K, � ≤ x ≤ u, x ∈ R
n}. (2)

The mixed integer programming (MIP) relaxation of (1) is given by omitting all
nonlinear constraints gk for all k ∈ K

min{cTx |Ax ≥ b, � ≤ x ≤ u, xi ∈ Z∀i ∈ I}. (3)

Omitting both, integrality requirements and nonlinear constraints, yields the
linear programming (LP) relaxation of (1)

min{cTx |Ax ≥ b, � ≤ x ≤ u, x ∈ R
n}. (4)

All three relaxations provide a lower bound on the optimal solution value
of the MINLP (1). MINLP combines discrete decisions and nonlinear functions
that are potentially nonconvex. In theory, linear and convex smooth nonlinear
programs are solvable in polynomial time [27,48]. In practice, both classes can be
solved very efficiently [10,42]. In contrast to that, nonconvexities as imposed by
discrete variables or nonconvex nonlinear functions easily lead to problems that
are both NP-hard in theory and computationally demanding in practice [49].

Commonly used methods to solve convex MINLPs (1) include the extended
cutting plane algorithm (ECP) [52], the extended supporting hyperplane
algorithm [31], outer approximation (OA) [17,19], NLP-based branch-and-
bound [23], and LP/NLP-based branch-and-bound [45]. The most commonly
used method to solve nonconvex MINLPs is a combination of OA [29,50] and
spatial branch-and-bound [24,34,35]. Different MINLP solvers either use LP or
MIP relaxations or both during the tree search. For example, Couenne [14] and
SCIP [49] derive valid lower bounds by solving LP relaxations only, whereas
BARON [5,28] and BONMIN [11,12] solve both LP and MIP relaxations. In contrast
to that, only a handful of MINLP solvers provide the possibility to exclusively use
NLP relaxations, e.g., BONMIN and FICO Xpress Optimizer [18]. For a detailed
overview of MINLP solvers that can handle convex and/or nonconvex MINLPs
and the implemented algorithm, we refer to [30].

In the following, we will focus on MINLP solvers that use a combination
of OA and spatial branch-and-bound. Spatial branch-and-bound is – analogous
to LP-based branch-and-bound [15,33] – a divide-and-conquer method which
splits the search space sequentially into smaller subproblems that are intended
to be easier to solve. Additionally, convex relaxations are used to compute lower
bounds on the individual subproblems. Based on the computed lower bound, a
subproblem can be pruned earlier if the lower bound already exceeds the cur-
rently best-known solution. To divide the search space into smaller pieces, spatial
branch-and-bound branches on discrete variables with a fractional solution value
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in the relaxation solution. In addition to that, spatial branch-and-bound uses
continuous variables for branching if they appear in nonconvex terms of nonlin-
ear constraints that are violated by the current relaxation solution. During this
procedure, infeasible subproblems may be encountered. Infeasibility can either
be detected by contradicting variable bounds, derived by domain propagation,
or by an infeasible convex relaxation. In contrast to modern MIP solvers that
can refer to a variety of well-studied techniques, e.g., [2,16,46], to ‘learn’ from
infeasible subproblems, similar techniques for MINLPs exist for certain special
cases only.

2 Conflict Analysis in MINLP

In this section, we will briefly describe conflict analysis for MIPs of type (3) and
the drawbacks when applying these techniques to general MINLP.

2.1 Technical Background: Conflict Analysis in MIP

Conflict analysis for MIP has a long history and has its origin in artificial intelli-
gence [47] and solving satisfiability problems (SAT) [36]. Similar ideas are used in
constraint programming (CP), see, e.g., [21,25]. Integrations of these techniques
into MIP were independently suggested by [2,16,46].

If infeasibility is encountered by domain propagation, modern SAT and MIP
solvers construct a directed acyclic graph which represents the logic of how the
set of branching decisions led to the detection of infeasibility. This graph is called
the conflict graph. Valid conflict constraints can be derived from cuts in the graph
that separate the branching decisions from an artificial vertex representing the
infeasibility. Based on such a cut, a conflict constraint consists of a set of variables
with associated bounds, requiring that in each feasible solution at least one of
the variables has to take a value outside these bounds.

If the LP relaxation of a subproblem with local bounds �′ and u′ turns out
to be infeasible, it is necessary to identify a set of variables and bound changes
that are sufficient to render the infeasibility. Such a set, the so-called Farkas
proof [44,53], can be constructed by using LP duality theory that states that
exactly one of the systems

Ax ≥ b, �′ ≤ x ≤ u′ (5)

yTA + rT{�′, u′} = 0, yTb + rT{�′, u′} > 0, y ≥ 0 (6)

where rT{�′, u′} :=
∑

j∈N : rj>0 rj�
′
j +

∑
j∈N : rj<0 rju

′
j , can be satisfied. Sys-

tem (6) implies a proof of infeasibility w.r.t. to the local bounds

0 < yTb + rT{�′, u′} = yTb − (yTA){�′, u′} ⇐⇒ (yTA){�′, u′} < yTb. (7)

Consequently, every feasible solution has to satisfy

(yTA)x ≥ yTb, (8)
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which is called Farkas proof; it is a globally valid constraint because it is a
nonnegative combination of all globally valid constraints. Thereby, Farkas proofs
are a special case of Benders cuts [6]. The Farkas proof is used as a starting point
for conflict graph analysis or dual ray analysis. Note, in MIP conflict graph
analysis yields at least one conflict that does not need to be linear, whereas dual
ray analysis yields exactly one linear constraint.

2.2 Conflict Analysis in MINLP

Only a few publications are dealing with infeasibility in MINLP. Most of the
literature is restricted to a certain class of MINLPs, e.g., conic certificates for
convex MINLPs [13] which has been proven to be very successful on mixed-
integer second-order cone (MISOCP) problems. Purely theoretical results for
mixed integer semidefinite programs (MISDP) were recently published in [26].
Both publications deal with MINLPs that are infeasible as a whole, and not with
the analysis of infeasible subproblems to learn information.

For MINLP algorithms that are based on solving LP relaxations, in partic-
ular, for OA- and ECP-based solvers, conflict analysis methods for MIP can
be applied under certain conditions. To this end, let us first recap the idea of
constructing an LP relaxation for an MINLP.

During the tree search, nonlinear functions are approximated by linear func-
tions if they are violated by a relaxation solution. Let x̃ be a relaxation solution
with gk(x̃) > 0. If gk is convex, a so-called gradient cut

gk(x̃) + ∇gk(x̃)(x − x̃) ≤ 0

is added. If gk is nonconvex, convex underestimators are added, see, e.g., [49].
For quadratic functions, e.g., these are the so-called McCormick underestima-
tors [37]. More general nonlinear functions are typically decomposed into func-
tions of a single variable, for which explicit underestimators are known. Note that
gradient cuts are globally valid, while underestimators for non-convex functions
typically involve the local bounds and are hence not globally valid.

For a subproblem s during the tree search, let Gs := {ls1, . . . , l
s
q} be the index

set of all linear approximations of all gk with k ∈ K that have been added at the
node corresponding to s or any of its ancestors. Hence, it is the current set of
(local) linear relaxation cuts; all are valid at s. Let Gs be the matrix containing
all of these linearizations and ds be the corresponding right-hand sides. Thus,
the LP relaxation solved for subproblem s reads as

min{cTx | Ax ≥ b, Gsx ≥ ds, � ≤ x ≤ u}. (9)

We denote the set of linearizations added at the root node by G0. During the
(spatial) branch-and-bound the set of linearizations expands along each path of
the tree: It holds that G0 ⊆ Gs1 ⊆ . . . ⊆ Gsp ⊆ Gs for each path (0, s1, . . . , sp, s).
In analogy to solving MIPs, if (9) is infeasible each ray (y, w, r) in its dual can
be used to construct a proof of local infeasibility. Here, yi are the dual variables
corresponding to Ai·, wl are the dual variables corresponding to Gs

l· for all l ∈ Gs,
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and rj denotes the reduced costs (the duals of the bound constraints) of every
variable xj . Note that rj = cj − yTA·j − wTGs

·j .
Hence, a local infeasibility proof w.r.t. the local bounds �′ and u′ is given by

yTb + wTds + rT{�′, u′} > 0, (10)

In contrast to (8) the constraint yTAx + wTGsx ≥ yTb + wTds is not globally
valid in general because linearizations of nonlinear constraints might rely on
intermediate local bounds. Conflict analysis as introduced in [1,53] only con-
siders globally valid reasons of infeasibility. Therefore, every local certificate of
infeasibility (10) needs to be relaxed to consider G0 only

yTb + w̄Tds + r̄T{�′, u′} > 0, (11)

where w̄l := wl, if l ∈ G0, and w̄l := 0, otherwise, and r̄j := cj−yTA·j−w̄TGs
·j . As

a consequence, the relaxed certificate (11) might not provide an infeasibility proof
anymore and cannot be used to generate a conflict constraint. If, however, (11)
is a valid proof of local infeasibility, all conflict analysis techniques known from
MIP can be applied.

2.3 Locally Valid Certificates of Infeasibility

In MIP both conflict graph analysis and dual ray analysis rely on globally valid
proofs. In most MIP solvers, local cuts are applied rarely, if at all. This is very
different for non-convex MINLP solvers which rely on local linearization cuts.
A computational study within the constraint integer programming and MINLP
solver SCIP showed that the impact of conflict graph analysis for general MINLPs
is almost negligible [49]. A computational study regarding the impact of dual
ray analysis on an MINLP solver has – to the best of our knowledge – never
been conducted before. We present such a computational study in Sect. 3.

The observation that conflict graph analysis on MINLP instances has a much
smaller impact than on MIP instances [8,49] led to the assumption that a sub-
stantial amount of infeasibility proofs of form (11) were not globally valid. Hence,
they are not suitable for conflict graph analysis as known from the literature and
implemented in SCIP. These results indicate that locally added linearization cuts
are, non-surprisingly, important to render infeasibility w.r.t. local bounds.

To incorporate local linearizations of nonlinear constraints we propose to
generalize dual infeasibility proofs of subproblem s with local bounds �′ and u′

as described in Sect. 2.1 to locally valid certificates of form

yTb + ŵTds + r̂T{�′, u′} > 0, (12)

incorporating linearizations Ĝ with G0 ⊆ Ĝ ⊆ Gsp , ŵl := wl, if l ∈ Ĝ, and
ŵl := 0, otherwise, and r̂j := cj − yTA·j − ŵTGs

·j . The certificate (12) is valid
for the search tree induced by subproblem q, where q is chosen to satisfy

q = min
q∈{1,...,sp}

{Gq−1 ⊆ Ĝ, Ĝ ∩ (Gq+1 \ Gq) = ∅}. (13)
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Table 1. Aggregated results on MINLPLIB

# solved time nodes timeQ nodesQ confsglb confsloc

all

noconflict 1170 689 79.11 3014.25 1.000 1.000 – –

confgraph 1170 694 77.94 2952.07 0.985 0.979 9679.01 –

dualray 1170 695 76.78 2871.86 0.970 0.953 1359.92 –

dualray-loc 1170 698 76.35 2841.90 0.965 0.943 1338.65 3192.50

[100,tilim]

noconflict 99 83 638.34 86860.54 1.000 1.000 – –

confgraph 99 88 563.06 74251.69 0.882 0.855 23653.88 –

dualray 99 89 458.28 62890.08 0.718 0.724 2019.46 –

dualray-loc 99 92 429.31 59629.05 0.673 0.686 2086.62 3177.67

Hence, the infeasibility proof might be lifted to an ancestor q of the subproblem s
it was created for, if all local information used for the proof were already available
at q. Note that it would be possible to apply conflict graph analysis to (12),
too. However, this would introduce a computational overhead because the order
of locally apply bound changes and separated local linearizations needs to be
tracked and maintained. Since conflict graph analysis already comes with an
overhead due to maintaining the so-called delta-tree, i.e., complete information
about bound deductions and its reasons within the tree, we omit applying conflict
graph analysis on locally valid infeasibility certificates.

3 Computational Study

For our computational study, we implemented the generation of locally valid
infeasibility certificates in the academic constraint integer programming solver
SCIP [22]. In the following, we refer to SCIP with (global) conflict graph analysis
as confgraph and SCIP with (global) dual ray analysis as dualray. Moreover, we
refer to dualray extended by locally valid infeasibility proofs as dualray-loc.
As a baseline we use SCIP with deactivated conflict analysis (noconflict). As
a test set we use the MINLPLIB [40] without instances for which at least one
setting finished with numerical violations. This yields a test set of 1170 instances.
The experiments were run on a cluster of Intel Xeon E5-2690 2.6 GHz machines
with 128 GB of RAM; a time limit of 3600 s was set.

Aggregated results of all four settings are shown in Table 1. Here, [100,tilim]
denotes the set of instances for which all settings need at least 100 s and are
solved by at least one setting [4].

All settings with activated conflict analysis improve both the running time
of SCIP, the number of branch-and-bound nodes, and the number of solved
instances. Moreover, there seems to be a clear ordering: dualray-loc is supe-
rior to dualray which in turn is superior to confgraph. Further, the harder the
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instances are, the more performance is gained by dualray and dualray-loc
compared to confgraph. The number of locally added conflict constraints
(confsloc) by dualray-loc is on average larger than the amount of globally
added conflict constraints (confsglb) but in the same order of magnitude. On
the set of nonconvex MINLPs, however, dualray-loc constructs 11.08 times
more locally than globally valid conflict constraints. These results indicate that
locally added linearizations of nonlinear constraints are important to render local
infeasibility.

When looking into the generation of local proofs into detail, we could observe
that in 5% of all analyzed infeasible LPs no local cut was needed to construct a
valid infeasibility certificate, i.e., we could lift the local conflict to a global one.
For 14% of all local proofs we found a set of local cuts such that q = �s/2�,
the conflict could be lifted up at least half of the depth. 78% of the local proofs
could not be lifted. Since a lot of infeasibility information is lost, we propose
to use a nonlinear relaxation instead. The theoretical base for nonlinear conflict
analysis will be discussed in the following section, whereas the implementation
and a computational study is future work.

4 Outlook and Theoretical Thoughts

In this final section, we will discuss theoretical considerations how conflict anal-
ysis can be directly applied to a nonlinear relaxation of convex MINLPs. The
content described in the following is work-in-progress. At the beginning of this
paper, we argued that after LP/MIP-based branch-and-bound, another com-
mon method to solve MINLPs is NLP-based branch-and-bound. We will briefly
sketch how a generalization of LP infeasibility analysis can be derived from the
KKT-conditions of convex NLPs. Given a convex MINLP of form

min
x∈X

{f(x) | gk(x) ≤ 0 ∀k ∈ K, he(x) = 0 ∀e ∈ E}, (14)

where f, gk are convex, continuously differentiable functions over R
n and he

are affine functions. For every optimal solution x� of (14) of the (convex) NLP
relaxation of (14) there exist λ ≥ 0 such that it holds that

∇f(x�) +
∑

k∈K
λk∇gk(x�) +

∑

e∈E
μe∇he(x�) = 0, λkgk(x�) = 0. (15)

These conditions raise from the so-called Karush-Kuhn-Tucker-Conditions [32].
Equality (15) is the gradient of the Lagrangian dual that reads as

L(x, λ, μ) := f(x) +
∑

k∈K
λkgk(x) +

∑

e∈E
μehe(x), (16)

with λ ≥ 0 and μ ∈ R
|E|. By duality theory, the Lagrangian dual function

which reads as q(λ, μ) := supλ,μ L(x, λ, μ) yields a lower bound on the opti-
mal value of (14). Maximizing q(λ, μ) would give the tightest lower bound
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of (14), and strict duality of convex optimization tells us that this is equiv-
alent to the optimal value of (14). Consequently, if there exists (λ�, μ�) such
that

∑
k∈K λ�

kgk(x) +
∑

e∈E μ�
ehe(x) > 0, then the dual is unbounded and thus

(λ�, μ�) proofs infeasibility of (14). Even though Slater regularity does not hold
for infeasible points1,

∑

k∈K
λ�

kgk(x) +
∑

e∈E
μ�

ehe(x) ≤ 0 (17)

is a valid inequality for (14); it is a convex combination (defined by the dual
multipliers) of the constraints of (14). Inequality (17) is the convex optimization
equivalent of the Farkas proof (8).

Assume that constraint (17) is given as proof of infeasibility for a subproblem
within an NLP-based branch-and-bound. If no local cuts are involved in the
infeasibility proof, inequality (17) is a globally valid convex nonlinear constraint.
Note in this context that gradient cuts are globally valid.

Clearly, inequality (17) holds for all non-negative λ�. The following observa-
tion makes the concrete (λ�, μ�) from the infeasibility proof interesting to use
as global information inside a branch-and-bound tree search for convex MINLP.
Consider the linearization at an infeasible point x�

∇gk(x�)T(x − x�) ≤ 0 ⇔ ∇gk(x�)Tx ≤ ∇gk(x�)Tx� ∀k ∈ K. (18)

Then, the corresponding dual multipliers λ� give the (linear) Farkas proof
∑

k∈K
λ�

k∇gk(x�) +
∑

e∈E
μ�

e∇he(x�) = 0 (19)

∑

k∈K
λ�

k∇gk(x�)Tx� +
∑

e∈E
μ�

e∇he(x�)Tx� < 0. (20)

Hence, as in the case of dual ray analysis for MIP, inequality (17) is a single
inequality that would have provided the infeasibility proof from its derivative.
The hope (which is true for MIP) is that it is a good candidate to detect infeasi-
bility by propagation (under the use of integrality information) in other parts of
the search tree, and might be a meaningful aggregation of problem constraints
to create cuts from.

For many NLP solvers, in particular dual active set methods [20,41,43] and
barrier algorithms [38,39,51], dual multipliers will be readily available. The
added advantage of active set methods is that they typically yield a sparse dual
weight-vector (λ, μ). This might come in handy when the local bounds involved
in the infeasibility proof should be used to seed a conflict graph analysis. Like in
the linear case, the problem is that the initial reason will typically be too large
to be meaningful.

All of this is subject to further investigation. We plan to implement NLP-
based conflict analysis into the academic constraint integer programming solver
1 If one wanted to assume regularity on the constraint functions of (14), linear inde-

pendence constraint classification would be applicable.
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SCIP and to study its impact on solver behavior. As in the MIP case, infea-
sibility information might be used in several other contexts, consider hybrid
branching [3], conflict-driven diving heuristics [54], and also rapid learning [7,9].

Acknowledgments. We thank Zsolt Csizmadia for his valuable comments on Sect. 4.
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funded by the German Federal Ministry of Education and Research (fund number
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Abstract. A black-box local-search backend to a solving-technology-
independent modelling language, such as MiniZinc, automatically infers
from the structure of a declarative model for a satisfaction or optimi-
sation problem a combination of a neighbourhood, heuristic, and meta-
heuristic. These ingredients are then provided to a local-search solver,
but are manually designed in a handcrafted local-search algorithm. How-
ever, such a backend can perform poorly due to model structure that
is inappropriate for local search, for example when it considers moves
modifying only variables that represent auxiliary information. Towards
overcoming such inefficiency, we propose compound-move generation, an
extension to local-search solvers that uses a complete-search solver in
order to augment moves modifying non-auxiliary variables so that they
also modify auxiliary ones. Since compound-move generation is intended
to be applied to such models, we discuss how to identify them.

We present several refinements of compound-move generation and
show its very positive impact on several third-party models. This helps
reduce the unavoidable gap between black-box local search and local-
search algorithms crafted by experts.

1 Introduction

The aim of technology-independent modelling languages for satisfaction and
optimisation problems is to allow many solvers to run for a single problem model
and hopefully avoid too early commitment to a solving technology. MiniZinc [13]
is such a language where a user designs a model and can then solve the prob-
lem using a wide range of backends that call solvers from technologies such as
constraint programming (CP), lazy clause generation (LCG), (constraint-based)
local search (LS and CBLS), mixed-integer programming (MIP), Boolean sat-
isfiability (SAT), and satisfiability modulo theories (SMT). Given a MiniZinc
model, a backend should infer a representation and search strategy that are
suitable for its solver and technology.
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A black-box local-search backend automatically infers from a MiniZinc model,
which is purely declarative, a representation required to compute efficiently a
cost function as well as a combination of a neighbourhood, heuristic, and meta-
heuristic, which form the search strategy and are then provided to a CBLS
solver: these ingredients are manually designed in a handcrafted local-search
algorithm, which processes no model. A drawback of technology-independent
modelling is that backends of some solving technologies can be sensitive to model
structure (which backends of other technologies may be unaffected by). For all
these reasons, there will always be a gap between black-box local-search backends
and local-search algorithms handcrafted by experts for specific problems.

To help reduce this gap, we here explore a model structure where black-box
LS performs poorly, namely when its inferred neighbourhood has moves modify-
ing only variables representing auxiliary information. This model structure can
appear when such auxiliary variables are (or seem) not functionally determined
by the other variables. The intuition for why this can degrade performance is
that the search strategy should consider new values for the non-auxiliary vari-
ables and infer (possibly when generating the considered moves) new values for
the auxiliary variables from those considered values, and not vice versa.

Towards improving the performance of black-box local search, our contribu-
tions are as follows, after defining all required background in Sect. 2. In Sect. 3, we
propose compound-move generation (CMG), an extension to local-search solvers
that uses a complete-search solver (based on CP in our implementation) in order
to try to augment moves modifying non-auxiliary variables so that they also
modify auxiliary ones. In Sect. 4, we present two approaches for detecting the
model structure that CMG is intended for. In Sect. 5, we experimentally demon-
strate the very positive impact of CMG. We discuss related work in Sect. 6 and
conclude in Sect. 7.

2 Background

We define the relevant concepts of MiniZinc, (CP-style) complete search, and
(constraint-based) local search.

2.1 MiniZinc, FlatZinc, Models, and Instances

The constraint-based modelling language MiniZinc [13] for satisfaction and opti-
misation problems is independent of solving technologies, such as CP, LCG, LS,
CBLS, MIP, SAT, and SMT. Its open-source toolchain contains a flattener, which
translates a model and instance data into a sub-language called FlatZinc, which
is amenable to interpretation and analysis by a backend that calls a targeted
solver. We now present a MiniZinc model for our running example.

Example 1. Consider the travelling salesperson problem with time windows
(TSPTW). Given are n locations, a travel-time matrix T (where T[i,j] is the
travel time from location i to location j plus the service time at i), and a matrix
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W of time windows for each location (where W[i,1] is the earliest arrival time
and W[i,2] the latest arrival time for location i). The goal is to find a shortest
route that visits each location exactly once and within its time window.

Figure 1 shows a MiniZinc model that is good for most backends. Since the
arrival time at a location depends on the departure time at the previous location,
the route is modelled using a predecessor array pred, where variable pred[i]
denotes the location visited before location i. The circuit constraint in line 5
requires pred to represent a Hamiltonian circuit. Location 1 is assumed to be
the start of the route. The arrival times are modelled using the array A, where
variable A[i] denotes the arrival time at location i. Each arrival time is con-
strained, in lines 8 to 11, to be either the arrival time at the preceding location
plus the travel time or the start of its time window, whichever is greater, and at
most the end of its time window. The objective is to minimise the travel time of
the entire route, which is stated in line 12.

1 int: n; set of int: Loc = 1..n; % (number of) locations

2 array[Loc ,Loc] of int: T; % travel times

3 array[Loc ,1..2] of int: W; % time windows

4 array[Loc] of var Loc: pred; % predecessor locations

5 constraint circuit(pred);

6 int: depot = 1; % location 1 is the depot

7 array[Loc] of var int: A; % arrival times

8 constraint A[depot] = W[depot ,1];

9 constraint forall(i in Loc where i != depot)(

10 A[i] = max(A[pred[i]] + T[pred[i],i], W[i,1]));

11 constraint forall(i in Loc)(A[i] <= W[i,2]);

12 solve minimize sum(i in Loc)(T[pred[i],i]);

Fig. 1. A MiniZinc model for TSP with time windows (TSPTW)

Each variable A[i] represents auxiliary information and seems at first sight
to be functionally determined by lines 8 and 10. However, since A[pred[i]] on
the right-hand side of the equality in line 10 defines A[i] possibly in terms of
itself, a backend should infer that A[i] cannot be functionally determined by
lines 8 and 10 alone. This is an example of a model that, somewhat unexpectedly,
a backend can see as having non-functionally determined variables representing
auxiliary information.1 Furthermore, the equality constraints in lines 8 and 10 are
here only correct because in a minimal solution the salesperson always arrives as
early as possible. If this assumption cannot be made, possibly due to additional
side constraints, then lines 8 and 10 have to be expressed using inequalities, thus
making the auxiliary A[i] variables necessarily non-functionally determined. ��
1 Note that upon also considering the semantics of the circuit constraint in line 5,

a backend that only explores assignments satisfying that constraint can infer that
the A[i] are in fact functionally determined by line 10. However, to the best of our
knowledge, no backend to MiniZinc performs such a semantic analysis. Also, doing
so would not address all cases where a model can be seen as having non-functionally
determined variables representing auxiliary information.
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Without loss of generality, we explain everything for minimisation problems:
a maximisation or satisfaction problem can be transformed into a minimisation
problem by minimising the negated objective function or a constant, respectively.
In order to emphasise the independence from MiniZinc of our method, a Flat-
Zinc model for a minimisation problem instance is here abstracted as a tuple
〈V,D, C, o〉, where V is the set of variables; D is the function mapping each
variable to its set of possible values, called its domain; C is the set of constraints
over variables in V; and o ∈ V is the variable that is constrained in C to take the
value of the objective function, which is to be minimised.

2.2 Complete Search and Constraint Programming

Given a minimisation instance 〈V,D, C, o〉, a solution is an assignment of all
variables V to values allowed by the domain mapping D such that all the con-
straints C are satisfied. We denote the value assigned to a variable v in a solution
by sol(v) and a solution by sol(V) := {v �→ sol(v) | v ∈ V}.

Given enough time, a complete solver is guaranteed either to return a proven
minimal solution, which is a solution where sol(o) is minimal, or to prove unsat-
isfiability otherwise. If a complete solver is stopped early , then it returns either
the best-found solution, without proof of minimality, or nothing, meaning it is
not known if the instance is satisfiable or not.

Many solving technologies offer complete solvers, such as CP, LCG, MIP,
SAT, and SMT. Our main ideas are independent of which complete technology
is used, but some refinements exploit features of CP solvers, defined next.

A CP solver builds a search tree by interleaving propagation and search. It
modifies the current domain, which maps each variable v ∈ V to a set dom(v),
initialised to D(v). Propagation computes the fixpoint of the propagators, one for
each constraint in C: a propagator for a constraint c deletes (not necessarily all)
values from the current domain of each variable in c that are impossible under c.
The current domain for the root node of the search tree is computed by a first
run of propagation. If the current domain of some variable becomes empty at
some node, then there is a failure and backtracking occurs. If the current domain
of each variable becomes a singleton at some node, then the instance is proven
satisfiable, under the assignment {v �→ d | v ∈ V ∧ dom(v) = {d}}, which
is sol(V), and the constraint o < sol(o) is added to C before backtracking in
order to search for a better solution. If at least one current domain has at least
two values, then a child node is created for each part of a partition of dom(v)
into at least two non-empty disjoint subsets for some variable v, guided by a
branching strategy. Solving (by propagation and search) recursively continues
for each child node, under usually a depth-first exploration order. Solving either
returns a minimal solution or reports unsatisfiability.

2.3 (Constraint-Based) Local Search

Other solving technologies offer non-complete solvers. For example, local search
(LS), say [11], initialises and iteratively modifies the current assignment, which
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maps each variable v ∈ V to a value val(v), called its current value, in its domain
D(v). The current assignment need not satisfy all the constraints C. The initial
assignment is built under some amount of randomisation. At every iteration, a
two-step search heuristic is followed. First, a set of candidate moves is consid-
ered, each being a set of reassignments v �→ d for at least one variable v ∈ V and
value d ∈ D(v). We assume that each candidate move is probed by (i) tentatively
performing its reassignments, (ii) estimating the proximity p̂ of the resulting ten-
tative assignment to some assignment satisfying C and computing the resulting
value ô of the objective variable o, and (iii) undoing the tentatively performed
reassignments and returning the pair 〈p̂, ô〉. The set of probed candidate moves is
called the neighbourhood, which is said to be explored, and its elements are called
neighbours. Second, among the candidate moves, the heuristic selects one based
on a cost function applied to each pair 〈p̂, ô〉 and actually commits it, yielding the
new current assignment. A meta-heuristic, such as tabu search, say [10], can be
used to escape local optima of the cost function. Together, the neighbourhood,
heuristic, and meta-heuristic form a local-search strategy.

In constraint-based local search (CBLS) [19], a declarative model is coupled
with either a user-defined LS strategy, yielding a white-box LS solver (such as
Comet [19] and OscaR.cbls [6]), or a solver-inferred LS strategy, yielding a black-
box LS solver (such as LocalSolver [1] and fzn-oscar-cbls [2]). For each built-in
constraint c, a predefined violation function viol(c), which returns the value 0
when c is satisfied and otherwise a positive value, can be used for estimating
the proximity of a tentative assignment to an assignment satisfying c. One can
then estimate the proximity p̂ as the violation viol(C) :=

∑
c∈C viol(c). Note that

objective function, cost function, and violation function are here not synonyms.
A CBLS model has two categories of explicit constraints. Soft constraints have

a violation function and may be violated during search but must be satisfied in
a solution. One-way constraints, such as z <== x * y in OscaR.cbls syntax and
called invariants in Comet, are impossible to violate by candidate moves: in
z <== x * y, the functionally determined variable z cannot undergo a move,
since its value is maintained by the solver to be the product of the variables x
and y, which can undergo moves. An implicit constraint in a CBLS model is
satisfied by the initial assignment and preserved by all committed moves: this
can be done by using a constraint-specific neighbourhood [2].

For each constraint of a problem, a CBLS modeller must choose whether to
make it soft, one-way, or implicit. Note that implicit and one-way constraints do
not exist as such in MiniZinc and FlatZinc.

2.4 A Local-Search Backend to MiniZinc

Our fzn-oscar-cbls [2] LS backend to MiniZinc conceptually performs three steps.
First, the constraints of a given flattened MiniZinc model are categorised into
the three CBLS constraint categories (soft, one-way, and implicit) by using a
structure identification scheme (see [2] for full details). Second, an LS strategy
for the CBLS solver OscaR.cbls [6] is inferred: the neighbourhood is the union of
the constraint-specific neighbourhoods for all identified implicit constraints and
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a default neighbourhood for all variables that are not part of any constraint-
specific neighbourhood (note that variables identified as functionally determined,
and thus maintained by one-way constraints, are not in any neighbourhood); the
heuristic selects a random best candidate move from the neighbourhood; and the
meta-heuristic is a variation of tabu search [10]. Third, OscaR.cbls is invoked.
Note that backend and solver are here not synonyms.

Example 2. For the model in Fig. 1, fzn-oscar-cbls categorises the circuit con-
straint in line 5 as implicit, since a constraint-specific neighbourhood (namely
3-opt) is available in fzn-oscar-cbls. The A[i] variables are mistakenly conjec-
tured not to be functionally determined, as the structure identification scheme
does not take the semantics of circuit into account, hence the A[i] seem defined
possibly in terms of themselves and are not maintained by one-way constraints:
a default neighbourhood is inferred for them. The objective variable (introduced
by line 12) is maintained by a one-way constraint. The soft constraints are the
equality constraints in lines 8 and 10. ��

Two major burdens for an LS backend to a technology-independent modelling
language such as MiniZinc are the identification of an LS-appropriate structure of
a model, which is non-trivial as models need not be written with LS in mind, and
the ensuing neighbourhood inference, which depends on the identified structure.
We now address these two burdens by trying to make LS backends more robust
to models without an identifiable LS-appropriate structure and by making the
moves of the inferred neighbourhoods more suitable to such models.

3 Compound-Move Generation

We present compound-move generation (CMG), an extension to local search
(LS) that hybridises LS with complete solving and is geared for models where
an LS solver is forced to make moves over what we will call auxiliary variables,
which we will demonstrate in Sect. 5.2 to greatly degrade performance. The main
idea is to use a complete solver, in our implementation a CP solver, to try to
augment each move probed by the LS solver in order to generate what we will
call a compound move that also reassigns auxiliary variables. We first explain
the basic CMG algorithm and then discuss implementation-specific refinements.

3.1 Basic Algorithm

Consider a flattened MiniZinc model 〈V,D, C, o〉, partitioned a priori such that
V = Vc ∪ Va, where the variables of Vc are called core variables and those of Va

are called auxiliary variables; and C = Cc ∪ Ca ∪ C� where the constraints of Cc

are called core constraints and are all the constraints over only variables in Vc,
those of Ca are called auxiliary constraints (also known as side constraints) and
are all the constraints over only variables in Va, and those of C� are called linking
constraints. Note that o need not be in Vc.
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In Example 1, the pred[i] variables are ideally in Vc and the A[i] in Va:
the constraint sets Cc, Ca, and C� follow by their definitions. We discuss in Sect. 4
how to guess this partition automatically.

A model for 〈V,D, C, o〉 is created for the CBLS solver and a neighbourhood
is inferred for the non-functionally determined variables in Vc but not for any
variables in Va; the values of all the variables in Vc identified as functionally
determined are maintained by one-way constraints (see Sect. 2.3) in the CBLS
model.

Further, a model for 〈V ′,D′, C′
a ∪C′

�, o
′〉 is created for the complete solver: we

add the prime symbol to the corresponding objects for the CBLS solver.
The probing (recall that we assume it consists of (i) tentatively performing

a candidate move m; (ii) computing the resulting value of the cost function;
and (iii) undoing the candidate move) in the CBLS solver is modified such that
between (i) and (ii) an extra step of calling the complete solver is added, divided
into three sub-steps:

1. Each variable v′ in V ′
c of the model in the complete solver is fixed to the

tentative value of its corresponding variable v in the CBLS solver by adding
the constraint v′ = val(v) to the model in the complete solver. The search
of the complete solver is then launched in order to find an assignment of the
variables V ′

a that satisfies all constraints in C′
a ∪ C′

� ∪ {v′ = val(v) | v′ ∈ V ′
c}.

2. There are two possible outcomes: either (a) the complete solver reports
unsatisfiability, whether at the root node or through search, and the nor-
mal probing of m continues; or (b) the complete solver returns a minimal
solution sol(V ′) and the normal probing continues for the candidate move
m ∪ {v �→ sol(v′) | v ∈ Va}, which we call a compound move, instead of m.

3. Sub-step 1 is undone in the complete solver.

The other aspects of the search in the CBLS solver, such as the heuristic and
the meta-heuristic, remain unchanged.

3.2 Refinements and Implementation

We have implemented CMG for our black-box local-search backend fzn-oscar-
cbls [2] to MiniZinc, calling the OscaR.cbls solver [6], by using as the complete
solver the OscaR.cp solver of the same OscaR framework [14], thereby exploiting
the felicitous co-existence of CP and CBLS solvers within the OscaR toolkit.

In its basic form, CMG can be very slow or memory-intensive. We here
describe several refinements that improve the performance of CMG, sometimes
modifying parts of fzn-oscar-cbls. Some refinements have parameters (denoted by
Greek letters), for which we propose values in Sect. 5. We refer to “the complete
solver” when refinements or concepts are technology-agnostic, and to “the CP
solver” when refinements or concepts are dependent on CP technology.

A. Incomplete Solving. Since finding a minimising assignment for the vari-
ables in Va can be NP-hard, we can limit the complete solver in the total run-
time τ , the number φ of failures (if it is a CP solver), and the number σ of
intermediate solutions.
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B. Always Modifying Auxiliary Variables. If, for a large number of con-
secutive committed moves, the complete solver has failed to augment them into
compound ones, then the auxiliary variables Va remain unchanged in the CBLS
solver during those iterations. Since the current assignment of Va contributes to
the violation in the CBLS solver, as Ca ∪ C� is part of its model, and thus can
affect which candidate move is committed, this can result in the local search get-
ting stuck in some region of the search space. So fzn-oscar-cbls can be modified
to infer also a neighbourhood for Va: whenever the CBLS solver commits a move
for which the complete solver has failed, a move from the neighbourhood of Va

is also committed, in the same iteration.

C. Calling the Complete Solver Again Before Committing a Move. If
Refinement A is used, then the assignment of the auxiliary variables Va returned
by the complete solver may not be minimal with respect to the objective function.
So, between selecting and committing a candidate move, the complete solver can
be run again for that move in order to get a possibly better assignment of Va.
This second solving can be either complete or, as done in our experiments in
Sect. 5, a deeper incomplete solving, depending on the new parameters τ↑, φ↑,
and σ↑, which have the semantics of their counterparts in Refinement A.

D. Only Calling the Complete Solver Before Committing a Move.
Refinement C can be taken to the extreme where the complete solver is not
used at all while probing, but only after selecting a candidate move: instead of
modifying the probing step, we can call the complete solver as a post-processing
step to selecting a move. For large neighbourhoods, this will significantly speed
up the probing, but at the cost of possibly missing good candidate moves.

E. Only Returning the Objective Value. The cost function minimised by
fzn-oscar-cbls is α · val(o) + β · viol(C), where o is the objective variable, viol(C)
is the violation of the constraints in C = Cc ∪ Ca ∪ C�, and α, β are non-negative
weights that are tuned during search. An assignment sol(V ′

a) returned by the
complete solver satisfies all constraints in C′

a ∪ C′
� and sol(o′) is the same value

as o will have in the CBLS solver if the corresponding reassignment is made.
Therefore, if using Refinement C, then it is enough, while probing, for the com-
plete solver to return sol(o′) since α ·val(o)+β ·viol(C) = α · sol(o′)+β ·viol(Cc)
in this case. By maintaining viol(Cc) in a separate constraint system [19] in the
underlying CBLS solver, we can compute the cost function faster while probing.

F. Exploiting Conflicting Assignments. We say that the current assignment
of some variables in the CBLS solver is conflicting if they cause the current
domain of at least one variable to become empty in the CP solver due to root-
node propagation. For efficiency reasons, we limit this definition to root-node
failure, but one can generalise it to any failure.

For example, consider the constraints x < a and a < y, where x, y ∈ Vc and
a ∈ Va, and the conflicting assignment {x �→ 2, y �→ 1}. Until x or y is reassigned
by a CBLS move, the CP solver empties the domain of its variable a′ and fails
at the root node upon adding the constraints {x′ = 2, y′ = 1} in sub-step 1 of
the basic CMG. However, for this conflicting assignment and most values of a,
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one of the two inequality constraints is always satisfied in the CBLS solver and
the other one might only make a small contribution to viol(C). So there might
be no strong indication for the LS strategy that x or y needs to be reassigned.

So one should try to identify which variables in V ′
c have caused a root-node

failure in the CP solver, and then force the CBLS solver to commit moves on
its corresponding core variables. This can be done with a solver that provides
explanations for failures, such as any LCG solver, say Chuffed [3]. Most CP
solvers (e.g., OscaR.cp, which we use in our implementation) do not provide
explanations for failures, so we try to identify which variables have caused such
a failure by extending the basic CMG algorithm:

a. The constraints v′ = val(v) for each v′ ∈ V ′
c are, in a random order, itera-

tively added to the model of the CP solver in sub-step 1, triggering root-node
propagation each time. If a failure occurs, then the last variable that was
fixed (i.e., that triggered the failure) is returned, say u′. Otherwise, there is
no conflicting assignment.

b. Each such variable u′ ∈ V ′
c is recorded in a map that maintains its number of

triggered failures, which we call its conflict count. The counter is reset to zero
for a variable in V ′

c whenever a move reassigning its corresponding variable is
committed by the CBLS solver.

If at least one variable has a conflict count that is at least a parameter ω, we force
the search heuristic in the CBLS solver to make a move on one or more variables
in Vc with a conflict count of at least another parameter ω, by exploiting the
tabu search of fzn-oscar-cbls: we make all variables in Vc with a conflict count
under ω tabu. We recommend ω > ω to avoid making too many variables tabu.

4 Partitioning a Model for CMG

To use compound-move generation (CMG), one must first partition a model
instance in order to get the sets Vc, Va, Cc, Ca, and C�. By V = Vc ∪ Va and the
definitions of Cc, Ca, C�, all these sets can be inferred given either Vc or Va. We
do not impose any semantics to Vc and Va: CMG can be applied to any such
partition, as done at the end of Sect. 5.1. However, we conjecture that CMG
is most efficient when Vc is the set of variables that model the combinatorial
sub-structure of the problem, and Va has the variables whose values can easily
be determined (ideally by CP-style propagation) given an assignment of Vc.

We present two ways of making this partition, namely by user-provided hints
in a MiniZinc model and automatically through a heuristic: in a black-box set-
ting, a user should not have to provide a hint to use CMG and most third-party
MiniZinc models are not written with a method such as CMG in mind.

4.1 Hint-Based Partitioning

MiniZinc allows modellers to provide hints to a backend through annotations to
parts of a model. We introduce the search_variables(array of var int: V)
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annotation, which is attached to the solve statement of a model and indicates
that the modeller wants search to be performed on the variables in V: an LS
backend with CMG can then use the V[i] as the core variables.

In Example 2 we saw that both the pred[i] and A[i] variables of the model
in Fig. 1 are searched on by fzn-oscar-cbls. Upon annotating the solve statement
in line 12 with search_variables(pred), fzn-oscar-cbls with CMG can compute
that Va = {A[i] | i in Loc} because Vc = {pred[i] | i in Loc}.

MiniZinc officially supports search annotations for CP and LCG solvers in
order to specify branching strategies. Unfortunately, in general, those search
annotations cannot be used in place of our here introduced search_variables
annotation, as their semantics does not hint at distinguishing core and auxiliary
variables. One could make the (often incorrect) assumption that all variables
appearing in a branching strategy are core variables: however, in practice, many
MiniZinc modellers specify a branching strategy for all variables of a model, and
our aim includes good performance on third-party models.

4.2 Heuristic-Based Partitioning

Based on our conjecture that Vc should have the variables that model the com-
binatorial sub-structure of the problem, we can try to detect such model struc-
ture automatically by using a heuristic to guess a partition. Since the global
constraints in MiniZinc (such as circuit in Fig. 1) capture combinatorial sub-
structures of a problem and fzn-oscar-cbls has constraint-specific neighbourhoods
for some global constraints, we can use the following heuristic to decide which
variables belong to Vc: if fzn-oscar-cbls infers that constraint-specific neighbour-
hoods can be used, then all variables that belong to those neighbourhoods are
guessed to be in Vc, and all other variables (which would have been put into a
default neighbourhood) are therefore in Va. Otherwise, the heuristic will decide
that CMG cannot be used.

This heuristic leads to the same partition for the model in Fig. 1 as when
annotating its solve statement by search_variables(pred), but without hav-
ing to modify the MiniZinc model. Furthermore, this heuristic is able to guess a
good partition for some third-party models used in the MiniZinc Challenges, as
we will see in Sect. 5.1. However, the heuristic can guess bad partitions, so the
modeller currently has to say at the command line if CMG should be used.

5 Experimental Evaluation

We believe the strength of CMG lies in dealing with solver-independent mod-
els, say in MiniZinc, where non-functionally-determined auxiliary variables can
appear naturally and where the modeller need not be familiar with local search
(LS). Therefore, we evaluate CMG on third-party MiniZinc models to see its
impact on the robustness of an LS backend to MiniZinc across a variety of mod-
els in Sect. 5.1. In order to see how other LS solvers are affected by the presence
of non-functionally-determined auxiliary variables, we modify Example 1 to force
their presence and evaluate the impact in Sect. 5.2.
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5.1 Benchmark Problems

We compare two configurations of CMG in fzn-oscar-cbls with our original fzn-
oscar-cbls and Yuck,2 which is also a CBLS backend to MiniZinc. As a point of
reference, we also run the LCG backend Chuffed [3].

The first configuration, called config1, uses Refinements A, B, C, E, F of
Sect. 3.2, while the second one, called config2, uses A, B, D, F, but not E, which
is meaningless with D. Indeed, initial experiments showed that using D instead
of C can both improve and degrade performance, depending on the model, while
each other refinement individually seems to improve performance. For both con-
figurations, we set the parameters τ = τ↑ = 30 s, φ = 10000 failures, σ = 2
solutions, ω = 3 conflicts, ω = 1 conflict, φ↑ = 100000 failures, and σ↑ = ∞
solutions: initial experiments showed that all those are good values.

We do not compare with the basic CMG algorithm: initial experiments
showed that it is too slow. We do not compare with the black-box local-search
solver LocalSolver [1] as it offers no backend to MiniZinc. Reformulating models
in LocalSolver’s modelling language LSP would not yield a meaningful perfor-
mance comparison as it does not have all the global constraints of MiniZinc and
as LSP has features that MiniZinc does not have.

We evaluate CMG on models and instances for a capacitated vehicle rout-
ing problem (CVRP) and a time-dependent travelling salesperson problem
(TDTSP), which are taken from the MiniZinc Challenges [18] of 2015 and 2017,
as well as our model in Fig. 1 for our running example, the travelling salesper-
son problem with time windows (TSPTW). Furthermore, we run CMG on all
instances of all models of the MiniZinc Challenge 2018 where the heuristic-based
partitioning of Sect. 4.2 detects that CMG can be used (in a competition setting,
the original fzn-oscar-cbls would run on the other instances). Finally, to show-
case the hint-based partitioning of Sect. 4.1, we also perform experiments on a
group scheduling problem (GFD), used in the MiniZinc Challenge 2018 with a
model where the partitioning heuristic of Sect. 4.2 does not detect that CMG
can be used. All models except the one of Fig. 1 and all instances are third-party.

For the local-search backends, we made 10 independent runs with a 600-
second-timeout each. For the complete-search backend Chuffed, which is deter-
ministic, we report the objective value of one run with the same timeout. The
results are reported in Table 1: note that all problems are minimisation or satis-
faction problems and that all chosen instances happen to be satisfiable.

TSPTW. The heuristic-based partitioning of Sect. 4.2 detects auxiliary vari-
ables in our model in Fig. 1. We selected five “.001” instances of the GendreauDu-
masExtended benchmark3 around the instance size where Chuffed and the origi-
nal fzn-oscar-cbls stopped establishing satisfiability. We see in Table 1 that both
CMG configurations improved the best-found and median values of the original
fzn-oscar-cbls. Both configurations established satisfiability for all instances in at
least 50% of the runs, whereas the original fzn-oscar-cbls only did so in at most

2 https://github.com/informarte/yuck.
3 http://lopez-ibanez.eu/tsptw-instances.

https://github.com/informarte/yuck
http://lopez-ibanez.eu/tsptw-instances
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20% of the runs. The best-found objective value by config1 is for each instance
equal to the best-known objective value reported at the benchmark site. Yuck
was not able to establish satisfiability for any instance.

CVRP. The heuristic-based partitioning detects auxiliary variables in the model
cvrp. We used all except the toy instance of the MiniZinc Challenge 2015. We see
in Table 1 that config1 performed worse than the original fzn-oscar-cbls, except
for winning on the P-n16-k8 instance, whereas config2 otherwise outperformed
all other backends. On all but P-n16-k8, the best-found solutions by config2 are
better than those at the MiniZinc Challenge 2015 for any challenge category.

TDTSP. The heuristic-based partitioning detects auxiliary variables in the
model tdtsp. We used the four largest instances among MiniZinc Challenges
2015 and 2017. In Table 1 we see that both Yuck and Chuffed outperformed the
original fzn-oscar-cbls, but that config1 outperformed all other backends.

MiniZinc Challenge 2018. The heuristic-based partitioning of Sect. 4.2
finds CMG to be applicable to 3 models and 14 instances of the 20 mod-
els and 100 instances in the MiniZinc Challenge 2018, namely elitserien,
soccer-computational, and vrplc. For elitserien and vrplc, neither the
original fzn-oscar-cbls, nor config1, nor config2, nor Yuck found any solution
within the given timelimit to any instance, whereas Chuffed solved all five
elitserien instances and two vrplc instances to optimality within the given
timelimit.

For soccer-computational, which is the only satisfaction problem in our
evaluation, the heuristic-based partitioning determines that CMG is not appli-
cable to the xIGData 22 12 22 5 instance, as a global constraint for which fzn-
oscar-cbls has a neighbourhood is removed during flattening. For the other four
instances, Yuck found a solution in all runs, while the original fzn-oscar-cbls
found a solution in at most half the runs, and Chuffed found a solution to only
one instance. Both configurations of CMG had a negative impact on fzn-oscar-
cbls, as they did not find any solution in any run.

GFD Schedule. The model gfd-schedule2 is for a scheduling problem with
multiple levels of decisions: items are allocated to groups, groups are allocated to
factories, and groups are scheduled to be processed on a day. The heuristic-based
partitioning does not detect auxiliary variables since the model does not use any
global constraint for which fzn-oscar-cbls has a neighbourhood. We therefore use
this model to showcase the hint-based partitioning of Sect. 4.1 by annotating the
variables representing the allocation of groups to factories as core variables: it is
then inferred that all other variables are auxiliary, and their values will be sought
by the complete solver instead. Note that not all of the here inferred auxiliary
variables are actually auxiliary, and that CMG will here behave similarly to a
decomposition where a master problem of allocating groups to factories is solved
by LS and a sub-problem of allocating items to groups and scheduling groups
is solved by CP. We use the five instances of the MiniZinc Challenge 2018. We
see in Table 1 that both config1 and config2 greatly improved over the original
fzn-oscar-cbls. Chuffed found and proved minimal solutions to three instances,
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Table 1. Comparison on MiniZinc models and third-party benchmark instances
between our original LS backend fzn-oscar-cbls, two configurations enriching it with
CMG, the LS backend Yuck, and the complete-search backend Chuffed: best-found
objective value over 10 runs (column ‘best’), boldface indicating overall best perfor-
mance for the instance of that row, flagged by ‘+’ if equal to the best-known value,
and flagged by ‘*’ if proven optimal by Chuffed; median of the best-found objective
values over these runs (column ‘median’), a superscript indicating the number of runs
establishing satisfiability before timing out, a ‘–’ indicating no such run.

fzn-oscar-cbls
original

fzn-oscar-cbls
CMG config1

fzn-oscar-cbls
CMG config2

Yuck Chuffed

TSPTW Best Median Best Median Best Median Best Median Best

n20w180 377 3771 +253 25310 261 26310 – – ∗253
n20w200 347 3732 +233 23310 +233 23410 – – ∗233
n40w120 – – +434 4395 437 4649 – – 536

n40w140 – – +328 3347 367 38810 – – –

n40w160 – – +348 3498 362 39310 – – –

CVRP

A-n37-k5 2614 28709 2925 293410 875 9839 – – 1570

A-n64-k9 5431 56594 5518 56619 2868 34728 – – 3667

B-n45-k5 3638 41216 4201 420710 972 118210 – – 2466

P-n16-k8 489 5032 450 5236 481 4811 – – 502

TDTSP

20 14 10 22546 228839 12556 1350610 13390 1570610 17446 1744610 17024

20 25 00 22924 229612 14888 1602410 15014 161148 18646 1864610 22328

20 26 00 22901 229302 12926 1391710 13723 147118 20790 2079010 19076

20 36 10 22611 229466 12809 1455910 13859 1675210 17247 1724710 17054

GFDschedule

n65f2d50. . . 12741 185478 446 55210 343 64510 6861 686110 ∗19
n80f7d30. . . 9952 1333810 665 106210 660 85710 10578 1057810 2023

n90f5d40. . . 8655 158659 473 96710 655 88010 15488 1548810 ∗11
n100f7d5. . . 29967 400714 1187 23849 885 147410 26397 2639710 ∗14
n200f5d5. . . – – – – – – – – –

though config2 found the best objective value for the second instance. On the
largest instance, none of the backends found any solution.

5.2 Impact of Auxiliary Variables on Local-Search Solvers

We now show the negative impact on CMG-free black-box local search of com-
mitting moves on non-functionally-determined variables that represent auxil-
iary information. Towards this, we reformulate the TSPTW model in Fig. 1
such that it can be written in LocalSolver’s modelling language LSP and,
unlike in Example 2, the A[i] variables can be detected to be function-
ally determined without a semantic analysis of the entire model. We replace
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the predecessor array pred in line 4 by the array order, where variable
order[i] denotes the ith location visited. The circuit(pred) constraint in
line 5 then becomes alldifferent(order), and the earliest-arrival-time con-
straint in line 10 becomes A[i] = max(A[i-1] + T[order[i-1],order[i]],
W[order[i],1]): this means that the A[i] can now be determined by one-way
constraints and there is no need for CMG. The main drawbacks of the new
model, called the alldifferent model, are that an LS backend can infer a more
suitable neighbourhood for the old model, called the circuit model, namely 3-
opt in the case of fzn-oscar-cbls, and that the circuit model is better suited for
complete solvers as it captures the combinatorial sub-structure of the problem
better.

However, in the alldifferent model, we can now artificially make the A[i]
variables non-functionally determined by replacing the equality constraint above
by an >= inequality constraint, which will not change the minimal objective
value. This allows us to measure the negative impact on CMG-free black-box
local search of committing moves on non-functionally-determined auxiliary vari-
ables. Recall from Example 1 that using an inequality is not only correct but
may also be necessary in TSPTW variants.

We examined the impact on LocalSolver, Yuck, and the original fzn-oscar-cbls
of the alldifferent model with either equality (model variant eq) or inequality
(model variant ineq) constraints in the modified line 10. Since LocalSolver does
not have a backend to MiniZinc, we wrote equivalent models in LSP.

In Table 2 we see the negative impact of having auxiliary variables that are
not functionally determined and thus must undergo moves: both fzn-oscar-cbls
and LocalSolver did not find any solutions to ineq, where the auxiliary variables
are not functionally determined, though Yuck found solutions but with worse
objective values than for eq. On model eq, where the auxiliary variables need
not undergo moves, both fzn-oscar-cbls and Yuck found solutions, as opposed to
when running the circuit model for TSPTW used in Table 1.

This shows that other black-box local-search solvers are adversely affected
when moves must be made on non-functionally-determined auxiliary variables.

6 Related Work

In the hybridisation context, [8] discusses two categories of hybrids between local
search (LS) and constraint programming (CP):

– Augmenting LS with CP: Examples include using only the root-node
propagation of a CP solver to try to check the feasibility of side constraints
of capacitated vehicle routing problems and thereby try to find values for the
auxiliary variables when probing an LS candidate move [5]; modelling an LS
neighbourhood as an optimisation problem and using a CP solver to find a
best neighbour to the current assignment [15]; and large-neighbourhood search
(LNS) [17], where some variables in a feasible current LS assignment are fixed
for a CP solver to look for a best assignment to the other variables, thereby
building an LS move to another feasible current assignment.
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Table 2. Best-found objective values over 5 independent runs for variants of the
alldifferent model of TSPTW, showing the negative impact on the original fzn-
oscar-cbls, on Yuck, and on LocalSolver (neither of them using CMG) when reformu-
lating so that functionally-determined auxiliary variables (column ‘eq’) become non-
functionally-determined ones (column ‘ineq’). Boldface indicates overall best perfor-
mance for the instance of that row, flagged by ‘+’ if equal to the best-known value.

fzn-oscar-cbls Yuck LocalSolver

instance\model eq ineq eq ineq eq ineq

n40w120 +434 – 436 468 +434 –

n40w140 +328 – +328 391 +328 –

n40w160 352 – +348 411 +348 –

– Augmenting CP with LS: Examples include performing LS starting from
the leaf nodes of the CP search tree in order to improve solutions; performing
LS at the internal nodes of the CP search tree in order to repair or improve
a node [16]; and using LS in order to guide the CP branching strategy [12].

We have here augmented LS with CP in a manner most similar to [5] and
LNS. Unlike [5], we allow the CP solver to search for a best assignment to the
auxiliary variables when feasible values cannot be inferred through only root-node
propagation; furthermore, we refine CMG and make it available in a problem-
independent context. Like LNS, a partial assignment is here fixed for a CP solver,
and complete search is made over the remaining variables. However, unlike LNS,
the complete search is here on a subset of the constraints, always the same
variables are here fixed, and we allow moves to infeasible current assignments.

In the MiniZinc context, LS-CP hybrids exist for LNS, namely the GELATO

framework [4], combining their LS solver EasyLocal++ with the CP solver
Gecode [9], and Mini-LNS [7], which is solver-independent, but neither of these
are black-box and therefore both require a search strategy to be specified.

7 Conclusion and Future Work

We presented compound-move generation (CMG), an extension to black-box
local search, geared for model structure that may cause local-search solvers to
make moves reassigning variables representing auxiliary information. We have
outlined two methods for detecting such model structure, which can appear
naturally, for example for routing problems with side constraints. This means
that such solvers without CMG might perform unexpectedly worse than com-
plete solvers and considerably worse than handcrafted local-search algorithms on
such problems. Our experiments show that several black-box local-search solvers
are adversely affected in the presence of that model structure, and that CMG
greatly improves the performance of our fzn-oscar-cbls backend to MiniZinc on
such models, without requiring any model reformulation.
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Future work includes extracting more information from the complete solver
in order to help guide local search. For example, if an LCG solver is used as
the complete solver for CMG, then learned clauses could be used to construct
the next local-search move. Furthermore, making some constraints soft for the
complete solver could help when infeasible solutions are explored and would
improve on refinement B in Sect. 3.2.
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Abstract. Pseudo-Boolean (PB) constraints appear often in a large
variety of constraint satisfaction problems. Encoding such constraints to
SAT has proved to be an efficient approach in many applications. How-
ever, most of the existing encodings in the literature do not take profit
from side constraints that often occur together with the PB constraints.
In this work we introduce specialized encodings for PB constraints occur-
ring together with at-most-one (AMO) constraints over subsets of their
variables. We show that many state-of-the-art SAT encodings of PB con-
straints from the literature can be dramatically reduced in size thanks to
the presence of AMO constraints. Moreover, the new encodings preserve
the propagation properties of the original ones. Our experiments show a
significant reduction in solving time thanks to the new encodings.

Keywords: SAT · Pseudo-Boolean · Encoding

1 Introduction

Linear equations are ubiquitous in Constraint Satisfaction Problems (CSP). A
particular case are Pseudo-Boolean (PB) constraints, which are linear expres-
sions of the form

∑n
i=1 qixi#K, where # ∈ {<,≤,=,≥, >}, q1, . . . , qn and K

are integer constants, and x1, . . . , xn are 0/1 variables. A successful approach
to solve CSPs is to encode them to propositional Boolean formulas, which are
then solved using off-the-shelf SAT solvers. Therefore, there exist many works
on encoding PB constraints to SAT [20]. State-of-the-art encodings are based on
Binary Decision Diagrams [1,12], Sequential Weight Counters [15], Generalized
Totalizers [16], and Polynomial Watchdog schemes [7,18].

In [10] it is proposed a Multi-Decision Diagram (MDD) based SAT encod-
ing of PB constraints, under the assumption that there exist some at-most-one
(AMO) relations on disjoint subsets of variables. The AMO relations let to erase
certain interpretations from decision diagrams, and to represent the PB as an
MDD instead of as a Binary Decision Diagram (BDD). This way, the resulting
encoding is notably smaller than the one of an equivalent BDD, and solving time
is significantly reduced. This technique has been used in [9,10] to formulate par-
ticular kinds of scheduling problems. Similar techniques are also applied in [2] in
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the field of Mixed Integer Linear Programming, where AMO relations between a
set of 0/1 variables are used to substitute these variables by an integer variable.

Efficient encodings of conjunctions of PB and AMO constraints can have a
high impact in a wider range of CSPs. Such combination of constraints appear
in settings where it has to be chosen one option among a set of incompati-
ble options, and this decision has an associated cost. A non exhaustive list of
applications where this happens are logistics [8], resource allocation [17], cap-
ital budgeting [21], telecommunications [22], combinatorial auctions [11] and
routing [19]. In short, any problem which is essentially a multi-choice knapsack
problem is likely to contain both PB and AMO constraints. Therefore, it is of big
interest to provide new and better encodings for this combination constraints.

In this paper we address the question of whether other SAT encodings of PB
constraints different than decision diagram-based ones can be improved in the
presence of AMOs. We revisit many state-of-the-art SAT encodings of PB con-
straints and propose improved versions of those encodings for conjunctions of PB
and AMO constraints. More precisely, we provide modifications of the Sequen-
tial Weight Counter, Generalized Totalizer, and Global Polynomial Watchdog
encodings. We also show that the new encodings preserve the propagation prop-
erties of the original ones. Our experimental results show that the size of the
SAT encodings of PB constraints can be dramatically reduced thanks to taking
the AMO constraints into account, and that there can be a huge time perfor-
mance improvement when using the new encodings. We provide datasets which
contain AMO constraints and PB constraints with different configurations, and
we show that some encodings are better than others for particular kinds of PB.

2 Preliminaries

A Boolean variable is a variable than can take truth values 0 (false) and 1 (true).
A literal is a Boolean variable x or its negation x. A clause is a disjunction of
literals. A propositional formula in conjunctive normal form (CNF) is a con-
junction of clauses. Clauses are usually seen as sets of literals, and formulas as
sets of clauses. A Boolean function is a function of the form f : {0, 1}n → {0, 1}.
In this paper we will only consider constraints which are defined on a finite set
of Boolean variables, i.e., Boolean functions. An assignment is a mapping of
Boolean variables to truth values; it can also be seen as a set of literals (e.g.,
{x = 1, y = 0, z = 0} is usually denoted {x, y, z}). A satisfying assignment of a
Boolean function f is an assignment that makes it evaluate to 1. In particular,
an assignment A satisfies a formula F in CNF if at least one literal l of each
clause in F belongs to A. Such an assignment is called a model of the formula.
In this paper we will assume that all propositional formulas are in CNF. Given
two Boolean functions F and G, we say that G is a logical consequence of F ,
written F |= G, iff every model of F is also a model of G.

Definition 1. An at-most-one (AMO) constraint is a Boolean function of the
form

∑n
i=1 xi ≤ 1, where all xi are 0/1 variables.
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Definition 2. A pseudo-Boolean (PB) constraint is a Boolean function of the
form

∑n
i=1 qixi#K where K and all qi are integer constants, all xi are 0/1

variables, and # ∈ {<,≤,=,≥, >}.
It is usually assumed that # is ≤, and that K and all qi are non-negative,

since the other cases can be easily reduced to this one [12].

Definition 3. By PB(AMO) constraint we refer to a constraint of the form
P ∧ M1 ∧ · · · ∧ Mm, where P is a PB constraint, and M1, . . . ,Mm are AMO
constraints.

Unit propagation (UP) is a propagation mechanism used in modern SAT
solvers. It is based on the principle that if a clause contains a single literal (i.e.,
under a given assignment, all literals but one are false), then every model must
make that literal true. Hence, the assignment can be extended with this literal.

We say that a formula G is an encoding of a Boolean function F if the
following holds: given an assignment A over the variables of F , A satisfies F iff
A can be extended to a satisfying assignment of G.

An encoding E of a constraint C is said to UP-maintain GAC if it satisfies
the following property: given a partial assignment A, if a variable x of C is true
(respectively false) in every extension of A satisfying C, then unit propagating
A on E will extend A to A ∪ {x} (respectively A ∪ {x}) [7].

3 New Encodings of Monotonic Decreasing PB(AMO)
Constraints

In this section we present three different SAT encodings for PB(AMO) con-
straints. Given a PB(AMO) of the form P ∧ M1 ∧ · · · ∧ Mm, a straightforward
approach to encode it is to generate a formula F of the form G ∧ H1 ∧ · · · ∧ Hm,
where G is an encoding of P , and each Hi is an encoding of Mi. Instead, simi-
larly to the MDD-based approach of [10], we propose to encode PB(AMO)s in a
combined way. On the one hand we encode the conjunction of AMO constraints
in the usual way, i.e., we encode each AMO separately and use the conjunction
of all the resulting clauses. On the other hand we encode the PB constraint
assuming that the accompanying AMO constraints are already enforced in some
way. This is precisely what will let us reduce the size of the encoding of the PB
constraint. We do not restrict to a particular encoding for the AMO constraints.
Even more, in the context of a bigger formula, if the AMO constraints are log-
ically implied by the formula at hand, then the encoding of the PB constraint
will suffice to obtain a correct encoding of the PB(AMO) constraint.

We start each subsection giving an intuitive explanation of an already exist-
ing encoding of PB constraints. Then, we propose a generalized version of it in
order to encode PB(AMO) constraints. Since PB(AMO) constraints generalize
PB constraints,1 we follow the convention of naming the new encodings after
1 A PB constraint of the form

∑n
i=1 qixi ≤ K corresponds to a PB(AMO) constraint

of the form
∑n

i=1 qixi ≤ K ∧ x1 ≤ 1 ∧ · · · ∧ xn ≤ 1.
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the original encoding, prefixing them with the word Generalized, e.g., from the
Sequential Weight Counter (SWC) encoding we provide the Generalized Sequen-
tial Weight Counter (GSWC) encoding.

We make the following assumptions on the PB(AMO) constraint P ∧ M1 ∧
· · · ∧ Mm at hand: (i) every variable in P occurs at least in one Mi (a variable x
can always be included in a single-variable AMO constraint of the form x ≤ 1);
(ii) unless otherwise stated, we assume that P is of the form

∑n
i=1 qixi ≤ K, with

qi ≥ 0, i.e. it is monotonic decreasing; (iii) P is neither trivially true nor false
(i.e., we assume that 0 ≤ K <

∑n
i=1 qi); (iv) no variable is trivially removable

(i.e., 0 < qi ≤ K).

Input. Given a PB(AMO) constraint P of the form P ∧ M1 ∧ · · · ∧ Mm, the
encodings of the following subsections receive as input the PB constraint P and
a partition X = {X1, . . . , XN} of the variables of P , such that any assignment
satisfying M1 ∧ · · · ∧ Mm also satisfies the AMO constraints

∑
xij

∈Xi
xij ≤ 1,

for all Xi ∈ X . Note that there may be more than one possible partition, and
that for every partition we will have n =

∑N
i=1 |Xi|, where n is the number of

variables in the scope of P . A simple way to obtain such a partition is to start
with a list of sets X1, . . . , Xm, where each set Xi contains the variables in the
scope of Mi. Then, remove every variable from all Xi but one, and finally remove
all the empty sets.

3.1 Sequential Weight Counter Encoding

The Sequential Weight Counter (SWC) encoding for PB constraints was intro-
duced in [15]. The idea is to encode the PB constraint by a circuit that sequen-
tially sums from left to right the coefficients (a.k.a. weights) qi whose variable
xi is set to true. Specifically, given a PB constraint

∑n
i=1 qixi ≤ K, there is a

sequence of n counters of K inputs and K outputs, where the i-th counter is
associated to the variable xi. Each counter receives as input a vector of Boolean
variables, which is the unary representation of an integer value, and adds the
weight qi to the output if the associated variable xi is set to true. Therefore, the
i-th counter receives as input

∑i−1
j=1 qjxj and outputs

∑i
j=1 qjxj . Note that the

output of the counter number i − 1 is the input of the i-th counter.
An example of a sequence of counters is shown in Fig. 1. The encoding intro-

duces n · K variables, denoted si,j , with 1 ≤ i ≤ n, 1 ≤ j ≤ K, where si,j is the
j-th output of the i-th counter and also the j-th input of the (i + 1)-th counter.
The encoding introduces the clauses

si−1,j ∨ si,j 2 ≤ i < n, 1 ≤ j ≤ K (1)
xi ∨ si,j 1 ≤ i < n, 1 ≤ j ≤ qi (2)

si−1,j ∨ xi ∨ si,j+qi 2 ≤ i < n, 1 ≤ j ≤ K − qi (3)
si−1,K+1−qi ∨ xi 2 ≤ i ≤ n (4)

where s0,j is the constant 0 for all j, to represent the input of the first counter
which is the empty sum. Clauses (1) state that

∑i
j=1 qjxj ≥ ∑i−1

j=1 qjxj . Clauses
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s0,8 = 0
s0,7 = 0
s0,6 = 0
s0,5 = 0
s0,4 = 0
s0,3 = 0
s0,2 = 0
s0,1 = 0

+2x1

s1,8

s1,7

s1,6

s1,5

s1,4

s1,3

s1,2

s1,1

+3x2

s2,8

s2,7

s2,6

s2,5

s2,4

s2,3

s2,2

s2,1

+4x3

s3,8

s3,7

s3,6

s3,5

s3,4

s3,3

s3,2

s3,1

+7x4

s4,8

s4,7

s4,6

s4,5

s4,4

s4,3

s4,2

s4,1

s0,8 = 0
s0,7 = 0
s0,6 = 0
s0,5 = 0
s0,4 = 0
s0,3 = 0
s0,2 = 0
s0,1 = 0

+ 2x1

3x2

s1,8

s1,7

s1,6

s1,5

s1,4

s1,3

s1,2

s1,1

+ 4x3

7x4

s2,8

s2,7

s2,6

s2,5

s2,4

s2,3

s2,2

s2,1

Fig. 1. At the top: high level circuit representation of SWC (2x1+3x2+4x3+7x4 ≤ 8).
At the bottom: high level circuit representation of GSWC (2x1 + 3x2 + 4x3 + 7x4 ≤
8, {{x1, x2}, {x3, x4}}).

(2) and (3) enforce that if a variable xi is true then its coefficient is added to
the input of the next counter. Finally, Clauses (4) enforce that the sum never
exceeds K.

Generalized Sequential Weight Counter (GSWC). We define the GSWC
encoding by, instead of associating a single product qixi from the PB constraint
to each counter, associating a set of products to each of them. In our generaliza-
tion, given a partition X = {X1, . . . , XN} of the variables of the PB constraint,
the resulting formulation will have just N counters, where the i-th counter will
handle all the products qlxl for the variables xl in Xi. If the variables in each set
Xi are subject to an AMO constraint then, given an assignment satisfying those
constraints, at most one coefficient ql will be added by each counter, and the
output of the whole circuit will correspond to the value of the left hand side sum
of the PB constraint, i.e.,

∑n
i=1 qixi. Analogously as in the original encoding, we

will enforce that it is not reached a sum that exceeds K. The GSWC encoding
introduces the following clauses:

si−1,j ∨ si,j 2 ≤ i < N, 1 ≤ j ≤ K (5)
xl ∨ si,j 1 ≤ i < N, xl ∈ Xi, 1 ≤ j ≤ ql (6)

si−1,j ∨ xl ∨ si,j+ql 2 ≤ i < N, xl ∈ Xi, 1 ≤ j ≤ K − ql (7)
si−1,K+1−ql ∨ xl 2 ≤ i ≤ N, xl ∈ Xi (8)

Clauses (5) propagate the accumulated sum in the same way as Clauses (1).
Clauses (6) and (7) enforce Si ≥ Si−1 + qlxl, for all xl ∈ Xi, where Si−1 and
Si are respectively the input and output value of the i-th counter. Clauses (8)
enforce that the sum never exceeds K. A high level circuit representation of a
GSWC encoding is shown in Fig. 1.
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The main difference between the SWC and GSWC encodings is that the
latter has only N counters, instead of n, and therefore introduces less fresh
variables (assuming N < n). Also, the number of Clauses (5) in the GSWC
encoding is smaller than the number of Clauses (1) in the SWC encoding. The
SWC encoding requires O(nK) auxiliary variables and O(nK) clauses, while the
GSWC encoding requires O(NK) auxiliary variables and O(nK) clauses.

By GSWC (P,X ) we denote the set of clauses derived from a PB constraint
P and a partition X , as described above.

Lemma 1. Let P be a PB(AMO) of the form P ∧ M1 ∧ · · · ∧ Mm and X be a
partition of the variables of P such that M1 ∧ · · · ∧ Mm |= ∑

xij
∈Xi

xij ≤ 1, for
all Xi ∈ X . The conjunction of GSWC (P,X ) with an encoding of M1∧· · ·∧Mm

is an encoding of P.

In [15] it is proved that the SWC encoding UP-maintains GAC. The GSWC
encoding preserves this property.

Theorem 1. Let P be a PB(AMO) of the form P ∧ M1 ∧ · · · ∧ Mm and X be
a partition of the variables of P such that M1 ∧ · · · ∧ Mm |= ∑

xij
∈Xi

xij ≤ 1,
for all Xi ∈ X . The conjunction of GSWC (P,X ) with an UP-maintaining GAC
encoding of M1 ∧ · · · ∧ Mm is UP-maintaining GAC.

Proof. Let S denote the conjunction of GSWC (P,X ) with an UP-maintaining
GAC encoding of M1 ∧ · · · ∧ Mm. Let A be a partial assignment to the variables
of S, which is extendible to a satisfying assignment of P. Therefore, no AMO
constraint Mi is violated under A. We need to show that for every variable x of
P such that x is not assigned in A, if A∪{x} cannot be extended to a satisfying
assignment of P, then x is set to false by unit propagating A on S (note that
A ∪ {x} can always be extended to a satisfying assignment, so we don’t need to
consider this case). W.l.o.g., assume that x1 ∈ X1 is such variable. If A ∪ {x1}
cannot be extended to a satisfying assignment of M1 ∧ · · · ∧ Mm then, by the
assumption that S contains an UP-maintaining GAC encoding of M1∧· · ·∧Mm,
we have that x1 is set to false by unit propagation. Assume now the contrary,
i.e., that A ∪ {x1} can be extended to an assignment satisfying the AMOs. In
this case, the reason why UP should set x1 to false is that A ∪ {x1} cannot
be extended to satisfy P . Since A ∪ {x1} does not violate M1 ∧ · · · ∧ Mm, at
most one variable in Xi is true in A, for 2 ≤ i ≤ N , and no variable in X1 is
true in A. Let us construct a PB constraint P ′ from P by picking one variable
xji from each set Xi, 2 ≤ i ≤ N , as follows: if Xi contains a variable which is
true in A, then this is the variable to be picked up from Xi, otherwise pick up
any variable. We define P ′ : q1x1 +

∑N
i=2 qjixji ≤ K. Since P ′ contains all the

variables which are true in A, and due to the monotonicity of P , we have that
q1x1+

∑N
i=2 qjixji is equisatisfiable to

∑n
i=1 qixi under the assignment A∪{x1},

and therefore A ∪ {x1} can neither be extended to a model of P ′. It is not hard
to see that GSWC (P,X ) contains all the clauses of SWC (P ′), and it is already
proved that the SWC encoding UP-maintains GAC. Therefore, all the clauses
required to set x1 to false by UP are contained in S.
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H : h2 I : i2 J : j3 K : k5 L : l3 M : m4 N : n4 O : o6

D : d2, d4 E : e3, e5, e8 F : f3, f4, f7 G : g4, g6, g8

B : b2, b3, b4, b5, b7, b8 C : c3, c4, c6, c7, c8

A : a2, a3, a4, a5, a6, a7, a8

=
x1

=

x2

=

x3

=

x4

=

x5

=

x6

=

x7

=

x8

B : b2, b3, b5 C : c3, c4, c6

A : a2, a3, a4, a5, a6, a7, a8

→

x1

←

x2

=

x3
=

x4

=

x5

→

x6

←
x7

=

x8

Fig. 2. At the top: binary tree of GT (2x1+2x2+3x3+5x4+3x5+4x6+4x7+6x8 ≤ 7).
At the bottom: binary tree of GGT (2x1 + 2x2 + 3x3 + 5x4 + 3x5 + 4x6 + 4x7 + 6x8 ≤
7, {{x1, x2, x3, x4}, {x5, x6, x7, x8}}).

3.2 Generalized Totalizer Encoding

The Generalized Totalizer (GT) encoding was presented in [16] as a generaliza-
tion of the Totalizer encoding for cardinality constraints [6]. The overall idea of
GT is to represent a PB constraint

∑n
i=1 qixi ≤ K as a binary tree. Every node

of the tree has associated a distinct label and an attribute vars which consists of
a set of Boolean variables. Each variable xi of the PB constraint is placed into
the attribute vars of a different leaf node, and is renamed after the label of the
node and its associated coefficient qi (e.g., given the product 3x1, if the variable
x1 is inserted into a leaf node labelled by letter O, then the variable is named
o3). The attribute vars of any non-leaf node labelled O contains a variable ow
for every subset of the underlying leaves which sums exactly w, for values of w
in the range [1,K], taking i for the value of each leaf node L with variable li.
Also, vars contains a variable oK+1 iff any of the sums is larger than K. Figure 2
illustrates an example binary tree.

The clauses of the encoding enforce that each non-leaf variable ow is set to
true if the underlying variables which sum w (or more than K for w = K + 1)
are set to true. Moreover it is enforced, at the root node, that the variable
representing a sum larger than K is false. The GT encoding introduces the
following clauses for each non-leaf node O with children L and R:

lw1 ∨ rw2 ∨ ow3 lw1 ∈ L.vars, rw2 ∈ R.vars, w3 = min(w1 + w2,K + 1) (9)
tw ∨ ow tw ∈ L.vars ∪ R.vars (10)

It also introduces the unary clause

ak+1 (11)

where A is the root node of the tree and ak+1 ∈ A.vars. Note that variable ak+1

will exist, since otherwise the constraint would be trivially satisfied. Clauses (9)
enforce that the variable ow3 will be set to true by UP if there exists a pair
of variables lw1 , rw2 from the children nodes that are set to true and such that
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w3 = min(w1 + w2,K + 1). Clauses (10) enforce that the variable ow will be set
to true by UP if some child has a variable tw set to true. Finally, Clause (11)
states that the sum of the tree (i.e., the value of the left hand side expression of
the PB constraint) cannot be greater than K.

Generalized Generalized Totalizer (GGT). In our generalization of the GT
encoding, we will use the same definition of the binary tree, but the leafs will be
instantiated differently. Instead of introducing a leaf node for each variable of
the PB constraint, what we do is to introduce a leaf node for each of the sets in
the partition X . The leaf node O associated to set Xi will contain a variable oql
in its vars attribute for each different coefficient ql such that xl ∈ Xi. If there is
a single coefficient ql, then xl is renamed as oql and placed in O.vars, as in the
GT encoding. If there are multiple occurrences of a coefficient ql, we introduce
a fresh variable oql . The following clauses relate the fresh leaf variables with the
variables of the PB constraint:

xl ∨ oql Xi ∈ X , xl ∈ Xi, |{xl′ ∈ Xi | ql′ = ql}| ≥ 2 (12)

The GGT encoding introduces Clauses (9), (10) and (11) as in the GT encod-
ing, and Clauses (12). Figure 2 depicts the binary tree of a GGT encoding. Note
that assuming that an AMO constraint over each set Xi is satisfied, at most
one of the variables in each leaf node will be true, and therefore the encoding
correctly evaluates

∑n
i=1 qixi ≤ K.

The GT encoding requires O(nK) auxiliary variables and O(nK2) clauses,
while GGT encoding requires O(NK) auxiliary variables and O(NK2) clauses.

By GGT (P,X ) we denote the set of clauses derived from a PB constraint P
and a partition X , as described above.

Lemma 2. Let P be a PB(AMO) of the form P ∧ M1 ∧ · · · ∧ Mm and X be a
partition of the variables of P such that M1 ∧ · · · ∧ Mm |= ∑

xij
∈Xi

xij ≤ 1, for
all Xi ∈ X . The conjunction of GGT (P,X ) with an encoding of M1 ∧ · · · ∧ Mm

is an encoding of P.

In [16] it is proved that the GT encoding UP-maintains GAC. The GGT
encoding preserves this property.

Theorem 2. Let P be a PB(AMO) of the form P ∧ M1 ∧ · · · ∧ Mm and X be
a partition of the variables of P such that M1 ∧ · · · ∧ Mm |= ∑

xij
∈Xi

xij ≤ 1,
for all Xi ∈ X . The conjunction of GGT (P,X ) with an UP-maintaining GAC
encoding of M1 ∧ · · · ∧ Mm is UP-maintaining GAC.

The proof is analogous to the proof of Theorem 1.

3.3 Global Polynomial Watchdog Encoding

The Global Polynomial Watchdog (GPW) encoding was presented in [7]. It uses
as basis a polynomial watchdog formula, denoted by PW (P ), which is associated
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φ(〈B0〉) φ(〈B1〉) φ(〈B2〉)

ψ(U(〈B1〉), S1/2
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φ(〈B0〉) φ(〈B1〉) φ(〈B2〉)

ψ(U(〈B1〉), S1/2
0 ) ψ(U(〈B2〉), S1/2
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=

U(〈B0〉) = S0
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x1→ x2

←

x4

=

U(〈B1〉)

S
1/2
1S1

y2,2B2 : 〈 〉
x3→ x4

←

w

U(〈B2〉)

S2

Fig. 3. At the top: circuit representation of PW (2x1 + 3x2 + 4x3 + 7x4 < 9). At the
bottom: circuit representation of PW (2x1 + 3x2 + 4x3 + 7x4 < 9, {{x1, x2}, {x3, x4}}).

with a PB constraint P . The formula PW (P ) has a variable named the output
variable, denoted w, which is set to 1 by UP as soon as P is falsified.

The GPW encoding is defined for PB constraints of the form
∑n

i=1 qixi < K,
i.e., with a strict inequality instead of a non-strict one. The first step is to
normalize the constraint to the form T +

∑n
i=1 qixi < m2p, where p, T and

m are defined as follows: p = 	log2(maxi=1..n(qi))
 is the index of the most
significant bit in the binary representation of the largest coefficient qi, being 0
the index of the least significant bit. In other words, p + 1 is the number of bits
needed to represent qi in binary notation; T is the smallest non-negative integer
such that K + T is a multiple of 2p; m = (K + T )/2p.

Once the constraint is expressed in this form, it is computed a set Br of
variables of P (called bucket) for each bit 0 ≤ r ≤ p. We denote by br(qi) the
r-th bit of the binary representation of the integer qi. Bucket Br contains all
the variables xi such that br(qi) = 1. Bucket Br also contains a 1 constant if
br(T ) = 1.

Example 1. The following is the transformation to apply to the PB constraint
2x1 +3x2 +4x3 +7x4 < 9. We have that p = 2, and T = 3 is the smallest integer
such that T + K = 12 is a multiple of 2p, with m = 3. Therefore, the constraint
is expressed as 3 + 2x1 + 3x2 + 4x3 + 7x4 < 12. The content of buckets B0, B1

and B2 is illustrated in Fig. 3.

The idea is to decompose each coefficient in its binary representation an sum
each bit having the same weight.

The formula PW (P ) can be represented as a circuit, as can be seen in Fig. 3
corresponding to Example 1. We denote by 〈Br〉 a vector with an arbitrary
order containing the elements of bucket Br. The formula PW (P ) uses two main
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components: the formulas φ(V ) and ψ(V1, V2). The formula φ(V ) has as input a
vector of Boolean variables V , and has as output a vector of |V | variables named
U(V ). The formula φ(V ) enforces that U(V ) is the unary representation of the
sum of the input variables. The formula ψ(V1, V2), has as input two vectors of
variables V1 and V2, which are the unary representation of two integers, and has
as output a vector of |V1|+|V2| variables named S. The formula ψ(V1, V2) enforces
that S is the unary representation of V1 + V2. In the definition of PW (P ), we
denote by Sr the output of the ψ formula related with bucket Br, for 1 ≤ r ≤ p,
and we define S0 = U(〈B0〉). Half of the value of Sk, for a weight 2k, is computed
with operator 1

2 and integrated in the sum for weight 2k+1. Then, the formula
PW (P ) is defined as the conjunction of these two formulas:

φ(〈Br〉) 0 ≤ r ≤ p (13)

ψ(U(〈Br〉), S1/2
r−1) 1 ≤ r ≤ p (14)

The GPW encoding is then defined as

PW (P ) ∧ w (15)

where PW (P ) encodes φ with a totalizer, and ψ with an adder of unary num-
bers. Due space restrictions we cannot elaborate more on the correctness of this
encoding, so we refer the reader to [7]. The basic idea is that the m-th bit of
Sp, represented with variable w, is set to 1 by UP if the sum of the constraint is
greater or equal than m2p = T +K. If w is set to 1 the encoding is not satisfied.

Generalized Global Polynomial Watchdog (GGPW). We define the
GGPW encoding by using a generalized polynomial watchdog formula PW (P,X )
instead of the original polynomial watchdog formula. Again, P has to be normal-
ized to the form T +

∑n
i=1 qixi < m2p in the same way as in PW (P ). For each

set Xi, PW (P,X ) will contain a vector of variables Yi = 〈yi,p, yi,p−1, . . . , yi,0〉.
Yi is interpreted as binary number, where (at least) the bits corresponding

to the binary representation of ql, for all xl ∈ Xi such that xl is true, are set to
one. Therefore, when exactly one xl is true, Yi will be greater than or equal to
ql. The following clauses define the variables Yi:

xl ∨ yi,r 0 ≤ r ≤ p, 1 ≤ i ≤ N, xl ∈ Xi, br(ql) = 1 (16)

In this case the bucket Br, for each bit 0 ≤ r ≤ p, will contain the variables
y1,r, y2,r, . . . , yN,r. Bucket Br will also contain a 1 constant if br(T ) = 1.

The formula PW (P,X ) is defined as the conjunction of (13), (14) and (16).
Some considerations can be taken into account on Clauses (16) in order to opti-
mize the encoding:

– If there is no xl ∈ Xi such that br(ql) = 1, and therefore the variable yi,r
does not appear in any clause of (16), then this variable is not created nor
included in any bucket.
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– If there is only one variable xl ∈ Xi such that br(ql) = 1, then the variable
yi,r is the variable xl itself, and Clause (16) is not added for yi,r.

– Otherwise, yi,r is indeed a fresh variable and Clause (16) is added.

Figure 3 contains a circuit representation of PW (P,X ).
The GGPW encoding is defined as

PW (P,X ) ∧ w (17)

where PW (P,X ) encodes φ with a totalizer, and ψ with an adder of unary num-
bers. Similarly as in the other newly introduced encodings, given an assignment
that satisfies an AMO constraint over each Xi ∈ X , this encoding represents the
PB constraint

∑n
i=1 qixi < K in a more compact way.

The GPW encoding introduces O(n log(n) log(qmax)) fresh variables
and O(n2 log(n) log(qmax)) clauses, while the GGPW encoding introduces
O(N log(N) log(qmax)) fresh variables and O(N2 log(N) log(qmax)) clauses,
where qmax = maxn

i=1 qi. This follows from the fact that a totalizer φ with n
input variables requires O(n log(n)) auxiliary variables and O(n2 log(n)) clauses,
and an adder ψ of unary numbers with n input variables requires O(n) auxiliary
variables and O(n2) clauses; see [7].

Lemma 3. Let P be a PB(AMO) of the form P ∧ M1 ∧ · · · ∧ Mm, with P
of the form

∑n
i=1 qixi < K, and X be a partition of the variables of P such

that M1 ∧ · · · ∧ Mm |= ∑
xij

∈Xi
xij ≤ 1, for all Xi ∈ X . The conjunction of

GGPW (P,X ) with an encoding of M1 ∧ · · · ∧ Mm is an encoding of P.

In [7] it is shown that the GPW encoding does not UP-maintain GAC. As
stated earlier, a PB(AMO) constraint with only AMO constraints of one variable
is indeed a PB constraint. In this case the GGPW and GPW encodings would
be identical. Therefore, the GGPW encoding does neither UP-maintain GAC.

Binary Merger (BM). The Binary Merger (BM) encoding was introduced
in [18]. This encoding is essentially another implementation of the GPW encod-
ing, in which the formulas φ and ψ are respectively implemented using sorters
and odd-even mergers [4]. This way, the BM encoding is asymptotically smaller
in the number of clauses and slightly bigger in the number of variables than the
GPW encoding. The BM encoding can be generalized to deal with PB(AMO)
constraints in the same way as GPW encoding. However, in our experiments
we have not observed significant differences between the BM and GPW based
encodings, and therefore we do not provide detailed results for BM encoding.

4 Normalization of PB(AMO) Constraints

Most existing encodings of PB constraints to SAT are designed for constraints
of the form

∑n
i=i qixi ≤ K, with non-negative qi, since other cases can be easily

transformed to this one. Also the encoding that we have presented in Sect. 3
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requires this normalization. The usual way of getting rid of negative coeffi-
cients [12] is by using the equality x = 1−x, e.g. −2x1+6x2 ≤ 5 ≡ 2x1+6x2 ≤ 7.
Then, if we want to encode a constraint of the form

∑n
i=i qixi ≥ K, we can sim-

ply replace it by −∑n
i=i qixi ≤ −K and get rid of the negative coefficients.

However, this rewriting might not be applicable to PB(AMO) constraints. Con-
sider the PB(AMO) constraint P ∧ x1 + x2 + x3 ≤ 1 ∧ x4 + x5 + x6 ≤ 1, with
P : −x1 − 3x2 − 4x3 − 2x4 − 3x5 − 5x6 ≤ −6. If we remove the negative coef-
ficients we obtain P ′ : x1 + 3x2 + 4x3 + 2x4 + 3x5 + 5x6 ≤ 12. Notice that
x1 +x2 +x3 ≤ 1 (similarly x4 +x5 +x6 ≤ 1) no longer impose AMO constraints
over the literals of P ′, and therefore P ′ ∧ x1 + x2 + x3 ≤ 1 ∧ x4 + x5 + x6 ≤ 1
is not a PB(AMO) constraint. We could still use any existing PB encoding to
encode P ′ without taking the AMO constraints into account, but we would not
be using the simplification potential of PB(AMO) constraints.

We present another rewriting procedure to get rid of negative coefficients,
which does not require to negate the literals of the original PB constraint, and
hence still allows us to take into account the AMO constraints. Moreover, this
procedure let choose the polarity in the PB of any variable by using x = 1 − x,
even if the substitution introduces a negative coefficient, because it will be dealt
with in the rewriting. Hence it is possible to make use not only of AMOs between
the variables of the PB, but also of AMOs between literals with any polarity.

The first step is, for each AMO constraint of the form xi1+· · ·+xil ≤ 1, define
a fresh variable yi as yi ↔ xi1 ∧ · · · ∧ xil . Then, all the auxiliary yi variables can
be included in the PB constraint with coefficient 0. In previous example, from:

x1 − 3x2 − 4x3 − 2x4 − 3x5 − 5x6 ≤ −6 ∧ x1 + x2 + x3 ≤ 1 ∧ x4 + x5 + x6 ≤ 1

we get: 0y1 − x1 − 3x2 − 4x3 + 0y2 − 2x4 − 3x5 − 5x6 ≤ −6
∧x1 + x2 + x3 ≤ 1 ∧ x4 + x5 + x6 ≤ 1

∧ (y1 ↔ x1 ∧ x2 ∧ x3) ∧ (y2 ↔ x4 ∧ x5 ∧ x6)

After that, for each AMO constraint xi1 + · · · + xil ≤ 1, choose any integer I
such that Ii ≥ −qij , for all 1 ≤ j ≤ l. We have that xi1 + · · · + xil ≤ 1 ∧ yi ↔
xi1 ∧· · ·∧xil |= yi+xi1 + · · ·+xil = 1, and therefore Iiyi+Iixi1 + · · ·+Iixil = Ii.
By adding these equalities to the PB constraint, all the negative coefficients
become non-negative, due to the values of Ii that we have chosen. The size of
the constraint will not increase if we choose I = −minn

i=1(qi), since we will be
cancelling at least one coefficient of each AMO. In our example, we get:

(4 + 0)y1 + (4 − 1)x1 + (4 − 3)x2 + (4 − 4)x3

+ (5 + 0)y2 + (5 − 2)x4 + (5 − 3)x5 + (5 − 5)x6 ≤ −6 + 4 + 5
∧x1 + x2 + x3 ≤ 1 ∧ x4 + x5 + x6 ≤ 1

∧ (y1 ↔ x1 ∧ x2 ∧ x3) ∧ (y2 ↔ x4 ∧ x5 ∧ x6)
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that is: 4y1 + 3x1 + x2 + 5y2 + 3x4 + 2x5 ≤ 3
∧x1 + x2 + x3 ≤ 1 ∧ x4 + x5 + x6 ≤ 1

∧ (y1 ↔ x1 ∧ x2 ∧ x3) ∧ (y2 ↔ x4 ∧ x5 ∧ x6)

Finally, since yi + xi1 + · · · + xil = 1 |= yi + xi1 + · · · + xil ≤ 1, we can use any
of the presented PB(AMO) encodings, for instance GSWC:

GSWC(4y1 + 3x1 + x2 + 5y2 + 3x4 + 2x5 ≤ 3, {{y1, x1, x2}, {y2, x4, x5}})
∧x1 + x2 + x3 ≤ 1 ∧ x4 + x5 + x6 ≤ 1

∧ (y1 ↔ x1 ∧ x2 ∧ x3) ∧ (y2 ↔ x4 ∧ x5 ∧ x6)

5 Experiments

In this section we report a clean comparison between the different encodings for
PB(AMO) constraints, and also between those and the classical encodings for
PB constraints. For this purpose, we use benchmark sets of problems consisting
on conjunctions of AMO constraints and PB constraints. Each instance is defined
by four parameters: L is the number of PB constraints, N is the number of AMO
constraints, M is the number of Boolean variables in each AMO constraint, and
Q is the maximum coefficient of a variable in a PB constraint. The variables of
the AMO constraints will be disjoint, so there is a total of n = N · M Boolean
variables in each instance. The PB constraints contain all n variables. The j-th
variable in the i-it AMO constraint is named xi,j . The coefficients in the PB
constraints are generated uniformly and independently at random in the range
[1, Q]. The resulting instance has the following constraints:

N∑

i=1

M∑

j=1

qi,j,k · xi,j ≤ Kk 1 ≤ k ≤ L (18)

M∑

j=1

xi,j ≤ 1 1 ≤ i ≤ N (19)

M∑

j=1

xi,j ≥ 1 1 ≤ i ≤ N (20)

The conjunction of PB and AMO constraints (18) and (19) is not a hard
problem, since a trivial solution is to set all the variables xi,j to 0. For this
reason we add at-least-one Constraints (20), which require that at least one
variable in each AMO group is set to true. Essentially, this set of constraints
is a decision version of the Multi-Choice Multidimensional Knapsack Problem
(MMKP), which is NP-complete. We have generated the benchmarks using the
MMKP instance generator from [14].
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We provide three different datasets with different parameters, with the aim of
showing which kind of PB constraints are better suited for the different encod-
ings. The instances in a dataset are distributed in families, and every family
has values of Kk randomly distributed around a different mean in the range
[1,M · Q]. The values of Kk are proportional to the values of the coefficients,
because otherwise the PB constraints would be trivially satisfied or unsatisfied.
We choose different values of Kk to ensure that in the datasets there are instances
of different hardness, and that approximately half the instances are satisfiable:

Set1 100 families of 5 instances, with L = 10, N = 15, M = 10, Q = 1000. The
families have increasing Kk values from family 1 (capacities of about 1000)
to family 100 (capacities of about 14000).

Set2 100 families of 5 instances, with L = 10, N = 15, M = 10, Q = 60. The
families have increasing Kk values from family 1 (capacities of about 100)
to family 100 (capacities of about 800).

Set3 20 families of 20 instances, with L = 50, N = 15, M = 5, Q = 10. The
values of Kk increase in each family, ranging between 65 and 100.

All the instances have been encoded to SAT using the presented encodings for
PB(AMO) constraints. The AMO Constraints (19) have been encoded with the
well-known UP-maintaining GAC encoding referred as regular in [3] and ladder
in [13], which only introduces a number of clauses and variables linear in the
number of variables of the AMO constraint. Constraints (20) have been encoded
with clauses xi,1 ∨ · · · ∨ xi,M , for all 1 ≤ i ≤ N . We have used the Glucose
4.1 SAT solver [5] to solve the instances, on a 8 GB, 3.10 GHz Intel R© Xeon R©

E3-1220v2.
The results are contained in Table 1. The evaluated encodings are the ones

introduced in this paper, and their counterpart original ones. For completeness
we also report results on the MDD-based encoding from [10] (MDD), and its
version without taking AMOs into account (BDD), from [1]. Both MDD and
BDD UP-maintain GAC. For each encoding we report solving times on each
dataset and the average size required to encode a PB(AMO) constraint. The
size results do not include the number of variables and clauses introduced by
AMO constraints (19), which is the same for all encodings and negligible.

In summary, it can be observed a dramatic decrease in size, and hence in
generation time, as well a significant decrease in solving time, in all the gener-
alized encodings for PB(AMO)s w.r.t. the original encodings for PBs. In most
of cases the size and solving time reduction is of one order of magnitude. Even
in Set3, which is the one with smallest AMO constraints (only 5 variables per
AMO) the reduction is notable. The GPW encoding is the smallest, and the one
which is less reduced when using the AMO constraints.

In Set1, which contains instances with large coefficients, the best approach is
GGPW. Although this encoding do not UP-maintain GAC, the number of clauses
and variables is remarkably small compared to the other encodings, whose size
is proportional to K. In particular this dataset is prohibitive for GT and GGT
encodings, which require a number of clauses quadratic in the value of K.
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Table 1. From left to right: first quartile (Q1), median (med) and third quartile (Q3)
of solving times (in seconds); average solving time in seconds (avg) counting time outs
as 600 s; number of instances that timed out before being solved (t.o.); in thousands,
average number of auxiliary variables (v.) and clauses (cl.) needed to encode one of the
Constraints (18); in seconds, average time required to generate the CNF formula of an
instance (g.t.). Solving time out (t.o.) is set to 600 s. Long dash (—) means that the
resulting formulas are too large and their generation either run out of memory or did
not finish in less than 600 s (in these instances we have been able to identify constraints
requiring 33,000,000 clauses).

enc. Q1 med Q3 avg t.o. v. cl. g.t. enc. Q1 med Q3 avg t.o. v. cl. g.t.

Set1 BDD 14.00 17.59 t.o. 219 158 857 1714 35.6 MDD 3.89 14.78 73 131 87 25 266 3.71

SWC 10.51 14.12 t.o. 199 144 1100 2177 17.2 GSWC 4.50 5.92 277 158 112 105 1076 10.01

GT — — — — — — — — GGT — — — — — — — —

GPW 0.93 0.97 23 114 85 5.9 77 0.8 GGPW 0.04 0.04 5.54 93 67 1.0 4.4 0.05

Set2 BDD 4.29 5.65 133 141 96 57 115 2.0 MDD 0.21 0.41 1.42 74 53 2.1 21 0.28

SWC 4.10 5.41 138 140 95 68 135 1.3 GSWC 0.58 0.62 1.09 71 52 6.4 66 0.62

GT 5.33 6.94 182 154 110 10 1640 18.0 GGT 2.42 8.83 53 132 95 1.9 120 1.53

GPW 0.46 0.48 11 108 77 3.5 42 0.4 GGPW 0.02 0.03 3.36 89 65 0.6 2.5 0.03

Set3 BDD 215 t.o. t.o. 423 218 4.8 9.6 0.7 MDD 16.2 78.6 525 221 97 0.4 2.6 0.17

SWC 247 t.o. t.o. 429 227 6.0 12 0.6 GSWC 17.5 87.3 597 225 100 1.1 6.5 0.32

GT 240 t.o. t.o. 427 223 1.3 31 1.6 GGT 70.8 281 t.o. 322 152 0.4 4.6 0.25

GPW 172 t.o t.o 415 229 0.8 5.1 0.3 GGPW 133 t.o t.o 407 226 0.3 1.2 0.07

Set2 is similar to Set1 but it contains instances with small coefficients. In
this case, the best approaches are MDD and GSWC, whose sizes are reasonably
smaller than the ones in Set1. The GGT encoding introduces the largest number
of clauses in this dataset, and has the worst time performance.

Instances in Set3 contain more PB constraints than the other datasets, and
the values of K are distributed around the transition value from unsatisfiable
instances to satisfiable instances. We have observed empirically that it is in this
transition where the instances become harder. In this case, GGPW has the worst
time performance although it still has a smaller size than the other encodings.
This may be because GGPW is the only one which does not UP-maintain GAC.

6 Conclusions and Further Work

In this work we have provided different SAT encodings of PB(AMO)s, i.e., con-
junctions of PB and AMO constraints. These new encodings have been defined
by generalizing existing state-of-the-art SAT encodings of PB constraints, in a
way that the size is highly reduced thanks to assuming that the AMO constraints
are already enforced. Moreover, the propagation properties of the original encod-
ings are preserved in the new ones. Our results show that all the new encodings
are dramatically smaller and more efficient than their counterpart PB encod-
ings. We have observed size reductions of an order of magnitude and solving
time improvements of 1 or 2 orders of magnitude in many cases.
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We have also shown that there is no best encoding for PB(AMO)s but it
depends on the characteristics of the instances at hand. The datasets that we
provide expose some strengths and weaknesses of the different encodings.

The PB(AMO) constraints have application in a large number of problems,
and our new encodings should be taken into account as an alternative to tackle
them. It is matter of a future work to see how this SAT-based approach compares
with other solving approaches in different specific domains. Finally, other new
encodings for PB(AMO)s might be studied, either based on existing ones or
brand new ones.
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Abstract. The Electric Vehicle Routing Problem with Time Windows
(EVRPTW) extends traditional vehicle routing to address the recent
development of electric vehicles (EVs). In addition to traditional VRP
problem components, the problem includes consideration of vehicle bat-
tery levels, limited vehicle range due to battery capacity, and the pres-
ence of vehicle recharging stations. The problem is related to others in
emissions-conscious routing such as the Green Vehicle Routing Problem
(GVRP). We propose the first constraint programming (CP) approaches
for modeling and solving the EVRPTW and compare them to an existing
mixed-integer linear program (MILP). Our initial CP model follows the
alternative resource approach previously applied to routing problems,
while our second CP model utilizes a single resource transformation.
Experimental results on various objectives demonstrate the superiority
of the single resource transformation over the alternative resource model,
for all problem classes, and over MILP, for the majority of medium-to-
large problem classes. We also present a hybrid MILP-CP approach that
outperforms the other techniques for distance minimization problems
over long scheduling horizons, a class that CP struggles with on its own.

Keywords: Electric Vehicle Routing · Green Vehicle Routing ·
Constraint programming · Mixed-integer linear programming ·
Optimization

1 Introduction

Fueled by emission regulations, government subsidies, and the benefits of a more
eco-friendly image, electric vehicle (EV) utilization in logistics has seen signif-
icant growth in recent years [9]. Outside of logistics, EVs have experienced a
growing adoption within the consumer automotive industry [28] and have shown
promise in car sharing pilot projects [26]. While not currently cost-competitive
with internal combustion engines due to high acquisition costs and limited oper-
ational range [14], the benefits of EVs coupled with an increasing number of
socially and environmentally-aware consumers are driving the adoption of the
c© Springer Nature Switzerland AG 2019
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technology. The industry has also seen significant investment in the development
of required recharging infrastructure. As with traditional fleets, the case for EVs
can be significantly bolstered via effective route planning.

The vehicle routing literature has recently addressed this emerging technol-
ogy through the introduction of the Electric Vehicle Routing Problem with Time
Windows (EVRPTW) [29], building on previous work conducted on green logis-
tics, including the Green Vehicle Routing Problem (GVRP) [12]. The problem
involves routing a fleet of vehicles to satisfy customer demands while adhering
to the battery capacity and range of the fleet EVs. The EVRPTW literature has
seen considerable research activity, including the development of sophisticated
exact approaches [7,10], metaheuristics [13,29], and the introduction of increas-
ingly rich problem definitions driven by real-world logistics use cases [17,27].
There have been, however, no efforts thus far to explore the use of constraint
programming (CP) to model and solve the problem.

Recognizing EV routing as a strategic area for methodological development,
we investigate the use of monolithic (i.e., non-decomposed) MILP and CP models
to solve the problem. The contributions of this paper are as follows:

i. We propose the first CP approaches for the EVRPTW.
ii. We introduce a single resource transformation for CP formulations that use

optional interval, sequence, and cumulative function expression variables.
The transformation significantly extends the size of problems that can be
solved with CP, and can be applied to other homogeneous VRP and multi-
machine scheduling problems.

iii. We demonstrate, through empirical evaluation, that our single resource CP
approach significantly outperforms the alternative resource CP model, and
outperforms MILP for nearly all medium-to-large problem classes.

iv. Following the observation that MILP excels at quickly finding high quality
solutions to distance minimization problems with large scheduling horizons,
we propose a hybrid MILP-CP technique that outperforms the individual
approaches on this problem class.

This paper is organized as follows. Section 2 defines the EVRPTW problem and
presents an existing MILP model. Section 3 details related work for the problem
studied. Section 4 presents two CP models, alternate modeling strategies, and
an initial empirical evaluation with accompanying analysis. Section 5 illustrates
a hybrid CP-MILP approach, motivated by the strength of MILP for larger,
long horizon problems, and presents hybrid experimental results with detailed
analysis. Finally, Sect. 6 provides concluding remarks.

2 Problem Definition

The Electric Vehicle Routing Problem with Time Windows (EVRPTW) is a
static optimization problem that aims to route a fleet of electric vehicles to
satisfy customer requests [29]. Following existing notation, we let V ′ = V ∪ F ′

be the set of N vertices where V = {v1, . . . , vn} is the set of customer requests, F
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is the set of recharging stations, and F ′ = {vn+1, . . . , vN} is the set of augmented
recharging stations that includes dummy vertices to allow multiple visits to each
of the stations in F . We let vertices v0 and vN+1 correspond to start and end
instances of the vehicle depot, where each vehicle starts and ends. Sets with depot
subscripts include the indicated instances of the depot (i.e., V ′

N+1 = V ′ ∪{vN+1}
and V ′

0,N+1 = V ′ ∪ {v0, vN+1}). The problem is then defined on a graph with
vertices V ′

0,N+1 and undirected arcs A = {(i, j)|i, j ∈ V ′
0,N+1, i �= j}. Each arc

is assigned a distance, travel time, and energy consumption, dij , tij , and h · dij ,
respectively, where h is a constant energy consumption rate. Vehicles are initially
positioned at the depot and start with maximum capacity C, while customer
vertices, i ∈ V , are assigned a positive demand, qi ≤ C, and a time window,
[ei, li].1 The time window of the start depot is [0, 0], and the end depot is [H,H],
where H is the problem horizon. Each recharging station has a time window of
the entire horizon, namely [ei = 0, li = H],∀i ∈ F ′. Customer vertices, i ∈ V ,
have a service time si. The depot instances each have a null service time and
the service time at recharging stations is a variable. Vehicles have maximum
battery capacity Q and recharge linearly at rate g. The problem then minimizes
an objective function, often a combination of fleet size and travel distance.

An existing two-index MILP model from the literature [29] is detailed by Eq.
(1) through (12). Binary variable xij is 1 if arc (i, j) ∈ A is traveled and 0 oth-
erwise. Continuous variables τi, ui, and yi represent the arrival time, remaining
cargo, and remaining energy, respectively, at vertex i ∈ V ′

0,N+1. This formulation
assumes an unlimited number of homogeneous vehicles are available and only
permits full vehicle recharges (i.e., if a vehicle visits a recharge station vertex, the
service time is the difference between its maximum energy capacity and current
energy level, divided by the recharge rate). The augmented recharge station set,
F ′, is constructed such that the number of dummy vertices associated with each
recharge station, nf , represents the number of times the associated recharge
station can be visited across all vehicles (with |F ′| = nf · |F |). Following the
literature, nf is set to be relatively small, to reduce the network size, but large
enough to not restrict multiple beneficial visits [12]. We note that heuristically
choosing a value for nf , as in the literature, can potentially remove optimal
solutions.

Objective (1) details the weighted objective function, where α ∈ [0, 1] iden-
tifies the emphasis on fleet size minimization and β ∈ [0, 1] on travel distance
minimization. Constraint (2) ensures each customer request is satisfied, while
Constraint (3) restricts each recharge station in the augmented set to be visited
at most once (due to the augmented vertices, each recharge station can be vis-
ited at most nf times). Constraint (4) enforces the flow for non-depot nodes.
Constraints (5)–(6) prevent the formation of subtours, with disjunctive constant
M = (l0 + g ·Q). Constraint (7) ensures demand fulfillment at customer vertices
and Constraints (8)–(9) constrain energy levels to be feasible. Constraint (10)
requires customer visits to satisfy the time windows and Constraints (11)–(12)
identify binary and continuous variable domains.

1 Service must start within the time window.



132 K. E. C. Booth and J. C. Beck

min α
∑

j∈V ′
x0j + β

∑

i∈V ′
0

∑

j∈V ′
N+1,i�=j

dijxij (1)

s.t.
∑

j∈V ′
N+1,i�=j

xij = 1 ∀i ∈ V, (2)
∑

j∈V ′
N+1,i�=j

xij ≤ 1 ∀i ∈ F
′
, (3)

∑
i∈V ′

N+1,i�=j
xji −

∑
i∈V ′

0 ,i�=j
xij = 0 ∀j ∈ V

′
, (4)

τi + (tij + si)xij − l0(1 − xij) ≤ τj ∀i ∈ V0, j ∈ V
′

N+1, i �= j, (5)
τi + tijxij + g(Q − yi)−M(1−xij) ≤ τj ∀i ∈ F

′
, j ∈ V

′
N+1, i �= j, (6)

0 ≤ uj ≤ ui − qixij + C(1 − xij) ∀i ∈ V
′
0 , j ∈ V

′
N+1, i �= j, (7)

0 ≤ yj ≤ yi − (h · dij)xij + Q(1−xij) ∀j ∈ V
′

N+1, i ∈ V, i �= j, (8)
0 ≤ yj ≤ Q − (h · dij)xij ∀j ∈ V

′
N+1, i ∈ F

′
0, i �= j, (9)

ej ≤ τj ≤ lj ∀j ∈ V
′
0,N+1, (10)

xij ∈ {0, 1} ∀i ∈ V
′
0 , j ∈ V

′
N+1, i �= j, (11)

τ0 = 0, u0 = C, y0 = Q. (12)

Two Index Formulation. With the exception of xij , the variables are continuous,
modeling visit time, load, and energy level via sequencing constraints. The model
represents multiple vehicles by relaxing the unitary out- and in-flow on the start
and end depot vertices, respectively. This modeling technique is effective as it
does not multiply the number of variables by the number of (symmetric) vehicles.

Problem Variants. The fixed fleet variant can be modeled with the inclusion of a
constraint of the form:

∑
j∈V ′ x0j ≤ m, where m is the fleet size. A variant with

heterogeneous vehicles can be modeled for k different vehicle types by adding an
index for the vehicle type to the arc, cargo, and energy consumption variables
(i.e., xk

ij , uk
i , and yk

i ), with similar adjustments to the parameters [17]. Additional
problem variants, such as partial recharges, can also be considered through the
inclusion of additional constraints/variables [7,10].

3 Related Work

Research on energy-aware, environmentally conscious vehicle routing is a rel-
atively new area with a flurry of research in recent years [24]. In response
to a growing commitment within the United States to investigate alternative
fuel sources, the vehicle routing literature introduced the GVRP, detailing a
MILP formulation, construction heuristic, and clustering algorithm [12]. Since
the introduction of the GVRP, EV routing has grown dramatically, with initial
EVRPTW work for homogeneous fleets and full re-charges including a MILP
model and a hybrid variable neighborhood search/tabu search solution technique
[29]. Subsequent research was developed with approaches for heterogeneous vehi-
cles [17], and partial recharging problem variants [10,13,19]. Recent work has
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also been conducted on modeling non-linear energy consumption [27] as well as
incorporating richer, industry-driven problem constraints [1].

Although the literature for mathematical programming-based approaches
(e.g., MILP, branch-and-price, branch-and-cut) for the GVRP and the
EVRPTW is abundant [10,12,17,29], to the authors’ knowledge, the use of CP
for solving these problems has not yet been investigated. While the performance
achieved by sophisticated branch-and-price-and-cut algorithms for EVRPTW
[10] is unlikely to be surpassed by monolithic modeling methods utilizing off-
the-shelf solvers, the practicality and flexibility of such approaches, including
MILP and CP, often translate to more widespread adoption.

In general vehicle routing, CP has been offered as an alternative to mathe-
matical programming approaches for quite some time [2,30]. Recent applications
include work on the multiple traveling salesman problem [31], team orienteering
[15], dynamic dial-a-ride routing [3], bike share balancing [11], joint vehicle and
crew routing [23], and patient transportation [8,25], though these efforts do not
consider fuel constraints. While CP has not been explicitly proposed for GVRP
nor EVRPTW as of yet, previous work on snow plow routing [20] and robot task
allocation and scheduling [5,6] propose CP models with consideration for energy
consumption and replenishment.

4 Constraint Programming Approaches

In this section we present two CP formulations for the EVRPTW. Our mod-
els are posed as scheduling formulations with optional activities [21,22]. As is
becoming increasingly common in CP-based approaches [5,8,25], the proposed
models make use of three primary decision variable types, namely: optional inter-
val variables, sequence variables, and cumulative function expressions.

Optional Interval Variables. Formally, optional interval variables are decision
variables whose possible values are a convex interval: {⊥}∪{[s, ε)|s, ε ∈ Z, s ≤ ε},
where s and ε are the start and end values of the interval and ⊥ is a special value
indicating the variable is not present in the solution. The presence (binary),
start time, and length of an optional interval variable, var, can be expressed
within a CP model using Pres(var), Start(var), and Length(var), respectively.
We use the notation optIntervalVar(p, [s, ε]) to define these variables in our
models, where p is the processing time of the task (and can be variable). Model
constraints are only enforced over present interval variables.

Sequence Variables. This variable type is useful for expressing model constraints
over a permutation of present (i.e., Pres(var) = 1) interval variables. Given the
definition of a sequence variable, π, various constraints can be expressed, includ-
ing those on the interval variable previous to var in the sequence, Prevπ(var),
and temporal constraints such as the NoOverlap(π) constraint, which ensures
the interval variables in the sequence do not interfere temporally.
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Cumulative Function Expressions. It is often useful to represent the usage of
a renewable resource as the sum of individual interval variable contributions
over time. Given a cumulative function expression variable, f , we can express
impact on the expression using the f ± StepAtStart(var, impact) expression,
specifying that at the start of interval variable var, function f has an increment
(or decrement) of impact. The constraint AlwaysIn(f, [s, ε], [min,max]) ensures
that min ≤ f ≤ max holds for all time points in s to ε and a similar constraint
AlwaysIn(f, var, [min,max]) ensures that min ≤ f ≤ max holds during the
processing of interval variable var. Cumulative expression variables are useful in
representing both the vehicle load and energy constraints, and have been used
for similar problems [5,20].

4.1 Alternative Resource Model

Our first CP model follows the traditional alternative resource model for for-
mulating VRPs in CP [8,20], and, in contrast to the two-index MILP presented
in Sect. 2, explicitly represents the vehicles. We define an upper bound on the
number of vehicles to be equal to the number of customer requests, |K| = |V |,
representing the worst-case where each customer is serviced by a separate vehicle.
For each customer request, i ∈ V , we introduce a mandatory interval variable,
x̄i. We create an optional interval variable, xk

i , for each vertex, i ∈ V ′, for each
vehicle, k ∈ K. We also introduce start and end interval variables, xk

0 and xk
N+1,

with null duration for each vehicle to represent the depot.
The model considers a set of |V ′

0,N+1| interval variables and a sequence vari-
able, πk, for each vehicle k ∈ K. Each interval variable xk

i , for all i ∈ V ′
0,N+1,

represents the time period in which the vehicle visits i. Thus, expressions
StartOf(xk

i ) and EndOf(xk
i ) correspond to the arrival and departure time of

vehicle k at location i, respectively. The expression Pres(xk
i ) = 1 if vehicle k ∈ K

visits location i (i.e., the interval variable is present in the solution), and 0 oth-
erwise. Sequence variable πk is defined over the set of interval variables involving
vehicle k, and represents the sequence of visits. Vehicle load consumption and
energy level consumption/replenishment are modeled with cumulative function
expressions. We let Ck and Qk be cumulative function expressions representing
the load and energy level of vehicle k ∈ K throughout its route.

Our alternative resource CP model is detailed by Eqs. (13)–(27). Objective
(13) represents the minimization of fleet size and distance traveled. Constraint
(14) ensures that each customer is serviced by one vehicle and Constraint (15)
enforces that tasks assigned to a vehicle, represented by the sequence variable
πk, do not interfere temporally, including travel times. Constraints (16)–(17)
ensure that the vehicle load does not fall below zero over the planning horizon,
represented as a cumulative function expression with negative impact for served
customers. Constraints (18)–(19) ensure vehicle energy stays within permissi-
ble limits, also represented as a cumulative function expression with negative
impact for travel between locations and a positive impact for vehicle recharging.
We note that the impact for energy replenishment tasks includes the negative
contribution of the travel to the recharge station. Constraint (20) ensures that
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during a recharge task, the energy of the vehicle is set to its capacity; whenever
a vehicle recharges, it does so fully. Constraint (22) ensures each recharge sta-
tion is used at most nf times across the fleet, where F ′(i) represents all dummy
recharge stations associated with real recharge station i ∈ F . Constraint (21)
enforces that the start and end depot instances for a vehicle be first and last in
the sequence variable for that vehicle, while Constraints (23)–(27) provide the
definitions of the interval and sequence variables.

As the alternative resource formulation explicitly represents each vehicle, the
number of variables can become unwieldy for larger problems. Specifically, the
formulation has |V | + |K| · |V ′

0,N+1| interval variables, |K| sequence variables,
and 2|K| cumulative function expression variables.

min
∑

k∈K

(
αPres(xk

0 )+β
∑

i∈V ′
N+1

Pres(xk
i )·dPrev

πk (i),i

)
(13)

s.t. Alternative(x̄i, {x
1
i , . . . , x

|V |
i }) ∀i ∈ V, (14)

NoOverlap(πk
, {tij : (i, j) ∈ A}) ∀k ∈ K, (15)

Ck
= StepAtStart(xk

0 , C)

−
∑

i∈V
StepAtStart(xk

i , qi) ∀k ∈ K, (16)

AlwaysIn(Ck
, [0, H], [0, C]) ∀k ∈ K, (17)

Qk
= StepAtStart(xk

0 , Q)

−
∑

i∈V ′
N+1

StepAtStart(xk
i , h · dPrev

πk (i),i)

+
∑

i∈F ′ StepAtStart(x
k
i , g · Length(xk

i )) ∀k ∈ K, (18)

AlwaysIn(Qk
, [0, H], [0, Q]) ∀k ∈ K, (19)

AlwaysIn(Qk
, x

k
i , [Q, Q]) ∀i ∈ F

′
, k ∈ K, (20)

First(πk
, x

k
0 ), Last(πk

, x
k
N+1) ∀k ∈ K, (21)

∑

k∈K

∑

j∈F ′(i)

Pres(xk
j ) ≤ nf ∀i ∈ F, (22)

x
k
i : optIntervalVar([0, Q · g

−1
], [0, H]) ∀i ∈ F

′
, k ∈ K, (23)

x
k
i : optIntervalVar(si, [ei, li]) ∀i ∈ V, k ∈ K, (24)

x̄i : intervalVar(si, [ei, li]) ∀i ∈ V, (25)
x

k
0 : intervalVar(0, [0, 0]), x

k
N+1 : intervalVar(0, [H, H]) ∀k ∈ K, (26)

π
k

: sequenceVar({x
k
0 , . . . , x

k
N+1}) ∀k ∈ K. (27)

Model Strengthening

Cumulative Resource Constraint. Similar to a previous CP formulation for
patient transportation [8], we strengthen the baseline formulation with a cumu-
lative resource constraint. We define an auxiliary integer variable representing
the number of vehicles in the fleet, z =

∑
k∈K Pres(xk

0). The cumulative con-
straint is then Cumulative(x̄ ∪ {xi : i ∈ F ′}, z), which expresses that at any
time point in the horizon, the total number of customer interval variables, x̄,
and present recharge interval variables is bounded by the number of vehicles in
the fleet.



136 K. E. C. Booth and J. C. Beck

Symmetry Breaking Constraints. Due to the large number of homogeneous vehi-
cles, the use of symmetry breaking can be effective. We introduce a constraint of
the form Pres(xk

0) ≥ Pres(xk+1
0 ), ensuring vehicles are used in a lexicographic

order. We then specify that if a vehicle depot task is not present, it cannot be
assigned any other activities via Pres(xk

0) ≥ Pres(xk
i ),∀i ∈ V ′

N+1.

Energy Expression Tightening. While the energy impact of a customer visit on
vehicle energy level is a variable, we can tighten the domain of its impact by
reasoning about minimum and maximum travel consumptions to the consid-
ered customer location. More specifically, we add the constraint mini∈V ′

0
(h ·

dij) ≤ HeightAtStart(xk
j ) ≤ maxi∈V ′

0
(h · dij),∀j ∈ V, k ∈ K, where the

HeightAtStart(var, f) expression evaluates the individual contribution of an
interval variable, var, to a cumulative function expression, f .

4.2 Single Resource Model

Our second CP model, inspired by the modeling efficiency of the two-index
MILP for homogeneous vehicles, utilizes a single resource transformation to sig-
nificantly reduce the number of variables. The transformation represents the
problem as an interval variable sequence over an augmented horizon and, like
the MILP, does not explicitly represent the vehicles. This modeling strategy,
while common in MILP models for VRPs, has been rarely used in CP. In pre-
vious work on joint vehicle and crew routing, a similar strategy was used to
artificially join the end of one route to the beginning of another when using the
Circuit global constraint [23], which prevents the formation of subtours among
a set of integer variables. However, to our knowledge, the single resource trans-
formation has never been proposed for scheduling-based CP models involving
interval, sequence, and cumulative function expression variables. The transfor-
mation using these formalisms is challenging as the modeling paradigm does not
permit the “resetting” of time as in [23]; we detail how this is accomplished in
the remainder of this section. The described transformation can also be applied
to homogeneous machine scheduling problems, which we leave to future work.

We visualize the single resource model in Fig. 1. The transformation augments
the problem horizon from H to |V | · H, generating a horizon for each potential
vehicle used. In addition to the start and end depot instances, v0 and vN+1, we
define a set of auxiliary depot instances, H = {vN+2, . . . , vN+|V |}, represent-
ing the end depots of the additional horizon segments. We define the notation
V ′
0,N+1,H = V ′

0,N+1 ∪ H and undirected arcs A′ = {(i, j)|i, j ∈ V ′
0,N+1,H, i �= j}.

Similarly, we define HN+1 = vN+1 ∪ H and H0,N+1 = {v0, vN+1} ∪ H. A depot
instance, represented as an interval variable, xi, is assigned with null dura-
tion for i ∈ H0,N+1. These interval variables have start time σi, such that
σ0 = 0, σN+1 = H,σN+2 = 2H, and so forth. We then create a mandatory
interval variable, xi, for each customer request, i ∈ V , and an optional interval
variable for each recharge station instance in the augmented set, i ∈ F ′. Our
model uses a single sequence variable, π, defined over the set of all interval vari-
ables, and a single cumulative function expression to model vehicle load, C, with



Constraint Programming for Electric Vehicle Routing 137

Fig. 1. Single resource transformation for problem with |V | = 3 and a single recharge
station, |F | = 1, with nf = 2 (such that |F ′| = 2). A horizon segment is created for each
potential vehicle and time windows are duplicated. All customer tasks are mandatory
with disjoint start time domains and energy tasks (optional) have start time domain
of [0, 3H]. A cumulative function expression represents vehicle load and energy level
(where notation SaS corresponds to StepAtStart in models). Vehicle assignments can
then be inferred by the start times of the tasks themselves. The last horizon segment
is not used (set as absent).

another for energy level, Q. Additionally, at the start of each end depot instance,
i ∈ HN+1, the state of the vehicle must be reset to initial conditions. Thus, the
cumulative function expressions for vehicle load and energy have auxiliary pos-
itive impacts bringing them to their maximum capacity states. The start time
domain for customer requests, i ∈ V , becomes a set of disjoint time windows,
where each request time window is replicated over each of the horizon segments.
The start domain for customer requests is the entire augmented horizon and the
disjoint time windows are enforced with constraints. The start time domain for
recharge tasks, i ∈ F ′, becomes the entire augmented horizon.

Our single resource CP model is detailed by Eqs. (28)–(42). Objective (28) is
our fleet and distance minimization objective function. Constraint (29) enforces
temporal feasibility of the interval variable sequence, π, including travel times. To
make sure customers are serviced during a valid time window, we use Constraint
(30), where φi = {0, . . . , |V | · H} \ ⋃

δ∈{0,...,|V |}{δH + ei, . . ., δH + li + si}. The
ForbidExtent constraint prevents an interval variable, xi, from being scheduled
during any time point within the augmented horizon that is not also within one
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of the disjoint time windows. We discuss a number of alternatives for model-
ing disjoint time windows with CP in the next section. Constraints (31)–(32)
ensure vehicle load feasibility. Constraints (33)–(35) ensure vehicle energy level
feasibility while Constraints (36)–(37) dictate any present recharges, as well as
horizon end tasks, must charge the vehicle to full energy level. To ensure the
resetting of energy level at the end of each horizon, i ∈ HN+1, we use a positive
impact StepAtStart with magnitude in [0, Q − h · dPrevπ(i),i] expressed by Con-
straint (34), and the AlwaysIn expressed by Constraint (37). These components
are illustrated in Fig. 1. The position of the start depot in the interval variable
sequence, π, is expressed through Constraint (38) and Constraints (39)–(42)
identify variable domains.

min α
∑

i∈HN+1

Pres(xi) + β
∑

i∈V ′
H,N+1

Pres(xi) · dPrevπ(i),i (28)

s.t. NoOverlap(π, {tij : (i, j) ∈ A
′}) (29)

ForbidExtent(xi, φi) ∀i ∈ V, (30)
C = StepAtStart(x0, C)

−
∑

i∈V
StepAtStart(xi, qi)

+
∑

i∈HN+1
StepAtStart(xi, [0, C]) (31)

AlwaysIn(C, [0, |V | · H], [0, C]) (32)
Q = StepAtStart(x0, Q)

−
∑

i∈V ′ StepAtStart(xi, h · dPrevπ(i),i)

+
∑

i∈F ′ StepAtStart(xi, g · Length(xi))

+
∑

i∈HN+1

StepAtStart(xi, ψi) (33)

0 ≤ ψi ≤ Q − h · dPrevπ(i),i ∀i ∈ HN+1, (34)
AlwaysIn(Q, [0, |V | · H], [0, Q]) (35)
AlwaysIn(Q, xi, [Q, Q]) ∀i ∈ F

′
, (36)

AlwaysIn(Q, [σi, σi + 1], [Q, Q]) ∀i ∈ HN+1, (37)
First(π, x0) (38)
xi : optIntervalVar([0, Q · g

−1
], [0, H · |V |]) ∀i ∈ F

′
, (39)

xi : intervalVar(si, [0, H · |V |]) ∀i ∈ V, (40)
xi : intervalVar(0, σi) ∀i ∈ H0,N+1, (41)
π : sequenceVar({x0, . . . , xN+|V |}). (42)

The single resource transformation requires only |V ′
0,N+1|+ |H| interval vari-

ables, one sequence variable, and two cumulative function expression variables,
a significant reduction from the alternative resource model.
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Model Strengthening

Optional Horizon Segments. Initially, a horizon segment must be created for
each potential vehicle, recalling that the upper bound used is the number of
customer requests, |V |. This augmented horizon significantly increases the start
time domain of the recharge tasks, even though most high quality solutions only
use a small fraction of the vehicles allotted. To improve upon this, we develop
a technique, similar to the symmetry breaking in the alternate resource model,
where horizon segments can be set absent. First, we set all auxiliary end depot
instances, xi,∀i ∈ H, as optional interval variables. Next, we introduce an integer
variable for each of the end depot instances, wi, and constrain its value to be
the start time of the interval variable (0 if the variable is set as absent), via
StartOf(xi) = wi,∀i ∈ HN+1. We then constrain the end time of the set of
customer and recharge visit tasks to be bounded by the maximum wi value,
EndOf(xj) ≤ maxi∈HN+1 wi,∀j ∈ V ′. Finally, we impose an ordering on the
present depot instances using: Pres(xi) ≥ Pres(xi+1),∀i ∈ H \ vN+|V |.

Energy Expression Tightening. Similar to the technique presented for the alter-
native resource model, we introduce energy impact tightening constraints for the
single resource model as well, namely: mini∈V ′

0
(h · dij) ≤ HeightAtStart(xj) ≤

maxi∈V ′
0
(h · dij),∀j ∈ V .

4.3 Alternate Modeling Strategies

We investigated a number of alternate modeling strategies that were found,
through initial experiments, to under-perform the proposed models.

Vehicle Energy and Load. The modeling of energy and vehicle load can also be
accomplished via auxiliary tracking variables [20] similar to those used in the
MILP. The idea is to introduce a numeric variable for each interval variable
representing the load or energy level in the sequence after that particular task.
This technique is advantageous in that the exact vehicle load or energy level can
be accessed at any point along the route, whereas current implementations of
cumulative function expressions, as within CP Optimizer, do not support this.

Disjoint Time Windows. The single resource model results in a set of disjoint
time windows for customer tasks.2 The model uses the ForbidExtent(var, T )
constraint, restricting an interval variable var from executing at any time point
within the restricted set of time points T . This relationship can also be expressed
using interval variables by generating a set of fixed interval variables that occupy
all the time points in T . Then, a NoOverlap(π′

i) is added to the model for each
customer request task, i ∈ V , where the sequence variable π′

i contains the set of
all customer interval variables and the auxiliary fixed interval variables. Finally,
similar to the alternative resource CP model, one can generate an alternative

2 There also exist VRP variants posed with multiple disjoint time windows [18].
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task for each of the time windows. Although these alternate techniques perform
moderately well on smaller problems, the increased model size was detrimental
for larger problems.

4.4 Experimental Analysis

We present an empirical assessment of our models on the benchmark data in
Table 2. We explore three different objective functions: fleet distance minimiza-
tion (α = 0, β = 1) as reported in [10,29], fleet size minimization (α = 1, β = 0),
and fleet size minimization with distance minimization as a secondary objective
(α = 1, β = ξ), where ξ is a sufficiently small number to lexicographically order
the objective components. We reiterate that the intent of this work is to investi-
gate the performance of off-the-shelf optimization models for EVPRTW; state-
of-the-art results for distance minimization are found in [10] using sophisticated
branch-price-and-cut techniques bolstered by customized labeling algorithms.

Set-Up. All experiments are implemented in C++ on an Intel Xeon CPU E5-
2690 v4 2.60 GHz processor and 16 GB of RAM running Ubuntu 14.04. We use
CP Optimizer for the CP models and CPLEX for the MILP model from the IBM
ILOG CPLEX Optimization Studio version 12.8. All experiments are single-
threaded with default search and inference settings. A five minute time limit is
used for all experiments.

Table 1. Problem instances. Each value represents the number of instances for a given
size/characteristic combination. |V | ≤ 15 are small instances containing 5, 10, and
15 customers. Clustered, random, and mix refer to the geographical distribution of
customer vertices. |F | values are averages across the instances.

Short horizon Long horizon

|V | |F | Total Clustered Random Mix Clustered Random Mix

≤15 4.2 36 6 6 6 6 6 6

25 21 56 9 12 8 8 11 8

50 21 56 9 12 8 8 11 8

Instances and Implementation. We conduct our analysis on problem instances
taken from the literature [10,29]. Instances vary w.r.t. the number of customer
and recharge station vertices, the length of the scheduling horizon (short and
long) and the geographical distribution of the customer vertices (random, clus-
tered, and a mixture of both). The benchmark utilized contains a total of 148
instances summarized in Table 1.

Following the procedure outlined in previous work on the same instances [10],
we transform floating point parameter values to integer values such that the
problems are amenable to CP modeling. As with most integer transformations,
the scaling involved in this process results in much larger variable domain ranges
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which can have a negative impact on CP approaches. Additionally, we heuristi-
cally set the number of visits allowable to each recharge station as nf = 	|V |·0.2

(i.e., problems with five customers allow a single visit to each recharge station).

During testing, we found that the CP solver, for both formulations, had a
difficult time producing initial feasible solutions for the larger problems, |V | ∈
{25, 50}. To mitigate this, we seed the CP search with the initial solution found
by the MILP presolve routine. We note that we could have used any initial
heuristic here to yield the same result; the presolve results used were often trivial
(i.e., each customer serviced by a separate vehicle).

Table 2. Experimental results. The best result of each column for each objective
function in bold. ‘M’: method ran out of memory before entering the search.

noziroHgnoLnoziroHtrohS

# Feasible # Best MRE (%) # Feasible # Best MRE (%)

Method ≤15 25 50 ≤15 25 50 ≤15 25 50 ≤15 25 50 ≤15 25 50 ≤15 25 50

α = 0; β = 1
MILP 18 29 29 17 4 9 7.3 63.4 68.1 18 27 27 18 16 25 3.7 50.3 51.7
CPAR 18 29 M 8 0 M 12.6 76.4 M 18 27 M 3 0 M 17.9 71.3 M
CPSR 18 29 29 9 25 20 9.9 54.9 64.5 18 27 27 5 11 2 11.0 50.3 67.0

α = 1; β = 0
MILP 18 29 18 14 0 7 24.8 83.5 88.3 18 27 27 15 0 2 17.6 82.0 93.6
CPAR 18 29 M 7 0 M 35.4 89.3 M 18 27 M 8 3 M 41.7 84.4 M
CPSR 18 29 23 18 29 17 22.8 71.7 88.2 18 27 27 18 27 25 11.1 52.2 78.9

α = ; β = ξ1
MILP 18 29 29 14 3 11 22.8 68.6 66.2 18 27 27 17 0 8 14.0 65.5 59.5
CPAR 18 29 M 5 0 M 48.6 88.8 M 18 27 M 2 0 M 56.5 94.4 M
CPSR 18 29 29 14 26 18 23.7 58.8 64.0 18 27 27 5 27 19 25.0 40.0 57.0

Results. The results are illustrated in Table 2. The mean relative error (MRE)
compares the best solution found by a given technique to the best bound found
across all techniques; the results in the table take the average of this across all
instances solved by the technique.

The MILP displayed fairly strong performance on the distance minimization
objective function, particularly for small problems, where the strong bound is
able to effectively direct the search, and on long horizon problems, where CP
inference is less effective. While the MILP approach is often able prove optimality
for small instances when minimizing travel distance, it struggles to produce high
quality solutions and meaningful bounds for the fleet minimization objective
functions for medium-to-large problems, with optimality gaps close to 100%.

The alternative resource CP model, CPAR, encountered memory issues for
|V | = 50, while the single resource transformation model, CPSR, was able to ini-
tiate the search for all problems.3 Overall, it was found that the single resource
model outperformed the alternative model for all problem classes. Additionally,
CPSR outperforms the MILP formulation on almost all classes of larger prob-
lems (|V | ∈ {25, 50}), with the exception of distance minimization over long
3 In fact, the single resource model required significantly less memory for |V | = 50

problems than the alternative resource model did for |V | = 25 problems.
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horizons. The horizon augmentation of the single resource model results in large
domain sizes for problems with larger initial scheduling horizons, resulting in
weaker inference throughout the search. Both CP approaches tend to produce
more meaningful bounds for the fleet minimization problems, where the MILP
approach has difficulty producing non-trivial lower bounds.

5 A Hybrid Approach

From the experiments, it is evident that MILP outperforms CPSR for distance
minimization for large problems over long scheduling horizons. This finding is
similar to that from previous research that demonstrated scheduling-based CP
models containing optional activities can suffer from poor inference as the prob-
lem scales without good upper bounds on horizon length [4]; the authors of this
previous work found that seeding CP with high quality solutions found by a
different solver can be significantly beneficial.

Given these findings, we construct a hybrid approach that passes the best
solution found by the MILP solver to the CP solver as a starting point. Following
previous work [4], we allocate half of the runtime to MILP and half to CP
noting that the MILP solution improvement diminishes with time. We apply
this hybrid to the larger problem instances, |V | ∈ {25, 50}. The remainder of the
experimental set-up remains as described in the previous section.

Table 3. Hybrid results, large problems. Best result of column for each objective
function in bold. ‘M’: method ran out of memory before entering the search.

noziroHgnoLnoziroHtrohS

# Feas. # Best MRE (%) # Feas. # Best MRE (%)

Method 25 50 25 50 25 50 25 50 25 50 25 50

α = 0; β = 1
MILP 29 29 2 5 63.4 68.1 27 27 5 8 50.3 51.7
CPSR 29 29 14 14 54.9 64.5 27 27 8 2 50.3 67.0
MILP→CPSR 29 29 13 10 54.6 64.5 27 27 14 17 47.3 47.3

α = 1; β = 0
MILP 29 18 0 7 83.7 87.6 27 27 0 2 81.8 92.8
CPSR 29 23 23 15 72.0 87.5 27 27 27 25 51.2 77.5
MILP→CPSR 29 16 11 3 74.0 86.7 27 27 24 13 53.3 82.3

α = ; β = ξ1
MILP 29 29 0 4 68.9 66.2 27 27 0 5 65.5 59.5
CPSR 29 29 19 14 59.1 64.0 27 27 16 17 40.0 57.0
MILP→CPSR 29 29 10 11 59.8 62.9 27 27 11 5 47.9 55.3

Results. We present the results for our hybrid approach, denoted MILP→CPSR,
in Table 3, alongside the original MILP and CPSR results. It is apparent that the
hybrid approach is beneficial for the distance minimization objective over long
horizons, outperforming the other approaches by a wide margin and improv-
ing over MILP MRE values by up to 4.4% (|V | = 50, long horizon). However,
outside of the large, long horizon distance minimization problems, the hybrid
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provides improvement in few other areas, and is commonly outperformed by
the standalone CP method. Based on this observation, we can conclude that it
makes sense to hybridize MILP and CP in particular circumstances, but often
standalone CP will produce the best result. In these experiments, a CP-based
approach (either hybrid or standalone) provides the best results for every prob-
lem class, and the hybrid approach outperforms standalone MILP across nearly
all problem classes, with the exception of fleet minimization on short horizons.

6 Conclusion and Perspective

In this paper we presented the first approaches for solving the Electric Vehicle
Routing Problem with Time Windows (EVRPTW) using constraint program-
ming (CP). We present two scheduling-based CP formulations: the initial model
uses an alternative resource technique previously applied to other routing prob-
lems, while the second uses a single resource transformation for CP models using
optional activities, sequence variables, and cumulative function expressions. We
detail techniques used to strengthen the formulations and discuss alternate mod-
eling strategies.

Numerical results indicate the superiority of the single resource CP model
over the alternative resource model, for all problems, and the MILP formulation,
for the majority of medium-to-large problem classes. Recognizing the ability of
MILP to quickly produce good quality solutions for large distance minimization
problems with long scheduling horizons, we also investigate a hybrid MILP-CP
approach where the best solution from the mathematical programming solver is
used to seed the CP search. Results indicate the hybrid approach outperforms
both of the standalone techniques for the problems that motivated the effort,
but is not beneficial overall.

Given the growth of electric vehicle (EV) adoption in the logistics and con-
sumer automotive industries, we believe the study of these problems in the
context of CP modeling and solving is a strategic direction. Outside of EVs
and transportation, there is considerable opportunity in the highly related field
of multi-robot task allocation (MRTA) [5,16]. Future work will investigate the
applicability of the techniques developed in this paper to problems found in
MRTA.

Acknowledgment. We would like to thank the anonymous reviewers whose detailed
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Abstract. Kidney exchange programs try to improve accessibility to
kidney transplants by allowing incompatible patient-donor pairs to swap
donors. Running such a program requires to solve an optimization prob-
lem (the Kidney Exchange Problem, or KEP) as new pairs arrive or,
unfortunately, drop-off. The KEP is a stochastic online problem, and can
greatly benefit from the use of anticipatory algorithms. Unfortunately,
most such algorithms suffer from scalability issues due to the reliance
on scenario sampling, limiting their practical applicability. Here, we rec-
ognize that the KEP allows for a sampling-free probabilistic model of
future arrivals and drop-offs, which we capture via a so-called Abstract
Exchange Graph (AEG). We show how an AEG-based approach can
outperform sampling-based algorithms in terms of quality, while being
comparable to a myopic algorithm in terms of scalability. While our cur-
rent experimentation is preliminary and limited in scale, these qualities
make our technique one of the few that can hope to address nation-wide
programs with thousands of enrolled pairs.

Keywords: Kidney Exchange Problem ·
Stochastic online optimization · Probabilistic model

1 Introduction

For many patients suffering of organ failure, transplants are the most effective
solution [11]. However, transplants are also difficult to access, due to the lack of
donors and biological compatibility issues: as a result, patients often remain in
waiting lists for a few years. In the case of kidneys, transplant accessibility may
be improved by resorting to exchanges: these arise when a patient-donor pair is
incompatible, but a match can be found by looking at other incompatible pairs.
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Centralized kidney exchange programs exist in many countries, including the
US, the Netherlands and the UK [18]: in the US at the moment 95,345 patients
are waiting for a kidney, while 17,575 transplants have been performed in the
course of 20181. Similar numbers can be found worldwide, and grow every year.
Running a large-scale exchange program requires to regularly solve an optimiza-
tion problem (the Kidney Exchange Problem – KEP) to choose which transplants
should be performed. The KEP is typically defined over a compatibility graph,
whose nodes represent patient-donor pairs (or individual “altruistic” donors),
and arcs correspond to viable transplants.

The KEP is inherently a stochastic online problem, since arrivals (and drop-
offs) occur over time and cannot be predicted with certainty. Problems in this class
can greatly benefit from the use of anticipatory algorithms (see e.g. [14]). However,
most such algorithms rely on scenario sampling to handle uncertainty, leading to
scalability issues. As a result, in practice the KEP is often solved myopically, i.e.
by taking into account only the pairs that are currently in the program.

In this paper we recognize that, with a few reasonable assumptions, the
KEP allows for the construction of a sampling-free probabilistic model of future
arrivals and drop-offs. We capture this information via a so-called Abstract
Exchange Graph (AEG), whose nodes represent “types” of pairs, rather than
individual pairs, and are associated to probability values. An AEG can be easily
(and efficiently) obtained from medical or historical data.

By relying on the AEG, we describe how to enrich a given optimization
model for the myopic KEP with an anticipatory component, often with very
limited impact on its scalability. By doing this, the model becomes capable of
taking into account both future arrivals and drop-offs. For the sake of simplicity,
we show how to apply our technique to a specific KEP approach, i.e. the cycle
formulation.

In an experimentation on instances obtained via a realistic simulator, we show
how sampling-based anticipatory algorithms quickly run into scalability issues,
and even fail to provide high quality solutions in case of insufficient sample num-
bers. Conversely, an AEG-augmented method is consistently able to outperform
its myopic counterpart, while having a comparable run-time. While the current
experimentation is preliminary and limited in scale, these qualities make our
technique one of the few that can hope to address nation-wide programs with
thousands of enrolled pairs

The paper is organized as follows: in Sect. 2 we present the background and
related literature, in Sect. 3 we give a detailed description of the AEG model. In
Sect. 4 we show some experimental results, while concluding remarks are in Sect. 5.

2 Background and Related Work

Formally, the offline (i.e. myopic) KEP is defined on a directed graph D =
〈N,A(N)〉. Nodes in N correspond to patient-donor pairs or “altruistic” donors
(i.e. people who are willing to donate a kidney to the program). A is a function

1 https://unos.org/data/transplant-trends/.

https://unos.org/data/transplant-trends/
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that maps a set of nodes to a corresponding set of directed arcs, represented as
pairs of indices, i.e. A : 2N → 2N×N . The mapping is based on the biological
properties of the nodes: in particular, an arc (i, j) from node i to j appears in
A(N) iff the donor at node i is compatible with patient at node j. We refer to
such data structure as compatibility graph.

A cycle corresponds to a viable set of exchanges, and cycles starting from an
altruistic donor are called chains. A cycle/chain involving k nodes is also known
as a k-exchange. A limit on k is often enforced, since transplants in the same
exchange need to be performed simultaneously to avoid donor withdrawal. The
goal is to maximize a utility function, usually the total number of transplants.
The KEP is known (see [1]) to be NP-complete for k ≥ 3.

The problem can be stated in an abstract fashion by referring as x to the set
of exchanges xi that should be performed. Then the KEP corresponds to:

max z =
∑

xj∈x

value(xj) (KEP) (1)

s.t. usagei(x) ≤ 1 ∀i ∈ N (2)
valid(xj) ∀xj ∈ x (3)

where value(xj) is the utility of performing exchange xj (e.g. the number of
involved transplants), and usagei(x) denotes the number of times that vertex i
is used by all exchanges in x. No patient-donor pair can be selected twice, leading
to Constraints (2). Finally, valid(xj) is a predicate that is true iff exchange j is
feasible (e.g. corresponds to a cycle/chain and has the correct length).
Approaches for the Offline KEP: In the past years, the Kidney Exchange
Problem received considerable attention from the medical, economics and com-
puter science communities. Most works have focused on finding the best match-
ing for a given graph, i.e., on the offline version of the problem. In the Operations
Research community the problem has been considered in [3,7,17,18] and more
recently in [2,8], via a variety of models. The KEP has also been linked to the
cycle roommates problem in [15], and to barter-exchange markets in [1,4].

A popular Mathematical Programming model for the KEP is the so-called
cycle formulation, which is an almost direct translation of the abstract model.
Let C = {C1 . . . Cnc

} be the set of all cycles/chains of valid length. Each cycle is
associated to a 0-1 variable xj such that xj = 1 iff the corresponding exchange
is selected. Similarly, each cycle is associated to a weight wj , corresponding to
its value. The cycle formulation is then given by the following Integer Program:

max z =
∑

Cj∈C
wjxj (CYF) (4)

s.t.
∑

Cj∈C,i∈Cj

xj ≤ 1 ∀i ∈ N (5)

xj ∈ {0, 1} ∀Cj ∈ C (6)
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The model can be seen as a set packing formulation: it is simple and capable
to easily capture complex constraints on the formation of cycles, including their
size.

The main drawback is its limited scalability, since the formulation requires
enumerating all (valid) cycles in the graph. This issue has been addressed effec-
tively via column generation in [1,10,13,16,22]. Alternatively, compact models
have been proposed in [2,8] (and references therein) to improve scalability with-
out resorting to column generation. Constraint generation has been employed to
speed-up the edge formulation of the KEP in [1], while a KEP model based on
the Traveling Salesman Problem has been proposed in [3].
Approaches for the Online KEP: As mentioned in our introductory section,
the KEP is actually an online problem: choosing to perform a transplant may
have unintended side effects in the future. Anticipatory algorithms typically deal
with this source of uncertainty by sampling scenarios (possible outcomes) and
optimizing the (estimated) expected value of current decisions.

A few of the main anticipatory algorithms from [14] have been adapted to the
KEP in [5], but the task was not straightforward and forced the authors to intro-
duce heuristic approximations. We proposed one more sampling-based anticipa-
tory algorithm in [6]. These algorithms will be described in our results section,
since they are considered in our experimentation. Here, we simply observe that
they all rely on scenario sampling, a scenario being a set of nodes that may enter
in the next few steps. The main two algorithms from [5] require the solution of
a multiple (smaller) off-line KEPs, while the method from [6] solves a single
modified KEP obtained via the Sample Average Approximation [20].

The only sampling-free anticipatory methods for the online KEP to date are
those from [9,12]. They are both based on the idea of discounting the value
of each cycle with the lost “potential” of the involved nodes. Formally, the new
weight of each cycle is given by wj −∑

i∈Cj
vi, where vi is the estimated potential

of i ∈ N . A set of exchanges can then be obtained by solving an off-line KEP
with the modified weights. In [9] the potentials are estimated via probability
considerations, while [12] employs a parameter tuning algorithm. Even if the
technique proposed here does not rely on sampling, from a mathematical point
of view it is more akin to the sampling-based algorithms than to these sampling-
free methods. For this reason, a comparison with either [9] or [12] is missing in
this paper, but we still consider that a priority for future research.

To the best of our knowledge, these are all the methods for the online KEP
in the literature. Works [2,10,21] have considered the effect of potential failures,
but not of entering pairs. A simulator for the online KEP is presented in [24],
but the authors still rely on periodic execution of an offline approach.

3 The Abstract Exchange Graph

Here we present our main data structure, i.e. the Abstract Exchange Graph, and
its potential applications. Our contributions stem from two simple assumptions,
which we state initially in their basic form.
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First, all sampling-based anticipatory methods from the literature attempt
to account for the arrival of individual pairs/altruistic donors. However, pairs
having the same connectivity lead to equivalent sets of cycles: in the absence of
an external criterion for favoring certain pairs over others, we have that:

Assumption 1. Nodes having the same connectivity are equivalent.

Assumption 2. Arrivals are independent and identically distributed (i.i.d.).

Second, banning mass-sensitization campaigns or similar actions, the arrival
of a pair should provide no information on which pair is arriving next. Moreover,
population changes occur slowly over time. Hence, during regular operation we
apply Assumption 2.

Both assumptions are imposed for technical feasibility and can actually be
relaxed, and we will show how this can be done at the end of this section.

Formally, the AEG is an annotated directed graph 〈N,A(N), p〉. Rather than
to individual pairs, the nodes correspond to classes (“types”) of equivalent pairs.
The arcs correspond to “types” of transplants, and can be obtained via the
same function A used for the classical KEP. Each node can be associated to a
probability value pi ∈ [0, 1]. Overall, the AEG specifies in a compact fashion
both the arrival probabilities of future nodes and the cycles they can form.
Obtaining an AEG: From a mathematical standpoint, the AEG is a simple
extension of the compatibility graph used by most KEP approaches. In partic-
ular, a “concrete” compatibility graph can be seen as an AEG where pi = 1 for
all nodes. This observation allows to easily obtain an AEG from historical data.

Kidney exchange programs usually keep a record of the participating pairs,
which can be used to populate a set N . This set can form the bases for a “con-
crete” graph. Starting from this graph, an AEG can be obtained by iteratively
merging nodes with the same connectivity, as described in Algorithm 1. Once the
graph can no longer be contracted in this fashion, all p values are normalized so
that they represent frequencies of occurrence, i.e. estimated probabilities.

Algorithm 1. AEG extraction
Require: A graph 〈N,A(N), p〉, with pi = 1 ∀i ∈ N

loop
Search for two nodes i, j ∈ N with the same outgoing/ingoing arcs, i.e.:
A) (i, h) ∈ A(N) ⇔ (j, h) ∈ A(N) and
B) (h, i) ∈ A(N) ⇔ (h, i) ∈ A(N)
if such nodes exist then

N = N \ j (i.e. remove node j)
pi = pi + pj (i.e. compute aggregated count)

else
set pi = pi/

∑
i pi (normalize counts)

break loop
return 〈N,A(N), p〉
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Fig. 1. (A) A “concrete” compatibility graph; (B) The corresponding AEG; (C) The
AEG-base graph used in optimization

This process always yields a valid AEG. As an example, assume that we start
from the compatibility graph in Fig. 1A: nodes are labeled with the corresponding
patient donor pair, and node 0 corresponds to an altruistic donor. Nodes having
the same connectivity (i.e. (p3, d3) and (p4, d4)) are colored the same shade of
gray. Figure 1B shows the AEG produced by Algorithm1,where t0 is associated
to the altruistic donor, t1 to (p1, d1) and t2 to (p2, d2), and t3 is an aggregated
node merging (p3, d3) and (p4, d4), and with the estimated probabilities reported
next to each node.
Using the AEG in Optimization: The AEG can be employed to enrich a
model for the off-line KEP with an anticipatory component. We will describe
the process using the abstract KEP from Sect. 2.

We start by augmenting the problem graph with h instances of all the AEG
nodes, so as to represent h future arrival events. Formally, let N0 be the original
set of nodes, Nk be the k-th instance of the AEG nodes, and N be the set of all
nodes (i.e. N = N0 ∪ N1 ∪ . . . Nh). We then construct the graph:

〈N,A(N) \ A(N1) \ . . . A(Nh), p0 ∪ p1 ∪ . . . ph〉
Arcs from A(N1) to A(Nk) are removed since multiple nodes from the same Nk

(with k > 0) correspond to different possible types for a single arrival event. The
pi values associated to nodes in N0 are all equal to 1, while other pi values are
those from the AEG. An example of such a graph for h = 1 is shown in Fig. 1C,
where for the sake of simplicity we assume that N0 is given by the graph from
Fig. 1A. Dashed arcs connect nodes in N0 with nodes in N1.

Exchanges defined exclusively over nodes in N0 can be interpreted as usual.
Exchanges involving even a single node from Nk with k > 0 represent potential
future exchanges, and are associated to a stochastic strategy, similar to those
employed in Markov Decision Processes.

Formally, all future exchanges (not just the selected ones) are collected in
a set xF. Each of such exchanges is associated to a 0-1 random variable with a
Bernoulli distribution. The probability that the variable is equal to 1 captures
the odds that (1) the involved nodes arrive; and (2) we choose to perform the
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exchange: what we need to decide are these probabilities. With this approach, we
can provide an abstract description of AEG-based the anticipatory KEP:

max z =
∑

xi∈x

value(xi) +
∑

xi∈xF

E [value(xi)] (KEPA) (7)

s.t. usageS(x) + E
[
usageS(xF)

] ≤
∏

i∈S

pi ∀S ⊆ N (8)

valid(xi) ∀xi ∈ x ∪ xF (9)

We maximize the utility of current exchanges, plus the expected utility of future
exchanges. Constraints (8) state that the expected number uses of each subset of
nodes S cannot exceed the expected number of its occurrences. For set of nodes
in N0, all pi values are 1 and the formula boils down to the one in the KEP
abstract model. For exchanges that involve future nodes, we take into account
the probability that all involved nodes are present. All exchanges should be valid.
In principle there is an exponential number of Constraints (8): in practice, how-
ever, the number is usually polynomial due to restrictions on the exchange size.
Moreover, many subset S lead to redundant constraints that can be eliminated.

The thick arcs in Fig. 1C show the exchanges that would be selected in a (sub-
optimal) solution of KEPA formulation: the solid ones correspond to (selected)
deterministic exchanges, while the dashed ones to stochastic exchanges with
a non-zero probability (reported as a label on the arc). The main appeal of
the technique is that the abstract formulation KEPA is anticipatory, and yet it
does not rely on sampling. Provided that our assumptions hold, the probabilistic
model we employ gives a characterization of future uncertainty that is limited
in accuracy only by our estimates of the pi values.
Grounding Based on the Cycle Formulation: Our technique is general,
but particularly easy to ground on the cycle model. Let C be the set of all cycles
of valid length in the (augmented) graph. Let C0 be the subset of cycles that
involve only nodes in N0, and let CF = C \ C0 be the set of “future” cycles, i.e.
those involving at least one node in Nk with k > 0. We can then introduce: (1)
a variable xj ∈ {0, 1} for each Cj ∈ C0, such that xj = 1 iff the cycle is chosen in
the solution; plus (2) a variable xj ∈ [0, 1] for each cycle Cj ∈ CF , representing
the probability that the involved nodes arrive and the cycle is chosen. We can
than state the new formulation as a Mixed Integer Linear Program:

max z =
∑

Cj∈C
wjxj (CYFA) (10)

s.t.
∑

Cj∈C,S⊆Cj

xj ≤
∏

i∈S

pi ∀S ∈ S (11)

xj ∈ {0, 1} ∀Cj ∈ C0 (12)

xj ∈ [0, 1] ∀Cj ∈ CF (13)

Since for cycles in CF the value of xj naturally represents a probability, summing
the variables in the objective and in Constraints (8) is enough to obtain the
expected values from of Objective (7) and Constraints (8).
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The family S contains all subsets of nodes such that lead to non-redundant
constraints. Formally, S contains all S ⊆ N such that: (1) the cardinality is
not greater than the allowed cycle length, i.e. |S| ≤ L; (2) all nodes S appear
together in at least one cycle, i.e. ∃Cj ∈ C s.t. S ⊆ Cj , since subsets that do
not appear in any cycle are irrelevant. Finally, (3) if all nodes in S are in N0,
then the cardinality of S is exactly 1, since for subsets entirely in N0 posting
the constraints for each individual node is sufficient.

There are three key facts to observe: first, the CYFA model has the same
structure of the original cycle formulation, meaning that most techniques
employed to increase its scalability (e.g. column generation) should still be appli-
cable. Second, the lack of arcs between nodes in the same Nk acts as a mitigation
factor for the number of cycles. Third, all the variables related to the anticipatory
components are real-valued, and therefore much easier to handle for the solver.
Conversely, all sampling-based approaches require 0-1 variables to handle the
cycles appearing in scenarios. The main drawback is the increased number of
constraints, whose adverse effects will need to be empirically evaluated.
Handling Drop-Offs: Additionally, the AEG-based formulation provides a nat-
ural framework for taking into account drop-offs, which may arise as a conse-
quence of pairs leaving the program. For the sake of simplicity, we will initially
make the assumption that each pair may drop-off the program between consec-
utive arrivals with a fixed probability. In other words:

Assumption 3. Drop-offs for each pair i between arrivals follow a Bernoulli
process, with probability ri.

A discussion on how to relax the assumption appears at the end of this section.
We can now show how to extend the CYFA model to take into account the

effect of drop-offs (the same reasoning applies to the abstract KEPA formula-
tion). In this case, it becomes important to understand when a given exchange
can be performed. Let τi be the index of the time step when a node enters the
program, i.e. τi = k iff i ∈ Nk. An exchange involving a set of nodes S can
be performed only once the last of the involved nodes arrive. We extend our
notation so that, for a set S ⊆ N , we have τS = max{τi | i ∈ S}.

For an exchange to be performed, all involved nodes should arrive and remain
in the program long enough. Formally, Constraints (11) should be rewritten as:

∑

Cj∈C,S⊆Cj

xj ≤
∏

i∈S

rτS−τi
i pi ∀S ∈ S (14)

where rτS−τi
i is the probability that node i remains in the program until τS .

Transplants vs Survivors: Taking into account drop-off events enables one
further extension. In an online setting, the number of transplants is important,
but does not take into account that having a large pool of participants is also
a value: it means more people have survived and may still receive a transplant.
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We can take this into account by tracking the expected number of instances of
each node i at time step k via an additional set of variables qk

i ≥ 0. Formally we
have that:

qk
i =

{
pi if k = τi

ri(qk−1
i − yk

i ) if k > τi

∀i ∈ N,∀k ∈ {τi . . . h + 1} (15)

where yk
i is the expected number of instances of node i that received a transplant

at step k, and there is no need to introduce qk
i variables for k < τi. Equation (15)

follows directly from Assumption 3. The value of yk
i is given by:

yk
i =

∑

Cj∈C,i∈Cj ,
τCj

=k

xj ∀i ∈ N,∀k ∈ {τi . . . h} (16)

Incorporating everything in the CYFA formulation leads to the following model:

max z =
∑

i∈N

ri(qh
i − yh

i ) +
∑

Cj∈C
wjxj (CYFA,D) (17)

s.t.
∑

Cj∈C,S⊆Cj

xj ≤
∏

i∈S

rτS−τi
i pi ∀S ∈ S (18)

qτi
i = pi ∀i ∈ N (19)

qk
i = ri(qk−1

i − yk
i ) ∀i ∈ N, k ∈ {τi + 1 . . . h} (20)

yk
i =

∑

Cj∈C,i∈Cj ,
τCj

=k

xj ∀i ∈ N,∀k ∈ {τi . . . h} (21)

xj ∈ {0, 1} ∀Cj ∈ C0 (22)

xj ∈ [0, 1] ∀Cj ∈ CF (23)

yk
i , qk

i ≥ 0 ∀i ∈ N,∀k ∈ {τi . . . h} (24)

The goal is to maximize the number of transplants, plus the expected number
of survivors at the end of the look-ahead horizon h. Performing a transplant is
still be more beneficial than waiting, since the qh+1

i values are discounted by
at least one factor ri. Taking into account drop-offs results only in marginal
modifications of the original CY FA, while keeping track of survivors requires
more extensive changes. None of the additional variables is subject to integrality
constraints, however, which is good for the scalability of the method.
Limitations and Workarounds: Here we discuss some of the limitations of
our approach, together with some means for addressing them. At the moment,
however, none of these solutions has been experimentally evaluated.

Assumption 1 may be violated if there are additional criteria that differentiate
the nodes, e.g. different patient survival probabilities. Violations of this kind are
easily accounted for by including such factors in Algorithm1, when searching
for equivalent nodes. The price to pay is an increased number of nodes, which
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in general may be an issue with AEG-based approaches. A possible mitigation
measure would be to use ideas from clustering algorithms to merge in Algorithm 1
nodes that are sufficiently similar, even if they are not exactly equivalent.

A violation of Assumption 2 prevents the definition of a vector p of arrival
probabilities. However, our methods still work by replacing the product of prob-
abilities in Constraints (8) and (11) with a joint arrival probability P (S), i.e:

∑

Cj∈C,i∈Cj

xj ≤
∏

i∈S

pi ←→
∑

Cj∈C,i∈Cj

xj ≤ P (S) (25)

Non-stationary drop-off probabilities, i.e. time dependent ri values, require to
rewrite the rτS−τi

i expressions in Constraints (18):

rτS−τi
i ←→

τS∏

k=τi

rk
i (26)

where rk
i is the drop-off probability of node i at step k. We focused on maximizing

the number of transplants/survivors, but different objective functions may be
employed as long as they can be handled in the problem models. In particular,
the objectives considered in [12] based on fairness and expected organ failures
should be manageable without much trouble.

4 Experiments

In this section we present our experimentation. We start with a brief survey of
the main approaches considered in our comparison in Sect. 4.1. We then present
our instances, experimental methods, and results in Sect. 4.2.

4.1 Other Anticipatory Algorithms in the Experimentation

From a mathematical standpoint our approach is closest to the algorithms from
[5] and [6], which we therefore chose for our comparison, together with a myopic
approach and an oracle (used respectively as baseline and optimistic bound).

Conversely, our method is more distantly related to the ones from [9,12],
despite being also sampling-free and with the same practical use cases. Such
methods rely on adjusting (e.g. via parameter tuning) the weights of an off-
line KEP to take into account the impact of current decisions on the future. The
AEG is arguably more accurate from a formal point of view, and does not require
a computationally expensive fitting step. However, the approach from [12] can
use an off-line KEP formulation with virtually no modification, and provides a
bit more flexibility in terms of the supported problem objectives. An empirical
comparison of the two approaches is planned as part of future research.

All the considered algorithms treat a scenario as a set of nodes that may
enter in the next h steps (no drop-offs are considered the scenarios). The two
main algorithms from [5] estimate the expected impact of choosing a cycle, and
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then solve a KEP using such impacts as weights. The first is referred to as
APST1, it can be considered an adaptation of the regrets method from [14],
and computes cycle scores by solving an offline KEP for each scenario. The
second is referred to as APST2, it shares ideas with the expectation method
from [14], and computes scores by solving an offline KEP for each cycle and
scenario. For further details, the reader may refer to [5] or [6].

The CSBA algorithm from [6] solves a single modified KEP on a graph con-
structed using all scenarios, obtained by using the Sample Average Approxima-
tion [20]. The final matching is given by all exchanges in the solution that are
defined solely over nodes from the current time step (i.e. that do not include
nodes entering in any scenario). In the objective, exchanges related to the cur-
rent time step are summed exactly, whereas future exchanges are considered in
expectation. For further details, the reader may refer to [6].

4.2 Methods and Instances

Some anticipatory algorithms for the KEP may occasionally suggest to delay an
exchange, if they estimate that such actions is going to be beneficial on the long
term. This may happen even if the delayed exchange could be performed in the
current time interval without conflicting with other selected exchanges. For a
human decision maker, this kind of behavior is hard to justify, especially when
personal health is at stake.

Luckily, in the cycle formulation such a behavior can be prevented or at
least discouraged via a simple pre-processing technique. Namely, we can remove
from the graph all cycles that include no node currently in the program: as a
result, delaying an exchange that can be performed immediately becomes far less
likely. In our experimentation, we have applied this technique to all methods that
may benefit from that, in particular the AEG-based approach and the CSBA
algorithm. Neither APST1 nor APST2 have such need since, they eventually
solve a KEP including only the current nodes.

Table 1. 31-months setup sample algorithms (batch 5)

Lookahead/samples Pairs Altr. CSBA APST2 APST1

Lives WaitL Lives WaitL Lives WaitL

h2 s5 149 11 61.0± 4.08 64.5 60.6± 4.32 64.7 62.0± 3.52 63.4

h2 s10 149 11 60.6± 4.59 65.1 60.7±4.63 64.5 61.6± 4.29 63.8

h2 s15 149 11 60.6± 4.50 65.0 60.5± 4.70 64.6 62.2± 4.39 63.2

h3 s5 149 11 61.2± 4.46 64.3 60.5± 4.45 64.8 62.1± 3.84 63.2

h3 s10 149 11 60.8± 4.36 65.0 60.7± 4.73 64.5 62.8± 3.82 62.4

h3 s15 149 11 60.3± 4.52 65.4 60.3± 4.70 64.7 61.7± 3.91 63.5

h4 s5 149 11 60.7± 4.44 64.7 60.5± 4.45 64.8 62.2± 3.70 62.8

h4 s10 149 11 61.1±4.35 64.5 60.7± 4.73 64.6 62.0± 3.52 63.1

h4 s15 149 11 60.8± 4.75 64.8 60.6±4.74 64.6 63.2±4.08 62.2
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Instances: We’ve generated two main instances using real world probabilities:
each instance is a (concrete) exchange graph which represents a population. At
each time step (corresponding to one month), arrival events are modeled by sam-
pling from the graph a number of nodes (referred to as batch size). Unlike in all
works in the literature about the online KEP, pairs are sampled with reinser-
tion: this means that the graphs represent stable or slowly varying populations,
and captures much better what happens in the real world compared to sampling
without reinsertion. Scenarios are sampled from the same graphs.

Table 2. 31-months setup AEG (batch 5)

Lookahead Pairs Altr. AEG Myopic Oracle

Lives WaitL Lives WaitL Lives

h2 149 11 76.1±3.87 83.9 53.5 ± 2.75 66.5 88.3 ± 7.46

h3 149 11 75.0 ± 3.43 85.0 53.5 ± 2.75 66.5 88.3 ± 7.46

h4 149 11 75.6 ± 3.43 84.4 53.5 ± 2.75 66.5 88.3 ± 7.46

In detail, we generated a small instance with 160 pairs (11 altruistic), used
for experiments running over 31 months and batch size 5, and a larger one with
1029 pairs (29 altruistic), for experiments over 12 months and batch size 15 and
20. For each setup, the generated pairs have blood types, PRA values, and ages
following the distributions from [23]. Tissue compatibility has been approximated
by suppressing a fraction of the arcs, chosen uniformly at random according to
statistics reported in the same paper: this process disregards patterns that may
arise in the real world and may therefore lead to larger number of types. The
AEG graph was generated as described in Sect. 3: in our settings, we detected
22 node types for the small instance and 26 for the big instance, i.e. very small
numbers compared to the size of the original graphs. The death rate is adjusted
to match the reality that 12% of kidney patients survive 10 years2.

We implemented all the algorithms in Python, using Numberjack [19] as
a modeling front-end and CPLEX as a back-end. As we mentioned, we also
include in our comparison an oracle that solves a single offline KEP including
all pairs entering the program (and disregarding drop-off dates), which provides
an optimistic bound on the performance of any online algorithm. We consider
all transplants equally worthy.

4.3 Results

We report the results for the sampling based algorithms (i.e. CSBA, APST1,
and APST2) in one set of tables, while the results for the (sampling-free) AEG,
myopic, and oracle methods are in a second set of tables.

2 United States Renal Data System (USRDS), 2007: http://www.usrds.org/.

http://www.usrds.org/
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Table 3. 12-months setup sample algorithms (batch 15)

Lookahead/samples Pairs Altr CSBA APST2 APST1

Lives WaitL Lives WaitL Lives WaitL

h2 s5 171 9 82.8± 6.00 67.8 82.8± 7.11 67.8 82.4± 7.29 67.1

h2 s10 171 9 83.2±6.20 68.0 83.5±7.06 66.9 84.6±7.92 66.0

h2 s15 171 9 83.0± 6.68 67.8 – – 86.0± 7.51 65.0

h3 s5 171 9 82.9± 6.59 68.1 82.5± 7.06 65.9 82.7± 8.21 67.4

h3 s10 171 9 82.3± 6.20 68.3 – – 83.3± 7.07 67.5

h3 s15 171 9 82.6± 7.65 67.6 – – 84.0± 6.31 67.5

h4 s5 171 9 82.8± 6.66 67.9 – – 79.7± 8.64 70.3

h4 s10 171 9 82.4± 6.17 68.3 – – 83.7± 4.65 68.5

h4 s15 171 9 82.6± 7.75 68.0 – – 81.6± 8.24 69.1

Table 4. 12-months setup AEG (batch 15)

Lookahead Pairs Altr. AEG Myopic Oracle

Lives WaitL Lives WaitL Lives

h2 171 9 94.8±8.59 85.2 67.9 ± 5.49 71.0 113.4 ± 2.67

h3 171 9 94.5 ± 8.34 85.5 67.9 ± 5.49 71.0 113.4 ± 2.67

h4 171 9 94.8 ± 8.78 85.2 67.9 ± 5.49 71.0 113.4 ± 2.67

In particular, Tables 1, 3, and 5 show the results of the scenario sampling
algorithms: each row is labeled as {hx1 sx2}, where x1 = {2, 3, 4} is the look-
ahead horizon and x2 = {5, 10, 15} is the number of scenarios. Tables 2, 4, and
6 show instead the results of the sampling-free algorithms. Each row is labeled
in this case as {hx1}, where x1 = {2, 3, 4} is the look-ahead horizon. Each
algorithm, except for the Oracle, has two columns: one called “Lives” for the
number of transplants, and one called “WaitL” and for the number of pairs still
in the waiting list. Each cell reports an average over 10 runs, and for the “Lives”
column we also report the standard deviation. The solver timelimit is set to 600
s for each run, therefore for each time step each algorithm has 600/Months setup
overall. If an algorithm requires to solve multiple KEPs (say k) in a single time
step, then the timelimit for each attempt is set to 600/(Months * k) seconds. A
“dash” in a cell means that the algorithm was not able to find a solution for all
time steps.
Effect of the Batch Size: In Tables 1, 3, and 5, we show the results of a long
run setup with small batch (5) size vs a short run setup with larger batch size
(15, 20). As it can be seen in Table 1, APST1 outperforms the other scenario-
sampling algorithms, but increasing the batch size to 20 is enough for the method
to hit the time limit, due to the large number of KEPs that the algorithms needs
to solve. The APST2 method runs out of time even with batch size 10, since
it needs to loop over all scenarios and also all cycles; the algorithm didn’t scale
for batch size 20. Both the CSBA and AEG algorithms manage to complete all
experiments within the time limit.
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Table 5. 12-months setup sample algorithms (batch 20)

Lookahead/samples Pairs Altr. CSBA APST1

Lives WaitL Lives WaitL

h2 s5 228 12 106.7 ± 9.68 92.6 107.2 ± 8.83 91.9

h2 s10 228 12 106.8 ± 9.43 92.9 108.2 ± 7.98 90.6

h2 s15 228 12 107.6 ± 10.16 92.1 108.4±8.80 90.2

h3 s5 228 12 106.8 ± 9.90 92.4 103.9 ± 8.46 94.0

h3 s10 228 12 107.7 ±10.77 91.7 106.7 ± 9.21 91.4

h3 s15 228 12 106.7 ± 10.24 93.0 – –

h4 s5 228 12 106.3 ± 10.04 92.6 103.8 ± 9.27 93.3

h4 s10 228 12 107.4 ± 8.77 92.6 103.83 ± 7.41 95

h4 s15 228 12 106.0 ± 8.91 93.1 – –

Table 6. 12-months setup AEG (batch 20)

Lookahead Pairs Altruistic AEG Myopic Oracle

Lives WaitL Lives WaitL Lives

h2 228 12 121.6± 9.29 118.4 92.5± 8.05 92.3 137.4± 13.12

h3 228 12 122.2±9.85 117.8 92.5± 8.05 92.3 137.4± 13.12

h4 228 12 121.8± 9.41 118.2 92.5± 8.05 92.3 137.4± 13.12

Effect of Look-Ahead and Number of Scenarios. Increasing the look-ahead
and the number of scenarios does not have a consistent effect on the algorithms,
which reach the best results for different configurations (in bold in the tables).
Unlike [6] we notice that the CSBA algorithm doesn’t outperform the other
scenario-based algorithms, probably due to the fact that we are sampling pairs
with reinsertion.
Trends: The AEG model improves the number of transplants over the myopic
algorithm by a factor 26.9% in Table 3 and by a factor 29.7% in Table 5. These
results are in line with the improvements obtained by the sampling-free method
from [12], and interestingly they are reached even if the AEG method in fact
optimise the number of survivors.

In Fig. 2 we compare the results for the best configuration: our method con-
sistently (and significantly) outperforms all sampling-based algorithms, in terms
of both the number of transplants and that of survivors (transplants + waiting
list). Figure 3 shows the evolution of the cumulative (average) number of trans-
plants for each algorithm, which is initially very similar for all methods, until
month 3–4 where the AEG models start to outpace the competitors.
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Fig. 2. Comparison of #transplants and #waiting list of the algorithms (a) 15 batch
setup, (b) 20 batch setup.

Fig. 3. Trend of the algorithms (a) batch 15 setup, (b) batch 20 setup.

Solution Times: In Fig. 4 we show the solution times of the anticipatory algo-
rithms for the best configuration of 5, 10 and 15 batch size. Each value is mea-
sured in seconds and represents the average of 10 runs. The APST2 algorithm
has only 2 points since it doesn’t scale further than 10 batch size, and the solu-
tion time for algorithm APST1 grows very fast with the batch size. Meanwhile
the AEG model remains very scalable even increasing the batch size.

Fig. 4. Times of the algorithms
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5 Conclusions and Future Research

Informally speaking, our main contribution allows to build an anticipatory model
for the KEP based on probabilistic, rather than statistical, considerations, and
therefore to forgo sampling. Additionally, our AEG-based technique allows to
take into account the effect of drop-offs. When grounded on the cycle formula-
tion, our method does not require the introduction of additional integer vari-
ables. Overall, the resulting approach manages to outperform significantly both
sampling-based anticipatory algorithms and a myopic approach, while having a
scalability similar to the latter. Plans for future research include an experimen-
tal comparison with other sampling-free methods, and tackling large-scale, real
world, instances. This will likely require the use of column generation, which
intuitively could prove particularly effective, given that most of our problem
variables are not subject to integrality constraints.
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Abstract. The recent emergence of novel computational devices, such
as adiabatic quantum computers, CMOS annealers, and optical paramet-
ric oscillators, present new opportunities for hybrid-optimization algo-
rithms that are hardware accelerated by these devices. In this work, we
propose the idea of an Ising processing unit as a computational abstrac-
tion for reasoning about these emerging devices. The challenges involved
in using and benchmarking these devices are presented and commercial
mixed integer programming solvers are proposed as a valuable tool for
the validation of these disparate hardware platforms. The proposed vali-
dation methodology is demonstrated on a D-Wave 2X adiabatic quantum
computer, one example of an Ising processing unit. The computational
results demonstrate that the D-Wave hardware consistently produces
high-quality solutions and suggests that as IPU technology matures it
could become a valuable co-processor in hybrid-optimization algorithms.

Keywords: Discrete optimization · Ising model ·
Quadratic unconstrained binary optimization · Integer programming ·
Large Neighborhood Search · Adiabatic quantum computation

1 Introduction

As the challenge of scaling traditional transistor-based Central Processing Unit
(CPU) technology continues to increase, experimental physicists and high-tech
companies have begun to explore radically different computational technologies,
such as adiabatic quantum computers (AQCs) [1], gate-based quantum comput-
ers [2–4], CMOS annealers [5–7], neuromorphic computers [8–10], memristive
circuits [11,12], and optical parametric oscillators [13–15]. The goal of all of
these technologies is to leverage the dynamical evolution of a physical system
to perform a computation that is challenging to emulate using traditional CPU
technology (e.g., the simulation of quantum physics) [16]. Despite their entirely
disparate physical implementations, AQCs, CMOS annealers, memristive cir-
cuits, and optical parametric oscillators are unified by a common mathematical
abstraction known as the Ising model, which has been widely adopted by the
physics community for the study of naturally occurring discrete optimization
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processes [17]. Furthermore, this kind of “Ising machine” [13,14] is already com-
mercially available with more than 2000 decision variables in the form of AQCs
developed by D-Wave Systems [18].

The emergence of physical devices that can quickly solve Ising models is par-
ticularly relevant to the constraint programming, artificial intelligence and oper-
ations research communities, because the impetus for building these devices is to
perform discrete optimization. As this technology matures, it may be possible for
this specialized hardware to rapidly solve challenging combinatorial problems,
such as Max-Cut [19] or Max-Clique [20]. Preliminary studies have suggested
that some classes of Constraint Satisfaction Problems may be effectively encoded
in such devices because of their combinatorial structure [21–24]. Furthermore,
an Ising model coprocessor could have significant impacts on solution methods
for a variety of fundamental combinatorial problem classes, such as MAX-SAT
[25–27] and integer programming [28]. At this time, however, it remains unclear
how established optimization algorithms should leverage this emerging technol-
ogy. This paper helps to address this gap by highlighting the key concepts and
hardware limitations that an algorithm designer needs to understand to engage
in this emerging and exciting computational paradigm.

Similar to an arithmetic logic unit (ALU) or a graphics processing unit
(GPU), this work proposes the idea of an Ising processing unit (IPU) as the
computational abstraction for wide variety of physical devices that perform opti-
mization of Ising models. This work begins with a brief introduction to the IPU
abstraction and its mathematical foundations in Sect. 2. Then the additional
challenges of working with real-world hardware are discussed in Sect. 3 and an
overview of previous benchmarking studies and solution methods are presented
in Sect. 4. Finally, a detailed benchmarking study of a D-Wave 2X IPU is con-
ducted in Sect. 5, which highlights the current capabilities of such a device. The
contributions of this work are as follows,

1. The first clear and concise introduction to the key concepts of Ising models
and the limitations of real-world IPU hardware, both of which are necessary
for optimization algorithm designers to effectively leverage these emerging
hardware platforms (Sects. 2 and 3).

2. Highlighting that integer programming has been overlooked by recent IPU
benchmarking studies (Sect. 4), and demonstrating the value of integer pro-
gramming for filtering easy test cases (Sect. 5.1) and verifying the quality of
an IPU on challenging test cases (Sect. 5.2).

Note that, due to the maturity and commercial availability of the D-Wave IPU,
this work often refers to that architecture as an illustrative example. However,
the methods and tools proposed herein are applicable to all emerging IPU hard-
ware realizations, to the best of our knowledge.

2 A Brief Introduction to Ising Models

This section introduces the notations of the paper and provides a brief intro-
duction to Ising models, the core mathematical abstraction of IPUs. The Ising
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model refers to the class of graphical models where the nodes, N , represent spin
variables (i.e., σi ∈ {−1, 1} ∀i ∈ N ) and the edges, E , represent interactions of
spin variables (i.e., σiσj ∀i, j ∈ E). A local field hi ∀i ∈ N is specified for each
node, and an interaction strength Jij ∀i, j ∈ E is specified for each edge. Given
these data, the energy of the Ising model is defined as,

E(σ) =
∑

i,j∈E
Jijσiσj +

∑

i∈N
hiσi (1)

Applications of the Ising model typically consider one of two tasks. First, some
applications focus on finding the lowest possible energy of the Ising model, known
as a ground state. That is, finding the globally optimal solution of the following
binary quadratic optimization problem:

min : E(σ)
s.t.: σi ∈ {−1, 1} ∀i ∈ N (2)

Second, other applications are interested in sampling from the Boltzmann dis-
tribution of the Ising model’s states:

Pr(σ) ∝ e
−E(σ)

τ (3)

where τ is a parameter representing the effective temperature of the Boltzmann
distribution [29]. It is valuable to observe that in the Boltzmann distribution, the
lowest energy states have the highest probability. Therefore, the task of sampling
from a Boltzmann distribution is similar to the task of finding the lowest energy
of the Ising model. Indeed, as τ approaches 0, the sampling task smoothly trans-
forms into the aforementioned optimization task. This paper focuses exclusively
on the mathematical program presented in (2), the optimization task.

Frustration: The notion of frustration is common in the study of Ising models
and refers to any instance of (2) where the optimal solution, σ∗, satisfies the
property,

E(σ∗) >
∑

i,j∈E
−|Jij | −

∑

i∈N
|hi| (4)

A canonical example is the following three node problem:

h1 = 0, h2 = 0, h3 = 0, J12 = −1, J23 = −1, J13 = 1 (5)

Observe that, in this case, there are a number of optimal solutions such that
E(σ∗) = −2 but none such that E(σ) =

∑
i,j∈E −|Jij | = −3. Note that frustra-

tion has important algorithmic implications as greedy algorithms are sufficient
for optimizing Ising models without frustration.
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Gauge Transformations: A valuable property of the Ising model is the gauge
transformation, which characterizes an equivalence class of Ising models. For
illustration, consider the optimal solution of Ising model S, σs∗. One can con-
struct a new Ising model T where the optimal solution is the same, except that
σt∗
i = −σs∗

i for a particular node i ∈ N is as follows:

J t
ij = −Js

ij ∀i, j ∈ E(i) (6a)

ht
i = −hs

i (6b)

where E(i) indicates the neighboring edges of node i. This S-to-T manipulation
is referred to as a gauge transformation. Given a complete source state σs and
a complete target state σt, this transformation is generalized to all of σ by,

J t
ij = Js

ijσ
s
i σ

s
jσ

t
iσ

t
j ∀i, j ∈ E (7a)

ht
i = hs

iσ
s
i σ

t
i ∀i ∈ N (7b)

It is valuable to observe that by using this gauge transformation property, one
can consider the class of Ising models where the optimal solution is σ∗

i = −1 ∀i ∈
N or any arbitrary vector of −1, 1 values without loss of generality.

Bijection of Ising and Boolean Optimization: It is also useful to observe that
there is a bijection between Ising optimization (i.e., σ ∈ {−1, 1}) and Boolean
optimization (i.e., x ∈ {0, 1}). The transformation of σ-to-x is given by,

σi = 2xi − 1 ∀i ∈ N (8a)
σiσj = 4xixj − 2xi − 2xj + 1 ∀i, j ∈ E (8b)

and the inverse x-to-σ is given by,

xi =
σi + 1

2
∀i ∈ N (9a)

xixj =
σiσj + σi + σj + 1

4
∀i, j ∈ E (9b)

Consequently, any results from solving Ising models are also immediately appli-
cable to the following class of Boolean optimization problems:

min :
∑

i,j∈E
cijxixj +

∑

i∈N
cixi

s.t.: xi ∈ {0, 1} ∀i ∈ N (10)

The Ising model provides a clean mathematical abstraction for understanding
the computation that IPUs perform. However, in practice, a number of hardware
implementation factors present additional challenges for computing with IPUs.
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3 Features of Analog Ising Processing Units

The core inspiration for developing IPUs is to take advantage of the natural
evolution of a discrete physical system to find high-quality solutions to an Ising
model [1,6,11,13]. Consequently, to the best of our knowledge, all IPUs devel-
oped to date are analog machines, which present a number of challenges that
the optimization community is not accustomed to considering.

σ4 σ5 σ6 σ7

σ0 σ1 σ2 σ3

σ12 σ13 σ14 σ15

σ8 σ9 σ10 σ11

σ20 σ21 σ22 σ23

σ16 σ17 σ18 σ19

σ28 σ29 σ30 σ31

σ24 σ25 σ26 σ27

Fig. 1. A 2-by-2 chimera graph illustrating the variable product limitations of a D-
Wave 2X IPU.

Effective Temperature: The ultimate goal of IPUs is to solve the optimization
problem (2) and determine the globally optimal solution to the input Ising model.
In practice, however, a variety of analog factors preclude IPUs from reliably
finding globally optimal solutions. As a first-order approximation, current IPUs
behave like a Boltzmann sampler (3) with some hardware-specific effective tem-
perature, τ [30]. It has also been observed that the effective temperature of an
IPU can vary around a nominal value based on the Ising model that is being
executed [31]. This suggests that the IPU’s performance can change based on
the structure of the problem input.

Environmental Noise: One of the primary contributors to the sampling nature
of IPUs are the environmental factors. All analog machines are subject to faults
due to environmental noise; for example, even classical computers can be affected
by cosmic rays. However, given the relative novelty of IPUs, the effects of envi-
ronmental noise are noticeable in current hardware. The effects of environmental
noise contribute to the perceived effective temperature τ of the IPU.

Coefficient Biases: Once an Ising model is input into an IPU, its coefficients are
subject to at least two sources of bias. The first source of bias is a model program-
ming error that occurs independently each time the IPU is configured for a compu-
tation.This bias is oftenmitigated byprogramming the IPUmultiple timeswith an
identical input and combining the results from all executions. The second source of
bias is a persistent coefficient error, which is an artifact of the IPU manufacturing
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and calibration process. Because this bias is consistent across multiple IPU execu-
tions, this source of bias is often mitigated by performing multiple gauge transfor-
mations on the input and combining the results from all executions.

Problem Coefficients: In traditional optimization applications, the problem coef-
ficients are often rescaled to best suit floating-point arithmetic. Similarly, IPUs
have digital-to-analog converters that can encode a limited number of values;
typically these values are represented as numbers in the range of −1 to 1. Some
IPUs allow for hundreds of steps within this range, [1,6] whereas others support
only the discrete set of {−1, 0, 1} [13]. In either case, the mathematical Ising
model must be rescaled into the IPU’s operating range. However, this mathe-
matically equivalent transformation can result in unexpected side effects because
the coefficients used in the IPU hardware are perturbed by a constant amount
of environmental noise and hardware bias, which can outweigh small rescaled
coefficient values.

Topological Limitations: Another significant feature of IPUs is a restricted set of
variable products. In classical optimization (e.g., (2)), it is assumed that every
variable can interact with every other variable, that is, an Ising model where
an edge connects every pair of variables. However, because of the hardware
implementation of an IPU, it may not be possible for some variables to interact.
For example, the current D-Wave IPUs are restricted to the chimera topology,
which is a two-dimensional lattice of unit cells, each of which consist of a 4-by-4
bipartite graph (e.g., see Fig. 1). In addition to these restrictions, fabrication
errors can also lead to random failures of nodes and edges in the IPU hardware.
Indeed, as a result of these minor imperfections, every D-Wave IPU developed
to date has a unique topology [32–34]. Research and development of algorithms
for embedding various kinds of Ising models into a specific IPU topology is still
an active area of research [21,35–37].

3.1 Challenges of Benchmarking Ising Processing Units

These analog hardware features present unique challenges for benchmarking
IPUs that fall roughly into three categories: (1) comparing to established bench-
mark libraries; (2) developing Ising model instance generators for testing and;
(3) comparing with classical optimization methods.

Benchmark Libraries: Research and development in optimization algorithms has
benefited greatly from standardized benchmark libraries [38–40]. However, direct
application of these libraries to IPUs is out of scope in the near term for the
following reasons: (1) the Ising model is a binary quadratic program, which is
sufficiently restrictive to preclude the use of many standard problem libraries; (2)
even in cases where the problems of interest can be mapped directly to the Ising
model (e.g., Max-Cut, Max-Clique), the task of embedding given problems onto
the IPU’s hardware graph can be prohibitive [41]; and (3) even if an embedding
can be found, it is not obvious that the problem’s coefficients will be amenable
to the IPU’s operating range.
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Instance Generation Algorithms: Due to these challenges, the standard practice
in the literature is to generate a collection of instances for a given IPU and use
these cases for the evaluation of that IPU [33,34,42,43]. The hope being that
these instances provide a reasonable proxy for how real-world applications might
perform on such a device.

Comparison with Classical Algorithms: Because of the radically different hard-
ware of CPUs vs IPUs and the stochastic nature of the IPUs, conducting a fair
comparison of these two technologies is not immediately clear [43–45]. Indeed,
comparisons of D-Wave’s IPU with classical algorithms have resulted in vigor-
ous discussions about what algorithms and metrics should be used to make such
comparisons [34,46,47]. It is widely accepted that IPUs do not provide optimal-
ity guarantees and are best compared to heuristic methods (e.g. local search)
in terms of runtime performance. This debate will most likely continue for sev-
eral years. In this work, our goal is not to answer these challenging questions
but rather to highlight that commercial mixed integer programming solvers are
valuable and important tools for exploring these questions.

4 A Review of Ising Processing Unit Benchmarking
Studies

Due to the challenges associated with mapping established optimization test
cases to specific IPU hardware [41], the IPU benchmarking community has
adopted the practice of generating Ising model instances on a case-by-case basis
for specific IPUs [33,34,42,43] and evaluating these instances on a variety of solu-
tion methods. The following subsections provide a brief overview of the instance
generation algorithms and solution methods that have been used in various IPU
benchmarking studies. The goals of this review are to: (1) reveal the lack of
consistency across current benchmarking studies; (2) highlight the omission of
integer programming methods in all of the recent publications and; (3) motivate
the numerical study conducted in this work.

4.1 Instance Generation Algorithms

The task of IPU instance generation amounts to finding interesting values for
h and J in (1). In some cases the procedures for generating these values are
elaborate [33,48] and are designed to leverage theoretical results about Ising
models [42]. A brief survey reveals five primary problem classes in the literature,
each of which is briefly introduced. For a detailed description, please refer to the
source publication of the problem class.

Random (RAN-k and RANF-k): To the best of our knowledge, this general
class of problem was first proposed in [27] and was later refined into the RAN-k
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problem in [34]. The RAN-k problem consists simply of assigning each value of
h to 0 and each value of J uniformly at random from the set

{−k,−k + 1, . . . ,−2,−1, 1, 2, . . . ,k − 1,k} (11)

The RANF-k problem is a simple variant of RAN-k where the values of h are
also selected uniformly at random from (11). As we will later see, RAN-1 and
RANF-1, where h,J ∈ {−1, 1}, are an interesting subclass of this problem.

Frustrated Loops (FL-k and FCL-k): The frustrated loop problem was originally
proposed in [42] and then later refined to the FL-k problem in [48]. It consists
of generating a collection of random cycles in the IPU graph. In each cycle,
all of the edges are set to −1 except one random edge, which is set to 1 to
produce frustration. A scaling factor, α, is used to control how many random
cycles should be generated, and the parameter k determines how many cycles
each edge can participate in. A key property of the FL-k generation procedure
is that two globally optimal solutions are maintained at σi = −1 ∀i ∈ N and
σi = 1 ∀i ∈ N [48]. However, to obfuscate this solution, a gauge transformation
is often applied to make the optimal solution a random assignment of σ.

A variant of the frustrated loop problem is the frustrated cluster loop prob-
lem, FCL-k [43]. The FCL-k problem is inspired by the chimera network topol-
ogy (i.e., Fig. 1). The core idea is that tightly coupled variables (e.g., σ0...σ7

in Fig. 1) should form a cluster where all of the variables take the same value.
This is achieved by setting all of the values of J within the cluster to −1. For
the remaining edges between clusters, the previously described frustrated cycles
generation scheme is used. Note that a polynomial time algorithm is known for
solving the FCL-k problem class on chimera graphs [45].

It is worthwhile to mention that the FL-k and FCL-k instance generators
are solving a cycle packing problem on the IPU graph. Hence, the randomized
algorithms proposed in [42,43] are not guaranteed to find a solution if one exists.
In practice, this algorithm fails for the highly constrained settings of α and k.

Weak-Strong Cluster Networks (WSCNs): The WSCN problem was proposed in
[33] and is highly specialized to the chimera network topology. The basic building
block of a WSCN is a pair of spin clusters in the chimera graph (e.g., σ0...σ7 and
σ8...σ15 in Fig. 1). In the strong cluster the values of h are set to the strong force
parameter sf and in the weak cluster the values of h are set to the weak force
parameter wf. All of the values of J within and between this cluster pair are set
to −1. Once a number of weak-strong cluster pairs have been placed, the strong
clusters are connected to each other using random values of J ∈ {−1, 1}. The
values of sf = −1.0 and wf = 0.44 are recommended by [33]. The motivation for
the WSCN design is that the clusters create deep local minima that are difficult
for local search methods to escape.

4.2 Solution Methods

Once a collection of Ising model instances have been generated, the next step
in a typical benchmarking study is to evaluate those instances on a variety of
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solution methods, including the IPU, and compare the results. A brief survey
reveals five primary solution methods in the literature, each of which is briefly
introduced. For a detailed description, please refer to the source publications of
the solution method.

Simulated Annealing: The most popular staw-man solution method for compar-
ison is Simulated Annealing [49]. Typically the implementation only considers a
neighborhood of single variable flips and the focus of these implementations is
on computational performance (e.g. using GPUs for acceleration). The search is
run until a specified time limit is reached.

Large Neighborhood Search: The state-of-the-art meta-heuristic for solving Ising
models on the chimera graphs is a Large Neighborhood Search (LNS) method
called the Hamze-Freitas-Selby (HFS) algorithm [50,51]. The core idea of this
algorithm is to extract low treewidth subgraphs of the given Ising model and
then use dynamic programming to compute the optimal configuration of these
subgraphs. This extract and optimize process is repeated until a specified time
limit is reached. A key to this method’s success is the availability of a highly
optimized open-source C implementation [52].

Integer Programming: Previous works first considered integer quadratic pro-
gramming [27] and quickly moved to integer linear programming [53,54] as a
solution method. The mathematical programming survey [55] provides a useful
overview of the advantages and dis-advantages of various integer programming
(IP) formulations.

Based on some preliminary experiments with different formulations, this work
focuses on the following integer linear programming formulation of the Ising
model, transformed into the Boolean variable space:

min :
∑

i,j∈E
cijxij +

∑

i∈N
cixi + c (12a)

s.t.:
xij ≥ xi + xj − 1, xij ≤ xi, xij ≤ xj ∀i, j ∈ E (12b)
xi ∈ {0, 1} ∀i ∈ N , xij ∈ {0, 1} ∀i, j ∈ E

where the application of (8) leads to,

cij =
∑

i,j∈E
4Jij ∀i, j ∈ E (13a)

ci =
∑

i,j∈E(i)
2Jij +

∑

i∈N
2hi ∀i ∈ N (13b)

c =
∑

i,j∈E
Jij −

∑

i∈N
hi (13c)

In this formulation, the binary quadratic program defined in (10) is converted
to a binary linear program by lifting the variable products xixj into a new
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variable xij and adding linear constraints to capture the xij = xi ∧ xj ∀i, j ∈ E
conjunction constraints. Preliminary experiments of this work confirmed the
findings of [55], that this binary linear program formulation is best on sparse
graphs, such as the hardware graphs of current IPUs.

Table 1. A chronological summary of IPU benchmarking studies

Publication Problem classes Solution methods

RAN RANF FL FCL WSCN IP SA LNS QMC AQC

[27] � �
[53] � �
[54] � �
[42] � � � �
[48] � � � �
[60] � � � � �
[33] � � � �
[43] � � � � �

This work � � � � � � � �

Adiabatic Quantum Computation: An adiabatic quantum computation (AQC)
[56] is a method for solving an Ising model via a quantum annealing process [57].
This solution method has two notable traits: (1) the AQC dynamical process
features quantum tunneling [58], which can help it to escape from local minima;
(2) it can be implemented in hardware (e.g. the D-Wave IPU).

Quantum Monte Carlo: Quantum Monte Carlo (QMC) is a probabilistic algo-
rithm that can be used for simulating large quantum systems. QMC is a very
computationally intensive method [33,59] and thus the primary use of QMC is
not to compare runtime performance but rather to quantify the possible value
of an adiabatic quantum computation that could be implemented in hardware
at some point in the future.

4.3 Overview

To briefly summarize a variety of benchmarking studies, Table 1 provides an
overview of the problems and solution methods previous works have considered.
Although there was some initial interest in integer programming models [27,
53,54], more recent IPU benchmark studies have not considered these solution
methods and have focused exclusively on heuristic methods. Furthermore, there
are notable inconsistencies in the type of problems being considered. As indicated
by the last row in Table 1, the goal of this work is revisit the use of IP methods
for benchmarking IPUs and to conduct a thorough and side-by-side study of
all problem classes and solution methods proposed in the literature. Note that,
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because this paper focuses exclusively on the quality and runtime of the Ising
model optimization task (2), the study of SA and QMC are omitted as they
provide no additional insights over the LNS [48] and AQC [33] methods.

5 A Study of Established Methods

This section conducts an in-depth computational study of the established
instance generation algorithms and solution methods for IPUs. The first goal
of this study is to understand what classes of problems and parameters are the
most challenging, as such cases are preferable for benchmarking. The second
goal is to conduct a validation study of a D-Wave 2X IPU, to clearly quantify its
solution quality and runtime performance. This computational study is divided
into two phases. First, a broad parameter sweep of all possible instance gen-
eration algorithms is conducted and a commercial mixed-integer programming
solver is used to filter out the easy problem classes and parameter settings. Sec-
ond, after the most challenging problems have been identified, a detailed study
is conducted to compare and contrast the three disparate solution methods IP,
LNS, and AQC.

Throughout this section, the following notations are used to describe the
algorithm results: UB denotes the objective value of the best feasible solution
produced by the algorithm within the time limit, LB denotes the value of the
best lower bound produced by the algorithm within the time limit, T denotes
the algorithm runtime in seconds1, TO denotes that the algorithm hit a time
limit of 600 s, μ(·) denotes the mean of a collection of values, sd(·) denotes the
standard deviation of a collection of values, and max(·) denotes the maximum
of a collection of values.

Computation Environment: The classical computing algorithms are run on HPE
ProLiant XL170r servers with dual Intel 2.10 GHz CPUs and 128 GB memory.
After a preliminary comparison of CPLEX 12.7 [61] and Gurobi 7.0 [62], no
significant difference was observed. Thus, Gurobi was selected as the commercial
Mixed-Integer Programming (MIP) solver and was configured to use one thread.
The highly specialized and optimized HFS algorithm [52] is used as an LNS-
based heuristic and also uses one thread.

The IPU computation is conducted on a D-Wave 2X [63] adiabatic quantum
computer (AQC). This computer has a 12-by-12 chimera cell topology with
random omissions; in total, it has 1095 spins and 3061 couplers and an effective
temperature of τ ∈ (0.091, 0.053) depending on the problem being solved [64,65].
Unless otherwise noted, the AQC is configured to produce 10,000 samples using
a 5-µs annealing time per sample and a random gauge transformation every 100
samples. The best sample is used in the computation of the upper bound value.
The reported runtime of the AQC reflects the amount of time used on the IPU
hardware; it does not include the overhead of communication or scheduling of
the computation, which adds an overhead of about three seconds.
1 For MIP solvers, the runtime includes the computation of the optimally certificate.
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Table 2. Parameter settings of various problems.

Problem First param. Second param.

RAN-k k ∈ (1..5 : 1) NA

RANF-k k ∈ (1..5 : 1) NA

FL-k k ∈ (1..5 : 1) α ∈ (0..1 : 0.1)

FCL-k k ∈ (1..5 : 1) α ∈ (0..1 : 0.1)

WSCN wf ∈ (−1..1 : 0.2) sf ∈ (−1..1 : 0.2)

Table 3. MIP runtime on various IPU benchmark problems (seconds)

Problem Cases μ(|N |) μ(|E|) μ(T ) sd(T ) max(T )

RAN 1250 1095 3061 TO — TO

RANF 1250 1095 3061 TO — TO

FL 6944 1008 2126 1.82 1.06 16.80

FCL 8347 888 2282 4.19 2.81 41.40

WSCN 30250 949 2313 0.25 0.87 17.90

All of the software used in this benchmarking study is available as open-
source via: bqpjson, a language-independent JSON-based Ising model exchange
format designed for benchmarking IPU hardware; dwig, algorithms for IPU
instance generation; bqpsolvers, tools for encoding bqpjson data into various
optimization formulations and solvers.2

5.1 Identifying Challenging Cases

Broad Parameter Sweep: In this first experiment, we conduct a parameter sweep
of all the inputs to the problem generation algorithms described in Sect. 4.1.
Table 2 provides a summary of the input parameters for each problem class.
The values of each parameter are encoded with the following triple: (start..stop :
step size). When two parameters are required for a given problem class, the cross
product of all parameters is used. For each problem class and each combination
of parameter settings, 250 random problems are generated in order to produce
a reasonable estimate of the average difficulty of that configuration. Each prob-
lem is generated using all of the decision variables available on the IPU. The
computational results of this parameter sweep are summarized in Table 3.

The results presented in Table 3 indicate that, at this problem size, all vari-
ants of the FL, FCL, and WSCN problems are easy for modern MIP solvers.
This is a stark contrast to [33], which reported runtimes around 10,000 s when
applying Simulated Annealing to the WSCN problem. Furthermore, this result

2 The source code is available at https://github.com/lanl-ansi/ under the repository
names bqpjson, dwig and bqpsolvers.

https://github.com/lanl-ansi/
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Table 4. MIP runtime on RAN-k and RANF-k IPU benchmark problems (seconds)

k Cases μ(|N |) μ(|E|) μ(T ) sd(T ) max(T ) μ(T ) sd(T ) max(T )

Problems of increasing k RAN-k RANF-k

1 250 194 528 340.0 195.0 TO 14.10 15.20 82.70

2 250 194 528 89.3 64.3 481 2.97 3.41 22.70

3 250 194 528 64.8 28.3 207 1.67 1.48 10.70

4 250 194 528 58.0 29.5 250 1.25 0.83 6.10

5 250 194 528 49.0 23.0 131 1.12 0.77 6.98

6 250 194 528 49.0 22.4 119 1.05 0.59 4.47

7 250 194 528 45.0 22.8 128 1.04 0.75 7.60

8 250 194 528 44.8 23.7 121 1.01 0.62 5.43

9 250 194 528 42.3 22.3 110 0.98 0.60 5.08

10 250 194 528 39.8 22.1 107 0.91 0.43 3.09

suggests that these problems classes are not ideal candidates for benchmarking
IPUs. In contrast, the RAN and RANF cases consistently hit the runtime limit of
the MIP solver, suggesting that these problems are more useful for benchmark-
ing. This result is consistent with a similar observation in the SAT community,
where random SAT problems are known to be especially challenging [66,67]. To
get a better understanding of these RAN problem classes, we next perform a
detailed study of these problems for various values of the parameter k.

The RAN and RANF Problems: In this second experiment, we focus on the
RAN-k and RANF-k problems and conduct a detailed parameter sweep of k ∈
(1..10 : 1). To accurately measure the runtime difficulty of the problem, we also
reduce the size of the problem from 1095 variables to 194 variables so that the
MIP solver can reliably terminate within a 600 s time limit. The results of this
parameter sweep are summarized in Table 4.

The results presented in Table 4 indicate that (1) as the value of k increases,
both the RAN and RANF problems become easier; and (2) the RANF problem is
easier than the RAN problem. The latter is not surprising because the additional
linear coefficients in the RANF problem break many of the symmetries that exist
in the RAN problem. These results suggest that it is sufficient to focus on the
RAN-1 and RANF-1 cases for a more detailed study of IPU performance. This
is a serendipitous outcome for IPU benchmarking because restricting the prob-
lem coefficients to {−1, 0, 1} reduces artifacts caused by noise and the numeral
precision of the analog hardware.

5.2 An IPU Evaluation Using RAN-1 and RANF-1

Now that the RAN-1 and RANF-1 problem classes have been identified as the
most interesting for IPU benchmarking, we perform two detailed studies on these
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problems using all three algorithmic approaches (i.e., AQC, LNS, and MIP).
The first study focuses on the scalability trends of these solution methods as the
problem size increases, whereas the second study focuses on a runtime analysis
of the largest cases that can be evaluated on a D-Wave 2X IPU hardware.

Scalability Analysis: In this experiment, we increase the problem size gradually
to understand the scalability profile of each of the solution methods (AQC, LNS,
and MIP). The results are summarized in Table 5. Focusing on the smaller prob-
lems, where the MIP solver provides an optimality proof, we observe that both
the AQC and the LNS methods find the optimal solution in all of the sampled
test cases, suggesting that both heuristic solution methods are of high quality.

Table 5. A comparison of solution quality and runtime as problem size increases on
RAN-1 and RANF-1.

AQC LNS MIP

Cases μ(|N |) μ(|E|) μ(UB) μ(T ) μ(UB) μ(T ) μ(UB) μ(LB) μ(T )

RAN-1 problems of increasing size

250 30 70 −44 3.53 −44 10 −44 −44 0.05

250 69 176 −110 3.57 −110 10 −110 −110 0.48

250 122 321 −199 3.60 −199 10 −199 −199 15.90

250 194 528 −325 3.64 −325 10 −325 −327 340.00

250 275 751 −462 3.68 −462 10 −461 −483 TO

250 375 1030 −633 3.73 −633 10 −629 −673 TO

250 486 1337 −821 3.77 −822 10 −814 −881 TO

250 613 1689 −1038 3.77 −1039 10 −1021 −1116 TO

250 761 2114 −1296 3.76 −1297 10 −1262 −1401 TO

250 923 2578 −1574 3.77 −1576 10 −1525 −1713 TO

250 1095 3061 −1870 3.80 −1873 10 −1806 −2045 TO

RANF-1 problems of increasing size

250 30 70 −53 3.53 −53 10 −53 −53 0.02

250 69 176 −127 3.56 −127 10 −127 −127 0.13

250 122 321 −229 3.61 −229 10 −229 −229 0.67

250 194 528 −370 3.66 −370 10 −370 −370 14.10

250 275 751 −526 3.71 −526 10 −526 −527 128.00

250 375 1030 −719 3.76 −719 10 −719 −727 471.00

250 486 1337 −934 3.81 −934 10 −933 −954 588.00

250 613 1689 −1179 3.82 −1179 10 −1178 −1211 TO

250 761 2114 −1472 3.82 −1472 10 −1470 −1520 TO

250 923 2578 −1786 3.82 −1787 10 −1778 −1856 TO

250 1095 3061 −2121 3.86 −2122 10 −2110 −2212 TO
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Focusing on the larger problems, we observe that, in just a few seconds, both
AQC and LNS find feasible solutions that are of higher quality than what the
MIP solver can find in 600 s. This suggests that both methods are producing
high-quality solutions at this scale. As the problem size grows, a slight qual-
ity discrepancy emerges favoring LNS over AQC; however, this discrepancy in
average solution quality is less than 1% of the best known value.

Detailed Runtime Analysis: Given that both the AQC and the LNS solution
methods have very similar solution qualities, it is prudent to perform a detailed
runtime study to understand the quality vs. runtime tradeoff. To develop a
runtime profile of the LNS algorithm, the solver’s runtime limit is set to values
ranging from 0.01 to 10.00 s. In the case of the AQC algorithm, the number
of requested samples is set to values ranging from 10 to 10,000, which has the
effect of scaling the runtime of the IPU process. The results of this study are
summarized in Fig. 2. Note that the stochastic sampling nature of the IPU results
in some noise for small numbers of samples. However, the overall trend is clear.

The results presented in Fig. 2 further illustrate that (1) the RAN problem
class is more challenging than the RANF problem class, and (2) regardless of
the runtime configuration used, the LNS heuristic slightly outperforms the AQC;
however, the average solution quality is always within 1% of each other. Com-
bining all of the results from this section provides a strong validation that even
if the D-Wave 2X IPU cannot guarantee a globally optimal solution, it produces
high quality solutions reliably across a wide range of inputs.
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Fig. 2. Detailed runtime analysis of the AQC (D-Wave 2X) and LNS heuristic (HFS)
on the RAN-1 (left) and RANF-1 (right) problem classes.

6 Conclusion

This work introduces the idea of Ising processing units (IPUs) as a compu-
tational abstraction for emerging physical devices that optimize Ising models.
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It highlights a number of unexpected challenges in using such devices and pro-
poses commercial mixed-integer programming solvers as a tool to help improve
validation and benchmarking.

A baseline study of the D-Wave 2X IPU suggests that the hardware specific
instance generation is a reasonable strategy for benchmarking IPUs. However,
finding a class of challenging randomly generated test cases is non-trivial and an
open problem for future work. The study verified that at least one commercially
available IPU is already comparable to current state-of-the-art classical methods
on some classes of problems (e.g. RAN and RANF). Consequently, as this IPU’s
hardware increases in size, one would expect that it could outperform state-
of-the-art classical methods because of its parallel computational nature and
become a valuable co-processor in hybrid-optimization algorithms.

Overall, we find that the emergence of IPUs is an interesting development for
the optimization community and warrants continued study. Considerable work
remains to determine new challenging classes of test cases for validating and
benchmarking IPUs. We hope that the technology overview and the validation
study conducted in this work will assist the optimization research community
in exploring IPU hardware platforms and will accelerate the development of
hybrid-algorithms that can effectively leverage these emerging technologies.
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Abstract. The Traveling Salesman Problem, at the heart of many rout-
ing applications, has a few well-known relaxations that have been very
effective to compute lower bounds on the objective function or even to
perform cost-based domain filtering in constraint programming models.
We investigate other ways of using such relaxations based on comput-
ing the frequency of edges in near-optimal solutions to a relaxation. We
report early empirical results on symmetric instances from tsplib.

1 Introduction

The Traveling Salesman Problem (tsp) is certainly one of the most well-studied
combinatorial optimization problems. It is of theoretical interest as a promi-
nent representative of the class of NP-hard problems but also of great practical
importance in routing and other application areas. Several relaxations of this
problem have long been investigated as part of the efforts to solve it by com-
puting lower bounds on the objective for search-tree pruning and more recently
for cost-based domain filtering given an upper bound. This short paper exam-
ines whether recent work related to counting-based branching heuristics in Con-
straint Programming (cp) may offer new and effective ways of exploiting these
relaxations.

Counting-based search [19] represents a family of branching heuristics in cp
that guide the search for solutions by identifying likely variable-value assign-
ments in each constraint. Originally introduced for satisfaction problems it was
later extended to optimization problems [18]. Given a constraint c(x1, . . . , xk) on
finite-domain variables xi ∈ Di 1≤i≤k, let f : D1 × · · · × Dk → N associate a cost
to each k-tuple t of values for the variables appearing in that constraint and z be
a finite-domain cost variable. An optimization constraint c�(x1, x2, . . . , xk, z, f)
holds if c(x1, x2, . . . , xk) is satisfied and z = f(x1, x2, . . . , xk). Let ε ≥ 0 be a
small real number and z� = mint : c(t) f(t) (without loss of generality consider
that we are minimizing). We call

c© Springer Nature Switzerland AG 2019
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σ�(xi, d, c�, ε) =

∑
t=(x1,...,xi−1,d,xi+1,...,xk) : c�(t,z,f)∧z≤(1+ε)z� ω(z, z�, ε)

∑
t=(x1,...,xk) : c�(t,z,f)∧z≤(1+ε)z� ω(z, z�, ε)

the cost-based solution density of variable-value pair (xi, d) in c� given ε. Its
value, between 0 and 1, measures how often assignment xi = d appears in
“good” satisfying assignments to c�. If ε = 0 this corresponds to the solution
density restricted to the optimal solutions to the constraint with respect to f .
A positive ε gives a margin to include close-to-optimal solutions, but at a dis-
count proportional to their distance from z� (the minimum value of f over solu-
tions to c), as given by generic weight function ω(z, z�, ε) ∈ [0, 1] (for example,
ω(z, z�, ε) = 1 − z−z�

εz� ) whose definition may vary depending on the constraint.
We use cost-based solution densities in cp to favour branching decisions, in the
form of a variable assignment, that retain many good-quality solutions from the
individual perspective of constraints, keeping in mind that each constraint in cp
tends to represent a large combinatorial substructure of the problem.

In the rest of the paper, Sect. 2 reviews the tsp and in particular its common
relaxations, Sect. 3 sketches the way cost-based solution densities are computed
for the few constraints that are relevant here, Sect. 4 presents how cost-based
solution densities can filter out unpromising edges as a preprocessing step or offer
insightful branching heuristics, and Sect. 5 provides an empirical evaluation of
these ideas on standard benchmark instances from the tsplib.

2 TSP

We are given a complete and undirected graph G = (V,E), where V is called the
vertex set and E is called the edge set. We are also given some costs associated
with the edges of the graph, namely tij ,∀(i, j) ∈ E, and we assume that the
triangle inequalities hold, i.e., tij+tjk ≥ tik for every triplet of vertices i, j, k ∈ V .
Then, the tsp calls for finding a unique tour visiting each vertex i ∈ V exactly
once. By associating a binary variable xij that takes value 1 if edge (i, j) ∈ E
belongs to the tour, the Integer Programming model with the most effective
linear programming relaxation reads as follows

min
∑

(i,j)∈E

tijxij (1)

∑

(i,j)∈δ(i)

xij = 2, i ∈ V (2)

∑

(i,j)∈δ(S)

xij ≥ 2, S ⊆ V, 2 ≤ |S| ≤ |V | − 2 (3)

xij ∈ {0, 1}, (i, j) ∈ E (4)

where δ(i) (resp. δ(S)) denotes the set of edges incident to vertex i (resp. with one
endpoint in set S). Degree constraints (2) establish that each vertex needs exactly
two incident edges in a tour, while (3) forbid any subtour, i.e., a cycle of length
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smaller than V . As stated, the tsp is NP-hard and a number of relaxations
have been investigated. The strongest is obtained by optimizing (1) over the
so-called subtour elimination polytope, that resulting from relaxing the integral-
ity requirement (4) to nonnegativity. However, this relaxation is exponentially
large and requires some care computationally (a sequence of min-cut/max-flow
problems has to be solved on carefully constructed graphs). Nowadays, linear-
programming based algorithms have taken over the solution of extremely large-
scale tsp instances and concorde [1] is the state-of-the-art solver. However,
exploiting the combinatorial structure of the tsp on more heterogeneous prob-
lems and incorporating its solution within modular programming paradigms like
cp is still extremely relevant in practice and more combinatorial tsp relaxations
that have been known for decades can be extremely useful. More precisely, in
this paper we consider three of them.

1-tree relaxation. For a given vertex, say vertex 1, a 1-tree is a tree spanning
the vertices in V \ {1} plus two edges incident with vertex 1. It is easy to see
that any 1-tree has at most one cycle and if the tree is computed by solving a
minimum-cost spanning tree and the two edges are those of minimum cost, then
the cost of the resulting 1-tree provides a lower bound on the optimal tsp cost.
The 1-tree relaxation is computable in polynomial time by solving a minimum-
cost spanning tree (O(|V |2) complexity) and has been used in one of the first
breakthrough algorithm for the tsp by Held and Karp [15,16].

2-matching relaxation. The 2-matching relaxation is obtained from model (1)–
(4) by dropping constraints (3) (but keeping the integrality requirements (4)).
The resulting integer programming problem is a perfect 2-matching, i.e., a col-
lection of minimum-cost disjoint cycles covering all vertices and can be solved
in polynomial time by the famous algorithm of Edmonds [13].

n-path relaxation. This relaxation was introduced by Christofides et al. [7] and
generally used with a path representation of the problem where a vertex, say 1,
is considered the starting one of the tour and duplicated (vertex n + 1), so as
to transform a tour in a path of n + 1 edges from vertex 1 to itself, i.e., n + 1.
The idea is to relax the degree constraint of each vertex and, at the same time,
imposing that |V | := n edges need to be selected in the resulting path. Through
dynamic programming, such a shortest but not-necessarily-elementary path can
be computed in polynomial time and this relaxation has been especially used in
the column generation approaches for more complex routing problems like the
Capacitated Vehicle Routing and its variant.

We end the section by noting that there have been several previous attempts
in cp to filter edges by using relaxations. Two of the most relevant ones in this
context are Benchimol et al. [3] and Ducomman et al. [12]. In [3], the authors
consider the 1-tree relaxation and, in an additive way, the 2-matching one to
empower the so-called weightedCircuit constraint so as to remove edges from
the variables’ domain through cost-based domain filtering [14]. The computa-
tional experiments on the tsp show strong size reductions and improved com-
puting times with respect to less sophisticated cp models. In [12], the authors
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Table 1. A basic cp model for the tsp

min z =
∑n

i=1 γisi s.t.
minWeightAlldifferent({s1, . . . , sn}, z, Γ )
noCycle({s1, . . . , sn})
si ∈ {2, 3, . . . , n + 1} 1 ≤ i ≤ n
z ∈ N

extend the work in [3] for the weightedCircuit constraint by showing that
among the three bounds above, 1-tree, 2-matching and n-path, there is no dom-
inance in terms of filtering and successfully apply the framework to one of the
time-constrained tsp variant, namely tsp with time windows.

3 Solution Densities of CP Optimization Constraints

The combinatorial structure of each relaxation presented in the previous section
happens to be captured by some existing optimization constraint in cp. In this
section we review them and outline the ways solution densities are computed
for them. But first, consider the following basic cp model for the tsp as given
at Table 1. Without loss of generality we start a tour at vertex 1 and end it
at vertex n + 1, which is a duplicate of 1. We define successor variables si so
that si = j corresponds to using edge (i, j). Γ represents the distance matrix.
The minWeightAlldifferent optimization constraint [6] is an alldifferent
constraint to which we add costs for each variable-value assignment and an extra
variable representing the sum of the assignments. Here it enforces the assignment
part for the successor variables si and links them to the objective variable z
but does not apply any cost-based domain filtering. Constraint noCycle is the
subtour elimination constraint.

2-matching relaxation. The collection of minimum-cost disjoint cycles for the for-
mer ip model of Sect. 2 corresponds to a minimum-cost assignment for the latter
cp model, captured by the minWeightAlldifferent constraint. As described
in [18], to derive cost-based solution densities from that constraint we first com-
pute a minimum-weight bipartite matching, say of cost z�, using the Hungarian
algorithm. As a by-product of this computation we get a reduced-cost matrix
R = (rij) whose non-negative entries rij tell how much of an increase in cost
we can expect if we assign value j to variable i instead of the value from the
computed matching. Next we define related matrix R′ = (r′

ij) as

r′
ij = max(0,

(εz� + 1) − rij

εz� + 1
).

Each entry r′
ij lies in the real interval [0, 1], with value 1 corresponding to a

reduced cost rij of 0 and value 0 corresponding to any reduced cost signalling a
variable-value assignment whose cost would exceed the ε margin.
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The permanent of a n × n matrix A = (aij) is defined as

per(A) = Σp∈P Πn
i=1ai,p(i)

where P denotes the set of all permutations of {1, 2, . . . , n}. In the case of a
binary matrix representing the domain of each variable (variables on the rows,
values on the columns, and a “1” entry if and only if the value appears in the
domain of the variable) this represents the number of solutions to the constraint:
we sum over all possible assignments; the inner product is equal to 1 if each
variable has the corresponding value in its domain and 0 otherwise. In the case
of R′ an optimal assignment counts as 1, any assignment whose cost exceeds
(1 + ε)z� or that is simply infeasible counts as 0, and any other assignment is
counted at a discount proportional to how far it is from the optimum. We thus
achieve a weighted counting of feasible assignments that are within our ε margin.

The cost-based solution density of a variable-value pair will be computed as
the ratio of two permanents. Because computing the permanent is #P -complete,
several computationally-tractable upper bounds have been proposed: we use
bound U1 from [23].

1-tree relaxation. There has been considerable work on (weighted) tree structures
in cp about domain filtering [2,10,11,20,21], failure explanation [8], and (cost-
based) solution densities [4,9]. We recall below the latter work that is relevant
here. Note that since our goal is to compute edge frequencies in low-weight trees
and not a lower bound on a tour, we consider spanning trees instead of 1-trees.

We define matrix M = (mij) whose elements are univariate polynomials built
from edge set E and weight function w defined over E:

mij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−xw(e), i �= j e = (vi, vj) ∈ E

0, i �= j (vi, vj) �∈ E
∑

e=(vi,vk)∈E

xw(e), i = j

A remarkable result [5] states that any minor of M (i.e. the determinant
of the submatrix obtained by removing from M row and column i for any i)
yields a polynomial

∑
k akxk in which monomial akxk indicates the number ak

of spanning trees of weight k. Instead of computing the determinant of a matrix
of polynomials, a potentially time-consuming process, we instantiate x to a real
value between 0 and 1 (e.g. 0.7 in our experiments), yielding a matrix of scalars.
Its effect is to apply an exponential decay to the number ak of spanning trees of
weight k according to the difference between that weight and that of a minimum
spanning tree, thus giving more importance to close-to-optimal trees. Setting
x = 1 does not apply any decay and so all trees are counted equally—the closer
x gets to 0, the more aggressive the decay.

To compute the cost-based solution density of an edge we exploit the fact
that the matrix M of a graph without that edge is almost identical to the original
one, leading to an efficient computation by matrix inversion, as described in [4].
To consider this relaxation we add a minWeightSpanningTree constraint to the
cp model at Table 1.
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Fig. 1. From left to right: top 15% edges for each vertex according to the 2-matching
and 1-tree relaxations, their union, and the 35% cheapest edges per vertex.

n-path relaxation. We can represent an n-path with a regular constraint on
variables 〈x1, x2, . . . , xn〉 where xi corresponds to the vertex in ith position on
the path and using the input graph as the automaton. This allows us to use
cost-regular, its optimization variant, for which an algorithm computing cost-
based solution densities has already been proposed [18]. The domain-filtering
algorithm for regular builds and maintains a layered digraph built by unfolding
the automaton over the sequence of variables. Each path from the first layer to
the last in the layered digraph corresponds to a solution (here, an n-path). The
cost-based solution density algorithm needs to restrict its attention to paths of
cost at most (1 + ε)z� where z� is the cost of the shortest n-path. It therefore
computes at each node of the digraph the number of incoming and outgoing
partial paths of each cost up to (1+ε)z�. The number of relevant paths featuring
a given variable-value pair is computed as the sum over all corresponding arcs of
the products of number of partial incoming/outgoing paths at their endpoints,
provided their composition makes an n-path of cost at most (1 + ε)z� (see [18]
for details—note that contrary to that reference, here we weigh paths according
to their cost, similarly to the other two relaxations). To consider this relaxation
we add a cost-regular constraint to the cp model at Table 1.

4 Exploiting Cost-Based Solution Densities

4.1 Preprocessing

We investigate using cost-based solution densities computed from the relaxations
as a preprocessing step that discards unpromising edges in an optimal tour. From
each relaxation, we consider the k% highest solution densities for each vertex,
with the choice of k depending on how aggressive we wish to be, and then combine
that information by keeping the union of the corresponding edges. In this way
we only discard edges that are considered unpromising by all relaxations.

As an illustration consider instance fri26 from the tsplib. Each graph in
Fig. 1 shows the vertices in clockwise order of its optimal tour and the edges
that are kept in each case. We observed that the n-path relaxation (not shown
here) does not provide discriminating information unless some variables are fixed
and so will be left out for preprocessing. Note that the graph from the 2-matching
(and of course its union with the 1-tree) includes all edges of the optimal tour.
To preserve all the optimal edges while simply keeping the cheapest edges from
each vertex we would need to increase k to 35%, yielding a much denser graph
(extreme right).
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4.2 Branching Heuristic

Beyond preprocessing, cost-based solution densities provide insightful informa-
tion for optimistic branching in a search tree. The question of how best to com-
bine such information from each relaxation arises again—one simple combina-
tion that has worked well in general, called maxSD� [18], identifies the highest
cost-based solution density over all constraints, variables, and values, makes the
corresponding assignment in the left branch and forbids that same assignment
in the right branch. Another combination that we will evaluate considers the
arithmetic mean of the cost-based solution densities from each relaxation for a
given variable-value pair and selects the highest one.

Table 2. Average performance (10 runs) of concorde to solve to optimality symmetric
instances of size 150 to 400 from the tsplib, with and without preprocessing.

original graph graph with discarded edges

instance # bbnodes total time (s) Branching (s) # cuts # bbnodes total time (s) branching (s) # cuts

ch150 1 0.49 0 111.5 2.4 0.35 0.21 88.2

kroA150 1 0.88 0 164.3 1 0.19 0 32.9

kroB150 1.2 0.84 0.01 171.3 1.2 0.42 0.02 58.8

si175 2.8 3.42 0.24 294.2 1 0.25 0 53.8

brg180 1 0.71 0 5.0 1 0.09 0 1.8

rat195 5.6 5.49 3.14 314.8 4.6 4.07 2.67 325.6

d198 3.2 2.29 0.31 193.0 1.6 1.12 0.28 95.1

kroA200 1 0.77 0 250.1 1.4 0.39 0.10 103.7

kroB200 1 0.44 0 136.6 1.2 0.21 0.02 33.1

ts225 1.5 8.01 0.23 875.0 1 0.44 0 197.9

pr226 1 0.51 0 101.9 1 0.24 0 42.1

pr264 1 0.44 0 49.7 1 0.28 0 17.9

a280 1 1.18 0 107.0 3 1.04 0.23 111.4

pr299 1.8 3.24 0.09 446.9 2.2 2.11 0.84 387.4

lin318 1 1.77 0 237.0 2.4 3.53 0.62 306.9

rd400 11.2 18.20 12.30 754.1 11.0 17.97 14.62 814.2

5 Empirical Evaluation

5.1 State-of-the-Art Exact Solver

As discussed in Sect. 4.1, one algorithmic idea for using the density of an edge
in the solutions of the tsp relaxations is to sparsify the instance accordingly,
i.e., discard edges of low density. To test the computational effect of this idea,
we preprocess 16 classical tsp instances with number of nodes between 150 and
400 and we run concorde both on the original instance and the sparsified one
(keeping the 1% highest densities, which notably still happens to include the
optimal solution for all 16 instances). Some significant characteristics of the two
types of run are reported in Table 2, namely the number of branch-and-bound
nodes, the overall computing time, the time for branching and the number of
generated cuts. All numbers are averages over 10 runs.
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Of course, we know that instances of that size are not challenging for con-
corde. Indeed the largest tree size for the classical version of the instances
is only 11.2 nodes and 9 out of the 16 instances do not require branching at
all. Therefore the potential impact is limited. Nevertheless there is an overall
improvement in the solving process whose most significant characteristic seems
to be the reduction in the number of cutting planes concorde needs to separate
to reach optimality. A more detailed computational analysis on larger and more
challenging instances is needed to confirm this trend and, hopefully, to observe
a large impact, which in order to be useful needs to compensate the time spent
in computing the edge densities, which currently takes several seconds.

5.2 CP

Next we consider both opportunities mentioned in Sect. 4—namely, discarding
some edges from the input graph and branching on the si variables using cost-
based solution densities—and evaluate their impact on solving the cp model at
Table 1 for small instances from tsplib. Such a model is clearly not competitive
with the state of the art but serves our evaluation need.

Table 3 compares several branching heuristics: maximum regret [17] (a);
maxSD� on 2-matching (b), 2-matching & 1-tree (c), 2-matching & 1-tree &
n-path (d); arithmetic mean of 2-matching & 1-tree (e) and of 2-matching & 1-
tree & n-path (f). Instances were preprocessed using k = 15%. We do not show
explicitly the results on the original graphs but every heuristic performed much
worse on them, thus indicating that discarding edges in this way is beneficial.
We generally observe a marked improvement when using our proposed branch-
ing heuristics with respect to maximum regret. However those which involve the
n-path relaxation (d,f) are too computationally expensive and are only reported
on the three smallest instances.

Table 3. Performance of IBM ILOG CP 1.6 on 9 small sparsified instances (30min
timeout).

Opt Best Time(s) Fails Opt Best Time(s) Fails Opt Best Time(s) Fails

gr21 2707 a 2707 0.11 173 gr24 1272 a 1272 0.26 359 fri26 937 a 937 0.43 475

b 2707 0.04 48 b 1272 0.03 25 b 937 1.71 2163

c 2707 0.14 27 c 1272 0.07 2 c 937 16.54 3156

d 2707 34.90 60 d 1272 76.67 182 d 937 486.00 1367

e 2707 0.15 31 e 1272 0.31 47 e 937 12.37 2393

f 2707 35.23 70 f 1272 30.39 51 f 937 1684.26 3254

bays29 2020 a 2020 125.36 118869 dantzig42 699 a 699 0.3 0 swiss42 1273 a 1464 1537.4 1349413

b 2020 7.57 9341 b 722 114.7 40888 b 1298 127.3 42503

c 2020 8.37 1179 c 722 1147.1 73431 c 1397 24.9 1316

e 2020 9.03 1287 e 718 72.8 3505 e 1410 25.3 1266

gr48 5046 a 5898 1097.1 423271 hk48 11461 a 14734 1486.8 970394 berlin52 7542 a 10434 1162.1 702850

b 5055 548.6 195503 b 12466 591.6 277333 b 8224 104.6 123179

c 5174 860.1 31897 c 12039 765.1 29543 c 8193 621.6 18781

e - - - e 12032 1379.1 54948 e 8016 558.9 15548
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6 Conclusion

We introduced new ways of exploiting known relaxations of the tsp and pre-
sented some preliminary empirical results to evaluate their usefulness. We believe
this line of research requires further investigation and is particularly interesting
for a cp approach to solve routing problems with additional constraints that
make it difficult to apply other exact approaches directly.
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3. Benchimol, P., van Hoeve, W.J., Régin, J.-C., Rousseau, L.-M., Rueher, M.:
Improved filtering for weighted circuit constraints. Constraints 17(3), 205–233
(2012)

4. Brockbank, S., Pesant, G., Rousseau, L.-M.: Counting spanning trees to guide
search in constrained spanning tree problems. In: Schulte, C. (ed.) CP 2013. LNCS,
vol. 8124, pp. 175–183. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40627-0 16

5. Broder, A.Z., Mayr, E.W.: Counting minimum weight spanning trees. J. Algo-
rithms 24(1), 171–176 (1997)

6. Caseau, Y., Laburthe, F.: Solving various weighted matching problems with con-
straints. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 17–31. Springer,
Heidelberg (1997). https://doi.org/10.1007/BFb0017427

7. Christofides, N., Mingozzi, A., Toth, P.: State space relaxation procedures for the
computation of bounds to routing problems. Networks 11, 145–164 (1981)

8. de Uña, D., Gange, G., Schachte, P., Stuckey, P.J.: Weighted spanning tree
constraint with explanations. In: Quimper, C.-G. (ed.) CPAIOR 2016. LNCS,
vol. 9676, pp. 98–107. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
33954-2 8

9. Delaite, A., Pesant, G.: Counting weighted spanning trees to solve constrained
minimum spanning tree problems. In: Salvagnin, D., Lombardi, M. (eds.) CPAIOR
2017. LNCS, vol. 10335, pp. 176–184. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-59776-8 14

10. Dooms, G., Katriel, I.: The Minimum Spanning Tree constraint. In: Benhamou, F.
(ed.) CP 2006. LNCS, vol. 4204, pp. 152–166. Springer, Heidelberg (2006). https://
doi.org/10.1007/11889205 13

11. Dooms, G., Katriel, I.: The “Not-Too-Heavy Spanning Tree” constraint. In: Van
Hentenryck, P., Wolsey, L. (eds.) CPAIOR 2007. LNCS, vol. 4510, pp. 59–70.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72397-4 5

12. Ducomman, S., Cambazard, H., Penz, B.: Alternative filtering for the weighted
circuit constraint: comparing lower bounds for the TSP and solving TSPTW. In:
Schuurmans and Wellman [22], pp. 3390–3396

13. Edmonds, J.: Maximum matching and a polyhedron with 0,1-vertices. J. Res. Natl.
Bur. Stand. 69B, 125–130 (1965)

https://en.wikipedia.org/wiki/Concorde_TSP_Solver
https://doi.org/10.1007/11493853_7
https://doi.org/10.1007/978-3-642-40627-0_16
https://doi.org/10.1007/978-3-642-40627-0_16
https://doi.org/10.1007/BFb0017427
https://doi.org/10.1007/978-3-319-33954-2_8
https://doi.org/10.1007/978-3-319-33954-2_8
https://doi.org/10.1007/978-3-319-59776-8_14
https://doi.org/10.1007/978-3-319-59776-8_14
https://doi.org/10.1007/11889205_13
https://doi.org/10.1007/11889205_13
https://doi.org/10.1007/978-3-540-72397-4_5


Using Cost-Based Solution Densities from TSP Relaxations 191

14. Focacci, F., Lodi, A., Milano, M.: Cost-based domain filtering. In: Jaffar, J. (ed.)
CP 1999. LNCS, vol. 1713, pp. 189–203. Springer, Heidelberg (1999). https://doi.
org/10.1007/978-3-540-48085-3 14

15. Held, M., Karp, R.M.: The traveling-salesman problem and minimum spanning
trees. Oper. Res. 18, 1138–1162 (1970)

16. Held, M., Karp, R.M.: The traveling-salesman problem and minimum spanning
trees: Part II. Math. Program. 1, 6–25 (1970)

17. Kilby, P., Shaw, P.: Vehicle routing. In: Rossi, F., van Beek, P., Walsh, T. (eds.)
Handbook of Constraint Programming. Foundations of Artificial Intelligence, vol.
2, pp. 801–836. Elsevier, New York (2006)

18. Pesant, G.: Counting-Based Search for Constraint Optimization Problems. In:
Schuurmans and Wellman [22], pp. 3441–3448

19. Pesant, G., Quimper, C.-G., Zanarini, A.: Counting-based search: branching heuris-
tics for constraint satisfaction problems. J. Artif. Int. Res. 43(1), 173–210 (2012)
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Abstract. Deploying a cloud-based distributed application created
from the composition of micro-services is a challenging problem. It
mandates the resolution of a resource allocation problem accounting
for resource utilization and network load. But it also imposes security
requirements such as the selection of suitable technology stacks to pro-
tect the communication channels. Both sets of decisions are intimately
related as hosting decisions affect the cost or feasibility of security mea-
sures under consideration. This paper revisits the problem and focuses
on a scalable approach suitable to deploy large distributed applications.
Specifically, it introduces a counting-based model to deliver solutions for
hundreds of services within short computation times. The essence is to
side-step some of the difficulties by focusing first and foremost on decid-
ing how many services of each type need to be deployed at each location
and postponing the instance connectivity problem to a post-optimization
phase. Empirical results demonstrate the scope of the improvements and
illustrate the performance to expect as a function of instance sizes.

1 Introduction

A modern cloud-based application forms a distributed system, i.e., a set of com-
municating and reusable micro-services delivering a software stack that meets
application requirements. Efficient deployment of large scale distributed software
stacks is difficult as service placement has an influence on resource usage.

Application developers often over-provision with respect to actual needs to
ensure that the application requirements are met. This results in waste that
hinders fault-tolerance and load-balancing of the system [7]. Finding an effi-
cient deployment scheme is important to keep costs of implementation down
and reduce waste of resources.

There are many prior works related to service deployment in data center,
however, they do not consider communication and security policies between ser-
vices. Micro-services deployed across multiple hosts may require communication
over a public channel. For instance, an application formed out of two services may
deploy one of them on company servers in its own data center and the other on an
AWS cloud. Communications over such public channels mandate that appropri-
ate security technology be enabled to meet security requirements. This problem
c© Springer Nature Switzerland AG 2019
L.-M. Rousseau and K. Stergiou (Eds.): CPAIOR 2019, LNCS 11494, pp. 192–207, 2019.
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was first addressed in [5]. It considered the deployment of micro-services across
different hosts and security requirements from services while communicating
over public channels. The strategies included IP, CP with Large Neighborhood
Search (LNS) and a hybrid method. The authors in [5] showed that it is possible
to deliver high-quality solutions within a short runtime but without an optimal-
ity proof. Yet, application sizes exceeding 50 services proved to be difficult and
challenged scalability.

This paper introduces a counting-based approach with a two-phase method
that delivers optimal deployment schemes for larger scale instances. The two-
phase method reduces the model to the components that contribute to the objec-
tive function which greatly reduces the size of the model. Empirical results indi-
cate that this approach scales up to 1000 services and can deliver an optimal
deployment strategy within a reasonable amount of time.

The remainder of the paper is organized as follows. Section 2 introduces
related work. Section 3 presents the counting based model and problem formu-
lation. Section 4 explains how to match service instances to setup the pairings.
Section 5 shows the empirical results and Sect. 6 concludes.

2 Related Work

Many approaches have been developed in recent years that attempt to manage
service deployment while minimizing the total cost of implementation across
data centers. These include Bin Packing (BP) [14] as well as several variations
discussed below. Cambazard et al. [2] introduce Bin Packing with Usage Cost
(BPUC) to minimize the energy consumption which is represented as linear
cost. The Temporal Bin Packing (TBP) [3] considers the lifespan of each task
and aims at minimizing the allocated resources (CPU cycles) in a data cen-
ter. Armant et al. [1] formulate the workload consolidation problem as a semi-
online Bin Packing problem (also known as Batched Bin Packing [8]) where
tasks are allocated to servers in real-time. In [13], the authors use CP with a re-
sizable decomposition method to solve the Dynamic Cache Distribution Problem
(DCDP). The DCDP is modeled as a variant of BP and the allocation found
by the solver delivers load balancing and fault tolerance. Hermenier et al. [9]
introduced the Bin Repacking Scheduling Problem which considers allocation
and reconfiguration of VMs placement.

Other works that relate to service deployment and energy/cost management
include [4,10,11]. In [10], the authors explore a service deployment from an ener-
gy/cost management standpoint. That paper offers a scheme that can minimize
the migration costs by dynamically reallocating VMs to hosts. In [4], Chisca et al.
address the balance between workload and cooling needs for a data center while
minimizing the energy utilization. The problem is represented as a non-linear
energy use function and solved with local search. Kadioglu et al. introduce in [11]
a Core Group Placement Problem (CGPP) to allocate heterogeneous resources
in cloud centers. The goal is to minimize the maximum load for the deployment
of heterogeneous services (Fig. 2).
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3 Supply-Demand Model

The premise of this model is that each service instance generates a number
of ports to connect to other service instances. Each pairing represents the bi-
directional communication channel between two services. In each pairing, the
service with greater demand requires more resources from its connection part-
ner. The service with the highest demand is said to be demand-side whereas
the lowest one is said to be supply-side. Given that the supply-side has the low-
est cardinality, supply-side instances must open up ports equal to the number
of demand-side instances. In other words, supply-side instances may support
multiple demand-side instances. Load-balancing is applied to the instances to
distribute the connections across supply-side services. Since load-balancing of
the demands may not be divided equally among instances, a number of excess
ports must be opened to meet the remaining demand.

Service 1

Service 2 Service 3

Service 4
Demand 4

Demand 7

Demand 5

Demand 3
Demand 4

Demand 7

Demand 5

Demand 3

Fig. 1. Left: connectivity graph representing connections between service types Right:
decomposition of service types into individual instances to be deployed on available
hosts. The demand requirements dictate the number of instances needed.

Connection Type 1 Connection Type 2 Connection Type 3

Fig. 2. Service Connections: square boxes encapsulate collections of pairings between
service instances. Service instances appear in two columns showing supply (left) and
demand (right). Node colors match those from Fig. 1.

Example: Consider a pair of connecting services s and t with demands 4 and 9
respectively where s is the supply-side service and t is the demand-side service.
Load-balancing requires that each supply-side service open up � 9

4� ports each
with an excess port of 1. Namely, [2,3] ports on each instance for a total of 9
ports.
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The cost of deploying a micro-service application is influenced by the num-
ber of pairings across host boundaries. To support inter-host communications,
service instances must include the appropriate security adapters to secure the
channels. Pairings involving services on the same host rely on private chan-
nels and do not mandate additional adapters. Therefore, the internal wiring
of co-located instances does not affect the cost. Adapters (e.g., software mod-
ules responsible for encryption and decryption of the messages pushed into the
channel) increase the total cost of the implementation and impact the required
resources for deployment.

Cruz et al. [5] introduced an approach that focuses on finding a global solution
in one-step by providing the minimal cost deployment with the wiring scheme
across instances. While workable, this method relies on a large model that nega-
tively impacts the ability to scale. By separating the wiring component, a solu-
tion to the problem can be obtained with less efforts.

This method follows a two-part approach for solving for an optimal deploy-
ment. First, the optimal cost of deployment is determined by finding how many
service instances of each type should be deployed on each host as well as how
many inter-host connections are required to satisfy the application connectivity
requirements. Once these cardinalities have been established, the second phase
delivers an actual deployment of service instances by producing the wiring in
the form of all required service pairings.

The remainder of this section describes the model in details starting with a
lexicon of its parameters, decision variables and finally its constraints. Section 4
focuses on the actual deployment.

3.1 Constants

– T: Set of services types.
– M: Set of available physical hosts.
– Z: Set of security options required to ensure security requirements.
– Dt: Demand for service type t. t ∈ T .
– C: Set of unordered pairs of connecting service types. Namely, ∀c ∈ C :
Dtd(c) ≥ Dts(c).

– td(c) ∈ T : The demanding service with the highest demand for connection
c ∈ C.

– ts(c) ∈ T : The supplying service with the lowest demand for connection c ∈ C.
– z(c): The required security protocol for securing connection c ∈ C.
– LBc: The lower bound support on the supply-side for connection. c. LBc is

�Dtd(c)

Dts(c)
�.

– FBt: Fixed bandwidth cost for service t.
– FMt: Fixed memory cost for service t.
– SBz: Scaling factor to bandwidth cost for security option z.
– SMz: Scaling factor to memory cost for security option z.
– ABz: Fixed bandwidth cost for enabling security option z.
– AMz: Fixed memory cost for enabling security option z.
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– VM : Virtual Machine overhead introduced for each instance.
– pin(m, t): Number of instances of service type t pinned on host m.
– zone(m, t): Boolean indicating whether service t is permitted on host m.

3.2 Variables

– MMm: Total memory usage for host m. MMm ∈ [0, Available Memory]
– MBm: Total bandwidth usage on host m. MBm ∈ [0, Available Bandwidth]
– Qm,t: Set of instances of service type t deployed on host m.
– qm,t: Number of instances of service type t on host m, i.e., |Qm,t|.
– eqm,t,z: Number of instances of service type t on host m with an existing

inter-host connection adopting security protocol z.
– esm,c: Number of supply-side instances with inter-host connections of type c.
– edm,c: Number of demand-side instances with inter-host connections of type c.
– SPm,c: Set of supply-side ports generated on host m for a connection type c.
– Xm,c: Set of excess supply-side ports generated on host m for a connection

type c.
– RXm,c: Subset of Xm,c involved in an inter-host connection deployed on host

m for connection type c.
– RSPm,c: Subset of SPm,c involved in an inter-host connection deployed on

host m for connection type c.
– RDPm,c: Subset of demand-side ports involved in an inter-host connection

deployed on host m for connection type c.

3.3 Constraints

Each service instance offers a set of ports. Specifically, instances on the supply-
side of a connection (the smaller cardinality side) offer supply-side ports while
instances on the demand-side offer demand-side ports. To correctly setup the
connectivity between supply and demand, pairings must be established between
supply-side ports and demand-side ports. Figure 3 illustrates this idea. Supply-
side services are shown in green while demand-side services are brown. In total,
7 pairings must be established to meet this demand and one supplier (#2) will
need three ports while the other two ({0, 1}) offer only two supply-side ports.
The right-hand side of the Figure uses squares to represent ports and the service
instance number is repeated in the square for clarity. For instance, the brown
edge pairing services 0 and 3 on the left-hand side appears inside host n where
service 3 and 0 execute. Two square rectangles represent the consumed ports
for those services and the brown edge connects the ports. It is essential for
the deployment model to create a hosting with enough ports to guarantee the
existence of such a matching between all suppliers and consumers.

As shown in Fig. 3, each service instance generates a number of ports repre-
senting connections to supply and demand ports (boxes). The blue shaded area
represents SPm,c the set of supply-side ports generated by the host for that con-
nection c. The green shaded area represents RDPm,c the set of demand-side ports
that are involved in inter-host pairings for connection c. The red shaded area
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represents RSPm,c the set of supply-side ports involved in inter-host pairings
for connection c. The light-blue shaded area represents Xm,c the set of excess
supply-side ports generated on host m for connection c.

RSPm,c, Xm,c and RXm,c are subsets of SPm,c which is defined as the set
of all supply ports on host m and connection c. In Fig. 3, hostm contains three
supply-side service ports generated by service instance 2 and one demand-side
port generated by service instance 9. The local demand (from service 9) can be
satisfied by one supply port (from Xm,c) leaving two ports available to meet
external demands emanating from other hosts (n and o). In the Figure, inter-
host pairings are established between ports from service instances 2 and 7 and
service instances 2 and 8 to satisfy connection requirements.

It is, perhaps, essential to note that the identity of the ports used to create
those pairings is immaterial. In essence, all ports of a service are equivalent and
therefore interchangeable. This insight is essential to produce the mathematical
formulation. Indeed, it is not necessary to talk about individual ports in those
sets, but instead, only about the cardinality of those sets to have enough ports
of each “kind”. In the following, equations that refer to a set will each time refer
to the cardinality of the set which is the actual variable created in the model.

Quantity Constraints. The set of all the deployed instances for type t must
be equal to the total demand of service t.

∀t ∈ T : |
⋃

m∈M

Qm,t| = Dt (1)
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Consequently, the actual encoding of this equation is

∀t ∈ T :
∑

m∈M

qm,t = Dt (2)

in which qm,t = |Qm,t|. Similar encodings are used throughout the remainder of
the section whenever an equation uses a set but are not repeated for brevity’s
sake.

The number of supply-side ports available from host m for a connection c is
given by:

∀m ∈ M, c ∈ C : |SPm,c| = LBc · |Qm,ts(c)| + |Xm,c| (3)

Namely, it is the computed lower bound times the number of suppliers for this
pairing c on host m plus the excess supply-side ports.

Example: Machine hostm in Fig. 3 has 2 × 1 + 1 = 3 supply-side ports for the
unique green service instance #2 given that LBc = � 7

3� = 2, Qm,ts(c) = {2} and
|Xm,c| = 1.

The sum of the excess supply-side ports across all hosts must be equal to the
number of total available excess ports. This is encoded as follows:

∀c ∈ C :
∑

m∈M

|Xm,c| = Dtd(c) mod Dts(c) (4)

If there exists any excess supply-side ports offered by hostm, then there must be
at least one supply-side instance to support them.

∀m ∈ M, c ∈ C : (|Xm,c| ≥ 1) → (|Qm,ts(c)| ≥ 1) (5)

Zoning Constraints. Service instances working with sensitive information
must be restricted within a particular zone. If a service type t is not permit-
ted on host m, then the following constraint is encoded as follows:

∀m ∈ M, t ∈ T : (zone(m, t) = 0) → |Qm,t| = 0 (6)

Pinning Constraints. An existing infrastructure may have already deployed
service instances that may be difficult to migrate due to strict policies. For
re-deployment strategies, previously deployed service instances remain on their
respective hosts and a new deployment strategy is configured around the current
one. Pinned instances occupy resources on their respective hosts. This is encoded
with:

∀m ∈ M, t ∈ T : |Qm,t| ≥ pin(m, t) (7)

where pin(m, t) is the number of service instance of type t on host m.
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Connectivity Constraints. It is necessary to ensure that supply meets
demand for each host. If a host does not have the necessary ports to meet
supply-demand requirements, then it is necessary to connect to another host
with those available ports. This is achieved with:

∀m ∈ M, c ∈ C : |SPm,c| + |RDPm,c| = |Qm,td(c)| + |RSPm,c| (8)

The total number of available supply-side ports is equal to the total number of
available demand-side ports:

∀c ∈ C : |
⋃

m∈M

RSPm,c| = |
⋃

m∈M

RDPm,c| (9)

Example: In Fig. 3, the union of the two green sets (RDPn,c and RDPo,c) from
hosts n and o has cardinality 2 while the red set of suppliers on host m (RSPm,c)
also has cardinality 2 and therefore satisfy Eq. 9. Likewise, note how, on host
m, SPm,c contains three ports for service instance #2 and its RDPm,c set is
empty. Meanwhile, Qm,td(c) = Qm,brown = {#9}, i.e., a set of cardinality 1.
Finally, RSPm,c is the red set of ports connected to external instances and its
cardinality is 2. Overall, Eq. 8 reduces to 3 + 0 = 1 + 2 which is satisfied.

Supply-Side Connectivity Constraints. For each supply-side service, the
following constraints are encoded to determine the composition and the number
of service instances required to satisfy the pairings:

The set of excess supply-side ports RXm,c is a subset of the set Xm,c.

∀m ∈ M, c ∈ C : RXm,c ⊆ Xm,c (10)

If there is an excess supply-side port with an inter-host connection, then there
must be at least one supply-side instance to support them.

∀m ∈ M, c ∈ C : (|RXm,c| ≥ 1) → (esm,c ≥ 1) (11)

The total number of inter-host pairings initiated by host m cannot exceed the
number of external ports generated by host m.

∀m ∈ M, c ∈ C : |RSPm,c| ≤ LBc · esm,c + |RXm,c| (12)

The number of supply-side service instances connected to inter-host pairings are
bounded by the total number of service instances on host m:

∀m ∈ M, c ∈ C : esm,c ≤ |Qm,ts(c)| (13)

Example: Suppose there exists three inter-host connections, |RSPh,c| = 3, to
host h connecting to supply-side services on host h. A supply-side service can
only open LBc = 2 ports for each instance. Therefore, a combination of supply-
side ports or excess ports is required to establish the connections.
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Demand-Side Connectivity Constraints. The following constraints deter-
mine the number of service instances required to satisfy the inter-host pairings
for demand-side services:

∀m ∈ M, c ∈ C : |RDPm,c| = edm,c (14)

The number of demand-side service instances connected to inter-host pairings is
bounded by the total number of service instances on host m:

∀m ∈ M, c ∈ C : edm,c ≤ |Qm,td(c)| (15)

Example: Suppose there exists two inter-host connections, |RDPh,c| = 2, to
host h connecting to demand-side instances on host h. A demand-side instance
can be connected to at most one supply-side instance and therefore to satisfy
the condition |RDPh,c| = 2, there must be at least two demand-side instances
deployed on host h.

Memory Consumption Constraints. The following constraints determine
the total required service instances for a particular service type that pair services
deployed on different hosts and requiring a security protocol z:

∀m ∈ M,∀z ∈ Z,∀c ∈ C such that z(c) = z : eqm,ts(c),z ≥ esm,c

∀m ∈ M,∀z ∈ Z,∀c ∈ C such that z(c) = z : eqm,td(c),z ≥ edm,c
(16)

Finally, the constraint below determines the memory usage for each host:

∀m ∈ M : MMm =
∑

t∈T [(VM + FMt) · |Qm,t|
+

∑
z∈Z ((FMt · SMz) · eqm,t,z + AMz · eqm,t,z)

] (17)

which is driven by the fixed overhead for a virtual machine for each service (VM),
the memory usage for each service type FMt as well as the memory cost of the
adapter needed to implement the security protocol z (under the assumption that
the protocol is indeed used eqm,t,z).

Bandwidth Consumption Constraints. Each inter-host pairing induces a
bandwidth consumption. Given that the link is across different physical hosts,
the connection must be secured via the most stringent security policy.

∀m ∈ M : MBm =
∑

c∈C(1 + SBz(c)) · [FBts(c) · |RDPm,c| + FBtd(c) · |RSPm,c|]
+

∑
z∈Z ABz(c) · (∑c∈Cst.z(c)=z [|RSPm,c| + |RDPm,c|] > 0)

(18)

The bandwidth cost is driven by the number of inter-host pairings |RDPm,c|
and |RSPm,c| established on each host. The existence of any inter-host pairings
established on behalf of the host induces a usage cost ABz associated with the
appropriate security technology. A fixed bandwidth cost FBt and scaling factor
SBz is applied to each inter-host pairings.
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3.4 Objective

The objective is to minimize the total memory and bandwidth usage across all
of the available hosts.

min :
∑

m∈M

MMm + MBm (19)

3.5 Redundant Constraints

The number of additional supply-side ports involved in an inter-host connection
is bounded from above by the total number of additional ports for connection c.

∀c ∈ C :
∑

m∈M

|RXm,c| ≤ Dtd(c) mod Dts(c) (20)

The total number of supply-side ports generated by all hosts must be equal
to the number of demand ports:

∀c ∈ C :
∑

m∈M

|SPm,c| = Dtd(c) (21)

Given that there are two ports involved in each pairing, all inter-host con-
nections must be established between two external ports. Therefore, the total
number of external ports are bounded from above by the total number of ports
generated for connection c.

∀c ∈ C :
∑

m∈M

(|RSPm,c| + |RDPm,c|) ≤ 2 · Dtd(c) (22)

3.6 Symmetry Breaking Constraints

First, assume that every zone contain a set of identical hosts with the same
specifications (memory and bandwidth resources). This is, of course, typical in
data centers where machine racks contain identical hosts. An ordering is applied
to the hosts to reduce the number of symmetric solutions. For hosts located
in the same zone, an ordering based on the number of external connections is
applied to the hosts. The following constraint encodes this property:

∀i ∈ {1, ..., |M | − 1} such that zone(i) = zone(i + 1) :
∑

t∈T

(|RDPi,t| + |RSPi,t|) ≥
∑

t∈T

(|RDPi+1,t| + |RSPi+1,t|) (23)

4 Deployment Scheme

Once the optimal solution is found, the actual deployment (instances and
links placement) can be computed in polynomial time. The “wiring” of service
instances can be treated as a perfect matching problem where each supply-side



202 W. Cruz et al.

port must connect to a demand-side port. Generating a bipartite graph for each
pairing where edge capacities of 1 allows for the use of max-flow algorithms to
achieve a perfect matching in polynomial time [12].

For each connection type, construct a bipartite graph connecting the service
instances as follows:

1. Create a node for each port generated by a service instance. (square)
2. Connect an edge between each external supply-side and demand-side port

node. (solid black edges)
3. Connect an edge between each internal supply-side and demand-side port

node. (light-blue edges)

Additionally, if a host is given excess ports decided by the first phase, then the
excess ports are given to an instance that has external connections.

By finding a perfect matching in each bipartite graph, a feasible match-
ing between service instances is achieved. The conditions set on the first phase
(Eq. 9) ensures that such a perfect matching exists between each supply-side and
demand-side ports.
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Consider the example in Fig. 4. Suppose a pair of services of type 1 and type
2 are connected with demands of 3 and 8. The set of instances {1, 2, 4, 5, 6}
are deployed on host 1 and {3, 7, 8, 9, 10, 11} are deployed on host 2. Service
instances, represented by the circles, are decomposed into individual ports rep-
resented as the colored boxes in the Figure. Suppose service instances 1, 7, 8 and
9 are decided to be the instances with external connections and two excess ports
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are assigned to host 1, then the two excess ports are given to service instance
1. The sum of the ports generated by service type 1 is equal to the demand of
service type 2.

The light-blue and orange ports in the second column represent ports that
may have external connections. Since instance 1 is the instance with external
connection on host 1, all the ports on instance 1 are colored as light-blue. Sim-
ilarly, instance 7, 8, 9 are instances with external connection on host 2, all the
ports on instance 7, 8, 9 are orange. The black lines represent inter-host connec-
tions between ports. In the final column, connections between ports located on
the same host are connected to each other with light-blue lines. Once the graph
is generated, a max-flow algorithm is applied to the graph to find a perfect
matching and establish all the pairings.

5 Results

To investigate the performance of the proposed model, a series of synthetic
instances were created to emulate small to large sized applications. Benchmarks
were solved on a Xeon(R) CPU E5-2640 v4 @ 2.40 GHz on a single core running
Linux kernel 4.4.0-119- generic. Gurobi 7.5.2 was used as the MIP Solver. The
MIP implementation relies on Objective-CP.

Table 1. MIP Performance for full and counting models.

Benchmark Full MIP Full LNS Counting MIP

T UB LB μQ σQ T UB LB

1 294.97 1,804.00 1,804.00 1,804.00 0.00 0.01 1,804.00 1,804.0

2 146.58 1,810.00 1,810.00 1,810.00 0.00 0.01 1,810.00 1,810.0

3 370.49 1,732.00 1,732.00 1,735.00 0.00 0.01 1,735.00 1,735.0

4 121.88 1,804.00 1,804.00 1,804.00 0.00 0.01 1,804.00 1,804.0

5 590.64 3,280.00 3,280.00 3,280.00 0.00 0.02 3,280.00 3,280.0

6 5,400.00 3,280.00 3,435.13 163.06 0.02 3,280.00 3,280.0

7 5,400.00 3,376.00 3,280.00 0.02 3,280.00 3,280.0

8 2,391.28 3,280.00 3,280.00 0.01 3,280.00 3,280.0

Model Comparison. The full model presented in [5] is capable to handle small to
midsized applications with 50 service instances. Table 1 shows the performance
comparison between the counting approach and the full approach on the set of
benchmarks presented in [5]. Each benchmark was executed with a timeout of
5400 s. While the full model can find the optimal solution for smaller application
sizes, application sizes with 50 service instances are difficult to close with many
timing out. The counting approach is able to find the same optimal solution
within a fraction of a second.
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Symmetry Breaking Performance. The impact of symmetry breaking constraints
on performance can be quite significant. On small instances (≤200 micro-
services) the overhead can negate the benefits of the symmetry breaking. On
larger instances (>200 micro-services), the reduction in the size of the search
tree can reach a factor of 3. Without symmetry breaking, the model retains
the ability to produce the optimal solution (i.e., for instances with 1000 micro-
services), yet it is no longer capable to prove optimality within the time limit.
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Fig. 5. Comparison of runtime for increasing application demands.

Scalability. Figure 5 shows a set of benchmarks based on a distributed applica-
tion with a few services, security policies and zones meant to capture the impact
of application demands (replication level) on the solving runtime. A set of 20
benchmarks are generated for application sizes of {50, 100, 200, 400, 800, 1000}
service instances. Each benchmark was executed with a timeout of 5400 s.
Figure 5 represents the total run time required to reach the optimal solution and
close the problem. The box plot chart highlights that the counting-based model
delivers an order of magnitude improvement in scalability over [5]. Indeed, the
largest benchmarks with 1000 service instances often terminate in 1000 s. That
being said, out of the 20 benchmarks at each size, the solver timed out without
an optimality proof 7 times on size 1000, 6 times on size 800 and 4 times on 400
(it never timed out on the smaller ones).

Early Termination. Solving to optimality for large benchmarks may prove exces-
sively demanding. This experiment considers an early termination condition that
stops the branch and bound if the optimality gap drops below 1%. Figure 6 shows
the solving time. Comparing the results from Fig. 5, it is clear that high-quality
solutions are delivered early on during the search process and can lead to a
significant reduction in the runtime.
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Fig. 6. Runtimes for finding a solution within a 1% optimality gap.

Trajectories. Figure 7 shows the trajectories of the lower bound and upper bound
on a few benchmarks. It highlights how quickly the gap evolves as a function
of time. The red line captures the lower bound and the black line the incum-
bent solution. Comparing the four graphs in Fig. 7, a few observation seem in
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order. First, the linear relaxation is delivering an excellent lower bound that
often rapidly gets close to the actual optimum. Second, the curves for feasible
upper bound are far more diverse. The IP solver seems to have mixed success in
attaining feasibility. Incidentally, alternative heuristics, like the feasibility pump,
were tried without success. The top right plot is particularly telling as the first
feasible solution is only produced after almost 800 s. This observation indicates
that there is further potential for improvement from a hybrid technique that
leverages CP’s strength in the feasibility space to obtain solutions much earlier
and share them with the IP through a parallel composition as discussed in [6]
for the case of scheduling applications.

6 Conclusion

This paper revisited the secure micro-service deployment problem introduced
in [5] and offered a novel modeling approach based on counting that eliminates
symmetries and improves the quality of the linear relaxation used by an IP solver.
The impact is significant and translates into order of magnitude improvements
in the runtime for the original instances and delivers an order of magnitude
improvement in scalability. The approach appears capable to handle industrial
scale instances with order of 1000 micro-services. The empirical results empha-
size the strength of the lower-bound but also reveal additional potential for
hybridization with a strong primal technique capable of delivering high-quality
upper-bounds in short runtime.
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and Christian Truden1(B)

1 Department of Mathematics, Alpen-Adria-Universität Klagenfurt,
Klagenfurt, Austria

{guenther.cwioro,kerstin.maier,joerg.poecher,christian.truden}@aau.at
2 Laboratory for Information and Decision Systems,

Massachusetts Institute of Technology, Cambridge MA, 02139, USA
philipp.hungerlaender@aau.at

Abstract. Attended Home Delivery (AHD) systems are used whenever
a supplying company offers online shopping services which require that
customers must be present when their deliveries arrive. Therefore, the
supplying company and the customer must both agree on a time win-
dow, which ideally is rather short, during which delivery is guaranteed.
Typically, a capacitated Vehicle Routing Problem with Time Windows
forms the underlying optimization problem of the AHD system. In this
work we consider an AHD system that runs the online grocery shopping
service of an international grocery retailer.

The ordering phase, during which customers place their orders
through the web service, is the computationally most challenging part
of the AHD system. The delivery schedule must be build dynamically
as new orders are placed. We propose a solution approach that allows
to determine which delivery time windows can be offered to potential
customers. We split the computations of the ordering phase into four
key steps. For performing these basic steps we suggest both a heuristic
approach and a hybrid approach employing Mixed-Integer Linear Pro-
grams. In an experimental evaluation we demonstrate the efficiency of
our approaches.

Keywords: Attended home delivery ·
Capacitated vehicle routing with time windows · Heuristics

1 Introduction

In recent years, online grocery shopping has gained increased popularity in sev-
eral countries, such as the United Kingdom where about 6.3% [16] of all gro-
cery shopping is bought online. Nowadays, all major supermarket chains provide
online shopping services where customers select groceries as well as a delivery
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L.-M. Rousseau and K. Stergiou (Eds.): CPAIOR 2019, LNCS 11494, pp. 208–224, 2019.
https://doi.org/10.1007/978-3-030-19212-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19212-9_14&domain=pdf
https://doi.org/10.1007/978-3-030-19212-9_14


An Optimization Approach to the Ordering Phase of an AHD Service 209

time window on the supermarket’s website. This provides several benefits to
the customers, such as 24-h opening hours of the online store, quicker shopping
times, the avoidance of traveling times, no carrying of heavy or bulky items,
and facilitated access for citizens with reduced mobility. Despite of the benefits
for the customers, e-grocery shopping services pose several interrelated logistic
and optimization challenges to the supplying companies. Especially the Order-
ing Phase, during which customers place their orders, imposes a computationally
challenging problem.

In this paper we tackle this challenge in the context of a large international
supermarket chain that offers online grocery shopping. E-grocery services are
a paradigm for Attended Home Delivery (AHD) problems [1–4] where the cus-
tomers must be present for their deliveries. In order to ensure customer satisfac-
tion and to minimize undeliverable orders, it is crucial that the supplying com-
pany provides a wide selection of rather narrow delivery time windows. Hence,
in this work, we aim to provide a framework that determines the available time
windows and dynamically builds the delivery schedule.

This paper is organized as follows. First we provide an overview of the logistic
process behind the considered AHD system and discuss the Ordering Phase in
detail. In Sect. 2 we introduce the related optimization problem and suggest
algorithmic strategies for solving it. In Sect. 3 we demonstrate the efficiency of
our solution approaches on benchmark instances related to an online grocery
shopping system. Finally, Sect. 4 concludes the paper.

1.1 The Attended Home Delivery Process

Let us start with giving a short overview of the overall planning and fulfillment
process behind the Attended Home Delivery service, by describing the actions
taken by the supplying e-grocery retailer in order to fulfill the deliveries of a
single day.

Tactical Planning Phase - (several months/weeks before delivery):

– A fleet of vehicles is set up and operation times of those vehicles are defined.
– Drivers are assigned to the vehicles in accordance to the legal regulations

concerning drive and rest times.
– The supplying company defines the set of possible delivery time windows that

will later be offered to the customers through the web service.

Ordering Phase - (several weeks up to days/hours before delivery): This phase
begins once the web service starts to allow booking of delivery time windows for
the specific day of delivery. Hence, the system must handle the following tasks:

– Customers use the web service through a web site or a mobile app to place
their orders.

– The system must decide which delivery time windows can be offered to a
specific customer, such that the delivery can be fulfilled within the time win-
dow. Only the resources that have been assigned during the tactical planning
phase are available.
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– Once a customer has booked a delivery time window, the system must adapt
the existing delivery schedule to accommodate the respective order. Further-
more, the system periodically tries to improve the current schedule.

During this phase, the objective is to accept as many customers as possible,
while offering as many time windows as possible to each potential customer in
order to achieve a high degree of customer satisfaction and to also ensure good
resource utilization, which translates to the overall logistics operations being
cost efficient.

Preparation Phase - (Days/Hours Before Delivery): This phase is triggered once
the system does no longer accept new orders through the web service. The objec-
tive function is now changed to minimization of the transportation costs (overall
fulfillment costs). Another relevant aspect to be considered is the traffic flow
at the depot and the vehicle loading bays. Hence, the following tasks must be
performed:

– The delivery schedule is improved regarding the new objective function.
– Meanwhile, at the depot, the ordered goods are fetched from storage and

consolidated accordingly to the customer orders.

Delivery Phase: In this phase the vehicles are first packed with the consolidated
orders and prepared to leave the depot. Then the vehicles visit the customers
according to the delivery schedule, which was generated by the system, such that
the customers receive their orders within the selected time windows.

1.2 Related Work

First, let us give a short overview of related work.

– Campbell and Savelsbergh [2] describe a Home Delivery system that decides
if a customer order is accepted. Furthermore, the system assigns accepted
orders to a time window under consideration of the opportunity costs of the
orders. In contrast to that, in our setup the customer takes the decision to
which delivery time window their order is assigned to.

– Parts of the Ordering Phase are tackled by Hungerländer et al. [7] using two
Mixed-Integer Linear Programs (MILPs).

– The Slot Optimization Problem is introduced by Hungerländer et al. [8]. It
describes the problem of determining the maximal number of available deliv-
ery time windows for a new customer.

– Hungerländer and Truden [9] focus on providing competitive MILP formula-
tions for the Traveling Salesperson Problem with Time Windows.

The contribution of this work is given as followed:

– A general description of an AHD system based on the use-case of an online
grocery shopping service is given and a detailed description of the Ordering
Phase is provided.
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– A heuristic solution approach for the introduced problem is presented. Fur-
ther, the authors propose a hybrid approach that applies a Mixed-Integer
Linear Program.

– Finally, novel benchmarks instances are introduced and computational exper-
iments that evaluate the performance of the proposed approaches are pre-
sented.

1.3 Challenges and Key Steps of the Ordering Phase

In this paper we focus on the Ordering Phase and suggest solution approaches to
deal with the computational challenges arising during this phase. In particular,
the runtime requirements for the optimization approaches applied during this
phase are much more severe than in any other phase.

All decisions taken in the foregoing Tactical Planning Phase are considered
as input variables. During the Ordering Phase customers can book their grocery
deliveries through a web service. Figure 1 illustrates a generic example website
and its main features. Clearly, the web service should respond to the customer
requests with as little delay as possible. Fetching and providing the input data
for the booking process requires communication across several services and many
data base queries. As this already takes a significant amount of time, there is
even less time to solve the actual optimization problem.

08:00-09:00 09:00-10:00 10:00-11:00 11:00-12:00

http://www.generic-grocery-store.com

Order your groceries online!
Customer: John Doe
Address: 123 Main St, Anytown, USA

Delivery Windows for: March 3, 2019

Fig. 1. Illustration of a generic example website of an AHD service for grocery online
shopping. Based on the customer’s address, the system determines the availability
of the predefined delivery time windows. Non-available delivery time windows, e.g.,
09:00–10:00, are crossed out.

During the Ordering Phase, the web service must repeatedly solve an
online variant of a capacitated Vehicle Routing Problem with Time Windows
(cVRPTW). The cVRPTW is concerned with finding optimal tours for a fleet
of vehicles with given capacity constraints to deliver goods to customers within
assigned time windows. As the cVRPTW is known to be NP-hard [13], the naive
approach of solving a new cVRPTW instance from scratch for each new customer
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order is far from being applicable in an online environment, even when using fast
Meta-heuristics [5], due to the tight restrictions regarding runtime.

For clarity of exposition, we further split the Ordering Phase into the follow-
ing four key steps:

Initialization Step: The system sets up an empty delivery schedule, i.e., a
cVRPTW instance with a fixed number of vehicles where each vehicle has defined
operation times that were determined during the Tactical Planning Phase, but
not having any customers assigned to yet.

Get TWs Step - The System Determines Available Delivery Time Windows:
Based on the current delivery schedule the system determines which delivery
time windows are available to a new customer. During times with high customer
request rates this step has to be performed within milliseconds. The available
time windows are then presented to the customer through the web service. Note
that the customer has to provide a delivery address such that a routing system
can estimate the travel times between all pairs of customers.

Optionally, for reasons of profit maximizing, some available time windows
can be hidden from the customer or be offered at different rates. However, we
do not consider any kind of slot pricing in this work. For related and recent
publications on pricing in the context of AHD systems we refer the reader to
[10–12,18].

Set TW Step - Customer Books a Delivery Time Window: Using the website or
app, a new customer selects her or his preferred delivery time window. As other
customers might have booked deliveries since the Get TWs step was performed,
the system must double-check if this delivery time window is still available. If
the insertion is still feasible, the system adds the new order into the working
schedule. In order to avoid queuing issues during the critical Set TW step, the
system does not allow any other manipulations of the schedule.

In case that the requested delivery time window is not available anymore,
the Get TWs step is triggered again, and an updated list of available delivery
time windows is presented to the customer.

Improvement Step: In this step the system tries to improve the working schedule
such that as many delivery time windows as possible can be offered to potential
future customers and therefore more customers can place their orders. Choosing
the total travel time as objective function has proven to be a reasonable choice to
achieve this. While the fleet and the assignment of customers to time windows is
fixed, the assignment of customers to delivery vehicles as well as the sequences in
which the vehicles visit the customers can be altered. Typically, the Improvement
step may take several seconds, but during times with high customer request rates
the step can be omitted or only be triggered after a certain number of Set TW
steps. Note that at any time there is exactly one working schedule in the system.

In the following section we formally introduce the cVRPTW as the underlying
optimization problem of the Ordering Phase and propose algorithmic strategies
for dealing with the cVRPTW during each of the four steps described above.
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2 Algorithms

2.1 Formal Definition of the cVRPTW

In this section we now formally introduce the cVRPTW and some further
required notations.

Basic Definitions: A cVRPTW instance is typically defined by the following
input data:

– A set of time windows W = {w1, . . . , wq}, where each time window w ∈ W
is defined through its start time sw and its end time ew. We assume that the
time windows are unique. Hence, there do not exist time windows wa, wb,∈
W, wa �= wb with swa

= swb
and ewa

= ewb
.

– A set of customers C, |C| = p, with corresponding order weight function
c : C → R

>0, a service time function s : C → R
>0, and a travel time function

t : C × C → R
≥0 where we set the travel time from a customer a to itself to

0, i.e., t(a, a) = 0, a ∈ C.
– A function w : C → W that assigns to each customer a time window, during

which the delivery vehicle has to arrive at the customer.
– A schedule S = {A,B, . . . }, consisting of |S| = m tours with assigned capac-

ities Ck, k ∈ S, where Ck corresponds to the capacity of the vehicle that
operates tour k.

A tour A = {a1, a2, . . . , an} contains n customers, where the indices of the
customers display the sequence in which the customers are visited. To improve
clarity of exposition, we sometimes additionally use upper indices, i.e., A =
{a

w(a1)
1 , a

w(a2)
2 , . . . , a

w(an)
n }, which indicate the time windows assigned to the

customers. Furthermore, each tour A has assigned start and end times that we
denote as startA and endA respectively. Hence, the vehicle executing tour A can
leave from the start depot no earlier than startA and must return to the end
depot no later than endA.

Structured Time Windows: Two time windows wa and wb are non-overlapping if
and only if ewa

≤ swb
or ewb

≤ swa
. Therefore, wa and wb do overlap if and only

if swb
< ewa

and swa
< ewb

. We speak of structured time windows, if all time
windows in W are pair-wise non-overlapping and if the number of customers
|C| = p is much larger than the number of time windows |W| = q, i.e., n � q,
and therefore typically several customers are assigned to the same time win-
dow. We denote the corresponding variant of the cVRPTW as the capacitated
Vehicle Routing Problem with structured Time Windows (cVRPsTW). Struc-
tured time windows are a specialty that arises in the Attended Home Delivery
use case, as well as some other modern routing applications. Note that the cor-
responding assumptions do not impose severe restrictions to the supplier nor
the customers, but allow for a more efficient optimization of the corresponding
logistics operations.
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2.2 Arrival Times and Feasibility

Next, let us give formal, recursive definitions of the earliest and latest arrival
times that are needed to define feasibility of a schedule and of the insertion of a
new customer.

Earliest and Latest Arrival Times: We consider a fixed tour A = {a0, a1, . . . ,
an, an+1}, where a0 is the start depot, an+1 is the end depot, and {a1, . . . , an}
is the set of customers assigned to tour A. Note that all our approaches do not
move the depots. Hence, customers can only be inserted after the start depot and
before the end depot. The earliest (latest) arrival time αai

(βai
) gives the earliest

(latest) time at which the vehicle may arrive at ai, who is the ith customer on
the tour, while not violating time window and travel time constraints on the
preceding (subsequent) tour:

αa0 := startA, αaj+1 := max
{
sw(aj+1), αaj + s(aj) + t(aj , aj+1)

}
, j ∈ [n − 1],

αan+1 := αan + s(an) + t(an, an+1),

βan+1 = endA, βaj−1 := min
{
ew(aj−1), βaj − t(aj−1, aj) − s(aj−1), aj)

}
,

j ∈ [n] \ {1}, βa0 := βa1 − t(a0, a1).

Feasibility of a Schedule: Now we can concisely define the feasibility of a tour
and a schedule with the help of the earliest arrival times. A schedule S is feasible,
if all its tours are feasible. A tour A is feasible, if it satisfies both of the following
conditions:

sw(ai) ≤ αai
≤ ew(ai), i ∈ [n], ∧ αan+1 ≤ endA, (TFEAS),

∑

i∈[n]

c(ai) ≤ CA, (CFEAS).

While TFEAS ensures that the arrival times at each customer are within their
assigned time windows, CFEAS ensures that the capacity of A is not exceeded.

Feasibility of an Insertion: Now we further use the concepts of earliest and
latest arrival time to facilitate and algorithmically speed up feasibility checks of
tours after inserting an additional customer. A new customer ãw can be feasibly
inserted with respect to time between customers ai and ai+1, i ∈ [n0], into a
feasible tour A if the following condition holds:

αãw ≤ βãw , TFEAS(ãw, i + 1,A), (1)
where, αãw := max{sw, αai

+ s(ai) + t(ai, ã
w)},

βãw := min{ew, βai+1 − s(ãw) − t(ãw, ai+1)}.

Condition (1) ensures that we arrive at customer ãw early enough, such that
we can leave from ãw early enough, to handle all subsequent customers of A
within their assigned time windows. We refer to Fig. 2 for an illustration of the
above condition.
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sw ew

a
wj−1
i a

wj+1
i+1ãwjãwj

t(awj−1
i , ãwj ) t(ãwj , a

wj+1
i+1 )

s(ãwj )s(awj−1
i )

αã
wj βã

wj
α
a
wj−1
i

β
a
wj+1
i+1

≤

Time

Fig. 2. Depiction of a feasible insertion with respect to time of ãwj between a
wj−1
i and

a
wj+1
i+1 , i.e., TFEAS(ãwj , i + 1, A) holds.

Additionally, we have to check that the sum of the weights of the customer
orders assigned to tour A does not exceed the capacity CA. The insertion of ãw

into tour A is feasible with respect to capacity, if the following condition holds:
∑

i∈[n]

c(ai) + c(ãw) ≤ CA, CFEAS(ã,A). (2)

Assuming that all earliest and latest arrival times and the sum of capacities
have already been calculated, Conditions (1) and (2) allow to check the feasibility
of an insertion of a new customer into a given time window in O(1).

If we conduct an insertion that is feasible with respect to time and capacity
and decide to insert ãw, we receive a new tour Ã = {a0, a1, . . . , ai, ã

w, ai+1, . . . ,
an, an+1}. Customer ãw is then assigned index i + 1 and the indices of all suc-
ceeding customers are increased by one. Clearly, earliest and latest arrival times
and the sum of capacities of the modified tour must be updated, which can be
done in O(n).

Note that, in the context of an offline Traveling Salesperson Problem with
Time Windows, the Generalized Insertion heuristic proposed by Gendreau et al.
[6] uses concepts analog to our earliest and latest arrival times. The authors
also check the feasibility of possible insertions with two conditions that resemble
Condition (1). Due to their efficient computation, Conditions (1) and (2) form
the basic building blocks of our Local Search heuristic that we describe in the
following subsections. Moreover, the concept is flexible enough such that valuable
extensions, such as time-dependent travel times or the integration of driving
breaks into the schedule, can be employed without major changes.

2.3 Local Search Heuristic

We consider a Local Search heuristic that uses two neighborhoods for exchanging
customer orders between two tours:

1. The 1-move neighborhood moves a customer from one tour to another tour.
2. The 1-swap neighborhood swaps two customers between two different tours.

Accordingly we define the 1move(ãw,A,B) operation as the procedure where
we remove customer ãw from tour A ∈ S and try to feasible insert it into tour
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B ∈ S, A �= B, within time window w. If at least one feasible insertion position
for ãw in B is found that additionally decreases the total travel time of the
delivery schedule, we denote the 1-move as improving.

As a 1swap(ãw,A,B) operation we define the procedure where we try to
exchange customer ãw with any customer within assigned time window w from
a different tour B. If at least one such exchange decreases the total travel time
of the schedule, we denote the 1-swap as improving. In general we always select
the exchange of an improving 1-swap that results in the largest decrease of the
total travel time of the delivery schedule. In Fig. 3 we provide an illustration of
an improving 1swap(awj

3 ,A,B).

wj−1 wj wj+1

Tour A
before

Tour B
before

Tour A
1swap

Tour B
1swap

a
wj

1 a
wj

2 a
wj

3 a
wj

4 a
wj+1
5

b
wj

1 b
wj

2 b
wj

3 b
wj+1
4

a
wj

1 a
wj

2 b
wj

2 a
wj

4 a
wj+1
5

b
wj

1 a
wj

3 b
wj

3 b
wj+1
4

Time

Fig. 3. Reduction of the total travel time of a schedule induced by an improving
1swap(a

wj

3 , A, B) operation.

2.4 Algorithmic Strategies

In this subsection we describe how to combine the Local Search heuristics pre-
sented in the previous subsection in order to conduct sufficiently fast Get TWs,
Set TW and Improvement steps.

The Get TWs Step: In this step we aim to quickly identify all time windows
during which a new customer ã can be inserted into (at least one of) the current
tours. We suggest to use the following procedure:

– Simple-insertion. For each time window w ∈ W iterate over all tours A ∈ S
and all possible insertion points within w and check Conditions (1) and (2).
A time window w is considered as being available, if both conditions hold for
at least one insertion point. In this case we add w to the set of available time
windows Tã ⊆ W. This procedure is computationally very cheap and runs
within 1 ms for all benchmark instances considered in our computational
study.
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Then the time windows Tã are offered to the customers through the web service.
Note that [2] proposes a similar procedure for the VRP, i.e., without considering
time windows.

Additionally to this Simple-insertion heuristic we introduced an Adaptive
Neighborhood Search (ANS) in [8] that is especially tailored to the Get TWs
step. The ANS applies 1-move and 1-swap operations to free up time during
a specific time window on a selected tour in order to enable the insertion of
the new customer. ANS has proven to find more available time windows than
Simple-insertion, while still being fast enough for most applications, as long as
the customer request rate is moderate. However, as this strategy has already
been discussed and computationally compared [8], we do not benchmark it in
this paper.

The Set TW Step: Once the customer has selected a time window w̃ from the
set Tã, we double check its availability in the same manner as in the Get TWs
step, and then we immediately insert ã into w̃ at the best found insertion point.

The Improvement Step: In this step we aim to reduce the total travel time of
the delivery schedule by using one of the following two procedures:

– Local-improvement. Our computationally cheap, yet quite effective Local
Search heuristic builds the foundation of the Improvement step. We combine
1-move and 1-swap operations, where we focus on the 1-move operations
when possible, as they are computationally cheaper and in general more effec-
tive than the 1-swap operations. We stop our Local Search heuristic once we
reach a local minimum of our objective function with respect to our neigh-
borhoods.

– Local+TSPTW-improvement. After the Local Search heuristic we addi-
tionally use MILPs proposed in our previous paper [9] for optimizing all single
tours that have changed since the last improvement step. In [9] we moti-
vated and analyzed the Traveling Salesperson Problem with Time Windows
(TSPTW) that is a subproblem of the cVRPTW as each tour of the delivery
schedule corresponds to a TSPTW instance. Optimizing the single tours of a
schedule to optimality has been proven to be critical to ensure driver satis-
faction. Hence, it ensures that drivers do not encounter any obvious loops on
their routes. Also note that we use the current tours of our delivery schedule
for warm starting the TSPTW MILPs.

During the Ordering Phase our Local Search heuristic only performs improv-
ing operations. However, the algorithms can be simply altered into a Simulated
Annealing approach by allowing also non-improving operations, which is more
appropriate for the Preparation Phase when there is more time available for
optimization.

3 Computational Experiments

In this section we present computational results on a set of benchmark instances
that are motivated by an online shopping service of an international grocery
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retailer. We restrict our experiments to a setup with structured time windows as
it has proven to be more computationally efficient than having overlapping time
windows and therefore is better suited for the use in an AHD system. Accordingly
we consider the Traveling Salesperson Problem with structured Time Windows
(TSPsTW) [9], which is a special case of the cVRPsTW as each tour of the
delivery schedule corresponds to a TSPsTW instance.

3.1 Benchmark Instances

In order to provide meaningful computational experiments we created a bench-
mark set that resembles real-world data focusing on urban settlement structures.
Moreover, the benchmark instances are designed to reflect instances as they arise
in an online grocery shopping service of a major international supermarket chain,
regarding travel times, length of time windows, duration of service times, cus-
tomer order weights, and their proportions to vehicle capacities. All instances
can be downloaded from http://tinyurl.com/vrpstw. Note that the well-known
VRPTW benchmark instances proposed by Solomon [15] do not comply with
our considered use-case.

In more detail, our benchmark instances have the following characteristics:

– Grid Size. We consider a 20 km × 20 km square grid, which is roughly of the
size of Vienna as well as a smaller grid of size 10 km × 10 km that corresponds
to smaller cities.

– Placing of Customers. In order to achieve varying customer densities, only
20 % of the customer locations have been sampled from a two-dimensional
uniform distribution. The remaining 80 % of the customer locations have been
randomly assigned to 10 clusters. The centers resp. shapes of those clusters
have been randomly sampled as well. Finally, the customer locations have
been sampled from the assigned cluster.

– Depot Location. We consider two different placements of the depot: At the
center of the grid, and at the center of the top left quadrant. In each test
setup there are equally many instances for both variants.

– Travel Speeds. As proposed by Pan et al. [14] we assume a travel speed of
20 km/h. This number can be further supported by a recent report by Vienna
Public Transport [17], where an average travel speed for their fleet of buses
of 17.7 km/h during the day, 17.2 km/h at peak times, and 20.0 km/h during
evening hours has been reported.

For the sake of simplicity, the distance between two locations is calcu-
lated as the Euclidean distance between them. Travel times are calculated
proportional to the Euclidean distances, using the assumed travel speed.

– Order Weights. The order weights of customers have been sampled from a
truncated normal distribution with mean of 7 and standard deviation of 2,
where the lower bound is 1 and the upper bound is 15.

– Customer Choice Model. A customer choice model simulates the decisions
that are usually taken by the customers. We choose a simple model, where
every customer has just one desired delivery time window that has been set

http://tinyurl.com/vrpstw
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beforehand in the benchmark instance. If the preferred time window is not
offered to the customer, we assume that the customer does not place an
order and leaves the website. We simulate this by a random assignment,
following a uniform distribution, of each customer to one time window out
of a set of 5 resp. 10 consecutive time windows, where each is one hour long.
The later reflects a situation where customers choose from one-hour delivery
time windows between 08:00 and 18:00. Note that this is in contrast to real-
world applications, where usually certain time windows are more prominent
among customers than others. However, we chose a uniform distribution to
obtain unbiased results that allow for an easier identification and clearer
interpretation of the key findings.

– Service Times. We assume the service time at each customer to be 5 min.

In summary, our assumptions were chosen in order to find a good compromise
between realistic real-world instances and enabling a concise description and
interpretation of the experimental set-up.

Typically, in the online grocery delivery use-case no more than 500 customer
are served from the same depot on a given day. Hence, for our computational
experiments we consider two benchmark sets that contain 500 customers each:

1. A benchmark set with many short (30–40) tours having a capacity of 100 and
5 time windows each.

2. A benchmark set with fewer long (10–20) tours having a capacity of 200 and
10 time windows each.

Moreover, we simulate sparsely such as densely populated delivery regions by
using grids of size 20 km × 20 km resp. 10 km × 10 km.

3.2 Experimental Setup

All experiments were performed on an Ubuntu 14.04 machine equipped with
an Intel Xeon E5-2630V3 @ 2.4 GHz 8 core processor and 132 GB RAM. We
implemented all algorithms in Java version 8 and use Gurobi 8.0.1 as IP-solver
in single thread mode. We compare the algorithmic strategies presented in the
previous section for both the Get TWs and the Improvement step.

In all our experiments we iteratively insert new customers into the schedule,
simulating customers placing orders online following the customer choice model.
Hence, we assume that if the preferred time window is not offered to the customer
she or he refuses to place an order and hence, the customer is not inserted into the
schedule. Due to the iterative setup we can omit the Set TW step and insert the
new customer without double-checking the availability of the selected delivery
time slot. We determine the following metrics averaged over 100 instances each:

– Get TWs step:
• Average number of feasible time windows determined for each customer:

Corresponds to the number of time windows in which the order can be
inserted.

• Average runtime of the Get TWs step.
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– Improvement step:
• Average improvement over Insertion step: Given as the average reduction

of the sum of travel times over all tours relative to the total travel time
of the schedule after inserting the new customer (given as percentage).

• Average improvement of the cost of Insertion: Given as the average reduc-
tion of the sum of travel times over all tours relative to the increase of
travel time caused by the insertion of the new customer (given as per-
centage).

• Average number of TSPsTW MILPs solved.
• Average runtime of each Improvement step.

3.3 Results

Now let us present the results of our computational evaluation. We examine the
performance of our approaches on instances with 500 customers. The results for
the sparse resp. dense benchmark sets are summarized in Table 1 resp. Table 2
for the Get TWs step, and in Table 3 resp. Table 4 for the Improvement step.

Table 1. Results for the Get TWs step for our sparse benchmark scenarios.

Get TWs step

Simple-insertion

500 customers
100 capacity units
5 time windows

500 customers
200 capacity units
10 time windows

Tours 30 35 40 10 15 20

Average runtime (sec:ms) 0:001 0:001 0:001 0:001 0:001 0:001

Number of time windows
offered (avg.)

4.29 4.93 5.00 5.76 8.59 10.00

Total customers inserted (avg.) 428.90 493.40 500.00 288.30 429.20 500.00

Table 2. Results for the Get TWs step for our dense benchmark scenarios.

Get TWs step

Simple-insertion

500 customers
100 capacity units
5 time windows

500 customers
200 capacity units
10 time windows

Tours 30 35 40 10 15 20

Average runtime (sec:ms) 0:001 0:001 0:001 0:001 0:001 0:001

Number of time windows
offered (avg.)

4.28 4.94 5.00 5.76 8.59 10.00

Total customers inserted (avg.) 428.30 493.70 500.00 287.80 429.50 500.00

The first benchmark set with many short tours corresponds to the left col-
umn, and the results for the second benchmark set with few long tours are
displayed in the right column. First, we observe that the runtimes for both the
Get TWs and the Improvement step are very low despite of the large instances,
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Table 3. Results for the Improvement step for our sparse benchmark scenarios.

Improvement step 500 customers
100 capacity units
5 time windows

500 customers
200 capacity units
10 time windows

Tours 30 35 40 10 15 20

Avg. runtime (sec:ms)

Local 1:024 1:453 1:504 0:653 1:512 1:966

Local+TSPsTW 1:115 1:547 1:600 0:729 1:602 2:058

Avg. improvement over Insertion
step (%)

Local 0.96 0.90 0.90 0.71 0.65 0.60

Local+TSPsTW 1.00 0.94 0.93 0.78 0.72 0.65

Avg. improvement of cost of
Insertion (%)

Local 66.12 67.97 68.49 50.13 56.73 58.96

Local+TSPsTW 68.81 78.55 71.05 55.16 61.27 63.42

Avg. number of TSPsTW MILPs
solved

Local+TSPsTW 3.48 3.76 3.81 1.82 2.25 2.41

Table 4. Results for the Improvement step for our dense benchmark scenarios.

Improvement step 500 customers
100 capacity units
5 time windows

500 customers
200 capacity units
10 time windows

Tours 30 35 40 10 15 20

Avg. runtime (sec:ms)

Local 1:468 1:882 1:912 0:807 2:035 2:707

Local+TSPsTW 1:564 1:992 2:014 0:886 2:140 2:807

Avg. improvement over Insertion
step (%)

Local 1.00 0.95 0.95 0.68 0.65 0.62

Local+TSPsTW 1.05 0.99 0.98 0.76 0.70 0.66

Avg. improvement of cost of
Insertion (%)

Local 67.37 69.59 70.20 49.01 57.18 60.65

Local+TSPsTW 70.43 72.48 73.09 54.56 62.23 65.66

Avg. number of TSPsTW MILPs
solved

Local+TSPsTW 3.59 3.89 3.94 1.93 2.37 2.56
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which demonstrates that our solving approaches scale very well. It is worth
pointing out that the Get TWs step stays below 1 ms even for a large number
of customers. This is crucial in order to deal with high customer request rates
at peak times. Considering that between two Improvement steps the schedule is
altered only by insertion of one customer, a reduction of our objective function
by 0.60% to 1.05% per step is remarkable. This can be further underlined by
the reported average reduction of the cost of inserting the new customer which
ranges from 50.13% to 78.55%. Furthermore, we notice a moderate improvement
of the hybrid heuristics over the Local-improvement heuristics.

When comparing dense to sparse instances, we notice that the average run-
times for the Improvement step are significantly higher on dense instances. Fur-
ther, we notice higher average runtimes on the benchmark set with fewer long
tours. The reason for both observations lies in the larger number of customers per
tour which makes these instances more difficult to solve. We also observe that the
reduction of the objective function achieved by the hybrid heuristics, compared
to the Local-improvement heuristics, is similar on both benchmark sets.

In summary, our suggested algorithms perform very good an both benchmark
sets as they are able to produce delivery schedules on large-scale instances within
the tight runtime restrictions imposed by the considered application.

4 Conclusion

In this work, we considered an Attended Home Delivery (AHD) system in the
context of an online grocery shopping service offered by an international grocery
retailer. AHD systems are used whenever a supplying company offers online shop-
ping services that require that customers must be present when their deliveries
arrive. Therefore, the supplying company and the customer must both agree on
a delivery time window, which ideally is rather short, during which delivery is
guaranteed.

Especially, we considered the overall fulfillment process of the AHD system
that can be described by four consecutive phases: (1) Tactical Planning, (2)
Ordering, (3) Preparation, and (4) Delivery. We focused on the Ordering phase,
during which customers place their orders through the web service. Generally,
this phase is the most challenging phase of an AHD system from a computational
point of view. As for most AHD approaches in the literature, we considered a
capacitated Vehicle Routing Problem with Time Windows as the underlying
optimization problem of the ordering phase. The online characteristic of this
phase requires that the delivery schedule is built dynamically as new orders
are placed. We split the computations of the ordering phase into four key steps
and proposed a solution approach that allows to (non-stochastically) determine
which delivery time windows can be offered to potential customers. Furthermore,
we employed a Local Search heuristic to improve the delivery schedule and we
also suggested a hybrid approach that additionally to the Local Search heuristic
employs MILPs, which optimize single tours.

Finally, in an experimental evaluation, we demonstrated the efficiency of our
approaches on benchmark sets that are motivated by an online grocery shopping
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service. We considered the capacitated Vehicle Routing Problem with structured
Time Windows (cVRPsTW) for our benchmarking experiments. The special
feature of the cVRPsTW is the additional structure of the time windows which
does not impose severe restrictions neither to the supplying company nor to the
customers. Our computational study showed that the suggested algorithms can
solve the considered cVRPsTW instances fast enough to comply with the very
strict runtime restrictions as they arise in AHD systems with high customer
request rates.

For future research it would be interesting to integrate time-dependent travel
times as well as driving breaks into the approach.
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Abstract. Concepts of consistency have long played a key role in con-
straint programming but never developed in integer programming (IP).
Consistency nonetheless plays a role in IP as well. For example, cutting
planes can reduce backtracking by achieving various forms of consis-
tency as well as by tightening the linear programming (LP) relaxation.
We introduce a type of consistency that is particularly suited for 0–1
programming and develop the associated theory. We define a 0–1 con-
straint set as LP-consistent when any partial assignment that is consis-
tent with its linear programming relaxation is consistent with the original
0–1 constraint set. We prove basic properties of LP-consistency, includ-
ing its relationship with Chvátal-Gomory cuts and the integer hull. We
show that a weak form of LP-consistency can reduce or eliminate back-
tracking in a way analogous to k-consistency. This work suggests a new
approach to the reduction of backtracking in IP that focuses on cutting
off infeasible partial assignments rather than fractional solutions.

Keywords: Consistency · Resolution · Constraint satisfaction ·
Integer programming · Backtracking · Cutting planes

1 Introduction

Consistency is a fundamental concept of constraint programming (CP) and an
essential tool for the reduction of backtracking during search [1]. Curiously, the
concept never explicitly developed in mathematical programming, even though
solvers rely on a similar type of branching search. In fact, the cutting planes
of integer programming can reduce backtracking by achieving various forms of
consistency as well as by tightening the linear programming (LP) relaxation.

This suggests that it may be useful to investigate the potential role of con-
sistency concepts in mathematical programming. We do so for 0–1 integer pro-
gramming in particular. We study how consistency relates to such integer pro-
gramming ideas as the LP relaxation, Chvátal-Gomory cutting planes [3], and
the integer hull, as well as how consistency can be achieved for 0–1 inequalities.
Our main contribution is to introduce a type of consistency, LP-consistency, that
seems particularly relevant to 0–1 programming, and to develop the underlying
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theory. We show that achieving a form of partial LP-consistency can reduce
backtracking in ways that traditional cutting planes do not.

One way to reduce backtracking is to identify partial assignments to the
variables that are inconsistent with the constraint set, meaning that they cannot
occur in a feasible solution of the constraints. Branching decisions that result in
such partial assignments can then be avoided, thus removing infeasible subtrees
from the search. Unfortunately, it is generally hard to identify inconsistent partial
assignments in advance.

The essence of consistency is that it makes it easier to identify inconsistent
partial assignments. Full consistency allows one to recognize an inconsistent
partial assignment by the fact that it violates a constraint that contains only
the variables in the partial assignment. Because full consistency is very hard
to achieve, CP solvers rely on domain consistency (generalized arc consistency)
[1,4,10,11], which reduces variable domains to the point that every value in
them occurs in some feasible solution. If domain consistency is obtained at the
current node of the search tree, branching on any value in a variable’s domain
can lead to a feasible solution. Domain consistency is itself hard to achieve for
the entire constraint set, but can often be achieved, or partially achieved, for
individual global constraints in the CP model, and this reduces backtracking
significantly [14].

Our approach is based on the idea that consistency can be defined with
respect to a relaxation of the constraint set. Specifically, we interpret consistency
as making it possible to identify inconsistent partial assignments by checking
whether they are consistent with a certain type of relaxation. This perspective
allows us to propose alternative types of consistency by using various types of
relaxation. For traditional consistency, the relaxation is obtained simply by drop-
ping constraints that contain variables that are not in the partial assignment.
We define LP-consistency by replacing this relaxation with the LP relaxation.
Thus LP-consistency ensures that any partial assignment that is consistent with
the LP relaxation is consistent with the original constraint set. Fortunately, one
can easily check consistency with an LP relaxation simply by solving the LP
problem that results from adding the partial assignment to the LP relaxation.

This poses the question of whether it is practical to achieve LP-consistency
for a 0–1 problem. There is no known practical method for achieving full LP-
consistency, but we take a cue from the concept of k-consistency in CP [5,15,16],
which is weaker than full consistency but sufficient to avoid backtracking if
the constraints are not too tightly coupled by common variables. We define a
similar property, sequential LP k-consistency, that can avoid some backtracking
that traditional cutting planes may permit, because it focuses on identifying
inconsistent partial assignments rather than cutting off fractional solutions of
the LP relaxation.

A method for obtaining sequential LP k-consistency is suggested by our prac-
tice of defining consistency concepts in terms of projection, as proposed in [9].
One can define sequential LP k-consistency, in particular, in terms of the results
of lifting a problem from k − 1 dimensions to k dimensions, and then projecting



Consistency for 0–1 Programming 227

it back into k−1 dimensions. A modified form of the well-known lift-and-project
technique of IP [2] achieves sequential LP k-consistency.

We begin below by defining and illustrating basic consistency concepts and
showing how they can be cast in terms of projection. We also indicate how consis-
tency can eliminate or reduce backtracking. We review some prior work showing
that an inference method of propositional logic, resolution, can achieve consis-
tency for 0–1 problems, and that a weak form of resolution, input resolution,
can generate all Chvátal-Gomory cuts for a set of logical clauses.

At this point we introduce LP-consistency and show some elementary prop-
erties, namely that consistency implies LP-consistency, and a constraint set that
describes the integer hull is necessarily LP-consistent. Yet LP-consistency is a
concept that does not occur in polyhedral theory, and an LP-consistent con-
straint set need not describe the integer hull. While the facet-defining inequali-
ties that describe the integer hull are generally regarded as the strongest valid
inequalities, we show that they can be weaker than a non-facet-defining inequal-
ity that achieves LP-consistency, in the sense that they exclude fewer inconsis-
tent 0–1 (partial) assignments. We further elaborate on connections with cutting
plane theory by showing that a 0–1 partial assignment is consistent with the LP
relaxation if and only if it violates no logical clause that is a Chvátal-Gomory
(C-G) cut, and a 0–1 problem is LP-consistent if and only if all of its implied
logical clauses are C-G cuts. We also note that while input resolution derives
C-G cuts, it does not achieve LP-consistency.

The remainder of the paper defines and develops the concept of sequential
LP k-consistency. It shows that achieving sequential LP k-consistency for k =
1, . . . , n (where n is the number of variables) avoids backtracking altogether
for branching order x1, x2, . . . , xn. In practice, one would achieve sequential LP
k-consistency for a few small values of k. We then prove that one step of the
lift-and-project procedure [2] achieves sequential k-consistency for a given k.
Finally, we illustrate how achieving sequential LP k-consistency even for k = 2
can avoid backtracking that is permitted by traditional separating cuts.

2 Consistency and Projection

To define consistency, it is convenient to adopt basic terminology as follows. The
domain Dj of a variable xj is the set of values that can be assigned to xj . A
constraint C is an object that contains some set {x1, . . . , xk} of variables, such
that any given assignment of values to (x1, . . . , xk) either satisfies or violates C.
Thus a constraint is satisfied or violated only when all of its variables have been
assigned values. An assignment to x satisfies a constraint set S when it satisfies
all the constraints in S. A list of symbols defined hereafter appears in Table 1.

Let xJ be the tuple containing the variables in {xj | j ∈ J} for J ⊆ N =
{1, . . . , n}. A partial assignment to x is an assignment of values to xJ for some
J ⊆ N . We can now define a consistent partial assignment and a consistent
constraint set.
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Table 1. List of symbols.

xJ tuple of variables xj for j ∈ J

N the set {1, . . . , n}
Jk the set {1, . . . , k}
Dj domain of xj

DJ cartesian product of Dj for j ∈ J

D(S) set of assignments∗ to x that satisfy S
DJ(S) set of assignments∗ to xJ that are consistent with S
D(S)|J projection of D(S) onto xJ

SJ set of constraints in S that contain only variables in xJ

SLP LP relaxation of 0–1 constraint set S
DJ(SLP) set of 0–1 assignments to xJ that are consistent with SLP

SC set of clausal inequalities implied by individual constraints of S
∗an assignment x = v or xJ = vJ assumes that v ∈ D, vJ ∈ DJ .

Definition 1. Given a constraint set S, a partial assignment xJ = vJ is con-
sistent with S if S ∪ {xJ = vJ} is feasible.

Since it is hard in general to determine whether S ∪ {xJ = vJ} is feasible, it
is hard to identify which partial assignments are consistent with S. Consistent
constraint sets are defined so that it is easy to identify which partial assignments
are consistent with them.

Definition 2. A constraint set S is consistent if every partial assignment to x
that violates no constraint in S is consistent with S.

The contrapositive is perhaps more intuitive: S is consistent when every partial
assignment that is inconsistent with S violates some individual constraint in
S. Thus a consistent constraint set can be viewed as one in which implied con-
straints are made explicit, in the sense that every inconsistent partial assignment
is explicitly ruled out by some constraint in the set.

Since full consistency is generally hard to achieve, the constraint program-
ming community has found various weaker forms of consistency to be more
useful. By far the most popular is domain consistency, also known as generalized
arc consistency [1,4,10,11].

Definition 3. A constraint set S is domain consistent if xj = vj is consistent
with S for all vj ∈ Dj and all variables xj.

That is, every value in the domain of a variable xj is assigned to xj in some
feasible solution of S. A consistent constraint set is necessarily domain consistent.

Example 1. Suppose that S is the constraint set

x1 + x2 + x4 ≥ 1
x1 − x2 + x3 ≥ 0
x1 − x4 ≥ 0
xj ∈ {0, 1}, all j
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The domains are Dj = {0, 1} for j = 1, . . . , 4. The feasible solutions (x1, . . . , x4)
of S are listed below:

(0, 1, 1, 0) (1, 0, 1, 0) (1, 1, 0, 1)
(1, 0, 0, 0) (1, 0, 1, 1) (1, 1, 1, 0)
(1, 0, 0, 1) (1, 1, 0, 0) (1, 1, 1, 1)

Set S is not consistent because, for instance, the partial assignment (x1, x2) =
(0, 0) violates no constraint in S but is inconsistent with S due to the fact that
(x1, x2) = (0, 0) in none of the feasible solutions. On the other hand, S is domain
consistent because xj = 0 and xj = 1 occur in some feasible solution for each j.

The various consistency concepts are more easily defined in terms of projec-
tion, as proposed in [9]. Let DJ be the cartesian product of Dj for j ∈ J , and
let D = DN . When we speak of an assignment x = v or a partial assignment
xJ = vJ , we assume v ∈ D and vJ ∈ DJ . Let D(S) be the set of assignments to x
that satisfy S, and let DJ(S) be the set of assignments to xJ that are consistent
with S. Thus

DJ (S) =
{
vJ ∈ DJ

∣
∣ S ∪ {xJ = vJ} is feasible

}

The projection of D(S) onto xJ , which we may write D(S)|J , is {xJ | x ∈ D(S)}.
We can now define consistency in terms of projection. Let SJ be the set

of constraints in S whose variables belong to xJ . Then DJ (SJ ) is the set of
assignments to xJ that violate no constraints in S.

Proposition 1. A constraint set S is consistent if and only if DJ(SJ ) = D(S)|J
for all J ⊆ N . In addition, S is domain consistent if and only if Dj = D(S)|{j}
for all j ∈ N .

3 Consistency and Backtracking

It is well known that consistency is closely related to backtracking. We note first
that branching can find a feasible solution for a fully consistent constraint set
without backtracking, assuming of course that the constraints have a solution.
Suppose we branch on variables x1, . . . , xn in that order. Each node in level
j of the branching tree corresponds to a partial assignment (x1, . . . , xj−1) =
(v1, . . . , vj−1). We branch on xj at the node by assigning to xj each value vj ∈ Dj

for which the partial assignment (x1, . . . , xj) = (v1, . . . , vj) violates no constraint
in S. Due to the consistency of S, this partial assignment is consistent with S
for at least one value vj ∈ Dj . Thus branching can continue to the bottom of
the tree with no need to backtrack.

A weaker form of consistency, k-consistency, avoids backtracking if there is
limited coupling of variables [6]. More relevant to our purposes is a still weaker
form of consistency that assumes the branching order is given, namely x1, . . . , xn.
Let Jk = {1, . . . , k}.
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Definition 4. A constraint set S is sequentially k-consistent if DJk−1(SJk−1) =
DJk

(SJk
)|Jk−1 .

Thus S is sequentially k-consistent if for every partial assignment
(x1, . . . , xk−1) = (v1, . . . , vk−1) that violates no constraint in S, there is a value
vk in Dk such that (x1, . . . , xk) = (v1, . . . , vk) violates no constraint in S. The
following is easy to show.

Proposition 2. If the branching order is x1, . . . , xn, constraint set S can be
solved without backtracking if S is sequentially k-consistent for k = 1, . . . , n.

Example 2. Let S = {3x1 +2x2 ≥ 1, −x1+2x2 ≥ 0, x ∈ {0, 1}2}. Proposition 2
implies that we can avoid backtracking by branching in the order x1, x2, because
S is sequentially 1-consistent and sequentially 2-consistent.

4 Consistency and Resolution

Previous research has shown that the resolution procedure of propositional logic
achieves consistency for a 0–1 constraint set. First, some definitions. A literal �j
is a proposition of the form xj or ¬xj . A logical clause is a disjunction

∨
j∈J �j

of literals. A clause C1 implies C2 when C1 absorbs C2, meaning that all the
literals of C1 are in C2. There is a resolution proof of any clause that is logically
implied by a clause set C [12,13].

Now let S be 0–1 constraint set {Ax ≥ b, x ∈ {0, 1}n}, where the domains
are Dj = {0, 1} for all j. S logically implies 0–1 constraint set S ′ when all 0–1
points that satisfy S also satisfy S ′. S and S ′ are logically equivalent when they
logically imply each other. A logical clause

∨
j∈J+ xj ∨ ∨

j∈J− ¬xj is represented
by the 0–1 inequality ∑

j∈J+

xj +
∑

j∈J−
(1 − xj) ≥ 1

A 0–1 inequality is clausal when it represents a clause. It is clear that a 0–1
inequality is logically equivalent to the set of clausal inequalities it implies. Thus
if we let SC be the set of clausal inequalities that are implied by some inequality
in S, then S is logically equivalent to SC. It is shown in [8] that resolution on
clausal inequalities achieves consistency.

The following example illustrates how a traditional cutting plane can serve
the dual purpose of tightening the linear programming (LP) relaxation and
achieving consistency. Let the LP relaxation of S = {Ax ≥ b, x ∈ {0, 1}n}
be SLP = {Ax ≥ b, x ∈ [0, 1]n}.

Example 3. Suppose that S is the constraint set of Example 1. In this case,
S and SC are identical. Resolution yields two additional clausal inequalities,
x1+x2 ≥ 1 and x1+x3 ≥ 1. Adding these inequalities to S achieves consistency.
These inequalities are also traditional cutting planes for S, in particular Chvátal-
Gomory (C-G) cuts. The first cuts off two fractional vertices (x1, . . . , x4) =
( 13 , 1

3 , 0, 1
3 ), ( 12 , 0, 0, 1

2 ) of the polytope described by SLP, and the second cuts off
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the vertex ( 12 , 1
2 , 0, 0) as well. The inequalities therefore serve the dual purpose of

achieving consistency and tightening the LP relaxation. As it happens, adding
both resolvents yields an integral polytope, but we will see that a consistent
constraint does not in general describe an integral polytope.

A special class of resolution proofs, namely input proofs, derive all clausal
C–G cuts for SC [7].

5 LP-consistency

While resolution can always achieve consistency, it is not a practical method
for the reduction of backtracking. Resolution proofs tend to explode rapidly in
length and complexity. However, the LP relaxation of S provides an additional
tool for this purpose. Specifically, it provides a more useful test for consistency
than whether a partial assignment violates a constraint.

Consistency of S implies that any partial assignment xJ = vJ that is consis-
tent with SJ (i.e., violates no constraint in S) is consistent with S. We want a
type of consistency that ensures that any partial assignment consistent with SLP

is consistent with S. We can achieve this by defining consistency with respect to
the LP relaxation SLP rather than the relaxation SJ . Recall that classical consis-
tency is defined so that DJ (SJ ) = D(S)|J . We therefore define LP-consistency
as follows.

Definition 5. A 0–1 constraint set S is LP-consistent if DJ(SLP) = D(S)|J
for all J ⊆ N .

Note that DJ(SLP) refers to the set of 0–1 assignments to xJ that are consistent
with SLP, since the domains are Dj = {0, 1} for all j. Thus S is LP-consistent
if SLP ∪ {xJ = vJ} is infeasible for any 0–1 partial assignment xJ = vJ that is
inconsistent with S.

Example 4. Consider the 0–1 constraint set S = {4x1 + 4x2 ≥ 1, 2x1 − 4x2 ≥
−3, x ∈ {0, 1}2} (Fig. 1). The partial assignment x1 = 0 is consistent with SLP

but not with S, because both (x1, x2) = (0, 0) and (x1, x2) = (0, 1) violate S. So
S is not LP-consistent.

Two elementary properties of LP-consistency follow.

Proposition 3. A consistent 0–1 constraint set is LP-consistent.

Proof. Consider any 0–1 partial assignment xJ = vJ that is consistent with SLP.
We claim that xJ = vJ is consistent with S, which suffices to show that S is
LP-consistent. Since SLP ∪ {xJ = vJ} is feasible, xJ = vJ violates no constraints
in S. Now since S is consistent, this means that xJ = vJ is consistent with S,
as claimed. ��
In addition, a 0–1 constraint set that describes the integer hull (the convex hull
of feasible 0–1 points) is LP-consistent.



232 D. Davarnia and J. N. Hooker

4x1 4x2+ ≥ 1

2x1 4x2 ≥ 3− −

Fig. 1. Illustration of Example 4.

Proposition 4. Given 0–1 constraint set S, if SLP describes the integer hull of
D(S), then S is LP-consistent.

Proof. Suppose that S ∪ {xJ = vJ} is infeasible for a given 0–1 partial assign-
ment xJ = vJ . Then xJ = vJ describes a face of the unit hypercube that is
disjoint from D(S). This implies that the face is disjoint from the convex hull
of D(S), which is described by SLP. Thus SLP ∪ {xJ = vJ} is infeasible, and it
follows that S is LP-consistent. ��

It is essential to observe that a convex hull model is not necessary to achieve
LP-consistency, a fact that will be exploited in later sections. This can be seen
in an example.

Example 5. Consider the following two constraint sets (Fig. 2), which have the
same feasible set:

S1 = {x1 + x2 ≤ 1, x2 + x3 ≤ 1, x ∈ {0, 1}3}
S2 = {x1 + 2x2 + x3 ≤ 2, x ∈ {0, 1}3}

The LP relaxation S1
LP describes the integer hull of D(S1) = D(S2), and so S1 is

LP-consistent by Proposition 4. Yet the constraint set S2 is also LP-consistent,
even though S2

LP does not describe the integer hull, but describes a polytope
with fractional extreme points (x1, x2, x3) = (0, 1

2 , 1), (1, 1
2 , 0). Interestingly, the

inequality x1 +2x2 +x3 ≥ 2 in S2 is the sum of the two nontrivial facet-defining
inequalities in S1 and is therefore weaker than either of them from a polyhedral
point of view. Yet it cuts off more infeasible 0–1 points than either of the facet-
defining inequalities and is therefore stronger in this sense. Indeed, the purpose
of achieving LP-consistency is to cut off infeasible 0–1 (partial) assignments, not
to cut off fractional vertices of the LP relaxation.

6 Characterizing LP-Consistency

The following result gives a necessary condition for consistency based on clausal
inequalities.
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x1 + 2x2 + x3 ≤ 2

x1 + x2 ≤ 1x2 + x3 ≤ 1

Fig. 2. Illustration of Example 5

Proposition 5. If a constraint set S is consistent, then all of its implied clausal
inequalities are in SC.

Proof. Suppose that S is consistent, and let C be any clausal inequality implied
by S. Then the assignment xJ = vJ violates C, where xJ are the variables in
C and vj is 1 when xj is negated in C and 0 otherwise. This means xJ = vJ is
inconsistent with S, which implies by the consistency of S that xJ = vJ violates
an inequality αx ≥ β in S. As a result, C must be implied by αx ≥ β, showing
that C ∈ SC. ��

LP-consistency allows us to derive a stronger argument on the relation
between an LP-consistent set and its implied clausal inequalities, as it provides
both necessary and sufficient conditions. In particular, a 0–1 constraint set S is
LP-consistent if and only if all of its implied clauses are C-G cuts for SLP. This
is due to the following fact.

Proposition 6. Given a 0–1 constraint set S, a 0–1 partial assignment is con-
sistent with SLP if and only if the assignment violates no clausal C-G cut for SLP.

Proof. It suffices to show that a given 0–1 partial assignment xJ = vJ violates
a clausal C-G for SLP if and only if SLP ∪ {xJ = vJ} is infeasible. Suppose first
that xJ = vJ violates a clausal inequality ax ≥ β that is a C-G cut for SLP,
where SLP is the system Ax ≥ b. Since xJ = vJ violates ax ≥ β, we can write
the inequality as aJxJ ≥ β, where aJvJ ≤ β − 1. Now since ax ≥ β is a C–G
cut, there is a tuple u ≥ 0 of multipliers such that uA = a and β − 1 < ub ≤ β.
We therefore have (uA)JvJ = aJvJ ≤ β − 1 < ub. This implies that xJ = vJ
violates uAx ≥ ub, and so SLP ∪ {xJ = vJ} must be infeasible.

For the converse, suppose that SLP ∪ {xJ = vJ} is infeasible, which means
that the face of the unit hypercube defined by xJ = vJ lies outside the polytope
defined by SLP. Let J+ = {j ∈ J | vj = 0} and J− = {j ∈ J | vj = 1}.
Then some inequality of the form

∑
j∈J+ xj +

∑
j∈J−(1 − xj) ≥ π̄ for some
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π̄ > 0 separates the face just mentioned from the polytope; i.e., xJ = vJ violates
this inequality. Since this inequality is valid for SLP, it is dominated by some
surrogate of Ax ≥ b. That is there exists a tuple u ≥ 0 of multipliers such that
uA ≥ ub is of the form

∑

j∈J+

xj +
∑

j∈J−
(1 − xj) ≥ π (1)

where π ≥ π̄, and π ≤ |J | because S is feasible. Now pick any subset Ĵ ⊆ J with
|Ĵ | = 
π� − 1, let Ĵ+ = J+ ∩ Ĵ , and let Ĵ− = J− ∩ Ĵ . Take the sum of (1) with
−xj ≥ −1 for j ∈ Ĵ+ and xj ≥ 0 for j ∈ Ĵ−. This yields a clausal inequality
that is a surrogate of Ax ≥ b:

∑

j∈J+\Ĵ+

xj +
∑

j∈J−\Ĵ−

(1 − xj) ≥ 1 + π − 
π�

Rounding up the right-hand side (if necessary) yields a clausal C–G cut violated
by xJ = vJ . Thus xJ = vJ violates a clausal C-G cut for SLP, as claimed. ��
Example 6. Consider again the constraint set S of Example 3. The partial assign-
ment (x1, x3) = (0, 0) is inconsistent with SLP and violates a clausal C-G cut,
namely x1 + x3 ≥ 1. The cut is obtained by assigning multipliers 1

4 , 1
2 , 1

4 , 1
4 , 1

2 to
the three constraints of S, x2 ≥ 0, and x3 ≥ 0, respectively. The partial assign-
ment (x1, x3) = (0, 1) is consistent with SLP and therefore violates no clausal
C-G cut.

Corollary 1. A constraint set S is LP-consistent if and only if all of its implied
clausal inequalities are C-G cuts for SLP.

Proof. Suppose first that S is LP-consistent, and let C be any clausal inequal-
ity implied by S. Then the assignment xJ = vJ violates C, where xJ are the
variables in C and vj is 1 when xj is negated in C and 0 otherwise. This means
xJ = vJ is inconsistent with S, which implies by the LP-consistency of S that
xJ = vJ is inconsistent with SLP. By Proposition 6, xJ = vJ violates some
clausal C-G cut C ′ of SLP. Then C ′ must absorb C, which means C is likewise
a C-G cut of SLP.

Conversely, suppose all clausal inequalities implied by S are C-G cuts for
SLP, and consider any partial assignment xJ = vJ that is consistent with SLP.
By Proposition 6, xJ = vJ violates no clausal C-G cut of SLP. This means that
it violates no clause implied by S, which means that xJ = vJ is consistent with
S, as desired. ��
Example 7. The constraint set S of Example 1 is LP-consistent because its
implied clausal inequalities are all implied by the inequalities in the set S ∪
{x1 + x2 ≥ 1, x1 + x3 ≥ 1}, and these are all C-G cuts for SLP.
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7 LP-Consistency and Backtracking

Like full consistency in CP, full LP-consistency is difficult to achieve. We there-
fore follow the lead of the CP community and consider a weaker form of con-
sistency, namely an analog of k-consistency. While even k-consistency is hard
to achieve in practice, and the CP community focuses on domain consistency
instead, a form of LP-consistency analogous to sequential k-consistency may
offer possibilities to 0–1 programming.

Recall that S is sequentially k-consistent if DJk−1(SJk−1) = DJk
(SJk

)|Jk−1 ,
and that sequential k-consistency for k = 1, . . . , n suffices to avoid backtracking
when the branching order is x1, . . . , xn. A parallel definition that relates to linear
programming is as follows.

Definition 6. A 0–1 constraint set S is sequentially LP k-consistent if
DJk−1(SLP) = DJk

(SLP)|Jk−1 .

Equivalently, we can say that S is sequentially LP k-consistent if for every 0–1
partial assignment xJk−1 = vJk−1 that is consistent with SLP, there is a 0–1
assignment xk = vk for which xJk

= vJk
is consistent with SLP. Thus sequential

LP k-consistency is analogous to sequential k-consistency but based on the SLP

relaxation rather than the SJk−1 relaxation.
This form of consistency can also allow us to avoid backtracking, if we are will-

ing to solve appropriate LP problems. Specifically, suppose that at a given node
in the branching tree, prior branching has fixed (x1, . . . , xk−1) = (v1, . . . , vk−1).
For the next branch, we select a value vk ∈ {0, 1} for which the partial assign-
ment (x1, . . . , xk) = (v1, . . . , vk) is consistent with SLP; that is, for which the LP
problem SLP ∪ {(x1, . . . , xk) = (v1, . . . , vk)} is feasible. We then set xk = vk and
continue to the next level of the tree. The following theorem guarantees that the
LP problem will be feasible for at least one value of vk, and that this process
avoids backtracking.

Proposition 7. If S is a feasible 0–1 constraint set over x and the branch-
ing order is x1, . . . , xn, achieving sequential LP k-consistency for k = 1, . . . , n
suffices to solve S without backtracking.

Proof. Since S is feasible, SLP is feasible at the root node of the branching
tree, and so the empty assignment is consistent with SLP. Arguing inductively,
suppose the partial assignment (x1, . . . , xk−1) = (v1, . . . , vk−1) that reflects the
branching decisions down to the node at level k is consistent with SLP. Since
S is sequentially LP k-consistent, there exists a 0–1 value vk of xk for which
the partial assignment (x1, . . . , xk) = (v1, . . . , vk) is consistent with SLP. By
induction, SLP ∪ {(x1, . . . , xn) = (v1, . . . , vn)} is feasible at the terminal node of
the tree for some tuple (v1, . . . , vn) of 0–1 values. But in this case, (x1, . . . , xn) =
(v1, . . . , vn) satisfies S, and we have solved the problem without backtracking. ��
Example 8. Consider the constraint set S of Example 4. S is not sequentially
LP 2-consistent because x1 = 0 is consistent with SLP, but neither (x1, x2) =
(0, 0) nor (x1, x2) = (0, 1) is consistent with SLP. Also, backtracking is possible,
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because if we set x1 = 0 at the root node because x1 = 0 is consistent with SLP,
we cannot find a consistent value for x2 at the child node and must backtrack.
Now suppose we add the clause x1 + x2 ≥ 1 to S to obtain a constraint set
S ′ that is sequentially LP 2-consistent. At the root node we must branch on
x1 = 1, because x1 = 0 is not consistent with S ′

LP. At the child node, branching
on x2 = 1 yields an assignment (x1, x2) = (1, 1) that is consistent with SLP and,
in fact, solves S without backtracking.

8 Achieving LP Consistency

We can achieve sequential LP k-consistency by using one step of a modified lift-
and-project method [2]. Given S = {Ax ≥ b, x ∈ {0, 1}n} where 0 ≤ xi ≤ 1 is
included in Ax ≥ b, we generate the nonlinear system

(Ax − b)xk ≥ 0
(Ax − b)(1 − xk) ≥ 0

We next linearize the system by replacing each x2
k with xk, and each product

xixk with yik. Let the resulting system be Rk(SLP). Adding the constraints in
this system to SLP yields a sequentially LP k-consistent constraint set.

Proposition 8. Given a 0–1 constraint set S, augmenting S with the con-
straints in Rk(SLP) yields a constraint set that is sequentially LP k-consistent.

Proof. For a given 0–1 partial assignment xJ = vJ , suppose that SLP ∪ {(xJk
) =

(vJk
)} is infeasible for vk = 0, 1. It suffices to show that Rk(SLP)|N ∪ {xJk−1 =

vJk−1} is infeasible. It follows from Theorem 2.1 in [2] that Rk(SLP)|N describes
the convex hull of the union of D(SLP ∪ {xk = vk}) over vk = 0, 1. We claim that
xJk−1 = vJk−1 does not satisfy Rk(SLP)|N . Assume to the contrary. Then there
exists a point w = (vJk−1 , ṽk, ṽK , ỹ) that satisfies Rk(SLP), where K = N \ Jk.
This point must be representable as a convex combination of two points of the
form (vJk−1 , 0, v̇K , ẏ) and (vJk−1 , 1, v̈K , ÿ), since the components of vJk−1 are
integral and cannot be represented as the convex combination of other points.
However, by assumption such points do not exist because SLP ∪ {xJk

= vJk
} is

infeasible for vk = 0, 1. This yields the desired contradiction. ��
If desired, Rk(SLP) can be projected onto x, before adding its constraints

to SLP, to obtain a sequentially LP k-consistent system in the space of original
variables. Alternatively, Rk(SLP) can be projected onto xJk−1 to obtain sparse
cuts that are nonetheless sufficient to achieve sequential LP k-consistency. Every
partial assignment xJk−1 = vJk−1 that is inconsistent with SLP violates some
individual cut in Rk(SLP)|Jk−1 .
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Example 9. Consider again Example 4, in which

S = {2x1 − 4x2 ≥ −3, 4x1 + 4x2 ≥ 1, x1, x2 ∈ {0, 1}}

Recall that S is not LP 2-consistent because x1 = 0 is consistent with SLP

and (x1, x2) = (0, v2) is inconsistent with SLP for v2 = 0, 1. We wish to achieve
sequential LP 2-consistency by applying the modified lift-and-project procedure.
First generate the constraints

(2x1 − 4x2 + 3)x2 ≥ 0 x1x2 ≥ 0
(2x1 − 4x2 + 3)(1 − x2) ≥ 0 x1(1 − x2) ≥ 0
(4x1 + 4x2 − 1)x2 ≥ 0 (1 − x1)x2 ≥ 0
(4x1 + 4x2 − 1)(1 − x2) ≥ 0 (1 − x1)(1 − x2) ≥ 0

After linearizing and writing y12 simply as y, we obtain the system R2(SLP):

−x2 + 2y ≥ 0 y ≥ 0
2x1 − 3x2 − 2y + 3 ≥ 0 x1 − y ≥ 0
3x2 + 4y ≥ 0 x2 − y ≥ 0
4x1 + x2 − 4y − 1 ≥ 0 −x1 − x2 + y + 1 ≥ 0

(2)

The third constraint on the left can be omitted because it is implied by x2, y ≥ 0.
Adding the constraints in (2) to SLP yields a sequentially LP 2-consistent set,
and it is clear on inspection that x1 = 0 is inconsistent with (2). If we wish to
obtain a consistent constraint set in the original variables, we can project (2)
onto (x1, x2). This yields a constraint 4x1 − x2 ≥ 1 that can be added to SLP to
obtain a sequentially LP 2-consistent set, as illustrated in Fig. 3(a). It is evident
in the figure that x1 = 0 is inconsistent with this set. Finally, we can obtain a
sparse cut that achieves sequential LP 2-consistency by projecting (2) onto x1.
This yields the cut x1 ≥ 1

4 , which likewise excludes x1 = 0.

2x1 − 4x2 ≥ −3

4x1 + 4x2 ≥ 1
4x1 + 4x2 ≥ 1

2x1 − 4x2 ≥ −3

4x1 − x2 ≥ 1

(a) (b)

x1 − 4x2 ≥ −3

x1 + 4x2 ≥ 1

Fig. 3. Illustration of Examples 9 and 10.
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An advantage of sequential LP-consistency is that it can avoid branching
that traditional cutting planes do not avoid, because it focuses on excluding
inconsistent partial assignments, rather than on tightening the LP relaxation by
cutting off fractional points. This can be illustrated in a very simple context as
follows.

Example 10. Suppose we wish to maximize 3x2−x1 subject to the constraint set
S in the previous example. We first apply a traditional branch-and-cut procedure
that generates separating lift-and-project cuts at the root node (Fig. 4(a)). The
solution of the LP relaxation at the root node is (x1, x2) = (12 , 1). Lift and
project yields the cuts x1 − 4x2 ≥ −3 and x1 + 4x2 ≥ 1 (corresponding to the
disjunction x1 = 0 ∨ x1 = 1) as illustrated in Fig. 3(b), and the cut 4x1 −x2 ≥ 1
(corresponding to x2 = 0 ∨ x2 = 1) as illustrated in Fig. 3(a). Only the first
cut is generated, because only it cuts off the fractional solution (12 , 1). This
results in a new LP solution (x1, x2) = (0, 3

4 ). The procedure then branches on
the fractional variable x2. The x2 = 0 branch yields the fractional LP solution
(x1, x2) = (12 , 0), and it is necessary to branch on x1. The x2 = 1 branch yields
the integer LP solution (x1, x2) = (1, 1), which solves the problem. The resulting
search tree has 5 nodes.

Suppose now that we achieve sequential LP 2-consistency as described in
Example 9 by generating the inequality 4x1 − x2 ≥ 1, even though it does
not cut off the fractional LP solution (Fig. 4(b)). Since the partial assignment
x1 = 0 is inconsistent with the LP relaxation, we immediately branch on x1 = 1,
which yields the integer LP solution (x1, x2) = (1, 1). The problem is solved with
only 2 nodes in the search tree, even though we used no traditional separating
cuts at all.

infeasible

optimal
optimal

(a) (b)

x= (12 , 0)

x2 = 0 x2 = 1

1

0

x1 = 0 x1 = 1

x1 = 1

x= ( 3
4, ) x= (12 , 1)

x= ( ,1)
1x= ( ,1)

1x= ( ,0)

Fig. 4. Illustration of Example 10

One could, in principle, avoid backtracking altogether by applying lift-and-
project repeatedly to achieve sequential LP k-consistency for k = 1, . . . , n. This
is impractical, however, because the resulting constraint set explodes in size. An
alternative is to achieve k-consistency for a few small values of k. This can be
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accomplished in three ways. (a) Obtain k-consistency by applying the lift-and-
project step to the set SLP obtained from computing (k − 1)-consistency in the
previous step, where the procedure is modified to account for the y-variables
in SLP. This causes the number of variables to double in each step, but no
projection is required. (b) Project Rk(SLP) onto x before moving to the next
step. The number of variables remains constant, but a time-consuming projection
operation must be carried out. (c) Project Rk(SLP) onto xJk−1 before moving
to the next step. This adds only sparse cuts to the constraint set but requires
more computation to carry out the projection.

These methods become computationally prohibitive in an IP solver as k
increases, unless a heuristic is used to identify generated inequalities that are
likely to play a role in achieving sequential LP k-consistency—much as separa-
tion algorithms are used to identify useful cutting planes. This remains an issue
for future research.

9 Conclusion

We provided a theoretical foundation for a new type of consistency, LP-
consistency, that is particularly suited to 0–1 programming. It is based on the
idea that consistency can, in general, be defined with respect to a type of relax-
ation. LP-consistency is obtained by replacing the relaxation used for traditional
consistency concepts with the LP relaxation. It brings a novel approach to 0–
1 programming by identifying cuts that exclude infeasible partial assignments
rather than fractional solutions. To our knowledge, no such concept has been
proposed in the IP literature, even though it is directly relevant to the amount
of backtracking that occurs. We also showed how a non-facet-defining inequality
can be stronger than a facet-defining inequality in an interesting sense, and how
traditional cutting planes can reduce branching even if no LP relaxation is used,
because they can help achieve consistency.

We also defined sequential LP k-consistency, a weaker form of LP-consistency
that nonetheless reduces backtracking. Sequential LP k-consistency for a given
k can be obtained by one step of the lift-and-project process of integer program-
ming. We showed that achieving even sequential LP 2-consistency can avoid
backtracking that traditional separating cuts allow.

This work points to at least three further research programs. One is to
extend the concepts introduced here to general mixed integer/linear program-
ming (MILP), which appears to be straightforward. A second is to investigate
the computational usefulness of sequential LP k-consistency for MILP solvers,
in particular by achieving sequential LP k-consistency for small k near the top
of the search tree. A third is to conduct a systematic study of the ability of
traditional cutting planes to achieve consistency, both traditional forms and LP-
consistency, in an MILP problem. This could allow one to make better use of
known cutting planes by generating cuts that do not separate fractional solutions
but enhance the consistency properties of the constraint set.
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Emir Demirović1(B), Peter J. Stuckey2, James Bailey1, Jeffrey Chan3,
Chris Leckie1, Kotagiri Ramamohanarao1, and Tias Guns4(B)

1 University of Melbourne, Melbourne, Australia
{emir.demirovic,baileyj,kotagiri,caleckie}@unimelb.edu.au

2 Monash University and Data61, Melbourne, Australia
peter.stuckey@monash.edu

3 RMIT University, Melbourne, Australia
jeffrey.chan@rmit.edu.au

4 Vrije Universiteit Brussel, Brussels, Belgium
tias.guns@vub.be

Abstract. We study a prediction+optimisation formulation of the
knapsack problem. The goal is to predict the profits of knapsack items
based on historical data, and afterwards use these predictions to solve
the knapsack. The key is that the item profits are not known beforehand
and thus must be estimated, but the quality of the solution is evaluated
with respect to the true profits. We formalise the problem, the goal of
minimising expected regret and the learning problem, and investigate
different machine learning approaches that are suitable for the optimisa-
tion problem. Recent methods for linear programs have incorporated the
linear relaxation directly into the loss function. In contrast, we consider
less intrusive techniques of changing the loss function, such as standard
and multi-output regression, and learning-to-rank methods. We empiri-
cally compare the approaches on real-life energy price data and synthetic
benchmarks, and investigate the merits of the different approaches.

Combinatorial optimisation is crucial in today’s society and used throughout
many industries. In this paper, we work with the fundamental knapsack problem,
which has been studied for over a century and is well understood [9,17]. It is
studied in fields such as combinatorics, computer science, complexity theory,
cryptography, and applied mathematics. It has numerous applications, including
resource allocation problems where the aim is to select as many resources as
possible under given financial constraints. The knapsack problem is NP-hard,
though highly efficient solution methods exist for reasonably sized instances [9].

In traditional optimisation, it is assumed that all parameters, e.g. the profits
and weights in a knapsack, are precisely known beforehand. In practice, these are
often crude estimates based on domain expertise or historic data. As we enter the
age of big data, large amounts of data is available and thus parameters can be
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estimated with greater precision. For example, ongoing promotion and current
weather might influence the demand. The question that arises is whether such
contextual data, together with historical data, can be used to improve decision
making, i.e. solve the underlying optimisation problem more effectively.

Such problems are encountered in load shifting [10], where the aim is to cre-
ate an energy-aware day-head schedule based on predicted hourly energy prices.
Traditional approaches to this problem consist of two phases: (1) use machine
learning to estimate the problem parameters, and (2) optimise over the esti-
mated parameters. However, Grimes et al. [10] and Mathaba et al. [16] have
separately shown that in energy-aware scheduling, learning accurate values of
the parameters by minimising the mean-square error of the predictions, a com-
monly used metric in machine learning, does not necessarily lead to solutions of
better quality for the optimisation problem. The reason is that not all errors on
estimated energy prices have an equal effect on the optimisation problem, but
the machine learning algorithm does not take this into account.

The challenge is to incorporate information from the optimisation problem
into the learning. The main difficulty is that learning techniques typically assume
that the loss function is convex. However, given the combinatorial optimisation
component, this is no longer holds. It is also not differentiable as this would
require computing the gradient over the argmax of the optimisation problem.
Intuitively, such a gradient would capture the direction in which the predicted
values should change to lead to a solution that is closer to the true solution
obtainable under perfect knowledge.

The discussed methods have been evaluated on combinatorial problems which
are solvable in polynomial time. However, we direct our attention to NP-hard
combinatorial problems, i.e. difficult problems for which the existance of a poly-
nomial algorithm is not known. We investigate their use on the knapsack, a
fundamental combinatorial problem, both unit-weighted (polynomially solvable)
and weighted (NP-hard). The knapsack was chosen as it has a simple constraint,
yet captures a difficult combinatorial optimisation problem, suitable for explor-
ing the use of prediction + optimisation techniques in constraint optimisation.

This work falls into the wider research theme of combining machine learning
and constraint optimisation [18]. Most research has focussed on using machine
learning to improve the solving process, e.g. algorithm selection and hyperpa-
rameter optimisation [14] and using machine learning to improve MIP solvers [4].
This is different from our setting, where the aim is to develop machine learning
algorithms specifically designed for use with combinatorial optimisation prob-
lems where the parameters, e.g. profit values for items in the knapsack problem,
are estimated with machine learning rather than given precisely. In terms of
modeling, constraint acquisition [1] uses machine learning techniques to learn
structural constraints from data, while other works are concerned with finding
the most likely parameters of given hard constraints [20]. Closely related, as pre-
dictions are used in the objective, is the emerging topic of constructive machine
learning [7,22], where the goal is to learn to synthesize structured objects from
data, e.g. by interactively learning the preferences of a user and searching for
the most preferred object. In contrast, our work is concerned with learning the
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weights of the objective on a per-instance basis. This has been done with a
two-phase approach in practice, e.g. in energy-aware load shifting [10,16].

We formalise the problem of minimising the expected regret and draw the
relation to stochastic optimisation. We then investigate multiple approaches to
formulate the machine learning problem for the knapsack: indirectly - a two-stage
method (predict then optimise); directly - by incorporating the optimisation
objective as the loss function; and semi-directly - using domain-specific knowl-
edge of the optimisation problem in the loss function, but without requiring to
solve the constraint optimisation problem at each step.

To summarise, our contributions are as follows:

– We formalise the problem formulation in terms of regret ;
– We investigate the relation between regret and surrogate loss functions;
– We propose two semi-direct methods based on appropriate semi-direct loss

functions specifically designed for the knapsack problem;
– We empirically evaluate different strategies for prediction + optimisation on

the knapsack problem with artificial and real-life energy-price data. Contrary
to previous work, we show that direct methods do not outperform simple
two-stage approaches on these benchmarks, demonstrating the difficulty that
arises when NP-hard problems are introduced.

1 Formalisation

A combinatorial optimisation problem is a tuple CSP (X,D,C, o), where X is
the set of variables, D the domain of each variable, C a set of constraints over
subsets of the variables, and o an objective function over X that needs to be
maximized. A CSP is often a parameterized representation of a class of problems.

For example, the knapsack problem consists of selecting a number of items
from a set, such that the total value is maximized. Each item has a weight and
the sum of the weights of the selected items may not exceed a given capacity
threshold. Let there be n items, then the knapsack problem can be formalised as
a CSP with X = {x1, . . . , xn} variables, domain D(xi) = {0, 1},∀i representing
whether an item is in or out and constraint set C = {∑

i wixi ≤ c} and objective
o =

∑
i vixi. Let V = (v1, . . . , vn) be the set of profits, W = (w1, . . . , wn) the

set of weights and c the capacity. Any given assignment of parameters (V,W, c)
is an instance of the parameterized knapsack CSP.

In the above example, we may not know the profits V of the items in advance,
but we may have attributes a such as what temperature it is, how popular the
items are, whether they are in promotion etc. At the same time, we have a set
of historical {(a, V )} data of tuples, with values for the same attributes as well
as the (post-hoc) profits of the items that day. This historical data can be used
to predict the most likely item profits V given today’s attributes.

More formally, let us define θ as the set of parameters of a CSP. Then, in a
prediction + optimisation setting, this consists of two disjoint sets θ = θp ∪ θy

where the θp parameters are assumed given and the θy parameters will need
to be predicted. A problem instance hence does not consist of a tuple (θp, θy),
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but rather a tuple (θp,a) with a the attributes of this problem instance. From
a set of historical data {(a, θy)} one can then learn a function f that outputs
an estimated set of parameters f(a) ≈ θy such that one obtains the problem
parameters (θp, f(a)) of the parameterized CSP.

Fig. 1. Schematic figure of the components for a knapsack with 10 items, weights W ,
capacity c, unknown profits V and 4 attributes per item.

In the knapsack case we consider here, θp = (W, c) consists of the weights
and the capacity, while θy = V are the item profits. Figure 1 shows a graphical
example where it is assumed that the attributes a consist of 4 features per item
(the columns), with a the union of them (one long sequence).

Solution Quality. In a standard machine learning setting, one assumes a training
set {(a, θy)}train and an independent test set {(a, θy)}test. One can then evaluate
the quality of a model f trained on {(a, θy)}train by measuring how it performs
on {(a, θy)}test through a loss function loss(f(a), θy) over instances (a, θy).
Following the risk minimisation framework [23], the goal of machine learning is
then to minimise the expected loss:

E[loss(f(a), θy)]

In our prediction + optimisation setting, the predictions are merely inter-
mediary results and the true goal is to minimise the error of the optimisation
procedure when using the predictions:

E[loss(f(a), θy, θp)]

Such a loss is called the task loss in [5]. A natural task loss in our setting
is to consider the regret of using the predictions rather than using the (apriori
unknown) actual profits, that is, the difference in true solution quality obtained
when optimising with the predictions as opposed to the real profits. Let s(θy, θp)
be an optimal solution to a (θy, θp) parameterized CSP, where we write s(θy)
when θp is clear from the context. We can formalise the regret of f for a single
instance (a, θy, θp) as:

regret(f(a),θy, θp) = o(s(θy, θp), θy, θp) − o(s(f(a), θp), θy, θp) (1)
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where o(X, θy, θp) denotes the value of the CSP’s objective function o() with
solution X when using θy and θp.

In case of knapsack:

regret(f(a),V, (W, c)) = V ∗ s(V, (W, c)) − V ∗ s(f(a), (W, c)) (2)

Observe how, when computing the quality o(Xy, θy, θp) and o(Xf , θy, θp), in
both cases the real parameters θy are used, e.g. profits V in case of knapsack.
The regret hence quantifies the difference in the objective value when using the
estimated profits compared to the ideal case, i.e. using perfect information.1

The goal of prediction + optimisation is hence to devise prediction and opti-
misation methods such that the expected regret is minimised, i.e.

E[regret(f(a), θy, θp)]

We assume that the parameters θp are independent of a and fixed, e.g. the
weights in case of knapsack. The learning problem for a given θp is hence that
of learning an f :

min
f

E[regretθ
p

(f(a), θy)]

where we write the θp in superscript to make clear that it is constant.
The main difficulty here is that one function evaluation of regret() requires

solving a discrete optimisation problem. This is different from the usual setting
in machine learning, where the loss is a (differentiable) function rather than the
result of a set of non-decomposable discrete optimisation problems.

2 Relation to Stochastic Optimisation

Prediction + optimisation is a setting in which one has a large sample of data
from an unknown distribution, one feature vector from that distribution and an
optimisation problem where we want to minimise expected regret. We discuss
the setting in a stochastic optimisation problem (see e.g. [21]).

Assume, as we have done so far, that the stochasticity is only in the param-
eters of the objective function of the optimisation problem. Let this function be
denoted by o(Xy, θy). It can be written as a stochastic problem as follows:

max
X

E[o(X, θy)] s.t. C(X)

This is a simple stochastic problem, and as the uncertainty is only on the objec-
tive, not the constraints, there are no second stage decisions or recourse. The
goal is to find one X that is good in expectation, over some distribution of θy.

One key difference in prediction + optimisation, is that we assume the pres-
ence of a single feature vector a of observed variables which are correlated with
1 Note the different problem where profits are known and the weights are learned is

more complicated, since we may need some form of recourse mechanism to repair
inconsistent decisions Xf .
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the parameters θy. Hence, the knowledge of a changes the probability distribu-
tion over θy that we should optimise over. Indeed, we should optimise over the
conditional distribution:

max
X

E[o(X, θy)|a] s.t. C(X)

When given a finite sample of observations {(a′, θy)} we can empirically
approximate it by the following:

max
X

∑

(a′,θy)

o(X, θy) ∗ P [(a′, θy)|a] s.t. C(X)

that is, a probability weighted sum of the objective. The remaining question is
now: what is the value of P [(a′, θy)|a], namely the probability of an historical
θy with features a′ given the feature vector a? Stochastic optimisation does not
provide an answer, as it assumes that probability of each scenario is given.

From a machine learning point of view, we can take inspiration from case-
based reasoning and more specifically nearest neighbor methods that use distance
information. More specifically, we can replace the probability P [(a′, θy)|a] by the
(inverse of the) Euclidean distance between a and a′.

In fact, the k-nearest neighbor (k-NN) classification method [3], takes the k
nearest neighbors and assign them a probability of 1/k while assigning all other
instances a probability of 0. Let kn(a) denote k -nearest({(a′, θy)},a), that is,
the k instances most near to a. The predicted value is then the weighted average
over the samples: θf =

∑
(a′,θy)∈kn(a)

1
k ∗ θy. A weighted (k) nearest neighbors

weights each instance by the inverse distance θf =
∑

(a′,θy)∈kn(a)
1

d(a′,a) ∗ θy.
When θy is a list, this is done for each component individually.

In our stochastic problem, we can also use the inverse distance as probability
estimate, leading to the following:

max
X

∑

(a′,θy)∈kn(a)

o(X, θy) ∗ 1
d(a′,a)

s.t. C(X)

When θy is a vector of values (as we assume), and the objective is linear wrt θ,
then we can write the objective in its decomposed form o(X, θy) =

∑
i oi(X)∗θy

i .
E.g. in case of knapsack where oi(X) = Xi and θy

i = vi we have o(X, θy) =
X ∗ V =

∑
i Xi ∗ vi. We can then do the following rewriting:

∑

(a′,θy)∈kn(a)

o(X, θy) ∗ 1
d(a′,a)

(3)

=
∑

(a′,θy)∈kn(a)

∑

i

oi(X) ∗ θy
i ∗ 1

d(a′,a)
(4)

=
∑

i

oi(X) ∗ ( ∑

(a′,θy)∈kn(a)

1
d(a′,a)

∗ θy
i

)
(5)

=
∑

i

oi(X) ∗ θf
i (6)
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where θf
i =

∑
(a′,θy)∈kn(a)

1
d(a′,a) ∗ θy

i , the prediction of the distance-weighted
k-nearest neighbor method for component i.

Hence, in the simple stochastic setting corresponding to predic-
tion + optimisation where the objective is linear, doing a stochastic optimisation
over multiple distance-weighted scenarios, coincides with one standard determin-
istic optimisation over the distance-weighted kNN predictions θf .

3 Machine Learning Formulations

As shown in the previous section, stochastic optimisation is not sufficient for
solving a prediction + optimisation problem. Thus, we now turn to machine
learning methods. We consider three different learning approaches:

Indirect methods use a standard learning method and loss function that is
independent of the optimisation problem;

Direct methods do the learning using a convex surrogate of the regret function
as loss function, which requires solving the optimisation problem repeatedly;

Semi-direct methods, which we introduce in this paper for knapsack, that use a
convex surrogate of the regret which takes key properties of the optimisation
problem into account but which does not require repeatedly solving it.

3.1 Indirect Learning Formulations

Following the formalisation of the problem, the most natural setting is to consider
the learning as a problem of mapping the feature vector a to the list of values θy.
This is known as multi-output regression [2] and many standard regression
methods can be extended to multi-output regression, where the loss function is
the sum of the losses of each individual prediction:

E[lossmo(f(a), θy)] = E[
1
n

∑

i

loss(f(a)i, θ
y
i )]

The assumption of multi-output regression, compared to pointwise regression,
is that the values should be learned with respect to other items in the same group.
For example, because there are correlations between the values that are always
present but can get lost when predicting them independently.

Standard regression can also be used, when a set of attributes ai is given
for each item i, e.g. a = ∪iai. Ideally, any correlation present between items
can be indirectly accounted for through the values of the attributes, for example
that sales of icecream products rise with hot weather.

The data is in a form where existing regression methods can be used to
estimate the f(ai)’s. The expected loss is the average loss over all items:

E[loss(f(ai), θ
y
i )]

Regression will predict the values, and good predictions should lead to good
optimisation solutions. However, predictions are estimates that have errors, and
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the errors can interact in the optimisation. This is not captured in the loss
functions of regression.

Learning-to-Rank. Following the observation of [10] that for load-shifting
problems the correlation between the rankings of the predictions and the true
values is indicative for the optimisation quality, we may opt to learn to rank the
items consistently. This is studied in machine learning as learning-to-rank.

The learning-to-rank problem has its roots in information retrieval [15]. In
this setting, one assumes a set of queries, such as keywords entered in a search
engine, and a set of documents that need to be ranked according to their rele-
vance with the query. A relevance grade is given to each query-document pair.
The goal is to rank the documents in decreasing order of relevance.

Learning-to-rank methods do this by learning a function f over a feature
vector representing a query+document instance f(ai). Typically some features
are related to the query and some to the document. The value the function
returns has no connection to the actual value vi other than if vi > vj then it
should be that f(ai) > f(aj). The loss function is a 0-1-like loss defined over
each pair of instances where one has a higher relevance than the other:

E[
∑

(i,j),vi>vj

loss(I{f(ai)>f(aj)}, 1)] (7)

where I{.} is 1 if the condition inside is true, and 0 otherwise. Furthermore,
ranking can be decomposed into pairs and hence it is assumed the elements only
interact in pairwise ways. An optimisation problem typically trades off different
decision variables to each other. This can go beyond pairwise interactions, so a
pairwise loss is just another problem-independent surrogate.

One can use learning to rank methods in a prediction + optimisation set-
ting by treating each optimisation instance (a, θy) as one query with |θy| docu-
ments, each with relevance θy

i . Thus, in our setting, for a given knapsack instance
(query), we wish to order the items (documents) by profit (relevance).

SVMRank. In [12], the author considers learning a linear function over feature
vectors, aiming to learn a ranking function as defined in Eq. 7. However com-
puting the optimal coefficients for the resulting linear function is NP-hard. As
an alternative, the problem can be approximated [12]:

min
1
2
−→w · −→w + K

∑
ξi,j,k (8)

where −→w · −→ai,j ≥ −→w · −→ai,k + 1 − ξi,j,k qi ∈ Q,∀(j, k) ∈ qi (9)
ξi,j,k ≥ 0, (10)

where the first term in Eq. 8 is the regularisation term, Q is the set of queries
with each query being a partial order, ξi,j,k is the error variable for the j-th and
k-th item in the i-th query, K is a trade-off coefficient between regularisation and
training-error, and ai,j is the feature vector for the j-th item in the i-th query.
The resulting problem is a convex quadratic program and thus the solution can
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be obtained using generic continuous optimisation methods. Equations 8–10 are
solved to obtain the weight vector w for a linear ranking function based on item
attributes, i.e. f(a) =

∑
(wi ∗ ai), such that f(a1) > f(a2) indicates that the

first item is more profitable. Intuitively, the resulting function aims at capturing
the rankings as faithfully as possible for the historical data: each benchmark
defines an ordering of items based on their profitability. We note that specialised
techniques have been devised for solving quadratic programs of this particular
form [11,13].

3.2 Direct Learning Formulations

We consider two direct learning formulations that were recently proposed [8,24].
These methods use historical data to compute the gradient for combinatorial
problems, to minimise the regret by gradient descent.

The aim of gradient descent is to compute the minimising point xmin for a
function f , i.e. ∀x : f(xmin) ≤ f(x). Starting from an initial point, the algorithm
iteratively moves the point towards a local minima according to the direction of
its gradient.

Smart Predict then Optimise. In this approach [8] the authors aim to directly
optimise the regret of an optimisation problem that has a linear objective func-
tion. For the case of knapsack, this is

∑
(a,V ) V ∗ s(V ) − V ∗ s(f(a)) where we

recall that s(L) returns the optimal solution when solving the CSP with values
L. They derive a clever surrogate loss function using upper bounds motivated by
duality, a scaling approximation and a first-order approximation of the optimal
cost with respect to the predictions [8]. The resulting surrogate loss for linear
objectives is the following:

lossSPO(f(a), θy) = (θy − 2f(a)) ∗ s(θy − 2f(a)) + 2f(a) ∗ s(θy) − θy ∗ s(θy)

The authors show that this indeed an upper-bounding surrogate loss to regret,
and that it is convex in f(a). This means that one can optimise over this loss
function, for example using stochastic gradient descent methods as used in neural
networks. Detailed information on what the (sub)gradients are in this case is
given in [8].

For completeness we note that to avoid degenerate cases, the result of the
solving method s(·) used should be a valid upper bound, so in case multiple
optimal solutions to s(·) exist, the one with the best regret should be chosen. We
avoid this issue for the knapsack case by solving the following greedy relaxation
that has a unique optimal solution, namely it orders all items by profitability
(vi/wi) and selects all items with the highest profitability not yet selected and
distributes capacity equally among them, this procedure is repeated until no
more capacity is left.
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Quadratic Programming Task Loss (QPTL). Another approach recently pro-
posed is not limited to linear objectives, but encompasses convex optimisa-
tion [24]. To derive gradients they apply the chain rule to a task loss, such
as regret, as follows:

dregret(f(a), θy)
df(a)

=
dregret(f(a), θy)

ds(f(a))
ds(f(a))

df(a)

The first component is the gradient of the regret with respect to the solution
s(f(a)). The difficult part is the second part, which requires differentiation over
the optimisation. They do this by differentiating through the Karush-Kuhn-
Tucker conditions around the optimal point. With X,λ being the primal and
dual solutions of solving the convex optimisation problem s(f(a)) with linear
equalities represented by BX = c, and f̂ the shorthand for f(a) of a specific
a, one needs to solve the following set of differential equations to obtain the
gradients dX

df̂
= ds(f(a))

df(a) :

[
∇2

Xo(X, f̂) BT

diag(λ)B diag(BX − c)

] ⎡

⎣

dX
df̂

dλ
df̂

⎤

⎦ =

[
d∇Xo(X,f̂)

df̂

0

]

As described in [24] this can also be applied to linear relaxations of combi-
natorial optimisation problems. One difficulty is that ∇2

Xo(X, f̂) is always zero
for linear programs. The authors suggest to add a weighted quadratic term to
the linear program to overcome this, e.g. solve:

max f̂T X − γ||X||22 s.t. BX = c,GX ≤ h

for some small-valued parameter γ. As explained in [24], in this case the differ-
ential equations become, with I the identity matrix:

[
γI BT

diag(λ)B diag(BX − c)

] ⎡

⎣

dX
df̂

dλ
df̂

⎤

⎦ =

[
I

0

]

The resulting gradient can be used in the chain rule and backpropagated with
stochastic gradient descent [24].

3.3 Semi-direct Learning Formulations

We now introduce a new class of techniques that are in between indirect and
direct methods: semi-direct methods. Semi-direct methods do not require solving
the optimisation problem repeatedly like direct methods, but do use information
from the optimisation problem in the loss function.
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Profitability-Learning. A first example is in case of weighted knapsacks, one can
use regression to predict the profitability Vi/Wi of items rather than the
profit Vi. The greedy approach to solving weighted knapsacks is to sort them
by profitability and iteratively select as many as capacity allows. While we can
assume that the weights W are independent of the features a, they rescale the
values Vi and hence also its errors: errors on items with larger weights (and hence
smaller profitability) will be relatively smaller than equal errors on items with
smaller weights. In particular for weighted knapsacks we can use learning-to-rank
methods on profitability as a surrogate for regret.

Simplifying QPTL. When implementing the QPTL approach [24] we observed
that for knapsack, with its simple constraint of WX ≤ c with B = W the
weight vector and c the capacity, the result of solving the linear equations is
often non-informative: if the solution maximizes the capacity constraint then
diag(BX − c) = 0 and diag(λ)B dX

df̂
= 0 forces the dX

df̂
gradients to zero, or to a

below-precision small value. If diag(BX − c) > 0 then dλ
df̂

may be forced to zero

leading to the dX
df̂

having the huge value of 1/γ Both cases are not meaningful
and have to be guarded against, for example by replacing the gradients with a
small negative constant.

In fact, we can go as far as cutting out the QP and the solving of the dif-
ferential equations. The gradient is then simply dregret(f(a),θy)

ds(f(a)) which is θy for
knapsack. The gradient will hence push the predictions in the direction of the
true values, independent of the actual prediction it gives. While unusual, the
motivation is two-fold: (1) the instability of solving the differential equations
has this effect in many cases and (2) the magnitude of the gradient for each
item is proportional to the true value and hence the gradient updates are also
proportional to it and so will the predictions be over time. For linear objec-
tive functions, which are scale invariant, that is, the same optimal solution is
found when rescaling all weights, these ‘proportional to true value’ updates are
desirable.

Specialising SVMRank for Knapsack. A key observation is that not all pairs
(i, j) in Eq. 7 contribute equally towards minimising the expected regret in the
case of the knapsack problem. This is illustrated in the following example.

Example 1. Consider a unit-weighted knapsack problem with four items of true
profits [10, 20, 30, 40] and capacity 2, and three ranking functions giving the
following ranking values: f = [−10, 0, 5, 10], g = [10, 0, 30, 20], and h = [1, 3, 2, 4].
According to Eq. 7, the functions f , g, and h have 0, 2, 1 violations. The function
f , as it has zero violations, captures the ranking perfectly and thus achieves the
optimal solution [0, 0, 1, 1]. However, function g allows us to obtain the optimal
solution as well, despite having two violations, because they do not affect the two
highest items being ranked first. In contrast, function h only has one violation,
but it misranks two critical items leading to a worse solution [0, 1, 0, 1] with
regret (30 + 40) − (20 + 40) = 10.
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Based on the observation above, we modified the SVMRank objective func-
tion (Eq. 8) by adding constant weights ei,j,k to the error variables to account
for the differences among error variables:

1
2
−→w · −→w + K

∑
ei,j,k · ξi,j,k.

We propose a weight-scheme where items within a query are partitioned
based on whether their profitability exceeds a given threshold. Weights for error
variables within the same query are set one if the two items are not in the same
partition, and zero otherwise. The threshold is taken as the value of the prof-
itability of the least profitable item in the solution given by the linear relaxation
of the query. Formally, let pqi,j be the profitability for the j-th item in the i-th
query, and Ti be the threshold for the i-th query, the weight-scheme is given as:

ei,j,k =

{
1, (pqi,j ≥ Ti ∧ pqi,k < Ti) ∨ (pqi,j < Ti ∧ pqi,k ≥ Ti)
0, (pqi,j ≥ Ti ∧ pqi,k ≥ Ti) ∨ (pqi,j < Ti ∧ pqi,k < Ti)

Example 1. (continued) The four items with profits (p1, p2, p3, p4) =
(10, 20, 30, 40) compose a query q. Given capacity 2, the threshold value is set to
T = 30 and the items are partitioned into {1, 2} and {3, 4}. Therefore, eq,1,2 = 0
and eq,3,4 = 0, and the remaining weights are set to one. Note that if all weights
were set to one, we would obtain standard SVMRank.

4 Experiments

The aim of the experimental section is to investigate the different machine learn-
ing approaches, namely indirect, direct, and semi-direct methods, for the knap-
sack problem. Even for a “simple” problem, such as the knapsack, there are
multiple approaches to the solution process that warrant being investigated. We
note that the benchmarks and code are available online: https://github.com/
vub-dl/predopt knapsack.

Benchmarks and Data. We perform experiments with artificially generated
datasets and real-life energy price data.

The artificial datasets are constructed such that the profits can not be easily
learned. Each item is represented by a 2-dimensional attribute vector (i, j), where
i, j ∈ [0, 360]. The profit is set to profit((i, j)) = 103 ∗ sin(i) ∗ sin(j). This con-
stitutes the initial set of items, which is filtered as follows: to obtain a bijection, if
multiple pairs (i, j) map to the same value, we only keep one such pair, e.g. (pi, j)
and (0, j) both lead to zero profit and thus only one of these pairs is kept. To ensure
each profit value is positive, we add a positive constant to each profit. A weight
w ∈ {3, 5, 7} is assigned to each pair (i, j) and its profit is multiplied accordingly,
hence preserving the profit-weight ratio. Knapsack instances are generated using
these items, such that in each instance there are 16 items of each weight (total of
48 items), and special measures are taken to ensure that the distribution of item
ratios is similar for each benchmark. To increase the difficulty of learning, we draw
a random integer from [1, 5] for each benchmark and multiply its profits.

https://github.com/vub-dl/predopt_knapsack
https://github.com/vub-dl/predopt_knapsack
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The real-life datasets contain two years of historical energy price data from
the day-ahead market of SEM-O, the Irish Single Electricity Market operator.
The data was used in the ICON energy-aware scheduling competition and a
number of publications (e.g. see [6,10]). For every half hour, the data consists
of seven calendar features: whether it was a holiday, the day of the week, the
week of the year, day, month, year and the half-hour-of-the-day. In addition,
it includes three weather features, namely, the estimates of the temperature,
windspeed, and CO2 intensity in the Irish city of Cork, and three key energy-
related day-ahead forecasts by SEM-O itself: the forecasted wind production, the
forecasted system load, and the forecasted energy price. The goal is to predict
the real energy price, as determined post-hoc two days later. The task is hence
not to predict energy prices from scratch, but rather learn to use the SEM-O
predictions together with weather and calendar information to improve on their
predictions. As is common in energy price predictions, it is difficult to derive
accurate estimates and due to price swings there is a large variance in the prices
and prediction errors. In our benchmarks, we consider that one physical day,
consisting of 48 half-hour slots, is the range of one problem instance, i.e. it is
used in a day-ahead planning setting and each benchmark contains 48 items.

The data is used in a weighted and unit-weighted setting. The weights are
generated as in the artificial data and all benchmark contain 48 items.

Methodology and Implementation. The data is divided into training and
test sets at a 70%–30% ratio. On the training data, we perform for each learning
method a 5-fold cross-validation grid search over a small range of hyperparame-
ters with regret as a measure to do the selection. We discuss the results of both
datasets at 10%, 30% and 50% capacity of the sum of weights. The results are
presented in tables, where an entry (x, y) represents the average regret for the
training (x) and testing set (y), respectively.

Regarding the implementation, we use scikit-learn [19] and torch Python
libraries, Gurobi as the quadratic linear program solver, and the dedicated knap-
sack solver of or-tools (http://developers.google.com/optimization/).

We investigate solution-quality rather than runtime. Direct methods are
always more computationally expensive given their use of optimisation, and
implementations have not been optimised in terms of execution time in any
case.

Learning Methods. We experiment with the methods detailed in Sect. 3:
(indirect) kNN, k-nearest neighbours regression; kNN-mo, k-nearest neighbours
multi-output regression; Ridge, ridge regression which has shown good accu-
racy on the energy dataset in the past; Ridge-mo, multi-output ridge regression;
SVMRank, SVMrank; (direct) QPTL, quadratic programming task loss [24];
SPO, smart predict then optimise [8]; (semi-direct) Ridge-p, ridge regression
on profitability vi/wi rather than profit vi QPTL-s, our quadratic programming
task loss simplification as described in Sect. 3.3; and SVMRank-s, our weighted
SVMrank modification as described in Sect. 3.3.

http://developers.google.com/optimization/
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Table 1. Regret values for the artificial dataset: unit-weighted (top) and (bottom)
weighted. (training, test) values in thousands.

Indirect Direct Semi-direct
Capacity kNN kNN-mo ridge ridge-mo SVMR SPO QPTL QPTL-s SVMR-s
5 (10%) (⊥; 1.6) (⊥; 27.0) (12.0; 12.0) (22.0; 28.0) (1.12; 0.99) (20.49; 20.36) (23.01; 19.17) (24.22; 23.68) (0.08; 0.41)
15 (30%) (⊥; 1.5) (⊥; 66.0) (11.0; 12.0) (61.0; 75.0) (2.29; 2.54) (30.31; 29.75) (33.66; 27.62) (35.34; 34.76) (0.5; 0.27)
25 (50%) (⊥; 0.7) (⊥; 76.0) (1.1; 0.9) (52.0; 66.0) (4.71; 6.07) (0.38; 0.13) (0.09; 0.05) (0.1; 0.0) (0.04; 0.03)

Indirect Direct Semi-direct
Capacity kNN kNN-mo ridge ridge-mo SVMR SPO QPTL QPTL-s ridge-p SVMR-s
25 (10%) (⊥; 26) (⊥; 119) (62; 63) (93; 127) (4; 1) (72; 67) (62; 73) (72; 61) (26; 29) (2; 0)
75 (30%) (⊥; 64) (⊥

⊥ ⊥
; 287) (104; 102) (218; 282) (9; 8) (238; 214) (206; 235) (240; 203) (24; 27) (1; 1)

125 (50%) ( ; 25) ( ; 324) (42; 43) (259; 347) (23; 23) (166; 151) (274; 318) (322; 270) (8; 8) (6; 8)

Table 2. Regret values for the energy-pricing dataset: unit-weighted (top) and (bot-
tom) weighted.

Indirect Direct Semi-direct
Capacity kNN kNN-mo ridge ridge-mo SVMR SPO QPTL QPTL-s SVMR-s
5 (10%) (⊥; 88) (⊥; 99) (43; 51) (67; 96) (39; 44) (40; 55) (50; 64) (50; 64) (41; 42)
15 (30%) (⊥; 108) (⊥; 112) (59; 67) (80; 117) (55; 53) (59; 72) (76; 105) (76; 105) (55; 51)
25 (50%) (⊥; 68) (⊥; 83) (42; 48) (51; 89) (38; 41) (36; 45) (49; 70) (49; 70) (39; 45)

Indirect Direct Semi-direct
Capacity kNN kNN-mo ridge ridge-mo SVMR SPO QPTL QPTL-s ridge-p SVMR-s
25 (10%) (⊥; 78) (⊥; 91) (85; 72) (86; 88) (97; 97) (126; 106) (177; 142) (177; 142) (84; 97) (88; 89)
75 (30%) (⊥; 89) (⊥; 95) (60; 73) (76; 97) (145; 155) (259; 223) (260; 237) (261; 236) (144; 144) (143; 155)
125 (50%) (⊥; 80) (⊥; 82) (47; 60) (56; 84) (117; 121) (136; 113) (236; 191) (236; 191) (112; 105) (124; 126)

Results. We discuss the results of both datasets in the unit-weighted and
weighted case at 10%, 30% and 50% capacity of the total weight to vary the
combinatorial component in the problem instances. The results are presented in
tables, where an entry (x, y) represents the average regret for the training (x)
and testing set (y), respectively. We omit the training results of kNN as it simply
stores all training samples in its knowledge base.

Artificial data, unit-weighted, Table 1 (top). Among the indirect methods, the
multi-output regression variants are outperformed by the individual learning set-
tings, which is an indication that learning from a joint feature representation (for
all items at once) is more difficult then when learning for each item specifically
and that the ability to account for correlation in the output does not compensate
that. The data is generated to be difficult for pointwise methods, and indeed for
small and medium capacities, Ridge regression performs poorly while SVMRank
does well. The direct and semi-direct methods capture the case of 50% capacity
all really well. For tighter capacities, the direct methods do not seem to capture
the essential parts of the predictions better. The specialised SVMRank-s on the
other hand clearly improves on vanilla SVMRank and ridge.

Artificial data, weighted, Table 1 (bottom). In the weighted case, the weights
add more combinatorial effects in the optimisation as well as varying the
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importance of the prediction errors. Among the indirect methods the rank-
learning SVMRank is the clear winner. The semi-direct SVMRank-s modification
again improves it and has the best results. The direct methods perform well at
10% capacity but much less at higher capacities where more items are involved.
The semi-direct method of learning profitability rather than profit shows very
strong results, demonstrating the benefit of including limited information of the
optimisation problem.

Energy data, unit-weighted, Table 2 (top). The data is much more noisy in
this case which can be seen at the worse results of kNN versus ridge regression.
The SVMRank method that learns to rank pairs of items rather than individ-
ual values performs better than ridge regression. The direct methods are more
effective on this data, especially SPO. The semi-direct SVMRank-s modification
is again improving over SVMRank leading to the best results overall. Ranking
methods are clearly the best for our unit-weighted sets.

Energy data, weighted, Table 2 (bottom). In contrast to the unit-weighted
case, learning the profits with Ridge regression leads to the lowest expected
regret. Ranking is less advantageous it seems, as an optimal solution cannot be
computed merely by ordering items based on their profit ratios as in the unit-
weighted case. In contrast to the artificial data, learning the profitability rather
than profit does not guarantee better results either and somewhat disappoint-
ingly the direct methods do not gain much by solving the optimisation problem
and learning from that at each gradient step.

Note that in some cases there is a difference in regret for test and training.
This can be explained by the difficulty of our setting: the machine learning
function that minimises regret is highly nonlinear and nondifferentiable, as it
depends on a combinatorial optimisation problem.

Discussion. Our investigation demonstrate that we have a long way to go to
know how best to predict+optimise. Direct methods may be very promising, but
non-gradient-descent methods like ridge regression may provide more robust pre-
dictions in general. Surprisingly, QPTL-s, which omits the QP part, is even on
par or better than QPTL again demonstrating the difficulty of deriving gradients
over a combinatorial optimisation problem. The only case when the reverse holds
were in simple versions of the knapsack which were close to convex problems.
The alternative approach, semi-direct, of including some knowledge of the opti-
misation problem without having to solve it repeatedly has shown its potential,
but this needs to be done for each optimisation problem specifically. The rank-
ing based methods, which have not been considered in prediction + optimisation
works so far, perform well here since they do not learn on items individually, but
over the relation between pairs of items. But when we examine the most diffi-
cult class of instances: weighted energy; it appears that existing indirect methods
have the capability to more accurately learn the profits and override the methods
which attempt to take into account the actual regret as loss function.
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5 Conclusion

We study the prediction + optimisation knapsack problem. We provided insight
into the relation to stochastic optimisation and the suitability of different learn-
ing methods. We compare indirect methods, standard learning approaches, ver-
sus direct methods which combine learning with the optimisation problem, and
introduce semi-direct methods which combine learning with the optimisation
problem while avoiding solving the optimisation problem using a form of surro-
gate for regret. We show that direct methods can outperform alternative indi-
rect methods, however their utility seems limited to cases when the optimisation
problem is near convex. Hence, the best approach for prediction + optimisation
problems is still an open question. Some of the challenges include further
exploiting learning to rank methods, improving direct methods and to explore
more automatic ways to create semi-direct approaches to a new optimisation
problem.
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Abstract. The objective of the maximum weighted submatrix coverage
problem (MWSCP) is to discover K submatrices that together cover
the largest sum of entries of the input matrix. The special case of
K = 1 called the maximal-sum submatrix problem was successfully
solved with CP. Unfortunately, the case of K > 1 is more difficult to
solve as the selection of the rows of the submatrices cannot be decided in
polynomial time solely from the selection of K sets of columns. The search
space is thus substantially augmented compared to the case K = 1. We
introduce a complete CP approach for solving this problem efficiently
composed of the major CP ingredients: (1) filtering rules, (2) a lower
bound, (3) dominance rules, (4) variable-value heuristic, and (5) a large
neighborhood search. As the related biclustering problem, MWSCP has
many practical data-mining applications such as gene module discovery
in bioinformatics. Through multiple experiments on synthetic and real
datasets, we provide evidence of the practicality of the approach both in
terms of computational time and quality of the solutions discovered.

Keywords: Constraint programming ·
Maximum weighted submatrix coverage problem · Data mining

1 Introduction

Constraint Programming (CP) has received an increasing interest for solving
unsupervised (clustering) data-mining problems [1,3,5,7,12,14,18]. This article
is interested into the mining of a numerical matrix to discover submatrices (also
called biclusters) that capture a high total value. More exactly we consider an
input matrix M with m rows and n columns where element Mi,j is a given
real value. The matrix is associated with a set of rows R = {r1, . . . , rm} and a
set of columns C = {c1, . . . , cn}. We use (R;C) to denote matrix M. If I ⊆ R
and J ⊆ C are subsets of the rows and of the columns, respectively, MI,J =
(I;J) denotes the submatrix MI,J of M that contains only the elements Mi,j

belonging to the submatrix with set of rows I and set of columns J .
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The maximal sum submatrix problem introduced in [4] is to discover a subset
of rows and columns of an input matrix that maximizes the sum of the covered
entries. An example is provided in Fig. 1.

Definition 1. The Maximal-Sum Submatrix Problem. Given a matrix
M ∈ R

m×n. Let R = {1, . . . , m} and C = {1, . . . , n} be index sets for rows and
for columns, respectively. The maximal-sum submatrix is the submatrix (I∗;J∗),
with I∗ ⊆ R and J∗ ⊆ C, such that:

(I∗;J∗) = argmax
I,J

f(I, J) = argmax
I,J

∑

i∈I,j∈J

Mi,j (1)

The objective function rewards the selection of positive values and penalizes
selection of negative values. In case of positive input matrices, the domain expert
can subtract a constant threshold θ from all entries. The choice of this threshold
is not discussed here. Therefore, the problem matrix is assumed to contain both
positive and negative values in order to be interesting and challenging to solve.

Fig. 1. Example of matrix and associated submatrices of maximal sum. (Color figure
online)

The maximum weighted submatrix coverage problem, that we study in this
work, generalizes the maximal-sum submatrix problem to K submatrices. An
example is provided in Fig. 1.

Definition 2. The Maximum Weighted Submatrix Coverage Problem.
Given a matrix M ∈ R

m×n and a parameter K, the maximum weighted subma-
trix coverage problem is to select a set of submatrices (Rk, Ck) with k = 1, . . . , K
such that the sum of the cells covered by at least one submatrix is maximal:

(R∗
1; C∗

1 ), . . . ,(R∗
K ; C∗

K) = argmax
(R1;C1),...,(RK ;CK)

∑

i∈R,j∈C

Mi,j × 1cover((i, j)) (2)

where 1cover is the indicator function over the set cover =
⋃

k∈1..K Rk × Ck.
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1.1 Applications

The maximum weighted submatrix coverage problem has many practical data
mining applications where one is interested to discover K strong relations
between two groups of variables (rows and columns) represented as a matrix:

– In gene expression analysis, rows correspond to genes and columns to samples
and the value in Mi,j is the measurement of the expression of gene i in sample
j. One is typically interested in finding subsets of genes that present high
expression in a subset of the samples as it would indicate that a particular
biological pathway made of these genes is active in these samples.

– In migration data, value Mi,j represents the number of persons that moved
from location i to j. The goal is the to identify groups of locations that
together migrate to other groups of locations.

– A sports journalist could also be interested in Olympic games to discover
group of countries that together obtained similar strong performances on the
same subset of sports. The matrix value Mi,j then represents the number of
medals obtained by the country i in sport j.

– Dendrograms and Sankey plots are standard visualization tools to represent
relations. Unfortunately those plots quickly suffer from cluttering for large
matrices. The MWSCP can be used as a preliminary step to preselect sub-
matrices that can then be analyzed more easily with those plots.

1.2 Related Work

The maximal-sum submatrix problem was introduced in [4] and efficiently solved
using constraint programming with a dedicated global constraint.

The biclustering problems are concerned with the discovery of homogeneous
submatrices (called biclusters in this context) rather than maximizing the sum
of the covered entries. A comprehensive review can be found in [15]. Common
approaches are heuristic based and greedily selects the next bicluster after ran-
domization of entries covered by the previously discovered biclusters.

The maximum subarray problem introduced by [2] is looking for a maximal-
sum submatrix with contiguous subsets of rows and contiguous subset of
columns.

The maximum ranked tile mining problem has been introduced in [14]. This
is a special case of the maximal-sum submatrix problem for which the matrix
entries are discrete ranks, corresponding to a permutation of column indices on
each row. Another relevant difference is the constraint that sets of entries covered
by the submatrices are disjoint. This restriction is more convenient for solving
the problem efficiently but unnatural for the applications motivating this work.
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1.3 Contributions

Our contributions are:

– The introduction of the maximum weighted submatrix coverage problem
(MWSCP) as a generalization of the maximal-sum submatrix problem.

– A CP approach for solving MWSCP including filtering, lower-bound, domi-
nance rules, a variable heuristic, and a large neighborhood search.

– An evaluation of the performances of the CP approach as compared to a
greedy baseline approach (using the maximal-sum submatrix problem as sub-
routine) and two mathematical programming models on synthetic and real
datasets.

2 CP Approach

Constraint programming (CP) is a flexible programming paradigm for solving
(discrete) optimization problems. A CP model is a triplet (V,D,C) where V is
the set of variables, D their domains and C is a set of constraints. In constraint
programming the set domain bounds representation [8] is used to approximate
the domain of a set variable S by a closed interval denoted [S∈,S∈∪S⊥] where S∈

are the mandatory elements and S⊥ are the possible additional ones (S∈ ∩S⊥ =
∅). Such an interval represents all the sets in between those two bound sets
according to the inclusion relation {S | S∈ ⊆ S ⊆ (S∈ ∪ S⊥)}. A set variable
is bound (or assigned) whenever it contains a single set in its domain. This
situation (called an assignment) happens when set interval bounds are equal,
that is the possible set is empty: S⊥ = ∅.

For a set variable, the domain’s update operations are:

– The inclusion of an item j in the mandatory set, denoted require(j,S), which
implies that S∈ ← S∈ ∪ {j} and S⊥ ← S⊥ \ {j}.

– The exclusion of an item j from the possible set, denoted exclude(j,S), which
implies that S⊥ ← S⊥ \ {j} (and j /∈ S∈).

For each submatrix k, a set variable Rk (resp. Ck) is introduced to represent the
possible rows (resp. columns) selections in submatrix k.

Preliminary Notations. We define R∈,+j
k (resp. R∈,−j

k ) as the subset of R∈
k whose

matrix value in column j is positive (resp. strictly negative):

R∈,+j
k = {i ∈ R∈

k | Mi,j ≥ 0} R∈,−j
k = {i ∈ R∈

k | Mi,j < 0} (3)

Similar notations hold for Ck and ⊥. The sum of the elements in a given row i
(resp. column j) and in a column (resp. row) set S is noted as:

sum
row i

(S) =
∑

j∈S

Mi,j sum
col j

(S) =
∑

i∈S

Mi,j (4)
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The set of cells selected by at least one submatrix is denoted Cover∈. The set of
cells excluded by all submatrices is denoted Cover/∈:

Cover∈ = {(i, j) | ∃k : i ∈ R∈
k ∧ j ∈ C∈

k } (5)

Cover/∈ = {(i, j) | ∀k : i /∈ (R∈
k ∪ R⊥

k ) ∨ j /∈ (C∈
k ∪ C⊥

k )} (6)

The CP resolution is made via a Depth-First-Search (DFS) exploration. The
following subsections discuss the search space, sketch the algorithm and its key
components.

2.1 Search Space

As explained in [4], the search space of MWSCP with K = 1 can be limited
to searching on a single dimension, for instance C1. Indeed, the variable R1

can be fixed optimally in polynomial time by a simple inspection argument:
∀i ∈ R⊥

1 : sum
row i

(C1) > 0 =⇒ i ∈ R∈
1 .

For K > 1, once all the columns set variables are fixed (Ck ∀k ∈ [1..K]) it
remains to decide for each row i and each submatrix k whether i should be part
of Rk or not. Those K decisions per row does not enjoy the monotonicity or the
anti-monotonicity properties as illustrated on the next example.

Example 1. Let us consider K = 2 with column selection C1 = {1, 3}, C2 =
{2, 3}. For the 1 × 3 input matrix M = [[2, 2,−3]]. Individually for each sub-
matrix, the sum of entries that would be covered by selecting this row in both
R1 and R2 would be negative (−1). But since weights of covered elements count
only once, the value −3 is added only once and the objective value obtained is
1. Now consider the matrix M = [[−2,−2, 3]]. Individually for each submatrix,
the sum of entries that would be covered by selecting this row in both R1 and
R2 would be positive (1). But since weights of covered elements count only once,
the value 3 is added only once and the final objective value is −1.

Actually, those K decisions per row cannot be optimally taken in polynomial
time anymore as stated in Theorem 1. As a consequence, the CP search will have
to branch both on the rows and columns variables rather than branching on the
columns only.

Theorem 1. For fixed variables Ck ∀k ∈ [1..K], fixing optimally Rk ∀k ∈ [1..K]
is NP-Hard.

Proof. We reduce the NP-Hard Set Cover Problem [11] to our problem: Given a
universe U = {1, . . . , n} and a set {S1, . . . , SK} of K subsets of U , the Set Cover
Problem is to find the minimum number of sets such that their union covers
the universe. We construct a matrix with a single row and n + K columns.
The unique row values of this matrix are given by the regular expression [K +
1]{n}[−1]{K} (value K +1 repeated n times followed by −1 repeated K times).
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The column variables are fixed to Ck = Sk ∪ {n + k}. In this reduction, Sk is
selected if and only if Rk = {1} for every set k. A first observation is that any
optimal solution covers the universe otherwise it could be improved by K by
selecting any additional set that contains an uncovered element. The optimal
objective function can thus be written as n · (K + 1) − |{k | Rk = {1}}|. As
n · (K + 1) is fixed, maximizing this expression amounts at minimizing |{k |
Rk = {1}}| which is exactly the set cover objective.

2.2 Resolution via Depth-First-Search

The CP resolution through Depth-First-Search (DFS) exploration is sketched
in Algorithm1. All the procedures are assumed to take the decision variables
{R1, . . . ,RK , C1, . . . , CK} and the input matrix M as parameters.

Algorithm 1. Sketch of the DFS resolution algorithm
function SolveDFS( )

if !allVariablesBound( ) then
S ← selectUnBoundSetVar( )
i ← selectValue(S⊥)
for action ∈ [require(i, S), exclude(i, S)] do

saveState( )
post(action)
propagateDominanceRule( )
(lb, cb, ub) ← updateBounds( )
best ← max(best, cb)
if ub > best then

SolveDFS( )
end if
restoreState( )

end for
end if

end function

The procedure selectUnBoundSetVar chooses a not yet bound set vari-
able among {R⊥

1 , . . . ,R⊥
K , C⊥

1 , . . . , C⊥
K}. The subsequent line chooses for the

selected row/column set of some submatrix k, the specific row/column i (among
the possible ones) to be included on the left branch and to be excluded on
the right branch. The explored search tree is thus binary. Once the constraint is
posted, and the previous state saved for later backtracking, the procedure prop-
agateDominanceRule can include (exclude) rows or columns in every subma-
trix that can be proven to (not) participate in any optimal solution. The update-
Bounds function updates and returns the lower, current and upper bounds for
the state. The current bound is obtained by transforming the partial assignment
into a complete feasible solution that excludes all rows/columns in ⊥. If the cur-
rent bound cb is better than the best value found so far (stored in variable best),
the current state (R∈

1 , . . . ,R∈
K , C∈

1 , . . . , C∈
K) is a better solution and the value of

the variable best (storing the best objective found so far) is updated (and the
solution is logged). Once this is done, a check is made to ensure that there may
still be a better solution below this tree node, by verifying that the upper bound
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is greater than the best objective value found so far; if that is the case, the DFS
continues recursively. Once these steps are done, the state is backtracked and
the next state visited.

Efficient backtracking is achieved through trailing, which is a state man-
agement strategy that facilitates the restoration of the computation state to
an earlier version. Trailing enables the design of reversible objects. We refer to
MiniCP [13] for a detailed description of trail-based solvers and to [17] for a
trailed based implementation of set domains with sparse-sets.

The following subsections are dedicated to the four main functions of our
algorithm: selectUnBoundSetVar, selectValue, propagateDominance-
Rule and updateBounds.

2.3 Functions selectUnBoundSetVar and selectValue

selectUnBoundSetVar chooses, at each step of the DFS, the next
(unbounded) row/column interval set S to branch on, while selectValue
selects the value l ∈ S⊥ to include/exclude from this set when branching. That
is, when a pair (S, l) has been chosen, the DFS branches on the left, by set-
ting require (l,S), and on the right, by setting exclude (l,S). The decision of the
interval set and of the value are not done independently. To choose the next (set,
value) pair to branch on, our algorithm maintains two (reversible) counters per
row or column and per submatrix:

– trowk,i contains the sum of cell values that will be immediately added to the
objective value if row i is included in Rk:

trowk,i = sum
row i

({j | j ∈ C∈
k ∧ (i, j) �∈ Cover∈})

(7)

– prowk,i contains the sum of positive values in the line i that could be taken by
submatrix k, i.e. whose columns have not been excluded:

prowk,i = sum
row i

({j | j ∈ (C∈
k ∪ C⊥

k ) ∧ (i, j) �∈ Cover∈})
(8)

tcolk,j and pcolk,j are defined similarly. The algorithm then selects the (submatrix,
row) (or (submatrix, column)) pair (k, i) (or (k, j)) that maximizes trowk,i (or tcolk,j).
Ties are broken by maximizing prowk,i (or pcolk,j). The selected interval set and value
are then Rk and i (or Ck and j).

Recomputing these counters at each iteration is costly, as this operation
is in O(Knm + K(n + m)) for the MWSCP with an m × n matrix and K
submatrices. We propose here to maintain these counters using the finite state
machine (FSM) shown in Fig. 2. The algorithm we propose virtually maintains
a FSM for each (row, column, submatrix) triplet. The FSMs are updated each
time a row/column is added to/excluded from a submatrix:

– When a row i is included in/removed from the submatrix k, at most n FSMs
must be updated (one for each cell in the row).
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prows
k,i ← prows

k,i + v+

pcolsk,j ← pcolsk,j + v+
start

prows
k,i ← prows

k,i − v+

pcolsk,j ← pcolsk,j − v+

prows
k,i ← prows

k,i − v+ pcolsk,j ← pcolsk,j − v+

tcolsk,j ← tcolsk,j + v trows
k,i ← trows

k,i + v

tcolsk,j ← tcolsk,j − v

pcolsk,j ← pcolsk,j − v+
trows
k,j ← trows

k,j − v
prows
k,j ← prows

k,j − v+

require the cell

cell required by
other submatrix

require(i,Rk) require(j, Ck)

exclude(j, Ck) exclude(i,Rk)
cell required by
other submatrix

cell required by
other submatrix

require(j, Ck) require(i,Rk)

Fig. 2. FSM maintained for each (row, column, submatrix) i, j, k in the variable/value
selection algorithm. For simplicity, v = Mi,j , v+ = max(v, 0) and v− = min(v, 0).
FSMs states in blue are terminal states.

– When a column j is included in/removed from the submatrix k, at most m
FSMs must be updated (one for each cell in the column).

– Updating a cell is O(1), if it does not become selected by a submatrix (i.e. the
row and column of the cell are both in the mandatory sets of the submatrix).

– If a cell becomes selected, K − 1 other cells must be updated.

Given that Δrows,Δcols and Δselected are respectively the number of added or
excluded (submatrix, row) tables, added/excluded (submatrix, column) tables
and selected cells between two calls of the algorithm, this update runs in
O(Δrowsn + Δcolsm + ΔselectedK). To this update process must be added
the verification of the counters to select the best set/value pair, which is in
O(K(m + n)).

Over a complete branch of the DFS tree (which has a maximum depth of
K(m + n)), we have that:

∑

branch

Δrows ≤ K · m
∑

branch

Δcols ≤ K · n
∑

branch

Δselected ≤ n · m (9)

Over a complete branch, the FSM-based algorithm maintains the states and
returns the best set/value pair in O(K2(m+n)2), which is a significant improve-
ment over the recomputation-based algorithm which runs in O(K2(n2m+nm2))
over a complete branch.

2.4 Dominance Rules

In some cases, given a partial assignment with some rows and columns already
included in the set variables Ck and Rk, dominance rules permit to detect addi-
tional rows or columns that must be included in any optimal solution extending
this partial assignment, or rows or columns that never participate in an opti-
mal solution. The current state is defined by (R∈

k ,R⊥
k , C∈

k , C⊥
k ), and we denote
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the optimal solution extending this state as (R∗∈
k , ∅, C∗∈

k , ∅) with R∈
k ⊆ R∗∈

k ,
R∗∈

k ⊆ (R∈
k ∪ R⊥

k ), C∈
k ⊆ C∗∈

k , C∗∈
k ⊆ (C∈

k ∪ C⊥
k ).

Theorem 2 gives the condition to be satisfied to detect that a row i should
be included in submatrix l in any optimal solution extending the current state.

Theorem 2

∀i ∈ R⊥
l : sum

row i

⎛

⎝(C∈
l ∪ C⊥,−i

l ) \ (
⋃

k|k �=l

C∈,+i
k ∪ C⊥,+i

k )

⎞

⎠ > 0 ⇒ i ∈ R∗∈
l (10)

Proof (sketch). Let us assume the worst-case scenario: despite selecting all the
columns with negative values in this row i, while other submatrices would take
the columns with positive values, the submatrix still has a positive sum contri-
bution for this row i. Therefore this row must be included in submatrix l in any
optimal solution extending the current state.

Theorem 3 gives the condition to be satisfied to detect that a row i will never
be included submatrix l in any optimal solution extending the current state,
using the best-case scenario.

Theorem 3

∀i ∈ R⊥
l : sum

row i

⎛

⎝(C∈
l ∪ C⊥,+i

l ) \ (
⋃

k|k �=j

C∈,−i
k ∪ C⊥,−i

k )

⎞

⎠ < 0 ⇒ j /∈ R∗∈
l (11)

These two properties (and their symmetric counterparts for columns) can be
used in any node of the search tree to reduce the search space.

2.5 propagateDominanceRule: Dominance Rules Check

Dominance rules from Eqs. (10) and (11) (and their symmetric counterparts
for the columns) can be used to reduce the search space. As in the previous
subsections, recomputing the rules at each call to propagateDominanceRule
is expensive (O(Kmn) at each call, O(K2(m2n+mn2)) over a complete branch
of the DFS). We describe below how to maintain the rules on rows. Of course,
the method is symmetric for columns.

As in selectUnBoundSetVar and selectValue, we maintain virtual
FSMs for each triplet (row, column, submatrix), as shown in shown Fig. 3. The
FSMs collectively maintain two reversible values, shared between FSMs, for each
(submatrix k, row i) table:

– lbk,i is the value of the worst-case scenario for submatrix k and row i (the
left part of Eq. (10))

– ubk,i is the value of the best-case scenario for submatrix k and row i (the left
part of Eq. (11)).
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The FSMs also maintain the number of supports of each cell (i, j), i.e. the number
of submatrices that could still select the cell:

supporti,j =
∣∣{k | i ∈ (R∈

k ∪ R⊥
k ) ∧ j ∈ (C∈

k ∪ C⊥
k )}∣∣ (12)

Each supporti,j , shared across all FSMs, is maintained as reversible integer by
the solver: its state can then be backtracked.

lbk,i ← lbk,i + v−

ubk,i ← ubk,i + v+
start

supporti,j ← supporti,j − 1

lbk,i ← lbk,i − v−

ubk,i ← ubk,i − v+

supporti,j ← supporti,j − 1

lbk,i ← lbk,i + v+

ubk,i ← ubk,i + v−

exclude(j, Ck)

exclude(i,Rk)require(j, Ck) supporti,j = 1

exclude(i,Rk)

supporti,j = 1

exclude(i,Rk)

exclude(j, Ck)

require(j, Ck)

Fig. 3. FSM maintained for each (row, column, submatrix) i, j, k in propagateDom-
inanceRule. For simplicity, v = Mi,j , v+ = max(v, 0) and v− = min(v, 0). FSMs
states in blue are terminal states. (Color figure online)

The transition and update operations of our FSMs are the following:

– When a row i (resp. column j) is excluded from a submatrix k, at most n
(resp. m) cells’ FSMs must be updated. The contribution of the cell (i, j) to
ubk,i and lbk,i are removed and the support of the cell is decremented. Each
of these operations are in constant time, and overall takes O(n) (resp. O(m)).

– When a cell (i, j) becomes supported by only one remaining submatrix k
(supporti,j = 1), and the column j is included in this submatrix k ( j ∈ C∈

k ,
and since supporti,j = 1, it implies that i ∈ (R∈

k ∪ R⊥
k )), the value of lb and

ub for this submatrix k is updated by the cell’s value. This operation is also
in constant time, and thus O(K) for all submatrices.

– When a row i (resp. column j) is included in a submatrix k, a check on
all columns j (resp. rows i) must be performed to see if a cell (i, j) with
supporti,j = 1 and i ∈ R∈

k and j ∈ C∈
k exists. If that is the case, lbk,i and

ubk,i are updated to include the value of the cell. Overall, this operation is
O(n) (resp. O(m)).

Once the update of the FSMs is done, each (row, submatrix) pair is verified
w.r.t. the rules, in O(Km). A call to propagateDominanceRule is in O(Km+
Δrowsn + Δcolsm + ΔrequiredK + Δsupport=1K). Over a complete branch, the
number of operations required is in O(Km2 + Kmn). If the rules are applied
symmetrically on columns, the overall running time is in O(K max(m,n)2).
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2.6 updateBounds: Efficient Lower and Upper Bounds
Computations

In order to run the Branch & Bound, upper bounds on the objective for the
current tree node must be computed efficiently. The chosen method also provides
a lower bound, with no additional (asymptotic) computational cost.

The upper bound ub is the sum of every cell that is either selected in a
submatrix or that is positive and could still be selected. The lower bound lb is
similarly defined, but keeping negative-valued cells. Formally, they are computed
as follows:

ub =
∑

{Mi,j | (i, j) ∈ Cover∈ ∨ (Mi,j > 0 ∧ (i, j) /∈ Cover/∈)} (13)

lb =
∑

{Mi,j | (i, j) ∈ Cover∈ ∨ (Mi,j < 0 ∧ (i, j) /∈ Cover/∈)} (14)

Recomputing these bounds from scratch in each node is again costly:
O(Knm). The running time can be improved by maintaining incrementally the
number of submatrices supporting each cell, in the same way as previously done
in propagateDominanceRule.

These bounds, stored as reversible floating point numbers, can then be main-
tained easily:

– When a row i is included in a submatrix k, check if any column j is already
in C∈

k , and that (i, j) /∈ Cover∈ yet. If that is the case and that Mi,j > 0
(resp. < 0), increase ub (resp. lb) by Mi,j . This operation runs in O(n).

– The similar operation must be performed when a column is included in a
submatrix. Each of these operations runs in O(m).

– When a row i is excluded from a submatrix k, check if any column j is not
already excluded (j /∈ (C∈

k ∪ C⊥
k )). If that is the case, decrease supporti,j by

one. This operation runs in O(n).
– The same operation goes for excluded columns in O(m).
– When the supporti,j is reduced to zero, if Mi,j > 0 (resp. < 0), then decrease

ub (resp. lb) by Mi,j . This operation runs in O(1).

The whole maintenance process for the bounds behaves in O(Δrowsn+Δcolsm).
Over a complete branch, the incremental method is in O(Knm), while the one
based on recomputations is in O(K2(n2m + nm2)).

2.7 The Large Neighborhood Search

The exhaustive approach presented above eventually finds and proves the opti-
mum value provided enough time is given. Unfortunately, the search space is so
large that even for small matrices and a limited number of submatrices, it tends
to quickly find a good solution but is not able to improve it. To overcome this
limitation, we propose to embed the exhaustive CP search into a Large Neigh-
borhood Search (LNS) [19]. LNS is a local search approach using CP to discover
improvements around the current best solution:
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– First the CP exhaustive search is used during a limited time, to discover an
initial solution.

– For a given number of iterations, the CP exhaustive search is used again but
this time with some variables partially fixed (fragment) as in the current best
solution.

In addition, to limit the risk of having an iteration stuck for too long, we limit
the DFS to 1000 failures.

The current best solution at iteration t has the form ((R∗∈
1,t, . . . ,R∗∈

K,t); (C∗∈
1,t ,

. . . , C∗∈
K,t)). We propose three different fragment selection heuristics (part of the

solution to constrain when restarting the LNS for next iteration):

1. Select uniformly at random a subset of rows and columns in the set of lines and
columns used by some submatrix: Rp ⊆ (

⋃
k∈Mp R∗∈

k,t), Cp ⊆ (
⋃

k∈Mp C∗∈
k,t),

then for each submatrix, include the set of rows and columns intersecting
with those sets: R∈

k,t+1 = R∈
k,t ∩ Rp, R⊥

k,t+1 = R \ R∈
k,t+1 and similarly for

columns.
2. A similar operator is defined with rows and columns selected inside the whole

matrix: Rp ⊆ R, Cp ⊆ C. This allows for greater diversification, notably by
allowing discovery of previously unselected rows/columns.

3. Selecting uniformly at random a subset of submatrices Mp ⊆ {1, . . . , K}.
For each of these submatrices, select at random different subsets of rows and
columns Rp

k ⊆ R∗∈
k,t, Cp

k ⊆ C∗∈
k,t that is constrained: R∈

k,t+1 = R∈
k,t ∩ Rp

k,
R⊥

k,t+1 = R \ R∈
k,t+1 and similarly for columns.

Empirical observations show that these three operators are complementary.

3 Experiments

This section describes experiments conducted to assess the performances of the
proposed algorithms and to provide guidance on the selection of the appropriate
solution. We first evaluate the methods on synthetic datasets, where the optimum
is known, then on real datasets.

We compare our exhaustive CP and LNS methods against a greedy base-
line approach, CP-Greedy, that solves at each step the maximal-sum submatrix
(K = 1) problem using the CP approach from [4]. This approach iteratively
selects the next best submatrix, on a modified matrix in which the previously
selected entries are set to 0 such that there is no incentive to select several times
the same (positive) entries. Each iteration is performed within tmax

K with tmax

the allocated budget of time.
The implementation has been carried out on OscaR [16], using Java 1.8.0

(Hotspot VM) on an AMD Bulldozer clocked at 2.1GHz; one core and 3 Go of
RAM per instance.

The source code is available here: https://github.com/GuillaumeDerval/
MWSCP.

https://github.com/GuillaumeDerval/MWSCP
https://github.com/GuillaumeDerval/MWSCP
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3.1 Synthetic Datasets

A synthetic dataset composed of 1,617 instances have been generated using a
Python script (available on Zenodo [9]). For those, the optimal solution is known
as they were all generated by implanting randomly K submatrices before adding
some noise1. Table 1 describes parameter values considered in the generation.
The parameters used to generate the instances are described in Table 1.

Approaches are compared using any-time profiles as described in Definition 3.

Definition 3 Any-Time Profile. Let f(a, i, t) be the objective value of the
best solution found so far by an algorithm a for an instance i at time t. Let tmax

be the provided budget of time before interrupting a run. Let f∗
i be the optimal

solution for i if known (as is the case for synthetic data). The any-time profile
of a is the solution quality Qa(t) of a on all instances as a function of time:

Qa(t) =
1

|i|
∑

i

f(a, i, t)

max(f(a∗
i , i, t

max), f∗)
with a∗

i = argmax
a

f(a, i, tmax) . (15)

Table 1. Parameters for the synthetic dataset generation

Parameter Description Values used

m, n Size of the matrix M ∈ R
m×n (800, 200), (640, 250), (400, 400)

K Number of submatrices 2, 4, 8

o Minimum overlap between submatrices (in % of cells) 0, 0.3, 0.6

σ Background noise variance (mean is 0) 0, 0.5, 1.0

r, s Size of submatrices (noisy, Gaussian with σ = r or s
20 ) (35, 70), (50, 50)

seed Seed for matrix generation [0, 9]

Figure 4 gives the any-time profiles of the CP-Greedy baseline method, along
with CP-Exhaustive (the exhaustive process presented above) and CP-LNS. The
results clearly illustrates the overall better performances of the CP-LNS when-
ever the computation time exceeds roughly 20 s.

Table 2a presents, for each parameter value considered in the synthetic data
generation, the performances of the algorithms. Reported performances are com-
puted as the average performance of each algorithm obtained before a certain
limit of computation time.

Through analysis of the performances with respect to parameters’ values, we
observed that the major parameters are, in decreasing order of influence, the
following: (1) the submatrices overlap, (2) K = the number of submatrices. The
difficulty of reaching good solution increases quickly as the minimum overlap
parameter increases until 50%, after which it decreases. Similarly, as the number
of implanted submatrices increases, good solution quality becomes harder to
grasp.

1 Notice that the optimal solution may be slightly different than the implanted sub-
matrices because of the noise addition.
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3.2 Real Datasets

We also experiment with non-synthetic datasets of several types (olympic, migra-
tion, genes) described in Sect. 1.1. The results, presented in Table 2b, are similar
to those obtained for synthetic datasets. CP-LNS is the best method on most
datasets given 10 s of computation time, with two notable exceptions (alizadeh
and garber datasets), in which case LNS did not find the optimum in the 20min
allowed for each dataset.

Table 2. Comparison between CP-Greedy (GRE), CP-Exhaustive (EX) and CP-LNS
(LNS). The table shows the Qa(t) for each algorithm a given a certain amount of time
t (see Eq. (3)).

(a) Synthetic dataset

10s 20s 100s 1080s
Parameters GRE EX LNS GRE EX LNS GRE EX LNS GRE EX LNS

{m = 400, n = 400} 0.70 0.33 0.37 0.74 0.57 0.76 0.76 0.75 0.95 0.77 0.75 0.97
{m = 640, n = 250} 0.71 0.34 0.32 0.75 0.48 0.79 0.77 0.74 0.95 0.77 0.75 0.97
{m = 800, n = 200} 0.73 0.34 0.29 0.77 0.48 0.61 0.79 0.77 0.94 0.79 0.78 0.96

K = 2 0.85 0.78 0.32 0.85 0.88 0.83 0.85 0.90 0.96 0.85 0.91 0.97
K = 4 0.72 0.20 0.30 0.77 0.51 0.72 0.78 0.74 0.94 0.78 0.75 0.96
K = 8 0.57 0.03 0.36 0.64 0.13 0.61 0.68 0.62 0.94 0.68 0.62 0.97
o = 0% 0.58 0.27 0.34 0.67 0.45 0.71 0.71 0.66 0.97 0.71 0.66 0.98
o = 30% 0.71 0.34 0.31 0.73 0.50 0.69 0.75 0.75 0.93 0.75 0.76 0.95
o = 60% 0.85 0.40 0.34 0.86 0.57 0.77 0.86 0.86 0.94 0.86 0.86 0.97
σ = 0.0 0.73 0.34 0.78 0.78 0.63 0.80 0.81 0.77 0.98 0.81 0.78 1.00
σ = 0.5 0.72 0.33 0.04 0.75 0.44 0.67 0.78 0.74 0.94 0.78 0.74 0.97
σ = 1.0 0.69 0.33 0.16 0.73 0.44 0.68 0.73 0.75 0.93 0.73 0.75 0.94

{r = 50, s = 50} 0.71 0.34 0.34 0.75 0.52 0.73 0.77 0.76 0.94 0.77 0.77 0.96
{r = 35, s = 70} 0.71 0.32 0.32 0.76 0.50 0.71 0.78 0.75 0.95 0.78 0.75 0.97

(b) Real datasets

K = 4 1s 5s 20s
Type Dataset GRE EX LNS GRE EX LNS GRE EX LNS

migration migration 0.001 [6] 0.96 0.92 0.96 0.96 0.92 0.99 0.96 0.92 1.00
migration migration 0.003 [6] 0.87 0.89 0.93 0.87 0.89 0.99 0.87 0.89 1.00
migration migration 0.005 [6] 0.83 0.79 0.96 0.83 0.79 1.00 0.83 0.79 1.00
olympic olympic 0.01 [10] 0.88 0.69 0.92 0.88 0.91 0.97 0.91 0.91 1.00
olympic olympic 0.02 [10] 0.79 0.69 0.87 0.84 0.84 0.97 0.84 0.84 1.00
olympic olympic 0.04 [10] 0.62 0.81 0.91 0.76 0.82 0.96 0.93 0.82 1.00
olympic olympic 0.06 [10] 0.80 0.92 0.93 0.97 0.92 0.98 0.97 0.92 0.99
K = 4 10s 20s 100s
Type Dataset GRE EX LNS GRE EX LNS GRE EX LNS
gene alizadeh-2000-v1 095 [20] 1.00 0.48 0.82 1.00 0.48 0.82 1.00 0.48 0.92
gene armstrong-2002-v1 095 [20] 0.73 0.60 0.92 0.73 0.60 0.99 0.73 0.60 1.00
gene bhattacharjee-2001 095 [20] 0.82 0.31 0.98 0.91 0.86 0.99 0.91 0.96 1.00
gene bittner-2000 095 [20] 0.96 0.53 0.86 0.96 0.53 0.98 0.96 0.53 0.98
gene bredel-2005 095 [20] 0.98 0.86 1.00 0.98 0.86 1.00 0.98 0.86 1.00
gene chen-2002 095 [20] 0.74 0.80 1.00 0.89 0.80 1.00 0.89 0.80 1.00
gene chowdary-2006 095 [20] 0.82 0.83 1.00 0.82 0.83 1.00 0.87 0.83 1.00
gene dyrskjot-2003 095 [20] 0.97 0.94 0.99 0.97 0.94 1.00 0.97 0.94 1.00
gene garber-2001 095 [20] 0.59 0.24 0.58 0.82 0.32 0.58 1.00 0.50 0.86
gene golub-1999-v1 095 [20] 0.86 0.88 0.92 0.86 0.88 0.95 0.86 0.88 0.96
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Fig. 4. Comparison between CP-Greedy, CP-Exhaustive and CP-LNS on 1, 617 matri-
ces generated as described in Sect. 3.1. The graph presents the any-time profile
described in Eq. (3). For each instance, 18 min were allocated for computations.

3.3 Comparison Against Mixed Integer Linearly and Quadratically
Constrained Programming

We tested our methods against MIP (linear) and MIQCP (quadratic terms in
the constraints) methods. As these two methods do not perform well on big-
ger instances, we do not integrate them in our experiments on large matrices,
presented above.

MIP model MIQCP model
max

∑
i,j Mi,j · si,j max

∑
i,j Mi,j · si,j

si,j ≥ ei,j,k ∀i, j, k K · si,j ≥ ∑
k rk,i · ck,j ∀i, j

si,j ≤ ∑
k ei,j,k ∀i, j si,j ≤ ∑

k rk,i · ck,j ∀i, j
ei,j,k + 1 ≥ rk,i + ck,j ∀i, j, k
2 · ei,j,k ≤ rk,i + ck,j ∀i, j, k

All variables ∈ {0, 1}
MIP and MIQCP methods are plagued by the number of variables, that is in
O(Knm) for MIP and O(K(n + m)) for MIQCP, and by the number of con-
straints, which is O(Knm) for MIP and O(nm) for MIQCP. Tables 3a and b
show that both models are slow compared to our LNS method, and are heavily
affected by matrix size, number of submatrices to find and noise. For bigger sub-
matrices, such as the synthetic and real ones presented in the previous section,
both methods timeout either without returning solutions or with comparatively
poor solutions.
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Table 3. Comparison between CP-LNS, MIP and MIQCP, on a synthetic dataset
(generated as described in Sect. 3.1). All methods were given a fixed time limit of 300 s.
The metric used is the any-time profile at the time limit (see Definition 3). CP-LNS
finds the optimum on each dataset. The time when the best found solution was found
is indicated inside parentheses. Experiments made on Gurobi 8.1.0.

(a) Varying number of submatrices
and noise, with matrices of size 50×50
and submatrices of size 16 × 16.

K σ CP-LNS MIP MIQCP
2 0.0 1.00 (1s) 1.00 (0s) 1.00 (1s)
2 0.5 1.00 (1s) 1.00 (7s) 1.00 (7s)
2 1.0 1.00 (1s) 0.89 (233s) 0.79 (57s)
3 0.0 1.00 (2s) 1.00 (1s) 1.00 (2s)
3 0.5 1.00 (3s) 1.00 (140s) 1.00 (138s)
3 1.0 1.00 (3s) 0.74 (254s) 0.48 (256s)
4 0.0 1.00 (2s) 1.00 (1s) 1.00 (62s)
4 0.5 1.00 (3s) 1.00 (252s) 0.88 (290s)
4 1.0 1.00 (6s) 0.64 (260s) 0.69 (225s)
5 0.0 1.00 (4s) 1.00 (79s) 1.00 (275s)
5 0.5 1.00 (5s) 0.82 (257s) 0.69 (237s)
5 1.0 1.00 (6s) 0.77 (24s) 0.36 (38s)

(b) Varying size of the matrix and noise,
with matrices of size m×m and K = 2
submatrices of size �m

3
� × �m

3
�.

m σ CP-LNS MIP MIQCP
50 0.0 1.00 (0s) 1.00 (1s) 1.00 (3s)
50 0.5 1.00 (1s) 1.00 (5s) 1.00 (7s)
50 1.0 1.00 (1s) 0.95 (207s) 0.82 (204s)
100 0.0 1.00 (4s) 1.00 (1s) 1.00 (33s)
100 0.5 1.00 (1s) 0.86 (293s) 1.00 (45s)
100 1.0 1.00 (3s) 0.65 (269s) 0.82 (191s)
200 0.0 1.00 (17s) 1.00 (8s) 1.00 (135s)
200 0.5 1.00 (21s) 0.37 (191s) 3% (81s)
200 1.0 1.00 (6s) 0% (0s) 5% (134s)
400 0.0 1.00 (1s) 1.00 (31s) 1.00 (54s)
400 0.5 1.00 (1s) 0% (1s) 0% (0s)
400 1.0 1.00 (1s) 0% (1s) 4% (301s)

4 Conclusions

We presented a generalization of the Maximal-Sum Submatrix Problem [4] to
multiple submatrices, called the Maximum Weighted Submatrix Coverage Prob-
lem (MWSCP), along with a method to solve this problem based on constraint
programming and large neighborhood search. Experiments on both synthetic and
real datasets show that our CP-LNS method finds consistently better solutions
(when more than 10 s are allocated) than both MIP/MIQCP, an exhaustive CP
method and a greedy approach using the method from [4].
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{andrea.lodi,giulia.zarpellon}@polymtl.ca

Abstract. The resolution of some Mixed-Integer Linear Programming
(MILP) problems still presents challenges for state-of-the-art optimiza-
tion solvers and may require hours of computations, so that a time-limit
to the resolution process is typically provided by a user. Nevertheless,
it could be useful to get a sense of the optimization trends after only
a fraction of the specified total time has passed, and ideally be able to
tailor the use of the remaining resolution time accordingly, in a more
strategic and flexible way. Looking at the evolution of a partial branch-
and-bound tree for a MILP instance, developed up to a certain fraction
of the time-limit, we aim to predict whether the problem will be solved to
proven optimality before timing out. We exploit machine learning tools,
and summarize the development and progress of a MILP resolution pro-
cess to cast a prediction within a classification framework. Experiments
on benchmark instances show that a valuable statistical pattern can
indeed be learned during MILP resolution, with key predictive features
reflecting the know-how and experience of field’s practitioners.

Keywords: MILP resolution · Branch and Bound · Machine learning

1 Introduction

Within the realm of discrete optimization, we consider Mixed-Integer Linear
Programming (MILP) problems, of the form

min{cT x : Ax ≥ b, x ≥ 0, xi ∈ Z ∀i ∈ I}, (1)

where A ∈ R
m×n, b ∈ R

m, c, x ∈ R
n and I ⊆ {1, . . . , n} is the set of indices

of variables that are required to be integral. We do not assume A, b having
any special structure (as it is, e.g., for Traveling Salesman Problem instances).
Models like (1) can be used to mathematically describe a number of different real-
world problems, and are daily deployed across a wide spectrum of applications
– network, scheduling, planning and finance, just to mention a few.

Despite being NP-hard problems, MILPs are nowadays solved in very reli-
able and effective ways, ultimately based on the divide-and-conquer paradigm
c© Springer Nature Switzerland AG 2019
L.-M. Rousseau and K. Stergiou (Eds.): CPAIOR 2019, LNCS 11494, pp. 275–291, 2019.
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of Branch and Bound (B&B) [23]. State-of-the-art optimization solvers, such as
IBM-CPLEX [10], experienced a dramatic performance improvement over the
past decades, due to both hardware and software advances (see, e.g., [2,26]).
Nonetheless, the resolution of some MILPs can prove to be challenging for
solvers, and may require hours of computations, so that the experimental prac-
tice of imposing a time-limit (TL) to the MILP resolution process is not only
very reasonable, but well established too. However, it would be useful to get a
sense of the optimization trends after only a fraction of the specified TL has
passed, and ideally be able to tailor the usage of the remaining resolution time
in a more strategic and flexible way.

We aim to predict whether a generic MILP instance will be solved before
timing out, only relying on information from a first portion of the resolution
process. More specifically, given problem P and a time-limit TL, we look at the
partial resolution of P , up to a certain time τ , 0 < τ < TL, and ask whether
P will be solved to proven optimality within TL. We summarize the partial
resolution of P , and exploit Machine Learning (ML) tools to cast a prediction
about it being solved or not before TL. Thus, the prediction we aim at is one
that takes as input (a summary of) the evolution of a partial MILP run, up to
time τ , and outputs a yes/no response, in the framework of binary classification.
Note the inherent difference between our approach and the problem of directly
predicting the “difficulty” of a MILP instance – e.g., in terms of tree-size [3,8] or
runtime prediction, the latter being a common interest for both the optimization
and the ML communities since the work of Knuth [20] (a more recent approach
can be found in [17]).

The sequential nature of B&B makes it natural to interpret our question as
a sequence classification task. However, the transformation of a stream of data
from the MILP resolution process into a valid input for traditional classifica-
tion algorithms cannot be performed with off-the-shelf techniques [33]. To this
end, we design specific features to describe the development and behavior of
a MILP run in a quantitative way, taking into account the complex interplay
between the solver’s components. The broad generality of the proposed fea-
tures makes them apt to be re-used every time one needs to evaluate the B&B
development of a general MILP, thus conferring even more impact to this con-
tribution, especially given that applications of ML to discrete optimization have
lately been flourishing as recently surveyed in [4]. For example, in the context
of MILP, ML has been proposed to establish good solver’s parametric configu-
rations [16]; learn heuristics for B&B (see [28] for a survey); choose resolution
options ([6,18,22]), and also predict solution-related outcomes ([12,25]). Our
work represents a novel contribution in this thread of research: ML is employed
to provide an accurate prediction on the resolution outcome of MILPs, which
can readily be implemented within solvers to enable tailored optimization and
enhance the comprehension of the resolution process, too often hard to unravel
given the solver’s complexity. In fact, despite the abundance of data and events
in the MILP resolution framework, to the best of our knowledge no statis-
tical analysis presently happens within the solver; in particular, information
is not exploited in any structural way via ML algorithms to make decisions.
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Applying to generic MILP problems and opening new opportunities on the
solvers’ side, our results affect a broad audience and assume greater method-
ological relevance for the discrete optimization community.

We end the introduction by stressing that discovering early in the process
that the run will very likely not terminate with a proof of optimality is of fun-
damental value for MILP development, and opens promising scenarios for both
developers and end-users. Indeed, on the one hand, MILP developers can adapt
the resolution through algorithmic changes in the attempt of avoiding the issue,
or can switch mode so as to try to improve the incumbent solution as much as
possible giving up optimality. On the other hand, this can be achieved by an
end-user too, although that would likely require restarting the run with a differ-
ent parameter setting. Finally, note that the indicators we developed could, in
turn, shed some light on the type of required algorithmic changes.

2 Background: Solving MILPs

As already mentioned, the resolution of MILPs is fundamentally based on the
B&B paradigm. In its basic version, B&B sequentially partitions the solution
space of (1) into sub-MILPs, which are mapped into nodes of a binary decision
tree. At each node, the integrality requirements xi ∈ Z for variables i ∈ I are
dropped, and a linear, or continuous, relaxation (polynomially tractable) of the
sub-problem is solved, providing a valid lower bound to the optimal solution
value of the original MILP. When in the relaxed solution all variables xi, i ∈ I
take integer values, the solution is feasible for (1) as well and provides an upper
bound of its optimal value. Otherwise, variables xi /∈ Z, i ∈ I are integer infea-
sible (iinf) and among them one is selected for further branching: the tree is
extended with two additional child nodes so that the current relaxed solution is
removed from the sub-problems’ feasible space; the new nodes also inherit from
their parent an estimate of the objective function value. Global lower and upper
bounds (called best bound and incumbent, respectively) are maintained through-
out the resolution process and smartly used to prune unpromising regions of the
feasible space, so that the resulting algorithm is only implicitly enumerating the
exponentially many solutions of (1). The normalized difference between global
bounds (known as gap) allows to measure at any point in time the quality of a
solution and the progress of the optimization. For example, CPLEX implements
the following (relative) gap measure:

gap =
|best bound − incumbent|

1e−10 + |incumbent| . (2)

A MILP is solved when the gap is fully closed, i.e., when it reaches 0, with
upper and lower bounds coinciding (up to numerical tolerances). The branching
and bounding operations are combined with other solver’s building blocks – the
cutting planes algorithm [14], presolving, primal heuristics – to form a very rich
and interconnected resolution framework [26], in which single events and data
become hard to disentangle.
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The ability to identify the resolution phases of a MILP [5] and analyze the
outputs of the B&B algorithm can help recognizing causes of performance issues,
and explaining instance-specific trends [19]. In particular, many indicators inter-
act in describing the progress of the MILP resolution process, and need to be
taken into account when casting a prediction about the resolution outcome. To
provide a simple example, we plot in Fig. 1 basic information from the resolu-
tion log of CPLEX, for an “Easy” instance of MIPLIB2010 [21]. We report the
development of the global bounds and the gap, the number of nodes left (i.e.,
the leaves yet to be explored) and the depth of the nodes as the algorithm tra-
verses the tree. The interconnection between these figures is, for this easy case,
quite clear to observe: for example, an update of the incumbent value naturally
reduces the gap, triggers a drop in the number of nodes left (due to pruning
by bound), and possibly ends a (depth-first) dive in the tree traversal explo-
ration, a common practice when looking for initial feasible solutions with primal
heuristics.
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Fig. 1. Basic information from the CPLEX log from the resolution of MIPLIB2010
instance air04. Interpreting the evolution and interaction of these indicators enables
a quantitative description of the optimization process.
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3 Problem Formalization

We can re-phrase our question more formally by considering a MILP P , a time-
limit TL, and a certain percentage ratio ρ ∈ [0, 1] yielding τ = ρ · TL ∈ [0, TL].
We solve problem P with time-limit TL and take into account the evolution of
its resolution process up to time τ . We denote with tPsol the moment in which P is
solved to proven optimality by the solver. We want to describe and evaluate the
progress (in other words, the “work done”) in solving P , given that only a share
of the total available time has passed; ultimately, we aim at casting a prediction
on such a description. With respect to the defined parameters, we achieve 100%
of work done at tPsol, and 100% of available time at TL. In practice, there is
a discrepancy between tPsol and TL, the latter specified by a user, the former
unknown and subject to variability.

Graphically, one could depict the advancement of the solver with a non-
decreasing “progress measure”, describing the proportion of work done given
the proportion of time passed (Fig. 2). Our classification question translates pre-
cisely into predicting whether the 100% of the work will be done before TL, i.e.,
whether tPsol ≤ TL, only observing the resolution up to time τ . The function we
aim to learn is thus the indicator function 1{tPsol≤TL}.

The task of feature design, on the other hand, aims at defining the progress
measure used to represent the % of work done, given the triplet (TL, ρ, P ).
Instead of relying on a single feature to describe the optimization process (as
could be done, e.g., using the gap), we try to capture the complexity of MILP
resolution by considering heterogeneous measurements, and design a feature map
Φ, describing the progress measure for (TL, ρ, P ) with a vector in R
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Fig. 2. (a) Graphical example of “progress measure” for a triplet (TL, ρ, P ); we assume
a smooth behavior for drawing purposes. The observed portion of the resolution (up to
time τ) is drawn in solid. (b) If we were to measure the progress by looking at the %
of gap closed only, we would draw a step-wise linear function.
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3.1 Sequence Classification

The sequential character of B&B makes it natural to think about the partial
resolution of P as a progressive stream of information and events. In the MILP
context, it appears reasonable to discretize the time dimension by considering
information being retrieved at every node of the B&B tree, starting from the
root and up to the last one being processed before time τ (say η). In other
words, one could describe the output of a MILP run with a multivariate time
series STL,ρ,P ,

STL,ρ,P =
{

(N1, 〈v1
1 , · · · , v1

s〉),
(N2, 〈v2

1 , · · · , v2
s〉),

...

(Nη, 〈vη
1 , · · · , vη

s 〉) }
,

(3)

a sequence of vectors vk ∈ R
s, each carrying information about the optimization

state at node Nk, up to η.
Classifying STL,ρ,P depending on P ’s optimization outcome can be seen as

a (conventional) sequence classification task. Sequence classification is typically
employed in genomic applications, anomaly-detection and information retrieval
(see, e.g., [11,24,32], respectively), and generally deals with learning a sequence
classifier for data of sequential type. Few alternatives to tackle sequence classi-
fication can be found in the literature (see [33] for a brief survey). We opt for
a feature-based approach: simply put, we transform the sequence STL,ρ,P into
a single vector of numerical features Φ(TL, ρ, P ) ∈ R

d, to which we will then
apply traditional classification algorithms. In our setting, a data-point for the
learning algorithm consists of a tuple

(
Φ(TL, ρ, P ), y

)
with Φ(TL, ρ, P ) describ-

ing the time series data STL,ρ,P , and binary label y ∈ {0, 1} assigned according
to 1{tPsol≤TL}.

As pointed out in [33], one of the major challenges when dealing with
sequence classification resides in the fact that sequence data does not come
with explicit features. Moreover, feature selection is usually costly, and needs to
account for an interpretable prediction. Off-the-shelf feature selection methods
– like k-grams or time series shapelets – do not appear suitable to capture the
special temporal nature of B&B. We will present features specifically designed
for the MILP resolution process after discussing the data collection methodology.

4 Collecting B&B Data

As we said, the B&B framework produces a lot of heterogeneous information,
whose combination can provide interesting insights about the optimization status
of a MILP run. Extracting data from the resolution process is allowed by means
of implementing custom callbacks in the solver’s APIs, and comes with some
computational overhead. From an application perspective, it seems reasonable
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that a user might be willing to spend some additional resources in the first part of
the resolution process, say up to time τ , in order to get a prediction on the more
lengthy horizon of TL. Nevertheless, especially in our setting, time is important:
any appreciable overhead during the run could bias the yes/no response with
respect to the fixed TL, so data collection has to be as cheap as possible.

In fact, the overhead we experienced comes from the computation of few
indicators and the need to interface the solver through its API. For example,
extracting the number of iinf variables at every branched node cannot be done
with an API method directly, so that one needs to examine feasibility statuses
for all variables. However, the same indicator would come almost for free if
implemented internally, on the solver’s side: the value of iinf at every node is
available and systematically printed in the resolution log.

To comply with the need of collecting non-biased data – and certain that
a data collection procedure implemented internally on the solver side would
incur in much less overhead than that experienced by any user dealing with
its interfaces – we devise a two-step proof-of-concept implementation. We use
CPLEX 12.7.1 as solver, together with its Python API. Given (TL, ρ, P ), we
perform

1. Label computation: run P with time-limit TL, and determine a label for the
run by checking if tPsol ≤ TL. During the run record ηP , the number of nodes
processed up to time τ .

2. Data collection: run again P (the deterministic run of Step 1 can be repro-
duced by setting the same random seed), and actively collect data during the
optimization, up to ηP nodes.

Having detached data collection from label computation, we do not need to
worry anymore about the overhead incurred in Step 2, nor about the integrity
of the labeled data; the produced sequence STL,ρ,P records the real “work done”
up to the sought fraction ρ of TL.

4.1 Producing Diversification

For fixed TL and ρ, a data-point corresponds to a single run of a problem P .
The need of a reasonable amount of data for applying ML thus requires many
MILP instances – definitely more than those currently part of MILP libraries (see
Sect. 6). Instead of resorting to random problems generation, we try to create
additional data from existing benchmark instances.

A first general diversification of data from the same problem P can be pro-
duced exploiting the so-called performance variability of MILPs [27]. Perturba-
tions can be obtained simply by setting different random seeds in the solver, to
obtain diverse runs of P . Other diversification schemes, specific to our setting,
consist in varying the main parameters TL and ρ. In particular, one could (i)
vary TL and keep ρ fixed, and/or (ii) vary ρ and keep TL fixed. Intuitively, app-
roach (i) seems more promising at generating heterogeneous points: a change of
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TL allows for a sensible re-scaling of τ as well, potentially producing data labeled
differently, despite coming from the same problem P . We graphically describe
this intuition in Fig. 3.

Having discussed how to produce and collect valuable MILP time series data,
we now turn to the task of handling it, in order to craft a vector of features.

TLTL′τTL′′τ ′τ ′′

tsol

TLτ TL′τ ′ TL′′τ ′′

0

0 0 0

100

%
w
or
k
do

ne

tsol tsol

Fig. 3. Graphical example of approach (i) to obtain multiple data-points from fixed
(ρ, P ), varying TL. The run of P is represented at the top. Below, using addi-
tional TL′, TL′′ we get

(
Φ(TL, ρ, P ), 1

)
,
(
Φ(TL′, ρ′, P ), 1

)
and

(
Φ(TL′′, ρ′′, P ), 0

)
. The

observed portions of the resolution process are drawn in solid.

5 Feature Design

We undertake a feature-based approach for sequence classification, and transform
MILP sequential data STL,ρ,P into a single vector of features Φ(TL, ρ, P ) ∈ R

d,
to be fed as input to traditional classification algorithms. As already mentioned,
feature selection is not a straightforward process when dealing with serial data,
especially if one wants to retain a certain degree of interpretability. We rely on
MILP domain-knowledge to define features that shall encompass the optimiza-
tion progress encoded in STL,ρ,P .

In practice, we extract 25 raw numerical attributes from each callback call
during Step 2 of our data collection procedure, i.e., each vector vk of STL,ρ,P

has dimension 25. Note, however, that the length η of the series varies consider-
ably across instances and seeds, ranging between a few dozens and hundreds of
thousands. At each branched node of the tree we collect information about the
general state of the optimization (e.g., gap, value of incumbent and best bound,
total number of processed nodes and count of simplex iterations performed),
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Table 1. Description of the 37 features employed for learning experiments.

# Group name Features general description

7 Last observed
global measures

Gap; ratio between best bound and incumbent; fraction of
nodes left attaining max (resp. min) objective estimate;
ratio between max (resp. min) estimate across nodes left
and incumbent; primal-dual integral [1]

4 Nodes left and
pruned, iterations
count

Throughput of pruned nodes; ratio between nodes pruned
and nodes left; last measure of nodes left over max
observed one; throughput of simplex iterations

4 Node LP integer
infeasibilities
(iinf)

Max (resp. min, avg) number of observed iinf over |I|;
fraction of nodes with iinf below 5% quantile value

5 Incumbent Throughput of incumbent updates (i.e., frequency); average
improvement (resp. distance) of updates normalized by
incumbent value (resp. total # of nodes); distance from
last observed update over the average one; was an
incumbent found before an integer feasible node (boolean)?

4 Best bound Throughput of best bound updates (i.e., frequency);
average improvement (resp. distance) of updates
normalized by best bound value (resp. total # of nodes);
distance from last observed update over the average one

3 Node LP
objective

Fraction of nodes with objective above the 95% quantile
value; differences in absolute value between quantile
threshold and global bounds

4 Node LP fixed
variables

Fraction of max (resp. min) observed # of fixed variables;
fraction of nodes with # of fixed variables above 95%
quantile value; distance from last observed peak over total
# of nodes

6 Depth and tree
traversal

Ratio between max observed depth and # of processed
nodes; ratio between height of last full level (resp. waist)
and maximal depth [8]; maximal and average length of
backtracks; frequency of backtracks in the traversal

together with node-specific data (e.g., current node LP objective value, number
of iinf in the LP solution, node depth). At few points in time, we extract infor-
mation about the list of nodes left (e.g., its length, the maximum and minimum
objective estimates, and the number of nodes attaining them). Data traditionally
reported in the solver’s log are included in these 25 attributes.

Let us point out a few remarks on the nature of the extracted B&B data,
and on the guidelines that should be observed to transform them into MILP
“progress measures”.
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1. Some pieces of raw information already describe the global optimization state,
and can be considered in all respects as “progress measures” for the MILP
resolution. An example in this sense is provided by the gap measure: the last
datum collected about the gap refers to the entire resolution process up to
that point, and can be used directly as feature in Φ(TL, ρ, P ).

2. Some other information is instead local, referring to a particular node LP, and
need to be embedded and interpreted within a broader and global context.
For example, a single datum about the depth of a node is not informative of
the tree evolution, but combined depth data can provide indications about
the tree profile (e.g., in terms of maximal depth, width and full levels, see
[8]), as well as describe dives and backtracks in the traversal.

3. Some traits are global (in the sense that they refer to the totality of the
optimization process), but are not significant if taken individually. This is
the case, for example, of data about the global bounds values, which present
themselves as a crude sequence of decreasing (or increasing) scalar values.
Measuring their development and changes, instead, can be more informative
of the optimization progress.

4. Finally, the wide range of MILP benchmark instances requires features to be
comparable across the dataset. For example, exact values linked to parameters
(c,A, b, |I|) and solutions should be avoided. Global counters, e.g., the number
of processed nodes, should be used to rescale other indicators, in order not to
affect the learning process (and subsequent data normalizations) with data
of different magnitudes.

With these guidelines in mind, by means of combining different raw indicators
with each other and interpreting them from a development perspective, we design
(and select) 37 features to represent the MILP progress. We describe the features
set in Table 1.

Besides the canonical use of statistical functions (like max, min, average) to
synthesize some serial information, and the use of throughputs measures (e.g., to
infer the rates at which nodes are processed and pruned), we apply our domain-
knowledge to summarize the optimization progress. For example, we tackle mea-
sures that can vary significantly even between consecutive nodes in the B&B
tree, but for which we are interested in localizing extreme behaviors only, by
employing quantile values as statistically meaningful thresholds. We use them
to track peaks for values of node LP objective, number of iinf and number of
fixed variables. Instead, for data that is updating throughout the optimization
process (e.g., for incumbent and best bound values), we focus on interpreting their
changes in time, deduce how often and how distant are updates happening, and
what is their average improvement.

6 Experimental Results

Dataset Composition and Setup. We employ instances of MIPLIB2010 [21] and
[30] for our experiments. An assessment of the distribution of solving times



Learning MILP Resolution Outcomes Before Reaching Time-Limit 285

Table 2. Dataset composition in terms of labels and original MILP libraries.

Class 0 Class 1 Total (%)

Benchmark78 106 405 511 (52.7)

Challenge160 219 6 225 (23.2)

Mittelmann48 9 225 234 (24.1)

Total (%) 334 (34.4) 636 (65.6) 970

seemed necessary in order to produce a balanced and meaningful dataset. Eval-
uation runs with 10 different seeds on the MIPLIB2010 Benchmark set suggested
the use of TL ∈ {3600, 2400, 1200} seconds. A projection of the resulting labels
distribution was performed, to select ρ = 0.2 (i.e., we stop the observation after
20% of TL).

To build our dataset, we collect B&B data from the following MILP problems:

– Benchmark78: 78 instances from MIPLIB2010 Benchmark set (problems
belonging to Infeasible and Primal subsets are removed, since they do not
appear meaningful for our question);

– Challenge160: 160 problems from MIPLIB2010 Challenge set (with Infeasi-
ble and Primal removed);

– Mittelmann48: 48 instances from Mittelmann MILPlib collection [30].

Problems in Benchmark78 and Mittelmann48 are solved with three different
random seeds, while those in Challenge160 with a single one. As expected,
Mittelmann48 runs are very short, with few cases of time-limiting problems.
Counterbalancing this effect, the majority of instances in Challenge160 cannot
be solved within 1 h time-limit; Benchmark78 run times are distributed more
evenly. All MILP runs were performed on a cluster of 640 48-cores machines,
each equipped with a 2.1 GHz Intel Platinum 8160F “Skylake” processor and
192 GB of RAM. Apart from time-limit specifications, we do not modify the
solver’s default setting; in particular, we leave in place CPLEX default presolve,
cuts and primal heuristics.

The heterogeneity of the collected time series data makes necessary a thor-
ough phase of data cleaning and scaling. We discard troublesome runs to get 1315
data-points, which then reduce to 970 after computing the hand-crafted features
and performing basic data cleaning (data with missing values are removed). Note
that a single MILP problem can generate up to 9 different data-points, given the
variations in seeds and time-limits used. In the final dataset of 970 points, Class
1 (Class 0) represents the 65.6% (34.4%) of the total; a snapshot of the dataset
composition is given in Table 2.

Train and Test Splits. In order to account for the different composition of MILP
libraries and the role of performance variability, we define and try three different
ways of splitting our data into training and test set.
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Fig. 4. Training and test set composition with respect to different labels and MILP
libraries, reported for the three considered train-test splits.

1. Non-homogeneous split: data-points from Benchmark78 are used for training,
while those from Mittelmann48 for test; data from Challenge160 is divided
between train and test, taking care of keeping together points arising from
the same MILP instance.

2. Homogeneous split: both training and test sets are built using a share of each
dataset. Again, points arising from the same instance are kept together.

3. Random split: data from all runs are mixed together and randomly split. In
this case, points that originated from the same MILP instance can appear in
both training and test sets.

Proportions between training and test set are roughly maintained around a
60%–40% repartition, with slight variations across splits. Figure 4 illustrates the
datasets composition in more detail.

6.1 Learning Experiments

We train and test five different learning models, namely, Logistic Regression
(LR), Support Vector Machines (SVM) with RBF kernel [9], Random Forest
(RF) [7], Extremely Randomized Trees (ExT) [13], and Multi-Layer Perceptron
(MLP) [15]. All algorithms are compared against a dummy classifier (dum) fol-
lowing a stratified strategy, i.e., predicting by respecting the class distribution.
The learning phase is implemented entirely in Python with Scikit-learn [31],
and run on a PC with Intel Core i5, 2.3 GHz and 8 GB of memory. Each fea-
ture is normalized to have a mean of 0 and a standard deviation of 1, and each
experiment comprises a training phase with 3-fold cross validation to grid-search
hyper-parameters, and a test phase on the neutral test set.
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Table 3. Classification results for the three considered train-test split settings; mea-
sures are rounded to the second decimal. Best scores and classifiers are bold-faced.

A
cc
ur
ac
y

Pr
ec
isi
on

R
ec
al
l

F1
-s
co
re

dum 0.55 0.56 0.55 0.56
LR 0.94 0.94 0.94 0.94
SVM 0.94 0.94 0.94 0.94
RF 0.96 0.96 0.96 0.96
ExT 0.96 0.96 0.96 0.96
MLP 0.91 0.92 0.91 0.90

(a) Non-homogeneous split
A
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l

F1
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co
re

0.59 0.58 0.59 0.59
0.90 0.91 0.90 0.90
0.91 0.91 0.91 0.91
0.94 0.94 0.94 0.94
0.95 0.95 0.95 0.95
0.86 0.86 0.86 0.85

(b) Homogeneous split

A
cc
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l

F1
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re

0.57 0.57 0.57 0.57
0.93 0.93 0.93 0.93
0.94 0.94 0.94 0.94
0.94 0.95 0.94 0.94
0.93 0.94 0.93 0.93
0.93 0.93 0.93 0.93

(c) Random split

Table 4. Confusion matrices (w/o normalization) for RF in different split settings.
Note that support sizes are varying.

Predicted

0 1 support

T
ru
e 0 100 9 109

1 3 222 225

(a) Non-homogeneous

Predicted

0 1 support

T
ru
e 0 125 11 136

1 12 228 240

(b) Homogeneous

Predicted

0 1 support
T
ru
e 0 130 5 135

1 18 244 262

(c) Random

Results. Table 3 reports the standard performance measures for binary classifi-
cation: for all classifiers we compare accuracy, precision, recall and f1-score, the
last three metrics averaged between classes and weighted by supports. Overall,
RF and ExT are the best performing models, with SVM following close behind.
We additionally report confusion matrices for RF in Table 4. The high accuracy
scores obtained in all three train-test settings attest that there is indeed a sta-
tistical pattern to be learned during MILP resolution, and that the designed
features are capturing it.

Taking a closer look at class-specific precision and recall scores, we note
distinct behaviors with respect to different train-test splits. In particular, models
in the Non-homogeneous case present a sensitivity (i.e., recall for Class 1) being
higher than specificity, accompanied by high precision for Class 0. The trend is
much less accentuated in the Homogeneous setting, and blurs completely (if not
reverses itself) in the Random one. An explanation of these behaviors could be
linked to the intrinsic difference in composition of the MILP libraries employed
for the experiments. In fact, instances in Benchmark78 do not exhibit clear-
cut behaviors as those in Challenge160 and Mittelmann48. Finally, the fact
of Random being the setting in which MLP is best performing might be a sign
of the model being able to recognize akin data-points arising from the same
instance (now scattered in both training and test set), and thus linked to the
presence of problems with low variability scores.
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Table 5. Subset of features appearing in the top-10s for RF: scores are averaged among
split cases; features marked with ∗ appear in the top-10 of each setting.

Rank Score (avg) Feature description

1 0.1856 ∗ Throughput of pruned nodes (over total # of processed ones)

2 0.1839 ∗ Ratio between pruned nodes and last measured number of
nodes left

3 0.0805 ∗ Last measured number of nodes left over maximal number of
nodes left observed

4 0.0758 ∗ Fraction of nodes left attaining max objective estimate

5 0.0632 ∗ Fraction of nodes left attaining min objective estimate

6 0.0622 ∗ Frequency of backtracks

7 0.0453 ∗ Throughput of best bound updates

8 0.0324 ∗ Last measured gap

9 0.0196 Ratio between last measured best bound and incumbent

10 0.0181 Maximal length of observed backtracks

11 0.0165 Difference in absolute value between objective 5% quantile
threshold and best bound

12 0.0164 Distance from last observed best bound update over the
average one

Feature Analysis. Our best performing methods, RF and ExT, have the advan-
tage of interpretability. We employ feature scores returned by Scikit-learn, mea-
suring the mean decrease in impurity [29], to provide a first evaluation of those
factors that proved valuable for the predictions. We look at the sets of top-10
scoring features for RF, for each train-test split case, and note a very stable
scoring pattern: 8 features appear in the top-10 of each setting, and a total of
12 different features covers the three top rankings. We report them in Table 5,
where scores have been averaged among cases. In particular, throughputs and
trends of nodes pruned, processed and left seem to be crucial for proper classifica-
tion. Information on the proportions of nodes attaining maximum and minimum
objective estimates within the list of nodes left is also valuable. Indeed, such esti-
mates at the frontier of the B&B tree are somehow quantifying the amount of
work to be done to close the upper and lower bounds in the remaining subtrees,
and hence measuring the “difficulty” of what is yet to be explored. Together
with the gap, few top-ranked features focus on dives and backtracks happened
during the traversal, while few others on best bound updates. Note that, despite
having provided the same set of features to capture updates of incumbent and
best bound, only those relative to the latter are top-ranked by the algorithm.
This is in line with the composition of MILP benchmarking libraries and the
experience of MILP practitioners, who often witness slow B&B searches due to
difficulty in improving the LP (dual) bound.
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7 Conclusions and Outlook

We propose a learning approach to predict the outcome of a general MILP
problem after only a share of the available computing time has passed. We
summarize the sequential MILP resolution process with hand-crafted features,
and successfully classify it with traditional learning models. In particular, our
novel features can be applied to any type of MILP instance, and hence used in
future application of ML for B&B studies, making this work of interest for a
wide audience. Our positive results show that there is indeed a pattern to be
learned across MILP instances, and represent (to the best of our knowledge) the
first structural statistical use of the data provided by the solver throughout the
resolution. The proposed framework could be readily implemented internally on
the solver side, in order to strategically specialize the optimization process on
the fly, before timing out, providing better options for the user. In other words,
an early detection of a potential time out can trigger algorithmic changes that,
in turn, could prevent such a time out to happen. The developed setting can be
extended in a number of different directions. We plan to deepen data analysis –
possibly augmenting our dataset – and frame the role of performance variability
in the learning process. It would be interesting to consider other ways to tackle
sequence classification, e.g., by following a pattern-based approach.
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Abstract. In this paper a new method for checking the subsumption
relation for the optimal-size sorting network problem is described. The
new approach is based on creating a bipartite graph and modelling the
subsumption test as the problem of enumerating all perfect matchings
in this graph. Experiments showed significant improvements over the
previous approaches when considering the number of subsumption checks
and the time needed to find optimal-size sorting networks. We were able
to generate all the complete sets of filters for comparator networks with 9
channels, confirming that the 25-comparators sorting network is optimal.
The running time was reduced more than 10 times, compared to the
state-of-the-art result described in [6].

Keywords: Comparator network · Optimal-size sorting network ·
Subsumption relation · Perfect matching

1 Introduction

Sorting networks are a special class of sorting algorithms with an active research
area since the 1950’s [2,3,10]. A sorting network is a comparison network which
for every input sequence produces a monotonically increasing output. Since the
sequence of comparators does not depend on the input, the network represents an
oblivious sorting algorithm. Such networks are suitable in parallel implementa-
tions of sorting, being applied in graphics processing units [9] and multiprocessor
computers [3].

Over time, the research was focused on finding the optimal sorting networks
relative to their size or depth. When the size is considered, the network must
have a minimal number of comparators, while for the second objective a minimal
number of layers is required. In [1] a construction method for sorting network
of size O(n log n) and depth O(log n) is given. This algorithm has good results
in theory but it is inefficient in practice because of the large constants hidden
in the big-O notation. On the other side, the simple algorithm from [3] which
constructs networks of depth O(log2 n) has good results for practical values of n.
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Because optimal sorting networks for small number of inputs can be used to
construct efficient larger networks, the research in the area focused in the last
years on finding such small networks. Optimal-size and optimal-depth networks
are known for n ≤ 8 [10]. In [12] the optimal-depth sorting networks were pro-
vided for n = 9 and n = 10. The results were extended for 11 ≤ n ≤ 16 in
[4]. The approaches use search with pruning based on symmetries on the first
layers. The last results for parallel sorting networks are for 17 to 20 inputs and
are given in [5,8]. On the other side, the paper [6] proved the optimality in size
for the case n = 9 and n = 10. The proof is based on exploiting symmetries
in sorting networks and on encoding the problem as a satisfiability problem.
The use of powerful modern SAT solvers to generate optimal sorting networks
is also investigated in [11]. Other recent results can be found in [7], where a
revised technique to generate, modulo symmetry, the set of saturated two-layer
comparator networks is given. Finding the minimum number of comparators for
n > 10 is still an open problem. In this paper, we consider the optimal-size
sorting networks problem.

Heuristic approaches were also considered in the literature, for example
approaches based on evolutionary algorithms [15] that are able to discover new
minimal networks for up to 22 inputs, but these methods cannot prove their
optimality.

One of the most important and expensive operation used in [6] is the sub-
sumption testing. This paper presents a new better approach to implement this
operation based on matchings in bipartite graphs. The results show that the new
approach makes the problem more tractable by scaling it to larger inputs.

The paper is organized as follows. Section 2 describes the basic concepts
needed to define the optimal-size sorting-network problem and a new model of
the subsumption problem. Section 3 presents the problem of finding the minimal-
size sorting network. Section 4 discusses the subsumption problem while Sect. 5
the subsumption testing. Section 6 presents the new way of subsumption testing
by enumerating all perfect matchings. Section 7 describes the experiments made
to evaluate the approach and presents the results.

2 Basic Concepts

A comparator network Cn,k with n channels (also called wires) and size k is a
sequence of comparators c1 = (i1, j1); . . . ; ck = (ik; jk) where each comparator
ct specifies a pair of channels 1 ≤ it < jt ≤ n. We simply denote by Cn a
comparator network with n channels, whenever the size of the network is not
significant in a certain context.

Graphically, a comparator network may be represented as a Knuth diagram
[10]. A channel is depicted as a horizontal line and a comparator as a vertical
segment connecting two channels (Fig. 1).

An input to a comparator network Cn may be any sequence of n objects taken
from a totally ordered set, for instance elements in Z

n. Let x = (x1, . . . , xn)
be an input sequence. Each value xi is assigned to the channel i and it will
“traverse” the comparator network from left to right. Whenever the values on
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Fig. 1. The sorting network C = (1, 2); (3, 4); (2, 4); (1, 3); (2, 3), having 4 channels and
5 comparators, operating on the input sequence 1010. The output sequence is 0011.

two channels reach a comparator c = (i, j) the following happens: if they are
not in ascending order the comparator permutes the values (xi, xj), otherwise
the values will pass through the comparator unmodified. Therefore, the output
of a comparator network is always a permutation of the input. If x is an input
sequence, we denote by C(x) the output sequence of the network C.

A comparator network is called a sorting network if its output is sorted
ascending for every possible input.

The zero-one principle [10] states that if a comparator network Cn sorts
correctly all 2n sequences of zero and one, then it is a sorting network. Hence,
without loss of generality, from now on we consider only comparator networks
with binary input sequences. In order to increase readability, whenever we rep-
resent a binary sequence we only write its bits; so 1010 is actually the sequence
(1, 0, 1, 0).

The output set of a comparator network is outputs(C) = {C(x)|∀x ∈ {0, 1}n}.
Let x be a binary input sequence of length n. We make the following notations:
zeros(x) = {1 ≤ i ≤ n|xi = 0} and ones(x) = {1 ≤ i ≤ n|xi = 1}. The output
set of a comparator network Cn can be partitioned into n + 1 clusters, each
cluster containing sequences in outputs(C) having the same number of ones.
We denote by cluster(C, p) the cluster containing all sequences having p ones:
cluster(C, p) = {x ∈ outputs(C) | |ones(x)| = p}.

Consider the following simple network C = (1, 2); (3, 4). The output clusters
of C are: cluster(C, 0) = {0000}, cluster(C, 1) = {0001, 0100}, cluster(C, 2) =
{0011, 0101, 1100}, cluster(C, 3) = {0111, 1101}, cluster(C, 4) = {1111}.

The following proposition states some simple observations regarding the out-
put set and its clusters.

Proposition 1. Let C be a comparator network having n channels.

(a) C is the empty network ⇔ |outputs(C)| = 2n.
(b) C is a sorting network ⇔ |outputs(C)| = n + 1 (each cluster contains
exactly one element).
(c) |cluster(C, p)| ≤ (

n
p

)
, 1 ≤ p ≤ n − 1.

(d) |cluster(C, 0)| = |cluster(C, n)| = 1.

We extend the zeros and ones notations to output clusters in the follow-
ing manner. Let C be a comparator network. For all 0 ≤ p ≤ n we denote
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zeros(C, p) =
⋃{zeros(x)|x ∈ cluster(C, p)} and ones(C, p) =

⋃{ones(x)|x ∈
cluster(C, p)}. These sets contain all the positions between 1 and n for which
there is at least one sequence in the cluster having a zero and a one at that posi-
tion, respectively. Considering the clusters from the previous example, we have:
zeros(C, 0) = zeros(C, 1) = zeros(C, 2) = {1, 2, 3, 4}, zeros(C, 3) = {1, 3},
zeros(C, 4) = ∅, ones(C, 0) = ∅, ones(C, 1) = {2, 4}, ones(C, 2) = ones(C, 3) =
ones(C, 4) = {1, 2, 3, 4}.

We introduce the following equivalent representation of the zeros and ones
sets, as a sequence of length n, where n is the number of channels of the network,
and elements taken from the set {0, 1}. Let Γ be a cluster:

– zeros(Γ ) = (γ1, . . . , γn), where γi = 0 if i ∈ zeros(Γ ), otherwise γi = 1,
– ones(Γ ) = (γ′

1, . . . , γ
′
n), where γ′

i = 1 if i ∈ ones(Γ ), otherwise γ′
i = 0.

In order to increase readability, we will depict 1 values in zeros, respectively 0
values in ones with the symbol −. Considering again the previous example, we
have: zeros(C, 3) = (0 − 0−) and ones(C, 1) = (−1 − 1).

If C is a comparator network on n channels and 1 ≤ i < j ≤ n we denote
by C; (i, j) the concatenation of C and (i, j), i.e. the network that has all the
comparators of C and in addition a new comparator connecting channels i and j.
The concatenation of two networks C and C ′ having the same number of channels
is denoted by C;C ′ and it is defined as the sequence of all comparators in C and
C ′, first the ones in C and then the ones in C ′. In this context, C represents a
prefix of the network C;C ′. Obviously, size(C;C ′) = size(C) + size(C ′).

Let π be a permutation on {1, . . . , n}. Applying π on a comparator net-
work C = (i1, j1); . . . ; (ik, jk) will produce the generalized network π(C) =
(π(i1), π(j1)); . . . ; (π(ik), π(jk)). It is called generalized because it may contain
comparators (i, j) with i > j, which does not conform to the actual definition of
a standard comparator network. An important result in the context of analyz-
ing sorting networks (exercise 5.3.4.16 in [10]) states that a generalized sorting
network can always be untangled such that the result is a standard sorting net-
work of the same size. The untangling algorithm is described in the previously
mentioned exercise. Two networks Ca and Cb are called equivalent if there is a
permutation π such that untangling π(Cb) results in Ca.

Applying a permutation π on a binary sequence x = (x1, . . . , xn) will per-
mute the corresponding values: π(x) = (xπ(1), . . . , xπ(n)). Applying π on a set of
sequences S (either a cluster or the whole output set) will permute the values
of all the sequences in the set: π(S) = {π(x)|∀x ∈ S}. For example, consider
the permutation π = (4, 3, 2, 1) and the set of sequences S = {0011, 0101, 1100}.
Then, π(S) = {1100, 1010, 0011}

3 Optimal-Size Sorting Networks

The optimal size problem regarding sorting networks is: “Given a positive integer
n, what is the minimum number of comparators sn needed to create a sorting
network on n channels?”.
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Since even the problem of verifying whether a comparator network is a sorting
network is known to be Co-NP complete [13], we cannot expect to design an
algorithm that will easily answer the optimal size problem.

In order to prove that sn ≤ k, for some k, it is enough to find a sorting
network of size k. On the other hand, to show that sn > k one should prove that
no network on n channels having at most k comparators is a sorting network.

Let Rn
k denote the set of all comparator networks having n channels and k

comparators. The naive approach to identify the sorting networks is by generat-
ing the whole set Rn

k , starting with the empty network and adding all possible
comparators. In order to find a sorting network on n channels of size k, one
could iterate through the set Rn

k and inspect the output set of each network.
According to Proposition 1(b), if the size of the output is n + 1 then we have
found a sorting network. If no sorting network is found, we have established that
sn > k.

Unfortunately, the size of Rn
k grows rapidly since |Rn

k | = (n(n − 1)/2)k and
constructing the whole set Rn

k is impracticable even for small values of n and k.
We are actually interested in creating a set of networks Nn

k that does not
include all possible networks but contains only “relevant” elements.

Definition 1. A complete set of filters [6] is a set Nn
k of comparator networks

on n channels and of size k, satisfying the following properties:

(a) If sn = k then Nn
k contains at least one sorting network of size k.

(b) If k < sn = k′ then ∃Copt
n,k′ an optimal-size sorting network and ∃Cn,k ∈ Nn

k

such that C is a prefix of Copt.

Since the existence of Nn
k is guaranteed by the fact that Rn

k is actually a complete
set of filters, we are interested in creating such a set that is small enough (can
be computed in a ‘reasonable’ amount of time).

4 Subsumption

In order to create a complete set of filters [6] introduces the relation of subsumption.

Definition 2. Let Ca and Cb be comparator networks on n channels. If there
exists a permutation π on {1, . . . , n} such that π(outputs(Ca)) ⊆ outputs(Cb)
we say that Ca subsumes Cb, and we write Ca 	 Cb (or Ca ≤π Cb to indicate
the permutation).

For example, consider the networks Ca = (1, 2); (2, 3); (1, 4) and
Cb = (1, 2); (1, 3); (2, 4). Their output sets are:
outputs(Ca) = {{0000}, {0001, 0010}, {0011, 0110}, {0111, 1011}, {1111}},
outputs(Cb) = {{0000}, {0001, 0010}, {0011, 0101}, {0111, 1011}, {1111}}.
It is easy to verify that π = (1, 2, 4, 3) has the property that Ca ≤π Cb.

Proposition 2. Let Ca and Cb be comparator networks on n channels, having
|outputs(Ca)| = |outputs(Cb)|. Then, Ca 	 Cb ⇔ Cb 	 Ca.
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Proof. Assume that Ca ≤π Cb ⇒ π(outputs(Ca)) ⊆ outputs(Cb) and since
|outputs(Ca)| = |outputs(Cb)| ⇒ π(outputs(Ca)) = outputs(Cb). That means
that π is actually mapping each sequence in outputs(Ca) to a distinct sequence
in outputs(Cb). The inverse permutation π−1 is also a mapping, this time from
outputs(Cb) to outputs(Ca), implying that π−1(outputs(Cb)) = outputs(Ca) ⇒
Cb ≤π−1 Ca.

The following result is the key to creating a complete set of filters:

Lemma 1. Let Ca and Cb be comparator networks on n channels, both having
the same size, and Ca 	 Cb. Then, if there exists a sorting network Cb;C of size
k, there also exists a sorting network Ca;C ′ of size k.

The proof of the lemma is presented in [6] (Lemma 2) and [4] (Lemma 7).
The previous lemma “suggests” that when creating the set of networks Rn

k

using the naive approach, and having the goal of creating actually a complete
set of filters, we should not add two networks in this set if one of them subsumes
the other.

The algorithm to generate Nn
k

Require: n, k ∈ Z
+

Ensure: Returns Nn
k , a complete set of filters

Nn
0 = {Cn,0} {Start with the empty network}

for all p = 1 . . . k do
Nn

p = ∅ {Generate Nn
p from Nn

p−1, adding all possible comparators}
for all C ∈ Nn

p−1 do
for all i = 1 . . . n − 1, j = i + 1 . . . n do
if the comparator (i, j) is redundant then
continue

end if
C∗ = C; (i, j) {Create a new network C∗}
if � ∃C ′ ∈ Nn

p such that C ′ 	 C∗ then
Nn

p = Nn
p ∪ C∗

Remove from Nn
p all the networks C ′′ such that C∗ 	 C ′′.

end if
end for

end for
end for
return Nn

k

A comparator c is redundant relative to the network C if adding it at the end
of C does not modify the output set: outputs(C; c) = outputs(C). Testing if a
comparator c = (i, j) is redundant relative to a network C can be easily imple-
mented by inspecting the values xi and xj in all the sequences x ∈ outputs(C).
If xi ≤ xj for all the sequences then c is redundant.

The key aspect in implementing the algorithm above is the test for
subsumption.
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5 Subsumption Testing

Let Ca and Cb be comparator networks on n channels. According to Definition 2,
in order to check if Ca subsumes Cb we must find a permutation π on {1, . . . , n}
such that π(outputs(Ca)) ⊆ outputs(Cb). If no such permutation exists then Ca

does not subsume Cb.
In order to avoid iterating through all n! permutations, in [6] several results

are presented that identify situations when subsumption testing can be imple-
mented efficiently. We enumerate them as the tests ST1 to ST4.

(ST1) Check the total size of the output
If |outputs(Ca)| > |outputs(Cb)| then Ca cannot subsume Cb.

(ST2) Check the size of corresponding clusters (Lemma 4 in [6])
If there exists 0 ≤ p ≤ n such that |cluster(Ca, p)| > |cluster(Cb, p)|
then Ca cannot subsume Cb. When applying a permutation π on a sequence
in outputs(Ca), the number of bits set to 1 remains the same, only their
positions change. So, if π(outputs(Ca)) ⊆ outputs(Cb) then ∀0 ≤ p ≤
n π(cluster(Ca), p) ⊆ cluster(Cb, p), which implies that |cluster(Ca)| =
|π(cluster(Ca), p)| ≤ |cluster(Cb, p)| for all 0 ≤ p ≤ n.

(ST3) Check the ones and zeros (Lemma 5 in [6])
Recall that zeros and ones represent the sets of positions that are set to 0, respec-
tively to 1. If there exists 0 ≤ p ≤ n such that |zeros(Ca, p)| > |zeros(Cb, p)| or
|ones(Ca, p)| > |ones(Cb, p)| then Ca cannot subsume Cb.
For example, consider the networks Ca = (1, 2); (3, 4); (2, 4); (1, 5); (1, 3) and
Cb = (1, 2); (3, 4); (1, 3); (3, 5); (1, 3). cluster(Ca, 2) = {00011, 00110, 01010},
cluster(Cb, 2) = {00011, 01001, 01010}, ones(Ca, 2) = {2, 3, 4, 5}, ones(Cb, 2) =
{2, 4, 5}, therefore Ca �	 Cb.

(ST4) Check all permutations (Lemma 6 in [6])
The final optimization presented in [6] states that if there exists a permutation
π such that π(outputs(Ca)) ⊆ outputs(Cb) then ∀0 ≤ p ≤ n zeros(π(Ca, p)) ⊆
zeros(Cb, p) and ones(π(Ca, p)) ⊆ ones(Cb, p). So, before checking the inclusion
for the whole output sets, we should check the inclusion for the zeros and ones
sets, which is computationally cheaper.

The tests (ST1) to (ST3) are very easy to check and are highly effective in
reducing the search space. However, if none of them can be applied, we have
to enumerate the whole set of n! permutations, verify (ST4) and eventually the
definition of subsumption, for each one of them. In [6] the authors focused on
n = 9 which means verifying 362, 880 permutations for each subsumption test.
They were successful in creating all sets of complete filters N9

k for k = 1, . . . , 25
and actually proved that s9 = 25. Using a powerful computer and running a
parallel implementation of the algorithm on 288 threads, the time necessary for
creating these sets was measured in days (more than five days only for N9

14).
Moving from 9! to 10! = 3, 628, 800 or 11! = 39, 916, 800 does not seem

feasible. We also have to take in consideration the size of the complete filter
sets, for example |N9

14| = 914, 444.
We present a new approach for testing subsumption, which greatly reduces

the number of permutations which must be taken into consideration. Instead
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of enumerating all permutations we will enumerate all perfect matchings in a
bipartite graph created for the networks Ca and Cb being tested.

6 Enumerating Perfect Matchings

Definition 3. Let Ca and Cb be comparator networks on n channels. The sub-
sumption graph G(Ca, Cb) is defined as the bipartite graph (A,B;E(G)) with
vertex set V (G) = A ∪ B, where A = B = {1, . . . , n} and the edge set E(G)
defined as follows. Any edge e ∈ E(G) is a 2-set e = {i, j} with i ∈ A and j ∈ B
(also written as e = ij) having the properties:

– i ∈ zeros(Ca, p) ⇒ j ∈ zeros(Cb, p), ∀0 ≤ p ≤ n;
– i ∈ ones(Ca, p) ⇒ j ∈ ones(Cb, p), ∀0 ≤ p ≤ n.

So, the edges of the subsumption graph G represent a relationship between
positions in the two output sets of Ca and Cb. An edge ij signifies that the
position i (regarding the sequences in outputs(Ca)) and the position j (regard-
ing Cb) are “compatible”, meaning that a permutation π with the property
π(outputs(Ca)) ⊆ outputs(Cb) might have the mapping i to j as a part of it.

As an example, consider the following zeros and ones sequences, correspond-
ing to Ca = (1, 2); (3, 4); (2, 4); (2, 5) and Cb = (1, 2); (3, 4); (1, 4); (2, 5).
zeros(Ca) = {00000,00000,000-0,000-,000--,-----},
zeros(Cb) = {00000,00000,00000,000--,000--,-----},
ones(Ca) = {-----,---11,1-111,11111,11111,11111},
ones(Cb) = {-----,---11,-1111,11111,11111,11111}.

The subsumption graph G(Ca, Cb) is pictured below:

1 2 3 4 5

1 2 3 4 5

Fig. 2. The subsumption graph corresponding to the comparator networks Ca =
(1, 2); (3, 4); (2, 4); (2, 5) and Cb = (1, 2); (3, 4); (1, 4); (2, 5)

A matching M in the graph G is a set of independent edges (no two edges in
the matching share a common node). If ij ∈ M we say that i and j are saturated.
A perfect matching is a matching that saturates all vertices of the graph.

Lemma 2. Let Ca and Cb be comparator networks on n channels. If Ca ≤π Cb

then M = {iπ(i) : i = 1, . . . , n} ⊆ E(G) is a perfect matching in the subsumption
graph G(Ca, Cb).
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Proof. Suppose that Ca ≤π Cb, π(i) = j and ij �∈ E(G). That means that
∃0 ≤ p ≤ n such that i ∈ zeros(Ca, p)∧ j �∈ zeros(Cb, p) or i ∈ ones(Ca, p)∧ j �∈
ones(Cb, p). We will assume the first case. Let x a sequence in cluster(Ca, p) such
that x(i) = 0. Since π(outputs(Ca)) ⊆ outputs(Cb) ⇒ π(x) ∈ cluster(Cb, p). But
π(i) = j, therefore in cluster(Cb, p) there is the sequence π(x) having the bit at
position j equal to 0, contradiction.

The previous lemma leads to the following result:

Corollary 1. Let Ca and Cb be comparator networks on n channels. Then Ca

subsumes Cb if and only if there exists a perfect matching π in the subsumption
graph G(Ca, Cb).

The graph in Fig. 2 has only four perfect matchings: (2, 1, 3, 4, 5), (3, 1, 2, 4, 5),
(2, 1, 3, 5, 4), (3, 1, 2, 5, 4). So, when testing subsumption, instead of verifying
5! = 120 permutations it is enough to verify only 4 of them.

If two clusters are of the same size, then we can strengthen the previous
result even more. If there is a permutation π such that π(cluster(Ca, p)) =
cluster(Cb, p) then π−1(cluster(Cb, p)) = cluster(Ca, p). Using the same rea-
soning, when creating the subsumption graph C(Ga, Cb) we add the following
two condition when defining an edge ij:

– j ∈ zeros(Cb, p) ⇒ i ∈ zeros(Ca, p), ∀0 ≤ p ≤ n such that |cluster(Ca, p)| =
|cluster(Cb, p)|,

– j ∈ ones(Cb, p) ⇒ i ∈ ones(Ca, p), ∀0 ≤ p ≤ n such that |cluster(Ca, p)| =
|cluster(Cb, p)|.
In order to enumerate all perfect matchings in a bipartite graph, we have

implemented the algorithm described in [14]. The algorithm starts with finding
a perfect matching in the subsumption graph G(Ca, Cb). Taking into consider-
ation the small size of the bipartite graph, we have chosen the Ford-Fulkerson
algorithm which is very simple and does not require elaborate data structures.
Its time complexity is O(n|E(G)|). If no perfect matching exists, then we have
established that Ca does not subsume Cb. Otherwise, the algorithm presented in
[14] identifies all other perfect matchings, taking only O(n) time per matching.

7 Experimental Results

We implemented both variants of subsumption testing:

– (1) enumerating all permutations and checking the inclusions described by
(ST4) before verifying the actual definition of subsumption;

– (2) verifying only the permutations that are actually perfect matchings in the
subsumption graph, according to Corollary 1.

We made some simple experiments on a regular computer (Intel i7-4700HQ
@2.40 GHz), using 8 concurrent threads. The programming platform was Java
SE Development Kit 8.

Several suggestive results are presented in the table below:
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(n, k) |Nn
k | total sub perm1 time1 perm2 time2

(7, 9) 678 1, 223, 426 5, 144 26, 505, 101 2.88 33, 120 0.07

(7, 10) 510 878, 995 5, 728 25, 363, 033 2.82 24, 362 0.06

(8, 7) 648 980, 765 2, 939 105, 863, 506 13.67 49, 142 0.14

(8, 8) 2088 9, 117, 107 9, 381 738, 053, 686 94.50 283, 614 0.49

(8, 9) 5703 24, 511, 628 29, 104 4, 974, 612, 498 650.22 1, 303, 340 1.96

The columns of the table have the following significations:

– (n, k) - n is the number of channels, k is the number of comparators;
– |Nn

k | - the size of the complete set of filters generated for the given n and k;
– total - the total number of subsumption checks;
– sub - the number of subsumptions that were identified;
– perm1 - how many permutations were checked, using the variant (1);
– time1 - the total time, measured in seconds, using the variant (1);
– perm2 - how many permutations were checked, using the variant (2);
– time2 - the total time, measured in seconds, using the variant (2);

As we can see from this results, using the variant (2) the number of permu-
tations that were verified in order to establish subsumption is greatly reduced.
Despite the fact that it is necessary to create the subsumption graph and to
iterate through its set of perfect matchings, this leads to a much shorter time
needed for the overall generation of the complete set of filters.

This new approach enabled us to reproduce the state-of-the-art result con-
cerning optimal-size sorting networks, described in [6]. Using an Intel Xeon E5-
2670 @ 2.60 GHz computer, with a total of 32 cores, we generated all the complete
set of filters for n = 9. The results are presented in the table below.

k 1 2 3 4 5 6 7 8

|N9
k | 1 3 7 20 59 208 807 3415

time(s) 0 0 0 0 0 0 0 0

k 9 10 11 12 13 14 15 16

|N9
k | 14343 55991 188730 490322 854638 914444 607164 274212

time(s) 4 48 769 6688 25186 40896 24161 5511

k 17 18 19 20 21 22 23 24 25

|N9
k | 94085 25786 5699 1107 250 73 27 8 1

time(s) 610 36 2 0 0 0 0 0 0

In [6] the necessary time required to compute |N9
14| using the generate-and-

prune approach was estimated at more than 5 days of computation on 288
threads. Their tests were performed on a cluster with a total of 144 Intel E8400
cores clocked at 3 GHz. In our experiments, the same set was created in only
11 h, which is actually a significant improvement.
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8 Conclusions

In this paper we have extended the work in [6], further investigating the rela-
tion of subsumption. In order to determine the minimal number of comparators
needed to sort any input of a given length, a systematic BFS-like algorithm gen-
erates incrementally complete sets of filters, that is sets of comparator networks
that have the potential to prefix an optimal-size sorting network. To make this
approach feasible it is essential to avoid adding into these sets networks that sub-
sume one another. Testing the subsumption is an expensive operation, invoked
a huge number of times during the execution of the algorithm. We described a
new approach to implement this test, based on enumerating perfect matchings
in a bipartite graph, called the subsumption graph. Computer experiments have
shown significant improvements, greatly reducing the number of invocations and
the overall running time. The results show that, using appropriate hardware, it
might be possible to approach in this manner the optimal-size problem for sort-
ing networks with more than 10 channels.
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Abstract. In this paper we deal with a complex real world scheduling
problem closely related to the well-known Resource-Constrained Project
Scheduling Problem (RCPSP). The problem concerns industrial test lab-
oratories in which a large number of tests has to be performed by qualified
personnel using specialised equipment, while respecting deadlines and
other constraints. We present different constraint programming models
and search strategies for this problem. Our approaches are evaluated
using CP solvers and a MIP solver on a set of generated instances of
different sizes. With our best approach we could find feasible and several
optimal solutions for instances that are generated based on real-world
test laboratory problems.

1 Introduction

Project scheduling includes various problems of high practical relevance. Such
problems arise in many areas and include different constraints and objectives.
Usually project scheduling problems require scheduling of a set of project activi-
ties over a period of time and assignment of resources to these activities. Typical
constraints include time windows for activities, precedence constraints between
the activities, assignment of appropriate resources etc. The aim is to find fea-
sible schedules that optimize several criteria such as the minimization of total
completion time.

In this paper we investigate solving a real-world project scheduling problem
that arises in an industrial test laboratory of a large company. This problem,
Industrial Test Laboratory Scheduling (TLSP), which is an extension of the well
known Resource-Constrained Project Scheduling Problem (RCPSP), was origi-
nally described in [13,14]. It consists of a grouping stage, where smaller activities
(tasks) are joined into larger jobs, and a scheduling stage, where those jobs are
scheduled and have resources assigned to them. In this work, we deal with the
second stage and assume that a grouping of tasks into jobs is already provided.
Since we focus on the scheduling part, we denote the resulting problem TLSP-S.

c© Springer Nature Switzerland AG 2019
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The investigated problem has several features of previous project scheduling
problems in the literature, but also includes some specific features imposed by
the real-world situation, which have rarely been studied before. Among others,
these include heterogeneous resources, with availability restrictions on the activ-
ities each unit of a resource can perform. While work using similar restrictions
exists ([5,23]), most problem formulations either assume homogeneous, identical
units of each resource or introduce additional activity modes for each feasible
assignment, which quickly becomes impractical for higher resource requirements
and multiple resources. Another specific feature of TLSP(-S) is that of linked
activities, which require identical assignments on a subset of the resources. To
the best of our knowledge, a similar concept appears only in [18], where modes
should be identical over subsets of all activities. We also deal with several non-
standard objectives instead of the usual makespan minimization, which arise
from various business objectives of our industrial partner. Most notably, we try
to minimize the total completion time of each project, i.e. the time between the
start of the first and the end of the last job in the project.

In practice, exact solutions for this problem are desired especially in situ-
ations where it is necessary to check if a feasible solution exists at all. In the
application that we consider, checking quickly if activities of additional projects
can be added on top of an existing schedule is very important. In this paper we
investigate exact methods for solving this problem. Although it is known from
previous papers [21,23] that constraint programming techniques can give good
results for similar project scheduling problems, it is an interesting question if
Constraint Programming (CP) techniques can also solve TLSP-S that includes
additional features and larger instances.

We provide a CP model for our problem by exploiting some previous ideas
for a similar problem from [21,23] and extend it to model the additional features
of TLSP-S. This includes, for example, the handling of the problem specific dif-
ferences discussed above but also new redundant constraints as well as search
procedures tailored to the problem. Using the MiniZinc [15] constraint program-
ming language we experiment with various strategies involving the formulation
of resource constraints, the reduction of the search space, and search procedures
based on heuristics.

Our final experiments show that constraint programming techniques can
reach very good results for realistic instances and outperform MIP solvers on
the same model. Our results strengthen the conclusion of previous studies and
show that CP technology can be applied successfully for solving large project
scheduling problems.

The rest of the paper is organised as follows. In the next Section we give
the related work. Section 3 introduces the problem that we investigate in this
paper. A constraint model is given in Sect. 4. Experimental results are presented
in Sect. 5 and the last section gives conclusions.
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2 Literature Overview

The Resource-Constrained Project Scheduling Problem (RCPSP) has been inves-
tigated by numerous researchers over the last decades. For a comprehensive
overview over publications dealing with this problem and its many variants, we
refer to surveys e.g. by Brucker et al. [3], Hartmann and Briskorn [9], or Mika
et al. [12].

Of particular interest for the problem treated in this work are various exten-
sions to the classical RCPSP.

Multi-Mode RCPSP (MRCPSP) formulations allow for activities that can
be scheduled in one of several modes. This variant has been extensively studied
since 1977 [7], we refer to the surveys by Wȩglarz et al. [22] and Hartmann and
Briskorn [9]. A good example of a CP-Model for the MRCPSP was given by
Szeredi and Schutt [21].

Many formulations, including TLSP, make use of release dates, due dates,
deadlines, or combinations of those. An example of this can be found in [6]. Fur-
ther relevant extensions deal with multi-project formulations, including alterna-
tive objective functions (e.g. [17]). Usually, the objective in (variants of) RCPSP
is the minimization of the total makespan [9]. However, also other objective val-
ues have been considered. Of particular relevance to TLSP are objectives based on
total completion time and multi-objective formulations (both appear in e.g. [16]).
Salewski et al. [18] include constraints that require several activities to be per-
formed in the same mode. This is similar to the concept of linked jobs introduced
in the TLSP.

RCPSP itself and most variants assume that individual units of each resource
are identical and interchangeable. A problem closely related to TLSP-S is Multi-
Skill RCPSP (MSPSP), first introduced by Bellenguez and Néron [2]. In this
problem, each resource unit possesses certain skills, and an activity can only
have those resources with the required skills assigned to it. This is similar to the
availability restrictions on resources that appear in TLSP. Just like for our prob-
lem, they also deal with the problem that while availability restrictions could be
modeled via additional activity modes corresponding to feasible resource assign-
ments (e.g. in [1,17,20]), this is intractable due to the large number of modes
that would have to be generated [2]. To the best of our knowledge, the best
results for the MSPSP problem have been achieved by Young et al. [23], who
use a CP model to solve the problem.

Bartels and Zimmermann [1] describe a problem for scheduling tests of exper-
imental vehicles. It contains several constraints that also appear in similar form
in TLSP-S, but includes a different resource model and minimises the number
of experimental vehicles used.

3 Problem Description

As mentioned before, we deal with a variant of TLSP [14], where we assume that
a grouping of tasks into jobs is already provided for each project, and focus on
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the scheduling part of the problem instead (TLSP-S). Thus, the goal is to find
an assignment of a mode, time slot and resources to each (given) job, such that
all constraints are fulfilled and the objective function is minimized.

In the following, we introduce the TLSP-S problem.
Each instance consists of a scheduling period of h discrete time slots. Further,

it lists resources of different kinds:

– Employees E = {1, . . . , |E|} who are qualified for different types of jobs.
– A number of workbenches B = {1, . . . , |B|} with different facilities.
– Various auxiliary lab equipment groups Gg = {1, . . . , |Gg|}, where g is the

group index. These each represent a set of similar devices. The set of all
equipment groups is denoted G∗.

Further we have given the set of projects labeled P = {1, . . . , |P |}, and the
set of jobs to be scheduled J = {1, . . . , |J |}. For a project p, the jobs of this
project are given as Jp ⊆ J .

Each job j has several properties1:

– A time window, given via a release date αj and a deadline ωj . In addition, it
has a due date ω̄j , which is similar to the deadline, except that exceeding it
is only a soft constraint violation.

– A set of available modes Mj ⊆ M , where M is the set of all modes.
– A duration dmj for each available mode m ∈ Mj .
– The resource requirements for the job:

• The number of required employees rEm
m depends on the mode m ∈ Mj .

Each of these employees must be chosen from the set of qualified employees
Ej ⊆ E. Additionally, there is also a set of preferred employees EPr

j ⊆ Ej .
• The number of required workbenches rWb

j ∈ {0, 1}. If a workbench is
required, it must be chosen from the available workbenches Bj ⊆ B.

• For each equipment group g ∈ G∗, the job requires rEq
gj devices, which

must be taken from the set of available devices Ggj ⊆ Gg for the group.
– The predecessors Pj of the job, which must be completed before the job can

start. Precedence relations will only occur between jobs of the same project.
– Linked jobs Lj of this job. All linked jobs must be performed by the same

employee(s). As before, such links only occur between jobs of the same project.
– Optionally, the job may contain initial assignments.

• An initial mode ṁj .
• An initial starting time slot ṡj .
• Initial resource assignments: For each employee e ∈ E, the boolean

parameter ȧEm
ej indicates whether e is initially assigned to j. Analogously,

ȧWb
bj and ȧEq

dj perform the same function for each workbench b ∈ B and
each device d ∈ Gg, g ∈ G∗, respectively.

Some or all of these assignments may be present for any given job.

1 In TLSP, these are derived from the tasks contained within a job. Since we assume
the distribution of tasks into jobs to be fixed, they can be given directly as part of
the input for TLSP-S.
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Out of all jobs, a subset are started jobs JS ⊆ J . A started job will always
fulfill the following conditions:

– It must have a preassigned mode.
– Its start time must be set to 1.
– It must have initial resource assignments fulfilling all requirements.

The initial assignments of a started job must not be changed in the solution.
A complete description of all constraints of the original model can be found

in [14]. The hard and soft constraints that we consider for the TLSP-S will be
described in the next section, where we will introduce the CP model.

The aim for this problem is to find an assignment of a mode, time slot and
resources to each (given) job, such that all hard constraints are fulfilled and the
violation of soft constraints is minimized.

4 Constraint Programming Model

We developed our model using the solver-independent modeling language MiniZ-
inc [15]. Using MiniZinc we can easily compare different solvers. Furthermore,
previous studies have shown that CP gives very good results for similar project
scheduling problems. Most notably, the approaches by Young et al. [23] and
Szeredi et al. [21] for MSPSP and MRCPSP respectively. MiniZinc also enables
the use of user defined search strategies, which were shown to be very effective
for MSPSP [23]. For both scheduling problems, the LCG solver Chuffed [4] was
able to achieve very good results.

In order to provide an additional comparison, we also modeled our problem
with the IBM ILOG CP Optimizer [10]. This model uses a different formulation
of constraints and decision variables than the MiniZinc model and is described
in Subsect. 4.6.

In order to represent a solution for the scheduling problem we use the fol-
lowing decision variables. The start time variable sj assigns a start time to each
job j. Similarly, for each job j, mode variable mj assigns it a mode. For resource
assignments we need the following variables: For each job j, the variable aEm

ej is
set to 1 if employee e is assigned to j and 0 otherwise, the variable aWb

bj is 1 if j

is performed on workbench b and 0 otherwise, and the variable aEq
dj is 1 if device

d is used by j and 0 otherwise.

4.1 Basic Hard Constraints

The following constraints follow directly from the problem definition.

sj ≥ αj ∧ (sj + dmjj) ≤ ωj j ∈ J (1)
sj ≥ (sk + dmkk) j ∈ J, k ∈ Pj (2)



Investigating CP for Industrial Test Laboratory Scheduling 309

mj ∈ Mj j ∈ J (3)

aEm
ej = 1 → e ∈ Ej j ∈ J, e ∈ E (4)

aWb
bj = 1 → b ∈ Bj j ∈ J, b ∈ B (5)

aEq
dj = 1 → d ∈ Ggj j ∈ J, g ∈ G∗, d ∈ Gg (6)

∑

e∈E

aEm
ej = rEm

mj
j ∈ J (7)

∑

b∈B

aWb
bj = rWb

j j ∈ J (8)

∑

d∈Gg

aEq
dj = rEq

gj j ∈ J, g ∈ G∗ (9)

aEm
ej = aEm

ek j ∈ J, k ∈ Lj , e ∈ E (10)

sj = 1 ∧ mj = ṁj ∧ j ∈ JS , e ∈ E, b ∈ B,

aEm
ej = ȧEm

ej ∧ aWb
bj = ȧWb

bj ∧ aEq
dj = ȧEq

dj g ∈ G∗, d ∈ Gg (11)

Constraint (1) makes sure that each job is executed in its time window, (2)
enforces that the prerequisite jobs of a job are always completed before it starts.
Constraints (3–6) ensure that assigned modes, employees, workbenches, and
devices are available for the respective job. In order to make sure that each
job has exactly as many resources as required, we have constraints (7–9). Fur-
thermore, we need constraint (10) to make sure that linked jobs are assigned to
the same employees and constraint (11) to fix the resource assignments of jobs
which are already started.

The above set of constraints is however not enough to ensure a valid solu-
tion. Additionally, we have to consider constraints which enforce that no resource
(employee, workbench, or equipment) is assigned to two or more jobs at the same
time. Like it was the case with MSPSP [23], the constraints used for modeling
those unary resource requirements have a tremendous impact on the practica-
bility of the model and in the next subsection we will present different options
for modeling such constraints.

4.2 Unary Resource Constraints

We will now present three different approaches for modeling unary resource
constraints, each of which is designed with CP solvers in mind. Two of those
three quickly proved to be impractical for our problem.

Time-Indexed Approach. The probably most straightforward way to model
the non-overuse of any resource at any given time is captured by the following
constraints.

∑

j∈J,sj≤t<(sj+dmjj
)

aEm
ej ≤ 1 e ∈ E, 1 ≤ t ≤ h (12)
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∑

j∈J,sj≤t<(sj+dmjj
)

aWb
bj ≤ 1 b ∈ B, 1 ≤ t ≤ h (13)

∑

j∈J,sj≤t<(sj+dmjj
)

aEq
dj ≤ 1 g ∈ G∗, d ∈ Gg, 1 ≤ t ≤ h (14)

The number of constraints generated by MiniZinc based on (12–14) is of course
directly dependent on the planning horizon h and the total number of resources.
Because of the long compilation time and the high computer resource consump-
tion, it quickly became immanent that for our larger instances the time-indexed
approach is not efficient. This is of course not surprising since Young et al. [23]
came to a similar conclusion for MSPSP. Hence, we discarded this option after
some preliminary testing.

Overlap Constraint. For MSPSP, Young et al. [23] achieved their best results
using a so-called order constraint. This constraint basically enforces that two
activities cannot overlap in their execution when they use a common resource.
During the initial modeling phase we tried a very similar approach. First, we
introduced the new predicate overlap:

overlap(j, k) := sk < (sj + dmjj) ∧ (sk + dmkk) > sj

In MSPSP, resources are assigned to activities with respect to the needed skill of
the activity. For the overlap constraint it is not important which skill requirement
the resource contributes to, so Young et al. [23] had to introduce an auxiliary
variable to express that a resource is used by an activity. We on the other hand
assign the resources directly and thus can model our overlap constraint without
any new variables.

overlap(j, k) → (
∧

e∈E

(¬aEm
ej ∨ ¬aEm

ek ) ∧
∧

b∈B

(¬aWb
bj ∨ ¬aWb

bk ) ∧
∧

g∈G∗,d∈Gg

(¬aEq
dj ∨ ¬aEq

dk ) ) j, k ∈ J, j 	= k,

αk < ωj ∧ ωk > αj (15)

Just like with the time-indexed approach, it turned out that the overlap con-
straint produced too many constraints and was thus impractical for larger
instances. This is interesting because Young et al. had no such problems, but
their biggest instances only had 60 resources and 42 activities, whereas we have
instances with more than 300 resources and jobs, respectively. It should however
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be noted that Young et al. [23] reduced the number of generated constraints
by considering only unrelated activity pairs, i.e. activities which do not depend
on the execution of each other via precedence constraints (related activities can
obviously never overlap). We on the other hand generate constraints for all pairs
of jobs which are allowed to overlap based on their release dates and deadlines.
Comparing only unrelated jobs requires the computation of the transitive closure
of the job precedence relation and because our instances have a lot of unrelated
jobs, we don’t expect any significant improvement.

Cumulative Constraints. Another way to model the unary resource con-
straints is to use a global constraint like cumulative. The cumulative constraint
takes as input the start times, durations and resource requirements of a list of
jobs and ensures that their resource assignments never exceed a given bound.
This is of course a perfect way to enforce non overload of any resource and both
MSPSP and MRCPSP have efficient models which make use of cumulative in
some way [21,23]. In order to enforce the non-overload of any resource we need
three constraints (one for each resource type).

cumulative((sj)j∈J , (dmjj)j∈J , (aEm
ej )j∈J , 1) e ∈ E (16)

cumulative((sj)j∈J , (dmjj)j∈J , (aWb
bj )j∈J , 1) b ∈ B (17)

cumulative((sj)j∈J , (dmjj)j∈J , (aEq
dj )j∈J , 1) g ∈ G∗, d ∈ Gg (18)

In difference to our first two modeling approaches, this one turned out to scale
well. Since the others performed so poorly on large instances, the rest of our
experiments were performed with the cumulative unary resource constraints.

4.3 Soft Constraints

There are several soft constraints in our problem definition [14]. Since we consider
the job grouping fixed in TLSP-S, we can drop the first soft constraint regarding
the number of jobs. In order to avoid confusion with the original formulation,
we thus start the numbering of our soft constraints with two.

MiniZinc has no direct support for soft constraints, hence we define them as
sums which should be minimised. Those sums are given as follows.

We want to prefer solutions where the assigned employees of a job are taken
from the set of preferred employees:

s2 = w2 ·
∑

j∈J

∑

e∈(E\EPr
j )

aEm
ej

For each project, the total number of employees assigned to it should be
minimised:

s3 = w3 ·
∑

p∈P

∑

e∈E

((
∑

j∈Jp

aEm
ej ) > 0)
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For each job, violating its due date should be avoided:

s4 = w4 ·
∑

j∈J

max (sj + dmjj − ω̄j , 0)

Lastly, project durations should be as small as possible:

s5 = w5 ·
∑

p∈P

(max j∈Jp
(sj + dmjj) − minj∈Jp

(sj))

The objective of the search is then given by min
∑

2≤i≤5 si.
At the moment, the values of the weights wi (2 ≤ i ≤ 5) are being determined

in correspondence with a real-world laboratory. Currently all these weights are
set to 1.

4.4 Redundant Constraints

Finding good redundant constraints for our problem proved to be very hard since
the search space is usually very big and at the beginning of the search there is
little knowledge about the final duration of the jobs. To deal with this issue we
introduced a relaxed cumulative constraint enforcing a global resource bound.

cumulative((sj)j∈J ,

(minm∈M (dmjj))j∈J ,

(minm∈Mj
(rEm

m ) + rWb
j +

∑

g∈G∗
rEq
gj )j∈J ,

|E| + |B| +
∑

g∈G∗
|Gg|) (19)

This enables the search to discard scheduling options which are impossible
regardless of the chosen modes early on.

On top of that, we can also formulate more straightforward cumulative
constraints which enforce the global resource bounds for each resource at any
point in time.

cumulative((sj)j∈J , (dmjj)j∈J , (rEm
mj

)j∈J , |E|) (20)

cumulative((sj)j∈J , (dmjj)j∈J , (rWb
j )j∈J , |B|) (21)

cumulative((sj)j∈J , (dmjj)j∈J , (rEq
gj )j∈J , |G|) g ∈ G∗ (22)

Given the large search space, trying to restrict the scope of the decision vari-
ables seems like a worthwhile idea. We achieve this by using global cardinality
constraints. Those constraints allow us to give tight bounds for the total number
of resources which should be used.
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global cardinality low up((aEm
ej )e∈E,j∈J , 1,

∑

j∈J

minm∈Mj
(rEm

m ),

∑

j∈J

maxm∈Mj
(rEm

m )) (23)

global cardinality low up((aWb
bj )b∈B,j∈J , 1,

∑

j∈J

rWb
j ,

∑

j∈J

rWb
j ) (24)

global cardinality low up((aEq
dj )g∈G∗,d∈Gg,j∈J , 1,

∑

j∈J

∑

g∈G∗
rEq
gj ,

∑

j∈J

∑

g∈G∗
rEq
gj ) (25)

Constraint (23) enforces that no more employees can be assigned than the sum
of the highest possible employee requirements and no less than the sum of the
minimum requirements. The other two constraints analogously ensure that the
number of assigned workbenches and equipment is tightly bounded by the cumu-
lative requirement of all jobs.

4.5 Search Strategies

During initial testing it quickly became immanent that the default search strat-
egy of Chuffed (or Gecode) was not even able to find feasible solutions for most
instances. This was not surprising since Young et al. [23] already had a similar
issue with MSPSP. However, they were able to improve their results drastically
by employing a new MiniZinc search annotation called priority search which
is supported by Chuffed [8]. Based on their research we have experimented with
four slightly different versions of priority search:

(i) ps startTimeFirst aff
(ii) ps startTimeFirst ff
(iii) ps modeFirst aff
(iv) ps modeFirst ff

All four search strategies branch over the jobs and their resource assignments.
The order of the branching is the same for all strategies and is determined by
the smallest possible start times of the jobs in ascending order. For each branch,
searches (i) and (ii) initially assign the smallest start time to the selected job
followed by assigning it the mode which minimises the job duration. Search
procedures (iii) and (iv) start with the mode assignment and then assign the
start time. Once the start time and the mode have been assigned for the selected
job, all of the search strategies make resource assignments for the job. Searches
(i) and (iii) start by assigning those resources to the job which are available and
have the biggest domain, whereas (ii) and (iv) start with assignments which are
either unavailable or have only one value in their domain.
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4.6 Alternative CP Model

We also modelled our problem with CP Optimizer [10]. In that model the decision
variables are given by the following interval variables:

interval aj ⊂ [αj , ωj) ∀j ∈ J

interval bp ∀p ∈ P

interval aij optional size dij ∀j ∈ J, i ∈ Mj

interval aEmM
eij optional ∀j ∈ J, i ∈ Mj , e ∈ Ej

interval aEm
ej optional ∀j ∈ J, e ∈ Ej

interval aWb
bj optional ∀j ∈ J, b ∈ Bj

interval aEq
gdj optional ∀j ∈ J, g ∈ G∗, d ∈ Ggj

The intervals aj represents the jobs and are constrained to the time windows of
the respective job. The second set of intervals bp are auxiliary variables represent-
ing the total duration of the projects. Those intervals enable an easy formulation
of the project duration soft constraint. The next intervals aij are optional and
the presence of such an interval indicates that job j is performed in mode i. For
a job j several employee allocations are possible depending on its mode. The
presence of an optional interval aEmM

eij represents the allocation of employee e
to perform job j in mode i. The last three sets of optional intervals are used to
indicate resource allocation.

The constraints of the model ensure that for each job j only one interval aij

is present and that the length of the main interval aj matches the duration of
the selected mode interval aij by using alternative constraints. Similarly for
the resource intervals. The unary resource constraints described in Subsect. 4.2
are modelled with noOverlap constraints. Furthermore, the model ensures the
given job precedences given in the problem instance by using endBeforeStart
constraints and linked jobs are modelled by constraining the presence of the
optional employee resource intervals. Lastly, the availability of resources is mod-
elled by restricting the presence of their respective optional intervals and the
project intervals bp are constrained to span over all the job intervals belonging
to the respective project. Redundant constraints similar to (20–22) are formu-
lated using pulse constraints and the soft constraints are again formulated as
sums.

5 Experiments and Comparison

We ran our experiments on a benchmark server with 224 GB RAM and two
AMD Opteron 6272 Processors each with max. 2.1 GHz and 16 logical cores.
Since all of the solvers we experimented with are single threaded, we usually ran
two independent sets of benchmarks in parallel. We used MiniZinc 2.2.3 [15] with
Chuffed 0.10.3 [4] and CPLEX 12.8.0 [11]. Furthermore, we also experimented
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with the ILOG CP Optimizer 12.8.0 [10] which was not run from MiniZinc but
with the ILOG Java API. We have also tested Gecode [19] as an additional CP
solver included in MiniZinc, but it quickly proved to be inferior to Chuffed even
when run with multiple threads. Regarding comparison to other approaches in
the literature, to the best of our knowledge no solutions exist yet for the problem
we consider in this paper.

5.1 Instances

We use a total of 30 randomly generated instances (based on real-life situations)
of different sizes for our experiments. A summary of the instances grouped by
their size is given in Table 1. The instances all have three modes: a single mode
requiring only one employee, a shift mode which requires two employees but has
a reduced duration, and an external mode that requires no employees at all.
In general, jobs can be done in single mode or optionally in shift mode. Some
instances however also include jobs which can only be performed in external
mode. Also, in the test instances the initial assignments are restricted to jobs
which are already started or are fixed to their current value via availability
restrictions and time windows.

While all of the instances were generated randomly, they are still modelled
after real-world scenarios. Half of the instances are modelled very closely to a
real-world laboratory, whereas the other half is more general and makes full
use of the problem features. The details of how this generation works as well
as the exact differences between the laboratory instances and general instances
are given in [14]. Furthermore, our 30 instances are a selection from a total of
120 instances given in the report. We chose the first two instances of each size
(scheduling horizon and number of projects) and two additional instances for the
3 smallest sizes. This selection was necessary, because of the long time it would
have taken to experiment with all 120 instances. Those 120 instances as well
as the 30 we selected for this paper can be found at https://www.dbai.tuwien.
ac.at/staff/fmischek/TLSP/. Since those instances were generated with the full
TLSP in mind and in TLSP-S we take the initial job grouping as fixed and
unchangeable, the instances had to be converted. This is achieved by viewing
the jobs as the smallest planning unit and assigning the job parameters – which
are defined by the tasks contained in the job in TLSP – directly to the jobs.

Table 1. Instances summary

No. of instances h |P | |J | |E| |B| |G∗| |⋃g∈G∗ Gg|
1 8 89 5–10 7–37 7–13 7–13 3–6 6–107

2 12 175 15–60 29–212 12–46 12–46 3–6 16–271

3 6 521 20–60 71–260 6–18 6–18 3–6 18–218

4 4 783 60–90 247–401 13–19 13–19 3–5 16–284

https://www.dbai.tuwien.ac.at/staff/fmischek/TLSP/
https://www.dbai.tuwien.ac.at/staff/fmischek/TLSP/
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5.2 Results

Table 2 shows the comparison of search procedures described in Sect. 4.5. The col-
umn “� sat” shows for how many instances the model-search combination found
feasible solutions, whereas “� opt” contains the number of instances solved to
optimality. Furthermore, the values in the column “cum. obj” show the cumu-
lative objective value over all instances, and “avg. rt sat” is the average time it
took to find the first feasible solution.

Table 2. Priority search experiments (Runtime 30 m)

Constraints Search � sat � opt cum. obj. avg. rt sat

(1–11), (16–18), (19–25) Default 13 8 – –

(1–11), (16–18), (19–25) ps modeFirst ff 30 14 46529 20.806 s

(1–11), (16–18), (19–25) ps modeFirst aff 30 14 46530 20.878 s

(1–11), (16–18), (19–25) ps startTimeFirst ff 30 14 45534 13.728 s

(1–11), (16–18), (19–25) ps startTimeFirst aff 30 14 44202 13.177 s

(1–11), (16–18), (20–25) ps startTimeFirst aff 30 14 44103 13.496 s

Each model was run using Chuffed with free search enabled. Free search
alternates between user-defined and activity-based search on each restart. The
time limit was set to 30 min for each instance. It can be easily seen that any
version of priority search is vastly superior to the default search of Chuffed.
priority search strategies solve more instances to optimality and also found
feasible solution for every instance. It should be noted that the fourteen optimally
solved instances are the same over all search configurations. They all have less
than or equal to 20 projects (eight of those instances are from class 1, five are
from class 2 and one is from class 3 (as described in Table 1). The search strategy
ps startTimeFirst aff achieved the best cumulative objective value.

While initial experiments showed that redundant constraints (20–25) have a
high impact on the search, Table 2 shows that while constraint (19) has no posi-
tive impact on the solution quality, it does improve the time to the first feasible
solution. However, we decided to drop the constraint in our final experiment
since we were mainly interested in solution quality and not in quickly found
feasible solutions.

Table 3. CPLEX/CP optimizer comparison (Runtime 2 h)

Solver Constraints Search � sat � opt � best

Chuffed (1–11), (16–18), (20–25) ps startTimeFirst aff 30 15 15

CPLEX (1–11), (16–18), (19–25) Default 10 2 4

CP optimizer – Default 30 4 24
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Table 4. Detailed results for the best solutions found in the final experiment (all
solutions are feasible for their instance)

Instance h |P | |J| |E| |B| |G∗| | ⋃
g∈G∗ Gg| s2 s3 s4 s5 Opt. gap Solver

1 89 5 7 7 7 3 6 0 7 0 84 0.00% Chuffed, CPO

2 89 5 8 7 7 3 95 0 9 0 56 0.00% Chuffed, CPO

3 89 5 24 7 7 3 48 0 14 0 111 0.00% Chuffed, CPO

4 89 5 14 7 7 3 49 1 12 0 78 0.00% Chuffed, CPO

5 89 10 29 13 13 4 100 0 22 0 232 0.00% Chuffed, CPO

6 89 10 18 13 13 6 107 0 20 0 124 0.00% Chuffed, CPO

7 89 10 37 13 13 3 93 0 29 0 241 0.00% Chuffed, CPO

8 89 10 29 13 13 3 98 0 27 0 254 0.00% Chuffed, CPO

9 175 15 29 12 12 5 115 0 32 0 279 0.00% Chuffed, CPO

10 175 15 53 12 12 3 98 0 38 0 329 0.00% Chuffed

11 175 20 60 16 16 5 70 0 49 0 392 0.00% Chuffed

12 175 20 84 16 16 4 16 0 53 0 429 4.98% CPO

13 175 20 65 16 16 3 134 3 48 0 740 0.00% Chuffed

14 175 20 62 16 16 3 132 0 50 0 544 0.00% Chuffed

15 175 30 113 23 23 3 18 2 87 0 902 5.05% CPO

16 175 30 105 23 23 3 201 1 92 0 105 20.04% CPO

17 175 40 126 31 31 3 100 1 113 0 963 4.36% CPO

18 175 40 138 31 31 3 271 2 128 0 1136 19.67% CPO

19 175 60 208 46 46 6 219 7 213 0 1671 22.95% CPO

20 175 60 212 46 46 3 397 13 213 0 1846 28.23% CPO

21 521 20 76 6 6 5 42 0 55 0 548 0.00% Chuffed

22 521 20 71 6 6 3 67 1 51 0 642 0.00% Chuffed

23 521 40 196 12 12 4 18 7 124 0 1880 33.96% CPO

24 521 40 187 12 12 3 146 3 123 0 1550 22.49% CPO

25 521 60 260 18 18 6 148 15 232 2 2042 36.53% CPO

26 521 60 239 18 18 3 218 9 199 2 2350 22.11% CPO

27 783 60 270 13 13 4 16 8 204 0 1856 13.73% CPO

28 783 60 247 13 14 3 196 15 213 0 1927 21.67% CPO

29 783 90 384 19 19 5 139 21 363 6 2944 35.45% CPO

30 783 90 401 19 19 3 284 28 353 0 4213 35.79% CPO

Table 3 shows our final experiment, which is a comparison between Chuffed,
the MIP solver CPLEX and the CP solver CP Optimizer. The time limit was set
to 2 h for each instance. The column “� best” indicates the number of instances
for which the solver found a solution with the best known objective for the
specific instance. CP Optimizer was run with 8 threads and the parameter Fail-
ureDirectedSearchEmphasis was set to 4. CPLEX performed very poorly in com-
parison to Chuffed and CP Optimizer. Chuffed even found optimal solutions for
one more instance with the longer time-limit (from class 3). The results for
CP Optimizer are particularly interesting. While it only the manages to prove
the optimality of the 4 smallest instances, it generally finds better solutions for
instances which cannot be closed by Chuffed. Regarding CPLEX it should be
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noted that our model was developed with CP solvers in mind and thus might not
be a perfect fit for MIP solvers and that CPLEX was only run in single-threaded
mode.

Table 4 lists the best solutions found in the final experiment for all 30 test
instances. The “Solver” column indicates which solvers found the listed solution
or one with an equal objective value. The columns “si” (i ∈ {2, . . . , 5}) show
the objective values of the respective soft constraints. The total objective value
of each solution is the sum of those values.

6 Conclusion

In this paper we have investigated different possibilities to model a complex real-
world project scheduling problem. For some of the constraints, we first experi-
mented with approaches which were already used in related project scheduling
problems. To deal with this more complex problem and larger instances we intro-
duced several extensions in modeling. We have evaluated our approach on a set of
30 benchmark instances. Using CP techniques we could find feasible solutions for
all considered instances. Furthermore, optimal solutions for 15 instances could
be provided for the first time.

For the future work, we plan to investigate exact techniques to solve both
stages of the TLSP including grouping and scheduling simultaneously.

Acknowledgments. The financial support by the Austrian Federal Ministry for Dig-
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Abstract. Recently a robustness notion for matching problems based
on the concept of a (a, b)-supermatch is proposed for the Stable Marriage
problem (SM). In this paper we extend this notion to another match-
ing problem, namely the Stable Roommates problem (SR). We define
a polynomial-time procedure based on the concept of reduced rotation
poset to verify if a stable matching is a (1, b)-supermatch. Then, we
adapt a local search and a genetic local search procedure to find the
(1, b)-supermatch that minimises b in a given SR instance. Finally, we
compare the two models and also create different SM and SR instances
to present empirical results on the robustness of these instances.

1 Introduction

Robustness to change is an important property that has a variety of definitions
in different settings [15]. There exist many robustness notions within the context
of matching problems. These robustness notions mostly focus on handling uncer-
tainty and erroneous data in the input [1–3,12]. Genc et al. introduced a novel
notion of robustness for the Stable Marriage problem (SM) where the robust-
ness of a solution refers to its capability to be repaired at a small bounded
cost in case of an unforeseen event [4]. The notion of (a, b)-supermatches dif-
fers from the other robustness notions in this context since it specifies a degree
of repairability. This property is often referred as fault-tolerance. The (a, b)-
supermatch concept defines the notion of robustness for matching problems by
using the fault-tolerance framework [8,9].

The SM is defined by a set of men and a set of women, each of which has a set
of preferences over people of opposite sex. The task is to find a (monogamous)
matching between men and women that is stable. A matching is said to be stable
if there are no two pairs that are not matched to each other, but they prefer
being together than being with their current partners. The robust variant of the
problem is called Robust Stable Marriage (RSM) [4], in which the robustness of
c© Springer Nature Switzerland AG 2019
L.-M. Rousseau and K. Stergiou (Eds.): CPAIOR 2019, LNCS 11494, pp. 320–336, 2019.
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a stable matching is measured by the minimum number of changes required to
obtain another stable matching in the case of break-up of some pairs. If a pair
appears in all the stable matchings, the pair is said to be fixed, otherwise, non-
fixed. An (a, b)-supermatch is a stable matching such that if any a non-fixed
agents (men/women) break-up, it is possible to find another stable matching
by changing the partners of those a agents and also changing the partners of
at most b others. The previous work on the RSM includes the proposal of the
problem, a complexity study, a polynomial-time verification procedure for a given
(1, b)-supermatch, and three different models (constraint programming, genetic
algorithm, local search) to find the (1, b)-supermatch that minimises b for a given
SM instance [4,6]. We investigate in this paper this robustness concept further
on a generalised version of the SM, namely the Stable Roommates problem (SR).
The Stable Roommates problem is a one-sided generalisation of SM, where any
two agents regardless of their gender can be matched. We define the Robust
Stable Roommates problem (RSR) analogous to the RSM. To the best of our
knowledge, there is no previous research on finding the (a, b)-supermatches of
the SR.

The motivation behind studying RSR is due to the large applicability of
SR and the importance to handle the dynamism of the real world. Take the
example of P2P networks where peers (computers for instance) are connected to
each other for file sharing purposes [14]. Each peer has a preference list towards
the other peers and a matching that respect stability is required. However, as the
network evolves during time, peers continuously seek new partners. That is, if a
peer that provides the file loses the connection, an alternative peer is needed for
downloading a file. In this situation, we have to maintain stability with possibly
the minimum changes to the current solution. An (a, b)-supermatch guarantees
finding other peers to the broken ones at a small number of additional changes
while preserving stability.

The paper is organised as follows: In Sect. 2, we give a formal background and
introduce the robust stable roommates problem. Then, in Sect. 3, we show that
one can verify in polynomial time if a given stable matching (in the SR context)
is a (1, b)-supermatch. Next, we adapt a local search procedure and a hybrid
(genetic local search) model for finding robust solutions in Sect. 4. Finally, we
present in Sect. 5 our empirical study.

2 Background and Notation

The Stable Roommates problem (SR) consists of a set of 2×n agents, where each
agent has a preference list in which he/she ranks all other agents in strict order
of preference. In this context, given a set of people P , a matching corresponds to
a partition of P into disjoint pairs (or partners). A matching is stable if it admits
no blocking pairs. A pair {pi, pj} blocks a matching if: pi is unassigned or prefers
pj to his/her current partner, or pj is unassigned or prefers pi to his/her current
partner. The solution to an SR instance is a stable matching. If such a solution
does not exist, then the instance is unsolvable. A pair is stable if it appears in
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some stable matching. If a pair appears in all stable matchings, it is called a
fixed pair. If a person p has at least two different partners among all stable
matchings, p is said to be non-fixed. We measure the distance between any two
stable matchings M,M ′ by the number of different pairs d(M,M ′) =| M \ M |.
The stable matching M ′ among all the stable matchings of the instance that has
the minimum distance to M is said to be the closest stable matching to M.

Irving defines an O(n2) procedure to find a solution to SR or to report if
none exists [10]. The procedure consists of two phases. Let us first define some
notations to describe these phases. A preference table (denoted by T ) is, for a
given problem instance, a set of preference lists for which zero or more entries
have been deleted. We use Tinit to denote the initial preference table. During
the two phases, some pairs are removed from Tinit. We denote the preference
list of a person pi in a table T by LT (i). Let fT (pi), sT (pi), lT (pi) denote the
first, second and last entries of LT (i). The first phase is based on each person
proposing to the first available person in their lists starting from Tinit until every
person has made a proposal that has been accepted, i.e. became semi-engaged.
If a person pi becomes semi-engaged to pj , all pairs {pj , pk} such that pj prefers
pi to pk are deleted from the table. The table obtained after applying the Phase
1 algorithm is called the Phase-1 table and is denoted by T0.

The second phase of the algorithm is based on finding and eliminating
rotations starting from T0. A rotation ρ is a circular list denoted as ρ =
(x0, y0), (x1, y1), . . . , (xr−1, yr−1), where all xi, yj ∈ P . Each rotation has the
property that yi = fT (xi) and yi+1 = sT (xi) in a table T for all i, 0 ≤ i ≤ r − 1,
where i+1 is taken modulo r. The set of people {x0, . . . , xr−1} is called the X-set
of ρ, denoted by X(ρ). Similarly, {y0, . . . , yr−1} is called the Y-set of ρ, denoted
by Y (ρ). Additionally, given a set of rotations R, X(R) = ∪ρ∈RX(ρ). Similar
for the Y-set. The elimination of a rotation ρ from a table T means for each
pair {pi, pj}, where pi = xm and pj = ym and (xm, ym) ∈ ρ, the deletion of
{pi, pj} and all pairs {ym, z} such that ym prefers xm−1 to z from T . In this
case, ρ is said to be exposed on T and the table after eliminating ρ is denoted by
T/ρ. If after Phase 1 or Phase 2, all lists in T contain exactly one entry, then T
represents a stable matching. Note that sometimes we use (pi, pj) and (xm, ym)
interchangeably. The notation (xm, ym) is used for denoting the position of the
pair (pi, pj) in ρ. Lemma 4.4.1 from [7] states that {pi, pj} is a stable non-fixed
pair if and only if (pi, pj) or (pj , pi) is in a non-singular rotation.

There are two types of rotations: singular and non-singular. A rotation
ρ = (x0, y0), (x1, y1), . . . , (xr−1, yr−1) is called a non-singular rotation if ρ̄ =
(y1, x0), (y2, x1), . . . , (y0, xr−1) is also a rotation. In this case, ρ and ρ̄ are called
as duals of each other. If a rotation does not have a dual, then it is a singular
rotation. We denote by TS the table where all singular rotations are eliminated
from T0. A rotation ρ′ is said to precede another rotation ρ (denoted by ρ′ ≺ ρ)
if ρ′ is eliminated for ρ to become exposed. In this case, we say ρ′ is a predecessor
of ρ and ρ is a successor of ρ′. A rotation ρ′ is an immediate predecessor of ρ,
and ρ is an immediate successor of ρ′, if ρ′ ≺ ρ and there does not exist a ρ∗ such
that ρ′ ≺ ρ∗ ≺ ρ. All predecessors and successors of a rotation, not necessarily
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immediate, are denoted by N−(ρ) and N+(ρ). The set of both singular and
non-singular rotations under ≺ defines the roommates rotation poset. The set of
non-singular rotations under ≺ defines the reduced rotation poset and is denoted
by Π = (V, E). We refer to any two rotations as incomparable if none of them
precede the other one, comparable otherwise. Let us illustrate these concepts on
an SR instance I. We use a sample instance of 10 people from page 180 in [7].
Figure 1 represents the TS of I. Figure 2 represents the reduced rotation poset of
I, where the pairs involved in the rotations are given next to their corresponding
rotations for convenience.

Fig. 1. The TS for an SR
instance I of size 10.

Fig. 2. Reduced rotation poset of I given in Fig. 1.

Table 1. A list of all the stable matchings and their corresponding complete closed
subsets of I.

M1 = {(1, 3), (2, 4), (5, 7), (6, 8), (9, 10)} S1 = {ρ̄3, ρ4, ρ5, ρ6, ρ7}
M2 = {(1, 7), (2, 8), (3, 5), (4, 9), (6, 10)} S2 = {ρ3, ρ̄4, ρ5, ρ̄6, ρ̄7}
M3 = {(1, 4), (2, 9), (3, 6), (5, 7), (8, 10)} S3 = {ρ3, ρ4, ρ̄5, ρ6, ρ̄7}
M4 = {(1, 4), (2, 3), (5, 7), (6, 8), (9, 10)} S4 = {ρ3, ρ4, ρ5, ρ6, ρ7}
M5 = {(1, 4), (2, 8), (3, 6), (5, 7), (9, 10)} S5 = {ρ3, ρ4, ρ5, ρ6, ρ̄7}
M6 = {(1, 7), (2, 3), (4, 9), (5, 10), (6, 8)} S6 = {ρ3, ρ4, ρ5, ρ̄6, ρ7}
M7 = {(1, 7), (2, 8), (3, 6), (4, 9), (5, 10)} S7 = {ρ3, ρ4, ρ5, ρ̄6, ρ̄7}

A subset of the rotations in Π, containing one of each dual rotations and
all their predecessors, is called a complete closed subset, denoted by S. There
exists a 1-1 correspondence between the complete closed subsets of Π and the
stable matchings of the underlying instance [7]. Any stable matching can be
obtained by eliminating one of each dual rotations starting from TS . A rotation
ρ is said to eliminate {pi, pj} if there exists a table T such that {pi, pj} ∈ T and
{pi, pj} �∈ T/ρ. On the other hand, a rotation ρ is said to produce {pi, pj} if there
exists a table T such that |LT (i)| > 1, |LT (j)| > 1, LT/ρ(i) contains only pj ,
and LT/ρ(j) contains only pi. We use the term flipping ρ from S as the process
of removing ρ ∈ S from S and adding its dual ρ̄ to S. A neighbour rotation
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ρ is ρ �∈ S and either the rotation has no predecessors (N−(ρ) = ∅) or for all
predecessors ρ′ ∈ N−(S), ρ′ ∈ S. The set N(S) denotes the set of neighbour
rotations. The set of all sink nodes of the graph induced by S is referred as the
sink rotations of S, denoted as L(S). Table 1 presents all the 7 stable matchings
of I given in Fig. 1 and their corresponding complete closed subsets.

Throughout the paper, we denote by M a given stable matching, and its
corresponding complete closed subset by S. If there are any subscripts or super-
scripts for M such as M∗

i , then they are applied to the corresponding complete
closed subset (i.e. S∗

i ). Lemmas 1 and 2 are included here to be used in our
proofs later.

Lemma 1 (Lemma 4.1.1 [7]). Given an instance of the stable marriage prob-
lem involving n men and n women, there is an instance (in fact there are many
instances) of the stable roommates problem involving those 2n persons such that
the stable roommates matchings are precisely the stable matchings for the original
SM instance.

Lemma 2 (Lemma 4.3.7 [7]). If ρ, σ are non-singular and π is a singular
rotation, then: (1) ρ �≺ ρ̄; (2) ρ ≺ σ ⇐⇒ σ̄ ≺ ρ̄; (3) τ ≺ π =⇒ τ is singular.

Robust Stable Roommates: We refer the problem of finding an (a, b)-supermatch
to a given SR instance as the Robust Stable Roommates problem (RSR). A stable
matching of an RSR instance is called an (a, b)-supermatch if any a non-fixed
pairs do not want to be partners anymore (i.e. leave the stable matching), it is
possible to find another stable matching by changing the partners of the people
involved in those a pairs and at most b other pairs.

Definition 1 ((a, b)-supermatch). Given an SR instance I, and two positive
integers a, b ∈ N, a stable matching M of I is said to be an (a, b)-supermatch if
for any set Ψ ⊆ M of non-fixed stable pairs, where |Ψ | = a, there exists a stable
matching M ′ such that M ′ ∩ Ψ = ∅ and d(M,M ′) ≤ b + a.

The intractability result of the RSM is lifted to the RSR as the SR is a
generalisation of the SM.

Theorem 1. RSR is NP-hard.

Proof. The proof is straightforward as it is possible to create an SR instance
ISR from any given SM instance ISM with the exact same stable matchings in
polynomial-time by padding every other person of the same sex to the preference
list of each person (see Lemma 1). Every (a, b)-supermatch in the ISM is also an
(a, b)-supermatch in the ISR and vice versa. Hence, RSR is NP-hard because
RSM is NP-hard [6]. �
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3 Verification of (1, b)-supermatch in Polynomial Time

We prove in this section that checking if a stable matching M is a (1, b)-
supermatch can be done in polynomial time. Indeed, we show in Theorem 3
how to construct the closet matching to M if any non-fixed pair in M wants to
leave.

In order to show our main result, we first prove in Theorem 2 that any non-
fixed pair can be:(1) produced by a unique rotation and eliminated by another
one; or (2) eliminated by two different rotations and produced by two others (see
later Example 1). In the first case, we shall denote by ρe the elimination rotation
and by ρp the production rotation. In the second case, we shall denote by ρp1, ρp2

the two production rotations and by ρe1, ρe2 the two elimination rotations.
We assume w.l.o.g that the input instance admits at least two stable matchings.

For any non-fixed stable pair (pi, pj), there are two possible cases to consider:

Case 1: (A) fTS
(i) = pj and lTS

(j) = pi, or (B) lTS
(i) = pj and fTS

(j) = pi;
Case 2: Otherwise.

Case 1 is a special case indicating that if one of the persons in the pair is the
other ones’ most preferred person in TS (respectively, the other one is the least
preferred person in TS). Note that, in both cases LTS

(i) > 1 and LTS
(j) > 1,

because the pairs are non-fixed. Later, we refer to these cases for identifying
scenarios. In Lemma 3, we show how to identify the elimination rotation(s) for
a given pair regardless of its case.

Lemma 3. A non-fixed stable pair {pi, pj} is eliminated by a rotation ρ if and
only if (pi, pj) ∈ ρ or (pj , pi) ∈ ρ.

Proof. → Let ρ = (x0, y0), (x1, y1) . . . , (x|ρ|−1, y|ρ|−1) be a rotation that elim-
inates {pi, pj}. Observe first that ρ is non-singular (otherwise {pi, pj} is not
stable). Recall that the elimination of ρ from a table T means for each pair
(xm, ym) ∈ ρ, the deletion of {xm, ym} and all pairs {ym, z} such that ym prefers
xm−1 to z from T . Table 2 gives an illustration of the preferences of xm and ym.
The eliminating ρ moves xm from ym to ym+1 and deletes some {ym, z}. In a
similar way, eliminating ρ̄ moves ym from xm−1 to xm and deletes some {xm, z′}.
Since every close complete subset contains either ρ or ρ̄, then any pair {ym, z}

Table 2. An illustration of the preferences

p Preference lists

. . . . . .

xm . . . , ym, z′, ym+1 . . .

. . . . . .

ym . . . , xm−1, z, xm, . . .

. . . . . .
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and {xm, z′} cannot be part of any solution. Therefore, if ρ eliminates {pi, pj}
and {pi, pj} /∈ ρ then {pi, pj} is not stable. This contradicts the fact that our
pair {pi, pj} is a non-fixed stable pair.

← By the definition of eliminating a rotation ρ from a table T , where
(pi, pj) ∈ ρ, the elimination results in the deletion of pj from pi’s list. Simi-
larly, if (pj , pi) ∈ ρ then it results in the deletion of pi from pj ’s list. �

Lemma 4 identifies the production rotations.

Lemma 4. If a non-fixed stable pair {pi, pj} is eliminated by ρe, then {pi, pj}
is produced by the dual of it, ρp = ρ̄e.

Proof. A rotation is said to produce {pi, pj} if eliminating it from a table T
reduces LT/ρ(i) to a single entry, namely to pj and LT/ρ(j) to pi. We prove the
existence of the production rotations over the two cases (Case 1 and Case 2)
identified above.

We have two sub-cases in Case 1. First case is when fTS
(i) = pj , lTS

(j) = pi.
In order to reduce pi’s list to only pj , we need a rotation that moves pi from
his/her second best choice up to the first choice. We refer to this operation as lim-
iting pi from right . Similarly, to reduce the pj ’s list to only pi, we need a rotation
that moves pj from his/her second least-preferred person to the least preferred
person. We refer to this operation as limiting pj from left . Referring back to
Table 2 for notation, the production rotation ρp of the pair {pi, pj} = (xm, ym)
must contain the pair (ym+1, xm) ∈ ρp to limit xm from right. Additionally,
it must contain (ym, xm−1) to limit ym from left. To illustrate, the production
rotation has the shape: ρp = . . . , (ym, xm−1), (ym+1, xm), . . .. Note that, each
ordered pair can only appear in exactly one rotation. Observe that, the dual
of ρp contains the pair (xm, ym) by definition of dual. By Lemma 3, we know
that the rotation that contains (xm, ym) is the elimination rotation of the pair
{pi, pj}. Therefore, ρp = ρ̄e The proof for the second sub-case is similar, where
(ym, xm) ∈ ρe.

For a pair {pi, pj} of Case 2, each person has both more and less preferred
people in their lists. Therefore, in order to produce a pair, their lists must be
limited from both left and right. Let ρp1 denote the rotation that limits pi from
left and pj from right, and ρp2 denote the rotation that limits pi from right and
pj from left, respectively. Let the preference lists for the pair {pi, pj} denoted
by LTS

(i) = [. . . , ym−1, ym, ym+1] and LTS
(j) = [. . . , xm−1, xm, xm+1] where

{pi, pj} = (xm, ym). The pair (xm, ym−1) must be in ρp1 to limit pi from left
and (xm+1, ym) be in ρp1 to limit pj from right. Additionally, the pair (ym+1, xm)
must be in ρp2 to limit pi from right and (ym, xm−1) to limit pj from left. Note
that, the dual of ρp1 contains (ym, xm), the dual of ρp2 contains (xm, ym) by
the definition of a dual rotation. By Lemma 3, we know these rotations are
elimination rotations of the pair {pi, pj}.

Note that the two rotations ρp1 and ρp2 do not require one of them to be
eliminated from the table first; they are incomparable. Therefore, depending on
the order of elimination, both of them are production rotations. �
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We sum up the findings above for the non-fixed stable pairs. If a pair is of
Case 1, then there exists only one elimination rotation for this pair and only one
production rotation as the dual of the elimination one. Because the preference
list needs to be limited in only one direction. However, for the pairs of Case 2,
there exist two elimination rotations for this pair, and also two other produc-
tion rotations. Observe that, for each non-fixed stable pair {pi, pj} in a stable
matching M, the corresponding complete closed subset of M contains all produc-
tion rotations of {pi, pj}. It is important to note that, especially for the pairs of
Case 2, including one production rotation in the complete closed subset and not
the other one, results in producing other partners for that pair. Subsequently,
Theorem 2 is an immediate result of Lemmas 3 and 4.

Theorem 2. Let {pi, pj} be a non-fixed stable pair. If {pi, pj} is of Case
1, then there exists a unique elimination rotation ρe, where (pi, pj) ∈ ρe or
(pj , pi) ∈ ρe, and a unique production rotation ρp, where ρp = ρ̄e. Otherwise
(Case 2), there exist two different elimination rotations ρe1 and ρe2, where
(pi, pj) ∈ ρe1, (pj , pi) ∈ ρe2 and two rotations ρp1 = ρ̄e1, ρp2 = ρ̄e2 that produce
the pair.

Let SP denote the set of all the complete closed subsets for the underlying
SR instance. Lemma 5 gives a characterisation for the complete closed subsets.

Lemma 5. Let S ∈ SP . For each sink rotation ρ of S, the set S\{ρ}∪{ρ̄} ∈ SP .

Proof. By definition of closed subset, every predecessor ρ′ ∈ N−(ρ) is in S.
Since ρ is a sink rotation, any successor ρ∗ ∈ N+(ρ) is not in S. Therefore, by
definition of the complete closed subset, we have ρ̄∗ ∈ S and ρ̄ is not in S. Using
Lemma 2, we know that ρ̄∗ ≺ ρ̄. Hence, all predecessors of ρ̄ are already in S,
making ρ̄ a neighbour rotation and results in S \ {ρ} ∪ {ρ̄} ∈ SP . �

The distance between two stable matchings d(M,M ′) is previously defined
in Sect. 2 as the number of different pairs between M and M ′. Observe that
the distance can be calculated by also using their corresponding complete closed
subsets. If S \ S′ = {ρ}, it means ρ ∈ S and ρ̄ ∈ S′. We know that, X({ρ}) =
Y ({ρ̄}) and Y ({ρ}) = X({ρ̄}). Therefore, between M and M ′, only the people in
ρ (or ρ̄) have different partners. This can also be generalised to a set of rotations.
Hence, the distance can also be denoted as d(S, S′) = |X(S \ S′) ∪ Y (S \ S′)|/2.
Note that d(S′, S) = d(S, S′).

Lemma 6 identifies the closest stable matching to a stable matching M, when
a rotation from its corresponding complete closed subset is to be removed.

Lemma 6. Given a stable matching M and its corresponding complete closed
subset S, if ρ ∈ S is a rotation to remove from S, the closest stable matching
M ′ to M such that ρ �∈ S′ is found by the formula1:

C(S, ρ) = S′ = (S \ ({ρ} ∪ N+(ρ))) ∪ {ρ̄} ∪
⋃

ρ∗∈N+(ρ)

ρ̄∗ (1)

1 The parentheses are used to indicate priority.
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Proof. The proof of the defined set S′ being a complete closed subset is obvious
by using Lemmas 2 and 5 as flipping a sink rotation of S yields in another
complete closed subset. However, if ρ is not a sink rotation in S, we must flip
all the successors of ρ to obtain a complete closed subset.

Let M∗ denote the stable matching after flipping ρ ∈ S. Then, d(M,M∗) =
d(S, S∗) = |X({ρ}) ∪ Y ({ρ})|/2. Now, let M∗ denote the stable matching
after flipping both ρ, σ ∈ S. Then, d(M,M∗) = |X({ρ}) ∪ Y ({ρ}) ∪ X({σ}) ∪
Y ({σ})|/2. Observe that, flipping more rotations can only increase the distance
between matchings. In Formula 1, the required number of flips is minimum.
Therefore the function C(S, ρ) returns the closest stable matching to M when
ρ ∈ S to be removed from S. �

Finally, Theorem 3 concludes how to find the closest stable matching M ′ to
M if {pi, pj} ∈ M wants to leave the M.

Theorem 3. Given a stable matching M and a pair {pi, pj} to leave M, the
closest stable matching M ′ to M is identified by its corresponding S′ using the
Formula 1 as follows:

1. If Case 1, then S′ = C(S, ρp).
2. If Case 2, let M1 and M2 be the two stable matchings s.t. S1 = C(S, ρp1) and

S2 = C(S, ρp2). Then S′ = S1 if d(M,M1) < d(M,M2), otherwise S′ = M2.

Proof. The proof is immediate from Theorem 2 and Lemma 6. �
In order to verify if a given M is a (1, b)-supermatch, all closest stable match-

ings to the given stable matching are found under the assumption that each
non-fixed pair wants to leave the stable matching, one at a time. For each pair,
its production rotation is identified and then Theorem 3 is applied to find the
closest stable matching. Among all the closest stable matchings, the match-
ing that results in the maximum distance to M sets the robustness of M, i.e.
b = d(M,M ′) − 1, where 1 denotes the pair that wants to leave.

Example 1. [Computing robustness] Let us calculate the closest matching to M6

given in Table 1. In Table 3, we identify the cases, and the production/elimination
rotation(s) for assuming each pair leaves the M6 at a time, and we apply
Theorem 3 to find the robustness. The pair that has the maximum cost to be
repaired sets the robustness value of the matching. Therefore, for this case, the
robustness of M6 is 3.

The production and elimination rotations of each pair can be identified in
a preprocessing step. We show that checking if a stable matching is a (1, b)-
supermatch can be performed in O(n × |V|) time after the O(n3log(n)) prepro-
cessing step for an instance where 2 × n people are involved. The preprocessing
step consists in identifying the rotations and building the reduced rotation poset
(O(n3logn)) [7]; identifying all the predecessors and successors of each rotation
ρ (O(|V|2)); and identifying elimination and production rotations for each pair
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Table 3. Computing the closest matching to M6

{pi , pj} Case ρp ρe C(S, ρ) S d(M, M ′) S′ b

{p1, p7} 1 ρp = ρ̄6 ρe = ρ6 {ρ3, ρ4, ρ5, ρ6, ρ7} S4 4 S4 3

{p2, p3} 2 ρp1 = ρ7

ρp2 = ρ3

ρe1 = ρ̄7

ρe2 = ρ̄3

{ρ3, ρ4, ρ5, ρ̄6, ρ̄7}
{ρ̄3, ρ4, ρ5, ρ6, ρ7}

S7

S1

2
4

S7 1

{p4, p9} 1 ρp = ρ̄6 ρe = ρ6 {ρ3, ρ4, ρ5, ρ6, ρ7} S4 4 S4 3

{p5, p10} 2 ρp1 = ρ4

ρp2 = ρ̄6

ρe1 = ρ̄4

ρe2 = ρ6

{ρ3, ρ̄4, ρ5, ρ̄6, ρ̄7}
{ρ̄3, ρ4, ρ5, ρ6, ρ7}

S2

S1

3
4

S2 2

{p6, p8} 1 ρp = ρ7 ρe = ρ̄7 {ρ3, ρ4, ρ5, ρ̄6, ρ̄7} S7 2 S7 1

{pi, pj} whenever applicable in (O(n2)). Given a stable matching M, its corre-
sponding complete closed subset S is found by finding and adding the production
rotation(s) of each pair and their predecessors into S by starting from an empty
set (O(n×|V|)). Conversely, given a closet complete S, M can be constructed by
eliminating all the rotations in S from TS by respecting their precedence order.
The order is found by applying sorting (O(|V| × log|V|)). The main algorithm is
to compute for each pair in M, the closest stable matching M ′ by using Theo-
rem 3. Observe that computing the distance between two stable matchings takes
O(n) time and flipping a rotation takes a constant time. Moreover, the worst
case of finding the closest stable matching is to flip all the non-singular rotations
in S, where the number of all non-singular rotations is |V|/2. Therefore, this
computation takes O(|V|) time.

4 Finding Robust Solutions to the SR

We consider in this section two meta-heuristic approaches to solve the problem of
finding a (1, b)-supermatch to a given Stable Roommates instance that minimizes
the value of b.

4.1 Local Search

Considering the structural similarities between the RSM and the RSR, we tai-
lored the local search model (LS) for the RSM, as it is shown that the LS model
produces near optimal solutions for RSM and is better than the proposed genetic
algorithm [4]. In the generic LS model, there exists a neighbourhood N for the
current solution. The algorithm works by searching the neighbourhood of the
current solution, finding the best neighbour Mn in the neighbourhood and then
proceeding the search by checking the neighbourhood of Mn. The aim is to find
the stable matching that has the minimum b value. The search is restarted by a
random stable matching at every few iterations to avoid getting stuck at a local
optimum. The search continues until a termination criterion is met.

In our model, we have four termination criteria. The first one is a cut-off
limit limcutoff , which “counts” the number of steps since the last best solution
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is found. The second one is the depth limit limdepth, which indicates the depth
of the neighbourhood search starting from a random stable matching. Another
criterion is the optimality opt, which indicates if the algorithm has already found
a solution with b = 1. Finally, we use a time limit limtime for each instance.

The procedure starts by creating a random stable matching Mc as follows.
We first mark all the non-singular rotations as available. Let A denote the set of
rotations that are available. Then, we randomly select a rotation ρ from A and
add it to the initially empty Sc. Subsequently, we remove ρ and ρ̄ from A. We
also add all predecessors ρ′ of ρ that are not in Sc to Sc and remove ρ′ and ρ̄′
from A. This operation operates in a loop until |Sc| = |V|/2. Once the complete
closed subset Sc is found, its corresponding stable matching is computed by
eliminating all rotations in Sc from TS by respecting their precedence order.

After creating a random stable matching Mc, the neighbourhood N of Mc is
found by checking all the sink rotations in Sc. By using Lemma 5, we know that
flipping any sink rotation in Mc creates another stable matching Mn, which we
refer as a neighbour of the Mc. The general procedure is the same as the one
developed for the RSM [5]. In brief, the process starts by descending from the
Mc by finding N of Mc. The next iteration descends from the neighbour of Mc

that has the lowest b value. This loop is restarted every limdepth iteration by
a random Mc. The stable matching that has the minimum value of b as found
during the search is returned as the solution.

The complexity of the LS procedure depends on the computation of the b
values. Finding neighbours is based on the identification of the sink rotations of
Sc, where there can be at most |V|/2 sink rotations and then a constant cost
for flipping each sink rotation. The best neighbour is identified after computing
b values of |N | stable matchings. This procedure takes O(k × n × |V| × |N |),
where k is the number of iterations and n is the number of non-fixed people.

4.2 Genetic Local Search (Hybrid)

Combining different search techniques to enhance the performance of a single
model is proven to improve solution quality and the models [13,18]. Genc et al.
propose three different models (constraint programming, local search and genetic
algorithm) for finding (1, b)-supermatches to the RSM in [4]. The results indicate
that genetic algorithm (GA) procedure has poor performance when compared to
the LS. In this work, we consider combining the two metaheuristics: the genetic
algorithm and the local search to provide a hybrid procedure. We denote this
hybrid model as HB. The overview of the GA procedure we use in the HB model
is the same as the one used for RSM (details can be found in [5]).

The procedure begins by initialising a population of random stable match-
ings. Then, the population is evolved by randomly selecting individuals from
the population, applying crossover, searching for neighbours of the products of
crossover, applying mutation. This process is repeated until some termination
criteria is met (no improvement, time-limit exceeded, optimal solution found).
The procedure below gives a pseudo-code of the evolution phase of HB.
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1: procedure Evolution()
2: M1 ← Selection()
3: M2 ← Selection()
4: if M1 �= M2 then
5: (Mc1, Mc2) ← Crossover(M1, M2)
6: N ←FindNeighbours(Mc1)
7: Mc1 ← Best(N )
8: N ←FindNeighbours(Mc2)
9: Mc2 ← Best(N )

10: Refine(Mc1, Mc2)
11: Evaluation()

12: Mfit ← GetFittest(P )
13: Mm ← Selection()
14: rand ← Random(0, 1)
15: if Mm �= Mfit and rand < pm then
16: Mutation(Mm)

As can be seen from the procedure, the only LS enhancement to the GA
algorithm is the search for the neighbours of the stable matchings after crossover
(see Lines 6–9). Let Mc1,Mc2 be the two stable matchings produced by the
crossover. We update Mc1 by its best neighbour after the neighbour search (same
applies to the Mc2). Creating a random stable matching and finding neighbours
are already discussed in Sect. 4.1.

If the original methods from LS and GA as described in [5], where the evo-
lution phase is updated with the one here are used, we obtain the HB model for
the RSM. In the RSR model, only the crossover and mutation operations are
different than the original GA model defined for RSM. Instead of defining the
crossover by adding rotations to the closed subset or removing them as we did for
the RSM, we use the terminology flip for the RSR. Considering the Lemma 6, we
define the crossover procedure for two stable matchings M1,M2 as follows. First,
we find a random rotation ρ1 ∈ S1, and a random rotation ρ2 ∈ S2. If ρ1 /∈ S2,
then ρ̄1 ∈ S2 due to the completeness property of the closed subsets in SR.
Therefore, we flip ρ̄1 in S2 and the duals of all of its predecessors ρ′ ∈ N−(ρ) if
ρ′ is not included in S2. We apply the same procedure to the other stable match-
ing as well. Moreover, for the mutation operation, we select a random rotation
ρ from the reduced rotation poset of the underlying instance and also a stable
matching M. If ρ ∈ S, we flip ρ and all the required predecessors. If its dual
ρ̄ ∈ S, then we flip ρ̄ and the predecessors.

5 Experiments

In this section, we first compare the performances of the HB and the LS pro-
posed for the RSR. Then, we investigate the robustness of different sets of
RSM and RSR instances2. The code is implemented in Java, reusing the RSM
2 Our datasets are publicly available at: github.com/begumgenc/rsmData.

http://github.com/begumgenc/rsmData
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experiments from [4]. All experiments are performed on a Dell M600 with 2.66
GHz processors under Linux, using three different randomisation seeds and fix-
ing time limit limtime = 20 min, number of iterations without improvement
limcutoff = 10000, the number of stable matchings in LS that descend from a
random stable matching limdepth = 50. We use the population size for the HB
as |P | = 30 and the mutation probability as pm = 0.7. We use a high pm as GA
is suffering from getting stuck at local minima and randomisation helps with it.
We discuss the size of the population for HB later.

HB v. LS for the RSR. Our first experiment is about the comparison of LS and
HB models. Random SR instances have only a small number of stable matchings
as we verify on the dataset Random later [16]. For the comparison of HB and LS
models, we look for instances that are likely to contain many stable matchings
to gain more insight on their performances. For this purpose, we first created a
dataset of purely random SM instances as each SM instance contains at least one
stable matching, then we converted these instances to the SR. This conversion
tackles the problem of random SR instances having only a few stable match-
ings, while preserving the randomness. Our SM dataset consists of 30 random
instances of each size n ∈ {100 × k | k ∈ {1, . . . , 10}}. Note that, the resulting
SR instances have size 2 × n.

Figures 3 and 4 provide detail on the comparison between the LS and the
HB.3 Figure 3 compares the average minimum b value found by the two models
for each instance in the set. In the x-axis, the range shows the size of the instances
such that all the instances that have x-values between [0, 200] is of size 200, [201–
400] is of size 400, etc. We confirm by our experiments and also observe in Fig. 4
that for each instance that has size 200 ≤ n ≤ 600, both models complete the
search within the given time limit. Additionally, they either produce similar
results (b values) or HB performs slightly better as can be observed in Fig. 3.
The reason for exceeding the time limit in Fig. 4 is due to us not interrupting the
construction of a stable matching. The construction of a stable matching consists
of exposing all rotations in its complete closed subset in order starting from TS .
Then, the b value is computed. For large stable matchings, this computation
becomes very costly. We can conclude that for small instances, both HB and
LS perform well in terms of finding solutions with low b values. If the time is
essential, HB model can be preferred over LS as it converges faster. Additionally,
HB is able to find better solutions for larger instances.

Random RSM v. Random RSR. Next, we perform some tests for SM-SR com-
parison on our dataset random. Our dataset Random consists of 30 purely ran-
domly created SM and SR instances for each size n ∈ {100×k | k ∈ {1, . . . , 10}}.
Note that, for an SM instance of size n, there exists n men and n women in the
problem. We have 2×n people in the corresponding SR instance. However, both
have n pairs. All SR instances in Random have at least two stable matchings.
Considering the good performance of LS for small instances, we used the LS
models for both RSM and RSR.
3 The reader is referred to the online version for coloured version.
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Fig. 3. Avg min b value found by
LS and HB.

Fig. 4. Average time spent by LS
and HB.

Table 4. Results on uniformly random
instances for RSM.
n |V| sm np b ratio tbest

100 22.02 47.9 75.12 48.27 0.64 0.02

200 41.59 116.9 166.19 115.34 0.69 0.10

300 60.22 182.4 263.94 193.08 0.73 0.37

400 74.51 244.1 356.58 265.98 0.74 0.77

500 91.47 322.5 456.00 350.16 0.76 2.18

600 103.82 394.9 551.10 425.51 0.77 3.67

700 117.08 449.6 646.69 505.61 0.78 5.89

800 131.81 527.6 749.98 595.64 0.79 9.09

900 146.34 585.5 848.32 679.82 0.80 14.60

1000 156.00 632.4 943.23 758.82 0.80 21.16

Table 5. Results on uniformly
random instances for RSR.
n |V| sm np b ratio tbest

100 3.91 3.78 17.91 5.31 0.3 0.003

200 3.87 3.94 26.76 8.52 0.32 0.003

300 4.36 4.56 35.53 11.22 0.32 0.017

400 4.71 5.92 37.64 10.93 0.29 0.048

500 4.29 4.81 37.62 11.70 0.31 0.066

600 4.16 4.48 42.44 14.47 0.34 0.130

700 4.58 5.50 48.71 16.02 0.33 0.312

800 4.93 5.99 55.02 17.39 0.32 0.498

900 4.82 7.07 57.64 18.50 0.32 0.662

1000 4.60 5.19 55.16 18.36 0.33 0.557

Tables 4 and 5 present a summary of the robustness of random RSM and RSR
instances. The columns report for each size the average value of: the total number
of pairs in the instance (n), the number of rotations in the rotation poset or the
reduced rotation poset (|V|), the number of different stable matchings found
during the search of LS (sm), the number of non-fixed pairs (np), the b value
of the solution found (b), the ratio b

np (ratio), and the time spent until finding
the best solution by LS in seconds (tbest).

Observe from the tables that the random RSM instances contain many more
stable matchings than the random RSR instances of similar sizes. Recall that, the
value of sm denotes only the number of a subset of the stable matchings found
during the search. However, we can confirm the RSR instances not containing
many stable matchings by looking at the number of rotations in their rotation
posets. Note that, for the RSR instances, when 1000 pairs are included, the
corresponding rotation posets, on the average, contain |V| ≈ 5 rotations. This is
mainly caused by the large numbers of fixed-pairs in the random RSR instances.
For instance, the average number of non-fixed pairs in the RSM instances of
size 100 is np = 75.12. However, we observe in the large RSR instances that
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Table 6. Summary of the results on large instances for RSM.

Instance LS HB, |P | = 10 HB, |P | = 60

n np |V| b t (min) b t (min) b t (min)

16 15.99 100.43 1.12 0.003 1.21 0.003 1.1 0.004

32 31.99 447.26 1.03 0.054 1.30 0.024 1.04 0.029

64 64 1889.95 1.685 3.158 1.74 0.824 1.28 0.916

128 128 7788.02 14.055 8.367 1.02 13.989 1.01 17.609

contain 1000 pairs that there are only 55.16 non-fixed pairs on the average,
which is less than the smallest sized RSM instances that we tested. Note that,
we measure the robustness ratio over the non-fixed pairs of the instances. It is
desirable to obtain a smaller value for the ratio to indicate a better robustness
for the instance. Because a smaller ratio indicates that a smaller proportion of
the people that have alternative partners need to change their partners for a
repair. Observe that, the ratio of the RSR instances is lower when compared to
RSM. The ratio shows that the breakage of the pairs in the RSR instances are
less costly to be repaired. Thus, we conclude that purely random RSR instances
require a smaller proportion of the people to change their partners in the case
of a breakage, when compared to the RSM.

Large RSM and RSR Instances. In this experiment, we search for instances with
potentially many number of stable matchings and low b values. Therefore, we
generated a dataset called many consisting of 100 SM instances for each size
n = {16, 32, 64, 128} using the family described by Irving and Leather [11], and
then used in [17]. Note that, each SM instance in this set has a corresponding
SR instance (see Lemma 1), where the corresponding SR instance has a reduced
rotation poset of twice the size of the rotation poset of the SM instance. First, let
us introduce this family of instances described by Irving and Leather. They prove
that any instance in the original family contains at least 2n−1 stable matchings
for an instance of size n = 2i. They define this family over two matrices for
the preferences of each gender, and the preference lists of these large instances
are obtained recursively by appending the following matrices until the desired
instance size is found. In our dataset many, we slightly modify each instance of
this original family by first randomly selecting two random men mi,mj . Then, we
modify mi’s preference list by swapping the positions of two randomly selected
women within the list. We repeat the same for mj . We also modify the prefer-
ence lists of two random women in the same way. In other words, the original
preference set between the original and the modified instances have a Hamming
Distance of 8.

Table 6 reports for each size the average value of: the number of all men or
women (n), the number of non-fixed men (np), the number of rotations in the
rotation poset (|V|). Additionally, it reports the average minimum b found by
the model LS, HB where population size |P | = 10, and HB where population
size |P | = 60 (b); followed by the total time spent in minutes for each of the
three models (t (min)).



An Approach to Robustness in the SR and Its Comparison with the SM 335

This dataset shows that the robustness of instances that have many stable
matchings is very high (i.e the value of b is low). For each instance size, our best
model for that size is able to find solutions whose average b values evaluate to a
b value that is opt = 1 < b < 2. For instance, for size n = 16, the LS model finds
solutions such that for the breakage of any man on the solution, on the average,
1.12 other men need to break-up from their current partners. Similarly, for size
n = 128, HB models find that the solution is guaranteed to be repaired by only
1.02 additional men’s break-up.

As one can observe from Table 6, we ran the HB model by using different
sizes of population. Observe that, reducing the number of individuals in the
population of HB (60 to 10) causes the algorithm to find slightly worse solutions
(i.e. larger b). For instance, for size n = 64 , the average minimum b is found
as 1.74 by a population of size 10, and 1.28 by a population of size 60. This
is due to having an increased chance of getting stuck at local minima for a
smaller population. On the other hand, LS finds competitive values for b for
sizes 16 ≤ n ≤ 64. However, as we can see for n = 128, LS finds solutions that
are far away from the optimal solution. We conclude that, an improvement for
HB by changing population size is possible in exchange of obtaining slightly
worse solutions. LS performs well for smaller instances.

Recall that, each SM instance in many has a corresponding SR instance that
has exactly the same stable matchings. We do not run the RSR models on this
dataset as they are much slower. However, this test provides an insight to some
RSM and RSR instances that are repairable at low additional costs.

6 Conclusions

We study the notion of (a, b)-supermatch in the context of Stable Roommates
problem. We propose a polynomial-time algorithm based on the reduced rotation
poset to verify if a stable matching is a (1, b)-supermatch. Next, we use this pro-
cedure to design local search (LS) and hybrid genetic local search (HB) models
to find robust solutions for the (1, b) case (i.e., (1,b)-supermatch with (possibly)
the minimum b). We empirically show that the HB model usually performs bet-
ter than LS for RSR. Furthermore, we perform an RSM/RSR comparison and
identify a family of instances that are rich in stable matchings and very robust.
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Abstract. In this paper, a new approach is presented to qualify or not,
a solution found by a heuristic for a potential optimal solution. Our
approach is based on the following observation: for a minimization prob-
lem, the number of admissible solutions decreases with the value of the
objective function. Concerning the Graph Coloring Problem (GCP), we
confirm this observation and present a new way in which to prove opti-
mality. This proof is based on the counting of the number of different
k-colorings and the number of independent sets of a given graph G.

Finding the exact solution for counting problems is difficult (#P-
complete). However, we show that in using only randomized heuristics,
it is possible to define an estimation of the upper bound of the number
of k-colorings. This estimate has been calibrated on a broad benchmark
of graph instances for which the exact number of optimal k-colorings is
known.

Our approach, called optimality clue, constructs a sample of k-
colorings from a given graph by running one randomized heuristic a
number of times on the same graph instance. We use the evolutionary
algorithm HEAD [26], which is one of the most efficient heuristics for
GCP.

Optimality clue matches the standard definition of optimality on a
wide number of instances for DIMACS and RBCII benchmarks where
the optimality is known.

Keywords: Optimality · Metaheuristics · Near-optimal

1 Introduction

For any given integer k ≥ 1, a k-coloring of a given graph G = (V,E) assigns
one of k distinct colors to each vertex v ∈ V in the graph, so that no two
adjacent vertices (linked by an edge e ∈ E) are given the same color. The Graph
Coloring Problem (GCP) is to find, for a given graph G, the smallest k so that
a k-coloring of G exists; This minimum k is called the chromatic number of G
and is denoted by χ(G). GCP is NP-hard [19] for k ≥ 3. The k-coloring problem
(k-CP) is the associated decision problem. Concerning an optimization problem
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which is NP-hard, there is no efficient exact polynomial-time algorithm with
which to solve it, unless P = NP. For large size instances of a minimization
NP-hard problem therefore, the exact algorithms must be aborted before they
terminate. In this instance, exact algorithms such as branch and bound methods
find both lower and upper bounds of the optimal value of the objective function.
Heuristic approaches are then the only ways in which to find, in reasonably
fast running-time, a “good” solution in terms of objective function value, i.e.
an upper bound of the optimal value. Even if an admissible solution is found
however, its distance from the optimal solution remains unknown, excepting
approximation algorithms1. The optimality gap is the difference between the
upper bound (found by a heuristic) and the lower bound (found by a partial exact
method). Optimality is proven only when this gap is equal to zero. Unfortunately
for large size instances of an NP-hard problem, this gap is often large. This is
particularly true for challenging instances [15,26] in the GCP of the DIMACS
benchmark [18]. This paper addresses the following question: What can be done
in this situation? Is it possible to prove the optimality of a graph coloring problem
instance using only heuristic algorithms?

The response is Yes, for a specific class of graphs: for example, efficient
polynomial-time exact algorithms to find χ(G) for interval graphs, chordal
graphs, cographs [27,31] exist. For certain graphs such as 1-perfect graphs2, for
which the chromatic number χ(G) is equal to the size of a maximum clique γ(G),
it is possible to solve the problem of the Maximum Clique Problem (MCP), with
another heuristic and to conclude with optimality if the size of the maximum
clique found is equal to the smallest number of colors used for coloring G also
found by a heuristic. In this specific case, the optimality gap (or duality gap
between GCP and MCP) is zero.

The response to the question is however No, in general as follows; a heuristic
finds approximate solutions (upper bound); although the coloring found may
be optimal, it is not feasible to prove this potential optimality. The question
therefore becomes: what can we do better than find an approximate solution
using only a heuristic? Is it possible to define a form of optimality index for a
graph coloring problem instance?

In this article, we show that a heuristic finds not only an upper bound of χ(G)
but it is also able to count the number of different k-colorings (i.e. the number of
admissible solutions having the same objective function value). Our approach is
based on the fact that the number of different k-colorings decreases dramatically
when the number of colors, k, decreases too. Indeed Fig. 1 presents a typical
example of a random graph with 30 vertices, a density of 0.9 and χ(G) = 16.

1 Notice that it is still NP-hard to approximate χ(G) within n1−ε for any ε > 0 [35].
2 A perfect graph is a graph for which the chromatic number of every induced subgraph

is the same as the size of the largest clique of that subgraph. 1-perfect graphs are
more general than perfect graphs.Polynomial-time exact algorithms with the aim of
finding χ(G) for perfect graphs [13] exist, but are in reality slow in performance.
Line graphs, chordal graphs, interval graphs or cographs are subclasses of perfect
graphs.
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Fig. 1. Number of colorings with exactly
k colors (blue bars) and number of total
colorings with k colors or less (red bars),
noted N (G, k) in function of k = 16...30,
for a random graph with 30 vertices, den-
sity 0.9 and χ(G) = 16. (Color figure
online)

Fig. 2. Two 3-colorings c1 and c2 of the
same graph with four vertices. These two
colorings have to be considered as identi-
cal because d(c1, c2) = 0 with d the set-
theoretic partition distance; we go from
one to the other, simply through a per-
mutation of color classes.

The number of colorings with exact k colors (blue bars) and the total colorings
with k colors or less (red bars), noted N (G, k), are computed with precision
for all values from k = 16 to k = 30. N (G, k) decreases exponentially when k
decreases to χ(G). We prove a theorem which shows that when the number of
k-colorings is lower than a given value (the number of independent sets of G3),
then we achieve the optimum: χ(G) = k.

In this article, we try to apply the proposed theorem in order to prove opti-
mality.

Brief Solutions Counting Review. The counting of NP-complete problems
solutions has been widely studied for the boolean SATisfiability problems, known
as #SAT, or for the Constraint Satisfaction Problem (CSP), known as #CSP;
the k-coloring problem is a special case in CSP. These problems are known as
#P-complete [33]. A recent survey on #CSPs is conducted in [17]. Even if a
problem is not NP-hard, the problem of solution counting is often hard. Specific
studies on counting solutions of k-CP are made in [7,16,25]. Because precise
counting is in many cases a complex problem, statistical or approximate counting
is often considered. Then, uniform sampling of all solutions is related to the
problem of solution counting. Many papers examine uniform or near uniform
sampling as in [11,12,34]. The objective is to count by sampling. Frieze and
Vigoda [8] provided a survey on the use of Markov Chain Monte Carlo algorithms
for the approximative counting of the number of k-colorings. The features of
ergodicity or quasi-ergodicity of heuristics which guarantee uniform sampling

3 An independent set is a subset of vertices of G, so every two distinct vertices in the
independent set are not adjacent.
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are discussed in detail in [6]. However, theoretical results normally refer to high
value of k ≥ Δ where Δ is the maximum degree of the graph G which is much
higher than χ(G) for challenging graphs. On the other hand, when tests are
performed with k = χ(G) as in [7], the considered graph instances often have
more than 1020 k-colorings. If the number of k-colorings is too high (higher than
the number of independent sets), then it is not possible to apply our theorem.
Therefore, in practice, our approach can be applied to graphs that do not have
too many optimal colorings; we considered graphs with at the most 1 million
different optimal colorings.

To the best of our knowledge, it is the first time that counting of solutions
are used to prove optimality. We define a procedure, called optimality clue, for
application of the proposed theorem. First, we build a sample of k-colorings for a
given graph G by running the same randomized heuristic algorithm many times
(about 1,000). In this study, we use HEAD4, our open-source memetic algorithm
(i.e. hybridization of tabu search and evolutionary algorithm), which is very a
efficient heuristic for solving GCP [26].

In this sample some colorings may appear several times and others only
once. The number of different k-colorings within the sample is used to build up
an estimate of the total number of colorings with k colors. This estimator has
been calibrated on a wide benchmark of graph instances for which the number
of optimal k-colorings is known with precision. Because we have no guarantee
that the sampling is uniform, in general we can not then guarantee that our
estimator is always correct.

Moreover, building a sample of k-colorings is time-consuming and the size of
the sample should be “reasonable”. Graphs for which our optimality clue can
be calculated are therefore graphs without too many optimal k-colorings (i.e.
about less than one million). Of course it is not possible to known a priori if a
given graph has more or less than 1 million optimal colorings. Our approach for
this reason provides a clue that coloring found by the heuristic may be optimal
(positive conclusion), but in many cases we can not come to a conclusion.

This article is organized as follows. In Sect. 2, we present new optimality proof
for GCP based on solution counting. Our general approach, called optimality
clue, is defined in Sect. 3. In Sect. 4, we detail how we calculate the estimate
of the number of k-colorings using benchmark graph instances. Numerical tests
and experiments are presented in Sect. 5. Finally, we conclude in Sect. 6.

2 Proof of Optimality by Solutions Counting

Notice that there are different ways in which to count the k-colorings of a given
graph G. When counting the number of different k-colorings, we have to take
into account the permutations of the color classes. We consider one k-coloring
not as the assigning of one color among k to each vertex but as a partition of the
graph vertices into k independent sets. An Independent Set (IS) or stable set is

4 Open-source code available at: github.com/graphcoloring/HEAD.

https://github.com/graphcoloring/HEAD
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a set of G vertices, no two of which are adjacent. Two k-colorings c1 and c2 are
considered identical if they correspond to the same G partition. The distance
between two k-colorings taken into account is the set-theoretic partition distance
used in [10,14,26], which is independent of the permutation of the color classes.
In previous studies on solution counting of k-CP [7], authors counted the total
number of k-colorings including every permutation such as in the example of
Fig. 2; such a calculation of the number of different k-colorings is k! times higher
than the way we count. These methods are therefore inapplicable to our study.
We write as Ω(G, k) the set of all k-colorings of graph G. A k-coloring can use
exactly k colors or fewer, then Ω(G, k − 1) ⊂ Ω(G, k). The cardinal of Ω(G, k)
is noted N (G, k) = |Ω(G, k)|.

Our approach is based on the following fact:

Lemma 1. Let G be a graph and k ≥ 1 an integer. If at least one k-coloring of G
exists, then there exist at least i(G) − k + 1 different (k + 1)-colorings of G:

N (G, k + 1) ≥ i(G) − k + 1,

where i(G) is the number of independent sets of G.

Proof. Notice that a k-coloring of a graph G = (V,E) is a partition of |V |
vertices into k IS. Indeed vertices colored with the same color inside a k-coloring
are necessarily an IS. In other words, it is always possible to color all vertices of
any IS with the same color. We note IS(G) = {U ⊂ V | ∀x, y ∈ U2, {x, y} /∈ E}
the set of all the IS of G, then i(G) = |IS(G)|.

Let C be an initial coloring of G with exactly k colors: C = (V1, V2..., Vk),
where Vi is the set of vertices colored with color i, for all i = 1..k. For each
independent set of G, noted I, except for the k IS of C, it is possible to recolor
all vertices of I with a new color (the (k + 1)th color). We obtain in this way
one different (k + 1)-coloring, C ′ = (V1\I, V2\I..., Vk\I, I) for each different
independent set, I ∈ IS\∪k

i=1{Vi}, afterwards counting a total of at least i(G)−k
different colorings with exactly (k + 1) colors. Then, N (G, k + 1) ≥ i(G) − k + 1
because we also have to count the initial k-coloring.

After, we obtain the following theorem:

Theorem 1. Let G be a graph and k ≥ 1 an integer. Let N (G, k) be the number
of k-colorings of G and i(G) the number of independent sets of G.

If i(G) − k > N (G, k) > 0, then χ(G) = k.

Proof. χ(G) ≤ k because N (G, k) > 0. If χ(G) < k, it means that at least one
(k −1)-coloring exists (i.e. N (G, k −1) > 0). If we add a new color, it is possible
to consider this (k−1)-coloring and to recolor any independent set of G with the
new color. We obtain in this way i(G) − k different k-colorings (by Lemma 1).
Therefore i(G) − k ≤ N (G, k) which refutes initial assumption.

For example, the studied graph in Fig. 1 (30 vertices and density 0.9) has 38
different colorings with 16 colors: N (G, k = 16) = 38; moreover this graph has
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78 IS: i(G) = 78, The theorem is then applicable with k = 16 because: i(G)−k =
78 − 16 = 62 > 38 = N (G, k) > 0. Thanks then to the theorem we can conclude
that χ(G) = 16. Moreover, for k = 17, N (G, k = 17) = 3121 > i(G) − k = 61,
so the theorem is not applicable.

Corollary 1. Let G be a graph and k ≥ 1 an integer. Let N (G, k) be an upper
bound of the number of N (G, k) and i(G) a lower bound of i(G).

If N (G, k) > 0 and i(G) − k > N (G, k), then χ(G) = k.

3 Optimality Clue

We propose to apply in this paper the Corollary 1, so as to find an appropriate
upper bound of the number of k-colorings of G, N (G, k), and a lower bound of
the number of independent sets of G, i(G).

3.1 IS Counting

Many algorithms [4,5,28,30] exist for the counting of all the maximal indepen-
dent sets of a graph G (or similarly counting all the maximal cliques5 in G,
the complement graph of G). By definition, the number of maximal IS, noted
imax(G), is a lower bound of i(G). Those algorithms are based on enumeration.
Because the focus of this study is on graphs having less than 1 million optimal
solutions, we can stop enumeration after finding 1 million IS. Generally, i(G) is
very high except for graphs with very high density. Real-life graphs often have
low density, in which case i(G) is very high. Moreover, a simple lower bound is
given by [29]: i(G) ≥ 2α(G) + n − α(G), where α(G) is the size of the largest
independent set of G and n the number of vertices. Bollobás’ book [2] (p. 283)
also provides a statistical number of maximal cliques of size p for a random
graph. We can conclude that: imax(G) ≈ iB(G) =

∑n
p=1

(
n
p

)
(1−d)(

p
2) with n the

number of vertices and d the density of a random graph G.
In this study, we use Cliquer6, an exact branch-and-bound algorithm devel-

oped by Patric Österg̊ard [28] which enumerates all cliques not necessarily max-
imal (an IS is a clique in the complement graph).

It is more complex to evaluate N (G, k) and Sect. 4 presents a way in which
to build an experimental upper bound of N (G, k). We characterize this upper
bound as experimental because it is based on experimental tests on benchmark
graph instances. There is then no total guarantee that it is an upper bound.

5 A maximal clique is a clique that cannot be extended by including an additional
adjacent vertex. A maximum clique is a clique that has the largest size in a given
graph; a maximum clique is therefore always maximal, but the converse is not so.
Analogue definition for IS.

6 Code available at: https://users.aalto.fi/∼pat/cliquer.html. To count all IS of a
graph, you just execute: ./cl <complement graph> -a -m 1 -M <k>.

https://users.aalto.fi/~pat/cliquer.html
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3.2 Procedure

We define here the procedure of what we call Optimality Clue for graph coloring:
let it be G a graph and k > 0 a positive integer, that we suspect to be the
chromatic number of G. The proposed approach is based on the five following
steps:

1. The building of a sample of t = 1, 000 k-colorings of G: we run the algorithm
HEAD as many times as needed to obtain t legal k-colorings. These solutions
are the solution samples. The size of the sample is equal to t. In general we
use case t = 1, 000 when possible.

2. Count the number of different k-colorings inside the sample. This number is
equal to p. Of course 0 ≤ p ≤ t.

3. Estimate an upper bound of N (G, k) as UB(p, t) (cf. Sect. 4); this upper
bound is the function of t and p.

4. Compute i(G), the number of IS, or at least a lower bound if i(G) > 106,
with an exact algorithm (Cliquer).

5. If i(G) > UB(p, t), then we conclude that solutions of the sample have a clue
so as to be optimal:

Chances are that k is equal to χ(G)

Uniform Sample. If the sample is uniform7, then statistical methods exist for
the counting of solutions and the building of an upper bound with statistical
guarantee, for example through the capture-recapture methods: The Peterson
method [20], and Jolly-Seber method [1] which is commonly used in ecology
to estimate an animal population size. However, this is not our case: we have
no guarantee that our solution sample is uniform or quasi uniform. HEAD is a
memetic algorithm that explores the space of non-legal k-colorings: a non-legal
k-coloring is a coloring with at most k colors and one where two adjacent ver-
tices (linked by an edge) may have the same color (these are known as conflicting
edges). The objective of HEAD is to reduce the number of conflicting edges to
zero, that is to get a legal k-coloring. HEAD is an evolutionary algorithm with
a population size equal to two. In each generation, the two non-legal k-colorings
crossover before performing a tabu search. The sample distribution depends on
the fitness landscape properties [23,24]8 and there is no reason for this distri-
bution to be uniform. A smooth landscape (respectively a rugged landscape)
around a legal k-coloring will increase (resp. decrease) the probability of finding
this k-coloring. Figure 3 represents the frequency of the 319 optimal 46-colorings
of <r140 90.4> graph of the RCBII benchmark (140 vertices and density 0.9)
in a sample of size 100,000 found by the HEAD heuristic. In this typical graph
instance, the ratio between the least frequent and the most frequently found
coloring is around a factor of 103 which corresponds to the same scale as similar
studies [34].
7 All k-colorings in the sample are uniformly drawn at random in Ω(G, k).
8 The fitness landscape itself depends on the neighborhood used for both the tabu

search and the crossover.
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Fig. 3. Sampling of 46-colorings for the
<r140 90.4> graph from RCBII bench-
mark (140 vertices and density 0.9).

Fig. 4. Collision probability q, given the
sample size t, and the total number of
k-colorings N (G, k).

Another approach is to take into account the ergodicity of an algorithm,
which is its capability to explore all the search space. More precisely, an algorithm
is ergodic if there is the possibility of reaching (probability not null) any k-
coloring from any other k-coloring in a finite number of iterations. Random
walks or Metropolis algorithms (with a positive temperature sufficiently high)
are ergodic algorithms since there is always a finite probability of escaping from
local minimum. However, those algorithms are very inefficient in practice for the
finding of an optimal k-coloring in general.

Sample Size. The choice of t, the size of the sample, is very important for
two reasons. Firstly, in practice, the building of a sample of k-colorings can
be very time-consuming, and the size of the sample should be reasonable. We
use t = 1, 000 for most of the graph instances. However, the more challenging
the graph instance, the longer HEAD takes to find one k-coloring. It is there-
fore not possible to build a sample of size 1,000 for all graphs, such as for the
<DSJC500.5> graph of DIMACS (cf. Table 2).

The second reason is more theoretical. We have limited the maximum number
of different optimal solutions to 1 million, in order for a graph to be considered by
our approach. In fact, we choose 1 million because it equals to t2 with t = 1, 000.
Indeed, if the sample is uniformly drawn at random in Ω(G, k), the probability
q that at least two colorings of the sample are identical is equal to9: q = 1 −

N !
N t(N − t)! 	 1 − e− t(t− 1)

2N then N 	 − t(t − 1)
2ln(1− q) . We also call q the probability

of collision. So, if q = 0.5 then N 	 720626, if q = 0.393 then N ∼ t2 = 106.
Figure 4 represents the collision frequency, q, in function of the sample size, t,
for different values of the Ω(G, k) size. When N (G, k) = 105 and t = 1, 000, it
is almost impossible to miss a collision in the sample, but for N = 106, there

9 This problem is linked to the birthday problem that shows that in a room of just 23
people there’s a 50-50 chance that two people have the same birthday. In our case,
the number of days in a year is N and the number of people is the size t of the
sample.
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is around a 60% chance of missing a collision. However, it is not a disaster to
miss a collision for our approach. Indeed, the consequence is that the clue of
optimality may be not applicable but the risk of false positive is avoided. A
false positive occurs if our Procedure 3.2 improperly indicates the optimality
clue, when in reality the k-colorings are not optimal. Moreover, the collision
frequency is higher for a non-uniform sample than for a uniform one.

4 Estimate of the Number of k-Colorings: UB(G, k, p, t)

4.1 Data Sets

In order to define an estimator or at least an upper bound of the number of k-
colorings, we need to have a large number of graph instances for which we know
the exact number of k-colorings. Fabio Furini et al. [9] have published an open-
source and a very efficient version of the backtracking DSATUR algorithm [3]
which returns the chromatic number of a given graph10. DSATUR is one of the
best exact algorithms for GCP, particularly for graphs with high density. We
suggest readers that interested in an overview of exact methods used for GCP
read [15,22].

We modified the DSATUR algorithm in order to count the total number
of k-colorings. The pseudo code of the algorithm, CDSATUR, is presented in
Algorithm 1. CDSATUR returns, for all values k, the exact value of N (G, k)
taking into account the permutation of colors, especially N (G, k = χ(G)).

Algorithm 1. CDSATUR which returns the number of all k-colorings of G:
N (G, k).
Data : G = (V, E) a graph and k a positive integer.
N ← 0
C[v] ← None, ∀v ∈ V : C is the empty coloring.
l ← 0: number of colors used by C.
CDSATUR(C, l)

return N
Procedure CDSATUR(C′, k′):

if all the vertices of C′ are colored then
if k′ ≤ k then

N ← N + 1
else

Select an uncolored vertex v of C′

for every feasible color i ∈ [1 ; k′ + 1] do
C′′ ← C′, C′′[v] ← i
k′′ ← max(k′, i): number of colors used in C′′.
if k′′ ≤ k then

CDSATUR(C′′, k′′)

10 Code available at: lamsade.dauphine.fr/coloring/doku.php.

http://www.lamsade.dauphine.fr/coloring/doku.php
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Fabio Furini et al. also published 2031 random GCP instances called RCBII11

with vertices from 60 to 140 and density between 0.1 and 0.9. This wide variety
of graphs is our reference dataset. We complete this dataset with easy DIMACS
graphs [18] for which χ(G) and N (G,χ) is computable with CDSATUR.

The 2031 graphs of the RCBII benchmark have the characteristics described
in Table 1. We can see that χ(G) is recognized in all these graphs [9]. First we
calculated N (G,χ) with CDSATUR, with a time limit equal to 2400 s, a time
sufficient for most of the graphs. There are only 210 graph instances of RBCII
(on the 2031) in which CDSATUR does not have enough time to find N (G,χ).
These 210 graphs are used to test our approach (test dataset).

Among the graphs for which N (G,χ) can be determined, we consider only
those with less than 1 million optimal solutions: they form the reference dataset
(959 graph instances). Finally, we can distinguish inside the reference dataset,
566 graph instances on the 959 verifying i(G) > N (G,χ).

862 graphs remain on the 2031 of the RBCII benchmark with more than 1
million optimal solutions. We decided to test our approach on the graphs (called
control dataset) to check whether or not the proposed algorithm can produce
false positives or not.

Table 1. Distribution of 2031 RCBII graph instances

4.2 Analysis of Graph Instances

Before determining an upper bound of N (G,χ), we investigate possible links
between standard features in a graph such as its size (number of vertices), its
density.

Graphs with the same size (number of vertices) and same density can have a
number of optimal colorings which prove very different from each other A typical
example is given in Fig. 5 where the distribution of 49 graph instances with 80
vertices and density 0.3 (<r80 30.*> of RBCII benchmark) is represented in
function to the number of solutions N (G,χ). Half of the graphs (25/49) have
fewer than 100 000 optimal solutions while a third (18/49) have more than
1 million optimal solutions. There are no simple laws which characterize this
distribution.

However, we can see that the lower the density, the higher the optimal solu-
tion number. Indeed, Fig. 6 presents the proportion of graphs with 70 vertices of
the RBCII benchmark having more than 1 million colorings depending on graph
11 Instances available in the same address.
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Fig. 5. Histogram characterizing the dis-
tribution of the 49 random graphs
with 80 vertices and a density of 0.3
(<r80 30.*> for the RBCII benchmark)
knowing the number of optimal color-
ings, N (G, χ).

Fig. 6. Proportion of graphs with 70 ver-
tices (<r70 *.*> of the RBCII bench-
mark) having more than 1 million opti-
mal colorings given the density.

density. For a low density such as 0.1, nearly all graphs have more than 1 million
optimal solutions, while no graph with high density (equal to 0.9) has more than
1 million optimal solutions.

In order to have a finer view of the link between the number of optimal
colorings and the graph density, we generated 1,000 random graphs with 50
vertices and density d (d = 0.1, 0.2, ..., or 0.9). Each line in Fig. 7 represents
(for each density) the proportion of graphs having less than n optimal colorings
with n between 102 and 106. The pink line in Fig. 7 shows for example that
50% of graphs (with 50 vertices and density = 0.3) have fewer than 105 optimal
colorings. The plots are quite similar for graphs with 60 or 70 vertices. The graph
size seems to have a slight influence on the number of optimal solutions.

Fig. 7. Proportion of random graphs (with 50 vertices and a given density) having
fewer than n optimal colorings with a n range between 1 hundred and 1 million. (Color
figure online)

4.3 Upper Bound Function

We define in this section an upper bound of N (G, k) based on the 953 graphs of
the reference dataset. Suppose we have, for a given graph G, a set of n different
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k-colorings: Ω(G, k) = {x1, ..., xn}, i.e. n = |Ω(G, k)| = N (G, k) is unknown.
We also have a sequence W of t independent samples: W = (w1, ..., wt), where
wk ∈ Ω(G, k), ∀k = 1...t. This sample W is composed of t independent success
runs of HEAD algorithm. We note ∀j = 1...n, #(xj) the count of xj in W . For
these t colorings, we count p different colorings in W : p = |{xj ∈ W, #(xj) > 0}|.
So then, N (G, k) ≥ p and t ≥ p ≥ 1. Figures 8 represents for each graph of the
reference dataset, the number of different colorings p found by HEAD on the
total of t = 1, 000 success runs (in abscissa) and the exact number of colorings,
N (G, k), calculated with CDSATUR (in ordinate). Each dot corresponds to one
graph of the reference dataset. The immediate objective is to determine an as
small as possible upper bound of N (G, k), UB. Indeed, in order to apply the
Theorem 1, we must obtain i(G) − k > UB.

Fig. 8. Each blue dot corresponds to one of the 959 graph instances that have fewer
than 1 million optimal colorings (reference dataset). The number of optimal colorings
(calculated with CDSATUR algorithm) is in ordinate. The number p of different opti-
mal solutions found by our HEAD algorithm after 1,000 success runs is in abscissa.
The red line is an upper bound UB(G, k, p, t) of the number of optimal colorings. The
right figure is a zoom of the left figure for p ≤ 500. (Color figure online)

Figure 8-right which is a zoom of the left figure for p ≤ 500 shows that for
p � t, p is near linear to N (G, k): p ∼ N (G, k). p is then a good candidate for
an estimator of N (G, k). When p is near to t, the range of N (G, k) values is very
wide, close to p2 = 106, and p is a very bad estimation of N (G, k). Notice that
N (G, k) < p2. We add to those figures a red line which represents a possible
upper bound of N (G, k) equal to:

UB(G, k, p, t) =
{

p + pα t+p
t if p < t × 0.99

+∞ otherwise
(1)

with α = 1.01. Indeed, when p � t, UB(G, k, p, t) ∼ 2p and when p is close
to t, UB(G, k, p, t) ∼ p2. Between these extreme values, the cloud of blue dots
follows very approximately an exponential curve. UB(G, k, p, t) was also built to
be above all blue dots; i.e. it is a valid upper bound for all graphs of the reference
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dataset. Of course, there is no guarantee that this upper bound is still valid for
all other graphs. So, our approach is never able to prove optimality in the strict
sense. It can only provide a clue to it.

5 Experiments and Analysis

5.1 Tests

The upper bound UB was built based on the graphs of the reference dataset.
In order now to test the optimality clue (procedure Sect. 3.2), we use this upper
bound on graphs of the test dataset and the control dataset and for some graphs
stemming from the DIMACS benchmark.

Results on the RCBII benchmark are presented in Table 1 in the last two
lines. The first column concerns the 862 graphs with more than 1 million opti-
mal solutions, corresponding to the control dataset. There is no false positive:
Procedure 3.2 concludes that for all graphs there is no optimality clue. The two
following columns concern the reference dataset. More precisely, the second col-
umn concerns graphs possessing fewer than 1 million optimal solutions which
do not verify Theorem1: the number of IS is lower than the number of optimal
solutions. Of course, there are no false positives in this case, because UB was
built to validate these graphs (reference dataset). The third column concerns the
566 graphs verifying Theorem1. The optimality clue is proven for 449 of them
because i(G) > UB(G, k, p, t) > N (G, k). The optimality clue is not shown on
the 117 (= 566 − 449) other graphs because UB(G, k, p, t) ≥ i(G) > N (G, k).
UB(G, k, p, t) is a too high an upper bound in this case. To prove the optimality
clue on those graphs, we would have to increase the size of the solutions sample,
t. The fourth column concerns the test dataset i.e. graphs for which the number
of optimal solutions is unknown. We prove the optimality clue for nearly 20%
of these graphs (39/210). There are three reasons why we did not prove the
optimality clue for the other 171 (=210-39) graphs: (1) graph instances have
more than 1 million solutions; (2) graph instances do not verify the Theorem1;
Nothing can be done for these two first reasons. (3) p is too close to t so the
upper bound UB is too high. In order to obtain a more accurate upper bound,
i.e. still valid but not too high, we have to increase the size of the sample or to
choose a formula other than Eq. (1). Our approach therefore applies to about
20% of the random graphs in the RCBII benchmark. For control and reference
datasets, we obtain more or less the same proportion: 25% (449/1821).

The results on selected DIMACS benchmark graphs are presented in Table 2.
We only present graph instances for which the solutions sample generated by
HEAD, are not all different (i.e. p < t = 1, 000) and are susceptible to be
optimal. The first column in Table 2 indicates the name of the graph instance.
Columns 2–7 indicate for each graph, its number of vertices |V |, its density d, its
chromatic number χ(G), when it is known, the number of colors k, used for the
test (k = χ(G) if χ(G) is known), its number of independent sets i(G), and the
exact number of legal k-colorings N (G, k), when it is possible to calculate this
with CDSATUR. Columns 8–10 then indicate the size of the solutions sample t,
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Table 2. Results of optimality clue tests for graphs of DIMACS benchmark with p < t.

the number of different solutions in the sample p, the experimental upper bound
of the number of k-colorings UB(G, k, t, p). Columns 11 and 12 provide the result
of the procedure of Sect. 3.2 for the optimality clue and the total computation
time in seconds to generate all the samples. The last two columns indicate the
lower bound of χ(G) found through the best known exact method [15] (or by
IncMaxCLQ [21], which found the maximum clique) and the computation time
of this method.

The first part of Table 2 corresponds to 17 graphs for which χ(G) is already
known by other methods. We prove the optimality clue for 12 of them. The
computation time of the optimality clue is higher than that for finding the lower
bound with exact methods excepting two graphs. However the computation time
of the optimality clue may be considerably reduced because the 1,000 runs of
HEAD can be switched on to 2, 3... or 1,000 different processors or on to a
cluster of computers.

The second part of Table 2 (below the horizontal line) corresponds to 6
graphs for which χ(G) is unknown. We have generated 3 new graph instances
called <DSJC+*.* k> with rules almost similar to those of <DSJC*.*> but for
which a k-coloring is hidden so that very few other k-colorings can exist. For
<DSJC500.5> which is one of the most challenging graphs in DIMACS, we have
the optimality clue for k = 4712.

Notice that when the optimality clue is proven for a given k, we check
that the optimality clue for k + 1 can not be proven as well. For example, for
<DSJC500.5>, we check the optimality clue for k = 48 has not been achieved:
for t = 100, 000 48-colorings found by HEAD, all of them are different. If the
randomized algorithm HEAD is biased, i.e. finds k-colorings always in the same

12 For <DSJC500.5> the computation time is not reported because it takes several
weeks and no accurate time has been recorded.
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subset of Ω(G, k) (and therefore undervalues the upper bound), this bias does
not reveal when we test the optimality clue for k + 1.

Notice that the impact of the size of the sample has a great impact on the
test. In order to have a not too high upper bound of N (G, k), we should have
p � t. The size t of the solutions sample can be chosen therefore in function of
the results of each graph instance. For example, we can extend the sample until
all colorings of the sample are found at least twice (cf. Good-Turing estimator).

6 Conclusions and Perspectives

Based on Theorem 1, we propose a procedure, known as optimality clue, for
determining if the global optimum is reached or not, by a heuristic method.
This approach estimates an upper bound of the number of legal k-colorings by
running a randomized heuristic several times. This process is contextual with
the instance to solve. No general conclusion can be drawn on the heuristic itself,
which is used for the building of solutions. This definition can be seen as an
experimental criterion which evaluates the convergence of a randomized algo-
rithm to the chromatic number. However, since it is not possible to be certain
of the exactitude of the upper bound, it is also not feasible to prove optimality
in the strict sense.

Our approach is nevertheless an alternative when exact methods are not
applicable (high optimality gap). It is a new way in which to provide a crite-
rion for the proximity of the optimality. The general idea is that the number
of solutions with the same objective function value decreases when the objec-
tive function approaches the optimal value. Optimality clue matches with the
standard definition of optimality in a large number of instances for DIMACS
and RBCII benchmarks where the optimality is known. Furthermore, we proved
the optimality clue for <DSJC500.5> graph of DIMACS with k = 47 colors
which is a very challenging instance (only two algorithms are able to find 47-
colorings [26,32]). Tests on small random graphs (under 140 vertices) show that
the optimality clue can be proven for 20% of them.

Finally, we defined quite a high upper bound in order to avoid false positives:
graphs for which we prove the optimality clue for a given k, while χ(G) = k.13.

The proposed approach is based on a sampling of the legal k-colorings space,
Ω(G, k). This sampling is built by running the HEAD algorithm a number of
times; every successful run provides one element of the sample. Ideally, in order
to obtain a representative sample, HEAD has to uniformly draw one k-coloring
inside the legal k-colorings space. It is of course not possible to guarantee this
feature in every case which is why we built an upper bound function (Eq. 1)
of N (G, k) = |Ω(G, k)|. In order to improve our approach and to get closer
to the ergodic objective, we plan to use more powerful counting models such
as those presented in [6,12] and to study the ergodic propriety of HEAD. Our
work provides only an initial contribution to the study of optimality through
13 In this context, we propose on our website a challenge to find a counterexample

(false positive graph).
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counting. Other methods of estimating the population should be tested, such as
Good-Turing methods which estimate missing mass (i.e. missing k-colorings in
the sample) or Peterson-type methods used to obtain statistical guarantees.
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Abstract. This paper presents a family of generative Linear Program-
ming models that permit to compute the exact Wasserstein Barycen-
ter of a large set of two-dimensional images. Wasserstein Barycenters
were recently introduced to mathematically generalize the concept of
averaging a set of points, to the concept of averaging a set of clouds
of points, such as, for instance, two-dimensional images. In Machine
Learning terms, the Wasserstein Barycenter problem is a generative con-
strained optimization problem, since the values of the decision variables
of the optimal solution give a new image that represents the “average”
of the input images. Unfortunately, in the recent literature, Linear Pro-
gramming is repeatedly described as an inefficient method to compute
Wasserstein Barycenters. In this paper, we aim at disproving such claim.
Our family of Linear Programming models rely on different types of
Kantorovich-Wasserstein distances used to compute a barycenter, and
they are efficiently solved with a modern commercial Linear Program-
ming solver. We numerically show the strength of the proposed models
by computing and plotting the barycenters of all digits included in the
classical MNIST dataset.

Keywords: Wasserstein Barycenter ·
Kantorovich-Wasserstein distance · Linear Programming ·
Constrained optimization

1 Introduction

In several Machine Learning problems, a fundamental step is the computation
of a similarity measure between a pair of objects. These objects very often cor-
respond to uncertain measure quantities, which are represented as probabil-
ity density functions or discrete N -dimensional histograms. The Kantorovich-
Wasserstein distance is a mathematical metric which permits to compute the
distance between probability density functions or N -dimensional histograms
by solving a constrained optimization problem [11,17]. Intuitively, the distance
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Fig. 1. Left: Euclidean average of 100 images of digit “1”. Right: Wasserstein Barycen-
ter of the same set of images.

between two (discrete) measures is equal to the total cost of “transporting” all
the mass of the first (discrete) distribution into the second. The cost for trans-
porting a unit of mass from a location of the first distribution to a location of
the second distribution is called the ground distance. In case of N -dimensional
histograms, the locations are associated to the centers of the bins of the his-
tograms, and the ground distance can be, for example, any of the standard
norms: �1, �2, or �∞. Compared to other methods used in probability and infor-
mation theory to measure the similarity between probability distributions, the
Kantorovich-Wasserstein distance is more robust to noise of the input data.

A very interesting problem, which uses the Kantorovich-Wasserstein distance
as a building block, is the Wasserstein Barycenter problem [2]: Given a set
of m discrete measures γk, with k = 1, . . . , m, defined on a space X ⊆ R

N ,
we have to find a discrete measure y that has the minimal overall Kantorovich-
Wasserstein distance to all γk measures. The new discrete measure y is called
the Wasserstein Barycenter, since it generalizes the idea of “averaging”: Given
k vectors of Rn, the usual average computed as

(
1
k

∑k
i=1 xi

)
is the minimizer

of the problem arg minx

∑
i ||x − xi||22, where ||·||2 is the Euclidean norm. Note

that the Wasserstein Barycenter problem is a “generative” problem, since its
optimal solution is a new discrete measure on the same space X of the input
measures γk. In case of images, which are a very specific type of histograms,
the barycenter is a new image. For instance, given 100 images of the digit “1”,
Fig. 1 shows on the left the corresponding Euclidean average, while on the right
it shows the Wasserstein Barycenter of the same set of images, computed with
the �2 ground distance.

The state-of-the-art approach to compute Wasserstein Barycenters relies on
entropic regularized formulations of the constrained optimization problem [9],
which are solved with derivations of the Sinkhorn’s algorithm [8,13,14]. The
main advantages of this class of algorithms are two: (i) they are very easy to
understand and to implement, and (ii) they can be implemented to run in par-
allel on multiple Graphics Processing Units (GPU). However, in the regularized
formulation of Optimal Transport there is a crucial parameter that has to be
tuned manually. As shown in [5], these methods can be numerically unstable
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and can provide solutions which are very far from the optimal value. Other
approaches to compute the Wasserstein Barycenters include stochastic algo-
rithms [7] and gradient descent based algorithms [15]. Unfortunately, Linear
Programming approaches to compute Wasserstein Barycenters [4] are repeat-
edly considered to be extremely inefficient on larger instances [7,15].

Our Contribution. In this paper, we propose a new class of generative Linear
Programming models to solve the Wasserstein Barycenter problem. Building
on the results recently presented in [6], and depending on the norm used as
ground distance in the pairwise Kantorovich-Wasserstein distances, we exploit
the geometric structure of the problem to reduce the size of the linear programs.
For the �1 and �∞ ground distances, we provide exact formulations that can
compute the barycenter of up to 3 200 images of size 28 × 28. For the �2 ground
distance, we provide an approximation scheme that permits to approximate the
optimal barycenter within a guaranteed percentage error.

The outline of this paper is as follows. Section 2 formally presents the defini-
tion of the Kantorovich-Wasserstein distance and of the Wasserstein Barycenter
problem. Section 3 introduces our generative Linear Programming models based
on uncapacitated minimum cost flow formulations. In Sect. 4, we discuss prelim-
inary computational results on the computation of the Wasserstein Barycenters
of all the digits included into the well-known MNIST dataset [1].

2 Background

In this section, we present the basic formulation of the Kantorovich-Wasserstein
distance and we introduce the corresponding Wasserstein Barycenter problem.
In the following, for the sake of clarity, we tailor our exposition to the case of
discrete measures represented as N -dimensional histograms. In particular, the
grey scale images of the MNIST dataset used in Fig. 1 can be viewed as 2D
histograms.

2.1 Kantorovich-Wasserstein Distances

Let μ and ν be two probability measures defined on a space X ⊆ R
N . We

can think of μ and ν as two vectors in the unitary simplex Sn, that is, vectors
in R

n
+ such that

∑n
i=1 μi = 1 and

∑n
i=1 νi = 1. In addition, we have a cost

function c : X × X → R+ that gives the cost cij of transporting a unit of mass
from position i to j, where both i, j ∈ X. The computation of the Kantorovich-
Wasserstein functional [16] between the two given discrete measures μ and ν is
equivalent to solve the following Linear Program:

Wc(μ, ν) = min
n∑

i=1

n∑
j=1

cijxij (1)

s.t.
n∑

j=1

xij = μi i = 1, . . . , n (2)
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n∑
i=1

xij = νj j = 1, . . . , n (3)

xij ≥ 0, i = 1, . . . , n, j = 1, . . . , n. (4)

Note that this problem is clearly a special case of the Transportation Problem
[10,12] and, hence, it can be formulated and solved as an uncapacitated minimum
cost flow problem in a bipartite graph with 2n nodes and n2 arcs [3].

Whenever the costs in (1) are defined as cij = dp
ij , where dij is the distance

between positions i and j in X, we define the Kantorovich-Wasserstein dis-
tance of order p as

Wp(μ, ν) := Wdp(μ, ν)min{ 1
p ,p}. (5)

In this paper, we are interested in the Kantorovich-Wasserstein distance of
order 1, that is, p = 1 and the distance dij is measured with the �1, �2 and �∞
norms. Recall that i and j are points in R

N .

2.2 Wasserstein Barycenters

In the discrete Wasserstein Barycenter problem, we have to find a new discrete
measure y∗ ∈ Sn that minimizes the sum of the distances to a given set γ of m
discrete measures γk:

B(γ, c) := min
y∈Sn

m∑
k=1

Wp(γk, y). (6)

If we denote by γik the i-th element of vector γk, the discrete Wasserstein
Barycenter problem is equivalent to the following Linear Program [4]:

B(γ, c) = min
y

m∑
k=1

n∑
i=1

n∑
j=1

cijxijk (7)

s.t.
n∑

j=1

xijk = γik i = 1, . . . , n, k = 1, . . . , m (8)

n∑
i=1

xijk = yj j = 1, . . . , n, k = 1, . . . , m (9)

n∑
i=1

yj = 1 (10)

xijk ≥ 0, i, j = 1, . . . , n, k = 1, . . . , m (11)
yj ≥ 0, j = 1, . . . , n. (12)

The size of problem (7)–(12) depends on the size of each discrete measure γk,
that is equal to n, and on the number m of given discrete measures: there are n2m
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Fig. 2. The first two networks are for ground distances �1 and �∞. The third and fourth
networks are for �2, and, respectively L = 2 and L = 3.

variables and 2nm constraints. Indeed, the size of this Linear Program in practice
can become very large. Note that we have m bipartite graphs with n2 arcs each,
and hence, its solution raises very interesting computational challenges.

The strong structure of problem (7)–(12) is more evident if we introduce in
the model the dummy variables yik, and we replace constraints (9) with the
following pairs of constraints:

∑
i=1,...,n

xijk = yjk j = 1, . . . , n, k = 1, . . . ,m (13)

yjk = yi j = 1, . . . , n, k = 1, . . . , m. (14)

At this point, if we relax constraints (14), we get two classes of independent
subproblems: An optimization subproblem for each discrete measure γk, and a
single minimization problem defined on the variables yi. Each subproblem in the
first class considers the values of yik as given, and computes the Kantorovich-
Wasserstein distances Wp(γk, yk), where yk is the vector of n values yik. The
second subproblem looks for a vector y belonging to the probability simplex Sn.

In the following section, using the results recently introduced in [6], we show
how we can reduce the size of problem (7)–(12) by exploiting the structure of
the cost cij .

3 Network Flow Formulations

Given two discrete measures μ and ν, when the exponent p in (5) is equal to
1, we are computing the so-called Kantorovich-Wasserstein distance of order 1,
denoted by W1(μ, ν). In this case, we can formulate the problem of computing
W1(μ, ν) using a complete flow network K = (N,E, c, b) defined as follows:
For each position i ∈ X where we have defined the two measures μi and νi,
we introduce a node in N . The node balance bi is set equal to the difference
between the two measures at position i, that is, bi = μi − νi. The nodes with
bi > 0 are the supply nodes, the nodes where bi < 0 are the demand nodes, and
all the others are the transit nodes. For each ordered pair of positions i, j, i.e.
(i, j) ∈ X × X, with i �= j, we introduce an arc (i, j) in E with cost cij = dij .

As shown in [6], it is enough to consider a flow problem on a smaller network.
In particular the number of arcs added to the network can be significantly limited
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by exploiting the cost structure. If cij = �1 it is sufficient to introduce the four
neighbors at distance equal to 1 (see Fig. 2.1), getting in total O(4n) arcs. If
cij = �∞, we have to consider the eight neighbors within a �∞(i, j) distance
equal to 1 (see Fig. 2.2), getting in total O(8n) arcs. The case cij = �2 is more
involved, and if we want to maintain a number of arcs linear in the number of
nodes we must accept a compromise between the quality of the solution and
the size of the arc set, which depends on a parameter L. Figure 2.3 shows the
network obtained with L = 2 and Fig. 2.4 with L = 3.

In all the three cases just considered, the discrete Wasserstein Barycenter
problem can be reformulated using a flow network G = (N,A, c, b), with A ⊆ E,
as follows:

BG(γ, c) = min
m∑

k=1

∑
(i,j)∈A

cijxijk (15)

s.t.
∑

(i,j)∈A

xijk −
∑

(j,i)∈A

xijk = γik − yi ∀i ∈ N, k = 1, . . . , m,

(16)∑
i∈N

yi = 1 (17)

xijk ≥ 0, yi ≥ 0 ∀(i, j) ∈ A, k = 1, . . . , m.
(18)

The size of this LP directly depends on the size of the arc set A, which in turn
depends on the choice of �1, �∞, or �2 for cij . In the first two cases, there is a
network G for which BG(γ, �1) and BG(γ, �∞) are exact formulations which use
an order of magnitude less of variables xijk with respect to problem (7)–(12).

Proposition 1. If dij = �1(i, j) or dij = �∞(i, j), then there is a graph G with
O(n) arcs such that BG(γ, c) = B(γ, c) and hence any optimal solution y∗ to the
LP problem (15)–(18) is a W1-barycenter of γ1, . . . , γm.

The third case, regarding BG(γ, �2), is more involved and it is described in
the next Theorem, which can be proved by using the results in [6].

Theorem 1. Let dij = �2(i, j) and y∗ be a solution to the LP problem (15)–(18).
Then:

(i) There is a graph G with O( 6
π2 n2) arcs such that BG(γ, c) = B(γ, c). In

particular, y∗ is a W1-barycenter.
(ii) For every 1 ≤ L <

√
n − 1, there is a graph G with O(n) arcs such that

(1 − ΓG)BG(γ, c) ≤ B(γ, c) ≤ BG(γ, c). (19)

with

1 −
√

1 + 4L2

L +
√

1 + L2
≤ ΓG ≤ 0.26

(
1 − L√

1 + L2

)
, as L → +∞. (20)
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Table 1. Comparison of runtime (in seconds) in computing the barycenter of 50 images
using the bipartite [4] and our flow models. For �1 and �∞, we report the runtime and
the relative speedup (s.up). For �2 with L = 5, in addition, we report the percentage
gap to the optimal solution.

Digits �1 �∞ �2, L=5

Bipartite Flow s.up Bipartite Flow s.up Bipartite Flow s.up Gap

0 1154.2 7.5 153.2 1114.9 12.0 93.1 1402.8 204.1 6.9 0.02%

1 370.9 6.7 55.3 410.8 11.1 36.9 437.5 222.1 2.0 0.01%

2 902.6 7.6 118.5 1019.9 11.8 86.2 1066.5 210.7 5.1 0.03%

3 791.6 7.7 103.4 917.0 12.5 73.6 1049.8 206.6 5.1 0.03%

4 632.7 7.6 83.4 711.3 11.6 61.2 749.7 215.0 3.5 0.03%

5 690.6 7.8 88.7 835.3 11.4 73.4 815.0 207.6 3.9 0.03%

6 684.0 7.6 89.9 744.9 11.5 64.8 801.3 202.7 4.0 0.04%

7 603.9 7.8 77.8 667.8 12.2 54.7 690.9 214.5 3.2 0.03%

8 791.9 7.6 104.1 924.5 13.0 71.1 1108.5 230.7 4.8 0.05%

9 800.8 7.6 106.0 964.7 12.9 74.7 1008.0 213.3 4.7 0.03%

In this case, y∗ is an approximate W1-barycenter and asymptotically

ΓG =
1

8L2
− 11

128L4
+ O

( 1
L6

)
.

4 Computational Results

This section reports our preliminary computational results on the solution of
the Wasserstein Barycenter problem using the Linear Programming models pre-
sented in the previous sections. As benchmark, we used the set of images con-
tained in the MNIST dataset [1].

All models are solved using the commercial solver Gurobi v8.1 on a Dell
Workstation with a Intel Xeon W-2155 CPU with 10 physical cores at 3.3 GHz,
and 32 GB of RAM. In particular, we set the following parameters: (i) we force
the solver to use the Barrier algorithm, which can run in parallel, and which,
specifically on the larger instances, is much faster than both the primal and the
dual simplex algorithms. (ii) We disabled the crossover operator, since we do not
need a basic solution. Note that disabling the final crossover yields a significant
speedup on the larger instances. (iii) We let the solver decide how many physical
cores to use. All the other parameters were left at their default values.

Table 1 shows the results of our test on computing the Wasserstein Barycenter
of 50 different images of the same digits using as ground distances the �1, �∞,
and �2 norms. We compare the running time in seconds of the bipartite model
(7)–(12) with the running time of our flow formulation (15)–(18). For the �1
and �∞ norms, we report the runtime along with the relative speedup (column
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Fig. 3. Comparison of runtime (in seconds) as a function of the number of images used
to compute the Wasserstein Barycenters. For the �2 norms, we used L = {1, 2, 3, 5}.

Fig. 4. The first row shows the barycenters of 3200 images of each digit, computed
using the �1 ground distance. The second row shows the barycenters of 800 images,
using the �2 ground distance with L = 5. The �2 norm generates slightly sharper images.

“s.up”) obtained with our flow model: in both cases, we observe a speedup of
two or three orders of magnitude. For the �2 norm, we used the flow network
that depends on the parameter L defined in (20), using the value L = 5, in order
to obtain a good tradeoff between computational speed and solution quality.
The last column of the table reports the observed percentage gap to the optimal
solution, which, indeed, is always very small.

Figure 3 shows how the runtime (in seconds) of the different proposed LP
models scales with the number of images given as input. The runtime refers to
the average over all the 10 different digits, and the plot is given in a log-log
scale. The plot confirms what we would expect: on the larger problem with 3600
input images, the problem that uses the �1 norm is the fastest, since it has the
smaller flow network G (these results are shown in the first row of Fig. 4). In
addition, for the �2 norm, we remark that with the parameter L = 5, the solver
run out of memory already with 1600 images in input, while for L = 3 it run
out of memory with 3200 images. Again, this is a consequence of the number of
arcs in the flow network, which determines the number of variables in the flow



Computing Wasserstein Barycenters via Linear Programming 363

formulation of the Wasserstein Barycenter problem (15)–(18). However, already
using “only” 800 images, the �2 norm with L = 5 produces sharp barycenters.

For the sake of reproducibility, our source code is available at the following
public repository: https://github.com/stegua/barycenters-cpaior2019. We have
published all the optimal solutions, that is, the Wasserstein Barycenters found
in our computations.
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Abstract. Despite the increasing popularity of Machine Learning meth-
ods, their usage in safety-critical applications is sometimes limited by the
impossibility of providing formal guarantees on their behaviour. In this
work we focus on one such application, where Kernel Ridge Regression
with Random Fourier Features is used to learn controllers for a pros-
thetic hand. Due to the non-linearity of the activation function used,
these controllers sometimes fail in correctly identifying users’ intention.
Under specific circumstances muscular activation levels may be misin-
terpreted by the method, resulting in the prosthetic hand not behaving
as intended. To alleviate this problem, we propose a novel method to
verify the presence of this kind of intent detection mismatch and to
repair controllers leveraging off-the-shelf LP technology without using
additional data. We demonstrate the feasibility of our approach using
datasets gathered from human participants.

1 Introduction

In the last few years Machine Learning techniques proved to be successful in
many domains of application such as image classification [1] or speech recogni-
tion [2], with some architectures even claiming to match the cognitive abilities of
humans [3]. Despite this popularity, the usage of Machine Learning (ML) meth-
ods in safety-critical applications is still sometimes limited by the absence of
effective methods to provide formal guarantees on their behavior. In this paper
we focus on one such safety-critical application, where Kernel Ridge Regression
with Random Fourier Features [4,5] is used to learn controllers for prosthetic
hands. In this framework, multi-fingered, self-powered prosthetic hands [6] are
controlled using signals generated from a certain number of surface electromyo-
graphy [7] sensors. Ensuring the correct behavior of the controller is critical to
the safety of the amputee wearing the robotic artifact.
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Although several approaches have been proposed to build ML models enforc-
ing reliable myocontrol [8,9], reliability is still an issue. In particular we tackle
a problem of intent mismatch: whenever a subject increases her muscle activa-
tion, the prosthesis should in turn increase the applied force. However, if the
ML model is a non-linear one, there is no guarantee that this will happen. To
reduce the chance of intent mismatch, we propose an approach that couples a
standard ML-based myocontrol system with a Linear Programming (LP) solver
to automatically repair and improve the learned model without requiring addi-
tional data. This last point is crucial as gathering more data from the subject
to amend the ML model is not desirable: to gather relevant data, the subject
would need to apply a large amount of force leading to muscle strain, fatigue
and frustration.

By leveraging LP technology, we can represent the ML model, as well as the
property of interest, as a set of arithmetic constraints and establish algorith-
mically whether a controller satisfies the given property. If the property is not
satisfied, a LP solver is used to iteratively repair the controller until the resulting
model is mathematically guaranteed to be safe.

To demonstrate the feasibility of our approach, we compare results obtained
with a standard ML-based myocontroller against a myocontroller that was
repaired using our methodology on datasets gathered from human subjects at
the German Aerospace Center. Remarkably, we show not only that LP-based
repair is effective, but it also comes at a reasonably low computational price.

2 Preliminaries

Kernel Ridge Regression with Random Fourier Features. KRR-RFF
with Tikhonov regularization [4] has been demonstrated multiple times in liter-
ature to match most of the requirements of myocontrol [8,9]. Ridge Regression
(RR) builds a linear model of the input space data x of the form f(x) = wTx,
where w is the vector of weights computed as a result of the training phase.
KRR-RFF modifies standard RR by introducing a feature map Φ : Rd → R

D

that maps a sample x ∈ R
d onto a D-dimensional space as shown in Eq. 1

f(x) = wTΦ(x)

Φ(x) =
√

2cos(Ωx + β)
(1)

where Ω is a D × d matrix and β is a D-dimensional vector, whose values are
drawn from a normal distribution and a uniform distribution from 0 to 2π,
respectively – we refer the reader to, e.g., [4] for more details.

This method can be seen as a finite-(D-)dimensional approximation to a RBF-
kernel Least-Squares SVM [10], therefore it can be made arbitrarily accurate by
tuning D; nevertheless, since its kernel is finite-dimensional and can be explic-
itly written, it enjoys most useful properties of Ridge Regression such as, e.g.,
space-boundedness (making it ideal for online learning) and extremely fast train-
ing and testing. On top of this, using a rank-1 update method such as, e.g.,
the Sherman-Morrison formula, it can be made incremental, paving the way to
interactive myocontrol.
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Myocontrol and Intent Detection. Natural, simultaneous and proportional
myocontrol is an instance of (multi-variate) regression. Let S = (X,Y ) be a
dataset composed by a set of observation X = {xi | xi ∈ R

d, i = 1, . . . , N} and
a set of corresponding target values Y = {yi ∈ R

m | ∀xi ∈ X}. Each observation
consists of d features evaluated from a set of sensors and denotes the muscular
activation corresponding to an action (e.g., wrist flexion, power grasp, etc.);
each associated target value, in turn, is a vector of m motor activation values
(currents, torques, . . .) for a prosthetic device and corresponds to the desired
action as enacted by the device itself. In practice S is built by gathering, for each
desired action, an adequate number of observations recorded while the subject is
stimulated to perform it; each such observation is then coupled with the target
value enforcing the action by the prosthetic device. For instance, the subject is
asked to power grasp (“make a fist”); once the experimenter verifies that the
signals have reached a stable pattern which is also sufficiently distinct from the
baseline, a representative amount of observations is recorded and associated to
(synthetic) target values denoting maximal activation of all fingers. At the end
of the data gathering phase, S consists of one or more observation clusters for
each action considered, coupled with adequate target values – see, e.g., [11] for
more details.

KRR-RFF builds an approximant function f(x) : Rd → R
m which best fits S

and offers the best generalization power on so-far unseen data. The approximant
f can be seen as an intent detector : whenever the wearer’s muscles are activated
to enforce a specific action, the prosthesis should behave accordingly. If properly
built out of S, f will smoothly and timely activate every motor of the prosthe-
sis whenever required; minimal and maximal muscular activations, as gathered
from the subject, will correspond to minimal and maximal motor activations;
under plausible assumptions, intermediate activation values too will be correctly
predicted in a monotonically-increasing fashion [4,8,11]. Finally, increasing the
muscle activation beyond the maximal values obtained during data gathering
should correspond to coordinated increased activation of the motors of the pros-
thesis, but this cannot be guaranteed by learning techniques only.

Linear Programming. Linear Programming solves linear problems over a set
of decision variables, a set of linear constraints over these variables and a convex
objective function that is linear in the decision variables [12].

Let x1, . . . , xn be a set of decision variables, a general linear program can be
written as

minimize
∑

i=1

cixi

subject to
∑

i=1

aijxi ≥ bj , j ∈ [1,m]

xi ∈ R, i ∈ [1, n]

Values ci, aij and bj are constants that are specified during problem formu-
lation. General approaches to solving LPs include methods such as simplex or
the ellipsoid – for further details see, e.g., [12].
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Verification and Repair of Learned Models. Several approaches have been
proposed to verify different classes of ML models automatically. Even though such
approaches might differ in several aspects, most of them consider trained models,
i.e., they do not intermingle with the learning process, and they seek a transforma-
tion from the ML model to a decision or optimization problem in some constraint
system – see, e.g., [13] for a recent account on the subject. For instance, in [14]
Boolean satisfiability solvers are proposed to verify robustness of Binarized Neu-
ral Networks. Satisfiability Modulo Theories engines are leveraged to verify neu-
ral networks in, e.g., [15,16] and Support Vector Machines in [17]. MILP-based
approaches have been proposed to verify neural networks by, e.g., [18,19], while
a combination of SAT and LP techniques is used by [20] for the same purpose. A
different approach is taken in [21], where abstract interpretation is used to certify
safety and robustness of Deep Neural Networks with ReLU and max pooling lay-
ers. Repair has received less attention compared to verification, with [15] and [17]
being the only contributions in this direction. However, the repair they propose
involves retraining the ML model with data generated by solvers.

3 Verification and Repair

Fig. 1. The heat map representing the
value of the approximant for power
grasping fPW , learned using readings
from two sensors.

In order to enhance the reliability of
the controllers we consider in this work,
we propose an automated procedure that
iteratively brings the controller to a con-
dition where intent detection mismatch
does not occur anymore. In the following,
we describe the assumptions on which our
approach rests, show how our ideas can be
formalized into an executable algorithm
and provide experimental evidence to sup-
port the approach we propose.

3.1 A Linear Model of Intent
Detection

The data gathering procedure produces a
cluster of samples for each action of inter-
est. An example is shown in Fig. 1, where observations are gathered for three
actions: rest (RE), power grasp (PW) and wrist flexion (FL). For a specific
action, we assume that values of the input space lying on the line joining the
resting cluster and the cluster corresponding to the action of interest denote an
execution of the action with increasing strength (see Fig. 1). This assumption is
justified by physiological reasons: muscle activation remains roughly coordinated
as the action is performed with more force (see, e.g., [22–26]).

More precisely, for a generic action a, let xa denote the coordinates corre-
sponding to the average of points belonging to the cluster corresponding to a.
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Performing an action a with increasing strength can be seen as moving along
the line xRE +(xa−xRE)ta, where ta ∈ R≥0

1 is a parameter proportional to the
muscle activation value. By construction, ta = 1 corresponds to the maximum
activation value registered during the data gathering phase. Figure 1 shows an
example for a = PW : for tPW = 0, the subject is at rest; as tPW increases the
subject starts power-grasping moving along xRE +(xPW −xRE)tPW . Under this
assumption, absence of intent mismatch for action a can be encoded as follows:

∀ta.(x = xRE + (xa − xRE)ta ∧ ta > 1) =⇒ fa(x) ≥ amax (2)

where fa(x) is the value of the approximant function for a applied to the input
x and amax is the full activation value (e.g., the value corresponding to the
full closure of the hand when the action is PW ). Therefore, a mismatch happens
whenever the value of muscular activation ta is greater than 1 (i.e., the maximum
value observed during data gathering) and the corresponding motor activation
value predicted by the approximant f is less than amax.

3.2 The Algorithm

Our repair procedure LP-Repair leverages training data and our prior knowl-
edge about the problem in order to modify the parameters of the machine learn-
ing model used in the controller. In particular, LP-Repair analyses the initial
model in order to determine if there exists an unsafe point, i.e., an instance of
intent detection mismatch. Such point is considered to create additional con-
straints for an optimization problem which, once solved, gives as solution a new
set of parameters for the machine learning model. This constraint generation
approach is justified by the fact that, in the feature space, the model is a lin-
ear function of the weights as per Eq. (1). The resulting model is guaranteed
to fix activation insofar the unsafe point is concerned. The procedure proceeds
iteratively verifying safety of the modified controller and, possibly, adding a
new constraint (corresponding to a new unsafe point) to the problem; when the
controller is deemed safe, the procedure ends.

Algorithm 1 shows the pseudocode of LP-Repair: X and Y are, respectively,
the inputs and outputs training data of our controller, w is the vector of the
weights of the machine learning model and A is a set of actions of interest.
safetyCheck(. . .) uses a set of points, in the original input space, with uniform
distances along the straight lines of interest in order to find the most unsafe point
for each action, i.e., the point whose output has the highest difference from the
expected value. This function returns a boolean variable safea (which is false if
an unsafe point has been found) and an unsafe point unsafePointa.

The procedure Opt(...) defines and solves the optimization problem presented
in Fig. 2, where wi is the i-th component of the vector of the weights, and εi is
the variation on the above mentioned component. D is the dimensionality of the
feature space, N is the number of samples in the dataset, and η corresponds to

1 In practice, the value of ta is upper bounded by operating range of EMG sensors.
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Algorithm 1. Repair procedure
1: procedure LP-Repair(X, Y , w, A)
2: safe ← False
3: ŵ ← w
4: unsafeSet ← ∅
5: while not safe do
6: safe ← True
7: for each action a ∈ A do
8: (safea, unsafePointa) ← safetyCheck(X,Y, ŵ, a)
9: if not safea then

10: safe ← False
11: unsafeSet ← (unsafeSet ∪ unsafePointa)
12: ŵ ← Opt(X,Y, ŵ, unsafeSet)

13: return ŵ

the sampling rate which determines the subset of the training set we consider in
the cost function. xrest

i is the i-th component of the data-point corresponding to
the center of the rest cluster, and xacta

i is the i-th component of the data-point
corresponding to the center of the cluster associated to the activation of a certain
action a. Finally, x

unsafej
i denotes the i-th component of the j-th unsafe point.

In more detail, Eq. 3a defines the cost function to be minimized, where: (i) the
first member corresponds to the modification of the parameters of the controllers
(wi), (ii) the second member tries to minimize the error on a subset of the training
set, and we do this in order to guarantee that the prediction performances are not
degraded and (iii) the third member is a tolerance on the error δ. Equations 3b and
3c encode the constraints to guarantee the correct output value respectively for the
center of the rest cluster and the centers of the activation clusters. Finally, Eq. 3d
presents the constraints we use to force the output values of the unsafe points to
be correct, where k is the total number of unsafe points found. It is important

min
D∑

i=1

|εi| +
floor(N/η)∑

l=1

∣∣∣∣∣Y
l·η −

D∑

i=1

(wi + εi)Xl·η
i

∣∣∣∣∣ + (3a)

D∑

i=1

(wi + εi)xrest
i = 0 (3b)

amax − ≤
D∑

i=1

(wi + εi)xacta
i ≤ amax + ∀a ∈ A (3c)

D∑

i=1

(wi + εi)x
unsafej
i ≥ amax, ∀j = 1, ..., k (3d)

Fig. 2. LP model used for repair.
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to highlight that, since all the points we consider in the problem are given, i.e.,
data-points are not variables, we can apply the feature mapping beforehand and
formulate the problem of repairing a non-linear classifier without introducing non-
linear constraints. For this reason, all the data-points in Eq. 3 are data-points in
the feature space, not in the input space.

3.3 Experimental Results

A prototypical implementation of our approach was tested2 on 18 datasets, each
consisting of 320 samples, gathered from human subjects. The actions of inter-
ests are rest, power grasp, wrist flexion and wrist extension. In all our tests our
procedure managed to terminate successfully, e.g. it managed to bring the con-
troller to a safe configuration. In Fig. 3a we show an example of how the output
of the controller for power-grasping is modified by LP-Repair. As it can be seen,
at the last iteration, the output is greater than one3 for all admissible values of
t above amax.

In Fig. 3b we show the quantities of interest in our analysis: the sampling
rate (S.R.) is the rate at which we pick samples from the training data to use
in the cost function. D is the parameter which determines the dimension of
the feature space. MSE-o (resp. MSE-r) is the mean square error computed on
the training set before (resp. after) the repair process. Time corresponds to the
CPU time needed for the repair process (in seconds). MSE and time values are
both computed as means on 18 datasets. We do not display the last three rows
of the Table when the sampling rate is 100 because the repair procedure did
not complete successfully, i.e., none of the 18 datasets yields a successful repair
due to conditioning problems reported by the LP engine. We have chosen to
compare MSEs before and after repair in order to verify that our repair process
does not degrade the performances of the controller substantially. As it can be
seen from Fig. 3b, the time complexity of the problem grows monotonically with
the sampling rate and the dimension of the feature space, but on average, the
runtime of the repair procedure is always less than 3 CPU minutes. In particular,
for values of D which are relevant from an engineering point of view, i.e., those
that yield MSE errors of less than 0.1%, we notice that the repair procedure is
feasible for all the sampling rates considered, and that the final accuracy, albeit
decreased, is still viable for practical applications. This is more evident as D
increases because as the representativity increases the repair process can modify
the controller without decreasing too much the accuracy of the prediction.

2 We implemented our procedure using Python version 2.7. and the libraries sklearn
and cvxopt for learning and optimization respectively. The default solver of cvxopt,
i.e., conelp, was used – see [27] for more details. All the experiments are capped
at 10 min of CPU time and 4 GBs of memory; experiments ran on a Ubuntu 18.04
machine equipped with a quad-core i5 Intel CPU running at 2.60 GHz.

3 Notice that for power-grasping amax is equal to one.
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(a)

S. R. D MSE-o MSE-r Time
10 10 0.0140 0.4370 6.967s
10 50 0.0020 0.0040 18.456s
10 100 0.0012 0.0025 39.752s
10 150 0.0008 0.0019 68.984s
10 200 0.0007 0.0019 103.650s
10 250 0.0006 0.0015 138.009s
10 300 0.0005 0.0012 179.034s
50 10 0.0146 0.5177 4.880s
50 50 0.0021 0.0282 14.988s
50 100 0.0011 0.0151 26.941s
50 150 0.0009 0.0216 41.134s
50 200 0.0007 0.0195 61.431s
50 250 0.0006 0.0134 83.657s
50 300 0.0005 0.0157 110.448s
100 10 0.0157 0.9239 4.041s
100 50 0.0019 0.0648 13.461s
100 100 0.0011 0.0517 25.440s
100 150 0.0009 0.0349 36.183s

(b)

Fig. 3. Results for power-grasping.

4 Conclusion

Our paper provides empirical evidence that convex optimization techniques can
be used to repair machine learned controllers for prosthetic hands insofar as
detection mismatch is concerned and controllers are learned using KRR-RFF.
The key factors of our successful evaluation are (i) a physiology-rooted modeling
of intent detection mismatch along regions that conjoin data clusters correspond-
ing to actions to those corresponding to rest conditions and (ii) a formalization
of the repair problem based on feature space rather than input space. The former
allows us to mathematically define intent detection mismatch, while the latter
allows us to solve the problem using a linear program, rather than a non-linear
one. The main feature of our method is that it repairs the controller without
requiring additional data to be gathered. This is very important in applica-
tions involving human subjects, where additional data acquisition can be time-
consuming, expensive or just plain impossible. While our method is effective on
a specific case study, we expect that our findings can help approach the problem
in different contexts where KRR-RFF is viable, as well as provide guidance to
the repair of controllers learned with different methods: our future work includes
furthering research along these directions.
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Abstract. The graph coloring problem appears in numerous applica-
tions, yet many state-of-the-art methods are hardly applicable to real
world, very large, networks. The most efficient approaches for massive
graphs rely on “peeling” the graph of its low-degree vertices and focus on
the maximum k-core where k is some lower bound on the chromatic num-
ber of the graph. However, unless the graphs are extremely sparse, the
cores can be very large, and lower and upper bounds are often obtained
using greedy heuristics.

In this paper, we introduce a combined approach using local search
to find good quality solutions on massive graphs as well as locate small
subgraphs with potentially large chromatic number. The subgraphs can
be used to compute good lower bounds, which makes it possible to solve
optimally extremely large graphs, even when they have large k-cores.

1 Introduction

The Vertex Coloring Problem (VCP) asks for the minimum number of colors
that can take the vertices of a graph G so that no two adjacent vertices share a
color. This number χ(G) is called the chromatic number of the graph.

The VCP has numerous applications. For instance, when allocating frequen-
cies, devices on nearby locations should work on different frequencies to avoid
interference. The chromatic number of this distance-induced graph is thus the
minimum span of required frequencies [1,23]. In compilers, finding an optimal
register allocation is a coloring problem on an interference graph of value live
ranges [6]. In timetabling, assigning time slots to lectures so that no two classes
attended by a common subset of student happen in parallel is a VCP [8].

The best performing approaches to the VCP often do not scale to extremely
large graphs such as, for instance, social networks. In fact, on networks with
several million nodes, even local search methods are seldom used and the best
approaches rely on scale reduction and greedy heuristics both for lower and upper
bounds [16,28]. Indeed, the main technique used for reducing the graph consists
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in removing vertices of degree lower than some lower bound on the chromatic
number. This technique might be very effective on sparse graphs especially when
a maximum or a maximal clique provides a good lower bound. Several real-
world extremely large sparse graphs can be efficiently tackled, even via complete
algorithms, after such preprocessing. However, even relatively sparse graphs can
have a large core of vertices whose degree within the core is higher than the
chromatic number. In this case, there are not many practical techniques for upper
bounds and most proposed approaches rely on greedy heuristics, in particular
Brelaz’ Dsatur [5]. Likewise, in this context there is virtually no method for
computing a lower bound other than finding a large clique in the graph. As a
result, there is little hope to optimally solve an instance with a large core, and
whose chromatic number is strictly larger than the size of its largest clique.

In this paper we consider two datasets of very large graphs. The first,
dimacs10, contains 30 graphs from the 10th DIMACS challenge [3]. It consists
of two subclasses, one of graphs with heavy-tailed distribution of degrees and
the other quasi-regular graphs. The second, snap, contains 75 graphs from the
Stanford Large Network Dataset Collection [15]. These graphs correspond to
social, citation, collaboration, communication, road or internet networks. They
range from tens of thousands to several million vertices and all have extremely
low density.

Whereas about half of these graphs are easy or even trivial for the state-
of-the-art approaches, the rest remain too large and hard to color even after
preprocessing. By combining several methods including local search, heuristics
and complete algorithms, we can solve a significant proportion to optimality
(close to 40%) of these hardest instances, even if they contain hundreds of thou-
sands of vertices after preprocessing and even if their chromatic number is larger
than their clique number. We survey the related work in Sect. 2, describe our
main contribution, a method to obtain good lower bounds on very large graphs
in Sect. 3, an effective local search approach to obtain good upper bounds in
Sect. 4, and a way to combine these in Sect. 5. We report on an experimental
comparison with the state of the art in Sect. 6.

2 Related Work

Heuristic methods are very relevant since they easily scale to very large inputs.
In particular, the Dsatur heuristic proposed by Brelaz [5] is instrumental in
the state-of-the-art method on the datasets we consider, FastColor [16]. The
Dsatur heuristic builds a coloring C mapping vertices to colors. It iteratively
choses a vertex from a set U initially containing all vertices V of the graph.
The chosen vertex v is the one with maximum saturation degree δsat(v) defined
as the number of colors among its neighbors N(v), i.e., δsat(v) = |{C(u) | u ∈
(N(v)\U)}|. In case of a tie, the vertex with maximum degree |N(v)| is selected.
Then it sets C(v) to the smallest possible color min(N\{C(u) | u ∈ (N(v)\U)}).

Dsatur-based branch and bound algorithms [9,26] are among the best com-
plete methods, alongside column generation approaches [18,20] and SAT-based



376 E. Hebrard and G. Katsirelos

models and hybrid algorithms [11,25,27,30]. However, none of these scale to
graphs with more than a few thousands vertices.

2.1 Local Search

Local search and meta-heuristics have long been applied to graph coloring (e.g.
[12]), and with great success. All the best known colorings on the commonly used
dataset from the second dimacs challenge [13] were obtained by such methods1.

In principle, local search approaches seem very well suited for coloring
large graphs, and indeed most algorithms scale very well to relatively large
graphs. However, surprisingly, we could not find a report of a local search or
a meta-heuristic approach applied to the large graphs of the snap and dimacs10
datasets, or on graphs of similar magnitude.

When the number of vertices grows really large, then one must be very care-
ful about the implementation details. As a matter of fact, several off-the-shelf
algorithms we tried used data structures with a space complexity quadratic in
the number of vertices, and are de facto irrelevant. Another critical point is the
size of the neighborhood. For instance, the most common tabu scheme consid-
ers all the (non-tabu) moves of any node sharing a color with a neighbor, to a
different color. Typical methods evaluate every such move and choose the one
that decreases the most the number of conflicts. The number of such moves to
consider in a graph with millions of vertices can be prohibitive, especially when
starting from low quality initial solutions. The state-of-the-art memetic algo-
rithm HEAD [21] uses a similar tabu search, and although we made superficial
changes to make it capable of loading massive graphs in memory, it performed
poorly on those. After a non-exhaustive review of the literature and of the avail-
able software, our belief is that these methods could be adapted to extremely
large and sparse graphs, but it would require non-trivial implementation work.

Blöchliger and Zufferey’s local search algorithm [4] appears to be relatively
promising in this context. The idea is to try to complete a partial coloring, i.e., a
partition of the vertices into of k disjoint independent sets {C1, . . . , Ck} plus an
extra set U of “uncolored” vertices. A move consists in swapping a node v ∈ U
with the vertices N(v)∩Ci for some color i ∈ {1, . . . , k}. A move (v, i) minimizing
|N(v)∩Ci| is randomly chosen. In order to escape local minima, after each move
(v, i), the moves (u, i) for u ∈ N(v) are added to a tabu list so that v will stay
with color i for a given number of iterations. When the set U becomes empty,
a k-coloring is obtained and the process can continue by randomly eliminating
one color i, that is, setting U = Ci and removing Ci from the partition.

2.2 Independent Set Extraction

Whereas sequence-based coloring heuristics (such as Dsatur) explore the ver-
tices and insert them into the smallest possible color class (or independent set),
Leighton’s RLF heuristic [14] extracts one maximal independent set (or color

1 http://www.info.univ-angers.fr/∼porumbel/graphs/.

http://www.info.univ-angers.fr/~porumbel/graphs/
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class) at a time. This technique has been shown to be more effective than Dsatur
on some graphs, however it has a higher computational cost.

Recent effective methods for large graphs rely on this principle. For instance,
Hao and Wu [10] recently proposed a method which iteratively extracts maximal
independent sets until the graphs contains no more than a given number of
vertices. Then, any algorithm can be used on the residual graph to produce a k-
coloring which can be trivially extended to a k +p-coloring of the whole graph if
p independent sets have been extracted. Moreover, the authors show that it may
be effective to iteratively expand the residual graph by re-inserting the vertices
of some independent set extracted in the first phase and run again the coloring
method on the larger residual graph. This method, however, was not tested on
graphs larger than a few thousand vertices.

2.3 Peeling-Based Approaches

The so-called “peeling” procedure is an efficient scale reduction technique intro-
duced by Abello et al. [2] for the maximum clique problem. Since vertices of
(k + 1)-cliques have each at least k neighbors, one can ignore vertices of degree
k−1 or less. As observed in [28], this procedure corresponds to restricting search
to the maximum χlow-core of G where χlow is some lower bound on ω(G):

Definition 1 (k-Core and denegeracy). A subset S ⊆ V is called a k-core
of the the graph G = (V,E) if the minimum degree of any vertex in the subgraph
of G induced by S is k. The maximum value of k for which G has a non-empty
k-core is called the degeneracy of G.

As observed by Verma et al. [28], the peeling technique can also be used for
graph coloring, since low-degree vertices can be colored greedily.

Theorem 1 (Verma et al. 2015). G is k-colorable if and only if the maximum
k-core of G is k-colorable.

Indeed, starting from a k-coloring of the maximum k-core of G, one can
explore the vertices of G that do not belong to the core and add them back in
the inverse of the degeneracy order, so that any vertex is preceded by at most
k − 1 of its neighbors, and hence can be colored without introducing a k + 1th
color. The other direction is trivial as the maximum k-core is a subgraph of G.

This preprocessing technique can be extremely effective on very sparse
graphs, and computing a lower bound of the chromatic number is relatively
easy: computing the clique number of a graph is NP-hard, but in practice it is
much easier than computing its chromatic number. However, the χlow-core might
be too large, and therefore a second use of the peeling technique was proposed
in [28]. The idea is to find a coloring of the maximum (χup − 1)-core of G where
χup is an upper bound on χ(G). The maximum (χup − 1)-core has several good
properties: it is often small, its chromatic number is a lower bound on χ(G), and
if there exists such a k-coloring with k < χup, then it can be extended, in the
worst case, to a (χup − 1)-coloring of G.
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Therefore, Verma et al. proposed the following method: Starting from the
bounds χlow ≤ χ(G) ≤ χup, the algorithm solves the maximum (χup −1)-core of
G to optimality, and extends the corresponding k-coloring greedily following the
inverse degeneracy order to a k′-coloring. Then it sets χlow to max(χlow, k) and
χup to k′. The algorithm converges since since χlow cannot decrease and χup is
guaranteed to decrease at each step.

Unfortunately, some graphs simply do not have small k-cores, even for k
larger than their chromatic number, so this method is limited to extremely sparse
graphs. Moreover, notice that the core must be solved to optimality in order to
extract relevant information from the iteration and converge.

The algorithm FastColor proposed by Lin et al. [16] also uses peeling, but
in a slightly different way. A k-bounded independent set is an independent set
whose vertices all have a degree strictly smaller than k. Their method iteratively
finds a maximal clique using a very effective sampling-based heuristic; removes
a χlow-bounded independent set where χlow is the size of the clique from the
graph; and computes an upper bound using the Dsatur heuristic.

This method is very effective, outperforming the approach of Verma et al.
on graphs with large cores. However, notice that the vertices in a χlow-bounded
independent set cannot be in a χlow-core since their degree is strictly thess than
χlow, and therefore this variant of peeling is less effective than Verma’s. The
two main components are the method to find a clique and the Dsatur heuristic
to find upper bounds. The former essentially samples a set of vertices to be
expanded to a maximal clique. When extending a clique, a number p of neighbors
are probed and the one that maximizes the size of the residual candidate set
of vertices to expand the clique is chosen. Several runs are performed with the
parameter p growing exponentially at every run. However, it cannot prove a lower
bound greater than the clique number. The runs of Dsatur are randomized and
augmented with the recolor technique [24]: when a new color class i is created
for a vertex v, if there exist two color classes Cj , Ck with j < k and a vertex u
such that N(v) ∩ Cj = {u} and N(u) ∩ Ck = ∅, then v and u can be recolored
to j and k respectively, thus leaving the color i free.

3 Iterated Dsatur

The overwhelmingly most common lower bound technique is to find a large
clique. Several other lower bounds have been used. For instance, two extra lower
bounds were proposed in [9]: the Lovász Theta number [17] and a second lower
bound based on a mapping between coloring and independent sets on a refor-
mulation of the graph [7]. Another lower bound based on finding embedded
Mycielskian graphs [22] was proposed in [11]. Moreover, the bounds obtained by
linear relaxation of either the standard model or the set covering problem from
the branch & price approach are very strong. However, it is difficult to make any
of these methods scale up to graphs with millions of vertices.

Many graphs of the dimacs10 and snap datasets have a chromatic number
equal to their clique number. Moreover, finding a maximum clique turns out to
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Algorithm 1. Iterated Dsatur
Algorithm: I-Dsatur

Data: Graph G, Initial order O0, color assignment C0, bounds χlow, χup

Result: χ(G)
i ← 0
while χlow < χup do

p ← 1 + max{j | Ci(oik) ≤ χlow ∀k < j}
Oi+1 ← {oi1, . . . o

i
p}

i ← i + 1
Ccore = ExactColoring(GOi)
if max(Ccore) > χlow then

χlow ← max(Ccore)
Ci ← Ci−1

else
Ci ← Ccore

(Oi, Ci) ← Dsatur(Oi, Ci)
if max(Ci) < χup then

χup ← max(C ′)

return (χlow) // = χ(G)

be much easier in practice than solving the VCP. Therefore, it is often possible
to find a maximum clique and they often provide a good lower bound.

In this section, we introduce a method to solve the VCP that scales up to
very large graphs. Moreover, it may compute non-trivial lower bounds, that is,
larger than the clique number. As a consequence, this method can produce opti-
mality proofs, even when ω(G) < χ(G). The principle is to iteratively compute
a coloring with Dsatur, and optimize its prefix up to the first occurrence of the
color χlow + 1. If there exists a χlow-coloring of the prefix, then the next itera-
tion of Dsatur will follow the optimized prefix, whose length will thus increase.
Otherwise, the lower bound can be incremented.

Algorithm 1 uses a variant of Dsatur which takes a total order O of a
subset of the vertices and a coloring C for these vertices. It assigns first vertices
in the given order and coloring, then colors the rest of the vertices using the
standard Dsatur heuristic. It returns the coloring C as well as the total order
O =

〈
o1, . . . , o|V |

〉
that it followed. In the following, we write max(C) for the

maximum color used, and C(v) for the color of v.
Algorithm 1 proceeds as follows. Given initial bounds χlow and χup, as well

as a coloring and ordering that witness the upper bound, we extract the core
graph, which is the subgraph GO1 of G induced by the vertices {o1, . . . , op} where
p is the maximum index for which all vertices o1, . . . , op−1 are assigned colors
in [1, χlow]. In other words, p is the index of the first vertex that is assigned a
color greater than the current lower bound χlow. The order of these p vertices is
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fixed for all subsequent runs of Dsatur. We then compute χ(GO1), using any
exact coloring algorithm. In our implementation this is the satisfiability-based
algorithm from [11]. If χ(GO1) > χlow then we can update χlow = χ(GO1). This
is because GO1 is an induced subgraph of G, so χ(GO1) is a lower bound on χ(G).
On the other hand, if χ(GO1) ≤ χlow, we fix the first p vertices to their order
and color them as in the optimal coloring of GO1 and use them as the starting
point for a run of Dsatur2. In either case, we proceed to the next iteration.

Algorithm 1 converges because at every iteration a growing subset of the
vertices are included in the core. Indeed, if χ(GOi) > χlow, then the lower
bound is increased, which means that GOi+1 is larger. If χ(GOi) ≤ χlow, then
the next run of Dsatur is constrained to assign at least op to a color in [1, χlow],
so the core graph at the next iteration contains at least one more vertex. In the
extreme, the algorithm will terminate when GOi = G.

4 Local Search for Massive Graphs

As far as we know, the best upper bound for the datasets we consider were
obtained using either Brelaz’ heuristic [16], or by greedily extending the optimal
solution of a k-core [28]. Therefore, whether local search can help remains to be
seen. In this section we describe the modifications we made to Blöchliger and
Zufferey’s tabu-search algorithm in order to adapt it to extremely large graphs.

Initialization. A first very modest, but significant, addition is a method to effi-
ciently initialize the solution of the local search. The algorithm described in [4]
is given an integer k and tries to find a k-coloring. Since our method produces
colorings during preprocessing (from the computation of the degeneracy ordering
and from Dsatur) it is immediate to initialize the solution with such a coloring
whereby the vertices of any one color class are considered “uncolored”. However,
we observed that it was important to choose a small color class, as they can be
extremely unbalanced and chosing randomly could lead to a prohibitively large
neighborhood to explore in the initial steps.

Chained Flat Moves. Recall that a move consists in swapping a node v from the
set U of uncolored vertices with its neighbors N(v) ∩ Ci in some color class i.
When N(v) ∩ Ci = ∅ this is an improving move as we have one less uncolored
node. Now we call a move (v, i) such that |N(v) ∩ Ci| = {u} a flat move. We
know that no strictly improving move was possible, so if there is an improving
or a flat move involving u it is likely to be selected next. Therefore, in the event
of a flat move we greedily follow chains of flat moves from the previous vertex
until reaching an improving move, or until no flat or improving move is possible
for that vertex. This technique does not change the neighborhood, but explores
it in a more greedy way and is often beneficial. Moreover, we observed that it
was relatively easy to assess if such moves were effective, by counting how many
of them lead to an improving move, and by checking their length.
2 Dsatur denotes our implementation of the Dsatur heuristic.
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Algorithm 2. Local Search
Algorithm: TabuSearch

Data: Graph G = (V,E), Coloring C, Parameters I, t
Result: A coloring of G
best ← C, k ← 0
foreach v ∈ V ′, 1 ≤ i ≤ max(C) do T i

v = 0
while k ≤ I do

1 c ← arg mini(|Ci|)
U ← Cc

while i ≤ I and Ci 	= ∅ do
v, i ← arg minu∈U,j �=c|T j

u≤k(|N(u) ∩ Cj |)
2 if |N(v) ∩ Ci| = 1 then

repeat
C(v) ← i
v′ ← v, i′ ← i
v, i ← arg minu∈Ci′ ,j �∈{c,i′}|T j

u≤k(|N(u) ∩ Cj |)
until |N(v) ∩ Ci| = 1
if |N(v) ∩ Ci| > 1 then

C(v) ← c

T i′
v ← k + t

3 else
C(v) ← i
foreach u ∈ N(v) ∩ Ci do

C(u) ← c
T i
u ← k + t

k ← k + 1

if U = ∅ then best ← C
return best

Algorithm 2 is a pseudo-code of our implementation of Blöchliger and Zuf-
ferey’s tabu search. We denote Ci the set of vertices of color i, that is Ci = {v |
C(v) = i}. The outer loop and the color selection in line 1 are not in the original
implementation, as well as the random path of flat moves corresponding to the
lines between 2 and 3. Notice that ties are broken randomly in every “arg min”
operator. Moreover, the management of the tabu list (T i

v) as well as of the itera-
tion limit, and the choice of applying a random path move is more complex than
the pseudo-code shows. We set the parameters as follows.

Tabu List. Here we used a relatively straightforward scheme which is in fact a
simplified version of what is done in the original code. Every 10000 iterations,
the tabu tenure parameter t is decremented, unless it is null or the delta between
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the lowest and largest size for U (the set of “uncolored” vertices) is lower than
or equal to 1 since the last update of the tabu tenure. In both of the latter cases,
t is increased by its initial value (the initial value was 10 in all our experiments).

Iteration Limit. In order to dynamically adapt the number of iterations to the
progress made by the tabu search, we used the following policy: Let k be the
current number of iterations and I the current limit. When the limit is reached
within the outer loop, we check if there was any progress on the upper bound
χup since the last limit update. If there was some progress, then we increase the
limit by the current number of iterations (I = I + k). Now, let δ be the value of
I − k at the start of the inner loop. When the limit is reached within the inner
loop, we check if there was any progress on the number of uncolored vertices
(|U |) since the last limit update. If there was some progress, then we increase
the limit by δ, otherwise we increase it by δ/2. We used an initial limit of 250000.

Limit on Chains of Flat Moves. In some cases it is possible to explore very long
paths of flat moves hence slowing down the algorithm. We introduce a parameter
p (originally set to 1) controlling the probablity 1/p of preferring such moves.
Then we simply check the average length l of these moves and their frequency
f and adjust p in consequence. In practice, we double p when l × f ≥ 20 and
decrement it when it is strictly greater than 1 and l × f ≤ 3.

5 Overall Approach

Our approach combines the peeling preprocessing from Sect. 2, the tabu search
described in Sect. 4 and the iterated Dsatur scheme described in Sect. 3.

The principle we use for choosing the exact sequence of techniques is to
apply first those that have the greatest effect for the least computational cost.
Therefore, we first call DegeneracyOrder to compute not only the degeneracy
of the graph, but also the smallest-last ordering [19] O, which is the order in
which vertices are processed by the degeneracy algorithm and the array D, which
contains the degrees of the vertices during the elimination procedure. The actual
degeneracy D is only implicitly contained there as the maximum value in the
array, and D+1 is an upper bound on the chromatic number. We also compute a
lower bound by finding a clique. Using this lower bound and the order O, we can
compute the peeled graph H by removing the vertices whose degree D during
the degeneracy computation is at most k.

Although finding the maximum clique is NP-hard, it turns out to be much
easier than coloring in the dataset we used, so we solve the problem exactly
rather than use a heuristic. It also has a great effect on the rest of the algorithm,
as a better initial lower bound results in greater scale reduction from peeling
and hence improves all heuristics used further on.

After peeling, we first improve the upper bounds using the Dsatur heuris-
tic (Dsatur) and then local search. Finally, we switch to iterated Dsatur
(I-Dsatur), which is exact and hence the most computationally expensive phase.



A Hybrid Approach for Exact Coloring of Massive Graphs 383

Algorithm 3. Graph Coloring
Algorithm: LS+I-Dsatur

Data: Graph G = (V,E), Parameters I, t
Result: The chromatic number of G

/* Preprocessing phase */
1 (O,D) ← DegeneracyOrder(G)

χup ← max(D) + 1
χlow ← |FindClique(G)|
H ← subgraph of G induced by {ok, . . . , o|V |} with
k = max{i | j ≥ i or D(j) < χlow}
(O,C) ← Dsatur(H)
χup ← max(χup,max(C))

/* Local search phase */
C ← TabuSearch(H, C, I, t)
χup ← min(χup,max(C))
foreach v ∈ V ′ do δsat(v) ← |{C(u) | u ∈ N(v)}|

2 O = {o1, . . . , o|V ′|} with i < j =⇒ δsat(oi) ≥ δsat(oj)

/* Iterated Dsatur phase */
(O,C ′) ← Dsatur(H, O, C)

return I-Dsatur(H, O, C’, χlow, χup)

One complication is that the iterated Dsatur phase is initialized with the
current best solution. If this solution was found by the local search algorithm,
there is no ordering that I-Dsatur can use to extract a core. We can produce a
relevant ordering from the local search solution simply by sorting the vertices by
saturation degree within the local search coloring3 as shown in line 2. However,
this coloring may not use the smallest colors for the first vertices in the order,
therefore, we apply the following transformation:

We run Dsatur following the ordering O. When processing node v, we check
if the color C(v) assigned by the tabu search to v has already been mapped to
some color, if not, we map it to the minimum color c that v can take and assign
c to v. We do the same if the color C(v) happens to be already mapped to c.
Otherwise, we switch to the standard Dsatur from that point on.

The resulting coloring is similar (at least in the prefix) to the LS solution,
however it is in a form that might have been produced by Dsatur.

3 Ties broken by overall degree.
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6 Experimental Results

Our implementaton uses dOmega [29] for finding the initial maximum clique, and
MiniCSP4 as the underlying CDCL CSP solver during the I-Dsatur phase.5

We compare it to the state of the art: the FastColor approach [16]. Unfor-
tunately, we could not compare with the approach described in [28] since the
coloring part of this code is now lost.6 However, this latter approach is dominated
by FastColor on instances with large cores, hence the hardest.

Every method was run 20 times with different random seeds and with a time
limit of one hour and a memory limit of 10 GB. The memory limit was an issue
only for dOmega which exceeded the memory limit on 3 instances. We raised the
limit to 50 GB in these three cases. We used 4 cluster nodes, each with 35 Intel
Xeon CPU E5-2695 v4 2.10 GHz cores running Linux Ubuntu 16.04.4.

Table 1. CPU time (easy dimacs10 instances)

|V |/|E| (scaled) FastColor LS+I-Dsatur

CPU time (ms) CPU time (ms)

min avg max min avg max

as-22july06 23k/48k 144/2758 13 18 23 2666 6083 9700

caidaRouterLevel 192k/609k 2861/56k 229 432 694 430 2785 29066

citationCiteseer 268k/1157k 2779/33k 489 1131 3143 404 552 661

cnr-2000 326k/2739k 0/0 1997 2360 2649 375 426 548

coAuthorsCiteseer 227k/814k 0/0 107 189 383 215 300 367

coAuthorsDBLP 299k/978k 0/0 130 301 564 321 434 592

coPapersCiteseer 100k/498k 0/0 25 49 93 73 96 147

coPapersDBLP 540k/15m 0/0 1175 1439 1903 1769 2091 2541

cond-mat-2005 40k/176k 0/0 19 41 74 23 40 54

eu-2005 333k/3949k 2128/106k 3383 3912 4844 542 690 824

in-2004 163k/2602k 0/0 721 1726 2042 206 263 331

rgg-n-2-17-s0 131k/729k 0/0 108 235 319 155 217 281

rgg-n-2-19-s0 524k/3270k 0/0 615 1678 2888 843 1233 1702

rgg-n-2-20-s0 1049k/6892k 59/637 1486 3131 7094 1953 2962 4056

rgg-n-2-21-s0 2097k/14m 0/0 5386 10664 15991 4476 6329 8262

rgg-n-2-22-s0 4194k/30m 0/0 9673 24810 45292 10642 14192 17222

rgg-n-2-23-s0 8389k/64m 0/0 17501 56107 92511 24693 30174 36390

rgg-n-2-24-s0 17m/133m 0/0 33786 137946 439554 56001 63153 89313

belgium osm 1441k/1550k 5/8 229 342 905 1061 1398 1665

ecology1 1000k/1998k 1000k/1998k 500 907 4008 1288 1568 1816

luxembourg osm 115k/120k 0/0 9 19 46 38 65 85

preferentialAttachment 100k/500k 0/0 266 1199 3146 136 187 242

Average CPU time 3538 11302 28553 4923 6147 9358

The first two columns of Tables 1, 2, 3 and 5 give the size of the graph (number
of vertices/edges) before and after scale reduction. In all these tables, bold font
4 Sources available at: https://bitbucket.org/gkatsi/minicsp.
5 Sources available at: https://bitbucket.org/gkatsi/gc-cdcl/src/master/.
6 Personnal communication with the authors.

https://bitbucket.org/gkatsi/minicsp
https://bitbucket.org/gkatsi/gc-cdcl/src/master/
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Table 2. CPU time (easy snap instances)

|V |/|E| (scaled) FastColor LS+I-Dsatur

CPU time (ms) CPU time (ms)

min avg max min avg max

as-skitter 1696k/11m 4410/318k 9168 12775 15628 24464 36847 75037

ca-AstroPh 19k/198k 0/0 12 32 68 18 27 32

ca-CondMat 23k/93k 0/0 10 18 28 9 19 34

ca-GrQc 5246/14k 0/0 1 3 8 0 2 3

ca-HepPh 12k/118k 0/0 39 44 83 8 13 18

ca-HepTh 9880/26k 0/0 2 4 6 1 5 8

cit-HepPh 35k/421k 8491/188k 110 5095 40103 5827 34997 194368

athletes edges 14k/87k 42/793 6 14 28 10 17 26

com-amazon.ungraph 335k/926k 0/0 174 290 532 423 555 704

com-dblp.ungraph 317k/1050k 0/0 157 302 722 415 510 715

com-lj.ungraph 3925k/34m 383/73k 17624 49986 74537 17069 23097 29383

company edges 14k/52k 0/0 5 8 12 6 10 13

government edges 7057/89k 856/26k 6 25 54 48 67 77

new sites edges 28k/206k 36/615 16 47 74 25 37 47

politician edges 5908/42k 527/11k 25 46 74 5012 5596 6467

public figure edges 12k/67k 544/16k 13 48 73 40 54 66

tvshow edges 3892/17k 0/0 1 2 5 0 2 3

wiki-topcats 1788k/25m 106k/5163k 20920 50524 85890 74802 91791 103097

loc-gowalla edges 197k/950k 3420/121k 181 556 920 509 624 775

loc-gowalla totalCheckins 5669k/6442k 841k/1630k 5260 7083 13508 5833 6842 8193

Amazon0302 262k/900k 0/0 175 366 681 323 515 776

Amazon0312 401k/2350k 0/0 417 671 1023 899 1109 1811

Amazon0505 410k/2439k 0/0 442 694 1185 943 1185 1789

Amazon0601 403k/2443k 0/0 415 705 1176 715 1124 1649

roadNet-CA 1965k/2767k 0/0 507 835 1902 1916 2491 3264

roadNet-PA 1088k/1542k 0/0 269 520 1303 948 1323 2089

roadNet-TX 1380k/1922k 0/0 304 498 1023 1356 1584 1973

soc-sign-epinions 132k/711k 251/21k 352 1131 1673 300 361 417

HU edges 48k/223k 0/0 22 144 405 56 69 86

RO edges 42k/126k 147/722 18 59 101 22 46 71

soc-LiveJournal1 4847k/43m 474/106k 79695 107923 129442 22337 29664 35301

soc-pokec-relationships 1633k/22m 262k/8307k 8430 54346 149444 22600 27607 31308

twitter combined 81k/1342k 699/48k 1252 1836 3548 319 422 487

web-BerkStan 685k/6649k 392/41k 4893 5350 6718 969 1209 1907

web-Google 876k/4322k 48/1121 692 1662 4137 1328 1863 3197

web-NotreDame 326k/1090k 1367/108k 122 182 259 302 385 514

web-Stanford 282k/1993k 1252/72k 940 1457 1794 470 606 746

wiki-RfA 38k/94k 7286/65k 48 56 71 100 119 137

Average CPU time 4019 8035 14164 5011 7179 13331

is used to highlight the (strictly) best outcomes. In Tables 1 and 2 we report the
CPU time in milliseconds for the “easy” instances of the dimacs10 and snap
sets, respectively. We say that an instance is easy when both I-Dsatur and
FastColor solved to optimality. We give the minimum, maximum and average
CPU time – parsing excluded – across the 20 random runs on the same instance.
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Table 3. Lower and upper bounds (hard dimacs10 instances)

|V |/|E| (scaled) FastColor LS+I-Dsatur

χlow χup χlow χup

max avg min avg max avg min avg

kron g500-logn16 55k/2456k 6885/1495k 136 136.00 151 152.42 1136 136.00 3145 153.40

333SP 3713k/11m 2261k/6759k 4 4.00 5 5.00 14 4.00 05 5.00

G n pin pout 100k/501k 100k/501k 4 4.00 6 6.00 34 3.95 25 5.00

audikw1 944k/38m 936k/38m 36 36.00 40 40.89 136 36.00 239 39.30

cage15 5155k/47m 5134k/47m 6 6.00 12 12.00 16 6.00 211 11.00

ldoor 952k/23m 952k/23m 21 21.00 32 32.75 323 21.65 228 29.85

smallworld 100k/500k 100k/500k 6 6.00 7 7.00 1∗6 6.00 26 6.00

wave 156k/1059k 156k/1058k 6 6.00 8 8.00 37 6.05 18 8.00

Table 4. Summary (hard dimacs10 instances)

Method χlow χup Opt. CPU

avg avg (G) avg avg (G) avg avg

LS+I-Dsatur 27.456 11.752 32.194 14.857 0.125 635682

FastColor 27.182 11.680 32.792 15.814 0.000 346630

Tables 3 and 5 show the lower (χlow) and upper bounds (χup) found by
I-Dsatur and FastColor on the rest of the dataset (“hard” instances). Both
for the lower and upper bound, we give the best and average value across the
20 random runs on the same instance. We use an asterisk (∗) to denote that
the maximum lower bound found over the 20 runs is as high as the minimum
upper bound, signifying that the method is able close the instance. Moreover,
for the results of I-Dsatur, we denote via a superscript in which phase of the
approach the best outcome was found. A value of 0 stands for the computation
of the degeneracy ordering, 1 for the preprocessing phase, 2 for the local search
and 3 for the iterated Dsatur phase.

Finally, Tables 4 and 6 give a summary view for hard instances, of respec-
tively the dimacs10 and snap datasets, with the arithmetic and geometric mean
bounds; overall ratio of optimality; and overall mean CPU time.

We first observe that for many of these graphs (see Tables 1 and 2) finding
an optimal coloring is easy. One reason is that their clique and chromatic num-
bers are equal. However, this is also the case for some graphs classified here as
“hard”. Whereas we use a complete maximum clique algorithm in our approach,
FastColor does not and yet it finds a maximum clique in all the “easy” graphs
and in most of the “hard” ones. Moreover, both solvers were able to quickly find
a maximum clique and an optimal coloring. In particular, many easy graphs
are solved during the preprocessing phase, the maximum (χlow − 1)-core being
very small. Those graphs are therefore trivial both for FastColor and for our
approach, which are in fact similar on those. There is a slight advantage to our
method in terms of average run time, both for easy dimacs10 and easy snap
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Table 5. Lower and upper bounds (hard snap instances)

|V |/|E| (scaled) FastColor LS+I-Dsatur

χlow χup χlow χup

max avg min avg max avg min avg

cit-HepTh 28k/352k 6819/188k ∗23 23.00 23 23.68 3∗23 22.25 323 24.00

artist edges 51k/819k 18k/591k 18 18.00 19 19.94 118 18.00 320 20.15

com-orkut.ungraph 3072k/117m 742k/57m 50 49.44 75 77.83 151 51.00 173 73.00

com-youtube.ungraph 1135k/2988k 27k/708k 17 17.00 23 23.00 318 18.00 124 24.00

email-Eu-core 986/16k 527/13k 18 18.00 19 19.00 3∗19 19.00 319 19.00

email-Enron 37k/184k 2707/76k 20 20.00 23 23.47 320 19.05 324 24.00

email-EuAll 265k/364k 1570/40k 16 16.00 18 18.00 3∗18 18.00 318 18.00

p2p-Gnutella04 11k/40k 6899/35k 4 4.00 5 5.00 34 4.00 15 5.00

p2p-Gnutella05 8850/32k 4994/25k 4 4.00 5 5.00 14 4.00 15 5.00

p2p-Gnutella06 8717/32k 5548/27k 4 4.00 5 5.00 34 4.00 15 5.00

p2p-Gnutella08 6301/21k 2541/13k 5 5.00 6 6.00 3∗6 6.00 16 6.00

p2p-Gnutella09 8114/26k 3835/19k 5 5.00 6 6.00 3∗6 6.00 16 6.00

p2p-Gnutella24 27k/65k 11k/46k 4 4.00 5 5.00 34 3.80 15 5.00

p2p-Gnutella25 23k/55k 7892/33k 4 4.00 5 5.00 14 4.00 15 5.00

p2p-Gnutella30 37k/88k 12k/53k 4 4.00 5 5.00 14 4.00 15 5.00

p2p-Gnutella31 63k/148k 20k/87k 4 4.00 5 5.00 14 4.00 15 5.00

soc-sign-Slashdot081106 77k/469k 4760/164k 26 26.00 29 29.00 3∗29 28.90 329 29.00

soc-sign-Slashdot090216 82k/498k 4654/163k 27 27.00 29 29.00 3∗29 28.95 329 29.05

soc-sign-Slashdot090221 82k/500k 4703/165k 27 27.00 29 29.00 3∗29 28.75 329 29.30

soc-sign-bitcoinalpha 3783/14k 400/5352 10 10.00 12 12.00 3∗12 12.00 212 12.00

soc-sign-bitcoinotc 5881/21k 513/7516 11 11.00 12 12.00 3∗12 12.00 312 12.00

HR edges 55k/498k 20k/299k 12 12.00 13 13.00 112 12.00 213 13.00

Wiki-Vote 7115/101k 2262/83k 17 17.00 22 22.00 319 17.55 322 22.85

facebook combined 4039/88k 480/29k 69 69.00 70 70.00 3∗70 70.00 370 70.00

gplus combined 108k/12m 13k/6831k 325 324.05 327 327.84 3∗326 324.40 3326 327.40

soc-Epinions1 76k/406k 4782/205k 23 23.00 28 28.00 123 23.00 129 29.00

CollegeMsg 1899/14k 911/12k 7 7.00 9 9.00 3∗9 8.30 39 9.05

sx-askubuntu 157k/456k 1834/59k 23 23.00 25 25.00 324 24.00 325 25.10

sx-mathoverflow 25k/188k 1584/80k 30 30.00 35 35.95 332 31.90 336 36.45

sx-stackoverflow 2584k/28m 111k/11m 55 55.00 66 66.16 155 55.00 167 67.00

sx-superuser 192k/715k 2868/118k 29 29.00 30 30.00 3∗30 30.00 330 30.00

wiki-talk-temporal 1094k/2788k 12k/643k 25 25.00 46 46.00 327 25.95 346 46.25

wiki-Talk 2394k/4660k 15k/771k 26 26.00 48 48.35 329 28.30 348 48.80

wiki-Vote 7120/101k 2262/83k 17 17.00 22 22.00 319 17.80 322 22.70

Table 6. Summary (hard snap instances)

Method χlow χup Opt. CPU

avg avg (G) avg avg (G) avg avg

LS+I-Dsatur 28.938 15.893 32.591 18.480 0.332 209093

FastColor 27.784 15.049 32.137 18.203 0.009 178857
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instances, which can presumably be attributed to our peeling method being
more efficient than the independent set extraction in FastColor.

Of the hard dimacs10 instances in Table 3, all but kron g500-logn16 are
quasi-regular, i.e., every vertex has roughly the same degree. These graphs do
not have small cores, hence the peeling phase is irrelevant. We can see that on
these graphs, the tabu search algorithm significantly outperforms Dsatur and
therefore our approach dominates FastColor for the upper bound. For instance,
on ldoor, LS+I-Dsatur finds a 29.85-coloring on average whereas the best col-
oring found by FastColor has 32 colors. On the instance kron g500-logn16,
the tabu search performs poorly and is on average dominated by FastColor. In
one run, however, the iterated Dsatur algorithm is able to find a much better
coloring using 6 fewer colors than the best one found by FastColor. The aggre-
gated results given in Table 4 show that LS+I-Dsatur outperforms FastColor
both for the lower and upper bounds on this dataset.

The iterated Dsatur algorithm is also able to improve the lower bound of 2
instances out of 8 (ldoor and G n pin pout). However, for the latter, FastColor
produces the same lower bound (4) which is larger than the maximum clique
found by dOmega. We do not know how to explain this.

On hard instances of the snap dataset (Table 5), the picture is very different
with in particular the tabu search being almost useless. The best coloring found
by our method was obtained during the local search phase only once, for the
instance HR edges. In all other cases the best coloring was produced either during
preprocessing via Dsatur, or during the iterated Dsatur phase. Overall, as
shown in Table 6, this is slightly less efficient for the upper bound than FastColor
which repeatedly uses Dsatur and eventually finds better colorings in several
instances whilst LS+I-Dsatur is best only on four instances.

The iterated Dsatur phase, however, is very effective with respect to the
lower bound. It improves on the maximum clique found by dOmega in 25 out of
34 instances, and it matches the best upper bound for 14 instances. Here again,
on three instances (cit-HepTh, email-Enron and p2p-Gnutella24) FastColor
outputs a lower bound greater than that found by dOmega. Overall, our approach
can close 14 of the hard instances, for 10 of which7, the optimal coloring was not
previously known, as far as we know. FastColor can only close one of them.

7 Conclusions

We have presented a new algorithm for exactly computing the chromatic number
of large real world graphs. This scheme combines a novel local search component
that performs well on massive graphs and gives improved upper bounds as well as
an iterative reduction method that produces much smaller graphs than previous
state of the art scale reduction methods. This scheme involves extracting more
information than simply a coloring from the Dsatur greedy coloring heuristic
and iteratively solving reduced instances with a complete, branch-and-bound
7 email-Eu-core, email-EuAll, Gnutella08/09, bitcoinalpha, bitcoinotc,
facebook, gplus, CollegeMsg and sx-superuser.
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solver, in such a way that lower bounds produced for the reduced graphs are also
lower bounds of the original graph. Combined with the fact that we achieve more
significant reduction than the current state of the art means that we can find non-
trivial lower bounds even when peeling-based reduction cannot reduce the graph
to fewer than hundreds of thousands of vertices. Indeed, in our experimental
evaluation on a set of massive graphs, this method is able to produce both
better lower and upper bounds than existing solvers and proves optimality on
several (almost 75%) of them.

We expect that finding a method to extract cores from other heuristics, such
as our local search procedure will further improve performance.
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Abstract. When demand for employees varies throughout the day, the
minimum shift design (MSD) problem aims at placing a minimum num-
ber of shifts that cover the demand with minimum overstaffing and
understaffing. This paper investigates different constraint models for the
problem, using a direct representation, a counting representation and
a network flow based model and applies both constraint programming
(CP) and mixed integer programming (MIP) solvers. The results show
that the model based on network flow clearly outperforms the other mod-
els. While a CP solver finds some optimal results, with MIP solvers it
can for the first time provide optimal solutions to all existing benchmark
instances in short computational time.

Keywords: Shift design · Constraint programming ·
Mixed integer programming · Network flow

1 Introduction

In many professions there is demand to work in different shifts. However, there
are several steps in the process of generating schedules for employees. When
demand fluctuates throughout the day, a decision has to be made regarding
the placement of various shifts along the day to cover the demand as well as
possible. This could be done in an integrated fashion, performing the assignment
of employees and the placement of shifts at the same time, or the steps could
be considered separately, first determining the shifts and the required number
of employees per shift before assigning concrete employees in the next step.

The minimum shift design (MSD) problem aims at this first step of designing
the required shifts while minimizing the amount of understaffing and overstaffing
regarding the given demand and in addition keeping the total number of different
shifts to a minimum as well, as schedules with fewer shifts are deemed to be easier
to read and manage. As the problem has high practical importance, there has
been work in literature as well as implementations in commercial software like
the Operating Hours Assistant (OPA) [21] from XIMES Corp.

Although previous techniques in the literature give good results in practice,
solving of some challenging instances to optimality is still an open question.
c© Springer Nature Switzerland AG 2019
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This paper presents new models for the problem built in the solver independent
modelling language MiniZinc [28]. The first uses a direct representation of the
problem and serves for comparison. Another model is built based on counting
remaining shift times. The final model turns some of the constraints into a
network flow constraint to model the assignment of shifts including understaffing
and overstaffing.

All models are then evaluated using both the lazy clause generation solver
Chuffed [10] and the MIP solvers Gurobi [22] and CPLEX [14] on the stan-
dard benchmark datasets that range from instances allowing a perfect cover to
hard instances where optima were not known so far. The results show that the
model based on network flow clearly outperforms the other models and that
MIP solvers, especially Gurobi, perform very well using the new model. With
this model, for the first time we can solve all benchmark instances to optimality
within short computational time.

2 Related Work

The need to schedule employees in different shifts in order to cover different kinds
of demand arise in many professions like healthcare, transportation, production
or call centers. As results influence the lives of many people, large amounts of
research exist on these topics and are described in several reviews [7,9,16,20].

The MSD problem is described in [26] where a tabu search approach with
several neighbourhood relations is proposed. This work also considers a forth
objective that is not used in the following works, setting bounds for the average
number of duties per week. Di Gaspero et al. [17] provide an improved local
search technique and analyse the complexity of the problem. They describe the
relation of the problem to a min-cost max-flow problem, therefore raising the
connection to the usage of network flow. More precisely, the problem could be
represented as a min-cost max-flow problem as long as the minimization of shifts
is not taken into account. They use this relation to provide a hybrid method
combining min-cost max-flow with local search.

Recent approaches include a formulation in answer set programming [1] that
is able to provide several optimal results, while it struggles with instances that
do not admit an exact cover of the demand. Good results have been achieved
using MIP in [24], providing optimal solutions for most instances with Gurobi
and CPLEX using a runtime of two hours.

A related problem is shift scheduling [3,4,8,15,31], which deals with one or
more days, potentially including activities, skills or breaks. In contrast, MSD
deals with the minimization of the number of shifts across several days includ-
ing cyclicity. Recently, regular and context-free languages [11–13,23,29] as well
as column generation techniques [25,30] have been applied to shift scheduling
successfully. In [25,30], networks are used where paths correspond to feasible
assignments of activities.

Further the scheduling of breaks within shifts [5,6,32] or the combined prob-
lem of shift and break scheduling [2,18,19] are considered by several authors.
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In [2] results for the first MSD benchmark dataset are given as well, however,
applying weights for under- and overstaffing per timeslot instead of per minute.

3 Problem Description

The MSD problem aims at generating a set of shifts and determining the required
number of employees for each shift on each day in the planning period. The
specification is mainly based on [26]. The problem input is defined as follows.

– n consecutive timeslots [a1, a2), [a2, a3), . . . , [an, an+1), each slot [ai, ai+1)
with the same slotlength sl in minutes and with a requirement for work-
ers Ri indicating the optimal number of employees required at that timeslot.
A full day consists of a whole number of slots, therefore, sl divides 24 · 60.
The time from a1 to an+1 is called the planning period and consist of d days,
where d is integer.

– s shift types t1, . . . , ts, each of them associated with a minimum and maximum
start time smins and smax s, given in timeslots of the current day, as well as
minimum and maximum length lmins and lmax s, given in timeslots. Note that
shifts can extend to the following day. We consider a cyclic schedule where
shifts extending beyond an+1 continue from a1. For simplicity, we assume
that shift types never overlap, i.e, no shift can be of two types at the same
time. If necessary, new shift types can be introduced to resolve overlap.

For illustration purpose throughout the paper consider the following example
TOY with d = 1 and sl = 180. The two shift types are given in Table 1. Corre-
sponding values are provided both in timeslots and hour:minute notation. The
demand is given as R = [1, 1, 4, 3, 5, 5, 2, 3].

Table 1. Shift types for TOY

Shift type smins time smax s time lmins time lmax s time

t1 2 6:00 2 6:00 2 6:00 4 12:00

t2 4 12:00 7 21:00 2 6:00 4 12:00

In order to provide a feasible solution, shifts are only allowed within the time
windows specified by the shift types. Among feasible solutions, the following
criteria have to be minimized.

– T1: Sum of excesses of workers across the whole planning period (per minute).
– T2: Sum of shortages of workers across the whole planning period (per

minute).
– T3: Number of shifts.
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T =
3∑

i=1

αi · Ti (1)

This results in a multi-criteria optimization problem where the individual
objectives are combined according to given weights αi. Equation (1) provides
the combined objective T .

A solution is given as a set of feasible shifts and their corresponding numbers
of assigned employees for each day. Note that a shift is considered in use if there
is any day in the planning period where employees are assigned to the shift.

Fig. 1. Optimal solution for TOY

For TOY, assuming α1 = α2 = 1 and α3 = 180, an optimal solution with no
understaffing or overstaffing and three used shifts is easily found and given in
Fig. 1. Remember that usually instances consider multiple days.

4 Constraint Models

In this section we describe three different ways to provide a constraint model
for the problem. This includes a direct model DIRECT, a model using a counting
representation COUNT and a model based on a network flow constraint NETWORK.
For all models, we define the number of intervals per day int = 24·60

sl , and the
sets I = {1, . . . , int}, D = {1, . . . , d}, S = {1, . . . , s} and N = {1, . . . , n}.

4.1 Direct Model

The direct model DIRECT represents a solution directly by using decision variables
that model the number of employees assigned to each possible shift on each day.
More precisely, for each combination of a shift start time and shift length of
any shift type, the number of employees is represented for each day. This can
be done by a 3-dimensional matrix E of size int × max(lmax s) × d. Here, the
first dimension represents all possible shift start times in the day, the second
all possible lengths and the third all days. All elements that are not allowed by
any shift type can be set to 0 immediately. To reduce the size of the matrix, the
following sets are defined.

St = {min(smin), . . . ,max(smax )} (2)
L = {min(lmin), . . . ,max(lmax )} (3)
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Equation (2) defines the set of indices in use for the first dimension of E from
the earliest minimum start time to the latest maximum start time, (3) defines
the set of indices for the second dimension from the smallest minimum length
to the largest maximum length. Next, we deal with infeasible shifts as follows.

Check i,j = (∃k ∈ S : i ≥ smink ∧ i ≤ smaxk ∧ j ≥ lmink ∧ j ≤ lmaxk) (4)
¬Check i,j → (∀k ∈ D : Ei,j,k = 0) ∀i ∈ St, j ∈ L (5)

For convenience, Eq. (4) defines a predicate that is true if the shift starting at
i with length j is a valid shift for any type k. In Eq. (5), for any combination of
a start time i and a length j, if there is no shift type allowing this combination,
then for all days the number of employees is set to 0. Note that this only depends
on input parameters and is already used during compilation of the model.

In order to track the number of employees working at any timeslot i, we
introduce the workforce array W of length n.

W(i−1)·int+j =
∑

k∈St
k<j

∑

�∈L
k+�≥j

Ek,�,i +
∑

k∈St
k−int<j

∑

�∈L
k+�−int≥j

Ek,�,i−1

∀i ∈ D, j ∈ I (6)

Equation (6) sums up the shifts active at timeslot j on day i. The first sum
spans all shifts that start before j and end not earlier than j. The second sum
deals with shifts that are active after midnight. Those are still assigned to day
i − 1, but contribute to the timeslot on day i if start and end, corrected by int ,
match the requirements.

Now the optimization goals can be defined in terms of the model.

T1 = sl ·
∑

i∈N

max{Wi − Ri; 0} (7)

T2 = sl ·
∑

i∈N

max{Ri − Wi; 0} (8)

T3 =
∑

i∈St

∑

j∈L

(∃k ∈ D : Ei,j,k > 0) (9)

Equations (7) and (8) hold the sums corresponding to workforce over respec-
tively under the demand. The factor sl is used to count overstaffing and under-
staffing per minute. Equation (9) counts all shifts that have an employee assigned
on at least one day.

4.2 Counting Model

The counting model COUNT uses a similar idea to the residual lengths in [1] to
keep track of the remaining lengths of shifts for each timeslot instead of just
storing which shifts are in use. For this purpose, the decision variables in E
are replaced with a 2-dimensional counting matrix C of size n × |L|. Now, each
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Table 2. Counting representation for TOY (transposed)

j i

1 2 3 4 5 6 7 8

2 0 1 0 0 3 0 2 0

3 1 0 0 3 0 2 0 0

4 0 0 3 0 2 0 0 1

element Ci,j , with i ∈ N and j ∈ L, states that in timeslot i there are Ci,j

active shifts of remaining length j. Note that index i is considered cyclic. For
illustration, Table 2 shows the matrix C for the optimal solution for TOY.

We can now define the counting behaviour as follows.

Prev i,j =

{
0 if j = max(lmax )
Ci−1,j+1 otherwise

(10)

{
Ci,j ≥ Prev i,j if Check (i−1) mod int,j ∨ Check (i−1) mod int+int,j

Ci,j = Prev i,j otherwise

∀i ∈ N, j ∈ L (11)

Equation (10) defines the previous element in the matrix along the secondary
diagonal. Shifts counted by Ci,j either had a remaining length of j + 1 in times-
lot i − 1 or are newly introduced in timeslot i. This is captured in Eq. (11),
where this inequality is expressed whenever it is possible to start a new shift at
Ci,j . Note that the existence of shifts is checked both for the current day and
shifts overlapping from the previous day. The second line deals with infeasible
shifts, as in this case values are propagated without change along the diagonal,
corresponding to Eq. (5) in the direct model.

Now we have an easier time defining the workforce W .

Wi =
∑

j∈L

Ci,j +
∑

j∈{1,...,min(lmin)−1}
Ci−j,min(lmin) ∀i ∈ N (12)

In Eq. (12) we first sum up the row of C. Note that we could extend the
lengths in C to start from index 1, however, below min(lmin) we would only
have direct propagation along the diagonal as no new shifts can start in this
region. Omitting this region makes C smaller and we can simply continue the
sum along the first column of C to get shifts with remaining length < min(lmin).

Equations (7) and (8) still define T1 and T2, only T3 needs to be redefined.

T3 =
∑

i∈I

∑

j∈L

(∃k ∈ D : C(k−1)·int+i,j > Prev (k−1)·int+i,j) (13)

Equation (13) now uses the fact that new shifts introduce a difference along
the diagonal, while overall still counting all shifts that have an employee assign-
ment on at least one day.
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4.3 Network Flow Model

There is a known relation between the MSD problem and the min-cost max-flow
problem [17]. In fact, without taking the minimization of shifts into account, the
problem can be formulated using a flow network. However, we want to combine
utilization of network flow with the minimization of shifts by formulating parts
of the problem using a global constraint for network flow, while additional con-
straints are enforced on the flow variables to represent the whole problem in our
model NETWORK. In the following the definition of the network graph is presented,
first for exact cover and then extending it for over- and understaffing. The whole
network will later be illustrated using TOY in Fig. 2.

– V = N: Vertices correspond to timeslots.
– A = {(i, j) | i, j ∈ N, Check (i−1) mod int,j−i ∨ Check (i−1) mod int+int,j−i}:

Arcs correspond to feasible shifts as defined by Check .
– Bi = Ri −Ri−1: The balance, i.e., the flow that is consumed or produced per

node corresponds to the difference in demand from a timeslot to the previous
one.

– F(i,j): The decision variables in this model represent the flow along the arcs,
corresponding to the number of employees working the represented shift.

Note that this network does not constitute a usual flow network as it is cyclic.
Due to cyclicity of the whole problem it rather forms a ring-like structure. Also
it does not have a single source and target node. However, the network flow
constraint in MiniZinc can deal with the given network as it essentially models
the flow conservation constraints taking into account the balance.

Note that so far we only model the demand changes, not the total demand.
This has to be done using additional constraints.

Spani,j,k = j ≤ i < k ∨ (j > k ∧ (i ≥ j ∨ i < k)) (14)

Ri =
∑

(j,k)∈A
Spani,j,k

F(i,j) ∀i ∈ N (15)

Equation (14) is a predicate defined to check whether arc (j, k) spans across
timeslot i. This usually indicated by j ≤ i < k, but due to cyclicity the second
case needs to be considered as well. Equation (15) sums up the flows of all arcs
that span a given timeslot i, which has to match the demand for each timeslot.

T3 =
∑

(i,j)∈A
Checki−1,j−i

(∃k ∈ D : F((k−1)·int+i,(k−1)·int+j) > 0) (16)

Equation (16) defines the number of shifts in the usual way, counting all
shifts that have at least one day with positive flow. This time the sum can be
represented going through all arcs assigned to the first day in the planning period
(via the Check condition) and then adding the required number of days to both
start and end node.
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However, so far the model only represents exact cover without the possibil-
ity for overstaffing or understaffing. To include these in the network itself, we
introduce new arcs and switch to a weighted network.

– AOC = {(i, i+1) | i ∈ N}; AUC = {(i, i+1) | i ∈ N}; A′ = A∪AOC ∪AUC :
New arcs are defined from each node to its immediate successor, both for
undercover and overcover. The total set of arcs A′ is the union of all arc sets.

– weighta =

⎧
⎪⎨

⎪⎩

0 if a ∈ A
−α1 if a ∈ AOC

α2 if a ∈ AUC

The weights are 0 for all shift arcs. Overcover arcs are defined to hold a
certain overflow capacity that should stay on the overcover arcs, therefore, we
use negative weights. If overcover is needed on shift arcs, the corresponding
capacity is removed from the negatively weighted overcover arcs, resulting in
higher cost. As for any demand peak max(R) is an upper bound for the number
of assigned employees and for a slot of maximum overcover shifts from both sides
(earlier demand peaks and later demand peaks) might overlap, an upper bound
of 2 ·max(R) provides enough overcover capacity for the worst case. Undercover
arcs are used if demand cannot be fulfilled using shift arcs, as the additional
demand uses the undercover arcs and increases the cost.

1 2 3 4 5 6 7 8
-2 0 3 -1 2 0 -3 1

α2

−α1

α2
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−α1
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Fig. 2. Full network flow representation for TOY

Figure 2 shows the network flow representation for TOY including overcover
and undercover arcs. The main flow corresponding to the optimal solution is
highlighted using bold arcs. As the cover is exact, all undercover arcs with weight
α2 have flow 0, all overcover arcs with weight −α1 have flow 2 · max(R) = 10.

The flows for the new arcs, denoted by FOC and FUC and the overcover
capacity also need to be included in the demand sum.

Ri + 2 · max(R) =
∑

(j,k)∈A
Spani,j,k

F(j,k) + FOC
(i,i+1) + FUC

(i,i+1) ∀i ∈ N (17)
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Equation (17) sums up all relevant arc flows for each timeslot i.
The global constraint used for weighted network flow includes summing up

the total network cost, represented by cost . Finally, the combined objective T
needs to be defined.

T = (cost + 2 · max(R) · α1 · n) · sl + α3 · T3 (18)

Equation (18) corrects the network cost by the corresponding value for the
negatively weighted overcover capacity and takes the slotlength into account.

5 Evaluation

This section presents the evaluation of the different models on the standard
benchmark datasets1. The instances are organized in four datasets. The first
three use a set of four shift types with different start times across the day and
a duration of 7 to 9 h. The slotlength is either 15, 30 or 60 min, the length of
the planning period is 7 days. The first two datasets are designed in a way that
a solution with exact cover exists. However, dataset 3 is constructed to make
the existence of such exact covers very unlikely. Dataset 4 contains a real-life
instance using three shift types and two modified instances from dataset 3. All
experiments were executed on an Intel Core i7-7500 CPU with 2.7 GHz and
16 GB RAM.

The models were implemented using the solver-independent modelling lan-
guage MiniZinc 2.2.2 [28]. It allows to directly specify the constraint models
including a range of global constraints like network flow and compiles them into
a format called FlatZinc, which is understood by a wide range of solvers. This
allows to compare the performance of different solvers. Regarding CP, the lazy
clause generation solver Chuffed [10] was used in version 0.10.3. For MIP, we
compare Gurobi [22] version 8.0.1 and CPLEX [14] version 12.8.

5.1 Search Efficiency with Chuffed

In all models the goal is to minimize T . However, while this goal will directly be
used with the MIP solvers in the comparison, Chuffed struggles within a large
search space filled with a lot of feasible solutions that are far off the optimum.
E.g., an empty schedule is always a feasible solution with zero shifts and no
overstaffing, but a huge amount of understaffing.

Typically, good solutions will be found when the actual workforce is some-
where around the demand. Therefore, we define an array WD for the workforce
difference.

WD i = |Ri − Wi| (19)

Equation (19) defines the distance as the absolute difference between work-
force and demand. For Chuffed, we can now use free search, alternating between

1 http://www.dbai.tuwien.ac.at/proj/Rota/benchmarks.html.

http://www.dbai.tuwien.ac.at/proj/Rota/benchmarks.html
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the internal search and the strategy to first assign the smallest possible values
to the workforce distance. As preliminary evaluations of our models showed, the
variable selection strategy first fail, assigning the variable with the smallest
domain first, together with the value selection strategy indomain min, assigning
the smallest value in the domain first, used on WD , provided the best results.

In a similar way, this is also done for the network flow model, assigning
smallest possible flow values to the undercover arcs, largest possible flow values
to the overcover arcs and finally also to the regular flow arcs. The reason for
using the maximum for regular flow arcs is to go towards the minimization of
the number of shifts by rather assigning more employees to the same shift than
splitting assignments across many shifts.

5.2 Results

We executed all three models with all three solvers. As NETWORK performed best
for all solvers, we report results for NETWORK on all datasets. The comparison to
the other models is presented on selected datasets.

Dataset 1. The first dataset contains instances which admit solutions with
exact cover of the demand. Table 3 provides the results for this set of instances.
The summary shows solved (S), optimal (O) and proven optimal (P) solutions.
We compare all three models for Chuffed to highlight the differences in perfor-
mance for this solver, further the results for the MIP solvers using NETWORK.

For Chuffed we can see a clear ranking of the models in terms of performance.
For DIRECT, 11 optimal solutions can be found and proved within the timeout
of 3600 s, while for 17 instances no feasible solution is found at all. The results
for COUNT are already much better, giving 18 proven optimal solutions within
the timeout, while only 7 instances do not reach any feasible solution within
the runtime. However, best results are achieved with NETWORK, finding feasible
solutions for all instances (even though the solution for instance 23 is far off), and
for 23 instances the optimum can be proved within the timeout. This relation
between the different models using Chuffed also holds for the following datasets,
where actually apart from NETWORK hardly any feasible solutions are found within
the timeout.

Using either Gurobi or CPLEX, all instances from dataset 1 can be solved
within less than 14 s per instance. While optimal solutions for these instances
were already known, the best approaches so far still needed up to 56 s for some
instances [24], resulting in a major runtime improvement using NETWORK. Note
that all three models reach optimal solutions for all instances in this dataset,
however, the other models need more runtime for several instances. We will
present this comparison in detail for dataset 3, as these instances are more
challenging and therefore show more differences between the models.

A major factor contributing to runtime needs to be discussed here as well.
In fact, Gurobi never spends more than 4 s on any instance of dataset 1. How-
ever, the conversion from MiniZinc to FlatZinc also takes some time, in case of
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Table 3. Results for dataset 1

Instance Chuffed Gurobi CPLEX

DIRECT COUNT NETWORK NETWORK NETWORK

Result Time Result Time Result Time Result Time Result Time

1 480 13.80 480 6.44 480 1.83 480 0.60 480 0.50

2 - 3600 300 3600 300 102.26 300 2.56 300 2.82

3 600 295.13 600 1732.00 600 2.02 600 0.60 600 0.50

4 - 3600 - 3600 570 3600 450 2.62 450 4.12

5 480 28.21 480 8.48 480 1.05 480 0.60 480 0.50

6 420 3.47 420 3.94 420 1.17 420 0.77 420 0.53

7 - 3600 270 624.17 270 21.90 270 2.32 270 1.93

8 - 3600 - 3600 150 1462.39 150 11.60 150 9.28

9 - 3600 150 3600 150 1262.67 150 10.57 150 9.17

10 - 3600 330 3600 330 42.60 330 2.37 330 2.07

11 30 2.89 30 4.09 30 10.27 30 10.83 30 8.78

12 - 3600 90 45.72 90 46.20 90 10.32 90 8.78

13 - 3600 105 374.69 105 64.36 105 10.32 105 9.05

14 - 3600 - 3600 285 3600 195 13.68 195 12.64

15 180 0.44 180 0.77 180 0.78 180 0.57 180 0.48

16 - 3600 - 3600 225 3600 225 12.88 225 12.28

17 - 3600 - 3600 630 3600 540 3.94 540 3.45

18 720 3600 720 916.80 720 7.58 720 0.83 720 0.54

19 - 3600 180 3600 180 3600 180 12.44 180 9.44

20 540 27.98 540 17.20 540 1.26 540 0.72 540 0.52

21 - 3600 120 2102.38 120 118.82 120 11.61 120 9.05

22 75 1372.65 75 18.95 75 21.70 75 10.99 75 9.03

23 - 3600 - 3600 655335 3600 150 10.48 150 9.22

24 480 18.06 480 22.36 480 1.19 480 0.81 480 0.65

25 - 3600 - 3600 720 3600 480 5.17 480 13.03

26 - 3600 600 599.08 600 44.47 600 1.16 600 0.92

27 480 68.06 480 40.58 480 1.15 480 0.68 480 0.52

28 5550 3600 270 996.53 270 17.83 270 2.38 270 1.90

29 - 3600 360 3600 360 396.86 360 2.21 360 1.85

30 75 927.67 75 16.27 75 14.81 75 10.31 75 9.00

S/O/P 13/12/11 23/23/18 30/25/23 30/30/30 30/30/30

the network model combined with Gurobi actually more than the solver itself.
The scaling factor that decides the needed compilation time is clearly the time
granularity, as it also determines the number of possible shifts when shift types
are otherwise unmodified. Table 4 shows average compilation times for different
models, independent of the solver.
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Table 4. Approximate compilation times in seconds

Model sl = 60 sl = 30 sl = 15

DIRECT 0.2 0.5 2.4

COUNT 0.6 1.4 3.6

NETWORK 0.5 1.8 10

We can see that DIRECT compiles fastest, while NETWORK needs the most time.
This actually allows some faster results for easy instances, where compilation
constitutes most of the runtime, using DIRECT or COUNT. The compilation times
show a quadratic correlation to the inverse of the slotlength sl .

We also evaluated the results for dataset 1 applying α1 and α2 per timeslot
instead of per minute to compare to [2], where we can reach all optimal solutions
using an average of only 17.2 instead of 108 s per instance. They do not present
comparable results for other datasets.

Dataset 2. The second dataset consists of further instances with exact cover
solutions. However, it requires increasing numbers of shifts for later instances.
This makes the dataset harder than set 1, otherwise the results are quite similar.
The results for NETWORK are presented in Table 5.

Regarding Chuffed, 5 instances do not reach a feasible solution, rather
towards the larger instances. 16 optimal solution can be proved. Gurobi and
CPLEX both find the optimal solutions for all instances. Note that previous
solution methods were not able to find the optimum for instance 27.

Chuffed only finds one feasible solution using DIRECT and 11 feasible (5
proven optimal) solutions using COUNT. Gurobi can still find and prove all opti-
mal solutions using DIRECT, however, using significantly more runtime on several
instances, and all but two with COUNT. CPLEX finds all but one with DIRECT
and all but two with COUNT.

Datasets 3 and 4. Next the results for dataset 3 are presented. As these
instances are constructed such that it is very unlikely an exact cover exists, this
dataset is the most challenging for solvers. The results, including the detailed
comparison of different models using Gurobi, are presented in Table 6.

The results show that Chuffed can find 24 feasible solutions for this dataset,
however, no optimal solutions are found and the gap to the optimal solutions is
rather large, never less than 25%. Using the other models, Chuffed does not find
feasible solutions before the timeout.

Regarding Gurobi, again all instances can be solved to optimality using
NETWORK. While previous work was not able to solve all instances using a timeout
of 7200 s, the new model can provide a solution within 1 min for all instances
except instance 23, which can still be solved in less than 8 min. This constitutes
a major speedup compared to previous work and, for the first time, allows to
optimally solve all benchmark instances, even within short runtime.
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Table 5. Results for dataset 2 (NETWORK)

Instance Chuffed Gurobi CPLEX

Result Time Result Time Result Time

1 720 34.44 720 0.67 720 0.76

2 720 11.25 720 0.92 720 0.55

3 360 323.19 360 2.46 360 2.56

4 360 778.56 360 2.33 360 1.90

5 720 30.42 720 1.08 720 1.03

6 360 460.39 360 2.90 360 1.86

7 720 4.19 720 1.83 720 0.68

8 315 3600 180 13.66 180 13.38

9 360 174.22 360 2.49 360 1.98

10 660 5.98 660 1.29 660 1.67

11 840 3600 480 7.17 480 20.87

12 900 3109.58 900 0.99 900 1.10

13 900 572.12 900 2.03 900 1.90

14 840 45.50 840 1.09 840 0.85

15 480 3600 480 8.52 480 17.06

16 240 3600 240 10.83 240 9.01

17 960 2889.60 960 0.90 960 0.86

18 840 178.92 840 1.99 840 0.94

19 - 3600 240 10.96 240 9.50

20 960 423.70 960 1.15 960 0.91

21 690 3600 600 2.78 600 2.62

22 1080 3600 1080 1.47 1080 2.13

23 - 3600 300 34.65 300 31.72

24 780 3600 600 3.97 600 6.90

25 - 3600 600 3.96 600 7.31

26 1020 1337.78 1020 1.76 1020 2.69

27 - 3600 300 25.87 300 323.70

28 - 3600 300 11.76 300 17.52

29 1140 3600 1140 1.78 1140 2.26

30 1140 3600 1020 2.08 1020 2.60

S/O/P 25/20/16 30/30/30 30/30/30

In comparison to the other models, DIRECT is able so prove all optimal results
but one, however, for several instances using significantly longer runtime. While
for some instances COUNT is faster than DIRECT, in the average it is worse, also
running into timeout on three instances. Note that for some instances both
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Table 6. Results for dataset 3

Instance Chuffed Gurobi CPLEX

NETWORK DIRECT COUNT NETWORK NETWORK

Result Time Result Time Result Time Result Time Result Time

1 - 3600 2385 5.02 2385 5.34 2385 10.80 2385 9.07

2 10500 3600 7590 23.52 7590 149.61 7590 3.66 7590 11.43

3 20700 3600 9540 4.46 9540 5.54 9540 3.28 9540 2.73

4 10410 3600 6540 101.84 6540 32.80 6540 5.87 6540 66.58

5 12240 3600 9720 2.31 9720 3.68 9720 0.87 9720 7.40

6 2940 3600 2070 5.74 2070 4.91 2070 10.41 2070 8.99

7 434595 3600 6075 6.25 6075 16.96 6075 10.67 6075 9.34

8 11820 3600 8580 2.71 8580 3.73 8580 2.52 8580 2.32

9 147660 3600 6000 16.49 6000 34.65 6000 11.22 6000 12.29

10 4920 3600 2940 4.94 2940 7.79 2940 2.69 2940 7.71

11 19500 3600 5190 74.73 5190 137.62 5190 6.80 5190 28.91

12 - 3600 4110 122.88 4110 841.17 4110 14.44 4110 47.79

13 - 3600 4605 1274.54 4605 3600 4605 35.84 4605 205.46

14 13800 3600 9600 7.42 9600 13.11 9600 1.93 9600 2.09

15 21840 3600 11250 49.97 11250 106.73 11250 7.36 11250 20.35

16 14940 3600 10620 8.40 10620 3.08 10620 2.16 10620 6.06

17 1198110 3600 4680 21.23 4680 204.38 4680 13.78 4680 14.34

18 9210 3600 6540 24.05 6540 57.99 6540 4.27 6540 15.60

19 - 3600 4890 2489.77 4890 3600 4890 39.28 4890 143.03

20 - 3600 8910 38.28 8910 46.49 8910 4.61 8910 18.34

21 - 3600 5910 3600 5910 3600 5910 444.50 5910 2558.94

22 20460 3600 12600 23.05 12600 89.91 12600 4.16 12600 32.28

23 15000 3600 8280 13.54 8280 12.78 8280 1.87 8280 6.02

24 17520 3600 10260 4.28 10260 9.69 10260 1.29 10260 3.20

25 17040 3600 13020 6.72 13020 5.84 13020 1.76 13020 1.22

26 24330 3600 12780 39.23 12780 94.53 12780 4.11 12780 25.31

27 22620 3600 10020 6.06 10020 3.92 10020 1.52 10020 0.93

28 15000 3600 10440 7.36 10440 11.07 10440 1.83 10440 8.30

29 14190 3600 6510 109.94 6510 332.04 6510 54.56 6510 102.83

30 17760 3600 13320 2.63 13320 5.79 13320 1.07 13320 0.80

S/O/P 24/0/0 30/30/29 30/30/27 30/30/30 30/30/30

DIRECT and COUNT are faster than NETWORK. This is the result of the longer
compilation time as already mentioned before. On such easy instances DIRECT
and COUNT are better, however, on more difficult instances they cannot keep up
with NETWORK.

The results obtained by CPLEX are similar to the previous datasets. Again,
CPLEX can prove optimal solutions for all instances, on some instances slightly
faster than Gurobi, but on several instances significantly slower. Again, DIRECT
and COUNT are mostly slower and can not prove optimality for a few instances
(DIRECT 1, COUNT 2) similar to the comparison using Gurobi.
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Dataset 4 consist of one real-life instance and two modified versions of
instance 5 from dataset 3. The results are similar to those of dataset 3 and are
presented in Table 7. The results from Gurobi and CPLEX are again optimal.

Table 7. Results for dataset 4 (NETWORK)

Instance Chuffed Gurobi CPLEX

Result Time Result Time Result Time

1 42090 3600 18420 0.569 18420 0.768

2 12540 3600 9720 3.375 9720 64.194

3 24660 3600 18780 0.871 18780 4.027

S/O/P 3/0/0 3/3/3 3/3/3

Summary. To sum up, our new model based on network flow NETWORK clearly
outperforms the other models across different datasets and solvers. The CP
solver Chuffed can provide optimal solutions for several instances where exact
cover solutions exist, but struggles with instances admitting no such solution.
However, compared to [1], it can improve the results for many instances across
all datasets when working only with CP-related methods.

The MIP solvers Gurobi and CPLEX can both provide optimal solutions
for all instances. Further, without timeout this is only possible using NETWORK,
showing its superiority compared to the other models. The only drawback is
longer compilation time, resulting in more runtime for easy instances, however,
more difficult instances greatly benefit from the new model. In direct comparison,
while most results are close, CPLEX can provide slightly faster results on several
instances, but Gurobi can provide significantly faster results on some difficult
instances.

6 Conclusion

In this paper we presented three different constraint models for the minimum
shift design problem. Those models were implemented in MiniZinc and evaluated
on the standard benchmark datasets using three different solvers, the lazy clause
generation solver Chuffed and the MIP solvers Gurobi and CPLEX.

The results show that our new model NETWORK, using a network flow based
formulation, clearly outperforms the other models. Further, while Chuffed can
provide optimal solutions for several instances in the first two datasets, all opti-
mal solutions can be found using Gurobi or CPLEX. This conclusion is similar
to [27], which also applies global constraints in MiniZinc and Gurobi, however,
in a different way to a different problem, using a regular constraint for rotating
workforce scheduling. Comparing Gurobi and CPLEX, most results are close,
but Gurobi provides significantly shorter runtimes on several difficult instances.



406 L. Kletzander and N. Musliu

This is the first time in literature that all available instances can be solved
to optimality within short runtime, using less than 1 min for all instances but
one, which can be solved in less than 8 min, highlighting the strength of our
approach. Across different instances from all datasets, runtimes can be reduced
significantly in comparison to previous work. Therefore, our approach constitutes
the new state-of-the-art for minimum shift design.

Future work might involve the integration of additional constraints into the
problem or trying to apply a network flow based model to break scheduling or
combined shift and break scheduling problems.
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19. Di Gaspero, L., Gärtner, J., Musliu, N., Schaerf, A., Schafhauser, W., Slany, W.:
Automated shift design and break scheduling. In: Uyar, A.S., Ozcan, E., Urquhart,
N. (eds.) Automated Scheduling and Planning. SCI, vol. 505, pp. 109–127. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39304-4 5

20. Ernst, A., Jiang, H., Krishnamoorthy, M., Sier, D.: Staff scheduling and rostering:
a review of applications, methods and models. Eur. J. Oper. Res. 153(1), 3–27
(2004). https://doi.org/10.1016/S0377-2217(03)00095-X
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Abstract. The Golomb ruler problem is defined as follows: Given a pos-
itive integer n, locate n marks on a ruler such that the distance between
any two distinct pair of marks are different from each other and the
total length of the ruler is minimized. The Golomb ruler problem has
applications in information theory, astronomy and communications, and
it can be seen as a challenge for combinatorial optimization algorithms.
Although constructing high quality rulers is well-studied, proving opti-
mality is a far more challenging task. In this paper, we provide a com-
putational comparison of different optimization paradigms, each using
a different model (linear integer, constraint programming and quadratic
integer) to certify that a given Golomb ruler is optimal. We propose sev-
eral enhancements to improve the computational performance of each
method by exploring bound tightening, valid inequalities, cutting planes
and branching strategies. We conclude that a certain quadratic inte-
ger programming model solved through a Benders decomposition and
strengthened by two types of valid inequalities performs the best in terms
of solution time for small-sized Golomb ruler problem instances. On the
other hand, a constraint programming model improved by range reduc-
tion and a particular branching strategy could have more potential to
solve larger size instances due to its promising parallelization features.

Keywords: Golomb ruler · Integer programming ·
Constraint programming

1 Introduction

For a given positive integer n, let us denote the positions of n marks on a ruler as
x1, x2, . . . , xn. Without loss of generality, we assume that the position of the first
mark is zero, i.e. x1 = 0, and the locations are ordered, i.e. x1 ≤ x2 ≤ · · · ≤ xn. A
Golomb ruler satisfies the property that the pairwise distances between distinct
marks are all different, in other words, xj − xi �= xk − xl unless i = l and
j = k. The optimal Golomb ruler is the one with the smallest length, that is, a
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Golomb ruler with the minimum xn. The Golomb ruler problem has interesting
applications in several fields [3], including information theory [14], astronomy,
and communications [1,2,4,12].

In general, constructing a Golomb ruler with a given number of marks is
an easy task, and there are many heuristic methods that provide high quality
rulers. For instance, previous literature on heuristics has focused on affine and
projective plane constructions [7,15], genetic algorithms [19], and local search
[6,13] while exact methods based on constraint programming [8,17] or hybrid
methods [16] exist as well. Although not proven to be NP-hard yet, solving the
Golomb ruler problem exactly proved to be notoriously difficult. For instance, the
optimal rulers for n = 24, 25, 26, 27 have been proven by a parallel search with
thousands of workstations coordinated by the website distributed.net, and it
took approximately 4, 4, 1, and 5 years to complete, respectively. Currently, a
search for the 28-mark problem is under way for more than 4 years.

As summarized above, most of the effort to prove that a given Golomb ruler
is an optimal one is devoted to explicit enumeration techniques. However, such
brute force approaches seem to be the only viable option since it is very difficult
to establish strong valid lower bounds for the Golomb ruler problem.

At this point, we would like to state the main purpose of this paper, which
is to certify the optimality of a given Golomb ruler through optimization meth-
ods. Most optimization algorithms inherently solve relaxations and hence, nat-
urally provide lower bounds for minimization type problems. Therefore, it is
worth focusing on optimization models to better understand the structure of the
Golomb ruler problem, and hopefully, propose efficient methods which we can
use to solve the Golomb ruler problem instances.

In this paper, we consider three classes of optimization problems to carry
out the aforementioned analysis. In particular, we formulate the Golomb ruler
problem as linear integer programming, constraint programming and quadratic
integer programming problems. Some of these models exist in the literature while
and the others are introduced, to the best of our knowledge, by us. Since the
performance of the basic models is not satisfactory to solve instances with more
than 10 marks, we propose several enhancements to improve the scalability of
each method by means of bound tightening, valid inequalities, cutting planes
and effective search strategies. Our computational experiments show that linear
integer programming models scale up to 13 marks given a budget of 8 h while
constraint programming models can solve up to 13-mark instances in about
an hour and 14-mark problem in about 10 h. Quadratic integer programming
models, on the other hand, are able to solve 14-mark instance in about four
hours, all using a modest personal computer. As a comparison, it took 2.8 h for
the constraint programming model in [8] to find an optimal ruler for the 13-mark
instance and another 11.8 h to prove its optimality. The lean implementation of
the search method in [16] reduced the respective computational effort to 0.6 and
1.3 h, albeit at the expense of a significantly larger search tree.

The rest of the paper is organized in three sections, which respectively cover
the linear integer programming, constraint programming and quadratic integer
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programming models in detail. Each section contains a formulation, enhance-
ments and computational experiments subsections together with some discus-
sions and comparisons of these different optimization paradigms.

2 Linear Integer Programming Models

2.1 Two Formulations

In this section, we present two known linear integer programming formulations
for the Golomb ruler problem with n marks. One of these formulations is exact
and the other one is only a relaxation but can be made exact by the use of
additional features as detailed later. For both of the models, we assume that
an upper bound, say L, on the optimal length is known (such a bound can be
obtained as the length of any feasible Golomb ruler with n marks).

“d + e” Formulation. We first present an exact linear integer programming
model for the Golomb ruler problem [9]. In this formulation, there are two sets
of decision variables: Let eijv be one if the distance between marks i and j is v,
and zero otherwise. Also, we define dij as the distance between marks i and j.
Then, the optimization problem is given as follows:

min
d,e

n−1∑

i=1

di,i+1 (1a)

s.t.
L∑

v=1

eijv = 1 1 ≤ i < j ≤ n (1b)

∑

i<j

eijv ≤ 1 v = 1, . . . , L (1c)

L∑

v=1

veijv = dij 1 ≤ i < j ≤ n (1d)

j−1∑

k=i

dk,k+1 = dij 2 ≤ i + 1 < j ≤ n (1e)

eijv ∈ {0, 1}, dij ∈ Z+ 1 ≤ i < j ≤ n, v = 1, . . . , L. (1f)

Here, the objective function (1a) minimizes the length of the Golomb ruler (alter-
natively, it can be simply given as d1,n). Constraint (1b) assigns a distance
between 1, . . . , L to every pair of marks i and j while constraint (1c) ensures
that each distance between 1, . . . , L is assigned at most once. Constraint (1d) is
simply a definition of the d variables in terms of the e variables. Finally, con-
straint (1e) is an identity guaranteeing that the distance between the marks i
and j is the sum of the basic distances between consecutive marks. We note that
d variables can be projected out by substituting the definition given in (1d) into
constraint (1e) although the resulting lower dimensional model does not seem to
be more advantageous empirically in terms of computational efficiency.
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“d” Formulation. Now, we present a relaxation of the Golomb ruler prob-
lem by eliminating the e variables from the “d + e” Formulation. The resulting
optimization problem is defined as follows:

min
d

n−1∑

i=1

di,i+1 (2a)

s.t. (1e)
∑

(i,j)∈R

dij ≥ 1
2
|R|(|R| + 1) R ⊆ {(k, l) ∈ Z

2 : 1 ≤ k < l ≤ n}. (2b)

The constraint set (2b), called “Subset Sum Inequalities”, was introduced in [9]
to strengthen the integer programming (IP) formulation, and defines the facets of
the convex hull of the all-different constraint [20]. In practice, the model (2) can
be solved with a constraint generation scheme in which the subset sum inequal-
ities are gradually added. We also note that the complexity of the separation of
these inequalities is polynomial-time as it requires sorting

(
n
2

)
many numbers.

As opposed to the “d + e” Formulation, the “d” Formulation is not an exact
representation of the Golomb ruler problem. However, it is known that the opti-
mal value of the “d” Formulation is equal to the linear programming (LP) relax-
ation value of “d + e” Formulation [11].

We note that even if the “d” Formulation is solved as an IP, it is still not an
exact formulation since it does not guarantee that dij �= dkl for i �= k and j �= l,
i.e., the uniqueness of the distances. However, this observation leads to a natural
way to make the “d” Formulation exact: We can solve the problem (2) as an
LP with two callbacks: Firstly, we add lazy constraint callbacks to ensure that
subset sum inequalities (2b) are satisfied. Secondly, we add a branch callback
such that the missing constraint dij �= dkl is enforced by the solver as we go
down the branch-and-bound tree. In particular, once dij = dkl for i �= k and
j �= l, we can create a dichotomy as dij ≤ dkl − 1 and dij ≥ dkl + 1.

2.2 Enhancements

We propose several enhancements to the models presented above based on bound
tightening and branching strategies. We also carried out a preliminary polyhedral
study of the Golomb ruler problem with the hope of obtaining strong valid
inequalities. Although we have discovered several families of valid inequalities,
they have not helped solving the problem more efficiently. Therefore, we leave
this line of research as future work for further inquiry.

In the sequel, let Gm denote the length of the optimal Golomb ruler of order
m, m = 1, . . . , n − 1. We assume that all the Gm values are known for m < n
when we are trying to solve the n-mark problem.

Bound Tightening. Bound tightening is a widely used strategy in optimiza-
tion algorithms to reduce the range of the decision variables in order to save
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computational effort. It can also be used as a way to strengthen relaxations and
improve the performance of search methods (see [8] for an application to the
Golomb ruler problem). Our bound tightening procedure starts with the follow-
ing simple observation: If the difference between marks i and j is small (large),
then dij cannot be too large (small). In particular, we can infer the following
initial bounds on dij variables:

Gj−i+1 =: dij ≤ dij ≤ dij := L − Gi − Gn−j+1. (3)

After this initialization step, we can further improve the bounds dij and dij
by solving bounding LPs. In particular, we can minimize/maximize dij variables
over a suitable relaxation (for instance, over the feasible region of the LP relax-
ation of (1)) to try to improve the bounds iteratively. Once new bounds dij and
dij are obtained after rounding up and down the minimum and maximum values,
we repeat this procedure until the fixed point is reached, that is, none of the
bounds are improved further. We will refer to this procedure as LP Bounding.

As an additional mechanism to tighten the variable bounds on the d variables,
we extend the LP Bounding approach in the following sense. Now, we optimize
the d variables over the feasible region of (1) (not its LP relaxation as in the
LP Bounding approach) with a limited computational budget. We will refer to
this procedure as IP Bounding. Although this approach requires an additional
non-trivial effort, it pays off in terms of reducing the solution time of the “d+e”
formulation.

We also use the bounds dij and dij to fix some of the binary variables eijv
to zero as follows:

eijv = 0 if v < dij or v > dij .

This procedure reduces the total range of the d variables and the number of e
variables considerably although it does not improve the LP relaxation bound.

Branching Strategies. The choice of branching strategies may significantly
affect the computational performance of the mixed-integer programming solvers.
Branching decisions made by the solvers can be altered by either explicitly choos-
ing the variables to be branched on through branch callbacks, or implicitly by
assigning priorities to the integer variables. We experimented with both of these
choices by exploiting the structure of the Golomb ruler problem.

In terms of imposing explicit branching decisions, we experimented with two
strategies which can be applied to both “d + e” and “d” Formulations. The first
strategy, which we will call as “Left Branching”, is described as follows: We
first branch on the variable d12 by creating d12 − d12 + 1 many child nodes,
each taking an integer from the interval [dij , dij ]. Then, we proceed by solving
the node relaxations. Whenever we have to make another branching decision,
we decide on the next variable still undecided from the left of the ruler (for
instance, the second variable would be d23). Such an algorithm is based on
the intuition that the classical dichotomy branching is probably ineffective for
the Golomb ruler problem since assigning particular values to dij variables can
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help detecting infeasibility of more branches than simply branching on dij by
assigning intervals, or traditional binary branching on the eiju variables. The
shortcoming of this strategy is of course the increased number of child nodes for
each level of the branch-and-bound tree.

Table 1. Results of the “d+e” Formulation with LP and IP Bounding strategies. Here,
BTT, OT, TT and #BBN respectively represent the bound tightening, optimization,
total time (in seconds unless otherwise stated), and the number of branch-and-bound
nodes.

n LP Bounding IP Bounding after LP Bounding

BTT OT TT #BBN BTT OT TT #BBN

9 0.10 0.36 0.46 0 41.35 0.60 42.05 615

10 0.11 1.42 1.53 333 37.69 0.68 38.48 337

11 0.12 199.87 199.99 155,421 20.55 140.38 161.05 138,820

12 0.19 297.62 297.81 153,244 68.27 208.39 276.85 126,405

13 0.26 32,435.04 32,435.30 13,949,679 2,874.62 24,993.13 27,868.01 13,363,776

14 0.32 >10 h - - 3,721.56 >10 h - -

The second strategy for imposing explicit branching decisions is called “Dif-
ference Branching”, and implemented with the inclusion of a branch callback
function. Suppose that in a certain node in the branch-and-bound tree, we have
two variables dij and dkl, i �= k and j �= l, such that |dij − dkl| ≤ 1. Then,
we can branch on constraints dij ≤ dkl − 1 and dij ≥ dkl + 1 as this is a valid
partitioning of the feasible region.

In terms of imposing implicit branching decisions, we experimented with
different priority assignment strategies. The most successful strategy seems to
be the one that assigns higher priorities to eiju variables with smaller u indices.
Here, the intuition is that if smaller distances are decided first, then we can
either find feasible solutions or detect infeasibility faster.

2.3 Computations

We first report the results of our computational experiments with the “d + e”
formulation in Table 1 for n = 9, . . . , 14. We compare the following two settings
(we note that the bound tightening techniques are only applied at the root node
assuming that L = Gn):

– LP Bounding: Bound tightening is applied over the LP Relaxation of the
“d + e” formulation in parallel for five rounds.

– IP Bounding after LP Bounding: Bound tightening is applied over the “d+e”
formulation with a budget of 1 s for n ≤ 12 and 1 min for n ≥ 13 in parallel
for five rounds.
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CPLEX 12.8 is used as the mixed-integer linear programming (MILP) solver on
a 64-bit computer with Intel Core i7 CPU 2.60GHz processor and 16 GB RAM.
Since our aim to prove the optimality of the n-mark ruler of length Gn, we set
L = Gn − 1 while solving the MILPs.

We note that the LP Bounding scheme is quite cheap to obtain better variable
bounds than the initial bounds derived in (3). On the other hand, IP Bounding
requires an additional nontrivial effort to further improve those bounds. We
observe that this additional computational effort can be justified when n ≥ 12
as the reduction in the optimization step overweighs the increase in the bound
tightening step and the 13-mark instance can be solved in less than 8 h in total.
Due to the sharp increase in the CPU time necessary, we were not able to solve
the Golomb ruler problem with 14 marks in less than 10 h.

Table 2. Results of the “d” Formulation with different variable bounding and branch-
ing strategies.

n LP Bounding IP Bounding after LP Bounding

Diff. Branching Left Branching Diff. Branching Left Branching

TT #BBN TT #BBN TT #BBN TT #BBN

9 1.45 3,277 3.05 5310 42.59 3,257 44.45 5,338

10 0.55 805 2.00 3248 38.21 785 39.74 3,297

11 9,915.67 4,256,165 1,920.96 1,651,695 9,785.72 4,285,299 1,862.69 1,655,038

We report the results of our experiments with the “d” formulation in Table 2
for n = 9, 10, 11. We compare the Difference (Diff.) Branching and Left Branch-
ing strategies as introduced in Sect. 2.2 in combination with LP Bounding and
IP Bounding. We observe that the Left Branching becomes significantly better
than the Difference Branching approach as the number of marks increases. Since
we were able to solve only very small Golomb ruler problem instances with the
“d” Formulation in comparison to the “d+e” Formulation, we have not pursued
this direction further. Nevertheless, the Left Branching strategy has proved to
be quite effective and is utilized multiple times in this paper.

3 Constraint Programming Model

In the previous section, we presented two linear integer programming models to
solve the Golomb ruler problem. Although several enhancement of these models
are introduced and the computational effort is reduced significantly, we were not
able prove the optimality of a given 14-mark ruler in a reasonable amount of
time. In this section, we switch our attention to constraint programming models
which prove to be more successful for the Golomb ruler problem.
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3.1 Formulation

A constraint programming model of the Golomb ruler problem can be formulated
as follows [16,18]:

min
d

d1,n (4a)

s.t. alldiff({dij : 1 ≤ i < j ≤ n}) (4b)
dij + djk = dik 1 ≤ i < j < k ≤ n (4c)

dij ∈ {dij , . . . , dij} 1 ≤ i < j ≤ n. (4d)

Here, constraint (4b) ensures that each distance dij are different from each other.
Constraint (4c) guarantees that the distances respect the “triangle” constraint,
that is, the distance between marks i, k is the sum of the distances between
marks i, j and j, k, where j is strictly between i and k. Finally, constraint (4d)
specifies the ranges of the decision variables.

3.2 Enhancements

The constraint programming model (4) can easily solve small instances of the
Golomb ruler problem, e.g., n ≤ 10, but runs into slow convergence issues for
even slightly larger instances. Similar to the integer programming models con-
sidered in the previous sections, we propose some enhancements to improve the
scalability of the constraint programming model. These enhancements utilize
bound tightening, table constraints and search strategies.

Bound Tightening. The bound tightening procedures proposed in Sect. 2.2
based on LPs and IPs are quite effective in reducing the ranges of the d vari-
ables. We now discuss another similar procedure based on constraint program-
ming techniques (see [10] for a related method called “shaving”). The proposed
idea is quite simple: We fix a dij variable to its current lower or upper bound and
solve the feasibility version of the constraint programming model (4) for a limited
amount of time. If the infeasibility of this restricted model can be proven, this
implies that we can tighten the range of the dij variable by excluding the value
that we have fixed. We will refer to this procedure as CP Bounding. This app-
roach is implemented in an iterative fashion with limited computational budget
and proved to be helpful to further reduce the range of the decision variables.

Table Constraints. Table constraints can be crucial to speed up constraint
programming solvers. By exploiting the specific structure of the Golomb ruler
problem, we also define certain “forbidden assignments”. The construction is as
follows: Consider the subruler with marks numbered as {i, . . . , i + 4}. We first
enumerate the set Sj of all triplets (dj,j+1, dj+1,j+2, dj+2,j+3) that constitute
a feasible subruler with respect to the variable bounds and all-different con-
straints, for j = i and j = i + 1. Now, suppose that for some (d̄i,i+1, d̄i+1,i+2,
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d̄i+2,i+3) ∈ Si, there does not exists any d̄i+3,i+4 such that (d̄i+1,i+2, d̄i+2,i+3,
d̄i+3,i+4) belongs to the set Si+1. In this case, we can declare the triplet (d̄i,i+1,
d̄i+1,i+2, d̄i+2,i+3) as “forbidden”. We can repeat this procedure for a few rounds
across different subrulers to identify more forbidden assignments.

Table 3. Results with LP Bounding, IP Bounding and CP Bounding strategies.

n LP Bounding IP Bounding after LP CP Bounding after LP and IP

OT TT OT TT BTT OT TT

9 2.82 2.92 0.27 41.71 1.03 0.06 42.54

10 11.95 12.06 0.28 38.08 1.17 0.07 39.04

11 140.30 140.42 19.63 40.30 11.85 0.54 33.07

12 554.71 554.90 23.39 91.85 27.77 1.52 97.75

13 11,615.19 11,615.45 1,780.54 4,655.42 1,665.97 209.87 4,750.71

14 >10 h - 31,839.14 35,561.02 3,872.62 29,795.25 37,389.74

Search Strategies. Search strategies are extremely important in constraint
programming as they significantly alter the performance of the solvers. Inspired
by the Left Branching for the linear integer programming model and its adap-
tation to the quadratic integer model, we have decided to employ a variable
selection rule based on lexicographical ordering. We also set the search phase
parameter to depth first search as our aim is to prove the optimality of a given
ruler efficiently. Finally, we experiment with different value selection strategies
and decide to use the one based on the smallest impact.

3.3 Computations

We report the results of our computational experiments with the constraint
programming formulation in Table 3 for n = 9, . . . , 14. In addition to the
“LP Bounding” and “IP Bounding after LP Bounding” settings introduced in
Sect. 2.3, we also experimented with the following version:

– CP Bounding after LP and IP Bounding: Bound tightening is applied over
the constraint programming formulation with a budget of 1 s for n ≤ 12 and
1 min for n ≥ 13 in parallel for five rounds. This includes the generation of
forbidden assignments based on the table constraints.

CPLEX CP Optimizer is used as the constraint programming solver with the
default settings unless otherwise stated.

We now summarize our observations: Firstly, a comparison with Tables 1 and
3 indicates that the constraint programming formulation takes less time than the
“d + e” formulation under the same version of bounding for n ≥ 11. This allows
us to solve the 14-mark problem with the constraint programming approach
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with IP Bounding in 10 h, which was not possible with the “d + e” formulation.
Secondly, the overhead of the CP Bounding approach is quite large, hence, the
reduction in the optimization time compared to the IP Bounding may not be fully
justified always. However, we believe that further inquiry along this direction
should be pursued. For instance, we extended the CP Bounding approach for
the 14-mark problem by allowing 10 min of budget for each subruler length.
This increases the total bounding time to 18,251 s but reduces the optimization
time to 16,851 s. Although the total time remains more or less unchanged, this
additional experiment shows that a carefully executed bounding mechanism may
have a potential to be efficient overall.

4 Quadratic Integer Programming Models

So far, we presented classical linear integer and constraint programming formu-
lations for the Golomb ruler problem. In this section, we focus on a less-explored
approach based on quadratic integer programming.

4.1 Two Formulations

In this section, we discuss two possible quadratic integer programming formula-
tions for the Golomb ruler problem with n marks, one based on an optimization
model and the other based on a feasibility version. To the best of our knowledge,
such formulations have not been proposed before in the literature.

Let us define a single set of binary variables yl, which takes value one if there
is a mark at location l and zero otherwise, l = 1, . . . , L. Here, L is again an
upper bound on the length of a shortest Golomb ruler with n marks.

Optimality Version. We first present an alternative integer programming for-
mulation of the Golomb ruler problem as follows:

min
y

max
l=1,...,L

l×yl (5a)

s.t.
L−v∑

l=0

ylyl+v ≤ 1 v = 1, . . . , L (5b)

yl ∈ {0, 1} l = 1, . . . , L. (5c)

Here, the objective (5a) minimizes the position of the last mark on a ruler of
length L, which corresponds to the length of an optimal ruler. We note that
the objective function can be easily linearized using an auxiliary variable and
enforcing L additional constraints. Constraint (5b) guarantees that each distance
v is used at most once in a feasible solution. Observe that the model (5) can be
reformulated as a quadratically constrained program, which contains two types
of nonconvexities, one due to the bilinear inequalities (5b), and another due to
the integrality of the y variables.
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Convexification techniques can be utilized to solve or approximate the non-
convex problem (5). We note that this formulation admits a straightforward
semidefinite programming (SDP) relaxation given as follows:

min
y,z,Y

z (6a)

s.t. l × yl ≤ z l = 1, . . . , L (6b)
L−v∑

l=0

Yl,l+v ≤ 1 v = 1, . . . , L (6c)

0 ≤ yl ≤ 1 l = 1, . . . , L (6d)
[
1 yT

y Y

]
� 0. (6e)

Unfortunately, the dual bound obtained from solving the SDP relaxation (6) is
extremely weak (for instance, the bound obtained for the 10-mark instance is
only 15.14 while the length of the optimal Golomb ruler is 55). Therefore, we
have not pursued this line of research direction further.

Feasibility Version. Now, we consider a “complementary” version of the prob-
lem defined as follows: Given the length of a ruler L, maximize the number of
marks that can be located onto such a ruler that satisfies the Golomb ruler
requirements. This version of the problem can be formulated as follows:

nL := max
y

L∑

l=0

yl (7a)

s.t. (5b) − (5c). (7b)

Note that the formulation (7) can be seen as the feasibility version of the
model (5) in the following sense: If nL = n but nL−1 = n − 1, then we can
certify that Gn = L. Hence, in order to obtain the length of a shortest Golomb
ruler with n marks, that is Gn, we can first solve problem (7) with L = Gn−1,
and then increase the value of L until we can locate all of the n marks. Such a
procedure gives an indirect way of solving the Golomb ruler problem.

Problem (7) is again a nonconvex, quadratically constrained integer program.
Below, we propose two linearization methods that can be used to solve prob-
lem (7) via an appropriate branch-and-bound method.

Linearization via SDP The problem (7) can be reformulated as a mixed-integer
SDP as follows:

max
y,Y

L∑

l=0

yl

s.t. (6c), (6e), (5c). (8a)
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Since the problems in this class are not typically supported by commercial
solvers, we implemented our own branch-and-bound algorithm. In this algo-
rithm, we solve the SDP relaxation of the model (8), which replaces the binary
restriction (5c) with its continuous relaxation (6d), at each node of the tree. Our
algorithm decides which y variables to choose for branching, which is discussed
in more detail in Sect. 4.2.

Linearization via LP. The problem (7) can be also reformulated as a mixed-
integer LP as follows:

max
y,Y

L∑

l=0

yl (9a)

s.t. (6c), (5c)
yl + yk − 1 ≤ Ylk l, k = 1, . . . , L (9b)
0 ≤ Ylk ≤ yl l, k = 1, . . . , L. (9c)

Here, constraints (9b)–(9c) correspond to the McCormick envelopes for the equa-
tion Ylk = ylyk. In general, solving problem (9) directly as an MILP is quite
expensive, partly due to the fact that its LP relaxation is highly degenerate.
Therefore, we adopt a Benders decomposition approach, whose problem specific
details are presented in Sect. 4.2.

4.2 Enhancements

We again propose some enhancements to speed up the solution procedure of the
feasibility version of the quadratic formulation of the Golomb ruler problem. In
particular, we develop two types of valid inequalities, Benders decomposition
for the linearized model (9) and branching strategies. Improved variable bounds
obtained via the bound tightening procedure presented in Sect. 2.2 are also used
whenever applicable.

Valid Inequalities. In this section, we present two families of valid inequalities,
which we refer to as “Golomb” and “Clique” inequalities. Below, we present their
precise formulations together with the intuition behind them.

Golomb Inequalities. Since the number of marks that can be placed onto any
subruler of length t is upper bounded by nt, the following inequalities are valid
and are added to the root node relaxation:
l+min{Gi+1,L}+1∑

j=l

yj ≤ i i = 2, . . . , nL; l = 0, . . . , L − (min{Gi+1, L} + 1). (10)

More inequalities of this kind can be obtained as follows: Instead of summing
the consecutive y variables, we can consider any subset of these variables whose
indices are separated by exactly the same integer c, c = 2, . . . , �L/2	, such as
yj , yj+c, yj+2c, . . . .
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Clique Inequalities In order to better explain the construction of the clique
inequalities, it is more suitable to present the Golomb ruler problem as a special
maximum cardinality clique problem defined as follows: Let us consider a com-
plete graph G = (V,E), where the set of vertices is V := {0, . . . , L}. We partition
the edge set E into L subsets El defined as El := {(i, i+ l) : i = 0, . . . , L− l} for
l = 1, . . . , L. Then, in order to solve the Golomb ruler problem, we search for a
largest clique G′ = (V ′, E′) in this graph such that at most one edge from each
subset El belongs to E′, that is, |El ∩ E′| ≤ 1.

Motivated by the above construction, let us introduce the clique inequal-
ities, which are easily implementable in a cutting plane framework. Consider
a fractional solution ỹ, and construct two sets L1 := {l : ỹl = 1} and
Lf := {l : ỹl ∈ (0, 1)}. Let us define the distances induced by the solution ỹ as
D := {|k − l| : k, l ∈ L1}. We will now construct an auxiliary graph G̃ = (Ṽ , Ẽ),
where Ṽ := Lf and Ẽ := {(k, l) ∈ Ṽ × Ṽ : |k − l| ∈ D}. We also associate node
weights ỹl for each l ∈ Ẽ. Then, each maximal clique C̃ in the graph G̃ whose
weight is more than 1 gives rise to a cutting plane of the following form:

∑

l∈C̃

yl ≤ 1. (11)

We note that the set of all maximal cliques in a graph can be found by the
Bron-Kerbosch algorithm [5] in reasonable time for such small graphs, and the
inequalities (11) can be added as local user cuts in a branch-and-cut algorithm.

Benders Decomposition. Since we observe that solving problem (9) directly
is not computationally efficient, we employ a Benders decomposition technique
instead. In this approach, we solve the following master problem

max
y

L∑

l=0

yl (12a)

s.t. (5c)
∑

l∈C

|Cu(l)|yl ≤ |C|
2

+ 1 C ⊆ {0, . . . , L}, u = 1, . . . , L, (12b)

where constraints (12b) are added in lazy fashion until feasibility is proven. Here,
Cu(l) := {k : |k − l| = u}. This is achieved through the separation procedure
(feasibility check) described as follows: Given a binary vector ỹ, we first define
the set of marks as M := {l : ỹl = 1}. For this candidate ruler to be a Golomb
ruler, the distances between each pair of mark should be distinct. Therefore, the
cardinality of the set Mu(l) := {k ∈ M : |k − l| = u} should be 1 for l ∈ M and
u = 1, . . . , L. Otherwise, we detect infeasibility and can add the following cut:

∑

l∈M

|Mu(l)|yl ≤ |M |
2

+ 1. (13)
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In other words, we expand the constraint set (12b) by the inclusion of the set Mu.
We note that our approach allows to add multiple cuts of the form (13) corre-
sponding to different u values for a given solution.

What we described so far amounts to a classical implementation of the Ben-
ders decomposition technique in which a “multi-tree” approach is employed, that
is, at each iteration, we solve the master problem (12) as an MILP. Therefore,
multiple branch-and-bound trees are created. An alternative approach would be
to use a single branch-and-bound tree, and add the Benders feasibility cuts (13)
via lazy constraint callbacks. Such an approach is commonly referred to as a
“one-tree” approach, branch-and-cut or “branch-and-check” and works much
better than its multi-tree counterpart for model (12).

Table 4. Results of the “y” Formulation (linearization via LP) with and without
Golomb and Clique cuts using one-tree Benders decomposition. Total time and branch-
and-nodes for each mark n and different ruler lengths L are reported.

n L without Golomb Cuts with Golomb Cuts

w/o Clique Cuts with Clique Cuts w/o Clique Cuts with Clique Cuts

TT #BBN TT #BBN TT #BBN TT #BBN

9 35–43 7.91 17,753 2.63 278 5.73 12,630 3.49 597

10 45–54 32.24 81,036 11.45 354 17.73 59,770 5.80 846

11 56–71 3,850.04 1,712,947 730.56 824 619.7 1,384,860 35.49 2,101

12 73–84 >10 h - 5,576.83 674 4,119.82 4,710,139 57.80 1,661

13 86–105 >10 h - >10 h - >10 h - 1,689.52 4,869

14 107–126 >10 h - >10 h - >10 h - 12,960.17 7,776

Branching Strategy. The branching decisions are extremely important for
both the SDP and LP based branch-and-bound algorithms. Following the intu-
ition from Left Branching idea from linear integer programming models as men-
tioned in Sect. 2.2, we propose a similar scheme that decides the next mark from
the left of the ruler. In particular, suppose that the first m marks from the left
are located at the positions �1, . . . , �m. Then, the location of the mark m+1 can
be chosen from the set
{
v : d1,m+1 ≤ v ≤ d1,m+1, v − �k �∈ {�j − �i : 1 ≤ i < j ≤ m} ∀k = 1, . . . , m

}
.

Therefore, we again prefer to create multiple child nodes rather than the more
traditional dichotomous branching.

4.3 Computations

We report the results of our computational experiments with the quadratic inte-
ger programming formulation with LP linearization in Table 4 for n = 9, . . . , 14.
Since quadratic integer programming formulations are based on feasibility ver-
sion of the Golomb ruler problem, we solve a sequence of models with increasing
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ruler length to certify that a given ruler is optimal (see the explanation at the
end of Sect. 4.1). For instance, to prove that G9 = 44, we solve problem (9) with
L = 35, . . . , 43 and certify that nL = 8 (here, we assume that G8 is known as 34).
We report the computational results with and without the Golomb and Cliques
cuts giving rise to four different settings.

We observe that both types of cuts are quite effective to solve the subproblems
from different perspectives: Golomb cuts are especially helpful in reducing the
computational time more directly whereas Clique cuts significantly lowers the
number of branch-and-bound nodes and indirectly reduces the total time. The
reason that these two cuts behave differently is that Golomb cuts are added from
scratch and their number is limited whereas Clique cuts are added on the fly at
each node of the tree and their number can be quite large. We believe that the
separation of Clique cuts can be made more efficient and selective so that the
total computational effort can be further improved.

Finally, we report the results of our computational experiments with the
quadratic integer programming formulation with SDP linearization in Table 5
for n = 9, 10, 11 with and without Golomb cuts (MOSEK 8.1 is used as the
SDP solver). Although the total number of branch-and-bound nodes is reduced
by solving the SDP relaxation of the model (8) at each node, the total time
increases quite significantly which prevents this line of research to be practical.
However, we point out that our implementation is quite näıve and perhaps the
value of stronger relaxations provided by the SDP relaxations can be made useful.

Table 5. Results of the “y” Formulation (linearization via SDP) with and without
Golomb cuts.

n L w/o Golomb Cuts with Golomb Cuts

TT #BBN TT #BBN

9 35–43 21.38 227 22.58 209

10 45–54 33.03 231 40.77 200

11 56–71 6,776.11 25,591 6,607.07 24,737

5 Concluding Remarks

In this paper, we provided a comprehensive comparison of computational meth-
ods to solve the Golomb ruler problem using optimization techniques. In par-
ticular, we analyzed three formulations based on linear integer programming,
constraint programming and quadratic integer programming, and proposed sev-
eral enhancements based on valid inequalities, variable bounding and branch-
ing strategies. According to our experiments with a budget of 10 h, integer lin-
ear programming models can solve up to 13-mark instances whereas constraint
programming and quadratic integer programming formulations can scale up to
14-mark instance, with the latter being faster. We observed that proposed
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enhancements significantly alter the solution procedures and provide substantial
savings in terms of computational effort.

Although the methods in this paper can solve relatively small-size instances
of the Golomb ruler problem, we think that there are some promising research
directions which might utilize them more effectively. As an example, if a large
number of processors is available, then bound tightening subproblems can be
parallelized asynchronously so that they can exchange information whenever a
new bound is improved. Since the availability of tight variable bounds seems
to accelerate the constraint programming solver, this can potentially enable us
to solve larger instances. Another potential line of research would be to make
the cut generation procedure for the quadratic integer programming model more
efficient and selective so that the overhead associated with solving large MILPs
is reduced while keeping the strength of the relaxations intact.
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Abstract. This paper considers the scheduling of job families on par-
allel machines with time constraints on machine qualifications. In this
problem, each job belongs to a family and a family can only be exe-
cuted on a subset of qualified machines. In addition, machines can lose
their qualifications during the schedule. Indeed, if no job of a family is
scheduled on a machine during a given amount of time, the machine
loses its qualification for this family. The goal is to minimize the sum of
job completion times, i.e. the flow time, while maximizing the number
of qualifications at the end of the schedule. The paper presents a new
Constraint Programming (CP) model taking more advantages of the CP
feature to model machine disqualifications. This model is compared with
two existing models: an Integer Linear Programming (ILP) model and
a Constraint Programming model. The experiments show that the new
CP model outperforms the other model when the priority is given to
the number of disqualifications objective. Furthermore, it is competitive
with the other model when the flow time objective is prioritized.

Keywords: Parallel machine scheduling · Time constraint ·
Machine qualifications · Integer Linear Programming ·
Constraint Programming

1 Introduction

Process industries, and specially semiconductor industries, need to be more and
more competitive and they are looking for strategies to improve their produc-
tivity, decrease their costs and enhance quality. In this context, companies must
pay constant attention to manufacturing processes, establish better and more
intelligent controls at various steps of the fabrication process and develop new
scheduling techniques. One way of doing it is to integrate scheduling and process
control [16]. This paper considers such a problem: the integration of constraints
coming from process control into a scheduling problem.
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Semiconductor fabrication plants (or fabs) have characteristics that make
scheduling a very complex issue [8]. Typical ones include a very large number
of jobs/machines, multiple job/machine types, hundreds of processing steps, re-
entrant flows, frequent breakdowns... Scheduling all jobs in a fab is so complex
that jobs are scheduled in each workshop separately. In this paper, the focus is
on the photolithography workshop, which is generally a bottleneck area. In this
area, scheduling can be seen as a scheduling problem on non-identical parallel
machines with job family setups (also called s-batching in [8]).

Fabrication processes of semiconductors are very precise and require a high
level of accuracy. Reliable equipments are required and valid recipe parameters
should be provided. Advanced Process Control (APC) systems ensure that each
process is done following predefined specifications and that each equipment is
reliable to process different product types. APC is usually associated with the
combination of Statistical Process Control, Fault Detection and Classification,
Run to Run (R2R) control, and more recently Virtual Metrology [9]. The main
interest of this paper is to consider, in scheduling decisions, constraints induced
by R2R controllers. As shown in the survey paper of [14], R2R control is becom-
ing critical in high-mix semiconductor manufacturing processes.

R2R controller uses data from past process runs to adjust settings for the
next run as presented for example in [10] and [4]. Note that a R2R controller is
associated to one machine and one job family. In order to keep the R2R param-
eters updated and valid, a R2R control loop should regularly get data. Hence,
as presented in [12,13], an additional constraint is defined on the scheduling
problem to impose that the execution of two jobs of the same family lies within
a given time interval on the same (qualified) machine. The value of the time
threshold depends on several criteria such as the process type (critical or not),
the equipment type, the stability of the control loop, etc. If this time constraint
is not satisfied, a qualification run is required for the machine to be able to
process again the job family on the machine. This procedure ensures that the
machine works within a specified tolerance and is usually time-consuming. In this
paper, we assume that qualification procedures are not scheduled either because
the scheduling horizon is not sufficiently long or because qualification procedures
have to be manually performed and/or validated by process engineers. Therefore,
maintaining machine qualifications as long as possible is crucial. More precisely,
it is important to have as many remaining machine qualifications as possible at
the end of the schedule, so that future jobs can also be scheduled.

To our knowledge, there are few articles dealing with scheduling decisions
while integrating R2R constraints. [2] and [7] study related problems, except
that they allow qualification procedures to be performed, the number or the type
of machines is different and the threshold is expressed in number of jobs instead
of in time. The scheduling problem addressed in this paper has been introduced
in [13], where two Integer Linear Programs (ILP) and two constructive heuristics
are proposed. More recently, [11,12] develop a new ILP, modelling problem con-
straints in a better way. The paper also presents one Constraint Programming
(CP) model, as well as two improvement procedures of existing heuristics.
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In this paper, a new CP model, which takes more advantages of the CP fea-
tures, is presented. The main idea of this model is to exploit the fact that once
a machine is disqualified, it is until the end of the schedule. The consequence
of this is that it is possible to model machine disqualifications more accurately.
Then, the performance of this model is compared with the two exact solution
methods described in [11]. Both CP models use the CP Optimizer (CPO) frame-
work [3]. Indeed, CPO allows to model elegantly and to propagate the precedent
constraints efficiently and optional jobs.

The paper is organized as follows. Section 2 gives a formal description of the
problem. Section 3 presents the ILP and CP models of [11]. Section 4 describes
the new CP model and finally, Sect. 5 provides a detailed comparison of the
performance of each model.

2 Problem Description

Formally, the problem takes as input a set of jobs, N = {1, . . . , N}, a set of
families F = {1, . . . , F} and a set of machines, M = {1, . . . , M}. Each job j
belongs to a family and the family associated with j is denoted by f(j). For
each family f , only a subset of the machines Mf ⊆ M, is able to process a job
of f . A machine m is said to be qualified to process a family f if m ∈ Mf .
Each family f is associated with the following parameters:

– nf denotes the number of jobs in the family. Note that
∑

f∈F nf = N .
– pf corresponds to the processing time of jobs in f .
– sf is the setup time required to switch the production from a job belonging

to a family f ′ �= f to the execution of a job of f . Note that this setup
time is independent of f ′. In addition, no setup time is required between the
execution of two jobs of the same family.

– γf is the threshold value for the time interval between the execution of two
jobs of f on the same machine. Note that this time interval is computed on
a start-to-start basis, i.e. the threshold is counted from the start of a job of
family f to the start of the next job of f on machine m. Then, if there is a
time interval ]t, t + γf ] without any job of f on a machine, the machine lose
its qualification for f .

The objective is to minimize both the sum of job completion times, i.e. the
flow time, and the number of qualification looses or disqualifications. Note that
the interest of minimizing the number of disqualifications comes from the fact
that, even if the time horizon considered is relatively small, the problem is solved
in a rolling horizon. Hence, it is interesting to preserve machine qualifications for
future jobs. In addition, it is relevant to consider that a machine cannot lose its
qualification for a family after the end of the schedule. Thus, this assumption is
made in the remaining of the paper. This problem, introduced in [13], is called
the scheduling Problem with Time Constraints (PTC). An example of PTC
together with two feasible solutions is now presented.
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Example 1. Consider the following instance with
N = 10, M = 2 and F = 3:

f nf pf sf γf Mf

1 3 9 1 25 {2}
2 3 6 1 26 {1, 2}
3 4 1 1 21 {1, 2}

Figure 1 shows two feasible solutions. The first solution, described by Fig. 1a,
is optimal in terms of flow time. For this solution, the flow time is equal to
1 + 2 + 9 + 15 + 21 + 1 + 2 + 12 + 21 + 30 = 114 and the number of qualification
losses is 3. Indeed, machine 1 (m1) loses its qualification for f3 at time 22 since
there is no job of f3 starting in interval ]1, 22] which is of size γ3 = 21. The same
goes for m2 and f3 at time 22 and for m2 and f2 at time 26.

The second solution, described by Fig. 1b, is optimal in terms of number
of disqualifications. Indeed, in this solution, none of the machines loses their
qualifications. However, the flow time is equal to 1 + 2 + 9 + 17 + 19 + 9 + 18 +
20+27+37 = 159. This shows that the flow time and the number of qualification
losses are two conflicting criteria. Indeed, to maintain machine qualifications, one
needs to regularly change the job family executed on machines. This results in
many setup time and then to a large flow time value.

Fig. 1. Two solution examples for PTC.

Note also that disqualifications may occur after the last job on the machine.
For example, in Fig. 1a, m1 become disqualified for f3 at time 22 whereas the
last job scheduled on m1 finishes at time 21. However, no disqualifications can
occur after the makespan Cmax.

Remark 1 (Bi-objective optimization). In [13], PTC is studied using a weighted
sum of the flow time and number of disqualifications. The weight associated to
the flow time is α and is always equal to 1. The weight associated with the number
of disqualifications is β and is set to 1 when the priority is given to the flow time
and to N · T when the priority is given to the number of disqualifications.

In this paper, we use instead the lexicographical order for the CP models
where the minimization of the disqualifications is prioritized.
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Remark 2 (Bound on the makespan). In the remaining of the paper, the fol-
lowing upper and lower bound on the makespan are defined. The upper bound
used is the same as in [13], i.e. T = Cmax =

∑
f∈F nf · (pf + sf ). A trivial lower

bound is Cmax = �(
∑

f∈F nf ∗ pf )/M�.

3 Existing Models

This section describes the two exact methods developed in [11]. First, the ILP
is described and then, the CP model.

3.1 ILP Model

The ILP model in [11] is an improvement of two existing models introduced in [13].
Thefirst ILPmodel of [13] relies on a job-based formulation. Indeed, in thismodel, a
variable xm

j,t is defined for each job j, each machine m and each time t. This variable
is then equal to 1 if and only if job j starts at time t on machine m. However, in a
solution, there is no need to know which job starts at which time on which machine.
Indeed, only the family of the job is important. Hence, a family-based model is
developed in [13] (IP2) and improved in [11] (IP3).

In the family-based model, a variable xm
f,t is introduced for each family f ∈ F ,

each machine m ∈ Mf and each time t ∈ T = {0, . . . , T − 1}, with T the upper
bound on the makespan (see Remark 2). This variable is set to one if and only
if one job of f starts at time t on machine m. Therefore, the number of binary
variables is reduced compared to the job-based model.

Similarly, a set of variable ym
f,t is used to model disqualifications. This variable

is set to 1 only if family f lose its qualification on machine m at time t. However,
in (IP2), it may occur that a machine becomes disqualified after Cmax. Thus,
in (IP3), another variable set Y m

f is defined to model the fact that a machine
becomes disqualified for a family before Cmax.

min. α ·
∑

f∈F
Cf + β ·

∑

f∈F

∑

m∈M
Y m

f (1)

∑

m∈Mf

T−pf∑

t=0

xm
f,t = nf ∀f ∈ F (2)

∑

m∈Mf

T−pf∑

t=0

(t + pf ) · xm
f,t ≤ Cf ∀f ∈ F (3)

nf · xm
f ′,t +

t∑

τ=t−pf−sf′+1

xm
f,τ ≤ nf ∀f �= f ′ ∈ F2,

∀m ∈ Mf ∩ Mf ′ , ∀t ∈ T (4)

ym
f,t +

t∑

τ=t−pf+1

xm
f,τ ≤ 1 ∀f ∈ F , ∀t ∈ T , ∀m ∈ Mf (5)
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ym
f,t +

t∑

τ=t−γf+1

xm
f,τ ≥ 1 ∀f ∈ F , ∀t ≥ γf ∈ T , ∀m ∈ Mf (6)

ym
f,t−1 ≤ ym

f,t ∀f ∈ F , ∀t ∈ T , ∀m ∈ Mf (7)

1

M · (T − t)

∑

f ′∈F

T−1∑

τ=t−p
f

′

∑

m′∈Mf′

xm′
f ′,τ + ym

f,t−1 − 1 ≤ Y m
f

∀t ∈ T , ∀f ∈ F , ∀m ∈ Mf (8)
xm

f,t ∈ {0, 1} ∀t ∈ T , ∀f ∈ F , ∀m ∈ Mf (9)
ym

f,t ∈ {0, 1} ∀t ∈ T , ∀f ∈ F , ∀m ∈ Mf (10)
Y m

f ∈ {0, 1} ∀f ∈ F , ∀m ∈ Mf (11)

The objective of the model is described by (1). It is expressed as the weighted
sum of the flow times and the number of disqualifications. Constraints (2) ensure that
all jobs are executed. Constraints (3) is used to compute the completion time of fam-
ily f , i.e. the sum of completion time of all jobs of f . Constraints (4) ensure that
jobs of f and jobs of f ′ do not overlap and that the setup times are satisfied. Con-
straints (5) are used to model both the fact that the execution of two jobs of the
same family cannot occur simultaneously and the fact that a machine has to be qual-
ified to process a job. Constraints (6) make sure that if no jobs of family f start on
m during an interval ]t − γf , t], then m becomes disqualified for f at time t. Con-
straints (7) maintain the disqualification of the machine once it becomes disqualified.
Finally, Constraints (8) ensure that it is no longer necessary to maintain a qualification
on a machine if there is no job which starts on any machine in the remainder of the
horizon, i.e. 1

M·(T−t)

∑
f ′∈F

∑T−1
τ=t−p

f
′
∑

m′∈Mf′ xm′
f ′,τ = 0.

The number of variables of the model is F ·M ·(2T+1) and the number of constraints
is at most 2F + T · M · (4F + F 2).

3.2 CP Model

In this section, the CP model defined in [11] is described. The first part of the model
concerns the modelling of a classical parallel machine scheduling problem (PMSP)
with setup time and the second part deals with the modelling of the disqualifications.
Attention will be given to this part of the model.

The Parallel Machine Scheduling Problem with Setup Time. The PMSP
with setup time can be modeled using optional (or not) interval variables introduced
by [5,6]. An (optional) interval variable J is associated with four variables: a start time,
st(J); a duration, d(J); an end time, et(J) and a binary execution status x(J), equal
to 1 if and only if the interval variable is present in the final solution. If the job J is
executed, it behaves as a classical job that is executed on its time interval, otherwise
it is not considered by any constraint.

In the considered scheduling problem, a job j of family f can be scheduled on any
machine belonging to Mf . Therefore, a set of optional interval variables altJj,m is
associated with each job j and each machine belonging to Mf(j). The domain of such
variables is dom(altJj,m) = {[st, et) | [st, et) ⊆ [0, T ), st + pf(j) = et}. Furthermore,
a non-optional interval variable, jobsj is associated with each job j. Its domain is
dom(jobsj) = {[st, et) | [st, et) ⊆ [0, T ), st + pf(j) = et}.
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To model the PMSP with setup time, the following two sets of global constraints
is used [15].

Alternative Constraints. Introduced in [5], this constraint models an exclusive alter-
native between a bunch of jobs.

alternative
(
jobsj ,

{
altJj,m|m ∈ Mf(j)

})
∀j ∈ N (12)

It means that when jobsj is executed, then exactly one of the altJj,m jobs must
be executed, i.e. the one corresponding to the machine m on which the job
is scheduled. Furthermore, the start date and the end date of jobsj must be
synchronised with the start and end date of the altJj,m jobs. However, if jobsj

is not executed, none of the other jobs can be executed. In our model, jobsj is a
mandatory job. This constraint models the fact that each job must be executed
on one and only one machine.

No-Overlap Constraints. An important constraint is that jobs cannot be exe-
cuted simultaneously on the same machine. It is a unary resource constraint.
Each machine can then be used by only one job at a time. To model this feature,
we use noOverlap constraints. This constraint ensures that the executions of
several interval variables do not overlap. It can also handle the setup time. Let

S be the matrix of setup times of the problem, i.e. (Sf ′,f ) =
{

0 if f = f ′

sf otherwise .

Then, the following noOverlap constraint makes sure that, for all pairs of jobs
(i, j) s.t. m ∈ Mi ∩Mj , either the start of altJj,m occurs after the end of altJi,m

plus sf(j) or the opposite:

noOverlap
({

altJj,m|∀j s.t. m ∈ Mf(j)

}
, S

)
∀m ∈ M (13)

The exact semantic of this constraint is presented in [6].

Additional Ordering Constraints. The authors of [11] add a non-mandatory set of
constraints to the model. Indeed, the model is correct without these constraints but
adding them remove many symmetry in the model. The constraint order the start of
jobs belonging to the same family.

startBeforeStart(jobsj , jobs′
j) ∀j, j′ ∈ N , j > j′, f(j′) = f(j) (14)

Modelling of the Number of Disqualifications. In the model of [11], dis-
qualifications are modelled as optional interval variables. The variable will be present
in the final solution if and only if, the machine became disqualified for the fam-
ily. The start time of the variable corresponds to the time at which the machine
becomes disqualified. Therefore, a set of optional interval variable, disqf,m, of length
0 is defined for each family f and each machine m such that m ∈ Mf . The domain
of these variables is dom(disqf,m) = {[st, et) | [st, et) ⊆ [γf , T ), st = et}. In addi-
tion, the model will use a Cmax interval variable of length 0 modelling the end time
of the last job executed on all machine, i.e. the end of the schedule. Its domain is
dom(Cmax) = {[st, et) | [st, et) ⊆ [0, T ), st = et}.
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Then, the constraints used to model machine disqualifications are stated below.
The first set of constraints model the fact that each job has to be executed before
Cmax.

endBeforeStart(jobsj , Cmax) ∀j ∈ N (15)

Another set of constraints ensures that no job of a family f is scheduled on m
if m is disqualified for f , i.e. after the disqf,m job.

startBeforeStart(altJj,m, disqf(j),m, γf(j)) ∀j ∈ N , ∀m ∈ Mf(j) (16)

Finally, the following constraints sets enforce a machine to become disqualified if no
job of family f is scheduled on m during an interval of size γf . Indeed, the first set
state that if a job of f is scheduled on m, either there is another job of f scheduled on
m less than γf units of time later, or the machine become disqualified, or the end of
the scheduled (Cmax) is reached.

x(altJj,m) ⇒
∨

j′ �=j
f(j)=f(j′)

(st(altJj′,m) ≤ tj,m) ∨
(
st(disqf(j),m) = tj,m

)
∨ (Cmax ≤ tj,m)

∀j ∈ N , ∀m ∈ Mf(j) (17)

with tj,m = st(altJj,m) + γf(j). The second set of constraints ensures that if no
job of f is scheduled on m, then m becomes disqualified for f .

∨

j∈N
f(j)=f(j′)

(st(altJj,m) ≤ γf ) ∨
(
st(disqf(j),m) = γf

)
∨ (st(Cmax) ≤ γf )

∀f ∈ F ,∀m ∈ Mf (18)

Objective Functions. The objective is to minimize both the flow time and the
number of disqualifications. In this CP model, the flow time can be expressed as
flowT ime =

∑
j∈N et(jobsj) and the number of disqualifications as nbDisq =∑

f∈F
∑

m∈M x(disqf,m).

Model Size. The number of variables of the model is at most N · (M + 1) +
M ·F +1 and the number of constraints is at most N2 +2N +M · (1+2N +F ).

4 New CP Model

This section presents a new CP model that can be used to solve PTC. As said
earlier, PTC can be decomposed into two sub-problems: a PMSP with setup
time and a machine qualifications problem. The model described in this section
uses the same idea as in [11] to formulate the first sub-problem of PTC. However,
to model the machine qualification sub-problem a novel approach is developed
modelling qualifications as resource.
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The first part of this section described the difference of modelling of the
PMSP between the model of Sect. 3.2 and the model of this section. The second
part is dedicated to the machine qualification sub-problem.

In the model, without loss of generality, the two following assumptions are
made. First, it is assumed that jobs of the same family have consecutive index
in N . More precisely, with nf the number of jobs in family f then jobs with
index in {1, . . . , n1} belong to family 1, jobs with index in {n1 + 1, . . . , n1 + n2}
are jobs of family 2, etc. The second assumption made in the model is that it
is equivalent to consider the threshold either on an end-to-end basis or on a
start-to-start basis. Indeed, if a job of family f starts at time t on m, another
job of f has to start before t+γf . This is equivalent to: if a job of family f ends
at time t + pf on m, another job of f has to end before t + pf + γf . Therefore,
the model considers the threshold on an end-to-end basis. The motivation for
this second assumption will be given later in the section.

The Parallel Machine Scheduling Problem with Setup Time. As for the
model of Sect. 3.2, the parallel machine scheduling problem with setup time is
modeled using interval variables jobsj , ∀j ∈ N , and optional interval variables
altJj,m. The constraints used are the same and, therefore, are not described in
this section.

Cumulative Constraints. The model is also reinforced by considering the set of
machines as a cumulative resource of capacity M . Indeed, each job consumes
one unit of resource (one machine) during its execution and the total capacity of
the resource (total number of machines available) is M . This is expressed using
the global constraint cumulative [1].

cumulative({(jobsj , 1) | ∀j ∈ N}, M) (19)

Makespan Modelling. As for the previous model, the makespan of the scheduling is
needed to model machine disqualifications. The constraints presented in this section
concern the link between the makespan and the PMSP. A constraint linking the
makespan with the number of disqualifications will be presented later in the paper.

Unlike the previous model, the makespan is modeled here as an interval variable
starting at time 0 and spanning the execution of all jobs. This is modelled using span
constraints. Introduced in [6], this constraint states that an executed job must span
over a set of other executed jobs by synchronising its start date with the earliest start
date of other executed jobs and its end date with the latest end date. It is expressed
by the following constraints:

span(Cmax, {jobsj | ∀j ∈ N}) (20)
st(Cmax) = 0 (21)

In addition, the size of the interval has to be between the upper and the
lower bound on the makespan defined in Remark 2.
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Machine Qualifications Problem. In this section, the model for the machine
qualifications problem is described. The main idea of the model is that, each
time a job of family f is scheduled on a machine m, a qualification interval of
size γf will occur right after. This interval “models” the fact that machine m
remains qualified for family f until, at least, the end of the interval. To model
this feature, optional interval variable are used. Indeed, for each job j and each
machine m ∈ Mf(j), an optional interval variable, qualj,m, of size γf(j) and
taking its value in {0, . . . , T +maxf γf}. is created. Then, a variable qualj,m will
be present in the solution only if altJj,m is present and will start at the end of
altJj,m. This is expressed by the following set of constraints.

x(altJj,m) = x(qualj,m) ∀j ∈ N , ∀m ∈ Mf(j) (22)
endAtStart(altJj,m, qualj,m) ∀j ∈ N , ∀m ∈ Mf(j) (23)

Hence, a job of f can only be scheduled on m during a qualification interval of f on
m. This is modeled using cumulative functions. A cumulative function Qf,m counts, at
each time t, the number of qualification intervals for (f, m) in which t is. If the number
of qualification intervals for (f, m) is greater than 1, then a job of f can be scheduled
on m. Otherwise, the number of interval is zero and m is disqualified for f . Qf,m is
expressed as:

Qf,m = pulse(0, γf + pf , 1) +
∑

j∈N
f(j)=f

∑

m∈Mf(j)

pulse(qualj,m, 1)

Indeed, at the beginning of the scheduled, the machine is qualified from time 0 to γf +
pf . In addition, each time an interval variable qualj,m is scheduled, Qf(j),m increases
by one. Then, when a job of f is scheduled on m, Qf,m has to be greater than one and
one can show that Qf,m is always smaller than nf + 1.

alwaysIn(Qf(j),m, altJj,m, 1, nf(j) + 1) ∀j ∈ N , ∀m ∈ Mf(j) (24)

Example 2 (Example of cumulative function). Considering the instance of Example 1.
The cumulative function Qf3,m1 corresponding to Fig. 1b is described by Fig. 2.

Each time a job of f3 ends, the value of the function Qf3,m1 increases by one and
decreases when the qualification interval ends. While the value of Qf3,m1 is greater
than one, it is possible to schedule jobs of f3 on m1. Here, Qf3,m1 is always greater
than one for t ∈ [0, Cmax) meaning that m1 remains qualified for f3 at the end of the
schedule.

Fig. 2. Example of cumulative function to model qualifications.
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Machine Disqualifications. Another dummy optional interval variable set, endQf,m,
is introduced to check if a machine has been disqualified for a family during the sched-
ule. The variable is present in the final solution only if the machine is still qualified
at the end of the schedule. In this case, the variable starts at time 0, ends at time
Cmax+pf and the function Qf,t has to be greater than one during the whole execution
of job endQf,m (otherwise, the machine has been disqualified).

st(endQf,m) = 0 ∀f ∈ F , ∀m ∈ Mf (25)
endAtEnd(Cmax, endQf,m, pf ) ∀f ∈ F , ∀m ∈ Mf (26)
alwaysIn(Qf,m, endQf,m, 1, nf + 1) ∀f ∈ F , ∀m ∈ Mf (27)

Thresholds were considered on an end-to-end basis so that the constraints alwaysIn
can be used.

OrderingConstraints. The following sets of constraint (partially) order variables in
the solution. These (partial) ordering is used to break symmetries in the model. Recall-
ing that it is assumed that jobs of the same family have consecutive index in N . Then
constraints (28) state that jobsj−1 has to start before jobsj and constraints (29) that the
maximum time lag between these jobs is γf(j). Constraints (30) order jobs that cannot
be executed in parallel. Indeed, job j can overlap at most Mf(j) −1. Hence, job j −Mf(j)

cannot overlap job j and has to end before. Constraints (31) ensure that the qualification
interval corresponding to job j is separated from the qualification interval of j − 1 by at
least the duration of the job. Finally, constraints (32) model the fact that, on a machine
m, jobs of a same family are ordered, i.e. smaller index scheduled first.

startBeforeStart(jobsj−1, jobsj) ∀j ∈ N s.t. f(j) = f(j − 1) (28)
startBeforeSart(jobsj , jobsj−1, −γf(j)) ∀j ∈ N s.t. f(j) = f(j − 1) (29)
endBeforeStart(jobsj−Mf(j) , jobsj) ∀j ∈ N s.t. f(j) = f(j − Mf(j)) (30)

startBeforeStart(qualj−1,m, qualj,m, pf(j))

∀m ∈ Mf(j), ∀j ∈ N s.t. f(j) = f(j − 1) (31)
endBeforeStart(altJi,m, altJj,m) ∀m ∈ Mf(j), ∀i < j ∈ N s.t.f(i) = f(j) (32)

Objective Functions. The objective function is modeled using two integer
variables: flowT ime ∈ {Cmax, . . . , Cmax} and qualified ∈ {1, . . . ,

∑
f∈F Mf}.

The expressions of these variables are given below:

flowTime =
∑

j∈N
et(jobsj) (33)

qualified =
∑

f∈F

∑

m∈Mf(j)

x(endQf,m) (34)

Then, the objective is expressed as a sum, i.e. (flow − qual), or using the
lexicographical order, e.g. lex(−qual, f low). Note that, in this model, the number
of machine qualified at the end of the schedule is maximized which is equivalent
to minimize the number of machine becoming disqualified during the schedule.

Model Size. The number of variables of the model is at most N ·(2M +1)+M ·
F +3 and the number of constraints is at most N2 ·M+4N+M ·(1+4N+3F )+6.
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5 Experiments

This section starts with the presentation of the instances used in the experi-
ments (Sect. 5.1). Then, the general framework of the experiments is described
in Sect. 5.2. Finally, the three model presented in the paper are used to solve the
instances and the results are compared and analysed (Sect. 5.3).

5.1 Instance Generation

The benchmark instances used to perform our experiments are extracted
from [11]. In this paper, 19 instance sets are generated with different number
of jobs (N), machines (M), family (F ) and qualification schemes. Each of the
instance sets is a group of 30 instances and are generated as follows.

In each generated instances, each family can be executed by at least one
machine and each machine is qualified to process at least one job family. Further-
more, since short thresholds may lead to very quick machine disqualifications,
the time thresholds of job families are chosen sufficiently large compared to
their associated processing times, i.e. maxf∈F pf ≤ minf∈F γf . Then, to ensure
diversity, each set of instances contains 10 instances with small threshold (corre-
sponding to duration needed to process one to two jobs of another family than
f), 10 with medium threshold (two to three jobs) and 10 with large threshold
(three to four jobs). In addition, setup times are not chosen too large so that
the risk of disqualifying a machine due to a setup time insertion is “acceptable”,
i.e. maxf∈F sf ≤ minf∈F pf .

Table 1 presents the parameters of the different instance sets. In the first
row, the different number of jobs N is given, the number of machines M is
described by the second row and number of families F is detailed in the third
row. Note that each triplet (n,m, f) corresponds to 30 instances. Among those
instances, at least 99, 5% are feasible. Indeed, experiments in [11] show that only
one 60-job instance and two 70-job instances have an unknown status. For all
other instances, at least one of the algorithms presented in [11] is able to find a
feasible solution.

Table 1. Instance characteristics

N 20 30 40 50 60 70

M 3 4 3 4 5 3 4

F 4 5 2 3 4 5 2 3 4 5 4 5 3 3 4 5 5 4 5

The instances generated are relatively small compared to industrial instances.
However, due to the complexity of the problem, it is important to first analyse
and compare the results of the three models described in this paper. Finding
good solutions for industrial instances is a real challenge and is an important
research direction for future work.
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5.2 Framework

The experiment framework is defined so the following questions are addressed:

Question 1. Which model is the best at finding a feasible solution, proving
the optimality or finding good upper bounds (especially when solving large
instances)?

Question 2. Does the performance of a model change depending on the objective
function or on the time limit?

The models are implemented using IBM ILOG CPLEX Optimization Studio
12.8 [3]. That is CPLEX for the ILP model and CP Optimizer for CP models. All
the experiments were led on a computer running on Ubuntu 16.04.5 with 32 GB
of RAM and one Intel Core i7-3930K 3.20 GHz processors (6 cores). Furthermore,
two time limits are used in the experiments: 30 and 600 s.

Two heuristics are used to find solutions which are used as a basis for the
models. These heuristics are called Scheduling Centric Heuristic and Qualifica-
tion Centric Heuristic [11]. The goal of the first heuristic is to minimize the flow
time while the second one tries to minimize the number of disqualifications.

In the following of the section ILP model, CPO model and CPN model
denotes respectively the ILP model of section 3.1, the previous CP model
described in Sect. 3.2 and the new CP model detailed in Sect. 4. Furthermore,
to describe the performance of the different models, the following indicators are
used in the table of Sect. 5.3: %sol. gives the percentage of instances for which
feasible solution is found; %opt. shows the percentage of instances for which
the optimality is proven; %vbs provides the percentage of instances for which
the model is the virtual best solver, i.e. has found the best solution compared
to others; #dis. gives the average number of disqualified machines and finally,
obj. is used to show the average of the sum of the flow time and the number of
disqualified machines.

In addition, a bold value in the table means that the corresponding indicator
has the best values among its row, i.e. compared to other model.

5.3 Comparison of the Three Models

This section aims at comparing the results of the three models. First, the results
are described for the tight time limit, i.e. 30 s. Then, the results with the 600-
seconds time limits are given.

30-seconds Time Limit

Minimizing the Number of Disqualifications Over the Flow Time. Table 2 gives
indicators for the three models solved using the lex(−qual, f low) objective with
30-seconds time limit.

Table 2 shows that the ILP model finds less feasible solutions than the CP
models. Furthermore, the ILP model does not scale well for large instances.
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Table 2. Lexicographic minimization of the disqualified machines and the flow time
within 30 s.

N ILP model CPO model CPN model

%sol. %opt. %vbs #dis. %sol. %opt. %vbs #dis. %sol. %opt. %vbs #dis.

20 100 54.4 55.6 1.1 100 69.4 86.1 0.6 100 82.2 90.6 0.6

30 97.2 21.7 23.3 3.1 99.4 51.1 59.4 1.4 98.9 56.7 71.1 1.2

40 100 23.3 26.7 0.9 100 63.3 63.3 0.6 100 83.3 90 0.2

50 100 0 6.7 2.9 100 33.3 36.7 1.4 100 56.7 73.3 0.8

60 88.3 0 0 7.5 90 8.3 33.3 3.4 90 21.7 56.7 2.8

70 86.7 0 0 9.5 91.1 4.4 41.1 5 91.1 15.6 52.2 4.1

Indeed, the ILP model is never the VBS and its average number of disqualified
machines is very high for the largest instances compared to the CP models.

On the other hand, the CPN model obtains better results than the CPO

model. Indeed, the percentage of proof of optimality is higher with CPN model.
The model is also more often the VBS regardless of the instance size. Further-
more, the difference between the average numbers of qualified machines of both
model increases with the instance size. This shows that the CPN model scales
better than the CPO model.

Minimizing the Flow Time Over the Number of Disqualifications. Table 3 gives
indicators for the three models solved using the (flow − qual) objective with
30-seconds time limit.

Table 3. Weighted sum minimization of the flow time and number of disqualified
machines within 30 s.

N ILP model CPO model CPN model

%sol. %opt. %vbs obj. %sol. %opt. %vbs obj. %sol. %opt. %vbs obj.

20 100 96.7 97.8 334.7 100 0 87.8 334.8 100 65.6 90 334.7

30 97.8 69.4 72.2 782.5 99.4 0 71.1 770 98.9 24.4 57.8 766.8

40 100 90 90 1536 100 0 93.3 1530 100 60 100 1529

50 100 60 70 2265 100 0 76.7 2159 100 10 73.3 2151

60 88.3 5 8.3 3228 90 0 50 2792 90 0 36.7 2805

70 86.7 4.4 5.6 4256 90 0 52.2 3583 91.1 0 43.3 3562

Table 3 shows that the ILP model is more competitive when the priority is
given to the number of disqualifications. Indeed, despite the fact that it finds
a few less feasible solutions than the CP Models, it is better at proving the
optimality of its solution. However, the ILP model does not scale well as shown
by the high objective values for the largest instances.

On the other hand, the CPO model is the most efficient for finding good
upper bounds, but completely fails at proving the optimality of its solution. The
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CPN model proves optimality less often than the ILP model. However, it is only
slightly dominated by the CPO model in terms of being the VBS. However, the
CPN model still have the lowest objective values.

600-seconds Time Limit. Table 4 gives indicators for the three models solved
using both lexicographic and weighted sum minimization with 30-seconds and
600-seconds time limit. Only challenging instances with 60 jobs are used to save
computation time.

For the lexicographic minimization, the CPN model confirms its predom-
inance. For all three models, the percentages of solved instances remain con-
stant, the percentages of optimality proof only slightly increase, and the average
numbers of disqualified machines significantly decrease.

For the weighted sum minimization, the ILP model becomes the best model.
The percentages of solved instances and optimality proof significantly improve
and the model often becomes the VBS. Nevertheless, the CPN model model has
the best average objective.

Most of the time, the low improvements of the number of solved instances or
optimality proofs suggest that the solvers is subject to thrashing and therefore
cannot diversify the search.

Table 4. Weighted sum and leximin minimization over instances of 60 jobs within
600 s.

t ILP model CPO model CPN model

%sol. %opt. %vbs #dis. %sol. %opt. %vbs #dis. %sol. %opt. %vbs #dis.

30s 88.3 0 0 7.5 90 8.3 33.3 3.4 90 21.7 56.7 2.8

600s 90 0 3.3 4.2 90 11.7 28.3 2.9 90 23.3 61.7 2.2

t %sol. %opt. %vbs obj. %sol. %opt. %vbs obj. %sol. %opt. %vbs obj.

30s 88.3 5 8.3 3228 90 0 50 2792 90 0 36.7 2805

600s 98.3 55 75 2873 90 0 33.3 2755 90 0 33.3 2744

6 Conclusions and Further Work

A parallel machine scheduling problem was studied where some Advanced Pro-
cess Control constraints are integrated: minimal time constraints between jobs
of the same family to be processed on a qualified machine to avoid losing the
qualification. Two criteria to minimize are considered: the sum of completion
times and the number of disqualifications.

For this problem, a new CP model was proposed. This model improves the
modelling of machine disqualifications. Indeed, when the number of disqualifica-
tions is prioritized, this model is better than the existing methods (ILP model
and CPO model) in terms of objective value and in terms of optimality proof.
However, when the flow time is prioritized, the performance of the model is less
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impressive. In this case, the CPO model tends to have better performance for
small-time limit and the ILP model performs better in case of larger time limit.

Experiment results show that a good CP model needs to make some improve-
ments on the modelling and/or the solving of the parallel machine scheduling
problem with the flow time objective. Interesting research directions include the
improvement of variable bounds, especially the makespan. It also includes the
study of good relaxations of the problem to enhance the performance of con-
straint programming models.

Another relevant research perspective consists in scheduling jobs on a longer
time horizon, where lost qualifications could be automatically recovered after
a given qualification procedure. Qualification procedures, requiring time on
machines, would then also be scheduled.
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de temps. In: 19ème édition du congrès annuel de la Société Française de Recherche
Opérationnelle et d’Aide à la Décision, ROADEF2018
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Abstract. Interest in the channel assignment problem (CAP) has been
growing rapidly with both the spread of wireless data networks and the
increasing scarcity of electromagnetic (EM) spectrum. The ability to effi-
ciently reuse available EM channels is heavily dependent on co-channel
interference, i.e., interference occurring between two radios using the
same channel but not communicating on the same network. The vast
majority of CAP research considers only the interference between any
pair of radios, but many radio systems – including the mobile ad-hoc net-
works we consider – are sensitive to the effects of cumulative interference.
In previous work, we describe the vast computational challenges of con-
sidering cumulative interference within a CAP. We present a new method
to solve this problem via heuristics, integer optimization, and constraint
programming techniques. We apply our methods to realistic data sets
from a large U.S. Marine Corps operational scenario and provide detailed
performance results. To our knowledge, we are the first to describe algo-
rithms for solving realistic, large-scale cumulative-interference minimum-
order and minimum-cost channel assignment problems to global or near-
global optimality.
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1 Introduction

Interest in the channel assignment problem (CAP) has been growing rapidly
with both the spread of wireless data networks and the increasing scarcity of
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electromagnetic (EM) spectrum [1,13,35]. Efficient channel allocation schemes
leverage channel reuse, where a channel is a contiguous block of EM spectrum.
The ability to reuse a channel is dependent on (among other things) co-channel
interference, i.e., interference occurring between two radios assigned the same
channel but that do not wish to communicate. The vast majority of research
on the CAP considers only pairwise interference constraints [1] due to the com-
putational challenges of explicitly representing cumulative interference, and the
ease with which the problem can be represented as a graph-coloring problem
[4,9,25,27,38]. This seemingly simple problem is NP-complete [6], and yet the
realistic cumulative interference constraints we model are much more difficult
[26–28].

We consider the challenge of a spectrum manager who must determine an
efficient channel allocation scheme to support radio communications over a cer-
tain period of time for mobile units operating on rough terrain. We specifically
consider the use of wideband mobile ad-hoc network (MANET ) radios fielded
by the United States Marine Corps (USMC), but our approach generalizes to
other military services and any EM transceiver system requiring a discrete chan-
nel assignment. The spectrum manager knows the capabilities of each radio and
their starting locations, and has a rough understanding of their future locations
within the operating area. Using this information and terrain elevation data, the
spectrum manager must determine the minimum number of channels required
to support communications with an acceptable level of co-channel interference.
Further, since each radio requires manual assignment, the spectrum manager is
responsible for the reallocation of channels whenever the situation changes, and
therefore desires to minimize the number of channel changes over time.

Due to the computational difficulties of exactly solving the CAP, heuristics
are often used to solve the problem [1,23]. While heuristics may provide usable
solutions in reasonable amounts of time, we feel that optimality bounds are
important for understanding the goodness of a particular solution, especially
since spectrum is increasingly crowded and scarce, and communications may be
critical to the success of a military operation.

Dunkin et al. [9] describe the challenge of using cumulative interference con-
straints, and instead use simple binary and tertiary constraints (i.e., groups of
three interfering radios) using a constraint satisfaction approach. Daniels et al.
[7] formulate an integer CAP that considers cumulative interference and estab-
lish the NP-hardness of the problem. Fischetti et al. [11] use pre-processing and
branch-and-cut to solve their cumulative interference CAP, but their problem
sizes are much smaller than those studied here and they consider relatively few
sources of interference, i.e., they have a relatively small number of constraints.

We use integer and constraint programming methods to develop more efficient
methods of channel allocation. Our first problem minimizes the number of required
channels (i.e.,minimumorder), subject to cumulative co-channel interference con-
straints for any given instance in time, and the second problem minimizes the num-
ber of channel assignment changes over time (i.e., minimum cost). We use realistic
radio performance data from large-scale, high-fidelity simulations of U.S. Marine
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Corps operational scenarios (the data are available to the research community at
[12]). To our knowledge, we are the first to solve to global- or near-global optimal-
ity the minimum-order and minimum-cost channel assignment problems for large,
realistic datasets while also considering the effects of cumulative co-channel inter-
ference and the costs of manual channel changes. We believe that the tools created
for this application are likely to be appropriate for other complex graph-coloring
problems, as well.

This paper is organized as follows. Section 2 provides an overview of our
model of MANET operations. Section 3 describes our formulation and compu-
tational results in solving the minimum-order channel assignment problem, and
Sect. 4 does the same for the minimum-cost CAP. Section 5 provides conclusions
and suggestions for future research.

2 Model of MANET Communications

We create a network model to simulate the key aspects of a MANET formed by
tactical wideband radios at a given moment in time (i.e., time step). Let r ∈ R
(alias s) represent each MANET radio. Each radio is permanently assigned to
a MANET unit u ∈ U , indicated by the set of logical arcs (r, u) ∈ L. In a
military scenario, a unit may represent a tactical military organization, such as
an infantry company or battalion headquarters. Let the set of nodes N (indexed
by n) consist of both radios R and units U , i.e., n ∈ N = R ∪ U . Let a channel
c ∈ C be a contiguous range of EM frequencies, where C is the set of available
orthogonal (i.e., non-interfering) channels. Each unit u and the radios assigned
to it require a channel assignment.

Let (r, s) ∈ W indicate the set of arcs representing wireless transmissions
between all radios r, s ∈ R. A unit u ∈ U forms a separate MANET among its
assigned radios using the available wireless arcs (r, s) ∈ W : (r, u) ∈ L, (s, u) ∈ L.
Figure 1 shows two separate units (indicated in blue and green) and their
assigned radios. The solid lines indicate bidirectional wireless arcs (r, s) ∈ W
between radios. Any radio (e.g., radio r in Fig. 1) communicates with its net-
work control radio (e.g., radio s) via these arcs (a radio may route through other
radios in the same unit to reach the network control radio). All radios are sub-
ject to co-channel interference from any other radios assigned to different units
but operating on the same channel and geographically close enough to cause
interference; this is indicated by dashed gray arrows directed to r (other lines
withheld for clarity).

To calculate both co-channel interference and the strength of desired wireless
transmissions between intra-unit radios, we calculate the received signal strength
(RSS ) along all wireless arcs (r, s) ∈ W in dBm (power ratio in decibels relative
to milliwatts). We instantiate our scenarios in Systems Toolkit (STK) [3] and
then use Python and the Terrain Integrated Rough Earth Model (TIREM) of
Alion Science & Technology Corporation [2] to calculate path loss considering
the technical specifications of each radio and the effects of terrain, atmospheric
absorption, etc.
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Fig. 1. Simple example of two units (indicated in blue and green) with network control
radios (solid circles) and other radios (open circles). Wireless arcs are indicated by
arrows. The radios within each unit must be capable of bi-directional communication
with their unit’s network control radio via direct communication or routing through
other radios in the same network. All radios are subject to co-channel interference
(dashed arrows) from other radios assigned to different units but operating on the
same channel. (Color figure online)

For each radio s ∈ R, we follow [1] and pre-calculate the maximum allowable
interference in watts max interferencecs. This calculation is based on the RSS
between radios and each particular radio’s required signal-to-interference ratio
(SIR), a measure of signal quality [33]. Any co-channel interference above this
level severs the shortest path and thus disconnects the radio from its assigned
network control radio. Among radios not assigned to the same unit but operating
on the same channel, the RSS represents co-channel interference. The magnitude
of co-channel interference along all arcs (r, s) ∈ W for each available channel
c ∈ C is pre-calculated in watts, and is indicated by interferencecrs.

We use realistic datasets generated from high-fidelity simulations of U.S.
Marine Corps operations. We find the largest scenario, depicting a Marine Expe-
ditionary Force (MEF) of 60,000 Marines conducting a large amphibious opera-
tion and based on Integrated Security Construct B [8], to be the most compu-
tationally interesting. We generate separate datasets at 20 different time steps
(i.e., discrete moments) within the scenario (each containing the locations of 118
units comprising 1887 total radios). See [26] for full details of our scenarios.

3 Minimum-Order Channel Assignment Problem
(MO-CAP)

3.1 Problem Formulation

The MO-CAP aims to minimize the total number of channels required to support
MANET operations at a given moment in time.
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Variables:

Xc
n =

{
1, if node n uses channel c
0, otherwise ∀n ∈ N, c ∈ C (1)

Y c =
{

1, if channel c is used
0, otherwise ∀c ∈ C (2)

Constraints:
We enforce the definition of Y c via:

Xc
u ≤ Y c ∀u ∈ U, c ∈ C. (3)

Each radio is assigned the same channel as its associated unit:

Xc
r = Xc

u ∀c ∈ C, (r, u) ∈ L. (4)

To ensure each unit u is assigned one and only one channel, we add the con-
straints: ∑

c∈C

Xc
u = 1 ∀u ∈ U. (5)

Two radios from different units are subject to interference if they are both
assigned to the same channel. This assignment will only be allowed if the received
interferencecrs between these two radios is less than the precalculated allowable
total interference, max interferencecs. One way of representing this pairwise
interference is:

interferencecrsX
c
rX

c
s ≤ max interferencecs ∀ (r, s) ∈ W, c ∈ C. (6)

To model the total aggregate interference that a radio receives, we follow the
lead of [19], and assume the cumulative effects of jamming sources on the same
channel are additive (in watts). That is, a radio s ∈ R may be unable to use
a channel c ∈ C because the total sum of interference exceeds the threshold
max interferencecs, even if the interference received from any single radio is
less than the threshold. Summing along all arcs yields:

∑
r:(r,s)∈W

interferencecrsX
c
rX

c
s ≤ max interferencecs ∀s ∈ R, c ∈ C. (7)

To linearize these constraints, we introduce the binary variable Zc
rs where:

Zc
rs =

{
1, if Xc

r = Xc
s = 1

0, otherwise ∀r, s ∈ R, c ∈ C (8)

which is enforced via:

Zc
rs ≥ Xc

r + Xc
s − 1 ∀r, s ∈ R, c ∈ C (9)

Zc
rs ≤ Xc

r ∀r, s ∈ R, c ∈ C (10)
Zc
rs ≤ Xc

s ∀r, s ∈ R, c ∈ C. (11)
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Our cumulative co-channel interference constraints are thus represented:
∑

r:(r,s)∈W

interferencecrsZ
c
rs ≤ max interferencecs ∀s ∈ R, c ∈ C. (12)

Given the results of radio propagation simulation in a military scenario, we pre-
calculate the max interferencecs values (using the method described above),
and fix the assignment of radios to their respective units (indicated by arcs
(r, u) ∈ L).

Since the goal is to minimize the total number of channels required, our
objective function is:

min
∑
c∈C

Y c. (13)

3.2 Computational Challenges

The MO-CAP is relatively easy to understand and describe. However, it suffers
from several serious computational difficulties when the full problem is simply
provided to a commercial solver (e.g., CPLEX or Gurobi) with our realistic
datasets. First, commercial solvers may be sensitive to vast differences in input
parameters. In our simulated datasets, our interference values vary by 24 orders
of magnitude, and are generally quite small. Also, non-integral input data may
result in highly fractionalized LP solutions, as the solver will attempt to pack
the most units (including fractions of units) onto the same channel.

Another computational problem (also observed by [32]) is that of symmetry,
which occurs when channel assignments may be changed among units with no
corresponding change in the objective function value [24]. The very near symme-
try that is characteristic of our datasets (as opposed to exact symmetry) results
from some units being located near each other, and is especially difficult for
solvers to detect and mitigate [31].

Some of these computational problems could be avoided if we considered
only pairwise interference constraints, as IP and constraint satisfaction solvers
reformulate these pairwise constraints into clique constraints and then handle
these structures very efficiently. Unfortunately, these constraints alone do not
adequately represent our real-world problem, and will cause at least a few radios
to be disconnected from their respective MANETs.

A simple “brute force” IP method (i.e., using CPLEX to solve the full prob-
lem as-is, without providing any initial solution or conducting preprocessing)
fails to obtain useful answers to the Marine Corps scenario, even after two weeks
of computation on a cluster of 14 high-performance desktop computers. In an
attempt to improve the solution process, we create a simple greedy heuristic that
iteratively “packs” units onto channels until the channel is “full,” and then starts
with the next channel. We provide the heuristic solution as an initial feasible
solution to CPLEX and attempt to solve the problem for a single time step. We
find that after 60 h of runtime, CPLEX improves upon the initial feasible solu-
tion, but the obtained solution has an optimality gap of 77%. This indicates that
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our heuristic may not be finding very good solutions and/or the lower bounding
technique is not very effective, and that we require more sophisticated methods
if we are going to solve realistic instances of this problem with certifiably-good
solutions.

3.3 Integer Programming Solution Method and Results

Rather than simply “throw” the computationally-challenging cumulative inter-
ference constraints (12) at a solver, we preprocess the constraints to create sim-
plified and more computationally tractable packing constraints. For example,
suppose two specific nodes r and s (not assigned to the same unit) are not both
allowed to be assigned to channel c because to do so would violate the associated
interference constraint. This may be represented as:

Xc
r + Xc

s ≤ 1. (14)

We use Python and the mpmath library [18], which allows the use of arbitrary-
precision floating point mathematics, to identify unacceptable pairs of radios
and handle the extremely small interference values present in our realistic data
sets.

To generalize for larger n-tuples of units above pairs (triplets, quadruplets,
etc.), let S ⊂ U be a subset of units that cannot all be assigned to the same
channel c. We can represent such a restriction of assignments as:

∑
r∈S

Xc
r ≤ |S| − 1. (15)

Preprocessing all such unacceptable combinations and adding them as con-
straints would effectively replace the cumulative co-channel interference con-
straints (12). However, identifying all combinations would be computationally
prohibitive (as they grow exponentially with both the number of units and avail-
able channels) and unnecessary, as many combinations will be redundant and/or
represent negligible levels of co-channel interference.

Instead, we dynamically add these higher-order constraints to the formulation
only as needed via lazy constraints, which are constraints that are checked for
violation whenever an integer solution to the current formulation is found. They
are added on an as-needed basis [17]. This approach avoids the problem of very
small numbers in CPLEX, as we can process the constraints outside of the solver
(e.g., in Python), and then add the much-simplified packing constraints (15)
dynamically. Also, since the solver is no longer required to calculate cumulative
interference at each radio, the formulation no longer requires the index r ∈ R.
That is, we are now concerned only with the cumulative interference received
at each unit. By removing the index r ∈ R, we reduce the number of decision
variables in the problem by an order of magnitude.

After building an initial problem instance with pairwise constraints using
Python and Pyomo [15], we send the problem to CPLEX via the Python API
and indicate to the solver that we wish to initiate lazy constraint callbacks. Upon
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Table 1. MO-CAP results by time step using pairwise and lazy constraints. “Time”
indicates the time at which the displayed solution and optimality gap is obtained,
during a total runtime of 9,000 s.

Time Step Number lazy
constraints

Highest- order
lazy constraint

Solution
value

Time (s) Gap Improvement
over heuristic

1 49 5 46 1356.53 2.17% 9.80%

2 25 5 37 1333.92 0% 22.92%

3 87 6 36 4432.53 5.56% 21.74%

4 62 5 34 7828.09 5.88% 27.66%

5 9 5 33 678.23 0% 23.26%

6 104 6 36 4086.04 2.78% 29.41%

7 67 5 37 1737.45 0% 24.49%

8 57 5 31 8614.79 6.45% 26.19%

9 21 8 32 271.19 0% 25.58%

10 0 0 34 248.16 0% 30.61%

11 121 11 33 5997.82 3.03% 26.67%

12 29 5 36 927.38 2.78% 16.28%

13 104 6 32 2510.22 3.12% 25.58%

14 69 6 31 1780.48 3.23% 27.91%

15 147 6 38 1669.23 2.63% 22.45%

16 119 8 36 4194.86 5.56% 23.40%

17 128 6 37 3092.38 2.70% 24.49%

18 8 4 31 245.20 0% 22.50%

19 99 5 30 1673.56 3.33% 25.00%

20 47 5 37 1268.30 0% 24.49%

Aver 67.6 5.6 34.9 2697.32 2.46% 24.02%

finding an integer solution that is feasible with the current constraints, the solver
runs our lazy constraint callback code. The code checks the feasibility of the
current solution in the full problem, i.e., it checks if the solution satisfies each
of the constraints (12). This can be calculated in polynomial time, specifically
O (|R|2|C|). If infeasibility exists, we add the lowest-order constraint (15) to the
constraint set to prevent the same units from being assigned the same channel
again. CPLEX then continues the search process with these new constraints
added into the formulation. The process repeats until optimality is achieved or
a time limit is reached.

Table 1 displays results for each time step in the Marine Corps scenario,
including the number of lazy constraints (and the order of the highest-order
lazy constraint), and solution results. Each time step is run for 9,000 s, or until
optimality is obtained. The times in Table 1 indicate the time when the displayed
solution value and optimality gap is obtained; those time steps with a non-zero
optimality gap fail to converge within 9,000 s. Our results are obtained using
a Dell Mobile Precision 6800 laptop with 32 GB of RAM and an Intel Core
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i7-4940MX processor running at 3.1 GHz. We use IBM ILOG CPLEX version
12.6.2 and Python 2.7.

The lazy constraint approach to solving the MO-CAP yields results far supe-
rior to our previous methods. The solutions are on average 24% lower than the
heuristic, and each solution has an associated optimality gap. On seven time
steps, optimality is achieved. Even for those for which optimality is not proven,
the method finds solutions within one or two channels of optimality.

We next improve on our lazy constraint method by adding the constraints
specifying the maximum clique, which is the largest complete sub-graph formed
from among the pairwise interference constraints. We use the NetworkX Python
library [14] to find the maximum clique, which relies on the algorithm of [5] as
adapted by [36]. Let M ⊂ U be the subset of units in the maximum clique. The
maximum clique constraint takes the form:

∑
u∈M

Xc
u ≤ 1 ∀c ∈ C. (16)

That is, only one unit in the clique may be assigned any given channel. Adding
this constraint forces the lower bound up significantly and allows the optimiza-
tion engine to search in a much smaller feasible region. After we add the maxi-
mum clique, we then add all remaining pairwise constraints that are not included
in this clique constraint. The lazy constraint method is used again to generate
any higher-order interference constraints.

The results of this method are displayed in Table 2, where bolded values
indicate an improvement over the previously-described technique. Again, each
time step is run for 9,000 s, or until optimality is obtained, and “Time” indicates
solver time when the displayed solution value and optimality gap is obtained.
Overall, inclusion of the maximum clique reduces average runtime to obtain
solutions within one channel of optimality. For the problem associated with time
step 3, this method obtains a solution that requires one less channel than that
identified without use of the maximum clique. On eight time steps, this method
reduces the known optimality gap, and on 12 time steps, the method obtains the
provably-optimal solution (five more time steps than the previous method). It is
interesting to note that the size of the maximum clique (which itself provides a
lower bound on the number of required channels) is within one of the best-known
solution for each time step. This is indicative of the power of the maximum clique
constraint. We note that there is a clique constraint generator within CPLEX,
but this procedure does not find this very strong clique; the overall solution times
obtained when the maximum clique constraint is removed and CPLEX clique
generator is turned on to aggressive yields results no better than those obtained
with default parameters for CPLEX.

We also note that we do not obtain shorter solutions times or better bounds
when we provide CPLEX with our feasible solution obtained using our greedy
heuristic. This indicates that the solutions found with the heuristic are of little
use to CPLEX.
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3.4 Constraint Programming Solution Method and Results

We reformulate MO-CAP as a constraint programming (CP) problem in an
attempt to quickly find lower bounds to the problem. We use the Optimization
Programming Language (OPL) to formulate the problem using integer variables,
where each variable wu ∈ C indicates the channel number that unit u ∈ U is
assigned, and the domain of each variable is equal to the number of available
channels |C|. (We originally formulate this problem using binary variables, but
find that the CP solver is much less efficient in determining feasibility using
binary variables for this particular problem.)

Table 2. MO-CAP results by time step using pairwise and lazy constraints, and a
maximum clique constraint. Bold values indicate an improvement over the previous
method. “Time” indicates the time at which the displayed solution and optimality gap
is obtained, during a total runtime of 9,000 s.

Time
Step

Max
Clique
Size

Number lazy
constraints

Highest-
order lazy
constraint

Sol’n
value

Time (s) Gap Improvement
over heuristic

1 46 45 6 46 552.68 0% 9.80%

2 37 4 4 37 273.40 0% 22.92%

3 34 143 7 35 4338.21 0% 23.91%

4 33 85 6 34 3831.19 2.94% 27.66%

5 33 10 3 33 1010.00 0% 23.26%

6 35 95 6 36 3128.34 2.78% 29.41%

7 37 13 6 37 266.68 0% 24.49%

8 30 45 5 31 4415.48 3.23% 26.19%

9 32 2 4 32 226.37 0% 25.58%

10 34 6 4 34 323.08 0% 30.61%

11 33 42 8 33 856.69 0% 26.67%

12 35 30 5 36 1577.96 2.78% 16.28%

13 31 131 6 32 3172.95 3.12% 25.58%

14 30 214 9 31 2702.16 3.23% 27.91%

15 38 105 6 38 1047.00 0% 22.45%

16 35 16 5 36 600.91 2.78% 23.40%

17 36 89 5 37 1495.15 2.70% 24.49%

18 31 13 4 31 322.90 0% 22.50%

19 30 74 6 30 1653.29 0% 25.00%

20 37 33 4 37 1387.28 0% 24.49%

Aver 34.4 59.8 5.5 34.8 1659.09 1.18% 24.13%

We add all pairwise constraints to the problem by indicating that two given
units u and v are not allowed to be assigned the same channel, for all pairs
(u, v) ∈ P . We solve the problem using IBM ILOG CPLEX CP Optimizer [17].
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We begin with a small (infeasible) number of available channels |C| (i.e., the
domain of each wu ∈ C), and iteratively increase |C| until the solver either
determines that the problem is feasible, or it cannot resolve the problem within
12 h. At each |C|, we have a relaxation of the original MO-CAP. If a problem is
infeasible with the given number of channels, then we have established that the
original MO-CAP (with all constraints) is also infeasible. This indicates that at
least |C| + 1 channels are required, establishing a MO-CAP lower bound. If the
lower bound equals the upper bound (obtained using CPLEX), we have obtained
an optimal solution.

Table 3. MO-CAP results by time step using constraint programming. “Optimal solu-
tion?” indicates whether the obtained value proves the optimality of a solution, and
bolded values indicate new lower bounds (i.e., not found in the previous analyses.

Time step Infeasible Optimal solution?

1 45 Yes

2 36 Yes

3 33

4 32

5 32 Yes

6 34

7 36 Yes

8 29

9 31 Yes

10 33 Yes

11 32 Yes

12 34

13 31 Yes

14 29

15 37 Yes

16 34

17 36 Yes

18 30 Yes

19 29 Yes

20 36 Yes

The results are displayed in Table 3, where “Infeasible” indicates the largest
value at which the solver detects infeasibility, i.e., at least one more channel is
required for the problem to be feasible. “Optimal solution?” indicates whether
the obtained value proves the optimality of a solution, where bolded values
indicate new lower bounds (i.e., not found in the previous analyses). While the
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solver does not find the exact lower bound at each time step, it does establish
two new exact lower bounds (for the problems associated with time steps 13 and
17). When infeasibility is detected by the solver, it is detected extremely quickly
(less than a tenth of a second in each case).

On the other hand, the constraint programming procedure was not capable
of proving optimality. In general, one can quickly determine that one needs at
least k channels (because one can establish that k− 1 channels are not feasible).
If the CP solver cannot establish whether k channels are infeasible within a few
seconds, one is likely to find that the solver will not establish the satisfiability
of these constraints within 12 h. In order to improve the solver’s capabilities to
prove optimality, we try adding symmetry-breaking constraints (following [34])
but that does not alter the performance result. Next, we try adding all triplet
constraints and the known maximum clique constraint (via CP allDifferent
constraints), as well as adding constraints iteratively, to no avail.

Thus, we conclude that the CP approach is very efficient at finding infeasi-
bilities (and thus establishing lower bounds), but is incapable of finding feasible
solutions close to or at the actual lower bound. We conclude that a very good
approach to obtaining optimal or near-optimal solutions to the problem is to
integrate CP and IP in a complementary fashion ([16]), where IP is used to
search for good solutions and establish upper bounds, and CP is used to quickly
tighten lower bounds. Similar techniques have been used for large-scale spectrum
auctions [20] and scheduling [30,37].

4 Minimum-Cost Channel Assignment Problem over
Time (MC-CAP-T)

4.1 Problem Formulation

Given the number of channels needed at a moment in time (established using
MO-CAP), a spectrum manager may now wish to reduce the total number of
times a radio must change channels. Excessive channel changes waste the time of
radio operators and require coordination and synchronization among potentially
many dispersed units, which may be difficult to achieve in battlefield conditions.

The minimum-cost channel assignment problem over time (MC-CAP-T )
aims to minimize the cost incurred by channel changes over time, given the
number of channels required at each time step. Let the index t ∈ T represent
each time step, and let g ∈ G (alias h) be a group of units that must be assigned
the same channel at a given time step. Groups are obtained at each time step
from the MO-CAP. A näıve approach would simply assign channel numbers
to the groups as they appear in order. In practice, this produces surprisingly
bad solutions as group membership (i.e., the units assigned to each group) may
change significantly from time step to time step, and thus an excessively large
cost is incurred if one simply dictates that group 1 is always assigned channel
1, etc. We instead use a decomposition approach that takes the solutions from
each MO-CAP time step and minimizes the “distance” (i.e., number of channel
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changes) from one time step to the next. We obtain globally-optimal solutions
to this problem in polynomial time using our decomposition approach.

We wish to associate each group g at time t to a group h at time t + 1 at
least cost. Let the binary variable Y t

gh indicate if group g at t is associated with
group h at t+ 1, and let (g, h, t) ∈ A be the arcs representing the set of possible
associations between g and h. One could simplify this formulation further by
dropping the t ∈ T index, but we retain the notation to aid in describing our
solution approach. At each time step, each group g at t must be assigned a group
h at t + 1, and vice versa, which is enforced via the assignment constraints:∑

h∈G

Y t
gh = 1 ∀ (g, ·, t) ∈ A (17)

∑
g∈G

Y t
gh = 1 ∀ (·, h, t) ∈ A. (18)

The cost of associating a group g at time t to a group h at time t+1, costtgh,
is a function of the difference in unit membership between g and h. Specifically,
if radiosu is the number of radios assigned to unit u,

costtgh =
∑

u∈h\g
radiosu ∀ (g, h, t) ∈ A. (19)

That is, the cost from g to h is the number of radios from units that are in group
h but not in group g. This method of calculating costs prevents double-counting
when a unit moves from an existing channel to a new channel. Our objective
function minimizes the sum total costs of associating each group g at t with
group h at t + 1:

min
Y

∑
(g,h,t)∈A

costtghY
t
gh. (20)

Note this cost function assumes all units and radios have the same importance,
but that need not be the case: one could associate scalar weights with each radio
or to an entire unit to model its relative importance.

t t+1 t+2 t+3

Fig. 2. Example of the association of groups (blue boxes) at each time step. Virtual
groups (comprising no units) are represented by dashed boxes. (Color figure online)
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4.2 Decomposition Solution Method and Results

To solve the MC-CAP-T, we use a decomposition approach based on the key
insight that the actual channel number (or color, or any other label) is arbitrary.
We also observe that the cost of changing assignment of a group from t to t+ 1
depends only on the unit membership of each group at t and t+1; i.e., the costs
can be decomposed by time step. These properties allow us to decompose the
problem by time step while maintaining global convergence.

Figure 2 provides a visual representation of the process of associating groups
at each time step, where for each time step the column of squares on the left
represents groups g and on the right groups h. The number of groups (and their
unit membership) is determined by the solutions from the MO-CAP, so some
time steps may have more or fewer groups than others. For those time steps with
fewer groups than the maximum, we create virtual groups (indicated in Fig. 2
by dashed boxes), representing a placeholder group with no assigned units. In
this sense, a group represents both a collection of units to be assigned the same
channel, and a placeholder for the channel itself, i.e., |G| is equal to the maximum
number of available channels across all time steps in the scenario.

At each time step, each group g must be associated with a group h, indicated
by gray lines between groups in Fig. 2. When a real group g (i.e., comprising
units) is associated with a virtual group h, no cost is incurred because the units
in g are assigned to other groups (not in h) at t + 1. When a virtual group g
is associated with a real group at h, the cost equals the number of radios in h,
since, according to (18), each unit in h was previously assigned a different group.

We implement our solution in Python. We first calculate all of the costtgh
values for each possible (g, h, t) ∈ A, and then solve a classic integer assignment
problem at each time step using a variation of the Hungarian (or Munkres)
algorithm [21], which solves to optimality in O (

n3
)

time. Global convergence
is maintained because at each time step, the cost of channel changes depends
only on the assignments at t and t + 1. The actual assigned channel (i.e., its
number) is arbitrary, since all channels provide the same performance and each
group must have a channel. Thus this formulation exhibits optimal substructure
that allows us to efficiently solve each time step to optimality and then combine
our results to solve the entire problem to optimality.

Note that in this approach, there is no variable or index representing a par-
ticular channel; the association Y t

gh implies one. After solving the problem, the
paths created by associating each g with an h at the next time step represent
discrete channels. By assigning a channel number to each of these paths (i.e., the
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gray lines in Fig. 2), we effectively solve the MC-CAP-T. The following pseudo-
code describes our algorithm for solving the problem:

Algorithm 1. MC-CAP-T
Input: MO-CAP solutions at each time step

Output: Xct
u , ∀u ∈ U, c ∈ C, t ∈ T (unit channel assignments for all time steps)

begin

Calculate costtgt, ∀ (g, h, t) ∈ A

channel ← 1

for g ∈ G : t = 1

Γg ← channel // Assign channels to groups during first time step

channel ← channel + 1

next;

for t = 1, 2, . . . , t − 1

Solve the MC-CAP-T for t using Hungarian / Munkres algorithm

Store Y t
gh values

for g, h ∈ (g, h, t)

if Y t
gh = 1

Γh ← Γg // Assign channels to groups for time step t

endif;

next;

next;

for g ∈ G

for u ∈ g

X
Γ t
g

u ← 1 // Assign channels to units

next;

next;

end;

We solve for each time step in the Marine Corps scenario. The näıve method
requires a total of 33, 340 channel changes, whereas our decomposition method
(which solves to optimality in less than 53 s) requires 21, 915 channel changes, a
reduction of 34%. Figure 3 is a method of visualizing the results of this compar-
ison. For both the näıve and decomposition methods, a row represents a unit,
where reddish units are larger (comprising up to 25 radios each) and greenish
units are smaller, each column represents a time step, and a blank entry indi-
cates that no channel change is required for that unit at that time step. This
visualization provides a qualitative sense of how much better the decomposi-
tion method (which provides an exact solution) is at reducing channel changes,
especially for larger (and thus more penalizing) units.
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Fig. 3. Results of MC-CAP-T, where each row represents a unit, and each column
represents a time step. White indicates that the channel assignment remains the same
(i.e., no cost), and color indicates that a different channel is assigned at the next time
step. Red indicates larger units (more radios); green indicates smaller units. (Color
figure online)

5 Conclusions and Future Research

We present new integer optimization and constraint programming methodolo-
gies that solve large, realistic instances of the minimum-order and minimum-
cost channel assignment problems to global or near-global optimality in reason-
able amounts of time. Our approach can be used to support military spectrum
managers who must quickly make spectrum allocation decisions in congested
EM environments. Our ongoing and future research explores robustness and
resiliency in the presence of an adversary determined to jam portions of the EM
spectrum (see, e.g., [10,22,29,39]).
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Abstract. The interconnection pattern between the tubes of a tube-fin
heat exchanger, also referred to as its circuitry, has a significant impact
on its performance. We can improve the performance of a heat exchanger
by identifying optimized circuitry designs. This task is difficult because
the number of possible circuitries is very large, and because the depen-
dence of the heat exchanger performance on the input (i.e., a given cir-
cuitry) is highly discontinuous and nonlinear. In this paper, we propose
a novel decision diagram formulation and present computational results
using the mixed integer programming solver CPLEX. The results show
that the proposed approach has a favorable scaling with respect to num-
ber of tubes in the heat exchanger size and produces configurations with
9% higher heat capacity, on average, than the baseline configuration.

Keywords: Optimization · Decision diagram ·
Heat exchanger design · Refrigerant circuitry · Heat capacity

1 Introduction

Heat exchanger performance is important in many systems, ranging from the
heating and air-conditioning systems that are widely used in residential and
commercial applications, to plant operation for process industries. A variety of
shapes and configurations can be used for the constituent components of the heat
exchanger, depending on its application [2]. The most common configuration in
heating and air-conditioning is the crossflow fin-and-tube type. In this type, a
refrigerant flows through a set of pipes and moist air flows across a possibly
enhanced surface on the other side of the pipe, allowing thermal energy to be
transferred between the air and the refrigerant.
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Heat exchanger performance can be improved according to a number of dif-
ferent metrics; these typically include maximization of heating or cooling capac-
ity, size reduction, component material reduction, manufacturing cost reduction,
reduction of pumping power, or a combination of these metrics. While the con-
cept of many of these metrics is reasonably straightforward (e.g., size reduction
and manufacturing cost reduction), the heat capacity is influenced by various
parameters (like the geometry of the heat exchanger and the inlet conditions)
and the dependence of the heat exchanger performance on these parameters
tends to be highly discontinuous and nonlinear.

The circuitry determines the sequence of tubes through which the refrigerant
flows and has a significant influence on the thermal performance of the heat
exchanger. As heat exchangers for contemporary air-source heat pumps often
have between 60 and 200 tubes, design engineers are faced with a very large
number of potential circuitry choices that must be evaluated to identify a suitable
design that meets performance and manufacturing specifications. Current design
processes typically involve the manual choice of the configuration based upon
expert knowledge and the results of an enumerated set of simulations. This
task is inherently challenging, and does not guarantee that a manually found
configuration will be optimal.

Systematic optimization of heat exchangers has been a long-standing research
topic [3,4]. Circuitry optimization is a particularly challenging task because:
(i) the search space is enormous, making exhaustive search algorithms imprac-
tical for large numbers of tubes, and (ii) there is a highly discontinuous and
nonlinear relationship between the circuitry design and the heat exchanger per-
formance. Many researchers [5–9] have studied the effect of improving the refrig-
erant circuitry, and have concluded that circuitry optimization is often more
convenient and less expensive than optimizing the geometry of the fins and
tubes. Moreover, it has also been found that the optimal circuitry design for a
specific heat exchanger is different from that of other heat exchangers [10].

A variety of methods have thus been proposed to tackle the circuitry opti-
mization problem [11–17]. These methods generally require either a significant
amount of time to find the optimal circuitry design or generate a circuitry that
is difficult to manufacture. In [1], we presented a binary constrained formula-
tion for the heat exchanger circuitry optimization problem that generates cir-
cuitry designs without requiring extensive domain knowledge. Derivative-free
optimization algorithms were applied to optimize heat exchanger performance
and constraint programming methods were used to verify the results for small
heat exchangers.

In this paper, we extend our work in [1] by providing a novel relaxed deci-
sion diagram formulation for the heat exchanger circuitry optimization problem.
Decision diagrams have played a variety of roles in discrete optimization [18–31].
In a number of applications the decision diagram formulation has vastly out-
performed existing formulations [20,23,27,29]. Our new formulation produces
smaller optimization instances and is able to find optimized circuitry configura-
tions on heat exchangers with 128 tubes. In contrast, the approach in [1] could
only optimize coils up to 36 tubes.
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The remainder of this paper is organized as follows. In Sect. 2, we present cir-
cuitry design principles of a heat exchanger. Section 3 describes the proposed for-
mulation for optimizing the performance of heat exchangers. Section 4 presents
the computational experiments on finding the best circuitry arrangements on
various heat exchangers and also provides a discussion on the advantages of the
formulation. Conclusions from the research are presented in Sect. 5.

2 Heat Exchanger Circuitry

In this paper, we assume that all geometric and inlet parameters are predefined.
As described in the introduction, the main problem of interest is to determine the
circuitry configuration that optimizes the heat exchanger performance. This con-
figuration, which is typically realized during the manufacturing process, includes
both the circuitry design and the identification of the inlet and outlet tubes.
Figure 1(a) is an illustration of the circuitry for a representative heat exchanger.
The manufacturing process for fin-tube heat exchangers typically proceeds by
first stacking layers of aluminum fins together that contain preformed holes, and
then press-fitting copper tubes into each set of aligned holes. The copper tubes
are often pre-bent into a U shape before insertion, so that two holes are filled at
one time. After all of the tubes are inserted into the set of aluminum fins, the
heat exchanger is flipped over and the other ends of the copper tubes are con-
nected in the desired circuitry pattern. Figures 1(b) and (c) illustrate circuitry
configurations for a heat exchanger of eight tubes. A crossed sign inside a circle
indicates that the refrigerant flows into the page, while a dotted sign indicates
that the refrigerant flows out of the page. There are two types of connections: (i)
a connection at the far end of the tubes, and (ii) a connection at the front end
of the tubes. Therefore, a dotted line between two tubes represents a connection

Fig. 1. (a) Illustration of heat exchanger (Image licensed from S. S. Popov/
Shutterstock.com). (b) and (c) are examples of valid circuitry configurations with
one and two circuits, respectively.

https://www.Shutterstock.com
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on the far end (pre-bent tube), while a solid line represents a connection on the
front end of the tubes. In this example, the pairs of tubes 1–2, 3–4, 5–6 and
7–8 are the pre-connected tubes (i.e. tubes with bends on the far end of the
coil). In Fig. 1(b), the inlet stream is connected to tube 1 and outlet stream is
connected to tube 5. In Fig. 1(c), tubes 1 and 5 are connected to inlet streams,
while tubes 4 and 8 are connected to outlet streams. A given circuit is a set
of pipes through which the refrigerant flows from inlet to outlet. Figures 1(b)
and (c) depict circuitry configuration with one and two circuits, respectively.

A set of realistic manufacturing constraints are imposed on the connections of
the tubes: (i) adjacent pairs of tubes in each column, starting with the bottom
tube, are always connected (this constraint is imposed by the manufacturing
process since one set of bends on the far end are applied to the tubes before they
are inserted into the fins), (ii) the connections on the far end cannot be across
rows unless they are at the edge of the coil, (iii) plugged tubes, i.e., tubes without
connections, are not allowed, (iv) inlets and outlets must always be located at
the near end, and (v) merges and splits are not allowed.

3 Decision Diagram Formulation

In [1], we proposed a new approach for formulating the refrigerant circuitry
design problem. We formulated the problem as a binary constrained optimiza-
tion problem with a black-box objective function and we applied derivative-
free optimization algorithms to solve this problem. Each connection was repre-
sented using a binary variable and cycles were excluded by adding inequality
constraints. As a result, the constraint matrix was dense. In this paper, we pro-
pose a new formulation based on decision diagrams.

Fig. 2. Decision diagram formulation.

The main idea is that pre-
connected tubes (i.e., tubes with bends
on the far end of the coil) are
treated as single entities which we call
super-nodes. Based on the manufactur-
ing constraint outlined previously, the
heat-exchanger circuitry configuration
can be defined as: (a) a collection
of paths involving super-nodes where
each super-node occurs only once in a
path; (b) paths cover all super-nodes;
and (c) paths are super-node disjoint.
We propose a relaxed decision diagram

to represent the set of all heat exchanger configurations. The said diagram is
relaxed since the requirements (a) and (c) are not modeled in the diagram; they
are not ignored though, rather will be enforced by additional constraints later
on. Figure 2 shows such a relaxed decision diagram for a heat exchanger with
eight tubes.

Let us assume that we have n tubes. The number of layers in the decision
diagram is equal to N = n

2 . The layers are indexed sequentially and every layer
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consists of the set of super-nodes. In addition, a 0-node is introduced into layers
with index 2 and above. The 0-node represents the end of a circuit. Arcs are
drawn between the nodes (collection of super-nodes and 0-node) of two successive
layers. Root and terminal nodes are introduced that respectively connect to the
first and last layers in the diagram. In this representation, a path from the root
to terminal can repeat super-nodes (refer to Fig. 2). For example, the path (r,
1–2, 3–4, 0, 0, t) is a path satisfying (a), while the path (r, 1–2, 3–4, 1–2, 3–4,
t) is a path that does not satisfy (a). However, we impose additional constraints
that ensure that we identify configurations satisfying the requirements (a)–(c).
The constraints ensure that the identified path is indeed a circuit.

Before presenting the mixed integer programming model derived from this
decision diagram formulation, we introduce the following notation:

– N: the number of layers in the decision diagram
– Li: represents the i-th layer in the decision diagram, where i = 1, . . . ,N
– s: super-nodes (not including 0-node)
– S: set of super-nodes
– r, t: the root and terminal nodes in the decision diagram
– (s, i) or (0, i): node in layer i of decision diagram
– a: arcs in the decision diagram
– head(a) (tail(a)): starting (ending) node of the arc in the decision diagram
– Ain

s,i (Aout
s,i ): set of input arcs to (output arcs from) super-node s in Li

– Ain
0,i (Aout

0,i ): set of input arcs to (output arcs from) 0 in Li

– xa ∈ {0, 1} for a ∈ A(x) :=
N⋃

i=1

⋃

s∈S

(
Ain
s,i ∪ Aout

s,i

)
: binary variables encoding

flow on the arcs between s, s′ ∈ S and flow on arcs between s ∈ S and 0

– za ∈ {0, 1, . . .} for a ∈ A(z) :=
N⋃

i=2

Aout
0,i : integer variables encoding flow on the

arcs between 0 in successive layers
– Clb: the minimum number of circuits
– Cub: the maximum number of circuits

Therefore, the mixed integer programming model derived from the decision dia-
gram formulation can be expressed as:

max Q(x, z)
(

or Q(x,z)
ΔP (x,z)

)
(1)

s.t.
∑

a∈Ain
s,i

xa =
∑

a∈Aout
s,i

xa, ∀ s ∈ S, i ∈ {1, . . . ,N} (2)

∑

a∈Ain
0,i:tail(a)∈S

xa +
∑

a∈Ain
0,i:tail(a)=0

za =
∑

a∈Aout
0,i

za, ∀ i = 2, . . . ,N (3)

N∑

i=1

∑

a∈Ain
s,i

xa = 1, ∀ s ∈ S (4)

Clb ≤ ∑

a∈ ⋃

s∈S
Ain
s,1

xa ≤ Cub, (5)

xa ∈ {0, 1} , a ∈ A(x), za′ ∈ Z, ∀ a′ ∈ A(z). (6)
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where Q(x, z) is the heat capacity related to the solution vectors x and z, and
ΔP is the pressure difference across the heat exchanger.

Two targets of the refrigerant circuitry optimization are considered in this
work: (i) maximization of the heat capacity (Q(x, z)), and (ii) maximization of
the ratio of the heat capacity to the pressure difference across the heat exchanger
(Q(x, z)/ΔP (x, z)). Constraint (2) is the flow balance for the super-nodes in all
different levels, while constraint (3) is the flow balance for the 0-nodes. Note
that {a ∈ Ain

0,2 | tail(a) = 0} = ∅. Constraint (4) is imposed for each super-
node s and invalidates any repetition of super-nodes, so there can be no cycles.
Constraint (5) sets a limit on the number of circuits in the circuitry configuration.

The total number of variables in the decision diagram formulation is equal
to |S|3 − |S|2 + 3 |S| − 1 and the total number of constraints is equal to |S|2 +
2 |S|+2. Table 1 shows the superiority of the proposed formulation compared to
the one proposed in [1]. The formulation in [1] is memory bound, i.e., it requires
an exponentially increasing amount of memory for only a constant increase in
problem size. Moreover, the constraint matrix in [1] is dense, while the constraint
matrix in the proposed formulation is sparse. For example, the constraint matrix
for a heat exchanger with 40 tubes of the formulation in [1] needs ∼6 GB of
memory, while the constraint matrix of the proposed formulation needs only
∼300 KB.

Table 1. Reduction in the problem size of the proposed decision diagram formulation
compared to the formulation proposed in [1]

# of tubes Problem size of the
formulation
proposed in [1]

Problem size of the
proposed
formulation

Reduction in problem
size (%)

16 263 × 120 471 × 82 −22%

24 4,107×276 1,619×170 76%

32 65,551×496 3,887×290 97%

40 1,048,595×780 7,659×442 100%

128 - 258,239×4,226 -

We provide a brief discussion on the advantages of the decision diagram
based representation. The width and the depth (number of layers) of the diagram
grows linearly in the number of tubes. This can be quite prohibitive in that it
leads to a very dense formulation for heat exchangers with a large number of
tubes. However, operational and manufacturing constraints help to alleviate this
complexity. From practical operational considerations, it is not desirable to have
long circuits since they incur large pressure drops and increased costs (pump
power) to flow the refrigerant. Hence, from pressure drop considerations it is
desirable to limit the depth of the diagram and this can be easily accomplished
by truncating the diagram. From manufacturing considerations it is not desirable
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to allow connections between all pairs of tubes. This can also be accomplished by
eliminating arcs between pairs of super-nodes for which a connection is forbidden.
This results in a much sparser diagram and an associated integer program which
is smaller in size. We will explore these aspects in a future work.

4 Computational Results

In order to validate the proposed model, we performed a computational study
with the aim of optimizing the heat capacity (Q(x, z)) and the ratio of the heat
capacity to the pressure difference (Q(x, z)/ΔP (x, z)) across the heat exchanger.
The analytical form of Q(x, z) and Q(x, z)/ΔP (x, z) as a function of x, z is
typically not available and hence, the optimization problem in (1)–(6) cannot be
solved by mixed integer programming solvers such as CPLEX. The quantities
Q(x, z) and Q(x, z)/ΔP (x, z) can only be obtained by specifying a particular
circuitry configuration defined by x, z as input to a heat exchanger simulation
program such as CoilDesigner [32]. CoilDesigner is a steady-state simulation and
design tool for air to refrigerant heat exchangers, to simulate the performance
of different refrigerant circuitry designs.

We replaced the objective in (1) by a constant and applied the mixed inte-
ger programming solver CPLEX on (2)–(6) to produce 2,500 feasible circuitry
configurations. In order to achieve that, we used the appropriate CPLEX param-
eters to create a diverse solution pool of 2,500 feasible solutions for this problem
(parameters: PopulateLim, SolnPoolCapacity, and SolnPoolReplace). Then, we
evaluated all the feasible configurations using CoilDesigner. We created a test
suite with seven circuitry architectures with a varying number of tubes. The
structural parameters and work conditions for all instances are the same; the
only difference between the test cases is in the number of tubes per row, ranging
from 2 to 64 that correspond in heat exchangers with 4 to 128 tubes.

Tables 2 and 3 present the results of the optimization of the two objective
functions, Q(x, z) and Q(x, z)/ΔP (x, z), respectively. We compare the optimized
results generated by the proposed approach with the results in [1] and the results
obtained using a baseline configuration, which includes two circuits: one that
connects all tubes in the first column of the coil and one that connects all tubes
in the second column of the coil. The inlet tubes of the baseline configuration
are the tubes in the first row and the outlet tubes are the tubes in the last
row. The baseline configuration is a heat exchanger design that is typically used
in practice today. The results show that the proposed approach can generate
optimized configurations in a short amount of time. On average, the proposed
approach produces configurations with 4% and 9% higher heat capacity than
the approach in [1] and the baseline configuration, respectively. In addition, the
proposed approach produces configurations with 90% and 8, 826% higher ratio
of the heat capacity to the pressure difference than the approach in [1] and
the baseline configuration, respectively. It is worth noting that the formulation
in [1] can only be used to solve problems with up to 36 coils, while the present
formulation can be used to solve much larger problems. Therefore, the current
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approach not only produces better results than the approach in [1] but it can also
solve much larger problems. In addition, the current approach needs an order of
magnitude less execution time than the approach proposed in [1].

The limit of function evaluations (2,500) prevents the proposed approach
from finding even better results for very large coils. When optimizing Q(x, z),
the best circuitry configurations include a small number of long circuits and the
circuits usually contain at least one connection between tubes across columns.
On the other hand, when optimizing Q(x, z)/ΔP (x, z), the best circuitry configu-
rations include many circuits that are not very long and most of the connections
on these circuits are between adjacent tubes. This was expected since longer
circuits incur more pressure drop.

Table 2. Computational results for Q optimization

# of tubes Baseline
Q

Optimized
Q

Optimized
Q in [1]

Improvement
over baseline (%)

Improvement
over [1] (%)

4 1,388 1,754 1,754 26% 0%

8 1,884 2,189 2,017 16% 9%

16 2,179 2,391 2,230 10% 7%

24 2,249 2,353 2,294 5% 3%

32 2,234 2,269 2,244 2% 1%

40 2,154 2,255 - 5% -

128 9,694 9,790 - 1% -

Table 3. Computational results for Q/ΔP optimization

# of tubes Baseline
Q

ΔP

Optimized
Q

ΔP

Optimized
Q

ΔP
in [1]

Improvement over
baseline (%)

Improvement
over [1] (%)

4 3,727 3,727 3,727 0% 0%

8 2,640 14,664 12,464 455% 18%

16 1,668 51,219 32,985 2,971% 55%

24 1,162 110,289 47,865 9,391% 130%

32 854 156,181 45,292 18,188% 245%

40 632 193,654 - 30,541% -

128 448 1,518 - 239% -

5 Conclusions

The performance of a heat exchanger can be significantly improved by optimizing
its circuitry configuration. Design engineers currently select the circuitry design
based on their domain knowledge and some simulations. However, the design of
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an optimized circuitry is difficult and needs a systematic approach to be used.
In this paper, we extended our work in [1] and proposed a novel decision dia-
gram formulation for the circuitry optimization problem. The generated mixed
integer programming problem is much smaller than the problem derived from
the formulation in [1] and leads us to optimize coils with a very large number of
tubes. We applied CPLEX to generate feasible configurations for seven different
heat exchangers and we evaluated them using CoilDesigner. The results show
that the proposed formulation can improve the baseline configuration by 9% for
the heat capacity and by 8,826% for the ratio of the heat capacity to the pres-
sure difference than the baseline configuration. Finally, the proposed approach
produces on average 4% higher heat capacity and 90% higher ratio of the heat
capacity to the pressure difference than the approach in [1].
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Abstract. This paper considers real-time dispatching for large-scale
ride-sharing services over a rolling horizon. It presents RTDARS which
relies on a column-generation algorithm to minimize wait times while
guaranteeing short travel times and service for each customer. Experi-
ments using historic taxi trips in New York City for instances with up to
30,000 requests per hour indicate that the algorithm scales well and pro-
vides a principled and effective way to support large-scale ride-sharing
services in dense cities.

Keywords: Real-time dial-a-ride · Large-scale optimization

1 Introduction

In the past decade, commercial ride-hailing services such as Didi, Uber, and Lyft
have decreased reliance on personal vehicles and provided new mobility options
for various population segments. More recently, ride-sharing has been introduced
as an option for customers using these services. Ride-sharing has the potential for
significant positive impact since it can reduce the number of cars on the roads and
thus congestion, decrease greenhouse emissions, and make mobility accessible to
new population segments by decreasing trip prices. However, the algorithms used
by commercial ride-sharing services rarely use state-of-the-art techniques, which
reduces the potential positive impact. Recent research by Alonso-Mora et al. [1]
has shown the benefits of more sophisticated algorithms. Their algorithm uses
shareability graphs and cliques to generate all possible routes and a MIP model
to select the routes. They impose significant constraints on waiting times (e.g.,
420 s), which reduces the potential riders to consider for each route at the cost
of rejecting customers.

This paper considers large-scale ride-sharing services where customers are
always guaranteed a ride, in contrast to prior work. The Real-Time Dial-A-
Ride System (RTDARS) divides the days into short time periods called epochs,
batches requests in a given epoch, and then schedules customers to minimize
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average waiting times. RTDARS makes a number of modeling and solving con-
tributions. At the modeling level, RTDARS has the following innovations:

1. RTDARS follows a Lagrangian approach, relaxing the constraint that all
customers must be served in the static optimization problem of each epoch.
Instead, RTDARS associates a penalty with each rider, representing the cost
of not serving the customer.

2. To balance the minimization of average waiting times and ensure that the
waiting time of every customer is reasonable, RTDARS increases the penalty
of an unserved customer in the next epoch, making it increasingly harder not
to serve the waiting rider.

3. RTDARS exploits a key property of the resulting formulation to reduce the
search space explored for each epoch.

4. To favor ride-sharing, RTDARS uses the concept of virtual stops used in the
RITMO project [12] and being adopted by ride-sourcing services.

RTDARS solves the static optimization problem for each epoch with a column-
generation algorithm based on the three-index MIP formulation [6]. The main
innovation here is the pricing problem which is organized as a series of waves, first
considering all the insertions of a single customer, before incrementally adding
more customers.

RTDARS was evaluated on historic taxi trips from the New York City Taxi
and Limousine Commission [8], which contains large-scale instances with more
than 30,000 requests an hour. The results show that RTDARS can provide ser-
vice guarantees while improving the state-of-the-art results. For instance, for a
fleet of 2,000 vehicles of capacity 4, RTDARS obtains an average wait of 2.2 min
and an average deviation from the shortest path of 0.62 min. The results also
show that large-occupancy vehicles (e.g., 8-passenger vehicles) provide additional
benefits in terms of waiting times with negligible increases in in-vehicle time.
RTDARS is also shown to generate a small fraction of the potential columns,
explaining its efficiency. The Lagrangian modeling also helps in reducing com-
putation times significantly.

The rest of this paper is organized as follows. Section 2 presents the related
work in more detail. Section 3 describes the real-time setting. Section 4 specifies
the static problem and gives the MIP formulation. Section 5 describes the column
generation. Section 6 specifies the real-time operations. Section 7 presents the
experimental results and Sect. 8 concludes the paper.

2 Related Work

Dial-a-ride problems have been a popular topic in operations research for a long
time. Cordeau and Laporte [6] provided a comprehensive review of many of the
popular formulations and the starting point of RTDARS’s column generation
is their three-index formulation. Constraint programming and large neighbor-
hood search were also proposed for dial-a-ride problems (e.g., [4,7]). Progress in
communication technologies and the emergence of ride-sourcing and ride-sharing
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services have stimulated further research in this area. Rolling horizons are often
used to batch requests and were used in taxi pooling previously [10,11]. In addi-
tion, stochastic scenarios along with waiting and reallocation strategies have
been previously explored in [2,3]. Bertsimas, Jaillet, and Martin [5] explored
the taxi routing problem (without ride-sharing) and introduced a “backbone”
algorithm which increases the sparsity of the problem by computing a set of
candidate paths that are likely to be optimal. Alonso-Mora et al. proposed an
anytime algorithm which uses cliques to generate vehicle paths combined with
a vehicle rebalancing step to move vehicles towards demand [1]. Their “results
show that 2,000 vehicles (15% of the taxi fleet) of capacity 10 or 3,000 of capac-
ity 4 can serve 98% of the demand within a mean waiting time of 2.8 min and
mean trip delay of 3.5 min.” [1]. Both [1] and [5] use hard time windows to
reject riders when they cannot serve them quickly enough (e.g., 420 s in the
aforementioned results). This decision significantly reduces the search space as
only close riders can be served by a vehicle. In contrast, RTDARS provides
service guarantees for all riders, while still reducing the search space through a
Lagrangian reformulation. The results show that RTDARS is capable of provid-
ing these guarantees while improving prior results in terms of average waiting
times. Indeed, for 2,000 vehicles of capacity 4, RTDARS provides an average
waiting time of 2.2 min with a standard deviation of 1.24 and a mean trip devi-
ation of 0.62 min (standard deviation 1.13). For 3,000 vehicles of capacity 4, the
average waiting time is further reduced to 1.81 min with a standard deviation of
1.03 and an average trip deviation of 0.23 min.

3 Overview of the Approach

RTDARS divides time into epochs, e.g., time periods of 30 s. During an epoch,
RTDARS performs two tasks: It batches incoming requests and it solves the
epoch optimization problem for all unserved customers from prior epochs. The
epoch optimization takes, as inputs, these unserved customers and their penal-
ties, as well as the first stop of each vehicle after the start of the epoch: Vehicle
schedules prior to this stop are committed since, for safety reasons, RTDARS
does not allow a vehicle to be re-routed once it has departed for its next cus-
tomer. These first stops are called departing stops in this paper. All customers
served before and up to the departing stops of the vehicles are considered served.
All others, even if they were assigned a vehicle in the prior epoch optimization,
are considered unserved.

Once the epoch is completed, a new schedule and a new set of requests are
available. The schedule commits the vehicle routes for the entire next epoch and
determines their next departing stops. The customer penalties are also updated
to make it increasingly harder not to serve them. RTDARS then moves to the
next epoch.
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4 The Static Problem

This section defines and presents the static (generalized) dial-a-ride problem
solved for each epoch. its objective is to schedule a set of requests on a given
set of vehicles while ensuring that no customer deviates too much from their
shortest trip time.

The inputs consist primarily of the vehicle and request data. The set of
vehicles is denoted by V and each vehicle v ∈ V is associated with a tuple
(uv

0, w
v
0 , Iv, TB

v , TE
v , Qv), where uv

0 is the time the vehicle arrives at its departing
stop for the epoch, wv

0 is the number of passengers currently in the vehicle, Iv

is the set of dropoff requests for on-board passengers, TB
v is the vehicle start

time, TE
v is the vehicle end time, and Qv is the capacity of the vehicle. In other

words, a vehicle v can only insert new requests after time uv
0 and it must serve the

dropoffs in Iv. The request data is given in terms of a complete graph G = (N ,A),
which contains the nodes for each possible pickup and delivery. There are five
types of nodes: the pickup nodes P = {1, . . . n}, their associated dropoff nodes
D = {n + 1, . . . 2n}, the dropoff nodes I = ∪v∈V Iv of the passengers inside the
vehicles, the source 0, and the sink s (the last node in terms of indices). Each
node i is associated with a number of people qi to pick up (qi > 0) or drop
off (qi < 0) and the time Δi ≥ 0 it takes to perform them. If i ∈ P , then the
corresponding delivery node is n + i and qi = −qn+i. Also, qi and Δi are zero
for the source and the sink. Each node i ∈ P is associated with a request, which
is a tuple of the form (ei, oi, di, qi) where ei is the earliest possible pickup time,
oi is the pickup location, di is the dropoff location, and qi is the number of
passengers. Every request i in I is associated with the time uP

i on which the
request was picked up. Every request i ∈ P ∪ I is associated with the shortest
time ti from the request origin to its destination. Finally, the input contains a
matrix (ti,j)(i,j)∈A of travel times from any node i to any node j satisfying the
triangle inequality, the constants α and β which constrain the deviation from
the shortest path, and the penalty pi of not serving the request i ∈ P .

A MIP model for the static problem is presented in Fig. 1. The MIP variables
are as follows: uv

i represents the time at which vehicle v arrives at node i, wv
i

the number of people in vehicle v when v leaves node i, xv
ij denotes whether

edge (i, j) is used by vehicle v, and zi captures whether request i ∈ P is served.
Objective (1a) balances the minimization of wait times for every pickups with
the penalties incurred by unserved riders. Note that the wait times for riders
in I are not included in the objective because these riders are already in vehi-
cles: only the constraints on their deviations must be satisfied. Constraints (1b)
ensure that only one vehicle serves each request and that, if the request is not
served, zi is set to 1 to activate the penalty in the objective. Constraints (1c) are
flow balance constraints. Constraints (1d) and (1e) are flow constraints for the
source and the sink. Constraints (1f) ensure that every request is dropped off by
the same vehicle that picks it up. Constraints (1g) ensure that every passenger
currently in a vehicle is dropped off. Constraints (1h) define the arrival times
at the nodes. Constraints (1i) and (1j) ensure that the vehicle is operational
during its working hours. Constraints (1k) ensure that each rider is picked up no
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min
∑

i∈P

∑

v∈V

(uv
i − ei) +

∑

i∈P

pizi (1a)

subject to

(
∑

v∈V

∑

j∈N
xv
ij

)
+ zi = 1 ∀i ∈ P (1b)

∑

j∈N
xv
ij =

∑

j∈N
xv
ji ∀i ∈ N \ {0, s}, ∀v ∈ V (1c)

∑

j∈N
xv
0j = 1 ∀v ∈ V (1d)

∑

j∈N
xv
j,s = 1 ∀v ∈ V (1e)

∑

j∈N
xv
ij −

∑

j∈N
xv
n+i,j = 0 ∀i ∈ P, ∀v ∈ V (1f)

∑

i∈N
xv
ij = 1 ∀j ∈ Iv, ∀v ∈ V (1g)

uv
j ≥ (uv

i + Δi + tij)xv
ij ∀i, j ∈ N , ∀v ∈ V (1h)

uv
0 ≥ TB

v ∀v ∈ V (1i)

uv
s ≤ TE

v ∀v ∈ V (1j)

uv
i ≥ ei ∀i ∈ P, v ∈ V (1k)

ti ≤ uv
n+i − (uv

i + Δi) ≤ max{αti, β + ti} ∀i ∈ P, ∀v ∈ V (1l)

ti ≤ uv
i − (uP

i + Δi) ≤ max{αti, β + ti} ∀i ∈ Iv, ∀v ∈ V (1m)

wv
j ≥ (wv

i + qj)xv
ij ∀i, j ∈ N , ∀v ∈ V (1n)

0 ≤ wv
i ≤ Qv ∀i ∈ N , ∀v ∈ V (1o)

xv
ij ∈ {0, 1} ∀i, j ∈ N , ∀v ∈ V (1p)

Fig. 1. The static formulation of the dial-a-ride problem.

earlier than its lower bound. Constraints (1l) ensure that the travel time of each
served passenger does not deviate too much from the shortest path between its
origin and destination. Passengers are allowed to spend either α ∗ ti (a percent-
age of the shortest path), or β + ti (a constant deviation time from the shortest
path) traveling in the vehicle, whichever is larger. Constraints (1m) do the same
for passengers already in a vehicle. Constraints (1n) define the vehicle capaci-
ties. Lastly, constraints (1o) ensure that the vehicle capacities are not exceeded.
Constraints (1h) and (1n) can be linearized using a Big M formulation.

The following theorem provides a way to prune the search space significantly.
It shows that, in an optimal solution, a rider cannot be picked up by a vehicle v
if the smallest possible wait time incurred using v is greater than her penalty.
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Theorem 1. A feasible solution where rider l is assigned to vehicle v such that
uv
0 + t0,l − el > pl is suboptimal.

Proof. Suppose that there exists a feasible solution (I) that serves a passenger l
such that uv

0 + t0,l − el > pl. Let r be the route of vehicle v (i.e., a sequence of
edges in A). Removing the pickup and dropoff of rider l from route r produces
a new feasible route r̂ since the deviation time cannot increase by the triangular
inequality and the number of riders in v decreases. Solution (II) is derived from
solution (I) by replacing the route r by route r̂ and fixing zl to 1. Using û and
ẑ to denote the variables of solution (II), the cost C(II ) of solution (II) is:

C(II ) =
∑

i∈P\{l}

∑

v∈V

(ûv
i − ei) +

∑

i∈P\{l}
piẑi + pl (2a)

<
∑

i∈P\{l}

∑

v∈V

(ûv
i − ei) +

∑

i∈P\{l}
piẑi + uv

0 + t0,l − el (2b)

≤
∑

i∈P\{l}

∑

v∈V

(uv
i − ei) +

∑

i∈P\{l}
piẑi + uv

l − el (2c)

=
∑

i∈P

∑

v∈V

(uv
i − ei) +

∑

i∈P

pizi = C(I) (2d)

Equality (2a) is just the definition of the objective of solution (II). Inequal-
ity (2b) is induced by the hypothesis. Inequality (2c) is induced by the triangular
inequality on the travel times. Inequality (2d) just factors the equation to get
the objective of solution (I). Solution (I) is thus suboptimal. ��

5 The Column-Generation Algorithm

This section presents the column-generation algorithm, starting with the mas-
ter problem before presenting the pricing subproblem, and the specifics of
the column-generation process. Upon completion of the column generation,
RTDARS solves a final MIP that imposes integrality constraints on the master
problem variables.

The Master Problem The restricted master problem, RMP, (presented in Fig. 2)
selects a route for each vehicle. In order for a route to be assigned to a vehicle,
the route must contain dropoffs for every current passenger of that vehicle. The
set of routes is denoted by R and its subset of routes that can be assigned to
vehicle v is denoted Rv. The variables in the master problem are the following:
yr ∈ [0, 1] is set to 1 if potential route r is selected for use and variable zi ∈ [0, 1]
is set to 1 if request i is not served by any of the selected routes. The constants
are as follows: cr is the sum of the wait time incurred by customers served by
route r, pi is the cost of not scheduling request i for this period, and ar

i = 1
if request i is served by route r. The objective minimizes the waiting times
incurred by all customers on each route and the penalties for the customers not
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min
∑

r∈R

cryr +
∑

i∈P

pizi (3a)

)b3(ottcejbus
(

∑

r∈R

yra
r
i

)
+ zi = 1 ∀i ∈ P (πi) (3c)

∑

r∈Rv

yr = 1 ∀v ∈ V (σv) (3d)

zi ∈ N ∀i ∈ P (3e)

yr ∈ {0, 1} ∀r ∈ R (3f)

Fig. 2. The master problem formulation.

scheduled during the current period. Constraints (3c) ensure that zi is set to 1 if
request i is not served by any of the selected routes and constraints (3d) ensure
that only one route is selected per vehicle. The dual variables associated with
each constraint are specified in between parentheses next to the constraint in
the model.

The Pricing Problem. The routes for each vehicle v are generated via a pricing
problem depicted in Fig. 3. The pricing problem (4) is defined for a given vehi-
cle v. Theorem 1 makes it possible to remove some passengers from the set P to
obtain the subset Pv and thus a new graph Gv = (Nv,Av). The pricing problem
minimizes the reduced cost of the route being generated. Constraints (4b)–(4o)
correspond to constraints (1c)–(1p) in the static problem.

The Column Generation. In traditional column generation for dial-a-ride prob-
lems, the pricing problem is formulated as a resource-constrained shortest-path
problem and solved using dynamic programming. However, the minimization of
waiting times, i.e.,

∑
i∈P (ui −ei), is particularly challenging, as it cannot be for-

mulated as a classical resource-constrained shortest-path problem. One option
is to discretize time and use time-expanded graphs. However, this raises signifi-
cant computational challenges for large instances. As a result, this paper solves
the pricing problem through an anytime algorithm that takes into account the
real-time constraints RTDARS operates under.

The column-generation algorithm is specified in Algorithm1: It generates
multiple columns with disjoint sets of customers. In the algorithm, function
Pricing(v,R) solves the pricing problem for a vehicle v and a set R of requests,
while Route(v,R) returns the optimal route for a vehicle v and a set of request
R. Lines 1–5 is the high-level column-generation procedure: It alternates the
generation of columns and the solving of the master problem with the generated
columns until no more columns can be generated. It proceeds in waves, first
generating columns with one customer before progressively increasing the num-
ber of considered requests. Procedure GenerateColumn (lines 6–12) generates
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min
∑

i∈Pv

(ui − ei) −
∑

i∈Pv

∑

j∈Nv

xijπi − σv (4a)

subject to

∑

j∈Nv

xij =
∑

j∈Nv

xji ∀i ∈ Nv \ {0, s} (4b)

∑

j∈Nv

x0j = 1 (4c)

∑

j∈Nv

xjs = 1 (4d)

∑

j∈Nv

xij −
∑

j∈Nv

xn+i,j = 0 ∀i ∈ Pv (4e)

∑

i∈Nv

xij = 1 ∀j ∈ Iv (4f)

uj ≥ (ui + Δi + tij)xij ∀i, j ∈ Nv (4g)

u0 ≥ TB
v (4h)

us ≤ TE
v (4i)

ui ≥ ei ∀i ∈ Pv (4j)

ti ≤ un+i − (ui + Δi) ≤ max{αti, β + ti} ∀i ∈ Pv (4k)

ti ≤ ui − (uP
i + Δi) ≤ max{αti, β + ti} ∀i ∈ Iv (4l)

wj ≥ (wi + qj)xij ∀i, j ∈ Nv (4m)

0 ≤ wi ≤ Qv ∀i ∈ Nv (4n)

xij ∈ {0, 1} ∀i, j ∈ Nv (4o)

Fig. 3. The pricing problem formulation for vehicle v.

columns by increasing number of requests. Procedure GenerateSizedColumn
(lines 13–18) generates columns of size k, where k is the number of requests in
the column. It first computes Q, a set in which each element is a k-sized set
of possible requests. It then considers the various vehicles ranked in decreasing
order of their dual values σv. Line 15 computes the sets of requests with the
smallest pricing objective value. If the pricing objective is negative (line 16), all
set of requests which contains a request covered by Rv are removed from Q to
ensure that RTDARS generates a set of non-overlapping columns at each iter-
ation (line 17). Finally, line 18 returns the routes for each vehicle with negative
reduced costs.

6 The Real-Time Problem

RTDARS divides the time horizon into epochs of length �, i.e.,
[0, �), [�, 2�), [2�, 3�), . . . and epoct τ corresponds to the time interval [τ�, (τ+1)�).
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Algorithm 1. ColumnGeneration

1 while true do
2 C ←GenerateColumns()
3 if C = ∅ then
4 break;

5 Solve RMP after adding C
Function GenerateColumns():

6 k ← 1
7 while k ≤ |P | do
8 C ← GenerateSizeColumns(k)
9 if C �= ∅ then

10 return C
11 else
12 k++

Function GenerateSizedColumms(k):
13 Q ← {R ⊆ P | |R| = k}
14 forall v ∈ |V | ordered by decreasing σv

15 Rv ← argminR⊂Q pricing(v, R)

16 if pricing(v, Rv)} < 0 then
17 Q ← {R ⊆ Q | R ∩ Rv = ∅}
18 return {route(v, Rv)|v ∈ V & pricing(v, Rv) < 0}

During period τ , RTDARS batches the incoming requests into a set Pτ , which
is considered in the next epoch. It also optimizes the static problem using
the requests accumulated in Pτ−1 and those requests not yet committed to in
the epochs τ − 1 and before. The optimization is performed over the interval
[(τ + 1)�,∞).

It remains to specify how to compute the inputs to the optimization problem,
i.e., the departing stops and times for each vehicle and the various set of requests
to serve. To determine the starting stop for a vehicle v, the optimization in epoch
τ uses the solution φτ−1 to the static problem in epoch τ − 1 and considers the
first stop sv in φτ−1 in the interval [(τ + 1)�,∞) if it exists. This stop becomes
the starting stop uv

0 of the vehicle and its earliest time is given by the earliest
departure time of vehicle v in φτ−1. If vehicle v is idle at stop sv in φτ−1 and
not scheduled on [(τ + 1)�,∞), then the departing stop is sv and the earliest
departing time is (τ + 1)�. Consider now the sets P , D, and Iv (v ∈ V ) for
period τ . For a vehicle v, all the requests before its departing stop sv are said
to be committed and are not reconsidered. The set Iv are the dropoffs of the
requests that have been picked up before sv but not yet dropped off. The set
P corresponds to the requests that have not been picked up by any vehicle v
before sv, as well as the requests batched in Pτ−1. The set D simply contains
the dropoffs associated with P .



Column Generation for Real-Time Ride-Sharing Operations 481

Fig. 4. The penalty function for unserved customers.

Finally, since the static problem may not schedule all the requests, it is
important to update the penalty of unserved requests to ensure that they will
not be delayed too long. The penalty for an unserved request c in period τ is
given by pc = δ2(τ�−ec)/(10�) and it increases exponentially over time as shown
in Fig. 4. The δ parameter incentivizes the schedule of the request in its first
available period. Figure 4 displays the function for δ = 420 s and � = 30 s: It
ensures that the penalty doubles every ten periods (in the example, every five
minutes).

Observe that the static model schedules all the requests which have not been
committed to any vehicle. This gives a lot of flexibility to the real-time system
at the cost of more complex pricing subproblems.

7 Experimental Results

Instance Description. RTDARS was evaluated on the yellow trip data provided
by the New York City Taxi and Limousine Commission [8]. This data provides
pickup and dropoff locations, which were used to match trips to the closest virtual
stops, starting times, which were used as the request time, and the number of
passengers. This section reports results on a representative set of 24 instances,
1 h per day for two weekdays per month from July 2015 through June 2016. To
capture the true difficulty of the problem, rush hours (7–8am) were selected. The
instances have an average of 21,326 customers and range from 6,678 customers
to 28,484 customers. Individual requests with more customers than the capacity
of the vehicles were split into several trips. An additional test was performed on
the largest instance with 32,869 customers.

Virtual Stops. The evaluation assumes a dial-a-ride system using the concept
of virtual stops proposed in the RITMO system [12] (Uber and Lyft are now
considering similar concepts). Virtual stops are locations where vehicles can pick
up and drop off customers without impeding traffic. They also ensure that cus-
tomers are ready to pick up and make ride-sharing more efficient since they
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Fig. 5. The histogram of wait times
(log scale).

Fig. 6. The histogram of trip deviations
(log scale).

decrease the number of stops. To implement virtual stops, Manhattan was over-
layed with a grid with cells of 200 squared meters and every cell had a virtual
stop. The trip times were precomputed by querying OpenStreetMap for travel
times between each virtual stop [9]. All customers at a virtual stop are grouped
and can be picked up together.

Algorithmic Setting. Both the final master problem and the restricted master
problem are solved using Gurobi 8.1. Empty vehicles are initially evenly dis-
tributed over the virtual stops. The pricing problem uses parallel computing to
implement line 15 of Algorithm1, exploring potential requests simultaneously.
To meet real-time constraints, the implementation greedily extends the “opti-
mal” routes of size k to obtain routes of size k+1. Unless otherwise specified, all
experiments are performed with the following default parameters: 2,000 vehicles
of capacity 5, α = 1.5, β = 240 s, and δ = 420 s. The impact of these parameters
is also studied.

Wait Times. Figure 5 reports the distribution of the waiting for all customers
across all instances. The results demonstrate the performance of RTDARS: The
average waiting time is about 2.58 min with a standard deviation of 1.31. On the
instance with 32,869 customers, the average waiting time is 5.42 min.

Trip Deviation. Figure 6 depicts a histogram of trip deviations incurred because
of ride-sharing. The results indicate that riders have an average trip deviation
of 0.34 min with a standard deviation of 0.74. In percentage, this represents a
deviation of about 12%. On the instance with 32,869 customers, the average trip
deviation is 2.23 min, which shows the small overhead induced by ride-sharing.

The Impact of the Fleet Size. Figure 7 studies the impact of the fleet size on
the waiting times and trip deviation. The plot reports the average waiting times
for various numbers of riders, where capacity is 4, α = 1, β = 840 s, and
δ = 420 s to facilitate comparisons to [1]. The results show that, even with
1,500 vehicles, the average waiting time remains below 6 min and the average
deviation time below 40 s. Since RTDARS is guaranteed to serve all the requests,
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(a) The Impact on the Average Wait
Times.

(b) The Impact on the Average Trip
Deviations.

Fig. 7. The impact of the fleet size on the average wait times and average deviations
on all instances.

these results demonstrate the potential of column generation and ride-sharing for
large-scale real-time dial-a-ride platforms. Adopting RTDARS has the potential
to substantially reduce traffic in large cities, while still guaranteeing service
within reasonable times. Recall that the approach in [1] does not serve about
2% of the requests.

The Impact of Vehicle Capacity. Figure 8 studies the impact of the vehicle capac-
ity (i.e., how many passengers a vehicle can carry) on the average waiting times
and trip deviation. The parameters are set to 2,000 vehicles, α = 1, β = 840 s,
and δ = 420 s to facilitate comparisons to [1]. The results on waiting times show
that moving to vehicles of capacity 8 further reduces the average waiting times,
especially on the large instances. On the other hand, moving from a capacity 5
to 3 does not affect the results too much. The results on deviations are more
difficult to interpret. Obviously moving to a capacity 8 further increases the
deviation (although it remains below one minute). However, moving to vehicles
of capacity 3 also increases the deviation, which is not intuitive. This may be a
consequence of myopic decisions that cannot be corrected easily given the tight
capacity.

The Impact of the Penalty. The penalty pi in the model is an exponential func-
tion of the current waiting time of customer i. Constant δ controls the initial
penalty: If it is too small, the penalty for not scheduling a request for the first
few periods is low, which causes an increase in wait times, as can be observed
in Fig. 9. Once δ is large enough, the average wait times converge to the same
values.

Final Vehicle Assignments. As a result of re-optimization, the vehicle to which
a rider is assigned can change. Figure 10 reports the amount of time until riders
receive their final vehicle assignment (the vehicle which actually picks them up).
Not surprisingly, this histogram closely follows the waiting time distribution.
The majority of riders receive this assignment quickly. However, it takes some
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(a) The Impact on Wait Times. (b) The Impact on Trip Deviations.

Fig. 8. The impact of the vehicle capacity on the average wait times and the average
trip deviations on all instances.

Fig. 9. The impact of the penalty on
average wait times.

Fig. 10. Times until final vehicle
assignments.

riders over 10 min to receive their final vehicle assignment, which shows that
RTDARS takes advantage of the ability to re-assign riders to vehicles which
will result in better overall assignments.

The Impact of Column Generation. Figure 11 depicts the impact of column gen-
eration and reports the number of columns in the final MIP as all possible
columns of sizes 1 and 2 to be conservative. The results show that the algorithm
only explores a small percentage of all potential columns, demonstrating the
benefits of a column-generation approach.

The Impact of Pruning. Figure 12 shows the impact of Theorem 1, which pro-
vides a way to prune the number of requests considered at each step of the
algorithm. The figures report the total optimization time for all time periods of
each instance. Each optimization must be performed in less than 30 s, but the
graph reports the total optimization time over the entire hour. As the results
indicate, the pruning benefits become substantial as the instance sizes grow. The
results show that the pruning significantly reduces the computational time. They
also show that RTDARS should be able to handle even larger instances since,
after exploiting Theorem1, RTDARS uses only about a sixth of the available
time. This creates opportunities to exploit stochastic information.
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Fig. 11. The number of generated
columns as a percentage of possible
combinations of requests/vehicles. The
x-Axis value are scaled by 10−3.

Fig. 12. Optimization times with and
without pruning.

(a) The Impact on Average Vehicle
Utilization.

(b) The Impact on Average Vehicle
Idle Time.

Fig. 13. The impact of the fleet size on the average vehicle utilization and idle time
on all instances.

The Impact of Ride Sharing. Figure 13 reports the average number of people in
each vehicle at all times for each instance. The results show a significant amount
of ride sharing, although single trips and idle time remain a significant portion
of the rides, especially when the fleet is oversized. Lastly, Fig. 8 shows that wait
times are reduced by a factor of 4 when moving from single-rider trips to ride-
sharing for large instances while the trip deviation only increases to at most
2 min for vehicles of capacity 8, thus demonstrating the value of ride sharing.

Comparison with Prior Work. The results of [1] “show that 2,000 vehicles (15%
of the taxi fleet) of capacity 10 or 3,000 of capacity 4 can serve 98% of the
demand within a mean waiting time of 2.8 min and mean trip delay of 3.5 min.”
RTDARS relaxes the hard time-windows present in [1] and improves on these
results, yielding an average wait time of 2.2 min with only 2,000 vehicles, while
guaranteeing service for all riders.
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8 Conclusion

This paper considered the real-time dispatching of large-scale ride-sharing ser-
vices over a rolling horizon. It presented RTDARS, a real-time optimiza-
tion framework that divides the time horizon into epochs and uses a column-
generation algorithm that minimizes wait times while guaranteeing services for
every rider and a small trip deviation compared to a direct trip. This contrasts
to earlier work which rejected customers when the predicted waiting time was
considered too long (e.g., 7 min). This assumption reduced the search space at
the cost of rejecting a significant number of requests.

The column-generation algorithm of RTDARS is derived from a three-index
formulation [6] which is adapted for use in real-time dial-a-ride applications.
In addition, to ensure that all riders are served in reasonable times, the paper
proposed an optimization model that balances the minimization of waiting times
with penalties for riders that are not scheduled yet. These penalties are increased
after each epoch to make it increasingly harder not to serve waiting riders. The
paper also presented a key property of the formulation that makes it possible to
reduce the search space significantly.

RTDARS was evaluated on historic taxi trips from the New York City Taxi
and Limousine Commission [8], which contains large-scale instances with more
than 30,000 requests an hour. The results indicated that RTDARS enables a
real-time dial-a-ride service to provide service guarantees (every rider is served
in reasonable time) while improving average waiting times and average trip devi-
ations compared to prior work. The results also showed that larger occupancy
vehicles bring benefits and that the fleet size can be further reduced while pre-
serving very reasonable waiting times.

Substantial work remains to be done to understand the strengths and limita-
tions of the approach. The current implementation is myopic and heavily driven
by the dual costs to generate the columns. Different pricing implementation,
including the use of constraint programming to replace our dedicated search
algorithm, and the inclusion of stochastic information are natural directions for
future research.
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Abstract. Submodular function maximization is a classic problem in
optimization, with many real world applications, like sensor coverage,
location problems and feature selection, among others. Back in the 80’s,
Nemhauser and Wolsey proposed an integer programming formulation
for the general submodular function maximization. Being the number
of constraints in the formulation exponential in the size of the ground
set, a constraint generation technique was proposed. Since then, the
method was not developed further. Given the renewed interest in recent
years in submodular function maximization, the constraint generation
method has been used as reference to evaluate both exact and heuris-
tic approaches. However, the outcome of those experiments was that the
method is utterly slow in practice, even for small instances. In this paper
we propose several algorithmic enhancements to the constraint gener-
ation method. Preliminary computational results show that a proper
implementation, while still not scalable to big instances, can be signifi-
cantly faster than the obvious implementation by the book. A compari-
son with direct mixed integer linear programming formulations on some
classes of models that admit one also show that the submodular frame-
work, in its generality, is clearly slower than dedicated formulations, so
it should be used only when those approaches are not viable.

1 Introduction

Let N be a finite set of n elements, called the ground set. A set function f :
2N → R is called submodular if it satisfies the following property:

f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ) ∀S, T ⊆ N (1)

Equivalently [17], a set function f is submodular if and only of it satisfies the
diminishing returns property:

f(S ∪ j) ≥ f(T ∪ j) ∀S ⊆ T ⊆ N, j ∈ N − T (2)

In other words, the later we add an element j to a set, the smaller its effect is on
the objective. Many real-world optimization problems give rise to submodular
c© Springer Nature Switzerland AG 2019
L.-M. Rousseau and K. Stergiou (Eds.): CPAIOR 2019, LNCS 11494, pp. 488–501, 2019.
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functions like, e.g., location problems and sensor coverage [14]. In addition, many
problems in computer science and machine learning, such as exemplar cluster-
ing [8], influence spread [13], image denoising [5], and feature selection [11], can
be formulated as submodular maximization problems.

A submodular function is nondecreasing (or monotone) if f(S) ≤
f(T ) ∀S ⊆ T ⊆ N , and f(∅) = 0. Clearly, maximizing a nondecreasing sub-
modular function is trivial in the absence of further constraints. In this paper
we will consider the cardinality constrained version:

max f(S)
S ⊆ N

|S| ≤ k

for a given 0 < k < n. We further assume the standard value oracle model,
i.e., the submodular function f is known only through a black box oracle that
is able to compute the value f(S) for an arbitrary S ⊆ N . It is well-known
that the simple greedy algorithm [18], which adds at each iteration the element
j with the largest marginal benefit w.r.t. the current set until its cardinality
is k, achieves an approximation ratio of (1 − 1/e). The greedy algorithm uses
O(nk) functions evaluations in the worst case, although this can be improved in
practice exploiting definition (2), i.e., the fact that as we add elements to the set,
the marginal benefits of the remaining elements to consider can only decrease,
see [16]. We will see in the following that the role of the greedy algorithm is
quite prominent even in exact methods.

The structure of the paper is as follows. In Sect. 2 we will describe the MIP
model of Nemhauser and Wolsey, which is the basis of all our MIP methods
for general submodular function maximization. Then in Sect. 3 we describe a
modern implementation of the basic constraint generation model based on such
model, and introduce some algorithmic enhancements to the method, in terms of
primal heuristics and cut separation. Computational results are given in Sect. 4.
Finally, conclusions and future directions of research are drawn in Sect. 5.

2 The General IP Model

In [17], Nemhauser and Wolsey introduced a mixed-integer-programming for-
mulation for the general submodular function maximization problem. Let us
denote with Δj(S) the marginal value of adding an element j to S, i.e.,
Δj(S) = f(S ∪ j) − f(S). The formulation is based on the following general
property of submodular functions:

f(T ) ≤ f(S) +
∑

j∈T−S

Δj(S) −
∑

j∈S−T

Δj(S ∪ T − j) ∀S, T ⊆ N (3)

If f is monotone, (3) can be further simplified to

f(T ) ≤ f(S) +
∑

j∈T−S

Δj(S) ∀S, T ⊆ N (4)
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which immediately suggests the MIP formulation:

P = max z (5)

z ≤ f(S) +
∑

j �∈S

Δj(S)xj ∀S ⊆ N (6)

∑

j∈N

xj ≤ k (7)

xj ∈ {0, 1} ∀j ∈ N (8)

where variables xj basically encode the indicator function 1(S), i.e., xj = 1 if
and only if j ∈ S, and constraints (6) encode (4) as linear inequalities. Note that
the model does not exploit any knowledge that cannot be obtained under the
value oracle model. Model P has an exponential number of constraints (one for
each subset of N , plus the cardinality constraint): thus a constraint generation
approach was proposed in [17], where constraints (6) are added iteratively.

Given a solution (x∗, z∗) with x∗ integer, it is trivial to solve the separation
problem over the family of constraints (6): x∗ uniquely defines a subset S∗ and
we just need to evaluate f(S∗). If z∗ ≤ f(S∗), then (x∗, z∗) cannot be cut.
Otherwise, we just need to construct the cut corresponding to S∗ at the cost of
additional n − k function evaluations, and this is guaranteed to be violated by
(x∗, z∗) by the amount z∗ − f(S∗).

It is important to emphasize that formulation P does not give the convex hull
of the points (1(S), f(S)), so even if we would add all constraints (6), we would
not be able to solve the model as a linear program. Surprisingly, constraints (6)
can be strengthened by ignoring the fact that the function is nondecreasing, and
reverting to the general expression (3). Given that we do not know T in advance,
we relax the coefficients Δj(S ∪T ∪−j) to Δj(N − j), and obtain the inequality:

z ≤ [f(S) −
∑

j∈S

Δj(N − j)] +
∑

j∈S

Δj(N − j)xj +
∑

j �∈S

Δj(S)xj ∀S ⊆ N (9)

It is easy to show that (9) dominates (6): if T ⊇ S the two expressions coincide,
otherwise the right hand side expression of (9) is strictly better. Note that cuts
(9) are a little denser than their (6) counterparts. On the other hand, they are
not more expensive to compute, as the coefficients Δj(N − j) do not depend on
S and can thus be computed once and for all at the beginning. Unfortunately,
these cuts are still not enough to obtain a convex hull formulation, as can be
easily proven by constructing small counterexamples. Still, we will use cuts (9)
in place of (6) in the rest of the paper, as preliminary computational results
showed that the resulting formulation gives a stronger dual bound.

3 A Modern Implementation

The constraint generation method based on model P is somehow reminiscent
of Benders’ decomposition [4]. The model P that is solved iteratively acts as a
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Benders’ master, while constraints (6)—or (9)—are the analogous of Benders’
optimality cuts. While the analogy is only superficial—in the submodular case
there is no variable splitting and there is no (LP) duality theory to exploit
to derive a cut—some of the algorithmic improvements proposed for Benders’
decomposition over the years easily carry over. In particular, we do not need
to solve a MIP to proven optimality at each iteration, but we can separate
constraints (9) on the fly each time an integer solution is found by the branch-
and-cut, exploiting modern MIP solvers support for so-called lazy constraints.
In other words, only a single enumeration tree is needed.

Then, we can improve the overall method in at least two directions: (i) use
a more sophisticated primal heuristic to find a tighter primal bound at the
beginning and (ii) separate constraints (9) not only at integer solutions, but also
at fractional ones, in order to improve the dual bound more quickly.

3.1 GRASP Heuristic

The simple greedy algorithm [18] is known to perform very well in practice, a
behaviour that was confirmed in our computational evaluation. Still, it yields
the true optimal solution only on the smaller models. A first improvement can
be obtained by adding a local search phase at the end of the greedy phase. In
order to do so, we need to define a neighborhood structure on the solutions. In
the following, we assume to have at hand a subset S of cardinality k. The easiest
choice is to consider an exchange neighborhood, i.e., consider the set of subsets
T that can be obtained by dropping an element from S and adding an element
not in S. More formally:

N (S) = {T ⊆ N : T = S ∪ i − j,∀i ∈ S,∀j �∈ S}
Each such neighborhood can be explored at the cost of additional O(nk) eval-
uations. Then the local search phase consists in iteratively exploring the neigh-
borhood of the current set S, and updating it until it is locally optimal.

We can extend the greedy plus local search combination into the full-blown
meta-heuristic scheme called GRASP [9]. The main idea is to introduce a ran-
domized component into the greedy procedure, where at each step, instead of
picking the element with the largest marginal gain, we pick randomly among
the best C (say) candidates, the so-called restricted candidate list. Then, each
solution found this way is improved by local search, and the process is repeated
until some iteration/resource limit is reached.

Interestingly, in our setting we can derive an additional benefit from this
more sophisticated heuristic than just a hopefully better primal bound. For each
locally optimal solution found by GRASP, we can construct a cut (9), so that
we can warm-start the MIP P with an initial pool of cuts.

3.2 Separating Fractional Solutions

While separating integer solution is trivial, separating fractional solutions is far
more challenging, as we cannot directly map the point to cut to a subset of N .
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Ideally, we would like to solve, for a given (x∗, z∗), the separation problem:

max z∗ − [f(S) −
∑

j∈S

Δj(N − j)] −
∑

j∈S

Δj(N − j)x∗
j −

∑

j �∈S

Δj(S)x∗
j

S ⊆ N

|S| ≤ k

but this is basically as hard as the original problem. As such, we resort to heuris-
tic separation algorithms. In the following, we will describe two such procedures,
one based on the greedy algorithm and one based on the Lovász extension of
f [15].

Let F1 (resp. F0) be the set of variables fixed to 1 (resp. 0) at the current
node of the branch-and-cut tree. In the following, we will denote a node by
the pair (F1, F0). Clearly, we can modify the greedy algorithm to take those
local domains into account. Let S′ be the greedy set computed in this way, i.e.,
T = F1 ∪ {xj1 , . . . , xjp} for some p, with the variables added by the greedy
algorithm exactly in this order. Then for each 0 ≤ q ≤ p we can consider the
set Tq = F1 ∪ {xj1 , . . . , xjq} (the current set after q greedy steps—note that
T0 = F1), construct the corresponding cut and check whether it is violated by
the current fractional solution. So we test each Tq in sequence, and keep adding
elements as long as the violation increases.

There is a nice connection between the cuts that can be obtained this way and
the modular heuristic hmod used in A∗ search approaches for submodular function
maximization. We recall that A∗ search picks the next node to explore as the one
maximizing f(F1)+h(F1, F0), where h(·) is a so-called (admissible) heuristic func-
tion that bounds the objective value of any node in the current subtree—in the
mathematical programming terminology, any such function would yield a valid
dual bound. The admissible heuristic hmod, proposed in [6], is computed as:

hmod(F1, F0) =
∑

j∈T−F1

Δj(F1)

where T is the greedy solution computed at node (F1, F0). It is easy to see that
any fractional solution with z∗ > f(F1) + hmod(F1, F0) would be violated by a
cut computed by the procedure above. Indeed, the fractional solution is already
violated by the cut computed from F1, and we enlarge the set only if it gives an
improvement w.r.t. violation. As a corollary, if the separation procedure above is
applied at all nodes of the branch-and-bound tree, we have that the LP relaxation
computed at node (F1, F0) cannot be worst than f(F1)+hmod(F1, F0), and thus
the LP bound dominates the hmod bound, albeit at the cost of solving LPs.

The greedy solution T computed at node (F1, F0) is completely oblivious to
the fractional solution (x∗, z∗), a fact that can make the discovery of violated
inequalities quite rare. A different approach consists in using the so-called Lovász
extension f̂ of f , i.e., the extension of function f to the unit cube [0, 1]n [15]. The
extension is defined as follows. Let x∗ ∈ R

n
+ be an arbitrary fractional vector

in the unit cube. Then we can express x∗ as a convex combination of n + 1
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vertices x0, x1, . . . , xn of the unit cube, with the additional property that those
vertices form a nested sequence, i.e., xi ⊆ xi+1 (with a small abuse of notation,
we identify the integer vertices with the subsets of N of which they are the
indicator vectors). Given the coefficients λ0, . . . , λn of the convex combination,
we can then define f̂(x∗) as

f̂(x∗) =
n∑

i=0

λif(Si)

where Si is the set associated to vertex xi. Instrumentally, an efficient procedure
is known to compute, given an arbitrary point x∗, both the sequence S0, . . . , Sn,
and the corresponding multipliers. Intuitively, the sequence is obtained by start-
ing from the empty set, and adding elements according to a permutation of
the indices that sorts the values x∗

j in non-increasing order, while the multipli-
ers are obtained as differences of pairs of consecutive coefficients in the sorted
sequence, see [15] for more details about the procedure. Once we have computed
the sequence (and the corresponding multipliers), we can easily perform two
operations:

1. compute f̂(x∗). If z∗ ≤ f̂(x∗), then we have a proof that no violated cut of the
form (9) exists, as (x∗, z∗) belongs to the convex hull of the feasible solutions
of P .

2. We can construct a cut for each set Si in the sequence, and check whether it
is violated.

Unfortunately, even this machinery does not give an exact separation proce-
dure, as it can happen that z∗ > f̂(x∗), but no cut obtained from the sets in the
sequence is violated, and this does not rule out the existence of violated inequali-
ties associated with other subsets of N . The reason is that, intuitively, the Lovász
construction gives only one among many possible ways of constructing x∗ as a
convex combination of vertices of the unit cube.

4 Computational Results

We implemented all the methods under comparison in C++, using IBM ILOG
CPLEX 12.8 [10] as MIP solver. In the following, we will denote by base the
basic implementation of the constraint generation method, by bc its counterpart
where constraints (9) are separated on the fly as lazy constraints, and by bc+ the
improved version that also uses GRASP and separation of fractional solutions in
the tree. All codes were run on a cluster of 24 identical machines, each equipped
with an Intel Xeon CPU E3-1220 V2 CPU running at 3.10 GHz, and 16 GB of
RAM. All codes take full advantage of multi-threading. Each method was run
on each instance with a time limit of 1 h. The parameters used by our code are
as follows:

– the GRASP heuristic is run with a limit of 100 iterations. Its restricted can-
didate list has size max(5, n/4).
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– CPLEX is called with defaults parameters for base, as we use it as a pure
black box there. On the other hand, for methods bc and bc+ we disable dual
and nonlinear reductions, as needed to guarantee correctness because of lazy
constraints, and we set the variable selection strategy to strong branching
[2,3], as this resulted in an improved performance in preliminary tests.

– We separate fractional solutions at the root and at all nodes whose relax-
ation is within 1% of the best bound node. In addition, the generated cuts
are added to the current node only if their violation is at least 0.1% of the
best bound. The rationale is that in our case violation is a measure of how
much z∗ is currently overestimated, hence we can directly compare this value
against the objective value. Finally, all separated cuts are added as local
cuts—although they would legitimately be globally valid—to ensure a more
aggressive purging.

4.1 Benchmark Sets

We considered three classes of problems that give rise to submodular functions,
namely location, weighted coverage and bipartite inference. We will now briefly
describe each of them.

Location [12,19]. We are given a ground set of N locations, a set M of clients,
and a non-negative profit gij if client i is served by location j, for all possible
pairs. Each client gets the profit from the best opened location, and we want to
maximize the overall profit. This corresponds to the submodular function:

f(S) =
∑

i∈M

max
j∈S

gij

Weighted Coverage [14,19]. We are given a ground set of N sensors, and a
set M of possible targets. Each target i has an associated non-negative weight of
wi ≥ 0. Each sensor j covers the subset of targets Mj ⊆ M . We want to maximize
the total weight of the covered targets. This corresponds to the submodular
function:

f(S) =
∑

i∈⋃
j∈S Mj

wi

Bipartite Inference[19]. We are given a ground set of N items, and a set M
of targets. We are also given a bipartite graph G = (N,M,A), where the set of
arcs A encodes which targets can be influenced by which items. Finally, we get
an activation probability pj for each item j. Given a subset S ⊆ N , the graph
structure and the activation probabilities pj , we can compute the activation
probability pS(i) of each target i ∈ M as:

pS(i) = 1 −
∏

j∈S:(j,i)∈A

(1 − pj)

We want to maximize the submodular function f(S) =
∑

i∈M pS(i).
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We generated random instances for all the classes above, using the following
rules:

– n ∈ {20, 50, 100, 200}
– m = μn with μ ∈ {2, 5, 10}

– k ∈

⎧
⎪⎨

⎪⎩

{5, 10} if n = 20
{10, 20} if n ∈ {50, 100}
{20, 50} if n = 200

where n = |N | and m = |M |. For each combination (n,m.k) we generated 5
random models, obtaining in total 360 instances. For location instances, gij are
randomly picked in the interval [0, 1]. For weighted coverage instances, wi are
randomly picked in the interval [0, 1], and a target is covered by a sensor with
probability 0.07. Finally, for bipartite inference instances, pj are again randomly
picked in the interval [0, 1], while each arc in the bipartite graph exists with
probability 0.07.

4.2 Results

We first compared the three methods base, bc and bc+ on the whole testbed of
360 models. Aggregated results are reported in Table 1. The structure of the table
is as follows. Instances are divided in different subsets, based on the difficulty of
the models. To avoid any bias in the analysis, the level of difficulty is defined by
taking into account all methods under comparison. The subclasses “[l, 3600}”
(l = 0, 1, 10, 100), contain the subset of models for which at least one of the
methods took at least l seconds to solve and that were solved to optimality
within the time limit by at least one of the methods. The subset “all” contains
all models. For each subset of models, we report three performance indicators
for each of the compared methods: #S reports the number of instances solved
to optimality, #T the number of instances for which the method hit the time
limit, and the shifted geometric mean [1] of the solution time, with a shift of
one second. Note that for all methods except the reference method (base in our
case), we report the ratio w.r.t. to the reference of the runtime (columns “tQ”)
rather than the value itself. Ratios t < 1 indicate a speedup factor of 1/t.

According to the table, bc+ outperforms bc by a large margin, both in terms
of number of instances solved and average runtime, and in turn the same is true
for bc with respect to the baseline method base, again according to both criteria.
If we compare bc+ to base directly, we see that bc+ can solve 62 more models
and is on average 4× faster. If we restrict to the set of models that at least one
method can solve (193 models), then the speedup is even more impressive, up to
20×. In addition, the speedup further increases as we consider harder models.

More detailed results are given in Table 2, where we aggregate only over the
5 different models generated for each parameter combination. For each problem
class, and for each combination of (n,m, k), we report, for all methods under
comparison, the number of instances solved (out of 5), the shifted geometric
mean of runtime, and the final relative gap at the end of the solve—the latter
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Table 1. Aggregated results over whole testbed.

base bc bc+

Instances #S #T time (s) #S #T tQ #S #T tQ

All 121 239 349.42 153 207 0.42 193 167 0.24

[0, 3600} 121 72 45.67 153 40 0.19 193 0 0.05

[1, 3600} 39 72 739.86 71 40 0.07 111 0 0.01

[10, 3600} 24 72 1703.62 56 40 0.05 96 0 0.01

[100, 3600} 17 72 2340.09 49 40 0.05 89 0 0.00

Fig. 1. Performance profile over whole testbed.

being a significant measure for the case in which we frequently hit the time
limit. Note that we also report intermediate aggregate results by problem class.
According to the table, most parameter combinations either end up being in the
easy or unsolvable class, with only a few combinations in between. Still, the more
sophisticated methods—and bc+ in particular—do not exhibit any slowdown on
the easy models, while being up to two orders of magnitude faster on the medium
models, most of which the base cannot even solve. As for the subsets on which
all methods hit the time limit, the average final gap is reduced by approximately
a factor of 2.

In Fig. 1 we report the performance profile [7] of the three methods on the
whole testbed, which largely confirms the finding of Table 1.
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4.3 Comparison with a Direct MIP Model

Both location and weighted coverage problems can be formulated directly as
MIP models. For the location case, the model reads:

max
∑

i∈M

∑

j∈N

wijyij

∑

j∈N

yij ≤ 1 ∀i ∈ M

yij ≤ xj ∀i ∈ M, j ∈ N
∑

j∈N

xj ≤ k

xj ∈ {0, 1} ∀j ∈ N

yij ∈ {0, 1} ∀i ∈ M, j ∈ N

Binary variables xj encode which locations are open—as in the Nemhauser and
Wolsey model—while binary variables yij encode which location is serving a
given client. Note that variables yij could be relaxed to continuous without
affecting the model, as for x fixed the resulting matrix is totally unimodular.

Similarly, for weighted coverage models, the model reads:

max
∑

i∈M

wiyi

∑

j:i∈Mj

xj ≥ yi ∀i ∈ M

∑

j∈N

xj ≤ k

xj ∈ {0, 1} ∀j ∈ N

yi ∈ {0, 1} ∀i ∈ M

Here, binary variables xj encode which sensors are deployed, while binary vari-
ables yi encode which targets are covered. Again, variables yi could be relaxed
to continuous without affecting the model.

It is thus interesting to compare our specialized methods against a direct
application of a black box MIP solver, which of course requires much less effort.
We present the comparison for the subset of locations models—similar results
can be obtained for the class of weighted coverage models—and we compare
the best of our specialized methods, bc+, against CPLEX defaults (CPLEX) and
the automatic Benders’ decomposition of CPLEX (Benders)—Benders being
a viable option assuming variables yij are relaxed to continuous. Aggregated
results are given in Table 3, whose structure is identical to Table 1, and the
corresponding performance profile is given in Fig. 2. The comparison allows us
to put the performance of bc+ into perspective: while quite faster than what we
started from (base), it is still no match for a black box MIP solver like CPLEX,
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Table 2. Detailed results over all subsets of models. Note that a small gap is sometimes
reported even for instances solved to proven optimality: this is a consequence of the
default relative optimality gap in the solver.

#solved time(s) gap

Class n m k base bc bc+ base bc bc+ base bc bc+

loc 20 40 5 5 5 5 1.08 0.05 0.03 0.00% 0.00% 0.00%

10 5 5 5 0.03 0.01 0.02 0.00% 0.00% 0.00%

100 5 5 5 5 75.03 0.62 0.17 0.00% 0.01% 0.00%

10 5 5 5 0.66 0.03 0.06 0.00% 0.01% 0.01%

200 5 5 5 5 346.59 1.21 0.33 0.00% 0.01% 0.00%

10 5 5 5 26.36 0.51 0.31 0.00% 0.01% 0.00%

50 100 10 0 0 5 t.l. t.l. 21.22 0.76% 0.34% 0.01%

20 5 5 5 61.56 2.78 1.20 0.00% 0.01% 0.01%

250 10 0 0 2 t.l. t.l. 3077.35 2.19% 1.93% 0.47%

20 0 0 3 t.l. t.l. 1137.97 0.44% 0.33% 0.05%

500 10 0 0 0 t.l. t.l. t.l. 2.82% 2.74% 1.88%

20 0 0 0 t.l. t.l. t.l. 0.86% 0.73% 0.41%

100 200 10 0 0 0 t.l. t.l. t.l. 3.02% 2.46% 1.56%

20 0 0 0 t.l. t.l. t.l. 1.18% 0.81% 0.49%

500 10 0 0 0 t.l. t.l. t.l. 4.06% 3.92% 3.17%

20 0 0 0 t.l. t.l. t.l. 1.79% 1.58% 1.24%

1000 10 0 0 0 t.l. t.l. t.l. 4.74% 4.74% 4.04%

20 0 0 0 t.l. t.l. t.l. 2.31% 2.10% 1.77%

200 400 20 0 0 0 t.l. t.l. t.l. 2.11% 1.79% 1.41%

50 0 0 0 t.l. t.l. t.l. 0.39% 0.37% 0.23%

1000 20 0 0 0 t.l. t.l. t.l. 2.71% 2.50% 2.09%

50 0 0 0 t.l. t.l. t.l. 0.65% 0.64% 0.48%

2000 20 0 0 0 t.l. t.l. t.l. 3.10% 2.96% 2.61%

50 0 0 0 t.l. t.l. t.l. 0.83% 0.84% 0.69%

35 35 45 725.32 375.15 269.63 1.42% 1.28% 0.94%

wcov 20 40 5 5 5 5 0.02 0.01 0.01 0.00% 0.00% 0.00%

10 5 5 5 0.01 0.00 0.01 0.00% 0.00% 0.00%

100 5 5 5 5 0.47 0.02 0.02 0.00% 0.00% 0.00%

10 5 5 5 0.05 0.01 0.01 0.00% 0.00% 0.00%

200 5 5 5 5 3.05 0.06 0.03 0.00% 0.00% 0.00%

10 5 5 5 0.10 0.01 0.02 0.00% 0.00% 0.00%

50 100 10 3 5 5 1442.22 27.44 0.67 0.56% 0.01% 0.01%

20 5 5 5 0.87 0.23 0.07 0.00% 0.01% 0.00%

250 10 0 0 5 t.l. t.l. 36.44 6.06% 3.48% 0.01%

20 3 5 5 837.59 39.35 1.88 0.31% 0.01% 0.00%

500 10 0 0 1 t.l. t.l. 2787.92 13.20% 11.08% 3.13%

20 0 0 3 t.l. t.l. 1503.03 4.48% 2.94% 0.65%

100 200 10 0 0 0 t.l. t.l. t.l. 13.26% 10.25% 4.83%

20 0 0 5 t.l. t.l. 937.31 4.89% 1.51% 0.01%

500 10 0 0 0 t.l. t.l. t.l. 20.36% 17.70% 10.03%

20 0 0 0 t.l. t.l. t.l. 11.72% 9.64% 6.69%

1000 10 0 0 0 t.l. t.l. t.l. 26.59% 23.34% 13.37%

20 0 0 0 t.l. t.l. t.l. 17.37% 14.85% 11.97%

200 400 20 0 0 0 t.l. t.l. t.l. 11.01% 8.80% 5.16%

50 5 5 5 0.04 0.01 0.16 0.00% 0.00% 0.00%

1000 20 0 0 0 t.l. t.l. t.l. 18.75% 16.66% 13.39%

50 5 5 5 0.10 0.02 0.39 0.00% 0.00% 0.00%

2000 20 0 0 0 t.l. t.l. t.l. 24.00% 21.96% 19.53%

50 2 3 5 145.45 26.04 2.06 0.05% 0.05% 0.00%

53 58 74 147.31 92.69 50.40 7.19% 5.93% 3.70%
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Table 2. (continued)

#solved time(s) gap

Class n m k base bc bc+ base bc bc+ base bc bc+

binf 20 40 5 5 5 5 0.01 0.01 0.01 0.00% 0.00% 0.00%

10 5 5 5 0.01 0.00 0.01 0.00% 0.00% 0.00%

100 5 5 5 5 0.02 0.01 0.01 0.00% 0.00% 0.00%

10 5 5 5 0.00 0.00 0.01 0.00% 0.00% 0.00%

200 5 4 5 5 4.47 0.01 0.01 0.00% 0.00% 0.00%

10 5 5 5 0.01 0.00 0.01 0.00% 0.00% 0.00%

50 100 10 2 5 5 318.98 0.27 0.05 2.21% 0.01% 0.00%

20 1 5 5 753.23 0.08 0.06 0.32% 0.01% 0.00%

250 10 0 5 5 t.l. 17.41 0.23 1.35% 0.01% 0.01%

20 0 5 5 t.l. 1.91 0.21 5.41% 0.01% 0.00%

500 10 0 5 5 t.l. 88.92 0.82 2.59% 0.01% 0.01%

20 1 5 5 886.66 7.15 0.69 0.33% 0.01% 0.00%

100 200 10 0 0 5 t.l. t.l. 14.12 8.62% 5.26% 0.01%

20 0 0 2 t.l. t.l. 2546.50 6.00% 4.15% 1.15%

500 10 0 0 3 t.l. t.l. 517.44 16.68% 11.26% 1.41%

20 0 0 0 t.l. t.l. t.l. 11.52% 8.76% 6.25%

1000 10 0 0 4 t.l. t.l. 837.36 16.31% 11.51% 0.92%

20 0 0 0 t.l. t.l. t.l. 12.41% 9.25% 7.01%

200 400 20 0 0 0 t.l. t.l. t.l. 16.78% 12.95% 10.87%

50 0 0 0 t.l. t.l. t.l. 2.84% 2.65% 2.20%

1000 20 0 0 0 t.l. t.l. t.l. 21.51% 17.90% 15.67%

50 0 0 0 t.l. t.l. t.l. 3.93% 3.81% 3.26%

2000 20 0 0 0 t.l. t.l. t.l. 23.63% 20.07% 17.75%

50 0 0 0 t.l. t.l. t.l. 4.76% 4.63% 4.16%

33 60 74 398.46 93.58 42.83 6.55% 4.68% 2.94%

All 121 153 193 349.42 148.37 83.79 5.05% 3.96% 2.53%

which is able to solve 50% more models, and is overall twice as fast (and up to
10× faster as the models get harder). The automatic Benders’ decomposition is
even faster, solving additional models and being quite faster than CPLEX.

In hindsight, this is not unexpected: being able to express the full model
as a mixed integer program allows for a lot of sophisticated techniques to be
employed that can take advantage of a global view on the problem. Unsurpris-
ingly, encoding the structure of f directly into the model results in being a better
option than writing a model that can access f only through a black box oracle.
On the other hand, a direct MIP formulation is not always a viable option, e.g.,
in the bipartite inference case, and this justifies the effort to make the general
submodular framework more efficient. In addition, there is clearly still room for
further research and improvements.



500 D. Salvagnin

Table 3. Aggregated results on location models, comparing bc+ to CPLEX defaults
and CPLEX automatic Benders.

bc+ CPLEX Benders

Instances #S #T time (s) #S #T tQ #S #T tQ

All 45 75 269.63 66 54 0.48 73 47 0.39

[0, 3600} 45 28 50.13 66 7 0.28 73 0 0.20

[1, 3600} 16 28 623.30 37 7 0.13 44 0 0.07

[10, 3600} 10 28 1551.18 31 7 0.10 38 0 0.05

[100, 3600} 5 28 2952.66 26 7 0.10 33 0 0.05

Fig. 2. Performance profile on location models, comparing bc+ to CPLEX defaults and
CPLEX automatic Benders.

5 Conclusions and Future Research

In the present paper, we presented a modern implementation of the MIP model
of Nemhauser and Wolsey for submodular function maximization, based on
lazy constraint generation. We also developed some algorithmic improvements,
namely a GRASP heuristic and two (heuristic) procedures for separating sub-
modular cuts from fractional solutions. A computational evaluation on three
classes of submodular functions showed that the developed methods significantly
improve over the basic constraint generation model by the book. A comparison
with a direct MIP formulation for one class of models also showed that, when
available, this is usually a preferable option, being not only far easier to imple-
ment but also quite faster than the MIP-based framework based on the general
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model. Still, the general framework is in its computational infancy, and further
research is needed in many areas. Among others, more effective (and possibly
exact) separation procedures over the family of cuts (9)—or even (6)—and cus-
tom branching rules based on f could make the method more efficient in practice.
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Abstract. We introduce a novel planner SCIPPlan for metric hybrid
factored planning in nonlinear domains with general metric objectives,
transcendental functions such as exponentials, and instantaneous contin-
uous actions. Our key contribution is to leverage the spatial branch-and-
bound solver of SCIP inside a nonlinear constraint generation framework
where we iteratively check relaxed plans for temporal feasibility using a
domain simulator, and repair the source of the infeasibility through a
novel nonlinear constraint generation methodology. We experimentally
evaluate SCIPPlan on a variety of domains, showing it is competitive
with, or outperforms, ENHSP in terms of run time and makespan and
handles general metric objectives. SCIPPlan is also competitive with a
general metric-optimizing unconstrained Tensorflow-based planner (TF-
Plan) in nonlinear domains with exponential transition functions and
metric objectives. Overall, this work demonstrates the potential of com-
bining nonlinear optimizers with constraint generation for planning in
expressive metric nonlinear hybrid domains.

Keywords: Metric hybrid planning · Nonlinear optimization ·
Constraint generation

1 Introduction

Metric optimization is at the core of many real-world nonlinear hybrid [6] plan-
ning domains where the quality of the plan matters. Most nonlinear hybrid
planners in the literature either ignore metric specifications [3,4,12], or leverage
heuristics to guide their search for finding a plan quickly [9,13] with the notable
exceptions COLIN [5] and ENHSP [17], which can handle metric optimization
for a subset of PDDL+ [6] domains.

In this paper, we leverage the nonlinear constrained optimization solver
SCIP [10] to present SCIPPlan for solving metric hybrid factored [2] nonlinear
planning problems by decomposing the original problem into a master prob-
lem and a subproblem. In the master problem, we relax the original problem
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to a system of sequential function updates1, which allows us to handle arbi-
trary nonlinear functions (such as polynomial, exponential, logarithmic etc.) in
the transition and metric objectives as well as instantaneous continuous action
inputs that are beyond the expressivity of existing hybrid planners.

In the nonlinear hybrid planning literature, the time at which a conditional
expression (e.g., a mode switch condition) is satisfied is known as a zero-crossing
and when the dynamics of the planning problem are piecewise linear, one can use
the TM-LPSAT compilation to find valid plans that avoid zero-crossings [18].
When the continuous change can be described more generally as polynomials,
one can use the SMTPlan [4] compilation of the hybrid planning problem to
avoid zero-crossings between two consecutive decision points (i.e. happenings).
However, in general, problem dynamics can include arbitrary nonlinear change
and only ENHSP [17] approaches the expressive dynamics of SCIPPlan.

In SCIPPlan, the candidate solution found by solving the master problem
can include zero-crossings of general transcendental nonlinear conditions between
two consecutive decisions which can either (i) violate the global constraints of the
original problem, or (ii) contain mode switches that are not accounted for by the
master problem. To identify and repair the source of zero-crossings, we use the
simulate-and-validate approach [7] in the subproblem where domain simulators
are used to simulate the candidate plan, and if the candidate plan is found to
be infeasible, temporal constraints associated with zero-crossings are generated
and added back to the master problem. SCIPPlan iteratively solves the master
problem and the subproblem until a valid plan is found.

Experimentally, we show that SCIPPlan outperforms the state-of-the-art
metric nonlinear hybrid planner ENHSP in almost all problem instances with
respect to makespan and run time performance. We further experiment with
the capabilities of SCIPPlan beyond the expressiveness limitations of ENHSP in
the optimization of general metrics on a subset of modified domains, and ver-
ify its competitiveness versus an unconstrained Tensorflow-based planner (TF-
Plan) [19] on a nonlinear metric domain with exponential transitions.

2 Preliminaries

In this section, we present the preliminary definitions, notation and solution
methodologies required to define and solve the metric hybrid factored planning
problem.

3 Metric Discrete Time Factored Planning: Π

Before we dive into the notationally heavy details of general nonlinear hybrid
factored planning, we begin with a straightforward mixed-integer nonlinear
program (MINLP) compilation of a discrete time factored nonlinear plan-
ning domain. A discrete time metric factored planning problem is a tuple
Π = 〈S,A,C, T, I,G,Q〉 where
1 Relaxation refers to the omission of temporal constraints from the master problem.
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– S = {Sd, Sc} is a set of discrete Sd and continuous Sc domains with state
variables/assignments denoted s ∈ S,

– A = {Ad, Ac} is a set of discrete Ad and continuous Ac domains with action
variables/assignments denoted a ∈ A,

– C : S × A → {true, false} is a function that returns true if action a ∈ A
and state s ∈ S pair satisfies constraints that represent global constraints on
state and action variables,

– T : S × A → S denotes the state transition function between discrete time
steps t and t+1, T (st,at) = st+1 if C(st,at) = true, and is undefined
otherwise, and

– Q : S × A → R is the metric reward function to optimize.

In addition, I represents the initial state constraint s1 = s̄1 and G : S →
{true, false} represents goal state constraints. Given a finite planning horizon of
H decision stages, a solution π = 〈ā1, . . . , āH〉 (i.e. plan) to Π is a fixed value
assignment to actions at = āt that induces an assignment to state variables st

satisfying the initial state I, transition T , goal G, and global C constraints for
all t ∈ {1, . . . , H}. Our objective in solving metric planning problem Π is to find
the action sequence π that maximizes the sum of rewards over the time horizon
by optimizing the following model:

max
π=〈a1,...,aH〉

H∑

t=1

Q(st+1,at) (1)

subject to I : s1 = s̄1

G(sH+1)

T (st,at) = st+1 ∀t ∈ {1, . . . , H}
C(st,at) ∀t ∈ {1, . . . , H}

Note that Π is a standard discrete-time model that does not consider the
(potentially) changing values of states between pairs of consecutive time steps
t, t + 1 ∈ {1, . . . , H}. Under this simplifying assumption, there is no need to
consider zero-crossing constraints that will become critical for relaxing time to
be continuous in our subsequent hybrid generalization of the above framework.
Before we present the hybrid generalization, however, we discuss the compilation
and solution of the above problem followed by an example.

3.1 High-Level Syntax and SCIP MINLP Compilation

In order to compile the optimization formulation of (1) into a Mixed-Integer
Nonlinear Programming (MINLP) formulation that can be solved via an off-
the-shelf MINLP solver (e.g., SCIP [10]), we need (i) a high-level syntax such
as the RDDL language [15] for specifying all constraints and functions and (ii)
a compilation that can translate any formula in this syntax into the MINLP
language. For example, piecewise functions induced by if-then-else constructs
require use of the big-M trick to encode conditional constraints, while boolean
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Table 1. (Left column) Grammar to recursively generate expression syntax of the
RDDL language [15] extending [14] to nonlinear expressions in the last four rows. E1

and E2 belong to the same language as E and are acyclic. (Middle column) Conditions
on grammar rule application. (Right column) MINLP compilation of the grammar rule:
every RDDL expression E is represented by an MINLP variable vE that evaluates to
the value of that expression ({0, 1} if boolean). M is a large constant.

Expression Condition Constraints

E → k k is a constant vE = k

Eb → � (or ⊥) vEb = 1 (or 0)

Eb → p p is state or action variable vE = vp

E → ∧n
i=1E

i
b ≡ ∀iE

i
b Ei

b is a boolean expression nvE ≤ ∑n
i=1 vEi

b
≤ n − 1 + vE

E → ∨n
i=1E

i
b ≡ ∃iE

i
b Ei

b is a boolean expression vE ≤ ∑n
i=1 vEi

b
≤ nvE

E → ¬Eb Eb is a boolean expression vE = 1 − Eb, vE , vEi
b

∈ {0, 1}
E → kE1 k is a constant vE = kvE1

E → E1 op E2 op ∈ {+, −} vE = vE1 op vE2

Eb → E1 ≥ E2 Eb is a boolean expression MvEb − M ≤ vE1 − vE2

≤ MvEb , vEb ∈ {0, 1}
E → if Eb then E1

else E2

Eb is a boolean expression vE1 + MvEb − M ≤ vE

≤ M + vE1 − MvEb ,

vE2 − MvEb ≤ vE

≤ vE2 + MvEb , vEb ∈ {0, 1}
E → E1 op E2 op ∈ {×, ÷} vE = vE1 op vE2

E → exp(E1) vE = evE1

E → log(E1) E1 is a positive expression vE = log(vE1)

E → abs(E1) vE = |vE1 |

expressions in constraints and if-then-else conditions require special encodings
as arithmetic expressions over integers.

In Table 1, we provide a grammar for the (nonlinear) expression syntax of the
ground RDDL language and a compilation of each grammar rule to the SCIP
MINLP format assuming each sub-expression has been recursively compiled.

3.2 Spatial Branch-and-Bound

To solve the compiled MINLP, SCIP uses Spatial Branch-and-Bound (SBB)
[11] – an algorithm based on the divide-and-conquer strategy for solving MINLPs
in the form of min f(x) subject to g(x) ≤ 0 where function f(x) and function vec-
tor g(x) contain nonlinear expressions, and the decision variable vector x can have
continuous and/or discrete domains. The SBB algorithm uses tree search where
branching decisions are made on candidate solutions x̄, and the optimal value of
the objective function f(x̄) is bounded at each search node until a preset optimal-
ity gap is reached.
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(a) First Iteration (b) Iteration 6

(c) Iteration 9 (d) Final Iteration 16

Fig. 1. Visualization of iterative plan generation of SCIPPlan for the example hybrid
navigation domain. In the first six iterations, the plan steps π (in red) generated to
reach the goal (in orange) pass through the obstacle (in blue), violating zero-crossing
constraint c3 that is detected during plan simulation. At each iteration, additional
zero-crossing constraints are generated symbolically at the midpoints of each violation
interval (in green) to eliminate these zero-crossings from the solution space of the
master problem. By iteration 9, SCIPPlan starts to converge to a valid plan and by
iteration 16, SCIPPlan returns a valid plan. Note that sometimes there are overlaps
of the position of the agent between time steps (i.e., the agent does not move). (Color
figure online)

3.3 Illustrative Example

To illustrate how the MINLP compilation and solution works for the metric fac-
tored planning problem, we consider the following simple navigation domain with
(i) three continuous action variables (ax, ay,Δ) ∈ Ac that move the agent ax and
ay in respective x and y directions for duration Δ, (ii) two continuous state vari-
ables (sx, sy) ∈ Sc representing agent location, (iii) and three constraints in C:
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c1 : 0 ≤ st
x + at

xΔt, st
y + at

yΔt ≤ 10 ∀t ∈ {1, . . . , H},

c2 : −1 ≤ at
x, at

y ≤ 1 ∀t ∈ {1, . . . , H}, and

c3 : 4 ≥ st
x + at

xΔt ∨ 6 ≤ st
x + at

xΔt

∨ 4 ≥ st
y + at

yΔt ∨ 6 ≤ st
y + at

yΔt ∀t ∈ {1, . . . , H}.

Here, constraints c1, c2 denote bounds on the domains of state variables sx and
sy, and constraint c3 represents an obstacle located in the middle of the maze.
Initial and goal constraints are compiled as follows for H = 4:

I : s1x, s1y = 0, G : sH+1
x , sH+1

y = 8 ,

Given the transition function

T : st+1
x = st

x + at
xΔt, st+1

y = st
y + at

yΔt ∀t ∈ {1, . . . , H}
and reward metric Q(st+1,at) = −Δt (minimize total time, a.k.a. makespan),
the SSB solver can return a plan π as visualized by Fig. 1(a). The plan π passes
through the obstacle since the discrete time formalization only checks constraints
at the start and end points of each decision stage; we remedy this with a hybrid
extension in the next section.

4 Metric Hybrid Factored Planning: Πδ

In this section, we define the metric hybrid factored planning problem Πδ by
building on the notation, definitions and the solution methodology presented for
the metric factored planning problem Π. But before we define Πδ, first we need
to distinguish one continuous action variable as the control duration Δ ∈ Ac to
specify the duration of time step t ∈ {1, . . . , H} such that 0 ≤ Δ2. Similarly, we
update the notation we use for the global constraint function C(st,at,Δt) and
the state transition function T (st,at,Δt) to explicitly specify the duration Δt

of time step t ∈ {1, . . . , H}. Finally, we need to distinguish the set of boolean
expressions that appear in if-else conditions of the state transition function T as
transition modes M, that is,

T (st,at,Δt) = if E1
b (st,at,Δt) then E1(st,at,Δt)

. . .

elif En
b (st,at,Δt) then En(st,at,Δt)

else En+1(st,at,Δt)

2 In this work, we focus on hybrid planning problems where duration Δ is completely
controlled by the planner. When there are exogenous events or processes that can
change the total duration of a time step, we need to define a continuous state variable
Δ′ ∈ Sc as a function of s, a, Δ such that f(s, a, Δ) = Δ′ and transfer zero-crossing
definitions onto Δ′. In this work, we assume Δ = Δ′ and omit Δ′ for notational
simplicity.
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where E1
b (st,at,Δt), . . . , En

b (st,at,Δt) ∈ M. We denote Mδ : S × A × Δ → P (M)
as a function that returns the set of transition modes evaluating to true for given
values of state s̄t and action āt variables and duration Δ̄t for t∈{1,. . .,H} where
notation P (S) denotes the power set of S.

Definition 1. (Zero-Crossing Certificate): Given the values of state s̄t and
action āt variables and duration 0 < Δ̄t for t ∈ {1, . . . , H}, we say xt ∈ (0, Δ̄t)
is a zero-crossing certificate for time step t if at least one of the following holds:

1. Global Constraint Violation: C(s̄t, āt, xt)= false,
2. Mode3 Switch: Mδ(s̄t, āt, xt) 
= Mδ(s̄t, āt, Δ̄t).

Given the definition of the zero-crossing certificate, the metric hybrid factored
planning problem is a tuple Πδ = 〈S,A,C,Cδ, T, I,G,Q〉 where Cδ : S × A ×
Δ → {true, false} is a function defined as Cδ(st,at,Δt) = true if and only
if there does not exist xt ∈ (0,Δt) that is a zero-crossing certificate. Given a
planning horizon H, a plan πδ = 〈ā1, Δ̄1 . . . , āH , Δ̄H〉 to Πδ is a plan π to Π
where Cδ(s̄t, āt, xt) = true for all xt ∈ (0, Δ̄t) and t ∈ {1,. . .,H}. Note that the
definition Πδ extends deterministic RDDL [15] to continuous time and allows
instantaneous continuous actions Ac ⊆ A that are not functions of time. Unlike
the PDDL+ [6] formalism, we do not assume that the effects of instantaneous
actions are realized ε time after their execution.

5 Solving Πδ with Constraint Generation

In this section, we introduce our novel SCIP-based planner (SCIPPlan) to plan
in metric hybrid planning problems with nonlinear dynamics. But before we
outline SCIPPlan, we first need to define the zero-crossing interval.

Definition 2. (Zero-Crossing Interval): Given the values of state s̄t and action
āt variables, and the duration 0 < Δ̄t of time step t ∈ {1, . . . , H}, a zero-crossing
is an interval |Lxt

1, x
t
2|R where |L ∈ {[, (} and |R ∈ {], )} if and only if:

1. Non-empty: 0 < xt
1 ≤ xt

2 < Δ̄t such that if xt
1 = xt

2 then |Lxt
1, x

t
2|R is not an

open interval (xt
1, x

t
2), and

2. Uninterrupted and Contiguous: ∀x ∈ |Lxt
1, x

t
2|R where x is a zero-crossing

certificate.

The novelty of SCIPPlan is that it decomposes Πδ into a master problem
M(Π,H) and a subproblem S(π, ε), where M(Π,H) solves the metric factored
planning problem Π for a given horizon H using a SBB solver, and S(π, ε) checks
whether π is also a plan for Πδ using a domain simulator with respect to a time
discretization parameter ε. If π is not a plan for Πδ, S(π, ε) returns the first
zero-crossing interval |Lxt

1, x
t
2|R with minimum time step t ∈ {1, . . . , H}, and a

temporal constraint is added back to the master problem M(Π,H) to update
either function C or T , depending on whether the zero-crossing is due to a global
constraint violation or a mode switch, respectively.
3 The concept of a mode is analogous to its counterpart in the field of Hybrid

Automata [8].
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5.1 Master Problem

The master problem M(Π,H) solves the metric factored planning problem Π
for a given horizon H, using the compilation presented for Π in the MINLP
formulation of (1) assisted by complex expression compilation of Π to MINLP
form provided in Table 1. We optimize the MINLP in (1) using the SCIP SBB
solver [10].

5.2 Subproblem

Given a plan π for Π and a discretization parameter ε, the subproblem S(π, ε)
uses a domain simulator to check for a zero-crossing certificate by simulating the
state transition T sequentially � Δ̄t

ε  times for all time steps t ∈ {1, . . . , H} such
that T (s̄t, āt, ε) . . . T (s̄t, āt, ε� Δ̄t

ε ). If a zero-crossing certificate is found, S(π, ε)
returns (i) the first zero-crossing interval |Lxt

1, x
t
2|R with minimum time step

t ∈ {1, . . . , H} such that there does not exist another zero-crossing certificate
xt ? xt

1 found by S(π, ε) where the relational operator ? is < (i.e., greater) if
|L = [ (i.e., minimum bound of the interval is closed) and ≤ (i.e., greater or
equal to) otherwise, and (ii) the set of compilation constraints gt that cause the
zero-crossing interval |Lxt

1, x
t
2|R.

Precisely, the zero-crossings due to (i) global constraint violation can be
mapped to a set of compilation constraints representing the global constraint
function C (as presented in the Illustrative Example Revisited section). Zero-
crossings due to (ii) mode switch can be mapped to a set of boolean expressions
Et

b and to their respective compilation boolean decision variables vt
Eb

—these
evaluate to different values within zero-crossing interval |Lxt

1, x
t
2|R compared to

the end of control duration Δ̄t at time step t ∈ {1, . . . , H}.

5.3 Temporal Constraint Generation

Given the interval |Lxt
1, x

t
2|R identified by the domain simulator for a time step

t ∈ {1, . . . , H} and the respective set of constraints gt, SCIPPlan generates a
nonlinear constraint

gt(kΔt) ≤ 0, k =
xt
2 + xt

1

2Δ̄t
, (2)

where Constraint 2 symbolically substitutes all Δt with kΔt. Note that k ∈ [0, 1]
is a constant coefficient representing the ratio of the mid-point of the zero-
crossing interval |Lxt

1, x
t
2|R to the complete duration at time step t. There

are four benefits of our constraint generation methodology: (i) We generate a
symbolic4 constraint ensuring the zero-crossing violation of the current plan is
enforced, while generalizing as a valid constraint for all other plans. (ii) Instantia-
tion of zero-crossing constraints at the violation midpoint is intended to induce a
4 Symbolic refers to the fact that Constraint (2) is a function of decision variables

(i.e., st, at, Δt) whose values are decided at optimization time.
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binary search refinement in the constraint generation process. (iii) SCIPPlan only
generates temporal constraints as needed, thus substantially reducing MINLP
size. (iv) Constraint (2) only perturbs gt by changing its coefficients and not
adding any additional decision variables, thus allowing SBB solvers to reuse infor-
mation between iterations (e.g., warm start features). Given the descriptions of
M(Π,H), S(π, ε) and Constraint (2), SCIPPlan is outlined by Algorithm 1.

Algorithm 1. SCIPPlan
1: H ← 1, π ← ∅, xt

1, x
t
2, g

t ← ∅, ε ← small numerical constant
2: while π is ∅ do
3: π ← M(Π, H)
4: if π is ∅ then
5: H ← H + 1.
6: else |Lxt

1, x
t
2|R, gt ← S(π, ε)

7: if |Lxt
1, x

t
2|R, gt are ∅ then

8: return π
9: else M(Π, H) ← gt(kΔt) ≤ 0 where k =

xt
2+xt

1
2Δ̄t

5.4 Illustrative Example Revisited

We have previously ended the illustrative example where the master problem
M(Π,H) (i.e., the SSB solver) returned the plan π = 〈ā1

x = 0, ā1
y = 0, Δ̄1 =

0, ā2
x = 1, ā2

y = 1, Δ̄2 = 4, ā3
x = 0, ā3

y = 0, Δ̄3 = 0, ā4
x = 1, ā4

y = 1, Δ̄4 = 4〉
as visualized by Fig. 1(a). The subproblem S(π, ε) will detect the zero-crossing
interval by simulating the transition function T for all time steps t ∈ {1, . . . , H}
and detect the first violation of constraint c3 which occurs within the interval
[0, 2] over duration Δ̄4 = 4. Given the identified zero-crossing interval [0, 2] for
time step t = 4 and the violated constraint c3, the following constraint (i.e.,
checking for the obstacle at the midpoint of the zero-crossing)

g41 : 4 ≥ s4x + (0.25)a4
xΔ4 ∨ 6 ≤ s4x + (0.25)a4

xΔ4

∨ 4 ≥ s4y + (0.25)a4
yΔ4 ∨ 6 ≤ s4y + (0.25)a4

yΔ4

will be added to the master problem. As visualized by Fig. 1(b–d), the master
problem would then be re-solved and further constraints will be generated if
needed. Once no zero-crossings are detected in a solution, that plan would be
returned as the final plan πδ in Fig. 1(d).

6 Experimental Results

In this section, we test the computational efficacy of SCIPPlan on
three metric hybrid factored planning problems Πδ, namely HVAC [1],
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ComplexPouring [17], [3], NavigationJail, against ENHSP [17], and on one
metric factored planning problem Π, namely NavigationMud [16], against TF-
Plan [19]5 with respect to run time and solution quality. Unless otherwise stated,
all domains minimize total time (i.e., makespan) Q(st+1,at) = −Δt.

6.1 Domain Descriptions

In this section, we describe the benchmark domains in detail. The domains were
chosen to test the capabilities of SCIPPlan on metric optimization, handling
nonlinear transitions and concurrency.

Heating, Ventilation and Air Conditioning is the problem of heating
different rooms r ∈ R of a building upto a desired temperature by sending
heated air br. The temperature of a room ht+1

r is bilinear function of its current
temperature ht

r, the volume of heated air sent to the room br, the temperature
of the adjacent rooms ht

r′ and the duration Δt of the control input at time step
t where r′ ∈ Adj(r) ⊂ R denotes the set of adjacent rooms to room r. The
dynamics of the domain are described as follows:

ht+1
r = ht

r +
Δt

Cr
(br +

∑

r′∈Adj(r)

ht
r′ − ht

r

Wr,r′
) (3)

for all r ∈ R, t ∈ {1, . . . , H} where Cr and Wr,r′ are parameters denoting the
heat capacity of room r and the heat resistance of the wall between r and
r′, respectively. Moreover, the initial and the goal constraints are described as
h1

r = Hinit
r and hH+1

r = Hgoal
r for all rooms r ∈ R where the parameters Hinit

r

and Hgoal
r denote the initial and goal temperatures of the rooms, respectively.

ComplexPouring is the problem of filling buckets b ∈ B upto a desired
volume with the water that is initially stored in the tanks u ∈ U . The volume
of a bucket vt+1

b (or a tank) is a nonlinear function of its current volume vt
b (or

vt
u), volume of water poured in (and out) from (and to) other tanks and Δt at

time step t. The dynamics of the domain are described as follows:

vt+1
b = vt

b +
→
v

t

b − ←
v

t

b ∀b ∈ B ∪ U (4)
→
v

t

b =
∑

u∈U

Δtpt
u,b(2Ru

√
vt

u − R2
u) ∀b ∈ B ∪ U (5)

←
v

t

b =
∑

u∈B∪U

Δtpt
b,u(2Rb

√
vt

b − R2
b) ∀b ∈ U (6)

0 ≤ vt
b +

→
v

t

b − ←
v

t

b ≤ V maxt
b ∀b ∈ B ∪ U (7)

for all t ∈ {1, . . . , H} where pt
b,u ∈ {0, 1} is a binary decision variable denoting

whether tank b pours into bucket (or tank) u at time step t, and Rb and V maxt
b are

5 We note that TF-Plan does not handle (i) discrete variables, (ii) global or goal
constraints, or (iii) support dynamic time discretization, but can handle exponential
transitions and complex metric objectives (e.g., NavigationMud).



512 B. Say and S. Sanner

parameters denoting the flow rate and capacity of bucket (or tank) b, respectively.
Further, the initial and the goal constraints are described as v1

b = V init
b for all

buckets and tanks b ∈ B ∪ U and vH+1
b ≥ V goal

b for all buckets b ∈ B where
the parameters V init

b and V goal
b denote the initial and goal volumes of tanks and

buckets, respectively.
NavigationJail is a two-dimensional d ∈ {x, y} = D path- finding domain

that is designed to test the ability of planners to handle instantaneous events.
The location of the agent lt+1

d is a nonlinear function (i.e., cubic polynomial) of its
current location ltd, speed vt

d, acceleration at
d and Δt at time step t. Moreover,

the agent can be instantaneously relocated to its initial position Linit
d for all

dimensions d ∈ D and set its speed to 0 if it travels through a two-dimensional
jail area that is located in the middle of the maze with the corner points Jmin

d ,
Jmax

d for all d ∈ D. The system dynamics of the domain is described as follows:

l′td = ltd + vt
dΔ

t + 0.5at
d(Δ

t)2 ∀d ∈ D (8)

v′t
d = vt

d + at
dΔ

t ∀d ∈ D (9)

if ∀d ∈ D Jmin
d ≤ l′td ≤ Jmax

d (10)

then lt+1
d = Linit

d , vt+1
d = 0 ∀d ∈ D (11)

else lt+1
d = l′td, vt+1

d = v′t
d ∀d ∈ D (12)

Lmin
d ≤ l′td ≤ Lmax

d , Amin
d ≤ at

d ≤ Amax
d ∀d ∈ D (13)

for all t ∈ {1, . . . , H} where (Lmin
d , Lmax

d ) and (Amin
d , Amax

d ) are the minimum
and the maximum boundaries of the maze and the control input for dimension
d ∈ D, respectively. The goal of the domain is to find a path from the initial
location Linit

d to the goal location Lgoal
d for all dimensions d ∈ D. The initial

and the goal constraints are described as l1d = Linit
d , v1

d = 0, and lH+1
d = Lgoal

d

for all dimensions d ∈ D, respectively.
NavigationMud is a two-dimensional d ∈ {x, y} = D domain that is

designed to test the ability of planners to handle transcendental functions with
general optimization metrics. The location of the agent lt+1

d is a nonlinear func-
tion (i.e., exponential) of its current location ltd and positional displacement
action pt

d at time step t due to higher slippage in the center of the maze. The
system dynamics of the domain is described as follows:

lt+1
d = ltd − 0.99 + pt

d

2.0
1.0 + e−2yt ∀d ∈ D (14)

yt =

√√√√∑

d∈D

(ltd − Lmax
d − Lmin

d

2.0
)
2

(15)

Lmin
d ≤ ltd ≤ Lmax

d , Pmin
d ≤ pt

d ≤ Pmax
d ∀d ∈ D (16)

for all t ∈ {1, . . . , H} where (Pmin
d , Pmax

d ) are the minimum and the maximum
boundaries of the positional displacement for dimension d ∈ D, respectively.
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(a) HVAC (b) ComplexPouring (c) NavigationJail

Fig. 2. Visualization of example plans generated by SCIPPlan. The inspection of plan
traces show from left to right: linear, piecewise linear, and nonlinear state transitions
as a function of time. As observed in Table 2, we remark that the nonlinear domain
(right) requires significantly more compute time than the linear (left) and piecewise
linear (middle) domains.

The objective of the domain is to find a path from the initial location Linit
d

that is described by the constraint l1d = Linit
d for all dimensions d ∈ D with the

minimum total Manhattan distance
∑

t∈{1,...,H}
∑

d∈D |lt+1
d − Lgoal

d | from the

goal location Lgoal
d over all time steps t.

6.2 Implementation Details

SCIPPlan is a compilation-based planner that consists of the constraints com-
piled from RDDL [15] using the syntax presented in Table 1, RDDLsim domain
simulator [15] and the dynamically generated temporal constraints (2). At every
iteration, SCIPPlan only adds the set of constraints that correspond to the
first zero-crossing interval, or terminates if the plan is valid with respect to
the discretization parameter ε. In SCIPPlan, we modeled the actions bt

r and at
d

from HVAC and NavigationJail domains as decision variables with continuous
domains. In PDDL+, we incremented and decremented the actions as a func-
tion of time with some constant rate z. Further in the NavigationJail domain,
we have modeled the if-else-then statements (10–12) using events in PDDL+
(as opposed to using global constraints) since going into the jail location can
still lead to feasible plans. In the HVAC and NavigationJail domains, we tested
ENHSP with relaxed goal settings where the respective equality goal constraints
were relaxed to the following constraints:

Hgoal
r − z ≤ hH+1

r ≤ Hgoal
r + z ∀r ∈ R (17)

Lgoal
d − z ≤ lH+1

d ≤ Lgoal
d + z ∀d ∈ D (18)

due to the continuous domains of state s ∈ Sc and action a ∈ Ac variables,
and the fact that ENHSP identified these domains to be infeasible with equality
constraints. We tested SCIPPlan under different optimality gap parameters g for
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Table 2. Comparison of plan quality produced and run times by SCIPPlan (SP),
ENHSP (EP) and TF-Plan (TF) with respect to the given domain metrics. We optimize
both Makespan metric objectives (middle four columns) and General metric objectives
(last column). Lower values indicate better solution quality.

Domain Makespan General

Quality Run time Run time

HVAC SP 0 EP 0.1 SP 0 EP 0.1 SP 0

(2,R) 88.00 145.00 ≤0.01 1.02 0.02

(2,D) 88.00 145.00 ≤0.01 1.02 0.19

Pouring SP 0 EP SP 0 EP SP 0

(3,1) 4.30 11.00 0.10 0.32 0.01

(5,1) 5.51 19.00 1.38 0.41 0.87

(4,2) 7.67 22.00 0.93 0.37 0.58

(9,2) 1.69 10.00 0.90 0.37 0.08

NJail SP 0.05 EP 0.1 SP 0.05 EP 0.1 -

(−1.0,1.0) 13.59 - 281.75 ≥1800 -

(−0.5,0.5) 13.63 - 60.94 ≥1800 -

(−0.2,0.2) 13.35 - 59.29 ≥1800 -

NMud SP 0.05 TF SP 0.05 TF -

(−1.0,1.0) 64.25 65.23 15.46 30.00 -

(−0.5,0.5) 140.35 136.55 232.84 240.00 -

(−0.2,0.2) 800.00 360.38 1800.00 960.00 -

the underlying SBB solver. For both parameter settings z and g, we will use the
notation SPx to report results for SCIPPlan under the optimality gap setting
g = x, and EPx for ENHSP under the rate setting z = x. Finally, when the total
makespan is not minimized, in SCIPPlan we constrained the total makespan by
a large constant such that

∑
t∈{1,...,H} Δt ≤ M .

6.3 Comparison of the Solution Quality and Run Time Performance

In Table 2, we compare the quality of plans produced and the run times of
SCIPPlan, ENHSP and TF-Plan with respect to the chosen optimization metric
under the best performing parameter settings. From left to right, the first column
of Table 2 specifies the domains and problem instances solved. The second and
third columns present the optimal makespan found by the respective planners.
The fourth and fifth columns present the computational effort that is required
to produce the metrics presented in the second and third columns. The sixth
column presents the running time (seconds) that is required to optimize the
general metric variants of the original domains.
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6.4 Computational Performance

In this section, we investigate the efficiency of using SCIPPlan for solving metric
hybrid factored planning problems in nonlinear domains. We ran the experiments
on MacBookPro with 2.8 GHz Intel Core i7 16 GB memory. We optimized the
nonlinear encodings using SCIP 4.0.0 [10] with 1 thread, and 30 min total time
limit per domain instance.

Comparison of Solution Qualities. The detailed inspection of the columns
associated with solution quality shows that SCIPPlan can successfully find high
quality plans in almost all the instances with optimality gap parameter g ≤ 0.05,
except the largest domain NavigationMud (−0.2,0.2). In contrast, we observe
that in HVAC and ComplexPouring domains, ENHSP can find plans with on
average 60% lower quality compared to SCIPPlan. Moreover in NavigationJail
domain, neither EP 0.1 nor EP 0.01 found feasible plans within time limit. In
NavigationMud domain, we tested the scalability of SCIPPlan against TF-Plan.
We found that SCIPPlan is competitive with TF-Plan with respect to the solu-
tion quality of the plans found in the small and medium size instances, whereas
the large instance NavigationMud(-0.2,0.2) is hard to optimize (i.e., the plan
does not contain actions other than no-ops) for SCIPPlan. We note that unlike
TF-Plan, we currently do not leverage parallel computing, which is one of the
main strengths of Tensorflow to handle large scale optimization problems. In
Fig. 2, we visualize the plan traces to get a better understanding of what makes
a domain hard in terms of plan computability. The inspection of plan traces
shows from left to right: linear, piecewise linear and nonlinear state transitions.
Together with the computational results presented in Table 2, we confirm that
domains with nonlinear state transitions (e.g., NavigationJail) are significantly
computationally harder compared to linear (e.g., HVAC) and piecewise linear
(e.g., ComplexPouring) domains.

Comparison of Run Time Performances. The inspection of the last three
columns shows that SCIPPlan finds high quality plans with little computational
effort in HVAC and ComplexPouring domains, whereas it takes on average 135 s
and 125 s to find high quality plans for NavigationJail and NavigationMud
domains, with the exception of the largest instance NavigationMud (−0.2,0.2)
for horizon H = 50. The benefit of spending computational resources to provide
stronger optimality guarantees is justified in Fig. 3, where we plot the increase
in plan quality as a function of optimality gap parameter g. Figure 3 shows that
spending more computational resources can significantly improve the quality of
the plan found as the instances get harder to solve.

6.5 General Metric Specifications

Finally, we test SCIPPlan on general metrics of interest in HVAC and
ComplexPouring domains and measure the effect on run time. In the HVAC
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Fig. 3. The increase in plan quality (lower is better for minimization) as a function of
optimality gap parameter g for SCIPPlan on NavigationJail domain.

domain, we modify the metric to minimize the total cost
∑

t∈{1,...,H}
∑

r∈R crb
t
r

of heating all rooms r ∈ R of a building for all time steps where the
parameter cr denotes the unit cost of heating room r ∈ R. Similarly in
ComplexPouring domain, we minimize the total number of times we pour
from one tank to the bucket (or other tanks) across all time steps such that∑

t∈{1,...,H}
∑

u∈U

∑
b∈B∪U pt

u,b. The results presented in the last column of
Table 2 show that the performance of SCIPPlan is on average the same for
general metric optimization and makespan optimization. As demonstrated in
NavigationMud and modified HVAC and ComplexPouring domains, SCIPPlan
finds high quality plans with respect to general metric specifications.

7 Conclusion

In this paper, we presented a novel SCIP-based planner (SCIPPlan) that can plan
in metric hybrid factored planning domains with nonlinear transcendental func-
tions such as exponentials and instantaneous continuous actions. In SCIPPlan,
we leveraged the spatial branch-and-bound solver of SCIP inside a nonlinear
constraint generation framework where candidate plans are iteratively checked
for temporal infeasibility using a domain simulator, and the sources of infeasi-
bilities are repaired through a novel nonlinear constraint generation algorithm.
Experimentally, we have shown that SCIPPlan can plan effectively on a variety
of domains and outperformed ENHSP in terms of plan quality and run time
performance. We have further shown that SCIPPlan is competitive with the
Tensorflow-based planner (TF-Plan) in highly nonlinear domains with exponen-
tial transitions and general metric specifications.
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Abstract. Shared mobility is revolutionizing urban transportation and
has sparked interest in optimizing the joint schedule of passengers using
public transit and last-mile services. Scheduling systems must anticipate
future requests and provision flexibility in order to be adopted in practice.
In this work, we consider a two-stage stochastic programming formula-
tion for scheduling a set of known passengers and uncertain passengers
that are realized from a finite set of scenarios. We present an optimization
approach based on decision diagrams. We obtain, in minutes, schedules
for 1,000 known passengers that are robust and optimized with respect
to scenarios involving up to 100 additional uncertain passengers.

Keywords: Decision diagrams · Scheduling · Stochastic programming

1 Introduction

The transportation industry is transforming due to recently introduced mech-
anisms for shared mobility [9,16]. Transportation systems are a key element
of integrative smart city operations, leading to a host of complex optimization
problems [12,19–21]. Of critical importance is the joint scheduling of mass trans-
portation systems with last-mile vehicles, which when scheduled in unison can
lead to significant operational improvements [15,17,18,22].

This paper studies the joint scheduling of passengers on mass transit systems
and last-mile vehicles under uncertainty. Passengers arrive by train to a central
terminal and board limited-capacity pods called commuter vehicles (CVs) which
are automated or otherwise operated, where some passengers are known and
other passengers are uncertain (and thus may or may not request service). The
goal is to assign passengers to trains and then to group passengers traveling
together on a CV so as to minimize a combination of total travel time and
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number of CV trips.1 This objective models a tradeoff between quality of service
(passenger travel time) and operational costs related to fuel consumption and
maintenance requirements (number of trips). In the absence of uncertainty, this
problem is known as the integrated last-mile transportation problem (ILMTP).

The uncertain setting is applicable to systems where a central scheduler takes
requests from passengers and assigns them to trains and CV trips, while build-
ing in flexibility for passengers that might request transportation services but
are yet to submit an associated request. This leads to a significant increase in
problem complexity with respect to previous work [15,17,18], but also makes for
a more realistic setting where the initial scheduling of passengers must account
for additional demand from late requests that also needs to be accommodated.

Optimization under uncertainty, or stochastic optimization, defines a broad
class of challenging problems [8]. A relatively recent and popular technique for
handling uncertainty is robust optimization [2], where an uncertainty set is
defined and worst-case operational decisions are employed. It is well known that
this can lead to highly conservative solutions, since unlikely outcomes can drive
decisions. A more classical approach is simulation-based optimization, where
algorithms such as sample average approximation methods [11] are employed,
which consider a finite set of possible realizations described as a sample of sce-
narios which are optimized over in order to maximize the expected value over
the sampling.

This paper presents a two-stage stochastic programming formulation for the
ILMTP under additional passenger uncertainty (ILMTP-APU). In addition to a
set of known passengers, we model uncertain passengers through a finite set of
scenarios. The first-stage decision is the scheduling of known passengers and the
second-stage decision schedules the additional passengers in each scenario. Our
approach relies on decision-diagram (DD)-based optimization (DDO) [1,3,6],
and more specifically on decompositions based on DDs [4,5,7,13] and is inspired
by the model presented in [17]. Specifically, a DD is built for known passengers
going to each building and separately for unknown passengers in each scenario
and for each building. The DDs are then integrated through channeling con-
straints that can be optimized with an integer programming (IP) formulation.
This results in a large model. However, due to the tightness of the formulation,
we obtain a reliable approach for optimally solving the problem. The result-
ing solutions are significantly better than what could be obtained by solving
the problem for the known passengers to optimality and then scheduling the
unknown passengers with the remaining capacity when a scenario is realized.

This paper adds to the recent literature on DDO for stochastic optimization,
where BDDs have been used for determining decision-dependent scenario prob-
abilities [10] and, more closely related to the current study, a study of a class of
two-stage stochastic IP problems [14]. Our proposed approach differs from that
of [14] in that we model both the first-stage and second-stage decisions using
DDs and link them through assignment constraints. This provides an additional

1 We assume a single destination per CV trip [17,18] and only a few destinations [15],
which is operationally favorable since destination batching leads to efficiency.
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mechanism by which decision making under uncertainty can be tackled through
DDs. The main contributions of this paper are therefore (1) an extension of
the ILMTP to incorporate uncertain passenger arrivals; (2) structural results on
families of optimal solutions; and (3) the development of a novel DDO stochastic
programming modeling framework for solving the ILMTP-APU based on these
structural results. An experimental evaluation on synthetic instances shows great
promise. In particular, the solutions obtained are far superior to a basic heuristic
extension of the work in [17] and the algorithm scales to 100 uncertain passengers
per scenario when 1,000 confirmed passengers are scheduled.

2 Problem Description

We first describe the elements of the problem, including the mass transit system,
last-mile vehicles, destinations, passenger requests, and associated parameters.

Mass Transit System: We assume that the mass transit is a train system.
Let T0 be the terminal station that links a mass transit system with a last-mile
service system. The mass transit system is described by a set of trips, denoted by
C, with nc := |C|. Each trip originates at a station in set S and ends at T0. The
trips are regular in the sense that the train stops at all stations in S sequentially,
with T0 as the last stop of each trip. A trip c leaves station s ∈ S at time t̃(c, s)
and arrives to T0 at t̃(c).

Destinations: Let D be the set of destinations where the CVs make stops, with
K := |D|, where we assume T0 ∈ D. For each destination d ∈ D, let τ(d) be
the total time it takes a CV to depart T0, travel to d (denoted by τ1(d)), stop
at d for passengers to disembark (denoted by τ2(d)), and return to T0 (denoted
by τ3(d)). Therefore, τ(d) = τ1(d) + τ2(d) + τ3(d). Let T := {1, . . . , tmax}
be an index set of the operation times of both systems. We assume that the
time required to board passengers into the CVs is incorporated in τ1(d). For
simplicity, the boarding time is independent of the number of passengers.

Last-Mile System: Let V be the set of CVs, with m := |V |. Denote by vcap

the number of passengers that can be assigned to a single CV trip. Each CV
trip consists of a set of passengers boarding the CV, traveling from T0 to a
destination d ∈ D, and then returning back to T0. Therefore, passengers sharing
a common CV trip must request transportation to a common building. We also
assume that each CV must be back at the terminal by time tmax.

Known Passengers: Let J be the set of known passengers. Each passenger
j ∈ J requests transport from a station s(j) ∈ S to T0, and then by CV to
destination d(j) ∈ D, to arrive at time tr(j). The set of passengers that request
service to destination d is denoted by J (d). Let n := |J | and nd := |J (d)|. Each
passenger j ∈ J must arrive to d(j) between tr(j) − Tw and tr(j) + Tw.

Uncertain Passengers: We assume a finite set of scenarios, denoted by Q,
representing different realizations of the uncertain passengers. Let ̂J (q) be the
set of uncertain passengers in scenario q ∈ Q. Each passenger j ∈ ̂J (q) requests
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transport from a station s(j) ∈ S to T0, and then by CV to destination d(j) ∈ D,
to arrive at time tr(j). The set of passengers that request service to destination
d is denoted by ̂J (q, d). Let n̂q := | ̂J (q)| and n̂q,d :=

∣

∣

∣

̂J (q, d)
∣

∣

∣.

Problem Statement: The ILMTP-APU is the problem of assigning train trips
and CVs to each known passenger so that the uncertain passengers in any of
the scenarios Q can be feasibly scheduled and the expected value of a convex
combination of the total transit time and the number of CV trips utilized is
minimized. A solution therefore consists of:

– A partition g = {g1, . . . , gγ} of J , where each group gl is associated with
a departure time tgl indicating the time the CV carrying the passengers in
gl departs T0, satisfying all request time and operational constraints. For
passenger j ∈ J , let g(j) be the group in g where j belongs.

– For each scenario q ∈ Q, a partition ĝ(q) =
{

ĝq,1, . . . , ĝq,γ̂(q)

}

of ̂J (q), where
each group ĝq,k is associated with a departure time t

ĝ(q)
k and an indicator

function σ(q, k) ∈ {1, . . . , γ} ∪ {∅}. σ(q, k) �= ∅ indicates that uncertain
passenger group ĝq,k shares the last-mile trip with known passenger group
gσ(q,k). In other words, groups leave from the terminal at the same time (i.e.
tgσ(q,k) = t

ĝ(q)
k ) and the combination of confirmed passenger group and all such

shared passenger groups in a scenario does not exceed the CV capacity, i.e.
|gl| +

∑

k∈{1,...,γ̂(q):σ(q,k)=l} |ĝq,k| ≤ vcap for each l ∈ {1, . . . , γ} and q ∈ Q.

3 Structure of Optimal Solutions

The deterministic version of ILMTP has optimal solutions with a structure that
is particularly helpful for defining compact models. For each destination, passen-
gers can be sorted by their desired arrival times and then grouped sequentially.
This structure is valid to minimize passenger average waiting time [18] as well
as the number of CV trips [17] hence leading to the compact DD-based model
in [17]. For ILMTP-APU, however, a more elaborate structure is required.

For example, let us suppose that for a particular time range there is a single
CV of capacity 4 available, 4 known passengers, and just 1 unknown passenger
in 1 out of 10 scenarios. Furthermore, let us assume that a first trip with the
CV incurs no wait time whereas a second trip would impose a wait time of w
on any passenger involved, and that the desired arrival time of the uncertain
passenger falls strictly in the middle of those of the known passengers. If we sort
and group all passengers regardless of their categories, then at least 2 trips will
always be necessary and at least 1 known passenger has to wait w. But if we
define a second trip only for the unknown passenger, then the average cost of
the solution is reduced to a tenth because the second trip and the corresponding
wait time w only materialize in 1 out of 10 scenarios. Since uncertain passengers
have a smaller impact on the objective function, it is intuitive that they might
be delayed with respect to known passengers if the schedule remains feasible.
We formalize this two-tier structure using the groups from the previous section.
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Proposition 1. When ILMTP-APU is feasible, there is an optimal solution
where the groups of passengers for each category – known or uncertain from a
scenario q – are grouped sequentially by their desired arrival times.

Proof. Let us assume, by contradiction, that there is an instance for which the
statement does not hold for a group of known passengers involving a passenger
j with destination d in group g1 and another group g2 ⊇ {j − 1, j+} for some
j+ > j. Furthermore, among the optimal solutions for such an instance, let us
choose the optimal solution for which the first index d of the destination where
such a grouping of known passengers does not exist is maximized; and among
those solutions the one that maximizes the index j of the first passenger for
which there is a group defined by passengers before and after j is maximized.

The key to obtaining a contradiction is the fact that the length of the time
window for arrival is identical for all passengers each of whom have access to
the same public transit service. Let us denote by gA ∈ {g1, g2} the group with
earliest arrival time, say tA; let us denote the other group by gB , for which
the departure time tB is such that tB ≥ tA; and let us denote the indices of
passengers on either group as {j1, j2, . . . , j|gA|+|gB |}, where trji ≤ trji+1

for i =
1, . . . , |gA| + |gB | − 1. Note that all of these passengers have either tA or tB in
their time windows. Since at least |gA| passengers can arrive at time tA, it follows
that the time window of the first |gA| passengers includes tA. If not, then some
of these first passengers would contain tB in their time window instead, implying
that some among the remaining |gB | passengers have tA in their time window,
and thus that the passengers are not sorted by desired arrival times. Thus,
tA ∈ [trj|gA| −ω, trj1 +ω]. Similarly, at least |gB | passengers can arrive at time tB,
and thus tB ∈ [trj|gA|+|gB |−ω, trj|gA|+1

+ω]. Hence, we can replace the passengers of
group gA with {j1, . . . , j|gA|} and those of group gB with {j|gA|+1, . . . , j|gA|+|gB |}
while preserving their arrival times, size, and consequently with no change to
the feasibility or optimality of the solution. However, this exchange implies that
up to destination d and passenger j all passengers are grouped by sorted arrival
times, hence contradicting the choice of d and j.

Without loss of generality, we can apply the same argument for uncertain
passengers by also choosing the maximum index of a scenario q for which the
groupings are not continuous and finding the same contradiction. 	


The following result, which is independent from Proposition 1, is also helpful
to simplify the modeling of ILMTP-APU.

Proposition 2. When ILMTP-APU is feasible, there is an optimal solution
where at most one group of uncertain passengers for each scenario is assigned
to each group of known passengers.

Proof. If multiple groups are assigned, they have the same arrival times in any
optimal solution and thus can be combined without loss of generality. 	
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4 Decision Diagram for Single Building

We use a DD to represent the groups from Proposition 1 for each destination.
A DD is a set of paths between a universal source node (root) and a universal
sink node (terminal), each containing a common number of arcs. The i-th arc
corresponds to a decision regarding the i-th passenger sorted by desired arrival
time: either passenger i is the last in a group and a departure time is chosen,
or subsequent passengers join the group. The endpoints of each arc are nodes
representing how many passengers have been accumulated to define a group.
Arcs either increment this number by 1 (up to CV capacity) or set it back to 0.

Following similar notation as in [17], we define for each destination d ∈ D
a DD Dd = (Nd,Ad) for the known passengers. Nd is partitioned into nd + 1
ordered layers Ld

1, L
d
2, . . . , L

d
nd+1 where nd = |J (d)|. Layer Ld

1 =
{

rd
}

and layer
Ld

nd+1 =
{

td
}

consist of one node each; the root and terminal, respectively. Each
arc a ∈ Ad is directed from its arc-root ψ(a) to its arc-terminal ω(a). If ψ(a) ∈ Ld

i ,
then ω(a) ∈ Ld

i+1. It is assumed that every maximal arc-directed path connects
rd to td. Similarly, for each scenario q ∈ Q, we define a DD Dd,q = (Nd,q,Ad,q)
by using the corresponding upper index q for disambiguation.

The arcs between layers of the diagram correspond to the passengers that
request transportation to the destination. Each node u is associated with a state
s(u) corresponding to the number of immediately preceding passengers that is
grouped with the next passenger. Each arc a is associated with a label φ(a) ∈
{0, 1} on whether passenger ψ(a) is not the last one in the group, in which
case φ(a) = 0 and s(ω(a)) = s(ψ(a)) + 1 ≤ vcap, or else φ(a) = 1. There
can be multiple arcs between the same nodes in the latter case, each arc a
corresponding to a different CV start time t0(a). Accordingly, each arc a such
that φ(a) = 1 has a corresponding wait time W (a) for all passengers in the group
and a label χ(a, t) ∈ {0, 1} to indicate that a CV would be active at time t (i.e.
t0(a) ≤ t ≤ t0(a) + τ(d)) if arc a is chosen. Hence, φ(a) = 0 implies χ(a, t) = 0.

5 IP Formulation

We define a formulation by which we group the passengers using a path from
each DD. Some of the groups of known and uncertain passengers are combined,
and we aim for a feasible schedule of the resulting groups using the CV fleet.

We introduce binary variable xa ∈ {0, 1} ∀ a ∈ Ad, d ∈ D, to denote the choice
of the particular arc in the DD for known passengers. Similarly, we introduce
binary variable yq

a ∈ {0, 1} ∀ a ∈ Ad,q, d ∈ D to denote the choice of the particular
arc in the DD for uncertain passengers in scenario q ∈ Q. Let ˜Ad,q = {(a1, a2) ∈
Ad × Ad,q |φ(a1) = 1, φ(a2) = 1, t0(a1) = t0(a2) and s(ψ(a1)) + s(ψ(a2)) + 2 ≤
vcap}. The set ˜Ad,q denotes the set of feasible pairs of known passenger group and
uncertain passenger group of scenario q, i.e. identical start time on the CV and
the capacity constraint is satisfied. Let zq

a1,a2
∈ {0, 1} ∀ (a1, a2) ∈ Ad,q denote

the decision of pairing the group of known passengers represented by arc a1 and
group of uncertain passengers represented by arc a2.
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The objective function can be expressed as

f(α) =
∑

d∈D

∑

a∈Ad

[αW (a) + (1 − α)]xa

+
1

|Q|
∑

d∈D

∑

q∈Q

⎛

⎝

∑

a∈Ad,q

[αW (a) + (1 − α)]yq
a − (1 − α)

∑

(a1,a2)∈˜Ad,q

zq
a1,a2

⎞

⎠

The following constraint imposes that only one group of uncertain passengers is
paired with a group of known passengers if the latter is selected:

∑

a2:(a1,a2)∈˜Ad,q

zq
a1,a2

≤ ya1∀d ∈ D, q ∈ Q, a1 ∈ Ad : φ(a1) = 1. (1a)

The fleet size constraint can be modeled for all t ∈ T , q ∈ Q as

∑

d∈D

⎛

⎝

∑

a∈Ad:χ(a,t)=1

xa +
∑

a∈Ad,q:χ(a,t)=1

yq
a

⎞

⎠ −
∑

d∈D

∑

(a1,a2)∈˜Adq

zq
a1,a2

≤ m. (1b)

The IP model for the ILMTP-APU is

min f(α)

s.t. Network flow constraints for Dd ∀d ∈ D (2a)

Network flow constraints for Dd,q ∀d ∈ D, q ∈ Q (2b)
Eq. (1a), (1b)

xa ∈ {0, 1} ∀d ∈ D, a ∈ Ad (2c)

yq
a ∈ {0, 1} ∀d ∈ D, q ∈ Q, a ∈ Ad (2d)

zq
a1,a2

∈ {0, 1} ∀d ∈ D, q ∈ Q, (a1, a2) ∈ ˜Ad,q. (2e)

The network flow constraints in (2a)–(2b) guarantee that a path is taken on each
decision diagram, which corresponds to the groupings of known passengers and
uncertain passengers for each scenario.

6 Experimental Results

We ran experiments to test our approach on a machine with an Intel(R)
Core(TM) i7-4770 CPU @ 3.40 GHz and 16 GB RAM. The code is in Python
2.7.6 and the ILPs are solved using Gurobi 7.5.1. We generated instances
with 1000 passengers, 60 CVs with capacity 5, 10 destinations, time windows of
10 min, time units of 30 s, and 10 scenarios each containing 50 or 100 passengers.
The instances are similar to those in [17], but smaller due to problem complexity.

For benchmarking, we also tested the following heuristic H: (1) solve the
problem optimally for known passengers using the algorithm in [17]; and (2) for
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each scenario, solve the resulting MIP formulation to maximize the number of
uncertain passengers that can be scheduled with the remaining capacity of the
trips already scheduled and the remaining availability of the CVs for more trips.

Table 1 summarizes results for α = 0.5. Each instance Pk,u,i corresponds to
the i-th instance with k known passengers and u unknown passengers on each
of the 10 scenarios. We report the values for the first stage (known passengers)
and for the second stage (uncertain passengers) as well as runtimes. The first-
and second-stage values correspond to the first and second terms of f(α). If the
second stage is infeasible, we report the percentage of scheduled passengers.

Table 1. Comparison of solution obtained with DDO and with heuristic H.

Instance Heuristic H DDO approach

1st Stage 2nd Stage Time (s) 1st Stage 2nd Stage Time (s)

P1000,50,1 21,940.0 (41.6%) 23.8 22,991.5 1,254.2 630.4

P1000,50,2 22,434,0 (33.4%) 25.2 23,410.5 1,257.9 535.1

P1000,50,3 22,409.5 (35.8%) 25.2 23,403.5 1,271.1 532.2

P1000,50,4 22,410.0 (38.2%) 25.6 23,397.0 1,302.2 643.5

P1000,50,5 22,099.0 (37.4%) 25.4 23,152.5 1,282.0 1019.9

P1000,50,6 22,552.0 (37.6%) 28.7 23,826.0 1,239.8 539.8

P1000,50,7 22,397.0 (34.8%) 24.3 23,621.5 1,293.3 646.1

P1000,50,8 22,002.0 (42.2%) 25.9 23,003.0 1,264.2 564.6

P1000,50,9 22,745.5 (34.8%) 26.0 23,855.0 1,276.0 704.5

P1000,50,10 22,206.0 (40.0%) 25.4 23,186.0 1,262.3 526.8

P1000,100,1 22,389.5 (31.6%) 24.8 24,078.5 2,503.4 1,171.3

P1000,100,2 21,992.5 (40.4%) 25.5 23,718.5 2,510.7 2,142.1

P1000,100,3 22,181.0 (31.6%) 39.4 23,814.5 2,523.1 1,330.6

P1000,100,4 22,409.5 (31.3%) 23.8 23,923.5 2,577.0 1,535.2

P1000,100,5 22,447.5 (40.3%) 29.5 24,162.0 2,496.3 896.0

P1000,100,6 22,725.5 (31.4%) 25.2 24,277.0 2,530.4 1,112.4

P1000,100,7 22,236.5 (36.9%) 26.5 24,286.0 2,537.8 2,776.1

P1000,100,8 22,584.0 (33.0%) 27.3 24,177.5 2,560.4 1,544.1

P1000,100,9 22,541.0 (35.6%) 24.9 24,106.5 2,477.9 1,982.5

P1000,100,10 22,552.0 (37.6%) 29.0 24,274.0 2,525.3 1,965.6

We note that ignoring the second stage leads to infeasible problems in all cases
for heuristic H, and only a portion of the uncertain passengers could be scheduled.
Interestingly, the proportion of uncertain passengers that are scheduled when the
optimal solution of the known passengers alone is fixed remains approximately
the same for 50 and 100 uncertain passengers per scenario. Hence, reducing the
number of uncertain passengers does not make heuristic H more suitable.
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For α = 0, we found that the optimal solution of the deterministic case,
which is used by H, has the same value as the first stage of DDO. In that case, DDO
found solutions that are robust for the scenarios considered while also optimal
for the known passengers. In contrast, for α > 0 there is a difference between
first stage values for both approaches, which is due to minimizing travel times.

7 Conclusion

We considered a two-stage optimization problem of last-mile passenger schedul-
ing subject to a finite set of scenarios representing uncertain additional demand.
Our approach based on decision diagram optimization produces solutions that,
despite an increase in runtimes, are feasibly robust with respect to all scenarios
while minimizing the expected number of last-mile trips necessary to satisfy the
demand across all scenarios. The results show the potential of using decision
diagrams to solve such challenging problems of scheduling under uncertainty.

References

1. Andersen, H.R., Hadzic, T., Hooker, J.N., Tiedemann, P.: A constraint store based
on multivalued decision diagrams. In: Bessière, C. (ed.) CP 2007. LNCS, vol.
4741, pp. 118–132. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-74970-7 11. http://dl.acm.org/citation.cfm?id=1771668.1771682

2. Ben-Tal, A., Nemirovski, A.: Robust optimization - methodology and applications.
Math. Program. 92(3), 453–480 (2002). https://doi.org/10.1007/s101070100286

3. Bergman, D., Cire, A., van Hoeve, W., Hooker, J.: Decision Diagrams for Opti-
mization. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42849-9

4. Bergman, D., Cire, A.A.: Decomposition based on decision diagrams. In: Quimper,
C.-G. (ed.) CPAIOR 2016. LNCS, vol. 9676, pp. 45–54. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-33954-2 4

5. Bergman, D., Cire, A.A.: Discrete nonlinear optimization by state-space decom-
positions. Manage. Sci. 64(10), 4700–4720 (2018). https://doi.org/10.1287/mnsc.
2017.2849

6. Bergman, D., van Hoeve, W.-J., Hooker, J.N.: Manipulating MDD relaxations for
combinatorial optimization. In: Achterberg, T., Beck, J.C. (eds.) CPAIOR 2011.
LNCS, vol. 6697, pp. 20–35. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-21311-3 5

7. Bergman, D., Lozano, L.: Decision diagram decomposition for quadratically con-
strained binary optimization. Optimization Online e-prints, October 2018

8. Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer, New
York (2011). https://doi.org/10.1007/978-1-4614-0237-4

9. Grosse-Ophoff, A., Hausler, S., Heineke, K., Möller, T.: How shared mobility will
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Abstract. SCIP-Jack is a customized, branch-and-cut based solver for
Steiner tree and related problems. ug [SCIP-Jack, MPI] extends SCIP-
Jack to a massively parallel solver by using the Ubiquity Generator
(UG) framework. ug [SCIP-Jack, MPI] was the only solver that could
run on a distributed environment at the (latest) 11th DIMACS Challenge
in 2014. Furthermore, it could solve three well-known open instances
and updated 14 best known solutions to instances from the benchmark
library SteinLib. After the DIMACS Challenge, SCIP-Jack has been
considerably improved. However, the improvements were not reflected on
ug [SCIP-Jack, MPI]. This paper describes an updated version of ug
[SCIP-Jack, MPI], especially branching on constrains and a customized
racing ramp-up. Furthermore, the different stages of the solution process
on a supercomputer are described in detail. We also show the latest
results on open instances from the SteinLib.

Keywords: Steiner tree problem · Branch-and-cut ·
Parallel computing · SCIP · UG

1 Introduction

The Steiner tree problem in graphs (SPG) is one of the fundamental N P-hard
optimization problems [5]. Given an undirected connected graph G = (V,E),
costs c : E → Q≥0 and a set T ⊆ V of terminals, the problem is to find a tree S ⊆
G of minimum cost that includes T . The 2014 DIMACS Challenge, dedicated
to Steiner tree problems, marked a revival of research on the SPG and related
problems. SCIP-Jack [2], which is a customized SCIP solver for SPG and related
problems, was initially developed to attend the DIMACS Challenge. SCIP-Jack
was by far the most versatile solver participating in the Challenge, being able
to solve the SPG and 10 related problems. After the DIMACS Challenge, the
performance of SCIP-Jack has continuously improved, both for SPG [13] and
related problems [11,12,14]. The improvements were for instance marked by
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SCIP-Jack being the most successful solver at the PACE 2018 Challenge [1]
dedicated to fixed-parameter tractable (FPT) SPG instances (although SCIP-
Jack does not include any FPT specific algorithms).

ug [ SCIP-Jack, MPI] is an extension of SCIP-Jack to a massively paral-
lelized solver by using the Ubiquity Generator (UG) framework [16], a software
package to parallelize branch-and-bound (B&B) based solvers. ug [SCIP-Jack,
MPI] was the only solver which could run on a distributed environment at the
11th DIMACS Challenge. Moreover, it solved three open instances and updated
14 best known solutions to instances from the SteinLib [7]. However, no detailed
statistics on the solving process have been published yet. After the DIMACS
Challenge, solving new open instances from the SteinLib by ug [SCIP-Jack,
MPI] looked hopeless for all open instances—judging from their run-time log
files—and there have been no new result published prior to this paper. For the
results presented throughout this paper, we used the ug [SCIP-Jack, MPI] code
included in the SCIP Optimization Suite 6.0 [3].

ug [SCIP-Jack, MPI] was not implemented from scratch by using UG, but
it was parallelized by using the ug [ SCIP-*, MPI]-library, which is a software
library to parallelize SCIP applications. SCIP is a plugin based software frame-
work [3] and by adding new user-plugins it can be extended to create a cus-
tomized solver like SCIP-Jack. The ug [SCIP-*, MPI]-library allows its users
to include these user-plugins to ParaSCIP by adding a small amount of glue-
code (typically 100 − 200 lines). Usually, if a solver performance parallelized by
UG is improved, this is directly reflected in the performance of its parallel exten-
sion. Since the SCIP-Jack performance has improved tremendously after the
DIMACS Challenge, see Sect. 3, one would expect the same of ug [SCIP-Jack,
MPI]. However, several idiosyncrasies of SCIP-Jack required to develop new
features of the ug [SCIP-*, MPI]-library, in order to also obtain the performance
improvements in its massively parallel extension.

In the following, we briefly describe UG, and go on to introduce the newly
added features of the ug [SCIP-*, MPI]-library that aim to improve the per-
formance of ug [SCIP-Jack, MPI]. Finally, first results obtained with the new
features will be presented.

2 Key Features of UG and ug [SCIP-*, MPI]-Library

A uniqueness of UG is that it is a software framework to parallelize an existing
state-of-the-art B&B based solvers. We call the B&B based solver parallelized
by UG base solver. In UG, the base solver is encapsulated in an abstracted
ParaSolver. The ParaSolver accesses the base solver via its API. At run-time
on a supercomputer, there are ParaSolver processes, which solve subproblems,
and there is a special process called LoadCoordinator (LC), which makes all
decisions about load balancing among the ParaSolvers. To realize the load bal-
ancing, message passing based protocols are defined between the LC and the
ParaSolvers. The LC also has a base solver environment, which does presolving
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(all ParaSolvers solve the presolved instance internally) and converts the solu-
tion to the presolved problem to a solution to the original one. Key features of
UG are:

Ramp-up. Ramp-up is the phase until all solvers have become active. In Normal
ramp-up, only one ParaSolver receives the root node, and it distributes one
of the branched nodes to the other solvers via the LC. All the ParaSolvers
do the same when they receive a node. The transferred node (subproblem)
data contains only the difference between the subproblem and the (pre-
solved) instance data. Racing ramp-up exploits the performance variability
commonly observed in MIP solving [6]. An instance is solved multiple times
by ParaSolvers in parallel, each time with a different parameter setting. If
the instance has not been solved to optimality once a predefined termination
criterion, e.g., a time limit, is reached, the most promising branch-and-bound
tree is distributed among the ParaSolvers and the default solving procedure
is initiated. The effectiveness of racing ramp-up is described in [17,20].

Dynamic load balancing. UG provides a Supervisor-Worker load coordina-
tion scheme [10]. In the Master-Worker paradigm, all B&B search tree data is
managed by the Master. In contrast to the Master-Worker paradigm, the idea
of Supervisor-Worker is that the Supervisor functions only to make decisions
about the load balancing, but does not actually store the data associated with
the B&B search tree. In UG, the Supervisor is the LC and the Workers are
the ParaSolvers. The B&B search tree data is managed by the ParaSolvers.
The terminal nodes (subproblems) of the B&B search tree in the ParaSolvers
are sent on demand to the LC; a set of subproblems in the LC works as a buffer
to ensure subproblems are available to idle ParaSolvers as needed.
Load balancing is accomplished mainly by switching the collection mode in
the ParaSolver. Turning collecting mode on results in additional “high qual-
ity” subproblems being sent to the LC, which can then be distributed to the
ParaSolvers. The method of selecting which ParaSolver to collect from is
crucial and is controlled very carefully. Some additional keys to avoid having
the Supervisor becoming a communication bottleneck are:

– Frequency of status updates can be controlled depending on the number
of ParaSolvers.

– The maximum number of ParaSolvers in collection mode is capped and
the ParaSolvers are chosen dynamically.

A detailed description of the dynamic load balancing is presented in [18,20].
Checkpointing and restrating mechanism. By the dynamic load balancing

of UG, B&B nodes in a sub-tree can be transferred recursively to the other
solvers. Therefore, at each checkpoint, only essential B&B nodes, i.e., sub-
tree roots whose ancestor node is not available on a run-time system, are
saved. The number of such nodes is extremely small compared to the number
of open nodes; thus the checkpointing is very light weight. However, a huge
search tree has to be regenerated at restart. This regeneration might look
redundant and inefficient. However, for MIP solvers, this procedure has been
shown to be notably efficient [17], since dual bounds of the checkpoint nodes
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are calculated more precisely and the B&B tree is regenerated based on these
values at restart—the regenerated B&B tree can thus be different than that
of the previous run.

Deterministic mode for debugging. One of the most difficult parts of soft-
ware development is debugging. Before running a parallel solver instantiated
by UG, extensive debugging for a set of instances with different number of
solvers is usually needed. Without having a deterministic mode, this would
be extremely inefficient.

ParaSCIP (=ug [SCIP, MPI]) is an instantiated parallel solver that uses
UG, in which SCIP is the base solver. Since SCIP is plugin-based, it is natural
to make a ug [SCIP-*, MPI]-library in which user plugins are installed auto-
matically by providing a small amount of glue code. ug [SCIP-Jack, MPI] is
realized by using such a library and is distributed as a UG application. The
Steiner tree application directory of SCIP Optimization Suite 6.0 contains only
one source file stp_plugins.cpp and it has only 173 lines of glue code without
empty and comment lines.

3 Improvements of SCIP-Jack After the DIMACS
Challenge

SCIP-Jack has seen a large number of improvements after the 11th DIMACS
Challenge, both for SPG and related problems. These developments include new
primal and dual heuristics [2,14], reduction techniques [15], and various technical
improvements such as a fast maximum-flow implementation [8] (used for sepa-
ration). Of particular relevance for massive parallelization is the subsequently
described improvement for domain propagation: During the solving process it is
usually possible to fix many (binary) edge variables of the IP formulation to 0 or
1—for instance by using reduced cost arguments [2] or branching information.
These fixings can be directly translated into edge deletions and contractions in
the underlying graph, which can allow for further eliminations by the power-
ful graph reduction techniques of SCIP-Jack. However, as already observed
by other authors [9], such graph reductions can change the graph in a complex
way, which cannot be easily translated into variable fixings in the IP formula-
tion. However, we have devised a simple mapping that given an original instance
P = (V,E, T, c) and reduced instance P ′ = (V ′, E′, T ′, c′) allows to map P ′

to a problem P ′′ such that P ′′ can be obtained from P ′ by deletion of edges
only. First, note that the reduction techniques of SCIP-Jack provide a map-
ping p : E′ → P (E) such that for each (optimal) solution S′ ⊆ E′ to P ′, set⋃

e∈S′ p(e) is an (optimal) solution to P . With this information one obtains:

Proposition 1. Let P = (V,E, T, c) be an SPG and (V ′, E′, T ′, c′) be an
instance obtained by using the reduction techniques of SCIP-Jack. Each solu-
tion S′′ to the SPG P ′′ = (V ′′, E′′, T ′′, c′′) defined by
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E′′ :=
⋃

e∈E′
p(e),

V ′′ := {v ∈ V | ∃(v, w) ∈ E′′, w ∈ V },
T ′′ := {t ∈ T | ∃(t, w) ∈ E′′, w ∈ V },
c′′ := c|E′′ ,

is a solution to P . Furthermore, if S′′ is an optimal solution to P ′′, it is an
optimal solution to P .

One readily acknowledges, that V ′′ ⊆ V and E′′ ⊆ E. Note, however, that
usually |V ′′| > |V ′| and |E′′| > |E′|, so we first apply only techniques that can
be directly translated into variable fixings (such as deletion of edges) and apply
the corresponding fixings to the IP; only afterward we perform more complex
reductions (and use Proposition 1 to apply further fixings).

4 New Features of ug [SCIP-Jack, MPI]

In this section, we describe new general features added to ug [SCIP-*, MPI]-
library, and also specialized new features added to ug [SCIP-Jack, MPI].

4.1 Branching on Constraints

After the DIMACS Challenge, instead of branching on variables, which in the
case of Steiner tree problem correspond to edges, default SCIP-Jack uses vertex
branching [4]. During the B&B process, SCIP-Jack selects a non-terminal ver-
tex of the Steiner tree problem graph to be rendered a terminal in one B&B child
node and to be excluded in the other child. These two operations are modeled
in the underlying IP formulation by including one additional constraint. This
procedure could not be used in previous versions of ug [SCIP-Jack,MPI], since
branching on constrains was only possible in SCIP, but not in the ug [SCIP-
*, MPI]-library. Therefore, a new feature for transferring branching constrains
has been added to the ug [SCIP-*, MPI]-library. The new feature allows ug
[SCIP-Jack,MPI] to use the vertex branching.

4.2 Callback to Initialize a Transferred Subproblem

A distinguishing feature of UG solvers is that it can naturally realize layered
presolving, in which B&B tree nodes are transferred to the other ParaSolvers
recursively and additional presolving is performed on the subproblems. The
effectiveness of the layered presolving is documented in [19,20]. When using ug
[SCIP-*, MPI]-library, MIP presolving realized by SCIP can work without any
additional coding. However, SCIP-Jack performs presolving on the underlying
graph before it formulates the subproblem as an IP. In order to realize the graph
based presolving, a callback to initialize the transferred subproblem has been
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added to the ug [SCIP-*, MPI]-library. To retain previous graph based branch-
ing decisions, ug [SCIP-Jack, MIP] transfers the branching history together
with a subproblem, enabling SCIP-Jack to change the underlying graph (by
adding terminals and deleting vertices). Additionally, whenever a subproblem has
been transferred, SCIP-Jack performs aggressive reduction routines to reduce
the (modified) problem further and translates the reductions into variable fixings
by means of Proposition 1.

4.3 Customized Racing

The latest ug [SCIP-*, MPI]-library includes customized racing, which allows
the user to specify their own parameter settings for racing. If the number of
UG solvers exceeds the number of provided parameter sets, then the customized
parameter settings are combined with random number seeds. While the latest
release version of ParaSCIP does not use customized racing by default, it is
applied in ug [SCIP-Jack,MPI]. For this article we used 30 parameter settings,
where we varied: the aggressiveness of the primal heuristics, the aggressiveness
of domain propagation, the branching rule (LP-based [2] or based on primal
solution [9]), and various parameter for the cut selection.

5 Updated Computational Results for Open Instances

For solving open instances of the PUC test set from SteinLib as of 1st of Novem-
ber 2018, we used two supercomputers. One is an ISM (Institute of Statistical
Mathematics) supercomputer which is a HPE SGI 8600 with 384 compute nodes,
each node has two Intel Xeon Gold 6154 3.0GHz CPUs (18 cores × 2) sharing
384GB of memory, and an Infiniband (Enhanced Hypercube) interconnect. The
other is HLRN III which is a Cray XC40 with 1872 compute nodes, each node
with two 12-core Intel Xeon IvyBridge/Haswell CPUs sharing 64 GiB of RAM,
and with an Aries interconnect. The interval time of checkpointing was set to
1,800 s. The maximum number of ParaSolvers in collection mode was capped
at 500.

5.1 hc9p (Solved)

This instance was solved by five restarted runs and by using up to 24,576 cores.
The initial primal solution was found by ug [SCIP-Jack, MPI] at the DIMACS
Challenge. All computations were used to prove its optimality. The racing ter-
mination criteria was a node limit of 50, that is: once the number of open B&B
nodes in a ParaSolver with the largest dual bound surpasses 50, racing is ter-
minated. Table 1 shows the supercomputer used, the computing time in seconds
(racing time is shown within parentheses), the idle time ratio for all ParaSolvers,
the number of transferred B&B nodes to ParaSolvers, primal and dual bounds,
gap, the number of B&B nodes generated, and the number of open B&B nodes



Building Optimal Steiner Trees on Supercomputers 535

for each run. The initial values are shown in the upper row and the final values
of those are shown in the lower row for each run.

The final dual bound in the previous run is sometimes slightly different from
that of the initial one in the following run. This means that the dual bound in
the previous run was updated after the final checkpoint. The number of open
B&B nodes decreases a lot at restart, since the checkpointing mechanism only
saves essential sub-tree roots. For example, run 1.1 ends up with 1,257,112 open
B&B nodes, but run 1.2 starts with 15 open ones. This means that only 15 B&B
sub-tree roots existed at the end of run 1.1 and the other sub-tree roots were
descendants of one of the 15 B&B nodes.

The number of transferred B&B nodes can be considered as an indicator
of how frequently ParaSolvers became idle and also how frequently layered
presolving was applied. It is natural that at larger scale we can expect more
layered presolving. Actually, the number of transferred B&B nodes of run 1.1
with 72 cores was only 738 nodes in a one week long execution. It was increased
by using 2,304 cores to 979,695 in another one week execution. In the following
bigger jobs it was drastically increased.

Figure 1 shows the evolution of the computation for the final run 1.5. The
number of B&B open nodes continuously increases and decreases during the
computation and it looks sometimes difficult to make all ParaSolvers active.
However, dynamic load balancing recovered the situation well and all the
ParaSolvers were active during almost the entire computing time. The idle
time ratio was only 1.5%. The number of checkpoint nodes also changed a lot
during the computation.

We can obtain the idle time ratio for all ParaSolvers only if ug [SCIP-Jack,
MPI] finishes its computation and cannot get it if the program is canceled by
the system in case the time-limit is hit. After racing ramp-up, all ParaSolver
statistics are collected. Therefore, by using its partial data, an upper bound
on the idle time ratio is calculated. The lack of data is complemented by the
maximum idle time ratio in the case of racing ramp-up, and complemented by
the idle time ratio of run 1.5. Table 1 also shows the upper bounds of the idle
time ratio. The idle time ratios for all runs are notably small, which indicates
that the supercomputers are used efficiently.

5.2 hc11p (Updated the Best Known Solution)

During the new developments in ug [SCIP-Jack, MPI], the best known solution
to the hc11p instance could be updated (with objective value 119,492 compared
to 119,689 at the DIMACS Challenge). The first additional run 1 on the ISM
supercomputer generated 11 new incumbent solutions, with the best objective
value being 119,297. Afterwards we just solved it from scratch with the best
solution in racing ramp-up (run 2.1) again, since it can be used for presolving,
propagation, and heuristics. The racing termination criteria for run 1 was the
same as that for hc9p, but the node limit 100 was used for run 2.1. The restarted
job was conducted from the checkpoint file of run 2.1, since run 2.1 could not
improve the incumbent solution. Run 1 consumed 12,095 cores-hours (=(72 ×



536 Y. Shinano et al.

Table 1. Statistics for solving hc9p on supercomputers

Run Computer Cores Time
(sec.)

Idle
(%)

Trans. Primal bound
(upper bound)

Dual bound
(lower bound)

Gap
(%)

Nodes Open nodes

1.1 ISM 72 604,796
(317)

<0.3 738 30,242.0000 29,879.3721 1.21 0 0

30,242.0000 30,058.9366 0.61 110, 012, 624 1, 257, 112

1.2 ISM 2, 304 604,794 <1.5 979, 695 30,242.0000 30,058.7930 0.61 0 15

30,242.0000 30,102.7556 0.46 3, 758, 532, 600 723, 167

1.3 HLRN III 24, 576 86,336 <1.7 8, 811, 512 30,242.0000 30,102.6645 0.46 0 35

30,242.0000 30,116.3592 0.42 2, 402, 406, 311 575, 678

1.4 HLRN III 12, 288 43,199 <1.5 1, 709, 027 30,242.0000 30,115.3331 0.42 0 3, 709

30,242.0000 30,120.4801 0.40 664, 909, 985 602, 323

1.5 HLRN III 12, 288 118,259 1.5 9, 158, 920 30,242.0000 30,120.4801 0.40 0 285

30,242.0000 30,242.0000 0.00 1, 677, 724, 126 0
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Fig. 1. Evolution of computation for solving hc9p by using 12,288 cores (Run 1.5)

Table 2. Statistics for solving hc11p on supercomputers

Run Computer Cores Time
(sec.)

Idle
(%)

Trans. Primal bound
(upper bound)

Dual bound
(lower bound)

Gap
(%)

Nodes Open nodes

1 ISM 72 604,799
(2,558)

<0.3 71 119,492.0000 117,388.8528 1.79 0 0

119,297.0000 117,496.5470 1.53 4,314,198 1,109,629

2.1 HLRN III 12,288 43,149
(7,164)

<0.5 31,304 119,297.0000 117,388.7971 1.63 0 0

119,297.0000 117,426.2226 1.59 28,491,470 5,433,482

2.2 HLRN III 43,000 86,354 <4.9 86,152 119,297.0000 117,426.2226 1.59 0 103

119,297.0000 117,468.8459 1.56 267,513,609 40,499,188

604799)/3600) and it reached a 1.53(%) gap. Runs 2.1 and 2.2 consumed 118,582
cores-hours (=((1288 × 43149) + (4300 × 86354))/3600) reached a 1.56(%)
gap. To improve the gap with the same amount of computing resources, initial
longer run at small scale look more promising than large scale runs with short
computing time (Table 2).

The numbers of transferred B&B nodes were very small compared to those
for hc9p. This shows a fundamental hardness of hc11p compared to that of
hc9p. Figure 2 shows the evolution of computation for run 2.2—the largest scale
used with ug [SCIP-Jack, MPI] so far. The restart is always normal ramp-up
from the nodes in checkpoint file. In the normal ramp-up, all ParaSolvers send



Building Optimal Steiner Trees on Supercomputers 537

 1

 100

 10000

 1x106

 1x108

 1x1010

 0  10000  20000  30000  40000  50000  60000  70000  80000  90000
 0

 4000

 8000

 12000

 16000

 20000

 24000

 28000

 32000

 36000

 40000

 44000

 48000

 52000

 56000

N
um

be
r 

of
 N

od
es

N
um

be
r 

of
 A

ct
iv

e 
S

ol
ve

rs
 +

 1

Computing Time (sec.)

# nodes left
# active solvers + 1

# nodes received/sec
# nodes sent/sec

# nodes in check-point file

Fig. 2. Evolution of computation for solving hc11p by using 43,000 cores (Run 2.2)

one of two branched nodes to the other ParaSolvers via LC. This lasts until all
ParaSolvers have become active. SCIP-Jack does presolving and adds cutting
planes aggressively at its root node, making ramp-up difficult. Additionally, once
in ramp-up the LC’s internal mode changes to collection mode. In this mode, only
a restricted number of ParaSolvers can be in collection mode. Therefore, the
number of active ParaSolvers decreases after the first peak. However, once the
LC has collected enough nodes again, the quality of the nodes in the LC is very
good and less and less dynamic load balancing is needed. Figure 2 shows this
behavior. Taking into account this difficulty of ramp-up, the idle time ratio of
run 2.2 is less than 4.9%. The number of checkpoint nodes stays the same and
the open B&B nodes keep increasing. Thus further improvements of SCIP-Jack
or much larger runs are needed to solve hc11p.

6 Concluding Remarks

We have extended ug [SCIP-Jack, MPI] to immediately obtain the benefits
of any SCIP-Jack improvements, allowing us to solve one previously unsolved
benchmark instance to optimality. We also showed that ug [SCIP-Jack, MPI]
can run on up to 43,000 cores efficiently in terms of computing resources usage.
Therefore, when SCIP-Jack has been further improved (as planned for the
near future) we expect to solve additional open instances. Also, the techniques
presented in this paper work on other problems related to the SPG that can be
handled by SCIP-Jack.
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Abstract. Given a set of observations generated by an optimization pro-
cess, the goal of inverse optimization is to determine likely parameters
of that process. We cast inverse optimization as a form of deep learning.
Our method, called deep inverse optimization, is to unroll an iterative
optimization process and then use backpropagation to learn parameters
that generate the observations. We demonstrate that by backpropagating
through the interior point algorithm we can learn the coefficients deter-
mining the cost vector and the constraints, independently or jointly, for
both non-parametric and parametric linear programs, starting from one
or multiple observations. With this approach, inverse optimization can
leverage concepts and algorithms from deep learning.

Keywords: Inverse optimization · Deep learning · Interior point

1 Introduction

The potential for synergy between optimization and machine learning is well-
recognized [6], with recent examples including [9,20,30]. Our work uses machine
learning for inverse optimization (IO). In inverse optimization, we observe one or
more decisions from an unknown optimization process, and the goal is to ‘learn’
an optimization model that is consistent with the observations. Aspects of the
unknown optimization process that we may wish to learn include terms in the
objective function or constraints on the decision variables.

An early example of IO is the inverse shortest path problem, used to learn
the unobservable transmission times of seismic waves which are known to fol-
low a shortest path [42]. Other applications include determining the tolls that
would enforce a desired traffic flow [11], imputing the relative importance of
treatment objectives from clinically-approved radiotherapy plans [13,31] in order
to automate clinicians’ decision-making, and predicting the behaviour of price-
responsive customers [36].
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We illustrate our framework in the context of parametric linear optimization.
Specifically, consider the parametric linear program PLP(u,w):

minimize
x

c(u,w)′x

subject to A(u,w)x ≤ b(u,w),
(1)

where x ∈ R
d, c(u,w) ∈ R

d, A(u,w) ∈ R
m×d and b(u,w) ∈ R

m. The ‘fea-
ture’ vector u represents conditions (e.g., time, prices, weather) under which we
may want to instantiate and solve the linear program. The ‘weight’ vector w
represents parameters relating the features to the optimization model instance.

In inverse optimization, for a set of features {u1,u2, . . . ,uN} we observe
the corresponding decisions of some unknown optimization process. Call these
decisions {x1

tru,x
2
tru, . . . ,x

N
tru}, as they are generated by the ‘true’ underlying

process. Fundamentally, IO problems are learning problems: the goal of IO is
to learn weights w such that, for each n ∈ {1, . . . , N}, there exists an optimal
solution of PLP(un,w) that is consistent with the corresponding observed deci-
sion xn

tru. The learned model can then be applied to predict decisions under new
conditions u that were not seen at training time.

In this paper, we cast inverse optimization as a form of deep learning. Our
method, called deep inverse optimization, is to ‘unroll’ an iterative optimization
process and then use backpropagation to learn model parameters w that gen-
erate the observations, i.e., training targets. Specifically, we use a deep learning
framework to trace computations across the iterations of an optimization loop,
resulting in a chain of dependent variables (a dynamically unrolled loop) which
are then automatically differentiated with respect to a loss function so as to
compute a gradient for w.

Figure 1 shows the actual result of applying our deep IO method to three
inverse optimization learning tasks. The top panel illustrates the non-parametric,
single-point variant of model (1)—the case when exactly one xtru is given—a
classical problem in IO (see [1,14]). In Fig. 1(i), only c needs to be learned:
starting from an initial cost vector cini, our method finds clrn which makes xtru

an optimal solution of the LP by minimizing ‖xtru−xlrn‖2. In Fig. 1(ii), starting
from cini, Aini and bini, our approach finds clrn, Alrn and blrn which make xtru

an optimal solution of the learned LP through minimizing ‖xtru − xlrn‖2.
Figure 1(iii) shows learning w = [w0, w1] for the parametric problem instance

minimize
x

cos(w0 + w1u)x1 + sin(w0 + w1u)x2

subject to − x1 ≤ 0.2w0u,

− x2 ≤ −0.2w1u,

w0x1 + (1 + 1
3w1u)x2 ≤ w0 + 0.1u.

(2)

The left panel of Fig. 1(iii) shows the true PLP(u,wtru) with wtru = [1.0, 1.0],
along with four observations denoted as x(un,wtru) corresponding to u values
{−1.5,−0.5, 0.5, 1.5}. Starting from wini = [0.2, 0.4] with a loss (mean squared
error) of 0.45, our method is able to find wlrn = [1.0, 1.0] with a loss of zero,
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(iii) Learning weights w of a parametric LP from multiple points 

Fig. 1. Three IO learning tasks in non-parametric and parametric linear programs.

thereby making the observed xn
tru optimal solutions of (2). In this case, the

learned PLP will predict the same decisions as the true PLP when evaluated on
new values of u. In other words, the learned model generalizes well.

The contributions of this paper are as follows. We propose a general frame-
work for inverse optimization based on deep learning. This framework is applica-
ble to learning coefficients of the objective function and constraints, individually
or jointly; minimizing a general loss function; learning from a single or multiple
observations; and solving both non-parametric and parametric problems. As a
proof of concept, we demonstrate that our method obtains effectively zero loss on
many randomly generated linear programs for all three types of learning tasks
shown in Fig. 1, and always improves the loss significantly. Such a numerical
study on randomly generated non-parametric and parametric linear programs
with multiple learnable parameters has not previously been published for any
IO method in the literature. Finally, to the best of our knowledge, we are the
first to use unrolling and backpropagation for constrained inverse optimization.

We explain how our approach differs from methods in inverse optimization
and machine learning in Sect. 2. We present our deep IO framework in Sect. 3
and our experimental results in Sect. 4. Section 5 discusses both the generality
and the limitations of our work, and Sect. 6 concludes the paper.
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2 Related Work

The goal of our paper is to develop a general-purpose IO approach that is appli-
cable to problems for which theoretical guarantees or efficient exact optimiza-
tion approaches are difficult or impossible to develop. Naturally, such a general-
purpose approach will not be the method of choice for all classes of IO prob-
lems. In particular, for non-parametric linear programs, closed-form solutions
for learning the c vector (Fig. 1(i)) and for learning the constraint coefficients
have been derived by Chan et al. [14,16] and Chan and Kaw [15], respectively.
However, learning objective and constraint coefficients jointly (Fig. 1(ii)) has, to
date, received little attention. To the best of our knowledge, this task has been
investigated only by Troutt et al. [43,44], who referred to it as linear system iden-
tification, using a maximum likelihood approach. However, their approach was
limited to two dimensions [44] or required the coefficients to be non-negative [43].

In the parametric optimization setting, Keshavarz et al. [25] develop an opti-
mization model that encodes KKT optimality conditions for imputing objective
function coefficients of a convex optimization problem. Aswani et al. [3] focus
on the same problem under the assumption of noisy measurements, developing a
bilevel formulation and two algorithms which are shown to maintain statistical
consistency. Saez-Gallego and Morales [36] address the case of learning c and
b jointly in a parametric setting where the b vector is assumed to be an affine
function of a regressor. The general case of learning the weights of a parametric
linear optimization problem (1) where c, A and b are functions of u (Fig. 1(iii))
has not been addressed in the literature.

Recent work in machine learning [4,5,18] views IO through the lens of online
learning, where the optimization model is incrementally updated based on new
observations. Our approach may be applicable in online settings, but in the
current paper we consider problems with a fixed training set.

It is worth noting that there are conceptual parallels between inverse opti-
mization and constraint acquisition [7], including recent variants that incorporate
machine learning [27]. In constraint acquisition, the goal is to allow non-expert
users to specify constraint sets in the constraint programming formalism using
an example-based approach.

Methodologically, our unrolling strategy is similar to McLaurin et al. [28] who
directly optimize the hyperparameters of a neural network training procedure
with gradient descent. Conceptually, the closest papers to our work are by Amos
and Kolter [2] and Donti, Amos and Kolter [19]. However, these papers are writ-
ten independently of the inverse optimization literature. Amos and Kolter [2]
present the OptNet framework, which integrates a quadratic optimization layer
in a deep neural network. The gradients for updating the coefficients of the opti-
mization problem are derived through implicit differentiation. This approach
involves taking matrix differentials of the KKT conditions for the optimization
problem in question, while our strategy is based on allowing a deep learning
framework to unroll an existing optimization procedure. Their method has effi-
ciency advantages, while our unrolling approach is easily applicable, including to
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processes for which the KKT conditions may not hold or are difficult to implicitly
differentiate. We include a more in-depth discussion in Sect. 5.

3 Deep Learning Framework for Inverse Optimization

Inverse optimization can be viewed as an approach to machine learning special-
ized to the case when the observed data is coming from an optimization process.
Given this perspective on IO, and motivated by the success of deep learning for
a variety of learning tasks in recent years (see [26]), this paper develops a deep
learning framework for inverse optimization.

Deep learning is a set of techniques for training the parameters of a sequence
of transformations (layers) that have been composed (chained) together. The
more intermediate layers of computation, the ‘deeper’ the architecture. We refer
the reader to the textbook by Goodfellow, Bengio and Courville [21] for details.
The features of the intermediate layers can be trained/learned through backprop-
agation [35], an automatic differentiation technique that can efficiently compute
a direction in which to update the weights of the model. Importantly, current
machine learning libraries such as PyTorch provide built-in backpropagation
capabilities [33], making this technique much more accessible and flexible than
in the past.

Our deep IO framework cycles through three steps: (1) instantiate a forward
optimization problem with the current weights w, (2) solve the problem with a
standard algorithm while tracing its execution, and (3) automatically compute
an update to improve w by backpropagating through the traced steps.

Algorithm 1. Deep inverse optimization framework.
Input: initial weights wini; training targets {(un,xn

tru)}N
n=1.

Output: learned weights wlrn

1: w ← wini

2: for s in 1 .. max steps do
3: Δw ← 0
4: for n in 1 .. N do � For each training example
5: x ← FO(un,w) � Run forward optimizer to completion
6: � ← L(x,xn

tru) � Compute loss w.r.t. target
7: ∂�

∂w
← backprop(�) � Backpropagate gradient to weights

8: Δw ← Δw + 1
N

∂�
∂w

� Accumulate average gradient
9: end for

10: Δw ← α � Δw � Scale gradient component-wise
11: β ← line search(w, Δw) � Find safe step size
12: w ← w − βΔw � Update weights
13: end for
14: Return w

Our approach, shown in Algorithm 1, takes the pairs {(un,xn
tru)}N

n=1 as input,
and initializes w to wini. For each n, the forward optimization problem (FO)
is solved with the current weights (line 5), and the loss between the resulting
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Fig. 2. Illustration of the deep inverse optimization framework.

optimal solution x and xtru is computed (line 6). The gradient of the loss function
with respect to w is computed by backpropagation through the layers of the
forward process (line 7). The gradient is optionally scaled by component-wise
product (�) with a vector α that controls the relative learning rates (line 10).
Line search then determines a safe step size β that precludes an increase in
the overall loss and prevents the forward problem from becoming unbounded
or infeasible (line 11). Finally, the weights are updated (line 12). This process
repeats until max steps iterations are complete.

Importantly, our framework is applicable in principle to any differentiable for-
ward optimization procedure. Gradients are automatically computable even with
non-linear constraints or non-linear objectives, as long as they can be expressed
through standard differentiable primitives. For our experiments we implement
the barrier interior point method (IPM) as described by Boyd and Vanden-
berghe [10] for our forward solver. The IPM forward process is illustrated in
Fig. 2(i): the central path taken by IPM is illustrated for the current u and w,
which define both the current feasible region and the current c(u,w). As shown
in Fig. 2(ii), backpropagation starts from the loss between IPM solution x(u,w)
and the target x(u,wtru) and proceeds backward to the initial state x(1) of IPM.
The key to backpropagating through each Newton step of IPM is to differentiate
a matrix inverse operation, which PyTorch now does automatically. In prac-
tice, backpropagating all the way to x(1) may not be necessary for computing
sufficiently accurate gradients; see Sect. 5.

The framework requires setting three main hyperparameters: wini, the initial
weight vector; max steps, the total number of steps allotted to the training;
and α, the learning rates for the different components of w. The number of
additional hyperparameters depends on the forward optimization process.

4 Experimental Results

In this section, we demonstrate the application of our framework on randomly-
generated linear programs for the three types of problems shown in Fig. 1: learn-
ing c in the non-parametric case; learning c, A and b together in the non-
parametric case; and learning w in the parametric case.
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Implementation. Our framework is implemented as a Python package called
deep inv opt1. The package is designed to be used with PyTorch version 1.0,
leveraging its built-in automatic differentiation and backpropagation capabili-
ties [33]. All numerical operations are carried out with PyTorch tensors and
standard PyTorch primitives, including the matrix inverse at the heart of the
Newton step.

Hyperparameters. We limit learning to max steps = 200 in all experiments.
Four additional hyperparameters are set in each experiment:

– ε, which controls the precision and termination of IPM;
– t(0): the initial value of the barrier IPM sharpness parameter t;
– μ: the factor by which t is increased along the IPM central path;
– α: the vector of per-parameter learning rates, which in some experiments is

broken down into αc and αAb.

In all experiments, the ε hyperparameter is either a constant 10−5 or decays
exponentially from 0.1 to 10−5 during learning.

Benchmark Methodology. To the best of our knowledge, there are no well-
established benchmarks in the IO literature. Thus, we develop an IO benchmark
comprising random instances with varying dimension and number of constraints.
We generate a set of feasible regions having d dimensions and m constraints by
sampling at least d points with components from N (0, 1) and computing their
convex hull via the scipy.spatial.convexhull package [34]. We refer to these as
‘baseline’ feasible regions. We generate 50 baseline feasible regions for each of
the following six problem sizes: d = 2 with m ∈ {4, 8, 16}, and d = 10 with m ∈
{20, 36, 80}. The baseline regions and training/testing targets in our experiments
can all be generated by scripts in the accompanying code repository. Though
we observe that our method works for equality constraints, our experiments
focus on inequality constraints, and we leave a systematic evaluation of equality
constraints to future work.

4.1 Experiments on Non-parametric Linear Programs

We first demonstrate the performance of our method for learning c only, and
learning c, A and b jointly, on the single-point variant of model (1), i.e., when a
single optimal target xtru is given, a classical assumption in IO [1]. We use two
loss functions, absolute duality gap (ADG) and squared error (SE), defined as
follows:

ADG = c′
lrn|xtru − xlrn|, (3)

SE = ‖xtru − xlrn‖22. (4)

Both ADG and SE have been used in IO [13,14,16], and SE is a standard metric
in machine learning.
1 Available at https://github.com/tankconcordia/deep inv opt.

https://github.com/tankconcordia/deep_inv_opt
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Fig. 3. Experimental results for non-parametric IO problems.

Learning c Only. For each of the 50 baseline feasible regions, we randomly
select one vertex of the convex hull to be the training target xtru. We set A
and b to match the baseline feasible region, and we generate a random cini by
drawing from N (0, 1). The goal is to find a clrn for which xtru is a solution.

We implement a randomized grid search by sampling 20 random combi-
nations of the following three hyperparameter sets: t(0) ∈ {0.5, 1, 5, 10}, μ ∈
{1.5, 2, 5, 10, 20}, and αc ∈ {1, 10, 100, 1000}. These hyperparameter sets were
chosen based on intuition from preliminary experiments. As in other applications
of deep learning, it is not clear which hyperparameters will work best for a par-
ticular problem instance. For each instance we run our algorithm with the same
20 hyperparameter combinations, reporting the best final error values. Note that
in this experiment a loss of zero is achievable by a closed-form expression [14],
so the success of our method can be evaluated in absolute terms by the fraction
of instances that achieve zero loss.
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Figure 3(i) shows the results of this experiment for ADG and SE loss. In both
cases, our method is able to reliably learn c: for all instances, the final error is
under 10−4, while the majority of initial errors are above 10−1. There is no clear
pattern in the performance of the method as m and d change for ADG; for SE,
the final loss is slightly larger for higher d.

Learning c, A, b Jointly. For each of the 50 baseline feasible regions, we
generate a random baseline c vector to form a baseline LP. We then generate
an either strictly feasible or strictly infeasible target point xtru by perturbing an
optimal solution to the baseline LP. We interpret these strictly feasible/infeasible
targets as being a mismatch between the baseline LP and some unknown true
LP we wish to recover. We set Aini and bini to be the baseline feasible region,
and set cini to be a perturbed version of the baseline c vector. The IO algorithm
must then find a clrn,Alrn,blrn for which the target xtru is optimal.

Specifically, for each of the 50 baseline feasible regions, we generate a c ∼
N (0, 1) and compute its optimal solution x∗. To generate an infeasible target
we set xtru = x∗ +η where η ∼ U [−0.2, 0.2]. We similarly generate a challenging
cini by corrupting c with noise from U [−0.2, 0.2]. To generate a strictly feasible
target near x∗, we set xtru = 0.9x∗ + 0.1x′ where x′ is a random point within
the feasible region, generated by a Dirichlet-weighted combination of all vertices;
this method was used because adding noise to a vertex in 10 dimensions almost
always results in an infeasible target.

In summary, the IO task involves both a misspecified cini and a misspecified
feasible region Aini and bini relative to the target xtru. The goal is to demonstrate
the ability of our algorithm to alter the constraints and the objective so that
the feasible/infeasible target becomes an optimum. For each of the six problem
sizes, we randomly split the 50 instances into two subsets, one with feasible and
the other with infeasible targets. For ADG loss we set ε = 10−5 and for SE we
use the ε decay strategy. In practice, this decay strategy is similar to putting
emphasis on learning c in the initial iterations and ending with emphasis on
constraint learning.

The values of hyperparameters αc and αAb are independently selected from
{0.1, 1, 10} and concatenated into one learning rate vector α. We generate 20
different hyperparameter combinations from the same hyperparameter sets as
described above. We run our algorithm on each instance with all hyperparameter
combinations and record the value of the best trial. The minimum achievable loss
in this experiment is again zero, so the success of our method can be evaluated
in absolute terms by the fraction of instances achieving zero loss.

Figure 3(ii) shows the results of this experiment for ADG and SE loss. In
both cases, our method is able to learn model parameters that result in median
loss of under 10−4. For ADG, our method performs equally well for all problem
sizes, and there is not much difference in the final loss for feasible and infeasible
targets. For SE, however, the final loss is larger for higher d but decreases as
m increases. Furthermore, there is a visible difference in performance of the
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method on feasible and infeasible points for 10-dimensional instances: learning
from infeasible targets becomes a more difficult task.

4.2 Experiments on Parametric Linear Programs

Several aspects of the experiment for parametric LPs are different from the non-
parametric case. First, we train by minimizing MSE(w), defined as

MSE(w) =
1
N

N∑

n=1

‖x(un,wtru) − x(un,w)‖22. (5)

For the parametric experiments, we chose to train and evaluate using the SE
loss instead of ADG for reasons discussed in Sect. 5. In the parametric case, we
also assess how well the learned PLP generalizes, by evaluating its MSE(wlrn)
on a held-out test set.

To generate parametric problem instances, we again started from the baseline
feasible regions. To generate a true PLP, we used six weights to define linear
functions of u for all elements of c, all elements of b, and one random element in
each row of A. For example, for 2-dimensional problems with four constraints,
our instances have the following form:

minimize
x

(c1 + w1 + w2u)x1 + (c2 + w1 + w2u)x2

subject to

⎡

⎢⎢⎣

a11 a12 + w3 + w4u
a21 a22 + w3 + w4u
a31 + w3 + w4u a32

a41 a42 + w3 + w4u

⎤

⎥⎥⎦ ≤

⎡

⎢⎢⎣

b1 + w5 + w6u
b2 + w5 + w6u
b3 + w5 + w6u
b4 + w5 + w6u

⎤

⎥⎥⎦ .
(6)

Specifically, the “true PLP” instances are generated by setting w1, w3, w5 =
0 and w2, w4, w6 ∼ N (0, 0.2). This ensures that when u = 0 the true PLP
feasible region matches the baseline feasible region. For each true PLP, we find a
range [umin, umax] ⊆ [−1, 1] over which the resulting PLP remains bounded and
feasible. To find this ‘safe’ range we evaluate u at increasingly large values and
try to solve the corresponding LP, expanding [umin, umax] if successful. For each
true PLP, we generate 20 equally spaced training points spanning [umin, umax].
We also sample 20 test points u sampled uniformly from [umin, umax]. We then
initialize learning from a corrupted PLP by setting wini = wtru + η where each
element of η ∼ U [−0.2, 0.2].

Hyperparameters are sampled from t(0) ∈ {0.5, 1, 5, 10}, μ ∈ {1.5, 2, 5, 10, 20}
and αAb ∈ {1, 10}, and αc is then chosen to be a factor of {0.01, 1, 100} times
αAb, i.e., a relative learning rate. The range of these values was based on pre-
liminary experiments. Here, αc and αAb control the learning rate of parameters
within w that determine c and (A,b), respectively. In total, we generate 20
different hyperparameter combinations. We run our algorithm on each instance
with all hyperparameter combinations and record the best final error value. A
constant value of ε = 10−5 is used. In these experiments, the minimum achievable
loss is again zero.
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Fig. 4. Experimental results for parametric IO problems.

We demonstrate the performance of our method on learning parametric LPs
of the form shown in (6) with d = 2, m = 8, and d = 10, m = 36. In Fig. 4,
we report two metrics evaluated on the training set, namely MSE(wini) and
MSE(wlrn), and one metric for the test set, MSE(wlrn). Figure 4(iii) shows an
example of an instance with d = 2, m = 8 from the training set. We see that,
overall, our deep learning method works well on 2-dimensional problems with the
training and testing error both being much smaller than the initial error. In the
vast majority of cases the test error is also comparable to training error, though
there are a few cases where it is worse, which indicates a failure to generalize
well. For 10D instances, the algorithm significantly improves MSE(wlrn) over the
initialization MSE(wini), but in most cases fails to drive the loss to zero, either
due to local minima or slow convergence. Again, performance on the test set is
similar to that on training set.

5 Discussion

The conceptual message that we wish to reinforce is that inverse optimization
can be viewed as a form of deep learning, and that unrolling gives easy access
to the gradients of any parameter used directly or indirectly in the forward
optimization process. There are many aspects of this view that merit further
exploration. What kind of forward optimization processes can be inversely opti-
mized this way? Which ideas and algorithms from the deep learning community
will help? Are there characteristics of IO that make gradient-based learning more
challenging than in deep learning at large? Conclusive answers are beyond the
scope of this paper, but we discuss these and other questions below.

Relation to Neural Networks. Deep neural networks often have millions of
trainable weights and are very flexible in what kinds of input-output relations
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they can learn, thus requiring very large training sets. The optimization models
we consider have comparatively few trainable weights because they represent a
strong prior over how features u determine decisions x. As such, they require
less training data than a typical neural network, which is why we can train our
parametric instances on only 20 training points and not observe over-fitting.

Generality and Applicability. As a proof of concept, this paper uses linear
programs as the forward problems with barrier IPM as the optimization pro-
cess. In principle, the framework is applicable to any forward process for which
automatic differentiation can be applied. This observation does not mean that
ours is the best approach for a specialized IO problem, such as learning c from
a single point [14] or multiple points within the same feasible region [16], but it
provides a new strategy.

The practical message of our paper is that, when faced with novel classes
or novel parameterizations of IO problems, the unrolling strategy provides con-
venient access to a suite of general-purpose gradient-based algorithms for solv-
ing the IO problem at hand. This strategy is made especially easy by deep
learning libraries that support dynamic ‘computation graphs’ such as PyTorch.
Researchers working within this framework can rapidly apply IO to many differ-
entiable forward optimization processes, without having to derive the algorithm
for each case. Automatic differentiation and backpropagation have enabled a
new level of productivity for deep learning research, and they may do the same
for inverse optimization research. Applying deep inverse optimization does not
require expertise in deep learning itself.

We chose IPM as a forward process because the inner Newton step is dif-
ferentiable and because we expected the gradient to temperature parameter t
to have a stabilizing effect on the gradient. For non-differentiable optimization
processes, it may still be possible to develop differentiable versions. In deep
learning, many advances have been made by developing differentiable versions
of traditionally discrete operations, such as memory addressing [22] or sampling
from a discrete distribution [29]. We believe the scope of differentiable forward
optimization processes may similarly be expanded over time.

Finally, it may be possible to develop hybrid approaches, combining gradient-
based learning with closed-form solutions, combinatorial algorithms, coordinate
descent schemes, or techniques from black-box optimization.

Limitations and Possible Improvements. Deep IO inherits the limitations
of most gradient-based methods. If learning is initialized to the right “basin
of attraction”, it can proceed to a global optimum. Even then, the choice of
learning algorithm may be crucial. When implemented within a steepest descent
framework, as we have here, the learning procedure can get trapped in local
minima or exhibit very slow convergence. Such effects are why most instances in
Fig. 4(ii) failed to achieve zero loss.

In deep learning with neural networks, poor local minima become exponen-
tially rare as the dimension of the learning problem increases [17,39]. A typical
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strategy for training neural networks is therefore to over-parameterize (use a high
search dimension) and then use regularization to avoid over-fitting to the data.
In deep IO, natural parameterizations of the forward process may not permit an
increase in dimension, or there may not be enough observations for regularization
to compensate, so local minima remain a potential obstacle. We believe train-
ing and regularization methods specialized to low-dimensional learning problems
such as those from Sahoo et al. [37] may be applicable here.

We expect that other techniques from deep learning, and from gradient-
based optimization in general, will translate to deep IO. For example, learning
algorithms with second-order aspects such as momentum [41] and L-BFGS [12]
are readily available in deep learning frameworks. Deep learning ‘tricks’ may also
help deep IO. For example, we observe that, when c is normal to a constraint,
the gradient with respect to c can suddenly become very large. We stabilized this
behaviour with line search, but a similar ‘exploding gradient’ phenomenon exists
when training deep recurrent networks, and gradient clipping [32] is a popular
way to stabilize training. A detailed investigation of applicable deep learning
techniques is outside the scope of this paper.

Deep IO may be more successful when the loss with respect to the forward
process can be annealed or ‘smoothed’ in a manner akin to graduated non-
convexity [8]. Our ε-decay strategy is an example of this approach, as discussed
below.

Loss Function and Metric of Success. One advantage of the deep inverse
optimization approach is that it can accommodate various loss functions, or
combinations of loss functions, without special development or analysis. For
example one could substitute other p-norms, or losses that are robust to outliers,
and the gradient will be automatically available. This flexibility may be valuable.
Special loss functions have been important in machine learning, especially for
structured output problems [23]. The decision variables of optimization processes
are likewise a form of structured output.

In this study we chose two classical loss functions: absolute duality gap and
squared error. The behaviour of our algorithm varied depending on the loss
function used. Looking at Fig. 3(ii) it appears that deep IO performs better
with ADG loss than with SE loss when learning c,A,b jointly. However, this
performance is due to the theoretical property that ADG can be zero despite the
observed target point being infeasible [14]. With ADG, all the IO solver needs
to do is adjust c,A,b so that xlrn − xtru is orthogonal to c, which in no way
requires the learned model to be capable of generating xtru as an optimum. In
other words, ADG is meaningful mainly when the true feasible region is known,
as in Fig. 3(i). When there is limited knowledge about the true feasible region,
SE may be a more meaningful loss function because it prioritizes optimization
models that can directly generate the observations xn

tru. That is why we used SE
for our parametric experiments (Fig. 4). However, SE penalizes any difference
between the predicted and observed decision variables, even if those differences
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(i) ADG loss surface (ii) SE loss surface
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Fig. 5. Loss surfaces for the feasible region and target shown in Fig. 1 (i).

do not affect optimality. In short, ADG and SE both have conceptual drawbacks,
and it may be beneficial to develop new or hybrid loss metrics.

In practice, minimizing the SE loss also appears to be more challenging for
steepest descent. To get a sense for the characteristics of ADG versus SE from
the point of view of varying c, consider Fig. 5, which depicts the loss for the
IO problem in Fig. 1 (i) using both high precision (ε = 10−5) and low precision
(ε = 0.1, 0.01) for IPM. Because the ADG loss is directly dependent on c, the
loss varies smoothly even as the corresponding optimum x∗ stays fixed. The SE
loss, in contrast, is piece-wise constant; an instantaneous perturbation of c will
almost never change the SE loss in the limit of ε → 0. Note that the gradients
derived by implicit differentiation [2] indicate ∂�

∂c = 0 everywhere in the linear
case, which would mean c cannot be learned by gradient descent. With IPM
one can learn c nonetheless because the barrier sharpness parameter t smooths
the loss, especially at low values. The precision parameter ε limits the maximal
sharpness during forward optimization, and so the gradient ∂�

∂c is not zero in
practice, especially when ε is weak. Notice that the SE loss surface in Fig. 5
becomes qualitatively smoother for weak ε, whereas ADG is not fundamentally
changed. Also, when c is normal to a constraint (when the optimal point is about
to transition from one point to another) the gradient ∂�

∂c explodes even when the
problem is smoothed.

Computational Efficiency. Our paper is conceptual and focuses on flexibility
and the likelihood of success, rather than computational efficiency. Many appli-
cations of IO are not real-time, and so we expect methods with running times on
the order of seconds or minutes to be of practical use. Researchers may also con-
sider applying gradient-free solvers [24,38] to their IO problem instances. Still,
we believe the gradient-based framework can be both flexible and fast.

Deep learning frameworks are GPU accelerated and scale well with the size
of an individual forward problem, so large instances are not a concern. A bigger
issue for GPUs is solving many small or moderate instances efficiently. Amos and
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Kolter [2] developed a batch-mode GPU forward solver to address this issue. We
note that PyTorch now also supports batch-mode GPU matrix inverse, which
can be used to efficiently run IPM on several small instances in parallel.

What is more concerning for the unrolling strategy is that forward opti-
mization processes can be very deep, with hundreds or thousands of iterations.
Backpropagation requires keeping all the intermediate values of the forward pass
resident in memory, for later use in the backward pass. The computational cost
of backpropagation is comparable to that of the forward process, so there is no
asymptotic advantage to skipping the backwards pass. Although memory usage
was small in our instances, if the memory usage is linear with depth, then at some
depth the unrolling strategy will cease to be practical compared to Amos and
Kolter’s [2] implicit differentiation approach. However, we observed that for IPM
most of the gradient contribution comes from the final few Newton steps before
termination. In other words, gradient contributions diminish as backpropagation
returns ‘deeper’ along the central path. This means the gradient can be well-
approximated in practice with truncated backpropagation through time (see [40]
for review), which uses a small constant pool of memory regardless of the number
of forward steps that were run (i.e., regardless of depth).

The unrolling approach is convenient and practical, especially during the
development and exploration phase of IO research. Once an IO model is proven
to work, its implementation can be made more efficient through a number of
strategies, including deriving the implicit gradients [2] or by asymptotically faster
learning algorithms being developed in the deep learning community.

6 Conclusion

We developed a deep learning framework for inverse optimization based on back-
propagation through an iterative forward optimization process. We illustrate the
potential of this framework via an implementation where the forward process is
the interior point barrier method. Our results on linear non-parametric and para-
metric problems show promising performance. To the best of our knowledge, this
paper is the first to explicitly connect deep learning and inverse optimization.
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Abstract. A promising new model for future logistics networks involves
the collaboration between traditional trucks and modern drones. The
drone can pick up packages from the truck and deliver them by air while
the truck is serving other customers. The operational challenge combines
the allocation of delivery locations to either the truck or the drone, and
the coordinated routing of the truck and the drone. In this work, we
consider the scenario of a single truck and one drone, with the objec-
tive to minimize the completion time (or makespan). As our first con-
tribution, we prove that this problem is strongly NP-hard, even in the
restricted case when drone deliveries need to be optimally integrated in
a given truck route. We then present a constraint programming formula-
tion that compactly represents the operational constraints between the
truck and the drone. Our computational experiments show that solving
the CP model to optimality is significantly faster than the state-of-the-art
exact algorithm. For larger instances, our CP-based heuristic algorithm is
competitive with a state-of-the-art heuristic method.

1 Introduction

Vehicle routing problems have become increasingly important with the evolution
of online shopping and fulfillment and a variety of delivery services. The use of
unmanned aerial vehicles, or drones, for this purpose is actively explored by
industry [12]. A common model is to equip a delivery truck with one or more
drones to deliver packages in parallel to the truck [15]. Unlike the traditional
setting where a fleet of vehicles have little operational constraints to each other,
the drone operation is highly constrained to the truck operation because it needs
to pick up packages for delivery from a truck. As a result the completion time
also depends on the waiting time incurred due to the synchronization between
the truck and the drone.

In this paper we study the design of optimal joint truck and drone routes
under this scenario. We consider the elementary case where only one truck and
one drone is available. Given a set of customers to be served either by a truck or

This work was supported by Office of Naval Research grant N00014-18-1-2129.

c© Springer Nature Switzerland AG 2019
L.-M. Rousseau and K. Stergiou (Eds.): CPAIOR 2019, LNCS 11494, pp. 557–564, 2019.
https://doi.org/10.1007/978-3-030-19212-9_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19212-9_37&domain=pdf
https://doi.org/10.1007/978-3-030-19212-9_37


558 Z. Tang et al.

a drone, our objective is to minimize the completion time of the entire delivery
task, i.e. the total time it takes to serve all customers. For operational simplic-
ity, we assume the drone can only be dispatched at a customer location and the
service time at each location is instant. In a feasible solution, the truck route
forms a tour which starts from and returns to the depot with a subset of cus-
tomers served along the tour. Each remaining customer is served by the drone
which is dispatched from a customer location and returns to a (possibly differ-
ent) location on the truck tour. We follow Agatz et al. [1] and call this problem
the traveling salesman problem with a drone (TSP-D).

Contributions. Our first contribution is a proof that the TSP-D is strongly
NP-hard even in the case when a truck route is given and we need to optimally
integrate the remaining drone visits. Our second contribution is a new con-
straint programming (CP) formulation that relies on representing the TSP-D
as a scheduling problem. We show experimentally that our CP approach out-
performs the best exact method from the literature, and is competitive with a
state-of-the art heuristic method in terms of solution quality.

2 Related Work

The hybrid truck and drone model was first studied by Murray et al. [11]. Agatz
et al. [1] propose an exponential-sized integer programming model. Ha et al. [6]
consider a variant where the objective is to minimize operational costs including
total transportation cost and the cost incurred by vehicles’ waiting time. Ham [7]
considers a different integrated model where after one delivery task, the drone
may return to the depot or fly to another customer to pick up a return order from
a customer, with the truck traveling separately along a cycle. Bouman et al. [2]
introduce a dynamic programming (DP) formulation of the TSP-D and solve it
with A∗ search. Yurek and Ozmutlu [17] propose a decomposition method; in the
first stage, the truck nodes and the truck routes are generated and determined
and the second stage solves a mixed-integer program to determine the optimal
drone schedule. Lastly, Poikonen et al. [13] develop a specialized branch-and-
bound procedure, which includes boosted lower bound heuristics to further speed
up the solving process. Their method assumes insertion of a customer node into
a sequence of nodes will not increase the optimal cost, which does not hold
when the drone has a finite flight range. Other heuristic algorithms have also
been proposed in the literature, see e.g. [1,3–5,11]. The best exact method for
the TSP-D is the DP approach in [2], which can optimally solve instances with
up to 15 locations in reasonable time.

The first theoretical study was performed by Wang et al. [16], who consider
the more general vehicle routing problem with multiple trucks and drones. They
study the maximum savings that can be obtained from using drones compared to
truck-only deliveries (i.e. TSP cost) and derive several tight theoretical bounds
under different truck and drone configurations. Poikonen et al. [14] extend [16]
to different cases by incorporating cost, limited battery life and different metrics
respectively.
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3 Problem Definition

We are given an undirected graph G = (V,E) with V = C ∪ {r} where r is
the depot and C is the set of customers to be served by the truck or the drone.
Let n = |C|. The travel time between a pair of nodes (i, j) is given by metric
w(i, j). ρ ≥ 0 is the ratio between the truck’s and the drone’s travel time per
unit distance. ρ is also called the speed differential. Every customer demands one
parcel, which can be delivered by either a truck or a drone. A drone can only
deliver one parcel at the time. We make the following assumptions about the
behavior of the truck and the drone:

(a) The truck can dispatch and pick up a drone only at the depot or a cus-
tomer location. The truck can continue serving customers after a drone is
dispatched and reconnect with the drone at a possibly different node.

(b) The vehicle (truck or drone) that first arrives at the reconnection node has
to wait for the other one, which we call synchronization.

(c) Upon returning to the truck, the time required to prepare the drone for
another launch is negligible.

Our objective is to minimize the completion time, i.e. from the time the truck
is dispatched from the depot with the drone to the time when the truck and the
drone returns to the depot.

Notation. In a feasible solution to TSP-D, denote Vd as the set of nodes visited
by the drone only. Denote Vt := V \Vd as the set of nodes including the depot
visited by the truck either with or without the drone atop the truck. By a
slight abuse of notation, we also call Vd the set of drone nodes and Vt the set
of truck nodes. For each i ∈ Vd, let p(i) be the dispatch node where the drone
is dispatched right before visiting i, q(i) be the pick up node where the drone
returns immediately after visiting i, Let Et be the set of edges in the truck tour.
For i, j ∈ Vt, let Tij denote the path induced by Et and w(Tij) =

∑
e∈Tij

we.
Consider a partial drone schedule where the drone is dispatched from the truck
at node j, visits node i and meets up with the truck at node k (we allow j = k).
We call this partial drone schedule a drone activity and use a shorthand notation
j → i → k to represent this activity.

4 Computational Complexity

Solving the TSP-D to proven optimality is highly challenging, as witnessed by
the performance of the best exact methods—they scale up to about 15 locations
only. While the TSP-D is known to be NP-hard due to a reduction from the TSP,
we aim to provide more insight in the computational difficulty by considering a
restricted version, which we call the drone routing subproblem (DRS). We next
prove strong NP-hardness of this restricted version.

We associate the drone activity j → i → k with a cost cijk defined as

cijk = max{0, w(j, i) + w(i, k) − ρw(Tjk)} (1)
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This is the marginal time a drone activity adds to the truck tour. Given Vt, Vd

and Et, we define a set of drone activities to be feasible if (1) each drone node
in Vd appears in exactly one drone activity and (2) any pair of activities do not
overlap in time (Fig. 1).

We now define the drone routing subproblem as follows:

Definition 1 (Drone routing subproblem). Given Vt, Vd, Et. The drone
routing subproblem is to find a feasible set of drone activities with minimum
total drone activity cost.

We show that DRS is strongly NP-hard by a reduction from 3-partition.

Definition 2 (3-Partition). Given positive integers m,B and 3m positive
integers x1, . . . , x3m satisfying

∑3m
q=1 xq = mB and B

4 < xq < B
2 for q =

1, . . . , 3m. Does there exist a partition of the set Y = {1, . . . , 3m} into m disjoint
subsets Y1, . . . , Ym such that

∑
q∈Yi

xq = B for i = 1, . . . ,m?

Theorem 1. The drone routing subproblem is strongly NP-hard.

Proof. We prove the theorem for ρ = 1. We give a pseudo-polynomial time
reduction from 3-partition. Given an instance of 3-partition as in Definition 2,
we construct a graph with m(B + 1) truck nodes and 4m drone nodes. The
truck route connects m paths Pi, each having B + 1 nodes and B unit edges.
Edges that connect two paths are assigned ε = 1

2m . Direct all edges in the cycle
counterclockwise. The tail of a directed path Pi is defined as the tail of the first
arc in Pi. We similarly define the head of Pi. The drone nodes are partitioned
into two disjoint sets A and B. A has 3m nodes v1, . . . , v3m. For i = 1, . . . , 3m,
vi is connected to each node on the cycle via an edge of weight xi

2 . B contains
m dummy nodes u1, . . . , um. For i = 1, . . . ,m, each ui is connected to the head
of Pi and tail of Pi+1 via two edges of weight ε

2 (we assume Pm+1 = P1). Other
edges connected to ui are assigned a unit weight so metric inequality holds.
Below we show Lemma 1, from which the theorem follows. ��

Lemma 1. There exists a 3-partition if and only if there exists a feasible solu-
tion to the above DRS instance of zero total cost.

Proof. ‘if’: connect each dummy node ui to the head of Pi and tail of Pi+1.
Without loss of generality assume the feasible partition is {x3k+1, x3k+2, x3k+3}
for k = 0, . . . ,m − 1. Then v3k+1, v3k+2, v3k+3 are connected to path Pk in the
following way: v3k+1 is connected to the first node and (x3k+1 + 1)-th node on
the path, v3k+2 is connected to (x3k+1 +1)-th and (x3k+1 +x3k+2 +1)-th nodes,
v3k+3 is connected to (x3k+1 + x3k+2 + 1)-th and xB+1-th nodes. It is easy to
check that the total cost is zero.

‘only if’: we claim each dummy node ui in any solution with zero total cost
must be connected to the head of Pi and tail of Pi+1: suppose not, note for any
t �= i, ui cannot be connected to the head of Pt and tail of Pt+1 since otherwise
such a drone activity has non-zero cost. As a result any drone activity which
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(1,1,5)

(1,2,4)

(2,2,3)

(1
,3
,3
)

Fig. 1. An example of the reduction, with m = 4, B = 7 and feasible partitions (1, 1, 5),
(1, 2, 4), (1, 3, 3), (2, 2, 3). Drone activities are shown as dashed lines and dummy nodes
are marked as solid. While each drone node has the same distance to any node on the
truck cycle, we put the drone nodes outside the cycle for visualization purposes.

visits ui covers at least a unit-length edge on the cycle. Therefore after visiting
ui, remaining edges on the cycle have at most mB − 1 + mε = mB − 1

2 < mB
length to use for visiting the remaining drone nodes. Notice each visit of a node
vl ∈ A must cover a path at least xl to make the drone activity cost zero and each
visit must cover non-overlapping path on the cycle, which is a contradiction to
the fact that the remaining edge length on the cycle is less than mB. Therefore
we’ve shown the claim. The result follows by reversing the steps in the ‘if’ part
to partition drone nodes into m sets where each set contains 3 nodes that are
visited by using edges in the same path. ��

5 Constraint Programming Formulation

An essential feature of a truck-drone schedule is the synchronization between
truck and drone operations. This poses a significant challenge to construct a
MIP model with a tight linear relaxation. Below we explain how to construct
a compact CP with O(n2) variables and constraints, using the constraint-based
scheduling formalism introduced in [8–10]. The CP solver IBM ILOG CP Opti-
mizer [10] provides an expressive modeling language based on the notion of inter-
val variables representing the execution of an activity. Its domain encodes the
presence status (Boolean) (true if the activity is executed). When a is present, it
is represented by variables s(a) for its start time, e(a) for its end time, and d(a)
for its duration, obeying the relationship d(a) = e(a)− s(a). On the other hand,
an absent interval variable is not considered by any constraint or expression on
interval variables in which it is involved. An activity can be forced to present
or declared ‘optional’, i.e. its presence status can be either true or false to be
decided by the solver. Below we assume all interval variables are optional unless
stated otherwise.

Recall the number of nodes including the depot is n + 1. Denote both node
0 and n as the depot (leaving and returning). For each node i define three
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1 minimize

2 endOf(tVisit[n])

3 subject to {
4 forall (i in 0...n) setPresent(visit[i])

5 setPresent(tVisit[0])

6 setPresent(tVisit[n+1])

7 first(tVisit, tVisit[0])

8 last(tVisit, tVisit[n])

9 no overlap(tVisit, w)

10 no overlap(dVisit)

11 forall(i in 0...n) {
12 alternative(visit[i], [tVisit[i], dVisit[i]])

13 alternative(dVisit before[i], [all (j in 0...n) tdVisit[i][j]])

14 alternative(dVisit after[i], [all (j in 0...n) dtVisit[i][j]])

15 span(dVisit[i], [dVisit before[i], dVisit after[i]])

16 end at start(dVisit before[i], dVisit after[i])

17 if then(presence of(dVisit[i]), presence of(dVisit before[i]) & presence of(dVisit after[i]))

18 forall(i, j in 0...n) {
19 if then(presence of(tdVisit[i][j]), presence of(tVisit[j]))

20 if then(presence of(dtVisit[i][j]), presence of(tVisit[j]))

21 start before start(tVisit[j], tdVisit[i][j])

22 start before end(tdVisit[i][j], tVisit[j])

23 end before end(dtVisit[i][j], tVisit[j])

Fig. 2. A compact constraint programming formulation for TSP-D. Note we can enforce
finite drone range by adding an upper bound on the duration of each dVisit[i].

interval variables: visit[i] (forced to be present), dVisit[i] and tVisit[i].
Each dVisit[i] represents the time period from the drone just leaving for
node i to the drone arriving at the first truck node after serving i. Note we
can enforce finite drone range by adding an upper bound on the duration of
each dVisit[i]. Furthermore, for each node i, we create two interval variables
dVisit before[i] and dVisit after[i] which represent splitting dVisit[i]
by the time point of the drone visiting i. For each pair (i, j), we define two inter-
val variables tdVisit[i][j] and dtVisit[i][j], where the former represents
the drone leaving from truck node j to drone node i and the latter represents the
drone leaving from drone node i to truck node j. Each tdVisit[i][j] is lower
bounded by the drone travel time from j to i and similarly for dtVisit[i][j].
As an example, an activity i → j → k is composed of tdVisit[i][j] and
dtVisit[i][k], which are constrained to be equivalent to dVisit before[i]
and dVisit after[i] respectively. The complete model is presented in pseu-
docode in Fig. 2.

Lines 7–8 require the truck tour to start and end at the depot. The next
constraint requires that for each pair (i, j), their truck visits have to be at least
wij apart if both of them are served by the truck. Similarly for line 10. The
remaining constraints enforce logical constraints between different sets of inter-
val variables. For example, alternative(interval, array) creates an alternative
constraint between interval variable interval and the set of interval variables in
array. If interval is present, then one and only one of the intervals in array will
be selected by the alternative constraint to be present and the start and end val-
ues of interval will be the same as the one of the selected intervals. Line 21–23
implements the synchronization constraint between the truck and the drone. We
refer the reader to the manual [8] for the definition and usage of each constraint.
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Table 1. Comparison of our constraint programming (CP) approach with (a) the exact
dynamic programming (DP) method of Bouman et al. [2] in terms of runtime (s), and
(b) the heuristic branch-and-bound method (BAB) of Poikonen et al. [13] in terms of
solution quality (average objective value).

Size 10 11 12 13 14 15 16 17 18

CP 6.79 5.71 16.66 15.66 50.83 120.59 216.46 375.49 564.22
DP 1.00 4.00 12.00 56.00 306.00 1568.00 9508.00 – –

a. Runtime comparison (s) of CP and DP (exact).

Size 10 20 30 40 50 60 70 80 90 100 200

CP 116.60 136.64 160.12 198.88 237.4 276.96 316.20 407.36 515.80 679.64 –
BAB 149.53 171.64 200.95 226.15 241.36 267.54 283.30 299.09 322.37 337.91 465.63

b. Solution value comparison of CP and BAB (heuristic).

6 Computational Experiments

We implemented and solved our CP model with CP Optimizer version 12.8.0,
using the Python interface DOcplex. Our experiments are run on a 2.2 GHz Intel
Core i7 quad-core machine with 16 GB RAM. We compared our approach to the
two best approaches from the literature: the exact dynamic programming (DP)
algorithm in [2], and the branch-and-bound algorithm from [13]. The implemen-
tation of the latter relies on the assumption that the drone has a finite range,
for which the method is not guaranteed to provide optimal solutions.

We first present the results on the exact comparison. Since benchmark
instances used in [2] are not publicly available, we follow their approach to
generate 10 uniform instances of each size. We use the same parameter ρ = 2
as speed differential. Table 1a reports the average runtime (in seconds) of our
approach (CP) and the reported runtime from [2] (DP). While DP can solve the
smaller problems faster than CP, our approach scales more gracefully.

Table 1b presents the comparison with the branch-and-bound method (BAB)
of [13] in terms of solution quality. For this experiment, we apply a time limit of
10 min for each instance. As a benchmark, we use the same dataset as [13] (25
instances of each size). We use the same parameter values for the speed differen-
tial ρ = 2 and drone range R = 20. The table reports the mean objective value
for each problem size. The results for BAB are the best solutions found among
all branch-and-bound heuristic variants. We note that the runtime of the BAB
approach is typically less than one minute. These results show that the time-
limited CP approach can produce better solutions for smaller instances (up to 50
locations) but that the dedicated heuristic branch-and-bound outperforms CP
on larger instances.

Acknowledgement. The first author would like to thank Thomas Bosman for helpful
discussions on the complexity proof.
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Abstract. We propose a relaxed decision diagram (DD) formulation
for obtaining lower bounds on uniform machine scheduling instances,
based on separators to separate jobs on different machines. Experiments
on the total tardiness for instances with tight due times show that for
obtaining nontrivial bounds, it is important to partition the DD nodes on
a layer based on their machine finishing time. When the number of jobs
is small, DDs provide stronger bounds in less time than a time-indexed
LP relaxation.

Keywords: Multi-machine scheduling · Uniform machines ·
Lower bounds · Decision diagrams

1 Introduction

We consider machine scheduling on uniform machines with release times and
sequence-dependent setup times. This problem models an environment where
machines have different speeds, time is incurred between jobs depending on the
pair of jobs and their machine assignment, and each job may only be scheduled
after a given time depending on the job. This is an abstract model of, for example,
scheduling a production factory (see [17, pp. 1–2]).

The aim is to find a schedule that minimizes a given objective function.
This problem is hard in many cases, for example it is NP-complete if there are
two machines with equal speed, setup times and release times are not present,
and the objective is the maximum completion time [15]. We propose a decision
diagram formulation for a uniform machine scheduling problem that provides
lower bounds on an objective for a given instance.

Decision diagrams (DDs) have proven useful as a tool in optimization (see,
e.g., [7]). A particular successful application of decision diagrams has been single-
machine scheduling (see, e.g., [10,12]) as well as multi-machine scheduling where
the machines are considered identical [9]. To the best of our knowledge, there
has so far been no extension to more general multi-machine scheduling problems
where the machines are not exchangeable.
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In this paper, we propose a DD formulation for uniform multi-machine
scheduling; that is, each machine has a speed with which it processes a job.
More precisely, we provide a formulation for a relaxed DD, which gives lower
bounds on the optimal objective for instances of this problem. Lower bounds
can be used to appreciate the quality of a feasible schedule, and may help in
search algorithms such as branch-and-bound.

We also propose a merge heuristic based on partitioning nodes on their
machine finishing time. An experiment for the total tardiness objective on
instances with tight due times shows that this is important for obtaining non-
trivial bounds. We also show that, at least when the number of jobs is small,
bounds given by DDs are stronger and computed faster than those given by the
linear programming relaxation of a time-indexed mixed integer program that [6]
is based on, solved by IBM ILOG CPLEX.

The remainder of this paper is structured as follows. In Sect. 2, we intro-
duce our problem formally and explain the basics of DDs. In Sect. 3, we briefly
review previous work in the literature on DDs for single-machine scheduling
by formulating a single-machine DD of our problem. In Sect. 4, we present our
DD formulation for the multi-machine problem, and in Sect. 5, we elaborate on
improving the bounds provided by our DD formulation. In Sect. 6, we present
computational results. Finally, in Sect. 7, we conclude and present directions for
future work.

2 Background

2.1 Problem Formulation

In a uniform machine scheduling problem, a number of machines is available that
can each process one job at a time. The set of m machines is M = {M1, . . . ,Mm}
and the set of n jobs is J = {j1, . . . , jn}. Each job j has a processing time pi,j
on machine i. We assume the ratio pi,j/pi′,j is constant over all jobs j for each
pair of machines i, i′; that is, each machine has a speed with which it processes
jobs.

Each job has a release time rj and can only start after that time. We also
allow a sequence-dependent setup time σM,j,j′ between each pair of jobs j, j′ and
for each machine M , which means job j′ can only start σM,j,j′ time after job j
has ended if both jobs are scheduled on M . The first job on a machine may have
a setup time as well; let σM,�,j denote such a setup time for job j on machine
M . Here, we let a “dummy job” � denote there is no job before j.

We assume the setup times satisfy the triangle inequality, that is, σM,j,j′ ≤
σM,j,j′′ + σM,j′′,j′ for all jobs j ∈ J ∪ {�}, j′, j′′ ∈ J and machines M ∈ M.
This is a reasonable assumption because a direct setup should not take more
time than the time it takes performing the setup indirectly. The setup times
need not be symmetric.

Release times look like setup times involving the dummy job, but are not
superfluous. Namely, the release times are not involved in the above triangle
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inequality. A slight generalization of this problem has been formulated (but not
in the context of lower bounds) in [16].

In a schedule, each job j ∈ J has a machine assignment m(j), start time
s(j) and completion (end) time e(j) = s(j) + pm(j),j . We seek a schedule that
minimizes an objective function z(e(j1), . . . , e(jn)). We assume that the objective
function is non-decreasing in each completion time, and that it can be written as
a sum

∑
j zj(e(j)) of functions, each depending on the completion time of only

one job. In this article, we let each job have a due time dj , and consider the total
tardiness

∑
j max{0, e(j) − dj} as the objective function. This is a measure of

the total delay of the jobs in a schedule.

2.2 Decision Diagrams

A decision diagram (DD) is a directed acyclic graph for which all edges go from
one layer to the next. (See [7] for an elaborate introduction to decision diagrams.)
The first and last layer consist of a single node, called the root and terminal,
respectively. One can model the search space of a minimization problem in n
variables as a DD of n + 1 layers: each layer (except the last) corresponds to
a variable in the sense that each outgoing edge of that layer corresponds to a
choice of that variable. By setting an appropriate cost to each edge, the smallest
root-terminal path represents the optimal solution of the problem. Such a DD
is called exact.

Exact DDs may be of exponential size. To ensure tractability, we consider
relaxed DDs with a bounded number of nodes. Such DDs may also represent
infeasible solutions, and each root-terminal path is only required to be a lower
bound on the objective value of the corresponding solution. These two properties
together imply that the shortest root-terminal path in a relaxed DD is a lower
bound on the optimal solution. To bound the number of nodes, we let each layer
contain at most w ≥ 1 nodes, where w is a fixed parameter.

To build an exact DD, one can keep track of what choices have been made by
means of a state S in each node. This state can be used to define the set F (S)
of outgoing edges (i.e., choices) of this node as well as the cost c(S, j) of each
such edge. The state of a node after following an edge for choice j is defined as
ϕ(S, j). This algorithm of building a DD is called top-down compilation.

To build a relaxed DD, one needs to additionally ensure that each layer con-
tains at most w nodes. This is done by merging nodes. The state of a merged
node is defined through an associative merge operator ⊕. A merged node rep-
resents multiple paths from the root but only has a single state. This state
should “underapproximate” these paths in some sense. Intuitively, the shortest
root-terminal path then has a length that is an underapproximation (i.e., lower
bound) of the optimum.

The merge operator needs to be valid, i.e., a DD resulting from applying it
must be relaxed. In [12], a theorem is presented to prove the validity of a merge
operator. We present it in the following formulation, like [9].
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Definition 1. A binary operator � on states is a state relaxation relation if it
adheres to the following properties:

– (R1) � is reflexive and transitive.
– (R2) If S′ � S, then F (S′) ⊇ F (S).
– (R3) If S′ � S, then for j ∈ F (S), c(S′, j) ≤ c(S, j).
– (R4) If S′ � S, then for j ∈ F (S), ϕ(S′, j) � ϕ(S, j).

Theorem 1 (Hooker [12]). Suppose a state relaxation relation � is given. If
S ⊕S′ � S, S′ for all states S, S′ for which ⊕ is defined, then ⊕ is a valid merge
operator.

This theorem as presented here is actually slightly stronger than [12] because
we only consider pairs for which S ⊕ S′ is defined. The same proof as in [12] is
applicable, however. The purpose of this addition becomes clear when we prove
our DD formulation in Sect. 4.

3 DDs for Single-Machine Scheduling

DDs have been used for single-machine scheduling before (see, e.g., [10,12]). In
this section, we review existing work by modelling the single-machine variant
of our problem as a DD. In the next section, we extend this model to uniform
machines.

A single-machine schedule can be considered as a permutation of the jobs.
A permutation can be transformed into a schedule by considering the jobs iter-
atively, scheduling each job as soon as possible. The set of schedules generated
this way includes an optimal schedule because we assume the objective function
is non-decreasing in each of the job completion times. It is thus reasonable to let
the DD represent permutations (see, e.g., [10,12]). We now explain the details of
this formulation, which we then extend to multiple machines in the next section.

In each node, we keep track of a set V of jobs we have certainly already
scheduled; that is, the jobs that appear on all paths from the root to the node.
These jobs are removed from the feasible set in the node, because all paths
through the edge for this job would contain that job twice, and so would not
represent a feasible solution. The root has V = ∅ and the transition for job j is
V = V ∪ {j}. (We use a bar to denote the state variable after a transition.) The
merge operator is the intersection: given two nodes v1, v2, the jobs that occur
on all paths from the root to the merged node are precisely the jobs that appear
on all paths from the root to v1 and to v2.

When we schedule a next job, we need (a relaxation of) the finishing time
of the machine, so that we know when the job can start. To this end, we keep
a number f in each node that represents this finishing time [12]. The root has
f = 0; the transition will be discussed below. The merge operator is the mini-
mum. Intuitively, by underestimating the finishing time of the machine, we also
underestimate the end time of jobs and hence their costs, thereby obtaining a
valid relaxation on the objective.
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To incorporate setup times, we use a set L of jobs that may have been
scheduled last (see [7, p. 143]1). If we make a transition for job j, we need to
take into account the setup time between j and the previous job (or the dummy
job if j is the first job). A valid relaxation (underestimate) of this setup time is
minj′∈L σj′,j . Hence, we could define the transition for f as f +minj′∈L σj′,j+pj .
Rather, to take into account the release time, we define

f = max{rj , f + min
j′∈L

σj′,j} + pj .

Note that in an exact DD, L is a singleton set, and we simply take the setup
time between that job and j. The root has L = {�} and the transition for job j
is L = {j}. The merge operator is the union.

4 DD Formulation for Uniform Machines

In this section, we propose a DD formulation for uniform machines, based on
the single-machine DD formulation discussed in the previous section.

We represent a schedule by a list of n jobs and m − 1 separators, inspired
by [11]. The schedule represented by such a list of n + m − 1 elements is as
follows: the i’th machine has the jobs between the (i − 1)’th and i’th separator,
in the order of the list. (We assume there is an implicit separator before and
after the list.) Between two separators, we thus consider a single machine. We
let ‡ denote a separator.

See Fig. 1 for an example with n = 5 jobs, m = 2 machines of equal speed,
no release and setup times, and processing times pji = i.

j5 j2 ‡ j4 j3 j1
M1: j5 j2

M2: j4 j3 j1

Fig. 1. Example of a list representation (left) of a schedule (right)

Our DD formulation is based on this list representation and has n+m layers,
where the outgoing edges of the i’th layer, 1 ≤ i ≤ n + m − 1, correspond
to making a choice for the i’th item in the list. Between two separators, the
formulation is essentially the single-machine DD formulation described in the
previous section. We keep track of the current machine i in each node, which is
considered as a parameter for the single-machine formulation (for example, so
that we can use pi,j as the processing time for job j on this machine). Also, we
do not merge nodes with different values of i.

Figure 2 contains a sketch of a possible DD of our formulation for n = 3 jobs
and m = 2 machines. Each of the two columns of nodes corresponds to a machine.
1 We use a slightly simpler definition, where L ⊆ J .
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The four edges between the columns correspond to choosing a separator, whereas
the other edges correspond to choosing a job. The DD has n+m = 5 layers, and
the number of separators in any root-terminal path is m − 1 = 1.

‡

‡

‡

‡

Fig. 2. Example decision diagram with three jobs and two machines. The separator
edges are labeled as such.

We now consider our formulation formally. The state in a node is a tuple
S = (i, V, L, f) where V,L are sets and i, f are numbers. The root has state
(1, ∅, {�}, 0). Recall that i is the current machine, V is the set of jobs that are
certainly already scheduled, L is the set of jobs that may have been scheduled
last, and f is a lower bound on the finishing time of the machine.

To define the feasible set F (S), we first define X = J − V . Then, we define
F (S) to be X, additionally with a separator if we are not on the last machine:

F (S) =

{
X ∪ {‡} if i < m

X otherwise.

When making a transition from a node, we define the new state S =
(i, V , L, f) as follows. If we choose a job j, we use definitions based on single-
machine scheduling:

i = i, V = V ∪ {j}, L = {j}, f = max{rj , f + min
j′∈L

σi,j′,j} + pi,j

If we instead choose a separator, we let:

i = i + 1, V = V, L = {�}, f = 0
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We pass V along as we still should not schedule these jobs on the new
machine. Also, we reset f to 0 because the new machine does not contain any
jobs yet.

The cost of an edge corresponding to job j is

c(S, j) = zj(max{rj , f + min
j′∈L

σi,j′,j} + pi,j),

as the operand of zj is the time job j finishes according to the state information.
For a separator, we set c(S, ‡) = 0. In an exact DD (built top-down without
merging), the cost of any root-terminal path is therefore equal to the objective
value of the corresponding schedule.

We proceed with proving the validity of the merge operator using Theorem 1.
Parts of the ideas below are similar to the single-machine case and can (to some
extent) be found in [12].

We define a state relaxation relation � on states S, S′ for which i = i′ as
follows: S′ � S means V ′ ⊆ V ∧ L′ ⊇ L ∧ f ′ ≤ f .

Theorem 2. This relation satisfies the conditions of being a state relaxation
relation (Definition 1).

Proof. We show each of (R1)–(R4). Let S, S′ be states such that S′ � S. In
particular, assume i = i′.

For (R1), reflexivity and transitivity follow from that of ⊆,⊇,≤.
For (R2), we need to show F (S′) ⊇ F (S). Since i = i′, it suffices to show

X ′ ⊇ X, where X ′ denotes the set used in the definition of F (S′). Since V ′ ⊆ V ,
indeed J − V ′ ⊇ J − V .

For (R3), let j be a job or separator in F (S). We need to show that c(S′, j) ≤
c(S, j). If j is a separator, both costs are zero, so the inequality holds. So assume
j is a job.

Since the zj are non-decreasing, we need to show that

max{rj , f
′ + min

j′∈L′
σj′,j} + pi′,j ≤ max{rj , f + min

j′∈L
σj′,j} + pi,j .

Since i = i′, also pi,j = pi′,j and hence we only need to show

max{rj , f
′ + min

j′∈L′
σj′,j} ≤ max{rj , f + min

j′∈L
σj′,j}.

In turn, it is sufficient to show

f ′ + min
j′∈L′

σj′,j ≤ f + min
j′∈L

σj′,j .

First, we have f ′ ≤ f . Also, L′ ⊇ L, so the minimum is taken over a superset.
Hence the inequality holds.

For (R4), define S = ϕ(S, j) and S′ = ϕ(S′, j). We have to prove S′ � S,
which we do by showing each of the relations that � entails.

First, consider the case where we select a job j in F (S).
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– i′ = i′ = i = i so it is meaningful to prove the claim.
– V ′ = V ′ ∪ {j} ⊆ V ∪ {j} = V because V ′ ⊆ V .
– L′ = {j} = L, so also L′ ⊇ L.
– f ′ ≤ f can be shown using the same calculation as for the costs (R3).

Next, consider the case where we select a separator in F (S).

– i′ = i′ + 1 = i + 1 = i so it is meaningful to prove the claim.
– V ′ = V ′ and V = V so by assumption, V ′ ⊆ V .
– L′ = {�} = L so also L′ ⊇ L.
– f ′ = 0 = f so also f ′ ≤ f .

�
We define the merge operator ⊕ for states S, S′ as for the single-machine

case, but we only define it for i = i′. In that case,

S ⊕ S′ = (i, V ∩ V ′, L ∪ L′,min{f, f ′}).

Using the state relaxation relation �, we can utilize Theorem 1 to show that
this merge operator is valid.

Theorem 3. The merge operator ⊕ is valid.

Proof. Consider states S, S′ for which S ⊕ S′ is defined, that is, i = i′. We need
to show S ⊕ S′ � S, S′. The merged state also has this value for i, so it is
meaningful to prove the two � claims.

We indeed have V ∩ V ′ ⊆ V, V ′ and L ∪ L′ ⊇ L,L′, as well as min{f, f ′} ≤
f, f ′. �

5 Merging Heuristics

In the previous section, we have proven the correctness of the proposed DD for-
mulation for uniform machines. The performance, i.e., the quality of the bounds,
depends on the choice of nodes to merge. Recall that, for correctness, we only
merge nodes with the same value of i, i.e., corresponding to the same machine.
Among such nodes, however, we have the freedom to choose what nodes to merge,
impacting the performance. In this section, we first explain two existing merging
heuristics (based on f or the partial objective) and their weakness in our model.
We then explain the new merging heuristic that we use.

Ideally, one wants to merge nodes which are going to have identical subtrees,
since this way no information is lost, and so would give the best bound (i.e., the
optimal objective). However, identifying such nodes is NP-hard [20].

Instead, at least for single-machine scheduling, it seems reasonable to merge
nodes which have a large f or a large partial objective [12]. Merging nodes with
high partial objective likely does not affect the shortest path (i.e., the bound).
Similarly, nodes with a relatively high f may correspond to the machine having
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(1, 20, 10)

(2, 0, 10)

‡
(2, 10, 0)

(2, 20, 10)

j1

(2, 10, 0)

(2, 20, 10)

j2

Fig. 3. Part of a DD with two consecutive layers and three nodes in each layer. The
state variables depicted are (i, f, z) where z is the partial objective.

much idle time, and so the optimal solution likely does not go through such a
node.

In our model, however, one may expect these heuristics to work poorly. Recall
that a transition corresponding to a separator sets f = 0 in the new node. Thus,
merging based on f may give priority to such nodes, which does not necessarily
make sense.

For example, a path consisting of separators on each of the first few layers
would go through several nodes with f = 0, which would not get merged. How-
ever, selecting multiple separators after each other, thereby leaving machines
empty, likely does not result in a good schedule.

Merging based on the partial objective alone may also not be the best choice.
Namely, we might merge nodes for which f = 0 and nodes for which f is large.
In the merged node, the f value is set to the minimum of these f values, which
can result in a weak relaxation. We illustrate this with an example.

In Fig. 3, a layer with three nodes is depicted, and a transition from each of
these nodes, resulting in three nodes in the next layer. Suppose we need to decide
which nodes of this latter layer to merge. If we consider the partial objective
values (z), then, because all these three values are equal (and all states have the
same value for i), we might decide to merge the first two nodes. The merged
node then has (i, f, z) = (2, 0, 10). In particular, the f value is 0 = min{0, 20},
so that the (relaxed) cost of scheduling a job in this state is likely small. This
may result in a weak bound.

Therefore, it seems reasonable to merge nodes with similar values of f . We
do this by partitioning the nodes on a given layer such that we only merge nodes
within the same partition. In the example, the first node (with f = 0) should be
in a different partition than the other two (with f = 20). In that case, we would
merge the last two nodes, resulting in state (2, 20, 10), which has a stronger
relaxation of f : it is 20 = min{20, 20}. Within each partition, we merge the
nodes with the highest partial objective.

There are two factors influencing the partitioning: the number of partitions,
and the range of f values of each partition. We let each partition have a range
of equal size; hence, the latter factor reduces to finding a approximation of the
type of values of f that may occur in the DD.
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We use the following heuristic value for this parameter: construct a schedule
and select the largest start time over all jobs. This value is a heuristic estimate
of what order of values of f may occur in the DD. For example, if the time scale
is multiplied by a factor, this value should also increase with that factor.

More precisely, we use an adaptation of the algorithm by [18], which is a
heuristic to find a good schedule by transforming permutations of jobs into
schedules. This heuristic is designed for a different scheduling problem; we use
the idea by [19] by iteratively selecting the machine for which a job completes
(rather than starts) earliest. We set N = 1 in the heuristic because we do not
need the algorithm to spend much time on finding a good solution. Nodes with an
f value above the approximation are put in the last partition; the last partition
therefore has a larger range than the others.

6 Experiments

In this section, we investigate the effect of partitioning on the quality of the
bound. We also compare the bound given by the DDs to that by a linear pro-
gramming (LP) relaxation of a mixed integer program (MIP). We use the total
tardiness

∑
j max{0, e(j) − dj} as the objective function.

When we compute a gap (that is, the difference between an upper and a lower
bound, divided by the upper bound), we use the upper bound of a constraint
program (CP, see Fig. 4) found by IBM ILOG CP Optimizer 12.8 after 5 s with
default settings. The CP is based on one of the samples provided with this solver.
We supply the solution we use for partitioning (the adaptation of [18]) as a warm
start to CP Optimizer. Our DD implementation was written in C# (x64, .NET
4.7) and the experiments were run on an Intel Xeon E5-1620 v2 (3.70 GHz,
8 threads), 8 GB RAM, Windows 7. We parallelized our DD implementation,
where each thread builds and merges part of each layer, like [9]. We thus also
partition the nodes based on the thread they are created in.

Minimize
∑

j

max{0,EndOf(Ij) − dj}

s.t. Ij,M ∈ Intervals([max{rj , σM,�,j}, ∞), pj,M ) (j ∈ J , M ∈ M)

Ij ∈ {Ij,M | M ∈ M} (j ∈ J )

NoOverlap({Ij,M | j ∈ J }, σM,·,·) (M ∈ M)

Fig. 4. Constraint program

6.1 Instances

We first describe the instances we created. We construct processing times by first
drawing an integer uniformly between 5 and 10 inclusive, and then multiplying
this integer with m − 1. We set the speed of machine M , where 1 ≤ M ≤ m, to
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1/(1 + q(M − 1)/(m − 1)), so that the speeds are between 1/(1 + q) and 1. (A
speed of 1/2 means all jobs are processed twice as slowly compared to a speed
of 1.) The parameter q controls the difference in processing speeds between the
machines, and the factor m − 1 in the processing times ensures that all pi,j are
integer.

Setup times are initially drawn uniformly between 0 and 10s where s is a
parameter. The setup times are then modified by the Floyd-Warshall algorithm
to make them satisfy the triangle inequality, as proposed in [14, p. 113]. We use
the factor s to increase setup times if the Floyd-Warshall algorithm makes them
small.

Release times are drawn uniformly between 0 and 10s inclusive for half
of the jobs; for the other half, we set them to 0 (so as to make use of the
dummy job setup times). For due times, we use the TF/RDD model [3,4],
adapted to multiple machines much like [9]. Given TF,RDD ∈ [0..1], due
times are drawn uniformly integer between �Rj + (1 − TF − RDD/2)S� and
�Rj + (1 − TF + RDD/2)S� inclusive (with negative values removed). Here, we
let Rj = max{rj ,

∑
M σM,�,j/m} be an approximation of when j can start, and

S =
∑

j pj/
∑

M speedM is the total processing time corrected for the speeds of
the machines. For a machine M , speedM is the speed of machine M as described
above.

We set TF = 0.8,RDD = 0.2. The latter two parameters were chosen so
that the partial objectives are likely often nonzero, thereby likely improving the
merge heuristic (like [9]).

6.2 Partitioning

We first consider the performance of the partitioning based on f . Figure 5 shows
the average gap of 25 instances with n = 60 jobs and m = 5 machines. We set
q = 3, and s = 7 so that the average setup time is about 3.5. Further, we set
the width to 8 threads · 5 machines · 500 = 20, 000. If the width is not divisible
by the number of partitions, we divided the width as evenly as possible, giving
priority to partitions with a smaller value of f .

We see that partitioning is important: at least 8 partitions are necessary to
obtain a nonzero bound. Increasing the number of partitions after that gives
better bounds. In particular, not using partitions (i.e., using one partition) gives
a zero bound. However, the gap is not monotonically decreasing in the number
of partitions.

6.3 Comparison to LPs

We also compare our formulation to the LP relaxation of a time-indexed MIP,
solved by IBM ILOG CPLEX 12.8 with default settings. The MIP is based on
the one given in [6]. It has a binary variable for each tuple of job, machine and
time step, indicating whether a job starts on a machine at a time step. See Fig. 6.
We modified the MIP to incorporate setup times; the release times constraint is
adapted from [2].
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Fig. 5. Average gap with standard deviation of 25 instances as a function of the number
of partitions, for n = 60,m = 5, q = 3, s = 7

The authors of [6] propose two improvements to the plain LP relaxation of
the MIP: preprocessing and cutting planes. However, both require multiple LPs
to be solved, whereas our DD model is a single relaxation. We therefore did not
use these additions.

Instead, to improve the LP relaxation, we added constraint (∗), which is used
in the identical machine MIP in [2]. Conceptually, this constraint states that at
most m jobs can be processed at any time. While this constraint follows from
the others in the MIP used here, we found that it improves the optimum of the
LP.

The horizon H in the LP needs to be sufficiently large: if it is too small, the
model may be infeasible because not all jobs can be scheduled within the time
frame {0, . . . , H −1}. However, choosing H too large may yield bad performance
because of the large number of variables and constraints. We are not aware of a
method to compute the best value of H for our problem.

However, there is a lower bound on H of 1, and an upper bound is induced by
the schedule where all jobs are scheduled after each other on the slowest machine,
starting at the latest release time (or dummy setup time). We increase horizons
between these bounds (divided in 100 steps); when the LP for a horizon becomes
feasible, its solution might be a lower bound for the MIP (i.e., the scheduling
problem), but is not if the horizon is too small. Nevertheless, a larger horizon is
guaranteed to result in a smaller LP optimum because the feasible set for such a
horizon is a superset of that for a smaller horizon. Thus, any horizon for which
the LP is feasible gives an upper bound on the lower bound that LP is able to
give for the scheduling problem. Equivalently, it gives a lower bound on the gap.
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Minimize
∑

j

∑

M

∑

t

xj,M,t max{0, t + pj,M − dj}

s.t.
∑

M

∑

t

xj,M,t (1= ∀j)

xj,M,t (0= ∀j, ∀M, ∀t : t < max{rj , σM,�,j})
xj,M,t +

∑

t≤s<min{t+pj,M+σM,j,j′ ,H}
xj′,M,s ≤ 1 (∀j, j′ : j �= j′, ∀M, ∀t)

∑

j

∑

M

∑

max{0,t−pj,M+1}≤s≤t

xj,M,s ≤ m (∀t) (∗)

xj,M,t ≥ 0 (∀j, ∀M, ∀t)

Fig. 6. LP relaxation of the time-indexed MIP. The notation t denotes a time step
0 ≤ t < H.

We report the gap and solve time of the LP with the first (i.e., smallest) horizon
we tried that makes the LP feasible.

We tested instances with n ∈ {10, 15, 20},m ∈ {2, 5}, q ∈ {3, 6}. The values
of s for the various n are respectively 2, 2.5, 3, so that the average setup time is
about 4.4. For each parameter combination we generated 10 instances. We set a
width of 8 threads ·m machines ·500 and fix the number of partitions to 100. We
used relatively small values of n because the size of the model becomes too large
otherwise. We measured time using the System.Diagnostics.Stopwatch class
so that the LPs and DDs are measured in the same way; we did not count the
time of building the LP models. We used the solver with and without presolving,
reporting the best result. For the DDs, we also included the time of determin-
ing the value on which we base the partitioning, i.e., the time of running the
adaptation of [18].

The average gap with standard deviation, with and without constraint (∗),
is shown in Table 1. We see that the gap of the DDs is smaller than that of the
LP. In particular, constraint (∗) improves the bound but requires quite some
more time. We also provide the bound given by CP Optimizer that we used for
obtaining the upper bound (i.e., after 5 s); these gaps are typically between LP
without and with constraint (∗). It seems that the bound provided by the DDs
becomes weaker as the instance grows, a phenomenon also mentioned by [12]
(although they consider a harder problem).

We additionally compared to LP relaxations of non-time-indexed MIPs,
based instead on binary variables denoting the relative order of pairs of jobs on
a machine. Specifically, we used the LP relaxation of MIPs adapted from [13,16]
and [1]. While these were solved very quickly, the bounds were always worse
than that of the time-indexed LP.
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Table 1. Average gap and time (ms) with standard deviation

(n,m, q) DD Time-indexed LP without (∗) Time-indexed LP with (∗) CP

Gap Time Gap Time Gap Time Gap

(10, 2, 3) 0.148 (0.079) 8 (1) 0.869 (0.027) 11 (4) 0.710 (0.041) 42 (9) 0.540 (0.376)

(10, 2, 6) 0.142 (0.050) 5 (0) 0.875 (0.037) 18 (3) 0.746 (0.036) 44 (13) 0.566 (0.311)

(10, 5, 3) 0.228 (0.053) 6 (0) 0.791 (0.035) 32 (7) 0.622 (0.036) 137 (46) 0.811 (0.031)

(10, 5, 6) 0.275 (0.054) 4 (0) 0.864 (0.021) 31 (3) 0.751 (0.033) 145 (20) 0.851 (0.017)

(15, 2, 3) 0.309 (0.070) 30 (3) 0.973 (0.014) 47 (14) 0.753 (0.038) 181 (70) 0.959 (0.008)

(15, 2, 6) 0.319 (0.063) 19 (1) 0.975 (0.011) 63 (16) 0.825 (0.030) 189 (67) 0.938 (0.005)

(15, 5, 3) 0.386 (0.072) 22 (10) 0.927 (0.014) 121 (47) 0.704 (0.022) 1125 (284) 0.935 (0.013)

(15, 5, 6) 0.366 (0.057) 35 (3) 0.957 (0.014) 140 (18) 0.848 (0.018) 790 (140) 0.946 (0.010)

(20, 2, 3) 0.451 (0.060) 67 (7) 0.990 (0.003) 115 (18) 0.742 (0.045) 701 (142) 0.978 (0.004)

(20, 2, 6) 0.458 (0.064) 39 (2) 0.994 (0.006) 146 (40) 0.818 (0.042) 982 (115) 0.966 (0.005)

(20, 5, 3) 0.369 (0.058) 138 (10) 0.971 (0.013) 362 (100) 0.739 (0.025) 7998 (1911) 0.969 (0.008)

(20, 5, 6) 0.393 (0.045) 109 (23) 0.989 (0.005) 423 (53) 0.882 (0.020) 3198 (935) 0.977 (0.004)

7 Conclusion, Discussion, and Future Work

We proposed a DD formulation for finding lower bounds on a uniform machine
scheduling problem, based on separators to identify the machine assignment of
jobs. Additionally, we proposed a merge heuristic based on partitioning nodes on
a layer, and showed this is important for obtaining a nontrivial bound. Further,
we compared to the LP relaxation of a time-indexed MIP, and found the DDs
give stronger bounds in less time. We thus conclude that using DDs to obtain
lower bounds can contribute to shorter solve times of uniform machine scheduling
problems.

The DD formulation proposed in this paper schedules on an “assignment
first” basis: we first decide which jobs to schedule on machine M1, then which
jobs to schedule on M2, etc. In contrast, [9] schedules on a “time first” basis (and
the machine assignment is implicit). The latter approach may have advantages,
such as being able to model precedence constraints. In our formulation, a prece-
dence constraint i → j can be enforced if i is scheduled on an earlier machine
than j, but we are unsure how to model precedence constraints in general.

In order to use an efficient “time first” DD formulation, one ideally wants
a machine dispatching rule, such as the SPTF rule as used in [9]. An interest-
ing direction for future research is devising such a dispatching rule for uniform
machines (i.e., one that is guaranteed to generate an optimal schedule for some
permutation of jobs), if one exists.

Another possibility is applying the proposed DD formulation to unrelated
machines, where the processing times pi,j can depend on i and j in an arbitrary
way, and need not necessarily be factored by means of a machine speed. Our
DD formulation is directly applicable to this setting; however, the performance
is yet to be investigated.

In further performance analysis, it may be interesting to consider alterna-
tives to the LP-relaxation benchmark, such as solving a MIP rather than its LP
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(e.g., using branch-and-bound). We expect that this will give better bounds, but
will require significantly more computation time than the LP relaxations.

Given that DDs have proven useful in branch-and-bound scheme [8], incor-
porating our DD formulation in such a search procedure may also improve their
performance.

Finally, our DD model may also be applicable to vehicle routing problems,
which show similarities to machine scheduling problems [5].
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Abstract. Multi-Valued Decision Diagrams (MDDs), and more gen-
erally Multi-Valued Variable Diagrams (MVDs), are instrumental in
modeling constrained combinatorial problems. This has led to a num-
ber of algorithms for filtering constraints such as mddc, MDD4R and
CD (Compact-Diagram). Many compressed forms of tables have also
been proposed over the years, leading to a ‘smart’ hybridization between
extensional an intentional representations, which was obtained by embed-
ding simple arithmetic constraints in tuples (of tables). Interestingly,
the state-of-the-art algorithm CT (Compact-Table) has been recently
extended to deal efficiently with bs-tables, i.e., ‘basic smart’ tables con-
taining expressions of the form ‘∗’, ‘ �= v’, ‘≤ v’, ‘≥ v’ and ‘∈ S’. In
this paper, we introduce the concept of bs-MVDs by enabling arcs of
diagrams to be labelled with similar expressions. We show how such dia-
grams can be naturally derived from ordinary tables and MDDs, and we
extend the state-of-the-art algorithm CD in order to handle bs-MVDs
(and bs-MDDs).

Keywords: Multi-Valued Decision Diagrams · Filtering ·
Compression · Compact-Table · Bitset

1 Introduction

Efficiently representing constraints under extensional forms such as tables and
decision diagrams has been a hot research topic for the last decade; concerning
MDDs (Multi-Valued Decision Diagrams), see e.g., [1,2,4,5,13–15,28]. Actually,
two main lines of improvements have been followed when handling extensional
forms of constraints. Firstly, high effective filtering techniques have been pro-
posed over the years, such as those based on tabular reduction [18,19] and bit-
wise operations [11,16,32]. Secondly, compact representation techniques have
been intensively studied, mainly by allowing simple constraints to be put in
tables as in [17,20,30,31] or by directly using decision diagrams such as MDDs
[10,22,23].

CD (Compact-Diagram), previously called Compact-MDD, has been recently
introduced [29] for Multi-Valued Variable Diagrams (MVDs), which are diagrams
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generalizing MDDs by authorizing non-determinism. By combining several ideas
and techniques, in particular, those proposed in [29,30], we show how a bitwise
filtering algorithm can be conceived for constraints represented by bs-MVDS,
which are ‘basic smart’ MVDs accepting arcs to be labelled with unary con-
straints. These bs-MVDs can be seen as a very promising modeling tool.

As a direct application of bs-MVDs, we find the possible compact repre-
sentation of regular constraints [3,6,25], imposing that a specified sequence of
variables must be accepted by a given automaton (derived from a regular expres-
sion). As a user, it is quite natural to express an automaton using expressions on
transitions, as illustrated in Fig. 1a for the regular language [1−9].∗[∧5].∗[05]. As
described in [24], a layered deterministic automaton graph basically defines an
MDD constraint; a layered automaton graph obtained from a non-deterministic
automaton then naturally leads to an MVD constraint. Figure 1b displays the
bs-MVD that corresponds to the unfolding of the automaton over a sequence of
5 variables.

qastart qb qc qd
≥ 1

∗

�= 5

∗

∈ {0, 5}

(a) Automaton

ROOT qb1

qc2

qb2

qc3

qb3

qc4 SINK

x1 x2 x3 x4 x5

≥ 1

�= 5

∗

∗

�= 5

∗

∗

�= 5

∈ {0, 5}

(b) MVD

Fig. 1. The regex [1− 9].∗[∧5].∗[05] describes a number divisible by 5 with at least one
of its inner digits being different from 5.

The main contributions of this paper are:

– Different strategies to create bs-MVD constraints from table constraints, with
improved compression compared to classical MDDs.

– An efficient bitwise filtering algorithm that enforces the property known as
Generalized Arc Consistency on bs-MVD constraints.

– An experimentation that demonstrates the practical interest of our approach.
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2 Technical Background

A constraint network is composed of a set of variables and a set of constraints.
Each variable x has an associated (ordered) domain dom(x) containing the val-
ues that can be assigned to it; the current domain is included in the initial
domain dom0(x). We respectively denote by min(x) and max(x) the smallest
and greatest values in dom(x). Each constraint c involves an ordered set of vari-
ables, called the scope of c and denoted by scp(c), and is semantically defined
by a relation rel(c) containing the tuples allowed for the variables involved in
c. The arity of a constraint c is |scp(c)|. When the domain of a variable x is
(becomes) singleton, we say that x is bound.

Given a sequence 〈x1, . . . , xr〉 of r variables, an r-tuple τ on this sequence
of variables is a sequence of r values 〈a1, . . . , ar〉, where the individual value
ai is also denoted by τ [xi]. An r-tuple τ is valid on an r-ary constraint c iff
∀x ∈ scp(c), τ [x] ∈ dom(x), and τ is allowed by c iff τ ∈ rel(c). A support of
c is a tuple which is both valid on c and allowed by c. A literal is a pair (x, a)
where x is a variable and a a value. A literal (x, a) is Generalized Arc-Consistent
(GAC) on c iff there is a support τ on c such that τ [x] = a. A constraint c is
GAC iff any literal (x, a) such that x ∈ scp(c) and a ∈ dom(x) is GAC on c.

A directed graph is composed of a set of nodes and a set of arcs. Each arc
has an orientation from one node, the tail of the arc, to another node, the head
of the arc. For a given node ν, the set of arcs with ν as tail (resp., head) is called
the set of outgoing (resp., incoming) arcs of ν. A labelled directed graph is a
directed graph such that a label l(ω) is associated with each arc ω. A node is
in-d (in-deterministic) iff it does not have two incoming arcs with the same label,
in-nd otherwise. A node is out-d (out-deterministic) iff no two outgoing arcs have
the same label, out-nd otherwise. A directed acyclic graph (DAG) is a directed
graph with no directed cycles. An MVD (Multi-valued Variable Diagram) [1] for
a constraint c (called an MVD constraint) is a layered DAG, with one special
root node at level 0, denoted by ROOT, r layers of arcs, one layer L(xi) for each
variable xi of the scope 〈x1, . . . , xr〉 of c, and one special sink node at level r,
denoted by SINK. The arcs in L(xi) going from level i − 1 to level i are on the
variable xi: any such arc is labelled by a value in dom0(xi). A valid path in such
an MVD is a path p from the root to the sink such that for each variable xi in
scp(c) the label of the arc going in p from level i − 1 to i is a value in dom(xi).
The set of supports of an MVD constraint c corresponds to the valid paths in
the MVD for c. One classical type of MVD is the Multi-valued Decision Diagram
(MDD) [8], which guarantees that each node is out-d (each node at level i has
at most |dom0(xi)| outgoing arcs, labelled with different values), but possibly
in-nd. Another type of MVD is the semi-MDD (sMDD) [29] which guarantees
that each node at a level < � r

2� is out-d and each node at a level > � r
2� + 1

is in-d.
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Algorithm 1. Class ConstraintCD
1 Method enforceGAC()
2 updateGraph()
3 filterDomains()

4 Method updateGraph()
5 foreach variable x ∈ scp do
6 mask[x] ← 064

7 updateMasks()
8 propagateDown(x1, false)
9 propagateUp(xr, false)

10 Method updateMasks()
11 foreach variable x ∈ {x ∈ scp : |Δx| > 0} do
12 if |Δx| < |dom(x)| then // Incremental update

13 foreach value a ∈ Δx do
14 mask[x] ← mask[x] | supports[x, a] // bitwise OR

15 else // Reset-based update

16 foreach value a ∈ dom(x) do
17 mask[x] ← mask[x] | supports[x, a] // bitwise OR

18 mask[x] ← ∼ mask[x] // bitwise NOT

19 Method propagateDown(xi, localChange)
20 if |Δxi | > 0 or localChange then
21 currArcs[xi] ← currArcs[xi] & ∼ mask[xi]
22 if currArcs[xi] = 0 then
23 throw Backtrack

24 if xi �= xr then
25 localChange ← false

26 foreach node ν ∈ {ν : currArcs[xi+1] & arcsT[ν, xi+1] �= 064} do
27 if currArcs[xi] & arcsH[xi, ν] = 064 then
28 mask[xi+1] ← mask[xi+1] | arcsT[ν, xi+1]
29 localChange ← true

30 propagateDown(xi+1, localChange)

31 else if xi �= xr then
32 propagateDown(xi+1, false)

33 Method propagateUp(xi, localChange)
/* Similar to propagateDown with x1 instead of xr, xi−1 instead of xi+1,

inverted use of arcsT and arcsH. */

34 Method filterDomains()
35 foreach variable x ∈ {x ∈ scp : |dom(x)| > 1} do
36 foreach value a ∈ dom(x) do
37 if currArcs[x] & supports[x, a] = 064 then // bitwise AND

38 dom(x) ← dom(x) \ {a}
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CD. Compact-Diagram, or CD (previously called Compact-MDD [29]), is a fil-
tering algorithm (propagator) that uses bitwise operations for MVD constraints.
It is based on some ideas behind both Compact-Table [11], a propagator for table
constraints that uses bitwise operations as well, and MDD4R [23], a propagator
for MDD constraints.

The idea is to keep track of the arcs that remain valid during the filtering
process; namely by introducing (reversible sparse) bitsets, one per layer of the
MVD (and so, per variable of the constraint). At layer i, one bit, in the bitset
currArcs[xi], is associated with each arc: when the bit is set to 1, it means that
the arc is considered as valid. This way, the current MVD, which can be seen as
a subgraph of the initial MVD, can be identified, and used to remove the values
without any supports left.

To ease computations, at each level there are three types of precomputed
bitsets: these bitsets are never modified. First, supports[x, a] indicates for each
arc on the variable x whether or not the value a is initially supported by this arc
(bit is set to 1 iff a is supported). Second, arcsT[ν, x] and arcsH[x, ν′] indicate
for each arc on x whether ν and ν′ are respectively the tail and the head of this
arc. Finally, a temporary bitset mask[xi] is associated with each variable xi to
store the results of intermediate computations.

The pseudo-code for enforcing GAC on an MVD constraint is given by Algo-
rithm 1, which is, for simplicity, a simplified version of the one given in [29]. In
method updateGraph(), after initializing all masks, all arcs that can be trivially
removed are handled by calling updateMasks(). This method assumes access to
the set of values Δx removed from dom(x) since the last call to enforceGAC()1.
There are two ways of updating the masks (before updating currArcs from these
masks, later): either incrementally or from scratch after resetting. In case of an
incremental update, we perform the union of the arcs to be removed, whereas
in case of a reset-based update, we perform the union of the arcs to be kept,
followed by a reverse operation. Next, we need to determine which arcs can be
subsequently removed: this is achieved by calling the methods propagateDown()
and propagateUp(), which, similarly to MDD4R, perform two passes on the dia-
gram. During the downward (resp., upward) pass, each level is examined from
the root (resp., sink) to the sink (resp., root). When there are no more valid
arcs entering (resp. exiting) a node, it becomes unreachable and all arcs exiting
(resp. entering) the node becomes invalid. Identifying unreachable nodes is done
by testing if the intersection between currArcs and arcsT (for outgoing arcs)
or arcsH (for incoming arcs) is empty.

The process of filtering domains is very similar to the one described in
CT [11]. This is given by method filterDomains() in Algorithm 1. For each
unbounded variable x and each value a in dom(x), the intersection between
the valid arcs on x, currArcs[x], and the arcs allowing value a, supports[x, a],
determines if a is still supported. An empty intersection means that a can be
deleted from dom(x).

1 In [27], a sparse-set domain implementation for obtaining Δx without overhead is
described.
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Let us mention an important fact about the bitwise operations performed at
Lines 14, 17 and 28 of Algorithm 1. As described in [11], bitsets are implemented
as arrays of words (long integers). Progressively, while arcs become invalid, some
words of currArcs become equal to 0 (all bits set to 0). In practice, operations are
only performed on the active (i.e., non-zero) words of currArcs, which are easily
retrievable due to the use of a sparse set maintaining the indexes of active words
(called validWords). Eventually, the mask is intended for being intersected with
currArcs. Therefore, computing values of the words of mask corresponding to a
non-valid word of currArcs is not needed and not done.

3 Transforming Tables into bs-MVDs

A bs-MVD, or basic smart MVD, is defined similarly to a bs-table, or basic
smart table [30]. Namely, it is an MVD where each arc is labelled by one the
following expressions: ‘∗’, ‘〈relop〉 v’, ‘∈ S’ and ‘	∈ S’ where v is value, S is a set
of values, and 〈relop〉 is an operator in {<,≤,=, 	=,≥, >}. The operator involved
in the labeling expression of an arc ω is denoted by op(ω). There are two main
strategies of generating bs-MVDs from (ordinary) tables:

1. Through MVDs: the table is first transformed into an MVD, using pReduce
[24] (leading to an MDD) or sReduce [29] (leading to an sMDD). Then, the
arcs with the same tail and head nodes are processed, targeting the general
unary expressions given above. Note that the initial structure of the MVD is
preserved. Namely, an MDD becomes a bs-MDD, while an sMDD becomes a
bs-sMDD.

2. Through bs-tables: the table is first transformed into a bs-table, for example
using the algorithms described in [17,30]. Then, the bs-table is transformed
into a bs-MVD using a slightly modified version of an algorithm transform-
ing tables into diagrams. However, as some (smart) tuples may overlap, the
transformation may lead to a bs-MVD with nodes that are non deterministic
(in-nd and out-nd) at any level. This is not an issue since CD can handle
non-deterministic diagrams.

We now describe how to carry out the second step of both approaches.

3.1 From MVDs to bs-MVDs: Arc Merging

Generating a bs-MVD from an MVD is straightforward. At each level i, we
simply process every group G of (at least two) arcs sharing the same tail and
head nodes. Specifically, we can compare V = {l(ω) : ω ∈ G} with dom(xi), and
consequently apply some rules (given in order of priority) for merging some arcs
of G:

1. if V = dom(xi), then G is replaced by a unique arc labelled with ‘∗’;
2. if ∃a ∈ dom(xi) s.t. V ∪ {a} = dom(xi), then G is replaced by a unique arc

labelled with ‘	= a’;
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v

= v ∗

v

�= v

v w

≤ v ≥ w∈ S

(a) Illustration of possible merging rules (on a domain of size 10).
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∈ {0, 2}≤ 1
∈ {1, 2} ≥ 4

�= 2�= 1

(c) An equivalent bs-MVD

Fig. 2. Transforming an MVD into an equivalent bs-MVD.

3. if m, defined as max{v : {v′ ∈ dom(xi) : v′ ≤ v} ⊆ G} is not equal to min(xi),
then Gm = {ω ∈ G : l(ω) ≤ m} is replaced by a unique arc labelled with
‘≤ m’ (otherwise, Gm = ∅); if M , defined as min{v : {v′ ∈ dom(xi) : v′ ≥
v} ⊆ G\Gm}, is not equal to max(xi), then GM = {ω ∈ G\Gm : l(ω) ≥ M}
is replaced by a unique arc labelled with ‘≥ M ’ (otherwise, GM = ∅); with
G′ = G \ Gm \ GM , if |G′| > 1 then G′ is replaced by a unique arc labelled
with ‘∈ S’ where S = {l(ω) : ω ∈ G′}.

Figure 2a illustrates these merging rules. The variable of interest xi has a
domain (initially) composed of 10 values, and white cells represent the values
that are present in G.

Note that our merging procedure keeps at most three arcs between any two
nodes. An example is given in Fig. 2.

3.2 From bs-Tables to bs-MVDs: pReducebs

To create a bs-MVD from a bs-table, one can easily adapt the known procedure
pReduce (initially introduced for creating MDDs from tables) so as to generate
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Expression Representation

= v (0, v)
�= v (1, v)
∗ (2, 0)

≤ v (3, v)
≥ v (4, v)
∈ S (5,

∑
i∈S 2i)

�∈ S (6,
∑

i ∈S 2i)

(a) Lexicographic Order on Expressions

x1 x2 x3

= 1 = 1 ≤ 1
∗ �= 2 ≤ 1
∗ ≤ 2 = 1

(b) Sorted Table
x1 x2 x3

= 1 = 1 ≤ 1

∗ �= 2 ≤ 1
≤ 2 = 1

(c) Trie

x1
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∗= 1

≤ 2�= 2= 1

= 1≤ 1≤ 1

(d) MVD

x1

x2

x3

∗= 1

≤ 2�= 2= 1

= 1≤ 1

(e) Reduced MVD

Fig. 3. Turning a bs-table into a bs-MVD using pReducebs.

MVDs; the adaptation is called pReducebs. The four steps of the procedure
are the following. First, the tuples of the table are sorted using a lexicographic
ordering. Second, the corresponding trie (i.e., prefix tree) is created by sharing
common prefixes among the tuples. Third, a diagram is derived from the trie
by merging all the leaves of the trie to form the sink node. Finally, the diagram
is reduced by merging, in a bottom-up way, each pair of nodes having similar
sets of outgoing edges. Two sets of outgoing arcs are similar if they have the
same cardinality, and for each arc in one set, there is an arc in the other set
with the same label (value) and the same head. Actually, for adapting it, we
just need to impose a total order on expressions (unary constraints) involved
in basic smart tuples. For example, we can simply associate a pair of integers
with each expression (unary constraint) such that the first element of the pair
represents the type (operator) of the expression and the second element the
operand involved in the expression. Figure 3a illustrates the naturally derived
lexicographic order.

Figure 3 illustrates through an example the four steps of pReducebs: going
from a sorted bs-table (Fig. 3b) to a trie (Fig. 3c), then into an MVD (Fig. 3d)
and finally into a reduced MVD (Fig. 3e, where the gray node is the result of
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merging two nodes with similar outgoing sets of edges). This example shows that
pReducebs does not necessarily generate a bs-MDD, because some nodes are not
out-d, possibly leading to multiple paths for a same tuple as it is the case for
(1, 1, 1).

A similar adaptation exists for sReduce [29], the procedure that generates
sMDDs, leading to sReducebs.

4 CDbs: Compact-Diagram Handling bs-MVDs

CD and CT are quite similar in term of design. Basically, both of them use the
bitsets called supports to respectively find the arcs and tuples that must be
discarded. Recently, the CTbs [30] algorithm, which can deal with bs-tables, was
proposed as an extension of CT, by only modifying the update procedure. In
the same spirit, we show how similar ideas can be reused to adapt the method
updateMask() of CD in order to define CDbs. We present first a simple version of
CDbs, before introducing an optimized version that strongly relies on a partition
of the arcs at each level i, defined as follows:

– Cbas(xi) = {ω ∈ L(xi) : op(ω) ∈ {=, 	=, ∗}},
– Cmin(xi) = {ω ∈ L(xi) : op(ω) ∈ {<,≤}},
– Cmax(xi) = {ω ∈ L(xi) : op(ω) ∈ {>,≥}},
– Cset(xi) = {ω ∈ L(xi) : op(ω) ∈ {∈, /∈}}

Simple Adaptation of CTbs . As in CTbs, in addition to bitsets supports, we
introduce auxiliary bitsets:

– supports∗[x, a], the exclusive supports: for each arc for which the label of
arc ω is exactly a (‘= a’), the bit is set to 1,

– supportsMin[x, a], the lower bound supports: for each arc which would be
still valid if the minimum of the domain was a, the bit is set to 1,

– supportsMax[x, a], the upper bound supports: for each arc which would be
still valid if the maximum of the domain was a, the bit is set to 1.

Algorithm 2 displays the method updateMasks() for the simple version of
CDbs. This is for Compact-Diagram a simple adaptation of the modifications
made to pass from CT to CTbs. Resetting (and recomputing) is performed when
the number of removed values (i.e., values in Δx) is too large by collecting the
supports of every value in the current domain (lines 10–8). Otherwise an incre-
mental update is performed. Notice that contrarily to the reset-based update, one
needs to also collect invalid arcs for operators in {<,≤, >,≥} using supportsMin
and supportsMax at lines 7 and 9 of Algorithm2. The time complexity of one
call to updateMasks(), for a given variable x, is Θ(dt) where t is the number of
valid words and d is min(|Δx|, |dom(x)|) if Cset(x) = φ and |dom(x)| if not.
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Algorithm 2. Simple Version of CDbs

1 Method updateMasks()
2 foreach variable x ∈ {x ∈ scp : |Δx| > 0} do
3 if |Δx| < |dom(x)| and Cset(x) = φ then // Incremental update

4 foreach value a ∈ Δx do
5 mask[x] ← mask[x] | supports∗[x, a] // bitwise OR

6 if dom(x).minChanged() then
7 mask[x] ← mask[x] | ∼ supportsMin[x, x.min]

8 if dom(x).maxChanged() then
9 mask[x] ← mask[x] | ∼ supportsMax[x, x.max]

10 else // Reset-based update

11 foreach value a ∈ dom(x) do
12 mask[x] ← mask[x] | supports[x, a] // bitwise OR

13 mask[x] ← ∼ mask[x] // bitwise NOT

Exploiting Partitions of Arcs. The time complexity of Algorithm 2 can be
improved to reach Ω(t) and O(dt). For that, let us consider the hypothetical case
of a variable with an operator in {<,≤, >,≥} for each of its associated arc labels.
In such a case, one can collect invalid arcs using lines 7 and 9 from Algorithm 2,
and there is no need to iterate over the sets dom(x) or Δx. This favorable situa-
tion can be partially forced by sorting arcs in bitsets supports so that the bits in
a computer word only represent arcs from a given category (Cbas, Cset, Cmin, Cmax).
If each computer word is filled with (bits for) arcs belonging to the same cate-
gory (dummy invalid arcs are used to complete a word if necessary), then only
the required specific operations can be systematically applied to this word. This
leads to Algorithm 3 that iterates over the valid words and only applies the
operations required by the category of the word (note that the category for
the jth word is given by currArcs[x].category[j]). Arcs from Cbas are updated
using supports∗ or supports (incremental or reset case). Arcs from Cset are
updated using supports in all cases. Arcs from Cmin and Cmax are updated using
supportsMin and supportsMax, respectively. It appears that the categories Cmin

and Cmax are particularly cheap to treat as they only imply one value.

An Interesting Observation. In Algorithm 3, each valid word is associated
with a (unique) category. From this fact, one can observe that supportsMin and
supportsMax are useless.

Observation 1 For any variable x, and any word index j of currArcs[x], we
have:

currArcs[x].category[j] = Cmin ⇒
supportsMin[x, a][j] = supports[x, a][j]
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Algorithm 3. Optimized Version of CDbs

1 Method updateMasks()
2 foreach variable x ∈ {x ∈ scp : |Δx| > 0} do
3 foreach index j ∈ currArcs[x].validWords do
4 switch currArcs[x].category[j] do
5 case Cbas do
6 if |Δx| < |dom(x)| then // Incremental update

7 foreach value a ∈ Δx do
8 mask[x][j] ← mask[x][j] | supports∗[x, a][j]

9 else // Reset update

10 foreach value a ∈ dom(x) do
11 mask[x][j] ← mask[x][j] | supports[x, a][j]

12 mask[x][j] ← ∼ mask[x][j]

13 case Cset do
14 foreach value a ∈ dom(x) do
15 mask[x][j] ← mask[x][j] | supports[x, a][j]

16 mask[x][j] ← ∼ mask[x][j]

17 case Cmin do
18 if dom(x).minChanged() then
19 mask[x][j] ← mask[x][j] | ∼ supportsMin[x, x.min][j]

20 case Cmax do
21 if dom(x).maxChanged() then
22 mask[x][j] ← mask[x][j] | ∼ supportsMax[x, x.max][j]

Similarly,

currArcs[x].category[j] = Cmax ⇒
supportsMax[x, a][j] = supports[x, a][j]

Proof (sketch for Cmin) By restricting the scope of the definitions of the bitsets
to the word (index) j whose bits are exclusively associated with arcs from Cmin,
supports[x, a][j] contains arcs represented by this word that accept the value a,
i.e. arcs labelled by ≤ v with v ≥ a, whereas supportsMin[x, a][j] contains arcs
for which ∃b ∈ dom(x) accepted by the arcs such as a ≤ b, i.e., arcs labelled by
≤ v with v ≥ a. The two words end up to be equal: the exact same bits are set
for both supports[x, a][j] and supportsMin[x, a][j].

This observation is illustrated by Fig. 4. For any literal (x, a) and any word
index j of category Cmin (resp., Cmax), the word supportsMin[x, v][j] (resp.,
supportsMax[x, v][j]) is equal to the word supports[x, v][j]. Therefore, we can
simply use supports at lines 19 and 22. It means that the only required auxiliary
bitset is supports∗ for words attached to Cbas.
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x

ω0 = 1
ω1 ≤ 2
ω2 ≥ 1
ω3 ∈ {1, 3}
ω4 �= 1
ω5 > 2
ω6 {∈� 0, 3}
ω7 < 2
ω8 �= 2
ω9 ∗
(a) Labels of Arcs

word 0 word 1 word 2 word 3
(Category) Cbas Cset Cmin Cmax

ω0 ω4 ω8 ω9 ω3 ω6 ω1 ω7 ω2 ω5

[x, 0] 0 1 1 1
[x, 1]
[x, 2]
[x, 3]
[x, 4]

(b) Bitsets supports for literals on x

word 0 word 1 word 2 word 3
(Category) Cbas Cset Cmin Cmax

(From) supports∗ no auxiliary supportsMin supportsMax

ω0 ω4 ω8 ω9 ω3 ω6 ω1 ω7 ω2 ω5

[x, 0]
[x, 1]
[x, 2]
[x, 3]
[x, 4]

0 0 0 0 1 1 0 0 0 0 0 0
1 0 1 1 1 1 0 0 1 1 0 0 1 0 0 0
0 1 0 1 0 1 0 0 1 0 0 0 1 0 0 0
0 1 1 1 1 0 0 0 0 0 0 0 1 1 0 0
0 1 1 1 0 1 0 0 0 0 0 0 1 1 0 0

0 0 0 0 - - - - 1 1 0 0 0 0 0 0
1 0 0 0 - - - - 1 1 0 0 1 0 0 0
0 0 0 0 - - - - 1 0 0 0 1 0 0 0
0 0 0 0 - - - - 0 0 0 0 1 1 0 0
0 0 0 0 - - - - 0 0 0 0 1 1 0 0

(c) Auxiliary bitsets for literals on x

Fig. 4. Bitsets related to a variable x, assuming 10 associated arcs ω0, ω1, . . . in the
bs-MVD. The size of computer words is assumed to be 4, for simplicity.

Overall Complexity of the Propagator. Regarding the time complex-
ity of the propagator (and not only the updateMasks() method), CD is
O(max(n, d)r a

w ) where r is the arity of the constraint, d the greatest domain
size, n (resp. a) the maximum number of nodes (resp. arcs) per level and w
the size of computer words (w = 64 for Java long integer type). CDbs keeps
the same complexity. Regarding the space complexity, the maximum number of
words of one bitset is � a

w �+3. Per level, there is one currArcs, d supports and
supports∗ (its length is min 0 words, if Cbas = φ and � a

w � max, if |Cset| ≤ w,
|Cmin| ≤ w and |Cmax| ≤ w) and n arcsH and arcsT. The space complexity is thus
O((d + n)r a

w ).

5 Experimental Results

All algorithms described in this paper are implemented in the Oscar solver [21],
using 64-bit words (Long). Our implementation benefits from all optimization
techniques described in [11,29]. Notably, we manage sparse sets in order to avoid
handling zero computer words.

All the results of our experiments are displayed using performance profiles
[12]. A performance profile is a cumulative distribution of the improved perfor-
mance of an algorithm s ∈ S compared to other algorithms of S over a set I
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of instances: ρs(τ) = 1
|I| × |{i ∈ I : ri, s ≤ τ}| where the performance ratio is

defined as ri, s = ti, s
min{ti, s|s∈S} with ti, s the value of the measured unit (here,

either the number of nodes, the number of arcs or the CPU time) obtained with
algorithm s ∈ S on instance i ∈ I. A ratio ri, s = 1 thus means that s is the best
algorithm for instance i.

Depending on the main data structure (table or diagram) and possible trans-
formation, we use different names to describe the benchmark suite:

– βt: the initial benchmark. It is a set of roughly 4, 000 instances only containing
(positive) table constraints, and available on the XCSP3 website [7].

– βbst: instances of βt have been transformed into instances where bs-tables
replace (ordinary) tables. The compression algorithm detailed in [30] was
used.

– βmdd: instances of βt have been transformed into instances where MDDs
replace (ordinary) tables. The algorithm pReduce [24] was used.

– βbsmvd: instances of βbst have been transformed into instances where bs-MVDs
replace bs-tables. The algorithm pReducebs was used.

– βbsmdd: instances of βmdd have been transformed into instances where bs-
MDDs replace MDDs.

Our experiments have two main objectives:

1. analyzing the compression quality of the different approaches, when trans-
forming tables,

2. analyzing the speedup obtained by the new filtering algorithms over the exist-
ing ones.

5.1 Quality of Compression

To start, we consider the results depicted in Fig. 5. The three benchmarks involv-
ing MVDs are βmdd, βbsmvd and βbsmdd. In term of compression, the clear winner
is βbsmdd with substantially less arcs than in the diagrams generated by the two
other approaches. Let us recall that this approach consists of two main steps: (1)
creating a graph, and (2) merging arcs greedily. The alternative approach βbsmvd

that creates first a bs-table, and then converts it into a bs-MVD is worse both in
terms of the number of nodes and the number of arcs, even when compared to a
standard generation of MDDs (βmdd). One explanation is that, despite starting
from smaller tables, there is less chance to merge nodes due to the proliferation
of constraint labels in the compressed tables.

5.2 Speedup

Figure 6 shows the results of a comparison between CD and CDbs. The new
filtering algorithm CDbs, as it could be expected, obtains a larger speedup when
applied on graphs with fewer nodes and arcs, i.e., on instances from βbsmdd.
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Fig. 5. Performance profile comparing the structure of the graphs from βbsmdd, βbsmvd

and βmdd.

In particular, we can see that on the benchmark βbsmvd (based on a com-
pression into bs-tables, followed by a generation of bs-MVDs) CDbs performs
worse than CD applied on βmdd (standard MDDs). The reason is that graphs in
βbsmvd have generally a greater number of nodes than other equivalent graphs
as shown before in Fig. 5a. This follows the same conclusions as in [29] regarding
why CD was more efficient on sMDDs (having fewer nodes than MDDs).

An interesting remark is that, contrarily to CTbs (Compact-Table for basic
smart tables) [30], the presence of expressions ‘∈ S’ does not induce any overhead
for CDbs. Since the arcs involving expressions of the form ‘∈ S’ are gathered on
the same bitwords, they don’t prevent from doing an incremental update when
considering the other categories of expressions, as it was the case for CT.

In [29], CT was shown to remain faster than CD despite the introduction
of bitwise operations. We revisit the same experiment with the newly presented
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20 21 22

τ

bs βbsmdd

βmdd

bs βbsmvd

Fig. 6. Performance profile comparing CDbs to CD on various basic smart MVD bench-
marks CD on βmdd, CTbs on βbsmdd, βbsmvd and βbsmdd.

algorithm. Figure 7 compares four scenarios, including the use of CT: CT on
βt, CTbs (the extension of CT [30] handling directly bs-tables) on βbst, CD
(Compact-Diagram, the adaptation of CT to MVD [29]) on βmdd and CDbs on
βbsmdd.

One can see that CT is still the best approach, followed by CTbs. Neverthe-
less, as it can be observed in the figure, the gap is shrinking when using the new
algorithm CDbs. Also, there is now around 10% of the instances where CDbs

is the fastest algorithm. A post analysis has shown that instances with larger
domains are the more favorable for CDbs. In such cases, we could observe for
some tables a reduction by a factor of up to 8 on the number of arcs.

The main advantage of CD thus lies in the potential compactness of the
diagrams, although this is really problem/constraint dependent. On the one side,
some graphs, when expanded into tables, can’t even fit in memory. On the other
side, some constraints, like AllDifferent [22] are not well suited for an MDD
representation because there is almost no compression. When CD can benefit
from a large compression, it becomes faster.

For a fair comparison, the choice was made not to evaluate the new algorithm
on a priori favorable problems, hence the benchmarks composed of problems
that initially contain table constraints. Also the order of variables remained
unchanged (order as described in the initial instances used). Optimizing this
order may also have an impact on the size of the graphs [9].

In our opinion, having both CT and CD is useful: if, for a given constraint,
a high compression (by an MDD or another diagram) is possible, CD should
be used, otherwise CT is more suited. Also, the new algorithm should typically
be used for solving combinatorial problems with complex constraints that can’t
even be represented in memory as simple tables. One good example of work in
that direction is [26]. Another promising direction for applying this propagator
is for solving combinatorial problems on Strings.
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20 21 22 23 24 25 26 27 28 29

τ

βt

bs βbst

bs βbsmdd

βmdd

Fig. 7. Performance profile of the comparison of the best-case scenario of CDbs, CD
and the tables algorithms CT and CTbs.

6 Conclusion

We have proposed to use a new general form of Multi-valued Variable Diagram
(MVD) for representing constraints: the bs-MVD that accepts unary constraints
as labels of arcs. We have also shown how to generate such diagrams from (ordi-
nary) tables. Finally, we have adapted the propagator CD (Compact-Diagram)
to bs-MVDs, by inspiring ourselves from the adaptation of CT to bs-tables. This
new propagator is efficient and makes little closer graph-based approaches and
table-based approaches.
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Abstract. Binary constraints are a general representation for con-
straints and is used in Constraint Satisfaction Problems (CSPs). How-
ever, many problems are more easily modelled with non-binary con-
straints (constraints with arity >2). Several well-known binary encoding
methods can be used to transform non-binary CSPs to binary CSPs. His-
torically, work on constraint satisfaction began with binary CSPs with
many algorithms proposed to maintain Arc Consistency (AC) on binary
constraints. In more recent times, research has focused on non-binary
constraints and efficient Generalized Arc Consistency (GAC) algorithms
for non-binary constraints. Existing results and “folklore” suggest that
AC algorithms on the binary encoding of a non-binary CSP do not com-
pete with GAC algorithms on the original problem. We propose new algo-
rithms to enforce AC on binary encoded instances. Preliminary exper-
iments show that our AC algorithm on the binary encoded instances
is competitive to state-of-the-art GAC algorithms on the original non-
binary instances and faster in some instances. This result is surprising
and is contrary to the “folklore” on AC versus GAC algorithms. We
believe our results can lead to a revival of AC algorithms as binary con-
straints and resulting algorithms are simpler than the non-binary ones.

Keywords: Binary constraint · Binary encoding · Arc Consistency ·
Generalized Arc Consistency · CSP

1 Introduction

Binary constraint is a general representation for constraints and is used in Con-
straint Satisfaction Problems (CSPs) to model/solve any discrete combinato-
rial problem. Historically, work on constraint satisfaction began with binary
CSPs, problems with at most two variables per constraint and many algorithms
have been proposed to maintain Arc Consistency (AC) on binary constraints.
The seminal work of Mackworth [16] proposed a basic local consistency, arc
consistency, which has been the main reasoning technique used in constraint
solvers for CSPs. However, many problems are more naturally modelled with
non-binary constraints (constraints with arity >2). Several well-known binary
encoding methods can be used to transform non-binary CSPs to binary CSPs.
Non-binary CSPs can be also solved directly which would require non-binary
constraint solvers, Generalized Arc Consistency (GAC) is the natural extension
c© Springer Nature Switzerland AG 2019
L.-M. Rousseau and K. Stergiou (Eds.): CPAIOR 2019, LNCS 11494, pp. 599–615, 2019.
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of AC. In more recent times, research has focused on non-binary constraints and
efficient Generalized Arc Consistency (GAC) algorithms using clever algorithms,
representations and data structures [3,5,6,8–10,12,18,22–27]. Improvements in
GAC algorithms have led to a “folklore belief” that AC algorithms on the binary
encoding of a non-binary CSP do not compete with GAC.1 It has also spurred
major developments in GAC algorithms.

We first show with experimental comparisons of binary encoding with state-
of-art GAC algorithms reasons why binary encoding with existing AC algorithms
are outperformed by GAC on non-binary constraints. We propose new algorithms
to enforce AC on binary encoded instances which address these factors: (i) a
more efficient propagator for hidden variable binary constraints; and (ii) con-
trol the interaction between the search heuristic and the binary encoded model.
Preliminary experiments show that our AC algorithm can be much faster than
state-of-the-art AC algorithms for non-binary CSPs, CT [5] and STRbit [26], on
their binary encoded instances. This result is surprising and is contrary to the
“folklore” on AC vs GAC algorithms. We believe our results can lead to a revival
of AC algorithms since binary constraints and resulting algorithms are simpler
than the non-binary ones. For example, many stronger consistencies were pro-
posed to handle binary constraints and these have been more extensively studied
in the case of binary constraints. Many fundamental works studying properties
of CSPs are often also studied in the binary case.

2 Background

A CSP (Constraint Satisfaction Problem) P is a pair (X , C) with n variables,
X = {x1, x2, ... xn}, and m constraints, C {c1, c2, ... cm}. The variable domains
are finite, D(xi) is the domain of xi ∈ X . We distinguish the current domain
of xi, dom(xi) ⊆ D(xi), the domain may shrink during search when solving
the CSP. The variables in each constraint ci is called the constraint scope,
scp(ci) = {xi1 , xi2 , ... xir} and r is the (constraint) arity. The constraint is a
relation defined over the constraint scope, rel(ci) ⊆ ∏r

j=1 D(xij ). In this paper,
we only consider non-trivial constraints, hence, r > 1. A constraint c is a binary
constraint iff r = 2, i.e scp(c) = {x, y}, otherwise, c is a non-binary constraint
iff r > 2. A binary CSP only has binary constraints; otherwise the CSP is a
non-binary CSP. An assignment A = {(x1, a1), (x2, a2), ... (xn, an)} satisfies a
constraint c iff A[scp(c)] ∈ rel(c) where the notation [v] denotes projection on
the set of variables v. Then A is a solution satisfying (X , C) iff A satisfies all
constraints in C and A ∈ ∏n

i=1 dom(xi). Following [19], we say a CSP P1 is
equivalent to P if they are mutually reducible. A CSP P is reducible to another
CSP P1 if the solution of P can be obtained from the solution of P1, by mapping
the variable values in one CSP to variable values in the other.

1 We focus on AC and GAC algorithms for the general finite domain CSPs with table
constraints. Global constraints with special semantics and special GAC algorithms
exploiting the semantics are outside our scope.
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A tuple τ ∈ rel(c) is valid iff τ [x] ∈ dom(x) for all x ∈ scp(c). We say (x, a)
is a support of tuple τ ∈ rel(c) iff τ [x] = a. A variable value (x, a) is generalized
arc consistent (GAC) on c iff (x, a) has a valid support in rel(c). A variable x
is GAC on c iff for all value a ∈ dom(x), (x, a) is GAC. A constraint c is GAC
iff all variables in scp(c) is GAC on c. A CSP (X , C) is GAC iff all constraints
in C is GAC. A binary CSP P is arc consistent (AC) iff P is GAC, i.e. arc
consistency is a special case of GAC. For a binary constraint c, arc consistency
uses a simpler definition of support: a value a ∈ dom(x) has a valid support in
rel(c) iff (x, a) has a valid support b in dom(y) such that {(x, a), (y, b)} ∈ rel(c),
where scp(c) = {x, y}. M(G)AC is used to denote maintaining (G)AC during
search. In this paper, we focus on MGAC and MAC and simply say GAC or AC.

2.1 Binary Encodings

A non-binary CSP P1 = (X1, C1) can be solved through transformation by encod-
ing into an “equivalent” binary CSP P2 = (X2, C2) such that P2 is reducible
to P1. This means there are two options to solving a non-binary CSP P1: (i)
directly solving P1; or (ii) indirectly by solving P2. There are two well known
binary encodings, namely, the dual encoding [4] and the hidden variable encoding
(HVE) [19]:

– the dual encoding of P1 is a binary CSP (H,DC)
– the HVE of P1 is a binary CSP (X1 ∪ H,HC)

with new variables H = {hvi|ci ∈ C1} where the domain of hvi is the tuples of
the ci itself, D(hvi) = rel(ci). Variables H are called hidden variables and also
sometimes called dual variables [20,21]. In the dual encoding, the new constraints
are DC = {cij |s = scp(ci)∩scp(cj) �= ∅}, i.e. scp(cij) = {hvi, hvj}, and rel(cij) =
{(τ1 ∈ rel(ci), τ2 ∈ rel(cj)) | τ1[s] = τ2[s]}. The hidden variable encoding has
constraints HC = {cxi |x ∈ scp(ci)}, one new constraint per variable in ci, i.e.
scp(cxi ) = {x, hvi}, and rel(cxi ) = {(a ∈ D(x), τ ∈ rel(ci))|τ [x] = a}.

Example 1. Consider a CSP P (X , C), where X = {x1, . . . , x4}, D(xi) = {0, 1}
and C = {c1 : x1 + x2 + x3 = 1, c2 : x2 + x3 + x4 < 2, c3 : x1 + x2 + x4 < 2,
c4 : x1 + x3 + x4 = 1}. Figure 1(a) gives the HVE CSP instance of P , and
Fig. 1(b) is the dual encoding instance. Every node in the figure is a vari-
able, each edge corresponds to a binary constraint, and the label of the edge
denotes the relation of the binary constraint. E.g. D(hv1) = D(hv4) = {1′, 2′, 4′}
and D(hv2) = D(hv3) = {0′, 1′, 2′, 4′}, where the values 0′, 1′, 2′ and 4′

represent (0, 0, 0), (0, 0, 1), (0, 1, 0) and (1, 0, 0) respectively (the figure uses the
tuples notation). The constraint r1 = {(0, 1′), (0, 2′), (1, 4′)} is the relation
in the HVE constraints with scope {x1, hv1} and {x1, hv3} in the HVE while
r13 = {(1′, 2′), (2′, 4′), (4′, 0′), (4′, 1′)} is the relation in the dual encoding with
scope {hv1, hv2}.
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Fig. 1. Binary encodings
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Table 1. Dual encoding memory size results: m/n means m instances were memory-out
of n total, x% are fraction of original constraints

Series 100% 80% 60% 40% 20%

Rand-5-12 50/50 50/50 50/50 50/50 50/50

Rand-15-23 25/25 25/25 25/25 25/25 25/25

Rand-10-60 50/50 50/50 50/50 50/50 50/50

Nonogram 88/170 78/170 71/170 53/170 40/170

Tsp 15/45 15/45 15/45 15/45 15/45

Jnh 50/50 40/50 25/50 2/50 0/50

Mdd-7-25 25/25 25/25 25/25 25/25 25/25

Rand-3-20 30/50 0/50 0/50 0/50 0/50

3 History and the Problem

In this paper, we revisit the question whether non-binary CSPs are better solved
directly using a non-binary solver or the non-binary CSP is encoded to a new
binary CSP and solved by a binary constraint solver. We focus on the comparison
between binary constraints and table constraints which are the most general
representation for constraints in CSPs. We start with a chronology of binary
encodings and corresponding consistency algorithms (if any). In 1998, [1] showed
on some instances, forward checking (FC) with backtracking search on binary
encoded instances can be faster than solving the non-binary instances directly. In
1999, experimental results in [21] showed that enforcing AC on the dual encoding
instances is very expensive. In 2001, [17] proposed HAC showing that MHAC
is competitive with M(G)AC, and M(G)AC algorithms can be mapped to the
corresponding AC algorithms on binary encoded instances. In 2005, [20] showed
that binary encodings are competitive with the non-binary representation. It
also showed that a higher order consistency PW-AC can work well on binary
encoding instances. MHAC-2001 and PW-AC can be faster than MGAC-2001 in
some cases. However, they only tested some special cases for the dual encoding.
In 2011, [10] showed that the dual and double encodings run out of memory on
many instances, and STR2+ can outperform HAC and HVE+AC3bit+rm.2

During the past decades, many AC and table GAC algorithms were pro-
posed. AC algorithms check whether a variable value has a valid support on
another variable domain, and many methods are proposed to reduce the cost of
AC consistency algorithm during search. Over the period from 2007–2018, there
has been considerable research efforts expanded on GAC algorithms, but little
work on AC algorithms given the shift to GAC algorithms. Many of the GAC
algorithms use special ideas to make GAC more efficient. An incomplete list is
as follows: reducing the size of tables during search, e.g. algorithms using sim-
ple table reduction during search [10,12,22], algorithms using decision diagrams

2 (HVE+AC3bit+rm means using the AC3bit+rm on the HVE binary instances).
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[3,18,25], algorithms using compressed tables [6,8,9,27], and bit set represen-
tations [5,23,24,26]. Some of the state-of-the-art GAC algorithms are CT [5]
and STRbit [26] which combine bit set with simple table reduction can be much
faster than STR2+ [10].

In order to understand and revisit the results from existing papers such as
the ones above, we test various kinds of instances to compare different existing
algorithms. Experimental details are given in Sect. 5 to avoid repetition. The
main drawback of dual encoding is the large constraints which lead to the solver
running out of memory, which we call memory-out. This was also shown in [10].
We also tested with various instances, Table 1, where the 100% column is the
original instance and a random set of constraints removed creating a smaller
CSP. Many instances are simply memory-out, e.g. with jnh instances at 60%
(40% constraint removal) still 25 instances were memory-out. In this paper, we
focus on the hidden variable encoding as the dual encoding starts to become
infeasible as the constraints become larger.

We revisit GAC vs binary encodings for hidden variables with results in
Fig. 2. Each dot in the graphs is a problem instance. For AC, we employ AC3bit

[15] with residues [11] denoted as AC3bit+rm. It has been shown to be efficient
in practice for AC because of the bit representation [13]. Figure 2(a) compares
time (in seconds) of ACbit+rm with CT on binary CSP instances. It shows that
AC3bit+rm can be faster than a recent state-of-the-art GAC algorithm, CT,
on binary CSP instances. While it might not be surprising that a binary AC
algorithm is faster than a non-binary algorithm, it highlights the special nature of
binary constraints. The special case of binary constraints is simpler than the non-
binary case which typically has more complex algorithms and data structures.
For example, the AC3bit+rm algorithm in Fig. 2(a) is much simpler than the CT
algorithm and uses simpler data structures.

We now compare different ways of solving non-binary CSP instances. We
first compare solving non-binary CSP instances with the HAC algorithm on the
hidden variable encoding of the non-binary instances with the CT algorithm on
the original non-binary instances. Figure 2(b) compares the time of HAC3 with
CT and shows that HAC is much slower than CT on non-binary CSP instances.
This result is the opposite of the binary-only instances in Fig. 2(a) and suggests
what is known in the folklore that encoding a non-binary constraint to binary
form to be solved using a binary solver is much slower than using a (modern)
GAC solver on the non-binary constraints directly. The HVE encoding with
AC (using AC3bit+rm) is also slow, shown in the comparison of time between
HAC and HVE+AC in Fig. 2(c). Figure 2(d) compares time versus search nodes
of HAC with HVE+AC with the y-axis giving the number of search nodes of
HAC/(HVE+AC) and x-axis giving the time of HAC/(HVE+AC). It shows
that the special propagator of HAC for HVE is more efficient than AC3bit+rm

on HVE.

3 In this paper, we use HAC to implicitly refer to HVE+HAC.
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Figure 2(e) and (f) reveals important factors behind why the performance of
HVE encoding + AC algorithm is worse than GAC (with CT) on the non-binary
instances:

(i) The concentration of points around the x-axis to the right of the y-axis shows
that for a similar number of search nodes, the search time is significantly
slower than CT (yet Fig. 2(a) shows AC3bit+rm is faster than CT for binary
constraints which do not come from the hidden variable encoding). This
suggests that the CT propagator is more efficient than the AC propagators
on HVE instances;

(ii) There are many differences in the search nodes for the binary encoding
versus the original instance. Many instances have more search nodes in the
binary encoding as shown by the density of points above the x-axis.

As many points are far to the right, we see that the propagator efficiency may
be the factor for the superiority of CT though the difference in search nodes is
also a factor.

Search heuristics and consistency propagators are the main components in
a constraint solver. The results above show that with CT (and also other mod-
ern GAC propagators)4 both the efficiency of the constraint propagator and
effectiveness are reasons for the folklore superiority of GAC on the non-binary
instance over AC on the encoded instance. Furthermore, we have seen that the
binary constraints in HVE instances are very special. In this paper, we focus on
improving two problems identified for binary encoding instances:

1. Designing a special AC propagator which is more efficient for the binary
constraints in HVE instances.

2. Avoiding making the search heuristic on HVE instances worse than on the
original instances.

4 The Hidable Model Transformation Propagator

We saw that in Sect. 3, results illustrating the folklore suggesting it is better
to solve a non-binary CSP directly using GAC rather than with binary encod-
ing. The goal in this paper is to dispel this folklore notion. We also saw that
binary encoding can interact poorly with the search heuristic and that the binary
constraints from the hidden variable encoding are special.

To deal with the search heuristic problem, we “virtualize” the binary encod-
ing so that the interaction between the binary encoded constraints can be hidden
from the search heuristic making it behave like the search heuristic for the origi-
nal non-binary constraint. This allows us to investigate the search heuristic which
behaves like in the non-binary instance but also have an alternative where the
search heuristic works on the HVE instance. We incorporate ideas from modern
GAC algorithms to get a more efficient AC propagator for the special kinds of
binary constraints in HVE instances.
4 Experimental results for STR2+ are also similar to CT and have not been shown.
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4.1 The Hidable Model Transformation

The hidden variable encoding is a special transformation of a CSP P1 to a P2

where P2 is reducible to P1. We generalize this idea to allow different kinds of
transformations and search strategies.

Definition 1. (X1 ∪ X2, C2) is a GAC hidable transformation of (X1, C1) iff C2

has a partition {s1, ..., sm} such that for each ci ∈ C1, scp(ci) ⊆ scp(si) and ci
is GAC iff all constraints in si are GAC, where scp(si) =

⋃

c∈si

scp(c).

Corollary 1. If (X1 ∪X2, C2) is a GAC hidable transformation of (X1, C1), then
(X1, C1) is GAC iff (X1 ∪ X2, C2) is GAC.

If P2 = (X1∪X2, C2) is an GAC hidable transformation of P1, then the solver
does not need to search the variables in X2, since GAC on P2 can check whether
an assignment on X1 is a solution of P1. As such, the search algorithm only
needs to consider X1 where the GAC propagators on P2 are a “black box”. In
this paper, we only consider binary encodings, i.e. P2 is a binary CSP.

Corollary 2. HVE is a GAC hidable model transformation.

Proof. For a non-binary constraint ci, we can set si = {cxi ∈ HC|x ∈ scp(ci)},
since (scp(si), si) is the HVE of (scp(ci), {ci}). The HVE encoding by construc-
tion of cxi already meets the requirements of Definition 1. The HVE transfor-
mation is only on non-binary constraints. For a binary constraint ci, we set
si = {ci}, also meeting the definition.

4.2 A Propagator for the Hidable Model Transformation

Algorithm 1 gives the HTAC algorithm to enforce AC on hidable binary encoding
instances. HTAC adds a variable x ∈ X1 ∪ X2 to the propagation queue Q if x
may be used to update the domains of other variables. Then HTAC iteratively
picks a variable x from Q, and then use AC algorithms to enforces AC on all
constraints in every subset si ∈ S such that x ∈ scp(si). For different si, we can
use different AC algorithms. If ci is a binary constraint in C1 and si = {ci}, then
HTAC can use any efficient AC algorithms, e.g. AC3bit+rm, to enforce AC on
ci. For a GAC hidable model transformation, we give special AC-H algorithms
exploiting the nature of constraints used in the transformation. In Sect. 4.3, we
present a AC-H algorithm to handle the constraints used in HVE transformation.
HTAC is different from HAC [20]: HTAC adds original variables to Q while HAC
only adds hidden variables to Q. When the domain of a variable x is changed,
HAC directly updates the domains of all hidden variables constrained by x and
does not add x to Q. HTAC uses a reversible bit set to represent the domain of
a hidden variable (see Sect. 4.3), but HAC does not; The revise functions used
in AC-H are also different from HAC.

For a GAC hidable model transformation (X1 ∪X2, C2), the solver only needs
to search the variables in X1. Search heuristics which use information from the
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Algorithm 1. HTAC (X1, C1)
let (X1 ∪ X2, C2) be the hidable model transformation of (X1, C1);
let S be a partition of C2 making (X1 ∪ X2, C2) hidable;
Q ← X1;
while Q �= ∅ do

pick and delete x from Q;
for si ∈ S s.t. x ∈ scp(si) do

if |si| = 1 then
// si = {ci}
if ¬AC(si) then

return false;

else if ¬AC-H(si) then
return false;

return true;

constraint structure can choose to use the structure of the GAC hidable model
transformation or the original model. For example, the wdeg/dom [2] heuristic
records a weight w for each constraint, and increasing w by one if the constraint
causes inconsistency. Variables are selected based on the weights of constraints.
For the HVE transformation, we propose two alternatives for wdeg/dom:

A. using wdeg/dom with the original model, we record a weight wi for each
si ∈ S. Thus, wi is regarded as a weight for a virtual constraint representing
the weight of ci ∈ C1. Weight wi is incremented if AC(-H)(si) is not consistent;

B. using wdeg/dom with the HVE transformation, we record a weight wx
i for

each cxi ∈ C2 and wx
i is incremented if AC(-H)(si) is not consistent, where x

is picked from Q and x ∈ scp(si).

We call HTAC as HTAC1 if the heuristics use the original non-binary model
(A); and HTAC2 if the heuristics use the transformation model (B).

4.3 The AC-H Algorithm for HVE

We first introduce the data structures used in the algorithm which incorporates
data structures used by (modern) GAC and AC algorithms [5,10,14,15]:

1. For a original variable x:
– dom(x) uses an “ordered link” data structure proposed in [14] to represent

the current domain of x.
– bitDom(x) uses a bit set to represent the domain of a variable x [15].
– bitSup(c, x, a) is used to represent all supports of variable value (x, a) in

bitDom(y), where scp(c) = {x, y} [15].
– lastSize(c, x) is used to record the size of dom(x) after the last update

on the domain of x based on c [10].
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2. For a hidden variable x:
– bitDom(x) uses a bit set to represent the domain of x, if bitDom(x) is

changed, the old states of bitDom are recorded in a stack so that it can
be undone on backtracking.

– wordDom(x) is a sparse set used to record the non-ZERO words in
bitDom(x). It uses the reversible sparse bit-set idea in [5].

– prevDom(x) is a copy of bitDom(x), we use prevDom(x) to check
whether bitDom(x) is changed.

– buf0 is a bit set, where all words in buf0 are initialized as ZERO (ZERO
is the bit set with all zeroes).

Algorithm 2 is to enforce AC on a set (si) of constraints for HVE instances,
where si = {cxi ∈ HC|hvi ∈ scp(cxi )}. The HVE transformation has a star
structure constraint graph (a special tree). This allows the AC-H algorithm to
update the domains of variables in two passes: (i) from leaves (x ∈ ci) to the root
(hvi), and (ii) from the root to the leaves. The first phase of revise is with function
revise2 to (partially) update the domain of hvi based on the current domains of
variables in scp(ci). Then function update updates wordDom representation of
hvi. If wordDom(hvi) = ∅, the instance is not AC. The second revise phase uses
function revise1 to update the domains of all variables in scp(ci). If the domain
of a variable x is changed, x is added to Q. We do not add hvi to Q, since the
domains of variables constrained with hvi are updated in the AC-H algorithm.

Algorithm 2. AC-H (si)

let hvi be the hidden variable constrained with binary constraints in si;
for each cxi ∈ si do

revise2(cxi , hvi);

if ¬update(hvi) then
return false;

for each cxi ∈ si do
if revise1(cxi , x) then

Q ← Q ∪ {x};

return true;

Due to lack of space, we briefly sketch correctness of AC-H and associated
functions. The overall structure is similar to any AC algorithm using revise
except that we exploit the star constraint graph as explained above. The current
domain of hvi is only updated by the function revise2. Meanwhile, the func-
tion revise2 deletes the values which do not have valid supports in the current
domains of the variables in scp(ci) from the current domain of hvi. If the func-
tion update return false, all words in bitDom(hvi) become ZERO, which means
that it is not AC. Finally. the function revise1 is similar to AC3bit+rm.
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4.4 Revise Functions

In AC algorithms, the revise(c, x) functions are used to update dom(x) based
on dom(y), where {x, y} = scp(c), i.e removing the values in dom(x) which don’t
have valid supports in dom(y). We give two revise functions used in AC-H to han-
dle the reversible bit-set domains. The function revise1 updates original variable
domains using function seekSupport which is similar to that in AC3bit+rm algo-
rithm. The difference is that our seekSupport only check the words in wordDom.
For hidden variables, we do not use the seekSupport function, since each value
in hidden variable domains (by construction) only has one support in rel(c),
i.e. an hidden variable hv functionally determines the values in the domains
of original variables constrained with hv (see [1]), which make bitSup useless.
Using the ideas from GAC algorithms CT [5] and STRbit [26], function revise2
applies the delete and reset functions to update bitDom. If the number of val-
ues deleted from dom(x) is larger than |dom(x)|, then function delete is used
to remove all supports of the deleted values from bitDom(hv). Otherwise, func-
tion reset is used to build a new bitDom(hv) based on current dom(x). After
updating bitDom(hv) of a hidden variable hv, the function update is used to
check bitDom(hv) for domain wipeout, for each word w in bitDom(hv), if w is
changed, the old value of preDom(w) in saved on a stack for backtracking, and
if w = ZERO it is removed from wordDom.

Function revise1(c, x)
size ← |dom(x)|;
for each a ∈ dom(x) do

if ¬seekSupport(c, x, a) then
remove a from dom(x);

return |dom(x)| �= size;

Function seekSupport(c, x, a)
Let y be the variable such that scp(c) = {x, y};
w ← rm[c, x, a];
if (bitSup[c, x, a][w]&bitDom[y, w]) �= ZERO then

return true;

for each w ∈ wordDom(y) do
if (bitSup[c, x, a][w]&bitDom[y, w]) �= ZERO then

rm[c, x, a] ← w;
return true;

return false;
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Function revise2(c, hv)
Let x be the variable such that scp(c) = {x, hv};
dn ← lastSize(c, x) − |dom(x)|;
if dn > |dom(x)| then

reset(c, hv);

else if dn > 0 then
delete(c, hv, dn);

Function delete(c, hv, dn)
Let x be the variable such that scp(c) = {x, hv};
for i = 0 to dn do

Let a be the last i value deleted from dom(x);
for each w ∈ wordDom(hv) do

bitDom[hv, w] ← bitDom[hv, w]&¬bitSup[c, x, a];

Function reset(c, hv)
Let x be the variable such that scp(c) = {x, hv};
for each a ∈ dom(x) do

for each w ∈ wordDom(hv) do
buf0[w] ← buf0[w]|bitSup[c, x, a];

for each w ∈ wordDom(hv) do
bitDom[x, w] ← buf0[w]&bitDom[hv, w];
buf0[w] ← ZERO;

Function update(x)
for each w ∈ wordDom(x) do

if bitDom[x, w] �= prevDom[x, w] then
save prevDom[x, w] in a stack;
prevDom[x, w] ← bitDom[x, w];
if bitDom[x, w] = ZERO then

remove w from wordDom(x);

return wordDom(x) �= ∅;

5 Experiments

We present experiments to evaluate HTAC on the hidden variable encoding
(HVE+HTAC1 and HVE+HTAC2) compared with HVE+AC3bit+rm, HAC,
STR2+, CT and STRbit algorithms. HTAC, HVE+AC3bit+rm and HAC main-
tain AC (MAC) on the hidden variable encoding instances. STR2+, CT and
STRbit maintain GAC (MGAC) on the original non-binary instances. CT and
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STRbit are the state-of-the-art GAC algorithms, and HAC is the best exist-
ing algorithm for binary encoding from Sect. 3. We used binary and non-binary
instances from the XCSP3 website (http://xcsp.org). Instances from XCSP3
which timeout for all compared algorithms are ignored. In total, we evaluated
1328 binary and 2431 non-binary problem instances. The binary CSP series are:

QCP, QWH, Geometric, Rlfap, Driver, Lard, Queens, RoomMate, Prop-
Stress, QueensKnights, KnightTour, Random

The binary instances are discussed in Sect. 3 in Fig. 2(a). The non-binary CSP
series are:

Kakuro, Dubois, PigeonsPlus, MaxCSP,Renault, Aim, Jnh, Cril, Tsp, Var-
ious, Nonogram, Bdd-{15,18}-21, mdd-7-25-{5,5-p7,5-p7}, reg2ext,Rand-
3-24-24, Rand-3-24-24f, Rand-5-12-12, Rand-5-{2,4,8}X, Rand-10-20-10,
Rand-10-20-60, Rand-15-23-3, Rand-5-10-10, Rand-5-12-12t, Rand-7-40-
8t, Rand-8-20-5, Rand-3-20-20, Rand-3-20-20f

This section focuses on the non-binary instances. Results on the non-binary
series are also given in Sect. 3 comparing HAC, HVE+AC3bit+rm and CT. The
experiments were run on a 3.20 GHz Intel i7-8700 machine. We implemented
HTAC in the Abscon solver5 which has the other algorithms implemented. In
addition, we optimized the Abscon CT and HAC implementation to be a little
faster.6 The variable search heuristic used is wdeg/dom and the value heuristic
used is lexical value order. The wdeg/dom with restart is considered one of
state-of-the-art heuristics in classic constraint solvers [7]. The restart policy was
geometric restart (the initial cutoff = 10 and ρ = 1.1)7. CPU time is limited to
1200 s per instance and memory to 8 GB.

Figures 3 shows 9 scatter plots to compare HVE+HTAC with other algo-
rithms. Each dot in the plots is an instance. Figures 3(a) to (f) compare the
time8 of different algorithms. Meanwhile, Figs. 3(g), (h) and (i) compare the
time ratio and node ratio, where the time (node) ratio of A/B means the ratio
“the time (number of search nodes) of algorithm A” to “the time (number of
search nodes) of algorithm B”. Figures 3(a), (b) and (c) show that HVE+HTAC2
and HVE+HTAC1 can outperform the other binary algorithms. From Fig. 3(g),
giving the time ratio and node ratio of (HTAC2+HVE)/HAC (see the discus-
sion of ratio graphs in Sect. 3), we see that HTAC is generally much faster than
HAC, since most points around the x-axis are at the left of the y-axis. For most
instances, the search nodes of HTAC2 is less than HAC.

5 https://www.cril.univ-artois.fr/∼lecoutre/#/softwares.
6 While implementing HTAC, we found some optimizations for the existing CT and

HAC code.
7 cutoff is the allowed number of failed assignments for each restart. After restart,

cutoff increases by (cutoff × ρ).
8 For binary encoding instances, the time includes solving time and model transfor-

mation time.

http://xcsp.org
https://www.cril.univ-artois.fr/~lecoutre/#/softwares
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Fig. 3. HTAC vs other algorithms: (a)–(f) use time on the axis while (g)–(i) use node
and time ratios in the axis

Figures 3(d), (e) and (f) show HTAC is competitive with the state-of-the-
art GAC algorithms CT and STRbit. HTAC1+HVE using wdeg/dom on the
original model is competitive with CT, being faster than CT on some instances.
HTAC2+HVE using wdeg/dom on the HVE transformed model is faster than
STRbit and CT on many instances. Figure 3(h) combines node ratio and time
ratio to show the runtime and search nodes tradeoffs of HTAC2 with CT with
more instances having less nodes and time. Figure 3(i) compares HTAC2 with
HTAC1, the performance of HTAC1 is similar to CT.

Figure 4 shows the runtime distribution of the problem instances solved by
the different algorithms. The y-axis is the solving time (in seconds) and the
x-axis is the number of instances solved within the time limit. It shows firstly,
the folklore that binary encodings are slower with HVE+AC3bit+rm and HAC
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being behind STR2+ (also show in [10]). There is a separation between STR2+
and newer GAC algorithms (STRbit and CT). The performance of our HTAC
algorithms is competitive with STRbit and CT, in particular, HTAC2 is faster
on some instances.

6 Conclusion

We first show experimental results which can explain the folklore that it is better
to solve a non-binary CSP instance directly with GAC than by a binary encoding
of the instance and using AC. We show that this folklore is misleading, solving
with the binary encoding can be improved by having a more efficient propagator
for binary constraints from the HVE instances and preventing poor interaction
of the HVE model with the search heuristic.

We propose a new propagator HTAC. By using the GAC hidable binary
encoding with HTAC, we can address the differences in search nodes so that
the search space on the binary instance behaves as in the non-binary instance
but it also allows search on the binary encoded model. The HTAC propagator
gains efficiency by using properties of binary constraints in the HVE. It is also
efficient as we apply ideas from modern GAC algorithms. Experiments show
that HTAC on the binary encoded instance is competitive with state-of-the-
art GAC algorithms on the original instances, in some cases, HTAC is faster.
Not only have we shown that solving with the binary encoding is viable and
competitive, we believe that it opens new directions for modelling and solver
algorithms while still retaining the original non-binary instance. Binary instances
and constraints are special being simpler so the algorithms can also be simpler.
Many transformations and higher consistencies can be applied directly to binary
instances.
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Abstract. Many real-world decision-making problems do not possess a
clearly defined objective function, but instead aim to find solutions that
capture implicit user preferences. This makes it challenging to directly
apply classical optimization technology such as integer programming or
constraint programming. Machine learning provides an alternative by
learning the agents’ decision-making implicitly via neural networks. How-
ever, solutions generated by neural networks often fail to satisfy physical
or operational constraints. We propose a hybrid approach, DDGan, that
embeds a Decision Diagram (DD) into a Generative Adversarial Network
(GAN). In DDGan, the solutions generated from the neural network are
filtered through a decision diagram module to ensure feasibility. DDGan
thus combines the benefits of machine learning and constraint reasoning.
When applied to the problem of schedule generation, we demonstrate
that DDGan generates schedules that reflect the agents’ implicit pref-
erences, and better satisfy operational constraints.

1 Introduction

Traditional management science approaches to decision-making involve defining
a mathematical model of the situation, including decision variables, constraints,
and an objective function to be optimized. While common objectives such as
cost minimization or profit maximization are widely applied, many operational
decision-making processes depend on factors that cannot be captured easily
by a single mathematical expression. For example, in production planning and
scheduling problems one typically takes into account priority classes of jobs and
due dates, but ideally also (soft) business rules or the preferences of the workers
who execute the plan. Those rules and preferences may be observed from historic
data, but creating a model that results in, say, a linear objective function is far
from straightforward. Instead, one may represent the objective function, or even
the constraints, using machine learning models that are then embedded into the
optimization models; we refer to [24] for a recent survey.

In this work, we study the integration of machine learning and constraint
reasoning in the context of sequential decision making. In particular, we aim
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to extend (recursive) generative adversarial neural networks (GANs) with con-
straint reasoning. We assume that the context specifies certain physical or oper-
ational requirements, within which we need to find solutions that are similar to
the decisions that were made historically, as in the following stylized example.

Example 1. Consider a routing problem in which we need to dispatch a service
vehicle to perform maintenance at a set of locations. The set of locations differs
per day and is almost never the same. Previous routes indicate that the driver
does not follow a distance or time optimal sequence of visits, even though there
are no side constraints such as time windows or precedence relations. Instead,
the routes suggest that the driver has an underlying route preference, that is
exposed by, e.g., visiting shopping and lunch areas at specific times of the day.
Our decision making task is now: Given the historic routes and a set of locations
to visit today, determine a route that (1) visits all locations, and (2) is most
similar to the historic routes. In addition, we might add further restrictions such
as a maximum time limit, for example 8 h.

In these contexts, traditional optimization methods such as integer programming
or constraint programming cannot be applied directly since they are unable to
represent an appropriate objective function. Instead, it is natural to represent the
structure and preferences from the historic solutions using a machine learning
model. For example, we could design and train a generative adversarial neural
network (GAN) for this purpose, which will be able to produce sequences of
decisions that aim to be similar to the historic data. However, because GANs
are trained with respect to an objective function (loss function) to be minimized,
hard operational constraints cannot be directly enforced. For example, in case
of the routing problem above, the sequences produced by the GAN usually fail
to visit all locations, visit some locations multiple times, or fail to recognize
constraints such as the maximum time limit.

Contributions. We propose a hybrid approach, which we call DDGan, that
embeds a decision diagram (DD) into a generative adversarial neural network.
The decision diagram represents the constraint set and serves as a filter for the
solutions generated by the GAN, to ensure feasibility. As proof of concept, we
develop a DDGan to represent routing problems as in Example 1. We show that
without the DD module, the GAN indeed produces sequences that are rarely
feasible, while the DD filter substantially increases the feasibility. Moreover, we
show that DDGan converges much more smoothly than the GAN.

We note that, in principle, any constraint reasoning module could have been
applied; e.g., we could embed an integer program or constraint program that
contains all constraints of the problem. The variable/value assignments suggested
by the GAN can then be checked for feasibility by running a complete search, but
this is time consuming. By compiling a decision diagram offline, we can check for
feasibility instantly during execution. Moreover, for larger problems we can apply
relaxed decision diagrams of polynomial size that may not guarantee feasibility
in all cases, but can produce much better solutions that those generated by the
GAN alone.
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2 Related Work

Within the broader context of learning constraint models, several works have
studied automated constraint acquisition from historic data or (user-)generated
queries, including [1,4,7,11,23]. These approaches use partial or complete exam-
ples to identify constraints that can be added to the model. The type of con-
straints that can be learned depends on the formalism that is used, for example
linear constraints for integer programming or global constraints for constraint
programming.

A different approach is to embed a machine learning model into the optimiza-
tion formalism, e.g., by extending a constraint system with appropriate global
constraints. For example, [22] integrate neural networks and decision trees in con-
straint programming, while [25,26] introduce a ‘Neuron’ global constraint that
represents a pre-trained neural network. Another series of approaches based on
Grammar Variational Autoencoders [12,19,21] use neural networks to encode
and decode from the parse-tree of a context free grammar to generate discrete
structures. Such approaches are used to generate chemical molecule expressions,
which is also a structured domain. Compared to our work, their models are not
conditional, and therefore cannot solve decision-making problems with varying
contextual information.

Machine learning approaches have also been used to solve optimization prob-
lems. This includes the works [14,30], which use neural networks to extend par-
tial solutions to complete ones. The authors of [5] handle the traveling salesman
problem by framing it as reinforcement learning. Approaches based on Neural
Turing Machines [16] employ neural networks with external memory for discrete
structure generation. More recently, the authors of [20] solve graph combinato-
rial optimization problems, and employ neural networks to learn the heuristics in
backtrack-free searching. The scopes of these works are different from ours, since
they do not deal with optimization problems without clear objective functions.
Recently, the work of [29] combine reasoning and learning using a max-margin
approach in hybrid domains based on Satisfiability Modulo Theories (SMT).
They also show applications in constructive preference elicitation [13]. Com-
pared to our work, their approach formulates the entire learning and reasoning
problem as a single SMT, while we combine reasoning and learning tools, namely
the neural networks and decision diagrams, into a unified framework.

3 Preliminaries

3.1 Structure Generation via Generative Adversarial Networks

Finding structured sequences in presence of implicit preferences is a more com-
plex problem compared to classical supervised learning, in which a classifier
is trained to make single-bit predictions that match those in the dataset. The
problem of finding such sequences is broadly classified as a structure genera-
tion problem in machine learning, which arises naturally in natural language
processing [17,18], computer vision [8,28], and chemistry engineering [21].
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Specifically, we are given common context Rc and a historical data set
D = {(R1, S1), (R2, S2), . . . , (Rt−1, St−1)}, in which Ri represents the contex-
tual information specific to data point i and Si the decision sequence for sce-
nario i = 1, . . . , t − 1. For our routing example, Ri represents the daily location
requests while Si is the ordered sequence of visits that covers the requested loca-
tions in Ri. Rc, in this case, represents the set of constraints that is common to
all data points; for example, each location can be visited at most once. Notice
that Ri can be also interpreted in the form of constraints, which we will leverage
later in the paper. For example, in the routing problem, Ri can be interpreted
as the constraint that sequence Si can only contain locations from the requested
set Ri, and all locations in Ri must be visited.

Given present contextual data Rt, our goal is to find a good sequence of
decisions St. Using machine learning terminology, we would like to learn a con-
ditional probability distribution of “good” sequences

Pr(St | Rt)

based on the historical dataset. More precisely, Pr(St | Rt) should assign high
probabilities to “good” sequences, i.e., sequences that satisfy operational con-
straints and look similar to the ones in the historical dataset. A “bad” sequence,
for example, a sequence that violates key operational constraints, should ideally
be assigned a probability zero. When we deploy our tool (i.e., for scenario t), we
first observe the contextual data Rt, and then sample a sequence St according
to Pr(St | Rt), which should satisfy all operational constraints and the implicit
preferences reflected by the historical dataset.

Generative Adversarial Networks (GAN). GAN is a powerful tool devel-
oped in the machine learning community for complex structure generation [15].
The original GAN is developed to learn the probability distribution Pr(x) of
complex structural objects x. We will briefly review GAN in this simple context.

Given a dataset X in which each entry x ∈ X is independently and identically
drawn from the underlying (unknown) data distribution Prdata(x), GAN fits a
probability distribution Pr(x) that best matches Prdata(x). Instead of directly
fitting the density function, GAN starts with random variables z with a known
prior probability distribution Pr(z) (such as multi-variate Gaussian), and then
learns a deterministic mapping G : Z → X in the form of a neural network,
which maps every element z ∈ Z to an element x ∈ X. The goal is to fit the
function G(.) so that the distribution of G(z) matches the true data distribution
Prdata(x) when z is sampled from the known prior distribution.

GAN also trains another discriminator neural network D : x → R to deter-
mine the closeness of the generated and the true structures. D is trained to
separate the real examples from the dataset with the fake examples generated
by function G. Both the generator G and the discriminator D are trained in a
competing manner. The overall objective function for GAN is:

min
G

max
D

Ex∼data[D(x)] + Ez[1 − D(G(z))]. (1)
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Fig. 1. Multi-valued decision diagrams (MDDs) representing possible assignments
of x1, x2, x3. (a) Exact MDD representing the subset of permutations satisfying
alldifferent(x1, x2, x3) and x1 �= l1. Each path from r to t represents a valid permu-
tation satisfying the two constraints. (b) A width-1 relaxed MDD for the exact MDD
in (a). (c) A width-2 relaxed MDD, which is formed by combining nodes u4 and u5 of
the MDD in (a).

For our application, we extend the classical GAN into a conditional structure,
as will be discussed in Sect. 4. We acknowledge that GAN is a recent popular
probabilistic model for structural generation. Nevertheless, structural generation
is challenging and many research questions still remain open. Our embedding
framework is general and can be applied beyond the GAN structure.

3.2 Decision Diagrams

Decision diagrams were originally introduced to compactly represent Boolean
functions as a graphical model [2,9], and have since been widely used, e.g., in the
context of verification and configuration problems [31]. More recently decision
diagrams have been used successfully as a tool for optimization, by representing
the set of solutions to combinatorial optimization problems [6].

Decision diagrams are defined with respect to a sequence of decision variables
x1, x2, . . . , xn. Variable xi has a domain of possible values D(xi), for i = 1, . . . , n.
For our purposes, a decision diagram is a layered directed acyclic graph, with
n+ 1 layers of nodes; see Fig. 1 for an example. Layer 1 contains a single node,
called the root r. Layer n+1 also contains a single node, called the terminal t. An
arc from a node in layer i to a node in layer i+1 represents a possible assignment
of variable xi to a value in its domain, and is therefore associated with a label
l ∈ D(xi). For an arc (v, w), we use var(v, w) to represent the variable being
assigned through this arc, and use val(v, w) to represent its assigned value. For a
node m in the MDD, we use val(m) to represent the union of the values of each
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arc starting from node m, i.e., val(m) = {val(u, v) : u = m}. Notice that val(m)
represents the possible value assignments of the decision variable corresponding
to node m. Each path from the root r to the terminal t represents a solution,
i.e., a complete variable-value assignment. We can extend the arc definition to
allow for “long arcs” that skip layers; a long arc out of a node in layer i still
represents a value assignment to variable xi and assigns the skipped layers to a
default value (for example 0). In our case, we consider variables with arbitrary
domains, which results in so-called multi-valued decision diagrams (MDDs).

Example 2. Let x1, x2, x3 represent a sequence of decision variables, each with
domain {l1, l2, l3}. The constraint alldifferent(x1, x2, x3) restricts the val-
ues of x1, x2, x3 to be all different; i.e., they form a permutation. Along with
another constraint x1 �= l1, it restricts the set of feasible permutations to be
{(l2, l1, l3), (l2, l3, l1), (l3, l2, l1), (l3, l1, l2)}. Figure 1(a) depicts the exact MDD
that encodes all permutations satisfying these two constraints.

Exact Decision Diagram. Given a set of constraints R, MDD M is said to
be exact with respect to R if and only if every path that leads from the root
node r to the terminal node t in M is a variable-value assignment satisfying all
constraints in R. Conversely, every valid variable-value assignment can be found
as a path from r to t in M. For example, Fig. 1(a) represents an exact MDD
that encodes the constraints alldifferent(x1, x2, x3) and x1 �= l1.

Relaxed Decision Diagram. Because exact decision diagrams can grow expo-
nentially large, we will also apply relaxed decision diagrams of polynomial size [3].
The set of paths in a relaxed decision diagram forms a superset of that of an
exact decision diagram. For example, the set of paths in Fig. 1(a) is fully con-
tained in the sets of paths in the Figs. 1(b) and (c). Therefore, the MDDs in
Figs. 1(b) and (c) form two relaxed versions of the MDD in Fig. 1(a). Relaxed
MDDs are often defined with respect to a maximum width, i.e., the number of
nodes in its largest layer. For example, Fig. 1(b) is a width-1 relaxed MDD, which
trivially forms the superset of any constrained set of x1, x2, x3, while Fig. 1(c) is
a width-2 relaxed MDD.

Decision Diagram Compilation. Decision diagrams can be constructed to
encode constraints over the variables, by a process of node refinement and arc fil-
tering [3,6]. In general, arc filtering removes arcs that lead to infeasible solutions,
while node refinement (or splitting) improves the precision in characterizing the
solution space. One can reach an exact MDD by repeatedly going through the
filtering and the refinement process from a width-1 MDD. We refer to [10] for
details on MDD compilation for sequencing and permutation problems.

Exact MDD Filtering. MDD filtering algorithms can also be applied without
node refinement, to represent additional constraints in a given MDD. Generally,
MDD filtering does not guarantee that each remaining r-t path is feasible. To
establish that, we next introduce the notion of an exact MDD filter.
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Fig. 2. DDGan as the generator G within the GAN framework. On the top is a recur-
sive neural network (RNN) structure. RNN takes as input the contextual information
Rt and random variables z, and outputs scores for values for each variable. The val-
ues are filtered by the WalkDD module on the bottom that represents a constraint
set. The values that lead to contradictions are filtered out (marked by the red color).
Finally, a softmax layer decides the value of each variable by picking up the one with
the largest score among all non-filtered values. (Color figure online)

Definition 1. Let M be an exact MDD with respect to a constraint set R, and
let C be an additional constraint. An MDD filter for C is exact if applying it to
M results in an MDD M′ that is exact with respect to R and C.

Consider the following MDD filtering algorithm FilterUnary for unary con-
straints, i.e., constraints of the form x �= l for some variable x and value l ∈ D(x).
We first let FilterUnary remove any arc that violates the unary constraints.
Then, working from the last layer up to the first layer, FilterUnary recursively
removes any nodes and arcs that do not have path that lead to the terminal t.
We have the following result.

Proposition 1. FilterUnary is an exact MDD filter.
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4 Embedding Decision Diagrams into GANs

We next present our hybrid approach, DDGan, which embeds a multi-valued
decision diagram into a neural network, to generate structures that (i) satisfy a
set of constraints, and (ii) capture the user preferences embedded implicitly in
the historical dataset. The structure of DDGan is shown in Fig. 2.

To achieve this, DDGan has a recursive neural network (RNN) as its first
layer. The RNN module generates scores of possible assignments to variables
x1, . . . , xn in a sequence of n steps. We refer the entire recursive neural network
(the upper part of Fig. 2) as a RNN and refer to the one-step unrolling of the
network as a RNN cell. In the i-th step, one RNN cell takes the hidden state of
the previous step as input, outputs the hidden state of this step, and a table of
dimension |D(xi)|. The table corresponds to the score for each value of variable
xi. In general, the higher the score is, the more likely the RNN believes that xi

should be assigned to the particular value. RNN is trained to capture implicit
preferences which give higher scores to the structures in the historical dataset.
Because of the link through hidden states among RNN cells of different steps,
RNN is able to capture the correlations among variables.

However, the structures generated by the RNN module may not satisfy key
(operational) constraints. Therefore, we embed a WalkDD neural network as a
second layer (Fig. 2 bottom, within the dashed rectangular) to filter out actions
that violate the constraint set. WalkDD simulates the process of descending
along a particular path of the MDD. During this process, WalkDD marks cer-
tain assignments generated by the RNN module as infeasible ones (as shown
in the entries with red background). Finally, a softmax layer takes the action
with highest score among all feasible actions. In this way, WalkDD filters out
structures that violate operational constraints.

Full WalkDD Filtering. We assume access to an MDD M, which is compiled
with respect to the common constraint set Rc. We first focus on the case where
M is exact, i.e., each r-t path in M represents an assignment to x1, . . . , xn that
satisfies all constraints in Rc. We also assume we are given an filtering scheme
Filter for the additional contextual constraints Rt for data point t. Let Mt be
the MDD resulted from M filtered through constraints Rt using Filter.

WalkDD is executed as follows. It keeps the current MDD node of Mt as
its internal state. Initially, the internal state is at the root node r. In each step,
WalkDD moves to a new MDD node in the next layer once one variable is set
to a particular value. Suppose WalkDD is at step i, the MDD node mi, and
the corresponding decision variable xi. Recall that val(mi) represents the set of
values that can be assigned to variable xi according to the labels of the arcs out
of mi. WalkDD blocks all assignments to xi outside of val(mi) (shown as the
entries with the red background in Fig. 2). After this step, a softmax layer picks
up the variable assignment with the largest score among all non-blocked entries
and set xi to be the corresponding value. WalkDD then moves its state to the
corresponding new node in the MDD following the variable assignment.
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Fig. 3. GAN structure for solving the structure generation problem with implicit pref-
erences. The contexts Rt and random variables are fed into the generator G, which
will produce a structure St. The Discriminator D are trained to separate the generated
structures Ŝt with the real structures St. D and G are trained in a competing manner.

Proposition 2. Let M be an exact MDD with respect to constraint set Rc and
let Filter be an exact filter for constraint set Rt. Then WalkDD is guaranteed
to produce sequences that satisfy the constraints in both Rc and Rt.

Overall Conditional GAN Architecture. During training, the aforemen-
tioned DDGan structure is fed as the generator function G in the conditional
GAN architecture [27], which is the classical GAN network, modified to take into
account contextual information Rt. We use conditional GAN as a example to
host DDGan. Nevertheless, DDGan can be accommodated by other structures
as well. For example, infeasible actions can be filtered out by WalkDD in a
similar fashion in the Viterbi algorithm for Hidden Markov Models. The over-
all conditional GAN architecture is shown in Fig. 3. In this structure, Rt and
random variables z are arguments of the generator G, which in turn produces
a structure (or sequence) Ŝt. The discriminator D is trained to separate the
generated structure Ŝt with the real one St. D and G are trained in a compet-
ing manner using stochastic gradient descent. The overall objective function we
optimize is:

min
G

max
D

Et [D(St, Rt) + Ez[1 − D(G(Rt, z), Rt)]] . (2)

Note that, compared to the objective function of the classical GAN (Eq. 1),
the discriminator and the generator in Equation (2) both take the contextual
information Rt as an additional input.

Implementation. WalkDD heavily uses matrix operations, most of which
can be efficiently carried out on GPUs. We have a state-transition matrix of
the MDD, which are hard-coded prior to training and in which infeasible transi-
tions are labeled with a unique symbol. During execution, we maintain the state
tensor, which contains the current MDD node of each data point in the mini-
batch. We also maintain the mask tensor, which indicates values that variables
cannot take.

Backpropagate the Gradients. We heavily rely on non-differentiable gather
and scatter operations offered by Pytorch to maintain the state and the mask
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tensors. As a filter, WalkDD can have non-differentiable components because
it is not updated during training. We pass gradients through the non-blocked
entries of WalkDD into the fully-differentiable RNN. We leave it as a future
research direction to make WalkDD fully differentiable following the work of
Neural Turing Machine [16].

5 Case Study: Routing with Implicit Preferences

As proof of concept, we apply DDGan to a routing problem similar to
Example 1. We consider a set of n locations L = {l1, l2, . . . , ln}. At each day
t, a service person (an agent) receives the request to visit a subset of locations
Rt ⊂ L. For this work, we assume that the agent can visit at most M locations
in a day; i.e., |Rt| ≤ M for all t. The agent has a starting location s ∈ L and an
ending location e ∈ L. When s = e, the agents’s route is a Hamiltonian circle.

The agent’s actual visit schedule for day t, St = (s1,t, s2,t, . . . , s|Rt|,t), is a
permutation (or, an ordered list) of locations in Rt. Notice that it is sufficient to
specify the schedule fully using a permutation. Other information, such as the
earliest time and latest time to visit locations in the schedule, can be inferred
from the permutation. For this work, we assume the agent’s schedules are subject
to the following constraints:

1. All-different Constraint. St must be a subset of L, in which no location
is visited more than once.

2. Full-coverage Constraint. St must visit all and only the locations in Rt.
3. Total Travel Distance Constraint. Let di,j be the length of the shortest

path between li and lj . The total travel distance for the agent is: distt =
ds,s1 +

∑|Rt|−1
i=1 dsi,si+1 + ds|Rt|,e. Suppose the agent has a total travel budget

B. We must have distt ≤ B.

Observe that only the Full-coverage constraint requires the contextual data Rt.
Therefore, the common constraints Rc contains the All-different and the Total
Travel Distance constraint. Lastly, the agent has implicit preferences. As
a result, the schedule St may deviate from the shortest path connecting the
locations in Rt. Moreover, the agent cannot represent these preferences as a
clear objective function. Instead, we are given the travel history S1, S2, . . . , St−1

and the request locations Rt for day t. The goal is to find a valid schedule St,
which satisfies all constraints, but also serves his preferences reflected implicitly
in the travel history.

Constructing MDD for the Routing Problem. For this application, the set
of nodes of the MDD M is partitioned into M +2 layers, representing variables
x1, . . . , xM+2. The first layer contains only one root node, representing the agent
at the starting location, s. The last layer also contains only one terminal node,
representing the agent at the ending location, e. The nodes in the layer of variable
xi correspond to the agent making stops at the i-th position of the schedule. As
initial domain we use D(xi) = L, i.e., the set if all possible locations. There
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are two types of arcs. An arc a = (u, v) of the first type is always directed
from a source node u in one layer xi to a target node v in the subsequent layer
xi+1. Each arc a of the first type in the i-th layer is associated with a label
val(a) ∈ {l1, . . . , ln}, meaning that the agent visits location li as the i-th stop.
The second type of arcs b, whose values val(b) are always e, connect every node
to the terminal node. These arcs are used to allow the agent to travel back to
the end location at any time. The terminal node is connected to itself with an
arc of the second type. This allows the agent to stay at the end location for the
rest of his day, once arrived.

We follow the procedure in [10] for constructing the (relaxed) MDD for the
routing problem, with respect to both the alldifferent and the maximum distance
constraint in Rc. That is, we start with a width-1 MDD, and then repeatedly
apply the filter and the refine operations until the MDD is exact or a fixed width
limit has reached. These operations make use of specific state information that
is maintained at each node of the MDD. Since we will re-use some of these, we
revisit them here. For an MDD node v, (i) All↓(v) is the set of locations that
every path from the root node r to the current node v passes, while (ii) Some↓(v)
is the set of locations that at least one path from the root node r to the current
node v passes. (iii) All↑(v) and (iv) Some↑(v) are defined similarly, except that
they consider locations from the current node v to the terminal node t. An arc in
the MDD of a routing problem corresponds to visiting one location. For an arc a,
define (v) st↓(a) as the shortest travel distance from the root, which is the shortest
distance that the location val(a) can be reached along any path from the root r.
Similarly, define (vi) st↑(a) as the shortest travel distance from the target, which
is the shortest distance to travel to the target node t from the location val(a)
along any path in the MDD. When the MDD is exact, the sum st↓(a) + st↑(a)
represents the shortest distance to travel from the root r to target t along any
valid path passing arc a. When the MDD is relaxed, the computation of st↓(a)
and st↑(a) can be along any path, regardless its validity. The sum st↓(a)+st↑(a)
therefore becomes the lower bound of the shortest distance. More details on how
this information is used for filtering and refinement can be found in [10].

Full WalkDD Filtering for the Routing Problem. The daily requests Rt

for the routing problem can be translated into the following two constraints in
addition to the all-different and maximum distance requirements in Rc: (i) only
locations in the requested set Rt are allowed to be visited other than the starting
and ending locations. (ii) The trip length is exactly |Rt| + 2. Notice that these
two constraints can be realized by imposing unary constraints to the MDD.
To enforce the first constraint, we can remove all first-type arcs in the MDD
whose corresponding location is outside of Rt. To enforce the second constraint,
we remove all second-type arcs which imply the wrong trip length. Because we
have access to an exact filter for unary constraints (Proposition 1), the schedules
produced by the full WalkDD scheme presented in Sect. 4 satisfy all constraints,
if the MDD is exact with respect to Rc (Proposition 2).

Local WalkDD Filtering for the Routing Problem. The full
WalkDD filtering scheme requires a pass over the entire MDD for each data
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point (filtering unary constraints). While this guarantees to produce structures
that satisfy all constraints, when the MDD is exact, it is also relatively computa-
tionally expensive. We next discuss a more efficient local WalkDD filtering
scheme that removes infeasible transitions only from the information that is
local to the current MDD node. This local scheme is not comprehensive, i.e.,
local WalkDD filter may generate structures that do not fully satisfy all con-
straints, even though the MDD is exact. In practice, however, exact MDDs often
become too large, in which case we apply relaxed MDDs for which the guaran-
tees in Proposition 2 no longer hold. In other words, the computational benefit
of local filtering often outweighs theoretical guarantees: it only requires to visit a
single path from the root to the terminal for local filtering, which is substantially
cheaper than visiting the entire MDD as in the full case.

The local WalkDD filter rules out actions of the RNN in each step by only
examining information that is local to the current MDD node, as follows. As
before, we assume that MDD M represents the common constraints Rc. For day
t, local WalkDD keeps its own internal state: Wt,i = (ut,i, lt,i, Vt,i, Rt,i, T imet,i)
after deciding the first i locations, where ut,i is the MDD node in M representing
the current state, lt,i is the current location of the agent, Vt,i is the set of locations
that the agent already visited, Rt,i is the set of locations that remains to be
visited, and Timet,i is the time elapsed after visiting the first i locations. Local
WalkDD applies the following local filters based on its internal state:

– Next Location Filter: The location to be visited should follow one of the
arcs that starts from the current node ut,i. Otherwise, the location is filtered.

– Locations Visited Filter: If the location to be visited is in the set of visited
locations Vt,i, then the location is filtered out, except for the end location e.

– Locations to be Visited Filter: If the location to be visited is not in the
set Rt,i, then the location is filtered out. We guarantee that the end location
e is always in Rt,i.

– Future Location Set Filter: Suppose the next location to be visited is
lt,i+1 and the MDD node following the arc of visiting lt,i+1 is ut,i+1. If Rt,i \
{lt,i+1} is not a subset of Some↑(ut,i+1), then we cannot cover all the locations
remaining to be visited following any paths starting from ut,i+1. Therefore,
lt,i+1 should be filtered out.

– Total Travel Time Filter: Let lt,i+1 be the next location to visit and
st↑(lt,i+1) be the shortest time to reach the end location e from lt,i+1. If
Timet,i + dlt,i,lt,i+1 + st↑(lt,i+1) > B, this suggests that no path from lt,i+1

to the end location satisfies the total distance constraint. Therefore, lt,i+1

should be filtered out.

6 Experiments

The purpose of our experiments is to evaluate the performance of the GAN with
and without the DD module. We first describe the implementation details of the
GAN. We use a LSTM as the RNN module. The dimension of the hidden state
of the LSTM in DDGan is set to 100. The dimension of the random input z is
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20. During training, DDGan is used as the generator of the conditional GAN
infrastructure. The discriminator of the conditional GAN is also a RNN-based
classifier, whose hidden dimension is 100. The batch size is set to be 100. We
compare our DDGan with the same neural network structure except without
the WalkDD module as the baseline. The entire conditional GAN is trained
using stochastic gradient descent. The learning rate of both the generator and
the discriminator are both set to be 0.01. Every 10 epochs, the performance of
DDGan and the baselines are tested by feeding in 1,000 scheduling requests
into the generator part of the neural network (the structure shown in Fig. 2) and
examining the schedules it generates.

Fig. 4. DDGan on a small scheduling problem with 6 locations. DDGan has access to
an exact MDD and the full filtering scheme. (Left) The percentage of valid schedules
generated along training progress. DDGan always generates valid schedules, while the
same neural network without the WalkDD component cannot. (Right) the normalized
reward for the schedules generated by DDGan and the competing approach. The
normalized rewards converge to 1 for DDGan, suggesting that DDGan is able to fully
recover the implicit preference of the agent. (Color figure online)

We assume the agent’s implicit preferences are reflected by a hidden reward
function ri,j , which is the reward that the agent visits location j in the i-th
position of his schedule. For our experiments, this reward function is generated
uniformly randomly between 0 and 1. The agent’s optimal schedule is the one
that maximizes the total reward while observing all the operational constraints.
The reward function is hidden from the neural network. In our application,
the goal of the neural networks is to generate schedules subject to operational
constraints, which also score high in terms of this hidden reward function.

We first test DDGan on a synthetic small instance of 6 locations. In this
case, we embed an exact MDD into the DDGan structure and we apply the full
filtering scheme as discussed in Sect. 4. The result is shown in Fig. 4. As we can
see, the schedules generated by DDGan always satisfy operational constraints
(red curve, left panel), while the schedules generated by the same neural net-
work without the WalkDD module are often not valid (blue curve, left panel).
On the right we plot the total reward of the schedules generated by the two
approaches. Because the number of locations are small, we compute offline the
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Fig. 5. DDGan on a medium-sized scheduling problem in TSPLib consisting of 29
locations, where DDGan can only access a relaxed MDD of width at most 1,000. The
agent is allowed to visit 6 locations (left) or 12 locations (right) maximally. (Top) The
normalized reward for the schedules generated with DDGan and the same neural net-
work without the WalkDD module. DDGan learns to generate schedules that are
close to the optimal ones (with normalized reward close to 1). (Middle, lower) The per-
centage of different types of schedules generated by DDGan (middle) and the baseline
(lower). Legends on the bottom. The schedules generated by DDGan (middle) always
satisfy the alldifferent and distance constraints. The percentage of fully valid sched-
ules increase in (middle). However, the same neural network without WalkDD cannot
satisfy major constraints (lower).
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optimal schedule for each request, i.e., the one that yields the highest total
reward. Then we normalize the reward of the generated schedules against that
of the optimal schedule, so the optimal schedule should get a reward of 1. As we
can see from Fig. 4 (right), the normalized reward of the schedules generated by
DDGan converges to 1 as the training proceeds, which suggests that the sched-
ules generated by DDGan are close to optimal. It is interesting to note that the
baseline approach also learns the implicit reward function, since its generated
schedules also have high reward. In fact, the normalized reward can go beyond
1 because the schedules do not fully satisfy the constraints.

We then conduct an experiment using instance bayg29.tsp from the TSPLib
benchmark, representing 29 cities in Bavaria with geographic distances. We first
run a medium-sized experiment, in which the agents can visit at most 6 loca-
tions. Even though we do not represent the MDD exactly, we can still compute
(offline) the optimal route once we know the requests of at most 6 locations.
For problems of this size, we only apply local WalkDD filters, as discussed
in Sect. 5, as they are more efficient. The results are shown in Fig. 5 (left). For
this experiment, we classify the generated schedules more precisely: (i) Valid
schedules satisfy all constraints. They cover all the locations in the requested
set, meet the travel distance budget, and visit each location exactly once. (ii)
Permutation invalid schedules visit locations that are outside of the requested
set and/or visit locations repeatedly. (iii) Distance invalid schedules break the
total travel distance constraint. (iv) Valid non-empty subset schedules satisfy
both the permutation and the distance constraints. However, they visit only a
subset of the requested locations. (v) Empty schedules do not visit any location
other than the starting location. As shown in Fig. 5 (middle, left), the schedules
generated by DDGan are either completely valid, or violate at most the full
coverage constraint. Moreover, the percentage of valid schedules increases as the
training proceeds. The schedules generated by DDGan are no longer all valid
because the MDD is not exact in dealing with the problem with this scale. On
the bottom are the schedules generated with the same neural net without the
WalkDD module. As we can see, the schedules break all operational constraints.

In Fig. 5 (right), we further run experiments with a maximum of 12 visits.
In this case, we cannot compute the optimal schedule exactly. Instead, we use a
greedy approach, which selects the best 1,000 candidate solutions for each stop
in the schedule. The reward of the schedules generated by the neural networks
are normalized with respect to that of the greedy approach. We can see that for
larger problems we can apply relaxed decision diagrams of polynomial size that
may not guarantee feasibility in all cases, but can produce much better solutions
that those generated by the GAN.

7 Conclusion

In this work, we study the integration of machine learning and constraint rea-
soning in the context of sequential decision-making without clear objectives. We
propose a hybrid approach, DDGan, which embeds a decision diagram (DD)
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into a generative adversarial network (GAN). The decision diagram represents
the constraint set and serves as a filter for the solutions generated by the GAN, to
ensure feasibility. We demonstrate the effectiveness of DDGan to solve routing
problems with implicit preferences. We show that without the decision diagram
module, the GAN indeed produces sequences that are rarely feasible, while the
decision diagram filter substantially increases the feasibility. Moreover, we show
that DDGan converges much more smoothly.
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Abstract. Cumulative resource constraints can model scarce resources
in scheduling problems or a dimension in packing and cutting problems.
In order to efficiently solve such problems with a constraint programming
solver, it is important to have strong and fast propagators for cumula-
tive resource constraints. In this paper, we develop a time-table edge-
finding energy propagator for cumulative constraint which can reason
more strongly based on energy. We give results using this propagator
in a lazy clause generation system on rectangle packing and evacua-
tion scheduling problems. We are able to prune the search space and
reduce solve time compared with a time-table or time-table edge-finding
propagator.

1 Introduction

The cumulative constraint models the use of a limited resource over time in
executing a series of tasks requiring the resource. The resource may be a set of
machines, a group of workers, entities like power supply or even a dimension
in a packing or cutting problem. Because of its broad modelling capability the
cumulative constraint has been widely used in many industrial scheduling prob-
lems. Hence it is important to have strong and fast propagation techniques for the
cumulative constraint so that constraint programming (CP) solvers can detect
inconsistency and remove invalid values for the domains of the variables involved
more efficiently. Moreover, for CP solvers that incorporate nogood learning [11],
it is also important to generate strong reusable explanations for the reasoning
of the cumulative constraint.

Viĺım [18] developed ttef propagation combining time-table propagation [1],
which is usually superior for highly disjunctive problems, and edge-finding prop-
agation [2], which is more appropriate for highly cumulative problems, in order
to perform stronger propagation while having a low runtime overhead. Viĺım
shows that on a range of highly disjunctive project scheduling problems, ttef
propagation can generate lower bounds on the project deadline that are superior
to previous methods. He used a CP solver without nogood learning.

Schutt et al. [14] extended ttef propagation for use in a lazy clause gen-
eration (LCG) CP solver [11] by showing how to explain its propagation.
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(a) An optimal packing of the rectangle
of size 1 × 2, 2 × 3, . . . 12 × 13 where
rotation is allowed.

(b) The two rotations of a rectangle
and its energy usage

Fig. 1. (a) Rectangle packing and (b) the loss of information when only using duration
and resource usage variables

LCG solvers are state of the art for solving many problems involving cumulative
constraints. Schutt et al. [14] show that ttef performs well in both lowering
runtime and reducing search space for highly cumulative scheduling problems.
However, the stronger propagation does not generally pay off for highly disjunc-
tive problems.

An example of the usage of the cumulative constraint is in optimal rectangle
packing [10], which is, given a set of rectangles, find the minimum area of a
rectangle containing all rectangles without overlap. The cumulative constraint is
used as a redundant constraint to constrain the maximal usage of height, when
considering each rectangle as a task of duration length, and resource usage height;
and similarly to constraint the maximum usage of width, when considering each
rectangle as a task of duration height, and resource usage length. Note that the
cumulative constraint provides very strong propagation in the case that the
orientation of the rectangle is fixed, so the length and the height are known. But
if we allow rectangles to be rotated, then we do not know the length and height
of the rectangle, since each has two possibilities (unless it is a square).

Example 1. Consider a set of rectangles of sizes 1 × 2, 2 × 3, ... , up to 12 ×
13, where rectangles may be rotated by 90-degree. Figure 1a shows the optimal
solution in a 21 × 35 bounding box. ��

If we consider the rectangle packing problem we can immediately see a weak-
ness of a cumulative constraint that reasons using only start times, durations
and resources usages. When we consider packing a rectangle of dimensions w×h
whose orientation is not fixed then the minimum duration is min(w, h) and the
minimum resource usage is min(w, h) and hence the overall minimum energy uti-
lization is min(w, h)2, whereas we know the energy utilization is always exactly
w ×h. With explicit energy usage variables, we can make use of the much larger
lower bound on energy usage, and hence hope to propagate more.

Example 2. Figure 1b illustrates this phenomena explicitly by packing a 3 × 8
rectangle into an interval which is at least 8 long. Without knowing the orienta-
tion of the rectangle the lower bound on duration and resource usage are both
3, for a minimum resource usage of 9. But since the entire rectangle fits in the
interval whatever rotation we know the energy usage is exactly 24. ��
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In this paper we define a cumulative propagator that uses energy variables
in a ttef propagation algorithm; we show how to explain its propagation; and
we compare it against time-table and ttef propagators.

2 Cumulative Resource Constraint with Energy Variables

In cumulative resource scheduling, a set of (non-preemptive) tasks V and one
cumulative resource with a (constant) resource limit L is given where a task i
is specified by its start time Si, its duration Di, its resource usage Ri, its
energy Ei = Di · Ri. In this paper we assume each of Si, Di, Ri and Ei may be
an integer variable and L is assumed to be an integer constant.

We assume a set of integer times τ and use notation [t1, t2) to indicate the
period starting at time t1 and finishing (non-inclusive) at time t2. We define
esti (dmin

i , rmin
i , emin

i ) and lsti (dmax
i , rmax

i , emax
i ) as the current lower and

upper bounds of start time (duration, resource usage, energy respectively) of i.
Further, we define the earliest completion time ecti ← esti +dmin

i , and the latest
completion time lcti ← lsti + dmax

i .
The cumulative resource constraint with energy cumulative(S,D,R,E,L)

is characterized by the set of tasks V and a cumulative resource with resource
capacity L. The constraint is satisfied by finding a solution that assigns values to
each of the start time variables Si, duration variables Di, resource usage variables
Ri and energy usage variables Ei (i ∈ V), so that the following conditions hold.

esti ≤ Si ≤ lsti, ∀i ∈ V
dmin

i ≤ Di ≤ dmax
i , ∀i ∈ V

rmin
i ≤ Ri ≤ rmax

i , ∀i ∈ V
emin
i ≤ Ei ≤ emax

i , ∀i ∈ V
Ri × Di = Ei, ∀i ∈ V
∑

i∈V:τ∈[Si,Si+Di)
Ri ≤ L ∀τ

where τ ranges over the time periods considered. Note that this problem is
NP-hard [6].

3 Time-Table Edge-Finding Propagation with Energy
Variables

The basic idea of ttef propagation is to treat a task as a fixed part (used in
time-table propagation) and a free part and to determine the range of start times
based on the energy available from the resource and the energy required for the
tasks in specific time windows.

Time-table edge-finding [14,18] calculates the amount of energy ei(a, b) that
must be used by a task i in the time window between two time points a and b.
The ttef calculation for ei(a, b) without energy variables is given by
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ei(a, b) :=

⎧
⎪⎨

⎪⎩

dmin
i × rmin

i , a ≤ esti ∧ lcti ≤ b

max(0, b − lsti) · rmin
i a ≤ esti ∧ lcti > b

max(0,min(b, ecti) − max(a, lsti)) · rmin
i otherwise

The first case is when the entire task must occur in the time window, here
we can use the lower bound on the total energy of the task given by dmin

i ×rmin
i .

The second case is when the task partially overlaps and some parts might run
after the time window, here we use the minimum duration of the overlap times
the minimum resource usage. The third case is for all others for which we only
consider the minimum energy from the overlapping compulsory part of the task.

The weakness of the usual ttef formulation without energy variables is that
the lower bound of energy of a task dmin

i × rmin
i can be very weak, as shown in

Example 2. When we have energy variables we can calculate minimum energy
usage within a time window more accurately.

ei(a, b) :=

⎧
⎪⎨

⎪⎩

emin
i a ≤ esti ∧ lcti ≤ b

max(0, b − lsti) · rmin
i a ≤ esti ∧ lcti > b

max(0,min(b, ecti) − max(a, lsti)) · rmin
i otherwise

Note that only the first case for the calculation changes. We assume that the
product constraint Ei = Di×Ri is separately propagated so emin

i ≥ dmin
i ×rmin

i .

3.1 Consistency Check with Energy Variables

The consistency check is the part of ttef energy propagation that checks if
there is a resource overload in any task interval. Time-table edge finding splits
the total energy of a task into a fixed part efix

i ← max(0, rmin
i · (lsti − ecti))

and a free part efree
i ← emin

i − efix
i . Let VFree be the set of tasks with a non-

empty free part {i ∈ V | efree
i > 0}. The use of energy variables simply allows

us to have a better estimation of the least energy used by a task within a time
window [a, b).

Proposition 1 (Consistency Check). The cumulative resource scheduling
problem is inconsistent if R · (b − a) − energy(a, b) < 0 where energy(a, b) :=∑

i∈V ei(a, b)

This check can be done in O(l2 + n) runtime [18], where l = |VFree|, if the
resource profile is given.

The algorithm for the consistency check is shown in Algorithm 1. The dif-
ference from ttef is that for a task i, if lcti is later than the end time, we can
take all its free energy into account; if not, we use the part of free energy lying
between the time interval. The differences from the algorithm of Schutt et al. [14]
are shown in blue.

In order to use the cumulative propagator within a CP solver with nogood
learning [11] the propagator needs to be able to explain the reason for failures
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Algorithm 1. TTEF En consistency check algorithm
Input: X activity array sorted in non-decreasing order of the earliest start time.
Input: Y activity array sorted by (non-decreasing) latest completion time.
1: procedure TTEF En consistency check
2: end ← ∞;minAvail ← ∞
3: for y ← n down to 1 do
4: b ← Y [y]
5: if lctb = end then continue

6: if end �= ∞ and minAvail �= ∞ and minAvail ≥ R · (end − lctb) −
ttEn(lctb, end) then continue

7: end ← lctb; Enfree ← 0;minAvail ← ∞
8: for x ← n down to 1 do
9: a ← X[x]

10: if end ≤ esta then continue

11: begin ← esta
12: eMin = max(emin

a , dmin
a × rmin

a )
13: if lcta ≤ end then
14: Enfree ← Enfree + eMin − efixa

15: else
16: enInfix ← max(0,min(end, ecta) − lsta) × rmin

a

17: enInfree ← min(efreea ,max(0, rmin
a × (end − lsta) − enInfix))

18: Enfree ← Enfree + enInfree

19: Enavail ← R · (end − begin) − Enfree − ttEn(a, b)
20: if Enavail < 0 then
21: explainOverload(begin, end)
22: return false

23: if Enavail < minAvail then minAvail ← Enavail

of the consistency check. That is it needs to determine a set of facts true about
the current domain D which ensure that the consistency check leads to failure.

We need to explain for each task i where ei(a, b) > 0 why its energy usage
was at least ei(a, b). Hence, for task i, the start time should be larger than
a−

⌊
emin
i −ei(a,b)

rmax
i

⌋
and less than b−

⌈
ei(a,b)
rmin
i

⌉
. And also, the resource usage should

be less than rmax
i and larger than rmin

i because if not, the energy of task i which
lie in the time window could be less ei(a, b). In summary, the explanation should
be of the form.

∧

i∈V:ei(a,b)>0

�a −
⌊

emin
i − ei(a, b)

rmax
i

⌋
≤ Si� ∧ �Si ≤ b −

⌈
ei(a, b)
rmin
i

⌉
�

∧ �rmin
i ≤ Ri� ∧ �Ri ≤ rmax

i � ∧ �emin
i ≤ Ei� → ⊥

To further generalize the explanation, we can make use of the overload energy
Δ := energy(a, b) − R · (b − a) − 1, if Δ > 0. Since the overload occurs even if
some tasks use less energy we can give some allowable reduction δi in the energy
used in the time window for each task i and still use up too much energy in
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the time window. We choose δi such that
∑

i∈V:ei(a,b)>0 δi = Δ. For task i, if
δi ≥ ei(a, b) then we can remove the task i completely from the explanation.
Otherwise the start time lower bound and upper bound for the explanation can
be relaxed to a − emin

i −ei(a,b)+δi
rmax
i

and b − ei(a,b)−δi
rmin
i

, respectively. By default we
generalise the tasks in order. We experimented with different policies, but found
any reasonable generalization policy was equally effective.

3.2 Start Time Lower Bound Propagation with Energy Variables

Propagation on the lower and upper bounds of the start time variables Si are
basically symmetric; consequently we only discuss the case for the lower bounds’
propagation.

To prune the start time lower bound of a task u, ttef en checks if there is
an overload when task u starts at its earliest start time in a time window [a, b).
Viĺım [18] considers four positions of u relative to the time window. In our case,
the four positions should be defined as right (a ≤ estu < b < ectu), inside (a ≤
estu < ectu ≤ b), through (estu < a ∧ b < ectu), and left (estu < a < ectu ≤ b).

For right and inside task u, we define eest
u (a, b) := min(emin

u , rmin
u ×

(min(estu + dmax
u , b) − estu)) as the minimum energy used when u starts at

its earliest start time and emax
u (a, b) as the maximum available energy remain-

ing in the time window when u is left out. The update rule for the right and
inside task u, illustrated in Fig. 1, is

R · (b − a) − (energy(a, b, u) + eest
u (a, b)) < 0 → b −

⌊
emax
u (a, b)

rmin
u

⌋
≤ Su (1)

where energy(a, b, u) := energy(a, b) − eu(a, b) and emax
u (a, b) := R × (b − a) −

energy(a, b, u). We omit the propagation algorithm for space reasons, it is similar
to that shown in [14].

To explain the propagation of the new start time lower bound est′u for task u,
the principle is that we decrease the lower bound on the left hand side as much
as possible so that the same propagation holds. For the task u, we can push
the explanation of lower bound to the left until the minimum energy lying in
the time window just equals emax

u (a, b). And for all other tasks we can perform
similar generalization as discussed in the case of resource overload.

∧

i∈V\{u}:ei(a,b)>0

(�a −
⌊

emin
i − ei(a, b)

rmax
i

⌋
≤ Si� ∧ �Si ≤ b −

⌈
ei(a, b)
rmin
i

⌉
�

∧ �rmin
i ≤ Ri� ∧ �Ri ≤ rmax

i � ∧ �emin
i ≤ Ei�) ∧ �emin

u ≤ Eu�

∧ �a −
⌊

emin
u − emax

u (a, b)
rmax
u

+ 1
⌋

≤ Su� ∧ �rmin
u ≤ Ru� ∧ �Ru ≤ rmax

u �

→ �est′u ≤ Su�
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4 Experimental Evaluation

We now compare our solution approach ttef en to both time-table (tt), time-
table edge-finding ttef propagation. We compare average conflicts (conf) and
average time (in seconds) for 10 runs, ∞ indicates all runs fail to prove optimality
in time. The experiments were run on a X86-64 running MacOS 10.13 and a Intel
Core m3 CPU processor at 1.2 GHz. We set the timeout for each run to 1800 s.
All models and data are available at people.eng.unimelb.edu.au/pstuckey/ttefen.

Rectangle Packing problems [10] are highly cumulative and hence good exam-
ples for ttef propagation. We compare three different versions: (a) consec-
utive rectangle packing [10], where instance N is the set of rectangles of
size 1 × 2, 2 × 3, ..., up to N × (N + 1) that may be rotated. (b) double-
perimeter rectangle packing [10], where instance N is the set of rectangles of
size 1 × (2N − 1), 2 × (2N − 2), ..., up to N × (N + 1) that may be rotated. (c)
free rectangle packing, where instance N is a set of rectangles constrained to take
areas to be 1× (2N −1), 2× (2N −2), ..., up to N × (N +1) with any height and
width giving the correct area. The results using default activity based search are
shown in Table 1. Clearly ttef en propagation is superior to the alternatives,
and its advantage grows with problem size. We also compared using fixed search
(not shown) where ttef en was also superior, but not by as much.

Evacuation Planning problems [5] try to schedule evacuation tasks so everyone
is evacuated as quickly as possible. Cumulative constraints constrain the flow
rates ri of evacuation tasks on road segments. The total energy of a task i is

Table 1. Results for rectangle packing

Consecutive 12 13 14 15 16

conf time conf time conf time conf time conf time

tt 11250 9.21 33556 23.91 111749 71.85 306233 191.01 ∞ ∞
ttef 13912 9.76 30705 20.91 72670 45.64 216442 144.92 885743 581.41

ttef en 8367 7.23 23836 15.36 59998 37.57 157539 113.56 806538 503.17

Double
perimeter

7 8 9 10 11

conf time conf time conf time conf time conf time

tt 2251 0.90 12195 3.55 41203 16.88 106326 62.34 ∞ ∞
ttef 2200 1.18 10550 5.08 39329 17.06 93773 61.69 817887 815.26

ttef en 1979 0.91 8035 3.40 25127 9.57 55212 34.56 454654 361.18

Free 6 7 8 9 10

conf time conf time conf time conf time conf time

tt 1896 1.71 6965 6.88 155992 119.72 594878 488.63 ∞ ∞
ttef 1700 1.65 8001 7.74 153885 118.31 546442 457.52 ∞ ∞
ttef en 1712 1.68 6237 5.76 96074 80.68 446776 311.91 ∞ ∞

http://people.eng.unimelb.edu.au/pstuckey/ttefen
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Table 2. Evacuation problem.

9 10 11 20 30 40 50

conf time conf time conf time evac evac evac evac

tt 2069.8 218.81 6962.7 684.59 1830.5 490.84 9326.4 17348.3 21941.5 27926.0

ttef 2306.2 228.42 7108.7 675.45 2437.4 551.64 8995.8 16968.1 21909.9 27925.3

ttef en 1993.9 219.21 5817.8 578.43 1646.1 448.05 8959.7 16851.6 21884.9 27879.7

the number ni of evacuees constrained so that the di × ri ≥ ni. The results
using default search are shown in Table 2, where N is the number of evacuation
zones, we use 10 randomly generated instances for each N and show average
results. For small examples where all methods can prove optimality, we compare
conflicts and time. For larger examples we simple compare minimal evacuation
time (evac) at time out. The smaller results show that energy variables improve
the number of conflicts and time (except the smallest example). Interestingly
here ttef does not beat tt in terms of conflicts or time. For larger results we
see ttef is superior to tt and bettered by ttef en.

5 Conclusion and Related Work

The addition of energy variables to the cumulative constraint allows us to
improve any energy based reasoning approach for cumulative. The experiments
show that in problem classes where ttef propagation is effective, the version
using energy variables ttef en is even more effective. We expect the same would
occur if we added energy variables to other cumulative propagators that reason
about energy, e.g., [7–9,12,13,15,16].

Note that a number of versions of the cumulative constraint appearing in
the CHIP system [4] included energy variables (there called “surface” variables).
How these variables are used in propagation is not described in any detail; we do
not believe they are combined with ttef propagation. Interestingly, no version
of cumulative with energy variables appears in the Global Constraint Catalog,
even though the CHIP developers are key contributors.

However, Beldiceanu [3], one of the key contributors, describes a function
called ask what if that can be passed to global constraint propagators and the
propagator can query about bounds on, e.g., a product of two variables. This
could be used to imitate energy variables, but is not implemented in any system
we are aware of.

The most common used CP solvers (Gecode, Choco, JaCoP, SICStus Prolog,
CP Optimizer, OR Tools) do not have an implementation, which considers the
product/ energy variable. To best of our knowledge, there is no publication of
filtering algorithms on the energy variable. Note that Vilim [17] determines the
maximal available energy in certain time windows according to the edge-finder
rule in order to propagate max duration and max resource usage, but does not
consider energy variables which would improve the propagation.
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Abstract. Nonlinear pseudo-Boolean optimization (nonlinear PBO) is
the minimization problem on nonlinear pseudo-Boolean functions (non-
linear PBFs). One promising approach to nonlinear PBO is to first use a
quadratization algorithm to reduce the PBF to a quadratic PBF by intro-
ducing intelligently chosen auxiliary variables and then solve it using
a quadratic PBO solver. In this paper, we develop a new quadrati-
zation algorithm based on the idea of the constraint composite graph
(CCG). We demonstrate its theoretical advantages over state-of-the-
art quadratization algorithms. We experimentally demonstrate that our
CCG-based quadratization algorithm outperforms the state-of-the-art
algorithms in terms of both effectiveness and efficiency on randomly gen-
erated instances and a novel reformulation of the uncapacitated facility
location problem.

1 Introduction

Nonlinear pseudo-Boolean optimization (nonlinear PBO) refers to the minimiza-
tion problem on nonlinear pseudo-Boolean functions (nonlinear PBFs). Formally,
a PBF is a mapping f : Bn → R that maps each assignment of values to a set of
Boolean variables to a real number. The Boolean variables are restricted to take
a value in B = {0, 1}. A PBF is nonlinear iff it cannot be reformulated as a linear
combination of the Boolean variables. (Nonlinear) PBO asks for an assignment
of values to the Boolean variables that minimizes the value of a (nonlinear) PBF,
i.e., it is the task of computing arg minx∈Bn f(x). Nonlinear PBO is known to be
NP-hard and subsumes many classic optimization problems, such as MAX-SAT
and MAX-CUT [10]. It has been used in many real-world applications, such as
computer vision [26], operations research and traffic planning [15,18,37], chip
design [11], evolutionary computation [38], and spin-glass models [25].

While a lot of research has concentrated on linear PBO (with linear con-
straints) [1,8,13,23,31,33,35], nonlinear PBO has not been very well studied.
There only exist a handful of techniques dedicated to nonlinear PBO, such as
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reformulation to 0/1 integer linear programming (ILP) [16], constraint integer
programming [6], constraint logic programming [7], and graph cuts [26]. Among
these techniques, the most viable approach involves quadratization algorithms,
i.e., reformulating the PBF as a quadratic PBF [3,21]. A PBF is quadratic iff
it is a sum of monomials in which each monomial is a product of at most two
Boolean variables. Several authors have pointed out the benefits of quadratiza-
tion algorithms over algorithms based on linearization and ILP [4,10,17].

Quadratization algorithms are not only the most viable approach to PBO,
but also the only viable approach that serves some fundamental purposes.
For example, quantum annealers—such as the D-Wave chips—can solve only
quadratic unconstrained Boolean optimization problems [22]. Therefore, a
quadratization algorithm is indispensable for solving nonlinear PBO instances on
quantum annealers. In addition, no existing weighted MAX-SAT or ILP solver
can solve nonlinear PBO instances with arbitrary lengths of monomials. They,
including BiqMac [36], are only applicable to unconstrained binary quadratic
programs. Quadratization algorithms are therefore required for reformulating
nonlinear PBO instances to make them amenable to such solvers. In general,
quadratization algorithms are useful due to the existence of more efficient algo-
rithms that are dedicated to minimizing quadratic PBFs, i.e., to quadratic PBO
(QPBO). For example, a QPBO solver can make use of the peculiar properties of
quadratic PBFs, such as their roof duality [24] and the existence of polynomial-
time algorithms for finding partial solutions even if the PBFs are not submod-
ular [21].

Formally, a quadratization of a PBF f(x) is a quadratic PBF g(x,y) such
that

f(x) = min
y∈Bm

g(x,y) ∀x ∈ B
n, (1)

where y is a set of m auxiliary Boolean variables. Since minimizing a quadratic
PBF is also NP-hard, quadratization algorithms should preferably be achieved
in polynomial time using a small number of auxiliary variables. Since the number
of variables largely determines the size of the search space, existing algorithms
focus on minimizing the number of auxiliary variables [3,21].

In this paper, we develop a new polynomial-time quadratization algorithm
based on the constraint composite graph (CCG) [28–30]. We show that our CCG-
based quadratization algorithm has a theoretical advantage over the state-of-the-
art algorithms proposed in [21]. We also experimentally demonstrate that our
CCG-based quadratization algorithm outperforms the state-of-the-art quadra-
tization algorithms in terms of the required number of auxiliary variables, the
number of terms in the quadratization, and the runtime. We conduct experi-
ments on both randomly generated instances and a novel reformulation of the
uncapacitated facility location problem.

2 Preliminaries

In this section, we give a brief background on quadratizations and the CCG.
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2.1 Quadratizations

A PBF is a function that maps n Boolean variables to a real number. As proved
in [18], any PBF f of n Boolean variables x = {x1, . . . , xn} can be uniquely
represented as a polynomial of the form

f(x) =
∑

S⊆x

cS

∏

x∈S

x, (2)

where cS ∈ R. Throughout this paper, we specify all PBFs in this form. We let
d denote the degree of a PBF, i.e., the maximum degree of all its monomials.

A quadratization of a PBF f(·) is a quadratic PBF g(·) that satisfies Eq. (1).
For any given PBF, its quadratizations exist but are not necessarily unique.
Since a quadratization algorithm can be seen as a preprocessing algorithm, its
effectiveness can be evaluated using two metrics: the number of auxiliary vari-
ables and the number of terms in g(·), which usually are good indicators of the
time required to solve the resulting quadratic PBF using a QPBO solver.

In terms of the number of auxiliary variables in g(·), some current state-
of-the-art algorithms are given in [21]. The first algorithm is called polynomial
expansion and is polynomial-time. It first quadratizes, i.e., finds a quadratization
of, each monomial in f(·) individually and then combines all like quadratic terms.
Polynomial expansion quadratizes a monomial ax1 . . . xd of degree d > 2 to

⎧
⎪⎪⎨

⎪⎪⎩

min
w∈B

aw (S1 − (d − 1)) if a < 0

min
{w1,...,wnd

}∈B
nd

nd∑

i=1

wi (ci,d(−S1 + 2i) − 1) + aS2 if a > 0,
(3)

where

S1 =
d∑

i=1

xi S2 =
d−1∑

i=1

d∑

j=i+1

xixj =
S1(S1 − 1)

2

nd =
⌊

d − 1
2

⌋
ci,d =

{
1 if i = nd and d is odd
2 otherwise.

Therefore, if a < 0, quadratizing this monomial requires 1 auxiliary variable; if
a > 0, it requires nd auxiliary variables1.

The second algorithm is called γ flipping. Let γ = {γ1, . . . , γn} ∈ B
n and

x
(γ )
i = γixi + γ̄ix̄i =

{
xi if γi = 1
x̄i if γi = 0.

Then, we have

f(x) =
∑

γ∈Bn

f(γ)x(γ )
1 . . . x(γ )

n = λ +
∑

γ∈Bn

(f(γ) − λ)x(γ )
1 . . . x(γ )

n . (4)

1 For a single positive monomial, the smallest possible number of auxiliary variables
achievable is �log d� − 1, as proven in [9].
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When using
λ = max

γ∈Bn
f(γ), (5)

every monomial in Eq. (4) is non-positive. Then, by following the first case in
Eq. (3), γ flipping requires exactly 2n − 1 auxiliary variables. This is superpoly-
nomial with respect to the size of input if the number of terms in Eq. (2) is, for
example, polynomial with respect to n.

The computation of Eq. (5) is the bottleneck. Its time complexity is super-
polynomial with respect to n. Hence, γ flipping is superpolynomial-time if the
number of terms in Eq. (2) is, for example, polynomial with respect to n.

2.2 Constraint Composite Graph

The CCG [28–30] is a combinatorial structure associated with an optimization
problem posed as the weighted constraint satisfaction problem (WCSP). It simul-
taneously represents the graphical structure of the variable interactions in the
WCSP and the numerical structure of the constraints in it. The task of solving
the WCSP can be reformulated as the task of finding a minimum weighted vertex
cover (MWVC) (called the MWVC problem) on its associated CCG. CCGs can
be constructed in polynomial time and are always tripartite. A subclass of the
WCSP has instances with bipartite CCGs. This subclass is tractable since an
MWVC can be found in polynomial time on bipartite graphs using a maxflow
algorithm [27]. The CCG also facilitates kernelization, message passing [14,40],
and an efficient encoding of the WCSP as an integer linear program [39].

Given an undirected graph G = 〈V,E〉, a vertex cover of G is a set of vertices
S ⊆ V such that every edge in E has at least one of its endpoint vertices in S.
A minimum vertex cover (MVC) of G is a vertex cover of minimum cardinality.
When G is vertex-weighted—i.e., each vertex vi ∈ V has a non-negative weight
wi associated with it—its MWVC is defined as a vertex cover of minimum total
weight of its vertices. The MWVC problem is the task of computing an MWVC
on a given vertex-weighted undirected graph.

For a given graph G, the concept of the MWVC problem can be extended
to the notion of projecting MWVCs onto a given independent set (IS) U ⊆ V .
(An IS of G is a set of vertices in which no two vertices are adjacent to each
other.) The input to such a projection is the graph G as well as an IS U =
{u1, u2, . . . , uk}. The output is a table of 2k numbers. Each entry in this table
corresponds to a k-bit vector. We say that a k-bit vector t imposes the following
restrictions: (i) if the ith bit ti is 0, the vertex ui has to be excluded from the
MWVC; and (ii) if the ith bit ti is 1, the vertex ui has to be included in the
MWVC. The projection of the MWVC problem onto the IS U is then defined
to be a table with entries corresponding to each of the 2k possible k-bit vectors
t(1), t(2), . . . , t(2

k). The value of the entry corresponding to t(j) is equal to the
weight of the MWVC conditioned on the restrictions imposed by t(j). [28, Fig. 2]
illustrates this projection.

The table of numbers produced above can be viewed as a weighted constraint
over |U | Boolean variables. Conversely, given a (Boolean) weighted constraint,
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we design a lifted representation for it so as to be able to view it as the projec-
tion of an MWVC onto an IS of some intelligently constructed vertex-weighted
undirected graph [28,29]. The benefit of constructing these representations for
individual constraints lies in the fact that the lifted representation for the entire
WCSP, i.e., the CCG of the WCSP, can be obtained simply by “merging” them.

[28, Fig. 5] shows an example WCSP instance over 3 Boolean variables to
illustrate the construction of the CCG. Here, there are 3 unary and 3 binary
weighted constraints. Their lifted representations are shown next to them. The
figure also illustrates how the CCG is obtained from the lifted representations of
the weighted constraints: In the CCG, vertices that represent the same variable
are simply “merged”—along with their edges—and every “composite” vertex is
given a weight equal to the sum of the individual weights of the merged vertices.
Computing the MWVC for the CCG yields a solution for the WCSP instance;
namely, if Xi is in the MWVC, then it is assigned value 1 in the WCSP instance,
otherwise it is assigned value 0 in the WCSP instance.

3 The CCG-Based Quadratization Algorithm

PBO is a special case of the WCSP and is therefore equivalent to solving the
MWVC problem on its associated CCG. In turn, we show that the MWVC
problem itself can be reformulated as QPBO. This leads to the CCG-based
quadratization algorithm presented in this section.

Given a vertex-weighted graph G = 〈V,E,w〉 and one of its independent sets
T , the projection of the MWVC problem onto T is a table of weights of MWVCs
with all combinations of vertices in T imposed to be included in or excluded from
the MWVC [28]. More formally:

Definition 1. Let T+ ∪ T− = T and T+ ∩ T− = ∅. S is a para-vertex cover on
〈G,T+, T−〉 iff S is a vertex cover on G, T+ ⊆ S, and T− ∩ S = ∅. S is a para-
MWVC on 〈G,T+, T−〉 iff S is a para-vertex cover on 〈G,T+, T−〉 and the sum
of weights of all vertices in S is no greater than that of any other para-vertex
cover on 〈G,T+, T−〉. The projection of the MWVC problem onto T (on G) is a
function that maps 〈T+, T−〉 to the weight of a para-MWVC on 〈G,T+, T−〉.
The following theorem is inspired by [12, Theorem 3].

Theorem 1. Let us consider the finite graph G = 〈V,E,w〉 and an independent
set T = T+ ∪ T− on it. Let x = (xr : r ∈ V ) and

C(x) =
∑

p∈V

wpxp +
∑

(p,q)∈E

Jpq(1 − xp)(1 − xq). (6)

(i) If ∀(p, q) ∈ E : Jpq ≥ max{wp, wq}, then the projection of the MWVC
problem onto an independent set T equals the function

h(〈T+, T−〉) = min
xj∈B:j∈V \T

C(x)
∣∣
xi=1 if i∈T+
xi=0 if i∈T−

. (7)
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(ii) If further ∀(p, q) ∈ E : Jpq > max{wp, wq}, then any S∗ ⊂ V that satisfies

T+ ⊆ S∗ (8)
T− ∩ S∗ = ∅ (9)
C (S∗) = h(〈T+, T−〉) (10)

is a para-MWVC on 〈G,T+, T−〉, with C (·) defined as C (S) = C(x)
∣∣
xi=1 if i∈S
xi=0 if i/∈S

.

Proof. Let us consider a given 〈T+, T−〉. We first prove (ii), then (i).
For (ii): We first prove by contradiction that, if Jpq > max{wp, wq}, then S∗ is

a vertex cover. Let x∗
i = 1 if i ∈ S∗ and x∗

i = 0 if i ∈ V \S∗, and x∗ = (x∗
i : i ∈ V ).

We assume that there exists an edge (a, b) such that x∗
a = x∗

b = 0. Neither a nor
b can be in T+ because T+ ⊆ S∗. Since T is an independent set, a and b cannot
be both in T−. If we hold either of the rest cases, i.e.,

– if only one of a and b is in T− (without loss of generality, we let a ∈ T−), or
– if neither a nor b is in T−,

then a /∈ S∗ and C (S∗) −C (S∗ ∪ {b}) =
∑

k/∈S∗:(b,k)∈E Jbk − wb ≥ Jab − wb > 0,
which contradicts Eq. (10).

In addition, S∗ is also a para-MWVC on 〈G,T+, T−〉 because S∗ being a
vertex cover implies

∑
(p,q)∈E Jpq(1 − x∗

p)(1 − x∗
q) = 0. Therefore, (ii) holds.

For (i): Let S∗′ be a para-MWVC on 〈G,T+, T−〉. Because S∗′ is a vertex
cover, the second summation of Eq. (6) in C (S∗′) equals zero and thus the weight
of S∗′ equals C (S∗′). Therefore, it is sufficient to prove that there exists such an
S∗′ that satisfies C (S∗′) = h(〈T+, T−〉), or, equivalently, C (S∗′) = C (S∗).

If C(·) is a constant function, then it is obvious that C (S∗′) = h(〈T+, T−〉). We
now consider the case where C(·) is not a constant function. Let E′ = {(p, q) ∈
E : Jpq = max{wp, wq}}. Let

C′(x) =
∑

p∈V

wpxp +
∑

(p,q)∈E

J ′
pq(1 − xp)(1 − xq). (11)

Here, J ′
pq =

{
Jpq if (p, q) /∈ E′

Jpq + εpq if (p, q) ∈ E′ , where ∀(p, q) ∈ E′ : εpq > 0 and they

satisfy ∑

(p,q)∈E′
εpq < ε0, (12)

where ε0 is the smallest positive value that C(x)−C(y) can be for all x,y ∈ B
|V |,

i.e., ε0 = min{C(x)−C(y) ∈ R>0 : x,y ∈ B
|V |}. Here, the operand of min cannot

be ∅ because C(·) is not a constant function.
(✰) Let S∗′ ⊆ V satisfy Eqs. (8) to (10) except that C (·) in Eq. (10) is

replaced by C ′(·), defined as C ′(S) = C′(x)
∣∣
xi=1 if i∈S
xi=0 if i/∈S

, and all occurrences of

C(·) are replaced by C′(·). According to (ii), S∗′ is a para-MWVC on 〈G,T+, T−〉.
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Fig. 1. The graph gadgets for the construction of the CCG. Each vertex is associated
with a weight and a label. “xa” and “xL” are the labels of the auxiliary variables.

Let x∗′
i = 1 if i ∈ S∗′ and x∗′

i = 0 if i ∈ V \ S∗′, and x∗′ = (x∗′
i : i ∈ V ). Now we

only need to prove C (S∗′) = C (S∗), or, equivalently, C(x∗′) = C(x∗).
According to Eq. (10), C(x∗) = h(〈T+, T−〉). Therefore, C(x∗′) ≥ C(x∗).

We now only need to prove that C(x∗′) > C(x∗) cannot hold. We prove by
contradiction. Assume C(x∗′) > C(x∗). Then, according to the definition of
ε0, C(x∗′) − C(x∗) ≥ ε0. According to Eqs. (11) and (12), C(x∗) − C′(x∗) ≥
−∑

(p,q)∈E′ εpq > −ε0. According to Eq. (11), C′(x∗′)−C(x∗′) ≥ 0. Adding these
three inequalities, we have C′(x∗′)−C′(x∗) > 0, and thus C ′(S∗′) > C ′(S∗). This
contradicts Eq. (10) after the replacements in (✰). �

Based on Theorem 1, we outline a quadratization algorithm for a (nonlinear)
PBO—or more generally for a WCSP—as follows: (i) Using the polynomial-time
algorithm proposed in [28], reformulate the input PBF f(x) to the projection
of the MWVC problem on its CCG; and (ii) using Theorem 1, convert this
projection to a quadratic PBF and output it as its quadratization.

3.1 A Full Example

Consider the PBF

P (x1, x2, x3, x4) = 3x2x3 + 5x1x2x3 + 6x1x2x3x4 − 3x1x3x4 . (13)

The CCG is a composition of graph gadgets, each of which represents a mono-
mial [28]. Each monomial is related to an MWVC of a particular graph gadget
(Fig. 1). Assume a > 0 (throughout this subsection), for a monomial −ax1x2x3,
MWVC {Fig. 1a} = a − ax1x2x3, where MWVC {Fig. 1a} is the weight of the
MWVCs of Fig. 1a, i.e.,

−ax1x2x3 = MWVC {Fig. 1a} − a . (14)

For ax1x2x3, MWVC {Fig. 1b} = L(1−x3)+a−a(x1x2(1−x3)), for a sufficiently
large constant L, i.e.,

ax1x2x3 = MWVC {Fig. 1b} − L(1 − x3) − a + ax1x2 . (15)

For ax1x2x3x4, MWVC {Fig. 1d} = L(1 − x4) + a − a(x1x2x3(1 − x4)), i.e.,

ax1x2x3x4 = MWVC {Fig. 1d} − L(1 − x4) − a + ax1x2x3 , (16)
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where ax1x2x3 can be rewritten as in Eq. (15). Here, all monomials of degree
> 2 have been rewritten as quadratic PBFs and weights of MWVCs of graph
gadgets.

Applying Theorem 1 and setting J ≥ L > a > 0, we further express the
weights of MWVCs in algebraic quadratic forms as

MWVC {Fig. 1a} = min
xa

[axa + J(1 − x1)(1 − xa)

+J(1 − x2)(1 − xa) + J(1 − x3)(1 − xa)]
(17)

MWVC {Fig. 1b} = min
xa,xL

[axa + LxL + J(1 − x1)(1 − xa)

+J(1 − x2)(1 − xa)+J(1 − x3)(1 − xL) + J(1 − xL)(1 − xa)]
(18)

MWVC {Fig. 1c} = min
xa

[axa + J(1 − x1)(1 − xa)

+J(1 − x2)(1 − xa)+J(1 − x3)(1 − xa) + J(1 − x4)(1 − xa)]
(19)

MWVC {Fig. 1d} = min
xa,xL

[axa + LxL + J(1 − x1)(1 − xa)

+J(1 − x2)(1 − xa) + J(1 − x3)(1 − xa)
+J(1 − x4)(1 − xL) + J(1 − xL)(1 − xa)] .

(20)

Here, we have quadratized all monomials of degree > 2 using the algebraic
expression of the weight of MWVCs on its graph gadget. The auxiliary variables
are named uniquely for each graph gadget. For the PBF in Eq. (13), we therefore
need 5 auxiliary variables: xa and xL for the degree-4 term, xa′ and xL′ for the
degree-3 term with positive coefficient that combines the existing degree-3 term
with the degree-3 term that comes from the reduction of the degree-4 term, and
xa′′ for the degree-3 term with negative coefficient.

3.2 Details of the CCG-Based Quadratization Algorithm

The CCG-based quadratization algorithm is an iterative algorithm. Let f(x) be
the input PBF. It initializes a polynomial f ′(x) to f(x). In each iteration, let
d be the degree of f ′(x). It substitutes each degree-d negative monomial and
positive monomial in f ′(x), respectively, using

−ax1 . . . xd = min
xa

[
axa + J

d∑

i=1

(1 − xi)(1 − xa)

]
− a (21)

ax1 . . . xd = min
xa,xL

[
axa + LxL + J

d−1∑

i=1

(1 − xi)(1 − xa)

+ J(1 − xd)(1 − xL) + J(1 − xL)(1 − xa)

]
(22)

− L(1 − xd) − a + ax1 . . . xd−1,
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where J ≥ L > a > 0. It then combines all like terms in f ′(x). Because the
right-hand sides of Eqs. (21) and (22) are of degrees that are lower than the
left-hand sides, the degree of f ′(x) decreases by at least 1 after each iteration.
The iterating procedure terminates until the degree of f ′(x) is no larger than 2.
Finally, the algorithm outputs f ′(x) as the quadratization.

4 Evaluation

In this section, we evaluate our CCG-based quadratization algorithm both the-
oretically and experimentally, and illustrate its uses and advantages on a real-
world problem.

4.1 Theoretical Results

In this subsection, we theoretically compare our CCG-based quadratization algo-
rithm with the state-of-the-art algorithms in [21] in terms of the number of aux-
iliary variables. For any PBF of degree d on n variables, the maximum number
of non-zero monomials of each degree i ≤ d is

(
n
i

)
. For polynomial expansion,

the worst case occurs when all coefficients of non-zero monomials are positive2.
From Eq. (3), each positive monomial of degree i ≥ 3 generates

⌊
i−1
2

⌋
auxil-

iary variables. Therefore, the number of auxiliary variables in the worst case
is Nall+(n, d) =

∑d
i=3

(
n
i

) ⌊
i−1
2

⌋
= O

(⌊
d̂−1
2

⌋
n!

d̂!(n−d̂)!

)
= O

(⌊
d̂−1
2

⌋
nd̂

d̂!

)
, where

d̂ = min{�n/2� , d} and the expression is with respect to asymptotically large n.
For the CCG-based quadratization algorithm, the worst case also occurs when

all monomials are positive. Each positive monomial of degree i ≥ 3 generates 2
auxiliary variables (i.e., Xa and XL in Eq. (22)) when it is reduced to the sum
of a quadratic polynomial and a monomial of degree i − 1, which can then be
combined with existing monomials of degree i−1 if they are composed of the same
variables. This combination of monomials can take place in each iteration, until
the whole PBF becomes quadratic. In the worst case, only positive monomials
remain after the combining step of each iteration, and therefore the number of
auxiliary variables is

∑d
i=3 2

(
n
i

)
= O

(
n!

d̂!(n−d̂)!

)
= O

(
nd̂

d̂!

)
.

In the best case, where all monomials are negative (assuming that all mono-
mials up to degree d are present), both polynomial expansion and the CCG-based
quadratization algorithm need just one auxiliary variable for each monomial, i.e.,
Nall-(n, d) =

∑d
i=3

(
n
i

)
= O

(
n!

d̂!(n−d̂)!

)
= O

(
nd̂

d̂!

)
.

Table 1 summarizes our theoretical results. It shows that the CCG-based
quadratization algorithm is advantageous over both polynomial expansion and
γ flipping in terms of the required number of auxiliary variables. γ flipping
has the same complexity regardless of the number of monomials in the input
PBF, which is undesirable for PBFs that do not have an exponential number
of monomials. In the best case, the numbers of auxiliary variables required by
2 We follow the worst case definition in [21].
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polynomial expansion and the CCG-based quadratization algorithm are only
polynomial in n, while that of γ flipping is exponential in n.

4.2 Experimental Results

In this subsection, we focus on an experimental comparison of polynomial expan-
sion and the CCG-based quadratization algorithm, since both of them have time
complexities that are polynomial in d. We implement both algorithms in Python
2.7. Although pseudo-Boolean (PB) competitions have been regularly held [32],
none of their instances have objective functions that are nonlinear PBFs. There-
fore, we generate our own instances. We experiment with random instances and
instances that model real-world facility location problems. These instances have

Table 1. Number of auxiliary variables for different quadratization algorithms as a
function of the number of variables n and d̂ = min{�n/2� , d}, where d is the degree of
the PBF.

if n �= d if n = d

Polynomial expansion (worst case) O

(⌊
d̂−1
2

⌋
nd̂

d̂!

)
2d−2(d − 3) + 1

CCG-based (worst case) O

(
nd̂

d̂!

)
2d+1 − 2 − 2d − d(d − 1)

Polynomial expansion and CCG-based (best case) O

(
nd̂

d̂!

)
2d − 1 − d(d+1)

2

γ flipping 2n − 1 2d − 1

Table 2. Number of auxiliary variables, number of terms in the quadratization, runtime
of the quadratization algorithm, and runtime of the QPBO solver for the minimization
of the quadratization. All reported numbers are averaged over 10 instances with n = d
and m = 2d monomials. Numbers after ± are standard deviations. The monomial
coefficients are integers chosen randomly from [1, 300]. The smaller numbers of auxiliary
variables and terms of quadratizations of each column are highlighted.

d 3 10 11 12 13 14 15

Original number of terms 8 1024 2048 4096 8192 16384 32758

Number of auxiliary variables
Poly 1 1793 4097 9217 20481 45057 >24 h

CCG 2 1936 3962 8034 16200 32556 65294

Number of terms
Poly 11 12089 29508 70736 167005 389227 >24 h

CCG 14 7988 17162 36572 77482 163444 343610

Quadratization time (s)a
Poly 0.0006

10.87
±0.348

58.84
±2.43

341.19
±27.87

3435.50
±39.34

17241.10
±98.35 >24 h

CCG 0.0006
1.828

±0.007
5.133

±0.006
23.16

±0.10
104.58
±1.94

584.33
±21.90

3396.50
±9.63

QPBO (s)b
Poly

0.0197
±0.003

0.0835
±0.0023

0.5086
±0.0090

2.7316
±0.081

14.5621
±1.01

88.362
±5.12 >24 h

CCG
0.0080

±0.00049
0.0043

±0.00024
0.0132

±0.00082
0.0616

±0.0018
0.2968

±0.0065
1.3018

±0.0333
5.5763

±0.5098

a Intel Xeon 4-core 2.3GHz/6-core 2.6GHz
b Intel Core i7-4960HQ Processor 6M Cache 2.60GHz 8GB SDRAM
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a range of d wider than that of the problem of image denoising used in [21],
which always has d = 4.

To generate random instances with a PBF on n variables, we generate each
monomial with degree i randomly chosen from {0, . . . , d}. Such a monomial has i
unique variables randomly chosen from {1, . . . , n} along with a non-zero random
integer coefficient. If a newly generated monomial is on the same variables as
those of already generated monomials, it is rejected and a new one is generated.
We also check that at least one of the m terms generated in this way is of degree
d. For polynomial expansion, we also add up all quadratic like terms in the
resulting quadratization (which can be expensive since polynomial expansion
can potentially generate a lot of like terms in Eq. (3)). We use the QPBO solver
from [26] for the minimization of the quadratizations. We run it via the open-
source MATLAB wrapper qpboMex [34] on MATLAB R2016a and measure the
actual wall-clock time. For the CCG-based quadratization algorithm, all wall-
clock times include the runtime of the CCG construction. For each monomial
coefficient a, the CCG-based quadratization algorithm for all experiments uses
J = L + 1 and L = a + 1. The exact values of these parameters do not matter
insofar as the condition J ≥ L > a > 0 holds.

Table 3. Similar to Table 2, except that the monomial coefficients are non-zero integers
chosen randomly from [−300, 300].

d 3 10 11 12 13 14 15

Original number of terms 8 1024 2048 4096 8192 16384 32758

Number of auxiliary variables
Poly 1

1371.7
±13.50

3022.1
±28.75

6630.3
±39.16

14317
±43.35

30580
±111

65623
±193

CCG
1.5

±0.52
1545

±14.5
3182

±18.3
6503

±25.9
13091
±49.9

26397
±41.1

52908
±70

Number of terms
Poly 11

9002.7
±120.2

21205.8
±227.1

49758.7
±379.4

114482
±493.3

259370
±1055

588832
±2111

CCG
12.5

±1.58
7205.4

±28.2
15601
±36.3

33504
±51.9

71251
±81.3

151089
±75.8

318781
±150

Quadratization time (s)a
Poly 0.0006

4.01
±0.18

23.22
±0.91

133.5
±0.71

1048.8
±3.20

5724.5
±747.7

84538
±788.1

CCG 0.0006
0.9516

±0.011
4.21

±0.022
19.14

±0.057
133.9

±0.58
594.8

±73
3046

±475

QPBO (s)b
Poly

0.0196
±0.0012

0.0420
±0.0094

0.27
±0.0536

1.67
±0.3289

8.43
±0.0380

43.2
±7.67

376.1
±15.2

CCG
0.0071

±0.00021
0.0049

±0.00052
0.0155

±0.0025
0.058

±0.011
0.37

±0.010
1.10

±0.26
4.38

±0.90

a Intel Xeon 4-core 2.3GHz/6-core 2.6GHz
b Intel Core i7-4960HQ Processor 6M Cache 2.60GHz 8GB SDRAM

For polynomial expansion and the CCG-based quadratization algorithm, we
first compare the numbers of auxiliary variables, the numbers of terms in the
quadratizations, the runtime of the quadratization algorithms, and the runtime
of the QPBO solver for minimization of the quadratizations. The runtime of the
quadratization algorithm, referred to as its quadratization time, also includes
the time for combining like terms. While depending mostly on the number of
auxiliary variables, the quadratization time also depends on the number of like
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terms combined in the quadratization algorithm and the number of terms in
the quadratization. Table 2 reports these comparisons for PBFs with all posi-
tive monomials. In each instance, the number of monomials is maximized, with
integer coefficients chosen randomly from the interval [1, 300]. Table 2 shows the
average and standard deviation for the results of the worst-case scenario over 10
instances where n = d and the number of monomials is m = 2d. The CCG-based
quadratization algorithm significantly outperforms polynomial expansion in all
four metrics as d increases.

Table 3 reports a comparison similar to Table 2 for the “average” cases, i.e., in
each instance, n = d and the number of monomials is 2d but the coefficient of each
monomial is a non-zero integer chosen randomly from the interval [−300, 300].
Here, too, the CCG-based quadratization algorithm significantly outperforms
polynomial expansion in all four metrics as d increases.

Table 4. Similar to Table 2, except that all reported numbers are averaged over 100
instances, n = 15, m = 500, and the monomial coefficients are non-zero integers chosen
randomly from [−300, 300].

d 3 4 5 6 7 8 9 10 11

Original number of terms 500 500 500 500 500 500 500 500 500

Number of auxiliary variables
Poly

394.05
±0.2179

405.71
±2.7

491.56
±9.23

538.27
±10.43

614.47
±17.73

666.57
±19.45

733.76
±22.15

789.70
±23.12

859.77
±26.37

CCG
584.11
±9.91

720.21
±20.62

905.18
±29.41

1088.23
±43.52

1271.9
±55.54

1438.61
±61.74

1591.95
±63.92

1742.11
±70.80

1873.79
±75.93

Number of terms
Poly

1637.18
±0.887

1896.20
±15.02

2596.18
±61.81

3121.74
±75.32

3954.80
±154.1

4662.54
±181.1

5607.75
±214.2

6498.62
±249.0

7630.98
±314.8

CCG
2029.31
±19.92

2642.21
±58.01

3473.31
±98.33

4374.41
±155.8

5346.31
±220.1

6331.16
±262.8

7343.51
±275.9

8397.41
±323.4

9430.44
±374.6

Quadratization time (s)a
Poly

0.1147
±0.0096

0.1783
±0.0122

0.3170
±0.0261

0.5284
±0.0624

0.8172
±0.0928

1.1943
±0.1459

1.6922
±0.1574

2.3604
±0.2247

3.2838
±0.3174

CCG
0.1126

±0.0066
0.1730

±0.0121
0.2754

±0.0211
0.4289

±0.0428
0.5937

±0.0534
0.8082

±0.0741
1.0397

±0.0799
1.3350

±0.1003
1.6727

±0.1312

QPBO (s)b
Poly

0.0013
±0.0003

0.0019
±0.0002

0.0032
±0.0004

0.0048
±0.0006

0.0076
±0.0010

0.0105
±0.0018

0.0148
±0.0032

0.0205
±0.0045

0.0291
±0.0063

CCG
0.0011

±0.0001
0.0015

±0.0002
0.0020

±0.0001
0.0027

±0.0002
0.0035

±0.0003
0.0043

±0.0003
0.0052

±0.0007
0.0062

±0.0006
0.0071

±0.0006

a Intel Xeon 4-core 2.3GHz/6-core 2.6GHz
b Intel Core i7-4960HQ Processor 6M Cache 2.60GHz 8GB SDRAM

Table 4 reports a comparison similar to Table 2 for the case where n = 15 > d.
Here, the degree i of each monomial is randomly chosen from {0, . . . , d}. Then, i
unique variables are chosen randomly from {1, . . . , n} to construct this monomial
along with a non-zero integer coefficient for it chosen randomly from the inter-
val [−300, 300]. m = 500 such monomials are generated and we report averages
over 100 instances. Table 4 shows that the CCG-based quadratization algorithm
continues to outperform polynomial expansion in the quadratization time and
the runtime of the QPBO solver as d increases, although it uses more auxiliary
variables and results in a quadratization with more terms. The reason is that
the CCG-based quadratization algorithm derives its advantage from the recur-
sive combinations of monomials, and the probability that these combinations
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take place decreases as the gap between
∑d

i=0

(
n
i

)
, the maximum number of

terms a degree-d PBF can have, and m, the actual number, increases. (As this
gap increases, it is more difficult to encounter monomials that are of the same
variables during each reduction process in the CCG-based quadratization algo-
rithm). Nonetheless, the CCG-based quadratization algorithm is more efficient
than polynomial expansion in its quadratization time since polynomial expansion
not only generates more quadratic like terms for each monomial but also con-
siders each monomial individually and altogether accumulates many quadratic
like terms to be added up.

Table 5. Similar to Table 2, except that n = d = 12, m varies in density 100m/2d,
and the monomial coefficients are non-zero integers drawn randomly from [−300, 300].

d 12 12 12 12 12

Original number of terms (density) 10% 20% 80% 90% 100%

Number of auxiliary variables
Poly

671
±20.1

1295
±23.8

5287
±35.6

6062
±40.3

6641
±43.3

CCG
1219

±28.3
2031

±35.6
5612

±49.8
6005

±40.3
6510

±46.2

Number of terms
Poly

5645
±20.9

10769
±30.0

39996
±320.9

45019
±380.1

49812
±410.3

CCG
6025

±24.1
10142
±28.6

28733
±95.5

31264
±102.2

33519
±106.8

Quadratization time (s)a
Poly

1.74
±0.03

6.31
±0.05

108.07
±10.1

136.05
±12.2

186.50
±20.16

CCG
0.68

±0.06
1.92

±0.05
16.80

±2.80
20.51

±3.23
24.24

±5.75

QPBO (s)b
Poly

0.0157
±0.017

0.0825
±0.018

1.1389
±0.210

1.50
±0.232

1.66
±0.243

CCG
0.0029

±0.0005
0.0068

±0.0015
0.0397

±0.0079
0.042

±0.0079
0.054

±0.0082

a Intel Xeon 4-core 2.3GHz/6-core 2.6GHz
b Intel Core i7-4960HQ Processor 6M Cache 2.60GHz 8GB SDRAM

We finally investigate the role of m in comparison to the worst-case number of
monomials. Table 5 reports a comparison similar to Table 2 for the case of vary-
ing density, i.e., 100m/2d in percentage. We set n = d = 12 and report averages
over 10 instances. We observe that the advantages of the CCG-based quadrati-
zation algorithm become more pronounced as the density increases. While the
CCG-based quadratization algorithm is advantageous in quadratization time
and runtime of the QPBO solver for all densities, it becomes more useful in the
number of auxiliary variables and the number of terms in the quadratizations as
the density increases.

4.3 Case Study: The Uncapacitated Facility Location Problem

We consider a real-world problem called the uncapacitated facility location prob-
lem (UFLP), also known as the simple plant location problem. The UFLP can
also be used to model other real-world problems such as vehicle dispatching. This
problem is NP-hard and can be reformulated as a nonlinear PBO [2,5,19,20].
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Formally, the UFLP is characterized by a set of locations I = {1, . . . , M} and
a set of users J = {1, . . . , N}. Let fi be the fixed cost of opening and operating
a facility at location i ∈ I. Each user j ∈ J is required to be served by exactly
one facility. An M × N matrix C = [cij ] specifies the transportation cost of
delivering products from a facility at location i to user j. The goal is to open
facilities at a subset S ⊆ I of locations that minimizes the sum of fixed costs
and transportation costs, i.e.,

∑

i∈S

fi +
∑

j∈J

min
i∈S

cij . (23)

In [5,19], the following method is used for reformulating the UFLP as a
nonlinear PBO. For each column j in C, we assume a non-decreasing ordering
of its elements as

cij1
≤ cij2

≤ · · · ≤ cijM
. (24)

We denote the difference between consecutive elements as

Δc0j = cij1
, (25)

Δclj = cijl+1
− cijl

, 1 ≤ l < M . (26)

Let zi =

{
0 if i ∈ S

1 otherwise
for each i ∈ {1, . . . , M} and z = (z1, . . . , zM ). For any

valid solution S, we have z �= (1, . . . , 1), and therefore ∀j ∈ J : mini|zi=0 cij =
Δc0j +

∑M−1
l=1 Δcljzij1

. . . zijl
. Therefore, according to Eq. (23), the transportation

cost is
∑

j∈J mini∈S cij =
∑N

j=1

{
Δc0j +

∑M−1
l=1 Δcljzij1

. . . zijl

}
and the fixed

cost is
∑

i∈S fi =
∑M

i=1 fi(1 − zi). Hence, the total cost is

M∑

i=1

fi(1 − zi) +
N∑

j=1

{
Δc0j +

M−1∑

l=1

Δcljzij1
. . . zijl

}
. (27)

The UFLP is equivalent to computing

arg min
z

⎧
⎨

⎩

M∑

i=1

fi(1 − zi) +
N∑

j=1

{
Δc0j +

M−1∑

l=1

Δcljzij1
. . . zijl

}⎫
⎬

⎭

subject to: z �= (1, . . . , 1),

which, in turn, is equivalent to computing

arg min
z

⎧
⎨

⎩

M∑

i=1

fi(1 − zi) +
N∑

j=1

{
Δc0j +

M−1∑

l=1

Δcljzij1
. . . zijl

}
+ λ

M∏

i=1

zi

⎫
⎬

⎭ ,
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where λ > maxi∈I fi. All nonlinear terms have positive coefficients because of
Eq. (24). The degree of the resulting PBF is determined by the number of facil-
ities. While different columns of C potentially use different orderings, the same
ordering can be applicable to different columns. The number of unlike terms in
the PBF is determined by the number of different orderings, which is generally
affected by the number of users.
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Fig. 2. UFLP experimental results. (a) shows M = 12 facility locations and N users.
10 instances are generated for each N . For each instance, the fixed cost for location i
is an integer chosen randomly from [1, 10000]. The transportation cost from location
i to user j is an integer chosen randomly from the interval [1, 100]. The density of
the PBF is defined as the number of terms in the PBF divided by 2M . (b) compares
the number of auxiliary variables in the quadratizations of polynomial expansion and
the CCG-based quadratization algorithm on all PBFs in (a). The y-axis indicates the
number of auxiliary variables for each quadratization algorithm. (Color figure online)

We perform experiments to compare the performance (in terms of the number
of auxiliary variables) of polynomial expansion and the CCG-based quadratiza-
tion algorithm on PBFs resulting from UFLP instances. As reported in [21] and
Tables 2, 3, 4 and 5, the number of auxiliary variables is the most important
comparison parameter and is also indicative of the quadratization time and the
runtime of the QPBO solver. We set the number of locations M = 12, which
results in PBFs of degree 12. We vary the number of users N , which results in
PBFs of varying densities. Except that the linear term coefficients are negative,
this resembles the case of d = 12 in Table 2. For each instance, we randomly
select the fixed costs of the facilities and the transportation costs from location
i to user j. As the number of users increases, we plot the number of terms in the
PBFs in Fig. 2a and the number of auxiliary variables for each quadratization
algorithm in Fig. 2b.

Figure 2a shows that, as more users are added, the density increases rapidly
at first and quickly approaches 1. Figure 2b shows that polynomial expansion
is preferable when the number of users is small but is quickly outperformed
by the CCG-based quadratization algorithm as the number of users increases.
This observation is consistent with the results in Table 5, which show that the
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CCG-based quadratization algorithm is more beneficial for higher densities. For
the UFLP, the superior performance of the CCG-based quadratization algorithm
with respect to the number of auxiliary variables is due to three possible reasons:
(i) The degrees of the resulting PBFs are usually high, (ii) the coefficients of the
nonlinear terms in these PBFs are all positive, and (iii) the PBFs become denser
with a higher number of users.

5 Conclusion

We developed the CCG-based quadratization algorithm for the nonlinear PBO
on general PBFs and compared it to state-of-the-art algorithms. We first proved
the theoretical advantages of the CCG-based quadratization algorithm over other
algorithms. We then experimentally verified these advantages. We observed that
our CCG-based quadratization algorithm not only significantly outperforms
other algorithms on medium-sized and large PBFs but is also preferable for
smaller PBFs, to which asymptotic theoretical results are not directly applica-
ble. We also showed that the CCG-based quadratization algorithm is applicable
to real-world problems such as the UFLP, especially when the number of users
to deliver products to is large.
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13. Eén, N., Sörensson, N.: Translating Pseudo-Boolean constraints into SAT. J. Satisf.
Boolean Model. Comput. 2, 1–26 (2006)

14. Fioretto, F., Xu, H., Koenig, S., Kumar, T.K.S.: Solving multiagent constraint opti-
mization problems on the constraint composite graph. In: Miller, T., et al. (eds.)
PRIMA 2018. LNCS (LNAI), vol. 11224, pp. 106–122. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03098-8 7

15. Freeman, R.J., Gogerty, D.C., Graves, G.W., Brooks, R.B.: A mathematical model
of supply support for space operations. Oper. Res. 14(1), 1–15 (1966)

16. Glover, F., Woolsey, E.: Converting the 0-1 polynomial programming problem to
a 0-1 linear program. Oper. Res. 22(1), 180–182 (1974)

17. Gruber, A.G.: Algorithmic and complexity results for Boolean and Pseudo-Boolean
functions. Ph.D. thesis, Rutgers University-Graduate School-New Brunswick
(2015)

18. Hammer, P.L., Rudeanu, S.: Boolean Methods in Operations Research and Related
Areas, vol. 7. Springer, Heidelberg (2012)

19. Hammer, P.: Plant location – a Pseudo-Boolean approach. Isr. J. Technol. 6, 330–
332 (1968)

20. Hansen, P., Kochetov, Y., Mladenovi, N.: Lower bounds for the uncapacitated
facility location problem with user preferences. Groupe d’études et de recherche en
analyse des décisions, HEC Montréal (2004)
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