®

Check for
updates

Intelligent Dynamic Timeout for Efficient
Flow Table Management in Software
Defined Satellite Network

Shahid Jan'®™) | Qing Guo', Min Jia!, and Muhammad Kamran Khan?

! School of Electronics and Information Engineering,
Harbin Institute of Technology, Harbin, China
sjanwardag@yahoo.com,
{qguo, jiamin}@hit.edu.cn
2 Department of Electronics, University of Peshawar, Peshawar, Pakistan
kamranmuQuop.edu.pk

Abstract. Software Defined Network (SDN) modify the architecture
of traditional satellite network into Software Defined Satellite Network
(SDSN) by decoupling its control and data planes. However, SDSN
encounter several issues, such as satellite link handover and limited space
of Ternary Content Addressable Memory (TCAM), which results into
increasing the number of flow rule entries and flow drop. To solve these
issues this paper presents a novel three-layer architecture of SDSN and
propose Intelligent Dynamic Timeout (IDT) algorithm. The algorithm
predicts dynamic timeout for the eviction of unused flow entries in order
to reduce the size of flow table, drop flow rate and number of table miss
packets. Simulation results show that the average size of flow table, drop
flow rate and number of table miss packets are reduced by 39.55%, 11.2%
and 10.18% respectively when comparing the performance of IDT with
different static idle timeout values.
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1 Introduction

Satellite communication play a vital role in information transmission and it has
been widely used for military purposes, live television, weather broadcast and
internet of things [1]. However, traditional satellite network led the resources
underutilization and it does not guarantee the requirements of future [2]. Soft-
ware Defined Network (SDN) is an emerging network paradigm, which modify
the architecture of distributed network by decoupling its control and data planes
[3]. Traditional satellite network has adopted the architecture of SDN and results
into Software Defined Satellite Network (SDSN). SDSN is explained by many
recent researches e.g. OpenSAN [4] divide the architecture of SDSN into three
planes. Similarly, [5] also present the architecture of SDSN.
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SDN switches install flow rules given by controller in Ternary Content
Addressable Memory (TCAM) and a single SDN switch can accommodate 1500
flow rules, because TCAM are power hungry and more costly [6]. In SDSN fre-
quent satellite link handovers occur in network topology, which create more flow
table entries and results into flow drop [7]. Different timeouts, ranging from 5s
to 60s, have been used to evict the unused flow entries from switch [8]. However,
all these timeouts are fixed and do not consider the occupied space of the switch.

This paper uses dynamic timeout to evict the unused flow entries from switch
and thus reduces the size of flow table, drop flow rate and number of table miss
packets. The technical contributions of this paper are given below.

— It presents a novel three-layer architecture of SDSN and propose an algorithm
of Intelligent Dynamic Timeout (IDT) for efficient flow table management.

— The proposed algorithm considers the key points of limited TCAM space at
forwarding satellites and priority based classified traffic of satellite network
to predict a dynamic idle timeout.

— Simulation results show that the average size of flow table, drop flow rate
and number of table miss packets are reduced by 39.55%, 11.2% and 10.18%
respectively when comparing the performance of IDT with the static idle
timeout of different values.

The rest of this paper is organized as follows. Section 2 explains related work.
Section 3 explains the proposed architecture of SDSN and algorithm. Section 4
explains prototype implementation. Section 5 explains the experimental results
and performance analysis. Finally, Sect.6 conclude this paper.

2 Related Work

Flow Table management in ground network is explained by many researches and
we have divided it into three directions. The first direction explains the designing
of local policies inside SDN switches to reduce the number of requests sent to the
controller. This concept has been used by DevoFlow [6] to reduce the number of
flow entries in TCAM of the switch and minimize the communication between
switch and controller. Similarly, DIFANE [8] uses middle switches in data plane
and install flow rules in these switches to keep the traffic flow in data plane.

Second direction is the use of wildcard rules to reduce the size of flow table in
switches. Leng et al. [9] proposed the scheme of flow table reduction by splitting
the large groups of addresses into smaller groups and rewrite smaller groups in
flow table. H-SOFT [10] proposed optimization algorithms to reduce the high-
dimensional and complex fields of flow table into low-dimensional and multiple
flow tables.

Third direction is to assign an appropriate static or dynamic idle timeout
values to flush out the unused flow entries. Zarek et al. [11] explains the assigning
of proper static idle timeout to evict flow entries from the flow table. Zhu et al.
[12] proposed a scheme to assign different timeout to the newly arrived flows
according to their characteristics. Vishnoi et al. [13] present Smart Time which
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combines adaptive timeout with proactive eviction of flow rules to calculate
well-organized idle timeout and result in effective utilization of TCAM space.

However, all these approaches are not appropriate for flow table management in
SDSN;, because it does not consider the satellite link handover, limited resources

of satellite network and its priority based classified traffic.

3 SDSN Architecture and Algorithm

3.1 SDSN Architecture

The proposed SDSN architecture is based on the basic paradigm of SDN and
comprises of three planes: Control Plane (GEO Satellites), Data Plane (LEO

Satellites) and Management Plane (Ground Stations) as illustrated in Fig. 1.
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Fig. 1. Software Defined Satellite Network architecture

Control Plane: In this plane Geostationary Earth Orbit (GEO) satellites
reside due to its wide coverage and stationary to the ground characteristics.
This framework contains three GEO satellites for monitoring and control of data
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plane. GEO satellites monitor the LEO satellites flow status, link status and
share it with the management plane for satellite network view. It also receives
the routing rules from data plane and translate it to OpenFlow rules.

Data Plane: This architecture consider Low Earth Orbit (LEO) satellites in
data plane due to less distance from the ground. A constellation of 40 LEO satel-
lites is enough for global seamless coverage. Each satellite has four intersatellite
links: two bidirectional links with the satellites of same orbit and two links with
the corresponding satellites of different orbits. Each LEO Satellite contains Open
Vswitch to run flow table and perform the packets forwarding function.

Management Plane: The ability of satellite to process network routing algo-
rithms, perform the task of network security and manage all other resources
are limited, therefore management plane will process all these responsibilities.
The view of whole network collected from GEO satellites by Ground Stations
will make able the management plane to run network policies. These network
policies will be distributed among LEO satellites through GEO satellites.

3.2 Algorithm

To achieve the goal of efficient flow table management in SDSN, this paper
proposes IDT algorithm which consist of two different Modules as illustrated
in Fig.2. The Feedback Module sends tableStatus request to each switch after
every second and records the last value of flow entries. The Timeout Prediction
Module Predict timeout according to the occupied space of TCAM in switch.
Table 1 list the definition of basic parameters used by this algorithm.

IDT algorithm consider two important ideas. Firstly, due to limited TCAM
space in SDSN, IDT predict timeout for a flow entry based on the occupied
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Fig. 2. Intelligent dynamic timeout modules description
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Table 1. Definitions of basic parameters.

Parameters Definitions

TCAM(peak) | Total TCAM space boundary limit

TCAM(max) | 90% of the Total TCAM space boundary limit
TCAM(start) | 80% of the Total TCAM space boundary limit
TCAM_Occup | Current TCAM occupied space by flow rule entries
T(idle)initial | Initial idle timeout

T(idle)ct Initial idle timeout used for classified traffic

dfl, df2, df3 | Decreasing factor for traffic of groupl, group 2 and group 3
T(idle)flow(x) | Idle timeout install for flow(x)

T(idle)IDT The idle timeout of flow(x) by IDT

space of the switch and decreases the value of timeout according to increase in
number of flow entries. Secondly, due to limited resources of SDSN it is difficult
to allocate each user enough resources. Thus, we have classified users into three
different groups based on their MAC/IP addresses. The timeout of these groups
reduces in different proportion according to the decreasing factors.

Algorithm 1. Intelligent Dynamic Timeout Algorithm

Input: TCAM(peak), TCAM(max), TCAM(start), T(idle)ct, T(idle)initial, dfl, df2,

df3

Output: T(idle)IDT
For every Switch: Monitor the number of Flow entries and Record the last n value

W

10:
11:
12:
13:
14:
15:
16:
17:
18:

: for Packet_in message do
Check TCAM_Occup:
if TCAM_Occup <TCAM(start) then
K = (TCAM_Occup — TCAM(start)) / TCAM(max)

T(idle)flow(x) = T(idle)initial — (K x T(idle)initial)

else if TCAM(start) <= TCAM Occup <TCAM(max) then
K = (TCAM Occup — TCAM(start)) / (TCAM(start)- TCAM(max))

T(idle)flow = T(idle)initial — (K x( T(idle)initial - 6))

end if
end if

end for

else if TCAM_Occup >= TCAM(max) then
if user € group 1 then
T(idle)flow(x) = T'(idle)ctx dfl
else if wuser € group 2 then
T(idle)flow(x) = T'(idle)ct x df2
else if user € group 3 then
T(idle)flow(x) = T'(idle)ctxdf3

T(idle)IDT = T(idle)flow(x)

return T(idle)IDT
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The execution process of IDT is divided into five Phases. Phase 1 accepts
the input data. We consider T(idle)initial as 12, T(idle)ct as 10s. dfl, df2 and
df3 are 0.7, 0.6 and 0.5 respectively. Phase 2 check flow table statistics every
second and record the last value of flow table entries in a csv file. In Phase 3,
the controller check TCAM occupied status of each switch. As T(idle)initial is
12s, if there is no flow table entry T(idle)IDT will be 24s. As the number of
flow entries increases, it decreases the timeout linearly and when the TCAM
Occupied space reaches to TCAM(start), timeout decreases to 12s. In phase
4, the idle timeout value decreases fast to avoid reaching the TCAM(peak). In
Phase 5, timeout value decreases suddenly in correspondence with the decreasing
factors, to ensure the traffic flow from high priority users and avoid flow drop.
The time complexity of IDT algorithm is O(n).

4 Implementation

To implement IDT algorithm, we used Mininet, Pox Controller and Open
Vswitches to create a realistic virtual network. In addition, we developed 2-layer
satellite constellation in Satellite Tool Kit (STK) with the parameters of its orbit
as listed in Table 2 [14]. Figure 3 illustrate 3D view of the whole constellation.

Table 2. Parameters of GEO and LEO satellite orbits.

Orbit planes | Altitude in km | No of satellites | Inclination | True anomaly
GEO 36000 3 0° 0
LEO 1 887 8 86° 0
LEO 2 887 8 86° 333
LEO 3 887 8 86° 353
LEO 4 887 8 86° 328
LEO 5 887 8 94° 351

Eorth Tnartie] A
12 fov 2017 09IS2130.000  Them Staps 10,00 wac

Fig. 3. 3D view of satellite constellation

The designed constellation has two ground stations at Sydney and Beijing.
The purpose of satellite constellation is to measure satellite access to the ground
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Fig. 4. Network topology Fig. 5. Flow entries of static timeout 50's
and 30s

stations which leads us to define a static network topology as illustrated in
Fig.4. This topology is fixed and use only three satellites of LEO1-7, LEO1-5
and LEO5-2 to transmit data from 20 hosts connected to Sydney station to the
25 hosts connected to Beijing station as illustrated in Fig. 4.

5 Experimental Results and Performance Analysis

5.1 Experimental Results

Four sets of experiments are created to estimate the performance of our proposed
algorithm. Time of each experiment is 10 min (600s). In each experiment random
traffic flows from 20 hosts connected to Sydney station to the 25 hosts connected
to Beijing station as illustrated in Fig. 4.

First experiment considers static idle timeout of 50s. The results of this
timeout strategy under TCAM space limit 400, 500 and 600 are shown in Fig. 5.
(a), (b) and (c) respectively. In each case, the number of flow table entries cross
the final limits, because the timeout value is larger and the unused flow entries
reside in switch for more time due to which packets drop will occur. Second
experiment considers static idle timeout of 30s. Simulation results of this timeout
strategy is explained in Fig.5. (d), (e) and (f) under the TCAM limit 400, 500
and 600 respectively. Figure5(d) and (e) show that the number of flow table
entries cross the final limit of TCAM due to maximum timeout which result
into packets drop. But in Fig. 5(f) the maximum number of flow table entries do
not cross the TCAM limit, because the TCAM space is enough to accommodate
more flow entries. There will be no packets drop in this case.

Third experiment considers static idle timeout of 15s. Results of this timeout
strategy under the TCAM space limit of 400, 500 and 600 are shown in Fig. 6. (a),
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(b) and (c) respectively. In each case, number of flow table entries do not cross
TCAM limit because the idle timeout is less and it evict the flow entries more
quickly. In this case there will be no packets drop, but the number of table miss
packets will increase. Fourth experiment considers dynamic idle timeout of IDT
to evict the flow table entries from switch. The results of IDT under the TCAM
space limit 400, 500 and 600 are shown in Fig.6. (d), (e) and (f) respectively.
In each case, flow table entries do not reach the final limit of TCAM space and
there are no packets drop in IDT.

5.2 Performance Analysis

(a) Comparison of Flow Table Entries: The Comparison of average flow
table entries of different timeout under the TCAM limit 400, 500 and 600 are
shown in Fig. 7. The analysis shows that, Static_30 reduced the average number
of flow table entries as compared to Static_50 by 7.04%, 14.12% and 12.07%
under the TCAM limit 400,500 and 600 respectively. Similarly, Static_15 reduced
the average number of flow table entries as compared to Static_30 by 20.11%,
25.99% and 36.69% under the TCAM limit of 400, 500 and 500 respectively. IDT
reduced the average number of flow table entries as compared to Static_15 by
9.12%, 3.22% and 2.37% under the TCAM limit of 400, 500 and 600 respectively.
Thus, using dynamic timeout of IDT instead of static idle timeout for evicting
flow entries, can shrink the size of flow table dramatically.

(b) Drop Flow Rate: Figure8 illustrates the drop flow rate of Static_50,
Static_30, Static_.15 and IDT. Here the drop flow is only due to the limited
space of TCAM. Figure 8 shows that, the drop flow rate of static_50 is reduced
10.12%, 10.28% and 4.54% by static_30 under the TCAM limit of 400, 500 and
600 respectively. Similarly, drop flow rate of Static_30 is reduced 5.76%, 2.47%
and 0.06% by Static_15 and IDT under the TCAM limit of 400, 500 and 600
respectively. The drop flow rate decreases when TCAM space limit increases and
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the value of timeout decreases. In our case as the idle timeout approaches to 15s
drop flow rate turns to 0%. But using static timeout of less value triggers more
table miss packets, which create additional overheads on controller. Thus, using
dynamic timeout like IDT is more suitable in SDSN than static timeout of less
value.

(c) Table Miss Packets: Figure9 illustrates the total number of table miss
packets, flows from three switches at LEO satellite nodes to one controller at
GEO satellite node. When TCAM limit is 400, in Static_50 table miss packets are
32.1% less than Static_30. In Static_30 table miss packets are 39.58% less than
Static_15. Similarly, in IDT table miss packets arel0.51% less than Static_15.
When the TCAM limit is 500, in Static_50 table miss packets are 29.43% less
than Static_30. In Static_30 table miss packets are 22.90% less than Static_15. In
IDT table miss packets are 3.74% less than Static_15. When TCAM limit is 600,
in Static_50 table miss packets are 23.32% less than Static_30. In Static_30 table
miss packets arel6.71% less than Static_15 and table miss packets of IDT are
16.29% less than Static_15. Thus, using static timeout of more values reduces
the number of table miss packets but increases packets drop while timeout of less
value avoid packets drop but increases the number of table miss packets which
is unacceptable in case of SDSN.

6 Conclusion

This paper has addressed issues of flow table management faced by SDSN. A
scalable novel three-layer architecture of SDSN and IDT algorithm is proposed
to solve these issues. The algorithm considers limited resources of satellite net-
work and its priority based classified traffic to predict a dynamic idle timeout. In
addition, a satellite constellation has been developed to evaluate the scalability
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of the proposed architecture and achieve the real parameters of satellite net-
work. Extensive Simulation experiments have been performed to compare the
performance of IDT algorithm with static timeout. The performance analysis
demonstrated that IDT algorithm can efficiently reduce the size of flow table,
drop flow rate and number of table Miss packets.
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