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Abstract. Spectrum sensing is the basis of dynamic spectrum access and
sharing for space information networks consisting of various satellite and ter-
restrial networks. The traditional spectrum sensing method, guided by the
Nyquist-Shannon sampling theorem, might not be suitable for the emerging
communication systems such as the fifth-generation mobile communications
(5G) and space information networks utilizing spectrum from sub-6 GHz up to
100 GHz to offer ubiquitous broadband applications. In contrast, compressed
spectrum sensing can not only relax the requirements on hardware and software,
but also reduce the energy consumption and processing latency. As for the
compressed measurement (low-speed sampling) process of the existing com-
pressed spectrum sensing algorithms, the compression ratio is usually set to a
fixed value, which limits their adaptability to the dynamically changing radio
environment with different sparseness. In this paper, an adaptive compressed
spectrum sensing algorithm based on radio environment map (REM) dedicated
for space information networks is proposed to address this problem. Simulations
show that the proposed algorithm has better adaptability to the varying envi-
ronment than the existing compressed spectrum sensing algorithms.

Keywords: 5G � Dynamic spectrum access � Compressed spectrum sensing �
Radio environment map (REM) � Space information network

1 Introduction

1.1 Background

Terrestrial wireless networks have evolved into the Internet of Things (IoTs) paradigm,
in which different terrestrial wireless networks will be integrated and millions of
objects will be connected. In addition, satellite networks support more connections
from the space, which cannot be solely supported by terrestrial wireless networks.
Terrestrial wireless networks and satellite networks will be integrated into space
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information networks to provide ubiquitous coverage, massive connectivity, and
enhanced capacity. Though satellite-terrestrial networks offer many advantages over
terrestrial wireless networks, the topology and radio environment are much more
complicated with high dynamics, making the efficient resource allocation extremely
difficult. Furthermore, dynamic resource scheduling and efficient cooperative trans-
mission are critical problems for space information networks, particularly, the sparse
representation and fusion processing of massive data obtained by multiple platforms
with heterogeneous sensors [1]. In the past decades, cognitive radio has been intro-
duced as a new paradigm for enabling much higher spectrum utilization efficiency,
providing more reliable and personal radio services, reducing harmful interference, and
facilitating the interoperability or convergence of different wireless communication
networks such as various satellite and terrestrial communication networks. Cognitive
radios are goal-oriented, autonomously learn from experience and adapt to changing
operating conditions [17, 18]. Cognitive radios have the potential to drive the next
generation of radio devices and wireless communication system design and to enable a
variety of niche applications in demanding environments such as dynamic spectrum
access and sharing for unmanned aircraft systems [16] and integrated space and ter-
restrial networks.

Along with the rapid increase of wireless communication applications, available
radio spectrum becomes a limiting factor mainly due to fairly low utilization and out-
of-date regulations. By sensing spectrum holes, secondary users (SUs) can make use of
them to realize the communication without generating harmful interference to primary
users (PUs). Cognitive radio technology has changed the traditional fixed allocation
mode of spectrum resources, thus improving the spectrum utilization efficiency.
Spectrum sensing, as the key step of cognitive radio, is the basis of dynamic spectrum
access and sharing for the integrated space and terrestrial networks. In the context of
evolution towards the fifth-generation mobile communications (5G) which cover
spectrum from sub-6 GHz up to 100 GHz, wireless communication employs even
broader channel bandwidth at even higher frequency band than ever before, which also
results in higher requirements on both hardware and software. The wider frequency
band SUs can sense at a time with less scanning time, the more chance to find and use
the spectrum holes to realize the communication tasks. As showed in Fig. 1, to achieve
the above aim, SUs need a wideband antenna, a wideband radio frequency (RF) front-
end, and a high speed analog-to-digital converter (ADC), and a powerful signal pro-
cessor as well.

The wideband antenna and the wideband filter were well developed [2]. By con-
trast, the most challenge module is the high-speed ADC. According to the Nyquist-
Shannon sampling theorem, the sampling frequency must be at least twice the highest
frequency of the signal. In the context of evolution towards high-speed and broadband,

Radio Frequency 
Front-end

Analog-to-Digital 
Converter (ADC)Antenna

Detection 
Decision

Output 
Sensing Result

x(t) x[k]

Fig. 1. Traditional spectrum sensing
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wireless communication works at a frequency from several hundred MHz to dozens of
GHz, that means a high demand for the sampling rate of ADC, usually more than
several GHz. So far the achievable sampling rate of the state-of-the-art ADC is only 6.4
GSPS [3]. And usually the higher sampling rate of ADC, the greater power it will
consume. For spectrum sensing conducted by SUs, the most important thing which we
care most is simply to find the available spectrum holes. For SUs, it is not necessary to
take care of the detail of the spectrum resources which are utilized but the spectrum
holes. Data we acquired through the Nyquist-Shannon sampling usually contains
massive redundancies we do not need or do not care about. “Why go to so much effort
to acquire all the data when most of what we get will be thrown away? Can not we just
directly measure the part that will not end up being thrown away?” Donoho asked this
question in his paper [4].

1.2 Related Work

Donoho, Candès and Tao proved that sparse signal may be reconstructed with even
fewer samples than the Nyquist-Shannon sampling theorem requires which is the basis
of compressed sensing (CS) [4, 5]. CS offers a joint compression- and sensing-
processes, based on the existence of a sparse representation of the treated signal and a
set of projected measurements [6]. Tian and Giannakis introduced CS into spectrum
sensing field firstly [7]. And Polo and others proposed a hardware structure called
analog-to-information converter (AIC) to replace the ADC in spectrum sensing [8].
Compressed spectrum sensing has become matured gradually. However, in the com-
pressed measurement (low-speed sampling) process of the existing general compressed
spectrum sensing algorithms, the compression ratio is set to a fixed value, which limits
their adaptability to the radio environment with different sparseness.

Radio Environment Map (REM) has been introduced as a vehicle of network
support to cognitive radios, which is basically an integrated database that provides
multi-domain environmental information and prior knowledge for cognitive radios,
such as the geographical features, available services and networks, spectral regulations,
locations and activities of neighboring radios, policies of the users and/or service
providers, and past experience [10, 13]. The REM can be exploited by the cognitive
engine for most cognitive functionalities, such as situation awareness, reasoning,
learning, planning, and decision support. In recent years, REM has been viewed as
“enabler for practical cognitive radio networks” [19]. As an example, REM has been
developed for the cognitive wireless regional area networks (IEEE 802.22), especially
from the perspective of interference management and radio resource management [14].
REM has also been exploited to compensate the dynamically changing Doppler spread
for high-speed railway broadband mobile communications [15]. Coordinated resource
allocation based on REM was proposed to support satellite-terrestrial coexistence [12].

1.3 Contribution

In this paper, an adaptive compressed spectrum sensing algorithm based on REM for
space information networks (REM-SIN) is proposed, which has better adaptability to
the dynamically changing radio environment with different sparseness. Simulation
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results demonstrate that the proposed algorithm has a better adaptability to the channel
environment with different sparseness than the existing general compressed spectrum
sensing algorithms.

1.4 Organization

The remainder of this paper is organized as follows: In Sect. 2, we introduce com-
pressed sensing and general compressed spectrum sensing algorithm at first. Then an
adaptive compressed spectrum sensing algorithm is proposed based on REM-SIN. In
Sect. 3, the adaptive algorithm is simulated with MATLAB. At last, the conclusion is
drawn in Sect. 4.

2 System Model

2.1 Compressed Sensing

For a signal x, if it can be expressed as x ¼ Ws and many elements of N-dimensional
vector s is zero or close to zero, we call x is sparse or compressible. And we call W
sparse projection matrix.

Using an M � N matrix called measurement matrix U, we can measure the sparse
signal x as shown by Eq. 1. And we can use the M-dimensional vector y to reconstruct
the signal x via some reconstruction algorithm. That is the core of compressed sensing.

y ¼ Ux ¼ UWs ð1Þ

Suppose that the maximum frequency of x is fM and the time window for sensing is
t 2 0;NT0½ �, where T0 is the Nyquist-Shannon sampling interval, T0 ¼ 1

2fM
. The process

of converting an analog signal to a digital signal can be expressed in the discrete-time
domain as shown by Eq. 2:

xt ¼ Srt ð2Þ

where S is an K � N projection matrix and rt is a N-dimensional vector and acquired by
Nyquist-Shannon sampling, rt½n� ¼ xðtÞ t ¼ nT0j ; n ¼ 1; . . .;N. Rows Skf gKk¼1 of S can
be viewed as a set of basis signals or matched filters [7], while the measurements
xt½k�f gKk¼1 are in essence the projection of xðtÞ onto the basis. If S is the identity matrix

of size-N, Eq. 2 represents Nyquist-Shannon sampling. And if K\N, Eq. 2 represents
compressed sampling.

Compressed sensing supposes that x is sparse or compressible. So we can use the
measurements xt½k� and the projection matrix S to reconstruct the signal rt and xðtÞ via
solving the Eq. 3:

r̂t ¼ arg min
rt2<N

jjrtjj0; subject to xt ¼ Srt ð3Þ
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Equation 3 is a non-deterministic polynomial-time hard (NP-hard) problem. So we
usually use an approximate Eq. 4 to replace Eq. 3 and convert the NP-hard problem to
a convex optimization problem. In some sense, Eq. 4 is the ‘closest’ convex opti-
mization problem to Eq. 3 [9]. More explicitly, when the projection matrix S satisfies
the ð2k; d2kÞ-Restricted Isometry Property (RIP) and 0\d2k\

ffiffiffi

2
p � 1, the solution to

Eq. 4 is the same as the solution to Eq. 3 [20]. And the ðk; dkÞ-RIP property is defined
by (5) below.

r̂t ¼ arg min
rt2<N

jjrtjj1; subject to xt ¼ Srt ð4Þ

ð1� dkÞjjxjj22 � jjSTxjj22 � ð1þ dkÞjjxjj22 ð5Þ

Note that in (5), x 2 <jT j, jjxjj22 ¼
P

i
x2i , dk 2 ð0; 1Þ, and k is a constant;

T � f1; 2; . . .;Ng; jT j � k; ST is a submatrix of S, and ST is composed of columns of S
as indicated by index T; and :j j represents the number of elements in a set. Equation 4
is a convex optimization problem. There are many solutions, such as the basis pursuit
(a kind of linear programming algorithms) [21] and orthogonal matching pursuit (a
kind of greedy algorithms) [22].

2.2 General Compressed Spectrum Sensing

Since Tian and Giannakis introduced compressed sensing for wideband cognitive
radios [7], scholars have made a lot of further investigations. The framework of general
compressed spectrum sensing algorithms is shown in Fig. 2.

For spectrum sensing, SUs use antenna and radio frequency front-end to receive a
wideband analog signal xðtÞwhose maximum frequency is fM Hz. Under the guidance of
the measurement matrix, we use AIC to compress the analog signal xðtÞ into the digital
signal y½k�. Even the AIC’s sampling rate is lower than 2fM (Nyquist-Shannon sampling
rate), we still can use y½k� to reconstruct xðtÞ’ digital form x½k� by related algorithms.
Using the digital signal x½k�, SUs can make detection decision and finish the spectrum
sensing. That is the main process of general compressed spectrum sensing algorithms.

In compressed measurement (low-speed sampling) process of compressed spectrum
sensing algorithms, AIC samples and transforms the analog signal xðtÞ into the digital
signal y½k� with sampling rate which is lower than Nyquist-Shannon sampling rate and
makes the signal can be reconstructed. Generally speaking, the more measurements, the
more accuracy reconstructed signal has which makes the sensing result more accurate.
However, more measurements needs higher sampling rate which means more data is
produced.
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Fig. 2. General compressed spectrum sensing
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We define the compression ratio as a parameter which controls the number of
measurements. Specifically, the compression ratio is defined by

q ¼ k=2fM ð6Þ

where k is the length of y½k� and equals to the number of rows of measurement matrix,
and 2fM is the Nyquist-Shannon sampling rate of xðtÞ.

The sparser the signal is, the less measurements it needs when reconstructing the
signal. For the existing compressed spectrum sensing algorithms, the compression ratio
is usually set to a fixed value. Therefore, their adaptability to the channel environment
with different sparseness is fairly limited.

2.3 Adaptive Compressed Spectrum Sensing

To solve the problem that the adaptability to the channel environment with different
sparseness of general compressed spectrum sensing algorithms is not strong, we pro-
pose a new adaptive compressed spectrum sensing algorithm, which is based on radio
environment map dedicated for space information networks (REM-SIN). Its framework
is shown in Fig. 3.

Under the guidance of the measurement matrix and the check matrix, we use AIC to
compressed measure (sample) the analog signal xðtÞ to get the digital signal y½k� and
y01½k�. In the subsequent steps, y½k� is used to reconstruct the digital signal x½k�. Cor-
responds to the progress of getting y01½k�, we use the check matrix to compressed
measure (sample) x½k� to get the digital signal y02½k�. We call y01½k� and y02½k� the check
sequence.
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Fig. 3. Adaptive compressed spectrum sensing based on REM-SIN
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Because xðtÞ is unknown to us, we do not know how similar the reconstructed
signal x½k� to x0½k� is (x0½k� is a digital signal sampled at Nyquist-Shannon sampling rate
from xðtÞ). That is to say, we cannot evaluate or ensure the sensing result’s accuracy.

Inspired by cross validation, we can use the similarity between y01½k� and y02½k� to
evaluate the similarity between x½k� and x0½k�, and evaluate the sensing result’s accuracy
in the end. As we have known how accurate the sensing result is, we can adjust the
compression ratio and repeat the sensing again when the sensing result’s error is
unacceptable.

If we have known the prior knowledge of radio environment, we can set an initial
compression ratio and other parameters to accelerate the adaptive process of com-
pressed sensing.

The adaptive compressed spectrum sensing algorithm based on REM-SIN is
detailed as follows:

Step 1: PUs obtain the prior knowledge of radio environment from the REM-SIN
and combine with the sensing demand, then set the initial compression ratio
and other parameters, and then create the measurement matrix and the check
matrix.

Step 2: PUs receive xðtÞ and use AIC to compressed measure (sample) xðtÞ to get
y½k� and y01½k� under the guidance of the measurement matrix and the check
matrix.

Step 3: PUs use y½k� to reconstruct x½k� and use the check matrix to compressed
measure (sample) x½k� to get y02½k�.

Step 4: PUs measure the similarity between y01½k� and y02½k� to evaluate the recon-
struction and sensing result’s accuracy. If the gap between y01½k� and y02½k� is
unacceptable, increase the number of measurements by variable step size
and return step 2. Else, use the reconstruction result x½k� to spectrum
sensing.

Step 5: PUs feed back the sensing result and other related information to the REM-
SIN.

3 Simulation Results

In this section, we present the MATLAB simulation resulting using the proposed
adaptive compressed spectrum sensing algorithm.

First of all, we use a 512-point discrete-frequency-domain signal to simulate the
channel environment as shown in Fig. 4. We suppose that there are 4 wideband signals
in the spectrum between 4900 MHz to 5102.4 MHz. Each wideband signal’s band-
width is 6 MHz and its power is −83 dBm. The signal-to-noise ratio (SNR) is 20 dB.

Then, SUs use the proposed adaptive algorithm to sense the spectrum. SUs can
obtain the prior knowledge about the operational radio environment from the REM-SIN
and then set the initial compression ratio to 0.3 and initialize the other parameters as
well according to the sensing demand. For example, the number of rows of the
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measurement matrix and check matrix are initially set to 150 and 40, respectively; the
step size for both long step and small step are set to 40 and 10, respectively; the
threshold Euclidean distance between y01½k� and y02½k� is preset as 4� 10�12. The
reconstruction algorithm employed in our simulation is the sparsity adaptive matching
pursuit (SAMP) [11].

We can choose many statistics to measure the similarity between y01½k� and y02½k� like
Euclidean distance, Minkowski distance, vector cosine angle, and so on. In this sim-
ulation, we choose Euclidean distance to measure the similarity between y01½k� and y02½k�.
The true value of error we defined is the Euclidean distance between x½k� and x0½k�. And
we call the Euclidean distance between y01½k� and y02½k� the alternative value of error.
Figure 5 show that two kind values of error have the same variation trend with the row
number of measurement matrix with a high probability.

When the Euclidean distance between y01½k� and y02½k� is greater than 1� 10�11, we
deem that there is a great disparity between x½k� and x0½k�, and increase the number of
rows of measurement matrix with a large step, then repeat the compressed sensing.
When the Euclidean distance between y01½k� and y02½k� is greater than 4� 10�12, it
indicates there is a small disparity between x½k� and x0½k�, and increase the row number
of measurement matrix with a small step, then repeat the compressed sensing. When
the Euclidean distance between y01½k� and y02½k� is less than 4� 10�12, the disparity
between x½k� and x0½k� can be ignored, and then the reconstruction result x½k� is used for
spectrum sensing.

The spectrum sensing results are shown in Figs. 6 and 7. Note that it is assumed
that when the received signal power is lower than −90 dBm, the channel is idle.

The simulation results show that by using the proposed adaptive algorithm, the
compression ratio can be adjusted according to the channel environment so as to get
accurate sensing results efficiently.

Fig. 4. Simulated channel environment

Adaptive Compressed Wideband Spectrum Sensing 135



Figure 8 show the area under curve (AUC) value of the receiver operating char-
acteristic (ROC) curve when employing different number of rows of the measurement
matrix. As for the detection and false alarm performance, our proposed algorithm is
basically the same as that of the SAMP algorithm. The advantage of our proposed
algorithm is that it can evaluate the spectrum sensing results automatically and then
make adjustment adaptively. In this way, there is no need to accurately estimate the
spectrum sparsity of radio environment, which is essential yet challenging for the
traditional compressed spectrum sensing algorithms.

Fig. 5. Error’s variation with the row number of measurement matrix

Fig. 6. Spectrum sensing results

Fig. 7. Spectrum sensing results after binary decision
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4 Concluding Remarks

With the development of integrated satellite-terrestrial networks utilizing spectrum
from sub-6 GHz up to 100 GHz to offer ubiquitous broadband applications, the
topology and radio scenarios will become much more complicated with extremely wide
radio spectrum to be shared. Accordingly, it is important to make compressed spectrum
sensing more efficiently and adaptively to the dynamically changing radio environ-
ment. In this paper, an adaptive compressed spectrum sensing algorithm is proposed,
which is based on REM dedicated for space information networks (REM-SIN) to
improve the adaptability of compressed spectrum sensing algorithms to the channel
environment with different sparseness. The simulation results show that by using the
proposed algorithm, the compression ratio can be adjusted adaptively according to the
channel environment and get accurate sensing results efficiently. For future work, it is
worthwhile to analyze the impact of many practical factors (such as mobility of
satellites and weather condition) on the spectrum sensing results and construct the
REM-SIN for various applications.
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