
Chapter 4
Big Triangle Small Triangle Method for
the Weber Problem on the Sphere

Atsuo Suzuki

4.1 Introduction

We propose the Big Triangle Small Triangle (BTST) Method for solving the Weber
problem on the sphere (WPS). It can also be applied to other single facility location
problems on the sphere. The WPS is a variation of the Weber problem which is
a classic and well-studied location problem. We assume that the demand points
are distributed on the surface of a sphere, and our problem is to find the location
of a facility so as to minimize the sum of the distances from demand points to the
facility. The distance is measured by the great circle distance. The objective function
of the WPS is not convex, and the Weiszfeld-type algorithm is not guaranteed to find
the facility’s optimal location. The BTST type algorithm divides the surface of the
sphere into spherical triangles and applies a branch-and-bound method. We show
that it finds the optimal solution within a short computational time.

As trade and services become global, there is an increased interest in location
problems on a sphere. Most location problems, that are usually formulated on the
plane, can also be formulated on the sphere. While planar distances are convex, great
circle distances on the sphere are not. Therefore, even planar convex problems are
not convex, in general, when formulated on the sphere. In order to find the global
optimum on the sphere, global optimization techniques need to be utilized. One
effective global optimization algorithm that was formulated on the plane is the “Big
Triangle Small Triangle” (BTST) algorithm (Drezner and Suzuki 2004). We develop
the spherical equivalent of the BTST algorithm.

The chapter is organized as follows: In Sect. 4.2 we review the BTST algorithm.
In Sect. 4.3, we introduce the WPS, and provide a short literature review. In Sect. 4.4
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we formulate the problem and list the properties we use for our algorithm. In
Sect. 4.5 we describe the algorithm in detail. In Sect. 4.6 we derive the lower bound.
In Sect. 4.7 we present the results of numerical experiments. We close the paper
with the conclusion in Sect. 4.8. The derivation of a lower bound is detailed in the
Appendix.

4.2 The Big Triangle Small Triangle Method

The Big Triangle Small Triangle method was proposed by Drezner and Suzuki
(2004). The method solves optimally location problems with non-convex objective
functions. Drezner and Suzuki (2004) solved the Weber problem with attraction and
repulsion (WAR) and an obnoxious location problem. These problems have non-
convex objective functions and unless we utilize the BTST method, it is difficult to
obtain a guaranteed optimal solution.

The outline of the BTST method for a given relative accuracy ε is as follows:

1. Triangulation: The feasible region of the problem is divided into triangles. We
utilize the Delaunay triangulation which is a dual graph of the Voronoi diagram
generated by the demand points.

2. Initial upper bound UB: We evaluate the objective function at the centroid of each
triangle and set the minimum of them as the initial upper bound.

3. Initial lower bound LB for each triangle: We evaluate a lower bound for each
triangle.

4. Branch-and-bound

(a) All triangles whose LB is greater than UB(1 − ε) are discarded.
(b) The triangle with the minimum LB (the “big triangle”) is divided into four

similar triangles (“small triangles”) and the UB and LB in each triangle are
evaluated. UB may be updated.

(c) If the minimum of LB of all triangles is greater than UB(1 − ε), then UB
is the minimum of the objective function within a given relative accuracy ε.
The solution is the centroid of the triangle which attains the UB.

The BTST method was motivated by the Big Square Small Square (BSSS)
method proposed by Hansen et al. (1981, 1985). They solved variations of the Weber
problem. The BTST method utilizes the triangulation of the feasible region into
many triangles, while the BSSS method divides the feasible region, embedded in
a big square, into small squares. The BSSS method is very simple and effective;
however, the BTST method is also effective and is superior to the BSSS method in
the following two points.

The first point is about the case when the feasible region is a polygon. In this
case, the BSSS method divides the rectangle which includes the feasible region
into rectangles which may have non-feasible areas. The BSSS method needs an
additional procedure to avoid non-feasible solutions. On the other hand, the BTST
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method divides the polygon into triangles and all triangles and their interiors are
feasible and the union of the triangles includes all feasible points.

The second point is that the triangles of the BTST method do not include demand
points in their interior. A demand point in the interior of a triangle may complicate
the derivation of an upper bound in a triangle. For example, in the Weber problem,
the partial derivatives of the objective function are infinite at the demand points.
In the BSSS method, some of the squares may include demand points and an upper
bound may be ineffective. The triangles in the BTST method do not include demand
points in their interior if we utilize the Delaunay triangulation described below.

The BTST method utilizes the Delaunay triangulation (Lee and Schachter 1980)
which is a dual graph of the Voronoi diagram (Sugihara and Iri 1992; Okabe et al.
2000; Suzuki and Okabe 1995) to triangulate the feasible region. As described
above, it is one of the reasons that BTST is better than BSSS. Voronoi diagrams
and the Delaunay triangulation have been studied in the field of the computational
geometry (Ohya et al. 1984; Sugihara and Iri 1992). The FORTRAN source program
is available to the public on the WEB site of Kokichi Sugihara. Figure 4.1 is an
example of the Voronoi diagram generated by randomly distributed 256 points on
the plane.

Drezner and Suzuki studied various location problems using the Voronoi dia-
gram. Examples include: the continuous p-center problem (Suzuki and Drezner
1996), the continuous hub model (Suzuki and Drezner 1997), the equitable radius
circle problem (Suzuki and Drezner 2009), and the covering problem (Drezner and
Suzuki 2010). They used the Delaunay triangulation (Lee and Schachter 1980) to
triangulate the feasible region effectively in the application of the BTST algorithm.

Drezner utilized the BTST method for various location problems. They are listed
in the introduction of Drezner (2007). After that Drezner has continued to apply
the BTST method to various location problems, such as the multi-Weber problem

Fig. 4.1 Voronoi diagram for
256 generators by the
program of Ohya et al. (1984)
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(Suzuki and Drezner 2013), Huff based competitive location model (Drezner and
Drezner 2004), and the network nuisance location problem (Drezner et al. 2009).
It is almost impossible to obtain a guaranteed optimal solution for these problems
without applying the BTST method.

4.3 The WPS Problem

The WPS problem is a variation of the Weber problem. The objective function of the
classic Weber problem is convex, and by the algorithm first proposed by Weiszfeld
(1936) and improved by Drezner (1996, 2015), the optimal solution is obtained. On
the other hand, as the objective function of the WPS is not convex, the Weiszfeld-
type algorithm cannot guarantee that the solution found is optimal. The WPS has
been studied by many researchers, and many heuristics have been proposed for its
solution. For example, Drezner and Wesolowsky (1978) proposed a heuristic based
on the Weiszfeld algorithm. Other heuristic algorithms are surveyed by Hansen et al.
(1995).

To the best of our knowledge, there are only two algorithms that obtain the
optimal solution of the WPS. Drezner (1985) proposed an iterative algorithm based
on the transformation of the problem into a series of minimax problems on the
sphere. The algorithm adds extra points on the sphere one by one, and solves the
minimax problem iteratively. The convergence of the algorithm to the optimal point
is proved. However, numerical examples are not presented, and the convergence is
expected to be slow.

Hansen et al. (1995) proposed another algorithm called the Big Region Small
Region (BRSR) method based on the BSSS method. The algorithm of the BRSR
divides the feasible region into spherical rectangles. It obtains a lower bound of the
objective function in each spherical region. By the branch-and-bound process, they
narrow the region where the solution exists. They implemented the algorithm and
present computational results.

We apply the BTST type method described in the former section for solving the
WPS. For the triangulation of the sphere, we utilize the algorithm of “spherical”
Voronoi diagram developed by Sugihara (2002). Figure 4.2 is an example of
the spherical Voronoi diagram drawn by the program available by Sugihara for
randomly distributed 50 generators on the surface of the sphere.

The BTST method performs better than the BRSR method for the same reasons
that the ordinary BTST method is superior to BSSS method. Furthermore, when
the BRSR method divides the sphere into spherical rectangles, it uses latitude and
longitude. As a result, it treats the regions near the north and south poles differently,
while the BTST method does not require such special treatment.
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Fig. 4.2 Perspective view of
a Voronoi diagram on the
sphere for randomly
distributed 50 generators by
the program in Sugihara
(2002)

4.4 Formulation of the Weber Problem on the Sphere

There are n demand points located on the sphere. Demand point i has an associated
weight wi > 0. The points on the sphere are represented by polar coordinates:

ai = (φi, θi),−π

2
≤ φi ≤ π

2
,−π ≤ θi ≤ π, i = 1, . . . , n.

φ is the longitude and θ is the latitude if we consider the sphere as the globe.
The distance between two points on the sphere is measured by the great circle

distance. The distance between s(φ, θ) and ai(φi, θi) is

d(s, ai) = arccos{cos φ cos φi cos(θ − θi) + sin φ sin φi}.

The great circle distance is the shortest distance from s to ai when traveling on
the surface of the globe. Note that 0 ≤ d(s, ai) ≤ π .

The objective function of the WPS is

F(s) =
n∑

i=1

wid(s, ai). (4.1)

We assume that wi > 0. If wi < 0 for some 1 ≤ i ≤ n, we replace ai by its
antipode with weight −wi . By Property 4.2 described below, we can transform the
case where wi < 0 for some values of i into problem (4.1). It means that if the WPS
can be solved, the Weber problem with attraction and repulsion on the sphere can
be solved as well.

As the WPS attracts significant interest, various properties have been studied.
They are listed by Hansen et al. (1995). We show several definitions and properties
which are utilized in our algorithm.
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Definition 4.1 Given a center point and radius, a spherical circle is the set of the
points whose shortest distance from the center is equal to the radius.

Definition 4.2 A set on the surface of the sphere is convex if all the points on the
shortest arc connecting two points in the set are included in the set.

Definition 4.3 We define a function f on a convex set S on the surface of a sphere.
f is convex if and only if for any two points a and b in S, and all 0 ≤ λ ≤ 1,

f (λa + (1 − λ)b) ≤ λf (a) + (1 − λ)f (b).

Property 4.1 The distance from a given point s to a point on the sphere is a convex
function if the point is in the spherical circle whose center is s and radius is less than
or equal to π

2 .

Property 4.1 is proved in many papers such as Katz and Cooper (1980) and
Drezner and Wesolowsky (1978). We utilize this property to obtain the lower bound
in the BTST method.

Definition 4.4 The antipode of a point a(φ, θ) on the sphere is ā(−φ, θ − π) if
θ ≥ 0 or ā(−φ, θ + π) if θ ≤ 0.

The following property is easy to prove by the definition of the great circle distance
and Definition 4.4.

Property 4.2 The sum of the distances from s to a and from s to ā is equal to π .

Before describing the details of the algorithm, we re-write the objective function
to facilitate the derivation of the lower bound for the BTST method. We define
index sets of demand points. We consider a spherical triangle T whose vertices are
T k, k = 1, 2, 3. The polar coordinates of T k are (φk, θk), k = 1, 2, 3. I is the index
set of all demand points. We define the following:

I k = {i ∈ I |d(T k, ai) ≤ π

2
}, k = 1, 2, 3

Ī k = I \ I k.

I k is a set of demand points whose distance from a vertex T k of the triangle T is
less than or equal to π

2 .
We divide the objective function into three terms. The first term is the sum of the

weighted distances from the demand points whose distance from all three vertices
of the triangle is less than or equal to π

2 . The second term is the sum of the weighted
distances from the demand points whose distance from all three vertices of the
triangle is greater than or equal to π

2 . The third term is the sum for the rest of the
demand points
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F(s) =
∑

i∈I

wid(s, ai)

=
∑

i∈∩3
k=1I

k

wid(s, ai) +
∑

i∈∩3
k=1 Ī

k

wid(s, ai) +
∑

i∈I\(∩3
k=1I

k∪∩3
k=1 Ī

k)

wid(s, ai) (4.2)

≡ F1(s) + F2(s) + F3(s).

The first term is convex for any s in the triangle, and the second term is concave.
The third term is neither convex nor concave. We prove the convexity of the first
term and the concavity of the second term.

First, we show that the first term of (4.2) is convex. Consider a spherical circle
Ci whose center is ai and radius π

2 . By Property 4.1, d(t, ai) is a convex function in
Ci . Note that T k ∈ Ci . Let T ′ be a point on the edge T 1T 2. As d(t, ai) is a convex
function in Ci , and Ci is convex, by Definition 4.3,

d(T ′, ai) ≤ λd(T 1, ai) + (1 − λ)d(T 2, ai)) ≤ π

2
, 0 ≤ λ ≤ 1.

Let T ′′ be a point on the edge T ′T 3. By the same reason above,

d(T ′′, ai) ≤ λ′d(T ′, ai) + (1 − λ′)d(T 3, ai)) ≤ π

2
, 0 ≤ λ′ ≤ 1.

As T ′′ moves in T when λ and λ′ vary in their range,

d(s, ai) ≤ π

2
,∀s ∈ T

Then, by Property 4.1, d(s, ai) is convex function of ∀s ∈ T . As F1(s) is the
weighted sum of the convex functions and the weights are positive, F1(s) is a convex
function.

Next, we show that the second term of (4.2) is concave. By Property 4.2, the term
is rewritten as follows:

F2(s) =
∑

i∈∩3
k=1 Ī

k

wid(s, ai) =
∑

i∈∩3
k=1 Ī

k

wi{π − d(s, āi )}

= π
∑

i∈∩3
k=1 Ī

k

wi −
∑

i∈∩3
k=1 Ī

k

d(s, āi ). (4.3)

As the distance from s to ai is larger than π
2 for ai, i ∈ ∩3

k=1Ī
k , the distance from

s to the āi is less than or equal to π
2 . It means that the distance from s to the āi is

a convex function of s. As the second term of (4.3) is the sum of convex functions,
it is convex. The first term of (4.3) is constant. As F2 is a difference between a
constant and a convex function, it is a concave function. This can also be proved by
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observing that all the distances from the antipode are less than or equal to π
2 and in

general if F(X) is convex, then −F(X) is concave.

4.5 Outline of the BTST Method for the Weber Problem on
the Sphere

The outline of the algorithm is similar to the planar BTST method. In the algorithm,
we use spherical triangles rather than planar triangles. The calculation of the lower
bound is more complicated than the calculation for the planar BTST method. We
show the details in the next section.

1. Triangulation: The sphere is divided into spherical triangles. We utilize the
Delaunay triangulation of the sphere which is a dual graph of the Voronoi
diagram on the sphere.

2. Initial upper bound UB: We evaluate the objective function at the centroid of the
spherical triangles, and set the minimum of them as the initial upper bound.

3. Initial lower bound LB for each spherical triangle: We evaluate a lower bound of
the objective function for each spherical triangle.

4. Branch-and-bound

(a) All spherical triangles whose LB is greater than UB(1 − ε) are discarded.
(b) The spherical triangle with the minimum LB is divided into four similar

spherical triangles by connecting the middle points of the three edges of the
triangle. The UB and LB in these triangles are evaluated. UB may be updated.

(c) If the minimum of LB of all spherical triangles is greater than UB(1− ε), then
UB is the solution.

As the initial upper bound, we calculate the weighted sum of the distances from
the centroid of each spherical triangle to the demand points. The initial upper bound
UB is the minimum of these upper bounds. Note that if there are n demand points,
the number of the triangles in the initial triangulation is 2n − 4. The calculation of
the initial upper bound is calculated in linear time.

By our experience, the effectiveness of the algorithm strongly depends on the
quality of the lower bound like in any branch-and-bound method. In the next
section we describe the details of the calculation of the lower bound used in the
computational experiments.

In the branch-and-bound process, we use a heap with the key of the lower bound
of the spherical triangles. We scan the heap to discard spherical triangles with LB
greater than the UB(1 − ε). When we pick the spherical triangle with the smallest
LB, the spherical triangle is at the top of the heap, and we update the heap. Then we
add four spherical triangles to the heap. As the spherical triangle with minimum LB
is always on the top of the heap, comparing the minimum LB to UB(1 − ε) is quite
easy.
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4.6 Calculation of the Lower Bound

To obtain a lower bound, we need to consider the first term, which is convex, and
the third term of (4.2), which is neither convex nor concave. The second term is
concave. Therefore, its minimum should be attained at one of the vertices of the
spherical triangle T .

The first term of (4.2) is transformed as follows. A point s in T is represented as
a linear combination of the three vertices of the spherical triangle T 1, T 2, and T 3

G1(t1, t2, t3) ≡ F1(t1T
1 + t2T

2 + t3T
3),

where

T k = (φk, θk); s = t1T
1 + t2T

2 + t3T
3, t1 + t2 + t3 = 1. (4.4)

As F1 is convex in T , G1 is convex in the triangle defined by (4.4). For a lower
bound of a convex function, we propose the tangent plane method in Drezner and
Suzuki (2004). We calculate the tangent plane of the convex function and set the
minimum of the tangent plane values on the three vertices of the triangle as the
lower bound. In this case, the lower bound is obtained as follows:

G1(t1, t2, t3) =
∑

i∈∩3
k=1I

k

wi arccos{cos(t1φ
1 + t2φ

2 + t3φ
3) cos φi

× cos(t1θ
1 + t2θ

2 + t3θ
3 − θi)

+ sin(t1φ
1 + t2φ

2 + t3φ
3) sin φi}.

The tangent plane of G1(t1, t2, t3) at (t̄1, t̄2, t̄3) is

Ḡ1(t1, t2, t3) = G1(t̄1, t̄2, t̄3)

+ ∂G1

∂t1

∣∣∣∣
t1=t̄1,t2=t̄2,t3=t̄3

(t1 − t̄1) (4.5)

+ ∂G1

∂t2

∣∣∣∣
t1=t̄1,t2=t̄2,t3=t̄3

(t2 − t̄2)

+ ∂G1

∂t3

∣∣∣∣
t1=t̄1,t2=t̄2,t3=t̄3

(t3 − t̄3).

As the value of F1(s) is equal to that of G1(t1, t2, t3), s = t1T
1 + t2T

2 + t3T
3, and

G1(t1, t2, t3) ≤ Ḡ1(t1, t2, t3),

F1(s) ≥ Ḡ1(t1, t2, t3), s = t1T
1 + t2T

2 + t3T
3.

The derivation of ∂G1/∂tk, k = 1, 2, 3 is given in the Appendix.
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As mentioned above, F2(s) is concave. Therefore, F4(s) = F2(s)+ Ḡ1(t1, t2, t3)

is concave as a sum of a concave function and a linear function by Eq. (4.5). The
minimum of F4(s) is attained at a vertex of T

F4(s) =
∑

i∈∩3
k=1 Ī

k

wid(s, ai) + F1(s)

≥ LB1 = min
k=1,2,3

⎧
⎪⎨

⎪⎩

∑

i∈∩3
k=1 Ī

k

wid(T k, ai) + Ḡ(k)

⎫
⎪⎬

⎪⎭
,

where G(1) = G1(1, 0, 0); G(2) = G1(0, 1, 0); G(3) = G1(0.0.1).
F3(s) is neither convex nor concave. The distance from a demand point to any

point in T is higher than the minimum distance from the demand point to the triangle
T . Therefore,

F3(s) =
∑

i∈I\(∩3
k=1I

k∪∩3
k=1 Ī

k)

wid(s, ai)

≥ LB2 =
∑

i∈I\(∩3
k=1I

k∪∩3
k=1 Ī

k)

wi min
s∈T

d(s, ai).

The details of the derivation of mins∈T d(s, ai) is given in the Appendix.
As the lower bound LB2 is a naïve one, its quality may not be very good.

However, the size of the triangles is relatively small as the algorithm progresses.
The number of demand points in I \ (∩3

k=1I
k ∪ ∩3

k=1Ī
k) becomes small. Therefore,

the quality of the lower bound improves as the algorithm progresses.
As the result,

F(s) ≥ LB1 + LB2.

4.7 Computational Experiments

We implemented the procedure in FORTRAN and tested randomly generated
demand points on the sphere. The computer used for the experiments has Intel Core
i5-4200U CPU (1.6 GHz clock), the operating system is Windows 10 Professional,
and the RAM is 4.00 GB. The FORTRAN Compiler we used is FORTRAN Power
Station version 4.
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We tested problems with 100, 200, 300, 400, and 500 demand points which are
randomly distributed on the sphere. All the weights are equal to 1. We compare the
effectiveness of our algorithm with the one in Hansen et al. (1995). As they used
ε = 10−3 as the stopping criterion, we used the same ε in our tests. We also used
ε = 10−6 to obtain more precise optimal function values. For every combination of
the number of demand points and ε, we solved 10 sample problems. We measure
the number of iterations and CPU time to obtain the optimum objective function
values. In Table 4.1 we report the average and standard deviation of the number of
iterations and the run times in seconds of the 10 runs. We also report the average
value of the objective function and for ε = 10−3 and report its percentage above the
average obtained using ε = 10−6. In Table 4.2 we give the details of the 10 results
for the n = 500 instances.

The computer (Hansen et al. 1995) used for the computational experiments is
SPARC 4/75-64 (28.5 MIPS, 64M RAM, 4.2 MFLOPS). The computer we used
has 4.84 GFLOPS (2.42 GFLOPS per one core and the CPU has two cores). The
ratio of the computer speeds is 1152 times. In Table 4.1, the average CPU times are
0.16, 0.41, 0.77, 1.09, and 1.26 s for 100, 200, 300, 400, and 500 demand points
sample problems, respectively, while in Hansen et al. (1995), the CPU times for the
same size of the sample problems are 517, 958, 2586, 3018, and 5233 s. The ratios
between these are 3230, 2320, 3360, 2740, and 4000. As the speed of the computers
increases 1152 times, the CPU time by our algorithm is at least twice as fast.

For more precise solutions, we use ε = 10−6 as the stopping rule of the
algorithm. It appears that the CPU times to obtain the solutions increase moderately.

Table 4.1 Summary results for ε = 10−3 and ε = 10−6

Iterations CPU time Objective value

n Mean S.D. Mean S.D. Mean a

ε = 10−3

100 212.6 76.7 0.17 0.05 145.4025 0.0019%

200 241.8 91.4 0.41 0.11 299.2156 0.0004%

300 292.5 158.4 0.78 0.28 454.1721 0.0005%

400 265.6 198.3 1.09 0.45 604.7062 0.0002%

500 190.5 75.4 1.26 0.22 757.1503 0.0003%

ε = 10−6

100 14555.3 28154.0 22.41 54.42 145.3997 –

200 20435.0 23103.1 41.21 51.96 299.2144 –

300 12837.4 24230.9 34.90 75.29 454.1697 –

400 8235.3 12164.0 23.30 36.79 604.7047 –

500 11040.1 26156.0 46.32 115.86 757.1481 –
a% above optimum
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Table 4.2 Results for n = 500

ε = 10−3 ε = 10−6

Case Iteration Time Value Iteration Time Value

1 245 1.44 770.8228 1524 5.05 770.8228

2 118 1.05 752.8868 2385 8.06 752.8784

3 157 1.14 757.7859 703 2.72 757.7853

4 254 1.44 765.9260 2631 8.30 765.9211

5 79 0.94 741.5615 310 1.61 741.5582

6 313 1.59 776.6203 1676 5.39 776.6203

7 259 1.47 752.1417 89327 393.50 752.1416

8 181 1.25 756.8979 1413 4.80 756.8967

9 212 1.33 761.8746 3460 10.98 761.8717

10 87 0.97 734.9853 6972 22.83 734.9851

Mean 190.5 1.26 757.1503 11040.1 46.32 757.1481

S.D. 75.4 0.22 12.01 26156.0 115.86 12.01

4.8 Conclusions

We proposed the spherical BTST algorithm for the Weber problem on a sphere
(WPS). It obtained the exact solution in a short CPU time. For the calculation of the
lower bound of the branch and bound process of the BTST, we divide the objective
function into three terms. The first one is the sum of the weighted distances from
the point in the triangle to the demand points whose distance is less than π

2 from all
the points in the spherical triangle. We show the term is convex and use a variation
of the tangent plane method to obtain the lower bound. The second one is the sum
of the weighted distances from the point in the triangle to the demand points whose
distance is larger than or equal to π

2 . We show that the second term is concave.
Therefore, the sum of the second term and the tangent plane constructed for the first
term is also concave. The lower bound for the sum is attained at one of the vertices
of the triangle. For the third one, we calculate the shortest distance from the demand
points which is neither less than π

2 nor larger than or equal to π
2 . We implemented

the algorithm and found that it obtained the solution in a short CPU time.
The methodology proposed in this paper can be used to optimally solve other

location problems on a sphere. Competitive facility location, forbidden regions
(such as bodies of water or enemy countries) using the Weber or the minimax
objective, finding the location that attracts the maximum weight within a given
distance, equity location models such as minimizing the range, the variance, and
other location models that were investigated in the plane.
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Appendix

Partial Derivatives of G1

The calculation of the partial derivatives of G1(t1, t2, t3) is as follows:

g1i (t1, t2, t3) ≡ cos(t1φ
1 + t2φ

2 + t3φ
3) cos φi × cos(t1θ

1 + t2θ
2 + t3θ

3 − θi)

+ sin(t1φ
1 + t2φ

2 + t3φ
3) sin φi.

Then

G1(t1, t2, t3) =
∑

i∈∩3
k=1I

k

wig1i (t1, t2, t3).

The partial derivatives of G1 are

∂G1

∂tk
= −

∑

i∈∩3
k=1I

k

wi(1 − g1i (t1, t2, t3)
2)

1
2

∂

∂tk
g1i (t1, t2, t3), k = 1, 2, 3.

The partial derivatives of g1k are calculated as follows:

∂

∂tk
g1i (t1, t2, t3) = cos φi{−φk sin(t1φ

1 + t2φ
2 + t3φ

3) · cos(t1θ
1 + t2θ

2 + t3θ
3 − θi)

− θk cos(t1φ
1 + t2φ

2 + t3φ
3) · sin(t1θ

1 + t2θ
2 + t3θ

3 − θi)}
+ sin φi{φk cos(t1φ

1 + t2φ
2 + t3φ

3)}.

Shortest Distance to the Triangle T

For the lower bound of F3(s), we need to calculate the shortest distance from
a demand point to the triangle T . The shortest distance from a demand point is
attained on the edges or the vertices of T . Therefore, we need to obtain the shortest
distance from the demand point P(ai) to an edge T 1T 2 of the triangle T . We
calculate the distance from the demand point to the three edges and set the minimum
of them as the shortest distance from the demand point to the triangle T .

For the calculation of the distance from the demand point P(ai) to an edge T 1T 2,
we need to consider two cases. Consider the spherical angles α = ∠PT 1T 2 and
β = ∠PT 2T 1 (see Fig. 4.3).
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Fig. 4.3 The shortest
distance from a demand point
to the edge T 1T 2

The first case is that both α and β are less than π/2. In this case, the shortest
distance from P to T 1T 2 is attained at a point T ′ on T 1T 2 see Fig. 4.3. The distance
is calculated as

d(T ′, ai) = arccos(
−−→
OT ′ · −→

OP),

where

−−→
OT ′ =

−→
OP − k(

−−→
OT 1 × −−→

OT 2)

||−→
OP − k(

−−→
OT 1 × −−→

OT 2)||
,

k = (
−−→
OT 1 × −−→

OT 2) · −→
OP

||−−→OT 1 × −−→
OT 2||

.

The second case is that either α or β is greater than or equal to π
2 . If α ≥ π

2 , the
shortest distance is attained at T 1. If β ≥ π

2 , the shortest distance is attained at T 2.
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